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ABSTRACT

The behaviour of the crossfield current-driven ion acoustic insta-
bility ina plasma containing two ion species is theoretically examined.
In our model the electrons are assumed to be hot and the ions cold,
fe. Ty > Ts (v 0), where both ion species are given the same

temperature. The Tength and time scales are such that the electrons

are magnetized and the ions unmagnetized.

The linearised Vlasov equation is used té set up a dispersion rela-
tion for electrostatic waves for Maxwellian equilibrium velocity dis-
tributions of the electrons and ions. For the ion acoustic wave, a
study is made of the dependence of the critical electron drift
ve]ogity (Vg) required to excite an instability on several parameters.
The parameters include light ion fraction, heavy to 1light ion mass
ratio, magnetic field strength and the propagation angle. In general
the maximum value of Vg is found to be smaller than that for an
unmagnetized'p1asma. Approximate analytic solutions of the dispersion
re]étion are used to make comparisons with solutions from the full

dispersion relation.

The effect of drifts due to inhomogeneities in external magnetic
field, perpendicular electron temperature and electron density on the

growth rate of the ion acoustic instability are investigated in the

ion rest frame.

‘Finally, in a reference frame in which the electrons are stationary,
both ion species are given external drifts. The effects of the ion
drift velocities (both equal and unequal), electron to ion temperature
ratio, Tight ion fraction, and heavy to light ion mass ratio on the

~ growth rate of the ion acoustic instability are then studied.
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CHAPTER ONE

INTRODUCTION

Experimental measurements in magnetically confined plasmas,
especially in fusion-oriented devices such as tokamaks and
stellarators, indicate anomalous partic1é and energy transport across
the confining magnetic field. It is widely suggested that such
observations are due to turbulence associated with plasma waves and
instabilities. In this regard, of particular interest are the
electrostatic instabilities since they have faster growth rates in
most cases. Of such‘modes, the Tow frequency ion acoustic wave (and
associated instability) has réceived much experimental and theoreti-

cal investigation.

1.1 TION ACOUSTIC WAVES

When the frequency of an incoming signal in a plasma is decreased to
that of the ion plasma frequency, the massive ions respond to the
signal and are set into vibration. As the frequency is decreased

below the ion plasma frequency, the ion oscillations become more

coherent and ion acoustic waves are set up.

Ton acoustic waves in a plasma were first observed by Wong et al.
(1964) in a Q-machine. The phase velocity of such waves in a single
ion plasma can be found by the use of fluid theory (see, e.g., Chen,

1974), and is given by

/T o Y. T, Y2

W { € 11

_— = +

W e T ) a1



where Te(T.) is the electron (ion) temperature, M. the ion mass, Y,

;
the ratio of the specific heats for the ion, Ay = (Te/4nnoe2)1’2,

the electron Debye length, with n, being the equilibrium plasma

density. For most experimental parameters, kxD << 1 and Te >> Ti(m 0).

Then the phase velocity can be written as

T 1/2
w_ (e .
> \M1> = ¢, (1.1.2)
where c_ is the ion sound speed. It can thus be seen that the ion

s
acoustic wave is basically a constant-velocity wave and exists only

when there is thermal motion. This can be exp]aiﬁed by noting that
the.e1ectrons are dragged along with the oscillating ions and as a
result tend to shield out the electric fie]dé arising from the
bunching of the ions. This.shie1ding, however, is not perfect
because of the thermal motion of the electrons. The resulting
electric fié]d (proportional to Te) exerts a restoring force on the
ioné. But the ions overshoot their eqdf]ibrium position because of

their inertia. This sets up ion acoustic waves in the plasma. -

Ton acoustic waves have been thoroughly 1nvestigated_in single-ion
plasmas, both experimehta]]y and theoretically. More recent atten-
tion has been given to their behaviour in two-ion plasmas. While
much work has been done in unmagnetized plasmas, the.study of ion
acoustic waves in magnétized p]asmaé is incomp]ete; Here, we examine
the behaviour of the ion acoustic instability in a magnetized two-ion

plasma with crossfield drifts acting as the driving mechanism.



1.2 OUTLINE OF THIS THESIS

The studies in this thesis are based on the 1inear theory of the
electrostatic instabilities in a collisionless magnetized two-ion
plasma. Chapter Two presents a 11terature survey of both theoretical
and experimental investigations of.the ion acoustic instability. The
Tinear dispersion relation for a model consisting of drifting
Maxwellian electrons and stationary ions is eétab]ished in Chapter
Three. Series and asymptotic expansioné_df the plasma dispersion
function are used to obtain approximéte solutions to the dispersion
relation. Marginal stability studies are made to show the dependence
of the critical external electron drift speed required to excite the
instability on the fraction of Tight ions. The dependence on other
parameters, such as heavy to Tight ion mass ratio, strength of mag-

netic field and propagation éng]e arealso examined.

The effect of inhomogeneities in electron temperature, e1ectron.den—
sity and external magnetic field on the instability growth rate is
studied in Chaptér Four. 1In Chapter Five, we adopt a mode1 in which
rthe_e1ectrons are stationary and both fhe jon species given external
drifts. The effect of the ion drift velocities (Bofh equal and un-
equal), electron to jon temperature ratio, 1ight ion fraction and

heavy to 1ight ion mass ratio on the ion acoustic instability growth

rate are studied.

The main results of this thesis are summarised in Chapter Six.
Conclusions aré also drawn and-possible extensions to the work

presented are discussed.



CHAPTER TWO

LITERATURE SURVEY OF THE CROSSFIELD ION ACOUSTIC INSTABILITY

The crossfield current-driven ion acoustic instability (Gary, 1970)
js one of a set of low frequency electrostatic instabilities generated
when a current flows across a magnetic field §O. -The instability is

. 1/2 "
characterised by (m /M,)*"? < (k, /ki) < 1 with V  >c and T > T,
where m, is the electron mass and kz(kl) is the component of the wave

vectdrApara11e1 (perpendicular) to the magnetic field.

2.1 10N ACOUSTIC INSTABILITY IN A SINGLE-ION PLASMA

This section is included not only for completeness but also since the
effect of gradients on the growth rate of the ion acoustic instébi]ity
in a two-ion plasma is similar to that in a single-ion plasma. We

present a brief survey of studies undertaken.

Krall and Book (1969) conducted an initial theoretical investigation
of the ion acoustic instability propagating across a magnetic field B.
Spatial gradjents in the magnetic field B and electron density n were
used to drive the instability. They found that the growth rates for

the .crossfield mode and the field free modes were comparable.

Priest and Sanderson'(1972) made a theoretical study of the effect of
temperature, density and magnet1c field gradients on the ion acoustic
instability in-perpendicular shocks. Making the assumptioné

(k.p. )% 551 and (k,pg)? > 1 with K= (0, Ey,

electron gyroradius, they derived an expression for the growth rate

yPe FZ)-and pe being the



via the Gordeyev integral. It was found that a Targe teﬁperature
gradient in strong shocks'considerab1y increased the growth rate of
the ion acoustic instability and this effect was explained in terms
of a distortion in the electron velocity distribution function. (For
a more detailed explanation, see Chapter Four of this thesis). The
effect of the density gradient was found to be small, while the mag-
netic field gradient only produced a slight correction fo the growth

rate.

Lashmore-Davies and Martin (1973) made a study of the linear theory
of all fast growing (y > Qi) electrostatic instabilities which occur
when a current flows perpendicu1ar to a Magnetic field, for the

temperature ranges.Te >> T Te = Ti and Ti = 10 Te' Although they

i
worked with a homogenous plasma, their findings, especially the
estab]ishment of an upper Timit for the pfopagation of the modified
two-stream instability is important to our work. This limit was
found to be (kz/k) n (me/Mi)l’z. As (kz/k ) increases, the modified
two-stream instability changes into the ion acoustic instability.

They also found that the effect of the magnetic field was to enhance

the growth rate.

Bharuthram and Hellberg (1974).made a nuherica] study of the role of
weak gradients in density, perpéndicu]ar e1éctron temperature and
magnetic field on the crossfield current-driven ion acoustic instab-
ility. In their model the dominant drift, VO, was either an
external beam or an E x B drift. The destabilizing effect of the
temperature gradient (Priest and Sanderson, 1972) was only observed
for the regime k o, > T, with k. # 0. On the other hand, the density

gradient always had a stabilising effect.



Hirose et al. (1972) have reported experimental observations of the
jon acoustic instability in a toroidal turbulent-heating machine.
For Te/Ti 2 40, they found that the wave propagafed across the field
in a‘'direction opposite to that of the electron diamagnetic current.
The grdwth rate was observed to be greater in the presence of a

temperature gradient than for an E x B or vn drift.

Hayzen and Barrett(1977)used a double-plasma device to study the
crossfield current—driven 1on'acoust1c instability driven by an ion
beam. The growth rate of the ion acoustic instability was investi-
gated as a function of klpe and the.magnetic field angle 6. Allow-
ing for the finiteness of the p]asma and the effect of ion-neutral
collisions, the authors found good agreement between-the measured

growth rates and the equivalent theoretical estimates.

Wetconc1ude this section by making a brief review of some of the more
recent research on ion acoustic waves in a single-ion p]ésma. Much
of this researéh has been on non-linear aspects such as the propaga-
tion of solitons. Lonngren et al. (1982) have performed a series of
experiments to 1nyestigate the propagation of grid launched linear
and non-linear ion acoustic waves. They suggested that a soliton or
a dispersing fAiry function" response could be used as a diagnostic
tool to determine the plasma density. Gabl et al. (1984) inter-
preted the ion acoustic wave excitation in terms of "klystron bunch-
ing" using a water bag model. A condition for optimum excitation of
planar solitons was also derived.by these authors. In another study
on grid launched linear énd non-1inear jon acoustic waves,
Raychaudhuri ;et..a1. (1984) observed that spherical ion acoustic

solitons could be launched from a small planar grid.



In other non-linear investigations, Bharuthram and Hellberg (1982),
have used quasilinear theory to study the saturation of the cross-
fie]d.current-driven ion acoustic instability. Majeski et al. (1984)
have observed the suppression of the current-driven ion acoustic in-
stabi]ity in a single-ended Q-machine. This occurred as a result of
non-1inear coupling produced by pondermotive effects arising from the
introduction of a large amplitude lower hybrid wave. Sekar and
Saxena (1985) have demonstrated the formation of ion acoustic double
layers in a laboratory plasma, starting from the Tinear growth of

ion acoustic instabilities in a current-carrying plasma.

2.2 ION -ACOUSTIC WAVES IN A TWO-ION PLASMA

Plasmas containing more than one ion species play an important part
in the study of the upper ionosphere and fusion plasmas as well as

in the study of laboratory plasmas.

The ion Landau damping of ion acoustic waves in a two-ion plasma was
first observed by Alexeff et al. (1967) in their now classic experi-
ment. Thé addition of a small concentration (about 0.3%) of 1ight
ions was found to sharply damp the growth rate of the ion acoustic
instability, although the effective ion mass (and hence the phase

velocity) was almost unchanged.

Hirose et gl. (1970) have experfmenta]]y investigated the effects of:
magnetic fields and propagation angle on the ion Landau damping in a
helium-xenon plasma. Fluid theory was used to make comparisons be-

tween theoretical - and experimental results. The ion Landau damping

for propagation para11é1 to the magnétic field was found to be



similar to that without a field (as investigated by Alexeff et al.,
1967). The angu]ak dependence of the "contaminant™ Landau damping
was also investigated and results showed that the damping vanished

for propagation almost perpendicular to the external magnetic field.

Fried et al. (1571) have used kinetic theory to make a detailed study
of the "contaminant" damping. The Tinear dispersion relation was
derived for a multispecies plasma and solutions to this equation dis-
played in the complex phase velocity p]éne. Comparisons were also
made with the approximate solutions of the dispersion relation
(derived by using asymptotic expansions for both ion terms). The
authors found that there are two important modes associated with the
two ion species in the plasma, each with different phase velocities -
the principal. heavy ion mode and the principal light ion mode. The
principal heavy ion mode is significantly affected by the addition

of a small concentration of light ions (the fcontéminant“ damping).
The principal modes were investigated as a function of 6 = Te/Ti and
light ion ffaction, f. Figure 2.1, taken from their paper, shows fhe

damping. rate as a function of f for an argon-helium plasma.

03+ -
02y 6=10 ’
T
Principal A
modes
0f- 8:25 Principal .
He modes
] | [ N B A ! 1 LT
] Jis} d . 3 |
f

FIG. 2.1. ?gm?;ng rate r vs light ion fraction f (from Fried et al.,
71). -
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The experimental findings of Nakamura-gEJEl. (1975) on changegdof
damping rate with 1ight fraction in an argon-helium plasma confirmed
the theoretical work of Fried et al. (1971). The damping rate was
found to be a maximum for f n» 0.08. Fufthennore, only a single wave
was detected for the range 21 < 6 < 26, where 6 = T /T.. Ina sub-
sequent paper, Nakamura et al. (1976b) investigated the temperature
range ¢ = 10 to 15, 'Although they detected a single mode in an argon-
neon p]ésma, two modeé were detected in an argon-helium plasma. On |
the basis of.their results, Nakamura et al. (1976a) used fluid theory
to suggest that two-wave behaviour will occur for 6 < 2M (M being

the heavy to 1ight ion mass ratio) in a two-ion plasma, which implies

" that only a single mode will be observed for ¢ > 2M,

Simi]af results were found by Tran-and quuefand (1975a ahd b) who
observed two simultaneous modes in an arQon-he]ium plasma (M = 10)
for 8 = 9. Ina 1ater‘paper {Tran and Coquerand, 1976), they used
real w and complex k to draw the di§bersion curves for 6 = 25 and
g = 10 in an argon-helium plasma. For the case 6 = 10, the existence

of two simultaneous modes was clearly shown, while 8 = 25 yielded a

single mode.

Lambert et al. (1976) used Nyquist diagrams to illustrate the
behaviour of the roots of the dispersion relation for a two-ion
plasma. They conclude that.the light ion "contaminant" damping occurs
for the range 5 < 6 < 100. The width of this interval depends on

both the heavy to l1ight ion mass ratio and the 1ight ion concentra-
tion. Lambert et al, continued their investigations in a second

-paper~(1977)-and studied the effect of such parameters as ion mass -



_’1[]_

ratio and temperature ratio on the "contaminant" damping in an argon-

“heTlium plasma.

Gledhill (1982) used the saddle point technique to make a comprehen-
sive study of the effects of 6, M and f on the behaviour of the
various ion acoustic modes in a two-ion plasma. In their kinetic
treatment, Gledhill and Hellberg (1987), confirmed the findings of
Nakamura et al. (1976a) by establishing the criteria for the exist-
~ence of two simultaneous modes in a two-ion plasma as 6 < 6* where

o* = 2.1 Mfor M > 10.

Dell (1984) continued with the saddle pdint technique of Gledhill.
Some of his studies focussed on the effect of an electron beam on the
jon acoustic instability in an unmagnetized two-ion plasma. The
presénce of the electron beam was found to modify the conditions

necessary for the coexistence of two weakly damped waves.

Yagura et -al. (1985) experimentally studied the ion acoustic instab-
ility in a two-ion plasma in the ﬁresence of two-ion beams. The ion-
ion acoustic instability was found to be excited by the coup]ihg of
-the jon acoustic wave associated with the background plasma and the
slow space charge wave of the heavy ion beam. Experimental measure-
ments were found to agree quite closely with the theoretical results.
The ion beam energies required to produce instability were found to
depend upon both the 1ight jon fraétion f and the heavy to light ion

mass ratio M.

Gary and Omidi (1987) have solved the linear dispersion relation for

ion-acoustic-like instabilities in a plasma consisting of counter
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streaming fon components.' Some of the results found were: (i) the
instability undergoes a-transition_from fluid-Tike to beam resonant
as the beam-background ion relative temperature ratio approaches
unity; (i) when the beam-background temperature ratio is of order
unity, the threshold core (background ions) drift speed for the
electron-ion acoustic instability is larger than that for the ion-ion
acoustic instability for a very wide range of plasma pafameters;
(111} anisotropies in the e]ectron‘temperature, TLe/Tue > 1 enhances
the ion-ion acoustic instability at oblique propagations; (iv) the
effect of an external magnetic field is to either increase or
decrease the growth rate of the instability for large beam-background
ion drift speeds. The authors then use their results to make com-
parisons with the findings of other authors on the ijon acoustic in-

stability in space plasmas.

In a recent theoretical study of ion acoustic behaviour in two-ion
plasmas, Jackson (1986} investigated the propagation of ion acoustic
instabilities in a . deuterium-tritium plasma and their significance
in controlling thermonuclear reactions. The SASER (Sound Amplifica-
tion by Stimulated Emission of (Acoustic) Radiation) effect is

discussed.
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CHAPTER THREE

THE PLASMA DISPERSION RELATION FOR CROSSFIELD CURRENT-DRIVEN ION

ACOUSTIC WAVES IN A TWO-ION PLASMA

3.1 INTRODUCTION

The plasma dispersion relation used in this thesis is based on
kinetic theory. It has been derived for crossfield ion acoustic
waves by Gary and Sanderson (1970), but the following derivation of
the relation is based closely on the more detailed approach of

Bharuthram (1974).

We consider electrostatic waves in a collisionless Vlasov plasma con-
sisting of two species of stationary ions and Maxwellian electrons drift-
ing perpendicular to an external magnetic field. The derivation of

the plasma relation is based on the following two assumptions:

(a) The time scale (1) and length scale (L) of the perturbations

satisfy the following conditions:
%G <t < o
Y‘ecL <r‘1.

where 9 (Qe) is the fon (electron) _gyrofrequency and rs (re)

is the ion {electron) gyroradius.
Under such conditions the ions may be considered unmagnetized.

(b) We use the electrostatic approximation, i.e. magnetic field

perturbations are neglected. Then E(Y) - -v¢(1)where ¢(a) (s1))

is the perturbation electric field {potential). 1t then follows -
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from Maxwell's equations that for harmonic variations of the form

exp i(K + ¥ - wt) , kK is parallel to f(l). Thus electrostatic waves

are longitudinal in nature. -To ensure that electromagnetics effects are
always negligible we require the wave phase speed V. to be much

¢
smaller than the speed of light, i.e. V¢ << C.

In the next section we describe our model and then obtain the electron

contribution to the dispersion relation. .

3.2 THE ELECTRON TERM

We consider a collisionless two-ion plasma embedded in external

electric and magnetic fields:

glo) . g g
X
(o) (3.2.1)
0 s
B/ = B, (1+ex)2
§ (o) >
o= §oz
hl
y :
/// f(o) = -Exx
//
// Vo—.-
/ — > y
4—\78
VB
i

X FIG. 3.1

Since the electrons are-magnetized and the ions not, the former have

an E(o) X §(0) drift relative to the latter,

N (0) (o)
Vo = cE zﬁ (3.2.2)
| B2 R
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in the y-direction. The drift velocity of the electrons due to the
inhomogeneity in the magnetic field, VB’ is in the negative y-
direction and is given by (Boyd and Sanderson, 1969)

L mVc@Bxv)B
Vg = ettt X (3.2.3)

(-e) B?
Substituting for §(°)'from eqn (3.1.1), we have

eVi
Effects of gradients in plasma temperature and density are neglected
here, but will be studied later in Chapter Four.

Since we are considering magnetized electrons and unmagnetized ions,

the scale length of nonuniformity of §(°) is restricted by
rg << |1/el <<r..
The equation of motion for the electrons is given by

méqV 'e(f(o)+ Vxﬁ(o)) 

at
= e[-EXX+Vx{BO(1+aX)/C}2],

which leads to

eEX 7]
X = m— = Qe(1+€_X)V
e
¥ = 0 (1+ex)V = (3.2.5)
zZ = 0.
i

Two constants of motion (to order ¢) can be constructed by the use of

- 2 2 2
eqn (3.2.5). These are V,and V| = VX+(Vy-VO) .
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The Vlasov equation for the electrons,

of
e > e / VX_g -
&+ Tevf 4 \‘Ff ) 7o = 0, (3.2.6)

is satisfied by the equilibrium Maxwellian velocity distribution

(3.2.7)

VE4(V -V )2 +V2
fo) oy (2mc2)—3/2 exp{- Xy o Z}
e 6] e 2 2
‘e

where Mg is the electron mass and Co = »/Te/me the electron thermal speed.

Allowing for small perturbations in the equilibrium quantities, viz.

£o= 04 fl0) () << 1))
and -~ F -2, #(0) () <<y

where the superscript (1) indicates the perturbations, we substitute

in egn (3.2.6), and linearize to obtain

(1) (1) (1)
Me' Ly, _g-ﬁf )).ﬁs
ot -> m N _ >
ar ' oV
aoxl1) Bf(o)
_ e fp) BBV e (3.2.8
M ( c ) N :2.8)
which may be rewritten as
(1) (0)
[ dfe 1 v . Ef&
I e aV

where §(1) = 0 for the electrostatic case, and the left hand side
represents the rate of change following an unperturbed orbit (as
defined by E(O) and ﬁéo)) in phase space. Upon integrating along the
unperturbed orbits, we obtain

t
W xv3 .. (1) ,
fo (r V1) = mej_mw j dt (3.2.9)
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where
%%; - v.’;.(o) _ ;’v.(o) -V .
W eplo), gl !
FEa ﬁ;(E . ) (3.2.10)
gl g, () .

and where we have taken the Tower Timit of the integration t' = -e

under the assumption that the plasma is undisturbed in the infinite

past.
Assuming féi) and ¢(1) to vary harmonically in space and time we may
write,

FF 0,0 = £ @) expli (BeFent)) (3.2.11)

e e
o #,1) = o) expli (Reteut)) (3.2.12)

Inserting the eqgns (3.2.11) and (3.2.12) into (3.2.9), we obtain

fél)(?a_}at) =fél)(V) exp{‘i(_lz-?-wt)j

<

0)

Ji.jki_

m 2
ce

Hl -V'-v¢(1)dt' + leo-vq;(l)dt'] (3.2.13)

e

af(o) f(o)(V|)
where the result € - [V 15— (from eqn 3.2.7)

oV 0 c

has been used.

Now

t t (1) >, t o, (1) (1)
(1). v . [ ¢ ! ) ar' " J <d¢ ! ¢ 1/ 1
jwv¢ ) dt;- . a? . a—trdt = N Gial "a—tr )dt ’

which on using eqn (3.2.12) and the boundary condition at t' = =e

yields



t
J 26! gt - [olt) boiw | ¢|(<;) exp{i(K-T'-ot'}dt'.  (3.2.14)

With the aid of egn (3.2.12), one gets

t ot .
J sl gt - kT | o\) expli (ke -ut')dat (3.2.15)

Combining egns (3.2.13), (3.2.14) and (3.2.15), one finds

fél)(V) exp{i(K-r-ut)}

eféo.) () o
i [[¢k exp{i(k-r'-wt')}]
m ¢’ w t'=t
ee :
sy [ (0) 3 2
v i(ukeT) J_m¢k;_exp{1(k.r--wt-)}dtf]

Evaluating this equation at t = 0 with ¥'(0) = ¥,V'(0) = V, we obtain

ef(o) 0
fél)(V) = ¢f(;) [1+1(w-E-VO) Lo exp{i(K-F'-ut")} dt'1(3.2.16)

e

where the relation cé = Te/me has been used.

-

Now if V'(0) = V = (V| cos ¢, V) sin ¢, V,) and FH0) = ¥ = (X Zo)
the approximate solution to the electron orbit equations are

vy
+ 5; {s1n(9et +¢)-sine¢},

VJ_' ev'?
Yo = o {cos(Qet'+¢)-cos¢}+(VO - ?SL )t',
e e
(3.2.17)

zO + V%tf)_

If we now write

_IE = (kxak )kz) = (kJ_COSlJJ, kls.”]q), kz),

Y
the integral in egn (3.2.16) becomes, with the aid of eqgn (3;2.17),
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0 €V|2-
. 1 - J— H
[_w_exp 1[{kZVZ+ky<VO ?5; )—w}t

k V! -_
— 2 {sin(agt omy)-sin(e-y)) Jdt’

+

e

The above integration can be performed with the aid of the following

identity (Watson, 1944):

exp (i o sing) = " exp (i £ 8) Jpla), (3.2.18)
£=-w '

where JZ(“) is the Bessel function of order £.

Equation (3.2.16) can then be written as

(o)
ef
SUUEE IS IR SRR

k V! k Vi
J_ J_ J_ A .

.+; +Zoo Jp (T) Jq ( g ) expiilp-g) (¢_w)}]. (3.2.19)

Do G=-o eVlZ _ : L.
fatiy (1 -z, Jorone)

e

The perturbed electron density is then given by

h(l)(?,t) n(l)exp{i(?-F-wt)}

ko { SR IRT TS

e
- [0 expti @7ty @'y
Using egn (3.2.19), with féo) given by eqn (3.2.7) and Vi = v;

+ (Vv —Vo)z, we obtain

Y
(1) 2

e Va2
o ® | T {rolenc) > exp (2

)} [1+(w-—|z:\70)

J_+
2
2ce
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k V! kv |
11 11 . _
3, (52) o, <‘@> exp {i(p-) (9-v))

40 R ) Qe : ' '.d Vl
X T X s
p=-» Q== I , € N } .
1k, +ky<vo C 20, )-w+er
ViZy o,
(1) exp(— —ZE, z
noesy [ w-K:V o 2¢,
= 1 + 2TT z J
|e (2mc,” 37* p=-c« J0 eViZ
Lk V. -{w-k <v = ) P 1]
e
k V!
X J; ( = l) exp( il \v 'y ] - (3.2.20)
R

where we have used cylindrical coordinates (Vi,¢,V£) in velocity
space and have performed the angular integration using the result:
o if p#qg

2
[' exp{i(p-q)¢}d¢ ={ (3.2.21)
°0 2n if p = q

Using the plasma dispersion function (Fried and Conte, 1961),

2

700 = o2 j T"‘T dx for Im()) > 0» (3.2.22)
the term
V|2
exp( 22) dv
{m . _2ce
- . evllz
- Ly _
[ v © Ky (VO 22, ) er'l v”
—= - - 2k
/ﬁbe { S2k_c }J z%

"Thz7e
may be rewritten as

- ’ - J_\
L {“'ky(VO"?ﬁg/ "p"e}"
1 -
15; Y2k _c

Ze
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Equation (3.2.20) then reduces to

n

(1) o> : . -
(1) = n0e¢kw . (w -k . VO) +oo - rocx : /kJ_VJ_\ o VJ_ \
ekw Te [1 ' . _ exp,(

X z { . N° e/ e} | (3.2.23)

3.3 THE ION TERMS

The time and Tength scales are assumed to be such that both the 1ight
idns (denoted by the subscript L) and the heavy ions (denoted by the
subscript H) 1in our two-ion plasma are unmagnetized. In.addiﬁion,
due to their inertia, both ion species are assumed not to react to
the electric field. Thus the equation of motion of each ion is of

the type

=¥

0,
with the solution

ro- =g (3.3.1)

For the equilibrium plasma, the densities of the species are related
by

Noe = Mol * Mo (3.3.2)

We shall first derive the perturbed ion distribution for Tight ions.

As for the electrons, we integrate along the unperturbed orbits to

obtain | (0)

23 tw

r,V,t) =e/M | - vl . = dt, (3.3.3)
’ L J;oo AV' .
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where ML is the 1ight ion mass. With the equilibrium Tight ion

velocity distribution given by

n . 3 .
(ZﬂCE)alz ZCE

(where ¢, =VT /M 1s the Tight ion thermal speed)

we follow the procedure outlined in section 3.2 for the electrons to

obtajn
AR
exp<- v
00 2(:2/
(1)~ Mol (1) [ w L” sy
NEOR s 1s —© J — L '] (3.3.5)
Lkw iL kw | (ZnCE)a’z IR A TR }

The integration in the above equation is performed by moving the axis
into the ion rest frame and then rotating the axis such that one of
the axes points in the kK direction. It then turns out that the
1ight ion perturbed density is given by

(1)
(1) _ enOL¢kw . ( w
Mk = 2T L
L ' ‘/?kcL

where Z'(1), the first derivative of the plasma dispersion function

(3.3.6)

is given by (Frﬁed and Conte, 1961)

Z'(x) = - 2[1 + AZ(\)7. (3.3.7)

In a similar manner for the heavy ions we find

(1) en0H¢km .< w )
n = 7' (3.3.8

3.4 THE DISPERSION RELATION

In the electrostatic approximation, Maxwell's equations are replaced

by Poisson's equation:
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vy = - 4n;anj, (3.4.1)
J
. from which we obtain
(1) _ 4re (1) (1) _ (1)
%o T ko T Mk T Meko) (3.4.2)

for harmonic variations.

Upon substituting for the perturbed densities from eqns (3.2.23),

(3.3.6) and (3.3.8), we obtain

4re [ ol®e Lo w "oH®Te o w
Rrrl 2 e o A A PR =
Tk L 2kcL H _ /?kcH
wkV - k,Vi vi?
+n_ g1 + ° & J2 expl- —
%L 2k 3 ps-w Jo P\ 2¢?
zte P7 € Ce
eVi2
/(.U' ky(VO = '2?)' er
X Z\ ) VidVi}] =0 (3.4.3)
/?k.ce
which can be written as
1 + KL + KH + Ke =0 (3.4.4)
where
k2 /n T
D { oL e [ w
B ) (T ) ). (1.0
L k2 Moo/ \2T| \/ﬁkcL
k2 n .« ..T _
_ D ( oH) [ e ) o w )
K. = - _2 (0o 7 . (3.4.6)
H k2 noe -ZTE '\/ch
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X
e 3/ e p 2
k /?kzce p= 0 e 2ce
V- i
“ o 2, Pitq
X z( ~ ) VidVi]- , (3.4.7)
- Vek.c o '

ze
and kD is the inverse of the electron Debye length

(LY
- ()
D 4rn__e?

oe

For a uniform magnetic field, € = 0. Then the Z function in eqgn
(3.4.7) is independent of V| and may be taken outside the integral

sign, yielding

2 T.U +® _ _
- EQ [1 . (w K Vo) i Iz kyVO er>

Z .
Cel Ve e e,
o 12
( (klvl\ (V10 ]
X J2 —=] exp - Vidv
JO P\, \" o/ L

k2 VEk ¢/ p=-w 2 02 :
k2Ce P e e “ﬁkzce
(3.4.8)
where we have used the relation (Watson, 1944)
[~ 2\ 12 1 % B2
Jo exp(- ax?) Jp(Bx) xdx = - exp (- ?E) Ip(?E) . (3.4.9)

I_is the modified Bessel function of order p.
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It thus follows that the dispersion relation for electrostatic waves
in a uniform plasma with magnetized electrons and two species of

unmagnetized ions can be written as

k2 noL Te "oH T-e
1+ — - (=) (5=) Z'(z,) - (5 (5=—) Z'(z,)
kﬁ Noe ?T[ L Noe ?Tﬁ' H
—; 2> +
w-keV
. ( o) po2z)r = 0 (3.4.10a)
/2k_c p= = P P
ze
where
w
z, s
L = /EkcL
2, = — y
H /fkcH
N -pn, | (3.4.10b)
Z = N T ’
pe VZk_c
Z k2c2
and r. = e 1 (b), with b = =&
p 02
e

If one is interested in Tow frequency modes with w < 245 then

Zp = -;Z_p, and only the p = 0 term contributes in eqn (3.4.8). Then

k2 w-Kk-V k2c2 k2¢2\  sw-k V
o = 2 |1+ (0) e (- =) 1(- =2) {19

e : .
k? \/Ekzce_ \ Q2 a2 /2K,
ks ,
= ;;-[1 + 20, Z(zoe) . ro] | (3.4.11)

Letting f = noL/noe’ ej = Te/Tj (J =L, H), the full dispersion
relation, egn {3.4.10a), then finally becomes

2 8 | 8
Eg t 4z 2z ) Ig = f2(z)) - (1 - f) - 2'(z) =0 .



- 25 -

3.5 THE APPROXIMATE DISPERSION RELATION FOR MARGINAL STABILITY OF

ION ACOUSTIC WAVES

We consider the marginal stability of low frequency ion acoustic
waves in a two-ion magnetized plasma. For such modes the dispersion
relation given by eqn (3.4.12) is applicable. It is assumed that the
ion and electron temperatures are such that Te >> Tj (j =L, H).

Then ion Landau damping is small and the arguments Zoes 210 2y in

eqn (3.4.12) satisfy

= |—— >»>1 (j =L, H

2] =
J /2ke,
J
wKV
and lz | = | | << 1
o¢ /2k_c
z7e

Physically, |zoe|<< Tmeans that the dopb]er—shifted wave phase speed
along §O is much smaller than the electron thermal speed, while for
|zj|>> 1(j = L, H) the wave phase speed V¢ = |w/k| is much larger
than the thermal speeds of the two ion species.

Asymptotic and power series expansions of the plasma dispersion func-
tion may. then be used to simplify the dispersion relation, egn

(3.4.12). These are given by (Fried and Conte, 1961):

(1) |z|>> 1

2(2) = ks exp(- 2 - 110 w2, ] (3.5.1)

2z>  4z" ‘
where 0 if Im (z) > 0
é =4 14if Im (z) = 0
C2if Im (2) <0
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(2) Jz]<< “

2 L :
2(z) = i/a exp(-z2) - 22[1 - %— + %— - ] (3.5.2)

For marginal stability (y = 0), § = 1 in egn (3.5.1) and the 1ight ion

term in egn (3.4.12), for 6 =6y =6, becomes

_ ¢ 9o o2y _ 1
K =f 2[21/FZL exp( zL) zf] (3.5.3)

Similarly the heavy ion term in eqn (3.4.12) becomes

H 2 H 2
Zy

K, = (1 - f) 9[21'/1'rz|_| exp(- z%) - J—J (3.5.4)

The electron term in eqn (3.4.12), to lowest order, reduces with the

aid of egn (3.5.2) to

v+ ivez T, (3.5.5)

[Zoe |

(_"/4) 1/ 2

since

<<1 for |zoe|<<1 .

Inserting egns (3.5.3), (3.5.4) and (3.5.5) into eqn (3.4.12), the
approximate dispersion relation for marginal stability (of ion

acoustic waves as we shall shortly see) is

w-k-V 2
E; +.[1 +_1{;\— : o) ro + f g{Zi/EK——Q——> exp{— < = ) }
D Y2k ¢, W2ke, - Weke
2k*c? 2 2k2c2
. L} v (1= f) g-{zi/‘ _w_) exp{_< w_ ) 1 HH = 0
w* . /EkCH _ /?kcH w? -
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where we have used egns (3.4.10b).

At change over from stable to unstable behaviour the imaginary part
of the wave frequency w is zero. Setting w = wp (wR being the real
part of the frequency), we equate the real part of egn (3.5.6) to

zero:

2 2k%c 2k2c?
LSRR L) + (1 - f) g( H) =0,
ké wp 2 sz

which can easily be manipulated to yield

2 _ L2 2 _ 2 2,2)-1
wp = k*{fcg + (1 -f) cd,} (1 + k AD) (3.5.7)

where CSL(H)= e/ML(H),1-S the.11ght (heavy) ion sound speed.

Equation (3.5.7) gives the real frequency for ion acoustic waves in

a two-ﬁon plasma. In the Timits f = 0 (only heavy 1on§ present) and
f =1 (only light ions present) it reduces to the well-known results
for single-ion plasmas (Chen, 1974).

In the Tong wavelength approximation, A >> Ay kZAB << 1. Then from

eqn (3.5.7), the wave phase speed is given by

V, = wp/k = {(fed + (1 - f) cZ 12 (3.5.8a)

and when normalised with respect to Cgy We have

~

v¢ = V¢/°5H = {1+ M-1) f}/z | (3.5.8b)

where M = MH/ML’ the heavy to light ion mass ratio.

Setting w = g and equating the imaginary part of eqn (3.5.6) to zero,

we obtain
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e
+ (1 -f) e/EK;;g——> exp{-
from which we obtain

K ¢
+- = w + z I /
Ty =g e fo g (L” " \fkc>}

c ., W 2

e Rl (2]

Since in our model Vo is the £ x B drift with VO = VOQ, it follows
that E-VO = kyvo. Solving for the critical electron drift speed

Vg for marginal stability, one gets

v© ~ ‘g
_k oy, CRINAY S AR ST S
2l ) el i)
.k . ) vz )
+ (1 - f) ,/gi"_r'r,(_kz_ . 1"1_> exp <- g}] (3.5.9)
) 0

where Vg has been normalised with respect to the electron thermal

speed; m = M_y/m_ is the heavy ion to electron mass ratio and
H e

~

V¢ is the normalised wave phase speed given by eqn (3.5.8b).
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3.6 MARGINAL STABILITY STUDIES USING BOTH THE FULL AND APPROXIMATE

DISPERSION RELATIONS

In thig section solutions from the full dispersion relation, eqn (3.4.12),
(without any expansions for the Z-functions) are compared with the

values of Vg calculated from the approximate eqns (3.5.8) and (3.5.9).

The standard values of the parameters used for the results presented

here are:

3
[

= MH/me_= 73326;
k= w7 cm kZ/k = 0.0316;

o
u

2.2/02 _ -
kicZ/aZ = 0.5 =1 (b) = 0.64504,

Thus the heavy ion species is chosen to be argon. Except for the
results in section 3.6.5, wave propagation is restricted to almost
perpendicular (to @O) propagation, as is experimentally observed "

(Barrett et al., 1972; Hayzen.and Barrett, 1977).

3.6.1 Variation of vg with Light Ion Fraction (f)

Figure 3.2 represents the relationship between f (the 1ight ion frac-
tion) and the critical electron drift velocity Vg (normalised with
respect to the electron thermal speed, ce). Curve a (—) has been
obtained from the full dispersion relation, eqn (3:4.12), whereas curve b
(~=-) is from the approximate eqns (3.5.8) and (3.5.9). In both cases

we have set the electron to (common) ion temperature ratio & = 25 and

the heavy to 1ight ion mass ratio M = 10 (corresponding to fhe light

ion being helium).



Fig 3.2

0 [ | | I
0o - 02 0.4 f 0.6 0.8 1
Marginal stability curves for M = 10, 8 = 25. Curve (a) is from the full dispersion relation, eqn (3.4.12)
while curve (b} is from the approximate dispersion relation, egqn (3.5.9).

-.OE_
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The shapes of the curves are similar to those found by Dell (1984)
for an unmagnetized plasma. Furthermore, the values of f (0.055 for
the full dispersion curve and 0.12 for the approximate curve) at
which Vg attains a maximum value are the same as those found by Dell.
This behaviour is consistent with the "contaminant damping" effect of
a small fraction of light ions as theoretically discussed by Fried
EE.El- (1971), Lambert et al. (1976, 1977), Gledhill (1982) and Dell
(1984), and experimentally observed by Alexeff et al. (1967), Hirose
et al. (1970), Tran and Coquerand (1975a, 1975b) and Nakamura et al.
(1975, 1976a, 1976b). In Figure 3.3 we present a plot of damping
rate versus real frequency from the work of Fried et al. (1971) for

an unmagnetized, stable two-ion plasma.

ReS
0 2 o4 6 8 10 12
i | ) N TD‘ i T I ".___—f“"rsa
05 X\ O3 .
-1 ‘\ et 7 ’ _
5 o 04 \ ’/'
. hY 7
-2 07 \‘l___“/ '
N §:25 |
Im$ 0
-3} —
0 =.01,02,03,.05,1.2,4, 6, I
-4}- -
| I | I | | I

FIG. 3.3. (from Fried et al., 1971). Crosses indicate use of
approximate expression for dispersion relation.

It is seen that the damping is largest for a 1ight ion fraction of %
0.1 (approximate dispersion relation) and 0.03 (full dispersion rela-
tion). Theref&re to overcome the damping prior to producing an in-
stability, it follows that the available free energy (and thus the

critical drift Vg) must reach the maximum threshold value for values
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of f near the above values. A possible explanation for this behaviour

is given below.

For large 6 and small f, the phase velocity, V¢, given by eqn

1
2

(3.5.8a), is approximately equal to (Te/Mf) , where the effective

mass M is given by
WH W 0.

As helium is added, the phase velocity increases slightly because of
the initial decrease in effective mass. Damping at first increases
sharply as more 1light ions become available to resonate with the wave.
(Figure 3.4a shows the position of the phase velocity relative to the

velocities of the plasma particles in this case).

|
(V) f(V)

fL(v) f (V) |
fL(V) fL(V)

. | .
' " " S

0 V¢ VO Velocity Q V¢ VO Velocity
(a) (b)
FIG. 3.4

However, as the percentage of light ions increases,the effective ion

“mass decreases sharply and the phase velocity increases such that

very few light ions are available for resonance with the wave (Figure

3.4b). The damping rate decreases and the phase velocity approaches

the pure helium value.
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o )
The values of f for (VO)max

condition f ~ M7! as found by Lambert et al. (1976).

are in reasonable agreement with the

When f = 0 (a pure argon (heavy ion) plasma), Figure 3.2 shows Vg/ce =

0.0037. Then_Vg = 0.0037 ¢, = 0.0037 /Té/MH-/ﬁH/me = 1.002 c,,, i.e.,

SH
the critical drift satisfies Vg 32 Copo which is in agreement with the
condition for instability in a plasma with a single ion species
(Bharuthram, 1974). Similarly for f = 1, only helium is present, and
C _ o C C e
Vo/ce = 0.01Z = V0 3 Cop - We also note that Vo/ce << 1, which is in
agreement with the criterion, Cg < V0 < Cas of Gary and Biskamp (1971)

for the excitation of unstable modes.

For f < 2% and f > 50% the full dispersion curve and the approxi-

mate dispersion curve in Figure 3.2 agree quite closely.

For intermediate values of f, the approximate dispersion eqns

(3.5.8) and.(3.5.9) give a larger damping (by as much as a factor of |
1.6) than the full dispersion relation, eqn (3.4.12). This is probably
due to the assumption Vo/ce << 1 (used in deriving the approximate

dispersion equations) being only valid for small Vo'

We now compare Figure 3.2 with the results bbtained by Dell (1984),
represented in Figure 3.5. We note that the maximum critical drift
speed required for instability in a field-free plasma (Figure 3.5)
is approximately 10 times greater than that in a magnetized plasma
(Figure 3.2). This difference in peak drift velocity can be
explained (Hayzen, 1976; Bharuthram, 1979) with the aid of the

following Figures 3.6a and b.
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Vy/ Ce

0.0 0. '1 0.2 0. 3 0. 4

1.0

(Fig. 5.3a from Dell, 1984). Marginal stability curves

- for an unmagnetized two-ion plasma. M = 10 and 8 = 25,
The curve represented by broken lines was obtained from
the approximate expression for the dispersion relation.

FIG. 3.5
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In the absence of a magnetic field, the electrons, because of their
small mass, move rapidly to neutralize any potential perturbations pro-
duced by the ions. However, for §¢(), the e]ectroné; being magnetized,
are tied to the fje]d lines and are only free to accelerate along §o'
In Figure 3.6a below, an electron at point P will travel a distance

PQ in the field free case to neutralize the perturbation in the
potential. In a magnetized plasma, the electron, being forced to
accelerate along §0 travels the Tonger distance RQ. This longer
distance travelled allows the perturbations to grow to a larger
amplitude. It can be seen in Figure 3.6a that RQ/PQ = k/kZ. On the
other hand, Figure 3.6b on the next page can be used to explain the

increase in growth rate in terms of the velocity distribution functions.

FIG. 3.6a

Since the electron thermal motion is restricted along §0 in the magne-
tized plasma, its projection along the wave vector K gives an effec-
tive distribution with the thermal speed diminished by kz/k.

Consequently, even for small drift velocities



- 36 -

fe projected

along f_

Velocity

FIG. 3.6b. Effect of magnetic field on the velocity distribution
functions of the plasma particles.
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2 _ 2 11/2
VO > (feg + (1 - f) Coyl

L

the phase velocity

1/2/(1 + k2)\[2)

v, = cd v (1 =) cgp )2
can coincide with the Tocation of‘haximum slope of the effective
electron distribution function and thereby the wave experiences
enhanced growth (inverse Landau damping). Since the ions are
unmagnetized, their distribution function remains unaffected and hence

the ion Landau damping remains unaltered (from the field free case).

3.6.2 Variation of the Wave Phase Speed with Light Ion

Fraction (f)

Figure 3.7 illustrates the relationship between the normalised phase
velocity, V4/Cgy» and the fraction of 1ight ions, f, as obtained from
eqn (3.5.8b). This result is in good agreement with that experiment-

ally found by Nakamura et al. (1975), as shown in Figure 3.8 on page 39.

The graphs show the gradual transition from the heavy ion mode to the
Tight ion mode. Nakamura et al. in subsequent papers (1976a and
1976b) suggested that two waves could be observed simultaneously in a
plasma if 6 < 2M. This was confirmed by Gledhill and Hellberg (1987).

For our parameters 6/2M = 1.25.



Fig 3.7
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Normalised wave phase velocity as a function of light ion fraction f for M = 10, 6 = 25,

_88_
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(00}
T

(o))
T

S

Phase Velocity(+10cmy/sec)

FIG. 3.8. (from Nakamura et al.,
,§ﬂ 1975). Phase veTocity
: of ion acoustic waves

TF%%" _ in an argon-helium
A th plasma as a function
i/g/ . ' . of fraction of light

/ ions for o = 25,

- Solid curve 1is the
5;}‘ _ theoretical curve.
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3.6.3 Variation of (Vo) _ with Heavy to Light Ion Mass

Ratio (M)

The value of f at which the critical drift speed (Vg) reaches a maxi-

mum, fpeak’ can be obtained by differentiation of egn (3.5.9). The varia-
tion of fpeak as a function of M, the heavy to light ion mass ratio is
illustrated in Figure 3.9. Here MH was fixed and ML varied. We observe

that the change in f is insignificant over the range 5 < M < 12,

peak
However, over the range 2 < M < 5, fpeak rises sharply from 0.12

to a maximum value of 0.32 for M = 2, This result warranted a
closer examination of the M = 2 case, and Figure 3.10 shows the Vg'vs

f curve for M = 2, Comparison of Figure 3.10 with Figure 3.2 shows

that the maximum value of the critical drift speed, (Vg)max’ - decreases
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The value of fpeak (value of f at which critical drift speed assume$ maximum value) as a function of M, the

heavy to 1ight ion mass ratio. 6 = 25, The approximate dispersion relation, eqn (3.5.9) was used for the plots.
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Marginal stability curves for M = 2, 6 = 25. Curve (a) is from the fu]]\dispersion relation, egn (3.4.12)

while curve (b) is from the approximate dispersion relation, eqn (3.5.9).
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by an order of magnitude for M = 2. This correlates with the fact
that decreasing M (T1ight ion mass increasing) results in a narrowing
of the Tight ion velocity distribution. Thus fewer ions are available
to exchange energy with the wave and the light ion damping becomes
weaker. Consequently a smaller electron drift speed is required to
drive the instability. In Figure 3.11 we compare the relative posi-
tions of the various particle and wave velocities for the M = 2 and

M =10 cases. (These velocities, normalised with respect to the

electron thermal speed c_, have been calculated from egns (3.5.8) and

(3.5.9)).
M=2
VCc
CH CL CS'I Vﬂ’ 0 “SL
1
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i
|
t
[}
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Yy g ; 4 ‘;*
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:
{
i
|
[}
]
]
]
Y ¥ ¥ ; 5 ' -+ 4
0 0.01 0.02 0.03 _ 0.04 0.0% xc
FIG. 3.1

4.,C .
We note that {Vo)max/v¢ = 1.2 for the M = 2 case is very nearly the

instability criterion (V0 >V ) for a single-ion plasma. This is not

¢
surprising since an ion mass ratio of 2 yields an average total ion

distribution which is not too different from a Maxwellian distribution
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for a single ion species having a total number of particles

= +

n, =N and mass Mi = %-(ML + MH).

H
From Figures 3.2 and 3.10 it is seen that the approximate analytical
solution is in much closer agreement with that . of the full disper-
sion relation for M = 2 than for M = 10. A numerical eva]uation.of
plasma parameters shows that this is due to the fact that the approxi-
mations used in arriving at the results (3.5.8) and (3.5.9) for V¢ and
Vo/ce, respectively, are poorly satisfied for the case M = 10 (e.g. from

Fig. 3.11 we see that the assumption |zj| >> 1 for j =L, H is more

accurately satisfied for M = 2 than M = 10).

In Figure 3.12 we show a plot of f vs Vg/ce for different M values.
A1l the curves except M = 12"have been obtained by keeping MH fixed

and varying M The approximate expression, egns (3.5.8) and (3.5.9)

L.
were used for the computation. It is seen that an increasing M (due
to M decreasing) is accompanied by an increase in the threshold drift

L
(V&)

o max > required for instability. This is to be expected since a

reduction in ML causes a broadening of the light ion velocity distri-
bution. Thus there are more light ions in the tail region of the
distribution with velocities close to the wave phase velocity. Wave-
1ight ion resonance is enhanced, resulting in an increase in light
ion Landau damping. Therefore larger threshold drift velocities are

required to drive the instability.

The curve Tabelled M" = 1Z'has an ion mass ratio of 12 but has been
obtained from the M = 10 curve in Figure 3.12 by keeping ML fixed and
, changing.MH. increasing MH with ML fixed causes a decrease in the
wave phase speed as given by egqn (3.5.8a). Thus the wave 'sees' a
larger negative slope on the light ion velocity distribution result-

ing in more resonant Tight ions and an increase in ion Landau damping

(as compared to the.M = 10 case). Consequently.(VC) increases.
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Marginal stability curves show the effect of varying, M, the heavy to light ion mass ratio, for 6 = 25. The

parameter labelling the éurves 15 M. The curve labelled 12' was obta1ned by keeping M fixed and varying MH.

A1l the curves were plotted from the approxiiidte dispersion relation; eqn (3.5.9).
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The fact that the two curves M = 12 (ML varying, MH fixed) and M = 12’

(M, fixed, M, varying) do not coincide may be due to the light ions

L H
for the case M = 12 being lighter and thus having a broader velocity

distribution, with a consequent greater 1ight ion Landau damping and

. c
corresponding larger (Vo)maX'

©)

3.6.4 Variation of (V0 nax

with Magnetic Field Strength

The effect of changing the magnetic field strength, |§0|, is shown in
Figure 3.13. This corresponds to different values of ro(b) in the
expression for (Vg)/ce since b = kicé/ﬂé is inversely proportional to
|§0|2. The plots have been obtained from the approximate re]ation;
egns (3.5.8) and (3.5.9). It is seen from the figure that as |§0|
increases (b decreases, with Fo(b) increasing) Vg/ce decreases for a
given f. This can be explained as fo]]bws: since the electrons are
tied to the field 1ines, a stronger field restricts their ability to
neutralize any off-parallel botentia] perturbations. This effectively
causes a positive increase in the instability growth rate (Bharuthram
and Hellberg, 1974) and thus a sma]]ef threshold velocity is required
to drive the instability. The dependence on |§0| is clearly seen for
any two curves in Figu%e 3.13, e.g., for the curves ]abe]]ed b =20.5
(0.5)/

(1.0) = 0.75. Thus the maximum threshold velocity is almost

(0.5) = 0.72, while (V)

and b = 1.0, we have Ty (1.0)/T0 o’ max

c
(Vo) max
inversely proportional to ro(b).

3.6.5 Variation of (VC)
. 0’max

with Propagation Angle

The effect of varying the propagation angle @(= arc cos (kz/k))with
respect to the magnetic field §0 is shown in Figure 3.14. The full

dispersion relation, -eqn (3.4.12) was used for the plots. It is seen that
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Effect of propagation angle o@(=arc cos kz/k) on the marginal stability curves from M = 10, 6 = 25. The
parameter labelling curves is ¢. The full dispersion relation, eqn (3.4.12) was used for the plots.

_L-V..



- 48 -

the threshold drift (Vg)max/ce increases with decreasing ¢, and is
consistent with the experimental findings of Hirose‘gi al. (1970).

This behaviour can be explained as follows: as ¢ decreases, k/kZ

also decreases for fixed k. Since for a magnetizéd plasma the growth
rate y is proportional to k/kz; it also decreases. Thus a larger
threshold drift speed is needed to excite the instability. Alter-
nately, as ¢ decreases from 90°, the projection of the particle drift
velocity (= Vb§) in the propacation direction (as fseenf by the wave) is
reduced in magnitude. However, if this component has to exceéd a

givén value so that the associated free energy will overcome ion

Landau dampiﬁg, it follows that the total drift speed must increase

(as ¢ decreases) for wave growth.

In the next Chapter we move away from marginal stability studies and
examine the growth rate of the jon acoustic instability. In

particular, the effect of inhomogeneities will be studied.
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CHAPTER FOUR

THE EFFECT OF INHOMOGENEITIES ON THE CROSSFIELD CURRENT-DRIVEN TON

ACOUSTIC INSTABILITY IN A TWO-ION PLASMA

In this Chapter we shall study the effect of inhomogeneities in the
electron density and temperature and the external magnetic field on the

growth rate of the ion acoustic instability in a two-ion plasma.

4.1 DERIVATION OF THE ELECTRON TERM IN THE LINEAR DISPERSION RELATION

The following derivation of the dispersion relation is based on that
of Bharuthram (1974). The model considered is essentially the same

as in Chapter Three, viz., a collisionless, two-ion b]asma embedded

in external fields @O = B2, Fo = - E_%, with the mégnetized electrons
having an E x § drift,

> CEO .-
Vo=<B_')y | (4.1.1)
0
relative to the stationary unmagnetized ions. In addition to the in-
homogeneity in §0 defined by
§0(x) = 80(1 +ex) 2, (4.1.2)

we include non uniformities in 'e1ec‘cron.densi‘cy-.n.e and- perpendicular
(to §0) electron temperature T, g 9iven by

_ o noe(1 + ax) (4.1.3)

3
—
>
~—
I

Tl =T (1 + 6x) (4.1.4)



The associated drift velocities
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VB : VB = -
-

Vne : Vn = -
-

VTie : VT =
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are given by

eV}
w9
e

:
¢ oe

meQ

g ~ (4.1.5)
e

5T
e. .
oy

Mofte

(c)

where Qe is the electron gyroradius. The Figure 4.1 below indicates

the directions of the external fields, inhomogeneities and the associ-

ated drift velocities. It is seen that Vo is opposite in direction

to the gradient-driven drift velocities,
A
(o} _n 2
Tgo B BoZ
4
4
N //E-(O) = -EXX
/
/
/
Ve >
// VO——’
= >y
Vg
- 3
Vn
vB, vn, VI
vT

FIG.
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From the electron equations of motion, egn (3.2.5), we can construct

the following constants of motion

(V. -V )
_ . _ 'y o
Ve = V; + (Vy—Vo)2 and VZ (as before) and (to order €) X = X ol

Thus the steady state electron distribution function is taken to be

8o, 3 <o {1 o] ST gf, E

e YA 2y3/2 2 2 2C2
(che) Ce e

(4.1.6)

Since f is a function of the constants of motion, it is a solution to
the linearized Vlasov equation (Krall and Trivelpiece, 1973).
We also find that the net electron drift is given by

> 1 >
] ﬁ.[ Vféo) a3V

D
=V 4V V=V -V -V g (47)

We notice that the average VB drift does not contribute to the net
drift. This is so because in setting up the constants of motion we

have ignored the spatial variation in B. It is possible that 1f2
BmeVy
1B

£(V) was also expressed in terms of the magnetic moment u =

that VB would appear self consistently in the net drift.

In desiring an expression for the perturbed electron distribution f(l)

(o)
it can be seen from eqn (3.2.9) that one requires e

oV

(0)<

(0)_5
For fe = fe

Yﬂ_x, VZ), given by eqn (4.1.6),



(o) (0) .y2 (o) -(0)
of i afe BVL_+ of El \ Efg EXE
5V V2 ol X 4y W,

e s S (] )
_ [X% féo)] 5 (4.1.8)
Ce . .

In evaluating eqn (4.1.8) we neglect terms containing the products of
gradients since the Tatter are assumed to be weak. We also make use
of the local approximation (Krall and Trive]pjece, 1973) in expanding
about x = 0.

The Tocal approximation requires the spatial variations in the per-
turbed electric field and distr{bution function to be nearly harmonic

i.e.

f(l) n E, exp {i(K+X - wt)}
f (l)k ?k exp {i(K+X - ot)}

where Ek and ?k are constants, Maxwell's equations can then be used

to obtain a dispersion relation D given by

D(K, w, x) = 0.
Since the variables vary 11n§?r1y with x (cf egns (4.1.2), (4.1.3),
(4.1.4)),the gradients are the same at all points. The dispersion
relation D(f, @, x) can then be evaluated at any x. For convenience

we select x = 0. The physical justification for the local approxima-

tion, as given by Bharuthram (1974) is as follows:
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If the wavelength, A, of the instability is very much 1ess than the
scale lengths of the gradients, e.g. A << (%-g;), then the drift of
the plasma can be regarded as fairly constant. Hence if the varia-
tion of the drifts is small over many wavelengths, all othér spatial

dependence of the equilibrium can be ignored.

The second part of the term [—mammm ] ZVL on the right hand side of

eqn (4.1.8) may now be approximated as follows:

(VZ-2¢*)y ¢
Jow s SE=) p foglo)
2C - 2¢2 ¢
e e_

for weak gradients.

‘Then eqn (4.1.8) may be written as

(o)
e m[_wifm} a1
oV v e 2cé € L o
[a + 8 f!i:ffé)] glo) o, (- 7+ 7)) £(0) (4.1.9)
' ZCé € ' cé e

(1)

o (cf eqgn

with which the perturbed electron velocity distribution f

(3.2.16)) becomes
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X JO exp{i [K - (¥ = 7) - wt']} dt']

for harmonic perturbations of the form given by egns (3.2.11) and
(3.2.12).
Then upon integrating with respect to time and over velocity space,

we obtain the perturbed electron density

(1)
. n e¢ 4+ 4o =] ©
n(1) - 08 Tku [1 I I J yLdeJ dv,

ek oe p=-o q:—od o -
J (KLVL> J (KLVL> exp{i( ) ¢}
p (o) Jala, ) exptilp - a) e
X
TV, + K, V-Vl —o+ pag]
| exp(_-v)
(2nc2)32 {\w “kyVo t Mg L * Py (Vi- 2¢) | . exp{i(p - q) ¢} de
e e .
2Toe s 27
o 5 K vi { exp{i(p - q) ¢} cos¢ sine d¢
Me'le 2cé X 0
2Toe 8 JZN }]
_° 2 S .9 _
* M 2c2 kyVJ: o exp{i(p - q) ¢} sin®¢ do (4.1.10)
e

where VX = YL cosd, Vy - Vo YL sin® and the primed notation has

been dropped (from the velocities)for convenience.,
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If we perform the angular integrations, eqn (3.2.21), and introduce
the plasma dispersion function, eqn (3.2.22), then egn (4.1.10)

reduces to

o0 T 8T
(1) _ (1) [ * 1 r{ i ( oe)_ ( oe)
Neko = noeed)kw 1 + pzz__m e ot S0 w k.yV0 + ky o ky o
Z e

k.6 w-po - k(Y -V) VEN ok
+(§L) i) e v o B}exp (- —i;) 22 (%) vldvl](4.1.11)
2cy e

As in Chapter Three, for the ion acoustic wave, which is a Tow

frequency mode, we retain only the p = 0 term in the summation above.

Therefore the electron contribution to the full dispersion relation,
eqn (3.4.4), with inhomogeneities in external magnetic field,

electron density and electron temperature is given by

k (" Vi
Ke:_[1+ J{w-kvo+kv-va+k—}
k2 _ /?kzcg 0 Y ynooy Y e
w = k (V -eV.) V2 k,V '
X Z{ y o B } exp(- §$_) 3 <_$_£) Vidvi] (4.1.12)
_ /ﬁkzce e e

where kD is the inverse electron Debye Tength defined preyiously; and we

note that Vy = eVi/2a, is a function of V,.
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The integral in eqn (4.1.12) can be written as

k eV?
,  w-kV o+ Y2
o k GVL : 0 ?Qe
I=J{(w—kV+k(Vn—VT)+Q }z( )
0 Y e Y2k Ce
Vi, . k.Y ‘.
S g Lr
X exp( 2c2) J0< Qe>VJ.dVJ.
e
If we define
w o= w - kyV0 ,
* - -
w* = +‘ky(vn VT) R
by
n =Q [
e
k e
e
then the integral becomes
. - EVZ
I = J (w* + nV}) Z( © 4 = )
0 JZche /?kzce
V2 k,V
X exp ( l)dz<ll) Vv, (4.1.13)
2C2 0 Qe
e
For weak gradients,
831 = Tk Vgl << fo - k¥l = 13|
and we expand
gv?
Z( + 1 )
/?kzce /?kzce

as
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which upon substitution into eqn (4.1.13) yields

—
1

. - - AT
) Jo(w* - V) {Z(J?:zce) ' ZI(‘@tzce) /?;ice}

V2 kY
1 L'l
exp(- —) Jé(—n ) V,dv,

X
2(:2 e
» - y2 k vV
1 1L
0 kzce ce

w eyt - y2 k. V
+ J = Z'( it ) exp(- J'z) J?( g J') VJ_dVJ_
0 /?kzce- JEkzce 2ce e

The last term in egn (4.1.14) contains the factor

k8¢
nE:_L.
292

(4.1.14)

which is a product of gradients and hence can be neglected. The first

term in egn (4.1.14) can be written as



- 5§ -

0
/?kzce
. m*-Z( v )cz r (b)
e o
/szce

where we have used the results of egn (3.4.9) with p = 0.

(4.1.15)

The second and third terms in eqn (4.1.14) may be added together to

yield

|— w*E \
/szce /szce

J?kzce -

- [ w*g Z‘( v ) + nZ( = )] X ZCZSO .
Y2k_c YZk_c vZk_c
z e z e
where we have used the relation (Watson, 1944)

[ xtexp(- ax?) J2(gx) xdx = 1 exp{- B*/2a)
0 0 20.2

x [{(1 - g%/2a) Io(sz/Za) + (8?/2a) 11(8%/22))

7 ) . nz( w )] x 2cte™ [(1 - 5) T + bI4(b)]

(4.1.16)

with [, being the modified Bessel function of order 1, and we have

- k2c?
defined S, = (1 - b) T+ bri(b) with b = Le

2
8
e
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Substituting eqns (4.1.15) and (4.1.16) into eqn (4.1.14), the integral

1 becomes

- . .
v i) {2 o)
/?kzce /2kzce J?kzce

+ nz( W )} X 2c;s . (4.1.17)
/?kzce 0

Using this result in egn (4.1.12), the electron contribution to the

dispersion relation becomes

k2 - . -
K, = —9-[1 — {w* c2r (b) z( - ) + [ T z'( = )
€ g 2k cd €0 /Zkc, Zkyc, Pk C

+
=
~J

T
=~ 1
8]
—
—
=
™~

a)

=

w
H_}
| SRS

2 _ _ _ o
) kg [1 . {(w kyV0 + kyVn) T, kyVT (Fo 280)} Z(m kyv0>

2
k /?kzce /?kzce
: w-kV o+ k (V. -V) w - k v
. { yo ¥ n | } ¢, TgS, z'{ }1 (4.1.18)
2k3cg /—k Cq
. _ _ eVi EC
where VB is the average drift speed given by VB = 5o = _ﬁg , and we
e e

have resubstituted for , Q*, n and & as defined in the discussion
before eqn (4.1.13). We notice that in the absence of inhomogeneities

(i.e., VB =V =V = 0), egn (4.1.18) reduces to eqn (3.4.11), as

expected.
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4.2 THE GENERAL DISPERSION RELATION

The contributions of the two unmagnetized ion species to the disper-
sion relation are the same as in Chapter 3, and are given by egns
(3.4.5) and (3.4.6). Therefore the dispersion relation for a .
collisionless two-ion plasma having gradients in external magnetic

field, electron density and perpendicular electron temperature is

y {(m - kg + k) T kN (r 250)} Z(w - kyVO)
3 /§kzce ﬁ?kzce

w=-kV +k (V -V:) w =k V

+ { Yo Y n T } k VBS Zl( Y 0)
‘ 2k2c? YEO Nk
Z e Ze

- g {f z(L) # (1 -f) z'( w )} 0 (4.2.1.)

/?kcL /?kcH

where, as before, for TL = TH (equal ion temperatures), o = Te/TL
= Te/TH, and f = nOL/nOe is the fraction of 1ight ions, and

L(H) = L(H)/ML(H) is’ the Tighttheavy)ien thermal speed,

In the next section we shall use power series and asymptotic expan-
sions of the Z-function to derive approximate expressions for the
real frequency and the growth rate. The results from the full dis-

persion relation, eqn (4.2.1), would then be compared with the

approximate solutions.

4.3 THE APPROXIMATE DISPERSION RELATION

As in section 3.5, for a plasma having warm electrons and cold ions

(i.e., T, >> Ti) we assume that
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w =k V
_M.|<<1_

lz_ | = |
o€ /2K ¢
2 e

Then the power series expansion of the Z-function {egn 3.5.2), and
the relation Z'(») = - 2[1 + 2Z(»)] are used to simplify the electron

contribution to the dispersion relation, eqn (4.1.18), to

2 - k.o (V. -V 2k V.S
kD[1 . {w kyVO) TO + y ( n T) Iy ¥ N 0} e

K = =2
e
k2 /ikzce
-k V) +k (V. o-Vg) : w - k V
_{(w yo Yy ''n T} x kTS {1+(_L_°)1/1?H
k2c? ybo V2K ¢
. Z e L e

(4.3.1)

2 - v 2,2 3 : .
The term ky (v VT) VpS,/k2cZ in eqn (4.3.1) can be neglected since

n
it contains products of gradients. Although the factor ky?B/kZ

_ 72 : : _ g 2.2
= kyFVL/Zsze is small, we retain the term ky (w kyvo) VS, /k2cl

in eqn (4.3.1) to examine the correction introduced by the VB drift.

Further, since |zoe| << 1, we set(l + 2,0 /F)x 1 in the last term in

eqn (4.3.1).

With the above approximations, egn (4.3.1) reduces to

k2 w - k V ' w =~ k V k V
K=_D[1+( yo)'”“o'( kcyo)(kycB)s
J?kzce Ze z%e’ °

\

v -y 2k v
ey (T i ny (L) s, (4.3.2)
/?kzce

For the ions, which have been assumed to be cold, we once again take

>> 1

|ZL H| =
72 H

W
kCL,
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and use the asymptotic expansion of the Z-function (egn 3.5.1).
Since we are interested in growth of the instability, we choose .

I (z}) > 0 in eqn (3.5.1) to obtain

°L
_ _ L2 _L
KL = kD fe - (4.3.3)
W
for the 1ight ions, and ,
: c
- 2 _ H
KH = kD (1 ‘f) ] ;; (4.3.4)

for the heavy ions.

For w = wp + i y and with v | << wp We can use the approximation

ixiO-ﬁQ, (4.3.5)

w w;

Using the results of egns (4.3.2), (4.3.3), (4.3.4) and (4.3.5) the

dispersion relation, eqn (4.2.1), becomes

1

K2 k?fecZ  k%(1 - f) ec?

1+ — - — L _ - H, 21Y (szecf + k2(1 - f) 6cy)
kD LUR UJR UJR

- o) s+ k i T o+ ivi s =0
\kzce \ %/ 0 Y J?kzce 0 J?kzc T % '
e

. which may be separated into real and imaginary parts. as

K. Kol i) A, - (B ) () s |
[ + ” — ch + (1 - f) - Ve Ty - e e SO

D “R J?kzce Z e Z e
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7 wy = KV { \ (kx \
v [2_2 k2e {fci + (1 - ) chp (R_/'zk_u} Ao e e S
'wR zCe z e e
v o=y Y2k V
n T N y T ] -
" ky( /Z-k C ) a l-‘0 ( Ezce j a SO = 0 (4.3.6)
Ze

Now, for [v| << wp and [{w - kyVo)/szEI << 1 (by assumption) we have

(wR - kyVO) + v

C
kze

! < IRSRE
kzce

Also for b > 0 (b = kjci/aZ), the function |T (b)|isalways less than
1 (Abramowitz and Stegun, 1965). Hence we can conclude that

¥n T
¥ 0

<<

/?kzce
and omit this term from the real part of the left hand of eqn (4.3.6).

For all b > 0, Bharuthram (1974) has shown that |So| < 1. Further,

for a weakly inhomogenous plasma, we may assume that

VB < VO << Ce'

If VB/Ce < kz/ky,'then by the assumption |zoe|<<‘1’ the term

k V

(Bere) (22,

is very small and may be neglected (in comparison with unity) in the
real part of the left hand side of egn (4.3.6). Then setting the

real part to zero, we have

2 2
R LT U S e SR ,
K2 2 L H
D R

from which we obtain for the real frequency

wp = K AfeE + (1= 6) 2t (4.3.7)
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where CS|(H) :JTe/ML(H) is the light (heavy) ion sound speed and

o= (1 KRR

We note that the above expression for the real frequency,‘wR, is the
same as that found in Chapter Three (eqn 3.5.7) in the absence of
inhomogeneities. This may be so since the gradient in the external
magnetic field and in the plasma density and temperature are assumed
to be weak. Their associated drift speeds influence only the net
drift speed, i.e., the amount of free energy available to drive the

instability.

The imaginary part of egn (4.3,6) set to zero yields, for the growth

rate,

Finally, using M = M,/M and m = My/m,» we have
.k
BIGAR) - @) @) - oo - 2)elh

e
- ) 0o 0 ) @)

(4.3.8)

=3

We make the following observations concerning the approximate growth

rate given by eqn (4.3.8):

(i) . Equation .(4.3.8) does not contain the temperature of the jons
in any of its terms, i.e., ion Landau damping is neglected in

this analysis. This aspect will be dealt with in the next
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section when we consider numerical solutions of the fu11 dis-
persion relation.

(i1)  In the absence of inhomogeneities (VB =V = Vo = 0), egn

(4.3.8) gives the growth rate ‘for a horogenous two-ion plasma,

Y =~/%_(kk_z>[% (%) -jﬁ-“ . G- 1) f}”z] re?  (4.3.9)

.

For a single-ion plasma, this reduces to eqn (4.1.22) of

Bharuthram (1974).

(iii)} For typical experimental parameters, Bharuthram and Hellberg
(1974) have shown that the instability criterion {(y > 0) for

an inhomogenous single-ion plasma is given by

. - > |
n o> owp - K » VO (4.3.10)
N N S
where n=2%- VT [Fg - 1] >0 ,
0

4.4 NUMERICAL ANALYSIS OF THE FULL -AND APPROXIMATE DISPERSION

RELATIONS

In this section we make a graphical study of the normalised growth
rate (Y/mR) as a function of various plasma parameters. Solutions of
the full dispersion relation, eqn (4.2.1), are compared with the

approximate growth rate given by egn (4.3.8).

The fixed parameters are the same as those used in Section 3.6, In

addition we choose the following standard values:
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1

ke = 17 cm 2 = p? = (1 + kzlké)'l = 0.9673

o
|

2.2 7142 _ - - .
- Kicl/el = 0.5 =1 = 0.64504 ;

fraction of light ions, f = 0.5;
heavy to 1ight ion mass ratio, M = 10 (which

corresponds to a helium-argon plasma).
In all the-analyses, the temperature of both ions are assumed to be

equal (TL =T, = Ti)'

4.4.1 Effect of the Normalised E x B Drift (V_/c )

Figure 4.2 illustrates the relationship between the normalised growth
rate (Y/wR)'and the angle ¢ between the ?x and K, components of the
wave vector k. All inhomogeneities have been excluded (i.e., VB =
Vo= Vp o= 0). The external magnetic field is kept constant (b fixed)
and an increasing VO (= CEO/BO) can be achieved by increasing the

electric field EO.

The continuous curves correspond to solutions of the full dispersion
relation, eqn (4.2.1), and the curves represented by —a— @~ to

solutions of the approximate expression, eqn (4.3.8).

We observe, from Figure 4.2, that the maximum growth rate increases
with increasing normalised electron drift speed (Vo/ce) for a fixed
angle ¢. This may be expTained by the fact that an increase in drift
speed increase; the free energy available to drive the instability.

Consequently the growth rate increases.
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We also note from the graphs that the maximum growth rate for Vo/ce =
0.03 and a fixed ¢ is smaller for the full dispersion relation than for
the approximate solution by a factor of approximately 0.43.1 The growth
rate is smaller for the full dispersion relation probably because of

the Tight ion Landau damping, as discussed in Section 3.6.1. Since

the approximate solution, eqn (4.3.8), does not contain the ion tempera-
ture, ion Landau damping is not accounted for. Ffor a value of Te/Ti =
25, jon Landau damping could be of significance in solving the full
dispersion relation. A closer correlation between the approximate

and full dispersion re1at10hs is expected for much larger values of

‘ Te/Tj' This is confirmed in Section 4.4.2.

Another feature of the graphs in Figure 4.2 is that for a given
(VO/ce) the maximum growth rate occurs at ¢ = 80°, at which value the
wave propagatés almost parallel to the drift velocity VO = Voy'(kZ
being negligibly small by choice), and is thus ab1e-to draw maximum

energy from the drifting electrons.

Analysis of the full dispersion relation indicates that there is a
minimum electron drift velocity required for instability. For the
temperature ratio Te/Ti = 25 and f = 0.1, this value turns out to be
VO/Ce = 0.02 (corresponding to VO v 1.7 CSL)‘ For drift velocities
below Vo/ce = .02 inverse electron Landau damping is probably weaker
than the 1ight ion Landau damping (the "contaminant" damping of
Section 3.6.1). This minimum cut-off drift velocity of 0.02 compares

well with the results obtained in Section 3.6.1.

Figure 4.2 indicates that for a given drift speed, there is a cut-off
value in the angle ¢ below which there is no growth. Increasing the

drift speed increases the range of propagation angles since a greater
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amount of free energy is available to drive the instability. We
observe that the decrease in cut-off angle with increase in drift
speed is much smaller for the approximate dispersion relation than
for the full dispersion relation. This may again be due to the

absence of fon Landau damping for the former case.

4,4,2 Effect of Increasing 8 = Te/Ti

Figure 4.3 shows the effect of increasing the electron-ion temperature
ratio. As before, both jons are assumed to have equal temperatures.
The value of 8 = Te/Ti was increased by keeping the electron tempera-

ture fixed while decreasing the temperature of the ions.

We observe that the growth rate increases with increasing 8. When g
increases from 25 to 50, the maximum growth rate increases by a
factor of about 5. Increasing the temperature ratio beyond 100
results in smaller increases in the maximum growth rate, with little
or no change for & around 1000; The increase in growth rate could
be attributed to a decrease in ion temperature (as 0 increases). For
Sma11,T1,there are very few light ions in the tail region of the
Tight ion velocity distribution function to resdnate with the wave
and produce damping. This could also explain the observed decrease

in cut off angle ¢ with an increase in g.

An interesting feature of Figure 4.3 is the very Qood correlation
between the approximate dispersion relation (for which we assume 8 >>
1) and the fu1i dispersion relation for 6 = 1000. In this case the
assumption Te >> Ti for the approximate dispersion relation is much
hore accurate than for 8 =‘25, for which value the approximate and full

dispersion relation results were significantly different (cf FTgure.4.2).
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4.4.3 Effect of Varying the Light lon Fraction, f

To confirm the "contaminant" damping discussed in Section 3.6.1, a
plot of normalised grthh rate against 1ight ion fraction f was
made. This is illustrated in Figure 4.4, Here kX = 0 and only the
T x B electron drift was considered, all inhomogeneity-associated

drifts being set to zero in egn (4.2.1).

The minimum in Y/mR at f = 0.055 is in good agreement with the results of
Figure 3.2 and consistent with the results obtained by Fried et al.
(1971), Nakamura et al. (1975) and Lambert et al. (1976). They find

wave damping to be strongest for a f value close to 0.05.

Figure 4.4 indicates that for the given parameters, maximum growth
rate occurs at f o~ 0.5, Accordingly, we shall use this value of f

when considering inhomogeneities in the following sections.

4.4,4 Effect of Inhomogeneities

Equation (4.2.1) has been used to draw the graphs of (Y/mR) Vs &
(Kx, k) in Figure 4.5. Curve (a) is for the E x B drift alone,
while curve (b) is for both the E x B drift and_density gradient
drift. Curve (c) includes drifts due to all the inhomogeneities.
The individual drifts (normalised with respect to the electron
thermal speed) have been assigned values independent of each other,

Hence the net drift V, given by egn (4.1.7), viz.

Vp = (Vv -v) Y, (4.1.7)

is not kept constant.
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It can be seen from Figure 4.5 that the inclusion of one or more
gradient drifts decreases the growth rate. This is consistent with
the findings of Bharuthram (1974), and could be explained as follows:
the gradient drifts lead to a reduction in the net drift velocity VD
(eqn (4.1.7)), with a consequent decrease in available free energy to
drive the instability. We note, however, that this is not a universal
behaviour. For in principle, it is experimentally possible to have an
arrangement {e.g,, in a Double Plasma device) where the gradient
directions are such that the associated drifts enhance the net drift

Vps resulting in an increased growth rate.

In Figure 4.6, we have plotted the growth rate as a function of o,

the electron-ion temperature ratio. Equation (4.2.1) was used for

the analysis, with all the drifts being included. We notice that
there is a cut-off temperature rétio (of about 14 for the parameters
used) below which there is no growth. Light jon Landau damping
probably dominates over inverse electron Landau damping for & < 14

and the wave is damped. The growth rate increases slowly for tempera-
ture ratios of around 100, as was found in the inhomogeneity-free case
(Figure 4.3). For such large values of Te/Ti the effect of ion Landau

damping is small, and the damping continues to decrease as 6

increases.

4.4,5 Effect of Varying Propagatioh'Ahg]é'(ké/k)

The effect of varying the angle between the wave vector K and the
magnetic field §0 was investigated theoretically, and the results are
illustrated in Figure 4.7, Here kx was set to zero and the values of

(kz/k) were varied from 0 to 1 by increasing k, and Fixing k. Curve
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(a) is for Vo/ce alone, curve (b) includes the density gradient drift,
while curve (c) includes all the drifts due to the inhomogeneities.
The continuous curves were drawn from the full dispersion re]atiqn,
egqn (4.2.1), while the curve represented by —®—%— was drawn

from the approximate expression, eqn (4.3.8).

It is seén that (Y/wR) + 0 as (kZ/k) + 1, which corresponds to mode
propagation along EO. As (k,/k) = 1, (ky/k) ~ 0 (with k= 0) and

it is evident from egn {4.3.8) that {y/wR) + 0. The physical explana-
tion for this is that when the wave travels parallel to the magnetic
field, the wave, now being at right angles to the drift velocities,

is unable to resonate with the energetic particles and draw energy

from them.

We also note that from curves (a) and (d) of Figure 4.7 that the in-
stability exists for a much narrower range of values of (kZ/k) for
results obtained from the full dispersion relation. This can again
be attributed to the effect of the light ion Landau damping, which is

‘neglected for the approximate calculations.

For small values of (kz/k), the growth rate increases sharply for all
the drift velocities, the full and approx{mate dispersion expressions
yielding similar results. Here k, ~ 0 (with k, = 0)-allows the wave
to resonate with the drifting electrons and draw maximum energy from
them, resu1ting in an enhanced growth rate. Similar results were
found by Bharuthram and Hellberg (1974) for a sinQ]e-ion plasma and
by Hirose-é}_gl. (1970) for a helium-xenon plasma. The lower limit

for instability can be determined from the approximation |Zoél << 1
-i-e-s |mR E k_\/VO
/?kzce

| << 1
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For V. >> wR/ky (from eqn (4.3.10) withV, = 0) this implies
0
kyVo//szce << 1, from which

k v
>> 0

z
E; /Zce

¢

K
k-

Hence the lower limit for instability for Vo/ce = 0.02 s

Thus our numerical results are not valid for kz/k values below this
threshold {0.014). This is in close agreement with the Tower Timit

kz/k " (me/Mf)l’2 ~ 0.009 given by Lashmore-Davies and Martin (1973).

4.4.6 Effect of Magnetic Field

The magnetic field strength was varied by varying the values of b in

the dispersion relation. For our definition of b, viz.,

kicZ KT /m

b= e _ eo’ e
2 2
0 (eBO/mec)
) _
we have b™3 = (—;—51————-) B;
2
KiMeTeoC

For fixed k, and Teo’ b™! was varied, which corresponded to changing
the magnetic field strength lﬁol. The normalised growth rate as a
function of b™! is illustrated in Figure 4.8. The approximate
expression, eqn (4,3,8), was used with kx = 0 and k; and kz kept
fixed. Similar results were obtained by Bafrett_gggl, (1972);

Bharuthram and Hellberg (1974) and Hayzen and Barrett{1977).
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We observe from curves (a) and (b) of Figure (4.8) that the inclusion
of a densitylgradient reduces the growth rate for all values of b™%,
This is attributed to the decrease in net electron drift speed. The
addition of a temperature gradient, however, leads to a different
behaviour. For values of b™! << 1, the introduction of a temperature
gradient results in an increase in growth rate, i.e,, it has a de-
stabilising effect. For b1 2 1, the addition of the temperature
gradient results in a smaller gfoch, i.e., it has a stabilising
effect. The two-fold effect of the temperature gradient has been
discussed by Priest and Sanderson (1972) and Bharuthram (1979}, and

may be explained as follows:

o .
1. 1@
. o
T=lo 1 7 T=Tg
|| _
©
|
— -
X X

o

. ‘f;ol _ ‘féol

(a) - (b)

FIG. 4.9 (from Priest and Sanderson, 1972),
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In the electron rest frame, the electrons describe circular orbits
such that all electrons passing through x = X5 with guiding centres
at x > x_ (x < xo) have negative Vy (positive Vy) at x . Thus when
the electron temperature is the same on both sides of Xg Figure
4.9(a), the electron distribution function is symmetric about Vy = 0,
On the other hand, if Te is greater for Vy < 0 than for Vy > 0, then
there is a non-symmefric spread in Vy (Figure 4.9(b)). This tempera-
ture gradient distortion of the distribution function increases its
slope at the wave phase velocity and this leads to an enhanced growth
rate. _In the regime b™! > 1, the growth rate decreases with increas-

ing \ﬁo

. Since the temperature gradient is kept constant, the in-
crease in magnetic field causes a corresponding decrease in electron
Larmor radii for both the orbits Vy < 0 and Vy > 0. These orbits
will then have radii smaller than those shown in Figure 4.9(b),
although the radius of the orbit for Vy < 0 will still be larger than
that for Vy > 0. Thus the distortion of the electron q1str1bution
function will not be as great as in the regime b™! << 1, The corres-
ponding small positive contribution to growth rate would be outweighed
by the decrease in net drift velocity produced by the temperature

gradient, resulting in a net decrease in the growth rate.

In the. next Chapter we transform into the reference frame in which
the two ion species have external drifts. The electrons are basic-
ally stationary, except for drifts due to inhomogeneities. Using

this mode] the ion acoustic instability is re-examined.
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CHAPTER FIVE

THE CROSSFIELD ION ACOUSTIC INSTABILITY IN A TWO-ION PLASMA WITH

DRIFTING IONS

5.1 THE PLASMA DISPERSION RELATION FOR DRIFTING IONS

In the previous two chapters we have discussed the ion acoustic insta-
bility in a model consisting of drifting electrons and stationary ions.
We now turn our attention to a plasma in which the two ion species have
ekterna] driff velocities VL and VH and the electrons are considered to
be stationary. The electrons, however, are not entirely stationary -
they may experience drifts due to gradients in external magnetic field,

electron temperature and electron density, as shown in Figure 5.1 below.

Z
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FIG., 5.1
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For the case of drifting ions, the dispersion relation, eqn (4.2.1),
(with inhomogeneities in external magnetic field, perpendicular

electron temperature and electron density) modifies to

-k Ve (r_-2S
- Ei.+ {(w + kyvn) LR y'T ( 0 O)} Z< W >
/?kzce

A T s, ()

Zk;cé /?kzce
-k V w -k V
_ 6 f7! v .yL + (1 - f) A _-y_H = (5.1.1)
2' .
. /?kcL ' /?kcH

where VL(VH)_is an externally-induced (e.g. electrostatically) drift of

the 1ight (heavy) ions, and the other symbols have their usual meaning.

In the Timit Te >> Ti (~ 0), asymptotic énd power series expansions
of the Z-functions (eqns (3.5.1) and (3.5.2)) can be employed in the

usual manner to reduce the real part of eqn (5.1.1) to

-

Cfk2c2 (1 - f) k2c2
1+ K2 = SL — SH (5.1.2)
. - - 2

where w = wp + iy with [y]| << wp, and where all inhomogeneities have
been nég]ected. For V= Vy = Vo’ eqn (5.1.2) yields

2 _ 2 1142
) {chL + (1 - f) CSH}
R yo (1 + kZAS)I/Z

(5.1.3)

The plus (minu§) sign in eqn (5.1.3) corresponds to the fast (slow)
beam mode. Equation (5.1.3) has the usual form for the ion acoustic

- frequency in the electron rest frame (Sato et al., 1975).
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5.2 NUMERICAL ANALYSIS

In the numerical analysis that follows, eqn (5.1.1) has been used to
solve for the normalised growth rate, Y/wpe, where “ne is the electron
plasma frequency. As usual, all the particle velocities have been
normalised with respect to the electron thermal speed. The standard
parameters, e.g., M = 10, are the same as those used in Chapter Four.
The two ion species are assumed to have equal temperatures, with g =

L

BH =5, Since 8 > 2M, it is expected that only a single mode will

propagate through the plasma {(Nakamura et al., 1976a).

Figure 5.2 illustrates the effect of varying the angle between the
wave vector K and the magnetic field ﬁo on the growth rate. Both ion
species have been given the same drift speed, viz., VL = VH = Vo'
Ca1cu1afions with the use of eqn (5.1.3) reveal that it is the slow
beam mode that is unstable in both cases, a finding which is consist-

ent with the experimental observations of Hayzen and Barrett(1977)

for a single-ion plasma.

We note that the growth rate decreases as the angle is decreased

(kz/k + 1), a result similar to that found in Section 4.4 for drifting
electrons and stationary ions. The explanation fBr this decrease in
growth rate as the wave travels less obliquely to the magnetic field
direction has been discussed in Section 4.4, and is as follows: when
the wave travels parallel to the magnetic field, the wave now being

at right angles to the drift velocities is unable to resonate with

the energetic particles and draw energy from them.
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As for the increase in Y/wpe with Vo/ce; an increase in the ion drift
speeds results in a greater amount of free energy‘avai1ab1e to drive
the instability - this is seen to enhance both the growth rate and

the range of propagation angles (cf kz/k cut off).

Figure 5.3 illustrates the effect gf unequal ion drift speeds on the
growth rate. A comparison has been made between equal drift speeds
(curve a) and unequal drift speeds (curve b). In the latter case,
both ion species have been given the same kinetic energy and hence

the ratid of their speeds is equal to the square root of the ratio of
their masses, i.e. VL/VH = /M;7ﬁi (e.g. for an applied potential
difference ¢, e = % MLVE = 4 MHMQ). It can be seen that a decrease
in heavy ion drift speed results in a decrease in the growth rate but
no appreciable change in the cut-off angle. A study of the distribu-
tion functions of the different species offers a possible explanation
for this. For both cases (VL = Vy and v, # VH) it is the slow beam
mode that grows. Such a wave, with « - [ VO < 0, is a negative
energy mode (Lashmore-Davies, 1971) and grows when energy is extracted
from it, e.g., such a wave will grow when it 'sees' a negative slope
on a particle velocity distribution function. [t is seen from Figure
5.4b that when VH < VL, the wave phase speed decreases significantly
in comparison to the equal drift case (Figure 5.4a). The wave then
'sees' a smaller negative slope on the electron velocity distribution
function, with a consequent decrease in growth rate. Ion Landau damp-

ing is negligibly small in both cases.

For VH < VL, the normalised phase speed of the unstable mode is found
to be V¢/ce‘:-0.0033 (at k /k = 0.05), which Ties between the modified

heavy and light ion sound speeds in the ion rest frame, viz

-y
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Normalised growth rate for drifting ions as a function of kz/k. f=0.5 M=10, 8 = 100, kx = 0. Drifts due to
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0



- 88 -

fe(V) ]
0 V¢ VL velocity
Ce Ce
(=.0.0%)
- Y
(a) Co
(= 0.02)
f (V)
Lk
CE |
(= 0.003) (= 0.006) (= 0.02)

(b)

FIG. 5.4 Relative positions of wave phase velocity and particle
drifts when

(a) both ion species have equal velocities
(b) both ion species have equal kinetic energies (M = 10).
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for f = 0.5 and kZAB << 1. Some insight into this behaviour can be

obtained by noting that since VL/VH = /MH/M , we have for f = 0.,5:

and

2 _ 2
fCSL (1 - f) Ch

242 2 242 2
(1 + k AD) VL (1 + k AD) vH

Then, if we define a harmonic average velocity (Krall and Trivelpiece,

1973)
baifi1)
V,oZ\ T
an average ion sound frequency
2 -
wg k“fc

SL

2 (1 - 2
k# (1 - f} e

2 242 2 242 2
Voo (D ki) Vi (1« KEAD) VR
and a dimensionless frequency
=Y
w

sV * V7

and express the wave number ky in terms of a dimensioniess variable y as

k:E +y
y v, "

o<1f

then eqn (5.1.2) transforms to

1 !

— + — =]
(x =y} (x+y?
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It has been shown (Krall and Trivelpiece, 1973) that for a two-stream
instability with o real and k imaginary, this fourth order equation
has two real and two imaginary roots for k, with one growing and the other
damped. The frequency at which the growth rate is a maximum 1is given by
VL+\? ' |
“max ~ 2 (V[_:_Va) s

For MH/ML =10,

0 H H
Then

we (1 - ) ¢Z

= 2.3 S

k2 (1 + kzks)
with

w w
max S 1 - 1

It is seen that the wave phase speed corresponding to maximum growth
: . ! . : 1
lies between Cep and Cey » and is much ;1oser‘to Cop » We note that

the computed phase speed is, on the other hand, much closer to CéH'

However, this may not be the value for wp corresponding to  maximum

growth.

Figure 5.5 shows a result similar to that of Figure 5.3. Here ¢ is
the angle between the tx and k, components of the wave vector K (k,
had been set to zero in Figure 5.3). Both curves-in Figure 5.5 have
a cut-off angle ciose to 0.4 radians (this is similar to the results

of Section 4.4).

The effect of 1ight ion concentration on the growth rate is shown in

Figure 5.6, The growth rate is much smaller for all angles ¢ for
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f = 0.1 than for f = 0.5. This is in agreement with the "contaminant"

- damping discussed in detail in Section 3.6.1.

When the electron-ion temperature ratio is increased (electron
temperature kept fixed) there is an increase in both the growth rate
and the cut-off angle (Figure 5.7), and this may be associated with

a decrease in ion Landau damping. However, for the paraméters chosen,
there is no substantial increase in growth rate from ¢ = Te/Ti = 500
to 6 = 1000. This may be due to the ions becoming virtually cold for

6 values equal to and above 500. Ion Landau damping is then absent,

The effect of inhomogeneities in perpendicular electron temperature,
electron density and external mégnetic field on the growth rate is
illustrated in Figure 5.8. It is interesting to observe that the
growth rate is increased by the presence of inhomogeneities, whereas
in the external electron drift-stationary ions case (Section 4.4.4)
the growth rate'decreqses. The reason for this is discussed below:
Since the electron drift speeds due to the inhomogeneities are along
the negative y-axis (Figure 5.1) while the ions drift in the positive
y-direction, the resultant relative drift velocity between the ions
and electrons is increased. THis_increased velocity provides add-

itional free energy to enhance the instability.

v w
Figure 5.9 shows how the normalised wave Speed_?—i—- (=" R ) varies
' /?cH /chH

with kz/k for equal ion speeds Vo in the absence of inhomogeneities.
The wave speed decreases to zero and then assumes negative values.
‘The continuity-of the values confirms the propagation of a single
mode. The graph of the Doppler-shifted wave speed G¢ = (wR - kyVo)/

ke, corresponds to the slow-beam mode in egqn (5.1,3).
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Graph (1): Normalised wave speed as a function of k7K.
Graph {2): Doppler-shifted wave speed as a function of k /k.
VL/Ce = VH/ce = Vo/ce = 0,01, 8 = 50, M = 10, zero electron drift,
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The heavy to light ion mass ratio was decreased by increasing the
1ight ion mass and keeping the heavy ion mass fixed. This results in
an increase in both the growth rate and the cut-off angle (Figure
5.10). Here the ion drift velocities were taken to be equal and there

were no inhomogeneities.

An increase in M (with MH fixed) leads to a decrease in the phase
velocity, as can be deduced from eqn (5.1.3), and hence a decrease in

growth rate (as the wave now 'sees' a smaller negative slope on the

electron velocity distribution function).



Fig 5.10

o) 1 | .
O 0.2 0.4 0.6 0.8 1
k,/k

Normalised growth rate for drifting ions as a function of kz/k. o = 50, and the other fixed parameters are the

same as in Fig. 5.7. Parameter labelling the curves is M = MH/ML.

_86_



- 99 -

CHAPTER SIX

SUMMARY AND CONCLUSION

Linear kinetic theory has been used to set up the dispersion relation.
for electrostatic instabilities in a collisionless, magnetized two-
jon plasma with crossfield drifts. The initial model consisted of
drifting Maxwellian electrons and stationary ions. Previous studies
(Nakamura, 1976a; Gledhill, 1982; Gledhill and Hellberg, 1987) have
shown that the low frequency ion acoustic wave may propagate in two
possible ways in a two-ion plasma. For 6 < 2M, where 6. = Te/Ti’

M = MH/ML’ two independent modes may co-exist, one being the principal
mode associated with the heavy ions and the other the principal mode
associated with the Tight ions. However, for & > 2M only one mode is
possible, with a phaseAspeed increasing continuously from the heavy
jon sound speed to the Tight ion sound speed as the 1ight ion frac-

tion is increased from 0 to 1. In all our studies we have & > 2M.

Marginal stability studies have been made to investigate the effect
of the 1ight ion fraction, f, on the critical E x B electron drift
speed Vg, required to produce wave growth for the ion acoustic insta-
bility. It was found that Vg assumed a maximum value, (V&)

o‘max’
small percentage (f ~ 5%) of light ions. This "contaminant" damping

for a

behaviour agrees quite well with other similar investigations, e.qg.
Fried et al. (1971),and is associated with Landau damping of the
principal heavy ion mode produced by the small fraction of Tight ions.
The value of (Vg)max was found to be considerably smaller than that
for the field-free plasma as investigated by.De11 (1984).  This may be
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due to the fact that in a magnetized plasma, the electrons are free

to move only along the external magnetic field §O. Thus their general
freedom of motion in neutralizing ahy potential perturbations is
restricted, thereby making it easier to excite an instability in a
direction-oS]ique to §0. Associated with this is the well Kknown k/kZ

enhancement in instability growth rate (Barrett and Hayzen, 1976).

Approximate analytic solutions have also been used to make comparisons
with results from the full diSpersion relation. The agreement between

the two solutions is found to be better for smaller values of M.

The value of f at which the critical electron drift velocity assumes

a maximum; f was found ta rise sharply from 0.12 to 0.32 over

peak?®
the range 2 < M < 5. This behaviour could be of significance in

fusion oriented devices where the deuterium-tritium reaction is of
importance. The ion Landau damping associated with the 1ight ions is

found to be-the primary factor influencing wave growth,

Other parameter studies indicated that (Vg)max

to Tight ion mass ratio (M) was increased, while (Vg)ﬁax decreased

with an increase in propagation angle and magnetic field strength IEO{.

increased ‘as the heavy

However, no appreciable change in fpeak (the value of f for which

(V)

o max occurred) was observed.

Investigations of the dependence of the ion acoustic instability
growth rate on the electron drift speed confirm the existence of a
minimum drift speed required for instability growth. The results
also show that there is a minimum value of e (the electron-ion
temperaturé ratio) for which growth occurs. For the parameters used,

this minimum value of 9 is approximately equa1 to 14, Results from

7880127
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the full dispersion relation showed that the change in growth rate
was insignificant for values of 6 above 100, a result also found by
Lambert et al. (1976). This may be due to the fact that ion Landau

damping becomes negligibly small at such large & values.

Inhomogeneities in external magnetic fieid, perpendicular electron
temperature and electron density were found to produce a decrease in
the growth rate. .This‘is probably due to a decrease in the net
electron drift produced by the aSSOCiated gradient drifts in our
-model, and isconsistent with the findings of Bharuthram (1974) for a

single ion plasma.

For 6 < 100, the growth rates as obtained from the approximate
analytic solutions of the dispersion relation are found to be gene-
rally larger than that for the full .dispersion relation. This may be
due to the total absence of ion Landau damping in.the approximate

solutions.

The effect of the magnetic field on the growth rate reveals that
although the inhomogeneities in electron density and external magnetic
field have a stabilising effect on the plasma for all values of b~!

(b = kicé/ﬂé), the addition of a temperature gradient has a destabili-
sing effect for b™* << 1. Other authors (Priest and Sanderson, 1972
and Bharuthram, 1979) have also reported on this two-fold effect of -

the temperature gradient for a single-ion plasma.

Studies using a model consisting of drifting jons and stationary

electrons in a two-ion plasma reveal that it is the slow mode with

real frequency
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og = kVg = KEFCE + (1= £) cq/® (1 + kAR

that becomes unstable. We note that since wp = [ VO < 0, this is a
negative energy mode. The choice of parameters (e.> 2M) resulted in
the propagation of a single mode whose growth rate increased with an
increase in the ion beam velocities. Results using both equal and
unequal ion velocities were obtained. In particular, it was found

that the growth rate decreased when the heavy ion beam was given a

ve]ocify smaller than that of the 1ight ion beam.

The effect of the 1ight ion concentration on the growth rate for a
plasma with drifting ions (the "contaminant" damping) was similar to
that previous]y found - for drifting e1ectron§. For this model, fhe
introduction of inhomogeneities in external magnetic field, perpendi-
cular electron temperaturé and electron density tended to increase

the growth rate. This was due to the e]ectron gradient drifts being
directed such that the relative ion-electron drift speed was increased,
~ An %ncrease in heavy to 1ight ion mass ratio, M, (with the heavy ion
mass fixed) resulted in a decrease in both the phase speed and the
growth-réte. This was associated with a decrease in electron Landau

damping (which reduces the growth rate of a negative enefgy mode).

In discussing possib]e'extensiohs to the work undertaken in this
thesis, we note that all the studies have been done for 6 > 2M, for
which value only a single ion acoustic mode propagates in the two-ion
plasma. Thus a natural exfension is to bonsider the region o < 2M
and inveétigate the behaviour of the two 1ndependentlion acoustic

modes which may coexist. Further, since we have dealt with a common
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ion temperature, Ti’ one may consider the case of unequal ion tempera-

tures which is more realistic for ion-beam heating experiments.

The nonlinear evo]utfon of p1asma instabilities and their saturation
are topics of much interest. Quasilinear theory could be used to |
study the saturation bf the crossfield ion acoustic instability in a
two-ion plasma. As regards to the nonlinear regime, solitons and
double layers associated with such 1nstabi1itfes, especially in a

magnetized plasma, are problems worthy of investigation.
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