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Summary 

 

Background:  HIV-1 envelope (Env) diversity is arguably the most significant challenge for 

the development of an efficacious vaccine. An ideal vaccine would elicit the production of 

broadly neutralizing antibodies (nAb), capable of retaining potent activity against a diverse 

panel of viral isolates. The evolutionary forces that shape the diversity of envelope and 

ensuing nAb responses are incompletely understood in HIV-1 subtype C infection, the 

dominant subtype globally.  Therefore there is an urgent need to define the patterns of 

envelope diversity, determine the correlates of immune protection and to discover subtype C 

immunogens in order to develop a globally relevant vaccine. 

 

Methods:  We applied the single genome sequencing strategy to study plasma derived 

viruses from four slow progressors and four progressors over a median of 21 months between 

study entry and study exit.  The participants‘ samples were from the Sinikithemba cohort of 

antiretroviral therapy-naïve chronically infected individuals and were termed slow 

progressors or progressors based on CD4 T-cell counts and viral loads over two years.  We 

analyzed env sequence diversity, divergence patterns and envelope characteristics across the 

entire HIV-1 subtype C gp160. We studied the evolution of autologous nAb (AnAb) and 

heterologous nAb responses in order to test the hypothesis that slow disease progression is 

associated with more potent autologous or heterologous nAb responses.  Furthermore, 

genotypic env characteristics were correlated to potency of neutralization in order to 

understand possible differences in nAb responses with divergent rates of disease progression 

and to describe genotypic differences associated with differential nAb potencies. In addition, 

the binding affinities of HIV-specific immunoglobulins (IgGs) and the affinities of the IgGs 



 x 

to various Fc receptors (both activating- FcRI, FcRIIa, FcRIIIa; inhibitory- FcRIIb) 

were assessed.  These binding affinities were used as a surrogate for the recruitment of 

effector functions of cells of the innate immune system e.g. macrophages or natural killer 

cells to initiate antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody 

dependent cell-mediated viral inhibition (ADCVI) and these were correlated to markers of 

disease progression namely CD4 T-cell counts and viral loads.  

Results: Intra-patient diversity was higher in slow progressors for regions C2 (p=0.0006), V3 

(p=0.01) and C3 (p=0.005) compared to progressors.  Consistent with this finding, slow 

progressors also had significantly increased amino acid length in V1-V4 with fewer potential 

N-linked glycosylation sites (PNGs) compared to progressors (p=0.009 and p=0.02 

respectively).  Similarly, in progressors, the gp41 region was significantly longer and had 

significantly fewer PNGs compared to slow progressors (p=0.02 for both parameters). 

Positive selection was prominent in regions V1, C3, V4, C4 and gp41 in slow progressors, 

whereas in progressors, it was prominent in gp41.  Signature consensus sequence differences 

between the groups occurred mainly in gp41. Neutralizing antibodies (nAb) evolved over 

time in progressors, as evidenced by significantly higher nAb IC50 titers to baseline (study 

entry) viruses when tested against study exit time-point plasma compared to 

contemporaneous responses (p=0.003).  In contrast, slow progressors‘ nAb titers did not 

differ significantly between study entry and study exit time points.  nAb IC50 titers 

significantly correlated with amino acid lengths for C3-V5 (p=0.03) and V1-V5 (p=0.04) for 

slow progressors and V1-V2 for progressors (p=0.04). Slow progressors and progressors 

displayed preferential heterologous activity against the subtype C panel.  There were no 

significant differences in breadth of responses between the groups for either subtype A or C. 

Neutralization breadth and titers to subtype B reference strains however, was significantly 

higher in progressors compared to slow progressors (both p<0.03) with increasing nAb 
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breadth from study entry to study exit in progressors.  Progressors had cross-reactive 

neutralizing antibodies that targeted V2 and V3. Binding affinities of non-neutralizing 

antibodies to HIV-specific gp120, gp41 and p24 and to activating and inhibitory Fc 

receptors (FcRs) were similar in both groups. However, in slow progressors, CD4 T-cell 

counts correlated inversely with antibody binding affinity for the activating FcRIIa 

(p=0.005).   

Conclusions:  These data suggest that separate regions of Env are under differential selective 

forces, and the heterogeneity of env diversity and evolution differ with HIV-1 disease course. 

Single genome sequence analysis of circulating viruses in slow progressors and progressors 

indicate that diversity, length polymorphisms, sites under positive selection pressure, and 

PNGs consistently map to specific regions in Env.  Cross-reactive neutralizing antibodies 

targeting epitopes in V2 and V3 indicate that nAb breadth may be dictated by a limited 

number of target Env epitopes. Certain key N-linked glycosylation sites were shown to be 

crucial for antibody neutralization.  The potencies of autologous nAbs were directly affected 

by the amino acid lengths in certain regions of Env gp160 and by the numbers of PNGs.  

Target vaccine immunogens may have to be given over long periods of time and may have to 

include multiple subtype immunogens to elicit the production of potent, broad cross 

neutralizing antibodies with high binding affinity.  Overall, the data suggest that neither nAbs 

nor non-neutralizing antibodies could be directly associated with disease attenuation in this 

cohort of chronically infected individuals.  However, continuous evolution of nAbs was a 

potential marker of HIV-1 disease progression.  Further studies on larger cohorts to identify 

people with potent nAbs and to identify specific targets of these antibodies are needed.  

Furthermore studies of non-neutralizing antibodies in HIV-1 infection using functional assays 

will be required in order to determine their role in HIV-1 pathogenesis. 
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Thesis Organization  
 

 The layout of this thesis is as follows: 

1.  Chapter One is the introduction to the thesis and covers the background, aims and 

objectives for the study undertaken. 

2.  Chapter Two details the materials and methods carried out to achieve the objectives of the 

study. 

3.  Chapter Three is the first results chapter.  This chapter is in a journal article format that 

been reflected as a publication.  

4.  Chapter Four is the second results chapter.  This chapter is in a journal article format, and 

this section is currently being prepared for manuscript submission.  

5.  Chapter Five is the overall discussion for the results in Chapters Three and Four.  Included 

are the conclusions of the thesis and the future direction of the field. 

6.  Chapter Six contains the entire bibliography for the references used throughout the thesis. 

7.  Chapter Seven contains the appendices as referred to in the thesis. 
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1.1  HIV-1 Epidemiology and Life Cycle 

Since the discovery of human immunodeficiency virus type 1 (HIV-1) in 1983 (Barre-

Sinoussi et al., 1983), an estimated 33.3 million people were living with HIV-1 worldwide at 

the end of 2009 (UNAIDS, 2010).  Additionally, approximately 2.6 million people became 

newly infected and approximately 1.8 million deaths occurred at the end of 2009 (UNAIDS, 

2010).  A disproportionately large majority- 68% of infections (22.5million) are estimated to 

be in sub-Saharan Africa (UNAIDS, 2010).  The geographic distribution of HIV-1 varies 

between countries within sub-Saharan Africa, with South Africa bearing the largest HIV-1 

burden with an estimated 5.6 million individuals living with the virus (UNAIDS, 2010).  

Development of a safe and efficacious preventative vaccine remains a high global health 

priority. 

HIV-1 has been phylogenetically characterized into four groups, group M (major), group O 

(outlier), group N (non-M, non-O) and the most recently discovered group P (Vallari et al., 

2011).  HIV-2 is closely related to simian immunodeficiency virus (SIV) and is 

phylogenetically distinct from HIV-1 and is found certain parts of West Africa (Chen et al., 

1996, Chen et al., 1997).  The diverse HIV-1 group M lineage is responsible for most of the 

current worldwide pandemic (McCutchan, 2000, Peeters et al., 2003, Taylor et al., 2008).  

HIV-1 group M is further divided into 13 subtypes (A1-A4, B, C, D, F1-F2, G, H, J, K) 

(Taylor et al., 2008).   Due to the predominance of HIV-1 subtype B infections in the West, 

much of the basic science research on HIV-1 has focused on this subtype.  However, subtype 

C remains the most rapidly spreading and globally prevalent subtype accounting for more 

than 50% of all infections and is the dominant infecting strain in southern Africa 

(McCutchan, 2000, Esparza, 2005, Hemelaar et al., 2006, Hemelaar et al., 2011).  There is a 

critical need therefore to place more research emphasis on this subtype, and to focus on 
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unraveling and improved understanding of the correlates of immune protection and the 

characteristics of cognate immunogens in order to develop a globally relevant vaccine.  

 

Figure 1.1. Global distribution of HIV-1 subtypes and recombinants in 2004.  The colour key 

on the left-hand side of the figure represents the different HIV-1 subtypes (adapted from 

Hemelaar et al., 2011). 

 

1.2  HIV-1 Genomic Structure 

HIV-1 belongs to the lentivirus genus.  It is an RNA retrovirus made up of nine genes which 

code for nine polyproteins which are further processed into fifteen protein subunits (Watts et 

al., 2009).  Of these, three genes, gag (which codes for the matrix (MA), capsid (CA), 

nucleocapsid (NC), and p6 proteins), pol (which codes for the protease (PR), reverse 

transcriptase (RT) and integrase enzymes (IN)) and env (which codes for the surface 

glycoprotein- gp120 and transmembrane glycoprotein- gp41), contain information needed to 
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make structural proteins for new virus particles. The other six genes, known as tat, rev, nef, 

vif, vpr and vpu, code for regulatory or accessory proteins that control the ability of HIV-1 to 

infect a cell, produce new copies of virus, or cause disease (reviewed in (Frankel and Young, 

1998)).  

1.3 HIV-1 Life Cycle 

When HIV-1 comes into contact with a target cell bearing a CD4 receptor, its Env gp120 

spike becomes engaged and there is subsequent exposure of the chemokine coreceptor 

binding site (CCR5 or CXCR4) which leads to exposure of the fusion domain of gp41 

(reviewed in (Eckert and Kim, 2001)).  Thereafter, coreceptor binding also occurs which 

induces a conformational change within the transmembrane glycoprotein (gp41) region.  This 

essential process enables fusion to occur between the viral and target cell membranes (as 

shown in the figure below) (reviewed in (Wyatt and Sodroski, 1998, Harrison, 2008)). 

 
Figure 1.2. Schematic of the HIV-1 envelope spike interacting with its cellular receptors on a target 

cell. Gp120 of the envelope spike interacts with CD4 (shown in green) on target T cells leading to 

conformational changes that allow interaction with the chemokine coreceptor CCR5. Further 

conformational changes are induced in the spike leading to fusion of viral and target cell membranes 

and transmission of viral genetic material into the target cell (adapted from Walker and Burton, 2008). 
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Subsequently during this early phase, the viral core or capsid protein (p24) is released into 

the target cell, leaving the envelope behind and viral RNA integration is achieved through the 

reverse transcriptase enzyme which transcribes the viral RNA into complimentary DNA 

(cDNA).  The enzyme integrase is then involved in splicing viral DNA into the host‘s DNA 

within the nucleus generating the provirus (reviewed in (Turner and Summers, 1999)).  The 

messenger RNA, which contains the blue-print for the production of HIV-1 proteins, is then 

transported out of the cell‘s nucleus to the endoplasmic reticulum where ribosomes translate 

the mRNA into HIV-1-viral proteins, which can then be used to make new HIV-1 virions 

(figure 1.3).  Specifically, the envelope spike is initially made up as a single polypeptide 

precursor, which undergoes modification through the addition of N-linked and O-linked high-

mannose type oligosaccharides in the Golgi apparatus.  The protein oligomerizes and 

becomes highly glycosylated producing a 160 kDa glycoprotein (gp160).  The glycosylation 

process is important for proper protein folding and structural stability of the envelope 

glycoprotein.  Endo-proteases e.g. furin cleave the gp160 into two non-covalently associated 

fragments i.e. the gp120 receptor binding fragment and the gp41fusion fragment expressed at 

the cell surface (Allan et al., 1985, Veronese et al., 1985).  The gp120-gp41 complexes are 

then incorporated into the lipid bi-layer of the cell during HIV-1 budding to produce new 

viruses (Wyatt and Sodroski, 1998).  These new virions are capable of infecting new target 

cells and perpetuating production of new virions, and eventually leading to the host immune 

system collapse. 

 

1.4 Envelope Structure 

Envelope (Env) is a heavily glycosylated protein and is structurally complicated.  Env gp160 

is a heterodimer comprising of a surface glycoprotein gp120 non-covalently linked to a 
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transmembrane gp41 stalk anchored within the viral membrane.  The Env spike consists of 

three heterodimers making up a trimer and there is on average eight to ten trimers on the 

HIV-1 virus surface (Zhu et al., 2003).  The Env trimer mediates viral tropism as well as viral 

entry and is a principal target for nAbs.     

 

Figure 1.3.  HIV-1 replication cycle divided into the early and late phase.  The early phase 

involves the CD4 receptor and CCR5/CXCR4 coreceptor binding and includes the generation 

of provirus.  The late phase involves the viral DNA transcription and translation leading to 

the production of new virions from the infected cell (adapted from Turner and Summers, 

1999).  
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1.4.1 Structural Organization of Gp120  

Gp120 is made up of approximately 511 amino acids.  Gp120 is divided into 5 conserved 

regions (C1-C5) and five variable regions (V1-V5) based on comparative sequence analyses 

(Willey et al., 1986, Modrow et al., 1987).  Based on the crystal structures of monomeric 

gp120, it was further elucidated that regions C1 and C5 formed mainly the inner domain.  It 

was proposed therefore that the inner domain interfaces with gp41.  In addition, C2, C3 and 

C4 were purported to be hidden within the hydrophobic core and may contain several 

epitopes sensitive to antibody neutralization.  Unlike the inner domain, the outer domain is 

covered by N-linked glycans, and therefore shows an immunologically ―silent face‖ (Wyatt et 

al., 1998).   Up to 50% of the molecular mass of gp120 is carbohydrate (Wyatt et al., 1998, 

Kwong et al., 1998, Kwong and Wilson, 2009).  The inner and outer domains of gp120 are 

linked by a bridging sheet, which alters conformationally according to a CD4-bound 

(liganded) or CD4-unbound (unliganded) state (reviewed in (Pantophlet and Burton, 2006)).   

The variable loops V1-V2 in the unliganded state are thought to partially shield V3, which 

has both the coreceptor and the CD4 binding sites.  V1-V2 and V4 can tolerate many changes 

to their sequences including insertions, deletions, and evolution of their potential N-linked 

glyscosylation sites (PNGs).  V3 lies in the outer domain in the ribbon structure as shown in 

figure 1.4. and is downstream of C3.  Upon CD4 binding the V3 loop protrudes from the tip 

of the trimeric spike to subsequently engage the coreceptor binding site (Chen et al., 2005, 

Huang et al., 2005).  V3 is a particularly desirable target for nAbs, as anti-V3 antibodies are 

produced early in infection (Moore et al., 2008, Davis et al., 2009a, Davis et al., 2009b).  The 

roles of V4 and V5 have been less well defined, although it has been postulated that deletion 

of the V4 loop may impair proper gp160 protein folding (Rong et al., 2007b, Moore et al., 

2008). 
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Figure 1.4.   Schematic of the gp120 core as a ribbon representation of the template subtype 

C (CAP210) core gp120 structure from the Protein Data Bank (PDB) with variable loops and 

other features highlighted.  In the orientation, the cellular and viral membranes would be 

located above and below the protein respectively (adapted from Diskin et al., 2010). 

 

1.4.2 Structural Organization of Gp41  

Gp41 is 341 amino acid-long glycoprotein divided into three main regions: the amino (N) 

terminal transmembrane (TM) ectodomain, a membrane spanning domain and an 

endodomain- a long cytoplasmic tail (C-terminal) that interacts with the matrix protein of the 

virus (Turner and Summers, 1999).  The ectodomain is a trimer.  The trimer consists of three 

monomers.  Each monomer is made up of two anti-parallel α helices connected by an 

extended loop.  The N-terminal helices form the central three-helix coiled coil while the C-

terminal helices are arranged on the outside of the coiled coil.   
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Figure 1.5.  Ribbon representation of the trimeric coiled coil N- and C-helices joined by a 

loop.  Helix packing of the trimeric coiled coil structure of the transmembrane (TM) 

ectodomain showing the N- (shown in gray) and C-helices (shown in blue)- (adapted from 

Turner and Summers, 1999). 

 

Upon gp120-coreceptor binding, the N-terminal peptide of gp41 trans-locates and inserts 

itself into the target cell membrane, this gives rise to the pre-hairpin intermediate (reviewed 

in (Chan and Kim, 1998)).  Subsequently, the C-helices then fold back into a hairpin 

formation, while the C-terminal transmembrane region of gp41 remains inserted in the viral 

membrane, creating the six-helix bundle of the N-helices and the C-helices.  This process 

effectively brings the fusion peptide and the transmembrane segment in close proximity 

ultimately leading to viral and host membrane fusion (Melikyan et al., 2000).  Therefore 

during membrane fusion gp41 has three conformations, a pre-fusion form, the pre-hairpin 

intermediate form and, the post-fusion form, with each form transiently revealing three 

distinct antigenic targets to the immune system. 



 10 

1.5 Viral Diversity and the Impact on Vaccine Development 

HIV-1 is highly diverse, with a 17-35% difference between subtypes and an estimated 8-17% 

difference within infected individuals depending on the genome regions under study (Korber 

et al., 2001).  Env in particular is one of the most genetically diverse of the HIV-1 genome 

and exhibits a 35% inter-subtype diversity (reviewed in (Korber et al., 2001)).  Diversity is a 

combined result of many factors: firstly, the high replicative rate of HIV-1; secondly the 

error-prone reverse transcriptase enzyme through the lack of a proof-reading mechanism 

induces changes to the viral sequence; thirdly, the in vivo recombination rate both within the 

individual and at the population level and lastly, immune selection pressure (reviewed in 

(Coffin, 1995)).  As a result, the immune system with its repertoire of nAbs and CD8 T-cells 

is always one step behind a continuously evolving virus in accordance with the ―original 

antigenic sin‖ paradigm (reviewed in (Brander et al., 2006, Forsell et al., 2005)).  HIV-1 

diversity therefore poses a significant challenge to HIV-1 vaccine development. 

Within the viral genome, the env gene is of particular interest due to the concentration of 

genetic variation inherent to it (Korber et al., 2001).  The HIV-1 envelope (Env) subunits 

gp120 and gp41 are the only surface-exposed viral proteins and are the main targets of 

antibodies.  As a result Env is under continuous host selection pressure.  Certain key Env 

sequence characteristics have been shown to influence antibody neutralization sensitivity, cell 

tropism, coreceptor usage and virus transmission.  These include the overall amino acid 

diversity, the number of putative N-linked glycosylation sites (PNGs) and the length of 

variable loops (Resch et al., 2001, Wei et al., 2003, Rademeyer et al., 2007).  Studies of Env 

are critical to delineate the selective forces that may significantly influence the rate of disease 

progression and to identify specific regions of the Env protein that are important targets of 
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effective immune pressure which may be important to include in rational HIV-1 vaccine 

design.   

A number of studies in HIV-1 subtype B, illustrate that the relationship between HIV-1 Env 

diversity and disease progression is complex.  These studies have shown increased diversity 

over time in the V3 loop (Nowak et al., 1991), direct associations between diversity for V3-

V5 loops and patient survival and an inverse correlation with CD4 T-cell loss (Wolinsky et 

al., 1996).  There is complex heterogeneity of sequences for C2-V5 at different stages of 

HIV-1 infection in men followed longitudinally over six to twelve years (Shankarappa et al., 

1999).   This study demonstrated that following seroconversion, there was an early stage of 

linear increases in divergence and diversity, followed by an intermediate stage with increase 

in divergence but stabilization or decline of diversity and a final stage showing stabilization 

or reduction in divergence and continued stability or decline in diversity (Shankarappa et al., 

1999).  Another study looking at C2-V5 Env sequences, demonstrated higher diversity but 

lower intra and inter-sample divergence in typical progressors compared to slow progressors 

(Bagnarelli et al., 1999).  Additionally, this study showed that typical progressors exhibited 

lower host selective pressure and increases in both synonymous and non-synonymous 

substitutions over time while slow progressors exhibited an increase in non-synonymous 

substitutions only.   

Although a number of studies have explored Env diversity and diversification within HIV-1 

subtype C (Tscherning et al., 1998, Ping et al., 1999), data on this subtype remain relatively 

limited.  There is accumulating evidence that HIV-1 subtype C may differ significantly from 

its subtype B counterpart in certain biological properties mediated by the Env protein (Ping et 

al., 1999, Tscherning et al., 1998, Ball et al., 2003, Gnanakaran et al., 2007, Abraha et al., 

2009, Rong et al., 2009, Moore et al., 2009).  The differences between subtypes B and C 

include distinct sequence characteristics and structural differences. The alpha 2 (α-2) helix of 
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the C3 region in HIV-1 subtype C is amphipathic compared to subtype B which hydrophobic.  

Additionally, the C3-V4 region is more exposed implicating C3 as a target for neutralization 

in subtype C (Gnanakaran et al., 2007, Moore et al., 2008).  In addition, the hypervariable V4 

loop is shorter in subtype C than it in subtype B (Gnanakaran et al., 2007).   In particular, 

differences in Env diversity, divergence and selective pressures between HIV-1 subtype C-

infected individuals with divergent rates of disease progression remain understudied.  

 In addition to nAbs, other factors responsible for diversification of Env include selection for 

CXCR4 viruses which plays a role in generating diversity of HIV-1 Env through changes in a 

few residues within the Env coreceptor binding domain in V3 (Fouchier et al., 1992, 

Hoffman et al., 2002, Pillai et al., 2003, Koning et al., 2003, Stalmeijer et al., 2004).  Viral 

evolution in response to CTL-mediated pressure may also be responsible for the 

diversification of Env, although other cellular responses may be stronger and/or are more 

common to other proteins such as Gag, Nef and Tat, particularly during the early stages of 

infection (Addo et al., 2003, Cao et al., 2003, Lichterfeld et al., 2004, Navis et al., 2008).   

Innate immune factors such as cytidine deaminases like APOBEC3G also play a role in 

causing hypermutations in the viral Env sequence, inducing stop codons, which in turn alters 

the viral footprint rendering the Env glycoprotein non-functional (Sheehy et al., 2002). 

Recently, it has been demonstrated that natural killer cells mediated immune pressure may 

also contribute to viral sequence evolution (Alter et al., 2011).                                                                    

 

1.5.1 Immune Responses in HIV-1 Infection 

The immune system is classically divided into innate and adaptive immune systems.  HIV-1 

has to overcome many agents of the innate immune system and once the virus has breached 

the mucosal barrier, natural killer cells, macrophages, neutrophils and mast cells are the first 



 13 

line of defense to any invading pathogen, and exert their effector function through a limited 

repertoire of germline-encoded receptors (reviewed in (Vivier et al., 2011)).  Adaptive 

immunity is the second line of defense and is comprised of two types of lymphocytes; B and 

the T-cells.  These cells express a large repertoire of antigen receptors that are produced in 

response to a specific pathogen (Vivier et al., 2011).  B lymphocytes mature into plasma cells 

that produce antibodies (both neutralizing (nAb) and non-neutralizing) in response to 

particular viral antigens.  CD4 T-cells and CD8 T-cells both originate in the thymus.  CD8 T-

cells recognize virus infected cells through antigen presentation on the cell surface 

complexed to a human leukocyte antigen (HLA) class I molecule (reviewed in (Walker and 

Burton, 2008)).  

In the past decade, intrinsic immunity in HIV-1 infection has gained a lot of prominence.  

The discovery of APOBEC3G, a potent intracellular immune factor effecting the inhibition of 

HIV-1 replication has focused the spotlight on intrinsic immunity as a possible target for anti-

HIV-1 drug therapies (Sheehy et al., 2002).  

In addition, the cells of the innate immune system e.g. natural killer cells through their Fc 

gamma receptors (FcγRs) also synergistically interact with the Fc part of the antibodies to 

effect viral killing or inhibition through antibody dependent cell-mediated cytoxicity (ADCC) 

or through antibody dependent cell mediated viral inhibition (ADCVI) (reviewed in (Forthal 

and Moog, 2009)).  This Fcγ receptor–Fc antibody interaction may play an important 

biological function of non-neutralizing antibodies modulating or delaying HIV-1 disease 

progression (Forthal and Moog, 2009).  However, additional data is needed to better 

understand the contribution of non-neutralizing antibodies to prevention of transmission and 

viral control.  Such validation of the role of these antibodies in viral pathogenesis would be a 
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rational approach in an attempt to understand whether they would need to be elicited in 

candidate HIV-1 vaccines.     

 

Figure 1.6.  Adaptive immune responses in HIV infection. Two arms of the adaptive immune 

system are activated in response to HIV-1- the T cell response and the antibody response.  

CD8 T-cells act once a cell becomes infected by recognizing processed viral proteins 

presented in the context of HLA class I molecules at the cell surface through the T cell 

receptor of the CTL. Antibodies that can neutralize free virus, can neutralize newly released 

virions from infected cells, and can act against infected cells can prevent HIV-1 infection of 

cells.  Coordination of CTL and neutralizing antibody responses is mediated by CD4+ T 

helper (Th) cells (adapted from Walker and Burton, 2008). 

 

1.5.2  HIV-1 Strategies in Evasion of the Immune System 

Envelope is heavily glycosylated and is therefore poorly immunogenic (Quinones-Kochs et 

al., 2002). Vulnerable target sites are protected within the non-immunogenic glycan shield 

(Burton et al., 2004).  In addition trimerization of gp120-gp41 hides peptide-rich epitopes 

that are highly immunogenic, although antibodies are elicited against these sites (Wyatt et al., 
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1998).  Envelope baits the immune system with non-essential targets rendering the antibodies 

ineffective e.g. the variable loops of gp120 are a prime nAb target but often such nAbs have a 

narrow neutralization breadth against different strains of HIV-1 and anti V3 antibodies which 

appear in early infection do not contribute to autologous neutralization (Moore et al., 2008, 

Davis et al., 2009b). Additionally, the shed or non-functional forms of gp120 act as a decoy 

to divert the immune system away from vulnerable epitopes (Herrera et al., 2005).  It has 

been demonstrated that antibodies are elicited to these forms of Env gp120 but they are 

ineffective at neutralizing native Env (Moore et al., 2006).  Env is highly flexible in solution 

and may alter its structural configuration, e.g. in the CD4 liganded and unliganded states 

there are distinct structural differences between the two states, and this could make it 

challenging for the immune system to target putative epitopes (Liu et al., 2008a).  

Additionally, shifting of the N-linked glycans may also impose structural changes- resulting 

in an evolving glycan shield, thereby making Env a difficult target for the immune system 

(Wei et al., 2003, Chen et al., 2009). 

 

1.5.3 Antibodies- How do they work? 

Despite the structural complexities of the envelope (Env) glycoprotein it remains an attractive 

target for vaccine immunogens, as Env is a primary target for the generation of antibodies.  

Antibodies can act against both free virus and infected cells.  The most effective way an 

antibody works is by neutralization of free virus in vivo to confer protection.  Neutralization 

has been defined as the ―loss of infectivity which ensues when antibody molecule(s) bind to a 

virus particle, and usually occurs without the involvement of another agent‖ (reviewed in 

(Dimmock, 1995)).  Mechanistically, the process of antibody-virus neutralization is complex 

and involves cells and other agents of the innate immune system.  Mostly, it is hypothesized 
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that in vivo antibodies work extra-cellularly through binding of one or more antibodies to the 

virus particle; antibodies may induce conformational changes to envelope that destabilizes 

the virus, or they could sterically hinder fusion of the viral and target cell membranes or they 

could inhibit the viral uncoating process by binding to nascent viruses (reviewed in (Reading 

and Dimmock, 2007)).   

 

1.5.4 Vaccine Development 

Hepatitis B, measles, mumps and polio are highly infectious viral pathogens to which 

effective vaccines that confer sterilizing immunity have been developed (Plotkin, 2008).   

The vaccine strategies involved either the attenuation of live viruses e.g. for measles and 

mumps, or killing of the virus in the case of polio, or the use of recombinant proteins in the 

case of hepatitis B.  Despite the successes of these vaccines there is limited knowledge on 

exactly how protection against infection was conferred (Walker and Burton, 2008).  All these 

strategies proved to be highly successful in preventing infection through the production of 

antibodies and immunological memory similar to that which arises during natural infection 

(Plotkin, 2008).     

When the HIV-1 was first identified in 1983 and was confirmed as the causative agent for 

AIDS (Barre-Sinoussi et al., 1983), scientists had proposed that within a few years an 

effective HIV-1 vaccine will have been made, based on the largely empiric approach adopted 

with most other viral pathogens. However, much to the disappointment of scientists, HIV-1 

vaccine strategies based on similar strategies with either recombinant gp120 (monomeric 

gp120) or killed or inactivated virus were unsuccessful in preventing infection, lowering viral 

loads or protecting against CD4 T-cell decline (Levine et al., 1996, Flynn et al., 2005, Gilbert 

et al., 2005).  Possible reasons for the lack of success using these strategies include altered 
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structural conformation of the recombinant and/or killed antigens compared to the native 

conformation. 

Over the ensuing years, numerous attempts have been made toward a vaccine that may elicit 

protective immune responses.  Since 1987 more than 30 HIV-1 vaccines have been advanced 

to human trials based on vaccine efficacy results in non-human primate models (Mascola and 

Montefiori, 2010).  Ideally an HIV-1 vaccine should be able to elicit both arms of the 

adaptive immune system, the antibody arm in order to prevent or block infection, and the T-

cell arm to eliminate virus infected cells and thereby prevent disease.  To date three HIV-1 

vaccines based on either eliciting protective antibody or CD8 T-cell responses or a 

combination of the two have undergone completed testing in humans in phase III or phase IIb 

trials: 

1. The AIDSVAX 120 phase III trials (Vax003 and Vax004) focused on eliciting protective 

antibodies with a recombinant bivalent gp120 in high-risk populations.  Vax 003 included 

HIV-1 subtypes B and E gp120 and Vax004 included subtype B gp120 only.  Both 

vaccines failed to elicit protective antibodies (Flynn et al., 2005, Pitisuttithum et al., 

2006). 

2. Scientists then focused on vaccines that may be able to elicit T-cell responses.  The STEP 

phase IIb/Phambili vaccine trial comprised of three recombinant attenuated adenovirus 

serotype viruses expressing HIV-1 Gag, Pol and Nef (Buchbinder et al., 2008, McElrath 

et al., 2008, Gray et al., 2011b).  CD8 T-cell responses were elicited but the vaccine 

failed to protect the vaccinated individuals against HIV-1 infection (Buchbinder et al., 

2008, McElrath et al., 2008).  The evidence indicated that the vaccinated population was 

significantly more likely to acquire HIV-1 infection compared to the control arm and 

there were also no differences in viral load among those who became HIV infected. 
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3. The RV144 phase III vaccine trial in Thailand comprised of a canary-pox viral vector 

expressing gp120, Gag and Protease (four doses) to prime the immune responses, and the 

AIDSVAX gp120 (two doses- Vax003) to boost the immune response.  This vaccine 

achieved a moderate 31.2% efficacy in a low-risk heterosexual population (Rerks-Ngarm 

et al., 2009).  The vaccinated individuals who became infected had no difference in their 

viral loads compared to the control group.  However, this trial provided a glimmer of 

hope that incremental steps are being made toward a vaccine, and more detailed studies 

are ongoing to define the immune correlates of protection.     

 

1.5.5 The Neutralizing Human Monoclonal Antibodies (nmAbs) 

Currently, there are no immunogens that have been successful in stimulating the production 

of broadly neutralizing antibodies.  This is despite the fact that several epitopes have been 

identified in conserved and variable regions of both gp120 and gp41that induce broadly 

neutralizing antibodies (Muster et al., 1993, Wyatt et al., 1998).  Inducing nAbs to these 

epitopes using rationally designed immunogens has been difficult possibly due to subtle 

structural or conformational differences compared to native immunogens (Selvarajah et al., 

2005, Law et al., 2007, Selvarajah et al., 2008).  The human neutralizing monoclonal 

antibodies (nmAbs) with broad and potent neutralizing ability are b12, 2G12, 2F5, 4E10 and 

VRC01 (Roben et al., 1994, Stiegler et al., 2001, Zwick et al., 2001, Zhou et al., 2010).  In 

addition, monoclonal antibodies PG9 and PG16 have been characterized relatively recently, 

and more recently- the PGT series of antibodies and CH01-04 nmAbs (Walker et al., 2009, 

Pejchal et al., 2011, Bonsignori et al., 2011).  All of these nmAbs target different regions of 

Env (see Table 1.1) and they can work in one of two ways, either they bind to the mature 

trimer on the virion surface thereby acting as an entry inhibitor or they bind to the pre-hairpin 
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inter-mediate, that is after receptor and co-receptor binding thereby acting as a fusion 

inhibitor (Parren and Burton, 2001).  More recently the focus has been on designing the 

immunogen based on the interaction between the antibody and its cognate site on Env using 

crystallographic and computed tomography studies (Liu et al., 2008a).  This type of reverse 

engineering may be more effective when developing immunogens in the context of the native 

Env trimer-antibody interaction. 

Table 1.1 List of nmAbs and the targeted Env sites  

nmAb Target Site on Env Reference 

b12 CD4 binding site Roben et al. (1994) 

VRC01 CD4 binding site Zhou et al. (2010) 

2G12 Discontinuous epitope on 

gp120 

Trkola et al. (1996) 

PGT Series- PGT 128 Glycans on gp120 Pejchal et al. (2011) 

2F5 MPER Stiegler et al. (2001) 

4E10 MPER Zwick et al. (2001) 

PG9/PG16 V2-V3 Walker et al. (2009) 

CH01-04 V2-V3 Bonsignori et al. (2011) 

 

In 1992, b12 was one of the first nmAbs to be isolated and neutralizes about 40% of HIV-1 

strains.  b12 was selected from a phage-display library constructed from the bone marrow of 

an HIV-1-infected individual.  b12 was mutated for high affinity binding to gp120, targets the 

CD4 binding site with high affinity and the epitope targeted by b12 is surrounded and 

protected by N-linked glycans (Roben et al., 1994).  The CD4 binding site is one of the more 

conserved regions of Env gp120.  b12 recognizes a discontinuous epitope on gp120 as they 

react with several residues in different regions of gp120 (Zhou et al., 2007).  This nmAb 

occludes the CD4 binding site and acts primarily as an entry inhibitor.  VRC01 is another 

nmAb recently characterized, and was isolated through binding on a rationally designed 

mimic of the CD4 binding site.  VRC01 also targets a narrow site in the CD4-binding domain 

(Zhou et al., 2010) and neutralized 91% of Env pseudotyped primary isolates, potently 
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neutralized multiple HIV-1 subtypes and had the broadest neutralization activities compared 

to any antibody to date (Wu et al., 2010).  In addition, this nmAb is highly desirable as it does 

not have autoreactive properties (Scheid et al., 2011, Li et al., 2011).  

2G12 is an unusual nmAb as it targets a discontinuous epitope (conformational epitope) on 

gp120.  2G12 targets a unique conformational epitope of oligomannose-rich carbohydrate in 

gp120 that is non-immunogenic (Trkola et al., 1996) and it has an unusual shape.  2G12 

represents proof that the carbohydrate-rich gp120 can be immunogenic.  More recently 

however, the PGT series of nmAbs was discovered.  Specifically, PGT128, which targets 

glycans, is highly potent and also displays tremendous breadth (Pejchal et al., 2011).  Despite 

all the intense effort in immunogen design, it still remains unclear how to elicit such unique 

antibodies. 

2F5 and 4E10 are nmAbs that target epitopes proximal to each other within the membrane 

proximal external region (MPER) of gp41 just N-terminal to the insertion of gp41 into the 

viral membrane (Stiegler et al., 2001, Zwick et al., 2001).  The 2F5 epitope resides in amino 

acid (AA) position 662-668 (ELDKWAS) while the 4E10 epitope resides in amino acid 

position 671-676 (NWFDIT).  Both these epitopes are in lipid-rich sites within the MPER.  

These nmAbs do not interfere with receptor binding but they inhibit the fusion between the 

viral and target cell membranes most likely through steric hindrance.  Both 2F5 and 4E10 

exhibit potent and broad neutralization of diverse HIV-1 isolates, however, due to their auto-

reactive properties and membrane-lipid affinity, their potential for clinical application is a 

subject of ongoing debate.  Although the epitopes that 2F5 and 4E10 target remain attractive 

vaccine immunogens, it is uncertain whether elicitation of such nmAbs may be detrimental 

and unsafe due to the autoreactive properties that the antibodies possess and this therefore 

remains a topic of ongoing research.  
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Two potent nmAbs, PG9 and PG16 were recently obtained using a high-throughput 

neutralization screen of antibody-containing culture supernatants from approximately 30,000 

activated memory B cells from a subtype A-infected African donor (Walker et al., 2009).  

The nmAbs exhibit broad and potent neutralization profiles to genetically diverse HIV-1 

isolates.  PG9 and PG16 target conserved epitopes within the V2 and V3 loops, it is likely 

that their epitopes overlap because the two nmAbs are somatic variants.  Interestingly, these 

nmAbs recognize epitopes on the native Env trimer, are able to bind monomeric gp120 and 

monomeric scaffold proteins presenting V1-V2 and neutralize about 80% of primary HIV-1 

isolates (Walker et al., 2009, Pancera et al., 2010, McLellan et al., 2011).  Both nmAbs do 

not have autoreactive properties and would therefore be desirable to elicit such antibodies. 

Similarly, CH01-04 nmAbs that have recently been characterized, are also conformationally 

dependent on the quartenary structure and target the V2 and V3 loops (Bonsignori et al., 

2011).   Another nmAb, 2909, targets a quaternary neutralizing epitope on parts of V2 and 

V3, however 2909 is strain specific and does not bind to monomeric gp120 (Gorny et al., 

2005, Honnen et al., 2007). 

 

Overall, these nmAbs have provided the opportunity to define vulnerable epitopes that exist 

across diverse strains.  In addition, their conformational properties in conjunction with their 

cognate epitopes on the native Env trimer have been well characterized.  Crystallographic 

and structure-function analyses are crucial to designing immunogens for efficacious HIV-1 

vaccines.     

 

1.5.6  Env Epitopes as Vaccine Targets 

Epitopes should be: i) highly conserved across diverse HIV-1 strains in order to stimulate 

broadly neutralizing antibodies (Rong et al., 2009); ii) non-autoreactive, that is, their elicited 
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antibodies should not react to self-antigens (Rong et al., 2009); iii) available on the native 

Env trimeric spike  (Pinter et al., 2004, Davis et al., 2009a, Kwong et al., 2002); and iv) 

immunogenic to elicit antibodies with high neutralizing titers (Rong et al., 2009).  

Neutralizing antibody titers have to be high in order to prevent infection as it has been 

demonstrated that one trimer is necessary to facilitate infection into a cell, therefore all eight 

to ten trimers have to be engaged to an antibody in order to abrogate infection (Yang et al., 

2005). In addition, other studies observed that super-infection may occur in the presence of 

low-levels of cross-reactive pre-existing antibodies elicited against the initial infecting virus 

(Blish et al., 2008).  Furthermore, antibody titers based on theoretical calculations from in 

vivo passive transfer studies in humans indicated that antibody titers in excess of 1:200 and 

1:1,000 were required to protect during the acute and chronic infection stages respectively  

 

Figure 1.7.  A model of the unliganded HIV-1 envelope trimer indicating the approximate 

location of epitopes recognized by broadly nmAbs. All glycans on gp160 are shown. Glycans 

are light blue and white, core gp120 is red, 2G12 epitopes are white (arrow), b12 and VRC01 

epitopes are yellow (arrow), and the location of the quaternary epitope involving V2 and V3 

loops of nmAbs PG9 and PG16 is indicated. The representation of gp41 is shown in grey 

proximal to the viral membrane.  It is likely that the 4E10 and 2F5 epitopes are not available 

until the Env spike has engaged its cellular coreceptors (adapted from McElrath and Haynes, 

2010). 



 23 

(Trkola et al., 2008).  However, animal studies by Hessell et al. (2009) demonstrated that 

macaques were protected from infection by physiologically relevant amounts (low titer) of 

nmAbs despite repeated low dose mucosal SHIV challenge (Hessell et al., 2009a, Hessell et 

al., 2009b).   

 

1.5.7 Neutralizing Human Monoclonal Antibodies in Pre-Clinical and Human Studies 

Pre-clinical studies using non-human primate models to test neutralizing human monoclonal 

antibodies and vaccine efficacy have proven to be highly successful in both pre-exposure and 

post-exposure prophylaxis studies.  NmAbs used in different combinations have conferred 

sterilizing immunity to macaques when the animals were challenged intravenously, intra-

vaginally, intra-rectally, and orally to SHIV (Shibata et al., 1999, Mascola et al., 1999, 

Mascola et al., 2000, Parren et al., 2001, Ferrantelli et al., 2004).  These were proof-of-

concept studies that nAbs are effective in preventing SHIV infection.  Indeed, one of the 

caveats to many of the earlier studies, is the very high, non-physiological doses of SHIV 

administered to the animals.  Subsequently, animal models that mimic natural HIV-1 

infection have been developed using repeated low dose mucosal simian immunodeficiency 

virus–HIV chimera (SHIV) challenge (Hessell et al., 2009a, Hessell et al., 2009b).  Burton 

and colleagues showed that b12 was able to confer sterilizing immunity to macaques against 

vaginal SHIV challenge compared to the weakly neutralizing b6 antibody which conferred no 

protection or non-neutralizing antibody F240 which conferred limited or no protection in 

some animals (Burton et al., 2011).  Together, these animal models studies provided a 

compelling argument that antibodies are protective against SHIV infection and that HIV-1 

vaccine research should focus on the induction of potent nAbs. 
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The nmAbs were also tested in adult human HIV-1 infected individuals.  A phase 1 safety 

trial of seven HIV-1 infected individuals using a combination of nmAbs administered 

intravenously (2G12 and 2F5) (Armbruster et al., 2002) showed that these nmAbs were safe 

to use and well-tolerated with five of seven individuals experiencing  transient reductions in 

viral loads.  A subsequent trial including nmAb 4E10 plus 2F5 and 2G12 in the nmAb 

regimen again in seven individuals, showed that nmAbs were safe and well tolerated 

(Armbruster et al., 2004).  Viral loads decreased and CD4 T-cells increased transiently in all 

individuals.   However, there was development of viral resistance to nmAb 2G12.   

Trkola et al. (2005) then tested the efficacy of a combination of intravenously administered 

nmAbs (2G12, 2F5 and 4E10) in HIV-1 acutely (n=6) and chronically (n=8) -infected 

individuals during structured treatment interruption and found that the viral loads were lower 

in four of the six acutely-infected individuals but only two of the eight chronically-infected 

individuals receiving the nmAbs (Trkola et al., 2005).  These results indicated that perhaps 

these nmAbs may be more effective during the acute rather than in the chronic phase of 

infection and argues against the protective role of nmAbs in chronic infection.  Viral rebound 

was evident when the nmAbs were stopped, and in 12 of 14 individuals there was viral 

escape to 2G12 only (Manrique et al., 2007).  Again these nmAbs were safe to use and well 

tolerated.  Although these trials provided proof-of-concept that nmAbs indeed do play a role 

in viral containment in HIV-1 infected humans, the sustainability, cost-effectiveness and 

practicality of such an application remains a big concern.  It is therefore a high priority to 

design and develop vaccine immunogens that can elicit potent and broad neutralizing 

prophylactic antibodies.   
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1.6 Autologous Neutralizing Antibodies and Heterologous Responses during Acute and 

Chronic HIV-1 Infection 

Developing and designing immunogens that can elicit potent neutralizing antibody (nAb) 

responses remains a high priority in the HIV vaccine field.  It is well known that most HIV-

infected individuals develop potent antibodies against their own viruses- termed autologous 

nAbs (AnAbs) within a few months of HIV-infection (Richman et al., 2003, Gray et al., 

2007, Bunnik et al., 2008).  AnAbs are generated early on in HIV-1 infection (Albert et al., 

1990, Tomaras et al., 2008), however, they are usually strain specific and much of these 

studies have involved mainly subtype B infections.  Only in a subset of individuals, about 20-

30%, develop broadly, cross-neutralizing antibodies that neutralize heterologous viruses (Li 

et al., 2009, Sather et al., 2009, Simek et al., 2009, Stamatatos et al., 2009).  A possible 

reason for this may be that during the earliest stages of HIV-1 infection there is follicular 

damage and germinal centre loss in the B cell generative microenvironment which may 

influence the development of broadly neutralizing antibodies (Levesque et al., 2009). 

Another possible reason is the ‗cytokine storm‘ observed in acute HIV-1 infection that may 

irreversibly impair antiviral immune responses (Stacey et al., 2009).  Examining the 

neutralization profiles using standard high throughput assays of HIV-1-infected plasma to 

neutralize autologous and heterologous viruses is a valuable tool in HIV-1 humoral immunity 

research.  This method allows for the screening of nAb responses, to decipher the potency of 

AnAbs through heterologous virus neutralization, to characterize and better understand the 

nature of the cognate epitope at a genotypic level and thereby identify putative immunogens 

for vaccine development. AnAb and heterologous nAb responses in HIV-1 subtype C 

infection particularly in the context of chronic infection remains mostly unknown and the role 

of AnAbs in attenuating disease progression is not fully understood.    
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Specifically, in HIV-1 subtype C infection, AnAbs develop to higher titers than in subtype B 

infected individuals indicating that there could be antigenic or host genetic differences 

between the Env that are prompting these differences in antibody responses (Li et al., 2006a, 

Li et al., 2006b, Patel et al., 2008, Lynch et al., 2009).  Several studies found that AnAbs 

mediate viral escape through humoral immune driven Env diversity during the early stages of 

infection (Delwart et al., 1997, Wei et al., 2003, Richman et al., 2003).  Data from early 

subtype B and subtype C infections indicate AnAb-driven Env escape and it was found that 

contemporary viruses were less sensitive to the autologous plasma neutralization than earlier 

autologous viruses indicating escape (Wei et al., 2003, Richman et al., 2003, Rong et al., 

2009, Moore et al., 2009).  Furthermore, it was found that the AnAbs targeted very narrow 

specificities on Env, mainly in V1-V2 (Lynch et al., 2009) and in C3 (Moore et al., 2008).  

Several mechanisms of viral escape have been significantly associated with antibody 

resistance; these include insertions and deletions of amino acids, single amino acid 

substitutions and shifting the position of N-linked glycans on the Env glycoprotein.  Some 

nmAbs for e.g., PG9 and PG16 are highly dependent on a glycan motif to bind to their 

cognate epitope, and positional glycan shifting confers viral escape as shown in a Zambian 

seroconverter (Lynch et al., 2011).  This study found that a single amino acid mutation in V2 

was enough to confer resistance without a replicative fitness cost to the virus.  All these 

mechanisms may impose structural constraints on the ability of the antibody to engage and 

bind to its cognate epitope through altered Env protein folding and conformation.      

 

1.6.1 Targets of Autologous Antibodies  

The Env glycoprotein and in particular the variable loops of gp120 are generally targeted by 

the humoral immune system, however certain regions appear to induce more AnAb responses 
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than others.  Sagar et al. (2006) found that V1-V2 are direct targets for autologous 

neutralization in early HIV-1-infection (Sagar et al., 2006).  The role of V1-V2 in increasing 

neutralization resistance through addition of PNGs, V1-V2 length modification and insertions 

and deletions has been well defined in subtype B and C infection (Pinter et al., 2004, Sagar et 

al., 2006, Rong et al., 2007a, Lynch et al., 2011).  Although V3 elicits antibodies very early 

on during infection, anti-V3 antibodies are not effective for autologous neutralization (Moore 

et al., 2008, Davis et al., 2009a, Davis et al., 2009b).  The role of V4 and V5 as AnAb targets 

is not fully understood.  Amino acid changes in the α-2 helix in C3 of HIV-1 subtype C 

mediates escape from AnAbs (Gnanakaran et al., 2007, Moore et al., 2009).  Taken together, 

these studies provide many clues about Env targets for putative vaccine immunogens. 

 

1.7  Fcgamma (Fcγ) Receptors and Viral Inhibition 

Although the main aim of the HIV-1 vaccine field is the development of immunogens to 

induce broadly neutralizing antibodies, other inhibitory functions of non-neutralizing 

antibodies are now being considered as potentially protective.  Non-neutralizing antibodies 

are defined as antibodies which do not show ―classical neutralizing activity‖, rather, they 

inhibit virus replication through an FcγR-dependent mechanism (Peressin et al., 2011).   

FcγR are present on most cells of the innate immune system e.g. non-phagocytic natural 

killer cells and mast cells, and phagocytic cells e.g. macrophages, immature dendritic cells 

and neutrophils.  There are five major Fcγ receptors with either an activating or inhibitory 

function: FcγRI, FcγRIIa, FcγRIIIa and FcγRIIIb (all activating) and FcγRIIb (inhibitory) 

(Forthal and Moog, 2009).  The Fc portions of antibodies form a bridge between the cell 

bearing the target antigens and the effector cell bearing the Fc receptors.  This then results in 

virus killing through antibody dependent cell-mediated cytotoxicity (ADCC) or through 
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antibody-dependant cell-mediated viral inhibition (ADCVI). Figure 1.8 illustrates how the 

various components of the humoral immune system work in concert to either effect direct 

killing of virus through nAbs, or through the complement activation, through opsonization 

and phagocytosis or through the Fc-receptor-mediated mechanisms (Huber and Trkola, 

2007).  These FcγR-bearing immune cells are involved in the capture and degradation of 

HIV-1 antigen-antibody complexes and induction of immune effector functions such as 

antigen presentation.  Potent ADCC activity was found in the sera of long-term HIV-1-

subtype B infected non-progressors suggesting that ADCC controls viraemia and therefore 

protects against disease progression (Alsmadi et al., 1997).  Another study showed an inverse 

relationship between viral loads and ADCC activity in rapid progressors compared to non-

rapid progressors (Baum et al., 1996). Interestingly, in subtype B-infected elite controllers, 

ADCC activity was significantly more potent than in viraemic individuals (Lambotte et al., 

2009). This study however, did show that elite controllers had a heterogenous nAb response 

that was lower or no different to viraemic individuals (Lambotte et al., 2009). It has 

previously been demonstrated that interaction of FcR-expressing cells with antibody-

complexed target cells appears to be more important as a mechanism of ADCVI than 

complement interaction with antibody-complexed cells (Hessell et al., 2007).  Recently, it 

was demonstrated that non-neutralizing antibodies conferred limited or no protection to 

macaques against vaginal SHIV challenge (Burton et al., 2011). A series of studies have 

shown that the binding interaction between the Fc portion of the antibody and the FcγRIIIa 

and/or FcγRIIa potently increases ADCC activity, Fc binding affinity was altered through the 

manipulation of antibodies using deglycosylation or site-specific mutagenesis (Lazar et al., 

2006, Richards et al., 2008, Shields et al., 2001, Jefferis, 2009).  These studies therefore 

provide a rationale for assessing the binding affinities of the FcγRs as a surrogate indicator of 

ADCC/ADCVI activity in vivo.   
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V1-V2 binding antibodies were found to be protective against HIV-1 acquisition in 

vaccinated individuals of the RV144 trial
*
.  However the exact mechanism by which these 

binding antibodies prevented infection is unknown.  Harnessing the potential of these 

inhibitory FcγR-Fc antibody interactions may be important in improving HIV-1 vaccine 

efficacy.  This may be particularly important given the recent results of the Thai trial (RV144 

Trial) where the 30.5% efficacy (Rerks-Ngarm et al., 2009) was attributed to non-neutralizing 

antibodies, in the absence of finding nAbs or cytotoxic T cells (Tomaras and Haynes, 2009). 

Figure 1.8.  How antibodies- both neutralizing and non-neutralizing combat HIV-1.  (a)  

Neutralization of free virus by antibodies,  (b)  complement-mediated lysis of free virus and 

infected cells through complement activation  (c) opsonization through antibodies coating 

virus particles and phagocytosis of  through Fc-mediated receptor binding to antibody or 

complement receptors,  (d)  antibody-dependent cell-mediated cytotoxicity (ADCC) against 

infected cells.  nAbs are denoted in red, non-neutralizing antibodies- blue, Fc receptors- 

violet, complement – light blue, complement receptors- black (adapted from Huber and 

Trkola, 2007). 

 

                                                           
* Oral presentation by Barton Haynes at the 2011 AIDS Vaccine Conference, Bangkok, Thailand. 
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In the chronic infection phase, the contribution of FcγR-Fc antibody interactions in 

controlling against disease progression remains poorly defined, particularly in the context of 

subtype C infection.  

1.8 Aims of the Thesis 

This is a study in chronic HIV-1 subtype C infection that links both the envelope 

characteristics with neutralizing and non-neutralizing antibody patterns.  This type of study is 

particularly important, as there are very large gaps in the field regarding the interplay 

between the viral evolution and the response of the humoral immune system. We 

hypothesized that durable neutralizing antibody responses against HIV-1 envelope and 

reduced viral diversification correlate with lack of disease progression in chronically HIV-1 

subtype C infected individuals. 

We focused on HIV-1 subtype C envelope evolution and neutralizing antibody responses 

during the course of natural chronic infection over a median of 21 months in order to gain a 

better understanding of the correlates of immune protection or disease progression.  Two 

groups of participants with divergent rates of disease progression were analyzed and 

compared.  These two groups (designated slow progressors and progressors) were chosen 

based on their immunological and virological status.  They were immunologically and 

virologically matched at study entry; however, over the period of observation to their study 

exit time point, the progressors immunological status had declined and their viral load risen 

significantly compared to the study entry time point.  It was therefore intriguing to study both 

the genotypic characteristics of the viruses in both groups as well as the phenotypic 

differences between both groups as we hypothesized that might be certain genotypic and 

virologic as well as phenotypic characteristics associated with the env gene and antibody 

responses that correlate with divergent rates of disease progression.   
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For the genotypic characteristics, we used single genome sequencing to improve detection 

through terminal dilution to detect minority variants at levels below 20-30% as is has been 

found that population based sequencing may not detect minor virus quasispecies.  In addition, 

unless limiting dilution is used, there is a risk of PCR-generated recombination that may 

result in artifactual genomes that do not exist in real life.  In addition, in our study the entire 

env gp160 was sequenced, whereas in other studies on subtype C, partial env sequences were 

done and therefore the data is limited in scope and interpretation.  There are several points 

that need to be highlighted about the importance and justification of such a study in HIV-1 

subtype C infection.  Firstly, the relationship between the genotypic characteristics of HIV-1 

subtype C envelope e.g. Env sequence diversity over time, length polymorphisms within 

gp160, numbers of potential N-linked glycosylation sites, positive selection as a surrogate for 

humoral immune pressure, and negative selection pressure and their relationship to divergent 

rates of HIV-1 subtype disease progression is not completely understood and was therefore 

explored.  Secondly, we further defined the relationship between the autologous nAb 

responses in participants with divergent rates of disease progression in conjunction with 

genotypic characteristics and immunological parameters of disease progression namely CD4 

T-cell count and viral load.  Thirdly, the breadth of the autologous neutralizing antibody 

responses was tested against heterologous viruses of different subtype lineages (subtypes, A, 

B and C) in order to profile antibody potencies and evolution of neutralization breadth.  We 

found that the breadth of response correlated to disease progression.  Finally, we also 

correlated the IgG binding affinities of three activating and one inhibitory Fcγ receptors to 

disease progression, to establish a putative role for the activating/inhibitory function of non-

neutralizing antibodies in divergent rates of disease progression.  We chronicled the 

genotypic properties of HIV-1 subtype C Env gp160 and the autologous and heterologous 
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humoral immune responses over time in chronic infection to expand our current knowledge 

in the field and to better understand the correlates of disease progression. 

 

 

1.9 Hypothesis 

Durable neutralizing antibody responses against HIV-1 envelope and reduced viral 

diversification correlate with lack of disease progression in chronically HIV-1 subtype C 

infected individuals. We further hypothesized that non-neutralizing antibodies may contribute 

to disease attenuation in chronic HIV-1 subtype C infection. 

 

1.10 Study Objectives 

1.10.1 Primary Objectives 

1.10.1.1  To determine the evolution of env viral diversity and diversification patterns 

in chronically HIV-1 subtype C-infected slow progressors and progressors over two 

years. 

1.10.1.2 To determine neutralizing antibody activity and evolution in chronically 

HIV-1 subtype C-infected slow progressors and progressors over two years in order to 

assess the contribution of these responses to the rate of disease progression. 

1.10.1.3 To determine differences in the IgG non-neutralizing antibodies binding 

affinities to HIV-1 specific antigens and various activating and inhibitory Fc gamma 

receptors in chronically HIV-1 subtype C-infected slow progressors and progressors 

over two years. 
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1.10.2 Secondary Objectives 

1.10.2.1 To determine whether diversity and diversification of env are associated with 

the rate of disease progression. 

1.10.2.2. To determine whether neutralization breadth exerts control over HIV-1 by 

investigating its association with CD4 T-cell count and viral loads.  

1.10.2.3 To determine whether non-neutralizing IgGs or HIV-1 antigen specific IgGs 

exert control over HIV-1 by investigating their association with CD4 T-cell counts 

and HIV-1 viral loads. 
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2.0 Materials and Methods 

2.1 Study Design 

This was a retrospective study.  Ethics approval for this study was obtained from the 

University of KwaZulu-Natal Biomedical Research Ethics Committee - reference number 

E055/06 (see Appendix for scanned copies of approval letters pages 171-173).   Of the nine 

participants who met the predetermined study inclusion criteria, one participant was excluded 

because their envelope sequences were found to be of subtype A lineage that was outside the 

scope of this PhD thesis.  The current study focuses on subtype C infection only.  Eight study 

participant samples therefore, from the original Sinikithemba cohort from McCord Hospital, 

Durban, KwaZulu-Natal (KZN), South Africa were used to complete the objectives of the 

study.  These patients were chosen according to the following study inclusion criteria below.   

 

Study subjects with longitudinal follow-up data were included in this study.  All the patients 

were antiretroviral naïve for the period of evaluation.  CD4 T-cell count over two years was 

chosen as the primary determinant of disease progression for stratification into slow 

progressor (n=4) and progressor (n=4) categories.  Both slow progressors and progressors 

were selected on the basis of a CD4 T-cell counts >500 cells/μl at study entry time point.  

The CD4 T-cell counts did not differ significantly between the two groups at the study entry 

time-point.  However, at study exit, slow progressors maintained a CD4 T-cell count above 

500 cells/µl or a viral load less than 10,000 viral RNA copies/ml. In contrast, progressors 

declined in CD4 T-cell counts to below 500 cells/μl and had a viral load above 10,000 

copies/ml.  The overall median time was 21 months between study entry and study exit 

sampling.  When the virological and immunological data became available beyond the study 

window (follow-up of an average of 39.8 months for slow progressors and 36.8 months for 
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progressors, we analyzed these parameters relative to the study entry criteria and they 

remained statistically different for the progressors only (p=0.03 for both CD4 T-cell count 

and viral load).   

 

2.2  Sample Collection, CD4 T-cell Counts and Plasma Viral Load 

CD4 T-cell counts were performed every three months and viral loads every six months.  

Blood was drawn from each subject into EDTA tubes and plasma was separated by 

centrifugation and stored at −80
°
C until use.  Viral load was measured using the Amplicor 

Version 1.5 assay (Roche Diagnostics, Indianapolis, USA). CD4+ T-cell counts were 

enumerated by Trucount technology on a four colour FACS Calibur flow cytometer (Becton 

Dickinson, Franklin Lakes, New Jersey, USA). 

 

2.3 Single Genome Amplification (SGA) of Envelope 

This protocol involves the dilution of viral cDNA to a point that, upon setting up multiple 

replicate PCR reactions with the cDNA as template, the product generated has a high 

probability of having been amplified from a single genome copy.  In this case, according to 

Poisson‘s distribution, no more than 30%, or 28 out of a 96-well reaction plate with two 

negative controls, should be positive for amplification product to ensure that 6 of 7 amplified 

DNAs arise from a single-copy template (Rodrigo et al., 1997).  Figure 2.1. illustrates the 

process of single genome amplification in order to achieve the desired dilution for sampling 

both the major and minor circulating viral quasispecies. 
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For example, if plasma viral load was known, a specified amount of plasma is used to extract 

viral RNA is purified from plasma using the QIAamp Viral RNA Mini Kit and it is 

transcribed at an approximate concentration of 200 copies per µl using a gene-specific primer 

with Invitrogen‘s Superscript III—a reverse transcriptase that has been genetically modified 

to reduce RNase H activity and to maintain cDNA synthesis activity at temperatures (i.e. 50-

55
°
C) required to melt template secondary structure. The viral cDNA was serially diluted to 

obtain single copy in a two-step ―nested‖ PCR procedure. Screening PCRs with differing 

dilutions were performed in order to achieve the desired 30% positivity rate. 

 

Figure 2.1.  Experimental overview of single genome amplification where serial dilution of 

the cDNA was performed based on the viral load of the participant sample.  By Poisson‘s 

distribution if for example the 1:729 dilution resulted in a < 30% positive PCR reaction rate,  

for that particular participant the 1:729 dilution of cDNA was used subsequently for single 

genome analysis.  

 

This was necessary to account for the variations in sample integrity, stability, plasma/serum 

components and viral concentration that can all affect PCR efficiency.  Thereafter, a 

confirmatory PCR at the desired dilution of cDNA was performed and the amplicons from 

the first and second round PCR reactions were stored at -20
°
C.  
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To further confirm single-genome amplification, the entire envelope gene was sequenced in 

forward and reverse directions and any sequences containing double peaks were excluded 

from the analyses. 

 

2.4 cDNA Synthesis from Viral RNA Extracted from Human Plasma 

The QIAamp Viral RNA Mini Kit (Qiagen, Dusseldorf, Germany) was used according to the 

protocol as written in the manufacturer‘s handbook with the following adaptations: 

A volume of 140 µl of the plasma sample was used, and based on a viral load of 100,000 

copies/ml, this volume is estimated to contain the equivalent of 20,000 viral copies.  The 

sample volume was determined by the participant‘s viral load. 

If the participant‘s viral load >200,000 copies/ml then the volume of plasma was adjusted 

proportionately and in order to normalize to a volume of 140 µl, PBS was added accordingly.  

Or, if viral load was <1,000 copies/ml, 1ml of plasma virus was concentrated by 

centrifugation for 1 hr at 17,000 rpm.  860 µl of supernatant was removed and the viral pellet 

was re-suspended in the remaining 140 µl of plasma.  The standard method of viral RNA 

isolation was followed as per manufacturer‘s guidelines.  Briefly, 200 l of plasma was 

reconstituted with 800 l of the AVL buffer containing the carrier RNA from the kit into a 

1.5ml eppendorf tube and pulse-vortexed for 15 sec.  Thereafter the mixture was left to 

incubate at room temperature (RT) for 10 mins and thereafter briefly centrifuged.  800 l of 

ethanol was added and the mixture was pulse vortexed briefly again and 650 l of this 

mixture was added to a QiaAmp Mini spin column and then centrifuged at 6000 x g for 1 

min, and this process was repeated until all the mixture was put through the column.  After all 

the RNA was bound through repeated column centrifugation, 500 l of the AW1 kit buffer 
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was added and then centrifuged at 6000 x g for 1 min.  Thereafter, 500 l of the AW2 kit 

buffer was added and then centrifuged at 20 000 x g for 3 min.  The RNA was then eluted 

from the spin column with 55µl buffer (stock elution buffer is diluted in a 1:5 ratio in sterile 

RNase/DNase free H2O) to achieve approximately 50 µl net recovery.  cDNA synthesis was 

performed directly after RNA extraction. 

 

2.5 Reverse Transcription and cDNA Synthesis 

The Superscript III Reverse Transcriptase (Invitrogen, Carlsbad, USA) was used in order to 

generate the cDNA through reverse transcription (components of the kit included: SSIII RT 

(200 U/µl), 5X First-Strand Buffer, 0.1 M DTT.) and 10 mM DNTP (Fermentas, Canada).  

This procedure was performed in a RNA-only clean room.  The condensate from the previous 

step was spun down briefly, after the heat incubation steps. 

 The following components were added into a 0.2 ml RNase-free tube for each cDNA 

synthesis as depicted in table 2.1. 

 

Table 2.1.   Mastermix for the cDNA synthesis 

 

 

 

The tubes were placed in a thermo-cycler at 65
°
C for 3-5 mins, removed and placed on ice for 

1 min.  The following components were added from the kit to the mix from above according 

to the method depicted in table 2.2. 

 

Reagent Volume(µl)/tube 

Sterile Water 8.75 

Primer: (OFM19)20 µM 1.25 

dNTP Mix (10mM each) 5.0 

RNA template 50 

Final volume/tube 65 
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Table 2.2.    Mastermix for the cDNA synthesis 

 

 

 

 

The reaction mixture was then gently mixed and left to incubate at 50
°
C for 1 hr and then 

increased to 55
°
C

 
for 1 hr.   Inactivation of the SSIII RT was achieved by heating at 70

°
C for 

15 mins.  To each tube, 1 µl of RNase H was added and left to incubate at 37
°
C for 20 mins. 

 

2.6 PCR Amplification  

For single genome amplification of full-length envelope, nested PCR was implemented.  PCR 

reaction mixes were made up and aliquotted in an area free of PCR amplified or plasmid 

DNA.  The subtype C-specific env primers used were:  

OFM19: 5‘–GCACTCAAGGCAAGCTTTATTGAGGCTTA (HXB2 positions 9604-9632) 

and VIF1: 5‘– GGGTTTATTACAGGGACAGCAGAG (HXB2 positions 4900-4923) were 

used for the first round of PCR. 

ENVA: 5‘– GGCTTAGGCATCTCCTATGGCAGGAAGAA (HXB2 positions 5955-5982) 

and ENV N:  5‘– CTGCCAATCAGGGAAGTAGCCTTGTGT (HXB2 positions 9145-9171) 

were used for the second round PCR. 

 

Reagent from Kit( SSIII RT) Volume(µl)/tube Stock from Kit Final Dilution 

5x Buffer 20 5x 1x 

DTT 5 100 mM 5 

RNaseOUT 5 40 u/µl 2 

SSIII RT 5 200 u/µl 10 

Sterile water 65   

Final volume/tube 100   
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2.7 Establishment of the Appropriate cDNA Titration 

2.7.1 cDNA Dilutions 

Serial dilutions of cDNA (ten reactions per dilution) were performed to obtain 30% positivity 

based on Poisson’s distribution as illustrated above in figure 2.1.  This was the methodology 

used for the screening PCR in order to establish the optimal dilution of the cDNA to obtain 

the desired 30% positivity.  Amplicons that were generated in the titration were screened 

using full-length envelope sequencing and used if they presented with single peaks for each 

nucleotide on the chromatogram, it was confirmed that the amplicons were generated from 

single env templates.  Once the optimal dilution of cDNA was established confirmatory PCR 

amplification was then performed.  If there were positive reactions in excess of 30% per 

sample, repeat PCR with lower/higher dilutions was performed. 

 

2.7.2 First Round Amplification Reaction 

PCR reaction mix was made for one-100 reactions (94 test + two negative controls).  Four 

extra reactions were made to account for pipetting error- see table 2.3 below. 

Table 2.3.  Mastermix for the first round PCR  

 

 

 

 

 

Reagent Volume( µl/tube) x100 reactions(µl) 

dH2O 15.3 1,530 

5X buffer (supplied) 2 200 

MgS04 (supplied) 0.8 80 

dNTPs (10mM mix) 0.4 40 

Taq (High Fidelity Platinum) 0.1 10 

Primer: OFM19 (20µM) 0.2 20 

Primer: VIF1 (20µM) 0.2 20 

Final volume 19 1,900 
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Nineteen µl of the PCR reaction mastermix was added per /well.  For the negative control, 1 

µl of water was added to 19 µl of the PCR reaction mixture to make up the negative controls 

for the PCR and 1µl cDNA per dilution per well was added for the test reactions.  The plate 

was split into two sections of 48 wells each to accommodate two different participant 

samples in a single PCR run. Once the correct cDNA dilution was determined through the 

dilution, 50 µl of diluted cDNA was added to each half of the master mix and then 20 µl of 

this reaction mixture was added per well.  The plate was placed in a thermal cycler and run 

with following PCR parameters: one cycle of 94
°
C for 2 mins; 35 cycles of 94

°
C for 15 

seconds, 55
°
C for 30 seconds, 68

°
C for 4 mins and one cycle at 68

 °
C for  10-20 mins; and 

finally on hold at 4
°
C. 

From all positive wells, the amplicons from the first round were stored at -20
°
C for future 

envelope cloning once the second round products were resolved, visualized and confirmed 

using gel electrophoresis. 

 

2.7.3 Second Round (Nested) PCR Reaction 

PCR reaction mixture for the second round was prepared for one-100 reactions (94 test + two 

negative controls) according to the tabulated protocol (table 2.4). 

Table 2.4.  Mastermix for the second round PCR 

 

 

 

 

Reagent Volume (µl/tube) x100 reactions (µl) 

dH2O 15.3 1,530 

5X buffer (supplied) 2 200 

MgS04 (supplied) 0.8 80 

dNTPs (10mM mix) 0.4 40 

Taq (High Fidelity Platinum) 0.1 10 

Primer: ENV A (20µM) 0.2 20 

Primer: ENV N (20µM) 0.2 20 

Final volume 19 1,900 
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Nineteen µl of the master mix was pipetted into each well of a 96-well plate and 1µl from 

each of the first round PCR reaction samples was added to the corresponding well of the 

nested PCR plate.  Mixing was achieved by pipetting up and down.  The 96 well plate was 

placed in a thermal cycler and PCR performed with the following cycling parameters: one 

cycle of 94°C for 2 mins; 35 cycles of 94°C for 15 seconds, 55°C for 30 seconds, 68°C for 4 

mins and one cycle at 68°C for 10-20 mins; and finally on hold at 4°C.  

 

2.7.4 Analysis of PCR. 

Three to 5 µl of products from the second round PCR was run on a 1% agarose gel, and the 

product size was confirmed by comparing it to the Molecular X marker (Roche Diagnostics, 

Indianapolis, USA).   All positive wells were selected.  The amplicons from the second round 

PCR were then subjected to PCR product clean up using the QiaQuick PCR Purification Kit 

(Qiagen, Dusseldorf, Germany) according to the manufacturer's protocol.  PCR products 

were either quantified on a 1% agarose gel using a low molecular weight marker or on the 

NanoDrop 2000 Spectrophotometer (Thermo Scientific, Surrey, United Kingdom).  

Thereafter full-length env sequencing was performed. 
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Figure 2.2.  Representative confirmatory PCR on a 96 well plate visualized on a 1% gel.  The 

plate is divided into two parts to screen for env amplicons in two patients.  In the second half 

of the plate (indicated by a red outline) there is a 25% detection rate for the number of 

positive wells, which is in keeping with the Poisson‘s distribution.  The amplicons for the 

first and second round PCR reactions were stored for future use for cloning and sequencing 

respectively. 

 

2.8 Sequencing Reaction 

The ABI 3130xl Sequencer was used to resolve sequences of the envelope amplicons 

generated.  To facilitate high throughput sequencing, 96 well plates were used.   A master 

mix for all the samples to be sequenced was prepared according to the tabulated protocol 

(table 2.5).  This protocol was used for a single reaction for a single primer.  Envelope 

sequencing requires an average of eight primers, four for the forward and four for reverse 

sequencing in order to generate a full-length 3kb contig. For each 96 well plate 12 full-length 

env amplicons were sequenced (purification of the sequencing products were performed on 

the same day as the sequencing reaction). 
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Table 2.5.  Mastermix for sequencing reactions 

Reagent Volume  (µl/reaction) 

BigDye Terminator Ready Reaction Mix  

(Applied Biosystems Version 3.1 cycle 

sequencing kit, Catalogue No.  

0.4 

5X Sequencing Buffer 2.0 

Primer (pmol) 3.2 

Template DNA (20ng*) 

De-ionised Water Up to 10µl 

Final volume 10 

 

The above reaction mixture was mixed well and spun down.  The mixture was then aliquotted 

into tubes or a plate depending on the number of sequencing reactions.  The diluted template 

(20 ng of DNA in total) was then added to the reaction.  The plate was spun down briefly.  

The PCR plate was placed in a thermo-cycler and the following cycling conditions were 

used:  1 min at 96
°
C, 25 cycles of 96

°
C

 
- 10 sec; 50

°
C for 5 sec; 60

°
C for 4 min, and finally 

4
°
C on hold. 

 

Note: 35 cycles was used if the cleaned PCR product had a low concentration or for 

achieving higher signal intensities.  The products were stored at 4
°
C, and protected from 

light.  Primers used for sequencing reactions were as follows as depicted in table 2.6. 

Table 2.6.  List of primers used to sequence HIV-1 subtype C Env gp160 

Primer name HXB2 

Position 

Primer Sequence 

 

ED31 6818→6845 5‘ CTCAGCCATTACACAGGCCTGTCCAAAG 

SQ13F(2)C 7672→7701 5‘TATATAAATATAAAGTGGTAGAAATTAAGC 

SQ14FC 7925→7944 5‘ ACTCACGGTCTGGGGCATTA 

EF00 6204→6228 5‘AAA GAG CAG AAG ACA GTG GCA ATG A 

ENV N 9171←9145 5‘ CTGCCAATCAGGGAAGTAGCCTTGTGT 

SQ3R(2)C 8651←8680 5‘ GCTATGGTATCAAGCAGACTAATAGCACTC 

SQ5.5RC 7979←8004 5‘ CTAGGAGCTGTTGATCCTTTAGGTAT 

SQ6RC(2) 6839←6864 5‘ GAATTGGGTCAAAAGAGACCTTTGGA 

→ Denotes a forward primer.  ← Denotes a reverse primer 
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2.9  Purification of Sequencing Products  

2.9.1  Plate Cleanup 

This protocol assumed a 10μl cycle-sequencing reaction, and all sequencing clean-up was 

done on a 96 well-plate. One μl of 125mM EDTA pH 8.0 was added to each well add and 

mixed.  A solution of 3M NaOAc pH 5.2 was made up with 100% ethanol (kept at -20
°
C) 

according to a 1:25 ratio respectively and 26 μl of this solution was added per well, and 

mixed and vortexed briefly.  A sealing tape was placed on the plate making sure each well is 

sealed and protected from cross-contamination during the vortex steps.  The plate was 

centrifuged at 3,000 x g for 20 mins.  The plate was carefully inverted onto paper towel and 

centrifuged at 150 x g for 5 mins to dry.  Immediately after, 35 μl of 70% cold ethanol 

(freshly made up and kept at 4
°
C) was added to each well.  The plate was centrifuged at 3,000 

x g for 5 mins.  The plate was carefully inverted onto paper towel and centrifuged at 150 x g 

for 1 min to dry.  The samples were dried in a thermo-cycler at 50
°
C for 4 mins.  The samples 

were then re-suspended in 10 μl formamide and vortexed thoroughly for 15 seconds and 

denatured in a thermo-cycler (95
°
C for 3 mins, and then 4

°
C for a minimum of 3 mins).  The 

plates were then placed in a 3130 XL Sequencer for sequences to be detected. 

 

2.9.2  Sequencing Analysis of gp160 

The full-length envelopes were sequenced in the forward and reverse directions using the 

ABI Prism Big Dye Terminator Version 3.1 cycle sequencing kit (Applied Biosystems, 

Foster City, CA) utilizing primers spanning the entire envelope and approximately 300 bp 

apart (as described in detail above).   Sequences were then resolved on the ABI 3130 XL 

genetic analyzer.  Contigs were assembled and edited using the Sequencher v 4.8 software 

(Genecodes, Ann Arbor, MI).  The sequences were aligned using Clustal W (Thompson et 
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al., 1994) and manually edited in the Genetic Data Environment (GDE 2.2). For phylogenetic 

analysis, subtype reference strains were obtained from the Los Alamos HIV sequence 

database http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html).  Phylogenetic trees 

were generated in PAUP*4.0b10 using the TVM I + G model of substitution as determined 

by MODELTEST 3.7 (Posada and Crandall, 1998).  Trees were rooted with a homologous 

region of Group O reference (O.CM.96). Maximum likelihood (ML) trees of sequences from 

individual patients were also drawn using the appropriate evolutionary model (as determined 

by MODELTEST 3.7) and rooted with the ―Best-fit root‖ as determined by Path-O-Gen v1.2 

(Rambaut, 2008).  All trees were bootstrapped with 1,000 sampling replicates. Trees were 

viewed with FigTree v1.1.2 (Rambaut, 2008).  The approximate time of HIV-1 infection was 

estimated using BEAST (Bayesian Evolutionary Analysis Sampling Trees) version 1.4.8 

(http://beast.bio.ed.ac.uk) in order to predict approximate time of infection prior to study 

enrollment (Drummond and Rambaut, 2007).  BEAUTi was used to generate the .xml file to 

generate the BEAST file.  The GTR substitution model with estimated base frequencies and a 

site heterogeneity model of gamma + invariant sites were used.  A relaxed, uncorrelated 

lognormal molecular clock model was chosen.  The MCMC (Monte Carlo Markov Chain) 

length of chain was set at 30,000,000 to give an effective sample size (ESS) > 170.  The 

number and location of putative N-linked glycosylation sites (PNGs) was estimated using N-

GlycoSite (http://www.hiv.lanl.gov/content/hiv-db/GLYCOSITE/glycosite.html) from the Los 

Alamos National Laboratory database. Sequence diversity was calculated using the 

Maximum Composite Likelihood option in Mega 4.0 (Tamura et al., 2007). Characteristic 

differences between progressors and slow progressors including corresponding study entry 

and exit time-points were identified using VESPA (Viral Epidemiology Signature Pattern 

Analysis) (Korber and Myers, 1992).  Nucleotide substitution rates were calculated using 

baseml from the PAML software package (Yang, 1997).  Sites under positive selection were 

http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
http://www.hiv.lanl.gov/content/hiv-db/GLYCOSITE/glycosite.html
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identified using the SLAC option in HyPhy (Pond et al., 2005) and CODEML as 

implemented in the PAML software package.  

Positively selected sites and signature mutations were mapped onto the X-ray structure of a 

clade C HIV-1 gp120 (3LQA.pdb) (Diskin et al.) using the BIOPREDICTA module in the 

VLifeMDS software package (VLife Science Technologies, 2007).  Gp41 was modeled in 

SWISS-MODEL (Schwede et al., 2003) using 1ENV.pdb (Weissenhorn et al., 1997) as a 

template.  Structures were rendered and annotated in PyMol (DeLano, 2006).  

 

2.9.4 Genebank Accession Numbers 

Sequences have been assigned the following GenBank accession numbers:  GU216702-

GU216737 and GU216739-GU216847. 

 

2.10 Directional Cloning  

In order to clone the envelope generated from PCR though SGA, the first round envelope 

products were subjected to a second round PCR amplification using a specific primer with an 

ATGG overhang (Env A directional primer).  The protocol below was used in order to 

generate the PCR product to be used in the subsequent cloning step.  The Phusion High 

Fidelity kit (New England Biolabs, Ipswich, USA) was used as stated below to generate the 

second round PCR product to be used in downstream cytomegalovirus-driven pcDNA 

3.1/V5-His TOPO directional cloning experiments.  The PCR products were subsequently 

subjected to agarose gel visualization after PCR clean up using the QiaQuick PCR clean up 

kit (Qiagen, Dusseldorf, Germany) according to the manufacturer's protocol.  The PCR 
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products were then quantified for DNA using the 2000 Spectrophotometer (Thermo 

Scientific, Surrey, United Kingdom). 

Table 2.7.   Mastermix for the second round PCR 

 

 

 

 

 

One µl of the first round SGA PCR product was added. 

PCR conditions for downstream cloning were as follow: one cycle of 94
°
C for 5 mins; 35 

cycles of 94
°
C for 30 seconds, 55

°
C for 30 seconds, 72

°
C for 10 mins and on hold at 4

°
C. 

 

2.10.1 Directional Cloning using pcDNA3.1 Expression Vector 

PCR fragments, generated using Env 1A and Env M primers, were cloned into the pCDNA 

3.1/V5-His TOPO vector (Invitrogen, Carlsbad, USA) into XL Gold Ultra-competent cells 

(Stratagene, USA) and bacterial colonies were screened by PCR for insertion and correct 

orientation using T7 (supplied in the pcDNA 3.1/V5-His TOPO expression kit) and Env M 

primers through colony PCR.  

 

2.10.2 Cloning Procedure 

Sterile tubes were chilled on ice in order to be adequately chilled for downstream cloning.  

The cloning reaction mastermix consisted of the following as depicted in table 2.8. 

 

Reagent Volume  (µl/reaction) 

H2O 37 

5x Phusion Buffer 10 

dNTP (10mM) 1 

EnvAdir  (20 pmol/µl) 1 

EnvM (20 pmol/µl) 1 

TaqPol 0.5 

Final volume 50.5 
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Table 2.8.  Mastermix for ligation of PCR product into the pcDNA 3.1/V5-His TOPO vector 

 

 

 

 

 

This reaction was incubated for 30 mins at RT.  10 mins into the reaction above, the XL Gold 

- Ultracompetent cells were thawed on ice for 10 mins, thereafter 4 µl of beta-

mercaptoethanol was added per vial of XL Gold - Ultracompetent cells (150 µl).   Tubes 

were placed on ice for 10 mins.  50 µl of XL Gold - Ultracompetent cells was aliquotted to 

each chilled sterile tube and to the cells, 3 µl of the cloning reaction above was added to each 

tube and left to incubate on ice for 30 mins.  Cells were then heat shocked for 30 seconds at 

42
°
C in a water-bath.  The tubes containing the cells were then placed on ice for 2 mins and 

to each tube of cells, 200 µl of SOC medium (from the pcDNA 3.1 kit) was added.  The tubes 

were then shaken for 1 hr at 220 rpm at 37
°
C

 
in a shaking incubator.  Fifty-100 µl of each 

reaction mixture was then plated out onto LB agar plates containing ampicillin and grown 

overnight at 37
°
C

 
in an incubator for at least 18 hrs.  Plates were removed the next day and 

placed in the fridge to prevent further colony growth.  Colonies were then picked and added 

to a 96-well plate containing 100 l of LB media per well and shaken at 220 rpm for 

approximately 3-4 hrs at 37
°
C and screening of the insert was confirmed through colony PCR 

using the PCR procedure below. 

 

Nine l of the PCR mastermix (see table 2.9) was added to each well on PCR plate and 1 l 

of each inoculated mini-culture was added to the respective wells for the colony PCR.  PCR 

Reagent Volume  

(µl/reaction) 

Sterile Water  3 

Salt  1 

pcDNA3.1/V5-His TOPO 

Vector 

1 

DNA (10 ng/µl) 1 

Final Volume 5 
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cycling conditions were as follow:  one cycle of 94
°
C; 35 cycles of 94

°
C for 30 seconds, 55

°
C 

for 30 seconds, 68
°
C for 4 mins, one cycle at 68

°
C for 20 mins, and finally on hold at 4

°
C. 

Table 2.9.   Mastermix for Colony PCR 

 

 

  

 

 

All PCR products were visualized on a 1% agarose gel and those positive for the 3.1 kilobase 

inserts were then selected and inoculated overnight into 3 ml of LB medium containing 

ampicillin (220 rpm at 37
°
C), and thereafter grown in 100 ml of LB media in order to amplify 

the amount of plasmid DNA using the same conditions in the shaking incubator.  The Qiagen 

Maxi-Prep Kit (Qiagen, Dusseldorf, Germany) was used according to the manufacturer‘s 

protocol in order to extract the plasmid DNA.  The plasmid DNA was then subjected to 

restriction enzyme digest analysis in order to confirm the presence of the 3.1 kilobase Env 

insert as depicted in Table 2.10. 

Table 2.10.   Restriction Enzyme Digest using BamH1 and Xba1 

 

 

 

 

 

 

Reagent Volume  

(µl/reaction) 

Sterile Water 7.6 

10X Buffer 1 

Magnesium chloride 0.7 

dNTP (10mM) 0.2 

Primer: T7 (20 pmol/µl) 0.2 

Primer: EnvM (20 pmol/µl) 0.2 

TaqPol 0.05 

Final volume 9.95 

Reagent Volume  

(µl/reaction) 

Sterile Water 11.6 

Xba1 (New England Biolabs, Ipswich, USA)  0.7 

BamH1 (New England Biolabs, Ipswich, USA) 0.7 

10x Bovine Serum Albumin 2.0 

New England Buffer 2 (New England Biolabs, Ipswich, 

USA) 

2.0 

Plasmid DNA (100 ng) 3 

Final Volume 20 
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2.11  Functional Assays  

2.11.1 Pseudovirus generation, Pseudovirus Titre and Neutralization assays 

The production of molecularly cloned pseudoviruses in 293T cells by co-transfection with an 

env-expressing plasmid plus a backbone plasmid lacking env is necessary to carry out such 

assays. Co-transfection generates pseudoviruses that are able to infect cells but, due to the 

absence of a complete genome, are unable to produce infectious progeny virions. This single 

round of infection is readily detectable in genetically engineered cell lines that contain a Tat-

responsive reporter gene, such as luciferase.  

 

The TZM-bl cell line is a HeLa cell clone that is used in functional assays.  This cell line was 

engineered to express CD4, CCR5 and CXCR4 and contains integrated reporter genes for 

firefly luciferase and E. coli -galactosidase under control of an HIV-1 long terminal repeat 

(LTR) (Wei et al., 2002).  TZM-bl cells therefore permit sensitive and accurate 

measurements of infection. The cells are highly permissive to infection by most strains of 

HIV-1, SIV and SHIV, including primary HIV-1 isolates and molecularly cloned 

pseudoviruses.  DEAE dextran is used in the medium during neutralization assays to enhance 

infectivity. Luciferase activity is quantified by luminescence and is directly proportional to 

the number of infectious virus particles present in the initial inoculum. 
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2.11.2 Experimental Overview 

The schematic below (figure 2.3) illustrates the chronology of the experimental methods used 

during the course of this study to achieve the study objectives. 

 

Figure 2.3.  The experimental overview for the project spanning the initial virus isolation, the 

single genome sequencing analysis and subsequent directional cloning to the phenotypic 

assays for the measurement of neutralizing antibody responses using Env-pseudotyped 

viruses in a TZM-bl-based assay. 

 

2.11.3 Pseudovirus Generation 

In order to carry out neutralization assays, pseudoviruses were generated through co-

transfection experiments.  The Env-pseudotyped virus stocks were generated by co-

transfecting 1,000 ng of the env encoding plasmid DNA with 1,500 ng of the HIV-1 genomic 

vector SG3∆ env into an 80% confluent monolayer of 293T cells in a T-25 culture flask in the 

presence of 7.5 µl of Fugene 6 Transfection Reagent (Roche Diagnostics, Indianapolis, 
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USA).  The media was replaced 6–8 hrs after transfection; 48 hrs later, culture supernatant 

containing the pseudoviruses was harvested, and stored at -80
°
C.  The tissue culture 

infectious doses (TCID50) were quantified by infecting TZM-bl cells with serial four-fold 

dilutions of the supernatant in the presence of DEAE dextran- see below for detailed 

methodology. 

 

2.11.4 Determining Viral Titer on TZM-bl Cells 

TZM-bl cells were seeded into 24 well plates 24 hrs before viral titration.  Each well 

contained 50,000 cells in 400 ul of 10% Fetal Bovine Serum (FBS- Gibco, Catalogue No. 

10106-169) in Dulbecco‘s Modified Eagles Medium (DMEM) (Invitrogen, Carlsbad, USA) 

and 1% Gentamicin (Sigma-Aldrich, St Louis, USA).  Seeded cells were left for 24 hrs in a 

5% CO2 incubator at 37
°
C.  1% FBS in DMEM was used to dilute DEAE-Dextran (Sigma-

Aldrich, St Louis, USA) to make an 80 µg/ml solution and to dilute the virus stocks.  Virus 

stocks were serially diluted in microtitre tubes according to the following algorithm.  

a. Well A: 8 µl virus + 232 µl 1% FBS in DMEM 

b. Well B: 40 µl from Well A + 200 µl 1% FBS in DMEM 

c. Well C: 40 µl from Well B + 200 µl 1% FBS in DMEM 

d. Well D: 40 µl from Well C + 200 µl 1% FBS in DMEM 

e. Well E: 40 µl from Well D + 200 µl 1% FBS in DMEM 

f. Well F: 40 µl from Well E + 200 µl 1% FBS in DMEM 

 

TZM-bl 24-well plates were 30-40% confluent when viewed under the microscope.  Media 

was removed from the seeded TZM-bl 24-well plates using the vacuum aspirator. DEAE-

Dextran diluted (80 µg/ml) in 1% FBS in DMEM was added to each well first (150 µl) and 
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then 150 µl virus dilutions to the appropriate wells.  Plates were briefly shaken back and forth 

and placed in 37
°
C incubator for 1-2 hrs.  After 1-2 hr incubation, 0.5 ml 10% FBS in DMEM 

was added to each well. Plates were then incubated for 48 hrs in 37
°
C incubator.  After 48 

hrs, cells were viewed and found to be 100% confluent and thereafter stained using X-gal 

(see appendix for B-galactosidase staining) staining solution.  

 

 

2.11.5 Staining Procedure 

Media was removed from each well.  To each well 400 µl/well of fixing solution was added 

and was incubated for 5 mins at RT.  Fixing solution was then removed, and the plate was 

washed three times with PBS.  Thereafter, 400 µl/well of staining solution was added per 

well and incubated at 37
°
C for 1-2 hrs.  Contents of plate were discarded and the plate was 

washed twice with PBS.  Infection of the TZM-bl cells was then scored according to the 

algorithm below in table 2.11.  To score for infection, each well of the 24-well plate was 

divided into four quadrants. All blue cells were counted within view, once in each of the four 

quadrants of a well. Infectious Units per µl were computed as follows: [(# blue cells/4) x 67] 

/ (µl virus added) = IU/µl. The average of each well should be similar for an accurate 

titration.  

 

Table 2.11.  Titration algorithm used for serial dilution of pseudoviruses  

 A B C D E F 

Volume of virus (µl) added to 

the wells of a 24-well plate 

row 

5 1 0.2 0.04 0.008 0.0016 

 

Pseudovirus stocks with titers less than 40 IU/µl were discarded and the remaining stock 

tubes with corresponding titer and stored at -80C. 
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2.12  Neutralization Assays for Autologous Antibody Assays 

2.12.1 Day 1- Seeding TZM-Bl Cells into Flat-Bottomed 96-Well Plates 

Cells were seeded into 96 well-flat bottomed plates.  Each well contained 100 µl of cells with 

an average count of 8,000 cells/100 µl of 10% FBS-DMEM and the plates were incubated at 

37
°
C for 24 hrs. 

 

2.12.2 Day 2- Infecting TZM-Bl Cells with Pseudoviruses 

Cells were 30-40% confluent at the time of infection.   Pseudoviruses and test plasmas were 

removed from the -80
°
C freezer simultaneously, and thawed out at RT. Any plasma should 

have been previously heat-inactivated by the following protocol:   

A volume of 0.5 ml of plasma was inactivated in a water bath at 56
°
C for 30 mins. The 

plasma was centrifuged at 3,000 x g for 5 mins at RT.  The plasma was then transferred to 

another tube, without disturbing the pellet, and ~0.4 ml of plasma supernatant was aliquotted 

per cryogenic vial.  

 

2.12.3 Plasma Preparation 

The final, total volume of plasma reagent was determined using the following equation: 

number of (#) pseudoviruses x 120 µl x 1.4 = volume of plasma needed.   Plasma in the first 

tube constituted 10% of the total volume.   Serial dilutions were made by multi-channeling 

(150 µl serial transfers) down five tubes of 6% DMEM to achieve a final dilution of 1:100, 

000. No plasma was added to the last tube which contained 6% DMEM only in this step and 

was later mixed with pseudovirus to create the virus only control.  A control row of six tubes 

was made that contained a 1:1 ratio of 6% DMEM to a solution of DEAE Dextran (80 g/ml) 
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in 1% DMEM only. This was used to determine what the average baseline luciferase 

(―background‖) reading is, which will, in analysis, be subtracted from the other assay wells, 

this tube represents the negative control. 

 

Figure 2.4 below illustrates the schema used for autologous neutralizing antibody assays 

using the study entry and study exit plasma nAb samples to test for neutralization to the study 

entry and exit Envs.  This type of matrix yields both a contemporaneous response and an 

evolutionary response where escape from neutralization or resistance is often observed.  

 

 

Figure 2.4.  Schematic illustrating the autologous neutralizing antibody assays in all 

participants.  The study entry Envs were tested for neutralization by nAbs from the study 

entry and study exit plasma samples.  Likewise the study exit Envs were tested for 

neutralization by nAbs from the study entry and study exit plasma samples. 

 

2.12.4 Pseudovirus Preparation 

A volume of 952.32 µl 1% DMEM was pipetted into the first microtiter tube for each 

pseudovirus test.  The appropriate amount of virus was added to achieve the desired 

2000IU/100 µl. (The volume of the tube was equivalent to 952.32 µl).  The first tube only 

contained 6.7 µl of 10mg/ml DEAE-dextran and was mixed well. Thereafter 140 µl of the 
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pseudovirus preparation was aliquotted to each of five microtiter tubes. A volume of 120 µl 

of the plasma reagent and then 120 µl pseudovirus was added to the wells of a round-

bottomed 96-well plate and incubated at 37
°
C for 1 hr as illustrated in figure 2.5A. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B             

C             

D             

E             

F             

G             

H             

 

Figure 2.5A.  96-well round-bottomed plate illustrating the plasma and virus incubation for 

three different samples 

 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B             

C             

D             

E             

F             

G             

H             

 

Figure 2.5B. TZM-bl –seeded 96-well flat-bottomed plate illustrating the plasma and virus 

incubation with pre-seeded TZM-bl cells for three different samples. 

 

The media (~100 l) only from the wells of TZM-bl cells that were to be infected were 

aspirated off. The media from outside rows or columns were not removed in order to prevent 

evaporation.  The middle section of the plate was only used for infection (See schematic - 

figure 2.5B). 
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Thereafter, 100l of pre-incubated pseudovirus/plasma was added in duplicate to all intended 

cells and was incubated for 48 hrs at 37
°
C. 

 

2.12.5 Day 4- Terminating Assay And Reading Luciferase On The Luminometer 

After 48 hrs, the media or supernatant from the infected wells were aspirated, one plate at a 

time.  Lysis buffer (75 µl) was added to each well.  Each plate was wrapped with tape to 

prevent the lid from slipping off during the freeze/thaw process.   Plates were frozen at -80
°
C 

for 30 min (until opaque) and then shaken at RT for 30 mins (until clear).  This freeze/thaw 

cycle was repeated for a total of two freeze/thaw cycles.  Luciferase reagent was reconstituted 

according to the manufacturer‘s protocol and kept in the dark until use.  A volume of 20l of 

lysed cells was added to each of the 96 wells on a white luminometer 96-well plate.  To this 

100µl/well of luciferase assay reagent was added, and measured on the luminometer.  Data 

was exported to Microsoft Excel and was then analyzed. 

 

 

2.13 Neutralizing Antibody Assay Protocol for Heterologous Responses 

2.13.1 Envelope Clones 

Envelope genes used in this study were either cloned as previously described or obtained 

from the NIH AIDS Research and Reference Reagent Program (NIH ARRRP). Briefly, the 

single genome amplification derived env amplicons were directionally T/A cloned into the 

CMV-driven expression plasmid pcDNA3.1-V5 HisTOPO-TA and screened for biological 

function as pseudoviruses following co-transfection with an env-deficient subtype B proviral 

plasmid (SG3Env) into 293T cells as described previously (Derdeyn et al., 2004).    A total 

of 20 standard reference envelope clones were used to test for heterologous neutralization.  



 60 

These included eight subtype C, seven subtype B and five subtype A envelope pseudoviruses 

as depicted in table 2.12.  Tier 1, Tier 2 and Tier 3 viruses were stratified previously based on 

clustering analysis of sensitivity patterns- with Tier 1 being the most sensitive, Tier 2 

displaying moderate to low sensitivity and Tier 3 displaying the lowest sensitivity to 

neutralization (Seaman et al., 2010).   The ConC plasmid carrying a consensus of all the HIV-

1 subtype C sequences from the Los Alamos database by 2001 (Kothe et al., 2006) and the 

envelope plasmids containing single point mutations (as described in Gray et al. (2011), were 

obtained from Lynn Morris.  Table 2.12. depicts the envelope clones used, the subtype of the 

clone, the tiered categorization and the references for the viral isolates. 

 

Table 2.12. HIV-1 Env pseudovirus panel of subtype C, B and A reference strains 

 

Using the format of a 96-well flat-bottom culture plate as illustrated in Figure 2.6; 150 l of 

complete growth medium (GM- see Appendix on the constituents of growth medium) was 

HIV-1 Isolate Subtype C, B or 

A 

Tiered 

Category 

Reference 

MW965.25 C 1 NIH ARRRP 

ZM197 M.PB7 C 1 (Li et al., 2006b) 

ConC  C 2 (Kothe et al., 2006) 

DU156.12 C 2 (Li et al., 2006b) 

DU172.17 C 2 (Li et al., 2006b) 

ZM214 M.PL15 C 2 (Li et al., 2006b) 

CAP45.G3 C 2 (Li et al., 2006b) 

CAP239.G3 C 2 (Gray et al., 2007) 

SF162.LS B 1 (Stamatatos and Cheng-Mayer, 1998) 

6535.3 B 1 (Li et al., 2005) 

AC10.0.29 B 2 (Li et al., 2005) 

QHO692.42 B 2 (Li et al., 2005) 

WITO 4160.33 B 2 (Li et al., 2005) 

TRO.11 B 2 (Li et al., 2005) 

PVO.4 B 3 (Li et al., 2005) 

Q23ENV17 A 2 (Blish et al., 2007) 

Q842ENVd12 A 2 (Blish et al., 2007) 

Q168ENVa2 A 2 (Blish et al., 2007) 

Q461ENVe2 A 2 (Blish et al., 2007) 

Q769ENVd22 A 2 (Blish et al., 2007) 
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added in all wells of column one (cell control).  For columns two to twelve 100 l was added 

in all wells (column two - virus control).  Depending on dilution of test serum or plasma 

sample (see standard dilution algorithm- below in Tables 2.13 and 2.14): an additional 

amount of growth medium (GM) was added to all wells of columns three to twelve, row-H so 

that for example if your starting dilution of plasma was 1:45, the volume of test plasma added 

was 5 l and the corresponding total amount of GM was 45l. 

This format was designed to assay five samples in duplicate at each serum dilution (Figure 

2.6. Template A).  Adjustments may be made to test a larger number of samples per plate 

(Ten samples, Figure 2.6. Template B).  

A positive control with a known neutralization titer against the target virus was included on at 

least one plate in series each time assays were performed. Also, at least one negative control 

sample was used.   The required number of vials of virus was thawed by placing them in an 

ambient temperature water bath. When the viruses were completely thawed, the virus was 

diluted in GM to achieve a concentration of 4,000 TCID50/ml. 

To each well in columns three to four, row H only, 5 l of test plasma sample was added.   

Serial dilutions of the test plasma was done by pipetting 50 µl of this dilution to row G, and 

this process was repeated until eight serial dilutions were done to achieve a final dilution of 

1:98415. To all wells in columns two to twelve, rows A through H, 50 l of cell-free virus 

was dispensed. and mixed by pipette action after each transfer.   Pipette tips were rinsed in a 

reagent reservoir containing sterile PBS between each transfer to avoid carry-over.   The plate 

was covered and incubated for 1 hr, at 37°C.  

A suspension of TZM-bl cells at a density of 10,000 cells/ml in GM containing DEAE 

dextran was prepared. Thereafter, 100 l of cell suspension was dispensed (10,000 cells per 

well) to each well in columns one to eleven, rows A though H. Rinse pipette tips in a reagent 
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reservoir containing sterile PBS between each transfer to avoid carry-over.  Plates were 

covered and incubated for 48 hrs, at 37°C. 

From each well, 150 l of culture medium was removed and 100 l of Bright Glo Reagent 

was then dispensed to each well and incubated at RT for 2 mins to allow complete cell lysis 

and was mixed by pipetting action (two strokes) and 150 l of this mixture was then 

transferred to a corresponding 96-well black plate. The plate was read immediately in a 

luminometer. 

Percent neutralization was determined by calculating the difference in average relative 

luminescence units (RLU) between test wells (cells + serum sample + virus) and cell control 

wells (cells only, column one), and dividing this result by the difference in average RLU 

between virus control (cell + virus, column two) and cell control wells (column one), 

subtracting from one and multiplying by 100.  

nAb IC50 or nAb ID50 was defined as the neutralizing antibody titers that were expressed as 

the reciprocal of the serum dilution required to inhibit 50% virus inhibition (or reduce the 

RLU by 50%).  Each experiment was performed independently at least twice with duplicate 

wells.   

 

2.13.2 Analyzing Results  

Criteria defining the set limits of the pseudovirion assay included: Cell control (CC) to be 

greater than 100 and less than 1,000 RLU (>100 CC < 1,000 RLU). Virus control (VC) was 

ten times greater than the cell control (CC). If these criteria are not met, the assay was 

regarded as a failure.  
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Template A 

 
 

Template B 

 
 

Figure 2.6.  Template for measuring the titer of nAbs. Template A is for five samples 

per plate. Template B is for ten samples per plate.  CC, cell control wells (cells only); 

VC, virus control wells (virus and cells but no serum) (adapted from Montefiori, 

2004). 

  

1 2 3 4 5 6 7 8 9 10 11 12

A CC VC Dil 8 Dil 8 Dil 8 Dil 8 Dil 8 Dil 8 Dil 8 Dil 8 Dil 8 Dil 8

B CC VC Dil 7 Dil 7 Dil 7 Dil 7 Dil 7 Dil 7 Dil 7 Dil 7 Dil 7 Dil 7

C CC VC Dil 6 Dil 6 Dil 6 Dil 6 Dil 6 Dil 6 Dil 6 Dil 6 Dil 6 Dil 6

D CC VC Dil 5 Dil 5 Dil 5 Dil 5 Dil 5 Dil 5 Dil 5 Dil 5 Dil 5 Dil 5

E CC VC Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4

F CC VC Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3

G CC VC Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2

H CC VC Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1

Sample 5Sample 1 Sample 2 Sample 3 Sample 4

1 2 3 4 5 6 7 8 9 10 11 12

A CC VC Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4

B CC VC Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3

C CC VC Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2

D CC VC Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1

E CC VC Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4 Dil 4

F CC VC Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3 Dil 3

G CC VC Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2 Dil 2

H CC VC Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1 Dil 1

Sample 1&2 Sample 3&4 Sample 5&6 Sample 7&8 Sample 9&10
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Standard Dilution Algorithm 

 

 

Table 2.13. Standard dilution algorithm for two-fold dilutions 

 

 

 

 

 

 

 

Growth medium (100 l) was added to all wells of columns three to eleven.  Then an extra 

amount of growth medium listed above was added, and then the desired sample volume was 

added to the first three wells.  Thereafter two-fold dilutions were performed (i.e., serial 

transfers of 100 l). 

 

Table 2.14. Standard dilution algorithm for three-fold dilutions 

 

 

 

 

 

 

 

Growth medium (100 l) was added to all wells of columns three to eleven. Then an extra 

amount of growth medium listed above was added, and then the desired sample volume was 

added to the first three wells.  Thereafter three-fold dilutions were performed (i.e., serial 

transfers of 100 l)  (adapted from Montefiori, 2004). 

 

Desired Start 

Dilution 

GM Volume (l) Sample Volume 

(l) 

1:5 40 60 

1:10 70 30 

1:15 80 20 

1:20 85 15 

1:25 90 12 

1:30 90 10 

1:50 95 6 

Desired Start 

Dilution 

GM Volume (l) Sample Volume 

(l) 

1:5 5 45 

1:8 25 28 

1:10 30 22 

1:15 35 15 

1:20 40 11 

1:24 50 10 

1:45 45 5 
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2.14 HIV-1 Antigen Specific Non-Neutralizing Antibody Binding Affinities 

Total immunoglobulins (IgGs) were isolated from plasma samples of slow progressors and 

progressor at study entry and study exit time points.  Using an ELISA based assay, Fc portion 

of the IgGs were tested for their ability to bind to various activating and inhibitory (Fc) 

receptors in order to use this as a surrogate marker of potential antibody-dependent cell-

mediated cytotoxicity (ADCC) or antibody dependent cell-mediated viral inhibition (ADCVI) 

activity.  The activating receptors assayed for binding affinities were FcRI, FcRIIa, 

FcRIIIa and the inhibitory receptor was FcRIIb.  In addition, the binding affinities of the 

IgGs to specific HIV-1 antigens were also determined.  The rationale for this substudy was to 

determine whether there were differences in binding affinities of the IgGs in divergent states 

of disease progression. 

 

2.14.1 IgG Isolation 

2.14.1.1 Column Preparation: 

Melon Gel (Thermo Scientific, Surrey, United Kingdom) (500 µl) was added onto the Pierce 

column.  The column was spun for 1 min at 5,000 x g and thereafter 300 µl of buffer was 

added and washed through the column twice.  Columns were spun for 30 seconds at 5,000 xg. 

 

2.14.1.2 Plasma IgG Isolation 

Test plasma/serum was diluted and 500 µl was added to the column that was capped at the 

bottom to prevent the eluent from leaking (100 µl of plasma /serum plus 900 µl buffer).  The 

tubes were placed in a hula-mixer and rotated for 5 mins in order to ensure maximum capture 

of the IgGs.  The tubes were then placed in clean eppendorf tubes and spun down for 1 min at 

5,000 x g (without the cap) to elute the IgG‘s.  The remaining 500 µl of diluted serum was 
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added to the same spin column and the cap was replaced onto the column.  The tubes were 

placed in a hula-mixer and again rotated for 5 mins.  The tubes were then spun down for 1 

min at 5,000 x g (without the cap) to elute the IgGs from the column.  IgG concentrations 

were measured on the NanoDrop 2000 Spectrophotometer (Thermo Scientific, Surrey, United 

Kingdom) and stored at 4
0
C for downstream ELISA assays. 

 

2.15  Fcgamma (Fc) ELISA Protocol 

2.15.1  Fc Receptors 

Four different Fc gamma () receptors were used:  FcRI, FcRIIa, FcRIIb, and FcRIIIa (R 

& D Systems, Minneapolis, USA) and the ELISAs for each of the receptors were performed 

using a standard protocol.   FcR (50 µg) was dissolved in 1 ml PBS for a 50 µg/ml solution. 

 

2.15.2 FcGamma () Receptor ELISA 

The diluted Fc receptor (FcRI, FcRIIa, FcRIIb, and FcRIIIa) was added to nickel coated 

plates Ni-NTA HisSorb™ Plates (Qiagen, Dusseldorf, Germany) at a concentration of 

5µg/ml using PBS (100 µl/well).  One receptor per plate was added and incubated for 1 hr at 

RT, then overnight at 4
°
C.  The plate was washed three times with PBS-Tween (0.05%) and 

blocked with 5% PBS-Bovine Serum Albumin (BSA) (Sigma-Aldrich, St Louis, USA), 250 

µl/well and was incubated for 1 hr at RT.  The plate was washed three times 0.05% PBS-

Tween and 100 µl of antibodies were added (the IgG‘s derived from the test plasma was 

diluted serially starting at 100ng/µl diluted down to 3.12 ng/µl) to the respective wells and 

the plate was left to incubate for 1hr at RT.  The plate was washed three times 0.05% PBS-

Tween. Anti-human IgG Antibody, Fab fragment, peroxidase labeled (100µl per well was 
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added (KPL Protein Research Products, Maryland, USA).  (For the HRP Fab 20 µl was added 

to 10 mls PBS for a final concentration of 1 mg/ml for one plate).  The plate was incubated 

for 1 hr at RT and covered in tinfoil to protect it from light.  The plate was washed three 

times with 0.05% PBS-Tween.  The colour was resolved with o-phenylenediamine (OPD) 

(Sigma-Aldrich, St Louis, USA) by adding one OPD tablet to 11 mls of StrepHRP substrate, 

100 µl/well was added.  The reactions were stopped by adding 100 µl/well of 2.5 N sulphuric 

acid (Sigma-Aldrich, St Louis, USA).  The plate was read at 490 nm on an ELISA plate 

reader. 

 

2.15.3 Gp120, gp41, and p24 ELISAs 

 ELISA plates were coated with 80µl/well of a 250 ng/ml gp120-(YU2) or gp41 (HXBc2) or 

p24-(HIV-1/HXBc2) (Immune Technology, New Jersey, USA) and were left to incubate 

overnight at 4
°
C.  All antigens were diluted with PBS.  The plates were washed three times 

with PBS Tween 0.05%.  The plates were blocked with 5% PBS-BSA for 2 hrs at RT 

(100µl/well).  IgGs isolated previously were diluted in PBS and added to respective wells 

according to a serial dilution algorithm. IgG‘s isolated previously was added at log serial 

dilutions to respective wells and left to incubate for 2 hrs at RT at a starting concentration of 

1 mg/ml.  The plates were washed three times with PBS Tween 0.05% and 100 µl anti-human 

IgG Antibody, Fab fragment, peroxidase labeled was added to each well  (KPL Protein 

Research Products, Maryland, USA) and left for 1 hr at RT (1:500 diluted-per plate: 20 µl 

HRP in 10 ml PBS was made up) and cover in tinfoil.  The plate was washed three times 

0.05% PBS-Tween.  One OPD tablet was added to 11 mls of phosphate citrate buffer and to 

this 4.4 µl hydrogen peroxide (H2O2) was added and 50 µl/well of this solution was added to 

each well to develop the colour.  The reaction was stopped by adding 50 µl/well of 2.5 N 
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H2SO4 after 15 min.  The plate was read at 490nm on a microplate reader and the data was 

analyzed using GraphPad Prism 5 software programme. 

 

2.16 Statistical Analyses 

Pairwise comparisons of different parameters including genetic diversity, PNGs and length 

polymorphism, and autologous and heterologous nAb responses between subjects in the two 

groups were calculated by the Mann-Whitney non-parametric test and correlations performed 

using Spearman‘s non-parametric rank test implemented in the GraphPad Prism 5 software 

programme unless otherwise stated.  Correlations were regarded as statistically significant 

with a p-value <0.05.  All reported p-values are for two-sided tests.  
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Chapter Three – Results 
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3.0 HIV-1 Subtype C Envelope Characteristics Associated with Divergent Rates of 

Chronic Disease Progression 

 

Chapter Three is a reprint of published work: Derseree Archary, Michelle L. Gordon, Taryn 

N. Green, Hoosen M. Coovadia, Philip J.R. Goulder and Thumbi Ndung'u. HIV-1 subtype C 

envelope characteristics associated with divergent rates of chronic disease progression. 

Retrovirology 2010 Nov 4;7(1):92.  

3.1  Abstract 

Background:  HIV-1 envelope diversity remains a significant challenge for the development 

of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are 

incompletely understood.  HIV-1 subtype C envelope in particular shows significant 

differences and unique characteristics compared to its subtype B counterpart.  Here we 

applied the single genome sequencing strategy of plasma derived virus from a cohort of 

therapy naïve chronically infected individuals in order to study diversity, divergence patterns 

and envelope characteristics across the entire HIV-1 subtype C gp160 in four slow 

progressors and four progressors over a median of 21 months.   

Results:  Sequence analysis indicated that intra-patient nucleotide diversity within the entire 

envelope was higher in slow progressors, but did not reach statistical significance (p=0.07).  

However, intra-patient nucleotide diversity was significantly higher in slow progressors 

compared to progressors in the C2 (p=0.0006), V3 (p=0.01) and C3 (p=0.005) regions.  

Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs) were 

observed in the V1-V4 in slow progressors compared to progressors (p=0.009 and p=0.02 

respectively).  Similarly, gp41 in the progressors was significantly longer and had fewer 
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PNGs compared to slow progressors (p=0.02 and p=0.02 respectively).  Positive selection 

hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots 

mapped mainly to gp41 in progressors.  Signature consensus sequence differences between 

the groups occurred mainly in gp41. 

Conclusions:  These data suggest that separate regions of envelope are under differential 

selective forces, and that envelope evolution differs based on disease course.  Differences 

between slow progressors and progressors may reflect differences in immunological pressure 

and immune evasion mechanisms. These data also indicate that the pattern of envelope 

evolution is an important correlate of disease progression in chronic HIV-1 subtype C 

infection.   
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3.2 Background 

The rate of disease progression in HIV-1 infected individuals is determined by a complex 

interplay of viral characteristics, host genetic factors, immune responses and environmental 

factors.  The high viral replication rate, the lack of proof-reading mechanism by the HIV-1 

reverse transcriptase enzyme, and high recombination rate are characteristics that ensure that 

the virus continuously mutates and evolves, resulting in both HIV-1 diversification and viral 

escape from host immune responses (Preston et al., 1988, Mansky and Temin, 1995).  Viral 

diversity and the constant generation of new viral quasispecies that may not be recognized or 

eliminated by the host immune mechanisms, particularly contemporaneous virus-specific 

cytotoxic CD8 T-cells or nAbs, are major impediments for the development of an efficacious 

HIV-1 vaccine (Brander et al., 2006, Walker and Burton, 2008).  

The HIV-1 envelope (Env) subunits gp120 and gp41 are the only viral proteins that are 

exposed on the virus surface, and they are under continuous host selective pressure, as they 

are key determinants of the target host cell range and are important targets of nAbs and CD8 

T-cell responses.  Specific Env sequence characteristics such as the overall amino acid 

diversity, the number of putative N-linked glycosylation sites (PNGs), and the length of 

variable loops have been shown to influence or correlate with antibody neutralization 

sensitivity, cell tropism, co-receptor utilization and virus transmission (Resch et al., 2001, 

Wei et al., 2003, Rademeyer et al., 2007).  Studies of Env diversity can also provide 

important clues for selective forces that may significantly influence the rate of disease 

progression or alternatively identify specific regions of the Env protein that comprise 

important targets of effective immune pressure which may be important considerations in 

rational HIV-1 vaccine design.   
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In HIV-1 subtype B, the relationship between HIV-1 Env diversity and disease progression is 

complex, as illustrated by a series of studies.  In one early study, HIV-1 Env hypervariable 

region 3 (V3 loop) diversity was shown to increase with time (Nowak et al., 1991).  A 

subsequent study showed that Env hypervariable regions 3 to 5 (V3 to V5) diversity was 

directly associated with duration of patient survival, positive selection for change, and 

inversely correlated with the rate of disease progression as measured by the slope of CD4+ T 

cell loss (Wolinsky et al., 1996).  Another study that examined Env C2-V5 sequences in men 

followed for 6 to 12 years following seroconversion demonstrated a complex pattern of viral 

diversity characterized by an early phase of linear increases in divergence and diversity, 

followed by an intermediate phase with increase in divergence but stabilization or decline of 

diversity, and a final phase showing stabilization or reduction in divergence and continued 

stability or decline in diversity (Shankarappa et al., 1999).  In another study, analysis of C2-

V5 Env sequences among typical progressors versus slow progressors showed that the typical 

progressors exhibited higher diversity, lower intra- and inter-sample divergence, evidence of 

lower host selective pressure and increases in both synonymous and non-synonymous 

substitutions over time while only non-synonymous substitutions increased in slow 

progressors (Bagnarelli et al., 1999).  

The aforementioned studies and a comprehensive body of similar studies on HIV-1 diversity, 

divergence, and host selective forces that may impact on disease progression have been 

performed on HIV-1 subtype B (Shankarappa et al., 1999, Delwart et al., 2002, Learn et al., 

2002, Freel et al., 2003, Ritola et al., 2004, Frost et al., 2005a, Gottlieb et al., 2008, Keele et 

al., 2008).  Furthermore, these studies clearly demonstrate that patterns of Env diversity, 

divergence, and associated selective pressures identified can differ according to the stage of 

disease, the sampling methodology, the region of Env analyzed, the founder virus, and the 

host genetic background.  
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HIV-1 subtype C is the most rapidly spreading subtype worldwide (Rong et al., 2007b, 

Coetzer et al., 2007), and an effective global vaccine will have to show efficacy against this 

subtype. A number of studies have explored Env diversity and diversification within HIV-1 

subtype C (Tscherning et al., 1998, Ping et al., 1999) but data on this subtype remain 

relatively limited, despite accumulating evidence that this subtype may differ significantly 

from HIV-1 subtype B in certain biological properties mediated by the env gene (Tscherning 

et al., 1998, Ping et al., 1999, Ball et al., 2003, Abraha et al., 2009, Rong et al., 2009).  In 

particular, possible differences in Env diversity, divergence, and selective pressures between 

HIV-1 subtype C-infected individuals with divergent rates of disease progression remain 

understudied.  

In this study, we used single genome amplification and sequencing to explore the evolution 

of the Env gp160 protein.  Specifically, we investigated differences in diversity and 

divergence in 4 slow progressors and 4 progressors of black African descent infected with 

HIV-1 subtype C.  Further, we investigated differences in Env features such as the extent of 

putative N-linked glycosylation, lengths of the variable and constant regions of gp160, and 

positive selection in slow-progressors and progressors in order to assess the correlation of 

these variables with rates of disease progression. 
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3.3 Materials and Methods 

3.3.1 Participants  

Participant samples were retrospectively identified from the Sinikithemba cohort, which is a 

prospective natural history study of HIV-1 infected individuals based at McCord Hospital, 

Durban, South Africa as previously reported (Kiepiela et al., 2004). Ethics approval was 

obtained from the University of KwaZulu-Natal Biomedical Research Ethics Committee and 

all participants gave written informed consent to participate in the study.  CD4 T-cell counts 

were performed at three month intervals whereas viral loads were done at six month intervals.   

For this substudy, CD4 T-cell count over two years was chosen as the primary determinant of 

disease progression for stratification into slow progressor and progressor categories.  Both 

slow progressors and progressors were selected on the basis of a CD4 T-cell counts >500 

cells/μl at study entry time point.  However, at study exit, slow progressors maintained a CD4 

count above 500 cells/µl or a viral load less than 10,000 viral RNA copies/ml. In contrast, 

progressors declined in CD4 T-cell counts to below 500 cells/μl and had a viral load above 

10,000 copies/ml.  The overall median time was 21 months between study entry and study 

exit sampling.  All individuals were antiretroviral therapy naive before and during the 

window of evaluation.  When the virological and immunological data became available 

beyond the study window (follow-up of an average of 39.8 months for slow progressors and 

36.8 months for progressors, we analyzed these parameters relative to the study entry criteria 

and they remain statistically different for the progressors only (p=0.03 for both CD4 T-cell 

count and viral load).   
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3.3.2 Sample Collection, CD4 T-Cell Counts and Plasma Viral Load 

Blood was drawn from each subject into EDTA tubes and plasma was separated by 

centrifugation and stored at −80
°
C until use.  Viral load was measured using the Amplicor 

Version 1.5 assay (Roche Diagnostics, Indianapolis, USA). CD4+ T-cell counts were 

enumerated by Trucount technology on a four colour FACS Calibur flow cytometer (Becton 

Dickinson, Franklin Lakes, New Jersey, USA).   

 

3.4.3 cDNA Synthesis and Single Genome Amplification 

HIV-1 RNA extraction, cDNA synthesis, and single genome amplification were performed as 

previously reported with some modifications (Salazar-Gonzalez et al., 2008) (see detailed 

methodology in Chapter Two). Briefly, primers were designed for the efficient amplification 

of HIV-1 subtype C envelope through nested PCR. For the first round PCR, the external 

primers used were VIF1: 5‘– GGGTTTATTACAGGGACAGCAGAG-3‘ (HXB2 positions 

4900-4923) and OFM19: 5‘– GCACTCAAGGCAAGCTTTATTGAGGCTTA-3‘ (HXB2 

positions 9604-9632).   Primers for the second round PCR reaction were ENV A: 5‘-

GCTTAGGCATCTCCTATGGCAGGAAGAA-3‘ (HXB2 positions 5954-5982) and ENV 

N: 5‘– CTGCCAATCAGGGAAGTAGCCTTGTGT-3‘ (HXB2 positions 9145-9171) 

(Salazar-Gonzalez et al., 2008).  Cycling conditions for first round PCR were as follows: 

94
°
C for 4 min, 35 cycles of 94

°
C for 15 seconds, 55

°
C for 30 seconds, 68

°
C 4 min, and final 

extension of 68
°
C for 20 min followed by hold at 4

°
C.  Second round PCR conditions were as 

follows: 94
°
C for 2 min, 45 cycles of 94

°
C for 15 seconds, 55

°
C for 30 seconds, 68

°
C for 4 

min; final extension at 68
°
C for 20 min and 4

°
C hold.  PCR products were visualized on a 1% 

agarose gel and amplicons were purified using the QIAquick PCR Purification Kit (Qiagen, 

Dusseldorf, Germany). 
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3.3.4 Sequencing Analysis of Gp160 

The full-length envelopes were sequenced in the forward and reverse directions using the 

ABI Prism Big Dye Terminator Version 3.1 cycle sequencing kit (Applied Biosystems, 

Foster City, CA)- see detailed methodology  in Chapter Two.   

 

3.3.5 Statistical Analyses 

Pairwise comparisons of different parameters including genetic diversity, PNGs, and length 

polymorphism between subjects in the two groups were calculated by the Mann-Whitney 

non-parametric test using the GraphPad Prism 5 software programme unless otherwise stated.  

Correlations were regarded as statistically significant with a p-value <0.05.  All reported p-

values are for two-sided tests.  

 

3.4.6 Genebank Accession Numbers 

Sequences have been assigned the following GenBank accession numbers: GU216702-

GU216737 and GU216739-GU216847. 

 

3.4 Results 

3.4.1 Study Participant Characteristics 

There were eight participants in this study, seven female and one male. Table 3.1 below 

depicts the demographic profile of the participants for this retrospective study.  All 

participants were of African descent.  All participants were antiretroviral treatment naïve for 

the period of evaluation that was a median of 21 months.  There were seven females and one 
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male in the study.  The participants were stratified into two groups, slow progressors and 

proressors based on their immunological (CD4 T-cell count) and virological (viral loads) 

over a median period of 21 months and beyond the window of evaluation.  Based on sample 

availability, the average period of follow-up between study entry and study exit samples for 

slow progressors and progressors were 21 and 18 months respectively.  CD4 T-cells were 

measured three-monthly and viral loads six-monthly.  The average age of the participants was 

34 years old (range: 22-59 years).  The average age for the slow progessors was 38 years 

(range 30-59 years) and for the progressors was 31 years (range: 22-40 years).   

At study entry, both progressors and slow progressors did not differ in their CD4 T-cell 

counts (medians of 621 cells/µl versus 571 cells/µl (p=0.39) as shown in figure 3.1.  

However, at study exit the median CD4 T-cell count of slow progressors was 506 cells/µl, 

which is not significantly different from the CD4 count at study entry (p=0.7), while the 

progressors' median CD4 T-cell count had significantly declined to 283 cells/µl, (p=0.03). 

Table 3.1.  Patient demographics and virological and immunological characteristics 

SP
=  Slow progressor

 
 
P
= Progressor   

 

Patient 

Identification 

Sex Age at  

Baseline 

Viral Load at 

study entry 

(copies/ml) 

Viral Load 

at study exit 

(copies/ml) 

CD4 count 

at study 

entry 

(cells/ul) 

CD4 level 

at study 

exit  

(cells/ul) 

SK035 
SP

 F 31 5800 2950 680 322 

SK036 
SP

 M 32 5100 10600 936 575 

SK169 
SP

 F 30 2210 2440 561 437 

SK312 
SP

 F 59 3460 3630 545 881 

SK010 
P
 F 31 6480 345000 649 268 

SK200 
P
 F 40 14360 24900 595 416 

SK221 
P
 F 30 9740 23700 503 297 

SK233 
P
 F 22 11800 18900 547 218 
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Slow progressors also had no significant difference for viral load (p=1.0) between study entry 

and exit time-points, whereas progressor participants had significantly lower viral load 

(p=0.03) at study entry compared to exit time-point.  In addition, CD4 T-cell (figure 3.1) and 

viral load were statistically different for progressors only at the latest available time-point 

compared to study entry (p=0.03 for both parameters). When slow progressors were 

compared to progressors, the analysis yielded significant differences when the CD4 T-cell 

counts at study exit and last available time-points - as shown in figure 3.1 (p=0.04 and 

p=0.02 respectively).  Likewise viral load between the groups was significantly different for 

study exit and the latest available time-point (p=0.03 and p=0.02) respectively.  

 

 

Figure 3.1.  CD4 T-cell counts and viral loads of study entry, exit and latest available time 

point data for slow progressors and progressors.  The red circles depict the data points for the 

slow-progressors.  The blue squares depict data points for the progressors.  Red bars and blue 

bars represent the p-values for the slow progressors and progressors respectively.  Black bars 

represent p-values for inter-group comparison for the different time-points.  NS = not 

significant.  All comparisons between the study entry exit and latest available time-point 

parameters were performed using the Mann-Whitney unpaired t test, and p-values are shown.  

Differences were regarded as statistically significant with a p-value <0.05. 
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Furthermore, we used BEAST to estimate the approximate time of infection in both groups of 

participants.  Slow progressors were estimated to be infected for a mean period of 8.2 years 

(range 4.75-15 years) compared with 2 years (range 0.75-3.75 years) for progressors. 

Next, single genome sequence analysis was undertaken to delineate the differences in the Env 

genotype between the two groups.  Phylogenetic analysis is shown in the figure 3.2. 

  

3.4.2 Phylogenetic Relationships 

To analyze phylogenetic relationships and changes in envelope sequences in slow progressors 

and progressors over a median period of 21 months, a mean of nine single genome full-length 

gp160 amplicons per participant per timepoint (range four to eleven amplicons) for the study 

entry and exit time-point were analyzed, for a total of 146 sequences.   One of the slow 

progressors (SK312) had a few putative functional Env amplicons that were included in the 

final analysis when compared to the other study participants.  This was due to a low number 

of SGA-derived clones that was limited by the low viral load and plasma sample availability.  

All participants‘ consensus sequences bootstrapped confidently with subtype C reference 

strains, as determined by a Maximum Likelihood tree for each patient at each time point 

(figure 3.2A). As expected, consensus sequences from the study entry and study exit for each 

patient formed monophyletic groups.   

 

Overall, there were no distinguishing phylogenetic patterns noted between sequences from 

the slow progressors and progressors (figure 3.2A). Slow progressors showed a more diverse 

pattern characterized by either separate (sub)clusters at study entry and exit (figure 3.2B - 

SK035) or intermingling of sequences from early and  exit time points (figure 3.2E - SK312).  

Additionally, phylogenetic clusters at study exit typically showed similar (figure 3.2C - 
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SK036) or longer branch length (figure 3.2D, example subject - SK169), compared with that 

of the study entry sequences. However, individual participant sequence trees for the 

progressors tended to show segregation between entry and exit time-point sequences (Figures 

3.2F-3.2I). 

 

3.4.3 Intra-patient Diversity Analysis 

Intra-patient diversity, defined as the mean pair-wise nucleotide distance, was calculated by 

measuring distances between all sequences from a single individual at a single time-point, 

and is shown alongside the phylogenetic trees (figures 3.2B - 3.2I).  Mean overall intra-

patient diversity was 2.75% for the four slow progressors and 2.21% for the four progressors 

(p=0.07).  The mean baseline intra-patient nucleotide diversity for the slow progressors was 

2.63% (range 1.8-3.3%) and 1.42% (range 1.0-2.0%) for the progressors, but this did not 

reach statistical significance (p= 0.08). Study exit time point mean intra-patient diversity was 

2.88% (range 1.9-4.2%) and 3.0% (range 1.0-7.4%) for slow progressors and progressors, 

respectively, which was not a significant difference (p-value = 0.56). Collectively, these data 

show that in this cohort, slow progressors trended to higher intra-patient sequence diversity 

compared to progressors although the differences did not reach statistical significance. 

 

3.4.4 Nucleotide Substitution Rates in Study Entry and Exit in Slow Progressors and 

Progressors 

To examine the evolution of the envelope gene over the study period, we calculated the rate 

of nucleotide divergence for each patient‘s env sequences.  On average the nucleotide 

substitution rate was higher in the progressors (1.2 x10
-2

 nucleotide substitutions/site/year; 
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Figure 3.2.  Maximum Likelihood trees of SGA-derived full-length env sequences from Progressors and Slow progressors.  Figure 3.2A Subtype tree of consensus sequences for slow 

progressors  entry () and  exit () and progressors  entry () and  exit () time-points. Subtype reference strains were obtained from the Los Alamos database (http://hiv-

web.lanl.gov/content/hiv-db/SUBTYPE_REF/align.html). The tree was rooted with Group O as the outgroup. Figures 3.2B to 3.2E represent maximum likelihood trees for the slow 

progressor sequences and Figures 3.2F to 3.2I represent trees for the progressor sequences. All trees were drawn in Paup* using the appropriate substitution model. Bootstrap support 

from 1000 bootstrap resamplings is indicated by . Only values >70% are shown. The scale bar is shown at the bottom of figure 3.2A is 0.1 and for figures 3.2B-3.2I the scale bar is 

0.005.  The mean study entry and exit intra-patient nucleotide diversity and the standard error of (SE) for both the groups are shown in the tables below the individual trees. 

 

http://hiv-web.lanl.gov/content/hiv-db/SUBTYPE_REF/align.html
http://hiv-web.lanl.gov/content/hiv-db/SUBTYPE_REF/align.html
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range 6-17 x10
-3

), compared to the slow progressors (3x10
-3

 nucleotide 

substitutions/site/year; range 0.1-7 x10
-3

), but did not differ significantly (p=0.12).  The 

nucleotide substitution rate appeared to follow the viral load pattern, such that there was a 

positive but non-significant linear correlation between divergence (nucleotide substitution 

rate) and the log10 viral load (p=0.12) - data not shown.  

 

3.4.5 Heterogeneity of Diversity in Env in Slow Progressors and Progressors for the 

Variable and Constant Regions 

To assess whether there were overall differences in diversity between regions of env at study 

entry and exit, we analyzed distinct regions of the env gene separately and compared 

diversity scores between the slow progressors and progressors for the five variable loops, 

three constant regions and gp41 over time as seen in figure 3.3A.  Significant diversity 

differences between slow progressors and progressors were noted for the C2 (p=0.004), V3 

(p=0.01) and C3 (p=0.005), with differences remaining significant for C2 and C3 even after 

applying Bonferroni correction for multiple comparisons (≤0.006). There was no significant 

difference in overall inter-patient percentage diversity between slow progressors and 

progressors for V1 (p=0.12), V2 (p=0.09), V4 (p= 0.29), C4 (p=0.13), V5 (p=0.08) and gp41 

(p=0.40).   

 Next, the differences in inter-individual env diversity patterns across env for study entry and 

exit time-points were assessed. The results of this analysis are summarized in figure 3.3B for 

slow progressors and figure 3.3C for progressors.  There were no significant differences 

between the early and exit time-point intra-patient diversity for either of the groups in any of 

the regions. 
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3.4.6 Length Polymorphisms and Glycosylation Patterns for the Variable and Constant 

Regions  

Overall length of certain regions and changes in the number of N-linked glycosylation sites 

(PNGs) in Env have been shown to influence the sensitivity or resistance of the virus to 

antibody neutralization and may also influence efficiency of interactions with receptors on 

the cell surface (Wei et al., 2003, Sagar et al., 2006).  However, these characteristics have not 

been comprehensively analyzed for HIV-1 subtype C and most studies have focused on the 

V3 loop, which is an important but not exclusive determinant of viral tropism and cell entry 

(Huang et al., 2008). We sought to determine whether Env sequence characteristics are 

associated with disease progression in HIV-1 subtype C. 

Table 3.2 depicts Env region length polymorphisms and numbers of PNGs in slow 

progressors and progressors over time.  Mean V1-V2 length for progressors and slow 

progressors was 66 amino acids and 69 amino acids respectively (table 3.2) but this 

difference was not statistically significant (p=0.32).  Similarly, we observed no differences in 

C4-V5 amino acid length (p=0.29) or PNGs (p=0.15), and length polymorphism for C2-V3 

showed no significant difference between the groups.  However, a significant difference was 

noted in the overall number of PNGs in C2-V3 between slow progressors and progressors 

(p=0.009), a result that remained significant after Bonferroni test correction (p<0.01). 

For C3-V4, slow progressors had a significantly higher mean of 85 (range 81-90) compared 

to 82 (range: 76-88) amino acids in progressors (p=0.02), however analysis of PNGs 

indicated no difference between the groups (p=0.96). Interestingly, there was a significant 

difference overall between the groups in the numbers of PNGs for C3 only in the progressors 

compared to the slow progressors (p=0.0006) (data not shown). 
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Figure 3.3.   Box-and-whisker plots of genetic diversity of the dissected envelope gene for V1, V2, C2, V3, C3, V4, C4 and 

V5 and gp41 for slow progressors and progressors.  The whiskers extend to the upper and lower adjacent values.  

Comparisons between the groups were done with the Mann Whitney unpaired t test, and p-values are shown. Correlations 

were regarded as statistically significant with a p-value <0.05 and only significant p-values are shown.  p-values depicted 

with an asterisk (*) indicate the ones corrected for multiple comparisons using the Bonferroni correction of p<0.006. Mean 

diversity value is depicted as (+).  Figure 3.3A  Diversity of V1, V2, C2, V3, C3, V4, C4, V5 and gp41 in slow progressors 

(SP) and progressors (P) overall.   Figure 3.3B Box and whisker plots of intra-patient diversity analysis for slow progressors 

for different regions of the Env gene for study entry and study exit.   Figure 3.3C Box and whisker plots of intra-patient 

diversity analysis for progressors for different regions of the Env gene for study entry and study exit. 
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Table 3.2.  Env sequence characteristics of amino acid length and potential N-linked glycosylation sites for slow progressors and progressors 

p-value was calculated using the two-tailed Mann-Whitney non-parametric test overall between the slow progressors and progressors. Where only the mean is reflected it is because it is equivalent to the range. * represents the 

p-value that remained significant after Bonferroni adjustment for multiple comparisons (p<0.01), NS represents a non-significant p-value.  Potential N- linked glycosylation = PNGs.# Data for V1-V4 length is as follows: slow 

progressors had a mean of 286 amino acids (range 282-294) versus progressors‘ 281 amino acids (range 276-292; p=0.009).   # Data for V1-V4 PNGs is as follows: slow progressors had a mean of 20 PNGs (range 19-21) versus 

a mean of 22 PNGs (range 20-23) in progressors (p=0.02). 

Patient V1V2 C2V3 C3V4 C4V5 gp41 

 mean length 

(range) 

Mean PNGs  

(range) 

mean length 

 (range) 

Mean PNGs  

(range) 

mean length  

(range) 

mean PNGs 

(range) 

mean length 

(range) 

mean PNGs 

(range) 

mean length 

(range) 

mean PNGs 

(range) 

 

Slow progressors 

 

          

SK035  entry
 
 69 (62-72) 6 (3-7) 133 8 80 (75-81) 7 (5-8) 53 (52-56) 3 (3-4) 252 5 (3-5) 

SK035  exit
 
 69 (59-70) 6 (4-8) 133 8 82 (80-88) 7 (6-8) 53 (52-58) 3 (2-4) 250(243-252) 5 (4-5) 

SK036  entry
 
 64 (61-73) 5 (4-6) 133 6 (7-8) 84 (82-84) 8 (8-9) 52 3 (2-3) 243(243) 4 (3-5) 

SK036  exit
 
 66 (59-73) 4 (3-6) 133 8 (7-8) 84 8 (7-9) 52 3 (2-3) 243(243) 5 (4-5) 

SK169  entry
 
 75 (71-80) 6 (5-7) 133(132-133) 6 (6-8) 85 (84-88) 7 (6-8) 54 (52-55) 3 (2-4) 245(241-245) 3 (3-4) 

SK169  exit
 
 76 (71-77) 7 (6-7) 133 6 (6-8) 86 (84-95) 7 (4-10) 54 (51-55) 3 (2-4) 245(245) 3 (3-4) 

SK312  entry
 
 66 (60-69) 5(3-5) 133 6 90 (85-97) 9 (5-11) 51 (50-54) 3 (2-4) 239(233-252) 3 

SK312  exit
 
 67 (67-69) 5 133 6 90 (84-97) 8 (4-10) 51 (50-55) 3 (1-4) 239(236-252) 3 

 

Mean (range) over time 

 

69 (64-75) 

 

6 (4-7) 

 

133 

 

7 (6-8) 

 

85 (81-90) 

 

8 (7-9) 

 

53 (51-54) 

 

3 

 

245(239-252) 

 

4 (3-5) 

 

Progressors 

          

SK010  entry 65 6 133 8 79 (77-82) 8 (7-9) 52 (52-53) 3 252 3 

SK010  exit
 
 65 (65-66) 6 133 8 78 (75-79) 7 (5-8) 52 (50-54) 3 252 3 

SK200  entry 66 (64-78) 6 (6-7) 133 8 76  (75-76) 6 (6-7) 52 2 (2-3) 252 3 (2-3) 

SK200  exit
 
 73 (71-73) 6 (6-8) 133 8 76 (75-76) 7 52 3 252 3 (2-3) 

SK221  entry 72 (55-74) 7 (3-8) 133 9 77 (73-82) 7 (7-8) 51 3 (3-4) 252 2 

SK221  exit
 
 71 (63-76) 5 (4-5) 133 9 85 (74-90) 8 (6-9) 51 3 (3-4) 246(245-252) 2 

SK233  entry  58 4 133 8 84 (84) 9 (8-9) 52 (50-51) 3 245 3 (3-4) 

SK233  exit
 
 59 (59-63) 5 (5-6) 133 8 (7-8) 84  (84) 9 (8-9) 53 (52-53) 3 (2-4) 245 3 (3-4) 

 

Mean (range) over time  

 

66 (59-72) 

 

6 (4-7) 

 

133 

 

8 (8-9) 

 

82 (76-88) 

 

8 (7-9) 

 

52 (51-53) 

 

3 (2-4) 

 

250(245-252) 

 

3 (2-3) 

 

p-value  
 

p= 0.32 

 

p=0.78 

 

NS 

 

 

*p=0.009 

 

p=0.02 

 

p=0.96 

 

 

p=0.29 

 

 

p=0.15 

 

p= 0.02 

 

p= 0.02 
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V1-V4 length overall was significantly different, with slow progressors displaying longer 

V1-V4 length of 286 amino acids (range 282-294) compared to progressors‘ 281 (range 276-

292; p=0.009).  In contrast, we found that the numbers of PNGs for V1-V4 overall was 

significantly higher with a mean of 22, (range 20-23) in progressors compared to a mean of 

20 (range 19-21) in slow progressors (p=0.02).  Gp41 length was significantly higher in 

progressors (range 245-252) compared to slow progressors (range 239-252; p=0.02) (table 

3.2).  However, the number of PNGs in gp41 in slow progressors (range 3-5) was statistically 

different from those of progressors (range 2-4 PNGs; p=0.02).  

 

3.4.7 Positive and Negative Selection Pressure  

The dN/dS (ω) ratio reflects non-synonymous (dN) substitutions to synonymous (dS) 

substitutions per codon site, with a value of >1 at any site indicating positive selection 

pressure (Yang et al., 2003).  The ω values for the whole of gp160, as well as the variable and 

constant regions within envelope, were calculated using the M1a and M2a models 

implemented in CODEML.  The settings for the M1a (neutral) model were: model = 0, 

NSsites = 1, and for the M2a (selection) model were: model = 0, NSsites = 2.  A Likelihood 

Ratio Test (2ΔlnL) was performed between the likelihood scores of the M1a (null) vs. M2a 

(alternative) models.  A χ
2
 test was performed using two degrees of freedom (Yang, 1997).  

For V1, the M2a (selection) model was supported only in the slow progressors (p<0.005).  

For V2 and V3, the null hypothesis (M1a) could not be rejected for both slow and typical 

progressors (p=0.25), while the M2a model was supported for all remaining envelope regions 

(p<0.005) for both groups.  
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Analysis of the entire Env gp160 in the two groups using CODEML and the SLAC option in 

HyPhy identified 9 common sites under positive selection in slow progressors and 5 sites in 

progressors.  In slow progressors (Figures 3.4A and 3.B), these were at codons 87, 138 and 

140 (V1), 336 and 340 (C3), 396 and 410 (V4), 460 (V5) and 832 (gp41).  Most of the sites 

under positive selection in slow progressors were either adjacent to a putative N-linked 

glycosylation site (codons 87, 138, 336 and 410) or were located at N-linked glycosylation 

sites (codons 140, 340, 396 and 460).  Interestingly, positions 336 and 340 are within the α-2-

helix (HXB2 position 335-352); it has been previously reported that changes within this 

region may confer autologous antibody neutralization resistance (Rong et al., 2007b).   

For progressors (Figures 3.4C and 3.4D), 4 of 5 positively selected sites were located in gp41 

(codons 607, 612, 641 and 821), while the remaining site, codon 350, was located in the α-2-

helix of C3 immediately downstream of V3.  Two of the sites under positive selection in the 

progressors were either adjacent to, (codon 612) or located at a putative N-linked 

glycosylation site (codon 641). 

One additional site identified using CODEML, codon 671, is located at a linear epitope 

NWFNIT, which is within the membrane proximal external region (MPER) of gp41, an 

epitope that is well recognized by a broadly neutralizing antibody (4E10) (Zwick et al., 

2005).   

Negative selection or purifying selection is the selective removal of alleles that are 

deleterious and can result in stabilizing selection through this purging process (Loewe, 2008).  

Negatively selected sites were also assessed using HyPhy, these sites provide information 

about amino acids that cannot undergo mutation or should not undergo mutation, as changes  
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Figure 3.4.  Three dimensional structural illustrations of positions associated with positive negative and neutral 

selection.  Locations were mapped onto a model of gp120 based on the X-ray structure of the gp120 core in complex 

with sCD4 and 21c Fab (3LQA.pdb) for slow progressors - Figure 3.4A and for progressors - Figure 3.4C.  V1-V2, 

V3 and V4 loops were drawn onto the core for completeness.  In the orientation shown, the cellular and viral 

membranes would be located above and below the protein respectively.  Figure 3.4B and 3.4D represent ribbon 

structures of gp41 for slow progressors and progressors with the MPER region highlighted.  Cartoon diagrams 

showing locations under positive selection, as determined by dN/dS ratios for subtype C sequences.  Red indicates 

strong positive selection (dN/dS >4) as shown above in HXB2 positions 87, 336, 340, 396, 410 and 460 for slow 

progressors (Figure 3.4A) and in progressors at positions 350 (Figure 3.4C) and 607, 612 and 641 in Figure 3.4D.  

Blue indicates strongly negatively selected positions (<-3). Purple and purple arrows denote changes in putative 

functional sites as shown in Figures 3.4B, 3.4C and 3.4D.  Spheres indicate signature sequence differences.  It should 

be noted that the gp120 core crystal structures which were modeled on the 3LQA.PDB structure, include amino acid 

residues from HXB2 position 86-491.  The gp41 structure based on 1ENV.pdb includes amino acid residues from 

HXB2 position 541-662.  Therefore all the positively and negatively selected sites are not indicated on the gp120 and 

gp41 structures. 
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may be deleterious to overall function of the protein and therefore to the virus.   There were 

49 and 51 negatively selected sites in slow-progressors and progressors respectively as 

depicted in tables 3.3 and 3.4, and all sites were significantly negatively selected for (p< 

0.05). 

The distribution of sites under negative selection was widespread along Env gp160 in both 

slow progressors and progressors (see tables 3.3 and 3.4 respectively).  Percentage (%) of 

negatively selected sites was calculated by counting the numbers of negatively selected sites 

within a particular region of Env (e.g. V2) and dividing it by the total number of negatively 

selected sites spanning the entire Env gp160.  Slow-progressors had negative selection in 

most regions of Env except for C3. 12.2% of the negatively selected sites were found in the 

C1 (6/49), 2% in V1 (1/49), 8.6% in V2 (4/49), 14.2% in C2 (7/49), 4% in V3 (2/49), 6% in 

C4 (3/49), 2% in V5 (1/49), 4% in C5 (2/49) and a majority of 46.9 % in gp41 (23/49).  A 

long interval of sites from codons 211-282 was found in C2.  17.4% (4/23) negatively 

selected sites in gp41 were in the leucine zipper region. 

Progressors had negative selection in all regions of the Env gp160 except for V1.  11.7% of 

the negatively selected sites were found in the C1 (6/51), 5.8% in V2 (3/51), 7.8% in C2 

(4/51), 1.9% in V3 (1/51), 7.8% in C3 (4/51), 1.9% in V4 (1/51), 3.9% in C4 (2/51), 1.9% in 

V5 (1/51), 7.8% in C5 (4/51) and 49% in gp41 (25/51).  20% (5/25) of the negatively 

selected sites in gp41 were in the leucine zipper region of gp41. 

In gp41 there was a long interval of negatively selected sites spanning codons 501-813 (23 

sites) in slow progressors and codons 544-853 (25 sites) in progressors.  Interestingly, amino 

acids common to both groups were only in the region proximal to or in the leucine zipper 

area, these were at positions 787R, 794K and 813S.  The preservation of conserved amino 

acids in the leucine zipper region is crucial to HIV-1 Env oligomerization.  These results 
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could be biased because we did not account for phylogenetic relatedness and there were too 

few participants to perform multivariate analysis.  Although the p-values represented in the 

tables are highly statistically significant, when we do adjust for multiple comparisons using 

the Bonferroni correction, none of the p-values were < 0.00005. 

 

3.4.8 Signature Sequence Differences between Slow Progressors and Progressors 

To identify key differences between the groups, consensus sequences of slow progressors and 

progressors study entry and exit were generated in VESPA using an 80% threshold (i.e. 

sequence differences were in >80% of the sequences).  Signature differences were noted at 6 

amino acid positions between the progressors and slow progressors consensus sequences. 

Four of six of these differences occurred in gp41 (codons 607, 727, 770 and 837), and the 

remaining two were at codons 80 and 133.  No signature differences were noted between the 

entry and exit time points within each group.  

Except for an N to S/D mutation in the progressors at codon 80, which resulted in the gain of 

a casein-kinase-2 (CK2) phosphorylation site at codons 77-80, most of the signature changes 

were not at putative functional sites. Other changes, although not in the signature, but 

resulting in a change in putative functional sites in the progressors, are: a V to T mutation at 

codon 455 resulting in the gain of a myristoylation site at codon 451-456, a Q to K mutation 

at codon 665 (within the ALDSQWN epitope) resulting in the gain of a tyrosine kinase 

phosphorylation (TKP) site at codons 665-667, and an N to S mutation at codon 671 resulting 

in the gain of a CK2 phosphorylation site at codons 671-674 within the NWFDIT epitope.  

Interestingly, the loss of a putative N-linked glycosylation site in the progressors in the V4 

region was compensated for by a gain of an N-linked glycosylation site in the C3 region 
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(codons 362-365). When these signature patterns were compared with the subtype B 

reference strain, it was noted that an L to V mutation at codon 800 in the subtype C signature 

sequences resulted in a loss of a putative leucine zipper (codons 793-814). Whether the gain 

or loss of putative functional sites influence viral pathogenesis needs to be confirmed with 

functional assays.  

 

3.4.9 Predicted Coreceptor Usage based on V3 Crown Sequence Motifs in Slow 

Progressors and Progressors 

Based on sequence analysis of the V3 sequences, predicted co-receptor usage of the viruses 

was done using the Web Position Specific Scoring Matrix (WebPSSM- 

http://indra.mullins.microbiol.washington.edu/webpssm).  This programme takes into account 

the sentinel amino acid positions 11 and 25 of the 35-36 amino acid motif of V3 that 

determine whether a virus uses either the CCR5 or CXCR4 chemokine receptors or both in 

order to infect a target cell.  A total of 147 sequences were analyzed, 78 for progressors and 

69 for slow-progressors.  All the progressors and two slow-progressors had CCR5 using 

viruses.  The remaining two slow-progressors SK035 and SK169 had viruses in the study 

entry time-point that were predicted to be CXCR4 or CCR5 using, or both and the percentage 

of viruses in these participants were 15% (2/13) and 50% (6/12) for SK035 and SK169 

respectively.   Additionally, all these V3 sequences were 35 amino acids in length whereas 

the CCR5 only using viruses ranged between 35 and 36 amino acids in length.  Interestingly, 

these viruses were only evident at the study entry time-point and had disappeared at the study 

exit time-point over an average period of 23 months for these participants. 
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Table 3.3.   49 Negatively selected sites spanning Env gp160 for slow progressors using HyPhy 

HXB2 position 

and wild type 

amino acid 

dN/dS Ratio p- value Position in Env HXB2 

position and 

wild type 

amino acid 

dN/dS 

Ratio 

p-value Position in Env 

38V -4.00 0.012 C1 488V -3.00 0.037 C5 

54C -3.29 0.048 C1 501A -3.00 0.037 Gp41 

60A -3.00 0.037 C1 510K -7.30 0.0009 Gp41 

N80S -3.29 0.04 C1 529T -3.00 0.037 Gp41 

86L -6.54 0.0017 C1 540Q -7.30 0.0009 Gp41 

121K -4.23 0.016 C1 553N -9.87 0.00007 Gp41 

131C -3.29 0.048 V1 554N -8.23 0.0003 Gp41 

159F -3.29 0.041 V2 563Q -4.16 0.027 Gp41 

176F -3.29 0.041 V2 569T -5.00 0.004 Gp41 

191Y -4.93 0.012 V2 597G -4.00 0.012 Gp41 

N195S -3.29 0.41 V2 A607N/D/T -3.50 0.045 Gp41 

E211D -6.59 0.002 C2 H643Y -4.94 0.013 Gp41 

212P -3.00 0.037 C2 657E -4.40 0.013 Gp41 

222G -4.00 0.012 C2 679L -3.20 0.041 Gp41 

243S -4.94 0.008 C2 685F -6.59 0.002 Gp41 

260L -3.73 0.023 C2 694G -4.00 0.012 Gp41 

263G -3.00 0.037 C2 747R -4.40 0.013 Gp41 

282K -5.91 0.003 C2 759D -9.88 0.00007 Gp41 

304R -3.68 0.024 V3 765L -6.00 0.0013 Gp41 

327R -6.69 0.0009 V3 787R -7.77 0.0017 Gp41-proximal to the leucine 

zipper region 

418C -3.29 0.048 C4 794K -6.94 0.001 Gp41 Leucine zipper 

421K -4.44 0.014 C4 806E -8.84 0.0002 Gp41 Leucine zipper 

425N -8.23 0.0003 C4 808K -5.12 0.029 Gp41 Leucine zipper 

466E -5.73 0.004 V5 813S -7.39 0.005 Gp41 Leucine zipper 

487K -4.44 0.014 C5     
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Table 3.4.  51 Negatively selected sites spanning Env gp160 in progressors  using HyPh

HXB2 position and 

wild type amino acid 

dN/dS 

Ratio 

p-value Position in Env HXB2 position 

and wild type 

amino acid 

dN/dS 

Ratio 

p-value Position in Env 

44V -5.00 0.004 C1 544L -3.84 0.021 Gp41 

70A -4.00 0.012 C1 547G -4.00 0.012 Gp41 

74C -3.26 0.05 C1 569T -4.00 0.012 Gp41 

99D -5.68 0.018 C1 581L -4.02 0.018 Gp41 

117K -4.22 0.016 C1 604C -3.26 0.048 Gp41 

128S -3.5 0.045 C1 626T -12.74 0.025 Gp41 

153E -3.99 0.043 V2 634E -4.37 0.014 Gp41 

171K -4.37 0.041 V2 638Y -8.16 0.0007 Gp41 

S190E -3.99 0.04 V2 647E -4.35 0.014 Gp41 

239C -6.53 0.002 C2 649S -4.00 0.018 Gp41 

262N -3.26 0.041 C2 S668N -6.52 0.0012 Gp41 

264S -3.26 0.041 C2 685F -3.26 0.041 Gp41 

V275E -5.84 0.003 C2 692L -3.73 0.027 Gp41 

314G -3.00 0.042 V3 Crown motif 765L -3.00 0.037 Gp41 

339N -3.26 0.04 C3 780R -8.40 0.0002 Gp41 

P369L -3.26 0.04 C3 787R -4.83 0.028 Gp41 

375S -4.30 0.031 C3 788R -3.54 0.024 Gp41 

377N -3.26 0.04 C3 794K -6.92 0.0011 Gp41 Leucine zipper 

386N -4.89 0.009 V4 798N -6.10 0.007 Gp41 Leucine zipper 

418C -4.89 0.009 C4 806E -5.53 0.004 Gp41 Leucine zipper 

454L -3.74 0.03 C4 811A -4.00 0.012 Gp41 Leucine zipper 

468F -6.52 0.0017 V5 813S -7.32 0.005 Gp41 Leucine zipper 

477D -3.26 0.04 C5 840I -3.56 0.022 Gp41 

489V -3.00 0.04 C5 842H -4.89 0.009 Gp41 

499T -5.00 0.004 C5 R853A -8.50 0.0004 Gp41 

L518V -6.00 0.001 C5     
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3.5 Discussion 

In this study we aimed to identify env sequence characteristics that may distinguish 

progressors from slow progressors in a chronically HIV-1 infected anti-retroviral naïve 

subtype C-infected cohort. We used a single genome amplification approach in order to 

accurately and comprehensively represent the diversity of viral quasi-species.     Several 

indicators of evolutionary forces were used to elucidate putative differences between the 

groups including heterogeneity of envelope sequence diversity, Env length polymorphisms, 

numbers of PNGs, positive selection, and signature sequence characteristics.   

Our study suggests that regions of Env are shaped by different evolutionary forces that may 

in turn leave viral sequence footprints that may distinguish slow progressors from progressors 

in chronic HIV-1 subtype C infection.  It has previously been shown that in subtype B 

infection there may be Env region-specific differences in evolutionary forces between those 

with high versus low viral loads (Wolinsky et al., 1996).  Our study demonstrated a non-

significant trend towards increased intra-patient diversity in slow progressors, a finding 

consistent with other studies on HIV-1 disease progression (McNearney et al., 1992, 

Markham et al., 1998, Mani et al., 2002).   We therefore could not prove our hypothesis that 

reduced viral diversification correlated with lack of or slower disease progression.  In 

contrast, a study of primary HIV-1 subtype C infection has found that increased envelope 

diversity is inversely correlated with CD4 T-cell counts and is associated with rapid disease 

progression (Gray et al., 2007).  Together, these results may imply that evolutionary forces 

that drive HIV-1 subtype C diversification differ according to the phase of infection.  On 

close examination of the envelope regions we found that diversity in C2, V3 and C3 was 

higher in slow progressors compared to progressors suggesting co-evolution of these regions.  

These findings are consistent with findings from other studies (Menzo et al., 1998, Gaschen 
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et al., 2002).  From a functionality standpoint it appears that, because the V3 loop is very 

important for viral entry, increased diversity in this region is a correlate of viral attenuation 

(Abraha et al., 2009).  

Length polymorphisms in the constant and variable envelope regions may also contribute to 

structural diversity in terms of glycan packing and protein folding of the virion structure.  An 

unusual finding was that the longer V1-V4 in slow progressors had fewer PNGs whereas the 

longer gp41 domain contained fewer PNGs in progressors.  Several studies have shown the 

association between neutralization sensitivity and shorter V1-V4 length (Derdeyn et al., 

2004, Rong et al., 2007a).  In contrast, other studies have shown longer V1-V4 with 

extensive glycosylation mask neutralizing antibody sensitive epitopes in subtype C 

(Rademeyer et al., 2007); however, in subtype B no such association was found (Liu et al., 

2008b).  Our observations may imply that longer length regions may be masking 

neutralization sensitive epitopes as suggested by Gray et al. (Gray et al., 2007).  Additionally 

in progressors, a loss of a glycan in V4 was compensated for by a gain in a PNG within C3, 

implying a shifting glycan shield as suggested previously (Wei et al., 2003).   

High dN/dS ratios indicative of strong diversifying selection due to humoral immune 

pressure (Yang et al., 2003), occurred mainly within gp41 in progressors, while slow 

progressors had a number of regions targeted.  This suggests that the nature of antibody 

targets may differ between the groups.  Interestingly, both groups had positive selection in 

the α-2-helix within C3.  It has been suggested that, because the V4 loop is shorter in subtype 

C than in subtype B, the α-2 helix is more exposed and more antigenic (Gaschen et al., 2002, 

Gnanakaran et al., 2007, Lynch et al., 2009).  Interestingly, position 607 of gp41 was 

positively selected in progressors and was also a signature sequence difference between 

progressors and slow-progressors, indicating that there may be putative humoral immune 
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pressure driving escape at that position.  Additionally, gp41 in progressors showed 

differences at two putative antibody sites.  Firstly, ELDKWAS was recognized by nmAb-  

2F5, where DKW are the sentinel amino acids that determine sensitivity to 2F5 (Zwick et al., 

2005).  This appears in the majority of the slow progressors‘s sequences; however, it is 

substituted by DSW in all the progressors indicating a loss of a putative antibody recognition 

site.  In addition there is a sequence change from Q at position 665 to K, making the overall 

progressor sequence ALDSWKN.    Secondly, an N to S change at codon 671, which is 

within a linear epitope- NWFNIT- that is recognized by nmAb 4E10, may result in a loss of 

this recognition site.  In addition, this codon was positively selected for in the progressors.  

The effect of the loss of these putative recognition sites during chronic disease progression is 

unknown.  In addition, the negatively selected sites along the entire gp160 in both slow 

progressors and progressors may imply that there are some sentinel amino acids that need to 

be preserved in order to maintain the overall integrity of the Env.  Identification of negatively 

selected sites may be tool we can use to hone in on crucial or functionally important sites in 

HIV-1 Env and may be included in future immunogen design to cripple the virus where it 

cannot afford mutations. Together these results may imply that the virus uses multiple 

strategies to evade the immune system, including increased V1-V4 amino acid length, 

increased numbers of PNGs, and specific mutations resulting in the virus gaining selective 

advantages.   Essentially, the cat and mouse game that persists during chronic infection as a 

result of the dichotomy between antigenic stimulation and immunological response, which 

impacts and influences viral characteristics, needs further investigation.   

The limitations of the study are that firstly, we do not know the exact time of infection for 

these subjects. Therefore stratification of study subjects as progressors or slow progressors 

relied on short-term (24 months) follow-up immunological data, which may be an 
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unrepresentative snap-shot of the entire natural history of disease progression for these 

participants. However, this concern was somewhat allayed by bioinformatic analysis of the 

study sequences that showed that consistent with the stratification, progressors in this cohort 

were more likely to have been infected for shorter period of time than slow progressors. 

Second, the sample size of the study cohort was relatively small, which may have limited our 

statistical power to identify differences.   Third, we had a limited number of SGA-generated 

amplicons for one of the study participants in particular, due to their low viral load and 

sample volume limitation.  In addition, many more env amplicons were generated than were 

included in the final analyses as some of the amplicons had sequences with stop codons. 

Fourth, although the slow progressors and progressors differed in markers of disease 

progression at study exit, more stringent selection criteria could potentially identify 

additional significant differences.  Overall, therefore, the findings reported here will require 

duplication in larger cohorts with longer periods of follow-up and more significant 

differences in immunological and virological outcomes. 

 

3.6  Conclusions 

The dynamics of HIV-1 env evolution between chronic slow progressors and progressors are 

distinct.  Single genome sequence analysis of circulating viruses in slow progressors and 

progressors indicate that diversity, env length polymorphisms, sites under positive selection 

pressure, and PNGs consistently map to specific regions in slow progressors or progressors.  

Varied diversity across the env genome, the relationship between amino acid length, number 

of PNGs or sites under positive selection may provide further insight to the intrinsic 

differences between the viruses from both groups and the influence of the host‘s selective 

pressures which may be used to inform more effective vaccine design. 
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Deciphering Neutralizing and Non-Neutralizing Antibody Responses in HIV-1 Subtype 

C Chronically Infected Patients: Association with Divergent Rates of Disease 

Progression. 

 

4.1 Abstract 

Background:  Neutralizing antibodies (nAbs) play a critical role in the protection against 

many viral infections, however their role in HIV/AIDS disease progression remains 

controversial.  Similarly, the role that non-neutralizing antibodies may play in HIV/AIDS 

disease attenuation is unclear.  In this study we aimed to identify HIV-1 subtype C (HIV-1C) 

infected individuals with broad and potent nAbs, and the epitope targets of these nAbs that 

could assist in rational vaccine design. In addition, we also undertook to assess the binding 

affinities of several HIV-1 antigen-specific IgGs and Fc receptors as surrogate indicators of 

antibody-dependent cell-mediated cytoxicity (ADCC) to investigate possible differences 

associated with divergent states of HIV-1 disease progression. 

Results: Autologous nAb (AnAb) IC50 titers were significantly different in progressors when 

the study entry viruses were challenged with study exit plasma nAbs (p=0.003) compared to 

the contemporaneous response.  There was a positive correlation between amino acid length 

and nAb IC50 titer in C3-V5 (p=0.03) and V1-V5 (p=0.04) in slow progressors, however in 

the progressors there was a negative correlation in V1-V2 (p=0.04) and nAb IC50 titer. 

Neutralization breadth and titer to subtype B reference strains however, was significantly 

higher in progressors compared to slow progressors (both p<0.03) with increasing nAb 

breadth from study entry to study exit in progressors. There were no significant differences in 

breadth of responses between the groups for either subtype A or C. Average nAb IC IC50 

titers to subtype B tier 2 viruses were significantly higher in progressors compared to slow 
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progressors (p=0.005).  Fine mapping of two progressors nAbs indicated target epitopes in 

V2 and V3. There were no differences between the groups in the binding affinities of the 

IgGs to the HIV-1-specific antigens or to the FcRs.  However, there was a significant 

correlation between CD4 T-cell count and declining binding affinities of FcRIIa in slow 

progressors (p=0.005). 

Conclusions: Differences between slow progressors and progressors nAb profiles may 

reflect differences in immunological pressure and immune evasion mechanisms. The 

potencies of autologous nAbs are influenced by amino acid length and numbers of PNGs in 

particular Env regions in chronic progressive HIV-1 infection. Neutralization breadth is a 

correlate of chronic disease progression. Progressors had cross-reactive neutralizing 

antibodies targeting epitopes in V2 and V3 and also displayed neutralization breadth against 

subtype B viruses and this could have important implications in HIV-1 vaccine development. 

Overall, the data suggest that neither neutralizing nor non-neutralizing antibodies could be 

directly associated with disease attenuation in this cohort of chronically HIV-1 infected 

individuals.  However, continuous evolution of nAbs was a potential marker of disease 

progression. 
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 4.2 Background 

In 2009 alone, there were an estimated 2.4 to 2.9 million new HIV-1 infections worldwide 

with ~70% of these new infections occurring in sub-Saharan Africa (UNAIDS, 2010).  This 

high HIV-1 incidence makes the development of a protective vaccine a global public health 

priority.  Such a vaccine will likely need to elicit antiviral antibodies, similar to the successful 

vaccines against other viral infections such as hepatitis B, measles, mumps and polio that are 

thought to mediate their effects primarily through antibody mechanisms (Plotkin, 2008).  

However, despite intense efforts in the study of HIV-1 envelope structure and immunogen 

design, the development of an efficacious vaccine able to induce broadly effective antibody 

responses remains elusive.   

 

During natural HIV-1 infection, only a subset of individuals, about <30%, develop broad, 

cross-neutralizing antibodies after many years (Li et al., 2009, Sather et al., 2009, Simek et 

al., 2009, Stamatatos et al., 2009, Gray et al., 2011a). Such individuals have been an 

important source of new neutralizing monoclonal antibodies (nmAbs) against the HIV-1 

envelope.  For example, Walker and colleagues reported the isolation of nmAbs that target 

the variable loops, termed PG9 and PG16 from a subtype A-infected individual (Walker et 

al., 2010).  In addition, VRC01, an anti-CD4 binding site nmAb is able to neutralize more 

than 90% of primary isolates and more recently, the PGT series of nmAbs with PGT128 

which targets glycans, is able to neutralize diverse viruses at much lower concentrations than 

other nmAbs (Wu et al., 2010, Pejchal et al., 2011).  Collectively, this work shows that in 

some cases natural infection is able to induce potent anti-HIV-1 antibodies with studies in 

non-B subtype infected populations providing putative targets to include in globally relevant 

HIV-1 vaccine design. Given that HIV-1 subtype C is the predominant circulating and most 
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rapidly spreading subtype worldwide (Esparza, 2005, Coetzer et al., 2007, Hemelaar et al., 

2011), screening, characterizing and understanding the types of nAbs produced by HIV-1 

subtype C-infected individuals; and defining the potencies and breadth of these nAbs will 

contribute to the design of the next generation of envelope immunogens. 

While only some people develop cross-neutralizing antibodies, autologous nAbs (AnAbs) 

appear in almost all HIV-1-infected individuals usually within the first year.  A number of 

studies have shown contemporaneous viruses are less sensitive to AnAbs than earlier 

autologous viruses suggesting that viral evolution and escape occurs rapidly and this remains 

a significant obstacle to HIV-1 vaccine development (Delwart et al., 1997, Wei et al., 2003, 

Richman et al., 2003, Rong et al., 2009, Moore et al., 2009).  Several mechanisms of viral 

escape have been documented; these include insertions and deletions of amino acids, amino 

acid substitutions and shifting the position of N-linked glycans in Env (Frost et al., 2005b, 

Rong et al., 2009, Moore et al., 2009, Lynch et al., 2011). Further understanding of HIV-1 

antibody escape patterns and mechanisms may improve the design of immunogens. 

Although the major focus of the HIV-1 vaccine field is the development of immunogens able 

to induce broadly neutralizing antibodies, the role of non-neutralizing antibodies is now being 

considered as potentially important.  Non-neutralizing antibodies are defined as those which 

do not show classical neutralizing activity, rather, they inhibit virus replication through an Fc 

(fragment crystallizable) receptor- (FcR)-dependent mechanism (Peressin et al., 2011). A 

recent study showed that antibody-dependent cell-mediated cytotoxicity (ADCC) activity was 

significantly higher in elite controllers compared to chronic progressors (Lambotte et al., 

2009).  These data on HIV-1 are consistent with earlier studies suggesting a role for non-

neutralizing antibodies in viral control and disease attenuation (Baum et al., 1996, Alsmadi et 

al., 1997). Fc receptors (FcRs) are part of the immunoglobulin (Ig) superfamily and bind to 
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the Fc regions of antibodies (Nimmerjahn and Ravetch, 2007). There are five different 

isoforms of FcγRs with either an activating or inhibitory function with relative strengths of 

IgG binding affinities.  FcγRI (high affinity), FcγRIIa and FcγRIIIa (medium-low affinity)- 

all with activating functions; and the inbibitory FcγRIIb (medium-low affinity) (Siberil et al., 

2007, Forthal and Moog, 2009). The Fc portions of antibodies form a bridge between the cell 

bearing the target antigens and the effector cell.  The effector cell bearing the FcR is then 

able to mediate virus killing through ADCC or through antibody-dependant cell-mediated 

viral inhibition (ADCVI).  Following the recent RV144 HIV-1 vaccine trial (Rerks-Ngarm et 

al., 2009), there has been speculation that non-neutralizing antibodies may have contributed 

to the 31% vaccine efficacy (Tomaras and Haynes, 2009).  Recently, Burton and colleagues 

(2011) demonstrated the lack of efficacy of a weakly neutralizing antibody (b6) compared to 

a non-neutralizing antibody (F240) against vaginal SHIV challenge (Burton et al., 2011).  

The role of ADCC/ADVCI in HIV-1 acquisition and/or control is poorly understood and no 

studies have reported on the characterization of these antibodies in HIV-1 subtype C 

infections.  

 

In this study, we used standard high throughput neutralization assays to evaluate the potency 

and breadth of neutralizing activity in patient plasma and map potential Env targets 

associated with nAb breadth.  We profiled autologous and cross-reactive (against a standard 

panel of 20 subtype A, B and C viruses) nAb titers in subtype C-infected slow progressors 

and progressors.  Envelope genotypic characteristics (amino acid length and numbers of 

potential N-linked glycosylation sites (PNGs) correlating with autologous nAb titers were 

assessed. Binding affinities of non-neutralizing antibodies to FcRs were quantified and used 

as a surrogate for ADCC/ADCVI activity.  A correlation between nAbs and non-neutralizing 
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antibodies and markers of disease progression (namely CD4 T-cell counts and viral loads) 

was investigated. 

 

4.3 Materials and Methods 

4.3.1 Participants  

Participant samples were retrospectively identified from the Sinikithemba cohort, which is a 

prospective natural history study of HIV-1 infected individuals based at McCord Hospital, 

Durban, South Africa as previously reported (Kiepiela et al., 2004).  Ethics approval was 

obtained from the University of KwaZulu-Natal Biomedical Research Ethics Committee and 

all participants gave written informed consent to participate in the study.    

 

4.3.2 Sample Collection, CD4 T-Cell Counts and Plasma Viral Load 

CD4 counts were performed at three-month intervals whereas viral loads were done at six-

month intervals.  Blood was drawn from each subject into EDTA tubes and plasma was 

separated by centrifugation and stored at −80
°
C until use.  Viral load was measured using the 

Amplicor Version 1.5 assay (Roche Diagnostics, Indianapolis, USA). CD4+ T-cell counts 

were enumerated by Trucount technology on a four-colour FACSCalibur flow cytometer 

(Becton Dickinson, Franklin Lakes, New Jersey, USA).   

 

4.3.3 Envelope Clones 

Envelope genes used in this study were either cloned as previously described or obtained 

from the NIH AIDS Research and Reference Reagent Program (NIH ARRRP). Briefly, the 
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single genome amplification derived env amplicons were directionally T/A cloned into the 

CMV-driven expression plasmid pcDNA3.1-V5 HisTOPO-TA and screened for biological 

function as pseudoviruses following co-transfection with an env-deficient subtype B proviral 

plasmid (SG3env) into 293T cells as described previously (Derdeyn et al., 2004) (see 

detailed protocol in Chapter Two).    A total of 20 standard reference envelope clones were 

used in the heterologous neutralization assays.  These included eight subtype C, seven 

subtype B and five subtype A envelope pseudoviruses as depicted in table 2.12 (see chapter 

two).  Tier 1 and Tier 2 viruses were stratified previously based on a clustering analysis of 

sensitivity patterns- with Tier 1 being the most sensitive, Tier 2 displaying moderate to low 

sensitivity and Tier 3 displaying the lowest sensitivity to neutralization (Seaman et al., 2010).   

The ConC plasmid carrying a consensus of all the HIV-1 subtype C sequences from the Los 

Alamos database by 2001 (Kothe et al., 2006) and the envelope plasmids containing single 

point mutations (as described in Gray et al. (2011), were obtained from Lynn Morris.   

 

4.3.4 Neutralization Assays   

Patient plasma samples were evaluated for neutralizing antibody activity against virions 

pseudotyped with autologous patient-derived viral Envs using a single reporter assay as 

described previously (Wei et al., 2003, Derdeyn et al., 2004, Li et al., 2005, Li et al., 2006b).  

Figure 2.4. (see Chapter Two) illustrates the schema used for autologous nAb assays where 

the study entry and exits Envs were tested for neutralization using the study entry and study 

exit plasma nAb samples.  This type of matrix yields both a contemporaneous response and 

an evolutionary response where escape from neutralization or resistance is often observed.  

Neutralization was measured as a reduction in luciferase gene expression after a single round 

of infection of JC53bl-13 cells, also known as TZM-bl cells (NIH AIDS Research and 
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Reference Reagent Program).  Two thousand infectious units of each pseudovirus was 

combined with five-fold dilutions of heat-inactivated participant plasma and incubated for 1 

hr at 37
°
C.  Subsequently, the virus and antibody reaction was added to the plated TZM-bl 

cells, and left to incubate at 37
°
C for 48 hrs.  The cells were lysed and the luciferase activity 

was determined using a luminometer.  The background luminescence of the uninfected wells 

was subtracted from the test wells.  The percentage of infectivity was calculated by dividing 

the number of luciferase units at each plasma dilution by the value in the well containing no 

test plasma.  The dilution that determined 50% inhibitory activity against the virus, known as 

the nAb IC50 titer (IC50 titer) was determined on the Microsoft Excel.  Each experiment was 

performed in duplicate and independently at least twice for replicability. The nAb IC50 titer 

was defined as: the reciprocal plasma dilution causing a 50% reduction of relative light units 

(IC50).  Heterologous neutralization assays were done as previously reported by Montefiori, 

et al. (2004).  A detailed description of these methods is in Chapter Two.  

 

4.3.5 IgG Isolation 

Detailed explanations of IgG isolation and Fc receptor binding assays are provided in 

Chapter Two.  Briefly, the IgGs were isolated according to the manufacturer‘s instructions. 

500 l of a 1:10 dilution of plasma to buffer was added to a prepared Melon Gel column   

(Thermo Scientific, Surrey, United Kingdom) (100 µl of plasma /serum plus 900 µl buffer).  

The tubes were rotated for 5 mins in order to ensure maximum capture of the IgGs and were 

then spun down for 1 min at 5,000 x g to elute the IgGs.  IgG concentrations were measured 

on the NanoDrop 2000 Spectrophotometer (Thermo Scientific, Surrey, United Kingdom) and 

stored at 4
°
C

 
for downstream ELISA assays 
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4.3.6 Fcgamma (Fc) ELISA Protocol 

4.3.6.1 Binding Affinity for Fc Receptors 

Binding affinities of IgGs for the various activating and inhibitory receptors were done in 

order to see if there may be a difference between the IgGs of the slow progressors and 

progressors in their ability to bind to different activating (FcRI, FcRIIa and FcRIIIa) or the 

inhibitory receptor (FcRIIb).  Four different Fc gamma () receptors were used:  FcRI, 

FcRIIa, FcRIIb, and FcRIIIa (R & D Systems, Minneapolis, USA) and the ELISAs for 

each of the receptors were performed using a standard protocol as seen in Chapter Two. 

 

4.3.6.2 Gp120, gp41, and p24 ELISAs  

 

ELISA plates were coated with 80 µl/well of a 250 ng/ml gp120 (Immune Technology, New 

Jersey, USA) or gp41 (HXBc2) (Immune Technology, New Jersey, USA) or p24 (Immune 

Technology, p24 (HIV-1/HXBc2 (Immune Technology, New Jersey, USA) and then 

incubated O/N at 4
°
C. ELISAs for each of the antigens were performed using a standard 

protocol as detailed in Chapter Two. 

 

4.4 Statistical Analyses 

Pair-wise comparisons of different parameters including nAb IC50 titers for both the 

autologous and heterologous responses, and affinity binding of the different Fc receptors 

and intergroup and intra-group comparisons were performed using the Mann-Whitney non-

parametric test using the two-tailed test and Spearman‘s non-parametric rank test was 
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performed using the GraphPad Prism 5 software programme unless otherwise stated.  

Correlations were regarded as statistically significant with a p-value <0.05.  All reported p-

values are for two-sided tests.  

 

4.5 Results 

In chapters two and three of this thesis we described the participants‘ stratification into slow 

progressors and progressors , based mainly on CD4 T-cell counts (see chapter three, figure 

3.1) (Archary et al., 2010).  Briefly, slow progressors maintained their CD4 T-cell levels over 

the window of evaluation with no differences between their study entry and study exit levels.  

However, the progressors had experienced a significant decline in CD4 T-cell counts at study 

exit compared to the study entry CD4 T-cell counts (p=0.03).  Similarly, when viral loads 

were compared between the study entry and study exit time-points, only the progressors had 

increased viral loads over time (p=0.03).  In addition, a generalized estimating equation 

(GEE) model, adjusting for repeated measures of CD4 T-cells to assess the overall mean 

square root CD4 count across all time points was used and it was found that there was 19.16 

(SE=0.3073) cells/µl in the progressors and 23.96 (SE= 0.4400) cells/l in the slow 

progressors and these are significantly different (p<0.0001) between the groups.  

Furthermore, the overall mean log viral load across all time points is 4.56 (SE=0.0796) log 

copies/ml in the progressors and 3.65 (SE=0.0766) log copies/ml in the slow progressors and 

these are significantly different (p<0.0001).  In addition, when the median values for both 

CD4 T-cells and viral loads were compared between the slow progressors and progressors for 

study entry, study exit and the last available time-points, the differences remained statistically 

significant except for the study entry time-points for CD4 only (p=0.39)- see tables 4.1 and 

4.2. 
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Table 4.1.  CD4 T- cell count with inter-quartile ranges (IQR) of study entry, exit and latest 

available time-point 

 

 

Table 4.2. Viral loads with inter-quartile ranges (IQR) study entry, exit and latest available 

time-point 

 

4.5.1 Autologous and Heterologous Responses  

4.5.1.1 Autologous Antibody Responses 

To better understand the autologous neutralization of the Env glycoprotein during chronic 

infection we tested the participants‘ AnAbs against their autologous Envs using the 

functional pseudovirus-based assay.  Each of the participants‘ study entry and exit viruses 

were tested against their study entry and study exit plasma samples. In the slow progressors a 

total of 19 autologous Envs were tested against their study entry plasma and study exit 

plasma (range: four to six viruses per participant). Figures 4.1 and 4.2 illustrate the patterns 

of autologous neutralization in both groups, generally in the slow progressors their Envs were 

less sensitive to neutralization requiring higher levels of nAbs as evidenced by the lower nAb 

IC50 titers than in the progressors.   In the progressors a total of 18 autologous Envs were 

Visit Slow progressor 

n     Median CD4 (IQR) 

Progressor 

n     Median CD4 (IQR) 

p-

value* 

Study entry 4 621 (553 – 808) 4 571 (525 – 622) 0.39 

Study exit 4 506 (380 – 728) 4 283 (243 – 357) 0.043 

Latest available time-point 4 486 (423 – 631) 4 287 (230 – 315) 0.021 

Visit Slow progressor 

n       Median VL (IQR) 

Progressor 

n       Median VL (IQR) 

p-

value* 

Study entry 4 4 280 (2 835 – 5 450) 4 10 770 (8 110 – 13 080) 0.021 

Study exit 4 3 290 (2 695 – 7 115) 4 24 300 (21 300 – 42 800) 0.021 

Latest available time-point  4 3 950 (1 580 – 8 527) 4 49 350 (18900– 67 900) 0.029 
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tested against their study entry plasma and study exit plasma (range: three to six Envs per 

participant). The figures illustrate the patterns of autologous neutralization (figures 4.1 & 

4.2). Whenever the study entry point Env was tested for neutralization to the study exit 

plasma, it was noticed that this response was always more potent than the contemporaneous 

response, i.e. when study entry Env was neutralized by the study entry plasma.  

The slow progressors displayed a consistent pattern when the autologous viruses were 

neutralized by the study entry and study exit plasma samples.  Although all the viruses were 

neutralized, they required higher concentration of plasma nAbs (evidenced as lower nAb IC50 

titers) for neutralization, approximately more than five-fold to achieve 50% neutralization 

compared to the progressors (see figure 4.1). 

In all the progressors there was a distinct neutralization profile when the entry time point 

(baseline) viruses are neutralized by the study exit plasma; viruses from the entry time-point 

were more effectively neutralized at a higher nAb IC50 titers the study exit plasma compared 

to the contemporaneous responses.  In three out of four progressors (SK010, SK200 and 

SK221), a ten-fold higher dilution of plasma was required to achieve 50% neutralization 

compared to the rest of the study cohort.  In summary, there were no differences in nAb IC50 

titers between the groups when the study entry and study exit AnAb responses were 

compared. 

As shown in Figure 4.3A, there was no difference in the nAb titers when the study entry Envs 

were tested against the study entry or study exit plasmas in the slow progressors (median nAb 

IC50 of 502 versus 627, p=0.08).  In contrast, there were significant differences in responses 

in progressors when study entry Envs (Figure 4.3B) were tested against study exit plasma, 

compared to the contemporaneous response at study entry (median nAb IC50 of 2,172 versus 

425, p=0.003) and study exit (median nAb IC50 of 2,172 versus 223, p= 0.0002).  This result 
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suggests that a robust nAb response is continuously mounted against the evolving virus 

during progressive HIV-1C disease.  However, there was no difference between the slow 

progressors and progressors nAb titers of exit plasma against entry Envs (median nAb IC50 

502 versus 2,172; p=0.05). 

 

4.5.1.2 Env Autologous Neutralization (nAb IC50 Titers) correlates with the Length of 

The Hypervariable Regions in C3-V5 and V1-V5 in Slow Progressors and in V1-V2 For 

Progressors 

Previous studies have shown an inverse association between neutralizing antibody titers and 

length of variable loops (V1-V2) and numbers of potential N-linked glycosylation sites 

(PNGs) (Chackerian et al., 1997, Pinter et al., 2004, Sagar et al., 2006, Gray et al., 2007, 

Rong et al., 2007a).  To better understand the relationship between the genotypic and 

phenotypic characteristics, the amino acid length of the hypervariable loops of env, and PNGs 

were correlated to autologous neutralization titers as shown below in figure 4.4.
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Figure 4.1.  Autologous neutralization profiles for individual slow progressors for study entry and study exit autologous Env pseudoviruses.  Red 

dotted lines represent study entry viruses neutralized by the study entry plasma (contemporaneous response), blue dotted lines represent study entry 

viruses neutralized by the study exit plasma.  Solid red lines represent study exit viruses neutralized by the study entry plasma and solid blue lines 

represent study exit viruses neutralized by the study exit plasma (contemporaneous response). Black arrows indicate the reciprocal plasma dilution 

effecting 50% viral inhibition when study entry viruses were neutralized by the study exit plasma. 
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Figure 4.2.  Autologous neutralization profiles for individual progressors for study entry and study exit autologous Env pseudoviruses.  Red dotted 

lines represent study entry viruses neutralized by the study entry plasma (contemporaneous response), blue dotted lines represent study entry viruses 

neutralized by the study exit plasma.  Solid red lines represent study exit viruses neutralized by the study entry plasma and solid blue lines represent 

study exit viruses neutralized by the study exit plasma (contemporaneous response). Black arrows indicate the reciprocal plasma dilution effecting 

50% viral inhibition when study entry viruses were neutralized by the study exit plasma. 
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Overall, there were no significant correlations between the amino acid lengths of V1-V2, C3-

V5 or V1-V5 to autologous nAb IC50 titers (p=0.16; p=0.4; and p=0.16 respectively) for the 

entire group (when data for slow progressors and progressors were combined).   

 

Figure 4.3.  Autologous nAb IC50 titers in study participant study entry and study exit plasma 

samples for slow progressors (A) and progressors (B).  p-values <0.05 were considered 

significant. p-value was calculated using the two-tailed Mann-Whitney non-parametric test 

overall. All the p-values (p< 0.0125) remained statistically significant after Bonferroni 

adjustment for multiple comparisons. 

 

In figure 4.4, the amino acid lengths of V1-V2, C3-V5 and V1-V5 was correlated to nAb IC50 

titer for the entry virus neutralized by the study exit plasma.  The rationale for using this 

sample for the correlation is based on the progressors maintaining a statistically higher nAb 

IC50 titer compared to other time-points as shown in figure 4.2 above.  There were significant 

positive correlations between amino acid length and nAb IC50 titer in C3-V5 (p=0.03) and 

V1-V5 (p=0.04) in slow progressors, however in the progressors there was a significant 

negative correlation in V1-V2 (p=0.04) and nAb IC50 titers (Figure 4.4, Panel B).  The same 

analysis was extended for the numbers of potential N-linked glycosylation sites (PNGs) in the 
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various hypervariable loops and nAb IC50 titers.  Interestingly, the only significant positive 

correlation was the numbers of PNGs in V1-V2 for the slow progressors only (p=0.03) with 

nAb IC50 titer. 

 

 

Figure 4.4. Correlation between the length of V1-V2, C3-V5 and V1-V5 of Env and 

autologous neutralization titer (nAb IC50 titer) when study entry viruses were neutralized by 

the study exit plasma samples in slow progressors (panel A) and progressors (Panel B).  The 

Spearman r coefficient and p-values are shown and the correlation was significant when 

p<0.05. 

 

4.6 Neutralization Assays using Heterologous Viruses 

4.6.1 Neutralization Breadth   

To better understand and assess the extent of heterologous neutralization in this chronic 

infection cohort, we investigated plasma neutralization activity over a median period of 21 

months between sampling.  Figure 4.5 depicts the neutralization profile of heterologous 
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viruses for the eight study participants at study entry and study exit.  All plasma samples 

were assayed using the TZM-bl neutralization assay against various standard virus reference 

panels.  A total of 20 Envs (figure 4.5) from a standard reference panel as depicted in table 

2.12 (see chapter two) above were tested for breadth of neutralization.  The virus panels 

included eight subtype C viruses of which two were from South African isolates identified 

during the acute phase of infection from the CAPRISA 002 study (Gray et al., 2007), seven 

subtype B, and five subtype A.  Positive neutralization was scored at titers above 1:45.  The 

percentage of neutralization was calculated by the number of viruses neutralized by each 

sample divided by the total number of viruses tested.  Likewise the percentage viruses 

neutralized per subtype panel was calculated by the number of viruses neutralized by each 

participant sample divided by the total number of viruses tested in that subtype panel.  We 

discuss the results for this experiment in terms of percentage (%) breadth of neutralization 

per subtype reference panel, and total % neutralization breadth including all the subtypes C, 

B and A panels.  In addition, potency of neutralization is also discussed in terms of the nAb 

IC50 titer, with a titer of >1,000 as being highly potent. 

There was a wide range of variation in neutralization titers with most of the sera from both 

slow progressors and progressors displaying heterologous activity particularly against the 

subtype C panel, indicating a very subtype-specific response. MW965.25 (a tier I virus) was 

potently neutralized by every participant‘s samples as evidenced by a nAb IC50 titer >10,000- 

figure 4.5. All of the participants neutralized ConC, except for one progressor (SK010).  Of 

particular interest were the neutralization titers for DU156.12, a Tier 2 virus because in both 

groups there was a consistent number of participants at study entry and study exit that 

neutralized this virus.  Three of the four slow progressors (nAb IC50 titer-median 143; range 

66-455) and three of the four progressors (nAb IC50 titer- median 1332; range 197-9305) 
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neutralized DU156.12.  When the median nAb IC50 titers for DU156.12 were compared, 

progressors had a significantly (p=0.03) higher nAb IC50 titer relative to the slow progressors.  

None of the Tier 2 viruses in either panels of subtypes A or B had similar neutralization 

profiles when tested against any of the plasma samples.  

For the subtype B panel, all study participants potently neutralized SF162 (Tier 1- see figure 

4.5) except for SK010.  However, it should be noted that although SF162 was potently 

neutralized by most of the participants‘ plasma, this was not the case for the rest of the 

subtype B panel.  Within the slow progressor group, only two participants (SK036 and 

SK312) displayed low nAb IC50 titers (nAb IC50 titer- median 83; range 77-162) to 6535.3 

and in the progressors, three out of four (SK200, SK221 and SK233) had neutralization 

activity to this virus, although the nAb IC50 titers were not different (nAb IC50 titer- median 

222; range 52-391) to those of the slow progressors. Although none of the nAb IC50 titers 

exceeded 1,000, progressors- SK200, SK221 and SK233 did neutralize between five and six 

out of the seven viruses in the subtype B panel.  QHO692.42 was the only subtype B virus 

not neutralized by SK200 (progressor) plasma. 

Progressors showed a significantly higher median of 57% neutralization breadth (range 14-

86%) for the subtype B panel compared to slow progressors 21% (range 14-28%, p=0.03). 

There was no difference in % neutralization between the groups for either subtype A 

(median- 50% in both slow progressors and progressors) or subtype C (median 63% 
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Figure 4.5.  Heterologous responses of participant plasma neutralization at study entry and study exit to 20 Env pseudoviruses from a standard reference panel 

including subtypes C, B and A of tier 1, tier 2 and tier 3 categories over a median period of 21 months.   The neutralization titer is shown as reciprocal plasma dilution 

required to inhibit 50% of virus infection when the virus is neutralized by the participant‘s plasma.  The highest titer (>1000) is shown in red, and the lowest in light 

orange, yellow depicts a titer of <1:45 that is below detection as shown above. 
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in both slow progressors and progressors).  Overall, the progressors had higher % 

neutralization against all Envs (median 62% vs. 50%, p=0.4) but this difference was not 

significant. 

The slow progressors displayed greater neutralization breadth against the subtype A panel 

compared to the progressors, with SK036 having a 100% neutralization at study entry and 

80% at study exit as shown in figure 4.5.  One progressor, SK233 had evolved neutralization 

breadth over time for the subtype A panel, with 20% at study entry and 80% at study exit 

with modest increases of nAb IC50.  However, the progressors did display more neutralization 

breadth against the subtype B panel compared to the slow progressors. 

Interestingly, the total percentage neutralization in three of the four progressors increased 

over a median of 21 months (SK200, SK221 and SK233).  Similarly, three out of four slow 

progressors (SK035, SK036 and SK312)) had an increase in the total percentage of viruses 

neutralized over time.  Generally in both progressors and slow progressors there was no nAb 

IC50 titer to any of the tier 2 subtype A or B viruses that was greater than 1000.  Three out of 

the four slow progressors also had an evolution of neutralization breadth from study entry to 

study exit to the subtype C panel of viruses (50 to 63% for SK035, 50 to 88% for SK169 and 

63 to 75% for SK312) with the remaining participant SK036, having a loss of neutralization 

breadth at study exit (75 to 63%).  

There was a substantial heterogeneity of neutralization breadth, particularly in the 

progressors. We discuss a progressor, SK200 in detail, as this participant displayed the most 

neutralization breadth and also had potent nAb IC50 titers (>1,000- see figure 4.5) to five of 

the eight subtype C viruses tested including three of five tier 2 subtype C viruses. Progressor 

SK200 had an evolving breadth at study exit, this participant‘s plasma neutralized 100%, 

86% and 60% of subtypes C, B and A respectively.   SK200 plasma neutralized a total of 65% 
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at study entry and 85% at study exit of all the reference viruses tested that indicated a higher breadth 

of neutralization over time.  In particular, SK200 displayed 100% neutralization breadth to the 

subtype C viruses and for progressors- SK221, and SK233 there was an evolving 

neutralization breadth to the subtype C panel from study entry to study exit (63 to 88% for 

SK221 and SK233), whereas SK010 lost neutralization for CAP45.G3 over time, which also 

translated into loss of breadth.  Tier 2 viruses -CAP45.G3 and CAP239.G3 were neutralized 

by SK200 study entry and exit plasmas, and CAP45.G3 in particular, was neutralized at nAb 

IC50 titers of >2,000.  SK221 and SK233 both neutralized CAP45G3 more potently at study 

exit, being about > four-fold increase in nAb IC50 titers than at study entry with none of the 

nAb IC50 titers greater than 1,000.  In addition, these two participants neutralized CAP239.G3 

at study exit only.  Another observation was that the neutralization titers (nAb IC50 titers) 

were generally higher in the progressors (nAb IC50 titer- median 475; range 161-5326) 

compared to the slow progressors (nAb IC50 titer- median 56; range 49-172), particularly 

against the tier 2 subtype C CAP45.G3.  For the slow progressors, none of the nAb IC50 titers 

against the tier 2 Subtype C viruses were greater than 1,000.   

It is noteworthy that SK200 also displayed potent nAb IC 50 titers >1000 to a subtype A tier 1 

virus- Q23ENV17 compared to the other progressors.  One slow progressor however, SK169 

also had an approximate three-fold increase in nAb IC50 titer at study exit to Q23ENV17 

(nAb IC50 titer of 591 to 1,447). 

We extended the analysis to each of the subtype virus panels and compared the average nAb 

IC50 titers of the progressors to the slow progressors.  There was a significantly higher 

average nAb IC50 titer to the Tier 2 viruses in the subtype B virus panel only in progressors 

(average nAb IC50 titer- 77) when compared to slow progressors (nAb IC50 titer- 45; 

p=0.005), and this remained significant when corrected for multiple comparisons (p<0.008).  
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None of the other comparisons either inclusive or exclusive of the Tier 1 viruses for either 

subtypes A or C were statistically different. 

 

4.6.2 Correlation of Neutralization Breadth with CD4 T-Cell Counts and Viral Loads  

There are a battery of studies that showed an inverse relationship between neutralization 

breadth and CD4 T-cells and a positive correlation with viral loads (Piantadosi et al., 2009, 

Euler et al., 2010, Sather et al., 2009, Gray et al., 2011a).  To better understand the 

relationship between neutralization and clinical disease markers in this chronic cohort, we 

correlated the participants‘ CD4 T-cell counts and viral loads over time to total percentage 

(%) of viruses neutralized (neutralization breadth). 

As shown in figures 4.6A and 4.6B, in slow progressors and in figures 4.6C and 4.6D in 

progressors there were no significant correlations between CD4 T-cell count or viral loads 

and total % of viruses neutralized by each individual.  

 

Figure 4.6.   Correlation of total percentage of viruses neutralized (neutralization breadth) 

with CD4 T-cell counts and viral loads in slow progressors (A & B) and progressors (C & D).  

r
2
 values and p-values are shown. 
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4.6.3 Mapping of Epitopes Targeted by Cross-Neutralizing Antibodies 

The targets of broadly neutralizing antibodies are subjects of much interest in the vaccine 

field.  A recent study by Walker and colleagues (2010) elucidated a number of key sites 

targeted by individuals with neutralization breadth.  The sites included N160, I165 in V2 and 

N332 in V3 (Walker et al., 2010).  Therefore, participants in our study that displayed the 

highest breadth of neutralization against different subtypes (e.g. A, B and C) - SK200, SK221 

and SK233, were then further investigated using their study exit plasma samples only (study 

entry plasma samples were no longer available).  Using CAP45.G3, ConC, Du156.12, 

TRO.11 and Q23.17 with single-point mutations in specific regions e.g. position N160A, 

K169E, I165A and N332A that map to V2, V3 and C3 respectively, we further defined 

putative targets of the progressors‘ nAbs.  A decrease of  >three-fold for the neutralization 

titers was indicative of neutralization resistance (Gray et al., 2011a). 

As depicted in Table 4.3, 5.6-fold and 4-fold drops in neutralization titers (compared to the 

wild type neutralization titers) were seen when participants‘ SK221 and SK233 study exit 

plasma samples neutralized CAP45 K169E respectively.  These observations suggest that the 

broadly neutralizing antibodies in these two participants most likely target the V2 region and 

that a charge change from a lysine (K) to glutamic acid (E) induced neutralization resistance. 

In addition SK221 plasma also showed a 4.2 fold drop in neutralization titers to TRO.11 

N332A indicating that this asparagine (N), or perhaps the N-linked glycosylation at this 

position, was essential for the antibody activity.  Overall, the variability in the fold-drop in 

neutralization titers for the K169E mutations in CAP45 and ConC, and for the N332A 

mutation in Tro.11 may be reflective of structural and conformational differences of the 

viruses studied.  Together, these results suggest that SK221 most likely has cross nAbs that 

target the V2 and C3 regions on Env however we could not establish whether these nAbs 
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evolved as the study entry sample was not tested due to limited availability of plasma to 

perform such experiments.  Intriguingly, SK200, the participant that displayed the most 

neutralization breadth, also neutralized the mutated Env indicating that this particular 

participant may have antibodies directed to other regions of Env and this participant‘s nAbs 

therefore warrants further investigation. 

 

Table 4.3.  Effects of single point mutations on neutralization sensitivity and summary of 

antibody specificities. 

Plasma  

sample 

identity 

 

Fold effect of mutation
a 

Antibody 

specificity 

conferring 

breadth 
ConC 

N160A 

ConC 

I165A 

ConC 

K169E 

CAP45 

N160A 

CAP45 

I165A 

CAP45.G3 

K169E 

Du156.12 

N332A 

Q23.17 

N332A 

Tro.11 

N332A 

SK200 

study exit 

1.1 0.5 0.7 1.0 0.6 1.9 1.2 1.5 0 Unknown 

SK221 

study exit 

0.4 0.3 1.1 2.0 0.4 5.6 1.4 0.6 4.2 Quaternary, 

PG9/PG16 

like, N332 

SK233 

study exit 

0.1 0 0.6 0.8 0.9 4 0.7 1.2 0 Quaternary, 

PG9/PG16 

like 
 

 a
 Calculated as wild type IC50/mutant IC50 for the plasma.  Changes in titer of >3-fold are 

shown in bold. 

 

4.7  HIV-1-Specific IgG Binding Affinities for Gp120, Gp41 and p24 between Slow 

Progressors and Progressors 

We isolated total immunoglobulins (IgGs) in both groups of participants at study entry and 

study exit time points and studied the binding of IgGs to HIV-1-specific antigens and to Fc 

receptors.  We then quantified the 50% effective concentration (EC50) of each batch of total 

IgGs needed to bind HIV-1-specific gp120, gp41 and p24 antibodies and various Fc 

receptors using an ELISA-based assay.  EC50 is a concentration in µg/ml- it corresponds to 

the concentration of antibody needed to achieve half of the maximal binding to an Fc 

receptor for example. The EC50 binding titer of the IgGs was used as a surrogate indicator of 
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how strongly or poorly the IgGs‘ Fc portion may bind to the Fc receptor to recruit effector 

cells like macrophages, dendritic cells etc to initiate either ADCVI or ADCC activity.  

Essentially, the higher the EC50 the more antibody is needed for antiviral activity like ADCC 

or ADCVI to occur, the lower the affinity of antibody binding to the respective target cells 

bearing the antigens e.g. p24, gp120 or gp41 or to the Fc receptors to antibodies to initiate 

effector functions like ADCVI.  The median EC50 for gp120 IgGs (EC50 141.5 g/ml) and 

gp41 IgGs (EC50 135.8 g/ml) trended toward being higher at study entry in the progressors 

(EC50 range 130.2-153 g/ml for gp120 and range 71.6-143.5 g/ml for gp41) only, but this 

result was not statistically significant either when compared to the slow progressors study 

entry and exit EC50levels or to the progressors study exit values (figures 4.7A and 4.7C).  

Over the study period, there was no difference between the slow progressors and progressors 

median EC50 for both gp120 or gp41 (p=0.50 and p=0.33 respectively). 

For p24 IgG, the slow progressors showed a median EC50 increase from study entry (134.92 

g/ml) to study exit (150.17g/ml- figure 4.7E) the same trend was seen in the progressors 

(142.17 g/ml at study entry and 166.35g/ml at study exit). The median EC50 binding titers 

for p24 IgGs were also not different between the groups (136.6 g/ml for slow progressors 

and 166.3 g/ml for progressors; p= 0.88).  There was also no difference in the median EC50 

values between the groups over time with the progressors displaying an overall higher 

median EC50 binding titers for all three antigen-specific IgGs.  In addition, there was no 

significant correlation between the levels of CD4 T-cells or viral loads with the EC50 of 

gp120, gp41 or p24 (see figures 4.8A to 4.8D) over the study period. 
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Figure 4.7.  EC50 binding titers of gp120, gp41 and p24-specific IgGs in slow progressors and 

progressors stratified into study entry and study exit values (A, C and E), and also over time 

with combined study entry and study exit values for slow progressors and progressors (B, D 

and F).  There were no statistical differences between the slow progressors and progressors 

for any of the EC50 binding titers of the various IgGs. 
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Figure 4.8.   Correlation of IgG EC50 binding titers for gp120, gp41 and p24-specific 

antibodies versus CD4 T-cell counts and viral loads in slow progressors (A & B) and 

progressors (C & D).  None of the correlations were statistically significant. 

 

4.8  IgG Binding Titers for FcR Ia/IIa/IIb And IIIa between Slow Progressors and 

Progressors as a Surrogate Marker For Binding Affinity to Initiate ADCC or ADCVI 

To determine if the binding affinities of the IgGs with various activating and inhibitory Fc 

receptors were different between the slow progressors and progressors, we measured and 

compared the EC50 binding titers at study entry and study exit time-points, and overall 

between the two groups.  When the EC50 of the IgGs for the various Fc receptors were 

measured, there were no differences either for the intra-group comparison for study entry 

versus study exit or between the slow progressors and progressors over time (figures 4.9A – 

4.9G).  The slow progressors IgGs consistently showed a higher median EC50 for FcRI, IIa, 

IIb and IIIa at study entry (FcRI 7.58 g/ml; FcRIIa 10.73 g/ml; FcRIIb 22.55 g/ml and 

FcRIIIa 27.24g/ml) and a consistent relative decline at study exit (FcRI 6.71; FcRIIa 
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8.53 g/ml; FcRIIb 18.75 g/ml and FcRIIIa 27.22 g/ml). Similarly, the median IgG EC50 

for progressors for FcRI (7.80g/ml), FcRIIa (8.42g/ml) and FcRIIb (20.92g/ml) and 

FcRIIIa (26.23g/ml) was higher at study entry compared to study exit (FcRI 6.89 g/ml;  

FcRIIb 20.46 g/ml and FcRIIIa 25.21 g/ml) except for FcRIIa (9.16g/ml). Overall, 

there were no differences in the median IgG EC50 binding titers between the slow progressors 

and progressors over time for any of the Fc receptors (p=0.65 for FcR1; p=0.72 for FcRIIa 

and FcRIIb; p=0.89 for FcRIIIa).  

 

Figure 4.9. EC50 binding titers of IgGs for FcRI, FcRIIa, FcRIIb and FcRIIIa in slow 

progressors and progressors stratified into study entry and study exit values (A, C, E, and G), 

and also over time with combined study entry and study exit values for slow progressors and 

progressors (B, D, F and H).  None of the intra- or inter-group comparisons were statistically 

different i.e. p<0.05. 

 

In addition, the median IgG EC50 ratios of the stimulatory (FcRI, FcRIIa, and FcRIIIa) to 

the inhibitory receptors (FcRIIb) over time in both groups (figure 4.10A, 4.10B) were also 

similar with the slow progressors having a higher ratio for FcRIIIa/ FcRIIb (figure 4.10C) 
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compared to progressors, but this difference was not statistically different (p=0.80).  There 

were no significant differences between slow progressors and progressors for FcRI/ FcRIIb 

(p=0.96) or for FcRIIa/ FcRIIb (p=0.80). 

 

Figure 4.10. Ratios of IgG EC50 for FcRI, FcRIIa, and FcRIIIa to FcRIIb i.e. the 

activating versus inhibitory receptors in slow progressors and progressors (A, B, C), over 

time with combined study entry and study exit values.  There were no differences between 

the groups over time.  

 

4.8.1 FcIIa Receptor Levels Correlated With CD4 T-Cell Counts In Slow Progressors 

Next, the IgG EC50 of Fc receptors I, IIa, IIb and IIIa were correlated to CD4 T-cell count 

and viral loads for the slow progressors and progressors. There was a positive correlation 

only in the slow progressors between the levels of CD4 T-cell count and IgG EC50 for 

FcRIIa with r
2 

value=0.75 and p=0.005 (figure 4.11A), this value remained statistically 

different after adjusting for multiple comparisons using the Bonferroni adjustment 

(p=0.0125).  There were no other significant correlations between viral loads or CD4 T-cells 

with the EC50 binding titers of the various receptors in the slow progressors or progressors. 
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Figure 4.11.  Correlation of CD4 T-cell counts and viral loads with IgG Effective 

Concentration at 50% (EC50) for activating (FcRI, FcRIIa and FcRIIIa) and inhibitory 

(FcRIIb) receptors in slow progressors (A and B) and progressors (C and D).  Only p-values 

<0.05 are shown. 

 

4.9 Discussion 

The role that nAbs and non-neutralizing antibodies play in disease progression particularly in 

HIV-1 infection, is poorly understood and has been the subject of much debate.  We therefore 

undertook this study in this HIV-1 subtype C chronically infected cohort in order to establish 

whether neutralizing and non-neutralizing antibodies may be able to attenuate disease 

progression, and whether certain genotypic env characteristics influence autologous 

neutralizing antibody responses. 

Certain envelope characteristics such as the amino acid length of certain hypervariable 

regions, PNGs, and mutations of sentinel amino acids in antibody target epitopes have an 

effect on neutralization sensitivity/resistance.  We also investigated what the putative 
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differences were between the neutralization sensitivities relative to the env genotypic 

characteristics in different states of disease progression.  In addition, the binding affinities of 

HIV-1-specific IgGs and the affinities of the IgGs to various Fc receptors (both activating 

and inhibitory) were used as a surrogate indication of recruitment of effector functions of 

cells of the innate immune system e.g. macrophages or natural killer cells to initiate ADCC or 

ADCVI and these were correlated to markers of disease progression like CD4 T-cell count 

and viral loads.  Several studies have shown that the binding interaction and the strength of 

the binding between the Fc and the FcR directly affects the potency of the effector functions 

of FcR–bearing cells, and by altering the antibody properties through deglycosylation and 

site directed mutagenesis one can manipulate the strength of binding affinity (Shields et al., 

2001).  This may in turn affect the downstream ADCC/ADCVI activity of the effector cells.  

Based on these studies we therefore exploited an ―in house‖ binding affinity ELISA 

One of the more controversial issues regarding nAbs, is the extent to which they are 

protective or not during different stages of HIV-1 disease progression. Using a single-cycle 

of infection assay with recombinant pseudoviruses to measure nAbs against autologous and 

heterologous viruses, we made a number of observations for the role of nAbs in slow 

progressors and progressors during the chronic HIV-1 subtype C infection state. Firstly, 

although high level neutralizing titers to contemporaneous autologous virus were not 

observed in most of the participants, our findings of higher autologous responses over time in 

the progressors (when the study entry viruses were neutralized the study exit plasma) with 

higher viral loads, argues against the protective role of nAbs in chronic infection (Deeks et 

al., 2006). Secondly, the autologous viruses in all the participants could not completely 

escape AnAbs, which attests to the constraints on Env‘s mutability to escape the humoral 

immune system during the chronic infection stage.  Indeed, we could not prove the 
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hypothesis that slow progressors have a more potent nAb response that protects them against 

disease progression as there was no difference in nAb titers when compared to progressors.  

Thirdly, the study entry viruses were more effectively neutralized by the study exit nAbs in 

all participants compared to the contemporaneous response, suggesting that viral evolution 

was present in both the slow progressors and progressors in a chronic stage of HIV-1 disease. 

Fourthly, it was found that the longer the amino acid lengths for regions V1-V5 and C3-V5 of 

Env were directly correlated with autologous nAb IC50 titers in the slow progressors.   

Interestingly, in contrast, there was an inverse correlation for V1-V2 length and nAb IC50 

titers in the progressors.  This observation suggests that increased length in these regions may 

be leading to neutralization resistance.  Lastly, the correlation between the numbers of PNGs 

and autologous nAb IC50 titer in slow progressors, suggests that in a progressive disease state, 

the PNGs may be critical for neutralization by nAbs, increasing the potencies of nAbs or that 

there is a point beyond which the ―evolving‖ or ―shifting‖ glycan shield cannot escape nAbs. 

Much of the nAb responses against heterologous viruses appears to be very type-specific, 

even more so for the slow progressors than the progressors.  The progressors had evolved 

breadth of neutralization indicating that breadth and increasing breadth over time is a marker 

of disease progression in chronic subtype C infection (Euler et al., 2010). These observations 

are in keeping with other studies indicating that antigenic stimulation through higher viral 

load burden may be responsible for dictating the breadth of heterologous antibody responses 

(Mellors et al., 1997, Goujard et al., 2006, Fraser et al., 2007, Piantadosi et al., 2009, Sather 

et al., 2009, Doria-Rose et al., 2010).  These findings are however in stark contrast to a recent 

study done in HIV-1 subtype B-infected patients with undetectable viraemia on ARV 

treatment, where there was broadly neutralizing antibody activity despite undetectable viral 

loads (Medina-Ramirez et al., 2011).   However, the significant neutralization breadth against 



134 

 

the subtype B panel of viruses in chronic infection may have important implications for HIV-

1 vaccine design in that a wider range of subtype B viruses were neutralized by plasma from 

subtype C infections.  Further studies will be needed to confirm these results and to 

investigate underlying mechanisms.  

We did not see any significant association between neutralization breadth and CD4 T-cell 

count or viral loads, a larger sample size may have established statistically significant 

correlations.  Gray and colleagues (2011) found a significant correlation between the CD4 T-

cell count and viral loads with neutralization breadth at six months post-infection only and 

not at later time points (Gray et al., 2011a). and  these results may have important 

implications for HIV-1 vaccine design, the HIV-1 immunogens may have to be given over 

long periods of time in order to allow for antibody maturation and the development of 

broadly neutralizing antibodies through affinity maturation (Medina-Ramirez et al., 2011). 

Development of neutralization breadth was not associated with slower disease progression 

(Euler et al., 2010).  Slow progressors showed a lower neutralization breadth overall and 

maintained their CD4 T-cell counts suggesting that lack of neutralization breadth is 

associated with slower disease progression.  For the progressors who did display cross-

neutralizing antibody responses, two participants, SK221 and SK233 had autologous 

antibodies that recognized the lysine (K) in position 169 in V2, indicating possible quaternary 

epitopes that are targeted by PG9/PG16-like antibodies (Gray et al., 2011a).  In addition 

SK221 also had antibodies that targeted the N332 glycan in C3 and suggests that SK221 

targets epitopes in both V2 and C3 and that the asparagine in that position is essential for 

neutralization activity.  However, we could not establish whether such antibodies were 

present at the start of the study or whether they evolved over time, as plasma sample 

availability was a limitation.  Likewise we could not test for autologous neutralization against 
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autologous mutated Env due to lack of plasma sample availability to perform these assays.  

Despite these limitations and based on our data we propose that in subtype C infection, the 

V1, V2 and C3 regions are the immunodominant regions commonly targeted by AnAbs 

(Moore et al., 2008, Moore et al., 2009, Rong et al., 2009, Lynch et al., 2011) particularly 

during the early stage of infection (Gray et al., 2011a).  Here we show that the 

immunodominance of these regions persist into chronic infection although we cannot 

delineate whether such antibodies evolved.  It has been shown that there is a limited number 

of antibody specificities that dictate the breadth of neutralization (Walker et al., 2010) and 

that type specific antibodies sometimes develop into antibodies with cross neutralizing 

specificities (Gray et al., 2011a).  

The decline of p24 antibody titers has been found in disease progression (Lange et al., 1986, 

Allain et al., 1987, Forster et al., 1987, Binley et al., 1997).  In addition, here we show that in 

HIV-1 subtype C infection that the binding affinity of p24-specific IgGs declines over time to 

these antigens as demonstrated in both slow progressors and progressors.    Chargelegue and 

colleagues (1995) found that low p24 IgG affinity correlated to HIV-1 disease progression 

(Chargelegue et al., 1995).  In addition, the trend of declining affinities of gp120, gp41 and 

p24 antibodies in the progressors may be linked to disease progression as they may lose the 

ability to recruit the Fc-mediated functions.  It is plausible that declining binding affinity of 

FcRIIa in the slow progressors, heralds dysfunction in the expression of these receptors on 

the cells of the innate immune system (Dugast et al., 2011).  Dugast and colleagues purport 

that HIV-infection is associated with a number of changes in FcR expression on phagocytic 

cells that are associated with changes in their ability to respond to antibody-opsonized 

targets, leading to a failure in viral clearance in different stages of infection (Dugast et al., 

2011).  Other factors that have been shown to affect the binding affinity of the non-
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neutralizing antibodies include polymorphisms in the FcRIIa (Forthal and Moog, 2009), and 

the extent of glycosylation of the antibodies (Forthal et al., 2010). 

 

One of the strengths of our study is that we used single genome RNA plasma-derived envs to 

generate our recombinant viruses, by performing limited dilution assays we therefore would 

have sampled both the major and minor circulating envs and therefore have neutralization 

data based on these representative strains.  Single genome amplification also allowed us to 

study real-life representative Env strains in patients, and thereby avoid possible artifactual 

PCR generated recombinants.  However, one of the limitations of the study is that we only 

tested a limited number each of the viruses derived from the SGA amplicons, and therefore 

may have biased the results of the study. Another limitation is that we do not know the exact 

time of infection for these subjects. Therefore stratification of study subjects as progressors 

or slow progressors relied on short-term (21 months) follow-up immunological data, which 

may be an unrepresentative snap-shot of the entire natural history of disease progression for 

these participants. However, this concern was somewhat allayed by bioinformatic analysis of 

the study sequences that showed that consistent with the stratification, progressors in this 

cohort were more likely to have been infected for shorter period of time than slow 

progressors.  Another limitation is that the sample size was too small to make significant 

conclusions regarding the significance of breadth of neutralization and autologous responses 

in these participants, however, this study does corroborate the trends of increasing 

neutralization breadth with disease progression. 
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4.10 Conclusions  

NAbs and non-neutralizing antibodies do not protect against disease progression during the 

chronic stage of HIV-1 subtype C infection in this cohort.  Breadth of neutralization 

correlates to disease progression in chronic infection.  Breadth of nAb responses was higher 

in progressors which may indicate that env sequence footprints found in chronically infected 

progressors may be used in effective HIV-1 immunogen design for candidate vaccines.   

Target vaccine immunogens may have to be given over long periods of time to elicit the 

production of broad cross neutralizing antibodies with high binding affinity.  Progressors had 

cross-reactive neutralizing antibodies targeting epitopes in V2 and V3 indicating that nAb 

breadth may be dictated by a limited number of target Env epitopes. The potencies of 

autologous nAbs are influenced by amino acid length of V1-V5 and C3-V5 and numbers of 

PNGs in V1-V2 in chronic progressive HIV-1 infection.  The decreased binding affinities of 

IgGs to HIV-1-specific antigens and to FcRIIa are associated with chronic HIV-1 disease 

progression.   
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Chapter Five- Discussion and Conclusions 
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5.1 Discussion 

 

HIV-1 subtype C is the most rapidly spreading and globally dominant subtype.  However, 

much of the vaccine research endeavor and immunogen design to date has focused on 

subtype B, largely due to the ease of availability of this subtype in the high income countries 

of North America and Europe where most basic studies on HIV-1 immunogen design have 

been done.  Therefore there is urgency, despite the challenges of developing an HIV-1 

vaccine, to elucidate the correlates of immune protection for HIV-1 subtype C in order to 

develop a globally relevant vaccine.  

In this descriptive study, we aimed to identify env sequence characteristics that may 

distinguish progressors from slow progressors in a chronically HIV-1 subtype C infected 

antiretroviral naïve cohort.  We used a single genome amplification approach in order to 

accurately and comprehensively represent the diversity of viral quasi-species.  Several 

indicators of evolutionary forces were used to elucidate putative differences between the 

groups including heterogeneity of envelope sequence diversity, Env length polymorphisms, 

and numbers of PNGs as well as features such as positive selection, negative selection and 

signature sequence characteristics.  

In addition, we also investigated putative differences in autologous antibody responses of 

slow progressors and progressors and did comparisons of titers of autologous (AnAb) 

responses relative to the env genotypic characteristics. Also, the breadth of the heterologous 

nAbs responses using a standard reference panel of subtypes A, B and C viruses were also 

determined in the divergent states of disease progression.   Mapping of the putative AnAbs 

epitopes in progressors with neutralization breadth were also investigated through the 
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mutations of certain specific sentinel amino acids in putative antibody target epitopes of Env 

that have an effect on the neutralization sensitivity/resistance.   

Furthermore, to define the role that non-neutralizing antibodies may have in HIV-1 disease 

attenuation, the binding affinities of HIV-1-specific IgGs to gp120, gp41 and p24; and the 

affinities of the IgGs to various Fc receptors (both activating- FcRI/IIa/IIIa and inhibitory 

FcRIIb) were assessed.  These binding affinities were used as a surrogate indication of 

recruitment of effector functions of cells of the innate immune system that bear these specific 

receptors e.g. macrophages or natural killer cells to initiate ADCC or ADCVI and these were 

correlated to markers of disease progression like CD4 T-cell count and viral loads.  

This study extends our knowledge of the interplay between both the env sequence and 

bioinformatic analysis of the env gene, and relates this information to nAbs, and examines 

whether non-neutralizing antibodies are different in divergent rates of chronic HIV-1 subtype 

C disease. In addition, the role of both neutralizing and non-neutralizing antibodies in HIV-1 

subtype C disease progression also needs to be further defined as much of the knowledge thus 

far is based on subtype B infection.  The correlates of immune protection and disease 

attenuation in subtype C infection remain understudied and poorly understood.  We therefore 

undertook this study in order to fill in some of the gaps in knowledge regarding the evolution 

of env, and the roles of neutralizing and non-neutralizing antibodies in divergent rates of 

HIV-1 subtype C disease progression. 

 

5.2 Envelope Evolution and Diversity 

The full extent of the genotypic and structural nature, and the plasticity of the Env 

glycoprotein needs to be further understood in the context of chronic HIV-1 subtype C 
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disease progression in order to develop effective immunogens for an HIV-1 vaccine.  Our 

study suggests that regions of env are under differential evolutionary pressures in slow 

progressors and progressors.  Slow disease progression was associated with increased intra-

patient diversity that is consistent with other studies on disease progression (McNearney et 

al., 1992, Markham et al., 1998, Mani et al., 2002).  This finding contradicts our initial 

hypothesis that there is reduced viral diversification in slow disease progression.  Perhaps this 

is reflective of the heterogeneity of diversity one sees in chronic HIV-1 disease compared to 

the primary stage where increased diversity was associated with rapid disease progression 

(Gray et al., 2007).  Specific regions of Env including C2, V3 and C3 in slow progressors 

showed increased diversity suggesting that co-evolution of amino acids due to the close 

proximity of these regions is likely (Menzo et al., 1998, Gaschen et al., 2002).  From a 

functionality standpoint it appears that, because the V3 loop is critical for viral entry, 

increased diversity in this region could be a correlate of viral attenuation (Abraha et al., 

2009).  Interestingly, we found that viruses in the slow progressors used both CCR5 and 

CXCR4 coreceptors equally and this could explain the higher diversity in this group. 

 Our study contradicts other studies that have found direct associations between amino acid 

lengths of the V1-V4 Env regions and the numbers of PNGs (Derdeyn et al., 2004, Rong et 

al., 2007b).  These studies also illustrate the direct relationship between neutralization 

sensitivity and shorter V1-V4 regions (Derdeyn et al., 2004, Rong et al., 2007a).  

Interestingly, when we examined genotypic characteristics in relation to the phenotypic 

antibody responses, in progressors there was negative correlation between the nAb IC50 titers 

and the amino acid length in V1-V2, implying that increased length of certain regions of 

envelope may be a mechanism to evade nAb recognition.  We found that longer lengths for 

V1-V4 loops with fewer PNGs had positive association with neutralization titers that is 
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discussed later on in this chapter. We propose that length polymorphisms in the constant and 

variable envelope regions may lead to varied protein folding of Env that ultimately affects the 

conformation and adds to structural diversity of Env. Additionally, when we examined the 

sequence footprints in progressors, a loss of a glycan in V4 was compensated for by a gain in 

a PNG within C3, implying a shifting glycan shield as suggested previously (Wei et al., 

2003), which may be crucial for immune evasion.  

High dN/dS ratios indicative of strong diversifying selection due to humoral immune 

pressure (Yang et al., 2003), occurred mainly within gp41 in progressors.  Slow progressors 

on the other hand, had a number of regions targeted positively selected for along the Env 

gp160.  This suggests that the nature of antibody targets may differ between the groups that 

may be due to the intrinsic sequence differences between the Envs.  Interestingly, the α-2-

helix within C3 of both groups experienced positive selection pressure and this suggests that 

C3 is under diversifying selection pressure (Gaschen et al., 2002) and a likely neutralization 

target in subtype C viruses (Gnanakaran et al., 2007, Rong et al., 2007b).  Position 607 of 

gp41 was positively selected for in progressors and was also a signature sequence difference 

between progressors and slow-progressors, indicating that there may be putative humoral 

immune pressure driving escape at that position.  Furthermore, mutations occurred at two 

putative antibody sites in gp41.  These antibody sites were- ELDKWAS which was 

recognized by nmAb- 2F5, where DKW are the sentinel amino acids that determine 

sensitivity to 2F5 (Zwick et al., 2005) and  a linear epitope- NWFNIT- that is recognized by 

nmAb 4E10.  Mutations may confer possible loss of a putative antibody recognition sites 

which may then affect both autologous and heterologous virus neutralization. The effect of 

the loss of putative antibody recognition sites during chronic disease progression is unknown.  

In addition, the negatively selected sites along the entire gp160 in both slow progressors and 
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progressors may imply that there are some sentinel amino acids that need to be preserved in 

order to maintain the overall integrity of the Env.  Negatively selected sites may be tool that 

we can use to hone in on crucial or functionally important sites in HIV-1 env and may be 

included in future immunogen design as a way to identify functionally important parts of the 

virus that would make attractive immunological targets.  Together these results imply that the 

virus may gain selective advantages by exploiting multiple strategies to evade the immune 

system, including amino acid length, increased numbers of PNGs, and specific mutations.   

This study highlights the epic battle between virus and selective forces that impact on the 

virus and ultimately, clinical disease outcome.  Further studies will be required to better 

understand these forces in chronic HIV-1 infection.  

 

5.3 Neutralizing and Non-Neutralizing Antibodies 

NAbs and non-neutralizing antibodies may play a role in HIV disease progression but these 

parameters have rarely been investigated concurrently.  We therefore undertook this study in 

individuals chronically infected with HIV-1 subtype C, the most abundant subtype 

worldwide, in order to establish whether neutralizing and non-neutralizing antibody patterns 

differ in individuals with divergent rates of disease progression, and to determine whether 

certain genotypic env characteristics are associated with autologous or heterologous nAb 

responses.  Our data indicated that nAbs did not appear to protect against disease progression, 

rather greater neutralization breadth against subtype B Envs and increasing autologous nAb 

titer were associated with disease progression.  NAb IC50 titers were correlated with env 

genotypic characteristics, including increased amino acid length and numbers of PNGs in 

hypervariable regions of gp120.  
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In this study, nAb potency or breadth did not predict disease progression rate in individuals 

with chronic HIV-1 subtype C infection.  However, a number of interesting findings were 

apparent.  Firstly, high-level neutralizing titers to contemporaneous autologous virus were not 

observed in most of the participants. Instead, we observed significantly higher autologous 

responses over time in the progressors (when the study entry viruses were tested against the 

study exit plasma) compared to contemporaneous responses, which suggests that nAbs are 

continuously evolving in these subjects. These findings also argue that an increasing nAb 

titer per se is not effective at attenuating disease progression but rather is a marker of disease 

progression.  Secondly, autologous nAb IC50 titers correlated with longer amino acid length 

for V1-V5 and C3-V5 of env in slow progressors.  In contrast, the inverse correlation of nAb 

IC50 titer with V1-V2 length was found in the progressors.  Indeed evidence for V2 

dependent epitopes was observed in progressors SK221 and SK233.  This data suggest that 

different regions of Env may be targeted by nAb in the progressors versus the slow 

progressors.  Alternatively, there may be other intrinsic genetic differences of env between 

slow progressors and progressors that dictate neutralization potency and breadth that need to 

be further defined.  Lastly, the correlation between autologous nAb IC50 titer and number of 

PNGs in V1V2 in slow progressors, suggests these glycans may be targeted by slow 

progressors but not in progressors. 

The selective increase in neutralization breadth over time in progressors suggests that this 

parameter could be a marker of disease progression in chronic subtype C infection (Euler et 

al., 2010).  Gray and colleagues (2011) found significant correlations between CD4 T-cell 

count and viral load with neutralization breadth at six months post-infection only and not at 

later time points (Gray et al., 2011a).  These observations suggest that higher antigenic 

stimulation may dictate the breadth of antibody responses to heterologous viruses (Mellors et 
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al., 1997, Goujard et al., 2006, Fraser et al., 2007, Piantadosi et al., 2009, Sather et al., 2009, 

Doria-Rose et al., 2010).  In contrast, a study reported broad cross-neutralizing antibodies in 

individuals on antiretroviral treatment (ART) with undetectable viraemia (Medina-Ramirez et 

al., 2011).  The authors hypothesized that the lack of antigenic stimulation resulting in 

undetectable viraemia through effective ART may have compensated for an improved B cell 

function, resulting in broadly neutralizing antibodies. Although increased neutralization 

breadth in both study groups suggests that nAbs may not be protective against disease 

progression, they may be effective against super-infection as has been suggested by some 

studies (Smith et al, 2006 and Deeks et al, 2006) but not others (Blish et al., 2008). Together, 

these studies have implications for HIV vaccine design, as vaccine immunogens may need to 

be given over long periods of time to stimulate the B cell response, and to facilitate affinity 

maturation which appears to be necessary for antibodies to acquire cross-neutralizing activity 

(Pancera et al., 2010; Scheid et al., 2009).  For the progressors who displayed potent cross 

neutralizing antibodies responses, their nAbs likely targeted quaternary V2 epitopes similar 

to PG9/PG16-like antibodies (Moore et al., 2011, Gray et al., 2011a).  In addition, nAbs that 

targeted the N332 glycan in C3 suggest that the asparagine in that position is essential for 

neutralization activity. However, we could not establish whether these cross neutralizing 

antibodies had been there from study entry or had evolved.  Due to the lack of plasma sample 

availability, we could not test for this.  In subtype C infection, the V1-V2 and C3 regions are 

the immunodominant regions commonly targeted by AnAbs particularly during the early 

stage of infection (Moore et al., 2008, Moore et al., 2009, Rong et al., 2009, Lynch et al., 

2011). Our results do indicate the V2 and C3 regions are immunodominant and the focus of 

the nAb response resulting in broadly cross-neutralizing antibodies even during chronic 

progressive HIV-1 disease.  
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A decline of p24 antibody titers as disease progresses has previously been reported (Lange et 

al., 1986, Allain et al., 1987, Forster et al., 1987, Binley et al., 1997), and it is therefore not 

surprising that the p24-specific IgGs may lose their affinity over time as demonstrated in both 

groups.  A study found that low p24 IgG affinity correlated with HIV-1 disease progression 

(Chargelegue et al., 1995).  It is plausible that in the slow progressors, a decrease in the 

binding affinity of activating FcRIIa, heralds dysfunction in the expression of these 

receptors on the cells of the innate immune system despite a relatively unchanged CD4 T-cell 

count over time (Dugast et al., 2011). We found no differences in the binding affinities of the 

IgGs to the various FcRs in divergent states of disease progression suggesting that non-

neutralizing antibodies may have a limited or no protective effect during the chronic infection 

stage.  Indeed it was found that non-neutralizing antibodies have no or a limited ability to 

protect against SHIV infection in mucosally challenged animals (Burton et al., 2011).   

The limitations of the study are that firstly, we do not know the exact time of infection for 

these subjects. Therefore stratification of study subjects as progressors or slow progressors 

relied on a snapshot of the entire natural history of disease progression for these participants. 

However, this concern was somewhat allayed by bioinformatic analysis of the study 

sequences that showed that consistent with the stratification, progressors in this cohort were 

more likely to have been infected for shorter period of time than slow progressors. Second, 

the sample size of the study cohort was relatively small, which may have limited our 

statistical power to identify differences.   Third, we had a limited number of SGA-generated 

amplicons for one of the study participants in particular, due to their low viral load and 

sample volume limitation.  In addition, many more env amplicons were generated than were 

included in the final analyses as some of the amplicons had sequences with stop codons. 
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Fourth, we used binding affinity assays as a surrogate indication of non-neutralizing antibody 

activity, which may not always be reflective of ADCC/ADCVI activity in vivo. 

The low sample size in each group was a limitation of this study, which led to poor statistical 

power.  This study was a descriptive pilot analysis, based on strict criteria on participants 

having a similar CD4 T-cell count at study entry, patients remaining ARV naïve for the 

duration of the study and sample availability.  Based on results from Mani et al. (2002) and 

Bagnarelli et al. (1999), we expected a mean intra-patient diversity of 2% and 4%, 

respectively; assuming 80% power, a Type I error of 5% and a standard deviation of 1%, we 

would require a sample size of at least 6 participants in each group and therefore our study 

was underpowered.  For the autologous and heterologous neutralization, we wanted to assess 

the evolution of these responses in both groups of participants.  Overall, therefore, the 

findings reported here will require duplication in larger cohorts with longer periods of follow-

up and more significant differences in immunological and virological outcomes. 

 

Despite these caveats, one of the strengths of the study is that we used single genome RNA 

plasma-derived envs to generate our recombinant viruses, by performing limited dilution 

assays we therefore would have sampled the both major and minor circulating envs and 

therefore present the autologous neutralization and genetic data based on these representative 

strains.  Another strength of this study is that the groups were initially stratified according to 

CD4 T-cell counts and viral loads as progressors and slow progressors over the initial period 

of observation (of 24 months) in the absence of long-term follow-up data that only became 

available later on in the study.  These groups were shown to be indeed different at study exit 

and beyond the study period, and therefore we were able to tease out putative viral sequence 

differences in divergent states of disease progression.   
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5.4  Conclusions 

The dynamics of HIV-1 env evolution between chronic slow progressors and progressors are 

distinct.  Single genome sequence analysis of circulating viruses diversity, envelope length 

polymorphisms, sites under positive and negative selection pressure, and PNGs consistently 

map to specific regions in slow progressors versus progressors.  Our findings suggest that an 

ongoing de novo nAb response does not directly protect against disease progression during 

chronic HIV-1 subtype C infection.  Our results are consistent with data from non-human 

primate studies showing that high titer nAb titers are not found in sooty mangabeys (Li et al., 

2010) suggesting that autologous nAb are not part of the protection against disease 

progression in HIV and SIV infections.  Furthermore, overall nAb breadth increased over 

time in most subjects, regardless of their disease status. There was evidence that progressors 

may target different regions of Env than slow progressors, which could have influenced the 

ability of the former to neutralize heterologous subtype B Envs. The mechanism by which 

nAb breadth increased in these subjects is of interest. Thus, it will be important to determine 

which Env epitopes in chronically infected progressors elicit broadly neutralizing antibodies 

and whether these provide any clinical benefit to the patient. 

 

5.5 Future Directions 

Going forward, the evolution of the autologous and heterologous responses in larger HIV-1 

subtype C acute infection cohorts should be explored.  This type of study would be valuable 

for the characterization of the antibodies and the definition of the target immunogens. In so 

doing we may be able to characterize putative subtype C immunogens to include in a globally 
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relevant HIV-1 vaccine that may induce potent and broadly neutralizing antibodies. In 

addition, using the Luminex platform to screen for large numbers of HIV-1 antigen specific 

IgGs, will facilitate the development of algorithms for predicting HIV-1 disease progression 

based on the immune correlates that prevail.  For example the contribution that V1-V2 IgG 

binding antibodies play in disease attenuation can also be explored.   In addition, we can 

explore the contribution of ADCC and ADCVI in controlling or attenuating HIV-1 disease 

progression.   
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7.0  Appendix 

 

Luria Bertani Medium 

20 LB tablets (Sigma-Aldrich, St Louis, USA) 

1 litre of distilled water 

Autoclave for 20 mins at 121 kPa, allow to cool 

 

LB Agar 

20 LB tablets (Sigma-Aldrich, St Louis, USA) 

10 g of Agar (Sigma-Aldrich, St Louis, USA) 

1 litre of distilled water 

Autoclave for 20 mins at 121 kPa, allow to cool.   

1ml of Ampicillin (Invitrogen, Carlsbad, USA) to the LB- Agar was added when it had 

reached 65
°
C.   

 

The LB-Agar was poured into sterile petri dishes and left to set before storing at 4
°
C.  Petri 

dishes were wrapped in foil to prevent the degeneration of the ampicillin.  Plates were used 

within 1 month. 

X-Gal staining for TZM-bl Virus Titration 

Fixing Solution (can be kept at 4
°
C)  
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500mls PBS 7.4 pH no Ca++ or Mg++ 

4mls Gluteraldehyde (Sigma-Aldrich, St Louis, USA) 

11mls Formaldehyde (Sigma-Aldrich, St Louis, USA) 

 

Staining Solution  

7.4 PH PBS NO Ca++, Mg++ 

40mg/ml X-Gal Stock 

1M MgCl2 

0.2M Potassium Ferricyanide 

0.2M Potassium Ferrocyanide  

 * 0.4ml/well of staining solution is needed per 24 well plate. 

     

For 10ml of staining buffer (which will stain 1 24 well plate) required the following: 

     100µl X-Gal (40mg/ml stock) 

     40µl 1m mgcl2  

     9.5ml 7.4 ph PBS which contained no Calcium (Ca++) or Magnesium (Mg++) 

     200µl 0.2m Potassium Ferricyanide  

     200µl 0.2m Potassium Ferrocyanide  
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Growth Medium 

500 ml of DMEM (Invitrogen, Carlsbad, USA) 

50ml  Fetal Bovine Serum (FBS)- (Invitrogen, Carlsbad, USA) 

12.5ml  (25mM) HEPES (Invitrogen, Carlsbad, USA) 

2.5 ml Gentamicin (Sigma-Aldrich, St Louis, USA) 

Remove 65ml of DMEM and then add all of the above components of the media and store at 

40°C. 
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