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ABSTRACT

The thesis is mainly concerned with properties of the concept
"g-purity" introduced by J. Lambek in "Torsion Theories, Additive
Semantics and Rings of Quotients", (Springer-Verlag, 1971)

In particular we are interested in modules M for which every exact
sequence of the form 0-MsK-L>0 (or 0+KsM-L-0 or 0-+K+L-M»0) is o-pure
exact. Modules of ‘the first type turn out to be precisely the
o-injective modules of 0. Goldman (J. Algebra 13, (1969), 10-47).

This characterization allows us to study o-injectivity from the
perspective of purity.

Similarly the demand that‘every short exact sequence of modules
of the form 0-K->M+L+0 or 0-K-+L-M->0 be o-pure exact leads to concepts
which generalize regularity and flatness respectively. The questions
of which properties of regularity and flatness extend to these more
general concepts of o-regularity and o-flatness are investigated.

For various classes of rings R and torsion radicals ¢ on R-mod,
certain conditions equivalent to the o-regularity and the o-injectivity
of R are found.

| We also introduce some new dimensions and study semi-o-flat and
semi-o-injective modules (defined by suitably restricting conditions

on o-flat and o-injective modules). We further characterize those rings

'R.for which every R-module is semi-o-flat.

The related concepts of a projective cover and a perfect ring
(1ntroduéed by H. Bass in Trans. Amer. Math. Soc. 95, (1960), 466-488)
are extended in a natural way and, <nter alia, we obtain a generalization
of a famous theorem of Bass.

Lastly, we develop a relativized version of the Jacobson Radical

which is shown to have properties analagous to hoth the classical Jacobson

Radical and a radical due to J.S. Golan.
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CONVENTIONS, NOTATION

7,0 denote the ring of integers and the field of rational numbers
respectively.

Rings R will be associative with identity but not necessarily
commutative and, unless otherwise 1ndicated,”R—modu1es”wi11 be unital
left R-modules,"ideals will be left ideals.

R-mod will denote the category of all (Teft) R-modules and R-module

homomorphisms.

"Homomorphism" will mean "R-module homomorphism” unless otherwise
specified. Homp(A,B) will denote the group of R-homomorphisms o:A-+B.
CIf R is understood we use lom(A,B).

a-g will mean the "composition of « with p" defined by

If A is a subset of B and g:B»C 15 a homomorphism, f:A-C defined
by f(a) =.g(a) For all aef is called the:restriction of g to A and
we write f = g/ﬂ.lﬂ’denotes the map froﬁ A to A defined by 1A(X)=X
for all xeA,

We will usually use the terms "monic" and "epic” for "1-1" and

”ontof respectively,

If there is a monomorphism «:N+M, N is said to be embedded in M.

".Q_ a s
N sequence ...Pp j—R=bepThp 00 0f R-homomorphisms will

be called exact iff kera, = imap-, for all n.

An exact sequence of the form OaN—i4M-1»M/N+O is called a shore
exact sequence.

f.g. and f.p. will mean “finitely generated" and "finitely presented"
respectively.

By an ¢ntegral domain we mean a commutative ring with identity

which has no divisors of zero. A ring is called (left) woetherian

\

itf every (left) ideal is finitely generated. A ring is called (1eft}

Artinian iff every nonempty collection of (left) ideals of R has

a minimal element. ‘A ring will be called (left) hereditary iff every
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(left) ideal is projective and (left) semi-hereditary iff every finitely
generated (left) ideal is projective. A ring R is called local iff
it has a unique maximal ideal. An Artinian ring in which every ideal
is principal (i.e. has a single generator) is called a uniserial ring.
An ideal P of a commutative ring R will be called prime (semiprime)
iff whenever A.B<P for ideals A,B of R (A2<P for an ideal A of R)
we must have AsP or BsP (A<P). A ring R will be called a semiprime
ring iff it has no nonzero nilpotent ideals.
NaM will mean "N is a Zarge submodule of M". i.e. N N S#0 for
all nonzero submodules S of M.
A class S of R-modules is said to be closed under module extensions
iff whenever N<M and both N and M/N belong to 5, then M be10ng§ to S.
A chain {Ni}; of R-modules is a collection such that for any
iand j, NjsNj or NjsNj.
A module M is said to satisfy the ascending chain condition
on submodules iff fbr every countably infinite (ascending) chain
of submodules Mlsté...of M there is an n such that My = Mp4+; =
If U is a class of modules a subclass V of U is said to be cofinal
tn U iff every element of U contains an element of V.
For an element x, Annz = {reR|r.x = 0} will denote the left
annihilator of x. An R-module M is called faithful iff whenever
r.M = 0 for reR, we must have r = 0.
If {Mj} is a collection of R-modules,we denote their direct
product by gMj = {(mj)4jImjeMj} under componentwise operations and
the direct sum by ?Mi = {(m1)15¥M1|0n1y a finite number of the m;
are nonzero}. (Each Mj is called a direct swmmand of ?Mj). The
canonical projections:(mj)jemi and injections: mi»(mi); where

0if i 7] : .
mj = {mi H z g are often denoted by ny and inj respectively.



(vii)

If A is a set we denote the cardinal number of A by [A| and
if M is an R-module, the direct product of IAI copies of M is denoted
by MIAT and lm(A) their direct sum.

A module M is said to be a subdirect swm of modules, Mj (ieI)
iff there is a monomorphism a:M+igIM1 such that wj-o is an epimorphism
for each projection map uiziSIM1+M1, iel.

A module M will be said to be cogenerated by a class U of modules
iff M can be embedded in a direct produci of copies of elements of .
A module M is called finitely cogenerated iff wheneQer M can be embedded
in a direct product '”IUi of modules Uj,lthen there is a finite subset

ie _
J of T such that M can be embedded in "Uj.

Jed

The (short) exact sequence 0+K—9+A;§»M+O is said to split-iff
a has a left inverse or, equivalently, 3 has a right inverse. [When
this happéns L=K®M ([45], Theorem 2.3)].

A nonzero R-module M is called simple iff M has only the trivial
submodules 0 and M. A module i will be called semisimple iff it

is a (direct) sum of simple submodules.

A ring R is called semisimple iff every ideal of R is a direct

summand. In this case every R-module will be semisimple ([45],

Theorem 5.1).

A ring R is called Quasi-Frobenius iff projectivity and injectivity

are equivalent for R-modules,

If N is a right R-module and M is a Jeft R-module, N@M denotes

the tensor product of N and M.

1121 denotes the direct limit of the directed system of modules:

indexed by I.
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o will always denote a torsion radical.and L, its associated

filter. 17, and Fo will denote the classes of g-torsion and o-torsion

free modules respectively (see p7 ff.).

E(M) and E (M) will denote respectively the injective hull ([45])

and the g-injective hull ([37]) of the module M.

References used are not necessarily the only or even the original

reference for the topic concerned.

There is an index of definitions at the end of the thesis.
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GENERAL INTRODUCTION

For many of our results we find it is necessary to assume that
R-mod be o-pure-inductive, i.e. that the union of an ascending chain
of o-pure submodules of a modu]e M be o-pure in M. For this it is
sufficient that every ideal in the associated filter L, is f.qg.

This conditibn is consequently assumed in many of our proofs, (but
always explicitly stated). If R is Noetherian then this condition
holds and our results of this type therefore fall within the scope
of B. Stenstrém's Chapter 7 of [67] ("Hereditary Torsion Theories
for Noetherian rings") and J.S. Golan's Chapter 42 of [35] ("Torsion
Theqries of Finite Type"). In §1.2.5.3 we show that there exisf non-
Noetherian rings which satisfy the condition that every leL, be f.g.
for an appfopriate torsion radical o. (The condition "every leL

is f.g." has been studied in some detail in [36]).



CHAPTER ONE

PRELIMINARY MATERIAL

§1.1 INTRODUCTION

This chapter serves to provide the background needed for the
fesf of the thesis. The concept of o-injectivity, which will be
studied in some detail in thapter Two, is introduced and a few of
its well known properties are mentioned. The condition that every
leLy, be f.g., which is fundamental to many Tater resu]ts, is studied
here.

Our main field of study: o-purity, is introduced and compared
with Cohn purity (from which o-purity was developed). For ease of
reference we list some known results on ¢-purity, in particular the
construction of the o-pure injective hull.

Lastly, we'introduce two new (dual) dimensions and show that

the corresponding global dimensions coincide under certain conditions.

§1.2 BACKGROUND IN R-MODULES

1.2.1 Fundamental definitions ([45], [61])

1.2.1.1 An exact sequence 0-A-2»B—25C+0 of R-modules induces exact

Oy
sequences: O-Hom({M,A)

g
+Hom(M, B )—~>Hom(M,C) and
* *
O+Hom(C,M)—§—+Hom(B,M)49f+Hom(A,M) for any module M, where e.qg.

ax(0) = a-¢ and a*(¢) = ¢:a ([45], Theorem 6.2).

Bk

In case Hom(M,B) »Hom(M,C)»0 is exact, for each exact sequence
* ,

B-2.C+0, then M is called projective. I1f Hom(B,M)—2—Hom(A,M)0

is exact, for each exact sequence 0+A—25B, then M is called injective.

Every module M may be embedded in an injective module,

called the injective hull, E(M), of M ([45]).
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1.2.1.2 A module F is called free iff it is isomorphic to R

for some nonempty set 1.

Free modules are projective and every R-module is an epimorphic image

of a free module ([45]).

1.2.1.3 If in the expression M=F/H, where F is free and H is a
submodule of F, both F and H are finitely generated, M is called
finttely presented (f.p.).

The following are well known:

(a) If M=F/H is f.p. and F is f.g., then H is f.g. ([61],
Cdro]]ary-3_42 ).

(b) If 0+K+L-M»0 is a short exact sequence with K and M f.p.
modules, then L is f.p. ([65], Lemma 1(ii))

(c) From (b) it follows easily that finite direct sums of f.p.
modules are f.p.

(d) If M is f.p. and L is a f.g. submodule of M, then M/L is
f.p; ([65], Lemma 1(1)).

1.2.1.4  For a module M, a projective resolution of M is an exact

sequence: . ... PP »Po——M>0 where-each Pj is projective.

The smallest n for which imd, is projective (if it exists) is
called the length of the projective resolution. A1l projective
resolutions of a module M have the same length and this is called the

projective dimension pr M,of M (see [49] for a fuller discussion).

Let X be any module and consider the induced sequence:

Hom(PO,X)——i—+Hom(Pl,X)——3+...(where dé(¢) = ¢-dy for all n,

peHom(Pp-,X)). This is not necessarily an exact sequence, although

dmdpskerdpe; for all n.



For each n, (kerdp+,)/(imdp) is denoted by Emt”(M,X). ExtN(M,X)
is independent (up to isomorphism) of the:particular projective
resolution used to define it ([49]).

' Sﬁppose 0->N-M>M/N->0 is an exact sequénce. The following induced
sequences of homology for Ext are exact for any module X (and for
nzl):

..... SExtN=L(N, X)>ExtN(M/N, X)>ExtN (M, X)>ExtM (N, X)-ExtNFL(M/N,X)». .. (1)
and..+E*tn‘1(X,M/N)+Extn(X,N)+Ext”(X,M)+EXt”(X,M/N)+Ext”+1(X,N)+...(2)

We will also, on occasion, use the following properties of Ext:

{a) Ext"*I(M,X) = 0 for all X iff ExtM1(M,X) = 0 for all X
and for all mzn.

(b) Q is injective iff Ext"(M,Q) = 0 for all M and for all
nzl.

(c) ExtO9(A,B)=Hom(A,B) for all A and B ([49]).

1.2.1.5 Let A be a right R-module and B a left R-module. Let F

be the free Abelian group on the set {(aj,bi)lajeA,bjeB}. Let K

be the subgroup of F generated by all elements of the form

(a+q',b) - (a,b) - (a',b), (a,b+tb') - (a,b) - (a,b') and (ar,b) - (a,rb)
whefe reR,a,a'eA,b,b'eB.

The Abelian group F/K is called the tensor product of A,B, written
ABRB (or just A®B if R is understood).

If aecA, beB, then we denote (a,b)+K by a@b. If f:N,»N, is a
homomorphism of Teft R-modules, and g:M,»M, a homomorphism of right
R-modules then there is an induced homomorphism g@f: M BN,~»M, BN,
of Abelian groups defined by ¢g@f(mbn)=g(m)8f(n).

If O+N—9+M~§+P+b is an exact sequence of left R-modules and

11 % 1 0
+

L is a right R-module, then LGN LOM L@P>0 is exact ([67],

Proposition 8.6).
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1.2.1.6 If ...P, 2'Pl ! Po 0,M+0 is a projective resolution of M,

and. X is any left R-module, we get an induced sequence

d,01 dg81
P eX——%p BXx—55M8X and if we define

Tor, (M,X) = [ker(dnﬁlx)]/[im(dn+l®1x)], the exact sequence of right
R-modules O+N-M>M/N-0O induces an exact sequence of homology:
...Torz(M/N,X)+Torl(N,X)+Torl(M,X)+Tor1(M/N,X)4N®X+M®X (1)
for any left module X.

Similarly an exact sequence of left R-modules 0-»N+M>M/N-0 gives
rise to an induced exact sequence:

L Tor, (X,M/N)»Tor (X,N)=Tor (X,M)>Tor, (X;M/N)>X@N->XOM (2)

for any right R-module X (see [61], §8).

1.2.1.7 If X is a left R-module, the character module X* = Homz(X,Q/Z)
is a right R-module under (¢r)(x) = ¢(rx) (reR, zeX, ¢eX*). It follows
from [11], Proposition 5.1 (page 120) that ExtM(M,X*)=(Torp(M,X))*

for all right R-module M; nzl.

1.2.1.8 Let {Mj}i.1 be a class of R-modules, where I is a directed
partially ordered set (i.e. for i, jel there is a kel with kzi, kzJj).
~ Suppose that for all i,j with isj there is homomorphism 6?:M1+Mj
satisfying:
(1) sl =1y, forall i.
(2)  if isjsk then of-od = of.
Then {Mj(ieI), 63} is called a directed system and if S is the

submodule of ?Mj generated by all elements of the form

1n1(a1)-1nj(6g(a1)), ajeM;i, i=j, then (?M{)/S is called the direct

timit of the directed system, written 11@IM1 {see [45], Chapter 4

or [63], §13 for properties of this concept). For each i, the homomorphism

6{:M1+11mIN1 defined by §(mj) = ins(mj)+S is called the canonical
> .

map.



1.2.1.9 A direct 1imit of a directed system of submodules of a
module M, where the 6? are inclusion maps, is called a directed union.
It is shown in [63] that every R-module is a directed union

of its f.g. submodules and tha£ both a direct sum and the union of

an ascending chain of modules are special cases of a directed union.

1.2.2 Completion of Diagrams

(i) A pushout diagram for modules is constructed as follows:

Given the diagram

=
™
i

Q

of left R-modules and homomorphisms, we may complete the square

M £ p

QT»(Q@P)/S

commutatively by taking S = {(a(m),-8(m)) ImeM}, ¢(q) = (q,0)+S, for
qeQ and y(p) = (o0,p)+S, for peP.

(ii) Given a commutative square
A1 B
fy s,
N : M
12

where i,, i, are the inclusion maps we complete the rectangle
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A— »B »B/A

f) le fy

N . M M/N
1o Ty

commutatively, by defining f5(b+A) = f,(b)+N for beB.

(ii1) Dually, given the diagram

Q
o
p —M
B
we complete the pullback diagram
X v Q
o) Q.
p B M

commutatively, by téking X = {(p,q)eP8Ql8(p) = «(q)} and ¢:(p,q)p,
vi(p,q)eg for (p,q)eX.

(iv) -Given a commutative square
T
B B/A
fa LE!
M T M/N

where A and N are submodules of B and M respectively, we complete the

rectangle



i T
AL B/ A
fl F?. r3
N ¥ \M,,,, b1/N
]2 'H'?

commutatively by letting f, be the restriction of f, to A.

1.2.3 Torsion Theories

The following resulls on torsion theories are mainly taken from

[37], [66] and [67]:

1.2.3.1  Definition ([66])
Llet R be a ring. A torsion radical is a functor g:R-mod»>R-mod
assigning to each R-module M a submodule (M), and to every homomorphism

f :M>P the homomorphism f/;(m),such that.

(i) If M is a submodule of M then o(N) = N n o(M).
(i1) If f:M;»M, is a homomorphism then flo(M,)]<so(M,).
(+9i)  «(M/o(M)) = O for all modules M.

Throughout this thesis torsion radicals will be denoted by o,t etc.

1.2.3.2 A module M is-called og-torsion iff o(M) = M and uv-torston free
if o(M) = 0.
The class of o-torsion modules will be denoted by 7, and the class

of o-torsion free morules by FU.(J I

'wsF'g) is then called a (hereditary)

torston theory.

1.2.3.3 Note

It follows easily from 1.2.3.1(1) that o(M) is v-torsion and contains

every g-torsion submodule N of M.



1.2.3.4 Theorem ([66])
Let R be a ring and ¢ a torsion radical on R-mod. (74,F;) satisfies
the following: _
(i) T, is closed under submodules, factor modules, direct sums

and module extensions.

(ii) Fy is closed under submodules, direct products ,module extensions
and essential extensions. |

(iii1)  Fer, iff Hom(T,F) = 0 for all TeTy and

(iv) Te?y iff Hom(T,F) = 0 for all Fery.

1.2.3.5 Note
Given an .hereditary torsion theory we define the associated filter

Ly = {IlI is a left ideal of R and R/IeTy}. It then follows easily

that o(M) = {meM|Ann meL/}.

1.2.3.6 fheorem ([37] and [67])
Let_orbe a torsion radical and let L, be as defined above. Then
Lg has the following properties:
(i) If I,eLy and I, is a left ideal of R such that I,sI,, then
Lyelg,. ‘
(ii) If I,,I,eLy, then I} 0 I,ely.
(iii) If reR and IeL,, then Ann(r+I)eL.
(iv) If IeLy and K is a left ideal of R such that Ann(a+K)er, for
all ael, then Ker,.
Given (i), (ii), (iii) and (iv), it is further true that

(v) If I, JeLy then I.Jery ([37]).



1.2.3.7 Remark

A set L, of left ideals satisfying 1.2.3.6 is called a Gabriel
Topology and is also uniquely determined :by (7g;Fg) (167], Theorem 5.1,
page 146).

Given a Gabriel Topology L,, we may in turn define o by
o(M) = {xeM[AnnzeL,} for any module M.

"5 thus defined is a torsion radical and is again uniquely determined

by L, ([67]). Thus a torsion tﬁeory,maylbe defined by specifying either

g 0OY Lg.

1.2.3.8 Example

Let R be a commutative integral domain. Define for an R-module M,
o(M) = {meM[r.m = 0 for some reR, r#0}. It is routine to verify that
o is a torsion radical on R-mod and that L, is the set of nonzero ideals
of R.

In particular if R = Z, o(G) is the torsion subgroup of an Abelian

group G (see [33]). We shall refer to this as the wusual torsion theory

on the category of Abelian groups.

1.2.4  o-Injectivity

1.2.4.1 Definition ([37])
A module E is called o-ingective iff for each submodule N of any

module M such that M)N is o-torsion, any homomorphism f:N>E can be extended

to a homomorphism g:M>E.

1.2.4.2 Lemma ([37], Proposition 3.2)

The following are equivalent for a module E:
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(i) E is g-injective.
(i) If IeL, and f:I>E is a homomorphism, then f can be extended

to a homomorphism g:R-+E.

1.2.4.3 Definition ([44])
Let M be an R-module and let E(M) be its injective hull.

Eg(M) = {xeE(M)[Ann(atM)eLy] s called thé o-injective hull of M.

1.2.4.4  Theorem ([53], Proposition 0.7)

E,(M) is a o-injective, essential extension_of M and E;(M)/Me7,.
Moreover, any other g-injective, essent1a1:extension E of M such that

E/M is o-torsion is isomorphic to E (M).

1.2.4.5 Definition ([44])

Let R be a ring and ¢ a torsion radical on R-mod.

Let N be a submodule of the module M,;I,JELO such that IsJ
and let 1,:1+J, i,:N>M be the inclusion maps.N is called a o-neat submodule
iff whenever homomorphisms f:i+N, g:J-M éxist such that g-i, = i, f,there
is a left ideal K such that IgKsJ and a homomorphism g:KsN such that

g/1 = f.

(This is an equivalent form cf the definition given in [44] as

noted on page 1139 of that article).

1.2.4.6 Remarks

(i) A o-neat submodule of a o-injective module is g-injective

([44], Proposition 2).
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(ii)- Homomorphic images of o-injectiye modules are o—injeétive
iff every IelLy is projective ([34],Propo§1tion 4.6).
(111) Direct summands, finite direct sums and direct products of
o-injective modules are g-injective ([35],Proposition 8,4).
(iv) Arbitrary direct sums of g-injective modules need not be
o-injective:

Let R be any non-Noetherian ring and take L, to be the set of all
left ideals in R. For this ¢, o-injectivity is equivalent to injectivity.
Since R is not Noetherian, it follows from Theorem 17.2 of [45]
that there is a direct sum of injective R-modules which is not injective.

Thus we have a family of o—injecfive modules whose direct sum is not
o-injective. |

(v) If O+F—1+E+L+O is exact, F is og~injective and L is g-torsion,
then the sequence splits. If, further, o(E) = 0, then F = E ([37],

Proposition 3.4).

1.2.5: The Condition "Every Iel, is f.g."

1.2.5:.1 Theorem

Let R be a riﬁg and ¢ a torsion radical on R-mod. The following
‘are éduiva1ent:
(i) Every direct sum of g-injective ﬁodu]es is o-injective and
Ly contains a cofinal subset of left ideals of the form Qda where each
Jo 1s countably generated. )
(ii)  If leL, then I is f.g.

(i1i1) Every essential (left) ideal in L, is f.qg.



L

Proof

(L, is called g-Noetherian 1ff whenever 1;sl,s... is a countably
infinite ascending chain of left ideals of R such that ﬁ Iyely,

then Lpel, for some n([361)). : ' -
That (1%) implies (i) is in Theorem.Z of [36].
Suppose (i) holds. The condition "direct sums of ¢-injective modules
are g-injective" is shown, in Theorem 1 of [36], to be equivalent to:
"Ly, is o-Noetherian and has the ascending chain condition".
This condition, together with "L cdntains a cofinal subset of
left ideals of the form gda where each Jg 1s countably generated" implies
(ii) by Theofem 2 of [36].
To complete the proof we only need to show that (iii) implies (i1).
Suppose, therefore, that every essential (left) ideal in L, is f.g.
and let I be an arbitrary ideal in L. Suppose I is not f.g. and let
S = {JelylIsd and J is not f.g.}. 5 ¥ ¢% since 1€S, and is inductive,
hence it. has a maximal element M (say).
Let N be any nonzero left jdeal of RL If NOUM = 0 then, by maximality
of M in'g, MN (=MBN) is f.g. Hence M is f.g., which is a contradiction.

Hence, M<R and the fact that M is not f.g. is in conflict with our -

assumption, Thus every leL, is f.g. and‘(ii) holds.

1.2.5.2° Theorem
Suppose R is a commutative ring andlq a torsion radical on R-mod.
Then the following are equivalent:
(i) Every leL, is f.q.
(ii) Every semiprime ideal IeL, is f.q.

(iii) Every prime ideal Ier, is f.g.

Proof
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Suppose (iii) holds and let 5 = {IeL |I is not f.g.}. If S#¢,
it is inductive and has a maximal element M (say), by Zorn's Lemma.

M s hot prime since it is not f.g. Thus there exist ideals A,B
chhlthét A.B<M but AgM and BgZM. Let aeA-M, beB-M. By maximality of
M, MtRa is f.g. Subpose M+Ra can be generated by the set {m +r,a,

Mytrod,..... smptrpal for some mijeM, rieR. Let J = Ann (atM). Since

a.beM and b¢M, it is clear that MgM+RbsJ. By maximality of M, J is f.g.,

say by the set {j;, Jos..... ikl-
n
Let xeM, then xzeM+Ra and there exist sjeR such that = = 7§ sj(mij+ria).
i=1
o " N .
Thus ( ) sjri)a = - ) simjeM, whence ) siried and there exist tieR
i=1 i=1 i=1 -
: :
such that ) siry = ) tiji.
i=1 i=1
n k
lence @ = ) sqymy + ) tjjja and M can be generated by the set
i=1 i=1
{mp,my, ..., Mps Ji@sJp@s..... jka}, which is a contradiction. That is,

S = ¢ as required.

1.2.5.3 Example

If R is Noetherian then every IeL, is f.g. for all torsion radicals
o on R-mod. Thefé are non-Noetherian rihgs which admit a torsion radical
o satisfying this condition.
_The following example is due to A.R. Meijer (personal communication):
Let S be a non-Noetherian, commutative ring with identity and F
a fie]d. Put R = SBF = [(s,f)[seS, feF} With componentwise operations.
M= {(s,0)[seS} is a maximal ideal of R (for R/M=F is simple).
If we take Ly = {M;R}; then L, contains only f.g. ideals. We show Lg

is jndeed the filter df a torsion radical:
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1.2.3.6(1) fo]]oﬁs by maximality of M and 1.2.3.6(i1) is clearly
valid in this case.

(ii1): Suppose IeL, and reR. Thus I‘= M or R. Let J = Ann(r+I).
Clearly Msd, so J = M or R. Hence QCLO. ‘

(iv) Suppose leL, and K is an ideal of R such that Ann{a+K)elq
for all ael. Thus Ann ((1,0)+K)eL, and therefore Ann((1,0)+K) = M or:
R. In either case M<Ann((1,0)+K) and M(1,0) = MsK. Hence K = M or

R and KeL, as required.

§1.3 PURITY:

1.3.1 Pure Theories

1.3.1.1 D.J:. Fieldhouse in [29] describes a generalization of the
concept of purity to arbitrary categories. We will adapt his definition

of a Pure Theory to the category R-mod.

For this purpose we need the following result:

1.3.1.2 lLemma ([26], Theorem 3)

Suppose
o) 81
f:l fZ 1:3

is a commutative diagram of left R-modules with exact rows. Then the

following are equivalent:

(1) There is a homomorphism u:A,»B, such that f, = u-a;.

(ii) There is a homomorphism t:A3»>B, such that f,

BrT.
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1.3.1.3 Definitions ([29])

.(1) Given short exact sequences:
A0on s PLip 50 and B:05B)—2sB,— 28,00 of (Teft) R-modules we
write AoB iff for every commutative diagram

Ctl 81
I A, Aj >0

&2
one of the equivalent condition§ of Lemma 1.3.1.2 holds. (Note that
0 is not a symmetric relation).

(i1) The collection & of all short exact sequences of R-modules
forms a category with morphisms F = (f,,f,,f3):A+B, where the fij:A;j+Bj
are R-homomorphisms making the above diagram commute.

If ¢ is any collection of short exacf sequences in E then we define
G* = [BeE|GoB for all GeG} and ¢t = [AeE|A0G for all GeG}. A pure theory
is then an ordered pair (P,@) of classes of short exact sequences such
that ¢ = Pt and P = ¢*.
(ii1) We say that P "left generates” and @ "right generates" the
pure theory (P,q) and note that (p,q) = ((P*)*,p*) = (g%, (g*)*).
_ (fv) - (P,qQ) is called projectively generated iff thé middie. term
of each short exact sequence in ¢ is proj;ctive.
(v) The elements of P are called the pure exact éequences and

those of @ the copure exact sequences of the pure theory.

(vi) If O»P1—9+PZ—§+P3+O is a pure exact sequence, we call o a
pure monomorphism and 8 a pure epimorphism.

(vii) We will say that a submodule N of a module M is pure in M

iff the inclusion map 1:N+M is a pure monomorphism.



16

(viii) A module P is called pure projective iff Hom(P ,P,)>Hom(P ,P3)-0

is exact for each pure exact sequence 0+Py->P,>P3>0.

1.3.1.4 Lemma ([29], Theorem 4.3)

Let
8
A: 0——oh o tn, "t n 0
) fy fal
B: 0 B, B, By 0
*2 B

be a commutative diagram with exact rows in R-mod and let (P,¢) be a
projectively generaéed pure theory in R-mod.

(i) If f, is monic, f (A,) is pure fn B, and B is pure exact,
then A is pure exact.

(i) If f3 is epic, the sequence O+kerf§—i+A3—f§+B3+O is pure exact

(where i is the inclusion map) and A is pure exact, then B is pure exact.

1.3.1.5 Theorem ([ 31], Theorem 5.1)
Let E<F<G be R-modules and Tet (P,q) be a projectively génerated
pure theory in R-mod.
(f) B if E is pure in F and F is pure in G, then E is pure in G.
(i1) | If E is pure in G then E is pure in F. |
(iii) If F is pure in G then F/E is pure in G/E.

(iv) If F/E is pure in G/E and E is pure in G, then F is pure in G.

1.3.2 Cohn Purity
1.3.2.1 Definition ([12])

We call a submodule N of a module M a Cohn pure submodule iff the
n
solvability of the system of equations } rijxi = aj (where ajeN, rjjeR,
i=1
J=1,2,....m) in M implies its solvability in N.
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1.3.2.2 P.M. Cohn, in [12], shows that N is a Cohn pure submodu]e
1k @i
of the module M iff the induced mapping K@N—~———+K®M is monic for all

right R-modules K (where i:N+M the inclusion map).

1.3.2.3A D.J. Fieldhouse in [26] and Doman in [13] discuss some of
the properties of this concept. Many of these have counterparts for
o-purity. We Tist a few of the properties, which are important for our
purposes, below:
(i) A module N is Cohn pure in M iff every f.p. module is projective
with respect to the sequence 0+N—i+M;1+M/N+O ([45], Theorem 16.5).
~(11) Cohn purity forms a pure theory right generated by the family
Q= 1006,-%+6,£6520/6,,6, are f.g. and G, is free} ([29], Theorem 7.1).
(ii1) For every module M there is a direct sum ? Aj of f.p. modules
A;j and a Cohn pure exact sequence 0+kera+?Ai—9+M+O ([45], Theorem 16.6).
(iv) A module M is f.g. and Cohn pure projective iff it is f.p.
This result is mentioned by Fierhousé on page 15 of [29]. (He
attributes it (without reference) to Zimmerman, and for completeness

sake we would Tike to include a proof).

Proof

If M is f.p. then it is f.g. and Cohn pure projective by (i) above.
Conversely suppose M is f.g., Cohn pure projective. By (iii) above,

there is a Cohn pure exact sequence 0+kerafl+,® A;—2+M>0 where the
e

Aij are f.p. Since M is Cohn pure projective there is a homomorphism

T! M+}81A1 such that a-t = 1y and hence M is a direct summand Of_@IAj.
€ Te

Since M is f.q., M§_®1A1 for some integer ﬁ. It follows from 1.2.1.3(c)
i=

n n _
and (d) thati@€1 is f.p. and, since M is f.g., (,@%1)/M is f.p. and hence

Cohn pure projective.
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Ais 8 Ay and M is Cohn pure in 0 A; (being a direct summand )
1 del iel .

M

A
IHa>

;
hence, by 1.3.1.5(ii), M is Cohn pure iniglAi. Thus the sequence
O+M—j—>1§1A1~j—>(1§1A1)/M+O splits and M is therefore the quotient of
a f.p. module (isomorphic to 1§1A1) by a f.g. module (isomorphic to
(1€31A1)/M), ie. Mis f.p. (1.2.1.3(d)).

(v) A module M is Cohn“pUre projectiye iff it is a direct summand

of a direct sum of f.p. modules ([45], Theorem 16.7).

1.3.2.4 Definition

A left R-module F is called flat ([45]) iff for any exact sequence

0+N+M of right R-modules the induced sequence O-N@F-MBF is exact.

1.3.2.5 There are a number of equivalent characterizations of flatness:
(i) F is flat iff 0+-J8F+RBF is exact -for all right ideals J of
R ([45], Theorem 14.6).
(i) Because of the exactness of the sequence Tor;(R/J,F)->J8F-R8F,
F is flat iff Tor;(R/J,F) = 0 for all right ideals J of R ([61]).
(1ji) F 1s.f1at iff its character module F* = Homz(F,Q/Z) is injective.
This is a famous characterization by Lambek ([54]).

(iv) F is flat iff every exact sequence of the form O+N;M+F+O is
Cohn pure exact ([30]).

1.3.2.6 Definition

A ring is called regular iff acaRa for all acR. This concept was

introduced by von Neumann in [58].

The following interesting result will be used later on:
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1.3.2.7 Theorem ([32], Theorem 2)

A ring R is regular iff every left ideal is Cohn pure in R.

1.3.3 o- Purity : Some Fundamental Properties
1.3.3.1 Remark |
The following ére equivalent for an Abelian group G, subgroup H
of G and the usual torsion theory on Z-mod:
(i) ' nGNH = nH for all neZ (i.e. H'is pure in G in the sense usual
for Abelian groups, see, for examp]e,Fuchsz[BB]).
(ii) Every cyclic, torsion group is projective with respect to
the exact sequence O+H—i+G—1+G/H+O.
(i11) Every f.p.-Abe1ian group is proﬁective with respect to this

sequence (i.e. H is Cohn pure in G).

Proof

Since Z is Noetherian, the concepts of finitely generated Abelian
groups and finitely presented Abelian groups “coincide‘([45], Theorem 3.6).
Furthermore, since any finite cyclic group is torsion (being isomorphic
to Z/(n) for some natural number n>l) ahd.every infinite cyclic group

‘1S‘pr6ject1ve (being isomorphic to Z) the result follows from Theorem 6.18

of [6] 'and Theorem 29.3 of [33].
The previous result suggests the following definitions:

1.3.3.2 Definition ([44])

Let R be a ring and ¢ a torsion radical on R-mod.

A short exact sequence O+PL79+P2—§+P3+O of R-modules is called
o-pure exact 1ff every cyclic, o-torsion ﬁodu]e P is projective with
respect to this sequence. A submodule N of M is called a o-pure submodule

iff the sequence 0-N—sM-oM/N-0 s o-pure exact.
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1.3.3.3 Definition ([44])
Let R be a ring and ¢ a torsion radical on R-mod.
A submodule N of an R-module M is called strongly o-pure 1ff every

g-torsion module is projective with respect to the sequence O+N—1+M—I+M/N+O.

1.3.3.4 Lemma
Let R be a ring, N a submodule of anm R-module M and let ¢ be a
torsion radical on R-mod. Then the following are equivalent:
(i) N is o-pure in M.
(1) For each zeM and IeLg such that IxsN, there is a yeN
with I(xz-y) = 0. (Thus o-purity coincides with Lambek's purity introduced
in [53]). |

Proof

(i) implies (ii): Suppose that N is o-pure in M and that IxzsN for
some xzeM, and some IeL,. R/I is then cyclic, o-torsion and o:R/I-M/N
defined by o(r+l) = retN, for reR, is an R-homomorphish. Let w:M>M/N
be the canonical epimorphism. Since N is o-pure in M, there is a
homomorphism g:R/I+M such that m-8 = a«. Let g(1+I) = z and put y = x-z,
then n(y) = w(x)-1(z) = (xtN)-w+g(1+I) = (x+N)-a(1+I) = 0+N, hence yeN.
Sin;e B(1+I) = z it follows that Iz = 0, and since z = z-y with yeN,
this pro&es (ii).

(ii) implies (i): Suppose that T=R/I is cyclic, o-torsion and
let o:R/I+-M/N be a homomorphism, with «(1+I) = x+N for éome xeM.  Then
Iz<N and by (ii) there is a yeN with I(x-y) = 0. The map g:R/I-M defined

by g(1+I) = x-y is therefore a well defined R-homomorphism and -8 = q,

whence N is o-pure in M.
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1.3.3.5 Lemma
" Let R be a ring and o a torsion radical on R-mod. If every Iel,
js f.g. then the union of an aséending chain {M;j}; of o-pure submodules

of a module M is o-pure in M ([64], Proposition 7.3).

1.3.3.6  Theorem
Let R be a ring and ¢ a torsion radical on R-mod. Let I be some

index set and, for each iel, let P; be a submodule of a module Mi- Then

(i) & P; is o-pure in 8 My iff Py is o-pure in Mj for each i.

iel iel

(ii) I P; is o-pure in Mj iff each Pj is o-pure in each Mj.
i ]

(ii1) ® P; is o-pure in JjPj.
i 1

(iv) ® P; is o-pure in nMj iff Py is o-pure in M;j for each 1.
1 1

Proof
(i) Suppose that Iel, and that I(mjjjé? Pi for some (mflie% M .

Then Imj<P; for each i and, since Py is o-pure in My, for each
nonzero mj we can choose a pjePj with I(mj-pj) = 0. Since there are
only a finite number of nonzero p{, (p1)15§ Pi and I((mj)-(pj)) = (0);.
Thus, ? Pi is o-pure in ? M .

Conversely, suppose that ? Pi is o-pure in ? M; and that Imjs<P;
for some mjeMi, IeLg. |

Define (nj)jeg Mj by nj = {ET }; g ; 2. Then I(nj)jg? Pi and,
by assumption, there is a (pj)je? Py with I((nj)i-(pi)i) = (0)j. Thus
I(mij-pij) = 0 with pjeP; and Pj is o-pure in Mj.

(i) The proof is very similar to (i).
(iii) | Let aZR/I+(?P1)/(? Pi) be any R-homomorphism, and suﬁpdse
that o(1+1) = (pi)i + 8 Pi. Then I(pj)jg? P; and therefore Ip; = 0

for all except at most a finite number of i, say Ip; # 0 iff ielp where
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Ig is a finite set. Let m: qP1+(¥P1)/(§'P1) be the can?ni?a1 epimorphism.
Define B:R/I+¥P1 by g(1+I) = (gj)j where qj = {81*}£ }i%g.

8 is then a well defined homomorphism (since Igj = 0 for all i) and,

moreover, (pj)i-(Q1)1€? Pi, f.e. (n-B)(1+I) = (qi)§ * ? Pi = (pj)j t ? Py

= o(1+1). Hence m:8 = a. ‘

(iv) Suppose that P; is o-pure in My for all iel. “Then, by (i),

? Pi is o-pure in ? Mi. By (iii), ? Mi is o-pure in QMi and by transitivity

of o-purity, ? Pi is o-pure in qu (1.3.1.5(1)).
Conversely, supbose that ? P; is o-pure in in. Let IeLy and let

a:R/I-M;/P5 be an R—ﬁomomorphism for some iel.

Consider the diagram

R/1I
o
g
M ——Mi/Py
T U (b
i T

(mM3)/(8 P1)
1 1

where ¢ is the monomorphism ¢(mi+P5) = (0,..0,mj,0,.0)+@ Py, ©j:IMj>M;
' i 1

06 Py M
i 1
are the usual projections and m,m; the cahonica] epimorphisms. ¢ has

a left inverse, u, defined by u[(m1)1+? Pi)]l = mi+Py.

It is easily verified that wu-m = Wj;Tj. Since ? Py is o-pure
in in, there is a homomorphism T:R/I+¥M1 such that m-t = ¢-a. Then
T5+1:R/I+My satisfies wi-(ri-r) = pemet = pré-a = o and therefore Pj

is o-pure in Mj as required.

1.3.4 o-Purity, Strong o-Purity as Pure Theories

1.3.4.1 Theorem

If R is a ring and ¢ is a torsion radical on R-mod then o-purity

forms a (projectively generated) pure theory right generated by the
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set @ conSisting of all short exact sequences of the form 0+I—J+R—1+R/I+O

where IeL, (This result was recorded, independently, in 1.23 of [57]).

Proof

See [41], Theorem 4.2.

1.3.4.2 Corollaries

(i) 0+P,—%P, is a o-pure monomorphism iff for each IeL, and each

R
f tfz

"2

commutative square

—

where i is the inclusion map, there is a homomorphism w:R+P, such that
u-i = f, ([29], Corollary to Propositioh 3.2).
(i1) If S,T are submodules of a module M and S N T is o-pure in T,

then S is o-pure in S+T ([40], Corollary 5.4 ).

1.3.4.3 Theorem

Let R be a ring and o a torsion radical on R-mod. The strongly
o-pure exact sequences of R-mod are the pure exact sequences of the
pure theory right génerated by the family ¢ = {0+Q,+Q,>Q3>01Q3e7, and
Q, is projective] or equivalently by @' = {0+Q,+Q,»Q3>0/Q3eT, and Q,

is free}.

Proof
Suppose that P:0+P +P,B5P 50 is in ¢* (or (@')*) and let f:QsP,

be a homomorphism where Q3e7,. Let «:Q,»Q3; be an epimorphism where Q,

is free.
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If Q, = kera then 0+Qy—l+Qg—9§Q3+0 is in 2(@') and we can form

a commutative diagram

0 »Q— Q25 +0
.f:
0 ‘Pl ‘Pz 3 rP3 - 0

By assumption QoP so there exists a homomorphism t:Q3>P, with g-1 = f.
Hence every o-torsion module is projective with respect to P and P is
therefore stréng]y o-pure exact.

Conversely, suppose that O+P1——4P2—9»P3»O is strongly o-pure exact,
that the sequence 0:0-Q,+0Q,+Q3+0 is in ¢ (or @') and that we are given

a commutative diagram

0 >Q) Q2 Q3 0
.

By assumption, Q3eT, and hence there is a homomorphism 1:Q4+P,
with g1 = f.

Thus QeP. Since Q was arbitrary in @(or @'), PeQ* (or (@')*).

1.3.4.4 Definition

Let R be a ring and o a torsion radical on R-mod. A module P is
called g-pure projective iff fog every o-pure exact sequence
0+P1—9+P2—E+P3+0 and every homomorphism ¢:P>P3 there exists a homomorphism
¥:P-P, such that g-v = 4.

In the usual way one can show that direct sums and sﬁmmands of o-pure

projective modules are o-pure projective.
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1.3.4.5 Remark

It follows from the discussion in §1.3.1.3 that a short exact sequence

O;QI—EL+QZ—EL+Q3+O is co-o-pure exact iff for every commutative diagram
Q: 0 01—, 2 Q3 0
flj fa f3\
P: 0 P P, +P 3 0
o) B2

where P is o-pure exact, there is a homomorphism t:Qs+P, such that
BZ'T = fa.
This raises the question of the relationship between o-pure projectives

and co-o-pure exact sequences.

-1.3.4.6 Theorem
Let R be a ring and ¢ a torsion radical on R-mod. A module M is

o-pure projective iff every exact sequence of the form 0+>X>Y-Ms0 is

CO-g-pure exact.

Proof

_ ; .
Suppose that the sequence Q:O+X~334Y——i+M+O is exact where M 1is
o—puré projective. |

a B '
Let P:O+Pr——£+PZ——£+P3+O be o-pure exact and consider the commutative
diagram

o] B
! ‘Y ! M O

0 X
flj 1P} s
0 p >

R TEME are € 0

Since M is g-pure projective there exists a homomorphism t:M>P, such

that g,-tv = f3, and 0+X>Y+M>0 is therefore co-o-pure exact.
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Conversely, suppose every short exact sequence with M in the third
ndnzero position is co-o-pure exact. Let P: 0+P>Py>P 30 be a o-pure
exact sequence and let f5:M»P, be a homomorphism. Form the pullback

diagram

B2
and hence the commutative diagram
0 Ly Py 0
f ) fal
0 ﬁ P >P 0
T, 27, 3

By assumption, the top sequence is co-o-pure exact and therefore
there is a homomorphism t:M>P, such that g,-t = f3, whence M is o-pure

projective.

1.3.4.7 lemma ([64], Proposition 2.3(i))
Let R be a ring and ¢ a torsion radical on R-mod. For any~R-modu1e
M there exists a direct sum S of projective and cyclic, o-torsion modules

such that for some homomorphism a:S>M the sequence O+kero—S—"-M>0 is

o-pure exact.

1.3.4.8 Theorem ([64], Proposition 2.4(iii))

Let R be a ring} o a torsion radical on R-mod and let M be an R-module.

The following are equivalent:
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(i) M is o-pure projective.
(i1) Every o-pure exact sequence of the form 0>X+Y-M>0 splits.
(1i1) M is a direct summand of a direct sum of projective and cyclic,

o-torsion modules.

1.3.4.9 Lemma

Let R be a ring and ¢ a torsion radical on R-mod. Then there exists

§ § '
an exact sequence ..;+824—3+Sl——i+M+0 such that keré§j is o-pure in Sj,
for all i.
Proof

Let M be any R-module. By 1.3.4.7, there is a o-pure exact sequence
B . . . - .
0+Kl—gi+31——i+M+0 where S, is o-pure projective. Similarly, there is
a8 o-pure projective module S, and a o-pure exact sequence

o B
0+K24—3+52——5+K1+0 and so on. (Note that o;,a, are the inclusion maps).

We may join these sequences to form the commutative diagram

$ § §1=8B
....... +SB S Sz 2 ‘Sl ! ! M‘*O
B
B3 ay o)
¥
peseamecas ".'Kz Kl

It is then easy to verify that kersj (=Kj) is o-pure in S for all i

S S
and that ...+SZ—33»SI——3+M+O is an exact sequence.

1.3.4.10 Definitions

) § § :
(i) An exact sequence ...Sz——3+51——i+M+0 such that kers; is o-pure

in S; and each Sjis a o-pure projective module is called a o-pure

projective resolution for M .
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(i) The smallest n (if it exists) for which kers, is o-pure projective
in a o-pure projective resolution will be called the o-pure projective

dimension of M (oppdM).

1.3.4.11 Remarks
' § ' $ . .
(i) If ....+Sn——n+5n_1+....+Sl——i+M+O is a o-pure projective
resolution of a module M and kers§j is o-pure projective, for some i,

then keréj+j will be o-pure projective for all jzl.

Proof .

| S L : : o
O-kersi4»Si4)———imé{4+,»0 is o-pure exact and, since im§j4, =

kers; is o-pure projective, this sequence splits. Hence kers&ji, is

o-pure projective.

(i) oppdM is independent of the particular o-pure-projective

resolution that is used to calculate it.

Proof
An easy extension of Theorem 3.5 of [13].

(ii1) If M= BOMy for some modules Mj, (iel), then
1

oppdM = sup{oppdM; |iel}.
Proof Easy.

1.3.5 o-Purity, Strong o-Purity as S-Purities

1.3.5.1 1In [69] C.P. Walker discusses S-purity where S is any class
of modules closed under quotients. She defines a submodule L of a module

M to be S-pure in M iff L is a direct summand of every module K such

that L<Ks<M and K/LeS.
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1.3.5.2 Theorem ([57], 1.48)

o-purity isﬁn S-purity if S is taken as the class of all cyclic,
o—tors{on modu1es, (i.e. L is a o-pure submodule of a module M iff L
is a direct summand of every submodule K of M containing L, such that

K/L is cyclic, o-torsion).

1.3.5.3 Theorem
Strong o-purity is an S-purity, if S is the class of all o-torsion

modules.

Proof

Suppose L is strongly o-pure in M and K is a submodule of M containing

L such that K/LeTg.

Form the commutative diagram

1 L
0 L. K K/ L 0
Iy j13 Ty
—r v M | e
0 L 7 ™ M/ L 0

With inclusions ij and canonical epimorphisms .

Since K/L is o-torsion and L is strongly o-pure in M, there is a
homomorphism t:K/L-M with mp-1 = 1,. By Lemma 1.3.1.2, this is equivalent
to the existence of a left inverse for i,, hence the top sequence splits
as required.

Conversely, suppose that L is a direct summand of every subhodu1e
K of M containing L, for which K/Le7;. If T is o-torsion and o:T-M/L
a homomorphism with a(T) = K/L(KsM), then K/Ler, and, by assumption,

L is a direct summand of K. Let g:K/L>K be a right inverse for the
canonical epimorphiém m:K+K/L. Then g-a:T>M satisfies

me(Bra) = lg/Lra = o and therefore L is stfong]y o-pure in M.
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1.3.5.4 Remark |
o-purity and strong o-purity are therefore examples of some

well-established generalizations of the concept of purity.

1.3.6 Some Re]at&onships between our Three Pure Theories
1.3.6.1 Remark

The concepts of g-purity, strong o-purity and Cohn purity are
distinct in general.

Clearly every strongly o-pure submodule is o-pure. This is

in fact.the only implication which holds for all R, o:

The following example is found on page 596 of [59].

Example 1
Let (74,F5) be the usual torsion theory on Abelian groups. Let
G =1 C(p") where C(p?) is the cyclic group of order pi,p a fixed prime

n=1 ,
and let M = {(xi);eGlpX(zi)j = (0); for some k}. Further, let N = & C(p").

n

B8
—

Then N is o-pure in M but not strongly o-pure in M.

Examp]é-z

Let R be a non-von Neumann regular ring and let r, = [R}. Then every
R-module is o-torsion free (apply 1.2.3.5).

If_O+N—i+M—1+M/N+O is any short exact sequence and TeT; then
Hom(T,M/N) = 0 (1.2.3.4(ii1)) and the sequence is strongly o-pure exact,
vacuously. Hence every submodule of everyAR—modu1e is strongly o-pure.
Since R is not regqular, there is a left ideal I of R which is not Cohn

pure in R (1.3.2.7). This is therefore a strongly o-pure submodule of

R which is not Cohn pure.
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Example 3

Let R be any ring which is not Teft Noetherian and 1, the filter
of a torsion radical ‘which contains at least one left ideal I which is
not f.g. (e.g. take L, as the set of all left ideals in R).

By [61], Corollary 3.42, R/I is not f.p. Since R/I is f.g. it is
not Cohn pure projective (1.3.2.3(iv)). There is therefore a Cohn pure
exact sequence 0sN—2m-B5k50 with respect to which R/I is not projective.

Since R/I is cyclic, o-torsion, this sequence is not o-pure exact.

1.3.6.2  Remark

The examples of §1.3.6.1 show that there are no universally valid
reTationships between o-purity, strong o—purity and Cohn purity, other
than the fact that sﬁrong o-purity imp]ieé o-purity. Lemma 1.3.3.1 shows,
however, that Cohn purity and o-purity are in fact equivalent for Abelian
groups if o is the usual torsion radical.

This makes one ask what restrictions on R and/or 5 have to be imposed
in order to get equivalence of these purities. The rest of this parégraph

is devoted to addressing this question.

1.3.6.3  Lemma

Let-R be a ring and ¢ a torsion radical on R-mod. Then every Ielg
is f.g. iff every Cohn pure submodule is also a o-pure submodule. (The
fact that Cohn purity implies o-purity if every Ier, is f.g. is mentioned

on page 170 (§14) of [64]).

Proof
Suppose that every ez is f.g.
If 0sN2M-25p50 is a Cohn pure exact sequence and R/I is a cyclic,

o-torsion module, then since I is f.g., R/I is f.p. and hence projective
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with respect to this sequence, and the sequence is therefore o-pure exact.
Conversely, subpose Cohn pure submodules are also o-pure and let IeL.
" Then R/I is cyclic, o-torsion and therefore projective with respect
to o-pure exact sequences. By assumption any Cohn pure exact sequence
is also o-pure exact and R/I is therefore projective with respect to such
a sequence. That is R/I is, f.g., Cohn pure projective. By 1.3.2.3(iv),

R/1 is f.p. and by 1.2.1.3(a), I is f.g.

1.3.6.4 Definitions ([61])
(i)  An integral domain R is called a Priifer ring iff it is
semi~hereditary (i.e. everv f.g. ideal is projective).

(ii) A Noetherian Priifer ring is called a Dedekind ring.

1.3.6.5 Warfield in [71], Proposition 5 (page 706) shows that an integral
domain is a Priifer ring iff every f.p. module is a direct summand of a

direct sum of cyclic modules.

1.3.6.6 Lemma
For any R-module M and any torsion radical ¢ on R-mod there is a
direct sum S of cyclic submodules of M and a homomorphism «:S+M such that

the sequence O+kera—->S-25Ms0 is g-pure exact.

Proof

Let M = [mj:icA], where A is a suitable index set.

Put S =1gARm1 and define a:S>M by a:(rimj)i> 1zAr1m1, where rijeR.
Clearly o is an epimorphism. Suppose that IeL, with Isskera for some
seS. If a(s) = mjeM, then a(s) = a(t) where t =A(t1)1eS is given by
EREIRIS PR |

Hence s-tekera and Imj = o(Is) = 0 (since Isskera), and thus

I(s-(s-t)) = It = 0 and, since s-tekera, this proves that kera is
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s-pure in S (1.3.3.4).

1.3.6.7 Theorem
Let R be a ring. For any torsion radical ¢ on R-mod, strong
g-purity and o-purity are equivalent iff every o-torsion module is a direct

summand of a direct sum of cyclic, o-torsion modules.

Proof

Suppose that the stated condition holds and that 0+N-M+K+0 is a
o-pure exact sequence. It is then clear that any o-torsion module T (being
a direct summand of a direct sum of cyclic, o-torsion modules) is projective
with respect to this sequence, which is therefore strongly o-pure exact.
Conversely, suppose that o-pure exact sequences are also strongly

o-pure exact. Let M be any o-torsion module. By 1.3.6.6, there is a

o-pure exact sequence: Orkera—->S—25M>0 where S is a direct sum,_@ARmi,
ie

of ‘cyclic submoduies of M, which are therefore o-torsion. This sequence

is, by assumption, strongly o-pure exact and since M is o-torsion the

sequence splits, as required.

1.3.6.8 Theorem (c f. [64], Proposition 14.1)
Let R be an integral domain. The following pairs of conditions are
equiva1ent“(where o is a torsion radical on R-mod):
I: (a) Cohn purity and o-purity are equivalent
and (b) L, contains every nonzero projective ideal of R.
II: (a) R is a Dedekind ring

and (b) L, contains every nonzero ideal of R.



34

Proof

Suppose that I holds and let M be a f.p. module.

By 1;3.6.6, there is a direct sum S of cyclic modules and a o-pure
exact sequence Orkere—sS—2>M>0. M is Cohn pure projective and therefore
o-pure projective, by I(a). Therefore this sequence splits and M is a
direct summand of a direct sum of cyclic modules. By 1.3.6.5, R is a
Prifer ring.

Let J be any nonzero ideal of R. J contains a nonzero f.g. ideal
K (say) which is projective since R is a Priifer ring. By I(b), KeL, hence
Jely, and II(b) holds. By I(a), Cohn pure submodules are also o-pure
and, by 1.3.6.3, every ideal in L, is f.g. That is, every ideal of R
is f.g.,.R is Noetherian and II{a) holds.

Conversely, suppose that II holds. It only remains to prove I(a).

Since R is Noetherian, Cohn purity 1mp11es o-purity, by 1.3.6.3.

Every cyclic module is o—pure‘projectiye by II(b). If M is any f.p.
module, M is a direct summand of a direct sum of cyclic modules (1.3.6.5)
and therefore M is o-pure projective. It follows now that o-pure exact

sequences are also Cohn pure exact and I(a) holds.

§1.4 THE ¢-PURE INJECTIVE HULL

1.4.1 In this paragraph we show that results in [24] and [64] can
be used to construct a "o-pure injective hull" of any module M, provided

every leLy is f.g. We adapt definitions given in those two papers to

the category R-mod :

1.4.2 Definition

Let R be a ring and o a torsion radical on R-mod. A module M is called
o-pure injective iff for each o-pure monomorphism a:X+Y, any homomorphism

¢:X+M can be extended to a homomorphism y:Y->M.



35

1.4.3 Lemma

Let R be a ring and o a torsion radical on R-mod. The class of
o-pure monomorphisms is closed under pushouts and the class of o-pure
epimorphisms is closed under pullbacks.
(This fact has beeh noted, 1ndependent1y, by B. Stenstrom on page 160

of [64]).

Proof

See [41], Lemma 6.1.

1.4.4 Remark
By 1.3.1.5 and 1.4.3 the class of o-pure monomorphisms is a "proper

class" in the sense of [24] and [64].

1.4.5 Definitions
Let R be a ring and o a torsion radical on R-mod.
(i) A module M is called a o-pure éssential extension‘of.a éubmodu]e
L iff L is o-pure 1n.M and there are no nonzero submodules N of M such
thqt NNL=0and (L+N)/N is o-pure in M/N.
(i) A o-pure essential extension M of a module L is called a

maximal o-pure essenttal extension iff it is not properly contained in

any o-pure essential extension of M.

1.4.6 Lemma ([41], 7.2.3)
Let R be a ring and ¢ a torsion radical on R-mod. If {Mi}lien (where
A is some suitable index set) is a chain of o-pure essential extensions

of a module L, then M = UM; is also a o-pure essential extension of L.
/ i
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1.4.7 Lemma ([64], Proposition 4.1)

Let R be a ring and ¢ a torsion radical on R-mod. Suppose Mis a
oepure essential extension of a submodu]e:L. For each o-pure injective
module K and og-pure monomorphism a:l>K, there is a monomorphism g:M-K

such that the diagram

K¥
commutes, where i is the inclusion map.

1.4.8 Lemma ([24], Proposition 2)
Let R be a ring and ¢ a torsion radical on R-mod such that every

leLy is f.g. The following are equivalent for an R-module module Q:

(i) Q is o-pure injective.
(ii) If «:Q+M is a g-pure monomorphism then o« has a left inverse.
(i11) Q has no non-trivial o=pure essential extension.
(iv) Q is a maximal o-pure essential extension of some submodule L.
1.4.9  Definition

Let R be a ring and o a torsion radical on R-mod. A maximal o-pure

essential extension of a module M will be called a o-pure injective hull

of M.

1.4.10 Lemma ([57], 1.51)

Let R be a ring and ¢ a torsion radical on R-mod such that every

lel 1s-f.g. Then every module may be embedded, as a og-pure submodule,

in a o-pure injective module.
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1.4.11 Iﬁeorem ([24], Proposition 3 and [64], Proposition 4.3)
Let R be a ring and ¢ a torsion radical on R-mod such that every
IeLs, is f.g. Then every module M has a o-pure-injective hull, which is

unique up to an isomorphism that fixes M pointwise.

1.4.12 Corollary ([57], 1.18)

Let R be a ring and ¢ a torsion radical on R-mod such that every
leL, is f.g. An exact sequence Ook—=L s o-pure exact iff every o-pure

injective module M is injective with respect to it.

1.4.13  Remark

Let R be a ring and ¢ a torsion rad1§a1 on R-mod such that every
leLy is f.g. If M is a g-pure injective R-module and L<M then M contains
the o-pure injective hull of L. In particular the g-pure-injective hull

of eVery module M is a submodule of its injective hull.

Proof

Follows easily from 1.4.6 and 1.4.7.

1.4.14 . Example
Suppose R is o—injective (as an R-module) for some torsion radical
o on R-mod. Then the injective and o-pure injective hulls of R coincide.

(For example, any self-injective ring R ahd any torsion radical o on R-mod).

Proof

By [57], 1.7, 1.30 and 1.31, R is g-pure in its injective hull, E(R).
By 1.4.13, E(R) contains a maximal o-pure essential extension S, (say),
of R (which is the g-pure injective hull of R). Since R is essential

in E(R), E(R) is a o-pure essential extension of R and therefore E(R) = S.
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1.4.15 Theorem
Let R be a commutative ring and ¢ a torsion radical on R-mod such
that every IeL, is f.g. If M is a o-torsion free R-module, then the

g-pure injective hull of M is o-torsion free.

Proof

Let P denote the g-pure injective hull of M and let S = o(P) =
{xeP|Iz = 0 for some'ieLO} (1.2.3.5). S:ﬂ M =0 by aésumption. Suppose
lelLy and I(p+S)s(M+S)/S for some peP. Let I be generated by a;,a,...ap.
For each ie{1,2,...n}, there is an mjeM such that aj.p-mjeS. Thus there
exist idea1s.J1eLo such that Jj(aj.p-mj) = 0, 1 = 1,2...n.

J=J;.dy) ...dpebg (1.2.3.6(v)) and J;I.ng. Since M is o-pure in
P and J.leby, it follows from 1.3.3.4 that there is an weM with J.1(p-z)
= 0. Hence p-xzeS and p+S = x+Se(M+S)/S. " Hence, (M+S)/S is o-pure in

P/S. Since P is a o-pure essential extension of M, it follows that S = O.

1.4.16 Remark

If R is a ring and ¢ a torsion radical on R-mod such that every module
M can be embedded, as a o-pure submodule, in a o-pure injective module,
then we-éay "(R,0) admits o-pure injective hulls" (This holds, in particular,

if every lery is f.g., by 1.4.10).

§1.5 o-PURE INJECTIVE DIMENSION AND GLOBAL DIMENSICON

1.5.1  Definition
Let R be a ring and ¢ a torsion radical on R-mod.

Let 0+M——9+E1——l+E2+ .... be a o-pure exact sequence and suppose

that each Ej is o-pure injective.
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This sequence is then called a o-pure injective resolution of M.
The smallest n for which imd, is o-pure injective (if it exists) will

be called the o-pure injective dimension (opidM) of M.

1.5.2 Lemma
Let R be a ring and ¢ a torsion radical on R-mod such that every

lelLy is f.g. Then every module M has a o-pure injective resolution.

Proof

Follows easily from 1.4.11.

The proofs of the results which are listed below are standard and

shall be omitted (see [13]).

Let R be a ring and ¢ a torsion radical on R-mod.

1.5.3
. e . do d
Suppose that in a o-pure injective resolution O-M——Ey——E;>...
we have that imd; is o-pure injective for some 1. Then imdj+j is o-pure

injective for all jzl.

1.5.4

-opidM is uniquely determined (i.e. it is independent of the particular

o-pure injective resolution used).

1.5.5

opid(gMi) = inf{opidMj} for any collection of modules {Mij}ic.].

1.5.6 Theorem

Let R be a ring and ¢ a torsion radical on R-mod. Then the following

are equivalent for fixed R-modules A and B:
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ki) Every o- pure exact sequence of the form 0+A-M>B->0 splits.
(i) For any o-pure exact sequence of the form O+N+M>B-0, the
induced sequence 0-Hom(B,A)>Hom(M,A)>Hom(N,A)~0 is exact.
(iii) ~ For any o-pure exact sequence of the form 0-N+M>B>0, where M is

o-pure projective, the sequence 0-Hom(B,A)+Hom(M,A)>Hom(N,A)~0 is exact.

Proof

(1) implies (ii): Let the sequence 0-N—251-L5B50 be g-pure exact.
We only need to prove exactness of Hom(M,A)+Hom(N,A)+O. Let ¢:N+A be
a homomorphism. We need to find a homomorphism y:M+A such that ¢-a = ¢.

Form the pushout diagram

N o

»
(where F = (M®A)/T for T = {(a(n),-¢(n))IneN}). Define 6:F—B by o((m,a)+T)
= g(m) (for meM, aech).

It is routine to verify that e is a well-defined R—homomorpﬁism and
that.the‘sequence O+Ae5+F—g+B+O is exact. By 1.4.3, this sequence is
o-pure exact. By (i), the sequence splits and hence there is a homomorphism
§:F>A such that §-u = 1p. Define y:M>A by ¢ = s-y, then y-a = ¢, proving (i1).

- That (i) 1mp11eé (ii1) is obvious. |

(ii1) implies (i): Let 0+A—Q+M—§+B+0 be a o-pure exact sequence.

(For simplicity we may take o to be the inclusion map). By 1.3.4.7, there
is a o-pure projective module S and a o-pure exact sequence
0+kere—i+S—E+B+O. Hence there is a homomorphism p:5+M such that g-p = e.

Complete the commutative diagram
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0 kere———5—F B———0
f lp 1B
0 A »M »B >0

g o
By (ii1), there is a homomorphism y:S+A such that p-i =f . By
1.3.1.2, there is a homomorphism p:B+M such that o-y = 1g. This proves

(1).

1.5.7 Theorem
Let R be a ring and o a torsion radical on R-mod such that R-mod
admits o-pure injective hulls. Then the:fo1low1ng are equivalent for
modules A and B:
(i) Any o-pure exact sequence of the form 0+A>K->B->0 splits.

(i1) For any o-pure exact sequence of the form O-+A-N+M>0, the induced
sequence 0-Hom(B,A)+Hom(B,N)~Hom(B,M)~0 is exact. |

(ii1) For any o-pure exact sequence of the form 0-+A-N+M>0,where N

is o-pure injective, the induced sequence 0-»Hom(B,A)+»Hom(B,N)>Hom(B,M)>0

is exact.
Proof

Dual to 1.5.6
1.5.8 Definition

Let R be a ring and o a torsion radical on R-mod. Let A,B be any
two R-modules. We call A and B o-pure projectively equivalent iff there

exist o-pure projective modules P,,P, such that A®P,~B®P,. (We then

write A%YB).
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1.5.9 Remark

It is clear that ¥ is an equivalence relation. The equivalence class

of a module M under ¥ will be dencted by [M].

1.5.10 Lemma

o B
Let R be a ring and o a torsion radical on R-mod. If 0rk—s P15 s

and 0+K‘—EZAP‘—E2+A'+O are two g-pure exact sequences, where P and P'

are o-pure projective and AJA' then KyK'.

Proof -

By assumption, there are o-pure projective modules S and S' such

Q g
that A§S=A'8S'. Construct the exact sequences O+K—23+P®S——3+A®S+O and

©a B - -
0oK' 2P 9S'—25A" 0S50 where @, (k) = (o, (k),0) and ay(k') = (ap(k'),0),

for all keK, k'eK', B, (p,s) = (8,(p),s) for all (p,s)eP®S and B,(p',s")

= (B,(p'),s') for all (p',s')eP'®S'. (Exactness is routinely verified).
Let IeL, and (p,s)eP®S such that I(p,s)<a;(K). Then Is = 0 and

Ipsa;(K). Since o, (K) is o-pure in P there is, by 1.3.3.4, an element

keK such that I(p-a;(k)) = 0. Then I((p,s)-o;(k)) = I((p,s)-(a,(k),0)) =0

and thérefore a,;(K) is o-pure in P®S. Similarly, the second sequence is

o-pure exact.

Let y:A'®S'>ABS be the given isomorphism. Then the sequences

&) By L B2 o, VB
0>k——PBS——ABS>0 and 0-K P'8S »ABS+0 are o-pure exact.

Thus there are homomorphisms o:P8S+P'8S' and o':P'8S'>P8S such that
YeByra = El and B+a' = y-By. Let g = lpgs-a'+a and B' = lprgsi-a-a'.
It is easy to see that imgsa,(K) and ims'g&é(K').. Define, further,
viPBSBa, (K" )P 0S' 85, (K) by Y((pﬁs),&z(k'j) =
(a(pss)taz(k').8(p,s)-atay(k')) and y':P'@S'0a; (K)+POSBa,(K') by

v ((p'ss")sai (k) = (o' (p'ss" )ty (k), 8'(p'ss")-ara; (k).
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It is then routine to verify that y and y' are well-defined
R—homomorphisms; which are mutual inverses. Hence it follows that

P'®S'OK=PBSEK' and therefore KiK', as required.

1.5.11 Definition

Let R be a ring and ¢ a torsion radical on R-mod. If thg sequence
0+K¥P+A+O is o-pure exact and P is o-pure projective, then we denote the
g-pure projective equivalence class of K by P5(A) (Py is well-defined

by 1.5.10).

1.5.12 Definition
Let R bé a ring and o a torsion radical on R-mod. Let A be an R-module.

We define P,O(A) = A and P,"(A) = P,(X) where Xe[PcN"1(A)] 45 n = 1,2,

------

1.5.13 Remarks
(1) Given a module A, P,"(A) is the o-pure projective equivalence

class of kers, in any g-pure projective resolution

83 $
eSS +S,—A+0 for A, nzl,
(2) In such a o-pure projective resolution, keréd, is g-pure projective

iff evefy element of P "(A) is o-pure projective.

(3) It follows therefore that oppdA is the smallest natural number

n such that every element of P,(A) is o-pure projective.

1.5.14 Definition

Let R be a ring and o a torsion radical on R-mod. ~ Let A,B be
R-modules. We call A and B o-pure injectively equivalent iff there exist
o-pure injective modules I, and I, such that ABI =B8I,. If OsA>E+ks0
is o-pure exact and E is o-pure injective, we denote by Is(A) the.

o-pure injective equivalence class of K and by I;"(A) the o-pure injective
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equivalence class of imd, in a o-pure injective resolution

0+A—25E —15E,. .. of A.

1.5.15 Remark

Dual versions of 1.5.10, 1.5.11, 1.5.12 and 1.5.13 can be formulated.

1.5.16 Lemma

Let R be a ring, o a torsion radical on R-mod and let B and C be
R-modules such that every o-pure exact sequence of the form 0+C+X-+B-0
spiits. If D is o-pure injectively equivalent to C, then every o-pure-exact

sequence of the form 0-D+Y->B-+0 splits.

Proof

Suppose I, and I, are o-pure injective modules such that D®I,=C®I,.
Let 0-A-%>7-E+B>0 be o-pure exact and f:A>C8I, a homomorphism. Let
m,,m, be the projection maps from C@Ié onto C and I, respectively.

By our assumption,every o-pure exact sequence of the form |
0+C;X;B+0 splits and, by 1.5.6, there is a homomorphism g,:Z-C such that
gyra = m-f.  Since iz is o-pure injective, there is a homomorphism g,:Z~I,
such that gy-a = n,-f. Define g:Z>C8I, by g(z) = (g,(z), g,(2)).

Then if acA, (g-a)(a) = (g1(a(a)), go(a(a))) = ((wy-F)(a),(r,-f)(a))
= f(a). Hence Hom(Z,C®I,)+Hom(A,CHI,)~0 is exact and therefore
Hom(Z,D®I, )»Hom(A,D81,)>0 is exact. It now follows easily that

Hpm(Z,D)+Hom(A,D)+O is exact and, by 1.5.6, every o-pure exact sequence

of the form 0-D+Y->B-0 splits.

1.5.17  Lemma

Let R be a ring and ¢ a torsion radical on R-mod such that R-mod

admits o-pure injective hulls. Then the following are equiva]ent for

R-modules A and B:
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(i) Every o-pure exact sequence of the form 0+A+M+C>0, where CeP,(B),

splits. |

(i) Every o-pure exact sequence of the form 0+D+N+B+0, where Dels(A),
splits.
Proof

We prove only that (i) implies (ii) since the converse is dual.
~ Suppose (i) holds and choose o-pure eXact sequences O+K—i+P+B+O and
0-+A+Q2>C+>0 where P is o-pure projective and Q is o-pure injective (see
1.3.4.7).
Let f:K+C be a homomorphism and consider the diagram

-— s k—

o
los]
o

f h

|
¢ 5
~< o —

e}

Then KeP,(B) and, by (i), every o-pure exact sequence of the form
0>A+>M>K>0 splits. By 1.5.7, there is a homomorphism g:K~Q such that
a-g = T.

Since Q is o-pure injective there is a homomorphism h:P-Q such that
h-i = g. Hence ¢ = a-h:P-C satisfies ¢-1 = a-g = f and we have therefore
shown that 0-»Hom(B,C)-Hom(P,C)~Hom(K,C)+0 is exact for any o-pure exact
sequence 0-K>P-B+0, where P is g-pure projective. By 1.5.6, it follows
that every o-pure exact sequence of the form 0>C+X+B-0 will split.
Further, CeI (A) since 0+A+(Q»C+0 is o-pure exact with Q o-pure injective,

and from 1.5.16 it follows that (ii) holds.

1.5.18 Remark

A simple inductive argument will shaw that 1.5.17 holds when P4(B)

and I,(A) are replaced by P ,"(B) and I,"(A) respectively, nz1.
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1.5.19 ~Deﬁ'nition

‘ Lét R be a ring and ¢ a torsion radical on R-mod. We define global
dimensions gopidR = sup{opidM|M is a (left) module} and goppd = sup{oppdM|M
is a (left) R-module}. (If either of these suprema does not exist we

set the global dimension equal to ).

1.5.20 Theorem
‘Let R be a ring and suppose that R-mod admits o-pure injective hulls

(for a torsion radical ¢ on R-mod). Thep gopidR = goppdR.

Proof

Suppose goppdR = n. We show that gopidRsn (the converse is dual).
We may assume n<w., Let A and B be arbitfary R-modules. Then opde;n
and hence P;N(B) consists of the class of all o-pure projective modules
(seé 1.3.4.11(i) and 1.5.13). Hence every o-pure exact sequence of the
form 0+A-M>C-0, where CeP "(B), splits and by 1.5.18 every o-pure exact
sequence éf the form C-D+N+B>0 where DeI "(A) splits.

Since R-mod admits o-pure injective hulls it follows that every element
of I,"(A) is o-pure injective, for all modules A. That is, in any o-pure
injective resolution O»A—EQﬁEl—gi+E2+.... (of an arbitrary module A),

we have that imd,, is o-pure injective and therefore gopidRsn.

1.5.21  Remarks
Let R be a ring and ¢ a torsion radical on R-mod such that (R,q)
admits o-pure 1nject%ve hulls. Then
(a) The following are equivalent:
- (i) gopidR = 0 ( = goppdR).
(ii) Every o-pure submodule of every R-module is a direct summand.

(1i1) Every R-module is o-pure projective.
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(iv) Every R-module is o-pure injective.
(b) The following are equivalent:
(i)  gopidRsl.
(1) Epimorphic images of o-pure injective R-modules are
o-pure injective.

(iii) Submodules of g-pure projective modules are o-pure projective.

1.5.22 Example

Let R be any uniserial ring and let L, consist of all the Teft ideals
of R. Then any left R-module M is a direct sum of cyclic, (o-torsion),
modules ([52]) and hence is o-pure projective. Thus gdpde = Q.

Note, further, this example shows that goppdR is not necessarily
equal to the global pfojective dimension of R, since, not every uniserial

ring is semisimple (see [21]).
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CHAPTER THO

RELATIVE INJECTIVITY

§2.1 " INTRODUCTION

. Maddox ([55]) and Megibben ([56]) have studfed the concept of

absolute purity for Cohn purity. In the first part of this chabter
we study absolutely o-pure modules, which are the same as the
o-injective modules of Goldman ([37]), from the point of view of
purity.

An exact sequence 0+M+QO——E+Q1—EL*.... where each Qi is injective
is called an injective resolution. The smallest n for which 1mdn_1
is injective (if it exists) is uniquely determined and is called
the injective dimension of M, @an ([49]). Requiring instead that
imdp_; be o-injective, we obtaiﬁ a new dimension, called the absolutely
o-pure dimension, ady(M) of M. We show that ad,(M) =
inf{nz0|ExtN-1(X,M) = 0 for all (cyclic,) o-torsion (left) R-modules X}
and study the corresponding global dimension briefly.

We also introduce semi-g-injective modu]es,‘defined by suitably
restricting conditions pertaining to o-injective modules. These
are characterized in various ways and we investigate the rings R
for'Which every R-module is semi-g-injective. As a result, a Quasi-Frobenius
ring R (together with any torsion radical ¢ on R-mod) is shown to

have certain equivalent properties, related to o-injectivity.

§2.2 ABSCLUTELY o-PURE MODULES:

2.2.1 Definition

A module M is called absolutely o-pure iff M is g-pure in every

module M' containing M as a submodule.
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The following theorem shows that absolute o-purity is equivalent

to g-injectivity and also to the absolute s-purity of Golan ([34]).

2.2.2 Theorem (c f. [57], 1.7, 1.30, and 1.31; [34], Proposition 4.1)
Let R be a ring and ¢ a torsion radicé] on R-mod. Then the
fo]iowing are equivalent for a module M:
(i) M is absolutely o-pﬁre.

(i1) M is o-pure in any injective module containing M.

(ii1) M is o-pure in E(M).

(iv) M is og-injective.

(v) o(E(M)/M) =.0.

(vi) M is o-neat in any module containing M.

Proof:
The facts that (i) implies (ii) and (ii) implies (iii) are obvious.
(iii) implies (iv): Suppose (iii) holds, let IeL, and suppose

that o:1»M is a homomorphism. Complete the diagram

LN}

I
a\ B
M .
J

E(M)

commutatively using the injectivity of E(M) (where 1i,] are the inclusion
maps). From 1.3.4.2(1) we have, since M is o-pure in E(M); that
there is a homomorphism ©:R+M such that -1 = «. Thus M is o-injective.
(iv) implies (v): Eg(M)/M = o(E(M)/M) by 1.2.4.4. But, by (iv),
M = E (M), and therefore (v) follows.
(v) implies (i): Suppose (v) holds and M' is any module containing
M. Since E(M)/M is o-torsion free, Hom (R/I,E(M)/M) = 0 for all IeL

(1.2.3.4). Hence M is o-pure in E(M), vacuously.
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E(M) is a direc% summand of E(M') and therefore is o-pure in
E(M'). By 1.3.1.5(i), M is o-pure in E(M') and hence (by 1.3.1.5(i1)),
Mis o-pure_in M' as required to prove (1).

If (i) holds then (vi) follows from Proposition 7 of [44].
Conversely, if (vi) holds, then M is o-neat in its injective hull
and, by Proposition 2 (3) of [44], M is o-injective. This completes

the proof.

' A-proof in terms of o-purity simplifies the following result

considerably:

2.2.3 Remark
The class of absolutely o-pure modules is closed under injective

hulls and (module) extensions ([ 35], Proposition 8.4).

Since any injective module is obviously absolutely o-pure, by
2.2.2, closure under injective hulls is clear. |

For closure under extensions, suppose that N is a submodule
of a module M and that both N and M/N aré absolutely o-pure. Let
M' be any module containing M. Then M/N is o-pure in M'/N and N

is o-pure in M'. By 1.3.1.5(iv), M is o-pure in M'. Thus M is

absolutely o-pure.

2.2.4 Definition ([55])
A module M is called absolutely pure iff it is Cohn pure in

every module containing it as a submodule.
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2.2.5 Remark
Let R be a ring and ¢ a torsion radical on R-mod such that every

leLy is f.g. Then an absolutely pure module is o-injective.

Proof:

Follows easily from 1.3.6.3 and 2.2.2.

§2.3 A FURTHER CHARACTERIZATION OF o-INJECTIVITY

2.3.1 Theorem

Let R be a ring and ¢ a torsion radical on R-mod such that (R,0)
admits o-pure injective hulls. Then the following are equivalent

for a module M:

(i) = Every diagram of the form

0k L

where K is an arbitrary submodule of the module L, i is the inclusion

map and P is o-pure injective, can be completed commutatively as

indicated.
(ii) M is o-injective.
(ii1) There is a o-pure exact sequence 0sM—>1-"51/M0, in which I

is g-injective. _

(iv) There is a o-pure exact sequence O»M~i+1—1+I/M+O, in which I
is injectjve. |

(v)_ Every homomorphism «:M>P, where P is o-pure injective;

factors through an injective module,
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Proof
(i) implies (ii): Suppose (i) holds, let AcLy and let a:A>M be a
homomorphism.

Let P(M) be a o-pure injective ﬁodu]e containing M as a o-pure
submodule and let j:M>P(M) be the inclusion map. If i:A+R is the
inclusion map, there {s, by (i), a homomorphism g:R+P(M) such that
B+1 = Jj-a.

Hence the diagram

=~

*]
=3
hon)

3 P (M)
commutes and, since M is o-pure in P(M), there is a homomorphism
¢:R>M such that ¢-i = o« (1.3.4.2(i)). Thus M is o-injective, as
required.

That (ii) implies (iii) is trivial (take I = M).

(iii) implies (iv): Suppose that there is a g-injective module

I and a o-pure exact sequence 0sM T T /Ms0. Let E(M) be the injective

hull of M, suppose that AeL, and that the commutative diagram

A >R
[

k
L B
M

J

. : ~E(M)

is given, where k,j are the inclusion maps. Since I is g-injective
there is a>homomorphism ¢:R+1 such that ¢-k = i.qa.

Thus. the diagram
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™
o]

M : »1

commutes and since M is o-pure in I, there is a homomorphism y:R-M
such that p-k = a. Referring back to the>prev10us diagram, we see
that this means that M is o-pure in E(M) (1.3.4.2(i)). Thus
0-M>E(M)-E(M)/M>0 is o—puré exact, proving (iv).

(iv) implies (v): Suppose that (iv) holds and let o:M>P be a
homomorphism, where P is o-pure-injective. Let I be an injective
module containing M as a o-pure submodule. If i:MsI is the 1nc1ﬁsion
map there is, by o-pure injectivity of P, a homomorphism p:I-P such
that u;i = a. Thus o factors through I and (v) holds.

(v) implies (i): Suppose (v) holds and K is an arbitrary submodule

of a module L in the diagram

P
where i is the 1nc1usioﬁ map and P is o-pure injective. By assumption,
there is an injective_modu1e I and homomorphisms u:M>I and o:I+P
such that g = ©-u. By injectivity of I, there is a homomorphism
¢:L>I such that ¢-i = y-a. Then vy = 0-¢:L-P satisfies

vei = ©:¢+1 = @-y-a = Bra. That is, (i) holds and the theorem is

proved.
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§2.4 ABSOLUTE o-PURITY, EXT AND THE TENSOR PRODUCT

Let R be a ring. For any left R-mocdule M we denote by M* the
character module Homyk(M,Q/Z). MN* is then a right R-module under
(ur)(m) = u(rin) for peM*, reR and meM. It also follows that M* =0
iff M =0 (see [54]). A famous result of Lambek ([54], page 239)
states (essentia11y) that M* is injective iff for every exact secuence
O+Ni+N2 the sequence 0-N;8M>N,8M is exact. If ¢ is a torsion radical
on R-mod, we show that a similar relationship exists between

o-injectivity and the tensor product (2.4.2).

2.4.1 Lemma
Let R be a ring and ¢ a torsion radical on R-mod, Then a module

M is o-injective iff Ext!(R/L,M) = 0 for all LeL, (see [66], page 29).

2.4.2 Theorem
Let R be a commutative ring and o a torsion radical on R-mod.

For a Teft R-mudule M, M* is o-injective iff 0-LBM>REM is exact for

all Lebg.

Proof

M* is o-injective iff Extl(R/L,M*) = 0 for all LeL, (2.4.1) iff
[Tor (R/L,M)]* = 0 (see §1.2.1.7) iff Tor;(R/L,M) = 0 for all LeL,.
Hence the result follows from the exactness of the sequence

Tor | (R/L,M)+LEM>REM.

2.4.3 Remarks
L. . If we take Ly to be the set of all ideals of R in 2.4.2

then we get the following special case: M is flat iff M* is injective
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([54]) iff M* is o-injective iff 0-LBM>RBM is exact for a11.1dea1s
L of R. This is ju;t Theorem 14.6 of [45].
2. Suppose the class of o-injective modules is closed under
homomorphic images (e.g. if every IeL, is projective - see 1.2.4.6(i1))
“Then the following are equi?a]ent:
(i) M is o-injective.

(ii)  Ext(s,M)

1

0 for all o-torsion modules S and n = 1,2.

(i) ExtN(S,M)

0 for all cyclic, o-torsion modules S and n = 1,2.

Proof:

Suppose (i) holds and let S be a o-torsion module.

The exact sequence 0+M—1+E(M}—1+E(M)/M+O induces an exact sequence
Hom(S,E(M)/M)>Ext! (S,M)-Ext!(S,E(M)). ~Since E(M) is injective,
Ext1(S,E(M)) = 0. By (i), E(M)/M is o-torsion free (2.2.2) and hence
Hom(S,E(M)/M) = 0. The exactness of the above sequence thus implies
that Extl(S,M) = 0.

We have therefore shown that Ext!(S,M) = 0 for all o-torsion
modules S, whenever M is o-injective.

Suppose now that the class of o-injective modules is closed
under epimorphic images. Then, E(M)/M is o-injective and, by the
above, Ext!(S,E(M)/M) = 0 for all o-torsion modules S.

Let S be a o-torsion module. In. the exact sequence

Ext1(S,E(M))>Ext!(S,E(M)/M)+Ext2(S,M)-Ext2(S,E(M)), the fact
that E(M) is injective forces Ext2(S,E(M)) = Ext!(S,E(M)) = 0. Thus
Ext!(S,E(M)/M)=Ext2(S,M) and hence Ext2(S,M) = 0. Thus (i) implies
(i1).

That (ii) implies (iii) is obvious.

The fact that (ii1) implies (i) is in Lemma 2.4.1.
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§2.5 ABSOLUTE o-PURE DIMENSION

2;5.1 In [27] D.J. Fieldhouse defines an absolutely pure dimension
by apd M = inf{nz0[Ext"*1(X,M) = 0 for all f.p. modules X}. The
f.p. modules are the modules in the third nonzero position of the
co-g-pure exact sequences for Cohn purity, corresponding to the cyclic,
o-torsion modules for o-purity. It is therefore natural to define
an absolutely §—pure dimension as follows (where ¢ is a torsion
radical):
adg (M) = inf{nz0|Ext"*1(X,M) = 0 for all cyclic, o-torsion X}. We
define further ad%(M)-= inf{nz0|Ext"*1(X,M) = 0 for all o-torsion X}.
(If no such n exists we define ad (M) = « or ad¥(M) = =).

Fieldhouse also defines a weak injective dimension
w-inj M = inf{nz0|Ext"*1(X,M) = 0 for all cyclic, f.p.X}. It follows
that for all M, w-inj Msinj M where inj M = inf{nz0[Ext"*1(X,M) = 0
for all jeft'R—modu1és X} is the well known <njective dimension of M

(see [49]).

2.5.2 Remarks _
(i) ad,(M) = 0 iff ad¥(M) = 0 iff M is o-injective.
(ii) - adg(M)sadX(M)<inj M for all M.

(iif) If every IeLy, is f.g., then ad,(M)sapd M and ad (M)sw-inj M,
for all M. Thus ad;(M) is seen to be not greater than many of the
well known aimensions .

(iv) From (i) above, it follows that M is o-injective iff M

is strongly o-pure in its injective hull.

Proof

(i) ad*¥(M) = 0 iff Ext!(S,M) = 0 for all o-torsion S iff

Ext!(S,M) = 0 for all cyclic, o-torsion S (see the proof of 2.4.3(2))

iff M is o-injective (2.4.1).
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(i1) If ad%(M) = n, then Ext"*1(S,M) = 0 for all o-torsion modules
S and hence Extn*1(S,M) = 0 for all cyclic, o-torsion modules S and
therefore ad (M)sn.

“Similarly ad¥(M)<inj M.
(iii) If every lel, is f.g., then every cyclic, o-torsion module

is f.p., cyclic and therefore, as before, we get that ady(M)sapd M
and adj(M)sw-inj M.

(iv) If M is strongly o-pure in E(M), then it follows from 2.2.2

that M is g-injective.

Conversely, suppose M is o-injective. By (i), ad*(M) = 0 and
henbe Ext!(S,M) = 0 for all o-torsion modules S.
The exact sequence 0+M+E(M)—1+E(M)/M%O induces an exact sequence:
. .>Hom(S,E(M) 2sHom(S,E(M)/M)=Ext! (S,M) = 0, where 0(¢) = n-¢ for
¢eHom(S,E(M)). Thus if S is o-torsion, 6 is epic and therefore M

is strongly o-pure in E(M).

2.5.3 Theorem
Let R be a ring and ¢ a torsion radical on R-mod. - Then the
following are equivalent for any R-module, M:
| (i)  In any injective resolution O+M+QO——9+QI—EL+....of M, im dp-,
is g-injective.
(ii) There exists an injective resolution, as above, in which

im dp-; is o-injective.

(iii) ExtNt1(X,M) = 0 for all o-torsion modules X.

(iv) Extn*ti(Xx,M)

0 for all cyclic, o-torsion modules X.

Proof

That (i) implies (ii) is clear.
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(ji) implies (iii): Suppose that (ii) holds and let
0+M+QO——9+QI—EL+....+Qn_1+Kn+0 be an exacf sequence, where Q4 1is
injective, i = 0,1,....n-1 and Kp = im dp-; s o-injective. By The
Shifting Theorem for Injectives, ([49], page 54), we have that
ExtNt1(X,M) = Ext!(X,K,) for all modules X. If X is g-torsion then

Extl(X,Kn) = 0 (see 2.4.3(2)) and therefore (iii) follows.

That (iii) implies (iv) is clear. |

(iv) implies (i): Suppose that (iv) holds and let 0+M+QO—SE+Q1+....
be any injective resolution of M. By another application of The
Shifting Theorem for,injectives we have that, for any module X,
ExtN*1(X,M) = Ext}(X,im dy-,). Hence it follows from (iv) that
Extl(X,im dnfl) = 0 for all cyclic, o-torsion modules X and hence

im dp-; is o-injective (2.4.1), as required to prove (i).

2.5.4 Corollary 1
ads (M) (= adg(M)) is the (uniquely determined) least positive
integer n such that in any injective resolution O+M+Q0—39+,_., of M,A

im dy-; is o-injective.

2.5;5 ~ Corollary 2:
Let R be a ring and ¢ a torsion radical on R-mod. Suppose,
further, that 0-Kk-2L-BsM0 s an exact séquence, where L is injective.
(i) If K is not o-injective, then ad,(K) = ad,(M)+1.
(i1) If M is o-torsion, but not o-injective, then ady(K) = ad,(M)+1.

(iii)  ady(K) is finite iff ad,(M) is finite.

Proof
. . w dg . .
(1) Let G>M—Qy—=Q,~>....be any injective resolution of M.

Then kerdy = im w=M = im g=im w-g. Further kerw-g = kerg = im o
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dy . .
0 Q;>....is an injective resolution

and hence the sequeﬁce NN
of K. |
Clearly (i) now follows from 2.5.4.
(ii) If ad,(K) = 0, the sequence splits by 1.2.4.6 (v). This
would be contrary to the assumption that M is not o-injective. Thus
K is not o-injective and the result follows from (i).
(ii1) By The Shifting Theorem for Injectives ExtN*1(X,K) = ExtN(X,M)

for all left R-modules X.

2.5.6 Definitions

Let R be a ring and o a toréion radical on R-mod. We define
the global absolutely o-pure dimension AD (R) - sup{ads(M) M is a
Teft R-module}. (If no supremum exists we write ADO(R)'= m): We
also define a fing R to be (left) o-regular iff every submodule of

every (left) R-module is a o-pure submodule.

2.5.7 Note

Let R be a ring. In the Dimension Theorem ([49],.page 48) we
find the following: If M is a (left) R-module then the projective
dimension of M is given by pr M = inf{nz0|ExtN*1(M,X) = 0 for all
Teft R-modules X}. |

2.5.8 Theorem
llet R be a ring and ¢ a torsion radical on R-mod. Then
(i) AD,(R) = 0 iff R is o-regular iff every R-module is o-injective.
(i) AD4(R)ssup{pr SIS is a cyclic, o-torsion R-module}.
(iii)  If AD4(R)#0, then AD,(R) = 1+sup{ad,(E(M)/M) M is not 6-1nject1ve}.
(iv) ADy(R)<1 iff E(M)/M is o-injective for all modules M such

that M is not o-injective. (This is true, for example, if every leL

is projective - see 1.2.4.6(ii)).
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Proof

(i) R is o-regular iff every exact sequence of R-modules
0->N->M>M/N-0 is o-pure exact iff every R-module N is absolutely o-pure
iff .ad N = 0 for all (left) R-modules N (2.2.2) iff AD4(R) = 0.

(i) Suppose that sup{pr SIS is cyclic, o-torsion} = n. Then

pr Ssn for all cyclic, o-torsion S.
Then ExtN*1(S,X) = 0 for all cyclic, o-torsion modules S and
all (left) R-modules X (see §1.2.1.4(a)) and hence ad,(X)sn, for
all modules X, proving that AD,(R)sn.
(i) If M is not g-injective it follows from exactness of the
sequence O0+M>E(M)~E(M)/M>0 that ad (M) = 1 + ad,(E(M)/M) (2.5.5).
Since AD4(R) is nonzero, there is at least one module M such
that ady (M) is nonzero, and hence AD4(R) = sup{ad,(M)|ad,(M) is nonzero}
= sup{l + ad (E(M)/M)IM is not o-injective}.

(iv) If AD4(R) = 1, then it follows from (iii) above that
sup{ad,(E(M)/M)IM is not o-injective} = 0. If AD4(R) = 0, then all
R—modu]eé are o—injeciive, by (i) above.

Conversely, suppose the stated condition holds and Tet M be
any R-module which is not o-injective. There is an injective resolution
of the form 0+M+E(M)~E2+Ql+....and, by assumption, E(M)/M=im dg 1is

o-injective. Thus ad,(M)sl.

2.5.9 Example
If R is a left semi-hereditary ring, but not o-regular, where
o is a torsion radical on R-mod such that every Iery, is f.g., (e.g. R =1

with the usual torsion theory), then AD,(R) = 1.
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Proof

If S is cyclic, o-torsion then S=R/I for some leL,, where, by

assumption, I is f.g. and therefore projective. Hence

d
0+ ]—R—2

»R/1-0 is a projective réso1ution of R/I such that I=im d,
is projective.

Thus pr S=1 and since S was an arbitrary cyclic, o-torsion module,
AD4(R)ssup{pr SIS is cyclic, o-torsion}<l. But R is not o-regular

and by 2.5.8(i) AD4(R)#0. That is, ADg(R) = 1.

§2.6 SEMI-o-INJECTIVE MODULES:

2.6.1 Definition

A module M is called semi-o-injective iff every diagram of the

form

0K ! L

M’,

where k is a projecfive submodule of L, L/K is o-torsion, (and i

is the inclusion map), can be compieted commutatively as indicated.
Obvious1y every g-injective module is semi-g-injective. It

follows in the usual way that direct summands, finite direct sums

and direct products of semi-o-injective modules are semi-o-injective.

2.6.2 Lemma

Let R be a ring and o a torsion radical on R-mod. Epimorphic

images of semi-o-injective R-modules are semi-g-injective.
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Proof
' Suppose that M is a semi-o-injective R-module and that N is
a submodule of M. Suppose further that K is projective, L/K is
o-torsion and o:K-M/N is an R-homomorphism.
Let m:M>M/N be the canonical epimorphism. Since K is projective
there is a homomorphism g:K+M such that w-g = a. ”

Since M is semi-o-injective, we can complete the diagram

05K L L

commutatively.

Hence (rm-0)-i = o and M/N is therefore semi-o-injective.

2.6.3 Remark

Let R be a ring and ¢ a torsion radical on R-mod such that every
leL, is projective (e.g. if R is hereditary). Then semi-o-injective

modules are o-injective.

Proof

Easy.

2.6.4 Lemma

Let R be a ring and o a torsion radical on R-mod. Then projective,

semi-o-injective R-modules are o-injective.
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Proof
Let M be such a module, let E (M) be the o-injective hull of
M and let i:M>E, (M) be the inclusion map.
Since M is projective and_Eo(M)/M is o-torsion (1.2.4.4), there
is a homomorphism u:E4(M)>M such that u-i = 1y (M is semi-o-injective).

That is, M is a direct summand of EO(M) and is therefore o-injective.

2.6.5 Theorem
Let R be a ring and ¢ a torsion radical on R-mod and Tet M be
an R-module. Then the following are equivalent:
(i) M is semi-g-injective.
(ii) Every homomorphism «:P-M where P is a projective module,
can be factored through a o-injective module.
(ii1i) There is an exact sequence of the form O+M-ia8—1+S/M+O,

where S is semi-g-injective and o(S/M) = 0.

Proof

(i) implies (1f): Suppose that M is semi-o-injective, P is projective
and that o:P+M is alhomomorphism. Let EO(P) be the g-injective hull
of P and Tet i:P>E (P) be the inclusion map.
Since M is semi-g-injective, a homomorphism p:E (P)+M exists
such that u+i = o. Hence o factors through E (P).
(i) implies (i): Suppose, conversely, that every homomorphism
a:P-M, where P is projective, factors through a o-injective module.
Let P be projective,VX/P o-torsion and a:P>M a homomorphism. Then
a factors through a o-injective module, I (say). Let i:P+X be the

inclusion map.

Consider the diagram
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where o factors as 6-8. Since I is g¢-injective, there is a homomorphism
u:X>I such that u-i = g. Hence g-u:XoM satisfies (6eu):i =068 =0
and M is semi-og-injective, as required.

That (1) implies (iii) is clear. (Take S = M).

(1i1) implies (i): Suppose U+M—i+S—E+S/M+O is an exact sequence
where S is semi—o~1nject1ve and o(S/M) = 0.

Let K be a projéttive submodule of a module L such that L/K
is o-torsion and suppose that a:K->M is a homomorphism. Let j:K-+L
be the inclusion map.

Since S is semilo—injective, there is a homomorphism g:L-»S such

that the diagram

—I 1
a
M
g
i
S

commutes. Let xzel. Let A = Ann (g(x)+M) and let B = Ann(z+K).
BeLy, because L/K is o-torsion and it is easy to see that BsA. Hence

AeLy and, since o(S/M) = 0, it follows that g(z)eM. Thus g(L)sM,

which proves (1i).
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2.6.6 Remark
The equivalence of (i) and (iii) in 2.6.5 is the semi-g-injective

version of "gM is g-injective iff o(E/(M)/M) = 0" (see 2.2.2).

2.6.7  Definition

Let R be a ring and ¢ a torsion radical on R-mod. An R-module
F is called r-flat 1ff whenever we have a commutative diagram of
the form

1.1 7[1
0 K L: L/K —0

fy fa s

0—- : oM oF 0

where K is projective and L/K is o-torsion, there exists a homomorphism

¢:L/K>M such that w,-¢ = f5.

2.6.8 Theorem
Let R be a ring and o a torsion radical on R-mod. The following
are equivalent for an R-module M:
(i) M is semi-o-injective.
(ii)l There is a o-pure exact sequence 0-M>S+S/M>0, where S is
semi-g-injective and S/M is z-flat. .

(ii1) Every homomorphism a:M>P, where P is a o-pure injective
module, factors as M~i+Sf§+P, where M is a o-pure submodule of the
semi-o-injective module S and S/M is z—fiat (i is the fnc1usion map).

(iv) There is a strongly o-pure exact sequence of the form

0+M>S5-S/M>0, where S is semi-g-injective.



66

Proof

That (i) implies (ii) is clear (take S = M).

(i1) implies (iii):Let O+M—i»S+S/M+Q be a o-pure exact sequence
where S is semi-o-injective and S/M is s-flat (i is the inclusion
map). Further.v]et o:M+-P be a homomorphism where P is o-pure injective.
Sinée M is o-pure in S and P is o-pure-injective, there is a homomorphism
g:S+P such that the diagram

M

commutes, proving (iii).

(iii) implies (i): Let K be projective, L/K o-torsion and u:K+M
a homomorphism. Let P be the injective hull of M. By (iii), there
is a semi-o-injective module S such that the inclusion map o:MsP
factors through S, as M—i*S~E+P, where i is the inclusion map, M
is o-pure in S and S/M is z-flat. Let j:K-L be the ‘inclusion map
and m:5+5/M the canonical epimorphism.

Since S is semi-o-injective, there is a homomorphism v:L>S such

that the diagram

commutes.

Complete the commutative diagram
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K: J E L/K
M. \Y 0
M— - —+S— »S/M
' 1 b

Since S/M is r=flat, there is a homomorphism ¢:L/K+S such that
ne¢ = 6. By 1.3.1.2, there is a homomorphism y:L>M such that y-j = u.
That is, M is semi-o;injective, proving (1i).
‘ THe proof of the fact that (i) is equivalent to (iv) follows

similar lines and is left to the reader.

2.6.9 Remarks
1. Let E(M) be the injective hull of a module M. If E(M)/M
is g-flat that it is easy to see that M will be semi-o-injective.

2. When working with R-modules one is often aware of a two-way
relationship between R-mpd and R. Conditions on R affect characteristics
that R-modules may have and (since R is an R-module) properties of
R-mod carry back onto the ring R. A famous example of this is the
result ([67] , Proposition 3.5) that R is a Noetherian ring iff every
f.g. R-module is a Noetherian module. Some of our theorems are of
this type. R is, of course, projective as an R-module but not necessarily
injective. The next theorem proVides tnter alia, conditions on R-mod
which hold iff R is o-injective (when every leL, is f.g.). See also
3.4.4.

3. A mcdule F is called o-flat iff every exact sequence of
the form 0+K+L+F+0 is o-pure exact ([29]). It is then clear from
definition 2.6.7 that whenever strong o-purity is equivalent to

o-purity, o-flatness implies r-flatness.
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2.6.10 Theorem
Let R be a ring and ¢ a torsion radical on R-mod. Then the
following are equivalent:
(i) Every R-module is r-flat.
(ii). Every projective R-module is o-injective.
(iii) If K is projective and L/K is o-torsion, then K is a direct
summand of L.
(iv) Every R-module is semi-g-injective.
Suppose, further, that every les, is f.g. Then the above conditions

are equivalent to:

(v) R is o-injective.

(vi) . Every R-module is an epimorphi¢ image of a o-injective
module.
Proof

(i) implies (ii): Let M be a projective R-module and E (M) its
o-injective hull. E (M)/M is o-torsion and £-flat, by (i). It then
follows easily from Definition 2.6.7 that M is a direct summand of
E;(M), proving (ii).

(i1) implies (iii): If K is project%ve and L/K is o-torsion,
then K is og-injective, by (ii). Hence, if i:KsL is the inclusion
map, there is a homomorphism a:L+K such that «-i = 1. That is,
Kis a direct summand of L.

That (ii1) implies (iv) is clear.

(iv) implies (i): Let F be any R-module, and suppose that the

diagram
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0 >K L »L/K 0

0 N M F 0

commutes where K is projective and L/K is o-torsion. K is
semi—o—injeétive, by (iv), and hence the top sequence is split exact.
This proves (1).

That (iv) implies (v) follows from 2.6.4.

Suppose now that every lel, is f.g.

(v) implies (vi): By 1.2.5.1, direct sums of g-injective modules
are g-injective and hence, by (v), every free R-module is g-injective.
Since every R-module is an epimorphic image of a free R-module, (vi)
follows.

That (vi) implies (iv) follows directly from 2.6.2.

2.6.11  Remarks

1. A ring R satisfying the equivaient conditions (i) to (iv)
of 2.6.10 will be called i-regular.

2.. An example of a ring R satisfying all the conditions of
2.6.10 is any Quasi-Frobenius r%ng R (together with any torsion radical
o on R-mod). (Since a Q.F. ring is Noetherian and has the property
that projective R-modules are injective - see [49]).

3. If every IeL, is f.g. and projective then R is g-injective

iff R is o-regular,

Proof
If R is g-regular then it is o-injective as an R-module by 2.5.8(1).
Conversely, suppose R is o-injective. Let M be any R-module.

By 2.6.10, M is semi-g-injective. By 2.6.3, M is os-injective. That

is, every R-module is ¢-injective and R is og-regular, by 2.5.8(i).
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4. It is easybto show that a weaker form of 2.6.10(ii), namely
the condition "g-pure projective R-modules are semi—o—injectiveﬂis

equivalent to the conditions of 2.6€.10 when every IeLy is f.g.

5. Semi-o-injective modules need not be o—injectfve:

(i) Let R = 2, = {0,1,2,3} - the ring of congruence classes
mod 4. Consider {{0},{0,2},R}. This is the filter of a torsion
radica1 o on R-mod, as is easily verified.

R is g-injective: Suppose leL, and «:I+R is a homomorphism.

" The cases 1 = {0} or I = R are trivial so suppose I = {0,2].
The only nonzero homomorphism o is the inclusion map and therefore
IR extends «a.

By 2.6.10(iv), {0,2] is semi-o-injective. It is not, however,
o-injective, since there is no homomorphism g making the diagram

(0,2)— R

1
B
{0,2}
commute, ({0,?} not being a direct summand of R).

(i1) In view of 2.5.8(i), it follows from [35],
Proposition 8.10 that a ring R is o-regular (for a torsion radical
o on R-mod) iff every Iel, is a direct summand of R.
Let R be a ring and o a torsion radical on R-mod such that R is
o-injective, every IeL, is f.g. but R is not o-regular. (We may take
any Noetherian, self-injective ring R and any torsion radical o on

R-mod such that Ly contains ideals which are non-direct summands
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of R). Then, by 2.6.10, every R-module is semi-g-injective but,
by 2.5.8(i), not every R-module is o-injective.

6. If R is g-regular then the fir;t four conditions of 2.6.10
hold (since every R-module is then o-injective). That is, if R is
o-regular then it is-i-regular. The converse is not necessarily
true: Let R = z, = {0,1,2,3} and 1, = {{0},{0,2},R}. It was shown,
in (5)Iabove, that R is o-injective. Since every ler, is f.g. it
follows by 2.6.10 tﬁat every R-module is semi-g-injective, and
therefore R is z-regular. R is not, however, o-regular since otherwise
[0,2} would have to be a direct summand of R, which it is not.

7. R is o-regular iff R is z—fegu1ar and every leL, is

projective.

Proof
If R is o—regu1qr then it is r-regular (see 6 above) and every
leLy 1s a.direct summand of R and is therefore projective.
Conversely, suppose R is z-regular and every leL, is projective.
Then every R-module is semi-g-injective and hence o-injective (by
2.6.3). Hence R is o-regular (2.5.8(1)).

8. The following are equivalent for a ring R and a torsion

radical ¢ on R-mod:
(i) A module M is semi-g-injective and o-torsion-free.
(i) If K is a projective submodule of a module L and L/K is

o-torsion, then a homomorphism a:K->M extends to a unique homomorphism

B:L>M.

Proof

(i) implies (i1): Let K, L and M be as given and let o:KsM be
a homomorphism. By definition there exists a homomorphism g which

extends a«. We only need to show uniqueness of g.
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Suppose, therefore, that g, and B, both extend «. Define
B':L/K+M by B'(x+K)‘= Bi(x)-By(x), for xzeL. 8' is a homomorphism
and since L/K is o-torsion and M is o-torsion-free, g' = 0. That
is, B = Bp.

(i1) implies (i): By (ii) the zero map from O to M has a unique

extension to a homomorphism g:o(M)>M in the diagram

0 o (M)

M
Clearly g = 0 and since the inclusion map i:0(M)~M also makes this

diagram commute,i = 0. That is, o(M) = 0, proving (i).
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CHAPTER THREE

RELATIVE REGULARITY AND FLATNESS

§3.1 INTRODUCTICN

We have already noted that a ring R is von Neumann regular iff
every ideal is Cohn pure in R. This result inspired Fieldhouse to
define an R-module M to be regular iff every submodule is Cohn pure
([32]). 1In this chapter we extend this to o-purity in the obvious
way.

Some of our results are extensions of basic properties of regular
modules found in [29] and [32]. We further characterize o-regular
rings for the case of an arbitrary ring, a commutative ring and a
commutative, Quasi-Frobenius ring. We also show how o-regularity
of rings is related to their von Neumann regularity (3.4.3) and briefly
consider properties of modules over o-regular rings (3.4.6). We
note, laztly., that o-regularity is equivalent to the concept of
o-semisimplicity, defined in [62], for rings (but not arbitrary R—modu1es);

In the second part of this chapter we collect together the known
properties of o-flatness which are important for our purposes (including
proofs in our terminology) and derive some new properties. More
specifically, we extend the main result (Theorem 2.4) of [13] to
o-flatness (see 3.5.1.7). We also use g-flatness to characterize
o-regular rings (3.5.1.10).

Lastly, we introduce semi-o-flat modules, show that they have
properties analogous to those of o-flat modules, in many instances,

and characterize rings R for which every R-module is semi-g-flat

(3.5.3.2).
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§3.2 o- REGULAR MODULES
3.2.1 Definition

‘Let R be a ring and ¢ a torsion radical on R-mod. We define

an R-module M to be o-regular iff every exact sequence of the form

0sN—sM-"M/N>0 s o-pure exact.

3.2.2 Theorem

Let R be a ring and o a torsion radical on R-mod. If N is a
submodule of an R-module M, then M is o-reqular iff N and M/N are
o-regular and N is o-pure in M. In particular, thus, submodules

and homomorphic images of o-regular modules are g-regular.

Proof

A direct extension of Theorem 6 of [32].

3.2.3 Lemma
Let R be a ring and let ¢ be a torsion radical on R-mod such that
every leLy is f.g. If P is a submodule of an R-module M such that

every f.g. submodule of P is g-pure in M, then P is o-pure in M.

Proof

Let {Pj[ieI} be the collection of f.g. submodules of P. Obviously

P=UpP;. Let aj:Pij>M be the inclusion map for each i. Suppose that

AeL, and that the diagram

A J LR
f g
¥
M M
k

commutes, where j,k are the inclusion maps.
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Suppose A is generated by the elements aj,ag,..... ap. Then
f(aj)ePyj; for some jiel, i=1,2....n. P =Py + Py 4. +P3,

is a f.g. submodule of P, f(A)<Py and the diagram

A R
f g
Pk-———>M
o

commutes.
Since Py is o-pure in M, there is a homomorphism o:R>Py<P such

that p-j = f. Thus P is o-pure in M, by 1.3.4.2(1).

3.2.4 Theorem
Let R be a ring and ¢ a torsion radical on R-mod such that every
AeLy is f.g. Then ®M;j (and hence £Mj) is o-regular iff every Mj
i

3
is o-regular.

Proof

A direct extension of Theorem 7 of [32].

§3.3 o-REGULAR SOCLE
3.3.1 Definition
Let R be a ring and ¢ a torsion radical on R-mod. For any R-module

M, denote by (M) the sum of all the o-regular submodules of M.

3.3.2 Theorem

Let R be a ring and ¢ a torsion radical on R-mod such that every
RelLs is f.g.. If M is an R-module, z(M) is the maximal o-regular
submodule of M and © is a torsion socle in the sense of Fieldhouse

([32]) (i.e. it satisfies 1.2.3.1(i) and (i1)).

Proof

Routine.
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3.3.3 . Remarks

1. There is a smallest torsion radical, which we will denote
by‘z' such that u(M)sz'(M) for all modules M.

It follows that z'(M) = n {NsMIx(M/N) = O for all M] (see [37],

Proposition 1.1, Theorem 1.6).

2. A module M is z-torsion iff it is o-regular.
§3.4 o-REGULAR RINGS
3.4.1  Definition

Let R be a rfng.and o a torsion radical on R-mod. A ring R
is called (left) o-regular iff it is o-regular as a (left) R-module

i.e. iff every (left) ideal of R is g-pure in R.

3.4.2

The following theorem and its corollary shows the analogy between

the o;regu1ar1ty and the von Neumann reqularity of rings:

Theorem

Let R be a ring and ¢ a torsion radical on R-mod. Then the

following are equivalent:

(i) Every cyclic, o-torsion module is g-regular.
(11) Every cyclic, o-torsion module is semisimple.
(ii1) Given cyclic, o-torsion modules F and G, and a homomorphism

a:F+G, there is a hqmomorphism $:G»F such that a-8-a = «.

Moreover, if every AeL, is f.g., then the above conditions are

equivalent to:

(iv) f.g. submodules of cyclic, g-torsion modules are direct

summands .



77

Proof

(i) implies (ii): Suppose that (i) holds. Let G be a cyclic,
o-torsion R-module and F a submodule of G. Then G/F is cyclic, o-torsion
and G is o-regular, by (i), hence OaF—iﬁG—1+G/F+O is o-pure exact.

It follows that the above sequence splits and G is therefore semisimple,
as required to prove (ii).

(ii) implies (ifi): Suppose that (ii) holds, F and G are cyclic,
o-torsion modules and a:F+G is a homomorphism. Say G=R/L,, F=R/L,
for some L,,L,el,. Factor a through ima, i.e. put a = j-a where a:F>ima
and j is the inclusion map from ima to G.

By (ii), ima is a direct summand of G. Suppose that p:Gsima
is the left inverse of j and that ima=~F/kera=R/T, where kera=T/L,

(for a left ideal T of R containing L,).- Then, by (ii), the exact
sequence O»kerasF—>ima~>0 splits and thus there is a homomorphism
yimasF suchthat a-y = 1ljp,. Hence y-u:G»F satisfies aryryca = lipg-u o
= limg o = Limg*limg-a = a.  Thus (ii1) holds, with g = y-u,

(111) implies (i): Suppose that (iii) holds and that F is a
cyclic, o-torsion R-module with submodule L. Let'nm:F+F/L be the
canonical epimorphism. Since F and F/L are cyclic, o-torsion, there
is a homomorphism g:F/L+F such that w-g.m = w (by (iii)). Since
m is epic, this means that 1p, = n-g and hence the sequence
0+L+iﬁF—I+F/L+O splits. Thus L is o-pure in F, as required to prove (i).

That (ii) implies (iv) is clear.

(iv) -implies (iii): Suppose that (iv) holds, every ReLs is f.g.,
and F,G are cyclic, g-torsion modules with o:F>G a homomorphism.

Say G=R/L;, F=R/L, for some Ly,LyeLy. As before, we put o = j-&-

where a:F+ima and j is the inclusion map from ima to G.
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Ima is f.g. since it is an epimorphic image of the cyclic module
F. Thus, by (iv), it is a direct summand of G. Suppose that p:G>ima
is the left inverse of j and that ima=F/kera=R/T where kera=T/L, as a
submodule of F. Then R/T is o-torsion, TeL, and therefore T is f.qg.
Hence kera is f.g. and, by (iv), the exact sequence 0-kera>F—2>ima-0
sb]fts and, as before, this implies the existence of a homomorphism

3.4.3 Corollary

Let R be a ring and ¢ a torsion radical on R-mod. If R is a
o-regular ring then every cyclic, o-torsion R-module has a von Neumann

regular endomorphism ring.

Proof

Suppose R/A is a cyclic, o-torsion module with submodule L/A,
(for a left ideal L of R). Since R is o-regular, L is o-pure in
R’and; by 1.3.1.5(iii), L/A is o-pure in R/A. Thus every cyclic,
o-torsion module is 5—regu1ar and taking F = G = R/A in 3.4.2(iii),
we see that for any aeHom(R/A,R/A) there is a peHom(R/A,R/A) such

that a+B-a = o. Hence Hom(R/A,R/A) is a von Neumann regular ring.

The following theorem shows that a torsion theory for which
the ring R is o-regular is, in a senée, at the opposite extreme from
the Goldie torsion theory, in that every ideal in L, is a direct
summand. The filter é? of the Goldie torsion theory contains all the

essential ideals of R, (see [1]) and e.g. if Z(R) = 0 it consists

exactly of all the essential ideals of R (see [34], Example 8, page 312).
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3.4.4 Theorem
The following are equivalent for a ring R (and a torsion radical

o on R-mod):

(i) R is o-regular.

(i) Every Ael, is a direct summand of R.

(iii) Every R—médu1e is o-regular.

(iv) Every co-g-pure exact sequence of R-modules is o-pure exact.
(v) Every cyclic, o-torsion (o-pure projective) R-module 1is

projective.

(vi) Every maximal ideal of R is o-pure in R.

(vii) Every maximal ideal of R which lies in L, is a direct summand
of R.
(viii) For every cyclic, o-torsion module R/I, exact sequence

B-£.+0 and a homomorphism o:R/I+C such that «(R/I) is a o-pure submodule

of C, there is a homomorphism y:R/I-B such that g-y = a.

Proof

(1) implies (ii): Suppose (i) holds and AeL.

Since R is o-regular, A is o-pure in R and therefore Ip,p Tifts
to a homomorphism a:R/A=R. That is, A is a direct summand of R,
as required.

(i1) ﬁmp]ies (1ii): If (i1) holds then every cyclic, o-torsion
module is projective and (iii) follows easily.

(iii) implies (iv): If (iii) holds then every short exact sequence
is o-pure exact. In particular, (iv) is true.

(iv) implies (v): If (iv) holds and M is a o-pure-projective
module, then, by 1.3.4.6, every exact sequence of the form 0+X>Y-M>0
is co-o-pure exact, therefore og-pure exact, by (iv), and hence split

exact. That is, M is projective, which proves (v).



That (v) implies (vi) follows easily.

That (vi) implies (vii) is clear.
(vii) implies (ii): Suppose that (vii) holds but (ii) does not

hold. Thén there is an lelg, which is not a direct summand of R.
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Let' s = {JeLyl1sd and J is not a direct summand of R}. S is inductive:

Suppose {Ai}; is an ascending chain of elements of 5 and suppose

that there exists a (left) ideal K of R such that (UA{)8K = R.  Then
i

1 = ajtk for some ajeAj and keK. This implies that R = A{8K, contrary

to the fact that Ajes.

By Zorn's Lemma, S has a maximal element, M (say). If MgM'sR
for a (left) ideal M' of R, then, by maximality of M in 5, M'6K = R
for some (left) ideal K of R. Since K#0, MBK is a direct summand
of R by maximality of M in S, again. Hence M is a direct summand
of R, which is contradictory. Thus M is a maximal ideal and, by
{(vii), a direct summand of R. This is a contradiction énd therefore
(vii) implies (ii).

(ii) implies (viii): If (ii) holds then every cyclic, o-torsion
module is projective and (viii) follows trivially.

(viii) implies (ii): Suppose (viii) holds and Ier.

Consider the diagram

R/1

’

IR/1

(where n is the canonical epimorphism).
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By (viii), there is a homomorphism y:R/I>R such that »-Y = Ip/7.
This proves (ii).

(i1) implies (i): If (ii) holds theh every cyclic, o-torsion
module is projective and hence every short exact sequence is o-pure

exact.

3.4.5 Corollary

Let R be a ring and ¢ a torsion radical on R-mod such that (R,o)

admits o-pure injective hulls. Then the following are'equiva1ent:

(1) R is o-regular.
(ii) Every o-pure-injective R-module is injective.
(i) Every o-pure-injective R-module is og-injective.
Proof

(i) implies (ii): Suppose (i) hp]ds\and let P be a o-pure-injective
R-module.

Since any left ideal L of R is o—pu}e in R, a homomorphism o:L+P
will extend to a homomorphism g:R+P. Thus P is injective.

That (i) implies (iii) is trivial.

(ii1) implies (i): Suppose (iii) holds, let M be an arbitrary
module and N a submodule of M.

Let PKN) be a o-pure-injective R-module containing N as a o-pure

submodule. Suppose that AeL, and that the diagram

A ! R
f fy,
g
N : M
19

commutes, (where i,,7, are the inclusion maps). Let i3:N>P(N) be

the inclusion map.



By (iii), P(N) is o-injective and hence i3-f;:A+P(N) extends to

a homomorphism ¢:R>P(N). That is, the diagram
i

>

M- - P(N)

commutes and, since N is o-pure in P(N), there is a homomorphism u:R-N
such that u-i, = f, (1.3.4.2(i)).
Reférring back to our first diagram we see that N is o-pure in

M (by 1.3.4.2(i)). Thus R is o-regular, proving (i).

3.4.6 Theorem

Let R be a ring and o a tofsion radical on R-mod such that R is
o-regular.

Then (i) Every o-torsion R-module is semisimple ([62]).

(ii) Every f.qg., o—toréion R-module with n generators is a
direct -sum of n cyclic, o-torsion R-modules.
(1ii) An R-module M is o-torsion iff it is a direct sum of

cyclic, o-torsion R-modules (each of which is isomorphic to a direct
sumﬁand,of R, and is therefore projective). In particular, it follows

that for a o-regular ring, o-purity is equivalent to strong o-purity.

((i1i) extends Theorem &.7 of [29]).

Proof

(i) Let M = )Rxi be any o-torsion module. Since R is og-reqular,
i

82

every cyclic, o-torsion module is o-regular (by 3.4.4(iii)) and by 3.4.2,
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i i i i i isimple
every cyclic, o-torsion module is semisimple. Thus M is a sum of sem p

modules, proving (i).

n
(i) Let M = ¥ Rxj be a f.g., o-torsion module (with n generators).
i=1 :
By (i) above, M is semisimple.

We argue by induction. If M has only one generator, the result
is clear. Suppose that all o-torsion modules with n-1 generators can
be written as a direct sum of n-1 cyclie, o-torsion modules. Consider

: n-1
M = I+Rx, where I = ) Rxj.
=l
Since M is semisimple, I is a direct summand. Let u:M>I be the

canonical projection.

Then I+Rxpsl + u(Rxp) + (1y-w ) (Rayp)

IIA

I + (1p-u)(Rxp)

I + Rz

1A

Hence T + Rxpy = I + (Ip-u)(Rep) = 1 8 (Iy-u)(Rzp)
(IM-u)(Rxp) is cyclic, o-torsion and, by our induction assumption,
I is a direct-sum of n-1 cyclic, o-torsion modules; hence the result
follows.
(iii1) If M is a o-torsion module then, by (i) above, M is semisimple
and is therefore a direct sum of cyclic, o-torsion modules. Since R

is o-regular, every cyclic, o-torsion module is isomorphic to a direct

summand of R. The converse is clear.

The second statement follows from Theorem 1.3.6.7.
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3.4.7 Theorem

let R be a commutative ring and ¢ & torsion radical on R-mod. Then

the following are equivalent:

(i) R is o-regular
(ii) Every semiprime ideal in L is a direct summand of R.
(iii) Every prime ideal in L, is a direct summand of R.
(iv) Every prime ideal of R is o-pure in R.
(v) Every semiprime ideal of R is o-pure in R.
Proof

The %acts that (i) implies (v) and (v) implies (iv) are clear.

(fv) implies (ifii): Let P be a primé ideal in Ly. Then P is o-pure
in R, by (iv), and since R/P is o-pure projective, P is a direct summand
of R.

(i17) implies (i): Suppose (iii) holds but R is not o-regular.

Then there is an leLy which is not a diréct summand of R. Let

5 = {JeLyl1=d and J is not a direct summand of R}. S%¢, since IeS.
S is inductive (see the proof of 3.4.4.) and by Zorn's Lemma has a
maxima1.e1ement M, (say).

M is not prime, by (iii), and hence there exist ideals A,B such
that A.B<M while A4M, B&M. By maximality of M in S5, A+M and B+M are
direct summands of R. Say (A+M)&X = R =‘(B+M)®Y for ideals X,Y of R.

If X=Y =0, then A+M = R = B+M and hence R = R2 = (A+M)(B+M)sM
which is contrary to the fact that M is not a direct summand of R.

SUppose X¥0. Then M+X = MBX is a direct summand of R by maximality
of M. This means that M is a direct summand of R, which is contradictory.
Similarly if Y$0 we get a contradiction. Therefore (iii) implies (i).

Clearly (i) implies (ii) and (i1) 1mp1ies (i1i) and hence the

result follows.
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3.4.8 Theorem
Suppose R is commutative, Quasi-Frobenius ring and o a torsion
radical on R-mod. Then R is o-regular iff 0>IBN>REN is exact for

all R-modules N and all IleL.

Proof

If R is o-regular, then every IeLOvis a direct summand of R and
hence the one implication is easy.

Conversely, suppose 0-IBN+R@N is exact for all left R-modules N
and all lelg.

Let M be any left R-module. By Corollary 1.2 of [50], M=M**.

By Theorem 2.4.2, N* is og-injective for all (Teft) R-modules N.
Since R is commutative, M is also a right R-module and hence N = M*
is a left R-module with N* = M**(=M) Q—injective. That is, every

R-module is o-injective and R is o-regular (2.5.8(i)).

‘3.4.9 Examples

Oﬁe wonders, especially in view of the equivalence of (i) and
(i1) in 3.4.2, whether all o-regular rings will be semisimple and/or
von Neumann regular. The following examples of c-regular rings show
these conjectures to be false:

1. Let S be any commutative rfng with unit, which is not von
Neumann regular. Let F be a field and form R = SBF with compohentwise
operations. If M is the maximal ideal M = [(s,0)[seS}, then 5 = {M;R}

is the filter of a torsion radical on R-mod (see §1.2.5.3).
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Since every ideal of L, is a direct summand, R is g-regular.
Since S is not von Neumann regular, thgre is an seS such that no
xeS exists with sxs = s. Thus (s,0)eR and there is no (x,f)eR with
(5,0)(x,f)(s,0) = (s,0). Hence R is not von Neumann regular. (In
particular, R is nol semisimple).

2. It follows from 1.3.6.3 that if R is a von Neumann regular

ving and ¢ a torsion radical on R-mod such that every leL, is f.g.,

then R is g-regular. Such a ring will not necessarily be semisimple:

1T we take, in Example 1 above, S Lo be von Meumann regular (but
not semisimple), then R will be a von Neumann regular ring and o
a torsion radical on R-mod such that every lel, is f.g., while R

is not semisimple.

3. Lastly, we note that any ring R will be g-regular if we let

The next paragraph (inter alza) furlher clarifies the relationship

‘between o-regularity and semisimplicily. (Proofs are easy and are

omit%ed):

3.4.10 Remarks

1. The following are equiva1ent—for a ring R and a torsion radical

g on R-mod:

(i) Every o-reqular, o-pure projective module is semisimple.
(ii)

Homomorphic images of o-regular, o-pure projective modules

are (o-regular,) o-pure projective.



2. The fo1]owﬁng are equivalent for a ring R:
(i) R is semisimple.
(i) R is o-regular and every epimorphic image of R is o-pure
projective for all torsion radicals o on R-mod.
3 J.S. Golan has shown (in [35], Proposition 8.10) that for
a ring R and a torsion radical, o, on R-mod the following equivalent

conditions inter alia are valid:

(1) Every IeLs; is a direct summand of R.
(ii) Every (left) R-module is o-injective.
(ii1) Every o-torsion (Teft) R-module is projective.
(iv) Every simple, o-torsion (left) R-module is projective.
3.5. o-FLAT AND SEMI-o-FLAT MODULES
3.5.1 Properties of o-Flat Modyles
3.5.1.1 Definition ([29])

Let R be a ring and ¢ a torsion radical on R-mod. A module
F is called o-flat iff every short exact sequence of the form

0>N>M>F+0 is o-pure exact.

We can characterize o-flatness as follows when every lery is f.g.:

3.5.1.2 Theorem

Let R be a ring and ¢ a torsion radical on R-mod such that every
ler, is f.q.

A nonzero module F is o-flat iff in every exact sequence of

the form 0+K-G>F-0, where K is nonzero, K must contain a nonzero

g-pure submodule of G.
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Proof |

Suppose F is o-flat and that 0+K-G>F+0 is exact where K is nonzero.
Since F is o-flat, K is o-pure in G and the proof in one direction
is complete.

Conversely, suppose that in every exact sequence of the form
0+K+G>F+0 where K is nonzero, K contains a nonzero g-pure submodule
of G. Let 0-K>G-2>F->0 be exact with K#0. We only need to show
that K is o-pure in G to prove that F is o-flat. By assumption,

K must contain a g-pure submodule N#0 say, of G. Using Zorn's
Lemma and 1.3.3.5, we may choose N to be maximal among the o-pure
submodules of G contained in K. Define g:G/N>F by g(g+N) = a(g),
for geG. It follows easily that O+K/N+G/N—§+F+O is exact.

If K/N = 0 then K = N is o-pure in G, proving our result. Suppose
K/N is nonzero. By assumption, K/N contains a nonzero o-pure submodule
of G/N, S/N say. Since N is g-pure in G, S is o-pure in G, by

1.3.1.5(iv). By the maximality of N, S = N, a contradiction.

3.5.1.3 Example

A o-flat module which is not flat:

Put R = S®F where S is any non-regular, commutative ring with
identity (e.g. the ring of integers) and F is a field. Put Ly = {M;R}
where M = {(s,0)|scS}, as in §1.2.5.3.

R is o-regular éince every lel; is a direct summand and therefore
every R-module is o-flat. Let I be an ideal of S, not Cohn pure

in S, then (S®F)/(I®F) is a left R-module, o-flat by the above,
but not flat.

The following lemma relates o-flat modules and projective modules.

In particular it shows that any projective R-module is o-flat (for

all torsion radicals ¢ on R-mod):
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3.5.1.4 Lemma
Let R be a ring. The following are equivalent for any R-module
M and for any torsion radical o on R-mod:

(i) M is o-flat.

(ii)  There is a o-pure exact sequence 0-kero>P—2>Ms0 with P
projective.
(iii) Every homomorphism g:R/I-M, where leLy, factors through

a projective module.
(The equivalence of (i) and (ii) was proved independently in

1.12 of [57]).

Proof
The proof of the fact that (i) implies (i1) %s trivial.
| (i) implies (iii): Supposé (i1) holds and let IeL, with g:R/I-M
a homomorphism.

Let O-kerosP—25M>0 be a o-pure exact sequence with P projective.
Then there is a homomorphism y:R/I+P with a-y = g and therefore
g factors through P, proving (iii).

(iii) implies (i): Suppose (iii) ho]ds and O-KsN—25M50 s any
exact sequence with M in the third nonzero position. Suppose leLy
aﬁd a:R/I-M is a homomorphism. By (iii), « factors through a projective
module P, (say).

Suppose that the diagram

R/1

commutes.
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Since P is projective v:P»M Tifts to p:P-N such that ¢-p = vy.

Thﬁs u = p-B:R/I>N satisfies ¢-p = o and it follows that M is o-flat.

3.5.1.5 Example
If o(R) = 0, then a module F is g-flat iff it is o-torsion free

(see [57], 2.21 ).

If ¢ is the usual torsion radical on Abelian groups then o-purity
is equivalent to Cohn purity (see Lemma 1.3.3.1). Since o(Z) = 0,
a module is o-flat iff it is flat iff it is torsion-free. (Compare
[45], Theorem 14.9). In this case then, homomorphic images of
o-flat modules are not o-flat. Quotients of ¢-flat modules by

o-pure submodules are, however, g-flat :

3.5.1.6 Lemma ([29], Theorem 6.2)

Suppose 0-A»B+C-+0 is exact and B is o-flat. Then A is g-pure

in B iff C is o-flat.

3.5.1.7 Theorem
Let R be a ring and ¢ a torsion radical on R-mod. An R-module
M is o-flat iff for every epimorphism B—9+C, every leL, and every

homomorphism o:R/I1-C which factors through M, there is a homomorphism

pu:R/I-B such that ¢-u = «a.

Proof

Suppose M is o-flat and the diagram
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R/I
B
a
M
. /
,LV//Y
B—-7rC

is given..
By Lemma 3.5.1.4, g factors through a projective module P, say

in the diagram

Since P is projective there is a homomorphism §:P»B such that
¢+8 = v+0. Then u = §-y satisfies ¢-u = a, as required.

Conversely, suppose the stated condition is satisfied, and Tet
any exact sequence 0>X>Y—2M50 and a homomorphism «:R/I-M be given,
where'IeLo. o factors trivially through M and hence there is a

uiR/IsY such that ¢-u = «. This proves that M is g-flat, as required.

3.5.1.8 Remark

In Theorem 3.5.1.7 it is sufficient ‘to test epimorphisms ¢:B~>C

only for injective B.

Proof

Suppose that leL, and suppose that every diagram of the form
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B——ﬂ——>B/ kern

where B is injective, (and a« factors through M), can be completed
commutatively as indicated. Suppose further that we have an arbitrary
epimorphism A——A/kern and a homomorphism «:R/I-A/kerr which factors
through M as a = y-B.
'Lef E(A) be the injective hull of A and construct the commutative
diagram
R/I

(¢4

A————”—>A/ kery

E(A)———+——E(R)/kern

(where 1,j are the-inclusion maps and n' is the canonical epimorphism).

Jra factors through M in the diagram

R/1
B
a
M
A/kern
J iy

+

By assumption, there is a homomorphjsm pu:R/I-E(A) such that

‘u = J-a. It is then easy to verify that p(R/I)=A and the result

follows.
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3.5.1.9 Corollaries

1. A o-flat, cyclic, o-torsion module 1is projective.

2. The class of o-flat modules is closed under module extensions,

i.e. if N, M/N are o-flat, then so is M ([57], 1.14).

3. If G is a o-pure submodule of F and F and P are o-flat,

then the pushout of the diagram

G 1

P

is also o-flat (where i is the inclusion map).

Proof

We may take X = (FBP)/S where S = {(x,-8(z))lxzeG}. Let h:P=X
be the monomorphism defined by h(p) = (0,p)+S (for peP). Define
v:X/h(P)>F/G by ¥([ (f,p)+S]+h(P)) = f+G (for feF, peP.

¥y is 1-1: Suppdse feG. Then (f,p)-(0,p+8(f))eS and therefore
(f,p)+S = (0,p+p(f))+Seh(P).
| ¥ is clearly an R-epimorphism hence_X/h(P):F/G. Since F is
o-flat and G is o-pure in F, F/G=X/h(P) is o-flat (3.5.1.6). Since

h(P)=P is o-flat it follows from (2) above that X is o-flat.

4. Let {Mj}j be a collection of R-modules. Then ®M; is o-flat
1

iff My is o-flat for all i. ([7], Theorem 9).

Suppose every 1eLo is projective. Then certainly every IeL
is g-flat. Thus if R/I is o-torsion then I is o-flat. The following

shows that (more generally) if every leL, is projective, M is an
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arbitrary o-flat module and N is a submodule N for which M/N is

o-torsion, then N is o-flat:

5. Suppose that every IelL, is projective. Then a module M

is o-flat iff every submodule N of M with M/M o-torsion is o-flat.

Proof

The "if" statement is trivial. Suppose therefore that M is
o-flat and Tet N be a submodule of M such that M/N is o-torsion.
Let B-25C50 be exact, where B is injective, let IeL, and let a:R/IsC
be a homomorphism, which factors through N. Then B is o-injective
and, by 1.2.4.6(1i), C is o-injective. Suppose o factors through
N as y-8. Since M/N is o-torsion, y:N-»C extends to a homomorphism
0:M>C, by the o-injectivity of C. Let i:N>M be the inclusion map.

Then the diagram

e

commutes and since M is o-flat, there is a homomorphism p:R/I-»B

With ¢-u = a. By 3.5.1.8, N is o-flat.

3.5.1.10 Theorem
Let R be a ring and o a torsion radical on R-mod. Then the
following are equivalent:
(i) R is o-regular.
(ii) Every (simple) R-module is o-flat.

(ii1) Every countably generated, o-torsion R-module is. projective.



95

(iv) Every f.g., o-torsion R-module is projective.
(v)' Every o-torsion R-module is o-flat.
If, further, R is conmutative then the above conditions are
eqﬁiva]ent to:
(vi) (a) Every ler, is idempotent and

(b) Every semiprime ring, which is also an R-module, is o-flat.

Proof -

If (i) holds then, by Theorem 3.4.4, every R-module is o-regh]ar,
hence every short exact sequence is ¢g-pure exact and therefore
every R-module is o-flat, proving (ii).

Conversely, if every simple R-module is o-flat then every maximal
ideal of R is o-pure in R and R is ov-regular by 3.4.4. again.
Thus (i) and (ii) are equivalent.

(i) implies (iii): Let M ='T Rxi be a countably generated, o-torsicn
module. = |

By Theorem 3.4.6, M is semisimple, if (i) holds. Thus M is
a.direct sum of cyclic, o-torsion modules. But any tyclic, o-torsion
module is projective, by 3.4.4(v).” This proves (iii).

That (i1i) implies (iv) is clear.

(iv) implies (v): Let M = Zin be o-torsion.

i

For any submodu}e N of Rz, Rxi/N is cyclic, o-torsion,

o-flat by (iv) andltherefore N is a direct summand of Rxj.

Thus we have shown that each Rzj is semisimple and hence M

is semisimple. But then M is a direct sum of cyclic, o-torsion
modules which are projective and therefore g-flat by (iv) and (v)

follows from 3.5.1.9(4).
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(v) implies (i): If (v) holds then for every AeLy, R/A is o-flat
and hence A is o-pure in R. Since R/A is o-pure-projective, A
is a direct summand of R and (i) follows.

(i) implies (vi): Suppose R is o-regular. Then every leL, is
a direct summand of R and hence I = Re for an idempotent element
e of R ([2], Proposition 7.1). Since R has an identity, (vi)(a)
holds. (vﬁ)(b) is clear since if R is o-regular every R-module
is o-flat.

Conversely, suppose (vi) holds. Suppose MeL,. Since R is commutative,
R/M is a ring. If I/M is an ideal of the ring R/M with (I/M)" =0
then IeL, and I"sM. By (vi)(a), I = IN and therefore I/M = 0.
Thus. R/M has no nonzero nilpotent ideals (i.e. it is a semiprime
ring), and by (vi)(b) it is o-flat as an R-module. Hence M is

a direct summand of R and R is o-regular.

3.5.2 Semi-o-Flat Modules

3.5.2.1 Definition
Let R be a ring and ¢ a torsion radical on R-mod. A module
‘M is called semi-o-flat iff for any exact sequence B+C-+0 where
C isAinjective, given Iel,,every homomorphism o:R/I+C which factors
through M 1ifts to é-homomorﬁhism from R/I to B. (This extends

the concept of a semiflat module introduced by Déman in [13]).

3.5.2.2 Remark
It follows from Theorem 3.5.1.7 that a o-flat module is also
semi-g-flat. If R is hereditary, so that epimorphic images of

injective modules are injective ([11]) then the two concepts are

équiva]ent (by 3.5.1.8).
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3.5.2.3 Lemma

Submodules of semi-o-flat modules are semi-o-flat.

Proof

Easy

3.5.2.4 Theorem
Let R be a ring and ¢ a torsion radical on R-mod.
A module M is semi-o-flat iff for every leL, and every homomorphism

‘a:R/I-M, there is an embedding of «(R/I) into a projective module P.

Proof
- Suppose M is semi-o-flat, leLy and o:R/I-M is a homomorphism.
R/J=a(R/1) is cyclic, o-torsion and R/J is semi-o-flat, since it
is a submodule of M. Let E(R/J) be its injective hull, and let
J:R/J+E(R/J) be the inclusion map. There is a projective module
P and an epimorphism ¢:P>E(R/J).
Since R/J is semi-o-flat, there is a homomorphism p:R/J+P such

that the diagram

R/J 1 R/J
u J
p ; E(R/J)

commutes. It then follows that y is a monomorphism.
Conversely, suppose the stated condition holds, C is injective,

IeL, and o:R/I>C is a homomorphism, which factors through M in

the diagram



R/IJB———*M
\ /
3__.5L.__;C

where B—2,C-0 is ekact,By assumption, there is a projective module P
and an embedding i:g(R/1)»P. Since C is injective, there is a
homomorphism ©:P->C such that the diagram

B(R/1)——————>P
C .
commutes. Since P is projective, o 1ifts to a homomorphism pn:P-B

such that ¢-u = 6. Then p-i-g:R/I+B satisfies ¢-u-i-8 = a. Hence

M is semi-g-flat.
The following is the semi-o-flat equivalent of 3.5.1.6:

3.5.2.5 Theorem
 Let R be a ring and ¢ a torsion radical on R-mod. An R-module

M is semi-o-flat iff there is a o-pure exact sequence of the form

0-+K=+L+M>0, where L is semi-o-flat.

Proof:

Only one direction is non-trivial.

Suppose 0>k 180 s o-pure exact, where L is semi-o-flat.

Let C be injective, B—(-0 exact, leLy and p:R/I-C a homomorphism

such that the diagram

98
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R/1
\\\\\3\“
u M
z////?f/
C

Since K is o-pure in L, there is a homomorphism e:R/I+L such

is commutative.

that B-¢ = 6. Since L is semi-o-flat, there is a homomorphism
§:R/1+B such that y-§ = ¢-B-e. But ¢-B-e = ¢-0 = y and it follows

that M is semi—o—f1at:

3.5.2.6 Remarks

Let R be a ring and ¢ a torsion radical on R-mod.

1. For a collection {Mj:iel} of R-modules,BM; is semi-o-flat
i

iff My is semi-o-flat for all 1.

Proof

éy 3.5.2.3, only one direction is non-triviatl.

Suppose M; is semi-o-flat for each iel. Let leLy and suppose
that a:R/I+?M1 is a homomorphism. Let 61:?M1+M1 be the projection
maps ..

By 3.5.2.4, thére are projective modules Pj and embeddings
ki:(85-a)(R/I)>P4, icl. Thus ?kaa(R/I)+?P1 is an embedding and

it follows from 3.5.2.4 that BMy is semi-o-flat.
]

2. The following are equivalent for a module M:
(i) M is semi-o-flat.
(i1) Every f.g. submodule of M is semi-g-flat.
(iii) Every cyclic submodule of M.is semi-og-flat.

(iv) Every cyclic, o-torsion submodule of M is semi-og-flat.
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Proof

(iv) implies (i): Let IeL,, suppose C is injective, B-L.C-0
is ekact and o:R/I-C is a homomorphism which factors through M as
follows:

R/1

B
Then ¢(R/I) is a cyclic, o-torsion submodule of M and, by assumption,
is semi-g-flat. That is, o factors through a semi-o-flat module
and hence there is a homomorphism y:R/I-B such that g-y = a. Hence
(i) is proved.

The other implications are clear.

3. It follows from 3.5.2.2 and 3.5.2.3 that if R is hereditary
then submodules of o-flat modules are o-flat. This is a remark

of Rohlina mentioned on page 29 of [57].

. 3.5.2.7 Examples
1. »Lét R be a ring and ¢ a torsjon radical on R-mod such that

o(R) = 0. Then M is semi-o-flat iff o(M) = 0 (iff M is o-flat).

Proof

In view of 3.5.1.5 it only remains to prove that if M is

semi-o-flat then o(M) = 0.
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Suppose M is semi-g-flat, T is o-torsion and aeHom(T,M). If
xeT then Rx is cyclic and o-torsion. Let B:Rxz>M be the restriction
of o to Rz.

"By 3.5.2.4, there is an embedding of g(Rx) into a projective
module P. Since o(R) = 0, P is ¢g-torsion-free and hence so is
B(Rx). Since g(Rx) is o-torsion it follows that g(Rx) = 0 and
hence a(x) = 0. Since z was an arbitrary element of T, Hom(T,M) = 0

and therefore M is g-torsion free.

2. A semi-o-flat module which is not o-flat:
Consider R = Z, = {0,1,2,3}, the ring of congruence classes
mod 4. L, = {{0},{0,2},R} is the filter of a torsion radical, o.
S = f@,?}, as a submodule of (the g-flat R-module) R, is semi-o-flat.
R/S is cyclic, o-torsion and if a:R/S»S is the isomorphism defined
by mapping 1+S to 2, there is no homomorphism u:R/S>R making the

diagram

commute, since otherWise S would be a direct summand of R, which
it is not. This shows that S is not g-flat (3.5.1.7). (In particular

this also shows that submodules of o-flat modules need not always

be o-flat).



102

3.5.3 Semi-o-Reqular Rings

3.5.3.1 Definitions

1. If AsB then A is called a copure submodule of B iff
B/A is injective. A module M is called copure injective iff M
is injective with respect to exact sequences of the form 0+A-+B

where A is copure in B ([17]).

2. An R-module M will be called torstonless iff the map
a:MsM** defined by [a(m)](¢) = ¢(m) (for ¢eM*), is monic ([49]).
RM is torsionless iff it can be embedded in a direct product

of copies of R. (See [49], Chapter 5).

3. Let R be a ring and ¢ a torsion radical on R-mod.

Since R is g-reqular iff every R-module is o-flat (see 3.5.1.10),
the question of whether it is possihle to characterize rings R
(and torsion radicals o on R-mod) for which every R-module is semi-o-flat

suggests itself. Such a ring will be called semi-o-regular.

3.5.3.2 Theorem

The following ‘are equivalent for a ring R and a torsion radical

o on R-mod:
(i) R is semi-o-regular,
(ii) Injective R-modules are o-flat.
(iii)  The injective hull of every cyclic, o-torsion module is o-flat.
(iv) Direct sums of injective R—modﬁ]es are semi-o-flat.
(v) Every R-module can be embedded in a o-flat R-module.
(vi) Every f.g. R-module can be embedded in a semi-o-flat R-module
(vii) Every f.g. R-module is semi-o-flat.
(viii) Every copure submodule of an R-module M is o-pure in M.

(ix) Every cyclic, o-torsion module is semi-o-flat.
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(x) Every cyclic, o-torsion module can be embedded in a projective
module.

(xi). Epimorphic images of semi-g-flat modules are semi-g-flat.
Proof

(i) 4mplies (ii): Suppose M is injective, let IeLy, and Tet
a:R/1>M be a homomorphism. Let P be projective such that P—9+M+O
is exact for some ¢. In the diagram

R/1
PEEEN
’ ’ \

o« 0]
d M M

(since M is semi-g-flat, by (i)) there is a homomorphism g:R/I-+P such
that ¢-B = «. That is, o factors through a projective module and,
by 3.5.1.4, M is g-flat.
(ii) implies (i): Every R-module fs a submodule of its injective
hull which, by (ii), is semi-o-flat. By Lemma 3.5.2.3, (i) holds.
That (i1) implies (iii) is clear.
(111) implies (ii): Suppose C is any injective R-module, and
let 0+A+B—"5(>0 be exact. Suppose lely and let «:R/I-C be a homomorphism.
If i:R/I-E(R/I) is the inclusion map, then there is a homomorphism
o' tE(R/1)+C such that a'+1 = «. Thus o factors through E(R/I), which
is o-flat, by (iii), and hence there is, by 3.5.1.7, a homomorphism
B:R/1+B such that w-3 = «. 0+A>B5C>0 is therefore o-pure exact,

proving that C is ¢-flat.
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The facts that (iv) implies (i) and that (ii) implies (v) follow from
the fact that every R-module may be embedded in an injective R-module.
The facts that (i) implies (iv), that (v) implies (vi), that (vi) implies
(vii) and that (vii) implies (ix) are immediate.

(vi) implies (ii): Let M be an iﬁjective R-module. M is the
direct 1imit of its f.g. submodules, {Mj}i, say ([63]). Let F; be
semi-o-flat modules and o, iMij>Fy the embeddings given by (vi). Let
§1:Mj>M be the canonical monomorphisms.

Suppose P is projective, P23Ms0 is exact and R/I is cyclic,
o-torsion with g:R/I-M a homomorphism. g(R/I)<6;(M;) for some i. Since
M is injective, there are homomorphisms 0;:F;>M such that Of-aj = &,
for each 1.

Hence the diagram

R/I
—
T
(M)
B o
Fi

is commutative.

Since Fy is semi-o-flat, there is a homomorphism u:R/I=P. such
that ¢-u = 8. By 3.5.1.4, M is g-flat proving (ii).

(i) implies (viii): Let A be a_ copure submodule of a module

B. Then B/A is injective and, by (ii), B/A is o-flat. Hence A is

o-pure in B.
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(viii) implies (ix): Suppose lel,. Embed R/I in its injective
hull E, say. Let 0+KsL-E>0 be any exact sequence with £ in the third
nonzero position. Since E is injective, K is copure in L and therefore
K is o-pure in L, by (viii). That is, E is o-flat and since R/I is
1§omorphic to a submodule of E, (ix) follows.

(ix) implies (x): Let R/I be cyclic, o-torsion. Then R/I is
semi;o;flét, by (ix), and applying 3.5;2.4 to the identity map on R/I we

see that there is an embedding of R/I into a projective module P.

That (x) implies (i) follows from 3.5.2.6(2).

That (i) implies (xi) is clear and the fact that (xi) implies
(1) follows, since every R-module is an epimorphic image of a projective

module.

3.5.3.3 Remarks

1. 3.5.3.2(viii) is the semi-g-regular version of 3.4.4(iv).

2. A ring R is Quasi-Frobenius iff injective R-modules are
projective ([23] , Theorem 5.3). Every Quasi-Frobenius ring R, with
any torsion radical ¢ on R-mod, is therefore an example of a ring satisfying

the conditions of 3.5.3.2 since 3.5.3.2(i1) is satisfied.

3. Since not every Quasi-Frobenius ring is semisimple (see,
for example, exercises 17 and 21 on page 82 of [49]), it is easy to
find examples of semi-o-regular rings which are not o-regular.

For such a ring R, every R-module is semi-og-flat but not every

R-module is o-flat. Hence every such ring provides us with examples

of sémi~o—f1at modules which are not o-flat.

4. Every o¢-regular ring is semi-g-reqular. Conversely, if R

is (left) semi-hereditary and semi-g-reqgular, then it is o-regular.
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Proof

Suppose that IeL, and let a:R/1-M be a homomorphism, where M is
~an arbitrary R-module. By assumption, M is semi-o-flat. By Theorem
3.5.2.4, there is an embedding of a(R/}) into a projective R-module.
afR/1) is a f.g. submodule of a projective module and since R is
semi-hereditary, o(R/1) is projective. Hence o factors through a
projective R-module and by Lemma 3.5.1.4, M is o-flat. Hence R is

og-reqular (3.5.1.10).

- b Let R be a ring with unit and without divisors of zero. Then

the following are equivalent (where ¢ is a torsion radical on R-mod):

(a) R is g-regular.
(b) R is semi-g-regular.
(c) 1y = {0,R} or 1, = [R}.

(d) R 1s‘a division ring or every R-module is g-torsion free.

Proof

That (a) implies.(b) is obvious.

(b) implies (c);'Suppose R is semi—o—regu1ar. By 3.5.3.2(x),
if leL, then R/I is torsionless. Let a:R/I>R(T) be an embedding of
R/T into a direct product of copies of R. Suppose I # R, then a(R/I)
is nohzero'and hence o(1+1) = (aj)j # 0. If sel then, a(s+l) = 0 = (Saﬁ)i-
Since R has no divisors of zero, s = 0 énd hence I = 0. This proves (c).

(c) implies (d): 1f Ly = {0,R} is %o be the filter of a torsion
radical, then clearly R has only the two trivial left ideals 0 and R.

Alternatively, if Lg = (R}, tHen every R-module is og-torsion-free.

Thjs proves (d).



107

(d) implies (a): If the conditions of (d) hold then there are
only two possible radical filters, on R-mod: L, = {0,R} or L, = {R}.
Thus in all possible cases, every IeL, is a direct summand and (a)

follows.
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CHAPTER FOUR

o-PERFECT RINGS AND A RELATIVE JACOBSON RADICAL

§4.1. INTRODUCTION

Let R be a ring and ¢ a torsion radical on R-mod. In this chapter
vie introduce two re]éted constructions: g-perfect rings, and a new ”radica]ﬁ,
denoted by J;.

g-perfect rings are an extension of ‘the concept of a perfect ring
(defined in [4]).

In 4.2.9 and 4.2.11 we generalize a famous result of H. Bass (Theorem P
of {4]).

Secondly we introduce a new relativized form of the Jacobson Radical,
(defined in terms of o-flatness). Ve shdw that many of the properties
of the Jacobson Radical as well as those of a radical of J.S. Golan ([35],
Chapter 24),‘extend to J, and consider, inter alia, the case when Jg(M) =0

for all modules M. (4.3.20).

§4.2 o-PERFECT RINGS

4.2.1 B Definitions

fwe ca11 a submodule S of a module P, small in P,( S<<P ), 1iff whenever

K+S = P for a submodule K of P, then K = P ([11]).H. Bass (see [4]) calls an
exact sequence 0+S+P—5M>0, where P is projective and S = kera is small
in P, a projective cover of M. A ring is called perfect iff every R-module

has a projective cover ([4]).

It is well known that R is perfect iff every flat R-module is

projective ([30], Theorem 3.1, page 7). We use this characterization of

a perfect ring to extend the concept to o-purity:
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4.2.2 Definition
Let R be a ring and ¢ a torsion radical on R-mod. A ring R is called

g-perfect iff every o-flat module is projective.

4.2.3 Remark

In Theorem 3 of [28] D. J. Fieldhouse shows that a projective module
can have no nonzero small (Cohn) pure submodules. Thus if 0+S+P>Ms0 is a
projectivé cover of M then S contains no nonzero‘(Cohn) pure submodules

of P. We use this result to extend the concept of a projective cover,

as follows:

4.2.4 Definition
An exact sequence 0>K>P+M>0 where P is projective and K contains no

nonzero o-pure submodules of P is called a.o-projective cover.

4.2.5 Lemma
An exact sequence O-kerarP-“>M>0 is a.g-projective cover for M iff

P is projective and for any commutative diagram

where g is epic and G is o-flat, g must be an isomorphism.

Proof

Suppose Oskera+P—>M+0 is a o-projective cover of M and the commutative

diagram
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is given where g is epic and G is o-flat. Let N = kerg, then clearly
N<kera. Since P/N is o-flat, N is g-pure in P. Since O+kerarP-25M>0 is
a o-projective cover, N = 0 and g8 is an isomorphism.

Conversely, suppose the stated condition is satisfied by the exact

sequence 0O-»kera-P “,M>0, where P is projective, and Tet N be a o-pure

submodule of P contained in kera.

Then g:P/N-M defined by B(p*N) = a(p) (for peP) is a well-defined
homomorphism. Since N is ¢-pure in P and P is o-flat, P/N is o-flat,
by 3.5.1.6. If w:P»P/N is the canonical epimorphism then the diagram

a

+M

p _
mn
B3
p

/N

commutes and, by assumption, m is monic. Thus N = 0 and it follows that

Orkero»P—5M+0 is a o-projective cover of M.

4.2.6 Definition
Let R be a ring and o a torsion radical on R-mod. Let M be an R-module
d d
and ....... +P1——1+P0 SN projective resolution of M. The smallest

integer nz0 for which imd, is o-flat (if it exists) is called the o-flat

dimension; ofdM, of M. If no such integer n exists we say ofdM = «.

4.2.7 Lemma

ofdM is uniquely determined.
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Proof

dy

Suppose ...P, »Pg—g9+M+O and ...51—51+PU—§E+M+O are two

projective resolutions for a module M and imdp = kerdp-; is o-flat.

(It is clear that imdy is o-flat iff M is o-flat iff imd, is o-flat

and we may aséume that nz1). It is then easy to verify (see e.g. Theorem
8.8 of [45]) that kerd,_ 8P, 0P,_,8....8Py is isomorphic to

kerd,_ ®P,_,®...8P,. Since this second module is o-flat, kerdy_, = imdy

is o-flat (by 3.5.1.9(4)).

4.2.8  Remark
Let 0+K+>P>Ms0 be exact where P is projective and M is not o-flat.

Then ofdM = ofdK+1.(Dual of 2.5.5(i)).

4.2.9 Theorem
The following are equivalent for a ring R and a torsion radical
g on R-mod :

(i) R is o-perfect.

(ii) Every o-flat module has a o-projective cover.
(i) Every o-flat module is o-pure projective.

(iv) A o-pure submodule of a o-flat module is a direct summand.
v(v) ofdM = prM for all R-modules M.
(vi) A direct sum of modules each of which has o-flat dimension <n
has projective dimension =n.
(vii) A direct 1imit of o-flat modules, such that the canonical

61:M1+1imIM1 are all monic, is projective.
5>

Proof

(i) implies (i1): Suppose R is o-perfect and let F be a o-flat
module. By assumption, F is projective and O+O+F—1+F+O is a o-projective

cover for F.
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(ii) implies (iii): Let F be a o-flat module with a o-projective cover
0->K>P+F>0. Since F is o-flat, K is o-pure in P and by definition of a
o-projective cover, K = 0. Thus F=P is projective (and therefore o-pure
projective}.

(iii) implies (iv): Let F be a o-flat module, and Tet K be a o-pure
submodule of F. By 3.5.1.6, F/K is o-flat and therefore o-pure projective

m

by (iii). But then the sequence 0+K—F

»F/K+0 splits, proving (iv).

(iv) implies (v): Suppose prM = n and ofdM = m for some module M.

d d d
Then there is a projective reso1ution....PQ4-3+P1——1+PU——9+M+O with imdy

projective: imdy is therefore o-flat and it follows that msn. Further,

by 4.2.7, imdy is o-flat. Consider the exact sequence

d
O+kerdm+Pm~J14imdm+O. Since imdy is o-flat, kerdy is o-pure in Py and,
by (iv), the sequence splits. Thus imdy, is projective and it follows that

nsm. Hence n = m, proving (v).

(v) implies (vi): Suppose (v) holds and {M;}] is a collection of modules,

d; d;
where ofdMizn for all i. Let ..+Pil—fliﬁPi0~—lﬂ+M1+O be a projective

resolution for Mj. By (v), prMjsn and hence imdj ~is projective for all

i (see page 60 of [45]).

d
Thus ...+@P11 : @Pjo O\®M1+O is a projective resolution for 6M;
i i i

? L
(vhere dp = dy for all m) and imd, = @imdj ~1is projective. Hence pr@Mjsn
i . i i

as required.

(v) implies (vii): Let {Mi:ﬁg} be a directed system of o-flat modules

where the canonical §i:Mj»>M = 1imM; are all monic. Let IeLs and let

>

a:R/I-M be an R-homomorphism. Then imas§i(Mi)=M; for some i ([45],

Lemma 4.3) and by 3.5.1.4, o factors through a projective module.

By 3.5.1.4 again, M is g-flat. Thus ofdM = 0 and M is projective by (v).
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That (vi) or (vii) implies (i) follows easily since any given
g-flat module M is trivially a direct sum of o-flat modules (and therefore
also a direct 1imit of o-flat modules, with the canonical &4 monic) and

hence if either (vi) or (vii) hold then M must be projective.

4.2.10 Examples

1. Any semisimple ring R is o-perfect for all torsion radicals o

on R-mod.
2. Suppose that R-mod is z-cyclic (i.e. every R-module is a direct
sum of cyclic R-modules). Examples are Zy, n = 1,2.... (see [21], 25.0.1)

and any Artinian principal ideal (i.e. uniserial) ring (see [52]). Let

Ly consist of all the (left) ideals of R. Then R is o-perfect.

Proof

Let M be any (left) R-module. Then M is a direct sum of cycliic modules
which are o-torsion since R is. Thus M is o-pure projective and by
4.2.9(iii), R is o-perfect.

| .3. Let R be any perfect, Priifer ring. (In particular, we may take
R = Q, the ring of rational numbers. Since gQ is simple R is a Priifer
ring and the Jacobson radical J = 0. Sinée R/J is therefore (semi) simple

and J is nilpotent, it follows from [2], Theorem 28.4 that R is a perfect

ring). Take L, = {Left Ideals of R}, then R is o-perfect.

Proof

If X is f.p. then X is a direct summand of a direct sum of cyclic,

(o-torsion) modules (Proposition'5 (page 706) of [71]). Thus X is g-plire

projective.
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If M is g-flat then every short exact sequence of the form 0+K->L-M-+0
is g-pure exact and by the above, every f.p. module X is projective with
respect -to such a sequence which means that every such sequence is Cohn
pure exact and hence M is flat. Since R is perfect, M is projective and

thé result follows.

4.2.11 Theorem
Let R be a ring and ¢ a torsion radical on R-mod such that every

leL, is f.g. Then R is o-perfect iff every R-module has a ¢-projective

cover.

Proof

Let R be o-perfect and Tet M be any R-module. Let P be projective
with a:P-M an epimorphism. Let S = |N|IN is a o-pure submoduie of P
contained in keral. S is nonempty, since 0¢S. S is inductive, by
1.3.3.5, and has a maxima] element N, by Zorn's Lemma. Let B:P/N>M be
the epimorphism defined by B{ptN) = a(p), (for peP). Since N is ¢-pure
in P and P is ¢g-flat, it follows from 3.5.1.6 that P/N is o-flat and
therefore projective, by assumption. We use 4.2.5 to show that
0+kerB+P/N~f+M+0 is a o-projective cover for M.

Suppose therefore that the diagram

PIN— B

RV

commutes, where G is o-flat and p is an epimorphism. Then G=P/K where

kery = K/N (for some submodule K of P containing N). Since G is ¢-flat,

K'is o-pure in P and it is easy to verify that Kskerq. By the maximality

of N, K= N and p is an isomorphism as required.



115

Conversely, if every R-module has a o-projective cover then it follows

from 4.2.9 that R is o-perfect.

4.2.12 Remarks
1. If every leL, is f.g. and R is a.o-perfect ring then

o-projective covers are unique up to isomorphism (in the category of short

exact sequences).

Proof
1 " iy i) N

Let A:0+K,——P,——M>0 and B: 0+K,——P,——M>0 be two o-projective
covers for the R-module M. Let F be a flat R-module and 0+K+L-F»0 any
short exact sequence with F in the third nonzero position. K is then Cohn
pure in L and by 1.3.6.3 it is ¢g-pure in L. Thus F is ¢o-flat and therefore
projective. Hence R is a perfect ring and M has a projective cover
C:0-k—P—>M>0. Complete the diagram

i "
0 QR N B 0

fy -

L ———

0 —+K : >-P

1 m

(]

commutatively, using the projectivity of P,. A diagram chase reveals

that K+imf, = P and since K is small in P, f, is epic.

m
P, ! M
P

Consider the diagram
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P is o-flat and by Lemma 4.2.5, f, is an isomorphism. A simple diagram
chase shows that f, is an isomorphism. Hence A and C are isomorphically
equivalent short exact-sequences. Similarly for B and C and hence the

sequences A and B are isomorphic.

2. In fhe course of proving 4.2.11.vwe proved that if every lelg,
is f.g. then for each module M there is an exact sequence 0+K+F-M>0 such
that F is o-flat and K contains no nonzero g-pure submodules of F. We
call such an exact sequence a o-flat cover for M.

3. A simple adaptation of 4.2.5 shows that an exact sequence

OrkernsF-25Ms0 is a o-flat cover iff F is o-flat and for every commutative

diagram:

where G is o-flat and g is epic, B must be-an isomorphism.

4. Suppose that every lcly is f.g. Then a module M is o-flat iff

in every o-flat cover 0-K+F>M>0 of M, we mhst have K = 0.

Proof
Suppose the stated condition is valid for a module M. By (2) above,

there is a og-flat cover 0-K»>F>M>0 for M and by assumption, K = 0 proving

that M is o-flat.
The converse follows by definition ~f a o-flat cover.

5.  Let R be a ring and o a torsion radical on R-mod such that R

is o-perfect. Then the following are equivalent:

(a) Every IeL, is f.g. and every o-pure injective module is

copure injective.
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(b) R is semi-g-regular.
(c) R is Quasi-Frobenius.

(d) R is Noetherian and every R-module is copure injective.

Proof

(a) implies (b): Let M be any injective R-module. If 0+K—1+L+M+O
is exact and a:K>P is a homomorphism where P is u-pure injective, then,
by (a), P is copure injective and, since K is copure in L, there is a

homomorphism g:L+P such that p-i

a. Since every leL, is f.g. it follows
from 1.4.12 that K is o-pure in L. That is, M is o-flat.

We have therefore proved that every injective R-module is o-flat.
By 3.5.3.2, this is equivalent to (b).

(b) implies (c): 1f (b) ho]ds,injectﬁve modules are o-flat and, since
R is o-perfect, this means that every injective R-module is projective,
whence R is QuasijFrobenius.

(c) implies(d):I1f R is Quasi-Frobenius then it is Noetherian((49].

Since every injective module is projective every copure exact sequence

splits and therefore (d] holds. That (d) implies (a) is clear.

6. Let R be a Prifer ring and let 1, = |Left Ideals of R}. Then R

is Quasi-Frobenius iff it is o-perfect and semi-o-regular.

Proof

If R is Q.F. it has minimum condition on right ideals ([49], Lemma 2,
page 77) and hence it is a perfect fjng (L2], Theorem 28.4). By 4.2.10(3),
R is o-perfect. By 3.5.3.3 (2); R is semi—o~fégﬁlér,i

Conversely if R is onerfect and semi—o—regu1ar then, by (5) above,

R is Quasi-Frobenius.
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§4.3 A RELATIVIZED JACOBSON RADICAL

4.3.1 Introduction

J.S. Golan in Chapter 24 of [35] illustrates one way of defining a
Jacobson Radical re]afive to a torsion theory. His radical is defined
using a type of "purity" which does not form a Pure Theory (namely : NsM
is "pure" in M iff o(M/N) = 0). For this reason we believe that it is
relevant to fe1ativize the Jacobson Radical in terms of o-purity. It also

turns out that our radical, Js (M), contains the Jacobson Radical, RadM,

of M.

4.3.2 Definitions
1. If M is an R-module we will denote by RadM the intersection of
all the maximal submodules of M ([2]). (This is the c]assica1‘
"Jacobson Kadieal"). 1f R is a ring, the Jacobson Radical of R is defined
to be Rad(RR).
2. Let R be a ring and ¢ a torsidn radical on R-mod. We define,
for an R-module M, J (M) = N {KsMIM/K is simple and o-flat}. (If there

are no such submodules we set Js (M) = M).

4.3.3 Remarks
1. RadMsJ, (M) for all modules M.

2. If F is o-flat then J (F) = ﬂ{KgFIK is maximal and o-pure in

F} (apply 3.5.1.6).

3. If R is o-regular then J, (M) = RadM for all R-modules M.

If P is a f.g., projective module then Jg(P) = RadP iff Jg(P)<<P.
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Proof
Suppose J4(P) = RadP. By Proposition}17.10 of [2], RadP = J.P (where
J = RadpR) and by Nakayama's Lemma ([é], i5.13), RadP<<P, that is, Jg (P)<<P.
Cénverse]y, if Jg(P)<<P then Jg(P)<) IKePKe<P} = RadP (121, 9.13)
and therefore RadP = J,(P).
5. If R is o-perfect and M is an R-module then Jg (M) = n{KsM[K
is maximal in M and M/K is projective]. Uence Jy(R) = n {1sR|IBK = R for

some minimal left ideal K of R}.

6- J, # Rad:

(i) Let R be any local ring such that the maximal idea],M,is not a direct

summand of R. Take L, as the set of all left ideals in R, then M 1is not

o-pure in R and hence J;(R)=R whereas ‘RadR =M.

(ii) Let R =7 and let L, be the set of nonzero jdeals of R.Since

every nonzero ideal of R is essential mo maximal ideal can be o-pure in R

and hence Jy(R)=R (while RadR= 0).

4.3.4 Lemma
Let R be a ring and ¢ a torsion radical on R-mod. If M is an R-module,

o(M) = n|kerh[heHomp(M,U), pU sinple and o-flat}.

Let N be any submodule of M such £hat M/N s simple and o-flat.
[f n:MsM/N is the canonical epimorphism then kern = N and hence
N {kerhlheHom(M,U), U simple and o-flat}sN. Since J (M) is the intersection
of all such N, n {kerh|hetlom(M,U), U simple and o-flat}sJ,(M).
Conversely, suppose OfheHom(M,U) whefe U is simple and o-flat. .

Then imh = U and M/kerh=U. Hence M/kerh is simple and o-flat and

Jy(M)skerh, by definition. That is, J,{M)s n {kerh[heHom(M,U), U is simple
and o-flat}].
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4.3.5 Theorem
Let R be a ring and o a torsion radical on R-mod. For any R-module M,

Jg(M) is the unique smallest submodule K of M such that M/K is cogenerated

by v = {gUIU is simple and o-flat}.

Proof

Let the family {K|M/Kev} be indexed by I.

If xzeM we define g(z+J,(M)) to be that element ofaglM/Ka whose
a-th component is x+K,, ael (g is therefore a homomorphism from M/J, (M)
to m M/Ka). Since J (M) =N K,, g is a monomorphism. This shows that

Q
M/zz(M) is cogenerated by v.

To -prove minimality, suppose Ks<M and that h:M/K+2Ua is a monomorphism
where U,et for all ael. Let w:M>M/K be the canonical epimorphism and
1y :MU»U, the projection maps, acl. By 4.3.4,

JO(;)g N ker(na-h-w)gkerh-n = kern = K.

a

4.3.6 Corollary
The following are equivalent for a ring R and a torsion radical o

on R-mod:

(i) RR is cogenerated by the class v = {gU[U is a simple, o-flat
R-module}.

(i1)  J,(R) = 0.

(i11) R is isomorphic to a subdirect sum of simple, o-flat modules.

Proof

An easy consequence of 4.3.5.

4.3.7 Theorem

Jg is a radical (in the sense of [67]). That is, Js 1s a subfunctor

of the identity functor on R-mod and J (N/J5(N)) = 0 for all modules N.
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Proof

(i) Let f:M>N be an R-homomorphism. We show that f(Jy(M))sd (N).

Suppose U is simple and o-flat and heHom(N,U).
By 4.3.4, Jy (M) = n{kerg|geHom(M,U); U simple and o-flat}. Thus

if xedg(M), (h-f)(z) = 0 and therefore f(x)ekerh. That is,
f(x)e n {kerhlheHom(N?U), U is simple and o-flat} = J (N).

(i) Let N be any R-module and let M = N/Jy(N). Then, M/(0) is
cogenerated by v = {Simple, o-flat R-modules} (4.3.5). By the minimality

clause of 4.3.5, J (M) = 0. That is, Js(N/Js (N)) = 0.

4.3.8 Definition

Let R be a ring and o a torsion radical on R-mod. We call a submodule
N of a module M o-pure-small in M iff whenever N+N' = M for a o-pure
submodule N' of M we must have N' = M. (Thus every small submodule is

o-pure-small).

4.3.9 Remarks

1. J, (M) contains all the o-pure-small submodules of M.

Proof

Suppose N is o-pure-small in M and K is a submodule of M such that
M/K is o-flat and simple. If N£K then by maximality of K, N+K = M. Since

K is o-pure in M, K = M. This is contradictory, hence N<K and therefore

Ny (M).

2.~ Suppose R is a local ring. Then R is o-regular iff Js(R) = RadR.



Suppose J,(R) = RadR. Then the uniqué maximal ideal of R is also
g-pure in R. By 3.4.4, R is ¢g-regular.

The other implication follows trivale.

4.3.10 Remark
J (R) is a two-sided ideal of R and hence if JO(R)+R then

Jg(R) = 0 [Ann U[U is a simple, o-Tlat R-module},

Proof

That Jg,(R) is two-sided follows directly from 4.3.7 ([67]).

lLet U be sfmp]e and g-flat, then U is -cyclic, of the form U = Rx (say).
By definition, J,(R)sAnna and hence J,(R).U = J (R).z = 0.

Conversely if x(eR) annihilates every simple, o-flat module and K
is a left ideal of R such that R/K is simple and ¢-flat, then x(R/K) = 0

and hence xeK. Thus ae n [KsRIR/K is_éimpTé and o-flat] = J (R).

Let {Mjf:cp be a collection of R-modules. Then J,(OM;) = BJ,(M;).
» 1 1

Follows from 4.3.7 (seel67])
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4.3.12 Remark
Let R be a ring and ¢ a torsion-radical on R-mod.
Jg(R).Msdy(M) for all R-modules M and if P is a f.g., projective module,

then J,(R).P = J,(P).

Proof

That Jg(R). M<dy(M) for all R-modules M follows from 4.3.7([67]).

Suppose,therefore,that P is a f.qg., projective module. Then there
exists a f.g., free module F such that P®P' = F for some P'slF. (Thus F = R(A)
for some Tinite set A).

Hence Jy(POP') = J,(P)0d,(P1) = J (REA)) = (g (R))(A) (4.3.11). Since
Jo(R) is a two-sided ideal of R (4.3.10), J,(R).RIA) (g (R))(A).

Conversely, suppose (ai)ic(JO(R))(ﬂ) and let 1nj:R+R(A) be the canonical

injections, jeA. Then aj.inj(1)ed,(R).RUA) For all i. Hence

(aj)i = Zai.ini(l)eJU(R),Rﬂﬂ). We have Lherefore shown that
j

(JO(R))(A).=~JO(R).R(A)[ = J,(R).F). Hence, by the above, we have that
Jo (MBI (P") = J,(R).Fedgy (R).POI,(R).P".

" Let aed (P), then there are elements aeJ,(R).P(:J,(P)) and
bedg(R).P'(2J,(P")) such that @ = ath. Thus x-a = bedy(P) N Jy(P') = 0.

That is a = aed, (R).P, proving the result.

1.3.13 Corollary

Let R be a von MNeumann regular ring and ¢ a torsion radical on R-mod

such that every letg is f.g. Then J,(R) = 0.
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Proof
By Theorem 4 of [32] every submodule of every P-module is Cohn pure

and therefore g-pure by 1.3.6.3. That is, R is g-regular and hence

J,(R) = RadR = 0 (since R is von Neumann regular (see [2].)).

4.3.14 Definition
Llet R be a ring and ¢ a torsion radical on R-mod. We call a module M
o-local iff M has a unique maximal submodule, which is also o-pure in M.

A ring R is called o-local iff R is og-local as a left R-module.

4.3.15 Theorem

The following are eguivalent (for a ring R and a torsion radical o

on R-mod):
(i) Jg(R) is maximal and o-pure in R.
(ii) R has one and only one ideal which is both maximal and o-pure
in R.
(iii) ‘JO(R) is c»puré in R and every nonzero element of R/J,(R) has

a left inverse.

(iv) Jg(R) is o-pure in R and J,(R) = [xeR|xtJ (R) has no Teft inverse}.

Proof
" That (i) implies (ii) is clear from the definition of Jg(M).
(ii)-imp11es (iii): If (i1) holds then clearly J (M) is the unique
maximal, o-pure ideal. If a4+, (R)40 then x¢dy(R) and by maximality,
Jg(R)+Rx = R. Hence there exist elements reR and jeJ,(R) such that
1 = retj. From this it follows that 1+J,(R) = (r+J, (R))(az+J,(R)), proving
(ii1).
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(iif) implies (iv): Suppose xz+J4(R) Has no left inverse in R/J4(R).
By (i11), atJ4(R) = 0 and zed,(R). Conversely, if xedy;(R), then clearly
x+J5(R) (= 0) has no left inverse in R/J;(R). Hence J (R) = {xeR[x+Jg(R)
has no left inverse in R/J,(R)}.

(iv) implies (i): If x¢Jg(R) theﬁ, by (iv), there is an reR such that
ra+dy(R) = 14J45(R). Hence leRx+Jy(R), JO(R)+Rx = R and we have pfoved

that J,(R) is maximal in R. J (R) is o-pure in R by (iv).

4.3.16 Theorem

Let R be a ring and o a torsion radical on R-mod. Then the following

are equivalent for a projective R-module P:

(i) P is.the projective cover of a simple, o-flat R-module.
(i1) Jg(P) is the unique maximal, small and o-pure submodule of P.
(ii1) Js(P) is small and maximal in P.

(iv) Jg(P)#P and if xeP-J (P), then Rx = P.

(v) P is isomorphic to a direct summand of R, and P is o-local.
(vi) P is f.g. and o-lecal.
Proof

(15 implies (ii): Let 0-K+P—25M>0 be a projective cover, where M is
simple and o-flat.

Then P/K=M and by definition of J, (P), Jgs(P)sK. Since K<<P,
K} {S<P[S<<P} = RadP<J (P). Thus J,(P) = K and Jg(P) is therefore maximal,
small and o-pure in P.

| If S 15 any other maximal, o-pure submodule of P, then P/S is simple

Cand o-flat {(by 3.5.1.6). Hence Jg(P)<S and by maximality of Jg(P),
Jg(P) = S. This proves uniqueness.

That (ii) implies (iii) is clear.
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(i111) implies (iv): Since Jy(P)<<P, J,(P) # P. Let zeP-J,(P). Since
Js(P) is maximal in P, Jy(P)+Rx = P.  Since Jg(P)<<P, Rx = P.

(iv) implies (v): Let xeP-J, (P). By (iv), P = Rz=R/Annz. Since P
is projective, Annz is a direct summand of R and hence P is isomorphic
to a direct summand of R.

If zeP-J4(P) then (iv) implies that J,(P)+Rz = P, hence Jg(P) is
maximal in P. Suppose J4(P)+S = P for a submodule S of P. If xeS-J;(P),
then it follows from (iv) that P = Ras<S. Hence S = P and J,(P)<<P. Thus
Js(P)s){KsP|K<<P} = RadP and it follows that J,(P) = RadP. This means
that RadP is maximal in P and hence P has a unique maximal submodule (which

is RadP = J (P)). Since P # J (P), this unique maximal submodule must

be g-pure in P and hence P is o-Tocal.

It is éasy to see that (v) implies (vi).

(vi) implies (i): If (vi) holds then RadP is a maximal, o-pure submodule
of P. Since RadPsJ, (P), it follows that RadP = J (P). (Thus J,(P) is
maximal and o-pure in P). Further, since P is f.g., it follows that J,(P)
(= RadP) is small in P (see 4.3.3(4)).

Hence P/J,(P) is a simple, o-flat module and 0>J,(P)+P-P/J (P)-0 is

a projective cover, proving (i).-

4.3.17 Corollary
The following are equivalent for a ring R and a torsion radical o

on P-mod:

(1) | RR is o-Tocal.

(i1) R is o-regular and Tocal.

(iii) -~ J,(R) is maximal in R and if M is a f.g. R-module and I is a
Teft ideal of R such that IsJ (R), then I;M<<M.

(iv) Jg(R) is small and maximal in R.
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Proof

(i) implies (ii): If R is c¢-local then it has a unique maximal ideal
and is therefore local. Since this maximal ideal is og-pure in R, R is

o-regular by 3.4.4.
(i1) implies (iii): If R is o-regular then J,(R) = RadR which is a

maximal ideal of R by (ii). The second part of (iii) follows from Nakayama'

Lemma ([2], 15.13), since RadR = J,(R).

(ii1) implies (iv): If (i1i) holds then J (R)<J (R).R<<R. Jg(R) s

maximal by (iii).

That (1v) 1mplies (i) follows from 4.3.16.

4.3.18 Examples

Let R be either a division ring and let £, = {O,R} or a local ring anc
Ly = {R}. Then R is a o-regular, local ring and is therefore a o¢-local
ring. It also satisfies the equivalent conditions of 4.3.15 and

4.3.16‘(with P =R in the latter).

4.3.19 Remark
Since it is easy to see that epimorphic images of local rings are

local and epimorphic images of o-regular rings are o-reqular, it follows

from 4.3.17(11) that epimorphic images df o-local rings are o-local.

4.3.20 Theorem

Let R be a rﬁng and ¢ a torsion radical on R-mod. Then the following

are equivalent:
(i) Jg{M) = 0 for all (left) R-modules M.

(i) (a) Injective hulls of simple, (o-flat) R-modules are simple

(and o-flat)and ' \

(b) Every nonzero-R-module has a simple, o-flat epimorphic image.
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(iidi) (a) RadM = 0 for every (left) R-module M (i.e. R is a (left)
v-ring ([20])) and
(b) Every nonzero R-module has a simple, o-flat epimorphic image.
(iv) (a) Every left ideal of R is the intersection of maximal, o-pure

left ideals of R and

(b) Every nonzero R-module has a simple, o-flat epimorphic image.

Procf

(i) implies (iv): (a) Let I be a left ideal of R. By (i), Jy(R/I) = 0,
Let M;/1 be the ideals of R/I such that (R/1)/(Mj/I1)=R/Mj is simple and
o-flat. Then each M; is maximal and o-pure in R and from 0 = JO(R/I) = O Mi/1

1

it follows that I = 0 Mj, proving (iv)(a).
i

(b) Suppose gM # 0. By (i), Js (M) = 0. By Lemma 4.3.5, there

are simple, g=flat modules Uj and an embedding a:M+ng. Let nk:ng+Uk
be the projection maps. Since M # 0, (ﬂj-a)(M) # 0 for at least one j.
Since Uj is simple, (ﬂj-a)(M) = Uj and Uj is therefore a simple, o-flat
epimorphic image of M.

(iv) implies (iii): If (iv) holds then certain]y'eVery jideal of R
is the intersection of maximal ideals of R and by Theorem 7.32A of [20],
RadM‘= O'Tor.a11 R-modules M.

(i) implies (ii): By Theorem 7.32A of [20], if (iii) holds then
every simple module is injective and this clearly means that (ii)(a) holds.

(ii) implies (i): Let M be any R-module and suppose Jgs(M) # 0. By
(i1)(b), there is a (proper) submodule K of J (M) such that J (M)/K is
simp1e and o-flat. By (ii)(a), F = E(J5(M)/K) is simple and o-flat.

By injectivity of F, there is a map o:M>F such that the diagram
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i

I’d

F=E(Jg(M)/K)

commutes, (where k,%¢ are the inclusion maps and m is the canonical
epimorphism).

Since K # J (M), o # 0 and by simplicity of F, ima = F. Thus
M/kera=ima is simple and o-flat. By definition, Jj(Mlskera. Thus

0 = aldy(M)) = w(Jy (M) which is contradictory. lence J (M) = 0 proving (i).

4.3.21 Remark

The following are equivalent for a ring R and a torsion radical o
on R-mod:
(a) Jy(M) = 0 for all o-flat R-modules M.
(b) Every o-pure submodule of a o-flat R-module M is an

intersection of maximal, o-pure submodules of M.

Proof

Using 3.5.1.6 the proof follows lines similar to those in 4.3.20.

4.3.22 Theorem

Let R be a ring and ¢ a torsion radical on R-mod . Then the following

are equivalent:
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(i) M/Js(M) is semisimple for all R-modules M.
(i) R/J4(R) is (Teft) Artinian.
(i) R/J4(R) is a direct sum of finitely many simple, o-flat R-modules.
(iv)  R/JL(R) is semisimple.
(V) A direct product of simple, o-flat R-modules is semisimple.
(vi) S = R/J,(R) is a t-perfect ring for all torsion radicals t on

S-mod such that every leL, is f.q.

Proof

(i) implies (ii): If (i) holds then-R/JO(R) is semisimple and therefore
Artinian.

(i1) implies (iii): Let S = R/J,(R). By 4.3.5, S can be embedded
in a direct product éf simple, o-flat R-modules, Sj (say). Since S is
Artinian, by (ii), S is finitely cogenerated by Proposition 10.10 of [2].
Hence S can be embedded in a direct sum of finitely many of the S;. It
then follows that S is itself a direct sum of finitely many simple,
o-flat R-modules ([45], Theorem 5.4).

That (iii) dimplies (iv) is clear.

(iv) implies (v): Let [Mj:iel} be a collection of simple, o-flat
R-mbdu]es, and let M = QMi- By 4.3.10, J,(R).M = 0 and hence M is an R/J4(R)
module. (If (iv) holds ‘then J (R) # R). By (iv), R/J,(R) is semisimple
and hence M is a semisimple R/J;(R) module ([45], Theorem 5.1). But any
simple R/J5(R) submodule of M is also simple as an R-module and hence M
is semisimple as an R-module, proving (v).

(v) implies (i): Let M be any R-module. By 4.3.5, M/J (M) can be
embedded in a direct product of simple, o-flat R-modules, which is

semisimple by (v). Hence (i) follows.
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That (1) imp11es (vi) is clear.

(vi) implies (iv): Suppose = is a torsion radical on S-mod such that
every Ier. is f.g. (We may take r, = [S}; if necessary). By 1.3.6.3,
flat S-modules are t-flat and hence projective, (since S is t-perfect,
by assumption). That is, S is a perfect ring and by Theorem 28.4 of [2],
S/RadS is a semisimp1é‘5—modu1e. But Radégdq(si = 0 and therefore S is
a semisimple S-module. Since J5(R).S = 0-it follows that S is also

semisimple as an R-module, proving (iv).

4.3.23 Corollary

If R is a left Artinian ring and R-mod admits a torsion radical o

such that Jg(R) = 0, then R is semisimple.

a.3.24 Examples

1. Let R be a commutative, von Neumann-regular ring and ¢ a torsion
radical on R-mod such that every leL, is f.g. (see e.g. 3.4.9(2)). Then

the equivalent conditions of 4.3.20 are valid for (R,o).

Proof

By Theorem 6 of [60], R is a (left) V-ring. Hence if M is any nonzefo
module, RadM = 0 = n {KéMIK is maximal in.M} and hence there is an
embedding a:M+¥51 where the S are simple R-modules. It follows as in
the proof of 4.3.20 that one of the S; is an epimorphic image of M. By
1.3.6.3, R is g-regular and hence Sj is a simple, o-flat epimorphic image
of M. Hence 4.3.20(iii) is valid for (R,q).

2. Let R be any perfect ring and o any torsion radical on R-mod.

Then the equivalent conditions of 4.3.22 are valid for (R,o).
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Proof

By Theorem 28.4 of [2], R/RadR is semisimple. But R/J,(R) is an
epimorphic image of R/RadR and hence R/J,(R) is semisimple ([45],

Theorem 5.4).
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