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Abstract

Quantum key distribution (QKD) aims at the creation of a secret key in the
two locations of partners, traditionally Alice and Bob, wishing to communi-
cate in private. A generic QKD protocol utilises a quantum channel and an
authenticated classical channel for exchanges between partners in Phases 1
and 2 of the protocol, respectively. Phase 1 can be described as a prepare-
and-measure (P&M) or equivalently as an entanglement-based (EB) phase.
Bob performs the same measurement in both descriptions. Subsequent to
measurement, Phase 2 is commenced, the aim of which is to distill a secret
key from the measurement outcomes resulting from Phase 1.

A necessary condition for the security of a QKD protocol is that the mea-
surement performed by Bob in Phase 1 must be described by non-commuting
POVM elements. One method of proving the unconditional security of a
QKD protocol is to show that the complete protocol (including Phases 1 and
2) is equivalent to an entanglement distillation protocol. A first step towards
showing such an equivalence for a given P&M QKD protocol is to describe an
EB translation of Phase 1, where the condition on Bob’s measurement is met.

Differential-phase-shift (DPS) QKD is a member of the class of distributed-
phase-reference QKD protocols. Unconditional security proofs for this class
of protocols do not yet exist. Phase 1 of DPSQKD is here described and
formalised as both a P&M and an EB phase, and Bob’s measurement is
shown to be described by non-commuting POVM elements. This description
of an equivalent EB translation of DPSQKD where the condition on Bob’s
measurement is met, is a first step towards a potential unconditional security
proof for the protocol based on entanglement distillation.
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Chapter 1

Introduction

“Two can keep a secret if one is dead.”

- Unknown

1.1 The problem of secure communication

Communication is the transfer of information from one location to another.
Given the requirement of secure communication, (one aspect of) cryptogra-
phy emerged as the study of transforming the information to be transferred
such that it is intelligible only to those in possession of additional knowledge,
referred to as a key.

An example of such a transformation is the encryption of binary informa-
tion (information stored in binary digits, or bits, which can take the value
0 or 1) by modulo 2 addition to a binary key. Shannon showed in 1949 [1]
that if the binary key is truly random (see Sec. 4.3.1), the same length as
the message and used only once, then the encrypted message contains abso-
lutely no information about the actual message. This algorithm, known as
the one-time pad (see Sec. 2.2) [2], is the only provably secure encryption
algorithm known to date.

The problem of secure communication thus becomes the problem of dis-
tributing a provably secret, truly random binary key of specified length, for
each transfer of information between communicating parties, traditionally
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called Alice and Bob. But distributing the key must involve a transfer of
information between Alice and Bob, so has any headway towards a solution
really been made? There are two important differences between the problems
of secure communication and secure key distribution.

Firstly, access by an eavesdropping adversary, traditionally Eve, to key in-
formation cannot be prevented by encryption again; the information must
be protected by other means.

Secondly, the requirement of no possible access to information by Eve can
be relaxed to a requirement of no possible undetected access, since the key
contains no information about the message itself, and if compromised can be
redistributed.

The problem is thus reduced to a search for a courier of key information
that can be trusted to report eavesdropping in all cases.

1.2 The photon as a courier of information

‘Information is physical’ [3] because inevitably information is represented in
physical systems. Light is a natural candidate as a carrier of information
in classical communications, owing to its propagation speed, neutral charge
and bosonic nature, which means bits can be encoded in large average am-
plitudes of light pulses created at one location, then transferred and detected
at another.

However, since 1900 when Planck [4] proposed that radiation is emitted and
absorbed in discrete quanta to account for the electromagnetic spectra of
thermal bodies, it became clear that a classical wave theory of light, although
adequately able to account for the observed properties of light beams, was
insufficient. Although the word photon was later coined by Lewis [5] as ‘not
light’, but a ‘carrier of radiant energy’ between atoms, it was Einstein who
first understood these light quanta to be representative of light itself, thereby
explaining the photoelectric effect [6].

In the years 1927-1932 Fermi and Dirac (amongst others) developed the con-
temporary conception of the photon (see [7], [8] and Sec 5.1), as a fundamen-
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tally quantum object thus subject to the laws of quantum mechanics. Now
the task is the investigation of the implications of representing information
in quantum systems such as photons.

1.3 The counter-intuitive behaviour of ele-

mentary particles

Elementary particles obey the laws of quantum mechanics with some counter-
intuitive results. In the language of quantum mechanics, an elementary parti-
cle is completely described by a quantum state (see Sec. 4.1), usually written
in Dirac notation [9] as |ψ〉. Subsequent to a measurement being performed
on the particle, the particle takes the result of the measurement as a state
regardless of the actual initial state. Thus, in general, quantum measurement
(see Sec. 4.3) can be seen as destructive since information about the original
state is lost.

This means that eavesdropping (a quantum measurement) generally results in
a destruction of information, which is detectable owing to a non-correspond-
ence between an initial state |ψ〉, and resulting state |γ〉.

Returning to the consideration that information is represented in physical
systems, and that the required physical system here is one that can be trusted
to report eavesdropping in all cases, it seems quantum couriers are ideal nom-
inees.

It remains to describe how information, here specifically a random binary
string which will constitute a possible key, may be represented in elementary
particles such as photons.

1.4 Encoding random bits in quantum couri-

ers

In classical information theory, the unit of information is the bit, or the
set {0, 1}. Moving to a quantum representation, an example of a two-level
quantum system is the polarisation of a photon. Such a two-level quantum
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system, termed a qubit, is the unit of information in quantum information
theory (see Sec. 4.2). A qubit is described by two complex numbers as the
set

{α|0〉 + β|1〉 : |α|2 + |β|2 = 1, α, β ∈ C}

where |0〉 and |1〉 correspond to two orthogonal states in a quantum system,
and are the quantum representation of the classical 0 and 1. For example,
|0〉 and |1〉 can correspond to horizontal and vertical photon polarisations,
respectively. For α and β both non-zero, there are a multitude of correspond-
ing qubit states, for which the qubit is said to be in a superposition of the
states |0〉 and |1〉. Examples of such states are |+〉 and |−〉 given by

|+〉 =
1√
2
|0〉 +

1√
2
|1〉, (1.1)

|−〉 =
1√
2
|0〉 − 1√

2
|1〉. (1.2)

The usefulness of encoding information in qubits depends on how effectively
the information can be decoded. But first, a discussion of non-orthogonality
is required.

1.5 Non-orthogonal quantum states

Two qubit states |ψ〉 = α|0〉 + β|1〉 and |γ〉 = α′|0〉 + β′|1〉 are said to be
orthogonal (or have an inner product of zero, see Sec. 4.1 and 4.2) if and
only if

α∗α′ + β∗β′ = 0. (1.3)

It can thus be shown that as well as |0〉 and |1〉, the states |+〉 and |−〉 are
orthogonal, while other pairs of states giving a non-zero outcome to Eq. (1.3)
are said to be non-orthogonal.

There exists a quantum measurement to discern two orthogonal quantum
states. For example, if Alice sends the classical bit 0 or 1 encoded as |0〉
or |1〉, respectively, both Eve and Bob can perform a measurement on that
qubit, and determine the value of the initial classical bit. This measurement
will always have an outcome of |0〉 or |1〉, therefore let this measurement be
called the ‘|0〉, |1〉’ measurement. However, if Alice sometimes encodes 0 or
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1 as |+〉 or |−〉, respectively, and if Eve and Bob perform the same mea-
surement as in the case above, the ‘|0〉, |1〉’ measurement, then as described
previously the qubit will take the result of the measurement as its state. This
will always be |0〉 or |1〉, each with probability 1

2
, in spite of this not having

been the sent state.

This is an illustration of the statement (see Sec. 4.4):

Two unknown non-orthogonal quantum states cannot be distin-
guished reliably.

With the goal of key distribution in mind, this means that if Alice randomly
varies between using the states |+〉(|−〉) and |0〉(|1〉) to encode for 0(1),
neither Eve nor Bob will know whether to perform a ‘|0〉, |1〉’ or a ‘|+〉, |−〉’
measurement. An incorrect choice will result in a destruction of information
sometimes manifested as a decoding error. But what hope does this leave for
the creation of key shared by Alice and Bob that is secret?

1.6 BB84 as an illustration of distributing a

secret key

The potential for the kind of reasoning followed above has existed since the
conception of quantum mechanics. Eventually, in 1984 Bennett and Brassard
[10] proposed the first quantum key distribution (QKD) protocol (where
protocol refers to a set of steps or instructions), commonly called BB84,
which still serves as a useful model of a generic QKD protocol today.

1.6.1 Phase 1 of BB84

Phase 1 of the BB84 protocol can be understood in terms of the following
steps:

1. Alice generates two independent random bit strings, S1A and S2A, of
equal length, say 2(N + l), where the message that she intends to encode
using the generated key is of length n. S2A is the potential key that Alice
aims to share with Bob, while S1A is used to choose between two types of
encoding for the string S2A: encoding 0(1) in the single photon quantum
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state |0〉(|1〉) is one type of encoding; the other uses the single photon state
|+〉(|−〉).

2. Alice consequently sends one of the single photon states {|0〉, |1〉, |+〉, |−〉}
with equal probability, 2(N + l) times, along a quantum channel (which is
just a medium for the transmission of quantum objects and could be an op-
tical fibre or free space) to Bob’s location.

3. Bob also generates a random bit string S1B of length 2(N + l) according
to which he chooses between performing ‘|0〉, |1〉’ or ‘|+〉, |−〉’ measurements
on the incoming photons.

4. Bob decodes the signal which entails associating the measurement out-
comes {|0〉, |+〉} or {|1〉, |−〉} with the classical bit 0 or 1, respectively, for
each photon measured, and recording these outcomes in a final bit string, S2B.

The protocol is complete when S2A = S2B. The assumption is that no one
but Alice has any knowledge of S1A, therefore by following this procedure,
Bob will choose the correct type of measurement with probability 1

2
, and

therefore on average only 3
4

of S2B will agree with S2A, since even when he
measures incorrectly, the probability of recording the correct classical out-
come is 1

2
.

This average agreement will be reduced if a simple eavesdropping strategy
has been implemented by Eve. In the so-called intercept-and-resend attack,
Eve intercepts and measures each of the photons sent by Alice, and then
resends the photon state resulting from each of her measurements to Bob.
This attack introduces error with probability 1

4
on the portion of Bob’s key

corresponding to his measuring correctly, since Eve also performs the correct
measurement with probability 1

2
, and is lucky half of the time in other cases.

Thus, in the case of the intercept-and-resend attack, on average only 5
8

of S2B

will agree with S2A, while Eve can construct a bit string of which 3
4

agrees
with S2A!

The above steps 1-4 constitute Phase 1 of the protocol which is implemented
on the quantum channel. But it seems that BB84, and indeed the generic
QKD protocol, cannot be complete if Alice and Bob are connected only by a
quantum channel. As illustrated for the above attack, this single connection
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leaves Bob with a smaller probability than Eve of sharing an identical bit
string with Alice, since Eve measures the photons first and destroys infor-
mation. However, the above problems are solved through the introduction of
an authenticated (see Sec. 2.3) public classical channel, which is a medium
for the transmission of classical information between partners (a phone line,
or a computer cable link), which need not be secure, but it must have been
verified that Alice and Bob are the users of the channel. Use of the classical
channel constitutes Phase 2 of a generic QKD protocol. Phase 2 of BB84 is
described in the following subsection.

1.6.2 Phase 2 of BB84

5. Alice and Bob perform what is called basis reconciliation. Subsequent to
the performance of all measurements, Alice communicates the bit string S1A

to Bob on the classical channel. Note that S1A contains no information about
S2A. Alice and Bob then discard the bits from S2A and S2B corresponding to
instances when S1A 6= S1B, in other words when Bob performed an incorrect
type of measurement. On average, they are left with N + l bits each, termed
the sifted key.

6. Alice and Bob perform parameter estimation, which entails revealing l
bits of the key (remember that the required length of the final secret key is
n) and comparing their respective values. This step enables Alice and Bob
to calculate (amongst other parameters) the bit error rate, el, given by the
number of errors per bit. They then discard this portion of the key. The bit
error rate for this portion provides an estimate of e, the bit error rate for
the entire transmission, and is an indication of whether an eavesdropper has
caused disturbance in the transmission.

7. If there is evidence of eavesdropping, i.e., if for the l bits compared,
Sl2A 6= Sl2B, Alice and Bob can abort the protocol without having compro-
mised the message, and begin again with step 1.

Realistically, this means Alice and Bob can never communicate in secret,
because at the present time there does not exist a single photon source,
a device encoding information into quantum states, a medium facilitating
transmission, nor a signal detector that can perform without any error all
the time, and Alice and Bob have no way of discerning this kind of error
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from that resulting from eavesdropping.

But an amendment of step 7 to 7’ and further use of the classical channel
to implement techniques from classical information theory solve this problem.

7’. Using el as an estimate of e, and conservatively attributing all error
to eavesdropping, Alice and Bob can calculate IE, an upper bound to the
information potentially gained by Eve.

8. Alice and Bob now perform secret-key distillation (SKD) on their re-
maining N bits, termed the raw keys, which are not yet perfectly correlated
nor perfectly secret. SKD is a classical processing technique comprising two
steps:
i) Error correction
Alice and Bob implement an error correction protocol (see Sec. 3.4.3) on the
classical channel, the result of which is that Alice and Bob share an identical
key of length N .
ii) Privacy amplification
Privacy amplification (see Sec 3.4.4) involves further reduction of the key
length by, roughly speaking, the total number of bits possibly learnt by Eve
through eavesdropping, IE, and during the above error correction procedure.
Thus, Eve’s information on the resulting secure key of length n < N shared
by Alice and Bob is reduced to zero.

So by following steps 1-8 which describe Phases 1 and 2 of the BB84 protocol,
it is possible to generate one secret key in the two locations of Alice and Bob,
which since it is random and of adjustable length, can be used as a one-time
pad for secret communication.

1.7 The meaning of unconditional security

What if Eve is particularly clever and on the occasion when Alice’s imperfect
single photon source sends two photons instead of one, Eve keeps one, stores
it with a device she’s developed with a quantum memory, and measures it
only after step 6, thereby learning one key bit while remaining undetected?
This attack is known as the photon-number splitting attack. Or what if she

8



Figure 1.1: General quantum key distribution protocols utilise a quantum
and an authenticated classical channel for exchanges between partners in
Phases 1 and 2 of the protocol respectively.

develops her own optical fibre capable of error-free transmission, replaces
Alice and Bob’s fibre with this, and ensures that any error she introduces
through eavesdropping remains below the bit error rate associated with Alice
and Bob’s original fibre? Or what if she develops a quantum cloning device
which she uses to make two copies of all the states sent by Alice, performs
one type of measurement on each, sends the original states to Bob, and after
step 6 keeps the relevant results?

Unfortunately for Eve, the final eavesdropping strategy will not work, since
the laws of quantum mechanics imply the no-cloning theorem (see Sec. 4.6)
[11], which states that an unknown quantum state cannot be copied. But
with respect to other strategies:

The point of unconditional security is that it does not impose any restrictions
on the computational resources or on the manipulation techniques available
to a potential eavesdropper. For a protocol to be unconditionally secure
means that: In spite of an existing bit error rate e on the sifted key (as
estimated after basis reconciliation, possibly arising from eavesdropping and
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certainly from realistic devices) which is conservatively attributed to eaves-
dropping only, and in spite of the fact that Eve has the potential to perform
any action and use any device imaginable within the laws of quantum physics,
Alice and Bob can still perform a processing procedure, SKD, that will re-
duce Eve’s information to zero, and result in an identical shared key.

Sometimes e is too high to salvage a shared key even assuming perfect pro-
cessing techniques. Thus, to say a protocol is unconditionally secure, is to
state a maximum value for e such that secret key rate remains positive for a
given processing procedure.

1.8 The security of BB84

Assuming perfect one-way processing techniques (see Sec. 3.4), perfect de-
vices, and considering individual attacks (such as the intercept-and-resend
and photon-number splitting attacks mentioned in the previous section) only,
the secret key rate is given by the difference between the information shared
by Alice and Bob, and the information gained by Eve (see Sec. 3.4).

However, the difficulty in proving the unconditional security of a QKD pro-
tocol like BB84, is in calculating the information potentially gained by Eve.
And Eve is assumed to be able to acquire information not only through in-
dividual attacks, which are limited to identical measurements on individual
photons which are assumed to be implemented before SKD, but through all
possible eavesdropping strategies allowed by the laws of quantum mechanics,
including joint measurements (see Sec. 4.9) on any combination of signals at
any time.

The main ideas behind an unconditional security proof of BB84 were first
presented by Mayers at a workshop in 1996 [12], however, at the time ‘no
one in the audience understood Mayers’ explanation’ [13]. A second uncon-
ditional security proof published in a symposium proceedings by Biham et
al. in 1999 [14] is said to be ‘quite difficult’ [15] and ‘quite complex’ [16].

Luckily the story of the unconditional security of BB84 does not end here-
first a discussion of the quantum phenomenon called entanglement.
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1.9 Entanglement

Entanglement, a term coined by Schrödinger in 1935 [17], is a quantum phe-
nomenon that is another example of the counter-intuitive behaviour of ele-
mentary particles (see Sec. 4.7). The correlations between composite ele-
mentary particles in what are called entangled states are unlike any observed
correlations between classical objects, and are thus termed quantum correla-
tions.

First, recall the single qubit state (1.1)

|+〉 =
1√
2
|0〉 +

1√
2
|1〉, (1.4)

where the qubit is in a superposition of the states |0〉 and |1〉. This means
that with probability 1

2
, a ‘|0〉, |1〉’ measurement will result in the state |0〉,

or, similarly, with probability 1
2
, in the state |1〉.

In the famous ‘EPR’ paper of 1935 by Einstein, Podolsky and Rosen [18],
the properties of a two-qubit system formed from the decay of a radioactive
source were described. While in this kind of decay the state of each emitted
qubit is given by (1.4), the mutual dependence of measurement outcomes to
measurements performed on the pair means that the qubits cannot be con-
sidered independent of each other, and the two-qubit system is thus said to
be in a maximally entangled state.

An example of a maximally entangled state is the state

|Φ+〉 =
1√
2
|0〉A|0〉B +

1√
2
|1〉A|1〉B (1.5)

where the subscript A refers to one qubit of the pair, and B to the other. The
above state has the following properties, where measurements are assumed
to be ‘|0〉, |1〉’ measurements:

1. Measurements performed independently on each qubit have random out-
comes, i.e., the resulting state is |0〉 or |1〉 each with probability 1

2
.

2. Measurement outcomes on each qubit are always perfectly correlated,
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i.e., a measurement on one qubit allows the result of a measurement on the
other qubit to be predicted with certainty.

Ekert [19] had the idea of performing QKD using a source that emits en-
tangled qubit pairs. If Alice and Bob perform the same kind of measurement
on one of each of the pairs, their correlated measurement results can be
used as a key. The security of this protocol, called E91 after the year of
its proposal, discussed only very briefly here, arises from the fact that the
distributed signals contain no key information owing to their state of super-
position until the legitimate users have both performed their measurements.

But what relevance could entanglement have for the unconditional security
of BB84?

1.10 Entanglement and the unconditional se-

curity of BB84

Among others, two important developments led to an unconditional security
proof of BB84 involving entanglement.

Firstly, in 1992 Bennett, Brassard and Mermin [20] proposed the QKD pro-
tocol referred to as BBM92 which is described in the following steps:

1. Alice prepares 2(N + l) entangled two-qubit states of the form of |Φ+〉
(1.5). She generates a random bit string S1A according to which she performs
a ‘|0〉, |1〉’ or ‘|+〉, |−〉’ measurement on one of each pair of the qubits. She
records her measurement outcomes as the bit string S2A.

2. Alice consequently sends one of the single photon states {|0〉, |1〉, |+〉, |−〉}
with equal probability, 2(N + l) times, along a quantum channel to Bob’s
location.

3. Bob also generates a random bit string S1B of length 2(N + l) according
to which he chooses between performing ‘|0〉, |1〉’ or ‘|+〉, |−〉’ measurements
on the incoming photons.
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4. Bob records his measurement outcomes in a final bit string, S2B.

It can be seen that steps 2-4 are the same as steps 2-4 in BB84.

BBM92 is referred to as the equivalent entanglement-based (EB) version of
the prepare-and-measure (P&M) BB84. Although Alice uses different prepa-
ration methods for the quantum states sent to Bob, from all perspectives
other than Alice’s, the two protocols are identical. This equivalence means
that security proofs for the EB protocol will also apply to the P&M scheme
and vice versa.

Secondly, in 1996 Bennett et al. [21] proposed the first entanglement distil-
lation (ED) protocol. ED protocols aim at the distillation of pure maximally
entangled states from a larger set of mixed non-maximally entangled states,
through quantum operations (see Sec. 4.3) performed in the two locations of
Alice and Bob, who share each pair, and may communicate on an authenti-
cated classical channel. The resulting pure maximally entangled states are
uncorrelated with the environment, including Eve, so that when Alice and
Bob perform measurements, the correlated measurement results can be used
as a secret key.

Building on these two developments, in 2000 Shor and Preskill [15] gave a
‘simple proof of security’ of the BB84 QKD protocol. They showed that there
exists an unconditionally secure ED protocol using quantum error-correcting
codes called Calderbank-Shor-Steane (CSS) codes [22, 23] (see Sec. 4.9.2),
that is equivalent to BB84, thereby proving BB84 unconditionally secure.
This proof is based on a similar proof by Lo and Chau [24], but with the
requirement of quantum computation replaced by the use of CSS codes.

Without going into much detail, the signal preparation in the Shor-Preskill
protocol is related to that in the EB version of BB84, namely BBM92. After
transmission and possible eavesdropping Alice and Bob share a large set of
mixed non-maximally entangled states. A set of pure maximally entangled
states is then distilled from the larger set of mixed non-maximally entangled
states using CSS codes. The properties of CSS codes are used to establish
the equivalence between this ED process and the SKD procedure in the orig-
inal BB84 protocol (consisting of error-correction and privacy amplification).
Subsequent measurements performed by Alice and Bob on their maximally
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entangled subsystems complete the Shor-Preskill protocol, resulting in a per-
fectly correlated key about which Eve has no information.

The proof by Shor and Preskill provides an example of how a QKD pro-
tocol can be proved unconditionally secure via showing its equivalence to
an unconditionally secure ED protocol. That an unconditionally secure ED
protocol exists that is equivalent to BB84 is surprising, and gives insight into
how entanglement is tied to security in QKD protocols.

1.11 Necessary and sufficient conditions for

security

Considering a general QKD protocol, a sufficient condition for unconditional
security is to show that the total protocol including Phases 1 and 2 is equiv-
alent to an ED protocol, which has been shown to be unconditionally secure.

Given a general P&M QKD protocol, a necessary first step to showing such
an equivalence is to translate Phase 1 of the protocol into an equivalent EB
phase.

A more fundamental question to ask before tackling an unconditional se-
curity proof however, is whether the protocol has any ‘quantumness’ that
could lead to security or not.

A basic necessary condition for the security of a QKD protocol, whether
considering the P&M or the EB description, is that the key information is
encoded in non-orthogonal states. A set of orthogonal quantum states resem-
bles a set of classical states in that Eve can intercept the signals and perform
a measurement, a projective measurement (see Sec. 4.3.2), that decodes the
entire set, which she could then reconstruct and send to Bob without being
detected.

Recall that the P&M and the EB versions of a protocol are identical from
Bob’s point of view, and therefore that Bob performs the same measurement
in both versions. A necessary condition for security on Bob’s measurement
is that it should be described by non-commuting POVM elements (see Sec.’s
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4.3.3 and 4.5). Bob’s measurement must be described by non-commuting
POVM elements since then there exists no measurement suitable for decod-
ing that could possibly commute with his and thus be performed undetected
by Eve in an intercept-and-resend attack.

Returning to the observation that entanglement plays a fundamental role in
security proofs of QKD protocols, this necessary condition on Bob’s measure-
ment can also be understood in terms of the fact that in the EB translation of
a protocol, it is not enough that the effectively distributed state is an entan-
gled state: Alice and Bob must be able to detect this entanglement through
the probability distributions of their measurement outcomes. This detection
is only possible if Bob’s measurement is described by non-commuting POVM
elements (see Sec. 6.4 for a proof).

These necessary conditions are an illustration of the statement that the
classical data produced in a secure QKD protocol must imply non-classical
correlations [25] between the systems held by Alice and Bob in the EB trans-
lation, which not only restricts the kind of states into which information is
encoded, but also the kind of measurements that are performed to decode
the information.

1.12 In conclusion: The Point

After a lengthy introduction, it is now necessary to come to the point.

Phase 1 of a general QKD protocol can be described as a P&M or equiv-
alently as an EB phase, as was illustrated for BB84 in steps 1-4 in Sec. 1.6.1,
and steps 1-4 in Sec. 1.10, respectively. While other methods do exist to
prove the unconditional security of QKD schemes [12, 14, 26] they can be
complicated and long. A simple unconditional security proof of BB84 [15] is
based on ED, and the same method has been applied to other QKD protocols
[27]. The method consists of showing the equivalence of the total protocol
including Phases 1 and 2 to an unconditionally secure ED protocol which
will then imply the unconditional security of the original scheme.

Given a general P&M QKD protocol, a necessary first step to proving the
protocol unconditionally secure through such an equivalence, is to describe
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an equivalent EB translation of Phase 1.

Furthermore, Bob’s measurement must be described by non-commuting POVM
elements when considering the P&M or the EB version of the protocol.

In the forthcoming Chap.’s 2 to 5, aspects of reviews of classical cryptog-
raphy, classical information, quantum information and quantum optics that
are relevant to this work are given.

In Chap. 6, Phase 1 of a general QKD protocol is described as both a
P&M and an EB phase. ‘Entanglement as a precondition for security’ [28]
is discussed and the condition on Bob’s measurements in the EB scheme de-
rived. Finally, a brief discussion of unconditional security based on ED is
given.

The differential-phase-shift (DPS) QKD protocol was proposed by Inoue et
al. in 2002 [29]. In Chap. 7 the modified version of the DPSQKD proto-
col proposed the next year [30] is considered. The DPSQKD protocol is a
member of the class of distributed-phase-reference QKD protocols, for which
unconditional security proofs do not yet exist. Phase 1 of DPSQKD is here
described and formalised as both a P&M and an EB phase. Bob’s measure-
ment is shown to be described by non-commuting POVM elements. The
EB translation of Phase 1 of DPSQKD given here is a necessary first step
towards an unconditional security proof for the protocol based on ED. Fi-
nally, thoughts on a potential unconditional security proof based on ED for
a DPSQKD-like protocol are given.

In Chap. 8 this thesis is concluded, and an outlook for potential future
work surrounding the security of the DPSQKD protocol given.
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Chapter 2

Classical cryptography

“All data is illegal - all you need is the appropriate one-time pad.”

-Employee, Aman Corporation

The word cryptography is derived from the Greek expression κρυπτ óς γράϕω
meaning ‘hidden writing’ [31], although besides ensuring confidentiality of in-
formation, cryptography also includes aspects such as authentication, secret
sharing, non-repudiation, and signature.

In this chapter, confidentiality and authentication will be discussed, being
the aim and a requirement of QKD, respectively. Confidentiality can be
achieved by transforming the information to be transferred or stored, the
so-called plaintext, into what is termed ciphertext, such that it is intelligible
only to those in possession of additional knowledge, usually referred to as a
key. Methods of transformation, or ciphers, come in two main classes: asym-
metrical and symmetrical ciphers. Authentication is the process of verifying
that a sent message has arrived unmodified from the legitimate sender. [32]

Asymmetrical and symmetrical ciphers are firstly discussed, and next au-
thentication techniques are described.
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2.1 Asymmetrical ciphers

Asymmetrical or public-key ciphers use two different keys: a public key for
encryption (the transformation from plaintext to ciphertext); and a private
key for decryption (the recovery of the original plaintext). The relation be-
tween public and private keys in this cipher is based on the properties of
so-called one way functions, f [33]. Briefly, the intended recipient of some
communication chooses a private key, say x, and computes the public key
f(x) which is disclosed freely. The sender uses this public key to encrypt
a message which is sent to the recipient, who decrypts with the private key
x. Security is based on the computational complexity of determining x from
f(x). This means that the probability of cracking the encryption key using
current computational technology and algorithms within a reasonable time
is extremely small.

For example, the public-key cipher known as RSA, after the names of its
inventors Rivest, Shamir and Adleman, was first implemented in 1978 [34]
and is still widely used [13]. Bob, the intended recipient of some communica-
tion, begins by selecting two prime numbers p and q, which he multiplies to
obtain the product n. He also selects a number 3 ≤ a < n such that a and n
have no common factor, and calculates b such that ab = 1 (mod(p−1)(q−1)).
The public key (a, n) is published, while Bob’s private key (b, n) is kept secret.
Alice, the sender, then encrypts some plaintext message m ∈ {0, 1, ..., n− 1}
(the set with mod n addition and multiplication) via c = ma mod n [16].
Owing to the form of the product ab given above, and to the properties of
modular exponentiation, Bob can decrypt the message through the following
computation:

cb mod n = mab mod n = m. (2.1)

The security of RSA is based on the difficulty of factorising of large integers.
It is easy to compute a product of prime numbers, but the time taken to find
the prime factors, p and q, of a large integer, n, even using the fastest known
algorithms, increases faster than any polynomial in log n, written poly(logn).
Factorisation and other such problems constitute the set of non-deterministic
polynomial (NP) problems [35]. A ‘large’ integer is usually bigger than 1000
bits, which is over 300 decimal digits [16]. In 1999 Shamir [36] announced the
design for TWINKLE, an electro-optical sieving device claimed to execute
sieve-based factoring algorithms approximately two to three orders of mag-
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nitude as fast as a conventional fast PC. Using a set of 45 000 such devices
it would take 6 to 7 million months (500 000 years) to factorise a 1024-bit
number.

However, current algorithms for factorisation have not been shown to be
optimal, and there exists no proof that RSA and factorisation are compu-
tationally equivalent [16]. Indeed this year in 2009, Sarkar and Maitra [37]
claimed that one can factor two integers, each of bit string length n, simulta-
neously in poly(logn) time under several assumptions. For RSA, and indeed
for all public-key systems, security that is not conditional on computational
power has not been proven.

2.2 Symmetrical ciphers

Symmetrical ciphers use the same key for encryption and decryption. A
classical example is the Vernam/Mauborgne one-time pad proposed in 1926
[2]. The one-time pad encrypts binary plaintext by adding it modulo 2 to
a random binary key, or pad, that is used only once. The original plaintext
is regained by adding the resulting ciphertext modulo 2 to the key. Let the
plaintext be modelled by the random variable (see Sec. 3.1.1) M , which can
take one of the character values m from a finite alphabetM, let the random
variable C with realisations c ∈ C model the corresponding ciphertext sym-
bols, and let the random variable K with realisations k ∈ K model the key.
For each m and k, the original message is encoded into ciphertext as m⊕ k,
where ⊕ denotes addition modulo 2, and is decoded as follows

(m⊕ k)⊕ k = m⊕ (k ⊕ k) = m⊕ 0 = m. (2.2)

Note, a binary number added modulo 2 to itself always gives zero.

A cipher is secure if and only if for all m ∈M and c ∈ C

p(M = m|c = C) = p(M = m) (2.3)

where p(X = x) is the probability with which a random variable X takes the
character value x (see Sec. 3.1.1), and p(x|y) is the conditional probability
that X = x given that Y = y (see Sec. 3.2.2). The one-time pad’s status
of being the only provably secure cipher known to date was established by
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Shannon in 1949 [1], who showed that the above condition is met, i.e., that
the ciphertext contains no information on the statistical distribution of the
plaintext.

If the one-time pad is used more than once the above condition is no longer
met, since two ciphertext bits ci and cj encoded with same key bit k can be
added modulo 2 to obtain mi ⊕mj, and this constitutes information on the
statistical distribution of the plaintext.

2.3 Authentication

A requirement for the creation of a secure key using QKD is that a classical
channel is utilised by Alice and Bob to perform basis reconciliation and secret
key distillation on the resulting classical information. For these processes to
be successful, both Alice and Bob need to be sure that all communications
on the classical channel have arrived unmodified from the legitimate sender,
although the channel need not be private. In other words, each use of the
channel needs to be authenticated.

Authentication is achieved by the legitimate users of the channel sharing
an initial key. For example when Alice sends a message to Bob, she calcu-
lates a message authentication code (MAC) as a function of the message and
the key, which she attaches to the message. Bob recalculates the MAC using
the received message and the key. Authentication is complete if his MAC
matches that sent by Alice [16].

2.4 Conclusion

In this chapter two aspects of cryptography: confidentiality and authentica-
tion have been summarised. Confidentiality can be achieved through sym-
metrical or asymmetrical ciphers. While asymmetrical ciphers have not been
shown to be unconditionally secure, symmetrical ciphers require that a new
key be distributed for each use of the cipher. It will be explained in upcoming
chapters how quantum cryptography solves the problem of key distribution
through the use of a quantum channel as well as an authenticated classical
channel, on which basis reconciliation and SKD are performed.
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Chapter 3

Information theory

“Structure is more important than content in the transmission of
information.”

- Abbie Hoffman

Generic QKD protocols utilise a quantum channel and an authenticated
classical channel for exchanges between partners in Phases 1 and 2 of the
protocol, respectively. The quantum channel is generally noisy, which means
that the outcomes of measurements on the transmitted quantum objects,
even after the sifting process, do not result in perfectly correlated key bits
shared by Alice and Bob. Alice and Bob therefore implement Phase 2 of the
QKD protocol, using the authenticated classical channel to perform SKD on
their data, which consists of classical error-correction and privacy amplifica-
tion algorithms, to obtain a shorter perfectly correlated key about which any
information Eve may have gained has been reduced to zero.

The mathematical theory of information and communication as founded by
Shannon in 1948 [38] deals amongst other things with optimal representa-
tion and transmission of data. Pertaining to QKD, Shannon’s noisy channel
coding theorem quantifies the amount of information that can reliably be
transmitted through a noisy channel.

In Sec. 3.1 Shannon’s noiseless coding theorem is described. Further def-
initions from probability and information theory used later in this work are
given in Sec. 3.2, and in Sec. 3.3 Shannon’s noisy coding theorem is described.
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Finally in Sec. 3.4, secret key rates are given in terms of information theoretic
quantities, and error correction and privacy amplification are discussed.

3.1 Shannon’s noiseless coding theorem

A fundamental question in information theory is: How can information be
quantified? If information is physical because of representation in physical
systems, then to quantify information is to quantify the resources necessary
to store the information. That is, the question can be rephrased: What is
the minimum storage rate for information that is to be reliably retrieved?
Assuming that information is represented in an alphabet with character val-
ues that will be allocated codewords for storage purposes, the observation
that the storage rate of information can be decreased by assigning shorter
codewords to more frequent characters, suggests a relationship between a
character’s probability of occurring, and the resources needed to store it.

In the following sections these intuitions are made more rigorous, and Shan-
non’s noiseless coding theorem is shown to provide an answer to this question.

3.1.1 Random variables and independent and i.i.d. sources

Consider a discrete classical random variable X which can take one of the
character values x from a finite alphabet X with probability distribution
Pr(X = x) which is written p(x) [39].

An information source can be modelled as a sequence of random variables
whose values represent the output of the source. If each use of the source
is independent, and identically distributed (i.e., each random variable has
the same probability distribution), then the information source is said to be
an i.i.d. source [40]. Information sources in the forthcoming sections are
assumed to be i.i.d. sources.
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3.1.2 Shannon’s entropy

The Shannon entropy H(X) [38] of the random variable X is defined as a
function of the probability distribution p(x) of X as

H(X) ≡ −
∑
x

p(x) log p(x). (3.1)

H(X) is the optimal compression rate for the information source modelled by
the random variable X given that the input must be completely retrievable
from the output.

This last statement is the result of Shannon’s noiseless coding theorem.

The Shannon entropy can also be interpreted as follows: − log p(x) is the
uncertainty in the occurrence of the symbol x. Weighting with the prob-
ability p(x) and summing over all x leads to H(X) forming a measure of
the average uncertainty associated with each output of the source. Comple-
mentarily, H(X) quantifies how much information is gained on average by
learning the value of the random variable X.

3.2 More definitions

3.2.1 Binary entropy

In general, the size of the alphabet X is assumed to be arbitrary. However,
in classical information theory, the unit of information is commonly the bit,
or the set {0, 1}. Assume that p(0) = p and p(1) = 1 − p, then this special
case of the Shannon entropy for a binary source modelled by the random
variable XB, the binary entropy H(XB) [40], is given by

H(XB) = −p log p− (1− p) log(1− p). (3.2)

3.2.2 Joint and conditional probabilities

Let X and Y be random variables with probability distributions p(x) and
p(y), respectively. The conditional probability p(x|y) [40] that X = x given
that Y = y is defined as

p(x|y) ≡ p(x, y)

p(y)
, (3.3)
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where p(x, y) is the joint probability [41] that X = x and Y = y.

3.2.3 Relative entropy

The relative entropy H(X||X ′) [39] of two information sources modelled by
the random variables X and X ′ with the same alphabet X , with probability
distributions p(x) and q(x), respectively, is defined as

H(X||X ′) ≡
∑
x

p(x) log
p(x)

q(x)
= −H(X)−

∑
x

p(x) log q(x). (3.4)

The relative entropy is a measure of the distance between probability distri-
butions p(x) and q(x) for the same alphabet X [39].

3.2.4 Joint Entropy

The joint entropy H(X, Y ) [42] of a pair of information sources modelled by
the random variables X and Y is defined as

H(X, Y ) ≡ −
∑
x,y

p(x, y) log p(x, y). (3.5)

The joint entropy is a measure of the information content, or the average
uncertainty, associated with each of the joint outputs of a pair of sources
modelled by the random variables X and Y [40].

3.2.5 Conditional entropy

The conditional entropy H(X|Y ) [39] of two information sources modelled
by the random variables X and Y is defined as

H(X|Y ) ≡ −
∑
x,y

p(x|y) log p(x|y) =
∑
y

p(y)H(X|y) = H(X, Y )−H(Y ).

(3.6)
The conditional entropy is the expected value of the information content, or
the average uncertainty, associated with the random variable X, given that
Y is known [40].
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Figure 3.1: A set-theoretical visualisation of entropies.

3.2.6 Mutual information

The mutual information I(X : Y ) [40] of two information sources modelled
by the random variables X and Y is defined as

I(X : Y ) ≡ H(X) +H(Y )−H(X, Y ) = I(Y : X). (3.7)

The mutual information is the difference between the sum of the uncertainties
of the outputs of two individual sources modelled by the random variables X
and Y , and the uncertainty of the joint outputs of the same pair of sources
X and Y . The mutual information is thus a reduction in the uncertainty of
X due to Y [39].

3.2.7 Conditional mutual information

The mutual information of two information sources modelled by the random
variables X and Y , conditional on another information source Z, is defined
as

I(X : Y |Z) ≡ H(X|Z) +H(Y |Z)−H(X, Y |Z)

=
∑
z

p(z)[H(X|z) +H(Y |z)−H(X, Y |z)]. (3.8)
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and termed the conditional mutual information. The conditional mutual
information I(X : Y |Z) is the reduction in the uncertainty of X due to
knowledge of Y when Z is given. [39]

3.2.8 Intrinsic information

The intrinsic information I(X : Y ↓ Z) was first defined by Maurer and
Wolf in 1999 [43], and can be defined in terms of the conditional mutual
information I(X : Y |Z) as

I(X : Y ↓ Z) ≡ infPI(X : Y |Z) (3.9)

where P is the set of possible extensions of the observable probability dis-
tribution P (X, Y ) to P (X, Y, Z), corresponding to all possible individual
attacks that Eve could perform [28].

See Sec. 3.4.2 for further details on the intrinsic information.

3.3 Shannon’s noisy channel coding theorem

Having answered the question of the minimal resources required to represent
information, a second fundamental question in information theory is: What
is the most efficient way to transmit this information from one location to
another given that errors may occur during transmission? Referring to a
transmission medium that has the potential to induce errors in the trans-
mitted objects as a noisy channel, and to the maximum rate for reliable
transmission through a channel as the channel’s capacity, the question can
be rephrased: What is the maximum capacity of a noisy channel?

3.3.1 A noisy channel

Suppose that Alice sends a series of character values x with probabilities
p(x) from her information source modelled by the random variable X to
Bob. Assume that since she transmits the symbols along a noisy channel N ,
the probability for the character value y to be read when the letter x is sent
is given by the conditional probability p(y|x) ≥ 1 where

∑
x p(y|x) = 1 for

all x [40]. The output at Bob’s location is modelled by the random variable
Y with probability distribution p(y).
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The mutual information I(X : Y ) is a reduction in the uncertainty asso-
ciated with X due to Y , or alternatively, a quantification of the information
gained, on average, about x when y is learnt. If p(y|x) characterises a noisy
channel, I(X : Y ) is the information per letter which can be sent via the
channel given the probability distribution of X [41].

Shannon’s noisy channel coding theorem states that the maximum capac-
ity C [41] of a noisy channel N is given by the maximum of I(X : Y ) over
the ensemble of probability distributions p(x) of Alice’s random variable X:

C(N) = maxp(x)I(X : Y ). (3.10)

The capacity of the channel provides the fundamental upper bound for the
rate of error-free transmission in bits per use of a noisy channel [39].

A special case of a channel is described in the next subsection.

3.3.2 The symmetric binary channel

Consider the symmetric binary channel [41] defined by

p(x = 0|y = 0) = p(x = 1|y = 1) = 1− p (3.11)

p(x = 0|y = 1) = p(x = 1|y = 0) = p, (3.12)

where the mutual information between the input source X and output source
Y is given by

I(X : Y ) = H(X)−H(p). (3.13)

The maximal value of H(X) is 1, therefore the capacity of a binary symmetric
channel C(p) is given by

C(p) = 1−H(p). (3.14)

3.4 Secret key rate

After Phase 1 and the processes of basis reconciliation and parameter esti-
mation in a QKD protocol are complete, Alice and Bob each hold a set of
classical data, the raw keys. Assuming that eavesdropping has taken place,
Eve also holds a classical data set. These data can be modelled as the random
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outputs of a binary symmetric i.i.d. information source over three individ-
ual, not necessarily independent, binary symmetric channels [44]. Let the
outputs of the channels at the locations of Alice, Bob and Eve, be modelled
by the random variables A,B and E, respectively, with joint probability dis-
tribution p(a, b, e). Alice and Bob process their raw key data, which are the
sequence of realisations of A and B, respectively, by communication on a
public authenticated classical channel in a process termed SKD. The aim of
SKD is to extract one secret key from their partially correlated, partially
secret raw keys [16].

The rate K at which the final secret key of a QKD protocol is produced
is the product of the raw key rate R and the secret fraction r. The value of
the raw key rate R depends on the protocol itself, and on the hardware used
in the implementation of the protocol [45]. The secret fraction r is defined
as the maximum rate at which Alice and Bob can agree on a secret key such
that the rate at which Eve obtains information about the key is arbitrarily
small [46]. The secret fraction r depends on the distribution p(a, b, e) and
the corresponding amount of secret correlation between Alice’s and Bob’s
raw keys that is extractable using a given SKD procedure [44]. Here, the
focus is on the secret fraction r, which will henceforth be referred to as the
secret key rate.

SKD consists of two procedures: error correction and privacy amplification.
The result of Shannon’s noisy coding theorem (see Sec. 3.3) is that the frac-
tion of perfectly correlated symbols that can be extracted from a sequence
of partially correlated symbols is bounded by the mutual information of the
random variables A and B with a joint probability distribution p(a, b) given
by I(A : B) = H(A) + H(B) − H(A,B), where H is the Shannon entropy.
Error-correcting codes operate within this bound and are discussed in Sec.
3.4.3. Privacy amplification (see Sec. 3.4.4) aims to reduce Eve’s information
on one of Alice or Bob’s raw keys to zero [45]. The fraction by which the raw
key must be reduced is therefore given by min(I(A : E), I(B : E)), which
depends on the chosen communication direction [48].
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3.4.1 Lower bound

The Csiszár-Körner bound [47] is a lower bound for the secret key rate r
given by

r ≥ max{I(A : B)− I(A : E), I(B : A)− I(B : E)}. (3.15)

The above bound is derived for one-way SKD, defined by the partner holding
the reference raw key (usually Alice) sending classical information through
the public channel to the other partner (Bob), who may process his data but
does not send a reply [45]. It has been shown that the secret key rate can be
positive even when I(A : B) < I(A : E) and I(B : A) < I(B : E) hold [46],
but no key can be generated unless the mutual information shared by Alice
and Bob as seen by Eve’s best choice of all possible points of view is greater
than zero [49] (see Sec. 3.4.2).

Note, the Csiszár-Körner bound is a lower bound for security under the
restriction that Eve performs identical individual attacks on each signal ob-
taining measurement results immediately, since A,B and E are assumed to
be i.i.d. classical random variables [48].

3.4.2 Upper bound

The intrinsic information I(A : B ↓ E) (3.9) was first defined by Maurer and
Wolf [43] as an upper bound for the secret key rate r:

r ≤ I(A : B ↓ E). (3.16)

The intrinsic information I(A : B ↓ E) can be interpreted as the mutual in-
formation shared only by Alice and Bob after Eve has performed an optimal
individual attack. It is therefore only possible to perform successful SKD
consisting of error correction and privacy amplification if I(A : B ↓ E) > 0.

Renner and Wolf [49] found a stronger upper bound for the secret key
rate r, given by the reduced intrinsic information of A and B given E,
I(A : B ↓↓ E).

Note, using two-way classical processing techniques such as the Cascade
error-correction protocol (see next section) generally improves the bounds
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given here for the secret key rate (see for example an article by Kraus et
al. [50]), but optimal procedures are not generally known. An example of
how classical preprocessing can improve bounds for the secret key rate for a
selection of protocols can be found in [26].

3.4.3 Error correction

Phase 1 of a QKD protocol is implemented on a quantum channel, which is
generally noisy, such that the outcomes of measurements on the transmit-
ted quantum objects do not result in perfectly correlated key bits shared by
Alice and Bob. SKD is therefore implemented on an authenticated classical
channel in Phase 2 of the protocol. SKD includes the implementation of
an error-correction protocol, the result of which is that Alice and Bob share
identical bit strings with a high probability. [16]

A simple example of an error-correcting code is a 3-bit repetition code which
maps 0 to 000 and 1 to 111. Assuming that at most one error occurs per
transmission, and that Alice wishes to send the bit 1, Bob can correct a
string such as 101 to 111, and thus retrieve a 1. This kind of procedure is
effective in classical communications with a typical error rate of around 10−5,
but requires a large amount of computing power in quantum communications
where the error rate is of the order of a few percent [51]. Such methods are
also unable to asymptotically guarantee that a set of data can be transmitted
without error.

Error-correcting protocols that use two-way communication between Alice
and Bob are able to achieve higher computational efficiency rates than one-
way processes such as bit repetition codes. Cascade is an error-correction
protocol proposed by Brassard and Salvail in 1993 [52] and uses two-way
communication. It is a recursive parity-based protocol which performs within
10% of the Shannon limit at low bit error rates [53], and is therefore success-
ful in minimising the amount of information exchanged (publicly) during the
process. The unconditional security of discrete variable QKD schemes using
Cascade has been shown [51]. (More recently the performance of Cascade is
claimed to be improved upon at error rates of 5% and above by a protocol
using low density parity check codes, see the article by Elkouss et al. [53] for
further details.)
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Prior to implementing Cascade, Alice and Bob perform two preliminary steps.
Firstly, they compare a sample of their data to estimate the error rate of the
entire transmission. They proceed if this is below a certain threshold and
discard this sample. Transmission errors possibly resulting from eavesdrop-
ping are likely to occur in sequences rather than being randomly scattered
throughout the data. Thus, Alice and Bob secondly agree upon a random
permutation of the remaining bits in their strings such that the errors are
uniformly distributed. This process ensures that Bob’s data can now be
assumed to result from a binary symmetric channel where each bit is inde-
pendently exposed to noise.

The Cascade error correction protocol is subsequently initiated:

Alice and Bob divide their data into blocks such that each block is unlikely
to contain more than one error. Alice then sends the parity of each of her
blocks to Bob. The parity of a group of bits refers to the evenness or oddness
of the number of 1’s within that group. For each pair of blocks with unequal
parities, Alice and Bob examine the parities of halves of that block and so on
until the error is found and corrected. Thus, all of Bob’s blocks now contain
an even number of errors. Alice and Bob then again randomise their data,
divide it into blocks and repeat the procedure, until after multiple repetitions
they share identical keys with a high probability. However, although these
keys are identical, they are not yet completely private.

3.4.4 Privacy amplification

Error correction is the first of two stages constituting the SKD procedure in
Phase 2 of a QKD protocol. The second stage is termed privacy amplifica-
tion, the result of which is a reduction in the length of the identical shared
keys by, roughly speaking, the number of bits about which Eve has potential
knowledge. [16]

Eve’s partial information about the key consists of information about phys-
ical bits and parity bits, acquired through eavesdropping and during the
public error-correction procedure, respectively. Given that an upper limit
to the total number of bits Eve potentially knows can be calculated, privacy
amplification allows Alice and Bob to compute a key of reduced length about
which Eve’s information is below a certain threshold.
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Alice and Bob compute this secret key using a class of universal hash func-
tions [54] from which they randomly select one. The class of universal hash
functions G map the set of n-bit strings A to the set of m-bit strings B such
that for any distinct a1, a2 ∈ A, the probability of a hash collision, or of
g(a1) = g(a2), is at most 1/|B| [40]. The main property of the class G is that
given an input element a1 ∈ A, it is computationally hard to find another
element a2 ∈ A which collides with a1 [54]. This means that Alice and Bob
can apply a chosen g to their shared bit string, about which Eve has partial
information, thereby maximising her uncertainty about the new string of re-
duced length [40]. Thus, using a class of universal hash functions, Alice and
Bob obtain a shorter perfectly correlated key about which any information
Eve may have gained has been reduced to an arbitrarily small amount.

At this point a QKD protocol is complete, since one secret key has been
distributed in the two locations of Alice and Bob.

3.5 Conclusion

In this chapter elements of information theory relevant to QKD have been
discussed, and definitions of information theoretic quantities used in this work
given. Importantly, before initialising the SKD phase of a QKD protocol,
Alice, Bob and Eve have sets of data in their two locations, which can be
modelled as sequences of outcomes of the classical random variables A,B and
E. A necessary condition for being able to filter a secure key from these data
using classical algorithms is that the intrinsic information I(A : B ↓ E) must
be greater than zero. However, modelling Eve’s information as a classical
random variable assumes that Eve performs an individual attack, and this
form of attack is not optimal. Assuming that Eve really can do anything
allowed by the laws of quantum mechanics requires that Eve’s information is
represented as quantum information.
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Chapter 4

Quantum information theory

“... the ‘paradox’ is only a conflict between reality and your feeling
of what reality ought to be.”

- Richard Feynman

In Phase 1 of a generic QKD protocol, a quantum channel is utilised for
the exchange of quantum states into which information has been encoded.
Quantum information deals with the implications of representing information
in quantum systems such as photons. Here, aspects of quantum information
theory relevant to QKD are discussed. Since quantum systems are subject
to the laws of quantum mechanics, a broad overview of the principles of
quantum mechanics is also given. A quantum analogue of SKD is described
briefly. Finally, unconditionally secure key rates are given in terms of quan-
tum information theoretic quantities.

4.1 Quantum states

Quantum mechanics [55] is a mathematical framework that identifies any
isolated physical system with a complex vector space with inner product,
called the Hilbert space of the system. A state of the system is described
by a complex unit vector in this space, termed a state vector, and is usually
written in Dirac notation [9] as |ψ〉. [40]

A general state can be expressed as a superposition, or normalised complex
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linear combination, of the orthonormal basis vectors spanning the Hilbert
space of the system.

The inner product associates any pair of state vectors, |ψ〉 and |ψ′〉, with
a complex number and is written as 〈ψ|ψ′〉 where the notation 〈ψ| is used
for the dual vector to |ψ〉 [40]. The inner product provides a formalism with
which to define geometric notions such as the length of a vector, and the
angle between two vectors, where an inner product of zero is associated with
orthogonal vectors.

As an example of a quantum state, the qubit is considered in the follow-
ing section.

4.2 The qubit

The simplest quantum mechanical system and fundamental unit of quantum
information is a two-level system, or qubit (a term coined by Schumacher in
1995 [56]). A qubit is a mathematical object with a two-dimensional Hilbert
space, and is typically realised in physical systems such as an atom with a
ground and first excited state, a photon with its two polarisation states, or
an electron with spin ‘up’ and ‘down’.

In Dirac notation, the states |0〉 and |1〉 form an orthonormal basis for the
Hilbert space of the qubit, and are termed the computational basis [40]. The
states |0〉 and |1〉 are two possible states of a qubit, however, an arbitrary
state in this space can be written as a superposition of the basis vectors. A
qubit is therefore described in general by two complex numbers as the set

{α|0〉 + β|1〉 : |α|2 + |β|2 = 1, α, β ∈ C}. (4.1)

The decomposition coefficients, α and β can be parametrised, omitting the
unobservable global phase factor, as

α = cos
θ

2
, (4.2)

β = eiϕ sin
θ

2
. (4.3)

The two angles θ and ϕ define a point on the surface of a sphere of unit radius
called termed the Bloch sphere (see Fig. 4.1). Each point on the surface of
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Figure 4.1: Bloch sphere representation of qubit states.

this sphere corresponds to a qubit state, for which the qubit is said to be
in a superposition of the states |0〉 and |1〉, in contrast with the classical bit
which has only two possible states, ‘0’ and ‘1’.

Let the qubit state |ψ〉 be defined as

|ψ〉 = α|0〉 + β|1〉. (4.4)

The condition that the state |ψ〉 be a vector of unit length is expressed as

〈ψ|ψ〉 = |α|2 + |β|2 = 1 (4.5)

and is termed the normalisation condition.

The decomposition coefficients can also be written as the inner products

α = 〈0|ψ〉 (4.6)

β = 〈1|ψ〉. (4.7)
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The inner product between two qubit states |ψ〉 and |ψ′〉 is then given by

〈ψ|ψ′〉 = 〈ψ′|ψ〉∗ = 〈ψ|0〉〈0|ψ′〉+ 〈ψ|1〉〈1|ψ′〉
= α∗α′ + β∗β′. (4.8)

These states are said to be orthogonal if and only if

α∗α′ + β∗β′ = 0. (4.9)

The states |0〉 and |+〉 are an example of a pair of non-orthogonal states,
their inner product is given by

〈0|+〉 = 〈0|{ 1√
2

(|0〉+ |1〉)}

=
1√
2
. (4.10)

It can be seen that the existence of non-orthogonal states is a result of the
existence of superposition states in the quantum regime. Examples of neither
such states are found classically.

4.3 Quantum measurement

The evolution of a closed quantum system is described by a unitary transfor-
mation U , which is an invertible linear operator that preserves the norm of
the state [16]. If the initial condition of the system is |ψ〉, then at a later time
the system evolves to a state U|ψ〉. A measurement of a quantum system
implies an interaction of the system with a classical measurement apparatus,
rendering it no longer closed, and thus not necessarily subject to unitary
evolution. A measurement is described by its effect on the system as follows:

A quantum measurement is described by a set of measurement operators
Mm which act on the state space of the system being measured. Each op-
erator is associated with a measurement outcome m. The probability of a
particular measurement outcome being realised, p(m), and the state of the
system after this measurement, can be calculated in terms of the measure-
ment operator Mm, and the initial state of the system. That the probabilities
p(m) must sum to one is equivalent to the measurement set {Mm} satisfying
the completeness relation. [40]
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4.3.1 Measuring a qubit

As an example of a quantum measurement, a measurement of a qubit in the
computational basis is considered.

Let the qubit state be defined as in Eq. (4.4), then the two possible mea-
surement outcomes m = 0 and m = 1 are associated with the operators M0

and M1, respectively, given by

M0 = |0〉〈0| (4.11)

M1 = |1〉〈1|. (4.12)

The probability of measurement outcome m = 0 is given by

p(0) = 〈ψ|M0|ψ〉 = |α|2, (4.13)

while the probability of measurement outcome m = 1 is given by

p(1) = 〈ψ|M1|ψ〉 = |β|2. (4.14)

The completeness relation is satisfied since the qubit state (4.4) is defined
with |α|2 + |β|2 = 1.

An aside on true randomness :

The word ‘random’ has been used more than once in this work, and the
security of QKD protocols depend on its correct interpretation.

A specific case of a classical random variable as referred to in Sec. 3.1.1,
is a binary random variable X that can take one of the character values
{0, 1} with equal probability p(0) = p(1) = 1

2
. A fundamental assumption

when implementing a QKD protocol is that the random binary strings, the
randomisation procedures, and the random selection processes used by Alice
and Bob are truly random rather than pseudo-random. This means that the
random variables used in each case should be generated by truly random
processes, where possible biases in measurement have been compensated for,
rather than by deterministic processes with a very high degree of apparent
randomness [13]. It is difficult to distinguish these cases statistically.

‘RANDOM.ORG offers true random numbers to anyone on the Internet’ [57],

37



generated from atmospheric noise which is considered random. According to
the laws of quantum mechanics, truly random processes include radioactive
decay, shot noise [58], the random choice of a single photon at a beamsplitter
[59] (see Sec. 5.4 for a description of a beamsplitter), and also the process of
measuring a qubit.

Consider the qubit state from Eq. (4.4) and a measurement with opera-
tors given in Eq.’s (4.11) and (4.12).

Since the two possible measurement outcomes ideally occur randomly with
equal probability, associating the outcome ‘0’ with the bit zero, and the
outcome ‘1’ with the bit one results in the generation of a truly random
variable. In a realistic experimental setting, biases in the preparation of the
qubit state and measurement implementations would also have to be taken
into account before measurement outcomes could be considered truly random
[13]. Prototypes using quantum processes to generate random numbers are
commercially available [60].

4.3.2 Projective measurement

In the case where a quantum measurement satisfies the completeness relation
and where each operator Pm is an orthogonal projector, then the measurement
is termed a projective measurement and described by the observable M which
is given by

M =
∑
m

mPm. (4.15)

A measurement operator is an orthogonal projector if and only if it is Her-
mitian and satisfies PmPm′ = δmm′Pm. The set of measurement outcomes m
is associated with a set of states |m〉 which form an orthonormal basis for
the system under consideration, hence the expression ‘measuring in the |m〉
basis’ in reference to performing a projective measurement with projectors
Pm = |m〉〈m| [40]. Note, the measurement of a qubit in the computational
basis considered in Sec. 4.3.1 is an example of a projective measurement
since MmMm′ = δmm′Mm. In such cases, Mm ≡ P †mPm = Pm.
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4.3.3 POVM

A projective measurement is a special case of a more general quantum mea-
surement. A set of operators Em ≡ M †

mMm, where Mm are measurement
operators, are in general non-commuting (see Sec. 4.5) and satisfy∑

m

Em = I (4.16)

with I being the identity operator. The probability of measurement outcome
m is given by

p(m) = 〈ψ|M †
mMm|ψ〉 = 〈ψ|Em|ψ〉. (4.17)

This general measurement {Em} is called a positive operator-valued measure
(POVM) [61] because each operator Em, also termed an effect or a POVM
element, is a positive operator, i.e., 〈ψ|Em|ψ〉 ≥ 0 for all states |ψ〉. [62]

A POVM is termed informationally complete if its statistics determine com-
pletely the quantum state on which the measurement is carried out [63].
However, for a general POVM, the number of elements can be greater than
the dimension of the space of the states being measured [64].

The Stinespring-Kraus theorem [65] relates quantum operations to unitary
transformations, stating in particular that any quantum operation realized
on a system A corresponds to a unitary transformation U performed on a
larger system with Hilbert space HAB [66].

Moreover, a generalised quantum measurement, or POVM, represented by a
set of effects {Em}, can be understood as a projective measurement repre-
sented by a set of orthogonal projectors {Pm} performed on the larger system
[61]. The Neumark theorem (see, e.g. [67]) states that for each POVM {Em}
there exists a projective measurement {Pm} on a larger Hilbert space HAB

where
Tr{ρAEm} = Tr{(ρA ⊗ σB)Pm} (4.18)

for all states ρA of system A, where σB is a suitably chosen state of system
B. [66] These theorems will be referred to in Chap. 7.
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4.4 Distinguishing non-orthogonal quantum

states

In the classical world states of objects are in principle distinguishable. How-
ever, on a quantum level this is not always the case.

Consider the non-orthogonal quantum states |ψ〉 and |γ〉 identified with non-
orthogonal state vectors in the Hilbert space of the system. It is possible to
express the state |ψ〉 in terms of one component which is parallel and one
which is perpendicular to the state |γ〉. A non-zero component of |ψ〉 par-
allel to |γ〉 will always result in a non-zero probability of the measurement
outcome associated with the state |γ〉 also occurring when the measurement
is applied to the state |ψ〉. Since states are not observable, but measurement
outcomes are, there is therefore no measurement that can reliably determine
which of two non-orthogonal states was measured. (See p. 87 of the book by
Nielsen and Chuang [40] for a simple proof by contradiction that two non-
orthogonal states cannot be distinguished reliably.)

In the special case of orthogonal states, there does exist a measurement
to discern the states. The projective measurement consisting of orthogonal
projectors onto each of these states as well as an additional operator defined
such that the completeness relation is satisfied is such a measurement.

4.5 The commutator

Mathematically, the commutator gives an indication of the extent to which
two operations fail to be commutative. In quantum mechanics, the commu-
tator of two measurement operators Em and Em′ written [Em, Em′ ] is defined
as

[Em, Em′ ] = EmEm′ − Em′Em. (4.19)

If Em and Em′ can be expressed in at least one common orthonormal basis
consisting of the set of states corresponding to the possible measurement
outcomes for each, then the commutator is zero and the operators are said
to commute. The converse is also true.

In the case of a projective measurement as defined in Sec. 4.3.2, the projec-
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tors constituting the measurement are orthogonal projectors, and the com-
mutator between any two operators is evaluated as

[Pm, Pm′ ] = δmm′Pm − δm′mPm′ = 0. (4.20)

A projective measurement is effective in determining which of a set of or-
thogonal states has been measured.

For an example of a measurement containing non-commuting operators, con-
sider a POVM that attempts to distinguish two arbitrary non-orthogonal
states, |ψ〉 and |γ〉. The POVM elements are given by

E1 = |ψ〉〈ψ| (4.21)

E2 = |γ〉〈γ| (4.22)

E3 = I − (E1 + E2). (4.23)

Measurement outcome 1 (2) corresponds to the POVM element E1 (E2) and
determines that |ψ〉 (|γ〉) was the state measured. The third possible mea-
surement outcome yields no information about the measured state, rendering
this measurement not reliable in every case in determining which of |ψ〉 or
|γ〉 was the measured state.

Where c is the complex inner product of the states |ψ〉 and |γ〉, the com-
mutator between E1 and E2 is given by

[E1, E2] = |ψ〉〈ψ|γ〉〈γ| − |γ〉〈γ|ψ〉〈ψ|
= c|ψ〉〈γ| − c∗|γ〉〈ψ| (4.24)

which in general is non-zero.

Thus, it can be seen that as a result of |ψ〉 and |γ〉 being different, and
being non-orthogonal states, which implies that the inner product c is non-
zero, a POVM constructed to (sometimes) distinguish the states, contains
non-commuting elements.

In general, if two operators do not commute, then it is not possible to de-
termine the measurement outcomes associated with each operator simulta-
neously with total precision.
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4.6 No-cloning theorem

As mentioned in Sec. 1.7, a necessary condition for the security of a QKD
protocol is that the states transmitted by Alice to Bob cannot be intercepted
and perfectly copied by Eve who would then gain full information on the key
undetected. The theorem by Wootters and Zurek in 1982 [11] states that a
general unknown quantum state cannot be copied exactly.

To demonstrate how quantum cloning is not possible, consider an unknown
state |ψ1〉. Let the system in which the copy will be realised be |ϕ〉. The
evolution of the state vector containing both states is of the form

|ψ1 ⊗ ϕ〉 → |ψ1 ⊗ ψ1〉, (4.25)

where the symbol ⊗ represents the tensor product. This evolution is associ-
ated with a unitary operator U

|U(ψ1 ⊗ ϕ)〉 = |ψ1 ⊗ ψ1〉. (4.26)

The unitary operator U must be independent of |ψ1〉 [41], therefore for a
second state |ψ2〉

|U(ψ2 ⊗ ϕ)〉 = |ψ2 ⊗ ψ2〉. (4.27)

The scalar product
〈ψ1 ⊗ ϕ|U †U(ψ2 ⊗ ϕ)〉 (4.28)

can be evaluated in two ways

(1) 〈ψ1 ⊗ ϕ|ψ2 ⊗ ϕ〉 = 〈ψ1|ψ2〉,
(2) 〈ψ1 ⊗ ψ1|ψ2 ⊗ ψ2〉 = (〈ψ1|ψ2〉)2.

Therefore either |ψ1〉 = |ψ2〉, or 〈ψ1|ψ2〉 = 0, and therefore only states
that are orthogonal to each other can be copied. Hence the theorem that it
is impossible in general to clone an unknown quantum state. [41]

4.7 Entanglement

Entanglement is a quantum phenomenon, the counter-intuitive nature of
which led Einstein, Podolsky and Rosen in 1935 [18] to find quantum the-
ory to be in conflict with their feeling of what reality ought to be. Before
illustrating the so-called EPR paradox, entangled states are defined.
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4.7.1 Entangled states

The Hilbert space H associated with a composite system is a tensor product
of the Hilbert spaces Hi associated with the individual systems i. Accord-
ing to the superposition principle a general state in the Hilbert space H is
a normalised complex linear combination of the orthonormal basis vectors
spanning the Hilbert space of the system [68].

For a bipartite quantum system with Hilbert space H = H1 ⊗H2, a general
state can be written as

|ψ〉 =
∑
i,j

cij|i〉1 ⊗ |j〉2 =
∑
i,j

cij|ij〉 (4.29)

where the first index in |ij〉 refers to a state residing in the Hilbert space H1,
and the second to a state in H2.

By definition, a state in H is said to be entangled, or non-separable, if it
cannot be written as a tensor product of a state |α〉1 in H1 and a state |β〉2
in H2. On the other hand, if a state |ψ〉 can be written as

|ψ〉 = |α〉1 ⊗ |β〉2, (4.30)

the state is said to be separable. [68]

4.7.2 The EPR paradox

The authors of the EPR paper make several assumptions. They assume the
principle of reality which states that if the value of a physical quantity of a
system can be predicted with certainty, then this value has a physical reality
independent of observation. For example, if the state of a system |ψ〉 is an
eigenstate of an operator A, that is, if

A|ψ〉 = a|ψ〉, (4.31)

then the eigenvalue a of the observable A is an element of physical reality.

The authors define a complete theory as one where every element of physical
reality has a counterpart in the physical theory.
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The authors assume the principle of locality which states that if two sys-
tems are causally separated, a measurement performed on one system can
not influence the outcome of a measurement performed on the second system.

With these assumptions, taking quantum theory to be correct is shown to
lead to a contradiction. Bohm in 1953 [69] illustrated the EPR paradox with
the following example:

Consider a source that emits a pair of spin-1
2

particles in the entangled state

|ψ〉 =
1√
2

(|01〉 − |10〉) (4.32)

which is a maximally entangled state, and termed a spin-singlet state. One
particle is sent to Alice, and the other to Bob at a causally separate location.
Note, where σz is the observable corresponding to the z component of the
spin of each particle, the states |0〉 and |1〉 are the eigenstates of σz, corre-
sponding to the eigenvalues +1 and -1, respectively. If Alice measures the
observable σ

(A)
z = +1 on her particle, then the state (4.32) collapses to |01〉.

Subsequently, if Bob measures the z component of the spin of his particle,
he will get the outcome σ

(B)
z = −1 with probability one.

The singlet state (4.32) can also be written as

|ψ〉 =
1√
2

(|+−〉 − | −+〉) (4.33)

where the states |+〉 (1.1) and |−〉 (1.2) are the eigenstates of σx correspond-
ing to the eigenvalues +1 and -1, respectively. In this case if Alice measures
the observable σ

(A)
x = +1 on her particle, then the state (4.33) collapses to

| + −〉, and if Bob measures σ
(B)
z , he will get the outcome σ

(B)
z = −1 with

probability one.

Since in both cases it is possible for Alice to predict Bob’s measurement
result on the state |ψ〉 with certainty, both σ

(B)
z and σ

(B)
x must correspond

to elements of physical reality. But quantum theory states that it is im-
possible to assign physical reality to both observables simultaneously since
they do not commute, [σ

(B)
z , σ

(B)
x ] 6= 0, and total knowledge of one of two

non-commuting observables precludes total knowledge of the other (see Sec.
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4.5). The implication, given the assumptions outlined above, and result of
the EPR paper, is that a quantum mechanical description of reality is in-
complete.

More recently there have been a number of experiments (summarised in [70])
the results of which confirm the predictions made by quantum theory, and
refute so-called local-realistic theories which assume both the principles of
realism and locality. The EPR paradox is thus resolved in a contemporary
interpretation of quantum mechanics that does not accept a local-realistic
description of the way reality is.

4.7.3 Entanglement as a physical resource

The amount of information contained in an entangled state of N qubits grows
exponentially with N , rather than linearly as in the case of the classical bit,
and quantum parallelism and quantum computing are based on the properties
of entanglement [41]. As well as in quantum computing, entangled states are
a valuable resource in many areas of quantum information [40], including in
QKD, the details of which will be discussed further in upcoming sections.

4.8 Definitions

4.8.1 Density operator

The introduction of the density operator by von Neumann [55] and Landau
[71] provided a formalism to extend the tools of classical statistical mechanics
to the quantum domain. The density operator carries maximal information
about a quantum system that is not completely known. Suppose a quantum
system is in one of a number of normalised states |ψi〉 each with probability
pi. The density operator represents a statistical mixture of states for the
system and is defined by

ρ ≡
∑
i

pi|ψi〉〈ψi|. (4.34)

Density operators describe quantum states in the same way that probability
distributions can describe classical states. In general, there exist an infinite
number of decompositions of the type (4.34) [41].
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4.8.2 Von Neumann entropy

The von Neumann entropy [55] is defined in terms of the density operator as

S(ρ) ≡ −Tr(ρ log ρ). (4.35)

An analogous question to that asked in Sec. 3.1 is: What is the minimum
storage rate for an i.i.d. quantum information source that outputs the quan-
tum states |ψi〉 with probabilities pi given that the output must be com-
pletely retrievable? Schumacher’s quantum noiseless channel coding theorem
[56], the quantum analogue of Shannons noiseless coding theorem, provides
the answer to this question, namely, for optimal compression, the average
number of quantum states required per output state is given by the von
Neumann entropy S(ρ) of the density operator ρ associated with the source.

For an ensemble of orthogonal states the von Neumann entropy is analo-
gous to the Shannon entropy.

4.8.3 The Holevo bound

Suppose that Alice prepares a state ρX where X = 0, ...n with probabilities
p0, ..., pn, and Bob performs a measurement described by the POVM elements
{Ey} = {E0, ..., Em} on that state, with measurement outcome Y . The
Holevo bound [72] is an upper bound to the resulting mutual information
between Alice and Bob for any measurement that Bob may perform:

I(X : Y ) ≤ S(ρ)−
∑
x

p(x)S(ρx) = χ, (4.36)

where ρ =
∑

x p(x)ρx. The right hand quantity χ is termed the Holevo
quantity [40]. If a source emits pure quantum states (states that are described
by state vectors rather than density operators), the Holevo bound becomes
the von Neumann entropy S(ρ). This result indicates that the amount of
information that is accessible from the source does not exceed the amount of
information that the source outputs [73].

4.9 Secret key rate

In Sec. 3.4 bounds for the secret key rate were derived under the assumption
that Eve has access to many independent realisations of the classical variable
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E resulting from measurements performed independently on individual sig-
nals and with a consistent strategy. Therefore, at the beginning of the SKD
process, all measurements being complete, Alice, Bob and Eve hold classical
data sets corresponding to the random variables A,B and E, respectively,
with joint probability distribution p(a, b, e). This constitutes a condition on
Eve’s eavesdropping technique (namely, that she perform only individual at-
tacks) and therefore the secret key rate r discussed in the preceding chapter
is not an unconditionally secure key rate.

4.9.1 Lower bound

A collective attack is characterised by Eve attacking each signal indepen-
dently with a consistent strategy, but she can wait until after the SKD pro-
cedure to perform the best measurement compatible with what she has learnt.
In this case, the secret key rate r is bounded below by the Devetak-Winter
bound [74] given similarly to Eq. (3.15) by

r ≥ max{χ(A : B)− χ(A : E), χ(B : A)− χ(B : E)}. (4.37)

But here the classical mutual information has been replaced by the Holevo
quantity χ (4.38), given by

χ(A : E) = S(ρE)−
∑
a

p(a)S(ρE|a). (4.38)

The quantity S denotes the von Neumann entropy, a and p(a) are the realisa-
tions and probabilities, respectively, associated with Alice’s classical random
variable A, ρE|a is the density operator corresponding to the state of Eve’s
subsystem and ρE =

∑
a p(a)ρE|a is Eve’s partial state [45].

There exists a stronger form of attack termed a joint attack which is the
most general form of attack [45]. Here, Eve treats the whole sequence of
quantum signals as a single system. She interacts this system with a system
of her own, and then unitarily evolves the combined system. She forwards
a subsystem to Bob, and keeps the remaining subsystem for eavesdropping
purposes. An unconditionally secure QKD scheme must be secure for any
unitary operation performed by Eve. For protocols where bounds on the se-
cret key rate for unconditional security have been found, these bounds have
been shown to be the same as for collective attacks [45]. To understand why,
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consider a general QKD protocol (see Sec. 6.1) that specifies a quantum
state |Ψ(S)〉 that encodes a sequence of N symbols S = {s1, ..., sN} prepared
by Alice. In many QKD protocols, |Ψ(S)〉 can be written in tensor product
form where there is a one-to-one correspondence between each symbol si and
each state |ψ(si)〉 that encodes that symbol:

|Ψ(S)〉 =
N⊗
i=1

|ψ(si)〉. (4.39)

As a result, there are no correlations between signals transmitted on the
quantum channel from which Eve would benefit by learning. However, in
QKD protocols where |Ψ(S)〉 cannot be written in tensor product form, and
the symbols si are encoded in the correlations between the states |ψ(s′i)〉 (see
Sec. 7.2), Eve would benefit from a joint manipulation of the signals. This
is a difficult problem, and indeed bounds for the unconditionally secure key
rate for such protocols have not yet been found.

4.9.2 Quantum SKD

In EB BB84 Alice gives half of each pair of a number of copies of the maxi-
mally entangled state |φ+〉 (1.5) to Bob. Because of noise and eavesdropping
on the channel, the resulting state may be impure and is described by the
density operator ρ. Alice and Bob then perform local operations and clas-
sical communication (LOCC) to distill a key. Eve’s information is bounded
by Holevo’s bound. This implies that if the the LOCC result in Alice and
Bob sharing a reduced number of entangled pairs with a fidelity of 1 to the
maximally entangled state |φ+〉, then the protocol is secure [16]. One way to
implement the LOCC necessary for security is to use CSS codes (introduced
in Sec. 1.10). CSS codes are a large class of quantum error-correcting codes,
and an important subclass of the more general class of stabiliser codes. De-
coding from a randomly chosen CSS code can be thought of as performing
error-correction and privacy amplification [40].

The observation that the secret key rate obtainable after SKD coincides
with the achievable qubit transmission rate for CSS codes over noisy com-
munication channels is the foundation of the unconditional security proof of
BB84 by Shor and Preskill [10]. Shor and Preskill prove BB84 uncondition-
ally secure by showing it equivalent to an unconditionally secure ED protocol
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(introduced in Sec 1.10) through the use of CSS codes. Using an ED protocol
for communication on a quantum channel connecting two parties Alice and
Bob who exchange qubits may work even when traditional quantum error
correction procedures fail, since ED protocols are known that can produce
a non-zero rate of communication even when traditional quantum error cor-
rection does not allow classical communication to take place [40].

4.10 Conclusion

So far the quantum systems into which information is encoded have been
described without much detail as ‘photons’, ‘signals’ or ‘fundamentally quan-
tum objects’. In QKD protocols optical signals are generally used as carriers
of information, and hence in the next chapter a more detailed description of
the quantum nature of light is given.
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Chapter 5

Quantum optics

“All the fifty years of conscious brooding have brought me no closer
to answer the question, ‘What are light quanta?’ Of course today
every rascal thinks he knows the answer, but he is deluding him-
self.”

- Albert Einstein

Light is a physical system that permits quantum mechanical description
via the quantisation of the electromagnetic field. These quanta are called
photons, however, naming something can give an illusory sense of it being
a simple or well-understood object. Quantum optics is the study of the
quantum mechanical properties of light, and in this chapter a selection of
aspects of quantum optics relevant to this discussion of QKD are presented:
an overview of the history of the quantum theory of light is given and the
concept of the photon introduced, the coherent state of light is formalised,
and finally the effects of phase shifters, beamsplitters and detectors on light
are described.

5.1 The quantum theory of light

Since the turn of the last century it has been clear that a classical wave the-
ory of light, although adequately able to account for the observed properties
of light beams, was insufficient.
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In 1900 Planck [4] proposed that the energy of a harmonic oscillator is quan-
tised in order to account for the spectral distribution of thermal light. That
is, each mode of the electromagnetic field is associated with a quantum har-
monic oscillator [75]. Unlike in the classical case, in the quantum domain
coupling to the external world becomes very small, and the possible states
of the system are found to be quantised, or limited to having energies (up to
a fixed offset given by the zero point energy ~ω/2) of En = n~ω, where n is
an integer, ω the angular frequency of the electromagnetic field, and ~ = h

2π
,

where h is Planck’s constant [40].

For a single mode of light, a state with energy En contains n quanta of
energy ~ω (in addition to the zero point energy), and to use a term coined
by Lewis in 1926 [5], these quanta are called photons [75].

In 1905, in confirmation of Planck’s hypothesis that light is emitted or ab-
sorbed only in integer multiples of a basic quantum of energy, Einstein [6]
showed that the photoelectric effect could also be explained on the hypoth-
esis of the quantisation of the electromagnetic field. The postulation that
light consists of a beam of photons each having an energy of hν, where ν is
the frequency of the light, explains how the energies of the electrons emitted
from the surface of some metal exposed to electromagnetic radiation do not
depend on the intensity of the incident light, but only on its wavelength.

Since then, the theory describing light as a beam of elementary particles
called photons has received broad experimental confirmation [68], and given
rise to many applications, for example, QKD.

5.2 States of light

In 1957 Gould [76] wrote the first prescription for building a viable optical
laser, and in 1960 Maiman [77] built the first laser, which enabled the genera-
tion of light fields whose strength and range of correlation was unprecedented
at optical frequencies. In response to resulting experiments, Glauber [78] pro-
posed a quantum theory of coherence by providing a definition of correlation
functions for complex optical field strengths.

Coherent states are very easy to create, for instance, the field generated by
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a highly stabilised laser operating well above threshold, is a coherent state
[79]. To reduce the average number of photons, an attenuator can be used to
lower the pulse intensity, and to create a weak coherent state with an average
photon number of much less than one, such that more than one photon is
rarely created [16]. However, to create single photon states on demand, or
indeed any definite number of photons in the field, is difficult [79]. Both
number states and coherent states of the electromagnetic field are now de-
scribed in more detail.

The result of the quantisation of the electromagnetic field is the introduction
of the non-Hermitian, and therefore non-observable [80], operators a and a†,
which satisfy the following commutation relations [79]:

[a, a] = [a†, a†] = 0, [a, a†] = 1. (5.1)

The operators a and a† are termed annihilation and creation operators, re-
spectively [79], of photons in a single mode of the electromagnetic field [81],
based on the outcome of their application to the number states, or Fock states.

The number states |n〉 form a complete orthogonal set. They are eigen-
states of the number operator N = a†a

a†a|n〉 = n|n〉. (5.2)

The vacuum state of the field mode is defined by

a|0〉 = 0. (5.3)

Application of the annihilation and creation operators, respectively, to the
number states yields

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
(n+ 1)|n+ 1〉. (5.4)

Another useful basis in which to represent the state space of the quantum
state of light, is the basis of coherent states. The coherent states of the
electromagnetic field modes |α〉 may be defined as right eigenstates of the
annihilation operator a with complex eigenvalue α

a|α〉 = α|α〉. (5.5)
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The conjugate state 〈α| is then the left eigenstate of the creation operator
a†, as can be seen by taking the Hermitian conjugate of (5.5).

A coherent state representation is useful in terms of describing an indefinite
number of photons that are in phase with each other. Using the orthogonal-
ity of the number states and normalising to unity, the coherent state |α〉 is
represented in the basis formed by the number states as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉, (5.6)

where |α|2 is the expectation value of n, or the average photon number. The
probability distribution of photons in a coherent state is a Poisson distribu-
tion

P (n) = |〈n|α〉|2 =
|α|2ne−|α|

2

n!
. (5.7)

Due to the orthogonality of the number states, the inner product of coherent
states is given by

〈α|β〉 = exp(−|α|
2

2
− |β|

2

2
+ α∗β). (5.8)

It follows that coherent states with average photon number of less than one
are non-orthogonal when they have opposite phases

〈α| − α〉 = e−2|α|2 . (5.9)

A coherent state |α〉 can also be created by a unitary transformation of the
vacuum

|α〉 = D(α)|0〉, (5.10)

where D(α) is termed the displacement operator, and given by

D(α) ≡ eαa
†−α∗a. (5.11)

The coherent state has the minimum uncertainty in amplitude and phase
allowed by the uncertainty principle [82], and hence is the closest quantum
mechanical state to a classical field [79]. Coherent states are particularly
appropriate for the description of the electromagnetic fields generated by co-
herent sources, like lasers and parametric oscillators [81].
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For more detail on the above description, see among others the books by
Mandel and Wolf [81] and Walls and Milburn [79].

More recently, real single photon sources are nearing the reach of existing
technologies. For example, there are qubit systems that can emit only one
photon when the state makes a transition from the upper to lower energy
level. Such systems may be trapped atoms or ions, or nitrogen-vacancy colour
centres in diamond [16]. For a review of these and other approaches, see [83].

5.3 Phase modulation

The phase of a state of light changes as it evolves in time. A phase shifter
is a transparent object that causes a state passing through it to evolve at a
rate different to that in vacuum by a factor depending on the properties of
the medium [40], thereby modulating the phase.

Figure 5.1: Symbolic diagram of a phase shifter.

The phase shift operator may be represented as eiφa
†a, and the action of

phase modulation on the coherent state |α〉 calculated as

|α〉 PS→ eiφa
†a|α〉

= e−|α|
2/2

∞∑
n=0

(
α√
n!

eiφ)n|n〉

= |αeiφ〉. (5.12)
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5.4 Beamsplitters

A beamsplitter can be realised by partially silvered glass, and is represented
by a (complex) reflectance r and transmittance t. Consider a beamsplitter
that acts on two input paths 0 and 1 which we will describe by creation
operators a†0 and a†1 (see Fig. 5.2). Note, the beamsplitter transformation
also applies to classical light, and the lines indicating the paths taken by the
light correspond to these classical light rays, rather than the path taken by
the photons [64]. Beamsplitter transformations for these operators in terms
of creation operators a†2 and a†3 for output paths 2 and 3 are

a†0
BS→ t′a†2 + r′a†3, a†1

BS→ ra†2 + ta†3. (5.13)

To satisfy the commutation relations (5.1), the following relations must hold

Figure 5.2: Symbolic diagram of a beamsplitter.

|r′| = |r|, |t| = |t′|, |r|2 + |t|2 = 1, r∗t′+ r′t∗ = 0 and r∗t+ r′t′∗ = 0. (5.14)

It is easy to show that these relations (5.14) are satisfied if

t = t′ = cos θ, r = −e−iφ sin θ and r′ = eiφ sin θ. (5.15)

These are the transmission and reflection coefficients, respectively, for a gen-
eral beamsplitter with associated angles θ and φ. Collecting terms, the fol-
lowing relations between input paths 0 and 1 and output paths 2 and 3 are
obtained

a†0
BS→ cos θa†2 + e−iφ sin θa†3, (5.16)

a†1
BS→ −eiφ sin θa†2 + cos θa†3. (5.17)
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The matrix representation is more compact:(
a†2
a†3

)
=

(
cos θ −eiφ sin θ

e−iφ sin θ cos θ

)(
a†0
a†1

)
. (5.18)

The action of a beamsplitter on a coherent state in path 0 and the vacuum
in path 1 is given in terms of the displacement operator D(α) (5.12) by

|α〉0|0〉1 = D0(α)|0〉0|0〉1
= exp(αa†0 − α∗a0)|0〉0|0〉1
BS→ exp[α(cos θa†2 + e−iφ sin θa†3)

−α∗(cos θa2 + eiφ sin θa3)]|0〉2|0〉3
= exp[(α cos θa†2 − α∗ cos θa2)

+(αe−iφ sin θa†3 − α∗eiφ sin θa3)]|0〉2|0〉3
= D2(α cos θ)D3(αe−iφ sin θ)|0〉2|0〉3
= |α cos θ〉2|αe−iφ sin θ〉3. (5.19)

The action of a beamsplitter on coherent states in paths 0 and 1 is given by

|α〉0|β〉1 = D0(α)D1(β)|0〉0|0〉1
= exp(αa†0 − α∗a0)exp(βa†1 − β∗a1)|0〉0|0〉1
BS→ exp[α(cos θa†2 + e−iφ sin θa†3)− α∗(cos θa2 + eiφ sin θa3)]

exp[β(−eiφ sin θa†2 + cos θa†3) + β∗(e−iφ sin θa2 − cos θa3)]|0〉2|0〉3
= exp[(α cos θa†2 − α∗ cos θa2) + (αe−iφ sin θa†3)− α∗eiφ sin θa3)]×

exp[−(βeiφ sin θa†2 − β∗e−iφ sin θa2) + (β cos θa†3 − β∗ cos θa3)]|0〉2|0〉3
= D2(α cos θ − βeiφ sin θ)D3(αe−iφ sin θ + β cos θ)|0〉2|0〉3
= |α cos θ − βeiφ sin θ〉2|αe−iφ sin θ + β cos θ〉3. (5.20)

Here it is used that D(α)D(β) = exp[(αβ∗ − α∗β)/2]D(α + β), and in this
case the exponential term contributes a factor of one to the overall phase.

5.5 Detectors

Photon detectors for discrete variable QKD (see Sec. 6.3) are usually avalanche
photodiodes [45]. An electrical voltage is applied to semi-conductor, such
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as silicon, germanium or indium gallium arsenide. The applied voltage is
kept above the breakdown threshold so that when a photon hits the semi-
conductor, it is absorbed and causes an avalanche of electrons, which pro-
duces an electrical signal [16]. A single-photon avalanche diode is able to
detect low intensity signals (down to a single photon) and to signal the ar-
rival times of the photons with a jitter of a few tens of picoseconds [84].

However, the most commonly available photo-detectors are so-called bucket
detectors, which can distinguish only between no photons, and one or more
photons [85]. The action of a detector D that does not resolve photon num-

Figure 5.3: Symbolic diagram of a detector.

ber is described mathematically as a projective measurement {D0, D1}, with
operators projecting onto the eigenspace of vacuum, or one or more photon
number states. ‘No click’ corresponds to measurement outcome ‘0’ which cor-
responds to an input of vacuum, and a ‘click’ corresponds to measurement
outcome ‘1’ which corresponds to the detection of a one or more photons.
The projectors are given by

D0 = |0〉〈0|

D1 =
∞∑
n=1

|n〉〈n|. (5.21)

The probability of a click p(D1) when the input state is a coherent state is

p(D1) = 1− 〈α|0〉〈0|α〉
= 1− e−|α|

2

. (5.22)

5.6 Conclusion

Quantum optics is the study of the nature and effects of light as a quantum
system, and in this chapter a selection of aspects of quantum optics were
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described in order to understand and provide a formal description of the
differential-phase-shift (DPS) QKD protocol which is done is Chap. 7.
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Chapter 6

Security and entanglement in
general QKD protocols

“The future ability of quantum computers might be a decade or
two away, their future ability to break public-key cryptography has
important implications for the encryption of highly sensitive infor-
mation today. For these applications, we must already design new
... cryptosystems ... that are immune to quantum cryptanalysis.”

- ARDA, Report of the Quantum Information Science and Technology Ex-
perts Panel, 2004

QKD is a means of distributing a secure key to be used as a one-time pad
between two parties, traditionally Alice and Bob, who wish to communicate
privately.

A method of proving the unconditional security of the key, is to show that
the QKD protocol is equivalent to an ED protocol (introduced in Sec. 1.10,
further discussed in Sec 4.9).

For a general P&M QKD protocol to be equivalent to an ED protocol, Phase
1 of the protocol must first be shown to permit equivalent description as an
EB QKD protocol where both Alice and Bob can use the available measure-
ment results to show the existence of entanglement in the quantum state that
is effectively distributed between them [28]. This implies that Bob’s measure-
ment must be described by non-commuting POVM elements (see Sec. 4.3.3).
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Here, a general P&M protocol is described, and an EB translation of the
protocol given. The condition on Bob’s measurements in the EB scheme is
derived. Finally, a brief discussion of unconditional security based on ED is
given.

6.1 A P&M description of Phase 1 for a gen-

eral QKD protocol

In ‘P&M’ terminology, Phase 1 of a general QKD protocol involves Alice
preparing a set of quantum states into which a sequence of symbols has been
encoded. More precisely:

A general P&M protocol specifies a quantum state |Ψ(S)〉 that encodes a
sequence of N symbols S = {s1, ..., sN} prepared by Alice. In many QKD
protocols, |Ψ(S)〉 can be written in tensor product form where there is a one-
to-one correspondence between each symbol si and each state |ψ(si)〉 that
encodes that symbol:

|Ψ(S)〉 =
N⊗
i=1

|ψ(si)〉. (6.1)

The si’s are independent and the state sent in each time interval i can be
considered discretely as the state |ψ(si)〉. Note that the states |ψ(si)〉 must
be non-orthogonal since a set of orthogonal states can be perfectly copied by
a potential eavesdropper.

These states are then sent to Bob, who performs a set of measurements
to decode the signal. Bob’s measurement results are used in Phase 2 of the
protocol which makes use of a public classical channel of which Alice and Bob
are the authenticated users, to estimate the noise introduced by the quan-
tum channel, visible through errors on the raw key which are conservatively
attributed to eavesdropping. Subsequently, the classical channel is used to
filter a secure key out of the initial sequence of symbols.
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6.2 An EB description of Phase 1 of a general

QKD protocol

The existence of an equivalent EB translation for a P&M QKD protocol was
first shown by Bennett et al. in 1992 [20]. They showed that Phase 1 of
BB84 (described in steps 1-4 in Sec. 1.6.1) can be equivalently described
as an EB phase, described in steps 1-4 in Sec. 1.10, while Phase 2 of each
protocol is identical. An equivalent EB translation of Phase 1 of a general
P&M QKD protocol is attained through replacing Alice’s preparation of a
set of signals by Alice’s preparation of a set of bipartite entangled states. She
keeps one half of each pair and performs a measurement on her subsystem,
sending the other to Bob, and effectively preparing the same set of quantum
states described in the P&M picture. From Bob’s perspective, the protocols
are identical. More precisely:

In the EB translation of a general protocol, the bipartite entangled state

|Φ〉AB =
1√
D

∑
S

|S〉A|Ψ(S)〉B

=
1√
D

∑
S

|S〉A{
N⊗
i=1

|ψ(si)〉}B (6.2)

is prepared, where D is the number of possible S sequences and the states
|S〉A form an orthogonal basis. By measuring in this basis, Alice learns one
sequence S and the corresponding |Ψ(S)〉 is effectively sent to Bob.

Since the si’s are independent (and let them be of an alphabet of size d),
|Φ〉AB can also be written as

|Φ〉AB =
N⊗
i=0

(
1√
d

∑
si

|si〉A ⊗ |ψ(si)〉B), (6.3)

where the states |si〉 form an orthogonal basis.

Bob performs the same set of measurements on his subsystem as in the P&M
scheme. Next in Phase 2 of the protocol, an authenticated public classical
channel is employed to estimate the noise introduced by the quantum chan-
nel, visible through errors on the raw key which are conservatively attributed
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to eavesdropping, and subsequently to filter a secure key out of the initial
sequence of symbols.

6.3 Entanglement as precondition for secu-

rity

QKD protocols can be divided into three families: discrete-variable (DV),
continuous-variable (CV) and distributed-phase-reference (DPR) protocols
[45].

A number of techniques have been used to show the unconditional secu-
rity of DV protocols [12, 24, 15, 26], and security proofs for CV protocols
are developing to a similar level [86]. For DV and CV protocols, the no-
tion of virtual entanglement plays an essential role in security proofs based
on ED [24, 15], which involve showing the equivalence of the protocol to
an unconditionally secure ED protocol. For a general prepare-and-measure
(P&M) QKD protocol to be equivalent to an ED protocol, Phase 1 of the
protocol must permit equivalent description as an entanglement-based (EB)
phase. Note that the EB version is not necessarily implemented (hence the
word ‘virtual’), but serves as a theoretical tool owing to its equivalence to
the P&M scheme.

Curty et al. [28] demonstrated that a necessary precondition for uncon-
ditionally secure QKD is that both sender and receiver can use the available
measurement results after Phase 1 is complete to prove the existence of en-
tanglement in the quantum state that is effectively distributed between them
in the EB translation of Phase 1. Such detection may involve only observed
data and is realised by using the class of entanglement witness operators that
can be constructed from these data.

That entanglement is a precondition for security is now demonstrated by
assuming that Eve is limited to performing individual attacks. This limita-
tion does not influence the necessity of the condition for security.

Let the classical data sets held by Alice, Bob and Eve during a QKD protocol
before SKD is commenced be modelled by the random variables A,B and E,
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respectively, with associated probabilities p(a), p(b) and p(e), respectively.
The mutual information between the sender and receiver, Alice and Bob,
conditional on the information that Eve has been estimated to have gained
through eavesdropping I(A : B|E) (3.8) is given by

I(A : B|E) =
∑
e

p(e)[H(A|e) +H(B|e)−H(A,B|e)], (6.4)

where
∑

e p(e)H(A(B)|e) is the conditional Shannon entropy (3.6) of A(B)
given E, and

∑
e p(e)H(A,B|e) is the joint Shannon entropy of A and B (3.5)

conditional on E. The intrinsic information I(A : B ↓ E) (3.9) is defined in
terms of the conditional mutual information I(A : B|E) as:

I(A : B ↓ E) = infPI(A : B|E), (6.5)

where P is the set of all possible extensions of the observable probability
distribution p(a, b) to p(a, b, e), i.e. the set of all possible individual eaves-
dropping attacks on the communication between Alice and Bob.

Consider an EB description of Phase 1 of a general P&M QKD protocol
as outlined in Sec. 6.2, in the case where the observable data p(a, b), which
describe the measurement outcomes of Alice and Bob, can be explained as
having come from a mixed separable state

σAB =
1

d

∑
si

|si〉A〈si| ⊗ |ψ(si)〉B〈ψ(si)|. (6.6)

A separable reduced density matrix σAB can always be extended to a pure
state of higher dimension:

σAB → |Ψ〉ABE =
1√
d

∑
si

|si〉A|ψ(si)〉B|ei〉E, (6.7)

since

TrE{|Ψ〉ABE〈Ψ|} = TrE{
1

d

∑
si

|si〉A|ψi〉B|ei〉E〈si|A〈ψi|B〈ei|E}

=
1

d

∑
si

|si〉A〈si| ⊗ |ψi〉B〈φi| ⊗ |Tr{|ei〉E〈ei|}

= σAB. (6.8)
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If Eve performs an attack that results in an extension of σAB to |Ψ〉ABE then
a measurement of her subsystem in the basis |ej〉 results in

|Ψ′〉ABE = |sj〉A|ψj〉B|ej〉E. (6.9)

The conditional probability p(a|e) on the state |Ψ′〉ABE is given by

p(a|e) = 〈Ψ′|p(a)⊗ 1B ⊗ 1E|Ψ′〉
= 〈sj|p(a)|sj〉, (6.10)

the conditional probability p(b|e) by

p(b|e) = 〈Ψ′|1A ⊗ p(b)⊗ 1E|Ψ′〉
= 〈ψ(sj)|p(b)|ψ(sj)〉, (6.11)

and the joint conditional probability by

p(a, b|e) = 〈Ψ′|p(a)⊗ p(b)⊗ 1E|Ψ′〉
= 〈sj|p(a)|sj〉〈ψ(sj)|p(b)|ψ(sj)〉
= p(a|e)p(b|e). (6.12)

It is not hard to show that if p(a, b) = p(a)p(b), then H(A,B) = H(A) +
H(B), which implies that the mutual information I(A : B|E) = 0. There-
fore, the intrinsic information I(A : B ↓ E) is also zero.

So, in the case where the observable data p(a, b), which are the measure-
ment outcomes of Alice and Bob, can be interpreted as having come from
a mixed separable state σAB, there exists an attack such that the mutual
information between Alice and Bob, conditional on the information that Eve
has gained through eavesdropping, is zero, and thus, no secret key can be
distilled via classical communication.

Having shown that a protocol can be secure only if p(a, b) can be interpreted
as having come from an entangled state, it remains to consider how Alice
and Bob can use the available measurement results to prove the existence of
entanglement in the entangled quantum state that is effectively distributed
between them.

A theorem by Curty et al. [28] provides the answer to this question and
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is stated formally below:

Entanglement as a precondition for secure QKD
A necessary precondition for a set of POVM elements Fa ⊗Gb together with
the probability distribution of their occurrence p(a, b) to lead to a secret key
via public communication is that the presence of entanglement in the effec-
tively distributed state |Φ〉AB can be detected via an entanglement witness
W =

∑
ab cabFa ⊗ Gb with cab real such that Tr(Wσ) ≥ 0 for all separable

states and Tr(Wρ) < 0 for at least one entangled state.

Here, the theorem itself is not examined further, but the implication that
Bob’s measurement must contain some non-commuting operators is shown.

6.4 Bob’s measurement

Suppose W =
∑

ab cabFa ⊗Gb is an entanglement witness with cab real such
that Tr(Wσ) ≥ 0 for all separable states and Tr(Wρ) < 0 for at least one
entangled state, and that Fa and Gb are Alice and Bob’s POVM elements in
the EB translation of a QKD protocol. Assume that in each time interval
Alice projects onto the set of orthogonal states |A〉, and that Bob projects
onto the set of orthogonal states |B〉. Then W is diagonal in the basis
{|A〉A, |B〉B}:

W =
∑
A,B

λAB|A〉A〈A| ⊗ |B〉B〈B|. (6.13)

Since W is a witness and Tr(Wσ) ≥ 0 for all separable states σ, it follows
that the expectation value of the witness W 〈Ψsep|W |Ψsep〉 is greater than or
equal to zero for all pure bipartite separable states, including the state

|Ψsep〉 = |α〉A|β〉B. (6.14)

Thus

〈α|A〈β|B{
∑
A,B

λAB|A〉A〈A| ⊗ |B〉B〈B|}|α〉A|β〉B ≥ 0, (6.15)

which implies that ∑
A,B

λAB〈α|A〉〈β|B〉〈A|α〉〈B|β〉 ≥ 0, (6.16)
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which in turn implies that
λAB ≥ 0. (6.17)

Since W has diagonal representation
∑

i λi|i〉〈i| with λi non-negative, W is
a positive operator. Therefore, 〈ψ|W |ψ〉 ≥ 0 for all |ψ〉 including all entan-
gled states and as a result, W cannot be an entanglement witness and the
protocol cannot lead to a secret key via public communication.

In the EB translation of a P&M protocol, Alice is assumed to project onto a
set of orthogonal states. Therefore, a necessary condition for the security of a
QKD protocol is that the POVM elements constituting Bob’s measurement,
which are the same in both translations, are not all mutually commuting.
This result should not be surprising since in an intercept-and-resend attack
on a P&M protocol where Bob’s measurement is described by only commut-
ing operators, an eavesdropper could measure an observable which commutes
with all of Bob’s operators without changing the statistics of Bob’s measure-
ment, thus remaining undetected. Therefore, a precondition for security is
that some of the POVM elements describing Bob’s measurement must be
non-commuting.

6.5 Entanglement distillation

ED protocols aim at the distillation of pure maximally entangled states from
a larger set of mixed non-maximally entangled states, through the perfor-
mance by Alice and Bob of LOCC (see Sec. 4.9.2, and the article by Lo and
Chau [24] for further details). If the resulting entangled states have a fidelity
of close to 1 to a maximally entangled state like that in Eq. (1.5), then Eve’s
information approaches zero for all possible attacks allowed by the laws of
quantum mechanics, and Alice and Bob’s perfectly correlated measurement
results can be used as a secret key.

Showing that a QKD protocol is equivalent to such an unconditionally se-
cure ED protocol will thus imply the unconditional security of the original
protocol.
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6.6 Conclusion

Here, a general P&M protocol was discussed as an introduction to the next
chapter, where a similar analysis of the Differential-Phase-Shift QKD proto-
col is performed.
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Chapter 7

Security and entanglement in
DPSQKD

“... distributed-phase-reference protocols were invented by exper-
imentalists, looking for practical solutions. ... It has not yet been
possible to derive a bound for [their] unconditional security, be-
cause the existing techniques apply only when |Ψ(S)〉 can be de-
composed in independent signals.”

- Scarani et al. [45]

In 2003 Inoue et al. [30] proposed the modified version of the DPSQKD
protocol, an example of a DPR protocol. Along with other DPR protocols,
like the coherent-one-way (COW) [87, 88] QKD protocol, a bound for the
unconditional security of DPSQKD, has not yet been found.

Here a brief history of DPSQKD is given. Then Phase 1 of DPSQKD is
described and formalised as both a P&M and an EB phase. Bob’s measure-
ment is shown to be described by non-commuting POVM elements. The
EB translation of DPSQKD given here is a necessary first step towards an
unconditional security proof for the protocol based on ED. Finally, thoughts
on a potential unconditional security proof based on ED for a DPSQKD-like
protocol are given.
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7.1 A brief history of the protocol

The DPSQKD protocol was first proposed by Inoue et al. in 2002 [29]. The
modified version of DPSQKD to be discussed here was proposed by the same
authors in the next year [30], as a scheme offering a higher key creation
efficiency than conventional fibre-based BB84. In 2006 Waks et al. [89] de-
rived a proof of the security of DPSQKD under the assumption that Eve
is restricted to individual attacks. They showed that individual attacks are
more powerful than certain so-called sequential attacks, thus ensuring secu-
rity against this form of attack also. In the same year Diamanti et al. [90]
reported an implementation of DPSQKD secure against individual attacks
over 100km. In 2007 Tsurumaru [91] introduced an improved version of the
aforementioned sequential attack that decreases the distance over which DP-
SQKD is secure to less than 95km, thus rendering the above implementation
insecure. In 2008 Zhao et al. [92] showed the security of DPSQKD against
collective attacks in the noiseless case. In 2009 Ma et al. [93] reported an
implementation of DPSQKD using superconducting single-photon detectors,
with a quantum bit error rate of less than 4%. Later in 2009, a proof of the
unconditional security of a protocol related to DPSQKD, using single pho-
tons instead of coherent pulses, was published by Wen et al. [94]. However,
this proof does not imply the unconditional security of the original DPSQKD
protocol.

There are a number of practical advantages to DPSQKD, namely: its suit-
ability for fibre transmissions; use of readily available telecommunication
tools; no requirement for a single photon source (the generated states are as-
sumed to be easily produced coherent states) and thus high communication
efficiency. However, bounds for the unconditional security of DPSQKD, and
other examples of DPR like the COW protocol, have not yet been found. An
EB translation of a P&M QKD protocol where the precondition for security
on Bob’s measurement is satisfied, is a necessary first step towards a poten-
tial unconditional security proof for the protocol based on ED. Such an EB
translation of DPSQKD is absent from the literature: the starting point is a
P&M description of Phase 1 of the protocol.
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7.2 A P&M description of Phase 1 of the DP-

SQKD protocol

In DPSQKD Alice prepares a sequence ofN+1 symbols S ′ = {s′0, ..., s′N}, s′i ∈
{0, 1}, according to which she modulates the phase of each of N + 1 atten-
uated coherent pulses by {0, π}. The pulses are separated by a time ∆t.
After modulation the phase of the ith pulse is given by φi = s′iπ. From the
bit string S ′ Alice calculates the potential key bit string S via the relation
si = s′i−1⊕s′i, where ⊕ represents addition modulo 2. Let the time intervals in
which Alice sends the pulses be i = 0, ..., N . The quantum state |Ψ(S ′)〉DPS
that encodes the sequence S ′ can then be written as

|Ψ(S ′)〉DPS =
N⊗
i=0

|(−1)s
′
iα〉 (7.1)

(compare with Eq. (6.1)). The requirement of non-orthogonality of the states
|ψ(s′i)〉 (compare with |ψ(si)〉 from Sec. 6.1) is met, since the coherent pulses
have an average photon number |α|2 of less than one (see Eq. (5.9)).

The state sent in each time interval i can be considered independently if
written (as above) as |(−1)s

′
iα〉. Here, there is a one-to-one correspondence

between each symbol s′i and each state |ψ(s′i)〉 encoding that symbol, but
since the consecutive elements of S are not independent there is no such cor-
respondence between potential key bits and prepared states, as in the general
case in Sec 6.1. And this is the reason existing methods of proving uncondi-
tional security cannot be applied to the DPSQKD protocol, since they rely
on the mutual independence of all potential key bits. However, the form
of Eq. (7.1) allows a formulation of P&M DPSQKD as an equivalent EB
scheme, which is done in the next section.

At Bob’s location, the ith incoming pulse is split at BS1. The part which
propagates on path 3 arrives at BS2 simultaneously with the part of the
(i+ 1)th pulse coming from path 2. Bob’s measurement is initiated at a time
∆t after the first pulse has entered his interferometer, in time interval i = 1,
and there is the possibility of a detection event that can contribute to the
key in this and subsequent time intervals up to i = N . The transformation of
|Ψ(S)〉DPS in Bob’s interferometer forms part of his measurement (see Fig.
7.1) and is described by the following transformations:
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Figure 7.1: Quantum key distribution system for the implementation of the
DPSQKD protocol. The paths through Bob’s interferometer are labelled
0-5. LASER: coherent light source, ATT: attenuator, PS: phase shifter, BS:
symmetric beamsplitter, D: detector.

The incoming pulses enter symmetric beamsplitter 1 (BS1) in the path la-
belled 0 and are described by creation operators a†0, while path 1 contains
vacuum. The beamsplitter transformation for a†0 in terms of operators a†2
and a†3 for the output paths labelled 2 and 3 (see Sec. 5.4) is

a†0
BS1→ 1√

2
a†2 + e−iφ1

1√
2
a†3. (7.2)

Transformations for symmetric beamsplitter 2 (BS2) (with an orientation
rotated through π

2
relative to BS1) in terms of operators a†4 and a†5 for the

output paths labelled 4 and 5, are then derived to be

a†2
BS2→ 1√

2
a†4 − eiφ2

1√
2
a†5, (7.3)

a†3
BS2→ e−iφ2

1√
2
a†4 +

1√
2
a†5. (7.4)

In terms of the creation operators for each time interval i for the signals
entering Bob’s interferometer in path 0, a†i0 , and the two outgoing paths, a†i4
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and a†i5 , the total action of the interferometer is described as

a†i0
I→ 1

2
(a†i4 − eiφ2a†i5 + ei(φ∆t−φ1)(e−iφ2a

†(i+1)
4 + a

†(i+1)
5 ), )

=
1

2
(a†i4 − eiφ2a†i5 + a

†(i+1)
4 + eiφ2a

†(i+1)
5 ), (7.5)

where the beamsplitters are chosen such that their relative phase shifts com-
pensate the phase shift associated with the time delay in the interferometer,
i.e., φ1 +φ2 = φ∆t. The time delay ∆t in the interferometer must be equal to
the time separation between incoming pulses in path 0, so that components
of consecutive pulses can interfere at BS2.

If Alice sends the state |Ψ(S ′)〉DPS, the state |Ψ′(S ′)〉DPS entering Bob’s
detectors in time intervals i in paths 4 and 5 after transformation in the
interferometer, is expanded as

|Ψ′(S ′)〉DPS =
N⊗
i=1

|1
2
α(eiφi + eiφi−1)〉i4|

1

2
αeiφ2(eiφi − eiφi−1)〉i5

=
N⊗
i=1

|1
2
α((−1)s

′
i + (−1)s

′
i−1)〉i4|

1

2
αeiφ2((−1)s

′
i − (−1)s

′
i−1)〉i5,

(7.6)

recalling that φi = s′iπ.

Bob uses detectors D0 and D1 that discern vacuum from one or more photons
(so-called bucket detectors see Sec. 5.5), in paths 4 and 5, respectively. A
detector ‘click’ will occur when one or more photons are detected. For an in-
coming coherent state |β〉4(|β〉5), detector D0(D1) will click with probability
1 − e−|β|

2
. These probabilities depend on the phase modulation performed

by Alice, which is determined by the bit string S ′. For s′i + s′i−1 = si = 0(1),
the probability of D1(D0) clicking is zero, and hence a click in D0(D1) cor-
responds to si = 0(1). This situation is summarised in Table 1.

Note, the probability of a detector firing is independent of the phase, and
therefore Bob cannot distinguish the two states |α〉i and | − α〉i that corre-
spond to one si.
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Table 7.1: DPSQKD detection and key extraction table

s′i−1 s′i si |ψ〉i p(D0) p(D1)

0 0 0 |α〉4|0〉5 1− e−|α|
2

0

1 1 0 | − α〉4|0〉5 1− e−|α|
2

0

0 1 1 |0〉4|αeφ2〉5 0 1− e−|α|
2

1 0 1 |0〉4| − αeφ2〉5 0 1− e−|α|
2

Bob then utilises the authenticated classical channel to communicate to
Alice the time intervals i∗ in which he recorded a detection event in one of
his detectors (which is not in every time interval since the average photon
number |α|2 per pulse is less than one). This process serves to filter a secure
key S∗ out of the initial sequence S, since (in the absence of error) for each
i∗ Alice and Bob can add an identical bit, si∗ , to the secure filtered key.

7.3 An EB description of Phase 1 of the DP-

SQKD protocol

In the EB translation of DPSQKD, the bipartite entangled state

|ΦDPS〉AB =
1√

2N+1

∑
S′

|S ′〉A ⊗ (|Ψ(S ′)〉DPS)B

=
1√

2N+1

∑
S′

|S ′〉A ⊗ (
N⊗
i=0

|(−1)s
′
iα〉)B, (7.7)

is prepared (compare with Eq. (6.2)).
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The total entangled state |ΦDPS〉AB can also be written as

|ΦDPS〉AB =
N⊗
i=0

 1√
2

∑
s′i=0,1

|s′i〉A ⊗ |ψ(s′i)〉B


=

N⊗
i=0

 1√
2

∑
s′i=0,1

|s′i〉A ⊗ |(−1)s
′
iα〉B


=

N⊗
i=0

(
1√
2
{|0〉A ⊗ |α〉B + |1〉A ⊗ | − α〉B}

)i
(7.8)

where the states |0〉 and |1〉 form the arbitrary orthogonal basis in which
Alice measures, and correspond to s′i = 0 or 1 respectively. Again, there is a
one-to-one correspondence between each s′i and each state |ψ(s′i)〉 encoding
that symbol, although the potential key bits si are not independent of each
other.

Consequences of this non-independence are that Alice must keep track of the
time intervals to which her measurement outcomes correspond, thus incre-
mentally building her knowledge of the string S via the relation si = s′i−1+s′i.
Subsequent to Alice’s projections in the arbitrary orthogonal basis {|0〉, |1〉}
performed on her subsystem, the resulting string of attenuated coherent
pulses that form Bob’s subsystem must be separated by the same time delay
associated with the delay in Bob’s interferometer, ∆t. Bob learns a fraction
|α|2 of the key bits si in string S by interfering consecutive pulses to learn
their relative phases. He performs the same total measurement as in the
P&M description.

7.4 Bob’s measurement

Bob’s measurement can be described conveniently in the framework of gener-
alised measurements, where the measurement statistics are given by a POVM
(see Sec. 4.3.3). The POVM associates with each measurement result m, a
positive operator Em, termed a POVM element, or an effect. The expectation
value of the effect Em determines the probability to obtain result m:

pm = 〈ψ|Em|ψ〉 , (7.9)
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where |ψ〉 is the state just before the measurement is carried out. The ef-
fects satisfy

∑
mEm = 1 in order to guarantee that the probabilities sum

up to unity. In this formalism, projection measurements (see Sec. 4.3.2) of
quantum mechanical observables are described by effects which are mutually
commuting projectors onto the eigenspaces corresponding to the measure-
ment results. In general, however, the effects are neither projectors nor do
they commute.

A necessary requirement for the shared bit string to be secret is that the
performed measurements must be able to detect entanglement in the state
effectively distributed between Alice and Bob in the EB scheme [28]. This
is not possible if Bob’s measurement results correspond only to mutually
commuting effects (see Sec. 6.4). This condition applies also to the P&M
version of any QKD protocol, where the measurements must be the same
as in the equivalent EB transcription. In an intercept-and-resend attack on
a P&M protocol where Bob’s measurement is described by only commuting
effects, an eavesdropper could measure an observable which commutes with
all of Bob’s effects without changing the statistics of Bob’s measurement
and thus remain undetected. Therefore, a precondition for security is that
some of the effects constituting Bob’s measurement must be non-commuting.

In DPSQKD, Bob’s measurement is associated with a total number 22N of
possible results and as many corresponding effects, since in the time intervals
i ∈ {1, ..., N}, he projects either onto vacuum or a one-or-more photon state
in two detectors, D0 and D1. He obtains an average of |α|2N detection events
which contribute to the key. The effects constituting Bob’s measurement are
written as follows:

G1 = |0〉14〈0| ⊗ |0〉15〈0| ⊗ |0〉24〈0| ⊗ |0〉25〈0|...⊗ |0〉N4 〈0| ⊗ |0〉N5 〈0|,

G2 =
∞∑
n=1

|n〉14|n〈⊗|0〉15〈0| ⊗ |0〉24〈0| ⊗ |0〉25〈0|...⊗ |0〉N4 〈0| ⊗ |0〉N5 〈0|,

G3 = |0〉14〈0| ⊗ |0〉15〈0| ⊗ |0〉24〈0| ⊗
∞∑
n=1

|n〉25〈n|...⊗ |0〉N4 〈0| ⊗ |0〉N4 〈0|

... ,

G22N =
∞∑
n=1

|n〉14〈n| ⊗
∞∑
n=1

|n〉15〈n|...
∞∑
n=1

|n〉N4 〈n| ⊗
∞∑
n=1

|n〉N5 〈n|. (7.10)
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Bob’s measurement is thus seen to be a degenerate projection measurement of
photon number, where [Gx, Gy] = 0 for all x, y, since the inner product of vac-
uum with a one-or-more photon state is always zero. It is easy to show that
this result does not change if Bob’s interferometer is considered as part of his
measurement apparatus. Since the action of an interferometer is unitary, the
result for the transformed effects remains the same: [U †GxU,U

†GyU ] = 0.
At this point the protocol appears to be insecure! In the remainder of this
section it will be shown that the necessary condition on Bob’s measurement
- the non-commutativity of effects- nevertheless is met.

For this purpose, recall that Bob’s interferometer has two input paths (path
0 and path 1, see Fig. 7.1). Only path 0 is populated, it carries the light sent
by Alice in state |ψ〉0 ≡ |Ψ(S ′)〉DPS (see Eq. (7.1)), while path 1 contains the
vacuum state |0〉0 at all times. When including the interferometer in Bob’s
measurement, the probability to obtain any result m ∈ {1, 2..., 22N} can be
expressed by means of the state |Φ〉 ≡ |ψ〉0 ⊗ |0〉1 of the light entering the
interferometer as:

pm = 〈Φ|U †GmU |Φ〉 = 0〈ψ|Em|ψ〉0 (7.11)

with Em ≡ 1〈0|U †GmU |0〉1 .

While the action of the interferometer is represented by the operator U which
maps the incoming state in paths 0 and 1 to the the outgoing state in paths
4 and 5, the new effects Em are operators that act only on states in path
0. The expectation value with respect to the vacuum state in path 1 re-
duces the action of the operator U †GmU to the subspace of states in path
0, similarly to a partial trace. According to Eq. (7.11), the probability for
any of Bob’s measurement results can thus be expressed only in terms of the
state sent by Alice using effects Em. It is well known that such a reduction
of a projective-measurement as given by the effects U †GmU can result in a
POVM with non-commuting effects. In fact, any POVM can be represented
as a projective measurement acting on a higher dimensional Hilbert space
(see Sec. 4.3.3 and Neumark’s theorem [67]).

In illustration, recall the action of the interferometer (7.5) on the signals
entering Bob’s interferometer in path 0, a†i0 , and the two outgoing paths, a†i4
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and a†i5 :

a†i0
I→ 1

2
(a†i4 − eiφ2a†i5 + ei(φ∆t−φ1)(e−iφ2a

†(i+1)
4 + a

†(i+1)
5 )),

=
1

2
(a†i4 − eiφ2a†i5 + a

†(i+1)
4 + eiφ2a

†(i+1)
5 ). (7.12)

The matrix MI corresponding to the action of the interferometer on the
reduced Hilbert space of the relevant input paths only in each time interval
is non-unitary, and is given by

MI =
1

2



1 0 0 0 . . . 0
−eiφ2 0 0 0 . . . 0

1 1 0 0 . . . 0
eiφ2 −eiφ2 0 0 . . . 0
0 1 1 0 . . . 0
0 eiφ2 −eiφ2 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . eiφ2


.

The non-unitarity of MI is easily understood via the Stinespring-Kraus the-
orem [65], which states that any quantum operation realised in system A
corresponds to a unitary transformation performed on a system with a larger
Hilbert space HAB (see Sec. 4.3.3).

With respect to the necessary condition on Bob’s measurements, indeed,
the resulting effects Em are not all mutually commuting, and therefore sat-
isfy the necessary condition for security. Consider the effects E2 and E3 that
correspond to a click in D0 in time interval 1 and a click in D1 in time interval
2, respectively:

E2 = 1〈0|U †G2U |0〉1 = M †
IG2MI =

∞∑
n=1

1

4nn!
(a†00 + a†10 )n|0〉〈0|(a0

0 + a1
0)n,

(7.13)

E3 = 1〈0|U †G3U |0〉1 = M †
IG3MI =

∞∑
m=1

1

4mm!
(a†10 − a

†2
0 )m|0〉〈0|(a1

0 − a2
0)m.

(7.14)
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The commutator [E2, E3] is given by:

[E2, E3] =
∞∑
n=1

1

4nn!
(a†00 + a†10 )n|0〉T

∞∑
m=1

1

4mm!
〈0|(a1

0 − a2
0)m

−
∞∑
m=1

1

4mm!
(a†10 − a

†2
0 )m|0〉T

∞∑
n=1

1

4nn!
〈0|(a0

0 + a1
0)n, (7.15)

where the term T is defined and evaluated as:

T ≡ 〈0|(a0
0 + a1

0)n(a†10 − a
†2
0 )m|0〉

=
n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
(−1)l〈0|(a0

0)n−k(a1
0)k(a†10 )m−l(a†20 )l|0〉

= n!, (7.16)

with n = m = k and l = 0.

Note that T = T ∗ is a non-zero real number.

The commutator [E2, E3] is then given by:

[E2, E3] =
∞∑
n=1

n∑
l=0

n∑
k=0

1

16nn!

(
n

l

)(
n

k

)
× {(−1)k(a†00 )n−l(a†10 )l|0〉〈0|(a1

0)n−k(a2
0)k

−(−1)l(a†10 )n−l(a†20 )l|0〉〈0|(a0
0)n−k(a1

0)k}
6= 0. (7.17)

Since the operators a
(†)0
0 , a

(†)1
0 and a

(†)2
0 act on different Hilbert spaces, the

matrix elements do not cancel. Therefore all terms in the sum are non-zero.

It has therefore been shown that there do exist non-commuting POVM
elements in Bob’s measurement in the EB translation of DPSQKD, i.e.,
[E2, E3] 6= 0, which is a necessary requirement for the detection of entan-
glement in the effectively distributed state. This result can be understood in
terms of Neumark’s theorem [67], from which it follows that a non-commuting
generalised measurement on a certain Hilbert space can be realised as a pro-
jective measurement on a higher dimensional Hilbert space.
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The protocol has thus been shown to satisfy a necessary condition for se-
curity, i.e. that Bob’s measurement involves non-commuting effects. An EB
translation of a P&M QKD protocol where the condition on Bob’s measure-
ment is met, is a necessary first step towards a security proof based on ED.
It remains to show whether an unconditional security proof based on ED can
be performed.

7.5 Thoughts

Following Phase 1 of DPSQKD which was described in Sec. 7.2 and 7.3 as a
P&M and an EB phase respectively, Phase 2 of the protocol is commenced.

This involves Bob utilising the authenticated classical channel to commu-
nicate to Alice the time intervals i∗ in which he recorded a detection event
in one of his detectors (which is not in every time interval since the average
photon number |α|2 per pulse is less than one). In the absence of error Alice
and Bob can then add an identical bit si∗ to the filtered key S∗ for each time
interval i∗. Given that imperfect devices and possible eavesdropping result
in errors in the key, classical error correction and privacy amplification al-
gorithms can then be implemented. The difficulty in proving unconditional
security is to estimate an upper limit on Eve’s information given the average
bit error rate on the key, assuming that she is allowed to perform any action
allowed by the laws of quantum mechanics.

With regard to the aim of showing DPSQKD equivalent to an ED proto-
col thereby proving its unconditional security, the question is whether Phase
2 of DPSQKD can be related to a process that distills entanglement from
the N + 1 pairs shared by Alice and Bob after the EB description of Phase
1.

The difficulty in deriving a bound for the unconditional security of DPSQKD
is that unlike in general QKD protocols where there is a one-to-one correspon-
dence between each symbol si and each state |ψ(si)〉 encoding that symbol,
in DPSQKD, the consecutive elements of S are not independent and there
is no such correspondence between potential key bits and prepared states.
And this is the reason existing methods of proving unconditional security
cannot be applied to the DPSQKD protocol, since they rely on the mutual
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independence of all potential key bits.

This problem is circumvented in the following novel EB DPSQKD-like pro-
tocol:

7.6 EB DPSQKD-like protocol

Consider an EB QKD protocol where the following bipartite entangled state
|Φ〉AB is prepared:

|Φ〉AB =
N⊗
i=0

{ 1√
2

(|α〉iA0
|α〉iB0

+ | − α〉iA0
| − α〉iB0

)}

=
1

√
2

(N+1)
{(|α〉0A0

|α〉0B0
+ | − α〉0A0

| − α〉0B0
)

⊗(|α〉1A0
|α〉1B0

+ | − α〉1A0
| − α〉1B0

)

⊗(|α〉2A0
|α〉2B0

+ | − α〉2A0
| − α〉2B0

)⊗ ...}. (7.18)

Here i represents a time interval of size ∆t, |α|2 the average photon number
in the coherent state |α〉, A Alice’s subsystem, B Bob’s, and the subscript 0
the initial path zero as labelled in Fig. 7.2.

The action of Alice’s interferometer with a delay in the long arm of ∆t is
given by

â†i0
IA→ 1

2
(â†i4 + e−iφ2 â†i5 + â

†(i+1)
4 − e−iφ2 â

†(i+1)
5 ). (7.19)

The action of Bob’s interferometer with a delay in the long arm of ∆t is
given by

â†i0
IA→ 1

2
(â†i4 − eiφ2 â†i5 + â

†(i+1)
4 + eiφ2 â

†(i+1)
5 ). (7.20)

Let the states |ψ〉 and |γ〉 be defined as

|ψ〉 ≡ |0〉A4|αe−iφ2〉A5|0〉B4|αe−iφ2〉B5

|γ〉 ≡ |α〉A4|0〉A5|α〉B4|0〉B5. (7.21)

Discarding the part of the zeroth pulse that travelled on the short path in the
interferometer in each subsystem, the entangled state shared by Alice and
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Figure 7.2: Quantum key distribution system for an entanglement-based
protocol. BS: symmetric beamsplitter, D: non-number-resolving photon
detector, S: source of entangled pairs.

Bob after the action of both interferometers and before detection is calculated
to be

|Φ〉AB
I→ 1

2N
{ |γ〉1|γ〉2 ... +

|γ〉1|γ〉2 ... +

|γ〉1|ψ〉2 ... +

|γ〉1|ψ〉2 ... +

|ψ〉1|γ〉2 ... +

|ψ〉1|γ〉2 ... +

|ψ〉1|ψ〉2 ... +

|ψ〉1|ψ〉2 ... +
... }. (7.22)

7.7 Comments

Although the above state was only calculated explicitly for the first three
pulses, it seems that the terms in the sum represent all possible permuta-
tions of states in all time intervals arising after the transformation of |Φ〉AB
in both interfermometers. Note, in each time interval Alice and Bob’s states
are perfectly correlated, and also that the state factorises i.e., the states in
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different time intervals are independent. The states |ψ〉 and |γ〉 are non-
orthogonal owing to the contribution of the vacuum state in the coherent
state, and are therefore not perfectly distinguishable.

Two QKD protocols are equivalent if from any perspective outside Alice’s
laboratory, the two cannot be told apart. Phase 1 of the P&M DPSQKD
protocol involves Alice preparing N + 1 coherent pulses, randomly modu-
lating the phase of each by either 0 or π, and then sending these to Bob.
Phase 1 of the EB protocol outlined above is similar to the P&M DPSQKD
protocol, if Alice first performs a non-photon-number-resolving measurement
on her subsystem in each time interval, since this results in Bob receiving a
chain of N + 1 coherent pulses with random relative phases of 0 or π.

The difference between the schemes appears to be that in this EB scheme
Alice measures in a non-orthogonal basis, and her knowledge of the key to be
shared with Bob is therefore only partial, in the sense that she only knows
what Bob has been sent in the time intervals in which she gets a detection
event, while in P&M DPSQKD she has full knowledge of the bit string S ′

according to which she modulates the phases of the pulses sent to Bob.

As a result, in this EB protocol, Alice and Bob will record a key of shorter
length if N + 1 entangled pairs of pulses are prepared. Considering an error-
free channel, in the P&M DPS QKD protocol Alice and Bob can record a
secret key bit in all the time intervals in which Bob records a detection event,
and this happens with a probability of 1− e−|α|

2
. On the other hand, in the

new EB protocol, to add a secret bit to their key, both Alice and Bob must
observe a detection event, and the joint probability of this happening is given
by (1− e−|α|

2
)2.

The unconditional security proof [27] for B92 [95], a protocol using two non-
orthogonal states, is based on ED and may possibly be applicable to this EB
protocol, where the effectively distributed state factorises in terms of time
intervals. The next step would be either to show that it is equivalent to the
P&M DPS QKD protocol, or to propose a P&M protocol equivalent to this
EB scheme that is feasible to implement.
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7.8 Conclusion

DPSQKD, an example of a DPR protocol, has here been described firstly
as a P&M scheme, and secondly translated into an EB scheme, thus fitting
into the framework of description for generic QKD protocols. DPSQKD has
been shown to satisfy a necessary condition for security, i.e., that Bob’s mea-
surements are non-commuting in the EB translation of the protocol. An
EB translation of a DPR protocol is a necessary first step towards an un-
conditional security proof based on ED. Finally, thoughts on a potential
unconditional security proof based on ED for a DPSQKD-like protocol are
given.
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Chapter 8

Conclusion and outlook

“The very word ‘secrecy’ is repugnant in a free and open society.”

- John F. Kennedy

8.1 Background

Quantum key distribution (QKD) aims at the creation of a secret key in the
two locations of partners, traditionally Alice and Bob, wishing to communi-
cate in private. Phase 1 of a general QKD protocol can be described as a
prepare-and-measure (P&M) or equivalently as an entanglement-based (EB)
phase. The aim of Phase 2 is to distill a secret key from the measurement
outcomes resulting from Phase 1. One method of proving the unconditional
security of a QKD protocol consists of showing the equivalence of the total
protocol including Phases 1 and 2 to an unconditionally secure entanglement
distillation (ED) protocol, which will then imply the unconditional security
of the original scheme.

The classical data produced in a secure QKD protocol must imply non-
classical correlations between the systems held by Alice and Bob in the EB
translation. Therefore, a necessary condition for the security of a QKD pro-
tocol is that the measurements performed by Alice and Bob in the EB trans-
lation must detect entanglement in the effectively distributed state, which in
turn implies that Bob’s measurement must consist of non-commuting POVM
elements. Given a general P&M QKD protocol, a necessary first step to
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proving the protocol unconditionally secure through such an equivalence, is
to describe an equivalent EB translation of Phase 1 where this condition on
Bob’s measurement is met.

8.2 DPSQKD

There are a number of practical advantages to the differential-phase-shift
(DPS) QKD protocol, however, it is a member of the class of QKD proto-
cols for which bounds for unconditional security have not yet been found.
In the DPSQKD protocol, consecutive potential key bits are not indepen-
dent and there is no one-to-one correspondence between potential key bits
and prepared states, as in general QKD protocols. This is the reason existing
methods of proving unconditional security cannot be applied to the DPSQKD
protocol, since they rely on the mutual independence of all potential key bits.

However, the formulation of P&M DPSQKD given here facilitates the trans-
lation of the protocol into an equivalent EB scheme. The EB translation of
DPSQKD given here was previously missing from the literature.

With respect to Bob’s measurements, which are the same in both the EB
and P&M descriptions: On the large Hilbert space consisting of all input
and output modes in Bob’s interferometer and all time intervals, Bob’s mea-
surement, which consists of the combined action of his interferometer and his
detectors, is mathematically described as a degenerate projection measure-
ment, consisting only of orthogonal projectors. At this point, the protocol
appears to be insecure, since the condition on Bob’s measurements is not met!

However, a POVM with non-commuting effects can be represented by a pro-
jective measurement on a higher dimensional Hilbert space. And indeed,
when Bob’s measurement in DPSQKD acts on the reduced Hilbert space of
populated modes only, it is shown that his measurement is described by a
POVM with non-commuting elements. This discussion was also absent from
the literature.

The EB translation of DPSQKD formalised here, where the necessary con-
dition on Bob’s measurement is shown to be met, is a necessary first step
towards a potential unconditional security proof for the protocol based on
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ED.

8.3 Outlook

Whether Phase 2 of DPSQKD can be related to a process that distills en-
tanglement from the bipartite states shared by Alice and Bob after the EB
description of Phase 1 given here remains to be shown. The difficulty is
that there is not a one-to-one correspondence between potential key bits and
prepared states. To this end, a new DPSQKD-like protocol is proposed fi-
nally, where there is such a correspondence. The next step would either be
to show that this new protocol is equivalent to the original P&M DPSQKD
protocol, or to propose a new P&M protocol equivalent to this EB scheme
that is feasible to implement. It is possible that given this correspondence in
the DPSQKD-like protocol, existing methods of proving the unconditional
security of protocols using two non-orthogonal states can be applied.

In conclusion, although the security status of the DPSQKD protocol re-
mains to be determined, some useful contributions to and discussions of the
endeavour have been made here.
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Appendix

List of acronyms and abbreviations

BB84 the protocol of Bennett and Brassard published in 1984 [10]
QKD quantum key distribution
SKD secret-key distillation
EPR Einstein-Podolsky-Rosen
E91 the protocol of Ekert published in 1991 [19]
BBM92 the protocol of Bennett, Brassard and Mermin published in 1992 [20]
EB entanglement-based
P&M prepare-and-measure
ED entanglement distillation
CSS Calderbank-Shor-Steane
DPS Differential-Phase-Shift
RSA the public-key cipher of Rivest, Shamir and Adleman published in 1978 [34]
NP non-deterministic polynomial
MAC message authentication code
i.i.d. independent and identically distributed
POVM positive operator-valued measure
LOCC local operations and classical communication
DV discrete-variable
CV continuous-variable
DPR distributed-phase-reference
COW Coherent-one-way
BS1(2) beamsplitter 1(2)
D0(1) bucket detector 0(1)
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