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Abstract

The flow of fluids in a network is of practical importance in gas, oil and water

transport for industrial and domestic use. When the flow dynamics are understood,

one may be interested in the control of the flow formulated as follows: given some

fluid properties at a final time, can one determine the initial flow properties that

lead to the desired flow properties?

In this thesis, we first consider the flow of a multiphase gas, described by the drift-

flux model, in a network of pipes and that of water, modeled by the shallow water

equations, in a network of rivers. These two models are systems of partial differential

equations of first order generally referred to as systems of conservation laws. In

particular, our contribution in this regard can be summed up as follows: For the

drift-flux model, we consider the flow in a network of pipes seen mathematically as an

oriented graph. We solve the standard Riemann problem and prove a well posedness

result for the Riemann problem at a junction. This result is obtained using coupling

conditions that describe the dynamics at the intersection of the pipes. Moreover, we

present numerical results for standard pipes junctions. The numerical results and

the analytical results are in agreement. This is an extension for multiphase flows of

some known results for single phase flows. Thereafter, the shallow water equations

are considered as a model for the flow of water in a network of canals. We analyze

coupling conditions at the confluence of rivers, precisely the conservation of mass

and the equality of water height at the intersection, and implement these results for

some classical river confluences. We also consider the case of pooled stepped chutes,

a geometry frequently utilized by dams to spill floodwater. Here we consider an
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approach different from the engineering community in the sense that we resolve the

dynamics by solving a Riemann problem at the dam for the shallow water equations

with some suitable coupling conditions.

Secondly, we consider an optimization problem constrained by the Euler equa-

tions with a flow-matching objective function. Differently from the existing ap-

proaches to this problem, we consider a linear approximation of the flow equation

in the form of the microscopic Lattice Boltzmann Equations (LBE). We derive an

adjoint calculus and the optimality conditions from the microscopic LBE. Using

multiscale analysis, we obtain an equivalent macroscopic result at the hydrody-

namic limit. Our numerical results demonstrate the ability of our method to solve

challenging problems in fluid mechanics.
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Résumé

Les écoulements des fluides dans des réseaux sont d’une importance paticulière dans

le transport des gaz ou de l’ eau pour des raisons industrielles ou domestiques.

Quand la dynamique de l’écoulement est comprise, l’on peut s’intéresser au control

de cet écoulement formulé ainsi qu’il suit: Etant donner des propriètés d’un fluide au

temps final, peut-on determiner des données initiales qui conduisent a ces propriétés

désirées?

Dans cette thèse, nous considérons dans un premier temps l’ écoulement d’un gaz

multiphasique décrit par le modèle ”drift-flux” dans un reseau de tuyaux et celui de

l’eau, decrit par le model de Saint Venant ou equation en eau peu profonde dans un

réseau de rivières ou de canaux. Ces deux modèles sont des equations aux dérivées

partielles du premier ordre, genéralement appeler systèmes des lois de conservations.

Notre contribution peut être résumer ainsi qu’il suit. Pour le modele du ”drift-flux”,

we considérons son écoulement dans un reseau vu mathematiquement comme un

graphe orienté. Nous resolvons le problème standard de Riemann et nous prouvons

un resultat d’existance pour le problème de Riemann à l’intersection ou au noeud du

reseau. Ce resultat est obtenu en utilisant des conditions de couplage qui descrivent

la dynamique de l’écoulement au noeud du reseau de tuyaux. En plus, nous presen-

tons des resultats numériques pour des noeuds classiques. Nos resultats analytiques

et numériques coincident. Ces resultats constituent une généralisation aux modèles

multiphasique de certain résultats connu pour des modèles uniphasique. Ensuite,

nous considérons le modèle de Saint Venant qui décrit un écoulement d’eau, dans un

reseau de canaux. Nous analysons certaines conditions de couplage a l’intersection
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des canaux, précisement la conservation de la masse et l’égalité de la hauteur de

l’eau, et nous presentons des resultats de simulations numériques pour des conflu-

ences classiques. Nous considérons aussi le cas des chuttes en escalier, une géométrie

utilisée genéralement à des barrages pour evacuer les eaux d’inondations. Notre ap-

proche ici est différente de celle de la communauté hydraulique dans le sens ou nous

résolvons la dynamique en resolvant des “problèmes de Riemann au barrage” pour

les equations de Saint Venant avec des conditions de couplages appropriées.

Dans une deuxième partie, nous considérons un problème d’optimization des

écoulements régit par les équations d’Euler avec une function objective du type

“flow matching’. Différement des approches existentes pour la solution de ce

problème, nous proposons l’utilisation d’une approximation linéaire des équations

d’Euler donnée par le modèle microscopique de Boltzmann. Nous derivons l’

équation adjointe et les conditions d’optimalité en utilisant le modèle microscopique

de Boltzmann. En utilisant une analyse multi-echelle, nous obtenons un resultat

macroscopique equivalent a la limite hydraudynamique. Nos resultats numeriques

démontrent que notre approche permet de resoudre des problemes difficiles de la

dynamiques des fluides.
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Chapter 1

Introduction

The mathematical study of conservations laws is an important topic that originated

with the pioneering work of d’Alembert on wave equations and Euler on equations

describing the evolution of a fluid. The physical concept of conservation laws appears

naturally in continuum mechanics where the conservation of mass, of momentum

and of energy are paramount. In general, a conservation law model appears when

some physical quantity, say u, is conserved. A system of conservation laws has the

form

∂tu+ ∂xf(u) = 0, (1.1)

where the mapping f is called the flux function and ∂t and ∂x are the partial deriva-

tives with respect to time and space, respectively. By integrating (1.1) over a space

interval [a, b], we have

d

dt

∫ b

a

u(x, t)dx =

∫ b

a

∂tu(x, t)dx

= −
∫ b

a

∂xf(u(x, t))dx

= f(u(a, t)) − f(u(b, t))

= [inflow at a] − [outflow at b]. (1.2)

This says that the variation of the quantity u over the space interval [a, b] depends

only on the flow across the two endpoints. One can write (1.1) in the quasilinear
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form

∂tu+Df(u)∂xu = 0, (1.3)

where Df(u) is the Jacobian matrix of the flux f. But (1.3) is equivalent to (1.1)

only in the realm of smooth solutions. When the solution u is discontinuous, ∂xu is

not smooth and the product in the second term of (1.3) is not defined. Therefore,

our analysis will be done in the framework of weak solutions, that uses the integral

form of (1.1). An important mathematical challenge associated with conservation

laws is that solutions can develop discontinuities or blow-up in finite time even if

the initial data is regular. To understand this challenge, one starts by studying the

standard Riemann problem associated with the model equation (1.1) which consists

of solving (1.1) with a Heaviside-type initial data. This is a preliminary step for

the study of the Cauchy problem associated with (1.1). A proof of the existence

of solutions to this Cauchy problem was first proposed by Glimm [55] using the

random choice method. A deterministic proof as well as some uniqueness results

were proved by Bressan and colleagues and Liu [23, 24, 21, 26, 28, 20, 81]. The

main tool used in the proof was the wave-front tracking algorithm proposed by

Dafermos [42]. Recently, the dynamics of systems of conservation laws in a network

of pipes and canals have been of interest for many scientists. We mention the case

of gas networks with the contributions of Colombo et al. [32, 33, 38] who considered

the p-system and proved well-posedness for the Cauchy problem at the junction,

of Banda et al. [6, 7, 4] who considered the isothermal Euler equations, proved

the well-posedness and provide some numerical simulations. The case of the full

Euler equation in standard Networks was considered by Colombo and Mauri in [41]

and by Herty in [61]. Colombo and Marcellini considered the case of a pipe with

discontinuous cross section in [40, 39].

In the second part of this thesis, we consider a model for multiphase flow derived

from the drift-flux model [51] in a network of pipes. The drift-flux model is derived

from the two-fluid model by averaging the balance laws for the momentum in the

canonical form. The model is then closed with a slip relation, that gives an algebraic

relation between the two velocities, and a pressure law, expressed in terms of the
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densities [48, 51]. Here we assume that the slip function vanishes and therefore the

velocities of the two phases are equal. Due to the complexity of the model for a

network of pipes, we investigate separately the case of a linear pressure law and the

general case where there is no restriction on the pressure law. For the two cases,

we formulate some coupling conditions that serve to prove the well-posedness of the

Riemann problem at the junction and we carry out some numerical simulation for

a junction of two, three and four pipes. Key to our analysis are the expressions of

the Lax curves. We prove numerically that when the exact Lax curves are replaced

by their linearizations, the results are in good agreement. This result, which to

the best of our knowledge is presented for the first time here, allows us to obtain

well-posedness and numerical results for our model with a general equation of state.

This work has led to [10, 8, 9].

The third part of the thesis deals with the flow of water in a network of canals.

The flow obeys the shallow water equations and we consider different types of river

confluences. We derive coupling conditions at the confluences or junctions from

those proposed by Rademacher et al. [99] and compute the dynamics on common

river confluences. These results appeared in [76].

Further, we consider the case of pooled stepped chutes, a geometry frequently uti-

lized by dams to spill floodwater. Here our approach is different from that of the

engineering community in the sense that we resolve the dynamics by solving some

Riemann problem at the dam for the shallow water equations with some suitable

coupling conditions. Our result compares well with the experimental results from

the hydraulic literature [13, 101].

The last part of the thesis deals with the control of flow governed by a system of

conservation laws. The mathematical difficulty associated with this problem is that

the flow generated by systems of conservation laws is not differentiable in any clas-

sical functional space [29]. A notion of shift-differentiability have been introduced

by Bressan and colleagues [22, 25, 27] and an optimality result obtained by Bressan

and Shen [29] for systems and by Colombo and Groli [36, 35] for scalar conserva-

tion laws. These results nevertheless are not amenable to numerical simulations
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that can help to compute the optimal solution. Key to the proofs are the control

of the wave interactions that can occur between two waves or between a wave and

the pipes’ junctions. These wave interactions pose a serious problem for a gradient

based method for the solution of this optimization problem. As a solution to this

problem, we propose the use of a linear model, in the form of the lattice Boltzmann

equations(LBE) that approximates the flow model given by the one dimensional

Euler equations. Precisely, we use the one dimensional five velocity (D1Q5) LBE

model and we prove that this microscopic model converges in the hydrodynamic

limit to the Euler equations. Using the LBE, we derive an adjoint calculus and the

optimality conditions for the control of the Euler equations and present the results of

some numerical simulations applied to some test problems of interest. The results

obtained here constitute a new approach for the control of Euler flow and avoid

complicated tools as detection of discontinuity used in [64]. This work has led to

[86, 87, 106].

The thesis is organized as follows: In Chapter 2, we recall some fundamental

results pertaining to the mathematical analysis and numerical integration of

systems of conservation laws. Due to discontinuities that arise in the solution of the

flow equations, the numerical schemes need to be conservative and total variation

diminishing (TVD). In Chapter 3, we present the mathematical analysis of the

drift-flux multiphase flow in a network of pipes. The pressure law considered here

is a linear function of the densities. We present a local well-posedness results and

the constructive proof play an important role in the numerical simulations of the

dynamics of the network. Chapter 4 extends the results of Chapter 3 for a general

pressure law. Moreover, we analyze the effect of the sonic speed of each fluid on

the multiphase fluid in networks. The case of a junction with a discontinuous cross

section is presented.

The simulation of the dynamics of a river network is investigated in Chapter 5.

Here we review some flow properties and derive some coupling conditions at the

river confluences from those proposed by Rademayer et al. [99]. We present some

numerical results in the case of a river and a tributary, that of three connected rivers
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and that of a storage basin. In Chapter 6, we consider the case of pooled stepped

chutes, a geometry frequently utilized by dams to spill floodwater. We resolve

the dynamics by solving a Riemann problem at the dam with suitable coupling

conditions. Chapter 7 deals with the optimal control of the Euler equations.

Our analysis uses a kinetic model in the form of a lattice Boltzmann equation

that converges in the hydrodynamic limit to the Euler equations. We derive the

optimality system using the kinetic model and perform some numerical simulations

that prove satisfactory on the solution of many important test problems. Finally,

Chapter 8 presents the conclusions and future area of research suggested by this

thesis.
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Chapter 2

Mathematical Preliminaries

In this thesis we use fluid models such as the drift-flux model, the Euler equation

and the shallow water equation to formulate a model for the flow in networks of

pipes or canals. These fluid models are hyperbolic systems of conservation laws. In

this chapter we present the main properties and numerical schemes for hyperbolic

systems of conservation laws. For more details on the topic, we refer the reader to

[19, 42, 60, 83] for the theoretical analysis and to [78, 79, 102] for the numerical

simulations.

We begin this chapter by recalling some definitions and properties of functions of

bounded variations. It is generally in this framework that one can prove the existence

of solutions to systems of conservation laws.

2.1 Functions with Bounded Variation

Definition 2.1. Consider an interval J ⊂ R and a map u : J → R
m. The total

variation of u is defined as

TV (u) = sup

{
N∑

j=1

‖u(xj) − u(xj−1)‖ : N ∈ N \ {0}, xj ∈ J, and x0 < · · · < xN

}
.

If u ∈ L1

loc(J,R
m) and TV (u) <∞, we say that u has bounded variation, and write

u ∈ BV(J ; Rm).

8
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The following result, whose proof can be found for example in [19] is very im-

portant for the passage to the limits.

Theorem 2.1 (Helly). Consider a sequence of functions uν : R → R
m and let C, M

be some positive constants such that

TV (uν) ≤ C, |uν(x)| ≤M for all ν, x.

Then there exists a function u and a subsequence uµ such that

lim
µ→∞

uµ(x) = u(x) for every x ∈ R,

TV (u) ≤ C, |u(x)| ≤M for all x.

Definition 2.2. A function u ∈ L1

loc(R
d; Rm) is said to be locally of bounded vari-

ation, denoted u ∈ BVloc(R
d; Rm), if for every compact set K ⊂ R

d there exists a

constant CK such that
∫

K

∣∣∣∣u.
∂ϕ

∂xi
dx

∣∣∣∣ ≤ CK sup
x∈K

‖ϕ(x)‖ i = 1, . . . , d

for every C1 function ϕ with compact support K contained in R
d.

Definition 2.3. A function u ∈ L1(Rd; Rm) is said to have a bounded variation,

denoted u ∈ BV(Rd; Rm), if there exists a constant C such that
∣∣∣∣
∫

Rd

u · ∂ϕ
∂xi

dx

∣∣∣∣ ≤ C sup
x∈Rd

‖ϕ(x)‖ i = 1, . . . , d

for every C1 function ϕ with compact support contained in R
d.

Let Ln denotes the n-dimensional Lebesgue measure.

Theorem 2.2. Let u ∈ L1

loc(R
d). For a fixed k ∈ {1, . . . , d}, let

x′ = (x1, . . . , xk−1, xk+1, . . . , xd) ∈ R
d−1

and set

uk(x
′, y) = u(x1, . . . , xk−1, y, xk+1, . . . , xd).

Then u ∈ BVloc(R
d) if and only if the map y 7→ uk(x

′, y) is in BVloc(R) for

Ln−1 − a.e. x′ ∈ R
d−1, for every k = 1, . . . , d.
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The following result relates the total variation of a vector valued function to that

of its components.

Proposition 2.1. Let u : R
d → R

m. Then u ∈ BVloc(R
d; Rm) if and only if each

component ui ∈ BVloc(R
d; R), i = 1, . . . , m.

The following theorem states the existence of trace of a BV function on the

boundary of a measurable set. A definition of trace, of essential boundary, as well

as the proof of the theorem can be found in [107, Chapter 4].

Theorem 2.3. Let E ⊂ R
d be a measurable set, S its essential boundary. Let

u ∈ BV(Rd). Then the trace u+ of u on S exists a.e. with respect to the (n − 1)-

dimensional Hausdorff measure.

2.2 Homogeneous Systems of Conservation Laws

Let Ω ⊂ R
m be an open set. An m×m system of conservation laws has the form

Ut + f(U)x = 0, (2.1)

with t ∈ [0, T ] and x ∈ R. The map f : Ω → R
m in (2.1) is often referred to as the

flux function. We assume in this chapter that f is at least C1. Let

A(U)
.
= Df(U) =




∂f1

∂U1
. . . ∂f1

∂Um

... . . .
...

∂fm

∂U1
. . . ∂fm

∂Um




be the Jacobian matrix of the map f at the point U. The system (2.1) can be written

in the quasilinear form

Ut + A(U)Ux = 0. (2.2)

Definition 2.4 (Classical solution). A classical solution of (2.1) is a continuously

differentiable function U = U(t, x) which satisfies (2.1) at every point of its domain.

If an initial condition Ū(x) is given, U should also satisfy U(0, x) = Ū(x), for all x.
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For classical solutions, equations (2.1) and (2.2) are entirely equivalent. However,

if at least one of the components of U has a jump at a point, say, ξ, then the left hand

side of (2.2) will contain the product of a discontinuous function with a distributional

derivative which contains a Dirac mass at the point ξ. In general, such a product

is not well defined. Hence (2.2) is meaningful only within the class of continuous

functions.

2.2.1 Weak solutions

By working with the equation in the form (2.1), we can consider discontinuous

solutions interpreted in distributional sense. Indeed, we have the following definition.

Definition 2.5. A measurable function U(t, x) from an open subset Ω of R × R

into R
m is a distributional solution of (2.1) if for every C1 function ϕ with compact

support, one has ∫∫

Ω

(Uiϕt + fi(U)ϕx)dxdt = 0,

for each component Ui and fi(U) of U and f(U), respectively.

A distributional solution U is not necessarily continuous, but U and f(U) should

be locally integrable in O. Definition 2.5 can be extended to take into account some

initial data.

Definition 2.6. Given an initial condition

U(0, x) = Ū(x) (2.3)

with Ū ∈ L1

loc(R; Rm), we say that a function U : [0, T ]×R → R
m is a distributional

solution to the Cauchy problem (2.1,2.3) if for all i = 1, . . . , m,

∫ T

0

∫ ∞

−∞
(Uiϕt + fi(U)ϕx)dxdt+

∫ ∞

−∞
Ūi(x)ϕ(0, x)dx = 0, (2.4)

for each component Ui, and fi(U) of U and f(U), respectively, and for every C∞

function ϕ with compact support contained in the set [0, T ) × R.
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There is a stronger concept of discontinuous solution that requires U to be con-

tinuous as a function of time with values into L1
loc(R).

Definition 2.7 (Weak solutions). A function U : [0, T ]×R 7→ R
m is a weak solution

of the Cauchy problem (2.1, 2.3) if U ∈ C0([0,+∞[;L1

loc(R; Ω)), the initial condition

(2.3) holds point wise and the restriction of U to the open strip (0, T ) × R is a

distributional solution of (2.1).

Every weak solution is a distributional solution but the converse is clearly false.

2.2.2 Hyperbolicity, admissibility conditions and the Rie-

mann problem

Definition 2.8. The system of conservation laws (2.1) is said to be strictly hyper-

bolic if for every U ∈ Ω, the Jacobian matrix A(U) = Df(U) has m real distinct

eigenvalues

λ1(U) < λ2(U) < · · · < λm(U).

For strictly hyperbolic systems, one can find bases of right and left eigenvectors

{r1(U), . . . , rm(U)} and {l1(U), . . . , lm(U)}, respectively, depending smoothly on U ,

and normalized such that

‖ri(U)‖ = 1, and li(U).rj(U) = δij
.
=

{
1 if i = j,

0 i if i 6= j

for every U ∈ Ω. The pair (λi, ri) is referred to as the i-th characteristic field. The

eigenvalues λi are also called wave or the characteristic speeds.

Definition 2.9. For i ∈ {1, . . . , m}, we say that the i-th characteristic field is

genuinely nonlinear if

∇Uλi(U).ri(U) 6= 0 for all U ∈ Ω.

If, on the other hand,

∇Uλi(U).ri(U) = 0 for all U ∈ Ω,

we say that the i-th characteristic field is linearly degenerate.
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From now on, unless otherwise stated, we assume that for a given genuinely

nonlinear characteristic field i, the right eigenvectors are normalized such that

∇Uλi(U).ri(U) = 1.

For brevity, we will write ∇ instead of ∇U , for the gradient with respect to the

conserved variables.

Rankine-Hugoniot Conditions

Lemma 2.1 (Rankine-Hugoniot Conditions). Let U+, U− ∈ Ω, s ∈ R. If the func-

tion

U(t, x) =

{
U+ if x > s t,

U− if x < s t
(2.5)

is a weak solution to (2.1), then the Rankine-Hugoniot jump conditions

f(U+) − f(U−) = s(U+ − U−). (2.6)

hold.

The proof can be found for example in [19]. A solution of a system of conservation

laws in the form (2.5) is called a shock wave solution and s is the shock speed.

One can rewrite the Rankine-Hugoniot conditions in the following way. For any

U, V ∈ Ω, we define the averaged matrix

A(U, V )
.
=

∫ 1

0

A(θV + (1 − θ)U)dθ (2.7)

and call λi(U, V ), i = 1, . . . , m its eigenvalues. One can easily see that A(U, V ) =

A(V, U) and A(U,U) = A(U). The equations (2.6) can be written in the equivalent

form

s(U+ − U−) = f(U+) − f(U−) =

∫ 1

0

Df(θU+ + (1 − θ)U−) · (U+ − U−)dθ

= A(U−, U+) · (U+ − U−).

(2.8)

In other words, the Rankine-Hugoniot conditions hold if and only if the jump U+ −
U− is an eigenvector of the averaged matrix A(U−, U+) and the shock speed coincides
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with the corresponding eigenvalue.

When dealing with weak solutions of systems of conservation laws, the uniqueness

of solutions is lost. Indeed, consider the Burgers’ equation

Ut +

(
U2

2

)

x

= 0, (2.9)

where U is now a scalar. Consider the Cauchy problem with initial data

U(0, x) =

{
1 if x ≥ 0

0 if x < 0.

For every 0 < β < 1,

Uβ(t, x) =





0, x ≤ β
2
t,

β, β
2
t < x < 1+β

2
t,

1, x ≥ 1+β
2
t,

(2.10)

is a weak solution of (2.9). Indeed, the piecewise constant function Uβ satisfies the

equation outside the jumps. Moreover, the Rankine-Hugoniot conditions hold along

the two lines of discontinuity {x = β
2
t} and {x = 1+β

2
t} for all t > 0.

To single out the unique physically relevant solution, one uses the so called

admissibility conditions. Among these are the entropy-entropy flux pair and the

vanishing viscosity conditions that we present below.

Definition 2.10. A continuously differentiable function η : Ω → R is called an

entropy for the system (2.1), with entropy flux q : Ω → R, if

∇ηDf(U) = ∇q(U) ∀U ∈ Ω.

The couple (η, q) is also called an entropy-entropy flux pair for (2.1).

Definition 2.11. A weak solution of (2.1) is entropy admissible if

η(U)t + q(U)x ≤ 0 (2.11)

in the distributional sense, for every convex entropy-entropy flux pair (η, q) for (2.1).
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The entropy admissibility condition can be derived from the vanishing viscosity

condition [19].

Vanishing viscosity A weak solution U of (2.1) is admissible in the vanishing

viscosity sense if there exists a sequence of smooth solutions Uε to

Uε
t + f(Uε)x = εUε

xx (2.12)

which converges to U in L1
loc as ε → 0 + .

Now we introduce the standard Riemann problem for a strictly hyperbolic system

of conservation laws and investigate the construction of its solutions.

The standard Riemann problem for the system (2.1) consists of finding a weak

(entropy) solution with piecewise constant initial datum

U(0, x) =

{
U− if x < 0,

U+ if x > 0,
(2.13)

with U−, U+ ∈ Ω some given left and right states. It is the simplest problem

involving a discontinuity in the initial conditions.

Solution to the Riemann problem

If each characteristic of (2.1) is either genuinely nonlinear or linearly degenerate, it is

possible to find an analytical solution to the Riemann problem (2.1,2.13). In general,

this solution is either a simple wave (a shock, rarefaction or contact discontinuity

wave) or a combination of these simple waves. We first consider the case of a shock

wave. The shock curves are defined as followed.

Theorem 2.4. Assume that the system (2.1) is strictly hyperbolic. Then for every

U0 ∈ Ω, there exists ξ0 > 0 and m smooth curves ξ 7→ Si(ξ;U0) defined for ξ ∈
[−ξ0, ξ0] together with m scalar functions si(.;U0) : [−ξ0, ξ0] 7→ R, i = 1, . . . , m such

that

f(Si(ξ;U0)) − f(U0) = si(ξ;U0)(Si(ξ;U0) − U0)
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for every ξ ∈ [−ξ0, ξ0]. Moreover, the parameterization can be chosen such that

Si(0;U0) = U0, si(0;U0) = λi(U0),

d

dξ
Si(ξ;U0)|ξ=0 = ri(U0).

The curve Si is called the i− shock curve through U0 and si is the shock speed.

An i-th shock wave solution to the Riemann problem (2.1,2.13) is given by

U(t, x) =

{
U− if x < sit,

U+ if x > sit,
(2.14)

where the right state U+ and the left state U− are connected to along the i-th shock

curve:

U+ = Si(ξ;U
−) for some ξ ∈ [−ξ0, ξ0].

Now we consider the case of a rarefaction wave solution to the Riemann problem.

This solution is a self-similar solution, meaning that U(t, x) = U(x/t).

By ξ 7→ Ri(ξ, U0) we denote the parameterized integral curve of the eigenvector

ri(U0) through the point U0. More precisely, Ri(ξ, U0) is the value at time t = ξ of

the solution to the Cauchy problem

dU

dt
= ri(U(t)), U(0) = U0.

The curve Ri is called the i-rarefaction curve through U0.

Theorem 2.5. If the initial data U− and U+ are such that

U+ = Ri(ξ;U
−)

for some ξ and some i, then the following piecewise smooth function

U(t, x) =






U− if x
t
< λi(U

−)

U+ if x
t
> λi(U

+)

Ri(ξ;U
−) if x

t
∈ [λi(U

−), λi(U
+)], x

t
= λi(Ri(ξ;U

−))

(2.15)

is a weak solution of (2.1,2.13). This particular solution is called a rarefaction wave.
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When the i-th characteristic field is linearly degenerate, then the i-th shock and

rarefaction curves coincide:

Si(ξ;U) = Ri(ξ;U) for all ξ and U

The resulting curve is called the contact discontinuity curve. The corresponding

solution to the Riemann problem is called a contact discontinuity wave.

As pointed out before, the uniqueness of solutions of Riemann problems in the weak

sense is not guaranteed and one uses admissibility conditions to single out the unique

physically relevant solutions. In addition to the entropy condition and the vanishing

viscosity condition presented above, we have the following conditions.

Liu condition Let U+ = Si(σ, U
−) for some σ ∈ R. The shock with left and

right side U− and U+ is said to satisfy the Liu admissibility condition if its

speed is less or equal to the speed of every smaller shock, joining U− with an

intermediary state U∗ = Si(s, U
−), s ∈ [0, σ].

Lax condition A shock in the i-th family, connecting states U−, U+ and traveling

with speed si = λi(U
−, U+), satisfies the Lax admissibility condition if

λi(U
−) ≥ si ≥ λi(U

+) (2.16)

The Liu condition was introduced by Liu in [80] and it was proven that it com-

pletely characterizes the solutions of the conservation laws which can be obtained

as vanishing viscosity limits. The Lax condition says that characteristics in the i-th

family disappear into the shock as time advances. We now assume that the shock

curves and the rarefaction curves are chosen as to satisfy the Lax entropy condition.

We then define the map

Li(ξ;U0) =

{
Ri(ξ;U0) if ξ ≥ 0,

Si(ξ;U0) if ξ < 0

Li is smooth for ξ 6= 0 and twice continuously differentiable at ξ = 0 [42]. Li is the

i-th Lax curve through U0. The general solution of the Riemann problem is obtained

as a juxtaposition of fixed states connected by the Lax curves.
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Theorem 2.6. Assume that (2.1) is strictly hyperbolic and each characteristic field

is either genuinely nonlinear or linearly degenerate. For ‖U+ − U−‖ sufficiently

small, there exists a unique self similar solution to the Riemann problem (2.1,2.13)

with small total variation. The solution comprises m + 1 constant states U− =

U0, U1, . . . , Um−1, Um = U+. When the i-th characteristic field is linearly degenerate,

Ui is joined to Ui−1 by an i-contact discontinuity, while when the i-characteristic field

is genuinely nonlinear, Ui is joined to Ui−1 by either an i-(Lax) rarefaction or an

i-(Lax) shock.

A proof can be found in [42].

Concerning the Cauchy problem, the following result discusses the existence and

stability of weak entropy solutions.

Theorem 2.7. Let the system (2.1) be strictly hyperbolic with smooth coefficients,

defined on an open set Ω ⊂ R
m. Assume that for each i ∈ {1, . . . , m} the i-th

characteristic field is either genuinely nonlinear or linearly degenerate. Then there

exists a positive constant δ0 such that for every initial condition Ū ∈ L1 with

TV (Ū) ≤ δ0,

the Cauchy problem (2.1,2.3) has a weak solution U = U(t, x), defined for all t ≥ 0.

In addition, if the system (2.1) admits a convex entropy η, then one can find a

solution which is η-admissible.

The proof of this theorem, which can be found in [19] is done by constructing a

sequence of approximate solutions, say, Uµ and showing that a subsequence of Uµ

converges in L1
loc to a weak solution of the Cauchy problem. The construction of an

approximate solution has been done in the literature following two main approaches:

the Glimm scheme [55] and the front tracking approximation [20, 23]. In general

the solutions are constructed as trajectories of semi-groups.

Theorem 2.8. Under the assumption of Theorem 2.7, there exist positive constants

δ0, L, L
′, an open set D and a map S : [0,+∞[×D → D with the following proper-

ties:
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(i) D ⊇ {U ∈ L1(R; Rm) : U(x) ∈ Ω for L1 − a.e. x ∈ R, TV (U) < δ0};

(ii) for every U ∈ D, t, s ≥ 0

S0U = U, Ss(StU) = Ss+tU ;

(iii) for every U, V ∈ D, t, s ≥ 0

‖StU − SsV ‖L1 ≤ L‖U − V ‖ + L′|t− s|;

(iv) if U ∈ D is piecewise constant, then for t > 0 sufficiently small, StU coincides

with the juxtaposition of the weak entropy solutions to the Riemann problem

centered at the points of jump of U.

Moreover, for every U ∈ D the map t 7→ StU is a weak solution to the Cauchy

problem (2.1) with initial data U. If the system (2.1) admits a convex entropy η,

then StU is also η-admissible.

2.3 Non-Homogeneous System of Balance Laws

in Networks

This section is devoted to a review of the study of the flows governed by systems

of conservation laws in a network of pipes or canals. A model used for the network

is an oriented graph (V, E), where E is the set of edges representing the pipes or

canals in the network and V is the set of vertices representing the intersections of

the pipes or the confluences of canals. The other cases being similar, we focus below

on a simple network with one intersection and, as in [41], we model a junction with

n pipes as a set of non-zero vectors νj ∈ R
3\{0} meeting at x = 0. Along each

pipe, the space variable is x ∈ R
+ = [0,+∞[ and the junction is at x = 0. The flow

dynamics in the pipe is governed by a system of conservation laws with a source

term

∂tUj + ∂xfj(Uj) = Gj(t, x, Uj) with





t ∈ [0,+∞[,

x ∈ [0,+∞[,

j = 1, . . . , n.

(2.17)



20 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Here Uj is the vector of conserved variables along the j-th pipe, fj is a nonlinear flux

function and Gj is the source term associated to the j-th pipe. For any j, (2.17) in

an initial boundary values problem for conservation law. For the scalar case, some

wellposedness results have be proven by Colombo and Groli [35, 36].

Our aim in this section is to discuss a result on the well posedness of such systems

in L1, locally in time, for data having small total variation, like in [37]. Towards this

aim, we denote by Ωj ⊂ R
m a non-empty set containing zero, by f = (f1, . . . , fn) the

flux function for all arcs of the network and by G = (G1, . . . , Gn) the source term for

the network. f and G are both function of the n-tuple state Ū = (Ū1, . . . , Ūn) ∈ Ω,

where Ω = Ω1 × · · · × Ωn. We note that for all j = 1, . . . , n, (2.17) can be seen as

the combination of a convective part

∂tUj + ∂xfj(Uj) = 0 (2.18)

which is nothing but the system of conservation laws studied in the previous section,

and a source part

∂tUj = Gj(t, x, Uj). (2.19)

For a given initial data U0
j one can solve (2.18) and obtain the solution Ūj which, in

turn, can be used as initial data for the solution of the ODE (2.19). This method is

called the splitting method.

Following [37], we require the following conditions to hold true for the convective

and the source part.

(F) For j = 1, . . . , n, fj ∈ C4(Ω; Rn) is strictly hyperbolic, Dfj(Ūj) is such that

its minimum and maximum eigenvalue

λj
min(Ūj) = minλfj

(Ūj), λj
max(Ūj) = maxλfj

(Ūj)

are strictly negative and strictly positive, respectively, and each characteristic

field is either genuinely nonlinear or linearly degenerate.

Under this condition (F), (2.18) generates a Standard Riemann Semigroup (see [19]
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and the references therein). In the following, we will use the following norms

‖U‖ =
∑n

j=1 ‖Uj‖ for U ∈ Ω,

‖U‖L1 =
∫

R+ ‖U(x)‖dx for U ∈ L1(R+;Ω),

TV (U) =
∑n

j=1 TV (Uj) for U ∈ BV(R+;Ω).

Below, we fix a time T̂ ∈ (0,+∞) and a positive δ̂. For δ ∈ (0, δ̂], we denote

Uδ = {U ∈ L1(R+;Ω) : TV (U) ≤ δ}.

For the source term G, we require that

(G) G : [0, T̂ ] × Uδ̂ 7→ L1(R+; Rn) is such that for suitable positive L1, L2 and for

all t, s ∈ [0, T̂ ]

∀U, V ∈ Uδ̂ ‖G(t, U) −G(t, V )‖L1 ≤ L1.(‖U − V ‖L1 + |t− s|)
∀U ∈ Uδ̂ TV (G(t, U)) ≤ L2.

Interactions at the junction, which depend on time, are described by conditions

on the traces of the unknown conserved variables Uj at x = 0, namely,

Ψ (U1(t, 0+), U2(t, 0+), . . . , Un(t, 0+)) = Π(t), (2.20)

for suitable smooth Ψ with n components and Π : [0, T ] → R
n a given map. We

will refer below to Ψ as the coupling conditions map.

The Cauchy problem at the intersection consist of solving the problem





∂tUj + ∂xfj(Uj) = Gj(t, x, Uj)

Ψ (U(t, 0)) = Π(t)

U(0, x) = U0(x)

t ∈ R
+, j ∈ {1, . . . , n}

x ∈ R
+, U0 ∈ L1(R+;Ω)

(2.21)

When the initial data U0 is constant, the problem is referred to as the Riemann

problem at the junction. For given coupling conditions map Ψ, the solution in the

weak sense of the Cauchy problem at the junction is given below.
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Definition 2.12. Fix a map Ψ ∈ C1(Ω; Rn). A weak solution on [0, T ] to (2.21) is

a map U ∈ C0 ([0, T ];L1(R+; Ω)) such that for all t ∈ [0, T ], U(t) ∈ BV(R+;Ω) and

(W) U(0) = U0 and for all ϕ ∈ C∞
c ((0, T )×]0,+∞[; R) and for j = 1, . . . , n and

any l-th component of Uj,

∫ T

0

∫

R+

(Uj,l∂tϕ+ fj,l(Uj)∂xϕ) dxdt+

∫ T

0

∫

R+

ϕ(t, x)Gj,l(t, x, Uj)dxdt = 0.

(Ψ) The condition at the intersection is met: for a.e. t ∈ R
+,Ψ(U(t, 0+)) = Π(t).

The weak solution U is an entropy solution if for any entropy-entropy flux pair

(ηj , qj), for ϕ ∈ C∞
c ((0, T )×]0,+∞[; R) and for j = 1, . . . , n and any component l

of U0
j ,

∫ T

0

∫

R+

(ηj,l(Uj)∂tϕ+ qj,l(Uj)∂xϕ) dxdt+

∫ T

0

∫

R+

Dηj,l(Uj)Gj(t, x, Uj)ϕ(t, x)dxdt ≥ 0.

Below, we denote by rj
max(U) the right eigenvector of Dfj(U) corresponding to

the ”maximum” characteristic field. The well posedness result proposed below is in

the framework of the metric space

X = L1(R+;Ω) × L1(R+; Rn)

equipped with the L1 distance. Let the extended variable p ≡ (U,Π) with U =

U(x), respectively Π = Π(t), be defined for x ≥ 0, respectively t ≥ 0. We denote

accordingly,

dX

(
(U,Π), (Ū , Π̄)

)
= ‖(U,Π) − (Ū , Π̄)‖X = ‖U − Ū‖L1 + ‖Π − Π̄‖L1,

TV (p) = TV (U) + TV (Π) + ‖Ψ(U(0+)) − Π(0+)‖,
Dδ = {p : TV (p) ≤ δ}.

(2.22)

Theorem 2.9. [37] Let n ∈ N, n ≥ 2 and assume that the flux satisfies (F) at Ū

and the source terms G satisfies (G). Fix a map Ψ ∈ C1(Ω; Rm) that satisfies

det
[
D1Ψ(Ū)r1

max(Ū1)D2Ψ(Ū)r2
max(Ū2) . . . DnΨ(Ū)rn

max(Ūn)
]
6= 0 (2.23)
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where DjΨ = DUj
Ψ, and let Π̄ = Ψ(Ū). Then there exists positive δ, δ′, L, T, do-

mains Dt, for t ∈ [0, T ], and a map

E := {(τ, to,p) : to ∈ [0, T [, τ ∈ [0, T − to], p ∈ Dto} 7→ Dδ

such that:

(i) Dδ′ ⊂ Dt ⊂ Dδ, for all t ∈ [0, T ];

(ii) for all to ∈ [0, T ] and p ∈ Dto , E(0, to)p = p;

(iii) for all to ∈ [0, T ] and τ ∈ [0, T − to], E(τ, to)Dto ⊂ Dto+τ ;

(iv) for all to ∈ [0, T ], τ1, τ2 ≥ 0 with τ1 + τ2 ∈ [0, T − to],

E(τ2, to + τ1) ◦ E(τ1, to) = E(τ2 + τ1, to);

(v) for all (Uo,Π) ∈ Dto , set E(t, to)(Uo,Π) = (U(t), TtΠ) and we have that

t 7→ U(t) is the entropy solution to the Cauchy problem (2.17) according to

Definition 2.12 while the second component is the right translation.

(vi) for all to ∈ [0, T ] and τ ∈ [0, T − to], and for all p, p̄ ∈ Dto ,

‖E(τ, to)p − E(τ, to)p̄‖L1 ≤ L‖U − Ū‖L1

+L
∫ to+τ

to
‖Π̄(t) − Π(t)‖dt.

(2.24)

2.4 Numerical Methods for System of Conserva-

tion Laws

In this section, we review and compare numerical methods used in the literature to

solve hyperbolic system of conservation laws. We emphasize in the methods used

in the problems of this thesis. For a detailed discussion on the methods presented

here, we refer to [85, 78, 45, 69].
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2.4.1 Finite volume methods

We consider a system of conservation laws in the form

∂u

∂t
+

∂

∂x
f(u) = 0, (2.25)

with initial conditions

u(x, 0) = u0(x), (2.26)

where u0 is a given function of the space variable x. We discretize the space variable

with a uniform mesh xi = i∆x with i = 0, . . . , N and width of h = ∆x = xi+1 − xi.

The time variable is partitioned with a uniform or non uniform mesh tn with the

time step k = ∆t = tn+1 − tn, where k may depend on n, see Figure 2.1. A control

volume or cell is the interval Ii = [xi− 1
2
, xi+ 1

2
) where the cell boundaries are given

by xi+ 1
2

= 1
2
(xi + xi+1).

We consider the cell averages

xi− 1
2

xi+ 1
2

xi

tn

tn+1

Figure 2.1: A discretization of the space-time domain.

ui =
1

∆x

∫

Ii

u(x, t)dx.

The idea of the finite volume methods consists of considering, in each cell Ii, a

constant initial data equal to the cell average of the conserved quantities. The

numerical initial conditions consist then of the piece-wise constant function

u0(x) =
1

∆x

∫

Ii

u0(x)dx
.
= u0

i , xi− 1
2
≤ x < xi+ 1

2
. (2.27)

One integrates the flow equations (2.25) over the control volume Ii and divides

throughout by the mesh width ∆x to obtain the semi-discrete numerical scheme

d ui

dt
= −

f(u(xi+ 1
2
, t)) − f(u(xi− 1

2
, t))

∆x
, ui(t = 0) = u0

i . (2.28)
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A simple forward integration in the time interval [tn, tn+1] of (2.28) gives the explicit

scheme

un+1
i = un

i − ∆t

∆x
(Fi+ 1

2
− Fi− 1

2
), (2.29)

where

Fi+ 1
2

=

∫ tn+1

tn

f(u(xi+ 1
2
, t))dt

is called the numerical flux or the cell interface flux. The general construction of

the numerical fluxes follow the Godunov method.

2.4.2 Godunov method

Godunov methods are standard methods for the integration of systems of conser-

vation laws. For clarity in this section, we restrict ourselves to the scalar case, but

the results can be easily extended to the case of systems. For Godunov methods,

one computes the interface fluxes F n
i+ 1

2

by solving the standard Riemann problem

(See Section 2.2) for the conservation law with data (un
i , u

n
i+1) and taking the value

along the ray xi+1/2 in the Riemann solution. We denote this Riemann solution as

ūi+ 1
2

= R(xi+1/2, ui, ui+1) and we omit the superscript n for simplicity. This value is

constant for t > tn, since the Riemann solution is a similarity solution. To fix ideas,

we assume that the flux function f(u) is convex (or concave), i.e., f ′′(u) does not

change sign over the range of interest of u. Then the Riemann solution consists of

a single shock or rarefaction wave. For scalar conservation laws with a convex flux

the Riemann solution might take five possible forms as illustrated in Figure 2.2. In

(a) (b) (c) (d) (e)

Figure 2.2: Solution to the Riemann problem for a scalar conservation law with a

convex flux.

most cases the solution ūn+1
i+ 1

2

is either un
i , if the solution is a shock or rarefaction
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wave moving entirely to the left, as in Figure 2.2(a,b) , or un
i+1, if the solution is a

shock or rarefaction wave moving entirely to the right, as in Figure 2.2(d,e). The

only case where ūn+1
i+ 1

2

has different value to ui or ui+1 is if the solution consist of a

rarefaction wave that spreads partly to the left and to the right as shown in Fig-

ure 2.2(c). We assume for example that f ′′(u) > 0 everywhere, in which case f ′(u)

is increasing with u, so that a rarefaction wave arises if ui < ui+1. In this case, the

situation shown in Figure 2.2(c) occurs only if

ui < us < ui+1,

where us is the unique value of u for which f ′(us) = 0. This is called the stagnation

point, since the value us propagates with zero velocity. It is also called the sonic

point, since in gas dynamics the eigenvalues v± c can take the value zero only when

the fluid speed |v| is equal to the sound speed c. The solution shown in Figure 2.2(c)

is called a transonic rarefaction since in gas dynamics, the fluid is accelerated from a

subsonic velocity to a supersonic velocity through such a rarefaction. In a transonic

rarefaction, the value along x/t = xi+1/2 is simply us. For the case f ′′(u) > 0 we

see that the Godunov numerical flux function for a convex scalar conservation law

is given by

Fi+ 1
2

=






f(ui) if ui > us and s > 0,

f(ui+1) if ui+1 < us and s < 0,

f(us) if ui < us < ui+1.

(2.30)

Here

s =
f(ui+1) − f(ui)

ui+1 − ui

is the shock speed. Note in particular that if f ′(u) > 0 for both ui and ui+1, then

Fi+1/2 = f(ui) and Godunov’s method reduces to the first-order upwind method

un+1
i = ui −

k

h
[f(ui) − f(ui−1)]. (2.31)

Similar observation holds for f ′(u) < 0 for both values of u, involving one sided

differences in other directions. Only in the case where f ′(u) changes sign between
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ui and ui+1 is the formula more complicated, as we should expect since the upwind

direction is ambiguous in this case and information must flow both ways. The

correction in this case is called entropy fix and we refer the interested reader to [78].

The formula (2.30) can be written more compactly as

Fi+ 1
2

=





min
ui≤u≤ui+1

f(u) if ui ≤ ui+1,

max
ui+1≤u≤ui

f(u) if ui+1 ≤ ui,
(2.32)

since the stagnation point us is the global minimum or maximum of f in the convex

case. This formula is valid also for the case f ′′(u) < 0 and even for non-convex

fluxes, in which case there may be several stagnation points at each maximum and

minimum of f (see [79]). We point out that there is one solution structure not

illustrated in Figure 2.2, a stationary shock with speed s = 0. In this case the value

ūi+1/2 is ambiguous since the Riemann solution is discontinuous along x = xi+1/2.

However, if s = 0 then f(ui) = f(ui+1) by the Rankine-Hugoniot condition and so

Fi+1/2 is still well defined and the formula (2.32) is still valid.

2.4.3 Integration in time and the CFL condition

One can integrate the semi-discrete scheme (2.28) from tn to tn+1 to obtain

un+1
i = un

i − ∆t

∆x
(F n

i+ 1
2
− F n

i− 1
2
), (2.33)

where

F n
i+ 1

2
=

∫ tn+1

tn

f(u(xi+ 1
2
, t))dt

can be reasonably approximated by

F n
i+ 1

2
= F(un

i , u
n
i+1)

where the numerical flux F is a function of neighboring cells. One generally imposes

some basic consistency condition upon the numerical flux in the sense that if ui =

ui+1 = ū, then we have

F(ū, ū) = f(ū).
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Generally some requirements of Lipschitz continuity are made, that is, there exists

a constant L so that

|F(ui, ui+1) − f(ū)| ≤ Lmax(|ui − ū|, |ui+1 − ū|). (2.34)

The CFL condition is a necessary condition that must be satisfied by any finite

volume or finite difference method if we expect it to be stable and converge to the

solution of the differential equation as the grid is refined. It simply states that the

method must be used in such a way that information has a chance to propagate at

the correct physical speeds, as determined by the eigenvalues of the flux Jacobian

f ′(u). Precisely, a numerical method can be convergent only if its numerical domain

of dependence contains the true domain of dependence of the PDE, at least in

the limit as ∆t and ∆x go to zero. We emphasize that the CFL condition is only a

necessary condition for stability and hence convergence. It is not in general sufficient

to guarantee stability. The Courant number or CFL number is defined for a general

system of conservation in terms of the eigenvalues of the Jacobian matrix λ1, . . . , λm

of the flux function

ν =
∆t

∆x
max

p
|λp|. (2.35)

For a three-point method, the CFL condition says that ν ≤ 1. Looking at the

expression (2.33), it turns out that it is the simplest integration form of the semi-

discrete equation (2.28). To gain more accuracy, one can use a more sophisticated

ODE solver for the numerical integration of the semi-discrete scheme (2.28). For

system of conservation laws with discontinuous solutions, this integration should

be done such that the resulting scheme remains stable. This leads to method like

the strong stability preserving (SSP) Runge-Kutta method [56] that is used for the

numerical solution of the model in Chapter 3 and Chapter 4.

2.4.4 The Lax-Friedrichs and local Lax-Friedrichs fluxes

The Lax-Friedrichs (LxF) method has the form (2.28) with a numerical flux given

by

Fi+ 1
2

=
1

2
[f(ui) + f(ui+1) − a(ui+1 + ui)]. (2.36)
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Therein, the numerical viscosity a = ∆x/∆t has a fixed magnitude and does not

vanish near a sonic point. As a result, this method always converges to the correct

vanishing viscosity solution (see Section 2.2) as the grid is refined. We note that

this method is more dissipative than Godunov’s method and exhibits a stair-step

pattern in the vicinity of a sonic point, see [79]. An improvement to the LxF method

is obtained by replacing the value of the numerical viscosity a = ∆x/∆t in (2.36)

by a locally determined value,

Fi+ 1
2

=
1

2
[f(ui) + f(ui+1) − ai+ 1

2
(ui+1 + ui)], (2.37)

where

ai+ 1
2

= max(|f ′(u)|) over all u between ui and ui+1. (2.38)

For a convex flux function, this reduces to

ai+ 1
2

= max(|f ′(ui)|, |f ′(ui+1)|).

The resulting method is the Local Lax-Friedrichs (LLF) method, also called Ru-

sanov’s method. It has the same form as the LxF method but the numerical viscos-

ity a = ai+ 1
2

is chosen locally at each Riemann problem. It is proven in [79] that

this is a sufficient viscosity to make the method converge to the vanishing-viscosity

solution. We point out that if the CFL condition is satisfied (which is a necessary

condition for stability), then |f ′(u)|∆t/∆x ≤ 1 for each value of u arising in the

whole problem, and so

|f ′(u)| ≤ ∆x

∆t
.

Hence, using a = ∆x/∆t in the standard LxF method amounts to taking a uniform

viscosity that is sufficient everywhere at the expense of too much smearing in most

cases.

Osher [89] first introduced the notion of E-scheme as one that satisfies the inequality

sign(ui+1 − ui)[Fi+ 1
2
− f(u)] ≤ 0 (2.39)

for all u between ui and ui+1. In particular, Godunov’s method with flux FG
i+1/2

defined by (2.32) is clearly an E-scheme. In fact it is the limiting case, in the sense
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that E-schemes are precisely those for which

Fi+ 1
2
≤ FG

i+ 1
2

if ui ≤ ui+1,

Fi+ 1
2
≥ FG

i+ 1
2

if ui ≥ ui+1.
(2.40)

It can be shown that any E-scheme is TVD, see below, if the Courant number is

sufficiently small. Let un be the numerical approximation of the solution at time tn.

The total variation of un is defined as

TV (un) =
N−1∑

i=1

|un
i − un

i+1|. (2.41)

A numerical scheme is said to be total variation diminishing(TVD) if

TV (un+1) ≤ TV (un), for all n. (2.42)

Osher proved that E-schemes are convergent to the entropy satisfying weak solution.

In addition, Gudunov’s method, the LxF and the LLF methods are all E-schemes.

Osher also showed that E-schemes are at most first order accurate.

2.4.5 Conservative properties and the Lax-Wendroff theo-

rem

In designing numerical schemes for systems of conservation laws, the integral form

of the equation plays a very important role. It guarantees that the discrete solution

will be conservative in the sense that

un+1
i = un

i − ∆t

∆x
(Fi+ 1

2
− Fi− 1

2
). (2.43)

Non-conservative methods can fail as we will illustrate below. However, with con-

servative methods, thanks to the Lax-Wendroff theorem, see below, one has the

satisfaction of knowing that if the method converges to some limiting function as

the grid is refined, then this function is the weak solution.

To illustrate, consider Burger’s equation

ut +
1

2
(u2)x = 0.
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If u > 0 everywhere, then the conservative upwind method (Godunov’s method)

takes the form

Un+1
i = Un

i − 1

2

∆t

∆x

(
(Un

i )2 − (Un
i−1)

2
)
. (2.44)

On the other hand, using the quasilinear form ut + uux = 0, we could derive the

nonconservative upwind schemes

Un+1
i = Un

i − ∆t

∆x
Un

i (Un
i − Un

i−1). (2.45)

These methods are both first-order accurate on smooth solutions, and they give

comparable results.
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Nonconservative method

Figure 2.3: Discontinuous solution of the Burger’s equation obtained with a con-

servative scheme (left) and a nonconservative scheme (right).

When the solution contains a shock wave, the method (2.45) fails to converge

to the weak solution of the conservation law as depicted in Figure 2.3(right). The

conservative method (2.44) gives a slightly smeared approximation to the shock,

but it is smeared about the correct location as seen in Figure 2.3(left). This is

justified by the fact that the method has the discrete conservation property (2.43).

The non-conservative method however, gives the results shown in Figure 2.3(right).

This method does not satisfy (2.43) and as the grid is refined the approximation
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converges towards a discontinuous function that is not a weak solution of the con-

servation law.

We complete this section by stating the Lax-Wendroff theorem. It is an important

theorem that says that we can have confidence in the solution we compute. Never-

theless it does not guarantee that convergence will occur, it says that as the grid is

refined, if a conservative and consistent numerical scheme converges to a function,

then that function is a weak solution of the conservation law. A comprehensible

proof of the theorem can be found in [79].

Theorem 2.10 (Lax Wendroff). Consider a sequence of grids indexed by j =

1, 2, . . . , with mesh parameters ∆t(j),∆x(j) → 0 as j → ∞. Let U (j)(x, t) denote

the numerical approximation computed with a consistent and conservative method

on the j-th grid. Suppose that U (j) converges to a function u as j → ∞, in the sense

of the L1 norm; and for all j, the total variation of the map U (j)(·, t) is uniformly

bounded for 0 ≤ t ≤ T. Then u(x, t) is a weak solution of the conservation law.

2.4.6 High resolution TVD methods

The methods described so far are only first-order accurate and are not very useful on

their own. They can however be used as building blocks in developing certain high

resolution methods. It is convenient to discuss high resolution method in the context

of the REA algorithm [79]. This algorithm consists of reconstructing, evolving and

averaging the solution at each time step. Starting with the cell averages in each cell

the algorithm does the following:

Step 1 Reconstruct a piecewise polynomial function ũ(x, tn) defined for all x, from

the cell averages un
j .

Step 2 Evolve the hyperbolic equation exactly or approximately with this initial

data to obtain ũ(x, tn+1) at time ∆t later.

Step 3 Average this function over each grid cell to obtain new cell averages

un+1
i =

1

∆x

∫

Ii

ũ(x, tn+1)dx.
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Step 1 usually uses a linear or a quadratic reconstruction based on the cell

averages and some numerical derivative that are computed using limiters function.

It is somehow independent of the conservation law itself. Step 2 is the main step

of the algorithm. Generally here one solves approximatively the conservation law

using the reconstructed data. There are two main approaches for the numerical

approximation of the conservation laws. One is the upwind method where the

reconstructed point values are sampled at the cell centers and waves at the cell

interfaces are taken into account. The other approach is a central method where

the reconstructed point values are based on neighboring cells and the solution is

sampled at the cell interface. To fix ideas and with a little change of notations, we

recall that we defined the cell averages as

ū(x, t) :=
1

∆x

∫

Ix

u(ξ, t)dξ, x ∈ Ix = {ξ, |ξ − x| ≤ ∆x

2
}.

By an integration of the original conservation law (2.25) over Ix and dividing by

∆x, we obtain

ūt(x, t) +
1

∆x

[
f(u(x+

∆x

2
, t)) − f(u(x− ∆x

2
, t))

]
= 0. (2.46)

Now, with a small time step ∆t, we integrate over the slab t ≤ τ ≤ t+ ∆t to have

ū(x, t+ ∆t) = ū(x, t) − 1
∆x

[∫ t+∆t

t

f(u(x+
∆x

2
, τ))dτ

−
∫ t+∆t

t

f(u(x− ∆x

2
, τ))dτ

]
.

(2.47)

Note that (2.47) is exactly equivalent to (2.25). It is actually the integral form of

(2.25) in the control volume Ix × [t, t + ∆t]. Now at time tn, and at the first step

of the REA algorithm, one can reconstruct an approximate solution, w(·, tn), as a

piecewise polynomial written in the form

w(x, tn) =
∑

pj(x)χj(x), χj := 1Ixj
,

where pj(x) is an algebraic polynomial supported at the discrete cells Ij := Ixj
,

centered around the mid points xj = j∆x. An exact evolution of w(·, tn), based on
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(2.47), reads

w̄(x, tn+1) = w̄(x, tn) − 1
∆x

[∫ tn+1

tn
f(w(x+

∆x

2
, τ))dτ

−
∫ tn+1

tn
f(w(x− ∆x

2
, τ))dτ

]
.

(2.48)

For upwind schemes, one can sample the relation (2.48) at the mid cell x = xi, to

obtain the scheme

w̄n+1
i = w̄n

i − 1

∆x

[∫ tn+1

tn
f(w(xi+ 1

2
, τ))dτ −

∫ tn+1

tn
f(w(xi− 1

2
, τ))dτ

]
. (2.49)

Here it remains to recover the point values {w(xi+ 1
2
, τ)}i, t

n ≤ τ ≤ tn+1, in terms

of their known cell averages {w̄n
i }i. The reconstruction step of the REA algorithm

is used and we can write

w(x, tn) =
∑

j

pj(x)χj(x), pi(xi) = w̄n
i . (2.50)

The evolution step determines the value of the interface flux from the solution of

the generalized Riemann problems

wt + f(w)x = 0, t ≥ tn; w(x, tn) =

{
pi(x) x < xi+ 1

2
,

pi+1(x) x > xi+ 1
2
.

(2.51)

The solution of (2.51) is a juxtaposition of a family of nonlinear waves, left-going

and right-going waves or mixed. An exact Riemann solver like the Godunov schemes

presented in Section 2.2 or an approximate Riemann solver can be used to distribute

these nonlinear waves between the two neighboring cells Ii and Ii+1. It is this dis-

tribution of waves according to their direction which is responsible for upwind dif-

ferencing (see Figure 2.4).

For central schemes, one samples (2.48) at the interface breakpoints, x = xi+ 1
2
,

which yields

w̄n+1
i+ 1

2

= w̄n
i+ 1

2
− 1

∆x

[∫ tn+1

tn
f(w(xi+1, τ))dτ −

∫ tn+1

tn
f(w(xi, τ))dτ

]
. (2.52)
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pi−1(t = tn)

pi+1(t = tn)

pi(t = tn)

wn+1
i

f(xi− 1
2
, τ) f(xi+ 1

2
, τ)

Figure 2.4: An upwind differencing by Godunov-type scheme.

The remaining task is to recover the point values {w(·, t)| tn ≤ τ ≤ tn+1}, and in

particular, the staggered averages {w̄i+ 1
2
}. As for the upwind schemes, this task is

accomplished in two main steps. The reconstruction step is similar to that of the

upwind method (2.50). In particular, the staggered averages on the right of (2.52)

are given by

w̄n
i+ 1

2
=

1

∆x




∫ x

i+ 1
2

xi

pi(x)dx+

∫ xi+1

x
i+ 1

2

pi+1(x)dx



 . (2.53)

The central scheme (2.52) then reads

w̄n+1
i+ 1

2

= 1
∆x



∫ x

i+1
2

xi

pi(x)dx+

∫ xi+1

x
i+1

2

pi+1(x)dx




− 1
∆x

[∫ tn+1

tn
f(w(xi+1, τ))dτ −

∫ tn+1

tn
f(w(xi, τ))dτ

]
.

(2.54)

Next, we find the evolution of the point value along the mid-cells, x = xi, {w(xi, τ ≥
tn)}i which are governed by

wt + f(w)x = 0, τ ≥ tn; w(x, tn) = pi(x) x ∈ Ii. (2.55)

Let {λk(u)}k denote the eigenvalues of the Jacobian A(u) = ∂f
∂u
. By hyperbolicity,

information regarding the interface discontinuities at (xi± 1
2
, tn) propagates no faster

than max
k

|λk(u)|. Therefore, the mid-cells values governed by (2.55), {w(xi, τ ≥
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tn)}i, remain free of discontinuities, at least for sufficiently small time step dictated

by the CFL condition ∆t ≤ 1
2
∆x · max

k
|λk(u)|. Consequently, since the numerical

fluxes on the right of (2.54) involve only smooth integrands, they can be computed

within any degree of desired accuracy by an appropriate quadrature rule.

It is the staggered averaging over the fan of left-going and right-going waves

pi(t = tn)

pi+1(t = tn)

Figure 2.5: A central reconstruction

centered at the cell interfaces (xi+ 1
2
, tn) which characterizes the central differencing,

see Figure 2.5. A main feature of these central schemes, in contrast to upwind ones,

is the computation of smooth numerical fluxes along the cell centers, which avoid

the costly (approximate) Riemann solvers.

2.4.7 Entropy condition and nonlinear stability

The use of a conservative and a consistent method does not guarantee that the

computed weak solution satisfies an entropy condition. Recall that this condition

singles out the unique solution or the physically relevant solution when many weak

solutions exist.

If a system of conservation laws possesses an entropy function η(u) with the entropy

flux q(u), then the following inequality holds in the weak sense

∂

∂t
η(u(x, t)) +

∂

∂x
q(u(x, t)) ≤ 0, (2.56)
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i.e., for all ϕ ∈ C1
0 with ϕ(x, t) ≥ 0 for all x, t :

∫ ∞

0

∫

R

[ϕt(x, t)η(u(x, t)) + ϕx(x, t)q(u(x, t))] dxdt+

∫

R

ϕ(x, 0)η(u(x, 0))dx ≥ 0.

(2.57)

For a weak solution u(x, t) obtained as the limit of a sequence u(j) to satisfy such

inequality, one can prove that a discrete entropy inequality holds, of the form

η(un+1
i ) ≤ η(un

i ) −
∆t

∆x

(
Qn

i+ 1
2
−Qn

i− 1
2

)
. (2.58)

Here Qn
i+ 1

2

= Q(un
i , u

n+1
i ), where Q(ul, ur) is some numerical entropy flux function

that must be consistent with q in the same manner that we require the numerical

flux F to be consistent with the flux f. It is proven in [79, Chapter 12] that for Go-

dunov method, numerical approximation will always satisfy the entropy condition

provided that the Riemann solution used to define the flux in each cell interface

satisfy the entropy condition. Key to the proof is the correct treatment of transonic

rarefaction for the scalar case, and of the case of resonance for systems, where some

eigenvalues of the jacobian of the flux function vanish.

The Lax-Wendroff theorem introduced in Section 2.4.5 does not treat the conver-

gence of the method, it only says that if a sequence of approximations converges,

then the limit is a weak solution. To ensure convergence, one needs a form of stabil-

ity, in the sense that the approximation remains bounded as time varies. One can

achieve this, for example, with a numerical method that is total variation dimin-

ishing as defined in (2.41) and (2.42). This property says that the total variation

of the approximate solution at time tn+1 does no increase faster than that of the

approximate solution at time tn. This is a major form of stability for nonlinear

systems. Other numerical stability properties include the monotonicity of a numer-

ical schemes, the L1 contracting and the total variation boundedness. We refer the

interested reader to [79] for more details on these forms of numerical stability.

2.4.8 Approximate Riemann solvers

The application of Godunov’s method to a system of equations requires the simi-

larity solution of a Riemann problem at each cell interface, that is, a state denoted
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RP (x
t
, ul, ur) along x

t
= 0 based on Riemann data ul and ur. In general, one does

not need the entire structure of the Riemann problem. Typically, this state is one of

the intermediary states in the Riemann solution obtained in the process of connect-

ing ul to ur by a sequence of shocks or rarefactions or contact discontinuity. Many

approximate Riemann solvers have been proposed that can be applied more cheaply

than the exact Riemann solver and yet give results that in many cases are equally

good when used in the Godunov or high resolution methods.

The key idea behind the definition of approximate Riemann solver is to replace the

nonlinear problem ut +f(u)x = 0 by some linearized problem defined locally at each

cell interface,

ût + Âi+ 1
2
ûx = 0. (2.59)

The matrix Âi+ 1
2

is chosen to be some approximation of the Jacobian matrix of the

flux f ′(u) valid in the neighborhood of the data ui and ui+1. The linear problem

(2.59) is easy to solve using the technique described in Section 2.2. The problem

now is to choose the matrix Âi+ 1
2

such that the approximate system (2.59) is locally

equivalent to the original system. Roe suggested in [78] the following conditions on

Âi+ 1
2

(i) Âi+ 1
2

is diagonalizable with real eigenvalues so that (2.59) is hyperbolic,

(ii) Âi+ 1
2
→ f ′(ū) smoothly as ui, ui+1 → ū,

(iii) Âi+ 1
2
(ui+1 − ui) = f(ui+1) − f(ui).

Condition (iii) ensures that if ui and ui+1 are connected in the exact solution of

the Riemann problem by a single wave, then the jump ui+1 − ui should also be an

eigenvector of the matrix Âi+ 1
2
. The general way to construct the matrix Âi+ 1

2
was

introduced by Roe, Harten, Lax and consists in choosing an appropriate integration

path in the phase plane connecting ui and ui+1 and writing the flux difference as

an integral of the Jacobian of the flux computed along this path [79]. To illustrate

the general construction, we present below the Roe solver for the shallow water

equation.
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Roe solver for the shallow water equations

We use here the notation v for the velocity of the water waves and h for the water

height. The shallow water equations have the form (2.25) with

u =

[
h

hv

]
=

[
u1

u2

]
, f(u) =

[
hv

hv2 + 1
2
gh2

]
=

[
u2

(u2)2/u1 + 1
2
g(u1)2

]

and

f ′(u) =

[
0 1

−(u2/u1)2 + gu1 2u2/u1

]
=

[
0 1

−v2 + gh 2v

]
.

As a parameter vector, we take

z = h−1/2u, so that

[
z1

z2

]
=

[ √
h√
hv

]
. (2.60)

We can then see that

u(z) =

[
(z1)2

z1z2

]
⇒ ∂u

∂z
=

[
2z1 0

z2 z1

]
(2.61)

and

f(z)
.
= f(u(z)) =

[
z1z2

(z2)2 + 1
2
g(z1)4

]
⇒ ∂f

∂z
=

[
z2 z1

2g(z1)3 2z2

]
. (2.62)

We now consider the path

zp = Zp
i + (Zp

i+1 − Zp
i )ξ for p = 1, 2

where Zi = z(ui) and integrate each element of these matrices from ξ = 0 to ξ = 1.

Except for the (2,1) element of ∂f/∂z which is cubic, all elements are linear in ξ.

Integrating the linear term zp(ξ) yields

∫ 1

0

zp(ξ)dξ =
1

2
(Zp

i + Zp
i+1) ≡ Z̄p,
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simply the average between the endpoints. For the cubic term we obtain

∫ 1

0
(z1(ξ))3dξ = 1

4

(
(Z1

i+1)
4 − (Z1

i )4

Z1
i+1 − Z1

i

)

= 1
2
(Z1

i + Z1
i+1)

1
2

[
(Z1

i )
2 + (Z1

i+1)
2
]

= Z̄1h̄,

where

h̄ =
1

2
(hi + hi+1).

Hence the Roe matrix can be computed as the product of the two matrices

B̂i+1/2 =

[
2Z̄1 0

Z̄2 Z̄1

]
, Ĉi+1/2 =

[
Z̄2 Z̄1

2gZ̄1h̄ 2Z̄2

]
(2.63)

as

Âi+1/2 = Ĉi+1/2B̂
−1
i+1/2 =

[
0 1

−(Z̄2/Z̄1)2 + gh̄ 2Z̄2/Z̄1

]
=

[
0 1

−v̂2 + gh̄ 2v̂

]
. (2.64)

Here h̄ is the arithmetic average of hi and hi+1, but v̂ is a different sort of average

of the velocities, the Roe average:

v̂ =
Z̄2

Z̄1
=

√
hivi +

√
hi+1vi+1√

hi +
√
hi+1

. (2.65)

One can see that the matrix Âi+1/2 is simply the Jacobian matrix f ′(û) evaluated

at the special state û = (h̄, h̄v̂). In particular, if ui = ui+1 = u, then Âi+1/2 reduces

to f ′(u).

When solving the shallow water equations with an upwind method, at each cell

interface, the approximate Riemann problem (2.59) is solved using the method de-

scribed in Section 2.2 and this constitutes the approximate Riemann solver of Roe

for the shallow water equations.

2.4.9 Relaxation methods for system of conservation laws

In this section, we investigate the relaxation methods for the solution of system of

conservation laws in the form (2.1):

ut + f(u)x = 0 (2.66)
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The motivation for relaxation methods comes from physics. Indeed, in many physical

problems there is an equilibrium relationship between the variables that is essentially

maintained at all times. If the solution is perturbed away from this equilibrium, then

it rapidly relaxes back towards the equilibrium, see [79]. A simple relaxation model

for (2.66) is given by the system [69]

ut + vx = 0

vt + A2ux = −1
ε
(v − f(u))

(2.67)

where v is a relaxation variable, ε the relaxation parameter and A2 =

diag(a2
1, . . . , a

2
N) is a diagonal matrix of real numbers. When ε goes to zero, we

obtain from the second equation in (2.67) that v = f(u) and (2.67) reduces to

(2.66). Therefore, we can obtain approximate solutions of the system (2.66) as solu-

tion of (2.67) for small values of ε. In fact, this is true provided the sub-characteristic

condition is satisfied

Df(u)2 − A2 ≤ 0. (2.68)

This inequality means that for each eigenvalue λi(u) of the Jacobian matrix Df(u),

we have λi(u)
2 ≤ a2

i . The derivation of (2.68) is done using the Chapman Enskog

expansion. Indeed, we can expand the variable v as

v = f(u) + εv1 + ε2v2 + . . . (2.69)

and substituting in the first equation in (2.67), we have

ut +
[
f(u) + εv1 + ε2v2 + . . .

]
x

= 0 (2.70)

or

ut + f(u)x = −ε(v1)x − ε2(v2)x + . . . (2.71)

Inserting (2.69) in the second equation of (2.67), we obtain
[
f(u) + εv1 + ε2v2 + . . .

]
t
+ A2ux = − (v1 + εv2 + . . . ) (2.72)

or

Df(u) [−Df(u)ux − ε(v1)x − ε2(v2)x + . . . ] + ε(v1)t + ε2(v2)t + · · ·+ A2ux

= − (v1 + εv2 + . . . ) .

(2.73)
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Collecting the first order terms obtained for ε ≪ 1 gives

(A2 −Df(u)2)ux = −v1

and then, using (2.71), we obtain

ut + f(u)x = ε
[
(A2 −Df(u)2)ux

]
x

+ O(ε2). (2.74)

This system is dissipative if and only if

A2 −Df(u)2 ≥ 0.

This condition says that the characteristic speed a2
i of (2.67) interlaces with those of

the system (2.66). When the sub-characteristic condition is violated, then for some

cases, the solution will blow up along the characteristic of the relaxing system.

2.4.10 The relaxation scheme of Jin and Xin

The discretization of the relaxation system (2.67), which depend on the relaxation

rate ε are called relaxing schemes and their zero relaxation limits are called relaxed

schemes. The relaxed schemes are theoretically stable and conservative discretiza-

tion of the original balance law. Thus they are independent of ε and the artificial

variable v. To obtain the relaxing schemes, one uses the spatial discretization of

(2.67) given by

∂tuj + 1
h
(vj+ 1

2
− vj− 1

2
) = 0,

∂tvj + 1
h
A2(uj+ 1

2
− uj− 1

2
) = −1

ε
(vj − Fj),

(2.75)

where the average quantities

Fj =
1

h

∫ x
j+ 1

2

x
j− 1

2

f(u)dx = f



1

h

∫ x
j+ 1

2

x
j− 1

2

udx



+O(h2) = F (uj) +O(h2). (2.76)

The point value quantities uj+ 1
2

and vj+ 1
2

are defined below using the variables

characteristics

v ± Au
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of the system (2.67). A second order scheme for the approximations of (2.67) uses

the piecewise linear interpolation which, applied to the p-th components of v ±Au,

denoted as v ± apu, gives respectively

(v + apu)j+ 1
2

= (v + apu)j + 1
2
hs+

j

(v − apu)j+ 1
2

= (v − apu)j+1 + 1
2
hs−j+1.

(2.77)

Here s±j is the slope of v ± au on the jth cell. The slopes are given by

s±j =
1

h
(vj+1 ± apuj+1 − vj ∓ apuj)φ(θ±j ), (2.78)

θ±j =
vj ± apuj − vj−1 ∓ apuj−1

vj+1 ± apuj+1 − vj ∓ apuj

. (2.79)

The map φ is the slope-limiter and it satisfies the general condition [100]

0 ≤ φ(θ)

θ
≤ 2 and 0 ≤ φ(θ) ≤ 2 (2.80)

for the scheme (2.75) to be total variation diminishing. Examples of slopes limiters

are given by the minmod limiter and the van Leer limiter

φ(θ) = max(0,min(1, θ)), and φ(θ) =
|θ| + θ

1 + |θ| ,

respectively. Solving (2.77) for uj+ 1
2

and vj+ 1
2

gives

uj+ 1
2

= 1
2
(uj + uj+1) − 1

2ap
(vj+1 − vj) + h

4ap
(s+

j + s−j+1)

vj+ 1
2

= 1
2
(vj + vj+1) − ap

2
(uj+1 − uj) + h

4
(s+

j + s−j+1).
(2.81)

By inserting these values in the numerical scheme (2.75), we obtain the semi-discrete

form of the relaxation scheme. We point out that when the slope s± = 0, the scheme

(2.75) reduces to a first order upwind scheme. For time discretization, we use the

second order TVD Runge-Kutta splitting scheme introduced by Jin [68]. It takes

two implicit stiff source steps and two explicit convection step alternatively. If we

denote

D+wj =
1

∆x
(wj+ 1

2
− wj− 1

2
),
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the fully discrete relaxation scheme reads with initial data Un = (un
j )j and

V n = f(Un) = (f(un
j ))j

U∗ = Un, (2.82)

V ∗ = V n +
∆t

ε
(V ∗ − f(U∗)); (2.83)

U (1) = U∗ − ∆tD+V
∗ + ∆tS(U∗), (2.84)

V (1) = V ∗ − ∆tA2D+U
∗; (2.85)

U∗∗ = U (1), (2.86)

V ∗∗ = V (1) − ∆t

ε
(V ∗∗ − f(U∗∗)) − 2

∆t

ε
(V ∗ − f(U∗)); (2.87)

U (2) = U∗∗ − ∆tD+V
∗∗ + ∆tS(U∗∗), (2.88)

V (2) = V ∗∗ − ∆tA2D+U
∗∗; (2.89)

Un+1 =
1

2
(Un + U (2)), (2.90)

V n+1 =
1

2
(V n + V (2)). (2.91)

Because of the implicit treatment of the source term, this time discretization is

stable, independently of ε, given that the CFL condition from the convective part

is satisfied. As ε → 0, V = f(U) and the relaxing schemes (2.82)–(2.91) converge

to a consistent and stable discretization of the original balance law, see [69]. If we

assume that ε≪ 1 and ε/∆x≪ 1, ε/∆t≪ 1, then we can prove as in Jin [68] that

V ∗ = f(U∗) +O(
ε

∆t
), V ∗∗ = f(U∗∗) +O(

ε

∆t
). (2.92)

Applying (2.92) to the scheme (2.82)–(2.91) we obtain, ignoring the error O( ε
∆t

),

the relaxed schemes

U (1) = Un − ∆tD+V
n|V n=f(Un) + ∆tS(Un),

U (2) = U (1) − ∆tD+V
(1)|V (1)=f(U (1)) + ∆tS(U (1)),

Un+1 = 1
2
(Un + U (2)).

(2.93)
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2.5 Concluding Remarks

We have introduced in this chapter the general theory on systems of conservation

laws in one dimension, and the extensions for a network of pipes. We collected results

on the well-posedness of the standard Riemann problem and the Riemann problem

at the junction. We have also discussed briefly the Cauchy problem. We have

reviewed the current state of the art numerical methods for the computation of the

approximate solution of system of conservation laws. Since the solutions are usually

discontinuous, we have introduced numerical schemes that are conservative, stable

and consistent with the continuous model. These properties ensure the convergence

of the method.

A few results on the well-posedness of scalar conservation laws in the multi-

dimensional case exist in the literature. We refer to the remarkable work of Kružkov

[73] and the more recent publications [104, 105, 42]. Many authors have investigated

numerical integration of multidimensional system of conservation laws. We refer for

example to the book by Leveque [79] where the case of the Euler equations and the

shallow water equations are investigated. Jin and Xin [69] and Banda [3] used a

relaxation approach for the integration of the multidimensional systems.
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The Drift-flux Multiphase Model

in Networks of Pipes
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Chapter 3

Towards a Mathematical Analysis

for Drift-Flux Multiphase Flow

Models in Networks

This chapter deals with the dynamics of the multiphase drift-flux model in a network

of pipes. We formulate the model equations from the two-fluid model and obtain a

model with a conservation of mass for each of the two phases and a conservation of

momentum. The system is closed with an equation of state which gives a formula

of the pressure in terms of the densities of the two phases. This chapter focuses on

a linear pressure law derived under the assumption that the pressure of each phase

is a linear function of the densities. In the next chapter, we will consider a more

general pressure law defined as an arbitrary function of the densities. When the

model equation for the fluid is adopted, we consider a junction of a network as a

set of vectors intersecting at the origin. The vector length represents the pipe and

their meeting point is the junction. The dynamic of the flow of the fluid at the

junction is stable only if some suitable coupling conditions are prescribed. These

are usually derived from the physics of the problem and they play an important role

in the proof of the well-posedness of the Riemann problem at the junction. The

main results of this chapter are the well-posedness of the Riemann problem at the

47
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junction and numerical simulations of the dynamics of the flow at the junction for

the cases of three and four connected pipes. These results appeared in [10].

3.1 Introduction

We consider an isothermal no-slip drift-flux model for multiphase flows of the form:

∂tρ1 + ∂x(ρ1u) = 0 (3.1a)

∂tρ2 + ∂x(ρ2u) = 0 (3.1b)

∂t(u(ρ1 + ρ2)) + ∂x

(
(ρ1 + ρ2)(u

2 +
a2

2
)

)
= 0 (3.1c)

where ρ1 and ρ2 are the density of phase 1 and phase 2, respectively, u is the common

velocity of the two phases and a is a constant which depends on both phases. This

model is derived from the drift-flux model [51] by making the simplifying assumption

that the closure law, the so called slip condition, has a vanishing slip function. The

slip condition is an algebraic relation that relates the two velocities of the two phases.

The drift-flux model in turn is derived from the two-fluid model by summing up the

balance laws for the momentum, in canonical form, for each phase. The choice of

this model has been motivated by the fact that we would like to concentrate on

some basic aspects of the model in order to analyze coupling conditions of pipes at a

junction in a network and devise a computational approach for approximating flow

at a junction.

The no-slip condition was considered by Evje and Fl̊atten [50] when extending

the Weakly Implicit Mixture Flux (WIMF) scheme originally developed for the

two-fluid model, to the drift-flux model. In [52] Evje and Karlsen used the same

simplification as a basis for proving global existence of weak solutions for the viscous

form of the drift-flux model. This model has many applications in the chemical,

petroleum and nuclear industries [48, 46]. As a result there has been intense research

on such multiphase flows in the recent past. Different models for multiphase flows

have been proposed [1, 54, 63, 46, 51] and numerical methods for such models have
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been investigated [48, 49, 47, 46]. The mathematical study of the flow of gases in

networks is a young field of research and has been under investigation only recently.

The reader is referred to [32, 33, 41, 6, 7], in the context of gas networks. Work has

also been undertaken in the context of traffic flow networks, see for example [62].

In this chapter, we investigate the flow of an isothermal no-slip drift-flux model (3.1)

in a network of pipes. Firstly, using the properties of Riemann problems for general

one dimensional systems of conservation laws, we derive a Riemann solver for the

model equation (3.1). Secondly, we consider the flow of (3.1) at the junction of a

network of pipes and prove the well-posedness of the resulting Riemann problem at

the vertex. Our proof relies on suitable conditions which couple the models from

each pipe at the junction. These coupling conditions are motivated by consideration

from the physics of the flow. For example, the conservation of mass at the junction

forms the cornerstone of such considerations. Similar work has been done for the p-

system by Colombo et al. [32, 33] and on the isothermal Euler equations by Banda

et al. [6, 7]. Here we consider the case of a multiphase fluid. The constructive

proof of our main result allows us to do some numerical simulations of junctions

connecting up to four pipes.

This chapter is organized as follows: In Section 3.2, we derive the model equation

given in (3.1), study the wave curves in one pipe and define a Riemann solver for the

model equation. Section 3.3 is devoted to the modeling of pipe to pipe intersections

and the proof of well-posedness of the model at an uncontrolled junction of a network.

Finally, we describe in Section 3.4 a numerical method used to solve the isothermal

no-slip drift-flux model on networks. Computational results on some carefully chosen

examples are presented and compared with theoretical results.
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3.2 Modeling of a single pipe flow and prelimi-

nary discussion

In this section we will briefly introduce the no-slip drift-flux model as discussed in

[51]. Mathematical properties of this model will be discussed. We will conclude with

the solution of a Riemann Problem for such a model in a single pipe. We consider

a multi-component fluid in a pipe modeled by the so–called drift-flux model. The

model arises from general two–fluid models like those presented in [51] by assuming

that the pressure for both phases is equal. We denote the volume fraction, the

density and the velocity of phase i at position x and time t, where i ∈ {1, 2} by

αi = αi(x, t), ̺i(x, t), ui(x, t), respectively. We have

α1 + α2 = 1,

and letting p be the common pressure for both phases, the drift-flux model reads

∂

∂t
(̺1α1) +

∂

∂x
(̺1α1u1) = 0; (3.2a)

∂

∂t
(̺2α2) +

∂

∂x
(̺2α2u2) = 0; (3.2b)

∂

∂t
(̺1α1u1 + ̺2α2u2) +

∂

∂x
(̺1α1u

2
1 + ̺2α2u

2
2 + p) = Q. (3.2c)

Here, the momentum sources that act on both phases are given by

Q := −(̺1 + ̺2)g sin θ − f1̺1u1|u1| − f2̺2u2|u2| + µ(umix)xx,

where g is the gravitational constant, θ is the inclination of the pipe, fi the friction

factor, µ > 0 is the diffusion coefficient and umix = α1u1 + α2u2. The phasic

momentum satisfies a slip relation of the form u1 − u2 = Φ(p, u1, u2).

As a further simplification, we discuss the case of a no–slip condition Φ ≡ 0 [52],

no source term Q ≡ 0, and an isothermal equation of state given by

p =
a2

2
(ρ1 + ρ2). (3.3)
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Remark 3.1. The pressure law in (3.3) can be derived as follows: we assume

that the compressibility factors a1 and a2 of the two phases are equal and satisfy

a2
1 = a2

2 =
a2

2
. Since each phase is isothermal, its pressure is given by

pi = a2
i̺i, i ∈ {1, 2}, ai = const.

Moreover, we assume that the pressure p of the multiphase flow is such that p =

p1 = p2. From the volume fraction relation α1 + α2 = 1, we obtain

ρ1

̺1

+
ρ2

̺2

=
a2

1ρ1

p
+
a2

2ρ2

p
= 1.

Hence with the above assumption on the compressibility, we obtain (3.3). Moreover,

in the case where we have different compressibility for the two phases (i.e. a2
1 6= a2

2)

the pressure takes the form p = a2
1ρ1 +a2

2ρ2. This latter pressure laws is investigated

in detail in Chapter 4.

Under these assumptions the model in (3.2) simplifies to the form

∂ρ1

∂t
+
∂(ρ1u)

∂x
= 0, (3.4a)

∂ρ2

∂t
+
∂(ρ2u)

∂x
= 0, (3.4b)

∂I

∂t
+

∂

∂x

[
ρ̂(u2 +

a2

2
)

]
= 0, (3.4c)

where

ρ1 := ̺1α1, ρ2 := ̺2α2, ρ̂ = ρ1 + ρ2, I = ρ̂u.

Remark 3.2. For smooth solutions with ρ1 + ρ2 6= 0, one can derive an evolution

equation for the common velocity u in conservative form for both phases as

∂tu+ ∂x

(
1

2
u2 +

a2

2
log(ρ1 + ρ2)

)
= 0. (3.5)

In the following we study the system (3.4a), (3.4b), (3.4c) in terms of the con-

servative variables

U := (ρ1, ρ2, I).
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We refer to [42, 78] for a general reference on the theory of hyperbolic equations.

The Jacobian matrix of the flux function

f(U) =




ρ1u

ρ2u

ρ̂(u2 + a2

2
)




of the system (3.4) is given by

Jf(U) =




uρ2

ρ1+ρ2
− uρ1

ρ1+ρ2

ρ1

ρ1+ρ2

− uρ2

ρ1+ρ2

uρ1

ρ1+ρ2

ρ2

ρ1+ρ2

a2

2
− u2 a2

2
− u2 2u




.

The eigenvalues for the Jacobian of the flux function are given by

λ1(U) = u− a√
2
, λ2(U) = u, λ3(U) = u+

a√
2

(3.6)

and the corresponding eigenvectors by

r1 =




ρ1

ρ2

ρ̂λ1


 , r2 =




−1

1

0


 , r3 =




ρ1

ρ2

ρ̂λ3


 .

The first and the third field are genuinely nonlinear since ∇λ1,3 · r1,3 = ∓ a√
2
6= 0,

and the second field is linearly degenerate since ∇λ2 · r2 = 0, see Section 2.2.2.

For a given state U0 and i = 1, 2, 3, we denote by ξ → L+
i (ξ;U0) the i−th forward

Lax–curve through U0 and by ξ → L−
i (ξ;U0) the i-th backwards Lax–curve through

U0 corresponding to the i-th characteristic field. We choose the parameterization of

the Lax-curves in such a way that L±
i (1;U0) = U0 and L±

i (0;U0) correspond to a

vacuum state. We assume for the rest of the Chapter that ξ > 0 so that no vacuum

state is considered. For a given state U0, the states that can be connected to the

right of U0 by a 1−Lax curve are given by

L+
1 (ξ;U0) =

{
ξ(ρ0

1, ρ
0
2, 0)T + (0, 0, I0ξ − ρ̂0(ξ − 1)

√
ξ a√

2
)T , ξ ≥ 1;

ξ(ρ0
1, ρ

0
2, 0)T + (0, 0, I0ξ − ρ̂0 a√

2
ξ log(ξ))T , ξ < 1.

(3.7a)
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The states that can be connected to the right of U0 by 3−Lax curves satisfy

L+
3 (ξ;U0) =

{
ξ(ρ0

1, ρ
0
2, 0)T + (0, 0, I0ξ + ρ̂0(ξ − 1)

√
ξ a√

2
)T , ξ ≤ 1;

ξ(ρ0
1, ρ

0
2, 0)T + (0, 0, I0ξ + ρ̂0 a√

2
ξ log(ξ))T , ξ > 1.

(3.7b)

The state that can be connected to a state U0 by a contact discontinuity belongs to

the curve defined by

L2(ξ, U
0) = (ρ0

1ξ, (1 − ξ)ρ0
1 + ρ0

2, I
0)T , ξ ∈ R. (3.7c)

For a given state U0, the states that can be connected to the left of U0 by a

1−Lax curve and a 3−Lax curve, are given by

L−
1 (ξ;U0) =

{
ξ(ρ0

1, ρ
0
2, 0)T + (0, 0, I0ξ − ρ̂0(ξ − 1)

√
ξ a√

2
)T , ξ ≤ 1,

ξ(ρ0
1, ρ

0
2, 0)T + (0, 0, I0ξ − ρ̂0 a√

2
ξ log(ξ))T , ξ > 1;

(3.7d)

and

L−
3 (ξ;U0) =

{
ξ(ρ0

1, ρ
0
2, 0)T + (0, 0, I0ξ + ρ̂0(ξ − 1)

√
ξ a√

2
)T , ξ ≥ 1;

ξ(ρ0
1, ρ

0
2, 0)T + (0, 0, I0ξ + ρ̂0 a√

2
ξ log(ξ))T , ξ < 1,

(3.7e)

respectively. Note that we obtain 1–shocks for ξ > 1 on L+
1 and for ξ < 1 on L−

1 .

Similarly, for ξ < 1, we obtain a 3–shock along L+
3 and on L−

3 we obtain a 3–shock

for ξ > 1. The shock speeds are given by

s1,3(ξ;U) =
I

ρ̂
∓ a√

2

√
ξ.

Further the contact discontinuity travels with speed

s2(ξ;U) = λ2(ξ;U) = u(ξ) =
I

ρ̂
.

Remark 3.3. If we considered equations (3.4a), (3.4b) and (3.5) instead, the con-

served variable would be U = (ρ1, ρ2, u) and we would obtain the shock speeds s̄1,3

s̄1,3

(
ξ;




ρ1

ρ2

u



)

= u∓ a

ξ2 − 1
ξ
√

(ξ2 − 1) log(ξ).
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Locally, around ξ = 1, an expansion in a series gives, up to order (ξ − 1)2,

s̄1,3(ξ; ·) ≈ u∓ a

(
1√
2

+

√
2

4
(ξ − 1) + . . .

)

and similarly for s1,3

s1,3(ξ; ·) ≈ u∓ a√
2

(
1 +

1

2
(ξ − 1) + . . .

)
.

A Riemann problem for (3.4a, 3.4b, 3.4c) is a Cauchy problem for (x, t) ∈ R×R
+

with Heaviside initial data given by

U(x, 0) =

{
U l, if x ≤ 0;

U r, if x > 0,

for constant states U l and U r. For the rest of the discussion, we assume that

there is no vacuum, that is, ρl
i, ρ

r
i > 0 for i ∈ {1, 2}. Hence, the system of partial

differential equations is strictly hyperbolic, the existence and uniqueness of a self–

similar solution U(x, t) = V (x/t) for ‖U l − U r‖ ≪ 1 is guaranteed by classical

results, see for example [42].

ρ1

ρ2

ρl
1 ρr

1

ρl
2

ρr
2

Ul

Ur

Um1

Um2

1 − 3sr

1 − 3sr

2 − cd

Figure 3.1: Projected Lax–curves in the ρ1 − ρ2 plane

If there is no vacuum state, i.e., ρl
i, ρ

r
i > 0, then the solution can be easily

constructed by the following procedure in the ρ1 − ρ2−phase space (see Figure 3.1).
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First we observe the following: in the ρ1−ρ2−plane the projections of the 1– and

the 3–Lax–curves are straight lines and the projection of the rarefaction and shock

coincide; furthermore, the projections of the 1–Lax curve and the 3–Lax curves

coincide. Hence we consider a given left state U l = (ρl
1, ρ

l
2, I

l) and a given right

state U r = (ρr
1, ρ

r
2, I

r). We distinguish two cases:

(a) If ρ̂l = ρ̂r and I l = Ir, then U l and U r can be connected by a single 2-

contact discontinuity. The speed of the rarefaction is then s = Il

ρ̂l , recall that

ρ̂l = ρl
1 + ρl

2.

(b) Denote by Um1 = L+
1 (ξm1 ;U

l) for some ξm1 ∈ R
+ and Um2 = L−

3 (ξm2;U
r)

for some ξm2 ∈ R
+. We determine (ξm1 , ξm2) such that Um1 = (ρm1

1 , ρm1
2 , Im1)

and Um2 are connected by a 2–contact discontinuity. We solve the following

equations for (ξm1 , ξm2)

Im1(ξm1) = Im2(ξm2), (3.8a)

ρ̂m1(ξm1) = ρ̂m2(ξm2). (3.8b)

In the case of no vacuum, the system (3.8) reduces to solving the nonlinear

equation (3.9) for ξ ∈ R
+. Note that due to the particular structure of the

Lax–curves we have ρ̂m1(ξm1) = ξm1 ρ̂
l = ρl

1 + ρl
2. The solutions of (3.8) are

obtained as ξm1 =
ρ̂r

ρ̂l
ξ and ξm2 = ξ, where

Im1

(
ρ̂r

ρ̂l
ξ

)
− Im2(ξ) = 0. (3.9)

In the numerical results later on, equation (3.9) is solved locally using Newton’s

method. The solution to the Riemann problem is a wave of the first family

connecting U l to Um1 , a contact discontinuity connecting Um1 and Um2 and

a wave of the third family connecting Um2 and U r. Depending on the sign of

ξm1 − 1 and ξm2 − 1, we either obtain shock or rarefaction waves, see (3.7).

Finally, we introduce the region of subsonic states in the phase–space that will

be critical in establishing the well-posedness of the model at the intersection of the
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pipes. We state the sets in terms of u = I
ρ̂
.

A+
0 := {(ρ1, ρ2, I) ∈

◦
R+ ×

◦
R+ × R : u+ a√

2
≥ 0 and u ≤ 0},

A−
0 := {(ρ1, ρ2, I) ∈

◦
R+ ×

◦
R+ × R : u ≤ 0},

A#
0 := {(ρ1, ρ2, I) ∈

◦
R+ ×

◦
R+ × R : u− a√

2
≤ 0 and u ≥ 0}.

(3.10)

The following elementary result characterizes the speed of forward 1-shock and

backward 3-shock for subsonic initial data and will be used later for solutions at a

pipe–to–pipe intersection.

Lemma 3.1. Let U0 be in the interior of A#
0 or in the interior of A−

0 (respectively,

A+
0 ) and assume that U0 is not a vacuum state. Then, the velocity of a 1–shock wave

(respectively, 3–shock wave) connecting U0 and U has non–positive (respectively,

non–negative) speed provided that ‖U − U0‖∞ is sufficiently small.

Proof. Consider a (right) state U = L+
1 (ξ;U0) connected to the left state U0 by

a 1–Lax–shock, hence ξ ≥ 1. The shock speed is

s1(ξ;U
0) = u0 − a√

2

√
ξ ≤ u0 − a√

2
≤ 0.

Similarly, we obtain s3(ξ;U
0) ≥ 0, for ξ ≥ 1, for U0 ∈ A+

0 and a (left) state

U = L−
3 (ξ;U0)

Note that any state connected to U0 in the interior of A+
0 by a 3–wave has non–

negative speed due to (3.6). Similarly, any state U0 in the interior of A−
0 connected

to a left state U by a 1– or 2– wave has non–positive speed. This will be a key point

for verifying well–posedness for pipe–to–pipe conditions.

3.3 Modeling of pipe–to–pipe intersections

As in [32, 38], we model a single pipe–to–pipe intersection by a set of distinct vectors

νj ∈ R
2 \ {0}, j = 1, . . . , n, with νj,1 ≥ 0. Each νj is directed along the pipe j and

represents the direction of the pipe. We further choose νj such that ‖νj‖ equals the
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cross–section of the pipe. Each j = 1, . . . , n belongs either to the set δ− ⊂ N of

incoming arcs or to the set δ+ ⊂ N of outgoing arcs, see Figure 3.2 for an example.

We assume that there is at least one incoming and one outgoing pipe, which means

that |δ±| ≥ 1, where |A| is the number of elements of the set A. The jth pipe is

parameterized by x ∈ R
−, if j ∈ δ− and by x ∈ R

+, if j ∈ δ+, see Figure 3.2. The

parametrization is such that the vertex is located at x = 0 for all pipes. Along each

ν1

νn1

νn1+1

νn

(0, 0)

Figure 3.2: Junction with n pipes demonstrating the parametrization: the cross

section νj and sets δ± with δ− = {1, . . . , n1} and δ+ = {n1 + 1, . . . , n}

pipe j ∈ {1, 2, . . . , n}, we assume the flow is modeled by a no-slip drift-flux model,

that is, for x ∈ R
−(j ∈ δ−) or x ∈ R

+(j ∈ δ+) and t > 0,

∂t




ρj
1

ρj
2

Ij


+ ∂x




ρj
1u

j

ρj
2u

j

ρ̂j
(
(uj)2 + a2

2

)


 =




0

0

0


 (3.11)

along with initial conditions

Uj(x, 0) = (ρj
1,0, ρ

j
2,0, I

j
0)(x), ∀x ∈ R

±(j). (3.12)

We further prescribe algebraic conditions at the junction x = 0 coupling the

dynamics on adjacent edges. Several possibilities for prescribing such conditions

exist. Our conditions in the context of the two–component model are motivated as

follows: It is assumed that neither mass of component one nor mass of component
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two is lost when passing through the junction. This yields the two conditions (M1)

and (M2) below. Furthermore, we assume that the junction does not introduce an

acceleration to the combined velocity. It follows that for the two gas components

in the adjacent pipes near the junctions, velocity differences vanish. This can be

modeled by assuming that the flux of the momentum remains constant along all

pipes near the intersection leading to the condition (Q). These assumptions could

also be obtained in a rigorous way by a similar procedure as in [77]:

(M1) Conservation of mass of phase 1: for t > 0 a.e.,

∑

j∈δ−

‖νj‖(ρj
1u

j)(0, t) =
∑

j∈δ+

‖νj‖(ρj
1u

j)(0, t).

(M2) Conservation of mass of phase 2: for t > 0 a.e.,

∑

j∈δ−

‖νj‖(ρj
2u

j)(0, t) =
∑

j∈δ+

‖νj‖(ρj
2u

j)(0, t).

Furthermore, we require as an additional condition which correspond to an equal

momentum along
∑

j νj :

(Q) The flux of the momentum density remains constant at the intersection: for

t > 0 a.e.,
(
ρ̂j

(
(uj)2 +

a2

2

))
(0, t) =

(
ρ̂i

(
(ui)2 +

a2

2

))
(0, t) = P ∗(t), ∀i 6= j.

Conditions (M1) and (M2) are compulsory and resemble Kirchoff’s law at the

intersection. They can be obtained by considering the weak formulation of (3.11).

Condition (Q) is also obtained from the weak formulation of (3.11) using a special

class of test functions as in [77]. However, other conditions can be proposed to

replace (Q), see also [41, 61, 7, 95]. Clearly, in the case n = 2, ν1 = −ν2 = −(1, 0)T ,

(Q) is equivalent to assuming:

(Q’) There is a single pressure p∗ at the intersection

a2

2

(
ρ̂j
)
(0, t) = p∗, ∀j.
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If we consider the sum of (M1) and (M2) we obtain
2∑

j=1

‖νj‖ρ̂juj = 0 and therefore

2p∗
a2

‖ν‖
2∑

j=1

uj = 0 and
2∑

j=1

uj = 0. Combining this last equality and the equality of

momentum immediately yields (Q).

Remark 3.4. We present some discussion on condition (Q) similar to [32]. Con-

dition (Q) implies that the momentum over time [t1, t2]:

∫ t2

t1

P jdt :=

∫ t2

t1

ρ̂j((uj)2 +
a2

2
)(0, t)dt =

∫ t2

t1

P ∗dt ≡ κ.

Therefore, we obtain ∫ t2

t1

∑

j∈δ±

P jνjdt = κ
∑

j∈δ±

νj .

This is equivalent to the following:

∀η ∈




∑

j∈δ±

νj




⊥

,




∑

j∈δ±

P jνj



 · η = 0.

Hence, the linear momentum orthogonal to
∑

j∈δ±

νj is conserved and the constraint

acts parallel to
∑

j∈δ±

νj.

In recent years there has been an intense discussion on existence of solutions to

coupled systems of hyperbolic conservation laws. Without giving a complete list of

references we mention the publications by Colombo et. al. [41, 33, 32]. Therein,

for gas and traffic flow networks, existence of solutions to a Riemann problem and,

depending on the application, to the Cauchy problem has been proven. We apply the

technique derived in [41] to prove existence to a Riemann problem under conditions

(M1) – (Q) for the no–slip multiphase model. As expected, the result is essentially

a perturbation result for constant data. The assertions are restrictive since the data

has to belong to certain sub–critical sets. Nevertheless, the importance of the result
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is the construction of a solution at the junction. This construction is used and

implemented later in the numerical scheme to compute the boundary values at the

junction and prevent boundary layer effects.

Proposition 3.1. Given n distinct vectors νj ∈ R
2\{0}, νj,1 ≥ 0, and coupling

conditions given by (M1), (M2) and (Q). Let j = 1 ∈ δ− and assume constant

initial data Ūj,0 with the following properties: Ū1,0 ∈
◦
A+

0 , Ūj,0 ∈
◦
A#

0 for j ∈ δ−\{1},
Ūj,0 ∈

◦
A+

0 for j ∈ δ+ and let the constant states Ūj,0 satisfy the conditions (M1),

(M2) and (Q). Moreover, assume that the initial data satisfies the technical condi-

tion detM 6= 0 for M given by (3.14) below.

Then, there exists δ, C > 0 such that, for all states Vj with ‖Vj − Ūj,0‖ ≤ δ,

there exists self–similar functions Uj(x, t) satisfying the weak formulation of (3.4a,

3.4b, 3.4c), the initial condition Uj(x, 0) = Ūj and such that the trace of Uj at x = 0

satisfies (M1), (M2) and (Q); furthermore, U satisfies the stability condition

‖Uj − Uj,0‖
L∞(R×[0,∞),

◦

R+×
◦

R+×R)
≤ C‖Vj − Uj,0‖, for all j ∈ δ− ∪ δ+. (3.13)

The matrix M in Proposition 3.1 is given by

M :=




A0 A1 A2 A3 . . . An

B0 B1 B2 B3 . . . Bn

b0 b1 0 0 . . . −bn
0 0 b2 0 . . . −bn
...

...
...

...
...

...

0 . . . . . . . . . bn−1 −bn




(3.14)

where

A0 = ‖ν1‖λ2(U1,0)ρ
1,0
1 , B0 = ‖ν1‖λ2(U1,0)ρ

1,0
2 , b0 = λ2(U1,0)I

1,0,

i ∈ δ−, i ≥ 1 : Ai = ‖νi‖λ1(Ui,0)ρ
i,0
1 , Bi = ‖νi‖λ1(Ui,0)ρ

i,0
2 , bi = λ2

1(Ui,0)ρ̂
i,0,

i ∈ δ+, i ≥ 1 : Ai = −‖νi‖λ3(Ui,0)ρ
i,0
1 , Bi = −‖νi‖λ3(Ui,0)ρ

i,0
2 , bi = λ2

3(Ui,0)ρ̂
i,0.

Proof. (of Proposition 3.1) Assume δ− := {1, . . . , n1} and δ+ := {n1+1, . . . , n}.

Consider a perturbation of Ūj,0, Vj, such that V1 ∈
◦
A+

0 , Vj ∈
◦
A#

0 for j ∈ δ−\{1},
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Vj ∈
◦
A+

0 for j ∈ δ+. Let Uj = (ρj
1, ρ

j
2, I

j) and consider the map Ψ̃ : R
3n → R

n+1

given by

Ψ̃((Uj)
n
j=1) :=




∑n1

j=1 ‖νj‖ρj
1u

j −
∑n

j=n1+1 ‖νj‖ρj
1u

j

∑n1

j=1 ‖νj‖ρj
2u

j −∑n
j=n1+1 ‖νj‖ρj

2u
j

ρ̂1((u1)2 + a2

2
) − ρ̂n((un)2 − a2

2
)

...

ρ̂n−1((un−1)2 + a
2
) − ρ̂n((un)2 − a2

2
)




Thanks to Lemma 3.1 we obtain for any fixed state V , parameters

(σ, ξ1, . . . , ξn) = (σ, (ξ1, . . . , ξn1), (ξn1+1, . . . , ξn)) ∈ (R+)n+1

such that

Ψ((σ, ξ1, . . . , ξn), (Vj)) := Ψ̃(L2(σ;L+
1 (ξ1, V1)), L

+
1 (ξ2, V2), . . .

. . . , L+
1 (ξn1, Vn1), L

−
3 (ξn1+1, Vn1+1), . . . , L

−
3 (ξn, Vn)) = 0.

(3.15)

Note that the function Ψ depends on the parameterization σ, ξ1, . . . , ξn and the

perturbed state Vi. For σ = ξ1 = · · · = ξn = 1 and Vi = Ūj,0 we have that Ψ

vanishes due to the assumption that Ūj,0 satisfies the coupling conditions. We want

to apply the implicit function theorem and obtain a parameterization in terms of

the perturbed state Vi. We compute the determinant of D(σ,ξ1,...,ξn)Ψ at σ = ξ1 =

· · · = ξn = 1 and obtain

det Ψ(·) = det




A0 A1 . . . An

B0 B1 . . . Bn

b0 b1 0 . . . −bn
0 0 b2 0 . . . −bn
0 0 0

. . . −bn
...

0 0 0 0 . . . bn−1 −bn



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where

A0 = ‖ν1‖λ2(U1,0)ρ
1,0
1 ≤ 0,

B0 = ‖ν1‖λ2(U1,0)ρ
1,0
2 ≤ 0,

b0 = λ2(U1,0)I
1,0 ≥ 0,

i ∈ δ−, i ≥ 1 Ai = ‖νi‖λ1(Ui,0)ρ
i,0
1 ≤ 0, Bi = ‖νi‖λ1(Ui,0)ρ

i,0
2 ≤ 0,

bi = λ2
1(Ui,0)ρ̂

i,0 ≥ 0, i ≥ 1

i ∈ δ+, i ≥ 1 : Ai = −‖νi‖λ3(Ui,0)ρ
i,0
1 ≤ 0, Bi = −‖νi‖λ3(Ui,0)ρ

i,0
2 ≤ 0, i ≥ 1,

bi = λ2
3(Ui,0)ρ̂

i,0 ≥ 0, i ≥ 1

Since the initial data is in the interior of the subsonic sets (3.10), the inequalities

are strict, i.e., Ai, Bi are negative and bi are positive. Due to the assumption, this

determinant is non–zero. Hence, for any perturbation Vi of Uj,0 with ‖Vi − Uj,0‖
sufficiently small, we obtain values σ = ξ1 = · · · = ξn such that the coupling

conditions are fulfilled. The solution to the Riemann problem at the junction is now

constructed by using the states:

Ṽ1 = L2(σ;L+
1 (ξ1;V1)), Ṽj = L+

1 (ξj;Vj) for j ∈ δ− \ {1}, Ṽj = L−
3 (ξj;Vj) for j ∈ δ+

(3.16)

for σ, ξj given by (3.15). Then for j ∈ {1, . . . , n}, the solution Uj is given by the

restriction to the real half–line of the solution to the Riemann problem

Uj = (ρj
1, ρ

j
2, uj)(x, 0) =

{
Vj, x ≤ 0

Ṽj, x > 0
j ∈ δ− and (3.17)

Uj = (ρj
1, ρ

j
2, uj)(x, 0) =

{
Ṽj, x < 0

Vj, x ≥ 0
j ∈ δ+. (3.18)

By construction, the trace of the solution at the junction satisfies the coupling

conditions. The stability estimate (3.13) is derived from the C1–regularity of the

map Ψ.
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3.4 Numerical Results

In this section we present practical tests of the coupling conditions that we propose

in Section 3.3. To achieve that, we design the section to serve two purposes: we

firstly verify that the numerical schemes we apply are appropriate for this kind of

problems; secondly we test the coupling conditions on different junction types and

discuss the qualitative behavior of the approach.

The numerical schemes we use to approximate homogeneous no-slip drift-flux

multiphase fluid flow models as defined in (3.4) are the second-order relaxed schemes

which were first developed in [69] and also discussed in [3]. In general, we assume

the pipes’ diameters to be ‖ν‖ = 1 and the sound speed is a = 6 for all pipes in

all examples. Initial conditions are selected carefully in order for the conditions

of the proposition (Proposition 3.1) to be satisfied. Newton’s method is used to

solve the system in equation (3.15) which gives the values of the parameters used

to define the Lax-curves defining the coupling of flow fields at the junctions. We

wish to point out that the coupling conditions are necessary for defining boundary

conditions at the internal nodes of the network and populating the cells that are

used in approximating flow close to the junction i.e. to couple multiple pipes at the

junction. The coupling conditions in Section 3.3 must be satisfied and at each time

step, the system of coupling conditions is solved for the intermediate state Ṽ (see

(3.16)), the construction of such a solution is undertaken as described in the proof

of Proposition 3.1.

For time integration a semi-discrete approach is used and a second-order Runge-

Kutta scheme with strong-stability preserving (SSP) [56] property is applied. The

time step size is given dynamically by

∆t =
0.75∆x

max(̺(∂f(U)/∂U))

where the maximum is taken over all computational grid-points. The spatial step-

width is ∆x and ̺(∂f(U)/∂U)) is the spectral radius of the Jacobian of the flux

function f(U) with respect to the conserved variables, U .
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For the external (inlet to network or outlet from network) boundary conditions,

transparent boundary conditions are imposed.

3.4.1 Solution of two-phase Riemann problems

In this section, we test the numerical schemes that we use to approximate two-phase

problems. In [52] global existence of solutions for a viscous two-phase model for no-

slip drift-flux two-phase flow problems were discussed. Numerical results for both

inviscid and viscous extensions of the model were presented. In [52], it is assumed

that liquid phase is much heavier than the gas phase, ρl/ρg ≈ 103, where ρl is the

liquid density and ρg is the gas density. As a result, the gas phase is ignored in

the mixture momentum equation (3.2c). In addition a non-linear pressure law is

employed which is in contrast to a linear pressure law applied here in (3.3).

The following example (persistent discontinuity in [52]) will be used to test if

the numerical schemes reproduce the expected results. In the subsequent sections

the numerical scheme will be used to test the practical validity of the coupling

conditions.

We consider a two phase Riemann problem with the data [52]:

U(x, 0) =

{
Ul = (500/9, 0.95/18, 0.17982), x < 0.5

Ur = (500/10, 1/20, 0.1998), x > 0.5

Take note that the last component of Ul and Ur is the common velocity.

Results are presented in Figure 3.3 on a mesh size of N ∈ {400, 800, 1600}. We

present the densities, the common velocity and the pressure of the two phases. The

plots of the densities demonstrate the two-phase characteristic of the flow as noted

in [52]. The difference is that the discontinuities are no longer persistent but are

transported in the same direction as documented in [52]. This demonstrates that

the numerical scheme is capable of producing correct results. Notably the shock

speeds and shock strengths were in general well resolved. The difference captured in

comparison to [52] can be attributed mainly to the non-linear pressure laws applied

there.
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Figure 3.3: Snapshots of densities ρ1 and ρ2, the common velocity v1 = v2 = u,

the common pressure p, at t = 1.0.

The results of the relaxation scheme were also compared to the results of the

central schemes in [75, 70]. The two schemes produced very similar results in the

picture norm as shown in Figure 3.4.

3.4.2 Shock-tube problem and the case of one incoming and

one outgoing pipe

This example will be used as a tool to verify the qualitative behavior of the coupling

conditions. The results of the shock tube problem will be compared with the results

of coupling two connected horizontal pipes. Here we consider the Riemann data

Ul = (1.81832, 1.44174,−0.751082), Ur = (2.01667, 1.22004,−1.584711). (3.19)

The mesh size of N = 400 was employed in a single pipe on which the standard

Riemann solver was applied. For the coupled pipes the mesh size of N = 200
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Figure 3.4: Snapshots of densities ρ1 and ρ2, the common velocity v1 = v2 = u,

the common pressure p, at t = 1.0. A comparison of relaxation schemes (relax) and

central schemes (central).

was applied in each pipe. The initial conditions for the Riemann problem at the

intersection is done as follows. We consider equal initial conditions in each pipe

Ū1,0 = Ū2,0 = (1.5259, 0.7536,−0.9621),

so that the conditions of Proposition 3.1 are trivially satisfied. Then we perturb the

initial conditions with some little noise in each pipe in such a way that it remains in

the prescribed subsonic sets. The perturbed data are given by V1 = Ul and V2 = Ur

as in (3.19). With this new initial data, we solve numerically the Riemann problem

at the junction. The results are presented in Figure 3.5.

The densities, velocities and pressure are qualitatively similar in terms of the

wave profiles in the solution. This demonstrates that in the case of two coupled

pipes, the Riemann problem at the intersection reduces to the standard Riemann

problem. This is an important observation that validates our choice of the coupling
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Figure 3.5: Snapshots of densities ρ1 and ρ2, the common velocity v1 = v2 = u, the

common pressure p, at t = 0.013. A comparison of solutions computed by standard

relaxation schemes (std. RP.) with relaxation schemes in which coupling conditions

are applied at the junction (coupled).

conditions as it was done in [7]. We can then have confidence in the application of

our coupling conditions for junctions with more than two pipes. Before we present

such examples, we perform a grid convergence analysis for our numerical scheme

for the solution of the flow equations. This ensures us that as the grid is refined,

our flow solver produce a more accurate solution of the flow equations, that is the

drift-flux model.

3.4.3 Grid convergence example

We simulate the dynamics of a junction with one incoming and one outgoing pipe

with initial data given by (3.19) on four different meshes with the number of grid-

points N ∈ {40, 80, 160, 320}. We compute up to time t = +0.013 and present the
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density and velocity profile in Figure 3.6. For comparison, the quantities of the same

variables for the standard Riemann problem are plotted which is used as a reference

solution for comparing qualitative behavior. The reference solution is computed

using a mesh size of N = 2000. We note that the qualitative behavior for all mesh

sizes demonstrates convergent behavior. This justifies the choice of the mesh size

N = 200 in the previous and subsequent examples.
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Figure 3.6: Densities of each phase, common pressures and velocities for different

mesh size at time t = 0.013.

3.4.4 Case of one incoming and two outgoing pipes

We consider three coupled pipes with one incoming and two outgoing forming a ’T’

junction. Such junctions are very common in flow networks.The network is described

with the vectors ν1 = (−1, 0), ν2 = (0,+1) and ν3 = (0,−1) with the junction at



3.4. Numerical Results 69

x = 0. The initial conditions applied here are

Ū1,0 = (1.0500, 2.8050,−11.2401),

Ū2,0 = (2.03, 3.3578,−5.2842),

Ū3,0 = (0.9534, 4.3508,−5.9559).

These initial data are chosen so as to satisfy the conditions of Proposition 3.1. As

discussed in Section 3.4.2, we perturb these initial data with a small random vector

in such a way that the states remain in the required subsonic regions given in (3.10).

We use the states
V1 = (1.1722, 2.8192,−11.1772),

V2 = (2.1517, 3.3928,−5.1600),

V3 = (1.0026, 4.4683,−5.8547).

We then solve numerically the Riemann problem at the intersection with initial

conditions in pipe j, Vj. We present the snapshots of the densities (Figure 3.7), the

velocities and the pressures (Figure 3.8) in each pipe for times 0 ≤ t ≤ 0.2. The

dynamics of the flow in the pipes are well resolved. As expected we have some waves

moving out of each pipes. The contact discontinuity wave is well resolved by our

numerical scheme and can be observed in the plots of the densities in Figure 3.7. The

wave pattern in each pipe is seen more clearly in the contour lines of the densities

where we clearly observe, as expected, two waves in pipe 1 and single waves in

the other pipes as shown in Figure 3.9. The pressure profile for the pipes is also

presented in Figure 3.10.

3.4.5 Case of four connected pipes

Here we consider a network with four connected pipes. The discretization of the

space variable is such that ν1 = (−1, 0), ν2 = (+1, 0), ν3 = (0,+1) and ν4 = (0,−1)

with the junction at x = 0. If we assume, for example, that we have one incoming

and three outgoing pipes, then we consider the following initial conditions which

satisfy coupling conditions:

Ū1,0 = (0.7836, 0.7737,−6.2500), Ū2,0 = (1.0987, 1.0587,−5.5508),

Ū3,0 = (1.1210, 1.8262,−0.04386), Ū4,0 = (1.7112, 1.2384,−0.2606).
(3.20)
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Figure 3.7: Snapshots of densities for three coupled pipes with one incoming and

two outgoing pipes at different times t.

The perturbed data for the simulations are given by

V1 = (0.7939, 0.7894,−6.2093), V2 = (1.1395, 1.0640,−5.4566),

V3 = (1.1360, 1.8646,−0.4075), V4 = (1.7281, 1.3280,−0.2283).

Using Proposition 3.1, the solution of the Riemann problem at the junction can be

constructed from the Vj. The snapshots of the densities in each pipe for 0 ≤ t ≤ 0.1

are given in Figure 3.12. We see two waves moving in Pipe 1 while there is only one

wave in the other pipes. The dynamics in Pipe 1 is more complex than in the other
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Figure 3.8: Snapshots of momentum and pressure for three coupled pipes with one

incoming and two outgoing pipes at different times t.

pipes. This can be explained by the fact that Pipe 1 is the only incoming pipe while

the other pipes are outgoing.

See also Figure 3.11 for the pressure profiles. The other configurations give qual-

itatively similar results. This is not surprising since the wave pattern in each pipe is

prescribed a-priori in our main result: we always have two waves in the first pipe and

one wave in each of the other pipes. Above, the existence of a solution is confirmed

by the numerical results and the expected qualitative behavior is reproduced.
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Figure 3.9: Contour lines of densities for three coupled pipes with one incoming

and two outgoing pipes.

3.5 Concluding Remarks

We derived a conservative model for multiphase flow from the two-fluid model and

proposed some general coupling conditions at junctions in a network of pipes. A

well–posedness result at the intersection of the pipes was proposed and proved.

Numerical tests were designed and applied for different pipes configurations. This
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Figure 3.10: Snapshots of pressure for three coupled pipes with one incoming and

two outgoing pipes.
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Figure 3.11: Snapshots of pressure for four coupled pipes with one incoming and

three outgoing pipes at different times t.

served as a way of realizing the theoretical results in a practical setting. The nu-

merical results conform with the expected theoretical results. However, the model

seems to be restrictive since it assumes isothermal flow and equal velocity of different

phases. The isothermal condition is dropped in the next chapter where we also con-

sider the case of a discontinuous junction, that is, a junction where the connecting

pipes have different cross sections.



74
CHAPTER 3. ISOTHERMAL DRIFT-FLUX MODELS IN

NETWORKS

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1

0.65

0.7

0.75

0.8

t

x

ρ 11

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1
0.2

0.4

0.6

0.8

1

1.2

t

x

ρ 13

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1

0.65

0.7

0.75

0.8

t

x

ρ 21

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1
0

0.5

1

1.5

2

t

x

ρ 23

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1
0.2

0.4

0.6

0.8

1

1.2

t

x

ρ 12

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1
0

0.5

1

1.5

2

t

x

ρ 14

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1
0.2

0.4

0.6

0.8

1

1.2

t

x

ρ 22

0
0.2

0.4
0.6

0.8
1 0

0.02

0.04

0.06

0.08

0.1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

x

ρ 24

Figure 3.12: Snapshots of densities for four coupled pipes with one incoming and

three outgoing pipes at different times t.



Chapter 4

The Multiphase Drift-Flux Model

with a General Equation of State

in Networks

In this chapter, we consider the drift-flux model describing a subsonic multiphase

fluid in a network of pipes. Differently from the work presented in Chapter 2, the

pressure law of the multiphase fluid is taken in a general form and it is expressed in

terms of the sonic speeds and densities of each phase. We discuss the well-posedness

of the Riemann problem at the junction and present some computational results

on the dynamics of the multiphase fluid in a network of pipes. Some results for a

discontinuous junction are presented. Some of the results presented in this chapter

appeared or are to appear in [9, 8].

75
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4.1 Introduction

We consider the flow in a network of pipes of a no-slip drift-flux model for multiphase

flow in the form

∂tρ1 + ∂x(ρ1u) = 0

∂tρ2 + ∂xρ2u = 0

∂t[(ρ1 + ρ2)u] + ∂x ((ρ1 + ρ2)u
2 + p(ρ1, ρ2)) = 0

(4.1)

where ρ1 and ρ2 are the density of phase 1 and 2, respectively, u is the common

velocity of the two phases and p(ρ1, ρ2) is the pressure of the model given as a

function of the densities. This flow model is derived from the two-fluid model by

averaging the balance law for the momentum in the canonical form.

The mathematical study of flow of fluid in networks of pipes is a young field of

research and has been under investigation only recently. We refer the reader to

[32, 33, 41, 6, 7] for the case of gas networks, to [77, 99] for water networks and

[62] for traffic networks. The study of the multiphase case was first introduced in

[10] where the isothermal drift-flux model was considered. Therein, the physical

motivations of the coupling conditions, which are necessary for the solution of the

Cauchy problem or Riemann problem at the junction, were given. The coupling

conditions comprise the conservation of mass at the junction. Depending on the

fluid properties, one can add the equality of the so-called dynamic pressure or the

pressure itself at the junction. As was pointed out by Colombo et al. [33], the

equality of pressure for the p-system can lead to the loss of uniqueness of the solution

of the Cauchy problem at the junction.

In this chapter, we investigate the flow of the drift-flux model (4.1) in a network

of pipes. We first determine the admissible Lax curves that are paramount in the

single wave solution of the standard Riemann problem (RP). Secondly, we consider

the model (4.1) at the junction of a network of pipes. Using the coupling conditions

proposed in [10], we prove the well-posedness of the Riemann problem at the junction

for the case of two connected pipes and discuss briefly the general case. An important

contribution of this chapter is the use of a linearization of the Lax curves for the



4.2. Model Formulation and Preliminary results 77

solution of the Riemann problem at the junction. This is motivated by the fact that

for some equations of state (pressure law as a function of densities), one can not

obtain an analytical expression of the rarefaction curves. We justify this approach by

solving numerically the Riemann problem at the junction for the isothermal model

whose solution is known. We find that the results are comparable and we then use

this new approach for the numerical solution of the isentropic drift-flux model at a

junction with three connected pipes.

The rest of the chapter is organized as follows. In Section 4.2, we briefly discuss

the derivation of the flow model equations and we solve the standard Riemann

problem. A junction of pipes in a network is considered in Section 4.3. We give

a rigorous definition of the Riemann problem at the junction and prove the well-

posedness of the Riemann problem at a junction of two connected pipes. We discuss

briefly the general case of a junction with m incoming pipes and p outgoing pipes.

Section 4.5 is devoted to some numerical simulations and results. We start by

investigating the effect of the sound speed of the two phases on the junction. Then

we present the linearization of the Lax curves and apply it to the solution of the

Riemann problem at the junction of three connected pipes. An example with a

discontinuous junction is presented.

4.2 Model Formulation and Preliminary results

We consider a mixture of two fluids with density, volume fraction, velocity and

pressure denoted by ̺i, αi, vi, pi, respectively. A common model for this multiphase

fluid is the drift-flux model [47] which reads

∂

∂t
(̺1α1) +

∂

∂x
(̺1α1u1) = 0, (4.2a)

∂

∂t
(̺2α2) +

∂

∂x
(̺2α2u2) = 0, (4.2b)

∂

∂t
(̺1α1u1 + ̺2α2u2) +

∂

∂x
(̺1α1u

2
1 + ̺2α2u

2
2 + p) = Q. (4.2c)
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Here, Q represents the sum of the momentum and source forces such as wall friction

or gravity acting on each phase separately. We assume that the two fluids are

immiscible and, therefore, denote the total density of each phase as ρ1 = α1̺1 and

ρ2 = α2̺2. We assume for the analysis that Q = 0. This is not a restriction since

a system of conservation laws with source terms can be handled with the fractional

step method [79] which consists in considering separately the convective part and

the source part of the equation. For simplicity, we restrict ourselves to a flow regime

where the pressure and the velocity of the two phases are equal [52]. This leads to

the system of equations

∂tρ1 + ∂x
ρ1I

ρ1+ρ2
= 0

∂tρ2 + ∂x
ρ2I

ρ1+ρ2
= 0

∂tI + ∂x

(
I2

ρ1+ρ2
+ p(ρ1, ρ2)

)
= 0.

(4.3)

where I = (ρ1 + ρ2)u is the momentum of the mixture. The system (4.3) needs to

be completed by an equation of state expressing the pressure of the multiphase fluid

in terms of the density of each phase. Keeping the general case in mind, we will use

for illustrations the following two equations of state.

Isothermal drift-flux model

Assume that each phase is isothermal with an equation of state of the form

p
.
= pi(̺i) = a2

i ̺i, i ∈ {1, 2}, (4.4)

where the positive constant ai is the compressibility factor or sound speed of phase

i. The relation α1 + α2 = 1 can then be written as

ρ1

̺1
+
ρ2

̺2
=
ρ1a

2
1

p
+
ρ2a

2
2

p
= 1.

Hence

p = ρ1a
2
1 + ρ2a

2
2. (4.5)

When we substitute (4.5) in (4.3), we obtain the isothermal drift-flux model. When

a2
1 = a2

2 = a2/2, we obtain the model presented in Chapter 3.
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Isentropic drift-flux model

For isentropic gases p = κ̂ργ where κ̂ and γ are constants. We assume that each

component of the multiphase fluid is isentropic with the equation of state of the

form

p
.
= pi(̺i) = a2

i ̺
γ
i , i ∈ {1, 2}, (4.6)

where the positive constant ai is as above. For simplicity, we take for the two phases

the same ratio of the specific heats γ. One can consider different γ′s for each phase

in a similar way. The relation α1 + α2 = 1 leads to

ρ1

̺1

+
ρ2

̺2

=
ρ1(

p/a2
1

)1/γ
+

ρ2(
p/a2

2

)1/γ
= 1.

Hence

p =

[
ρ1a

2
γ

1 + ρ2a
2
γ

2

]γ

. (4.7)

Before discussing in details the dynamics of a junction of pipes, we start by

solving the standard Riemann problem for the model equation (4.3). The exact

solution is constructed as a set of constant states separated by some wave curves,

see Section 2.2.

The eigenvalues λ1,2,3 and the eigenvectors r1,2,3 of the drift-flux model (4.3) are

given by

λ1,3(U) =
I

ρ̂
∓
√
ρ1∂1p+ ρ2∂2p

ρ̂
, λ2(U) =

I

ρ̂
.

r1,3(U) =




ρ1

ρ2

ρ̂λ1,3(U)


 , r2(U) =




∂2p

−∂1p

(∂2p− ∂1p)λ2(U)


 . (4.8)

The 2-field is always linearly degenerate (see Section 2.2) since ∇λ2(w).r2(U) ≡ 0.

For the 1- and 3-field, we have that

∇λ1,3(U).r1,3(U) = ∓ρ
2
1 ∂11p+ ρ2

2 ∂22p+ 2ρ1ρ2 ∂12p+ 2(ρ1 ∂1p+ ρ2 ∂2p)

2
√
ρ̂ (ρ1∂1p+ ρ2∂2p)

, (4.9)
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where we have used the notations

∂1p = ∂
∂ρ1
p(ρ1, ρ2), ∂2p = ∂

∂ρ2
p(ρ1, ρ2), ∂12p = ∂2

∂ρ2∂ρ2
p(ρ1, ρ2)

∂11p = ∂2

∂ρ2
1
p(ρ1, ρ2), ∂22p = ∂2

∂ρ2
2
p(ρ1, ρ2).

(4.10)

To ensure hyperbolicity and genuine nonlinearity (Section 2.2), we consider pressure

laws which satisfy

ρ1∂1p+ ρ2∂2p > 0, ∀ρ1, ρ2 > 0 (4.11)

and

ρ2
1∂11p+ ρ2

2∂22p+ 2ρ1ρ2∂12p+ 2(ρ1∂1p+ ρ2∂2p) 6= 0. (4.12)

The conditions (4.11) and (4.12) are both fulfilled if we choose a pressure law p(ρ1, ρ2)

satisfying

p(0, 0) = 0, ∂1p(ρ1, ρ2), ∂2p(ρ1, ρ2) > 0 and Hess(p) is semi-positive definite,

(4.13)

where Hess(p) is the Hessian of the map p. Condition (4.13) is a direct generalization

for multiphase flow of a similar condition for single phase flow, see [32, 61, 41].

Indeed, this condition is fulfilled by the isothermal pressure law given in (4.5) and

the isentropic pressure law in (4.7).

Remark 4.1. • For completeness we present the derivatives of the isentropic

pressure law.

∂1p = γa
2/γ
1 (a

2/γ
1 ρ1 + a

2/γ
2 ρ2)

γ−1;

∂2p = γa
2/γ
2 (a

2/γ
1 ρ1 + a

2/γ
2 ρ2)

γ−1

∂11p = γ(γ − 1)a
4/γ
1 (a

2/γ
1 ρ1 + a

2/γ
2 ρ2)

γ−2;

∂12p = γ(γ − 1)a
2/γ
1 a

2/γ
2 (a

2/γ
1 ρ1 + a

2/γ
2 ρ2)

γ−2;

∂22p = γ(γ − 1)a
4/γ
2 (a

2/γ
1 ρ1 + a

2/γ
2 ρ2)

γ−2.

• If one takes γ1 6= γ2 the pressure law now satisfies

a
2/γ1

1 ρ1p
γ1−γ2
γ1γ2 − p1/γ2 + a

2/γ2

2 ρ2 = 0.
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The partial derivatives needed for the discussion above can be calculated im-

plicitly using the following equations:

a
2/γ1

1

[
p(γ1−γ2)/(γ1γ2) +

(γ1 − γ2

γ1γ2

)
ρ1p

(γ1−γ2)/(γ1γ2)−1∂1p
]
− γ−1

2 p1/γ2−1∂1p = 0;

a
2/γ1

1

(γ1 − γ2

γ1γ2

)
ρ

(γ1−γ2)/(γ1γ2)−1
1 ∂2p− γ−1

2 p1/γ2−1∂2p+ a
2/γ2

2 = 0;

a
2/γ1

1

[(γ1 − γ2

γ1γ2

)
p(γ1−γ2)/(γ1γ2)−1∂1p+

(γ1 − γ2

γ1γ2

){
p(γ1−γ2)/(γ1γ2)−1∂1p+

(γ1 − γ2

γ1γ2
− 1
)
ρ1p

(γ1−γ2)/(γ1γ2)−2(∂1p)
2 + ρ1p

(γ1−γ2)/(γ1γ2)−1∂11p
}]

−γ−1
2

(
(γ−1

2 − 1)p1/γ2−2(∂1p)
2 + p1/γ2−1∂11p

)
= 0;

a
2/γ1

1

(γ1 − γ2

γ1γ2

)(γ1 − γ2

γ1γ2
− 1
)
ρ1p

((γ1−γ2)/(γ1γ2)−2)∂2p
2 +

p((γ1−γ2)/(γ1γ2)−1)∂22p− γ−1
2

(
(γ−1

2 − 1)p1/γ2−2∂2p + p1/γ2−1∂22p
)

= 0;

a
2/γ1

1

(γ1 − γ2

γ1γ2

)[
p((γ1−γ2)/(γ1γ2)−1)∂2p+

(γ1 − γ2

γ1γ2

− 1
)
ρ1p

((γ1−γ2)/(γ1γ2)−2)∂1pp2 + ρ1p
((γ1−γ2)/(γ1γ2)−1)∂12p

]

−γ−1
2

(
(γ−1

2 − 1)p1/γ2−2∂1p∂2p+ p1/γ2−1∂12p
)

= 0.

These can be solved using appropriate numerical approaches. In the following

discussion we only consider the case where γ1 = γ2.

Now we discuss the Lax curves as a preliminary step for the solution of the

standard Riemann problem for (4.3).

4.2.1 Shock curves

The Lax shock curves are derived from the Rankine-Hugoniot jump conditions as

presented in Section 2.2.2. Indeed, let U be a given state and assume that another

state Ū is connected to U by a 1,3-shock wave of shock speed s. Then U and Ū

satisfy

f(U) − f(Ū) = s(U − Ū). (4.14)



82 CHAPTER 4. DRIFT-FLUX MODELS IN NETWORKS

This system defines a one-parameter family of curves found to be

S1,3(ξ;U) = (ρ1ξ, ρ2ξ, I1,3(ξ))
T (4.15)

with

I1,3(ξ) = Iξ ∓
√
ρ̂ (ξ2 − ξ) (p(ρ1ξ, ρ2ξ) − p(ρ1, ρ2)) (4.16)

and the shock speed is given by

s1,3(ξ;U) =
I

ρ̂
∓
√
ξ(p(ρ1ξ, ρ2ξ) − p(ρ1, ρ2))√

ρ̂(ξ − 1)
. (4.17)

For the isothermal pressure law given in (4.5), the shock curves are given by

S1,3(ξ;U) =




ρ1ξ

ρ2ξ

Iξ ∓ (ξ − 1)
√
ξ
√
ρ̂(a2

1ρ1 + a2
2ρ2)


 (4.18a)

with shock speed

s1,3(ξ;U) =
I

ρ̂
∓
√
ξ

√
a2

1ρ1 + a2
2ρ2

ρ̂
=
I

ρ̂
∓
√
ξ

√
p(ρ1, ρ2)

ρ̂
. (4.18b)

Using the Lax admissibility conditions (see Section 2.2), the forward and backward

admissible 1-shock curves are obtained as S1(ξ;w) in (4.18) with ξ ≥ 1 and ξ ≤
1, respectively. Similarly, the forward and backward 3-shock curves are given by

S3(ξ;w) in (4.18) with ξ ≤ 1 and ξ ≥ 1, respectively.

4.2.2 Contact discontinuity

Let Ū be a given state. We want to find the set of states that can be connected to

Ū on the contact discontinuity curve. Using the linear degeneracy of the 2-field and

the Rankine-Hugoniot jump condition (4.14), we show that a state U belongs to the

2-curve or the 2-contact discontinuity curve emanating from Ū if

U − Ū = ξr2(Ū), ξ ∈ R.
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Hence,

ρ1 = ρ̄1 + ξ∂2p̄,

ρ2 = ρ̄1 − ξ∂1p̄,

I = Ī + ξ(∂2p̄− ∂1p̄)λ2(Ū).

Therein, the notations ∂1p̄ = ∂1p(ρ̄1, ρ̄2) and ∂2p̄ = ∂2p(ρ̄1, ρ̄2) are used. We elimi-

nate ξ in this system and after a suitable scaling, we show that the contact discon-

tinuity wave emanating from any state U is given by the curve

L2(ξ;U) =
1

∂2p




∂2pρ1ξ

∂2pρ2 − ∂1p(ξ − 1)ρ1

I
ρ̂
(∂2p(ρ1 + ρ2) + (∂2p− ∂1p)ρ1(ξ − 1))


 , (4.19)

and with speed

u =

I
ρ̂
(∂2p(ρ1 + ρ2) + (∂2p− ∂1p)ρ1(ξ − 1))

ρ1(∂2p− ∂1p)ξ + (ρ1∂1p+ ρ2∂2p)
=

I

ρ1 + ρ2

= λ2(U).

For the pressure law given in (4.5), the contact discontinuity curve is found to be

L2(ξ;U) =
1

a2
2




a2
2ρ1ξ

a2
2ρ2 + a2

1(1 − ξ)ρ1

I
ρ̂
(a2

1ρ1 + a2
2ρ2 + (a2

2 − a2
1)ρ1ξ)


 . (4.20)

Note that we have continuity of the pressure along the contact discontinuity as for

the Euler equations.

4.2.3 Rarefaction curves

As introduced in Section 2.2.2, the rarefaction curves are the integral curves of the

eigenvectors of the flux function, in the sense that they solve the ordinary differential

equation
dU

dξ
=

r1,3(U(ξ))

∇λ1,3(U(ξ)).r1,3(U(ξ))
, ξ ≥ ξ1,3,

with ξ1,3 = λ1,3(U). This yields

d

dξ




ρ1

ρ2

I


 = ∓ 2

√
ρ̂ (ρ2 ∂2p+ ρ1 ∂1p)

ρ2
1 ∂11p+ ρ2

2 ∂22p+ 2ρ1ρ2 ∂12p+ 2(ρ1 ∂1p+ ρ2 ∂2p)




ρ1

ρ2

ρ̂λ∓(U)


 , ξ ≥ ξ∓.
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This system of ODEs is difficult to solve for a general pressure law. However, for a

pressure law satisfying (4.13), a solution exists, see [59]. For the simple case of the

isothermal pressure law given in (4.5), the rarefaction curves are given by

R1,3(ξ;U) =




ρ1ξ

ρ2ξ

Iξ ∓ ξ log(ξ)
√
ρ̂(a2

1ρ1 + a2
2ρ2)


 . (4.21)

The forward and backward admissible 1-rarefaction curves for (4.21) are obtained

using the Lax admissibility condition as R1(ξ;w) with ξ < 1, and ξ > 1, respectively.

Similarly, the forward and backward 3-rarefaction curves are given by S3(ξ;w) with

ξ > 1, and ξ < 1, respectively.

In summary the Lax-curves for the model (4.3) with the equation of state (4.5) are

given by

L+
1 (ξ;U) =

{
S1(ξ;U), ξ ≥ 1;

R1(ξ;U), ξ < 1;
L+

3 (ξ;U) =

{
S3(ξ;U), ξ ≤ 1;

R3(ξ;U), ξ > 1;
(4.22a)

L−
1 (ξ;U) =

{
S1(ξ;U), ξ ≤ 1;

R1(ξ;U), ξ > 1;
L−

3 (ξ;U) =

{
S3(ξ;U), ξ ≥ 1;

R3(ξ;U), ξ < 1;
(4.22b)

4.2.4 Solution to the standard Riemann problem

The solution to the standard Riemann problem for a system of conservation laws

has been presented extensively for example in the books [42, 78, 79].

Proposition 4.1. We consider the Riemann problem for (4.3) with initial data

U(x, 0) =

{
U+ if x > 0,

U− if x < 0.
(4.23)

For |U+ − U−| sufficiently small, there exist a unique weak self-similar solution to

this Riemann problem with small total variation. This solution comprises 4 constant

states U0 = U−, U1, U2, U3 = U+. When the i-th characteristic family is genuinely

nonlinear Ui is joined to Ui−1 by either an i-rarefaction wave or an i-shock, while
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when the i-characteristic family is linearly degenerate, Ui is joined to Ui−1 by an

i-contact discontinuity.

We briefly discuss the construction of the solution of the Riemann problem for

the model (4.1) with the pressure law given in (4.5). We assume that the left and

right states U− and U+ are given and satisfy the conditions of Proposition 4.1. We

call U1 and U2 the intermediary states. We can then find ξ1, ξ2 and ξ3 such that

U1 = L+
1 (ξ1;U

−), and U2 = L2(ξ2;U1), and U2 = L−
3 (ξ3;U

+). (4.24)

For simplicity, we denote the momentum components of U1 and U2 as I1(ξ1;U
−) and

I3(ξ3;U
+), respectively. The solution for the Riemann problem is found if we can

solve for ξ1, ξ2 and ξ3 the system





ρ+
1 ξ3 = ρ−1 ξ1ξ2,

ρ+
2 ξ3 = ρ−2 ξ1 +

a2
2

a2
1
(1 − ξ2)ρ

−
1 ξ1,

I3(ξ3;U
+) = I1(ξ1;U−)

a2
2(ρ−1 +ρ−2 )ξ1

(
(a2

1ρ
−
1 + a2

2ρ
−
2 )ξ1 + (a2

2 − a2
1)ρ

−
1 ξ1ξ2

)
.

(4.25)

One can solve the first two equations in (4.25) and find ξ2 and ξ3 in terms of ξ1.

ξ2 =
ρ+

1

ρ−1

p(ρ−1 , ρ
−
2 )

p(ρ+
1 , ρ

+
2 )
, ξ3 =

ρ−1
ρ+

1

ξ1ξ2 =
p(ρ−1 , ρ

−
2 )

p(ρ+
1 , ρ

+
2 )
ξ1. (4.26)

Replacing these expressions in the third equation in (4.25), we obtain a scalar equa-

tion to solve for ξ1 given by

I3

(
p(ρ−1 , ρ

−
2 )

p(ρ+
1 , ρ

+
2 )
ξ1;U

+

)
=

I1(ξ1;U
−)

a2
2(ρ

−
1 + ρ−2 )

(
p(ρ−1 , ρ

−
2 ) + (a2

2 − a2
1)ρ

+
1

p(ρ−1 , ρ
−
2 )

p(ρ+
1 , ρ

+
2 )
ξ1

)
.

(4.27)

If we assume for example that U1 is connected to U− with a 1-shock curve and that

U2 is connected to U+ by a 3-rarefaction curve (see Figure 4.1), we find that the

map

g(ξ1;U
−, U+) = I3

(
p(ρ−1 ,ρ−2 )

p(ρ+
1 ,ρ+

2 )
ξ1;U

+
)

− I1(ξ1;U−)

a2
2(ρ−1 +ρ−2 )

(
p(ρ−1 , ρ

−
2 ) + (a2

2 − a2
1)ρ

+
1

p(ρ−1 ,ρ−2 )

p(ρ+
1 ,ρ+

2 )
ξ1

) (4.28)
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U− U+

U1
U2

Figure 4.1: Wave structure for the solution of the Riemann problem for the Drift-

flux model in the x− t plane.

satisfy g(1;U,U) = 0 and

∂g

∂ξ1
(ξ1, U

−, U+)|(ξ1=1,U,U) =
ρ1I

ρ̂

a2
1 − a2

2

a2
2

+ 2
√
a2

1ρ
2
1 + a2

1ρ1ρ2 + a2
2ρ2 6= 0

provided that U satisfy the condition of Lemma 4.1 below. The cases corresponding

to other wave structures in the solution lead to the same conditions. We have then

proven the following result.

Lemma 4.1. Assume that we have a multiphase fluid described with the equation of

state in the form p = p(ρ1, ρ2). Let U be a state that satisfies the following condition

ρ1 I

ρ̂

∂1p− ∂2p

∂2p
+ 2
√
ρ̂(ρ1∂1p+ ρ2∂2p) 6= 0. (4.29)

Then, for U− and U+ close to U, the standard Riemann problem with data (U−, U+)

admits a solution.

4.3 Pipe-to-pipe intersections

The network of pipes is considered as an oriented graph with the arcs representing

the pipes and the vertices representing the pipe intersections. Moreover, we consider

a junction as a set of non-zero vectors of R
3 meeting at the origin considered as the



4.3. Pipe-to-pipe intersections 87

junction. Along the arcs, the flow is governed by a copy of the drift-flux model (4.3).

At the junction located at x = 0, some coupling conditions in the form

Ψ (UI(t, 0−);UO(t, 0+)) = 0 (4.30)

are prescribed. In (4.30), UI(t, 0−) (respectively UO(t, 0+)) represents the traces of

the flow in all the incoming (respectively outgoing) pipes at the junction. In many

physical systems related for example to gas dynamics the stationary solutions of the

flow equation (4.3) play an important role in the precise definition of the coupling

condition map Ψ. For the drift-flux model, they satisfy

∂x
ρ1I

ρ1+ρ2
= 0,

∂x
ρ2I

ρ1+ρ2
= 0,

∂x

(
I2

ρ1+ρ2
+ p(ρ1 + ρ2)

)
= 0.

(4.31)

4.3.1 A junction connecting two pipes

In this section and the rest of the chapter, we will use the notations R
+ = [0,+∞[

and
◦
R

+

=]0,+∞[. We consider only one junction here. A more complex network

can be treated by considering each junction separately. The flow in each pipe is

governed by the drift-flux model equations (4.3) written in the compact form

∂t(U) + ∂x(f(U)) = 0, (4.32a)

with

U =




ρ1

ρ2

I


 , f(U) =




ρ1 I
ρ̂

ρ2 I
ρ̂

I2

ρ̂
+ p(ρ1, ρ2)


 , (4.32b)

and

ρ̂ = ρ1 + ρ2, I = uρ̂. (4.32c)

At the junction, we assume that some coupling conditions in the form

Ψ
(
U−(t, 0−);U+(t, 0+)

)
= 0 (4.33)
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are prescribed. Therein, U− and U+ are the flow variable in the left and right pipe,

respectively. We assume that the junction is located at x = 0. The map Ψ will be

called the map of the coupling conditions. Note that in general, Ψ has as many

arguments as the number of pipes meeting at the junction. For clarity, we develop

the theory below for a junction of two connected pipes. In Remark 4.2, we will

discuss briefly the general case of a junction with more than two pipes.

We will require the state variables to belong in the subsonic region defined as

A0 = {U ∈
◦
R

+

×
◦
R

+

× R : λ1(U) < 0 < λ2(U) < λ3(U)}. (4.34)

For later use, we define the quantities

Flow of the density of phase 1: M(U) = ρ1I
ρ1+ρ2

,

Flow of the density of phase 2: N(U) = ρ2I
ρ1+ρ2

,

Flow of the linear momentum: P (U) = I2

ρ1+ρ2
+ p(ρ1, ρ2).

We have the following elementary lemma.

Lemma 4.2. Let U = (ρ1, ρ2, I) ∈ A0 and assume that the Lax curves are defined

as in (4.22). The following hold.

(i) d
dξ
P (L1,3(ξ;U))|ξ=1

= λ2
1,3(U)ρ̂;

(ii) d
dξ
M (L1(ξ;U))|ξ=1

= λ1(U)ρ1,
d
dξ
M (L3(ξ;U))|ξ=1

= λ3(U)ρ1;

(iii) d
dξ
N (L1(ξ;U))|ξ=1

= λ1(U)ρ2,
d
dξ
N (L3(ξ;U))|ξ=1

= λ3(U)ρ2;

(iv) d
dξ
M (L2(ξ;U))|ξ=1

= λ2(U)ρ1,
d
dξ
M (L2(ξ;U))|ξ=1

= λ2(U)ρ2,
d
dξ
P (L2(ξ;U))|ξ=1

= ∂2p−∂1p
∂1p

λ2(U)2ρ1.

Proof.

(i) By the chain rule, we may write

d

dξ
P (L1,3(ξ;U)) =

∂P

∂ρ1
(L1,3(ξ;U))

d

dξ

(
L1

1,3(ξ;U)
)

+
∂P

∂ρ2
(L1,3(ξ;U))

d

dξ

(
L2

1,3(ξ;U)
)

+
∂P

∂I
(L1,3(ξ;U))

d

dξ

(
L3

1,3(ξ;U)
)
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where Li
1,3 is the i-th component of L1,3. Proceeding with the calculations, we

have

d

dξ
P (L1,3(ξ;U))|ξ=1

= ρ1

(
− I2

(ρ1 + ρ2)2
+ ∂1p

)
+ ρ2

(
− I2

(ρ1 + ρ2)2
+ ∂2p

)
+

2I

ρ1 + ρ2

ρ̂λ1,3(U)

=
I

ρ1 + ρ2
(2ρ̂λ1,3(U) − I) + ρ1∂1p+ ρ2∂2p

= 2Iλ1,3(U) − I2

ρ̂
+ ρ1∂1p+ ρ2∂2p

= ρ̂

(
2Iλ1,3(U)

ρ̂
− I2

ρ̂2
+
ρ1∂1p+ ρ2∂2p

ρ̂

)

= ρ̂

(
2I

ρ̂

(
I

ρ
∓ 1

ρ

√
ρ2

2 ∂2p+ ρ1 (∂2p+ ∂1p) ρ2 + ρ2
1 ∂1p

)

−I
2

ρ̂2
+
ρ1∂1p+ ρ2∂2p

ρ̂

)

= ρ̂

(
I2

ρ̂2
∓ 2I

ρ̂2

√
ρ2

2 ∂2p+ ρ1 (∂2p+ ∂1p) ρ2 + ρ2
1 ∂1p+

ρ1∂1p+ ρ2∂2p

ρ̂

)

= ρ̂ (λ1,3(U))2 .

(ii) Likewise to (i) above, we have

d

dξ
N (L1(ξ;U))|ξ=1

= ρ1

(
I

ρ1 + ρ2
− ρ1I

(ρ1 + ρ2)2

)
+ ρ2

(
− ρ1I

(ρ1 + ρ2)2

)
+

ρ1

ρ1 + ρ2
ρ̂λ1(U)

=
ρ1I

ρ1 + ρ2

− ρ1I
ρ1 + ρ2

(ρ1 + ρ2)2
+ ρ1λ1(U)

= ρ1λ1(U)

(iii) change the roles of ρ1 and ρ2 in (ii).

(iv) Similar to the previous case.
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In general, for two connected pipes at a junction, we are interested in Ψ-solutions,

that is, weak solutions depending on the coupling conditions map Ψ. We consider a

map Û defined as

Û(x) =

{
Û− if x < 0

Û+ if x > 0
with

Ψ(Û−; Û+) = 0,

Û−, Û+ ∈ A0.
(4.35)

The existence of Û+ for a given Û− is guaranteed by Lemma 4.3 below. The following

definition is a direct extension for the model (4.1) of [40, Definition 2.2].

Definition 4.1. A weak Ψ-solution of (4.3,4.33) is a map

U ∈ C0

(
R

+; Û + L1(R;
◦
R

+

×
◦
R

+

× R)

)

U(t)
.
= U(t, ·) ∈ BV(R;

◦
R

+

×
◦
R

+

× R) for a.e. t ∈ R
+

(4.36)

such that

(i) for all ϕ ∈ C1
c

(
◦
R

+

× R; R

)
whose support does not intersect x = 0

∫

R+

∫

R







ρ1

ρ2

I


 ∂tϕ+




ρ1I
ρ̂

ρ1I
ρ̂

P (U)


 ∂xϕ


 dxdt = 0; (4.37)

(ii) for a.e. t ∈ R
+, the coupling condition is fulfilled

Ψ(U(t, 0−);U(t, 0+)) = 0.

In a neighborhood of the junction, one can integrate the stationary solution of

(4.3) given by (4.31) and obtain the coupling conditions map

Ψ
(
U−;U+

)
=




M(U+) −M(U−)

N(U+) −N(U−)

P (U+) − P (U−)


 , (4.38)
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which express the conservation of mass of each phase and the equality of the dynamic

pressure at the junction. Similar conditions were obtained in [32, 33, 61]. We prove

that when a stationary flow U− is prescribed in the incoming pipe, we can solve for

the flow in the outgoing pipe which is also stationary. Indeed, we have the following

result.

Lemma 4.3. Let Ū ∈ A0. Then there exists a positive constant δ̄ and a Lipschitz

map

T : B(Ū ; δ̄) → A0, (4.39)

where B(Ū ; δ̄) is the ball centered at Ū and radius δ̄, such that

Ψ (U−;U+) = 0

U−, U+ ∈ B(Ū , δ̄)

}
⇔ U+ = T (U−). (4.40)

Proof. The proof is straightforward and uses the implicit function theorem. We

obviously have that Ψ(Ū ; Ū) = 0 and moreover we have that

Det (DU+Ψ (U−;U+))|(Ū;Ū)

=

∣∣∣∣∣∣∣∣

Dρ+
1
M(U+) Dρ+

2
M(U+) DIM(U+)

Dρ+
1
N(U+) Dρ+

2
N(U+) DIN(U+)

Dρ+
1
P (U+) Dρ+

2
P (U+) DIP (U+)

∣∣∣∣∣∣∣∣
|(Ū;Ū)

=

∣∣∣∣∣∣∣∣

ρ+
2

ρ̂+λ2(U
+) −ρ+

1

ρ̂+λ2(U
+)

ρ+
1

ρ̂+

−ρ+
2

ρ̂+λ2(U
+)

ρ+
1

ρ̂+λ2(U
+)

ρ+
2

ρ̂+

D31 D32 (λ2(U
+) + p+)

∣∣∣∣∣∣∣∣
|(Ū;Ū)

= λ1(Ū)λ2(Ū)λ3(Ū) 6= 0.

with

D31 = −λ1(U
+)λ3(U

+) + ∂1p
+ − ρ+

1 ∂1p
+ + ρ+

2 ∂2p
+

ρ̂+
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and

D32 = −λ1(U
+)λ3(U

+) + ∂2p
+ − ρ+

1 ∂1p
+ + ρ+

2 ∂2p
+

ρ̂+

This result is similar to a result presented by Colombo and Marcellini [40] in the

context of the p-system. Therein, the pipe was considered as being of variable

cross-section. Moreover, Lemma 4.3 ensures for the case of the Riemann problem

at the junction the ”additivity” property as for the Standard Lax Riemann solver

[42, 33] which states that if (U−, Uo) and (Uo, U+) are Riemann data for a stationary

solution of the Riemann problem at the junction, then so is the case for (U−, U+).

Now we present another approach for the well-posedness of the Riemann problem

at the junction. The argument used here is standard and has been developed in

[32, 7] for the case of isothermal Euler equations and in [61, 41] for the case of the

Euler equations. The importance of this result comes from the extension to the case

of a junction with more than two pipes. For the case of the drift-flux model, more

conditions are needed on the initial data in each pipe as presented in the following

result.

Proposition 4.2. Let Û1, Û2 ∈ A0 be the data in the incoming and outgoing pipes

connected at x = 0. We assume further that the following condition is satisfied:

1

a2
1

λ1(Û1)λ2(Û2)λ3(Û2)
(
λ2(Û2)ρ

2
1(a

2
2 − a2

1) − λ3(Û2)p(ρ̂
2
1, ρ̂

2
2)
)

(ρ̂1
1ρ̂

2
2 − ρ̂1

2ρ̂
2
1) 6= 0.

(4.41)

Then, there exists a constant δ > 0 such that for any states Ū1 and Ū2 with |Ūi−Ûi| <
δ for i = 1, 2, the Riemann problem at the junction with data (Ū1, Ū2) has a unique

solution.

Proof. Consider some perturbations V1 and V2 of Û1 and Û2 which belong to the

subsonic space A0. We want to find some states Ṽ1 and Ṽ2 such that the restriction of

the solution of the standard Riemann problem with data (V1, Ṽ1) on x < 0 consists of

waves of non-positive speed only and the restriction of the solution of the standard

Riemann problem with data (Ṽ2, V2) on x > 0 consists of waves of non-negative speed
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only. Based on the expressions of the Lax waves curves presented in the previous

section, the possible choices for Ṽ1 and Ṽ2 are the following:

Ṽ1 = L+
1 (ξ1; Û1), and Ṽ2 = L−

3 (ξ3;L2(ξ2; Û2)).

Moreover, we want the states Ṽ1 and Ṽ2 to satisfy the coupling conditions given in

(4.38). This results in a system of three equations for the three unknowns ξ1, ξ2 and

ξ3. The determinant D of the Jacobian matrix of the resulting map satisfies, using

Lemma 4.2,

D =

∣∣∣∣∣∣∣∣

−λ1(Û1)ρ̂
1
1 λ2(Û2)ρ̂

2
1 λ3(Û2)ρ̂

2
1

−λ1(Û1)ρ̂
1
2 λ2(Û2)ρ̂

2
2 λ3(Û2)ρ̂

2
2

−(λ1(Û1))
2(ρ̂1

2 + ρ̂2
2) (λ2(Û2))

2ρ̂2
1 (λ3(Û2))

2(ρ̂2
1 + ρ̂2

2)

∣∣∣∣∣∣∣∣

= 1
a2
1
λ1(Û1)λ2(Û2)λ3(Û2)

(
λ2(Û2)ρ

2
1(a

2
2 − a2

1) − λ3(Û2)p(ρ̂
2
1, ρ̂

2
2)
)

(ρ̂1
1ρ̂

2
2 − ρ̂1

2ρ̂
2
1)

By using the implicit function theorem and the condition (4.41), and proceeding

as in the proof of Proposition 3.1 in Chapter 3, we obtain an existence and uniqueness

result for the ξi and then for the Ṽi in the neighborhood of the data Û1 and Û2.

This result can be extended in a straightforward way to a sequence of junctions

in a linear pipe. This can be interpreted as a junction with a piece-wise constant

cross-section. Before giving more details on the piece-wise constant cross section

case, we discuss some remarks on a junction with more than two pipes.

Remark 4.2. Let us consider a junction with m incoming pipes with the flow vari-

ables in those pipes denoted by U1, . . . , Um and p outgoing pipes with the flow vari-

ables denoted by Um+1, . . . , Um+p. One example of the coupling condition map here
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is given by

Ψ(U1, . . . , Um, Um+1, . . . , Um+p) =


m∑
i=1

M(Ui(t, 0−)) −
p∑

i=1

M(Um+i(t, 0+))

m∑
i=1

N(Ui(t, 0−)) −
p∑

i=1

N(Um+i(t, 0+))

P (U1(t, 0−)) − P (U2(t, 0−))
...

P (Um−1(t, 0−)) − P (Um(t, 0−))

P (Um(t, 0−)) − P (Um+1(t, 0+))

P (Um+1(t, 0+)) − P (Um+2(t, 0+))
...

P (Um+p−1(t, 0+)) − P (Um+p(t, 0+))




.

The first two rows of Ψ are compulsory. They express the conservation of mass

of each phase at the junction. The last m + p − 1 rows of Ψ express the equality

of the dynamic pressure at the junction. Similar conditions have been proposed

in [33, 32, 7]. Some other conditions used in the literature are the equality of the

pressure at the junction. For the p-system, many other conditions were proposed

and compared in [34]. The proof of the well-posedness of the Riemann problem at

the junction in this general case proceeds as in the proof of Proposition 4.2 or in the

proof of the main result of Chapter 3. It consists of considering the waves in each

pipe to be described by some Lax curves and considering a composition of these Lax

curves and the coupling condition map Ψ. This is done in such a way that one can

solve Ψ = 0 for some parameters of the Lax curve. This gives some intermediary

states (like the ṽ in the proof of Proposition 4.2) that ensure the well-posedness and

play an important role in the numerical simulation of the dynamics of the fluid in the

pipes. With this approach in mind, it is therefore important to have an expression

for the Lax curves for any system we want to investigate. As pointed out above, the

exact solution of the ODE giving the rarefaction curve is not easy. We next propose

an approach which consists of linearizing the Lax curves in order to compute the

solution of the Riemann problem at the junction.
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4.4 Linearization of the Lax curves

The technique that we have described above for the solution of the Riemann problem

at the junction fails in general when one cannot find an exact expression for the Lax

curves. It turns out that this is generally the case when the pressure law for the drift-

flux model is nonlinear. The integration of the differential equation describing the

rarefaction curve is not trivial and therefore one can not have the exact expression

for the rarefaction curve. We claim that one can still solve numerically the problem

in this case. Indeed, we propose the use of the linearized Lax curves. We recall that

the Lax curves through a given state Ū are given for example by

Li(ξ; Ū) =

{
Si(ξ; Ū), ξ ≥ 1

Ri(ξ; Ū), ξ < 1
(4.42)

where ξ 7→ Si(ξ; Ū) and ξ 7→ Ri(ξ; Ū) are the i-shock and the i-rarefaction curves

through U, respectively. With the parameterization of these curves, they have a

tangency of second order at the point U , i.e.

Ri(ξ; Ū) − Si(ξ; Ū) = O(ξ3). (4.43)

Hence, the composite function, Li(ξ; Ū) in (4.42) is smooth for ξ 6= 1, and twice

continuously differentiable at ξ = 1. Moreover, its second derivatives are Lipschitz-

continuous functions of ξ and Ū , see [19]. We then write the Taylor expansion of

Li(ξ; Ū) about ξ = 1 as

L̃i(ξ; Ū) = Ū + (ξ − 1)ri(Ū) + O((ξ − 1)2)), (4.44)

where ri(Ū) are the eigenvectors given in (4.8). For ξ close to 1, we use the expression

of the Lax curves in (4.44) instead of the exact Lax curves for the computation of

the solution of the Riemann problem at the junction.

Dynamics for a pipe with a piece-wise constant cross-section

We now consider a pipe with a piecewise constant section

c = c0χ]−∞,x1] +
n−1∑

j=1

cjχ]xj ,xj+1] + cnχ]xn,+∞[
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for a suitable number n of discontinuities in the cross-section map c. The fluid in each

pipe obeys the balance law (4.3) and at each junction xj , the coupling conditions

now have the form

Ψ(cj−1, U
−
j ; cj, U

+
j ) = 0 for all j = 1, . . . , n and U±

j = lim
x→xj±

Uj(t, x), for all t ≥ 0.

(4.45)

Now, the coupling condition map has the form

Ψ
(
c−, U−; c+, U+

)
=




c+M(U+) − c−M(U−)

c+N(U+) − c−N(U−)

c+P (U+) − c−P (U−)


 .

When c− = c+ = 1, we recover the previous coupling conditions: Ψ (1, U−; 1, U+) ≡
Ψ (U−;U+) . The solution of the Riemann problem in the pipe is an iteration of

Definition 4.1 at each point of jump xj of the cross sectional map c(x).We will show a

numerical result for this case in the next section. Since the coupling conditions apply

locally in the neighborhood of the junction, the analysis presented in the case of a

smooth junction above can be extended to this case iteratively in a straightforward

way.

4.5 Numerical simulations and results

The set up for this section is similar to that of Chapter 3, Section 3.4. The numerical

integration of the multiphase fluid flow model defined in (4.3) is done with a second-

order relaxed scheme [69]. In this section, we assume in general that the pipes have

a constant cross-section and the sound speed, unless stated otherwise, for phase

1 is taken as a2
1 = 16.0 and for phase 2, a2

2 = 1.0. Initial conditions are usually

some perturbation of some stationary solutions. Newton’s method is used to solve

the system in equation (4.38) combined with the Lax curves as described in the

proof of Proposition 4.2 which gives the boundary conditions at the internal nodes

of the network at the junction. This insures that at every time step, the coupling

conditions at the junction are satisfied. For the external (inlet to network or outlet
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from network) boundary conditions, we use the transparent boundary conditions.

For time integration we use a second-order Runge-Kutta scheme with the strong-

stability preserving (SSP) [56] property. The time step size is given dynamically

by

∆t =
0.75∆x

max(̺(∂f(W )/∂W ))

where the maximum is taken over all computational grid-points. We recall that ∆x

is the spatial step-width and ̺(∂f(W )/∂W )) is the spectral radius of the Jacobian

of the flux function f(W ) with respect to the conserved variables, W.

4.5.1 Two connected pipes and the standard Riemann prob-

lem

This section serves to verify the qualitative behavior of the coupling conditions

and to validate the use of the linearized Lax curves for a junction connecting two

pipes. To achieve that goal, we consider the isothermal pressure law in (4.5) which

is the same as the isentropic pressure law (4.7) for γ = 1. We solve independently

the standard Riemann problem, the Riemann problem at the junction with two

horizontal pipes and with the exact Lax curves and then with the linearized Lax

curves. It is expected that the three results will agree. The choice of the isothermal

pressure law for this test is motivated by the fact that we have already determined

the exact expressions for the Lax curves. Here we consider the Riemann data

Ul = (1.4712300, 2.2832400, 3.2928117), Ur = (0.8070800, 1.2525284, 2.2928117).

(4.46)

For the Riemann problem at the junction, U1 = Ul and U2 = Ur are considered

as the data in each pipe such that the conditions of Proposition 4.2 are satisfied.

The mesh size of N = 400 was employed on a single pipe on which the standard

Riemann solver was applied. For the Riemann problem at the junction, the mesh

size of N = 200 was applied in each pipe. The results computed at time t = 0.05

for the standard Riemann, the Riemann problem at the junction with the exact

Lax curves and the linearized Lax curves are presented in Figure 4.2. These two
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Figure 4.2: Profiles of the densities ρ1 and ρ2, the momentum I, the common pres-

sure p for the standard Riemann problem (continuous line), the Riemann problem

at the junction with the use of the exact Lax curves (crosses) and the linearized Lax

curves (circles).

results are in good agreement. This proves two things. First, that qualitatively the

solution of Riemann problem at the junction with the coupling conditions proposed

here is the same as the solution of the Sod shock tube problem and secondly, that

the linearization of the Lax curves is a good approximation for the solution of the

Riemann problem at the junction.

Now we consider an example with the isentropic pressure law. Here, we take γ = 5/3
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and we consider the following initial data

U1 = (1.81832, 1.44174,−0.751082), U2 = (2.01667, 1.22004,−1.584711) (4.47)

which is the same as the data used in Chapter 3, Eq. (3.19). The results are

presented in Figure 4.3. We see here that the results for the solution of the standard

Riemann problem and the coupled pipes are in good agreement. The shock and

rarefaction waves are well resolved. There is a small error in the position of the

contact discontinuity. We suspect that this is due to the linearization of the Lax

curves.

4.5.2 Effect of the sound speed on the flow

Here we consider the case of a standard Riemann problem for the model equation

(4.3) with the isentropic pressure law (4.7) and with γ = 5.0/3. We investigate

the effect of changes in the compressibility factors of each phase on the multiphase

model. The Riemann data is taken as

U(x, 0) =

{
U− = (3.17123, 3.38324, 3.71816) x < 0.5;

U+ = (2.70708, 4.0434, 3.5629) x > 0.5.
(4.48)

We present in Figure 4.4 the plots of the densities, the momentum and the pressure

at time t = 0.1, for the sound speed ratio
a2
2

a2
1

= 1 with a2
1 = 6,

a2
2

a2
1
< 1 with a2

1 = 16

and a2
2 = 1, and

a2
2

a2
1
> 1 with a2

1 = 1 and a2
2 = 16. The results for the case

a2
2

a2
1

= 1

compare well with those obtained in [10]. We note also that the qualitative behavior

of the solution for a2
1 < a2

2 is comparable to the case a2
1 = a2

2. Also, the flow is more

compressive for a2
1 < a2

2.

4.5.3 A pipe with piece-wise constant cross section

Here we consider two connected pipes with a jump in the cross section. We investi-

gate the effect of the discontinuity of the cross-section on the flow. We recall that

the analytical setup here was discussed in Section 4.4. The initial conditions are

taken to be
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Figure 4.3: Profiles of the densities ρ1 and ρ2, the momentum I, the common

pressure p for the solution of standard Riemann problem (continuous line) and the

Riemann problem at the junction with the use of the linearized Lax curves (crosses).

U1 = (2.2173, 1.3735, 1.5805), U2 = (0.4362, 1.5711, 3.7245).

The cross sections at the left and at the right of the junction are given by

c− = 0.50, c+ = 1.5, (4.49)

respectively. In Figure 4.5, we display for comparison the results for the pipes with

the cross sections given in (4.49) and for the case c− = c+ . It is clear that the

change in the pipes cross sections influences the flow in the pipes. The jump in the

junction decreases the pressures in the pipes.
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Figure 4.4: Profiles of the densities, the momentum and the pressure for the Rie-

mann problem for the drift flux model with different compressibility factors plotted

at time t = 0.1.

4.5.4 A junction with one incoming and two outgoing pipes

In this section we consider the nonlinear pressure law given in (4.7) and a junction

with three pipes with one incoming and two outgoing pipes. We use for the numerical

solution of the Riemann problem at the junction the linearization of the Lax curves
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Figure 4.5: Profiles of the densities, momentum and the pressure for a continuous

and a discontinuous junction plotted at time t = 0.08.

described above. The initial data in the pipes are taken as

U1 = (3.4500000, 2.4050000, 6.5056726);

U2 = (2.1300000, 4.1578000, 3.5720977);

U3 = (2.2534000, 2.4191412, 2.9335749).

(4.50)

is stable and our simulation results agree with some real life observations.

These initial data satisfy the coupling conditions and belong to the subsonic re-

gion (4.34). The results are presented in Figure 4.6 for the densities and in Figure 4.7

for the momentum and pressure for times 0 ≤ t ≤ 0.08. The dynamics are stable and

we can see a wave moving in each pipe. Similar results were observed for the sim-
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Figure 4.6: Snapshots of the densities for the solution of the Riemann problem at

the junction with one incoming and two outgoing pipes. The coupling conditions and

the linearization of the Lax curves are used.

ulation of the isothermal Euler equation in [7, 6]. Therein, the coupling conditions

map were combined with the demand and supply function. Here the linearization of

the Lax curves combined with the coupling conditions produce comparable results

for the drift-flux model.

4.6 Concluding Remarks

In this chapter, the Riemann problem at a junction for the drift flux model with a

general pressure law was solved. The linearization of the Lax curves have been used

in an efficient way to compute the numerical solutions for some standard junctions.

We have investigated the influence of the sonic speeds of each phase of the gas at the

junction. We have proven that when the inflow is given and the coupling conditions

are defined in a suitable way, one can solve for the outflow in the outgoing pipe.
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Figure 4.7: Snapshots of the momentum (top) and pressure (bottom) in each pipe

for the solution of the Riemann problem at the junction with one incoming and two

outgoing pipes.
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Chapter 5

Time Domain Simulations of the

Dynamics of River Networks

This chapter deals with the modeling and simulations of river networks. For each

component of the network, the flow of water is described by the shallow water equa-

tions. At the intersections of connected rivers, we propose some coupling conditions

that express, for example, the conservation of the mass of water or the equality of

the water height. These coupling conditions are then used for the simulation of some

classical river confluences. The results presented in this chapter appeared in [76].

5.1 Introduction

We consider the simulation over time of the dynamics of river networks. We assume

that the flow in each river is described by the shallow water equations [43] and

we resolve the dynamics by using some coupling conditions at the confluences of

the rivers. Other approaches have been considered in the literature. Schulz and

Steinebach [97] propose the use of two dimensional models in the case study of the

Rhine river in Germany. Rissoan et al. [94] and Goutal et al. [57] suggested the

use of a coupling of a two dimensional model and a one dimensional model at the

confluence of the rivers.

106
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Here we consider a one dimensional shallow water equations for the flow of water in

each component of the network and at the confluence or junction, we use the the

coupling conditions proposed by Rademacher et al. [99].

These coupling conditions are algebraic equations describing the relationship

between the connected rivers at the intersection. The dynamics of the volume of

water in a reservoir or a storage basin is modeled by a function of the flux of water

into and out of the reservoir. This can be described by a system of differential

equations.

The numerical integration of the shallow water equation plays an important role

in the numerical simulations. Here we use a well-balanced upwind scheme. There

exists several numerical methods for the numerical solution of the shallow water

equations. The basic ideas have been discussed in Section 2.4. Moreover, these

schemes need to satisfy some specific conditions, namely, the well-balanced property

which requires that for steady state solutions, the convective part of the system

of conservation law balances the source term; the positivity of the water height

property which requires that at each step of the computation, the water height

remain positive. This later property ensures that the computed solution remain

physically relevant. Examples of such schemes can be found in [85, 108, 44, 45] or

in the recent publications [2, 18].

The rest of this chapter is organized as follows. In Section 5.2, we introduce

the formulation of the shallow water equations used to model the flow of water in

the rivers. The properties of this system of conservation laws is reviewed and some

parameters describing the characteristics of the flow are introduced. In Section 5.3,

we present the coupling conditions used at the confluence of rivers’ reaches. These

are mainly the continuity of the water level at the intersection and the conservation

of mass of water through the junction. In Section 5.4, numerical schemes used

to solve the flow equation and the implementation of the coupling conditions are

discussed. Some numerical examples are used to demonstrate the robustness and

the efficiency of this approach.
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5.2 Modeling the Dynamics of a River

An open channel flow is a flow system in which the top surface of the fluid is exposed

to the atmosphere. Rivers and dams fall under this definition. In this section, we

will present the modeling of the rivers, dams and thereafter define the coupling

conditions necessary for a network.

5.2.1 The Shallow Water Model

To model the flow of water in a river the conservation of mass and momentum

of the flow is considered. The model is derived from the depth averaging of the

incompressible flow models. In general, to model the conservation of mass along the

flow direction in a channel of arbitrary cross-section one considers the cross-sectional

area of water A [L2], at time t[s] and point x [L] as presented in Figure 5.1. At any

position x along the river, the rate of change of the cross-sectional area of the river

is a result of the gradient of the total volume flow rate also known as discharge

Q. This might be balanced by other mass source or sink terms Sm (for example,

rainfall, evaporation, seepage, runoff) to give equation (5.1a) in which ∂t is a partial

derivative with respect to time and ∂x is a partial derivative with respect to space.

One also refers to Sm [L2/T ] as the volume flux per unit length into the stream.

Equation (5.1b) describes the balance of momentum: the rate of change of the

discharge depends on the flow of momentum, Q2/A, the hydrostatic pressure term

I1, the effect of the forces exerted by the channel walls on the flow I2, the bottom

slope of the channel S0, and the frictional forces at the bottom Sf .

∂tA + ∂xQ = Sm (5.1a)

∂tQ+ ∂x

(
Q2

A
+ gI1

)
= g (I2 + A(S0 − Sf)) . (5.1b)

Here, A(x, t) is the wetted cross-section area:

A(x, t) =

∫ B(x)+h(x,t)

B(x)

σ(x, y) dy,
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Figure 5.1: Cross section at x (left) and side view of the river (right)

while x is the longitudinal position in the river. The river is assumed to be of

length L and t is time. The hydrostatic pressure term, I1 = I1(x, h) is defined as

I1 =

∫ B(x)+h

B(x)

(h− y)σ(x, y)dy, (5.2)

where σ is the channel breadth, h the channel depth and y the coordinate in the

vertical direction. On the other hand I2 = I2(x, h) is the term that accounts for

the forces exerted by the channel walls at the contractions and expansions due to

longitudinal width variations

I2 =

∫ B(x)+h

B(x)

(h− y)
∂σ

∂x
(x, y)dy. (5.3)

Note that h = h(x,A) is the water depth. Due to their geometric interpretation, we

have that

σ(x, y) > 0 for all x ∈ [0, L] and y ≥ 0. (5.4)

The bottom slope S0 is given by

S0 = −dB
dx

(x) (5.5)

where B = B(x) describes the bottom topography (bottom elevation) of the chan-

nel. Any erosion effects are likely to happen in a much longer time scale than the

dynamics of interest in this chapter. The friction term is given as

Sf = −n
2
mQ|Q|
A2R4/3

(5.6)
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where nm is the Manning’s roughness coefficient, given in tables, see for example

[84]; and the hydraulic radius R = A/P, P being the wetted perimeter of the river

at position x.

When the channel cross section is locally rectangular, triangular or trapezoidal, the

pressure force integrals I1 and I2 can be expressed as

I1 = h2

(
σ0

2
+
hZ

3

)
, I2 = h2

(
1

2

∂σ0

∂x
+
h

3
Zx

)

where σ0 is the channel bottom width (with σ0 = σ for rectangular channel) and Z

is the slope of the channel (vertical to horizontal). For the case of rectangular cross

section, the model (5.1) takes the simplified form

∂tA+ ∂xQ = Sm (5.7a)

∂tQ+ ∂x

(
Q2

A
+

1

2
gσh2

)
= gh

(
1

2
hσ′ − σB′

)
, (5.7b)

where the prime stands for the derivative with respect to the space variable x. The

convective part of the model (5.7), that is the model (5.7), with a vanishing right

hand side, is strictly hyperbolic. Indeed, the Jacobian matrix of the flux function is

given by

J =

(
0 1

gA
σ
− u2 2 u

)
,

where u = Q/A is the stream-wise velocity of the fluid. The eigenvalues and eigen-

vectors are given by λ∓ = u ∓
√
gA/σ and e∓ = (1, λ∓)T , respectively. Therefore

when A/σ > 0, the system (5.7) is strictly hyperbolic.

We assume a rectangular channel, so that

A = σ h and Q = Au = σ h u

and substituting in (5.7) we recover, by dividing by σ and assuming that Sm = 0,

the usual form of the shallow water equations in terms of the water height h,

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x

(
h u2 + g

2
h2
)

= −ghB′.
(5.8)
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In the rest of this chapter, we will be mainly interested in the water height w = h+B

(see Figure 5.1) and the quantity hu that we denote again for clarity as Q = hu.

Simple algebra helps to transform (5.8) to

∂tw + ∂xQ = 0

∂tQ+ ∂x

(
Q2

w−B
+ g

2
(w − B)2

)
= −g(w − B)B′.

(5.9)

It is this form of the shallow water equations that we will later use for the numerical

simulations.

Since the original form of the shallow water equations [44] are derived under

the assumptions of the conservation of the volume of water without taking into

account the effect of rainfall, evaporation and seepage, we choose the source term

in the mass balance equation to account for these effects. To fix ideas, we choose a

source term that takes into account rainfall, evaporation, seepage and infiltration.

This information is obtained by measurement and is given in the literature by coarse

models derived from the interpolation of data [57, 65] . The rainfall rate, r(t), can be

obtained from a meteorological station situated near the river. The evaporation rate,

e(t) depends on the surface of the river and the weather. Seepage and infiltration

rate, s(t), depend on soil water content and groundwater resources. Putting these

together, the source term is then given by

Sm(t) = r(t) − e(t) − s(t).

We conclude this section by pointing out some flow behaviors that arise in the

simulation of river flows.

5.2.2 Characteristics of the flow

We briefly discuss the characteristic of the flow in open-channels. One parameter

that characterizes the flow in an open channel is the Reynolds number. It is given

by

NR =
|u|R
ν

(5.10)
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where u is the average velocity of the flow, R is the hydraulic radius and ν is the

kinematic viscosity of the fluid. Laminar flow occurs when NR < 500 and turbulent

flow occurs when NR > 2000. The transition region corresponds to the Reynolds

number in the range 500 to 2000, see [84]. Besides the viscosity versus inertial forces

that are captured by the Reynolds number, the ratio of inertial forces to gravity

forces, given by the Froude number, plays an important role in the characterization

of open channel flows. It is given by

NF =
|u|√
gyh

(5.11)

where yh, called the hydraulic depth, is given by yh = A/T with A being the wetted

cross-section area and T being the width of the free surface of the fluid at the top

of the channel. When the Froude number is equal to 1.0, that is, when |u| =
√
gyh,

the flow is called a critical flow. When NF < 1.0, the flow is subcritical (or fluvial)

and the flow is dubbed supercritical (or torrential) when NF > 1.0, see [84].

When one consider a channel with a locally rectangular cross section, the Froude

number simplifies to

NF =
|u|√
gh
,

where h is the water height. This expression is closely related to the eigenvalues of

the flux function of the shallow water equations in this case.

5.3 Coupling of confluencing rivers

We index the rivers and the quantities associated with them by i ∈ I = {1, . . . , n}.
We label the locations of the end points of the canals and dams, which we shall refer

to as nodes, by j ∈ J = {1, . . . , m}.We distinguish between multiple nodes, indexed

by j ∈ JM , at which various rivers come together, and simple nodes, indexed by

j ∈ JS, which are endpoints of a single river. For j ∈ J , we introduce

Ij = {i ∈ I : the ithriver meets the jth node}.
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For each river i ∈ I, the dynamics is described by the model (5.9), that is,

∂twi + ∂xQi = 0, (5.12a)

∂tQi + ∂x

(
Q2

i

wi − B
+

1

2
g(wi − Bi)

2

)
= −g(wi − Bi)B

′
i, (5.12b)

where Bi is the bottom elevation in channel i. We will look at different common

types of intersection that are encountered in real life water networks.

5.3.1 Intersection of three rivers with the same strength

Here we consider three rivers of equal strength (i.e. similar breadths and wetted

cross-sectional areas) meeting at a node 1. The configuration is depicted in Fig-

ure 5.2.

In this case, we prescribe the Rankine-Hugoniot condition at the junction:

Q3 = Q1 +Q2.

This condition simply ensures that the volume flux in reach 3 at the intersection is

equal to the volume flux from reach 1 and reach 2. We also impose equal water level

at the intersection, that is, we have at the junction,

w3 = w2 = w1.

These conditions are physically motivated and ensure the conservation of mass of

water as well as the continuity of the water height at the junction.

5.3.2 Intersection of a river and a tributary

Now we consider the confluence of a large river and a small tributary as shown in

Figure 5.3. The width of the tributary is assumed to be small compared to that of

the main river. We are mainly interested in the influence of the tributary on the

main river downstream from the confluence point. One can consider a model for

which the water flow in the tributary is computed first and then, the data is used as
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1

2

3

Node 1

Figure 5.2: Junction of three rivers of equal strength

a source term for the computation in the main river. With this one way coupling, it

is hardly possible to take into account flow information from the large river into the

model of the tributary. We will assume here that the rivers are well instrumented.

Precisely, we assume that there is a gauge station located directly downstream the

relevant tributary at the confluence point . Therefore, the water level information

wg(t), from the gauge station is used for a lower boundary condition for the tributary,

w1(t, x̄) = wg(t). (5.13)

Once the tributary model has been run, its calculated outflow at the junctionQ1(t, x̄)

must be considered as a lateral inflow

Sm2 =

{
0 if x < x̄,

Q1(t, x̄)/(x− x̄) if x > x̄,

to the main river after the confluent point. This ensures that the tributary affects

the main river near to the junction only. Far from the junction, the effect of the

tributary on the main river vanishes. For the implementation, the condition x−x̄ < 0

may be replaced by the more practical one |x− x̄| < ε where ε > 0 is a very small

number.
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1

2

x̄

Figure 5.3: A river and its tributary

5.3.3 Coupling conditions for a weir and a storage basin

A weir is modeled by splitting the river into a reach upstream and a reach down-

stream the weir. The downstream boundary condition of the upstream reach is given

as in (5.13), that is

wupstream = f(Qupstream, t).

Some rivers are steered in a way that the water level directly upstream of the weir

is practically constant over time. This translates in the new coupling condition

wupstream = Constant.

In any case, the upstream water level at the downstream reach needs to be smaller

than the water level downstream of the upstream reach. When floods occur, this

condition can be violated. Then, to ensure a good resolution of the flow equation,

the boundary condition at the downstream of the upstream reach needs to have the

form [99]:

wupstream(t) = max {wdownstream(t), f(Qupstream, t)} .

For the discharge, we prescribe naturally the conservation of mass at the interface:

Qupstream = Qdownstream.

The effective flow area is treated as interconnecting storage basins, for which a

relation between storage volume and water level is known or assumed. The flow

calculation between the basins is based on the continuity of volume for each basin
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and non-inertial flow laws between basins. Continuity of volume in a reservoir or

storage basin j is expressed as [57]

∂Vj

∂t
=

n∑

i=1

Qij, (5.14)

where Vj [m3] is the volume of water in the basin j; n is the number of connections

leading to basin j, Qij [m
3/s] is the discharge from basin i to basin j or from river

i to basin j.

5.4 Numerical Approach to Approximate Net-

work Dynamics

A simple discretization of the shallow water equation may follow a standard finite

volume approach as presented in Section 2.2. From the cell averages

vj =
1

∆xj

∫ xj+1/2

xj−1/2

v(x, t)dx

an integration of the non homogeneous conservation law

∂tv + ∂xf(v) = g(v)

over Ij = [xj−1/2, xj+1/2] leads to

∂tvj = − 1

∆xj

(
f(v(xj+1/2, t)) − f(v(xj−1/2, t))

)
+

1

∆xj

∫ xj+1/2

xj−1/2

g(v)dx. (5.15)

As in Section 2.4, one can write the scheme (5.15) in the semi-discrete form

d

dt
Vj = −

Hj+ 1
2
−Hj− 1

2

∆x
+Gj (5.16)

where Hj+ 1
2

is the numerical flux and Gj is an approximations of the source term

in the cell Ij,

Gj ≈
1

∆xj

∫ xj+1/2

xj−1/2

g(v)dx.
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Gj can be obtained with an integration quadrature. Here we use the mid-point rule.

The shallow water equation admits steady states solution (lake at rest, for example);

therefore a numerical solution should preserve such a solution and, more generally,

its small perturbations. A numerical scheme that satisfies this condition is known

as a well-balanced scheme. Another desirable property for a numerical scheme for

the shallow water equation is that of positivity preserving. This property ensures a

correct resolution of dry bed where the water depth is very small. In this case, due

to inherent numerical oscillations, the water height can take a non-positive value

and can lead to nonphysical solutions. Some example of schemes satisfying these

properties are presented in [108, 44, 45, 74]. In [45] the numerical solution of the

shallow water equation was found as the kinetic limit of a relaxation system.

For the simulation of confluencing rivers, we discretize the simulation time ts

according to the mesh tn = n∆t for n = 0, 1, ..., N where N satisfies ts = N∆t.

For each simulation step, we solve the flow equation for t ∈ [tn, tn+1], we adjust

the coupling and boundary conditions and iterate the process. These steps are

summarized in the flow diagram presented in Table 5.1.

• Start with initial data in each river such that the coupling and boundary

conditions are satisfied.

• For each simulation time interval [tn, tn+1] do the following:

• Solve the flow equation for each river for t ∈ [tn, tn+1];

• Adjust the boundary and coupling conditions.

Table 5.1: Flow diagram for the computer program for the simulations

5.5 Numerical Examples and Results

Now we consider some examples of water network simulations.
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5.5.1 Dam-break wave simulation

We consider the dam-break problem in a rectangular channel with flat bottomB = 0.

This is a well known problem in water waves simulation. For more details, we refer

the interested reader to [44, 108, 98].

We compute the solution on a channel with length L = 2000m for time t = 20s and

with initial condition

u(x, 0) = 0,

h(x, 0) =

{
h1, x ≤ 1000

h0, x > 1000.

with h1 > h0. We consider two cases both with h1 = 10 m: Case (a) the depth ratio

h0/h1 = 0.7 and case (b) the depth ratio h0/h1 = 0.01. The dam collapse at time

t = 0 and we have a shock wave (bore) traveling downstream, a rarefaction wave

(depression wave) traveling upstream (see Figure 5.4).

For case(a), the flow remains subcritical throughout the channel where as for

case (b) the flow is supercritical in the vicinity of the dam and subcritical far away

from the dam which is situated at x = 1000, see Figure 5.5.

5.5.2 Simulation of three connected rivers of equal strength

The setup for this simulation is as described in Section 5.3.1. We consider three

rivers of equal strength meeting at the junction. The flow in each river reach is

simulated by the numerical discretization of the shallow water as described above

and the coupling conditions are introduced as interior boundary conditions. Here

as in the case of the dam-break wave simulation, we assume that the rivers have a

flat bottom. To drive the flow, we introduce a dam–break in each river.

We assume that the three rivers have equal length L = 2000m. The bottom

topography is the same in each river i.e B1 = B2 = B3 = 0.5 m. The first and second

river are incoming to the junction and the third river is outgoing. The confluence

is at x = 0. The results for the numerical simulations for the water levels and the

discharges in each river are shown in Figure 5.6 and Figure 5.7. There appears a
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Figure 5.4: Water level (left) and discharge (right) for the dam-break problems

hydraulic jump in the first river which dissipates at the intersection. The flow in

the third river is more uniform. This results from the effect of the intersection. The

complex dynamics in the first river and the second river lead to a more stable and

uniform flow in the third river.

5.5.3 Simulation of a main river with a tributary

Here we use the coupling mechanism presented in Section 5.3.2. The width of the

tributary is chosen so that it is a tenth of the width of the main river. The elevations

of the river beds are assumed to be constant. Here we are interested in the effect of
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Figure 5.5: Froude Number for the dam-break problem with the depth ratio h0/h1 =

0.7 (left) and h0/h1 = 0.01 (right)
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Figure 5.6: Water level in each river at time t = 40s for the simulation of three

rivers of same strength
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Figure 5.7: Discharge in each river for the simulation of three rivers of same

strength

the tributary on the main river. A dam break is driving the flow in the tributary river

with the downstream initial water height being h = 4m. We start the simulation

with water flowing at constant height and velocity in the main river. The initial

water height is h = 4.0m and the initial discharge is q = 0.45m2/s. We plotted in

Figure 5.8 the water levels and the discharge in the main river. We can see that the

influence of the tributary on the main river is limited to the neighborhood of the

confluence region located at x = 1000m downstream the main river.

5.5.4 Simulation of a reservoir or a storage basin

Here we consider a reservoir with arbitrary geometry. We assume that a river, say

river 1 flows into the reservoir and another river, river 2, flows out of the reservoir.

We are interested in the volume of water in the reservoir. The dynamics of that

volume of water follows the model equation (5.14) with n = 2. Here one can assume
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Figure 5.8: Water height (left) and discharge (right) in the main river at time

t = 15s. The influence of the tributary on the main river is more relevant about

x ∈ (950, 1200), that is a neighborhood of the location of the tributary.

that there is a pumping station located upstream of river 1. When the filling capacity

of the reservoir is reached, the pump is switched off and the water level in river 1 and

river 2 remain constant with the same discharge; leading to a constant volume of

water in the reservoir. This behavior is well seen in the simulation results presented

in Figure 5.9. The initial volume of water in the reservoir is given by V0 = 1000m3

and the simulation is carried out for time span of ts = 80 seconds.

5.6 Concluding Remarks

In this Chapter, we have reviewed and implemented some coupling mechanisms at

the confluences of a river network. The proposed coupling conditions for the case

of three confluencing rivers are very similar to the cases studied by Colombo et al.

[33, 32, 38] for the p-system or by Banda et al [10] for the multiphase drift-flux

model. These authors considered the case of a network of pipes. Further work will

include the coupling of supercritical flow, or the case of time dependent flow beds.
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Chapter 6

The Use of the Shallow Water

Equations for the Simulation of

Pooled Stepped Chutes

6.1 Introduction

In recent years, stepped spillways have become more popular to discharge flood

waters because of their good energy dissipation and low cavity risks. Important

research in the hydraulic community has focused on the investigation of the complex

flow and provided guidelines for the design of such hydraulic structures. These

structures have been tested and validated experimentally, and some empiric formula

were derived by Boes and Hager [13] to find the water height at any point in a canal

with pooled stepped chutes.

In this chapter, we consider the flow of water in such canals with pooled stepped

chutes. Differently from the hydraulic community, we consider that the water flow

is modeled by the shallow water equations. Moreover, we compute independently

the water flow between the horizontal steps and we coupled the dynamics using

suitable coupling conditions. This work has two important objectives. Firstly, we

validate the coupling conditions of the type discussed in the previous chapters with

124
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the results from the literature and secondly, we propose a new computational tool

for the analysis of pooled stepped chutes. The rest of the chapter is organized as

follows. The formulation of the water model is presented in Section 6.2. Also,

in the same section, we solve analytically and numerically the standard Riemann

problem. This is an important preliminary step for the solution for coupled rivers.

In Section 6.3, we present the dynamics for two coupled rivers in the framework of

a Riemann problem at the dam. We propose some coupling conditions motivated

by the physics of the problem and we prove a result for the existence of a solution

satisfying some technical conditions. In Section 6.4, we present some numerical

results of the simulation of the dynamics. Moreover we compare the water height at

the dam obtained with the coupling conditions and an empirical formula obtained

in the hydraulic community via experiments. The two results agree in the sense that

the error is “small”.

6.2 Model formulation and preliminary results

Here we are interested in the shallow water equation in 1D given by

{
∂th + ∂xq = 0,

∂tq + ∂x(
q2

h
+ 1

2
gh2) = 0,

(6.1)

where h is the water height and q = hu is the discharge. A source term that accounts

for the bottom topography or friction can be added to this model depending on the

applications. As discussed in Chapter 5, the flow is generally characterized by the

Froude number defined as

Fr =
u√
gh
.

The flux function for the shallow water equation f(h, q) = (q, hu2 + 1
2
gh2)T enjoys

the following properties. The eigenvalues and eigenvectors of the Jacobian matrix
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of the flux function are given by

λ1(h, q) = q
h
−
√
gh, r1(h, q) =

(
1

λ1(h, q)

)
;

λ2(h, q) = q
h

+
√
gh, r1(h, q) =

(
1

λ2(h, q)

)
.

(6.2)

In the rest of the chapter, we restrict ourselves to the subsonic region of the states

(h, q) such that

λ1(h, q) < 0 < λ2(h, q). (6.3)

The 1- and the 2- field are genuinely nonlinear since ∇λ1(h, q) · r1(h, q) = −3
2

√
g
h

and ∇λ2(h, q) · r2(h, q) = 3
2

√
g
h
. The (standard) Riemann problem for (6.1) consists

of the conservation law equation (6.1) and a Heaviside-type initial data

(h, q)(x, 0) =

{
(hl, ql) if x < 0,

(hr, qr) if x > 0,
(6.4)

where the left state Ul = (hl, ql) and the right state Ur = (hr, qr) are given. The

construction of the exact solution of the Riemann problem follow the standard tech-

niques. One introduces the admissible Lax shock curves, S±
1,2, emanating from a

state (h̄, q̄) as the solution of the Rankine-Hugoniot jump condition [78] and the

admissible rarefaction curves, R±
1,2, as integral curves of the eigenvectors r1 and r2

and obtain the admissible Lax curves given by

L+
1 (h, h̄, q̄) =

{
S+

1 (h, h̄, q̄) = q̄
h̄
h− (h−h̄)

2h̄

√
2g(h̄2h+ h̄h2) h ≥ h̄

R+
1 (h, h̄, q̄) = q̄

h̄
h− 2

√
g(
√
h−

√
h̄)h h ≤ h̄;

(6.5a)

L−
1 (h, h̄, q̄) =

{
S−

1 (h, h̄, q̄) = q̄
h̄
h− (h−h̄)

2h̄

√
2g(h̄2h+ h̄h2) h ≤ h̄

R−
1 (h, h̄, q̄) = q̄

h̄
h− 2

√
g(
√
h−

√
h̄)h h ≥ h̄;

(6.5b)

L+
2 (h, h̄, q̄) =

{
S+

2 (h, h̄, q̄) = q̄
h̄
h + (h−h̄)

2h̄

√
2g(h̄2h+ h̄h2) h ≤ h̄

R+
2 (h, h̄, q̄) = q̄

h̄
h+ 2

√
g(
√
h−

√
h̄)h h ≥ h̄;

(6.5c)

L−
2 (h, h̄, q̄) =

{
S−

2 (h, h̄, q̄) = q̄
h̄
h+ (h−h̄)

2h̄

√
2g(h̄2h+ h̄h2) h ≥ h̄

R−
2 (h, h̄, q̄) = q̄

h̄
h + 2

√
g(
√
h−

√
h̄)h h ≤ h̄.

(6.5d)
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The shock speeds are given by

s1,2 =
q̄

h̄
∓

√
g

h̄
√

2

√
hh̄(h+ h̄). (6.6)

The solution of the Riemann problem is then found as a juxtaposition of fixed

states separated by the Lax curves. For given left and right states, the solution

for the Riemann problem is constructed as in Figure 6.1 where we present also a

numerical computation of the water height using a Godunov scheme. As expected

the solution consists of a rarefaction wave traveling to the left and a shock wave

moving to the right.
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Figure 6.1: The exact construction of the solution of the Riemann problem for the

shallow water equation via the Lax curves(left) and a computed numerical solution

(right).

Remark 6.1. From the subsonic hypotheses (6.3), we see that waves traveling on

the 1-Lax curve have non-positive speed. Indeed, we have

ds1

dh
(h, h̄, q̄) = −1

4

√
2g(h̄+ 2h)√
ghh̄(h+ h̄)

< 0 ∀h, h̄ > 0. (6.7)

Therefore, along the 1-shock curve, the shock speed is decreasing. Moreover,

s1(h̄, h̄, q̄) = λ1(h̄, q̄) < 0. Hence, the shock speed remains non-positive for h ≥ h̄.

The rarefaction curves travel at the characteristic speed λ1(h, q) which is non-positive

in the subsonic region (6.3).
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6.3 Dynamics at the stepped chute

Now we consider a pooled stepped chute as illustrated in Figure 6.2. We assume

that the upstream reach (or river) is represented by the interval x < 0 and the

downstream reach by x > 0 and the step, that we call a dam, is located at x = 0.

This is a standard step in a pooled stepped chute canal. The step has a height of

H2m and a weir of height H1m is added above the step. In each river, the shallow

h1

h2

H1

H2

Figure 6.2: A pooled stepped chute with a weir(dam).

water equation is assumed to govern the flow. The Riemann problem at the dam is

defined as followed.

Definition 6.1. The Riemann problem at the dam consists of the shallow water

model (6.1) {
∂th + ∂xq = 0,

∂tq + ∂x(
q2

h
+ 1

2
gh2) = 0,

in the upstream river x < 0 from the dam and in the downstream river x > 0 from

the dam with constant initial data, that is, U(x, 0) = U1,0 = (h1,0, q1,0) for x < 0 and

U(x, 0) = U2,0 = (h2,0, q2,0) for x > 0.

It is clear that the case H2 = H1 = 0 corresponds to the standard Riemann

problem presented in the previous section. We start the analysis of the problem

by considering the case where H2 = 0. This leads to the situation presented in

Figure 6.3. The solution of the Riemann problem at the dam is defined as follows.
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Figure 6.3: Two connected rivers with a dam and H2 = 0.

Definition 6.2. A function U : R × [0, T ] → R
+ × R is said to be a solution to the

Riemann problem at the dam with initial data U1,0 = (h1,0, q1,0) and U2,0 = (h2,0, q2,0)

if U coincides with the restriction on x < 0 of the solution to the standard Riemann

problem with initial data

U(x, 0) =





U1,0 if x < 0

lim
x→0−

U(x, t) if x > 0

and with the restriction for x > 0 of the solution to the standard Riemann problem

with initial data

U(x, 0) =





lim
x→0+

U(x, t) if x < 0

U2,0 if x > 0

and the left and right limits { lim
x→0−

U(x, t), lim
x→0+

U(x, t)} satisfy coupling conditions

to be defined below .

We are interested in finding suitable coupling conditions for the construction of

an admissible solution of the Riemann problem at the dam. As the first possible

and straightforward coupling condition, we prescribe the conservation of the mass

of water and conservation of momentum at the dam. We do that in a very subtle

way since we are modeling a flooding phenomenon. Unlike the case of flow of gas

at an intersection of pipes where the conservation of mass assume that all the gas

that comes in goes out, here only the mass of water that is above the dam of height

H1 is conserved at the dam. So the coupling conditions read

[(h1 −H1)u1] (0, t) − (h2u2)(0, t) = 0 ∀t ≥ 0, (6.8)[
(h1 −H1)u

2
1 +

1

2
g(h1 −H1)

2

]
(0, t) −

[
h2u

2
2 +

1

2
gh2

2

]
(0, t) = 0, ∀t ≥ 0. (6.9)
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The coupling conditions (6.8) and (6.9) can be written in the form of a map, omitting

(0, t)

Ψ(h1, q1, h2, q2;H1) = (Ψ1,Ψ2) = 0, (6.10)

where the two components of Ψ, Ψ1 and Ψ2 are given respectively by the left hand

side of the equalities (6.8) and (6.9).

It is expected that in the absence of the dam, the two connected rivers behave

like a standard Riemann problem. Therefore, we consider intermediary states U∗
l =

(h∗l , q
∗
l ) on the forward 1-curve through Ul and U∗

r = (h∗r , q
∗
r) on the backward 2-

curves through Ur :

q∗l = L+
1 (h∗l , hl, ql), (6.11a)

q∗r = L−
2 (h∗r , hr, qr), (6.11b)

and the Riemann problem at the dam is solved if these intermediary states satisfy

the coupling conditions, i.e.,

Ψ(h∗l , q
∗
l , h

∗
r, q

∗
r ;H1) = 0.

There are two cases to consider in this analysis. One is when the upstream

water height is above the dam hl > H1 > hr and the other case corresponds to the

situation when the water height at both sides of the dam are less than the dam

height i.e. hl < H1 and hr < H1. In this later case, we have simply two uncoupled

half line boundary value problems. We then focus below only on the first case that

is of interest here

6.3.1 Case 1: hl > H1 > hr

We assume that

H1 = hr + α(hl − hr), α ∈ (0, 1)

such that we obviously have hr < H1 < hl. We want to find the states U∗
r and U∗

l

as in (6.11) which satisfy the coupling conditions (6.8)-(6.9). We assume that the

intermediary states U∗
l belong to the forward 1-rarefaction through Ul and U∗

r to the
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2-shock curve through Ur. When we instead have a 1-shock connection to the left

state Ul and a 2-rarefaction connection to the right state Ur, similar arguments apply.

We have that

d

dh
R+

1 (h; hl, ql) =
ql
hl

− 3
√
gh+ 2

√
ghl and

d2

dh2
R+

1 (h; hl, ql) = − 3g

2
√
h
.

Moreover, we know that d
dh
R+

1 (0;hl, ql) = ql

hl
+ 2

√
ghl > 0 and d

dh
R+

1 (hl; hl, ql) =
ql

hl
−

√
ghl = λ1(Ul) ≤ 0 thanks to the subsonic conditions (6.3). Therefore,

d
dh
R+

1 (h; hl, ql) is a decreasing function ranging from a positive number to a negative

number. We can then find a water height value h̃ such that d
dh
R+

1 (h̃; hl, ql) = 0. h̃

can be determined explicitly as

h̃ =
1

g

(
ql
3hl

− 2

3

√
ghl

)2

.

We choose h∗l such that h∗l ∈ (h̃, hl) and h∗r such that h∗r ∈ [hr, hr + ε).

To conclude, we use the implicit function theorem in the open set (h̃, hl + ε) ×
(hr − ε, hr + ε) with ε > 0 a small number, and the map

Φ(h, k, Ul, Ur)
.
= Ψ

(
h, L+

1 (h; hl, ql), k, L
−
2 (k; hr, qr), H1

)
.

Provided the initial data satisfy the coupling conditions, we have

Φ(hl, ql, hr, qr;H1) = 0

and the Jacobian matrix

J
.
=
DΦ(h, k, Ul, Ur)

D(h, k)
|(h,k)=(hl,hr) (6.12)

satisfy

Det(J) = − 1

h
5/2
l

(
h2

l λ1(Ul)λ2(Ur)
[
λ2(Ur)

√
hl +

√
g(hl −H1)

]

+
√
hl

(
λ2(Ur)

√
gh

3/2
l H1 − q2

l

)
+ (hl −H1)

√
gqrqlhrhl

)
.

One can choose the data Ul and Ur as well as the dam height such that Det(J) 6= 0.

By the implicit function theorem, we obtain the existence of a unique solution of

the equation Ψ(h∗l , q
∗
l , h

∗
r, q

∗
r ;H1) = 0. We have then proven the following result.
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Theorem 6.1. Let Ul and Ur be two subsonic states satisfying the coupling con-

ditions (6.8)–(6.9) and such that hl > H1 > hr. Assume, furthermore, that

Det(J) 6= 0, where J is the Jacobian matrix in (6.12). Then the Riemann prob-

lem at the dam admits a solution in the sense of Definition 6.2.

Other coupling conditions can be prescribed instead of (6.9). As in the case of

the p-system, a model which share many properties with the shallow water model,

in [7], we assume the equality of pressure at the dam and then have instead of (6.9)

(h1 −H1)
2 = h2

2. (6.13)

Note that this expression comes from the fact that the hydrostatic pressure at a loca-

tion is proportional to the water height. Also, due to gravitational forces, we might

expect that the momentum in the downstream river results from the momentum in

the upstream river and a momentum due to an additional gravitational energy. This

additional momentum is proportional to the height difference between the upstream

reach and the downstream reach at the junction. If we call β the proportionality

constant, we obtain the following coupling conditions
[
(h1 −H1)u

2
1 +

1

2
g(h1 −H1)

2

]
(0, t) + βg(h1 − h2)(0, t) −

[
h2u

2
2 +

1

2
gh2

2

]
(0, t) = 0.

(6.14)

The constant β is determined from the fraction of the mass of the water that flows

from the upstream reach to the downstream reach.

These coupling conditions are combined with the Lax curves determined above to

find intermediary states that are used as internal boundary conditions for the nu-

merical solution of the dynamics of the flow at the dam.

Remark 6.2. If u1 = u2, then the coupling conditions (6.8, 6.9) are equivalent to

(6.8, 6.13). Indeed, by (6.8), we have

(h1 −H1)u1 = h2u2 or (h1 −H1)u
2
1 = h2u2u1.

Now (6.9) reads

(h1 −H1)u
2
1 +

1

2
g(h1 −H1)

2 − (h2u
2
2 +

1

2
gh2

2) = 0
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which is equivalent to

h2u2u1 +
1

2
g(h1 −H1)

2 − (h2u
2
2 +

1

2
gh2

2) = 0

or
1

2
g(h1 −H1)

2 − 1

2
gh2

2 = h2u2(u2 − u1) = 0

and the last equation is the same as (6.13).

It is worth noting that when the initial data satisfy hl > H1 > hr, then the

intermediary states h∗l and h∗r satisfy the same condition.This is made precise in the

following result.

Proposition 6.1. Let U0
l = (h0

l , q
0
l ) and U0

r = (h0
r , q

0
r) be given subsonic states such

that h0
l > H1 > h0

r and furthermore satisfy the coupling conditions (6.10):

Ψ(h0
l , q

0
l , h

0
r, q

0
r ;H1) = 0 (6.15)

as well as Det(J) 6= 0 where J is the Jacobian matrix in (6.12). Then there exists a

constant δ > 0 and neighborhoods of the states U0
l and U0

r such that for any initial

data U∗
l and U∗

r in the respective neighborhood, the Riemann problem at the dam,

see Definition 6.1, admits a solution (U1, U2) in the sense of Definition 6.2, with

h1 > H1 > h2.

Proof. Let us consider some perturbations Ul = (h, ql) and Ur = (k, qr) of

U0
l = (h0

l , q
0
l ) and U0

r = (h0
r, q

0
r), respectively, such that

ql = L+
1 (h;U0

l ) and qr = L−
2 (k, U0

r ).

Since the initial data satisfy the coupling conditions, we then have that the map

(h, k) 7→ Ψ(h, ql, k, qr;H1)

is smooth and satisfy

Ψ(h0
l , q

0
l , h

0
r, q

0
r ;H1) = 0 and | DΨ

D(h, k)
(h0

l , q
0
l , h

0
r, q

0
r ;H1)| 6= 0.
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By the implicit function theorem, we can find some neighborhoods of the states U0
l

and U0
r , denoted as B0

l and B0
r , respectively, and a constant δ > 0 such that for all

(U∗
l , U

∗
r ) ∈ B0

l × B0
r , there exists some heights (h, k) ∈ Bδ(h

0
l , h

0
r) and the solution

to the Riemann problem at the dam (U1, U2) is constructed as the restrictions to

the dam of the standard Riemann problem with data U∗
l and (h, L+

1 (h;U∗
l )) for the

upstream reach and (k, L−
2 (h;U∗

r )) and U∗
r for the downstream reach. Moreover, we

can choose δ such that h1 > H1 > h2. This complete the proof of the proposition.

6.3.2 The general case with H2 6= 0

A sketch of the situation here is depicted in Figure 6.2. We denote by h̃1 = h1 +H2

the water height in the upstream reach of the river from the common reference level

taken to be the bottom level of the downstream river. One can take the water

velocity in the upstream river to be the same as that of the case H2 = 0 so that

ũ1 = u1. By inserting (h̃1, ũ1) in the shallow water equations, we obtain an evolution

equation for (h̃1, ũ1) as

∂th̃1 + ∂x(h̃1ũ1) = H2∂xũ1 (6.16a)

∂t(h̃1ũ1) + ∂x

[
h̃1ũ

2
1 +

1

2
gh̃2

1

]
= H2∂t(u1 + ∂xũ

2
1 − g∂xh̃1). (6.16b)

This resulting system is not conservative due to the presence of a source term that

involves the derivatives of the flow variables. This situation poses serious problems

in the analysis due to the fact that for steady state solutions, we need to balance the

source term with the flow gradient. One can solve the problem by directly solving

the flow equation for the case H2 = 0 to obtain (h1, u1) and then obtain the flow

variable in the case H2 6= 0 as h̃1 = h1 +H2 and ũ1 = u1.

6.4 Numerical Results

Here, we test the efficiency of the coupling conditions proposed above by implement-

ing some examples. We discretize in the finite volume framework the shallow water
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equation using a Godunov type scheme. The space domain is subdivided into cells

Ii = [xi− 1
2
, xi+ 1

2
], with a constant mesh size ∆x = xi+ 1

2
− xi− 1

2
and the time domain

in cells [tn, tn+1], with the time step ∆t = tn+1 − tn chosen so as to satisfy the CFL

condition [79]. Considering the cell averages

v̄i(t) =
1

∆x

∫

Ii

v(x, t), dx

the first order Godunov scheme for a conservation law ∂tv + ∂xf(v) = 0 reads

v̄n+1 = v̄n − ∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
. (6.17)

Therein, the numerical flux function Fi+ 1
2

= F(v̄i, v̄i+1) is a map that depends on

the values of the flow in the neighboring cells of the interface xi+1/2 as was discussed

in Chapter 2. For the simulations, at each time step, we evolve the flow equations

for each river reach and adjust the boundary conditions. For the external boundary

conditions, we use the transparent boundary conditions. At the dam, we solve

numerically the coupling conditions presented in the previous section to obtain the

intermediary states that are used as internal boundary conditions at the dam. The

nonlinear solver used is a Broyden’s method with a Sherman-Morrison formula, see

[53].

6.4.1 The Riemann problem at the dam and the pooled

stepped chutes

To validate the coupling conditions proposed here for the shallow water equations

at the dam, we use some heuristic formulas from the engineering literature. These

formulas come from experiments and play an important role in the dynamics of

pooled stepped chutes.

The set up here is a channel with some pooled stepped chutes where each of the

steps has the form presented in Figure 6.4. From the hydraulic literature, see for

example [13, 101], one can compute the water height at any point x of the channel

with the formula [101]
z

H
= kA(

x

H
)2 + kB

x

H
+ kC (6.18)
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Figure 6.4: Geometry of the step with a dam.

and
z

H
= kA(

x

H
)2 + kB

x

H
+ kC + kD, (6.19)

with the constant kA, kB, kC , kD given as

kA = −0.43 + 0.25
u2

2gH

kB = 0.41 − 1.60
u2

2gH
−
√

1.57(
u2

2gH
)2 − 0.89

u2

2gH
+ 0.13

kC = 0.15 − 0.45
v2

2gH

kD = 0.57 − 2

(
u2

2gH
− 0.21

)2

e10(u2/(2gH)−0.21).

Here z is the water height at x = 0, H is the water height above the dam initially

and u is the velocity of the water at the dam, see Figure 6.4.

As we have seen before, the coupling conditions given by the equality of the

dynamic pressure and that of the equality of the water height give the same results

provided that the velocity on the left of the dam and on the right are equal. So we

consider in the numerical simulations only the two cases corresponding to (6.8, 6.9)

and (6.8, 6.14). In this section, we compare the result obtained with the coupling

conditions described above with the formula from the hydraulic literature (6.18)
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and (6.19). We assume that the upstream river corresponds to the interval [−20, 0]

and the downstream river corresponds to [0, 20] with the step or dam sitting at

x = 0. The results obtained with (6.19) compare well with that obtained with the

coupling conditions (6.8,6.9) and (6.8,6.14), see Table 6.1 and Table 6.2. In the

tables, the first column represent the dam height H1, the second column the initial

water height upstream the dam, the third column represent water height at the

dam z1
dam obtained with our simulation routine, the fourth column is the water

height at the dam z2
dam obtained from the experimental formula (6.19) and the last

column shows the absolute value of the difference of the two water heights at the

dam |z2
dam − z1

dam|. We see in these tables that the absolute error increases with the

dam height. However, the relative error with respect to the dam height, that is not

shown in the table, remains in the same range for the different dam heights.

Table 6.1: The water height at the dam obtained with the coupling conditions and

the experiments. The Lax curves and the coupling conditions (6.8),(6.9) are used.

H1 h1 z1
dam (simulation) z2

dam (experiments, (6.19)) |z2
dam − z1

dam|
8.00000 9.50000 6.24526 6.57208 0.32682

10.00000 12.50000 6.88066 8.49585 1.61519

15.00000 25.50000 15.65344 17.47017 1.81673

25.00000 27.50000 16.07635 18.87659 2.80024

35.00000 35.50000 21.12556 24.44513 3.31957

55.00000 59.80000 37.89507 41.37519 3.48012

For the two tests, we run the simulation up to time T = 0.5 seconds and we used

for the downstream flow h2 = 0.5, q2 = 0.0, q1 = 2.5

6.4.2 Dynamics with a small water height above the step

We consider a pooled stepped problem modeled as above with the data given by

Ul = (9.5, 2.5), Ur = (1.5, 0.0), H1 = 8.0.
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Table 6.2: The water height at the dam obtained with the coupling conditions and

the experiments. The Lax curves and the coupling conditions (6.8),(6.13) are used

with β = 0.0002

H1 h1 z1
dam (simulation) z2

dam (experiments, (6.19)) |z2
dam − z1

dam|
8.00000 9.50000 6.23834 6.57140 0.33306

10.00000 12.50000 6.82623 8.48875 1.66252

15.00000 25.50000 15.65283 17.47009 1.81726

25.00000 27.50000 16.07545 18.87649 2.80104

35.00000 35.50000 21.12486 24.44506 3.3202

55.00000 59.80000 37.89465 41.37515 3.4805

We compute the dynamics of the water heights and that of the discharge q = hu and

we present the results in Figure 6.5. To gain more insight into the dynamics of the
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Figure 6.5: Water height(left) and discharge (right) the solution of the Riemann

problem at the dam with the coupling conditions (6.8)-(6.9).

dam, we introduce a perturbation in the upstream reach of the river and investigate

how it influences the flow downstream of the dam. From the data reported above,

we replace the water height with a perturbation in the form

h′l = hl + δξ[−6,−4]
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where ξA is the characteristic function taking the value 1 in the set A and zero else-

where and with δ = 0.5. We present in Figure 6.6 the water height and the discharge

at the final time and in Figure 6.7 we plot the contour lines and the snapshot of

the water height. We see that the introduced perturbation moves backwards and

have a very small influence at the dam. From the perturbation, we have waves with

considerable strength moving backwards and waves of very small strength that ar-

rive at the dam. Those waves do not influence significantly the water height at the

downstream reach which remains steady.
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Figure 6.6: Water height(left) and discharge (right) with a perturbation in the

upstream river.

6.4.3 The general case

Now we consider some data for the Riemann problem at the dam given as

Ul = (52.5, 2.5), Ur = (0.5, 0.0), H1 = 25. (6.20)

We expect the effect of the dam to be seen clearly. At the upstream reach, because of

the small reaction of the dam and the free motion of water, there is a decrease in the

water height upstream with a rarefaction wave that forms and moves backward. At

the downstream reach, the water height increases because of the action of the water
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Figure 6.7: Contour lines and snapshots of the water heights for the perturbed

problem. The perturbations do not affect the dam.

pouring. A shock wave originates there and moves downstream. The flow properties

look steady far from the dam. The numerical results are depicted in Figure 6.8.
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Figure 6.8: Flow variables for the solution of the Riemann problem at the dam for

the data in (6.20).

Now we test a case where the water level in both rivers are nearly equal.

Ul = (52.5, 1.5), Ur = (50.0, 0.0), H1 = 25. (6.21)

The results are presented in Figure 6.9. The qualitative behavior of the solution is

similar to that of the previous example.
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Figure 6.9: Flow variables for the solution of the Riemann problem at the dam for

the data in (6.21).

For the two previous examples, we present the solution of the Riemann problem

at the dam in the xt-plane in Figure 6.10. One sees clearly that the admissible

solution has a shock wave moving backward (from the dam) and a rarefaction wave

moving forward.
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Figure 6.10: Solutions of the Riemann problem at the dam in the xt-plane. The

characteristic of the water height is plotted.
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6.5 Concluding Remarks

In this chapter, we have proposed a new approach to the simulation of pooled stepped

chutes. We assume that the flow is governed by the shallow water equations and the

dynamics are resolved by the use of some coupling conditions at each step or dam

in the channel. The results presented here have been validated using an empirical

formula obtained from experiments. In this chapter, we have concentrated on the

case of one step in the channel. The results can be extended to the case of a channel

with many steps in a straightforward way.
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Chapter 7

A Multi-scale Approach to the

Control of Systems Governed by

Partial differential Equations

The treatment of control problems governed by a system of conservation laws poses

serious challenges for the analysis and the numerical simulations. This is due mainly

to wave interaction that occur in the solution of nonlinear systems of conservation

laws. To solve that problem, we propose in this chapter the use of a linear approxima-

tion of the nonlinear system, specifically a lattice Boltzmann equations approach.

The idea of the lattice Boltzmann approach is to retain the simplest microscopic

description that gives macroscopic behavior of interest. By selecting appropriate

number of speeds and the appropriate form of the equilibrium distribution func-

tion, one may match the equations that result from the lattice Boltzmann method

with those of the traditional kinetic theory of interest to the desired level. In this

work, we are concerned with the optimal control of systems governed by the Euler

equations. We use an adjoint method and derive the optimality system using the

lattice Boltzmann equation at the microscopic level. The result is obtained at the

macroscopic limit using a multi-scale technique. Moreover, we consider the discrete

form of the optimization problem and prove that the solution of the optimization

144
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problems with the flow computed with first order and second order schemes are

similar. This allows us to use the first order scheme to solve more robustly some

practical test problems of interest. Part of the results presented in this chapter led

to [86, 106].

7.1 Introduction

The control of systems governed by a system of conservation laws is of great interest,

for example in aerodynamics [96, 66] and in shape optimization [90, 67, 91]. It is

usually formulated as an inverse problem where given some flow properties at the

final time T, one determines the initial flow that leads to the desired flow properties.

In aerodynamics, the problem in general consists of determining the shape of a

body (airplane, helicopter rotors) such that the lift is maximized or the drag is

minimized, the flow surrounding the body being given by a system of conservation

laws. It is known that in general the semi-group generated by a conservation law

is non–differentiable in L1 even in the scalar, one–dimensional case. A differential

structure on general BV−solutions for hyperbolic conservation laws in one space

dimension has been introduced and discussed in [12, 22, 25, 27, 104]. Based on the

derived calculus first–order optimality conditions for systems have been given in [29].

Theoretical discussion on the resulting non–conservative equations can be found in

[15, 16, 17]. Numerical results in the scalar, one–dimensional case with distributed

control are also presented in [103, 104, 105]. Work on advection equations has been

presented in [82]. Derivative-based approaches to control problems associated with

partial differential equations follow the usual Lagrangian approach. [58]. They all

start with a Lagrangian formulation and a formal derivation of the optimality system

that consist in general of the original constraints (systems of conservation laws)

which are recovered as the vanishing variation of the Lagrangian with respect to the

Lagrange multipliers or adjoint variable, the adjoint system or co-state equations

which are obtained when the variation of the Lagrangian with respect to the state

variable vanishes and the optimality conditions which come from the variation of
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the Lagrangian with respect to the control. For simple problems, one can solve

”in one shot” the optimality system and obtain a solution of the control problem.

This approach is considered as a solution of a control problem without optimization.

The two other approaches are iterative methods which consist of solving iteratively

the state equations and the adjoint equations or sensitivity equations and updating

the control using the optimality conditions. The sensitivity approach is suitable

when one has a finite and small number of controls [90] since one has as many

sensitivity equations as the number of controls. In the other case, one uses the

adjoint method for which one solves only one adjoint equation independently of

the number of controls. It appears then that the adjoint method is suitable for

problems with distributed controls that are effective in all the flow domain. For

these iterative methods, the flow equations are solved forward in time and the adjoint

system backward in time for unsteady problems. Due to the nonlinearity of the flux

function, some wave interactions can occur in the solution of the flow equations

and while solving the adjoint equations backward following the characteristics, the

interaction point of the wave poses a serious problem to the backward solver. One

might think of solving this problem by taking very small time steps that avoid these

wave interactions. However, this leads to a stability problem since those small time

steps can violate the CFL conditions.

In this chapter, we consider a control problem associated with the Euler equa-

tion and we propose for the solution of this problem the use of a linearization of the

flow equation. It consists of replacing the Euler equations by its kinetic approxima-

tion in the form of the lattice Boltzmann equation (LBE) [92, 93, 71]. In [5], the

same problem was considered for scalar conservation laws and a relaxation approach

was used[11, 14, 69]. In general, the Lattice Boltzmann Method solves the kinetic

equation of the discrete-molecular-velocity type such that the macroscopic variables

satisfy the fluid dynamics type of equations. The lattice Boltzmann model differs

from the macroscopic model in that it is linear in the transport term and therefore

can resolve the problem of wave interactions. The nonlinear effect is captured in the

so-called collision operator which appears as a source term in the LBE. The adjoint
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approach to the control problem is derived at the microscopic level using the LBE

and the macroscopic result is obtained at the hydrodynamic limit as the Knudsen

number goes to zero. We obtained a robust method that works well for many test

problems of interest.

The rest of this chapter is organized as follows. The formulation of the optimal

control problem as an optimization problem with partial differential equations is

presented in Section 7.2. We postulate that one can replace the PDE with its kinetics

approximation formulated as a Lattice Boltzmann problem. For the Euler equation,

more details on the finite velocities as well as the equilibrium distribution are given

in Section 7.3. We briefly in the same section discuss the convergence of the kinetic

model toward the hydrodynamic model. The derivation of the adjoint calculus

using the microscopic model formulation is presented in Section 7.3.2. Numerical

formulation of the optimization problem as well as the test of the method on practical

problems of interest are documented in Section 7.5. Some concluding remarks and

some future extensions are presented in Section 7.6.

7.2 Problem formulation

Here we consider the optimization problem

Minimize
u0

J (u(T, .),u0;ud) (7.1)

where J (u(T, .),u0;ud) is a cost functional to be made precise later and

u = (ρ, ρu, ρ(bRθ + u2)) solves the Euler equations in the form

∂ρ

∂t
+
∂ρu

∂x
= 0 (7.2a)

∂ρu

∂t
+
∂(ρu2 + p)

∂x
= 0 (7.2b)

∂ρ(bRθ + u2)

∂t
+
∂ (ρu(bRθ + u2) + 2pu)

∂x
= 0 (7.2c)

with the initial conditions

u = u0
.
= (ρ0, ρ0u0, ρ0(bRθ0 + u2

0)) at t = 0, (7.3)
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where t ∈ [0, T ], x ∈ R, ρ0, u0, θ0 are given initial density, velocity and temperature

as function of the space variable x. In (7.1), ud represents a desired state that needs

to be approximately achieved at time t = T. We will denote the momentum as

m = ρu and the energy as E = ρ(bθ + u2). The cost functional J (u(T, .),u0;ud)

can then be written more explicitly as

J (u(T, .),u0;ud) = 1
2

∫

R

‖u(x, T ) − ud(x)‖2dx

= 1
2

∫

R

[
(ρ(T, x) − ρd(x))

2 + (m(T, x) −md(x))
2

+(E(T, x) − Ed(x))
2] dx.

(7.4)

The solution of the optimal control problem (7.1) poses serious problems in practice

due to wave interaction that can occur in the solution of the flow equation (7.2).

These wave interactions are mainly due to the nonlinearity of the flow equations. We

then suggest in this chapter the use of a linear approximation of the flow equation,

the lattice-Boltzmann (LB) approximation, for the solution of the problem. This

leads to a multiscale problem with the kinetic LB equation at the microscopic level

and the Euler equation at the macroscopic level. We will derive the adjoint equations

using the microscopic model and obtain the results at the macroscopic level by a

multiscale technique.

7.3 A kinetic approximation of the Euler equation

In this section, we review for the purpose of the optimal control problem the Lattice

Boltzmann approximation of the Euler equation proposed by Kataoka and Tsuta-

hara [71]. In view of an extension of the problem for multidimensional situations,

we consider the Euler equation in more than one dimension and we introduce the

Greek subscripts α, β = 1, 2, . . . , D for the space dimensions with D = 1, 2, 3. We



7.3. A kinetic approximation of the Euler equation 149

then write the Euler equations as

∂ρ

∂t
+
∂ρuα

∂xα
= 0 (7.5a)

∂ρuα

∂t
+
∂ρuαuβ

∂xβ

+
∂p

∂xα

= 0 (7.5b)

∂ρ(bRθ + u2
α)

∂t
+
∂
(
ρuα(bRθ + u2

β) + 2puα

)

∂xβ
= 0 (7.5c)

where t is time, xα is the spatial coordinate, ρ, uα, θ and

p = ρRθ

are the density, the flow velocity in the xα direction, the temperature and the pres-

sure of a gas, respectively. The specific gas constant is denoted by R and b = 2
γ−1

is

a given constant with γ the specific heat ratio. Recall that α and β are subscripts

and the Einstein summation convention is used, i.e., repeated subscripts mean a

summation over the space coordinates. The initial conditions are

ρ = ρ0, uα = uα,0, θ = θ0 at t = 0, (7.6)

where ρ0, uα,0, θ
0 are given function of the space variable xα. A lattice-Boltzmann

approximation to the compressible Euler equations (7.5) is described as follows. Let

N + 1 be the number of particles. We denote by ξiα the molecular velocity of the

i−th particle of density fi in the xα direction. We introduce the variable ηi to

control the specific heat ratio and we denote by fi(t, xα) the velocity distribution

function of the ith particle. The macroscopic variables ρ, uα and θ are defined by

ρ =

N∑

i=0

fi, ρuα =

N∑

i=0

ξiαfi and ρ(bRθ + u2
α) =

N∑

i=0

(ξ2
iα + η2

i )fi. (7.7)

Now we denote as f = (f0, . . . , fN−1) the vectors of all particles densities and we

consider the initial-value problem for the kinetic equation

∂fi

∂t
+ ξiα

∂fi

∂xα
= Ωi(f), i = 0, . . . , N. (7.8)
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where the collision operator Ωi(f) is of the Bhatnager-Gross-Krook (BGK)-type

Ωi(f) =
f eq

i (ρ, uα, θ) − fi

τ
. (7.9)

and the initial conditions are given by

fi = f eq
i (ρ0, u0

α, θ
0) at t = 0. (7.10)

In (7.9), τ is a given constant called the relaxation time and the local equilibrium

distribution function f eq
i (ρ, uα, θ) is a given function of the macroscopic variables.

One can integrate the Lattice Boltzmann model (7.8) along characteristics to obtain

the classical form of the model [92]:

fi(t+ ∆t, xα + ξiα∆t) − fi(t, xα)

∆t
=
f eq

i (ρ, uα, θ) − fi

τ
, (7.11)

where ∆t is the discrete time step of order τ. In general, (7.11) is viewed as the two

steps process made of a collision step

f̃i(t, xα) = fi(t, xα) + ∆t
f eq

i (ρ, uα, θ) − fi

τ
, (7.12)

and a propagation step

fi(t+ ∆t, xα + ξiα∆t) = f̃i(t, xα). (7.13)

The form (7.11) is only one finite difference discretization of the Lattice Boltzmann

model (7.8). Therefore, for the purpose of deriving an adjoint calculus for the lattice

Boltzmann model, we consider the general form (7.8) in the rest of the presentation.

To recover from the lattice Boltzmann equation the Euler equation at the hydro-

dynamic limits, the following constraints are imposed on the moments of the local

equilibrium distribution f eq
i [71]:
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N∑

i=0

f eq
i = ρ, (7.14a)

N∑

i=0

f eq
i ξiα = ρuα, (7.14b)

N∑

i=0

f eq
i ξiαξiβ = pδαβ + ρuαuβ, (7.14c)

N∑

i=0

f eq
i (ξ2

iα + η2
i ) = ρ(bRθ + u2

α), (7.14d)

N∑

i=0

f eq
i (ξ2

iβ + η2
i )ξiα = ρ(

[
(b+ 2)Rθ + ρu2

β

]
uα. (7.14e)

It is convenient to use the non-dimensional form of the lattice Boltzmann model

(7.8). For that purpose, let L, ρ0 and θ0 be a reference length, density, and the

temperature,respectively. Then the non-dimensional variables are defined as

t̂ =
t

L/
√
Rθ0

, x̂α =
xα

L
, ξ̂iα =

ξiα√
Rθ0

, η̂i =
ηi√
Rθ0

;

f̂i =
fi

ρ0

, f̂ eq
i =

f eq
i

ρ0

;

ρ̂ =
ρ

ρ0

, ûα =
uα√
Rθ0

, θ̂ =
θ

θ0
, p̂ =

p

ρ0Rθ0
;

ρ̂0 =
ρ0

ρ0

, û0
α =

u0
α√
Rθ0

, θ̂0 =
θ0

θ0
, p̂0 =

p0

ρ0Rθ0
.

(7.15)

The non-dimensional compressible Euler equations then read

∂ρ̂

∂t̂
+
∂ρ̂ûα

∂x̂α

= 0, (7.16a)

∂ρ̂ûα

∂t̂
+
∂ρ̂ûαûβ

∂x̂β

+
∂p̂

∂x̂α

= 0, (7.16b)

∂ρ̂(bθ̂ + û2
α)

∂t̂
+
∂
(
ρ̂ûα(bθ̂ + û2

β) + 2p̂ûα

)

∂x̂β
= 0, (7.16c)

where p̂ = ρ̂θ̂ and the initial conditions are

ρ̂ = ρ̂0, ûα = û0
α, θ̂ = θ̂0 at t̂ = 0. (7.17)
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The non-dimensional macroscopic variables are

ρ̂ =
N∑

i=0

f̂i, ρ̂ûα =
N∑

i=0

ξ̂iαf̂i and ρ̂(bθ̂ + û2
α) =

N∑

i=0

(ξ̂2
iα + η̂2

i )f̂i. (7.18)

The kinetic equation (7.8) and its initial data in non-dimensional form are

∂f̂i

∂t
+ ξ̂iβ

∂f̂i

∂xβ
=
f̂ eq

i (ρ̂, ûα, θ̂) − f̂i

ε
, i = 0, . . . , N − 1, (7.19)

where ε = τ
√

Rθ0

L
is the Knudsen number and the initial conditions are given by

f̂i = f̂ eq
i (ρ̂0, û0

α, θ̂
0) at t̂ = 0. (7.20)

The non dimensional equilibrium distribution f̂ eq
i satisfy similar constraints as in

(7.14) with a hat on each flow variable and also on ηi. Moreover, the factor R is

omitted in (7.14d) and (7.14e).

7.3.1 One dimensional lattice Boltzmann and the Euler

equation

In this section and in the rest of this chapter, we restrict ourselves to the one

dimensional model for the lattice Boltzmann model and we omit the subscripts α, β

representing the space variables. Precisely, we consider the one dimensional and five

velocities (D1Q5) model with the velocities given by

ξ̂i =





0, i = 0

ν1 cos[(i− 1)π], i = 1, 2

ν2 cos[(i− 1)π], i = 3, 4.

(7.21)

The non-dimensional form of the constant η is given as

η̂i =

{
η0, i = 0

0, i = 1, 2, 3, 4.
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Therein ν1 and ν2, with ν2 6= ν1, and η0 are given nonzero constants. The equilibrium

distribution is given in the form

f̂ eq
i = ρ̂(Ai +Bi ûξ̂i), (7.22)

where

Ai =





b−1
η2
0
θ̂, i = 0,

1
2(ν2

1−ν2
2 )

[
−ν2

2 +
(
(b− 1)

ν2
2

η2
0

+ 1
)
θ̂ + û2

]
, i = 1, 2,

1
2(ν2

2−ν2
1 )

[
−ν2

1 +
(
(b− 1)

ν2
1

η2
0

+ 1
)
θ̂ + û2

]
, i = 3, 4,

(7.23a)

and

Bi =






0, i = 0,
−ν2

2+(b+2)θ̂+û2

2ν2
1 (ν2

1−ν2
2)

, i = 1, 2,
−ν2

1+(b+2)θ̂+û2

2ν2
2 (ν2

2−ν2
1)

, i = 3, 4.

(7.23b)

We show below that with this set of discrete velocities, the lattice Boltzmann equa-

tions (7.19) converges in the hydrodynamic limits toward an equilibrium distribu-

tion, whose macroscopic variables solve the Euler equations. We will consider from

now on the non dimensional model and we will omit the hat on the non dimensional

flow variables. The weak solution of the Euler equations (7.2) satisfies

∫ ∞

−∞
dx

∫ ∞

0



∂ψ

∂t





ρ

ρu

ρ(bθ + u2)





+
∂ψ

∂x





ρ

ρu+ p

ρu(bθ + u2) + 2p u






 dt

+

∫ ∞

−∞






ρ0

ρ0u0

ρ0(bθ0 + (u0)2)





ψ(x, 0)dx = 0, (7.24)

where ψ(t, x) is a smooth test function of t and x which vanishes for t + |x| large

enough. To obtain the weak solution of the Euler equation from the kinetic equation

system (7.19), we consider as well the weak form of the lattice Boltzmann equation
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(7.19) in the form
∫ ∞

−∞
dx

∫ ∞

0

[(
∂ψ

∂t
+ ξi

∂ψ

∂x

)
fi +

f eq
i (ρ, u, θ) − fi

ε
ψ

]
dt

+

∫ ∞

−∞
f eq

i (ρ0, u0, θ0)ψ(0, x)dx = 0, (7.25)

where ψ is a test function independent of ε. It was proven in [71] that the finite

difference form of the kinetic equation (7.19) is consistent with the above integral

form (7.25) even if the mesh width is of order O(ε). According to the analysis

of the Boltzmann equation, shock waves and contact discontinuities are not real

discontinuities in the realm of lattice Boltzmann simulation, but thin layers of width

O(ε) across which the variable makes an appreciable variation [71]. The following

result ensures that in the presence of shock and contact discontinuities, the weak

form of the kinetic equation (7.25) converges in the hydrodynamic limit to the weak

form of the Euler equations (7.24).

Proposition 7.1. Consider a case where the solution fi contains shock or contact

discontinuities in some region where the order of variation of fi in the space and

time variable is O(ε). In other regions, fi has a moderate variation in the order of

unity. Then the solution fi of (7.25) in the limit ε→ 0 is given by fi = f eq
i (ρ, u, θ)

whose macroscopic variable ρ, u, θ satisfy the weak form of the Euler equation given

by (7.24) and its initial conditions.

For completeness, we highlight the main ideas of the proof along the line of [71].

Proof. We will use the subscripts S and E for the flow variables in the region where

the order of variation of fi in space and time is O(ε) and unity, respectively. The

proof uses the Chapman-Enskog expansion of the microscopic and the macroscopic

variables. This technique is also referred to as the multiscale technique. We expand

the distribution fi, fiE , fiS in the form

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . , (7.26)

where the components f
(m)
i are of the same order as unity. Macroscopic variables

are also expanded as

h = h(0) + εh(1) + ε2h(2) + . . . (7.27)
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where h stands for ρ, ρu or E. The components functions here also have the mag-

nitude of unity and moreover, they satisfy the equations of the form

ρ(m) =

N∑

i=0

f
(m)
i , (7.28a)

ρ(m)u(m) =
N∑

i=0

f
(m)
i ξi, (7.28b)

ρ(m)(u(m))2 + p(m) =

N∑

i=0

f
(m)
i ξ2

i , (7.28c)

ρ(m)(bθ(m) + (u(m))2) =

N∑

i=0

f
(m)
i (ξ2

i + η2
i ), (7.28d)

ρ(m)
[
(b+ 2)θ(m) + ρ(m)(u(m))2

]
u(m) =

N∑

i=0

f
(m)
i (ξ2

i + η2
i )ξi. (7.28e)

where m is an integer. We substitute the expanded function fi and f eq
i in the kinetic

equation (7.25) and collect the leading order terms to get

∫ ∞

−∞
dx

∫ ∞

0

(f
(0)
iE − f

eq(0)
iE )ψdt = 0,

∫ ∞

−∞
dx

∫ ∞

0

[(
∂ψ

∂t
+ ξi

∂ψ

∂x

)
f 0

iE + (f
eq(1)
iE (ρ(0), u(0), θ(0)) − f

(1)
iE )ψ

]
dt

+

∫ ∞

−∞
f

eq(0)
iE (ρ0, u0, θ0)ψ(0, x)dx+

∫ ∫

DS

[
(f

(0)
iS − f

eq(0)
iS ) − (f

(0)
iE − f

eq(0)
iE )

]
ψdxdt = 0,(7.29)

where DS indicates where the variation of fi in the xt plane is of the order of ε.

From the leading order term we get

f
(0)
iE = f

eq(0)
iE (ρ

(0)
E , u

(0)
E , θ

(0)
E ). (7.30)

The next-order equation can be seen as a linear inhomogeneous equation for f
(1)
iE .

The constrains (7.28) apply also for the equilibrium particles. It follows that
∑N−1

i=0 gi(f
eq(1)
iE −f (1)

iE ) = 0, where gi = 1, ξi, ξ
2
i , ξ

2
i +η2

i . . . . Therefore, equation (7.29)
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has a solution only when its inhomogeneous term satisfy the following solvability

condition
N−1∑

i=0

gi

{∫ ∞

−∞
dx

∫ ∞

0

(
∂ψ

∂t
+ ξi

∂ψ

∂x

)
f 0

iEdt

+

∫ ∞

−∞
f

eq(0)
iE (ρ0, u0, θ0)ψ(0, x)dx+

∫ ∫

DS

[
(f

(0)
iS − f

eq(0)
iS ) − (f

(0)
iE − f

eq(0)
iE )

]
ψdxdt

}
= 0 (7.31)

Substituting (7.30) into (7.31) and using (7.28), we get the integral form of the Euler

equation (7.24) for the leading order macroscopic variables ρ
(0)
E , u

(0)
E , θ

(0)
E , and p

(0)
E .

For the rest of this chapter, the vector of conserved variables for the Euler equations

is u = (ρ, ρu, ρ(bθ + u2)) which correspond to the nondimensional model.

7.3.2 Derivation of an adjoint calculus at the microscopic

level

The Lagrangian at the microscopic level is given by

L(f, λ) = J (u(T, .),u0;ud) −
N∑

i=0

∫ T

0

∫

R

[∂tfi + ξi∂xfi − Ωi(f)]λidxdt, (7.32)

where λi is the Lagrange multiplier or the adjoint velocity distribution. Integrating

by parts, (7.32) becomes

L(f, λ) = J (u(T, .),u0;ud) +
N∑

i=0

∫ T

0

∫

R

(fi [∂tλi + ξi∂xλi] + Ωi(f)λi) dxdt

−
N∑

i=0

∫

R

(
fi(T, x)λi(T, x) − f eq

i (ρ0(x), u0(x), θ0(x))λi(0, x)
)
dx. (7.33)

By taking the variation of the Lagrangian with respect to the state variable fi and

taking into account (7.7), we arrive at the adjoint system

−∂tλi − ξi∂xλi =
N−1∑

j=0

∂Ωj(f)

∂fi
λj (7.34)
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with a terminal condition

λi(T, ·) = (ρ− ρd)
∂ρ

∂fi
+ (m−md)

∂m

∂fi
+ (E − Ed)

∂E

∂fi
, x ∈ R, (7.35)

with
∂ρ

∂fi

= 1,
∂m

∂fi

= ξi,
∂E

∂fi

= ξ2
i + η2

i . (7.36)

The adjoint equation (7.34) has the same structure as the original model (7.8) and

we can, therefore, call the term in the right hand side of (7.34) the adjoint collision

operator. In the BGK formulation, the adjoint collision operator has the form

N−1∑

j=0

∂Ωj(f)

∂fi

λj =
1

ε
(
N−1∑

j=0

∂f eq
j

∂fi

λj − λi). (7.37)

For the equilibrium functional given in (7.22), one can write that

∂f eq
j

∂fi
=
∂f eq

j

∂ρ

∂ρ

∂fi
+
∂f eq

j

∂m

∂m

∂fi
+
∂f eq

j

∂E

∂E

∂fi
. (7.38)

The partial derivatives ∂ρ
∂fi
, ∂m

∂fi
, ∂E

∂fi
are already given in (7.36) and then we re-

main with the partial derivatives of the equilibrium functional with respect to the

macroscopic variables. They can be obtained as

∂f eq
j

∂ρ
= Aj + ρ

∂Aj

∂ρ
+mξj

∂Bj

∂ρ
, (7.39)

∂f eq
j

∂m
= ρ

∂Aj

∂m
+ ξjBj + ξjm

∂Bj

∂m
, (7.40)

∂f eq
j

∂E
= ρ

∂Aj

∂E
+ ξjm

∂Bj

∂E
. (7.41)

with

∂Aj

∂ρ
=





− b−1
η2
0

Eρ−2m2

bρ3 , j = 0,

1
2(ν2

1−ν2
2 )

(
(

ν2
2 (b−1)

η2
0

+ 1)2m2−Eρ
bρ3 − 2m2

ρ3

)
, j = 1, 2,

1
2(ν2

2−ν2
1 )

(
(

ν2
1 (b−1)

η2
0

+ 1)2m2−Eρ
bρ3 − 2m2

ρ3

)
, j = 3, 4;

(7.42a)
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∂Bj

∂ρ
=






0, j = 0,
1

2ν2
1(ν2

1−ν2
2)

4m2+Eρ
bρ3 , j = 1, 2,

1
2ν2

2(ν2
2−ν2

1)
4m2+Eρ

bρ3 , j = 3, 4,

(7.42b)

∂Aj

∂m
=






− b−1
η2
0

2m
bρ2 , j = 0,

1
2(ν2

1−ν2
2 )

(
−(

ν2
2 (b−1)

η2
0

+ 1) 2m
bρ2 − 2m2

ρ2

)
, j = 1, 2,

1
2(ν2

2−ν2
1 )

(
−(

ν2
1 (b−1)

η2
0

+ 1) 2m
bρ2 − 2m2

ρ2

)
, j = 3, 4,

(7.42c)

∂Bj

∂m
=





0 j = 0,

− 1
ν2
1 (ν2

1−ν2
2)

m
bρ2 , j = 1, 2,

− 1
ν2
2 (ν2

2−ν2
1)

m
bρ2 , j = 3, 4,

(7.42d)

∂Aj

∂E
=






b−1
η2
0

1
bρ
, j = 0,

1
2(ν2

1−ν2
2)

(
ν2
2(b−1)

η2
0

+ 1) 1
bρ
, j = 1, 2,

1
2(ν2

2−ν2
1)

(
ν2
1(b−1)

η2
0

+ 1) 1
bρ
, j = 3, 4,

(7.42e)

and

∂Bj

∂E
=






0, j = 0,
1

ν2
1 (ν2

1−ν2
2 )

b+2
bρ
, j = 1, 2,

1
ν2
2 (ν2

2−ν2
1 )

b+2
bρ
, j = 3, 4.

(7.42f)

We can then define the adjoint equilibrium distribution as

λeq
i =

N−1∑

j=0

∂f eq
j

∂fi
λj . (7.43)

Now at the microscopic level, one can solve the lattice-Boltzmann equations, and

obtain solutions fi. One then takes the moments to obtain the macroscopic variables

at any time 0 ≤ t ≤ T. These are then used to solve backward in time the microscopic

adjoint equation (7.34) for the adjoint variable λi. These are eventually used together

with the optimality condition to obtain the gradient of the cost function with respect

to the control u0.
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7.3.3 Hydrodynamic limits of the adjoint microscopic model

In this section, we find the hydrodynamic limit of the microscopic adjoint equations.

We introduce the following notations for the macroscopic adjoint variables

λ =

N∑

i=0

λi, λũ =

N∑

i=0

ξiλi, (7.44)

where ũ is an adjoint velocity. Recall that the equilibrium distribution was found as

λeq
i =

N−1∑

j=0

∂f eq
j (ρ, u, θ)

∂fi
λj.

Applying
N∑

i=0

to (7.34), leads to the equation

−∂tλ− ∂xλũ =
1

τ
(

N∑

i=0

λeq
i − λ). (7.45)

Therefore, if one needs a ”conservation of mass” at the adjoint level, the adjoint

equilibrium distribution in (7.43) should satisfy the constraint

N∑

i=0

λeq
i = λ. (7.46)

Similarly, applying multiplying (7.34) by ξi and taking the sum over i from 0 to N

leads to the equation

−∂tλũ− ∂x

N∑

i=0

ξ2
i λi =

1

τ

(
N∑

i=0

ξiλ
eq
i − λũ

)
, (7.47)

As above if we want exact conservation of momentum, the equilibrium distribution

needs to satisfy
N∑

i=0

ξiλ
eq
i = λũ. (7.48)
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In order to close the adjoint system, we postulate that the adjoint equilibrium dis-

tribution satisfies (7.46), (7.45) and the relations

N∑

i=0

ξ2
i λ

eq
i = p̃+ λũ, (7.49a)

N∑

i=0

(ξ2
i + η̃2

i )λ
eq
i = λ(bθ̃ + λũ2), (7.49b)

N∑

i=0

ξi(ξ
2
i + η̃2

i )λ
eq
i = λ

[
(b+ 2)θ̃ + λũ2

]
ũ, (7.49c)

where p̃, θ̃, η̃ are some adjoint pressure, temperature and a constant similar to η. To

close the momentum equation, we assume as for the flow equations that

N∑

i=0

ξ2
i λi ≈

N∑

i=0

ξ2
i λ

eq
i = p̃+ λũ

and we obtain

−∂tλũ− ∂x(p̃+ λũ) =
1

τ

(
N∑

i=0

ξiλ
eq
i − λũ

)
, (7.50)

By multiplying (7.34) by
N∑

i=0

(ξ2
i + η̃2

i ), we obtain, using similar closure law as above,

−∂t

[
λ(bθ̃ + λũ2)

]
− ∂x

{
λ
[
(b+ 2)θ̃ + λũ2

]
ũ
}

= 1
τ

(
λ(bθ̃ + λũ2) −

N∑
i=0

(ξ2
i + η̃2

i )λi

) (7.51)

The final conditions at time t = T are given as





λ = N(ρ− ρd) + (E − Ed)
∑

i(η
2
i + ξ2

i ),

λũ = (m−md)
∑

i ξ
2
i + (E − Ed)

∑
i ξiη

2
i ,

λθ̃ + λũ2 = (ρ− ρd)
∑

i(η
2
i + ξ2

i ) + (m−md)
∑

i ξiη
2
i

+(E − Ed)
∑

i(η
2
i + ξ2

i )
2,

at t = T. (7.52)

Note that in the previous equation, the flow variables are obtained from the solution

of the flow equation at time T. They should then be seen as ρ(T, ·), θ(T, ·) and so
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on. We remark that the hydrodynamic limits of the adjoint microscopic system

leads to a nonlinear system of conservation laws with source term. The source term

can vanish if the adjoint equilibrium functional satisfies the constraints proposed in

(7.46), (7.48) and (7.49). One has now to solve that system for the adjoint variables

λ, ũ and θ̃.

7.3.4 The formal macroscopic adjoint system

In this section, we consider the Euler equation in one dimension (7.16) in its con-

servative form given by

∂tρ+ ∂xm = 0,

∂tm+ ∂x

[
E
b

+ m2(b−1)
bρ

]
= 0,

∂tE + ∂x

[
mE
ρ

+ 2m(ρE−m2)
bρ2

]
= 0,

(7.53)

where the conservative variables u = (ρ,m,E) are related to the primitive variables

(ρ, u, θ) by

m
.
= ρu, E

.
= ρ(bθ + u2). (7.54)

Equation (7.53) can be written in a compact form as:

ut + f(u)x = 0 (7.55)

where the flux function f(u) can be easily extracted. The Jacobian matrix of f(u)

with respect to u is given by

f ′(u) =




0 1 0

−m2(b−1)
bρ2

2m(b−1)
bρ

1
b

−m(ρE(b+2)−4m2)
bρ3

ρE(b+2)−6m2

bρ2

m(b+2)
bρ


 . (7.56)

The system (7.53) is strictly hyperbolic since the eigenvalues of the Jacobian matrix

f ′(u),

λ1(u) =
m

ρ
− 1

bρ

√
(b+ 2)(ρE −m2), λ2(u) =

m

ρ
, λ3(u) =

m

ρ
+

1

bρ

√
(b+ 2)(ρE −m2)
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are real and distinct.

To derive the adjoint system, we assume that u is a column vector and we introduce

the column matrix of Lagrange multipliers η = [η1, η2, η3]
t and write the Lagrangian

as

L(u(T, ·),u0;ud, η) = J (u(T, ·),u0;ud) −
∫ T

0

∫

R

ηt [ut + f(u)x] dxdt.

The superscript t stand for the matrix transpose1 so that utv denote the usual dot

product of the column vector u and v. We keep a matrix notation throughout this

section. One can integrate by part the integral in the Lagrangian expression to have

that

L(u(T, ·),u0;ud, η) = J (u(T, ·),u0;ud) +

∫ T

0

∫

R

ηt
tu + ηt

xf(u)dxdt

−
∫

R

[
η(T, x)tu(T, x) − η(0, x)tu(0, x)

]
dx.

By taking formally the variation of the Lagrangian with respect to the flow variable

u, we obtain the adjoint equation

−ηt − f ′(u)tηx = 0. (7.57)

We assume for the sake of generality that the cost functional has the integral form

J (u(T, ·),u0;ud) =

∫

R

ψ(u(T, x))dx,

where ψ : R
3 → R

+ is a given functional which depends possibly on some other

function. The final condition for the adjoint equation can then be written as

η(T, ·) =

(
∂ψ

∂u
(u(T, ·))

)t

. (7.58)

One can specify in a straightforward way this adjoint system for the Euler equations.

We point out that we performed the above computation only formally since in

general the flow generated by a system of conservation laws is not differentiable, see

[29].

1 Remark that this notation can be conflicting with that of the time t, but the difference between

the two is clear from the context.
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7.4 Relation between the microscopic-adjoint and

the macroscopic-adjoint equations

In this section, we investigate the commutativity of the diagram given in Figure 7.1.

In the previous section, we have derived formally the adjoint system related to the

optimization of Euler flows. We obtained a backward linear system of conservation

laws in the adjoint variables (7.57). On the other hand, we considered the moments

of the adjoint Lattice Boltzmann system and obtained the microscopic-macroscopic

adjoint system (7.45, 7.47, 7.51). The result is a nonlinear system of conservation

laws with a source term which depends on the moments of the adjoint equilibrium

distribution. With a suitable choice of the adjoint equilibrium distribution, this

(LBE)

Lattice
Boltzmann

Equation
Equation

EulerHydrodynamics

Hydrodynamics

AdjointAdjoint

CalculusCalculus

(LBE)∗
((LBE)∗)hydro≡?
((LBE)hydro)

∗

Figure 7.1: Microscopic and macroscopic model: do they agree?

source term can vanish. This amounts to require for example that λ =
∑N−1

i=0 λeq
i .

However, one does not have many degrees of freedom in the choice of the equilibrium

distributions. It is important to keep in mind that in general, the equilibrium

distribution functional is found as a minimum of the entropy function under the

constraints of conservation of mass and conservation of momentum [31, 30]. Since

the adjoint collision operator is found as a linear combination of the derivatives of

the equilibrium distribution functional, f eq
j , with respect to the velocity distributions

function fi, this amounts to impose some constraints on both the equilibrium and
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its derivatives. We found that this is meaningful only if the equilibrium functional is

linear in the density and molecular velocities. But this case is not of much interest

in practical problems.

7.5 Numerical Results

7.5.1 Solution of the flow equations

We point out that, for each particle i with speed ξi, the lattice Boltzmann equa-

tions (7.8) and its adjoint form (7.34) are transport equation with the source term.

Therefore, we discretize them in the finite volume framework with a second order

integration in time and a second order upwind integration in space with the minmod

slope limiters [79] as briefly described below. We consider the advection equation in

the general form
{
vt + avx = g(v), (x, t) ∈ [0, 1] × [0, T ],

v(0, x) = v0(x), x ∈ [0, 1],
(7.59)

where a is the wave speed and g(v) is a source term. We discretize the space domain

[0, 1] with a uniform mesh as in Section 2.4. In the finite volume framework, we

consider a second order scheme in the semi-discrete form [79]

dv

dt
= −

Fj+ 1
2
− Fj− 1

2

∆x
+ gj, (7.60)

where gj is the cell average of the source term, and the numerical flux is given by

Fj+ 1
2

= a−vj+1 + a+vj +
1

2
|a|
(

1 − |a∆t
∆x

|
)
σj+ 1

2
, (7.61)

where a+ = max{a, 0} and a− = min{a, 0} and the slope limiters σj+ 1
2

are defined

as

σj+ 1
2

=

{
Minmod (vj − vj−1, vj+1 − vj) if a ≥ 0,

Minmod (vj+1 − vj , vj+2 − vj+1) if a < 0,
(7.62)

with

Minmod(x, y)
.
=

1

2
(sgn(x) + sgn(y)) · min(|x|, |y|).
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The mesh size in time is set as ∆t = ε/4 where ε is the Knudsen number. This choice

ensures that the CFL condition is satisfied for appropriate values of the Knudsen

number. For the numerical results, we used ε = 10−4. For the source term, we use

the mid-point rule quadrature.

We test the proposed flow solver on solution of the Lax shock tube problem

described as follows: A tube is filled with a gas initially divided by a membrane

into two sections. The gas has a higher density and pressure in one half of the tube

than in the other, with zero velocity everywhere. At time t = 0, the membrane is

suddenly removed and the gas is allowed to flow. We expect a net motion in the

direction of the lower pressure. Assuming uniform flow across the tube, there is

variation only in one direction and the 1-D Euler equations apply. For the lattice

Boltzmann simulations, the initial macroscopic variables are taken as

u0(x) =

{
(1, 0, 3) for x < 0

(3, 0, 15) for x > 0
(7.63)

As a reference solution, we use the second order in space and time central scheme of

Kurganov and Tadmor [75] computed on a grid of N = 400 points with CFL = 0.74.

We present the numerical solution obtained with the lattice Boltzmann model and

the relaxation method in Figure 7.2 computed up to time t = 0.15. The solution

obtained with a D1Q5 lattice Boltzmann model (circle) compares well with that

obtained in the central scheme of Kurganov (solid line), the shock, contact discon-

tinuity and the rarefaction waves are well resolved. Also, a comparison with the

scheme presented in [85, 78, 75] proves satisfactory.

7.5.2 Grid convergence analysis

In this section, we investigate the convergence of the lattice Boltzmann method

when the grid size increases. This is important since we want the result of solu-

tion of the flow equation computed with the LBE to reproduce the hydrodynamic

behavior independently of the mesh used. For this purpose, we solve numerically

approximation of the Euler equation given by the LBE equation using the finite
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Figure 7.2: Plot of the density, velocity, pressure and temperature computed at

time t = 0.15 with a central scheme and the D1Q5 lattice Boltzmann model for the

Euler equations.

volume scheme discussed above for meshes of size N ∈ {80, 160, 320, 640} and we

compute the reference solution with a finer grid of N = 1280 points. We use the

following Riemann data:

u0(x) =

{
(0.445, 0.311, 8.928) for x < 0.5,

(0.5, 0.10, 1.4275) for x > 0.5.
(7.64)

This problem can be described physically as the Lax shock tube problem, with a

gas with non-zero velocity on each side of the membrane. We show in Figure 7.3

the profile of the conservative variables given by the density, the momentum, the
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energy as well as the pressure.
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Figure 7.3: Plot of the density, momentum, energy and pressure computed at time

t = 0.15 with meshes of multiple sizes.

The LBE flow solver used here is convergent and, as the grid is refined, the

solution is more and more accurate. Moreover, the solutions obtained with the

different grid as depicted in Figure 7.3 have the same qualitative behavior, that is,

an expansion or rarefaction wave moving to the left, a contact discontinuity wave in

the middle and a shock wave moving to the right.
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7.5.3 The discrete form of the optimization problem

With the space and time discretization described above, the discrete form of the

objective function can then be written as

J (u(·, T ),u0,ud) = ∆x

K∑

i=1

‖uH
i − ud i‖2.

Recall that the vector u = (ρ,m,E) contains the conservative variables which are the

density, the momentum and the energy. For a given initial data u0, one can solve

numerically the flow equations for the state variable u(T, ·)(u0) using the lattice

Boltzmann method and the optimization problem (7.1) can be re-written as an

unconstrained minimization for the reduced cost functional J̃ = J (u(T, ·)(u0);ud) .

One can then compute the gradient of this reduced cost using the finite difference

method. At each grid point, the gradient of the cost functional is computed using the

adjoint method proposed in the previous sections. From the optimality conditions,

we obtain that the gradient of the reduced cost functional satisfies

∇v0,i
J̃ = ∆x

N−1∑

j=0

∂f eq
j (ρ0, u0, θ0)

∂u0,i

λj(0, xi). (7.65)

Using this gradient information, we can compute the solution of the optimization

problem using a descent algorithm with a line search algorithm. Here we used the

Armijo line search algorithm [72, 88]. The test for convergence is done as

|J (u(·, T ),u0,ud)| < tol,

where tol ≪ 1 is a given tolerance.

7.5.4 An example with smooth data

We start the numerical investigations with the case of smooth data in the domain

[0, 1] × [0, T ]. We are searching for an optimal control (initial data) such that the

flow properties at time T match the flow initially given by

ρd,0(x) = 6x2 − 7x+ 3.2, md,0(x) = 1.2, Ed,0 = x+ 1.2 for x ∈ [0, 1]. (7.66)
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We start the optimization algorithm with the initial data

ρ0(x) = 6x2 − 7x+ 3, m0(x) = 1.0, E0(x) = x+ 1.0 for x ∈ [0, 1]. (7.67)

The optimization problem is solved with a tolerance tol = 10−4. The initial, target

and optimized states are presented in Figure 7.4. The target state is attained and

the optimization routine presented here performs very well on this simple problem.
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Figure 7.4: Density, momentum, energy and pressure: Initial, target and Opti-

mized values at time T = 0.01 for the example with smooth data.
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7.5.5 The inverse design of flow in a shock tube

The examples presented in this section involve the inverse design of a flow in a

1D shock-tube. Given a set of measurements of some actual flow at time t = T,

determine the best estimate for the initial state that leads to the observed flow be-

havior at the final time. This problem has been explored before by many authors

[64, 58, 66], but unlike them, we use the lattice Boltzmann approach for the solution

of the flow equation and the derivation of the adjoint calculus based on the micro-

scopic variable. We now consider numerical example derived from the Sod shock

tube problem. The target flow is obtained as the solution of a Riemann problem.

This is mainly for consistency because the objective function is evaluated only in

the “dual” space which here is , the space of solution of the flow equation computed

at time T. For the optimal control of the Sod problem, we consider the initial data

and desired initial data given as

u0 =

{
(1.0, 0, 3.0) if x < 0.5,

(0.125, 0, 0.375) if x > 0.5,
(7.68a)

and

ud,0 =

{
(1.1, 0, 3.3) if x < 0.5,

(0.2, 0, 0.6) if x > 0.5,
(7.68b)

respectively. We consider a time horizon of T = 0.03 in non-dimensional units and

we solve the control problem related to the Sod problem with data in (7.68). We

used a second order scheme as described in Section 7.5.1 with a mesh size of N = 300

cells. The results of the optimization problem are presented in Figure 7.5.

We used a tolerance tol = 10−4. We see that the optimization routine performs

very well and the optimum is reached after 38 design iterations with a fix opti-

mization step of α = 0.047. We solve the same problem with the first order scheme

switching off the limiters σi+ 1
2

in the numerical fluxes (7.61). We present in Fig-

ure 7.6 the profile of the density and pressure.

The contact discontinuity wave in the solution of the flow equations is not well

resolved due to the smearing that usually appears with first order schemes. Never-

theless, the values of the gradients and the objective function, presented in Figure 7.7
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Figure 7.5: Density, momentum, energy and pressure: initial, optimized and target

flow variables at t = 0.03. for the inverse design of flow in a shock tube problem.

show that the first order and second order scheme lead to similar values of the cost

functional. This is important to notice because the optimization method failed for

some test problems to compute the solution when the second order scheme was used.

We remark also that the distributed gradient of the objective function have the same

qualitative behavior for both schemes even if the exact values are not always the

same. In Figure 7.8 we display the gradients of the cost functional at time T = 0.03

in term of the flow variable.

The failure of the second order scheme was pointed out by Banda and Herty [5]

and Ulbrich [104] for scalar conservation laws. The second order schemes neverthe-



172
CHAPTER 7. CONTROL OF SYSTEMS GOVERNED BY PARTIAL

DIFFERENTIAL EQUATIONS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 

 

Initial
optimal
Target

Density

x
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

 

 

Initial
optimal
Target

Energy

x

Figure 7.6: Profile of the density(left) and energy(right) for the optimization prob-

lem with data (7.68) with the flow equation computed with a first order scheme.
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Figure 7.7: Values of the objective function and the L2 norm of the gradient com-

puted with the first order and second order scheme.

less performs well for the solution of the optimization problem. The drawback is

that it works only for small times. Moreover, we solved the Sod problem for a longer

time T = 0.15 with the first order scheme as it was done by Homescu and Navon

[64]. The profile of the density and energy are presented in Figure 7.9.

The results presented here compare very well with those obtained in [64].
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Figure 7.8: Gradients of the cost functional with respect to the control variables at

time T = 0.03.
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Figure 7.9: Profile of the density and energy for the optimization problem at time

T = 0.15 with the flow equation computed with a first order scheme.
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Note that we consider as control variables here, the conservative variables

u0 = (ρ0, m0, E0) which are distributed along the flow domain. In [64], only the

densities and the pressures were considered as control variables.

7.5.6 Convergence and CPU time

Here we investigate the convergence of the optimization method using the lattice

Boltzmann method in terms of the number of grid points for a given tolerance. We

consider here the example on the inverse design of flow in a shock tube with initial

data (7.68). For a tolerance of tol = 10−4 we compute up to the time T = 0.03 the

solution of the optimal control problem related to the Euler equation with the grid

size in {50, 100, 150, 200, 250, 300}. The value of the cost function, the L2 norm of

the gradient of the cost functional, the number of optimization iterations (Nb It.)

and the CPU time are presented in Table 7.1. The notable observation is that the

number of optimization iterations does not depend on the grid size. This shows that

the LB method does not depend on the chosen lattice. The differences in the values

of the objective function are mainly due to the error related to the solution of the

flow equation.

N J (u(T, ·),u0;ud) ‖∇J̃ (u(T, ·),u0;ud)‖ Nb It. CPU time (in sec.)

50 9.088619e-05 3.814747e-04 37 6.426500e+02

100 9.186854e-05 3.797603e-04 37 1.087600e+03

150 9.199552e-05 3.781883e-04 37 1.497710e+03

200 9.310957e-05 3.813341e-04 37 1.916500e+03

250 9.211987e-05 3.805600e-04 37 2.322430e+03

300 9.049610e-05 3.430007e-04 37 2.823490e+03

Table 7.1: Convergence and CPU time for the solution of the inverse design of

flow in a shock tube.
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7.6 Concluding Remarks

We have presented in this chapter an adjoint calculus for the optimization of Euler

flows using the Lattice Boltzmann Equations. We have proved that the LBM con-

verges to the Euler equations using the Chapman-Enskog expansion. We studied the

hydrodynamic limits of the adjoint system and propose some closure relations in or-

der to have a consistent system in the macroscopic adjoint variables. This method

is easy to implement and allows extension to higher order and multidimensional

problems. An interesting fact about the results proposed here is that the number

of optimization iterations needed to achieve convergence does not depend on the

grid size. The numerical results compare well with those obtained by Rumpfkeil

and Zingg [96], Homescu and Navon [64] on a similar problem. Moreover, it appears

clear that the approach presented here, using the lattice Boltzmann model has no

problem dealing with discontinuity such as shocks, rarefaction or contact disconti-

nuities in the solution of the flow equations. There is no need for us to detect the

discontinuity in the solution or to consider the shock position as a control variable

as was done in [64] to solve the problem. This is an improvement on the results

presented by Homescu and Navon [64].



Chapter 8

Summary and Future Work

In this thesis, we presented some classical results pertaining to the analysis and

numerical integration of systems of conservation laws. We presented basic definitions

and the construction of the solution to the standard Riemann problem. Some basic

results and the general assumptions for the solution of the Cauchy problem at the

junction were introduced. We briefly presented the upwind and central schemes and

emphasized the conservative properties and the stability of these schemes for the

numerical solution of systems of conservation laws.

Our first application was the study of the drift-flux model in a network of pipes.

We derived the model equations from the two-fluid model and the assumption of

vanishing slip-function and source term. We solved the Riemann problem at the

junction for a simple pressure law and then did the same for a general pressure law

by deriving carefully the Lax curves. We proposed, for a network of pipes, suitable

coupling conditions for the solution of the Riemann problem at the junction. We

proved a well-posedness result for the Riemann problem at the junction. Our con-

structive proof led to the numerical simulation of some junctions of interest. We

used an upwind second order relaxation scheme for the solution of the flow equations

and the Newton method to find the zeros of our coupling conditions map.

As future work in this direction, one can consider the Cauchy problem at the junc-

tion. Based on previous work on the p-system and on the Euler equation by Colombo
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et al. [33, 41], it might be possible to develop a complete theory for the solution

of the Cauchy problem at the junction for the drift-flux model. In order to drop

the no-slip condition, one might have to go back to the two-fluid model and rather

consider a 4 × 4 system of conservation laws.

Our second application dealt with the dynamics of the shallow water equations

in a network of rivers. We first introduced the model equations for the flow and

presented some general properties of the flow. We discussed the solution of the

Riemann problem at junction for the shallow water equations in a network of rivers.

We presented numerical results for the case of a confluence of three connected rivers,

that of a river and a tributary and that of a storage basin. Still in this part, we

considered the dynamics of pooled stepped chutes, a geometry used in dams to

discharge flood water. Our approach here was to compute independently the water

flow between the horizontal stepped chutes and to couple the dynamics with suitable

coupling conditions. We compared the water height at the dam computed with our

method with that obtained in the hydraulic community via experiments. The two

results agreed and we then obtained a validation of our coupling conditions.

Finally, as a preliminary step for the control of fluid in networks, we solved

an optimization problem with an objective function of a matching type and with

constraints being the Euler equations. The novelty here was the linearization of

the flow equations using the lattice Boltzmann equations (LBE). We derived the

optimality condition using the microscopic model, the LBE, and we obtained our

optimal macroscopic states using a multiscale technique. Precisely, we considered

the hydrodynamic limit of our microscopic result as the Knudsen number goes to

zero. We then obtain a new method for the solution of the optimization problems

with the Euler equation as constraints on the flow. We implemented our method

and we used it to solve some interesting problems in fluid mechanics. Future work

in this area may consist of using the same method to solve two dimensional or three

dimensional control problems related to the Euler equations. The analysis done here

for the one dimensional case can be use with some straightforward changes. Also,

one might attempt to solve control problems related to the Euler equations in a
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network of pipes using the LBE method presented here. The big question is how

can the coupling conditions, that are given in terms of the macroscopic variables, be

included in the microscopic model? As demonstrated in this thesis, an open mind

to the offerings of different points of view can serve to strengthen our ability to

confront these open problems in our future work.
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[43] M. de Saint-Venant. Théorie du mouvement non permanent des eaux, avec
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