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ABSTRACT 

The behaviour of the crossfield current-driven ion acoustic insta

bility ina plasma containing two ion species is theoretically examined. 

In our model the electrons are assumed to be hot and the ions cold, 

i.e. T »T. (~ 0), where both ion species are given the same e 1 

temperature. The length and time scales are such that the electrons 

are magnetized and the ions unmagnetized. 

The linearised Vlasov equation is used to set up a dispersion rela

tion for electrostatic waves for Maxwellian equilibrium velocity dis-

tributions of the electrons and ions. For the ion acoustic wave, a 

study is made of the dependence of the critical electron drift 

velocity (V~) required to excite an instability on several parameters. 

The parameters include light ion fraction, heavy to light ion mass 

ratio, magnetic field strength and the propagation angle. In general 

the maximum value of V~ is found to be smaller than that for an 

unmagnetized plasma. Approximate analytic solutions of the dispersion 

relation are used to make comparisons with solutions from the full 

dispersion relation. 

The effect of drifts due tq inhomogeneities in external magnetic 

field, perpendicular electron temperature and electron density on the 

growth rate of the ion acoustic instability are investigated in the 

ion rest frame. 

Finally, in a reference frame in which the electrons are stationary, 

both ion species are given external drifts. The effects of the ion 

drift velocities (both equal and unequal), electron to ion temperature 

ratio, light ion fraction, and heavy to light ion mass ratio on the 

growth rate of the ion acoustic instability are then studied. 
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CHAPTER ONE 

INTRODUCTION 

Experimental measurements in magnetically confined plasmas, 

especially in fusion-oriented devices such as tokamaks and 

stellarators, indicate anomalous particle and energy transport across 

the confining magnetic field. It is widely suggested that such 

observations are due to turbulence associated with plasma waves and 

instabilities. In this regard, of particular interest are the 

electrostatic instabilities since they have faster growth rates in 

most cases. Of such modes, the low frequency ion acoustic wave (and 

associated instability) has received much experimental and theoreti-

cal investigation. 

1.1 ION ACOUSTIC WAVES 

When the frequency of an incoming signal in a plasma is decreased to 

that of the ion plasma frequency, the massive ions respond to the 

signal and are set into vibration. As the frequency is decreased 

below the ion plasma frequency, the ion oscillations become more 

coherent and ion acoustic waves are set up. 

Ion acoustic waves in a plasma were first observed by Wong et ~. 

(1964) in a Q-machine. The phase velocity of such waves in a single 

ion plasma can be found by the use of fluid theory (see, e.g., Chen, 

1974), and is given by 

T y, T, 1/2 

W (~ + ' 1\ 
k = IM,' 1 ~" ) \ + k2 AD 

(1.1.1) 
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where Te(Ti ) is the electron (ion) temperature, Mi the ion mass'Yi 

the ratio of the specific heats for the ion, AD = (Te/4TInoe2
)1/2, 

the electron Debye length, with no being the equilibrium plasma 

density. For most experimental parameters, kAO « 1 and Te » Ti(I\" 0). 

Then the phase velocity can be written as 

T 1/2 

W (~\ 
k = \M i ) 

:: c s 
(1.1.2) 

where Cs is the ion sound speed. It can thus be seen that the ion 

acoustic wave is basically a constant-velocity wave and exists only 
, 

when there is thermal motion. This can be explained by noting that 

the electrons are dragged along with the oscillating ions and as a 

result tend to shield out the electric fields arising from the 

bunching of the ions. This shielding, however, is not perfect 

because of the thermal motion .of the electrons. The resulting 

electric field (proportional " to Te) exerts a restoring force on the 

ions. But the ions overshoot their equilibrium position because of 

their inertia. This sets up ion acoustic waves in the plasma. 

Ion acoustic waves have been thoroughly investigated in single-ion 

plasmas, both experimentally and theoretically. More recent atten

tion has been given to their behaviour in two-ion plasmas. While 

much work has been done in unmagnetized plasmas, the study of ion 

acoustic waves in magnetized plasmas is incomplete. Here, we examine 

the behaviour of the ion acoustic instability in a magnetized two-ion 

plasma with crossfield drifts acting as the driving mechanism. 
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1.2 OUTLINE OF THIS THESIS 

The studies in this thesis are based on the linear theory of the 

electrostatic instabilities in a collisionless magnetized two-ion 

plasma. Chapter Two presents a literature survey of both theoretical 

and experimental investigations of the ion acoustic instability. The 

linear dispersion relation for a model consisting of drifting 

Maxwellian electrons and stationary ions is established in Chapter 

Three. Series and asymptotic expansions of the plasma dispersion 

function are used to obtain approximate solutions to the dispersion 

relation. Marginal stability studies are made to show the dependence 

of the critical external electron drift speed required to excite the 

instability on the fraction of light ions. The dependence on other 

parameters, such as heavy ~o light ion mass ratio, strength of mag

netic field and propagation angle arealso examined. 

The effect of inhomogeneities in electron temperature, electron den

sity and external magnetic field on the instability growth rate is 

studied in Chapter Four. In Chapter Five, we adopt a model in which 

the electrons are stationary and both the ion species given external 

drifts. The effect of the ion drift velocities (both equal ahd un

equal), electron to ion temperature ratio, light ion fraction and 

heavy to light ion mass ratio on the ion acoustic instability growth 

rate are studied. 

The main results of this thesis are summarised in Chapter Six. 

Conclusions are also drawn and possible extensions to the work 

presented are discussed. 
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CHAPTER TWO 

LITERATURE SURVEY OF THE CROSSFIELD ION ACOUSTIC INSTABILITY 

The crossfield current-driven ion acoustic instability (Gary, 1970) 

is one of a set of low frequency electrostatic instabilities generated 

when a current flows across a magnetic field B .. The instability is o 
characterised by {me/M,.)l/2 < (k /k.t) < 1 with V > C and T > T., z 0 se, 
where m is the electron mass and k (k.t) is the component of the wave e z 

vector parallel (perpendicular) to the magnetic field. 

2.1 ION ACOUSTIC INSTABILITY IN A SINGLE-ION PLASMA 

This section is included not only for completeness but also since the 

effect of gradients on the growth rate of the ion acoustic instability 

in a two-ion plasma is similar to that in a single-ion plasma. We 

present a brief survey of studies undertaken. 

Krall and Book (1969) conducted an initial theoretical investigation 

of the ion acoustic instability propagating across a magnetic field B. 
Spatial gradients in the magnetic field B and electron density n were 

used to drive the instability. They found that the growth rates for 

the crossfield mode and the field free modes were comparable. 

Priest and Sanderson (1972) made a theoretical study of the effect of 

temperature, density and magnetic field gradients on the ion acoustic 

instability in -perpendicular shocks. Making the assumptions 

{kyPe )2 » 1 and {kzPe )2 ~ 1 with 1< = (O, 1<y' I z) and Pe being the 

electron gyroradius, they derived an expression for the growth rate 
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via the Gordeyev integral. It was found that a large temperature 

gradient in strong shocks considerably increased the growth rate of 

the ion acoustic instability and this effect was explained in terms 

of a distortion in the electron velocity distribution function. (For 

a more detailed explanation, see Chapter Four of this thesis). The 

effect of the density gradient was found to be small, while the mag

netic field gradient only produced a slight correction to the growth 

rate. 

Lashmore-Davies and Martin (1973) made a study of the linear theory 

of all fast growing (y > Qi) electrostatic instabilities which occur 

when a current flows perpendicular to a magnetic field, for the 

temperature rangesTe » Ti' Te = Ti and Ti = 10 Te. Although they 

worked with a homogenous plasma, their findings, especially the 

establishment of an upper limit for the propagation of the modified 

two-stream instability is important to our work. This limit was 

found to be (kz/k) ~ (me/Mi)1/2. As (kz/k ) increases, the modified 

two-stream instability changes into the ion acoustic instability. 

They also found that the effect of the magnetic field was to enhance 

the growth ra te. 

Bharuthram and Hellberg (1974) made a numerical study of the role of 

weak gradients in density, perpendicular electron temperature and 

magnetic field on the crossfield current-driven ion acoustic instab

ility. In their model the dominant drift, Vo' was either an 

external beam or an E x B drift. The destabilizing effect of the 

temperature gradient (Priest and Sanderson, 1972) was only observed 

for the regime k .lPe:t 1, -wi th kz 1 o. On the other hand, the density 

gradient always had a stabilising effect. 
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Hirose et al. (1972) have reported experimental observations of the --
ion acoustic instability in atoroidaTturbulent-heating machine. 

For T /T. > 40, they found that the wave propagated across the field e 1 '\, 

in a direction opposite to that of the electron diamagnetic current. 

The growth rate was observed to be greater in the presence of a 

temperature gradient than for an t x ~ or vn drift. 

Hayzen and Barret t (1977) used a doub 1 e-p 1 asma devi ce to study the 

crossfield current-driven ion acoustic instability driven by an ion 

beam. The growth rate of the ion acoustic instability was investi

gated as a function of k~P e and the magnetic field angle B. Allow

ing for the finiteness of the plasma and the effect of ion-neutral 

collisions, the authors found good agreement between the measured 

growth rates and the equivalent theor.etical estimates. 

We conclude this section by making a brief review of some of the more 

recent research on ion acoustic waves in a single-ion plasma. Much 

of this research has been on non-linear aspects such as the propaga

tion of solitons. Lonngren et~. (1982) have performed a series of 

experiments to investigate the propagation of grid launched linear 

and non-linear ion acoustic waves. They suggested that a soliton or 

a dispersing "Airy function" response could be used as a diagnostic 

tool to determine the plasma density. Gablet~. (1984) inter

preted the ion acoustic wave excitation in terms of "klystron bunch

ing" using a water bag model. A condition for optimum excitation of 

planar solitons was also derived by these authors. In another study 

on grid launch~d linear and non-linear ion acoustic waves, 

Raychaudhuriet. ~. (1984) observed that spherical ion acoustic 

solitonscoul~ be launched from a small planar grid. 
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In other non-linear investigations, Bharuthram and Hellberg (1982), 

have used quasilinear theory to study the saturation of the cross

field current-driven ion acoustic instability. Majeski et~. (1984) 

have observed the suppression of the current-driven ion acoustic in

stability in a single-ended Q-machine. This occurred as a result of 

non-linear coupling produced by pondermotive effects arising from the 

introduction of a large amplitude lower hybrid wave. Sekar and 

Saxena (1985) have demonstrated the formation of ion acoustic double 

layers in a laboratory plasma, starting from the linear growth of 

ion acoustic instabiliti'es in a current-carrying plasma. 

2.2 ION ACOUSTIC WAVES IN A TWO-ION PLASMA 

Plasmas containing more than one ion species play an important part 

in the study of the upper ionosphere and fusion plasmas as well as 

in the study of laboratory plasmas . . 

The ion Landau damping of ion acoustic waves in a two-ion plasma was 

first observed by Alexeffet~. (1967) in their now classic experi

ment. The addition of a small concentration (about 0.3%) of light 

ions was found to sharply damp the growth rate of the ion acoustic 

instability, although the effective ion mass (and hence the phase 

velocity) was almost unchanged. 

Hirose et~. (1970) have experimentally investigated the effects of

magnetic fields and propagation angle on the ion Landau damping in a 

helium-xenon p1asma. Fluid theory was used to make comparisons be

tween theoretical and experimental results. The ion Landau damping 

for propagation parallel to the magnetic field was found to be 
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similar to that without a field (as investigated by Alexeff et !l., 

1967). The angular dependence of the "contaminant" Landau damping 

was also investigated and results showed that the damping vanished 

for propagation almost perpendicular to the external magnetic field. 

Fried et al. (1971) have used kinetic theory to make a detailed study 

of the "contaminant" damping. The linear dispersion relation was 

derived for a multispecies plasma and solutions to this equation dis

played in the complex phase velocity plane. Comparisons were also 

made with the approximate solutions of the dispersion relation 

(derived by using asymptotic expansions for both ion terms). The 

authors found that there are two important modes associated with the 

two ion species in the plasma, each with different phase velocities 

the principal . heavy ion mode and the principal light ion mode. The 

principal heavy ion mode is significantly affected by the addition 

of a small concentration of light ions (the "contaminant" damping). 

The principal modes were investigated as a function of e = T /T. and e , 

light ion fraction, f. Figure 2.1, taken from their paper, shows the 

damping rate as a function of f for an argon~helium plasma . 

. , , 

03 

0.2 

Qj 

0~ ____ ~~ __ ~~~~' +' ____ ~ __ ~-J'~'~~~ 
.01 .os J .s 

f 

FIG. 2.1. Damping rate r vs light ion fraction f (from Fried et al., 
1971). ---
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The experimental findings of Nakamuraetal. (1975) on changes of --
damping rate with light fraction in an argon-helium plasma confirmed 

the theoretical work of Fried et~. (1971). The damping rate was 

found to be a maximum for f ~ 0.08. Furthermore, only a single wave 

was detected for the range 21 < e < 26, where B = Te/Ti' In a sub

sequent paper, Nakamura et~. (1976b) investigated the temperature 

rangee = 10 to 15. ~lthough they detected a single mode in an argon

neon plasma, two modes were detected in an argon-helium plasma. On 

the basis of their results, Nakamuraet~. (1976a) used fluid theory 

to suggest that two-wave behaviour will occur for e < 2M (M being 

the heavy to light ion mass ratio) in a two-ion plasma, which implies 

that only a single mode will be observed for e > 2M. 

Similar results were found by Tran and Coquerand (1975a and b) who 

observed two simultaneous modes in an argon-helium plasma (M = 10) 

for e = 9. In a later paper {Tran and Coquerand, 1976), they used 

real wand complex k to draw the dispersion curves for e = 25 and 

e = 10 in an argon-helium plasma. For the case e = 10, the existence 

of two simultaneous modes was clearly shown, while e = 25 yielded a 

single mode. 

Lambert et~. (1976) used Nyquist diagrams to illustrate the 

behaviour of the roots of the dispersion relation for a two-ion 

plasma. They conclude that the light ion "contaminant" damping occurs 

for the range 5 < e < 100. The width of this interval depends on 
'V 'V 

both the heavy to light ion mass ratio and the light ion concentra

tion. Lambert-et~. continued their investigations in a second 

paper (1977) ~nd studied the effect of such parameters as ion mass 
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ratio and temperature ratio on the IIcontaminant ll damping in an argon

helium plasma. 

Gledhill (1982) used the saddle point technique to make a comprehen

sive study of the effects of e, M and f on the behaviour of the 

various ion acoustic modes in a two-ion plasma. In their kinetic 

treatment, Gledhill and Hellberg (1987), confirmed the findings of 

Nakamura et~. (1976a) by establishing the criteria for the exist

ence of two simultaneous modes in a two-ion plasma as e < e* where 

e* = 2. 1 M for M > 10. 

Dell (198~) continued with the saddle point technique of Gledhill. 

Some of his studies focussed on the effect of an electron beam on the 

ion acoustic instability in an unmagnetized two-ion plasma. The 

presence of the electron beam was found to modify the conditions 

necessary for the coexistence of two weakly damped waves. 

Yaguraet~. (1985) experimentally studied the ion acoustic instab

ility in a two-ion plasma in the presence of two-ion beams. The ion

ion acoustic instability was found to be excited by the coupling of 

. the ion acoustic wave associated with the background plasma and the 

slow space charge wave of the heavy ion beam. Experimental measure

ments were found to agree quite closely with the theoretical results~ 

The i on beam energi es required to produce i nstabil itywere found to 

depend upon both the light ion fraction f and the heavy to light ion 

mass ratio M. 

Garyand Dmidl (1987) have solved the linear dispersion relation for 

ion-acoustic-like instabilittesin a plasma consisting of counter 
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streaming ion components. Some of the results found were: (i) the 

instability undergoes a transition from fluid-like to beam resonant 

as the beam-background ion relative temperature ratio approaches 

unity; (ii) when the beam-background temperature ratio is of order 

unity, the threshold core (background ions) drift speed for the 

electron-ion acoustic instability is larger than that forthe ion-ion 

acoustic instability for a very wide range of plasma parameters; 

(iii) anisotropies in the electron temperature, Tl.e/Tlle > 1 enhances 

the ion-ion acoustic instability at oblique propagations; (iv) the 

effect of an external magnetic field is to either increase or 

decrease the growth rate of the instability for large beam~background 

ion drift speeds. The authors then use their results to make com

parisons with the findings of other authors on the ion acoustic in

stability in space plasmas. 

In a recent theoretical study of ion acoustic behaviour in two-ion 

plasmas, Jackson (1986) investigated the propagation of ion acoustic 

instabilities in a . deuterium-tri tium plasma and their significance 

in controlling thermonuclear reactions. The SASER (Sound Amplifica

tion by Stimulated Emission of (Acoustic) Radiation) effect is 

discussed. 
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CHAPTER THREE 

THE PLASMA DISPERSION RELATION FOR CROSSFIELD CURRENT-DRIVEN ION 

ACOUSTIC WAVES IN A TWO-ION PLASMA 

3.1 INTRODUCTION 

The plasma dispersion relation used in this thesis is based on 

kinetic theory. It has been derived for crossfield ion acoustic 

waves by Gary and Sanderson (1970), but the following derivation of 

the relation is based closely on the more detailed approach of 

Bharuthram (1974). 

We consider electrostatic wav~s in a collisionless Vlasov plasma con-

sisting of two species of stationary ions and r1axwellian electrons drift-

ing perpendicular to an external magnetic field. The derivation of 

the plasma relation is based on the following two assumptions: 

(a) The time scale (T) and length scale (L) of the perturbations 

satisfy the following conditions: 

where Qi (Qe) is the ion (electron) ~lrofrequency and r
i 

(re) 

is the ion" (electron) gyroradius. 

Under such-conditions the ions may be considered unmagnetized. 

(b) We use the electrostatic approximation, i.e. magnetic field 

perturbations are neglected. Then [(1) = -v~(l)where [(1) (~(l)) 

is the perturbation electric field (potential). It then follows 
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from Maxwell's equations that for harmonic variations of the form 

exp i(k • r - wt) , k is parallel to t(1). Thus electrostatic waves 

are longitudinal in nature. To ensure that electromagnetics effects are 

always negligible we require the wave phase speed v~ to be much 

smaller than the speed of light, i . e. v~ « c. 

In the next section we describe our model and then obtain the electron 

contribution to the dispersion relation. 

3.2 THE ELECTRON TERM 

We consider a cOl lisionless two-ion plasma embedded in external 

electric and magnetic fields: 

x 

E( 0 ) = -E x 
x 

*(0) B (1 .) A ts = +e:x Z o 

+0(0) = It ~ 
IUo 0 

" / / v-

A 

-E x x 

/ 0 
Ji'/--------~ Y 

-+ 
-ij 

B 

3. 1 

(3.2.1) 

Since the electrons are-magnetized and the ions not, the former have 

an [(0) x 8(0) drift relative to the latter, 

v = c E(o)x-S(o) 
o (3.2.2) 
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in the y-direction. The drift velocity of the electrons due to the 

inhomogeneity in the magnetic field, VB' is in the negative y

direction and is given by . (Boyd and Sanderson, 1969) 

V = ~meV~c(8 x v) 8 

B (-e) B3 
(3.2.3) 

Substituting for B(o) from eqn (3.1.1),we have 

Effects of gradients in plasma temperature and density are neglected 

here, but will be studied later in Chapter Four. 

Since we are considering magnetized electrons and unmagnetized ions, 

the scale length of nonuniformity of 8(0) is restricted by 

r «11/EI « r .. e 1 

The equation of motion for the electrons is given by 

me~V ((0) VXS(O)) 
dt = e,E +-c- -

which leads to 

z = O. 

(3.2.5) 

Two consta~ts of motion (to order E) can be constructed by the use of 

e (3 2 5) Th V d V2 . 2 ( ) 2 qn ... eseare zan ~=Vx+Vy-Vo. 
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The Vlasov equation for the electrons, 

afe -± e ( VXB) - + V ·vf + - \E + - . 'V / e = 0, 
at e me . c 

(3.2.6) 

is satisfied by the equilibrium Maxwellian velocity distribution 

{ 
V2+(V -V O) 2 +V 2} 

f(o) = n (2vC 2 )-3 / 2 exp _ x y . z 
e 0 e 2c 2 

e 

(3.2.7) 

where me is the electron mass and ce = IT /m the electron thermal speed. e e 

Allowing for small perturbations in the equilibrium quantities, viz. 

f = f(d + f(O) 
e e e 

( \f( l )\ «\ f(O)\) 
e e 

and E = E( 1) + E( 0 ) ( \E(l) \« \E(O)\) 

where the superscript (1) indicates the perturbations, we substitute 

in eqn (3.2.6), and linearize to obtain 

which may be rewritten as 

df~ 1)1 e [dt J 0 = - me 'V 4> 

af( l ) 
e . -

av 

(3.2.8) 

where B(l) = 0 for the electrostatic case, and the left hand side 

represents the rate of change following an unperturbed orbit (as 

defined by E(o) and B~O)) in phase space. Upon integrating along the 

unperturbed orbits, we obtain 

( ) Jt afe(O) 
f e 1 er, V, t) = - me 'V 4> ( d . - d t ' 

e -~ aft 
(3.2.9) 
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where 

dV ' = _ ~(r(O) + V1XS(O)) 
dt i m c e 

(3.2.10) 

and where we have taken the lower limit of the integration t l = -00 

under the assumption that the plasma is undisturbed in the infinite 

past. 

Assuming f~'l.) and <1>(1) to vary hannonically in space and time we may 

write, 

f~1)(1,V,t) = f~l)(V) exp{i(t.~-wt)} 

<I>(1)(1,t) = <I>~~) exp{i(t'~-wt)} 

(3.2.11) 

(3.2.12) 

Inserting the eqns (3.2.11) and (3.2.12) into (3.2.9), we obtain 

(3.2.13) 

where the result 

has been used. 

Now 

which on using eqn (3.2.12) and the boundary condition at t l = -00 

yields 
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J tv ~ ( d . V I d t I = 
-00 

With the aid of eqn (3.2.12), one gets 

(~~(l).Vodt' = ij(.V
o 
(~t) exp{i(j(.j!"'-wt'))dt' 

Combining eqns (3.2.13), (3.2.14) and (3.2.15), one finds 

f(l)(V) exp{i(k.r-wt)} 
e 

exp{i(k'~'-wt')}] 
tl=t 

t 
+, i(w-k.Vo) J_ooJk~ eXP{i(k.t'-wt')}dt ' ] 

(3.2.14) 

(3.2.15) 

Evaluating this equation at t = 0 with rl(O) = t,VI(O) = V, we obtain 

ef( 0) 0 

f(d(V) = -r ~~l) [1+;(w-k.Vo) J exp{iCk.r'-wt ' )} dt ' ] (3.2.16) 
e e w . -00 

where the relation c~ = Te/me has been used. 

Now if VI (0) = V = (V.l cos ~, V.l sin ~, Vz) and ~I (a) = r = (xO'.Y6' za) 

the approximate solution to the electron orbit equations are 

VI 
rl(tl) = (xo + n~ {sin(net'+~)-sin~}, 

Z +Vltl) oz . . 
If we now write 

k = (kx,ky,kz) = (k.lcos~, k.lsin~, kz), 

(3.2.17) 

the integral in eqn (3.2.16) becomes, with the aid of eqn (3.2.17), 
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r

o EV,2\ 

" -00 

exp i [{k V'+k (V - ---:!: )-w}t' z z y 0 2rte 

k~l . 
+ -n--- {sin(rt t'+~-~)-sin(~-~)}Jdt' 

~G e " 
e 

The above integration can be performed with the aid of the following 

identity (Watson, 1944): 

exp (i a sin 8) = +r exp (i t 8) Jt(a), 
t=-oo 

where Jt(a) is the Bessel function of order t. 

Equation (3.2.16) can then be written as 

The perturbed electron density is then given by 

h(d Cr t) = n(l)exp{iCj(.yt-wt)} = r fb)(r' VI t')d3 VI 
e . , e kw J e ". 

= J f~}. )(V') exp{ i Ck.~' -wt) da V' . 

Using eqn (3.2.19), with f~o) given by eqn (3.2.7) and Vi = V~ 

(3.2.18) 

(3.2.19) 
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x 
p=-oo q=-oo 

( V· t 

Z ~ • exp\- - V . , 2 Z 
00 2c I 

= 
+00 J e 

p:-oo 0 • ( EV' 2) 
[k V -{w-k 'V - -d -PQ}] 

Z Z y 0 L Qe e 

(3.2.20) 

where we have used cylindrical coordinates (V~,~,V~) in velocity 

space an~ have performed the angular integration using the result: 

f
21T , {o if p' f q 

exp{i{p-q)~}d~ = . 
, 0 21T 1 f P = q 

Using the plasma dispersion function (Fried and Conte, 1961), 
,2 

Z{A) = 1T-
1j2 

J:oo(::A) dx for Im{A) > 0, 

the term 

V' w -r_·_z _ J 
Lac . l · 

e 

, V' 2 

exp(- ~) dV' 
, ' 2 Z 2Ce 

may be rewritten as 

'V 12 
.. ,-k (V _ E ~\ _pn 

' . . 1 . {W. y' . oWJ ' d'e ~ 
, 'jj'2 . ' , e } KZ . 

z ' I2k
z
c
e 

. 

(3.2.21) 

(3.2.22) 



- 20 -

Equation (3.2.20) then reduces to 

[ 
(w - t . Vo) +00 . rOO dkLVlO\ (_ Vl2

\ 

1 + -----::-. L J J I~) expo .-} 
M2k c 3 - P,o_rle·· '. . 2c 2 

y C. p_-oo 0 0 , e' . 

z e 

E;V 1.2 

W - k (V - 2rl
L
e
' \) - Prle} 

x Z {......, .. __ y_,_o __ :---__ 
f2k c 

(3.2.23) 
z e 

3.3 THE ION TERMS 

The time and length scales are assumed to be such that both the light 

ions (denoted by the subscript L) and the heavy ions (denoted by the 

subscript H) in our two-ion plasma are unmagnetized. In addition, 

due to their inertia, both ion species are assumed not to react to 

the electric field. Thus the equation of motion of each ion is of 

the type 

-+ 
r = 0, 

with the solution 
-r -r ;1-rl - r = Vi t 1 (3.3.1) 

For the equilibrium plasma, the densities of the species are related 

by 

noe = noL + noH (3.3.2) 

We shall first derive the perturbed ion distribution for light ions. 

As for the electrons, we integrate along the unperturbed orbits to 

obtain 

dt I, (3.3.3) 
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where ML is the light ion mass. With the equilibrium light ion 

velocity distribution given by 

noL . ( V2 \ . 
exp - - .J. , 

(2nct)~/2 2ct 
(3.3.4) 

(where cL =/\/ML is the light ion thermal speed) 

we follow the procedure outlined in section 3.2 for the electrons to 

obtain 

(3.3.5) 

The integration in the above equation is performed by moving the axis 

into the ion rest frame and then rotating the axis such that one of 

the axes points in the t direction. It then turns out that the 

light ion perturbed density is given by 

. en cp(l) 
n(l) - oL kw ZI 

Lkw - 2T L 
( w \ 
' nkc) 

L 

(3.3.6) 

where Z' (~), the first derivative of the plasma dispersion function 

is given by (Fried and Conte, 1961) 

Z' (~) = - 2 [1 + ~Z (;\ )] • 

In a similar manner for the heavy ions we find 

3.4 THE DISPERSION RELATION 

ZI( W ) 

I2kc H 

(3.3.7) 

(3.3.8) 

In the electrostatic approximation, Maxwell's equations are replaced 

by Poisson's equation: 



from which we obtain 

for harmonic variations. 
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V'2~ = - 41TLq.n., 
j J J 

(3.4.1) 

(3.4.2) 

Upon substituting for the perturbed densities from eqns (3.2.23), 

(3.3.6) and (3.3.8), we obtain 

+ n {1 oe 

EV l2 

w-k (v -~)- P~e 
x z\( __ Y_O __ ~--=e=---__ ) V~dV~}J = 0 

¥'2k c z e 
which can be written as 

where 

k2 n . . T 
K = - ~ ( OH) ( e \ Z I ( w \ 
H - k2 noe \"2TH1 \12kC/' 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 
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Vl2 

(
El. ) w-k V - -2-·-·· .,. pQ 

x z( Y 0 . Qe · e\ VldVI]. , 
'2k

· . . ) J. J. . 
vLC 

Z e 
and kD is the inverse of the electron Oebye length 

T ~ 
A -( e ) • 
D - \41Tn e2 

oe 

(3.4.7) 

For a unifonn magnetic field, E = O. Then the Z function in eqn 

(3.4.7) is independent of Vl and may be taken outside the integral 

sign, yielding 

(
W-t.V) +00 (w-k V -PQ ) 

+ 0 L: Z yo e 
~k c3 p=-oo \ I2k c 

z e z e 

roo (k VI\ (VI2\ 1 
x J J2 l. l. exp - ~ VldV I 

o p Qe J \ 2c2J l. l.J 
e 

where we have used the relation (Watson, 1944) 

J
r exp{- ax 2

) J 2 {sx) xdx = -21 exp (- ~) I (-2s,,:) • 
o p a 2a p a (3.4.9) 

Ip is the modified Bessel function .of order p. 
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It thus follows that the dispersion relation for electrostatic waves 

in a uniform plasma with magnetized electrons and two species of 

unmagnetized ions can be written as 

n TnT 
(-.Qh) (~) l'(zl) - (-.£t!) (2T

H
) l' (zH) 

noe Lll noe 

.,.,. +. +00 
( w-k.V \ ' 

+ 0 L: l(z ) r = 0 
\/2k c } p=-oo pe p 

z e 

(3.4.10a) 

where 

v 
w 

zH = 
I2kcH 
w-k V -pr1 

Y 0 e 
(3.4.10b) 

I2k 'c 
z e 

and r = p e-b Ip(b), 

If one is interested in low frequency modes with w < r1e , then 

lp = - ,l_p' and only the p = 0 term contributes in eqn (3.4.8). Then 

kO 
= - [1 + Z l(z ) • f ] k2 oe oe 0 

(3.4.11) 

letting f = nol/noe ' ej = Te/Tj (j = l, H), the full dispersion 

relation, eqn {3.4.10a), then finally becomes 

e e 
+ zoe l(zoe) • fo - f:f Z'(zl) - (1 - f) ~ Z'(ZH) = 0 • 

(3.4.12) 
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3.5 THE APPROXIMATE DISPERSION RELATION FOR MARGINAL STABILITY OF 

ION ACOUSTIC WAVES 

We consider the marginal stability of low frequency ion acoustic 

waves in a two-ion magnetized plasma. For such modes the dispersion 

relation given by eqn (3.4.12) is applicable. It is assumed that the 

ion and electron temperatures are such that Te » Tj (j = L, H). 

Then ion Landau damping is small and the arguments zoe' zL' zH in 

eqn (3.4.12) satisfy 

I z·1 = I~-I »1 (j = L, H) 
J I2kc. 

J 
~.,r. 

w-I<·V 
and IZoe l = I 01 «1 . 

/2k c Z e 

Physically, IZoel« 1 means that the doppler-shifted wave phase speed 

along Bo is much smaller than the electron thermal speed, while for 

IZjl» 1 (j = L, H) the wave phase speed V~ = Iw/kl is much larger 

than the thermal speeds of the two ion species. 

Asymptotic and power series expansions of the plasma dispersion func

tion may then be used to simplify the dispersion relation, eqn 

(3.4.12). These are given by (Fried and Conte, 1961): 

(1) Jzl»1 

Z(Z) = i/;6 exp(- Z2) - 1 [1 + __ 1 __ + __ 3 __ + ••• J 
. Z 2Z2 4Z4 (3.5.1) 

where 0 if Im (z) > 0 

6 = if Im (z) = 0 

2 if Im (z) < 0 
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(2) \z\«1 

[ 
2Z2 4zIt ] -Z(z) = i/rr exp(-z2) - 2z 1 - ~ +,;- - ... (3.5.2) 

For marginal stability (y = 0), 0 = 1 in eqn (3.5.1) and the light ion 

term in eqn (3.4.12), for eL = eH = e, becomes 

(3.5.3) 

Similarly the heavy ion term in eqn (3.4.12) becomes 

(3.5.4) 

The electron term in eqn (3.4.12), to lowest order, reduces with the 

aid of eqn (3.5.2) to 

since 
2z oe 
iv'1T 

= 

(3.5.5) 

«1 for I z \ «1 • 
(n/4)lf2 oe 
jZoe I 

Inserting eqns (3.5.3), (3.5.4) and (3.5.5) into eqn (3.4.12), the 

approximate dispersion relation for marginal stability (of ion 

acoustic waves as we shall shortly see) is 



- 27 -

where we have used eqns (3.4.10b). 

At change over from stable to unstable behaviour the imaginary part 

of the wave frequency w is zero. Setting W = wR (wR being the real 

part of the frequency), we equate the real part of eqn (3:5.6) to 

zero -: 

which can easily be manipulated to yield 

W2 - k2{fc2 + (1 - f) c2 } (1 + k2\2)-1 R - SL SH D (3.5.7) 

where cSL(H) = Ir/ML(H)' is the light (heavy) ion sound speed. 

Equation (3.5.7) gives the real frequency for ion acoustic waves in 

a two-ion plasma. In the limits f = 0 (only heavy ions present) and 

f = 1 (only light ions present) it reduces to the well-known results 

for single-ion plasmas (Chen, 1974). 

In the long wavelength approximation, \ » AD' k2\o «1. Then from 

eqn (3.5.7), the wave phase speed is given by 

(3.5.8a) 

and when normalised with respect to c
SH 

we have 

(3.5.8b) 

where M = MH/ML, the heavy to light ion mass ratio. 

Setting W = wR and equating the imaginary part of eqn (3.5.6) to zero, 

we obtain 
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2 

+ (, - f) ern -~ , exp - , - 0 ( W \ J wR \ '} , 
\ /2kc

H
J , 1 /2kcj - , 

from which we obtain 

kz (c ) WR WR 2 

+ (, - f) e T c e 'r- exp{- ( ) '}, 
\ H. 0 , \l2kC

H 

Since in our model V is the E x B drift with V = V y, it follows 
000 

that t.t = k V. Solving for the ~ritical electron drift speed o y 0 

V~ for marginal stability, one gets 

A 

k ' V2 e , 
+ (, - f) /e3~: . r'o) exp (- ~ )J (3.5.9) 

where V~ has been normalised with respect to the electron thermal 

speed; m = MH/me is the heavy ion to electron mass ratio and 
A 

Vcp is t~enormalised wave phase speed given by eqn (3.5.8b). 
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3.6 MARGINAL STABILITY STUDIES USING BOTH THE FULL AND APPROXIMATE 

DISPERSION RELATIONS 

In this section solutions from the full dispersion relation, eqn(3.4.12), 

(without any expansions for the Z-functions) are compared with the 

values of VC calculated from the approximate eqns (3.5.8) and (3.5.9). 
o 

The standard values of the parameters used for the results presented 

here are: 

m = MH/me = 73326; 

k = 11 cm-I; kz /k = 0.0316; 

b = klc~/~~ = 0.5 ~ fo(b) = 0.64504. 

Thus the heavy ion species is chosen to be argon. Except for the 

results in section 3.6.5, wave propagation is restricted to almost 

perpendicular (to Bo) propagation, as is experimentally observed 

(Barrett et ~ .• 1972; Hayzen -andBarrett. 1977). 

3.6.1 Variation of V~ with Light Ion Fraction (f) 

Figure 3.2 represents the relationship between f (the light ion frac

tion) and the critical electron drift velocity VC (normalised with 
o 

respect to the electron thermal speed, ce). Curve a(----) has been 

obtained from the full dispersion relation~eqn (3.4.12), whereas curve b 

(--) is from the approximate eqns (3.5.8) and (3.5.9). In both cases 

we have set the electron to (common) ion temperature ratio e = 25 and 

the heavy to ltght ion mass ratio M = 10 (corresponding to the light 

ion being helium). 



Fig '3.2 
4. I 

3 

Vg/ce 
2 

X10- 2 

1 

o' I I , 

o 0.2 0.4 f 0.6 
Marginal stability curves for M = 10, e = 25. Curve (a) is from the full 
while curve (b) is from the approximate dispersion relation, eqn (3.5.9). 

0.8 1 
dispersion relation, eqn (3.4.12) 

w 
Cl 
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The shapes of the curves are similar to those found by Dell (1984) 

for an unmagnetized plasma. Furthermore, the values of f (0.055 for 

the full dispersion curve and 0.12 for the approximate curve) at 

which v~ attains a maximum value are the same as those found by Dell. 

This behaviour is consistent with the "contaminant damping" effect of 

a small fraction of light ions as theoretically discussed by Fried 

et~. (1971), Lambert et~. (1976, 1977), Gledhill (1982) and Dell 

(1984), and experimentally observed by Alexeff et~. (1967), Hirose 

et~. (1970), Tran and Coquerand (1975a, 1975b) and Nakamura et ~. 

(1975, 1976a, 1976b). In Figure 3.3 we present a plot of damping 

rate versus real frequency from the work of Fried et al. (1971) for 

an unmagnetized, stable two-ion plasma. 

-I 

-2 

ImS 
-3 

-4 

2 

ReS 

6 

f: .OI, .02,.o3,.05,J,.2, ~, .6, l. 

12 

FIG. 3.3. (from Fried et al., 1971). Crosses indicate use of 
approximate expression for dispersion relation. 

It is seen that the damping is largest for a light ion fraction of ~ 

0.1 (approximate dispersion relation) and 0.03 (full dispersion rela

tion). Therefore to overcome the damping prior to producing an in

stability, it follows that the available free energy (and thus the 

critical drift V~) must reach the maximulil threshold value for values 
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of f near the above values. A possible explanation for this behaviour 

is given below. 

For large e and small f, the phase velocity, V~, given by eqn 
1 

(3.5.8a), is approximately equal to (Te/Mf)2, where the effective 

mass Mf is given by 

(3.6.1) 

As helium is added, the phase velocity increases slightly because of 

the initial decrease in effective mass. Damping at first increases 

sharply as more light ions become available to resonate with the wave. 

(Figure 3.4a shows the position of the phase velocity relative to the 

velocities of the plasma particles in this case). 

I 

f(V) f(V) 

fH(V) fH(V) ( 

v 

~~~ 
v fJj 

1 fe(V) I fL;; ~ I . fe(V) 
1 1 

\. V "- \I, "7 \. ~~ \I, 
o v</> Vo Veloclty o Vcp Vo Velocity 

(a) (b) 

FIG. 3.4 

However, as the percentage of light ions increases,the effective ion 

~mass decreases sharply and the phase velocity increases such that 

very few light ions are available for resonance with the wave (Figure 

3.4b). The damping rate decreases and the phase velocity approaches 

the pure helium value. 
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The values of f for (V~)max are in reasonable agreement with the 

condition f ~ M-I as found by Lambert et~. (1976). 

When f = 0 (a pure argon (heavy ion) plasma), Figure 3.2 shows V~/ce = 

0.0037. ThenV~ = 0.0037 ce = 0.0037 lTe/MH·IMH/me = 1.002 cSH ' i.e., 
c the critical drift satisfies Vo ~ cSH ' which is in agreement with the 

condition for instability in a plasma with a single ion species 

(Bharuthram, 1974). Similarly for f = 1, only helium is present, and 

v~/ce = 0.012 ~ V~ ~ CSL . We also note that v~/ce « 1, which is in 

agreement with the criterion, Cs < Vo < ce ' of Gary and Biskamp (1971) 

for the excitation of unstable modes. 

For f ~ 2% and f ~ 50% the full dispersion curve and the approxi

mate dispersion curve in Figure 3.2 agree quite closely. 

For intermediate values of f, the approximate dispersion eqns 

(3.5.8) and(3.5.9) give a larger damping (by as much as a factor of 

1.6) than the full dispersion relation,. eqn (3.4.12). This is probably 

due to the assumption Voice « 1 (used in deriving the approximate 

dispersion equations) being only valid for small Vo. 

We now compare Figure 3.2 with the results obtained by Dell (1984), 

represented in Figure 3.5. We note that the maximum critical drift 

speed required for instability in a field-free plasma (Figure 3.5) 

is approximately 10 times greater than that in a magnetized plasma 

(Figure 3.2). This difference in peak drift velocity can be 

explained (Hayzen, 1976; Bharuthram, 1979) with the aid of the 

following Figu~es 3.6a and b. 
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FIG. 3.5 (Fig. 5.3a from Dell, 1984). Marginal stability curves 
for an unmagnetized two-ion plasma. M = 10 and e = 25 . 

. The curve represented by broken lines was obtained from 
the approximate expression for the dispersion relation. 
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In the absence of a magnetic field, the electrons, because of their 

small mass, move rapidly to neutralize any potential perturbations pro

duced by the ions. However~ for !to, the electrons, being magnetized~ 

are tied to the field lines and are only free to accelerate along! . 
- - 0 

In Figure 3.6a below, an electron at point P will travel a distance 

PQ in the field free case to neutralize the perturbation in the 

potential. In a magnetized plasma, the electron, being forced to 

accelerate along !o travels the ~ longer distance RQ. This longer 

distance travelled allows the perturbations to grow to a larger 

amplitude. It can be seen in Figure 3.6a that RQ/PQ = k/kz• On the 

other hand, Figure 3.6b on the next page can be used to explain the 

increase in growth rate in terms of the velocity distribution functions. 

\ 

FIG. 3.6a 

\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 

P \ ~\~---r~\--~----------~-----
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 
\ \ 

\ 
\a 
\ 
\ 
\ 
\ 
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R 

\ 
\ 
\ 

\ 

~1 

~1 < 0 

> 0 

Since the e)ectron thermal motion is restricted along !o in the magne

tized plasma, its projection along the wave vector k gives an effec

tive distribution with the thermal speed diminished by kz/k. 

Consequently,even for small drift velocities 
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f projected 
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- .. ~. -.- . . 

o 
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FIG. 3.6b. Effect of magnetic field on the velocity distribution 
functions of the plasma particles. 
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v > {f C2 + (1 - f) C2 }1/2 
o ' SL ·SH 

the phase velocity 

V {f 2 (1 f) c2 }1/2/(1 + k2,,2)112 
~ = . cSL + - SH D 

can coincide with the location of ·maximum slope of the effective 

electron distribution function and thereby the wave experiences 

enhanced growth (inverse Landau damping). Since the ions are 

unmagnetized, their distribution function remains unaffected and hence 

the ion Landau damping remains unaltered (from the field free case). 

3.6.2 Variation of the Wave Phase Speed with Light Ion 

Fraction (f) 

Figure 3.7 illustrates the relationshiptletween the normalised phase 

velocity, V~/cSH' and the fraction of light ions, f, as obtained from 

eqn (3.5.8b). This result is in good agreement with that experiment

ally found by Nakamura et!l. (1975), as shown in Figure 3.8 on page 39. 

The graphs show the gradual transition from the heavy i on mode to the 

light ion mode. Nakamuraet!l. in subsequent papers (1976a and 

1976b) suggested that two waves could be observed simultaneously in a 

plasma if e < 2M. This was confirmed by Gledhill and Hellberg (1987). 

For our parameters8j2M = 1.25. 
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FIG. 3.8. (from Nakamura et al., 
1975). Phase veToCTty 
of io~ acoustic waves 
in an argon-helium 
plasma as a function 

. of fraction of light 
ions for e = 25. 
Solid curve is the 
theoretical curve. 

3.6.3 Variation of (V~)with Heavy to Light I6n Mass max .·. 
Ratio(.M) 

The value of f at which the critical drift speed (V~) reaches a maxi-

mum, f peak ' can be obtained by differentiation of eqn (3.5.9). The varia

tion of fpeak as a function of M, the heavy to light ion mass ratio is 

illustrated in Figure 3.9. Here MH was fixed and ML varied. We observe 

that the change in f eak is insignificant over the range 5 < M < 12. 
p. 

However, over the range 2 < M < 5, fpeak rises sharply from 0.12 

to a maximum value of 0.32 for M = 2. This result warranted a 

closer examination of the M = 2 case, and Figure 3.10 shows the VC vS o 
f curve for M = 2. Comparison of Figure 3.10 with Figure 3.2 shows 

that the maximum value of the critical drift speed, (Vc) decreases 
o max' 
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by an order of magnitude for M = 2. This correlates with the fact 

that decreasing M (light ion mass increasing) results in a narrowing 

of the light ion velocity distribution. Thus fewer ions are available 

to exchange energy with the wave and the light ion damping becomes 

weaker. Consequently a smaller electron drift speed is required to 

drive the instability. In Figure 3.11 we compare the relative posi

tions of the various particle and wave velocities for the M = 2 and 

M = 10 cases. (These velocities, normalised with respect to the 

electron thermal speed ce ' have been calculated from eqns (3.5.8) and 

(3.5.9)). 

M = 2 c 
cH c cS~ V~ V 0 cSL 

I 
I 
I 
I 
I 
I 
I 

~ ~ 

0 0.001 0.002 0:003 0.004 0,005 xc 

cH cL cSH V ~ 

o 

I 
f 
I 
I 

<11 

cSL 

0.01 

M = 10 

. 
0.02 0.03 0.04 

FIG. 3.11 

We note that (Vc) IV,!. = 1.2 for the M = 2 case is very nearly the 
_ 0 max 'I' . 

VC 
0 

instability criterion (Vo > Vcp) for a single-ion plasma. This is not 

surprising since an ion mass ratio of 2 yields an average total ion 

distribution which is not too different from a Maxwellian distribution 

0.05 

e 
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for a single ion species having a total number of particles 

no = nL + nH and mass Mi = i (ML + MH)· 

From Figures 3.2 and 3.10 it is seen that the approximate analytical 

solution is in much closer agreement with that of the full disper

sion relation for M = 2 than for M = 10. A numerical evaluation of 

plasma parameters shows that this is due to the fact that the approxi-
~ 

mations used in arriving at the results (3.5.8) and (3.5.9) for V~ and 

V /c , respectively, are poorly satisfied for the case M = 10 (e.g. from o e 
Fig. 3.11 we see that the assumption IZjl » 1 for j = L, H is more 

accurately satisfied for M = 2 than M = 10). 

In Figure 3.12 we show a plot of f vs Vc/c for different M values. o e 
All the curves except M = 121 have been obtained by keeping MH fixed 

and varying ML. The approximate expression, eqns (3.5.8) and (3.5.9) 

were used for the computation. It is seen that an increasing M (due 

to ML decreasing) is accompanied by an increase in the threshold drift 

(V~)max' required for instability. This is to be expected since a 

reduction in ML causes a broadening of the light ion velocity distri

bution. Thus there are more light ions in the tail region of the 

distribution with velocities close to the wave phase velocity. Wave

light ion resonance ;s enhanced, resulting in an increase in light· 

ion Landau damping. Therefore larger threshold drift velocities are 

required to drive the instability. 

The curve labelled M = 121 has an ion mass ratio of 12 but has been 

obtained from the M =10 curve in Figure 3.12 by keeping ML fixed and 

changing MH• Increasing MH with ML fixed causes a decrease in the 

wave phase speed as given by eqn (3.5.8a). Thus the wave 'sees' a 

larger negative slope on the light ion velocity distribution result

ing in more resonant light ions and an increase in ion Landau damping 

(as compared to the. M = 10 case). Consequently.(V~) increases. 



O~'------------------~--------------------~------------------~ 
o 0.1 f ~ 0.2 0.3 

Marginal stability curves show the effect of va~.ing, M. the heavy to light ion mass ratio, for 8 = 25. The 
parameter labelling the curves is M. The curve labelled 12! was obtained by keeping ML fixed and varying MH· 

All the curve§ W~f~ ~lbtt~d frd~ th~ a~p~bxiffi~t~ di~~~fsidn felationi eqn (3.5~9). 
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The fact that the two curves M = 12, (~1L varying, MH fixed) and M =12' 

(M fixed, MH varying) do not coincide may be due to the light ions 
L . 

for the case M = 12 being lighter and thus having a broader velocity 

distribution, with a consequent greater light ion Landau damping and 

corresponding larger (V~)max. 

3.6.4 Variation of (Vc) with Magnetic Field Strength o max 

The effect of changing the magnetic field strength, 1801, is shown in 

Figure 3.13. This corresponds to different values of ro(b) in the 

expression for (V~)/ce since b = kic~/Q~ is inversely proportional to 

18012. The plots have been obtained from the approximate relation, 

eqns (3.5.8) and (3.5.9). It is seen from the figure that as 1801 

increases (b decreases, with ro(b) increasing) V~/ce decreases for a 

given f. This can be explained as follows: since the electrons are 

tied to the field lines, a stronger field restricts their ability to 

neutralize any off-parallel potential perturbations. This effectively 

causes a positive increase in the instability growth rate (Bharuthram 

and Hellberg, 1974) and thus a smaller threshold velocity is required 

to drive the instability. The dependence on 1801 is clearly seen for 

any two curves in Figure 3.13, e.g., for the curves labelled b = 0.5 
I , 

and b = 1.0, we have r (1.0)/r (0.5) = 0.72, while (Vc) (0.5)/ o 0 0 max 
(V~) max (1.0) = 0.75. Thus the maximum threshold velocity is almost 

inversely proportional to ro(b). 

3.6.5 Variation of (V~)max with Propagation Angle 

The effect of varying the propagation angle cp(= arc cos (k /k))with 
z 

respect to the magnetic field Bo is shown in Figure 3.14. The full 

dispersion relation, ~ eqn (3.4.12) was used for the plots. It is seen that 
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the threshold drift (Vc) Ic increases with decreasing ~, and is o max e 
consistent with the experimental findings of Hirose et al. (1970) . 

. --
This behaviour can be explained as follows: as ~ decreases, k/kz 

also decreases for fixed k. Since for a magnetized plasma the growth 

rate y is proportional to k/kz' it also decreases. Thus a larger 

threshold drift speed is needpd to excite the instability. Alter

nately, as ~ decreases from 90°, the projection of the particle drift 

velocity (= Vo;) in the propagation direction (as l seen f by the wave) is 

reduced in magnitude. However, if this component has to exceed a 

given value so that the a~sociated free energy will overcome ion 

Landau damping, it follows that the total drift speed must increase 

(as ~ decreases) for wave growth. 

In the next Chapter we move away from marginal stability studies and 

examine the growth rate of the ion acoustic instability. In 

particular, the effect of inhomogeneities will be studied. 
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CHAPTER FOUR 

THE EFFECT OF INHOMOGENEITIES ON THE CROSSFIELD CURRENT~DRIVEN ION 

ACOUSTIC INSTABILITY IN A TWO-ION PLASMA 

In this Chapter we shall study the effect of inhomogeneities in the 

electron density and temperature and the external magnetic field on the 

grov/th rate of the ion acoustic instability in a two-ion plasma. 

4.1 DERIVATION OF THE ELECTRON TER~1 IN THE LINEAR DISPERSION RELATION 

The following derivation of the dispersion relation is based on that 

of Bharuthram (1974). The model considered is essentially the same 

as in Chapter Three, viz., a col l isionless, two-ion plasma embedded 

in external fields a = B 2, t = - Eoi, with the magnetized electrons 
000 

havi ng an E x a drift, 

Vo = (~Eo) Y (4.1.1) 
o· 

relative to the stationary unmagnetized ions. In addition to the in

homogeneity in Bo defined by 

(4.1.2) 

we include non uniformities in electron. density.ne and perpendicular 

(to ao) electron temperature T~e' given by 

ne(x) = n (1 + ax) oe 

T.te(x) = T (1 + ox) oe 

(4.1.3) 

(4.1.4) 
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The associated drift velocities are given by 

sVi 
V = -~ Y = - VBY 
B e 

vB (a) 

(b) (4.1.5) 

oT 
±v oe . V • ( ) VTie : T = - meQe y = - TY c 

• 
where Qe is the electron gyroradius. The Figure 4.1 below indicates 

the directions of the external fields, inhomogeneities and the associ

ated drift velocities. It is seen that Vo is opposite in direction 

to the gradient-driven drift velocities. 

z 

/ 
/ 

/ 

/ 
/ 

/ 

/..4f 

/n(o) = 

Vo 

A 

-E x x 

r---------~~----------~y 

VB 

vT 

x 

FIG. 4.1 
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From the electron equations of motion, eqn (3.2.5), we can construct 

the following constants of motion 

V2 - V2 + (V -V )2 and V (as before) and (to order E) x ::; x -
(V -V ) Y 0 

~ - x y 0 z n e 

Thus the steady state electron distribution function is taken to be 

n { [{ (vl- 2c~) }]} {(VI+v~)} f ( 0 ) (V 2 X V ) ::; 0 e 1 + x a + 0 ex» - ----....:;;;",... 
e .L" z (21TC~)3/2 2c~ - . 2c~ 

(4.1.6) 

Since f is a function of the constants of motion, it i~ a solution to 

the linearized Vlasov equation (Krall and Trivelpiece, 1973). 

We also find that the net electron drift is given by 

V ::; 1 r Vf(o) d3V 
D n . e 

We notice that the average VB drift does not contribute to the net 

drift. This is so because in setting up the constants of motion we 

have ignored the spatial variation in S. It is possible that if 
~m V2 

f(V) was also expressed in terms of the magnetic moment ~::; e .L. 

that VB would appear self consistently in the net drift. 
Il~ I 

In desiring an expression for the perturbed electron distribution 
af(o) 

it can be seen from eqn (3.2.9) that one requires e 
av 

For f~o)== f~o)(Vl' x, Vz), given by eqn (4.1.6), 

! I 



- 52 -

(4.1.8) 

In evaluating eqn (4.1.8) we neglect terms containing the products of 

gradients since the latter are assumed to be weak. We also make use 

of the local approximation (Krall and Trivelpiece, 1973) in expanding 

about x = o. 
The local approximation requires the spatial variations in the per

turbed electric field and distribution function to be nearly harmonic 

i.e. 

r(l) ~ Ek exp {i(1<.x - wt)} 

f (1)'V fk exp {i(1<. x - wt)} 
e 'V 

where Ek and fk are constants. Maxwell·s equations can then be used 

to obtain a dispersion relation 0 given by 

0(1<, w, x) = o. 
Since the varia!:>'les vary 1 inearly with x (cf eqns (4.1.2), (4.1.3), 

(4.1.4)),the gradients are the same at all points. The dispersion 

relation O(R, w, x) can then be evaluated at any x. For convenience 

we select x = O. The physical justification for the local approxima

tion, as given by Bharuthram (1974) is as follows: 
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If the wavelength, A, of the instability is very much less than the 

scale lengths of the gradients, e.g. A « (~~), then the drift of 

the plasma can be regarded as fairly constant. Hence if the varia-
t 

tion of the drifts is small over many wavelengths, all other spatial 

dependence of the equilibrium can be ignored. 

The second part of ~he term [------J 2VL on the right hand side of 

eqn (4.1.8) may now be approximated as follows: 

_0_ {n (21TC 2 ) "'3/. 2 exp (_ ~)}' = _0_ f(O) {1 + 
2c2 oe e 2c2 2 2 e e e Ce 

for weak gradients. 

Then eqn (4.1.8) may be written as 

af(o) (V -V ) , 
~ IV [- - yo _0_ f(O)]_ 2V - 1 x "v IV n 2 2 e L Q a e Ce e 

[ 
(Vl-2C~)J (0). (-V+V) () 

a + ° f y + 0 f 0 
2c2 e C2 e 

e e 

(4.1.9) 

with which the perturbed electron velocity distribution f~l) (cf eqn 

(3.2.16)) becomes 
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{w - I< • 

2{V I -V) T ( . 

L
ra + __ . 0 __ (VIz - 2C

e
Z)} + y 0 (oe) ( __ 0 __ ) k V + k (VI - V

o
]).} 

2c z Qe me .. 2cz x x Y y 
e e 

x looeXP{i [I<. Cri - r) - wtl]} dtl] 

for harmonic perturbations of the form given by eqns (3.2.11) and 

(3.2.12). 

Then upon integrating with respect to time and over velocity space, 

we obtain the perturbed electron density 

[k V + k (V -VS) - w + PQe] z Z y 0 
x 

2T zTI 

+ ~ __ 0 __ k Vi f exp{i{p - q) ~} cos~ sin~ d~ 
meQe 2c Z x 0 

e 

(4.1.10) 

where Vx = Vi cos~, Vy - Vo = Vi sin~ and the primed notation has 

been dropped {from the velocities)for convenience., 
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If we perform the angular integrations, eqn (3.2.21), and introduce 

th~ plasma dispersion function, eqn (3.2.22), then eqn (4.1.10) 

reduces to 

(
k 0) } {W- p~ - k (V -V)} (V2) (k V ) ] 

+ ~ Vi Z e yoB exp -~. J2 ~ ~. V~dV~ (4.1.11) 
~e 12k c 2c 2 p e 

z e . e ' 

As in Chapter Three, for the ion acoustic wave, which is a low 

frequency mode, we retain only the p = 0 term in the summation above. 

Therefore the electron contribution to the full dispersion relation, 

eqn (3.4.4), with inhomogeneities in external magnetic field, 

electron density and electron temperature is given by 

kO [ I <Xl { OV2} K = - 1 + w - k V + k V - k VT + k -.! 
e k2 /2k CS 0 Y 0 Y n Y y ~e 

z e 

{
w - ky(VO-£VB)} (Vi) 2 (k~V~) 1 

x Z . exp - 2ft J 0 -~- V ~ dV ~J 
I2k C . e e 

z e 

(4.1.12) 

where kO is the inverse electron Oebye length defined previously, and we 

note that VB = £Vl/2~e is a function of V~. 
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The integral in eqn (4.1.12) can be written as 

If we define 

w = w - kyVo ' 

w* = ~ + ky(Vn - VT) 

k 0 
n =L 

ne 

then the integral becomes 

J 
ca . (- E,V

2 
) 

I = (w* + nVi) Z w + ~ 
o I2k c i2k c z e z e 

For weak gradients, 

and we expand 

as 

Zf ~ + E,Vi ) = Z( ~ ) + ZI( ~ ) E,Vi 
\v'2kzCe 12k c I2k c ·l2k c i2k c z e z e z e z e 

(4.1.13) 
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which upon substitution into eqn (4.1.13) yields 

I = f""{w* + nVf) {Z( ~ ) + Z I (~ \ sVi }. 
o \l2k c . /2k c ,; /2k c z e z e z e 

= f"" w* Z( ~ ) exp(- Vi ) J~(k~V~) V~dV~ 
o 'l2k c 2c 2 e z e e 

I"" (~) (svi) (vi ) k~V~ 
+ w* Z\ W exp - - J~(---n) V~dVl. 

o I2k c I2k c 2c 2 e z e z e e 

J"" nsV1 ZI( ~ .\ exnl- vi) J2(k ~V 1:\ V ~dV ~ 
+ 0 I2k c · I2k c ) 1"\ 2c 2 ~ Qe ) z e z e e . 

The last term in eqn (4.1.14) contains the factor 

k2 0E 
ns = -y-

2Q 2 

e 

(4.1.14) 

which is a product of gradients and hence can be neglected. The first 

term in eqn (4.1. 14) can be written as 
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(- \ foo (vi \ (k.lYl) 
w* Z" w ) ' exp\- -, J~-fJ-' Vl.dV.l 

\/2k c 0 2c 2
, e ' 

z e e 

. -
- w* 7( w ) c~ r 0 (b) 
- \/2k c 

z e 

(4.1.15) 

where we have used the results of eqn (3.4.9) with p = o. 

The second and third tenns in eqn (4.1.14) may be added together to 

yield 

[ w*~ (~) (~)J = ~ Z· + nZ x 2c 4 S 
I2k c I2k c \l2k c e 0 

z e z e z e 
(4.1.16) 

where we have used the relation (Watson, 1944) 

with I1 being the modified Bessel function of order 1, and we have 
k2c 2 

defined So = (1 - b) ro + br1(b) with b = ~ 
fJ2 
e 
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Substituting eqns (4.1.15) and (4.1.16) into eqn (4.1.14), the integral 

I becomes 

I = w*c 2 r (b) Z( ~ ) + {w*~ ZI( ~ ) 
e 0 /2k c .. 12k c I2k c 

z e z e z e 

+ Z( ~ )} x 2c~So 
n /2k c 

z e 

(4.1.17) 

Using this result in eqn (4.1.12), the electron contribution to the 

dispersion relation becomes 

k~ r 
K = - L1 
e k2 

+ 1 {w* CZ r (b) Z( ~ ) + r w*~ ZI( ~ ) 
i2k c 3 . e 0 I2k c L I2k c \ IZk c 

z e z e z e z e 

= kkD2 Lr1 + {( w* ) r + n2c~ s} Z( ~ ) 
. I2k c 0 12k c 0 I2k c z e z e z e 

k0
2 [1 + .{(w - k V + k V ) r - k VT (r - 25 )} (W - ~V ) =_ yo yn 0 y 0 0 Z yo 

k2 I2kzce I2kzCe 

+ .{W - kyVO + ky (Vn - Vr )} k ij 5 ZI_{W - kyVo}lJ. (4.1.18) 
2k 2 c2 y B 0 I2k c 

z e z e 
_ EVi EC 2 

where VB is the ~verage drift speed given by VB = ~ = Qe ,and we 
e e 

have resubstituted for w, w*, n and ~ as defined in the discussion 

before eqn (4.1.13). We notice that in the absence of inhomogeneities 

(i.e., VB = Vn = Vr = 0), eqn (4.1.18) reduces to eqn (3.4.11), as 

expected. 
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4.2 THE GENERAL DISPERSION RELATION 

The contributions of the two unmagnetized ion species to the disper-

sion relation are the same as in Chapter 3, and are given by eqns 

(3.4.5) and (3.4.6). Therefore the dispersion relation for a . 

collisionless two-ion plasma having gradients in external magnetic 

field, electron density and perpendicular electron temperature is 

{
w - k V + k (V - VT)} (W - k. V ") + y 0 y n .. k ij S Z. Y 0 

2k 2 c2 Y B o · I2k c . 
z e z e 

(4.2.1) 

where, as before, for \ = TH (equal ion temperatures), e = Te / \ 

= Te/TH' and f = noL/noe is the fraction of light ions, and 

cL(H) =/\(H)/MUH ) is' the light{'heavy)ion thermal speed. 

In the next section we shall use power series and asymptotic expan

sions of the Z-function to derive approximate expressions for the 

real frequency and the growth rate. The results from the full dis

persion relation, eqn (4.2.1), would then be compared with the 

approximate solutions. 

4.3 THE APPROXIMATE DISPERSION RELATION 

As in section 3.5, for a plasma having warm electrons and cold ions 

(i.e., Te » Ti ) we assume that 
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w - k v 
=1 YOI«1. 

I2k c 
z e 

Then the power series expansion of the I-function (eqn 3.5.2), and 

the relation I'(A) = - 2[1 + AI(A)] are used to simplify the electron 

contribution to the dispersion relation, eqn (4.1.18), to 

Y 0 Y n T {
(w - k V ) + k (V - V )} 

x 

(4.3.1 ) 

The term k~ (Vn - VT) VBSo/k~c~ in eqn (4.3.1) can be neglected since 

it contains products of gradients. Although the factor kyVB/k
Z 

= kyEVi/2kzQe is small, we retain the term k (w - k V ) VBS Ik 2c2 
Y Y 0 0 z e 

in eqn (4.3~1) to examine the correction introduced by the vB drift . . 
Further, since Iz e l « 1, we set{1 + z ITIh 1 in the last term in o oe ~ 

eqn (4. 3. 1) • 

With the above approximations, eqn (4.3.1) reduces to 

(
Vn - VT\ (2k V) J 

+ k ) i/; r +'\. y T i!IT S 
y . /2k c 0 '/2k c 0 

z e z e 

(4.3.2) 

For the ions, which have been assumed to be cold, we once again take 
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and use the asymptotic expansion of the Z-function (eqn 3.5.1). 

Since we are interested in growth of the instability, we choose 

I (z) > 0 in eqn (3.5.1) to obtain m ' 

(4.3.3) 

for the light ions, and 

(4.3.4) 

for the heavy ions. 

For W = wR + i y and with jyj « wR we can use the approximation 

_1 'V _1 (1 _ 2i y) . 
2 'V 2 wR · 

W wR 
(4.3.5) 

Using the results of eqns (4.3.2), (4.3.3), (4.3.4) and (4.3.5) the 

dispersion relation, eqn (4.2.1), becomes 

(WR - k V \ ( '\ _ (WR - kyVo) (kyVs) + y 0) ly 
\ ilTI r + \ ) 'm:-I2k c 0 \ I2k c 1 'If r 0 k c l(C""" So 

z e z e z e z e 

(i ) (k Vs\ (V - V ) (2k V· ) 
- \kz~e \kYzc

e
) So + ky \ n T i I1r r + y T i liT S = 0 

v'2k c 0 /2k c 0 
z e z e 

which may be separated into real .. and imaginary parts as 
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( Y \ (k/JB \ S 
\"j(CJ \k c) 0 

z e z e 

(4.3.6) 

Now, for \y\ « wR and \ (w - k V )/k c I « 1 (by assumption) we have y 0 z e 

(W
R 

- k V ) + i y 

IkYcl<1 k YO 
1«1. 

z e zCe 

Also for b > 0 (b = kiC~/rl~), the function Iro(b)lisalways less than 

1 (Abramowitz and Stegun, 1965). Hence we can conclude that 

ylIT r o 
/2kc 

z e 

«1 

and omit this term from the real part of the left hand of eqn (4.3.6). 

For all b > 0, Bharuthram (1974) has shown that ISol ~ 1. Further, 

for a weakly inhomogenous plasma, we may assume that 

VB < V «c. o e 

If VB/c < k /k , then by the assumption Iz 1« 1, the term e '" z y oe 

is very small and may be neglected (in comparison with unity) in the 

real part of the left hand side of eqn (4.3.6). Then setting the 

real part to zero, we 'have 

k2 k2 e 2 -1 + - - -{fc + (1 - f) cH
2 } = 0 , 

k2 2 L 
OWR 

from which we obtain for the real frequency 

(4.3.7) 

" 
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where cSL(H) =/T/ML(H) is the light (heavy) ion sound speed and 

p = (1 + k2/k~)-i. 

We note that the above expression for the real frequency, wR' is the 

same as that found in Chapter Three (eqn 3.5.7) in the absence of 

inhomogeneities. This may be so since the gradient in the external 

magnetic field and in the plasma density and temperature are assumed 

to be weak. Their associated drift speeds influence only the net 

drift speed, i.e., the amount of free energy available to drive the 

instability. 

The imaginary part of eqn (4.3.6) set to zero yields, for the growth 

rate, 

jt)[(i{C:) -(~:) + c:)} -~{1 + (M - 1)f}l/',O - 2(i)(~:JoJ 
~ = ---------------------------------------------------------wR k iJ [20-' - (k:)'~ {I + (M - 1) f)l/'~) (c:) Sol 

(4.3.8) 

We make the following observations concerning the approximate growth 

rate given by eqn (4.3.8): 

(i) _ Equation _(4.3.8)_ does not contain the temperature of the ions 

in any of its terms, i.e., ion Landau damping is neglected in 

this analysis. This aspect will be dealt with in the next 
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section when we consider numerical solutions of the full dis-

persion relation. 

(ii) In the absence of inhomogeneities (QB = Vn = VT = 0), eqn 

(4.3.8) gives the growth rate "for ahomoqenous tvlD-ion plasma, 

1. = E(~) ,. [~ (Vo) _..£... {1 + (M - 1) f}1/2] r p2 (4.3.9) 
wR "'8 ' K

Z 
T ,ce I- 0 

, ,ym 

For a single-ion plasma, this reduces to eqn (4.1.22) of 

Bharuthram (1974). 

(iii) For typical experimental parameters, Bharuthram and Hellberg 

(1974) have shown that the instability criterion (y > 0) for 

an inhomogenous single-ion plasma is given by 

. V 
o 

whe re n ~ 2 1< • V T [~: - 1 1 > 0 • 

4.4 NUMERICAL ANALYSIS OF THE FULL 'AND APPROXIMATE DISPERSION 

RELATIONS 

(4.3.10) 

In this section we make a graphical study of the normalised growth 

rate (y/wR) as a function of various plasma parameters. Solutions of 

the full dispersion relation, eqn (4.2.1), are compared with the 

approximate growth rate given by eqn (4.3.8). 

The fixed parameters are the same as those used in Section 3~6. In 

addition we choose the following standard values: 
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fraction of light ions, f = 0.5; 

heavy to light ion mass ratio, M = 10 {which 

corresponds to a helium-argon plasma). 

In all the analyses, the temperature of both ions are assumed to be 

4.4.1 Effect of the Normalised E x B Drift (Voice) 

Figure 4.2 illustrates the relationship between the normalised growth 

) ~ ~ rate (y/WR and the angle ~ between the Kx and K~ components of the 

wave vector k. All inhomogeneities have been excluded (i.e., VB = 

Vn = VT = 0). The external magnetic field is kept constant (b fixed) 

and an increasing Vo (= cEo/Bo) can be achieved by increasing the 

electric field Eo' 

The continuous curves correspond to solutions of the full dispersion 

relation, eqn (4.2.1), and the curves represented by 

solutions of the approximate expression, eqn (4.3.8). 

--1.1---........ to 

We observe, from Figure 4.2, that the maximum growth rate increases 

with increasing normalised electron drift speed (V Ic ) for a fixed o e 
angle~. This may be explained by the fact that an increase in drift 

speed increases the free energy available to drive the instability. 

Consequently the growth rate increases. 
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We also note from the graphs that the maximum growth rate for Voice = 

0.03 and a fixed ~ is smaller for the full dispersion relation than for 

the approximate solution by a factor of approximately 0.43. The growth 

rate is smaller for the full dispersion relation probably because of 

the light ion Landau damping, as discussed in Section 3.6.1. Since 

the approximate solution, eqn (4.3.8), does not contain the ion tempera-

ture, ion Landau damping is not accounted for. For a vahle of TefT. = 
1 

25, ion Landau damping could be of significance in solving the full 

dispersion relation. A closer correlation between the approximate 

and full dispersion relations is expected for much larger values of 

T IT .• This is confirmed in Section 4.4.2. e ·1 

Another feature of the graphs in Figure 4.2 is that for a given 

(V/ce) the maximum growth rate occurs at <P = 90°, at which value the 

wave propagates almost parallel to the drift velocity Vo = voi (kz 
being negligibly small by choice), and is thus able to draw maximum 

energy from the drifting electrons. 

Analysis of the full dispersion relation indicates that there is a 

minimum el ectron dri ft velocity requi red for i nstabil ity. For the 

temperature ratio T/Ti = 25 and f = 0.1, this value turns out to be 

Voice = 0.02 (corresponding to Vo ~ . 1.7 cSL ). For drift velocities 

below Voice = 0.02 inverse electron Landau damping is probably weaker 

than the light ion Landau damping (the "contaminant" damping of 

Section 3.6.1). This minimum cut-off drift velocity of 0.02 compares 

well with the results obtained in Section 3.6.1. 

Figure 4.2 indicates that for a given drift speed, there is a cut-off 

value in the angle ~ below which there is no growth. Increasing the 

drift speed increases the range of propagation angles since a greater 
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amount of free energy is available to drive the instability. We 

observe that the decrease in cut-off angle with increase in drift 

speed is much smaller for the approximate dispersion , relation than 

for the full dispersion relation. This may again be due to the 

absence of ion Landau damping for the former case. 

4.4.2 Effect of Increasing e = Te/Ti 

Figure 4.3 shows the effect of increasing the electron-ion temperature 

ratio. As before, both ions are assumed to have equal temperatures. 

The value of e = Te/Ti was increased by keeping the electron tempera

ture fixed while decreasing the temperature of the ions. 

We observe that the growth rate increases with increasing e.When e 

increases from 25 to 50, the maximum growth rate increases by a 

factor of about 5. Increasing the temperature ratio beyond 100 

results in smaller increases in the maximum growth rate, with little 

or no change for e around 1000. The increase in growth rate could 

be attributed to a decrease in ion temperature (as e increases). For 

Sr:1a 11 Ti ,there are very few 1 i ght ions in the ta i 1 regi on of the 

light ion velocity distribution fOnction to resdnate with the wave 

and produce damping. This could also explain the observed decrease 

in cut off angle ~ with an increase in e. 

An interesting feature of Figure 4.3 is the very good correlation 

between the approximate dispersion relation (for which we assume e » 

1) and the full dispersion relation for e = 1000. In this case the 

assumption Te » Ti for the approximate dispersion relation is much 

more accurate than for e = 25, for which value the approximate and full 

dispersion relation results were significantly different (cf Figure 4.2). 
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4.4.3 Effect of Varying the Light Ion Fraction, f 

To confirm the "contaminant" damping discussed in Section 3.6.1, a 

plot of normalised growth rate against light ion fraction f was 

made. This is illustrated in Figure 4.~. Here k = 0 and only the x 
E x B electron drift was considered, all inhomogeneity-associated 

drifts being set to zero in eqn (4.2.1). 

The minimum in y/wR at f = 0.055 is in good agreement with the results of 

Figure 3.2 and consistent with the results obtained by Fried et .!l. 

(1971), Nakamura et.!l. (1975) and Lambert et.!l. (1976). They find 

wave damping to be strongest for a f value close to 0.05. 

Figure 4.4 indicates that for the given parameters, maximum growth 

rate occurs at f ~ 0.5. Accordingly, we shall use this value of f 

when considering inhomogeneities in the following sections. 

4.4.4 Effect of Inhomogeneities 

Equation (4.2.1) has been used to draw the graphs of (Y/wR) vs ~ 

-+ -+ -+ -+ 
(kx' k.L) in Figure 4.5. Curve (a) is for the E x B drift alone, 

-+ -+ while curve (b) is for both the E x B drift and density gradient 

drift. Curve (c) includes drifts due to all the inhomogeneities. 

The individual drifts (normalised with respect to the electron 

thermal speed) have been assigned values independent of each other. 

Hence the net drift VD given by eqn (4.1.7), viz. 

VD = (V - V - V ) Y o n T . (4.1.7) 

is not kept constant. 
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It can be seen from Figure 4.5 that the inclusion of one or more 

gradient drifts decreases the growth rate. This is consistent with 

the findings of Bharuthram (1974), and could be explained as follows: 

the gradient drifts lead to a reduction in the net drift velocity VD 

(eqn (4.1.7)), with a consequent decrease in available free energy to 

drive the instability. We note, however, that this is not a universal 

behaviour. _for in principle, it is experimentally possible to have an 

arrangement (e.g., in a Double Plasma device) where the gradient 

directions are such that the associated drifts enhance the net drift 

VD' resulting in an increased growth rate. 

In Figure 4.6, we have plotted the growth rate as a function of e, 

the electron-ion temperature ratio. Equation (4.2.1) was used for 

the analysis, with all the drifts being included. We notice that 

there is a cut-off temperature ratio (of about 14 for the parameters 

used) below which there is no growth. Light ion Landau damping 

probably dominates over inverse electron Landau damping for e < 14 

and the wave is damped. The growth rate increases slowly for tempera

ture ratios of around 100, as was found in the inhomogeneity-free case 

(Figure 4.3). For such large values of TelTi the effect of ion Landau 

damping is small, and the damping continues to decrease as e 

increases. 

4.4.5 Effect of Varying Propagation Angle (k Ik) 
z. 

. The effect of varying the angle between the wave vector t and the 

magnetic field Bo was investigated theoretically, and the results are 

illustrated in Figure 4.7. Here k was set to zero and the values of x 
(kz/k) were varied from 0 to 1 by increasing kz and fixing k. Curve 
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(a) is for V Ic alone, curve (b) includes the density gradient drift, 
o e 

while curve (c) includes all the drifts due to the inhomogeneities. 

The continuous curves were drawn from the full dispersion relation, 

eqn (4.2.1), while the curve represented by ---l ___ - ___ was drawn 

from the approximate expression, eqn (4.3.8). 

It is seen that (Y/wR) + 0 as (kz/k) + 1, which corresponds to mode 

propagation along Bo. As (k /k) + 1, (k Ik) + 0 (with k = 0) and z y x 

it is evident fromeqn (4.3.8) that (Y/wR) + O. The physical explana-

tion for this is that when the wave travels parallel to the magnetic 

field, the wave, now being at right angles to the drift velocities, 

is unable to resonate with the energetic particles and draw energy 

from them. 

We also note that from curves (a) and (d) of Figure 4.7 that the in

stability exists for a much narrower range of values of (kz/k) for 

results obtained from the full dispersion relation. This can again 

be attributed to the effect of the light ion Landau damping, which is 

neglected for the approximate calculations. 

For small values of (kz/k), the growth rate increases sharply for all 

the drift velocities, the full and approximate dispersion expressions 

yielding similar results. Here k + 0 (with k = O) -allows the wave z x 
to resonate with the drifting electrons and draw maximum energy from 

them, resulting in an enhanced growth rate. Similar results were 

found by Bharuthram and Hellberg (1974) for a single-ion plasma and 

by Hiroseeta~. (1970) for a helium-xenon plasma. The lower limit 

for instability can be determined froP.l the approximation Iz 1« 1 
oe 

; . e. , W - k V 
jR Y 0 I « 1 

/2kc z e 
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For Vo »wR/ky (from eqn (4.3.10) \'Jith VT = 0) this implies 

k V /l2k c «1 " from \vhich 
y 0 z e 

k k V z z 0 
k~K»-- . 

y IZc e 

Hence the lower limit for instability for V/ce = 0.02 ,is 

k V 
~ > _, ~ = 0.02 = 0.014 
k IZ ce 12 

Thus our numerical results are not valid for kz/k values below this 

threshold (0.014). This is in close agreement with the lower limit 

k Ik ~ (m IMf )1/2 ~ 0.009 given by Lashmore-Davies and Martin (1973). 
z e ~ 

4.4.6 Effect of Magnetic Field 

The magnetic field strength was varied by varying the values of b in 

the dispersion relation. For our definition of b, viz., 

b 

we have 

kiTe/me 

(eB/mec) 2 

For fixed k.l and Teo ' b- 1 was varied, which corresponded to changing 

the magnetic field strengthlBol. The normalised growth rate as a 

function of b- 1 ;s illustrated in Figure 4.8. The approximate 

expression, eqn (4.3.8), was used with k = 0 and k.l and k kept x z 
fixed. Similar results were obtained by Barrett et~. (1972), 

Bharuthram and Hellberg (1974) and Hayzen and Barrett(1977). 

" 
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We observe from curves (a) and (b) of Figure (4.8) that the inclusion 

of a density gradient reduces the growth rate for all values of b- 1
• 

This is attributed to the decrease in net electron drift speed. The 

addition of a temperature gradient, however, leads to a different 

behaviour. For values of b- 1 « 1, the introduction of a temperature 

gradient results in an increase in growth rate, i.e., it has a de-

stabilising effect. For b- 1 > 1, the addition of the temperature 
'\, 

• 
gradient results in a smaller growth, i.e., it has a stabilising 

effect. The two-fold effect of the temperature gradient has been 

discussed by Priest and Sanderson (1972) and Bharuthram (1979), and 

may be explained as follows: 

y y 

Xo x 

Vy 
(0) ( b) 

FIG. 4.9 (from Priest and Sanderson, 1972). 
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In the electron rest frame, the electrons describe circular orbits 

such that all electrons passing through x = Xo with guiding centres 

at x > x (x < x ) have negative V (positive V ) at xo' Thus when 
·0 0 y y 

the electron temperature is the same on both sides of xo' Figure 

4.9(a), the electron distribution function is symmetric about Vy = O. 

On the other hand, if Te is greater for Vy < 0 than for Vy > 0, then 

there is a non-symme~ric spread in Vy (Figure 4.9(b)). This tempera

ture gradient distortion of the distribution function increases its 

slope at the wave phase velocity and this leads to an enhanced growth 

rate . . In the regime b- 1 ~ 1, the growth rate decreases with increas

ing IBol. Since the temperature gradient is kept constan~, the in

crease in magnetic field causes a corresponding decrease in electron 

Larmor radii for both the orbits V < 0 and Vy > O. These orbits . y 

will then have radii smaller than those shown in Figure 4.9(b), 

although the radius of the orbit for Vy < 0 will still be larger than 

that for Vy > O. Thus the distortion of the electron distribution 

function will not be as great as in the regime b- 1 «1. The corres

ponding small positive contribution to growth rate would be outweighed 

by the decrease in net drift velocity produced by the temperature 

gradient, resulting in a net decrease in the growth rate. 

In the next Chapter we transform into the reference frame in which 

the two ion species have external drifts. The electrons are basic

ally stationary, except for drifts due to inhomogeneities . Using 

this model the ion acoustic instability is re-examined. 
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CHAPTER FI VE 

THE CROSSFIELD ION ACOUSTIC INSTABILITY IN A TWO-ION PLASMA WITH 

DRI FTING IONS 

5.1 THE PLASMA DISPERSION RELATION FOR DRIFTING IONS 

In the previous two chapters we have discussed the ion acoustic insta

bility in a model consisting of drifting electrons and stationary ions. 

We now turn our attention to a plasma in which the two ion species have 

external drift velocities VL and VH and the electrons are considered to 

be stationary. The electrons, however, are not entirely stationary -

they may experience drifts due to gradients in external magnetic field, 

electron temperature and electron density, as shown in Figure 5.1 below. 

-+ 

~~r-_V-lT, --Y T 

x - / 

FIG. 5.1 
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For the case of drifting ions, the dispersion relation, eqn (4.2.1), 

(with inhomogeneities in external magnetic field, perpendicular 

electron temperature and electron density) modifies to 

+ {W + ky (Vn - VT)} k ij S Z' ( W ) 
2k 2 c2 Y B 0 I2k c 

z e z e 

_ e fZ' . y L + (1 - f) z' y H = 0 [ (
w - k V ) (W - k V )] 

. "'2" I2kC
L 

I2kcH . 
(5.1.1) 

where VL(VH) is an externally-induced (e.g. electrostatically) drift of 

the light (heavy) ions, and the other symbols have their usual meaning. 

In the limit Te » Ti (~ 0), asymptotic and power series expansions 

of the Z-functions (eqns (3.5.1) and (3.5.2)) can be employed in the 

usual manner to reduce the real part of eqn (5.1.1) to 

fk 2 c2 (1 - f) k2c2 

1 + k2,,2 = SL SH (5.1.2) + D 
(wR - kyVL)2 (wR - kyVH)2 

where W = wR + iy with IYI « wR' and where all inhomogeneities have 

been neglected. For VL = VH = Vo' eqn (5.1.2) yields 

(5.1.3) 

The plus (minus) sign in eqn (5.1.3) corresponds to the fast (slow) 

beam mode. Equation (5.1.3) has the usual form for the ion acoustic 

frequency in the electron rest frame (Sato et ~., 1975). 
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5.2 NUMERICAL ANALYSIS 

In the numerical analysis that follows, eqn (5.1.1) has been used to 

solve for the normalised growth rate, y/w ,where w is the electron . pe pe 

plasma frequency. As usual, all the particle velocities have been 

normalised with respect to the electron thermal speed. The standard 

parameters, e.g., M = 10, are the same as those used in Chapter Four. 

The two ion species are assumed to have equal temperatures, with 6
L 

= 

eH = e. Since e > 2M, it is expected that only a single mode will 

propagate through the plasma (Nakamura et ~., 1976a). 

Figure 5.2 illustrates the effect of varying the angle between the 

wave vector ~ and the magnetic field Bo on the growth rate. Both ion 

species have been given the same drift speed, viz., VL = VH = Vo' 

Calculations with the use of eqn (5.1.3) reveal that it is the slow 

beam mode that is unstable in both cases, a finding which is consist~ 

ent with the experimental observations of Hayzen and Barrett(1977) 

for a single-ion plasma. 

We note that the growth rate decreases as the angle is decreased 

(kz/k + 1), a result similar to that found in Section 4.4 for drifting 
. 

electrons and stationary ions. The explanation for this decrease in 

growth rate as the wave travels less obliquely to the magnetic field 

direction has been discussed in Section 4.4, and is as follows: when 

the wave travels parallel to the magnetic field, the wave now being 

at right angles to the drift velocities is unable to resonate with 

the energetic particles and draw energy from them. 
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As for the increase in y/ w with V Ic , an increase in the ion drift pe 0 e 
speeds results in a greater amount of free energy available to drive 

the instability - this is seen to enhance both the growth rate and 

the range of propagation angles (cf kz/k cut off). 

Figure 5.3 illustrates the effect of unequal ion drift speeds on the 

growth rate. A comparison has been made between equal drift speeds 

(curve a) and unequal drift speeds (curve b). In the latter case, 

both ion species have been given the same kinetic energy and hence 

the ratio of their speeds is equal to the square root of the ratio of 

their masses, i.e. VL/VH = IMH/ML (e.g. for an applied potential 

di fference <1>, e<l> = ~ ML VE = ~ MHVH). It can be seen that a decrease 

in heavy ion drift speed results in a decrease in the growth rate but 

no appreciable change in the cut-off angle. A study of the distribu-

tion functions of the different species offers a possible explanation 

for this. For both cases (VL = VH and VL ~ VH) it is the slow beam 

mode that grows. Such a wave, with w - k . Vo < 0, is a negative 

energy mode (Lashmore-Davies, 1971) and grows when energy is extracted 

from it, e.g., such a wave will grow when it 'sees' a negative slope 

on a particle velocity distribution function. It is seen from Figure 

. 5.4b that when VH < VL, the wave phase speed decreases significantly 

in comparison to the equal drift case (Figure 5.4a). The wave then 

'sees' a smaller negative slope on the electron velocity distribution 

function, with a consequent decrease in growth rate. Ion Landau damp

ing is negligibly small in both cases. 

For VH < VL, tne normalised phase speed of the unstable mode is found 

to be -V<I>!Ce -=- 0.0033 (at kz/k= 0.05), which 1 ies between the modified 

heavy and light ion sound speeds in the ion rest frame, viz., 
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. SL = _e_ "" 0. 0082 f!c (fm M)lf 2 

cM · 'V e H 

and 

for f = 0.5 and k2A~ «1. Some insight into this behaviour can be 

. obtained by noting that since VL/V H ~~MH/ML' we have for f = 0.5: 

Then, if we define a harmonic average velocity (Krall and Trivelpiece, 

1973) 

an average ion sound frequency 

w2 k2fc 2 k2 (1 - f) 2 
S SL cSH -- = 

V2 
0 

( 1 + k2A2) 
D V2 

L ( 1 + k2A2) 
D V2 

H 

and a dimens;onless frequency 

and express the wave number kyin terms of a dimensionless variable y as 

then eqn (5.1.2) transforms to 

---+ = 
(x '_y)2 (x + y)2 
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It has been shown (Krall and Trivelpiece, 1973) that for a two-stream 

instability with w real and k imaginary, this fourth order equation 

has two real and two imaginary roots for k, with one growing and the other 

damped. The frequency at which the growth rate is a maximum is given by 

_ 13 (\ + V H), w 
wma x - '2 V L - V H S 

1 l ' ( V H) ' 0.66 
'10 = 2VH 1 + V

L 
' = -v;- . 

Then 

with 

It is seen that the wave phase speed corresponding to maximum growth 

lies between CSH and cSL ' and is much ~loser ,to cSL . We note that 

the computed phase speed is, on the other hand, much closer to cSH • 

However, this may not be the value for wR corresponding to maximum 

growth. 

Figure 5.5 shows a result similar to that of Figure 5.3. Here ~ is 

the angle between the ~x and kL components of the' wave vector' ~ (kx 
had been set to zero in Figure 5.3). Both curves in Figure 5.5 have 

a cut-off angle close to 0.4 radians (this is similar to the results 

of Section 4.4). 

The effect of light ion concentration on the growth rate is shown in 

Figure 5.6. The growth rate is much smaller for all angles ~ for 
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f :: O. 1 than for f :: 0.5. Thi s is in agreement with the "con tami nant" 

damping discussed in detail in Section 3.6.1. 

When the electron-ion temperature ratio is increased (electron 

temperature kept fixed) there is an increase in both the growth rate 

and the cut-off angle (Figure 5.7), and this may be associated with 

a decrease in ion Landau damping. However, for the parameters chosen, 

there is no substantial increase in growth rate from e :: Te/Ti :: 500 

to e = 1000. This may be due to the ions becoming virtually cold for 

e values equal to and above 500. Ion Landau damping is then absent. 

The effect of inhomogeneities in perpendicular electron temperature, 

electron density and external magnetic field on the growth rate is 

illustrated in Figure 5.8. It is interesting to observe that the 

growth rate is increased by the presence of inhomogeneities, whereas 

in the external electron drift-stationary ions case (Section 4.4.4) 

the growth rate decre~ses. The reason for this is discussed below: 

Since the electron drift speeds due to the inhomogeneities are along 

the negative y-axis (Figure 5.1) while the ions drift in the positive 

y-direction, the resultant relative drift velocity between the ions 

and electrons is increased. This increased velocity provides add

itional free energy to enhance the instability. 

Figure 5.9 shows how the normalised wave speed .~ (:: wR )varies 
12cH i1kcH 

with kz/k for equal ion speeds Vo in the absence of inhomogeneities. 

The wave speed decreases to zero and then assumes negative values. 

The continuity -of the values confirms the propagation of a single 
" mode. The graph of the Doppler-shifted wave speed V~ =(wR - kyVo)j 

kCe corresponds to the slow-beam mode in eqn (5.1.3). 
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The heavy to light ion mass ratio was decreased by increasing the 

light ion mass .and keeping the heavy ion mass fixed. This results in 

an increase in both the growth rate and the cut-off angle (Figure 

5.10). Here the ion drift velocities were taken to be equal and there 

were no inhomogeneities. 

An increase in M (with MH fixed) leads to a decrease in the phase 

velocity, as can be deduced from eqn (5.1.3), and hence a decrease in 

growth rate (as the wave now 'sees' a smaller negative slope on the 

electron velocity distribution function). 
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CHAPTER SIX 

SUMMARY AND CONCLUSION 

Linear kinetic theory has been used to set up the dispersion relation · 

for electrostatic instabilities in a collisionless, magnetized two-

ion plasma with crossfield drifts. The initial model consisted of 

drifting r~axwel1ian electrons and stationary ions. Previous studies 

(Nakamura, 1976a; Gledhill, 1982; Gledhill and Hellberg, 1987) have 

shown that the low frequency ion acoustic wave may propagate in two 

possible ways in a two-ion plasma. For e < 2M, where e.= Te/Ti' 

'M = MH/~IL' two independent modes may co-exist, one being the principal 

mode associated with the heavy ions and the other the principal mode 

associated with the light ions. However, for e > 2M only one mode is 

possible, with a phase speed increasing continuously from the heavy 

ion sound speed to the light ion sound speed as the light ion frac-

tion is increased from 0 to 1. In all our studies we have e > 2M. 

Marginal stability studies have been made to investigate the effect 

of the light ion fraction, f, on the critical E x B electron drift 

speed v~, required to produce wave growth for the ion acoustic insta

bility. It was found that vC
o assumed a maximum value, (Vc) ,for a o max . 

small percentage (f 'V 5%) of light ions. This "contaminant" damping 

behaviour agrees quite well with other similar investigations, e.g. 

Friedet~. (1971),and is associated with Landau damping of the 

principal heavy ion mode produced by the small fraction of light ions. 

The value of (Vc) was found to be considerably smaller than that o max 
for the fi~ld-free plasma as investigated by Dell (1984). This may be 



- 100 -

due to the fact that in a magnetized plasma, the electrons are free 

to move only along the external magnetic field Bo. Thus their general 

freedom of motion iQ neutralizing any potential perturbations is 

restricted, thereby making it easier to excite an instability in a 

direction oblique to ~o. Associated with this is the well known k/kz 

enhancement in instability growth rate (BarrettandHayzen, 1976). 

Approximate analytic solutions have also been used to make comparisons 

with results from the full di~persion relation. The agreement between 

the two solutions is found to be better for smaller values of M. 

The value of f at which the critical electron drift velocity assumes 

a maximum, f peak ' was found to rise sharply from 0.12 to 0.32 over 

the range 2.:< M < 5. This behaviour could be of significance in 

fusion oriented devices where the deuterium-tritium reaction is of 

importance. The ion Landau damping associated with the light ions is 

found to be the primary factor influencing wave growth. 

other parameter studies indicated that (Vc) increased ·as the heavy 
. 0 max 

to light ion mass ratio (M) was increased, while (Vc) decreased o max 
with an increase in propagation angle and magnetic field strength IBol. 

However, no appreciable change in f k (the value of f for which pea 
(V~)max occurred) was observed. 

Investigations of the dependence of the ion acoustic instability 

growth rate on the electron drift speed confirm the existence of a 

minimum drift speed required for instability growth. The results 

also show that- there is a minimum value of e (the electron-ion 

temperature ratio) for which growth occurs. For the parameters used, 

this minimum value of e is approximately equal to 14. Results from 

1880127 
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the full dispersion relation showed that the change in growth rate 

was insignificant for values of e above 100, a result also found by 

Lambert et al. (1976). This may be due to the fact that ion Landau 

damping becomes negligibly small at such large e values. 

Inhomogeneities in external magnetic field, perpendicular electron 

temperature and electron density were found to produce a decrease in 

the growth rate. This is probably due to a decrease in the net 

electron drift produced by the associated gradient drifts in our 

model, and iSCDnsistentwith the findings of Bharuthram (1974) for a 

single ion plasma. 

For e < 100, the growth rates as obtained from the approximate 

analytic sol~tions of the dispersion relation are found to be gene-

rally larger than that for the full dispersion relation. This may be 

due to the total absence of ion Landau damping in the approximate 

solution3. 

The effect of the magnetic field on the growth rate reveals that 

although the inhomogeneities in electron density and external magnetic 

field have a stabilising effect on the plasma for all values of b- 1 

(b = klc~/~~), the addition of a temperature gradient has a destabili

sing effect for b- 1 «1. Other authors (Priest and Sanderson, 1972 

and Bharuthram, 1979) have also reported on this two-fold effect of 

the temperature gradient for a single-ton plasma. 

Studies using a model consisting of drifting ions and stationary 

electrons in a two-ion plasma reveal that it is the slow mode with 

real frequency 
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k V - k{fc2 + (1 - f) c2 }1/2 (1 + k2 \2)-1/2 
wR = Y 0 SL SH D 

that becomes unstable. We note that since wR - k . Vo < 0, this is a 

negative energy mode. The choice of parameters (8 > 2M) resulted in 

the propagation of a single mode whose growth rate increased with an 

increase in the ion beam velocities. Results using both equal and 

unequal ion velocities were obtained. In particular, it was found 

that the growth rate decreased when the heavy ion beam was given a 

velocity smaller than that of the light ion beam. 

The effect of the light ion concentratinnon the growth rate for a 

plasma with drifting ions (the "contaminant" damping) was similar to 

that previously found for drifting electrons. For this model, the 

introduction of inhomogeneities in external magnetic. field, perpendi

cular electron temperature and electron density tended to increase 

the growth rate. This was due to the electron gradient drifts being 

directed such that the relative ion-electron drift speed was increased. 

An increase in heavy to light ion mass ratio, M, (with the heavy ion 

mass fixed) resulted in a decrease in both the phase speed and the 

growth rate. This was associated with a decrease in electron Landau 

damping (which reduces the growth rate of a negative energy mode). 

In discussing possible extensions to the work undertaken in this 

thesis, we note that all the studies have beeri done for 8 > 2M, for 

which value only a single ion acoustic mode propagates in the two-ion 

plasma. Thus a natural extension is to consider the region 8 < 2M 

and investigate the behaviour of the two independent ion acoustic 

modes which may coexist. Further, since we have dealt with a common 
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ion temperature, Ti' one may consider the case of unequal ion tempera

tures which is more realistic for ion-beam heating experiments. 

The nonlinear evolution of plasma instabilities and their saturation 

are topics of much interest. Quasilinear theory could be used to 

study the saturation of the crossfield ion acoustic instability in a 

two-ion plasma. As regards to the nonlinear regime, solitons and 

double layers associated with such instabilities, especially in a 

magnetized plasma, are problems worthy of investigation. 
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