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ABSTRACT

The thesis is mainly concerned with properties of the conc~pt

"a-purity" introduced by J. Lambek in "Torsion Theories, Additive

Semantics and Rings of Quotients", (Springer-Verlag, 1971).

In particular we are interested in modul es Mfor which every exact

sequence of the form O~~'-+K+L-+O (or O+K-+~1-+L-+O or O+K+L~-+O) is a-pure

exact. Modules of -t he first type turn out to be precisely the

a- i nj ect i ve modules of O. Goldman (J. Algebra 13, (1969), 10-47).

This characterization allows us to stud~ a- i nj ect i vi t y from the

perspective of purity.

Similarly the demand that every short exact sequence of modules

of the form O~K~M+L+O or O+K+L~M-+O be a-pure exact leads to concepts

which generalize regularity and flatness respectively. The questions

of which properties of regularity and flatness extend to these more

. general concepts of a- regul ar i t y and a-flatness are investigated.

For various clcisses of rings R and torsion radicals a on R-mod,

certain conditions equivalent to the a-regularity and the a-injectivity

of R are found.

We also introduce some new dimensions and study semi-a-flat and

semi-a-i~jective modules (defined by suitably restricting conditions

on a-flat and a-injective modules). w~ further characterize those rings

·R for which every R-module is semi-a-flat.

The related concepts of a projective ·cover and a perfect ring

(introduced by H. Bass in Trans. Ame r . Math. Soc. 95, (1960), 466-488)

are extended in a 'nat ur al way and, inter a l ia , we obtain a generalization

of a famous theorem of Bass.

Lastly, ·we develop a relativized version of the Jacobson Radical

which is shown to have properties analogous to both the classical Jacobson

Radical and a radical due to J.S. Golan.
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CONVENTIONS, NdTATION

Z fl j t t 1.1er,' 11 ~l 0 r i nt e (I e r s and the fie 1d 0 f rat; 0 na1 nurnbe r s_ , ~ (eno e I _ ::J

respectivel.y.

Rings R wi l l be associative wi th identity but not necessarily

" " .commutative and, unless o the rwi se indicated, R-modules will be un i t al

left R-modu l e s "ideal s" will be left ideal s ., ,

R-moo wi l l denote the ca t eqo ry of a l l (left) R-modules arid R-module

hOl1\omorpl1isms.

"HolllolllOrphisl11" will mean "R-lllodu"l.e lJomolllorphism" unless otherwise

s pe c l rl ed. HOnlR(A,U) \-,i '11 denote the 9rpUP of R-homomorphisms a:A+B.

, If R is understood we use 1I0m(A,B).

Cl • R \'1 ill IT1e anthe "C0 1I1 pos i t ion 0 f ex wit h 13" defin ed by

(Cl·a)( X) = a(S(x)).

If A is a subset of B and 'g:LhC isa homomo rph i sm, f:A+C defined

by f(a) = g(a) for a ll aeA is ca l l ad th~ , re s l;r7:ction of g to A and

we wri te f = glA. 1 A, denotes the map f rom ,A to A defi ned by 1A( x) = x

for all X€I\.

Vie will usually use the terms "mon i c " ancl "epic" for "1-1" and

"onto" respectively.

,r f the re is a monomorph i Sin a: N-~~l, N. is sa i d to be embedded i n I~.

. ex ex
A I) , '--D=-L I) _ Q ) ) , F R I I ' .sequence ... Irr-J " n ~In 'l ',l'" 0 -nomomorpm sms wi l l

be 'c a l l ed exact iff keran = i man -l for all n.

A,n exact sequence of the form

exact sequence.

i 1T
O-}-N ~}M--}~1/N-+O i s call ed a shor t

f.g. and f.p. will mean "finitely generated" and "finitely presented"

respectively.

By an i.nbeqral. domai.n we mean a comrnuta ti ve r i ng wi th i denti ty

which has no divisors of zero. A ring i s called (left) Noe t.heri.an

iff every (left) ideal is finitely generated.
. \ .

A r i ng i s call e'cl (1eft )

/vrt i n i an iff e ve r y nonernpty coll ec t t on of (l eft) ideals of R has

a minimal element. ' A ring wi l ] be ca1 'le,cJ (left) heredi tiar-q iff every
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(left) ideal is projective and (le~t) semi-hereditary iff every finitely

generated (left) ideal is proiective. A ring R is called local iff

it has a unique maximal ideal. An Artinian ring in which every ideal

is principal ··(i.e. has a single generator) is called a uniserial ring.

An ideal P of a commutative ring R will be called prime (semiprime)

iff whenever A.B~P for ideals A,B of R (A2~P for an ideal A of R)

we must have A~P or B~P (A~P). A ring R will be called a semiprime

ring iff it has no nonzero nil potent ideals.

N~M will mean IIN is a large submodule of MII. i.e. N n S~O for

all nonzero submodules S of M.

A class S of R-modules is said to be closed under module extensions

iff whenever N~M and both Nand M/N belong to S, then Mbelongs to s.

A chain {Ni}i of R-modules is a collection such that for any

i and j, Ni~Nj or Nj~Ni.

A module Mis said to satisfy the ascending chain condition

on submodules iff for every countably infinite (ascending) chain

of submodules Ml~M2~ ... of M there is an n such that Mn = Mn+1 =

If u is a class of modules,a subclass v of U is said to be cOfinal

~n U iff every element of U contains an element of v.

For an element x, Annx = {rERI r.-x = O} will denote the left

annihilator of x. An R-module M is called faithful iff whenever

r.M = 0 for rER, we must have r = Q.

{(mi)iEijMi lonly a finite number of the mi
1

is called a direct summand of ~Mi). The,
mil+(mi)i where

If {Mi} is a c6llection of R-modules,.we denote their direct

p~oduct by ~Mi = {(mi)i ImiEMi} under componentwise operations and
1

the direct sum by ~~i =
1

are nonzero}. (Each Mi

canonical projections:(mi)i~mi and injections:
_ 0 if i ~ j

mj - 1mi if i = j are often denoted by TIi and ini respectively.
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If A is a set we denote the cardinal number of A by IAI and

if M is an R-module, the direct product of IAI copies of M is denoted

by r~IAI and ~1(A) their direct sum.

A mod u1e t~ i s said to be a subd i 1"ec t S UJ77 0 f mod u1e s , Mi (i £ I )

i ff there is a monomorphi sm a : M-r. ID Mi such that 11i'a is an epimorphi sm
1£1

for each projecti on map 11 i : . OJ Mi -~Mi, i £ 1:
1 £ 1

A module M wi l l be said to be coqene ra ted by a class U of modules

iff ·M can be embedded in a direct product of copie~ cif .elements of U.

A module M is called f1~71i te ly coqe ne ra t.ed iff whenever M can be' embedded

in a direct product .. 11 Ui of modules Ui, then there is a finite subset
lE: 1

J of I such that ~1 can he embedded in. If' Ui
J£ ~J '

The (s hort) exac t sequence O+K~L~}~1+0 is sa id to spli tiff

ex has a left inverse or, equivalently, B has a right inverse. [When

thi s happens L ~K(!Jt'1 ([ 45] '. Theorem 2.3)] .

A nonzero R-module ~I is- called e i mpl:e iff ~1 has ' only the trivial

submodules 0 and M. A module M will be called semis i mpl e iff it

is' a (~irect) sum of simple submodules.

A ri ng R is ca 11 ed eemi.s i mp l:e ; ff every ; dea 1 of R is a d; rect

summ and . I nth i s cas e eve ry R- mod u1e will be sem i s imp1e ( [ 45] ,

Theorem 5.1).

A ring R is called 0 la s i -F ro be niu s iff projectivity and injectivity

are equivalent for R-modules.

1f N i s a rig ht R- mo du1e and r~ i s ·a 1eft R- mo du1e, N@~1 den 0 t e s

the tensor 'pr oduc t of Nand M.

1im denotes the direct l imit of the di rected system of modules \
+1

indexed by 1.
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o w; 1'I al v. ay s cl e not e Cl tor s ion .r a cl 'j c a1.,<1 ncl L () its ass 0 c i Cl t e cl

filter. To and Fa will denote the classes or o- t or s i on and a-torsion

free modules respectively (see P7 ff.).

E(M) ancl Eo U1) will deno t e re spect i vel y t he i nj ect i ve hu11 ([ 45] )

and the o-injective hull ([ 37]) of the module ~1.

References used are not necessarily th~ only or even the original

reference for tile topic concerned.

There is an index of definitions at the end of the thesis.
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GENERAL INTRODUCTION

For many of our results we f ind it is necessary to assume that

R-mod be a-pure-inductiv~, i.e. that the union of an ascending chain

of a-pure submodules of a module Mbe a-pure in M. For this it is

sufficient that every ideal in the associated filter La is f.g:

This condition is consequently assumed in many of our proofs, (but

always explicitly stated.). If R is Noetherian then this condition

holds and our results of . this type therefore fall within the scope .

of B. Stenstrom1s Chapter 7 of [67] (IIHereditary Torsion Theories

for Noetherian r i nqs") and J.S. Go l anvs Chapter 42 of [35] ("Torsion

Theories of Finite Type"). In §1.2.5.3 we show that tpere exist non­

Noetherian rings which satisfy the condition that every I€L a be f.g:

for an appropriate torsion radical a. (The condition lIevery I€L a

is f.g. 1I has been stud i ed in some detail in [36]).
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CHAPTER ONE

PRELIMINARY MATERIAL

§1.1 INTRODUCTION

This chapter serves to provide the background needed for the

rest of the . thesis. The concept of o-injectivity, which will be

studied in some detail in Chapter Two, is introduced and a few of

its well known properties are mentioned. The condition that every

I£Lo be ·f.g., which is fundamental to many later results, is studied

here.

Our main field of study: a- pur i t y , is introduced and compared

with Cohn purity (from wh ich a- pur i t y was developed). For ease of

reference we list some known results on a-purity, in particular the

construction of the a-pure injective hull.

Lastly, we introduce two new (dual) dimensions and show that

the corresponding global dimensions coincide under certain conditions.

§1.2

1.2.1

BACKGROUND IN R-MODULES

Fundamental definitions ([45], [61])

1.2.1.1 An exact sequence O+A~~C+O of R-modules induces exact
. a* B*

sequences: O+Hom(M,A)-rHom(M,B)-rHom(M,C) and
* * .-

O+Hom(C,M)~Hom(B,M)~Hom(A, M) for any module M, where e.g.

a*(cp) = a'cp and a*(cp) = cp ;a ([45], Theorem 6.2).

B*In case HomU1,B)-rHomO't,C)+O is exact, for each exact sequence

~C+O, then Mis called projecti ve . If Hom(B,M)~Hom(A,M)~O

is exact, for each exact sequence O+~rB, then Mis called injective.

Every module Mmay be embedded in an injective module,

called the i.n ject.i.oe hu l.l , EU1), of M ([45]).



1.2.1.2 A, module F, is called f r ee iff it is h· t R(I)i somorp 1co .
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for some no nempty set I.

Free modules are projective and every R- module is an epimorphic image

of a (r~e ~odule ([45]).

1.2.1.3 If in the expression Mc::F/H, whe re F is free and H is a

submodule of F, both F and Hare f i ni t el y generated, M is called

f ini t e ly presen t ed (f.. p. ) .

The following are well known:

(a) If M~F/H is f.p. and F is f.g.,. then H is f.g. ([ 61],

Corollary, 3."42.').

(b) If O-~K-+L+~1 ·+0 is a short exac t sequence wi th K and M f. p.

modules, then L is f.p. ([65], Lemma l(ii)) .

(c) From (b) it follows easily tha t -'fin i te direct sums of f.p.

modules are f.p.

(~) If Mis f.p. and L is a f.g. submodule of M, then M/L is

f . P. ([ 65], Le mm a 1( i ) ) .

1.2.1.4 For a module M, a pro ject.iue reeol.u t i on of ~1 is an exact
,. dz d1 do

sequence ;, ... '-+Pz---"-+Pl--}-Po--~M+O where -each Pi is projective.

The smallest n for which imd n is projective (if it exists) is

called the length of the pr ojective resol ut i on. All projective

resolutions of a module ~1 have the same length and this is called the

projective dimension ;pr M,of M (see [49] for a fuller discussion).

Let X be any module and con~ider the induced sequence:
didI

Hom(Po,X)~.Hom(Pl,X)~ ... (where d~( cfl) = </)· dn for all n,

~EHom(Pn-l'X)), This is not necessarily an exact sequence, although
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For each n, (kerd n+ 1)/(imdn) is denoted by E'xtn(M-,X). Extn(M,X)

is independent (up to isomorphism) of the ~ particular projective

resolution used to define it ([4-9]) .

, Suppose O+N+M+M/N+O is an exact sequence. The following induced

sequences of homology for Ext are exact for any module X (and for

nf; 1) :

.. ~ .. +Ext n- l (N, X)+Ext n(M/ N, X)+Ext n(M, X)+Ext n(N, X)+Ext n+l (M/ N, X)+ (l)

and.. +Extn- l(X,M/N)+Extn(X,N)+Extn(X,M)+Extn(X,M/N)+Extn+ 1(X,N)+ (2)

We will also, on occasion, use the following properties of Ext:

. (a ) Ex t n+1(M, X) = 0 for all X i f f Ex t m+ 1 ( M, X) = 0 for all X

and for all mf;n.

(b) Q is injective iff Ex~n(M,Q) 0 for all Mand for all

nf; 1.

(c) ExtO(A,B):~d-lom(A,B) for all A and B ([49]).

1.2.1.5 Let A be a right R-module and B a left R-module. Let F

be the ' f ree Abelian group on the set {(ai,bi) \ai EA,biEB }. Let K

be the subgroup of F generated by all elements of the form

(a+a' .b ) - (a, b) - (a I .b ) , (a, b+b I) - (a, b) - (a, bI) and (a r, b) - (a, rb )

The Abelian group F/K is called 'the t en sor product of A,B, written

A@RB (or just A~B if R is understood).

If aEA, bEB, then we denote (a,b)+K by a~b. If f:N 1+N z is a

homomorphism of left R-modules, and g:M1 +Mz a homomorphism of right

R-modules then there is an induced homomorphism g@f: M1@N1+Mz@N z

of Abelian groups defined by g0f(m@n)=g(m)@f(n).

If O+~~P+O is an exact sequence of left R-modules and
lL@cx lL0S

Lis a ri _ght R-modul e, then L®N )L0M · )L@P+O is exact ([ 67] ,

Proposition 8.6).
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of M,

and X.is anyJ eft R-modul e, we get an induced sequence
dl~lx do@l x... Pl~X )Po~X )MQX and if we define

~Torn(M~X) = [ker(d n01x)]/[ im(dn+l~lx)]' the exact sequence of right

R-modules O+N+M+M/N+O induces an exact sequence of homology:

... Torz(M/N,X)+Torl(N,X)+Torl(M,X)+Torl(~/N,X)+N@X+M0X (1)

for any left module X.

Similarly an exa-ct sequence of left R-modules O+N+M+M/N+O gives

rise to an induc~d exact sequence:

... Torz(X,M/N)+Torl(X,N)+Tor1(X,M)+Torl(X;M/N)+X0N+X0M (2)

for any right R-module X (see [61], §8).

1.2.1.7 If X is a left R-module, the character module X* = HomZ(X,Q/Z)

is a ' r i ght R-module under (<t>r)(x) = <t>(rx) (rE:R, XE:X, <t>E:X*). It follows

from [Ill, Proposition 5.1 (page 120) that Extn(M,X*)~(rorn(M,X))*

for all right R-module M; n~l.
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1.2.1.9 A direct limit of a directed system of submodules of a

module M, where the o~ are inclusion maps, is called a directed union.

It is shown in [63] that every R-module is a directed union

of its f.g. submodules and that both a direct sum and the union of

an ascending chain of modules are special cases of a directed union.

1.2·.2

(i)

Completion of Diagrams

A pushout diagram for modules is constructed as follows:

Given the diagram

M-----r-P

CL

Q

of left R-modules and homomorphisms, we may complete the square

sM,.-------4-) P

Q~-------+)(QffiP)/S

)8fI

Given a commutative square
i 1

<t>

conmutat tve ly by taking S = {(cx(m) ,-s(m)') ImE~1}, <t>(q) = (q,o)+S, for

qEQ and ~(p) = (o,p)+S, for PEP.

(i i )

~f-I----~)M "
i 2

where i 1 , i 2 are the inclusion maps,we complete the rectangle
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1T 1

N

commutatively, by defining f 3(b+A) f 2(b)+N for b£B.

(iii) Dually, given the diagram

Q

a

p·----~)M

s

we complete the puZZback diagram

a

B

commutatively, by taking X = {(p,q)EPffiQls(p) a(q)} and ~:(p,q)~p,

~:(p,q)~q for (P,q)EX.

(iv) ·Gi ven a commutative square

B-----+lBIA

Mf------+)M/N

where A and N are submodules of B and Mrespectively, we complete the

rectangle
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A
i 1

)[3
111

>-B/A

f 1 f f 3~

N- --.-- ~M ~~1/N
1 2 lr 7

commutatively by letting f 1 be the re s t r i ct "j 0 n of f 2 to A.

1.2.3 Torsion Theories

The f 011 0 \'i i ng res u1t son tors ion the 0 r -j es are ma i n1y t aken fro rn

[37], [66] and [67):

1.2.3.1 Definition ([ 66] )

Let R be a ring. f\ tor31~ ol1 r adi.cal. "is a funct or o:R-mod->-R-mod

assigning to each R-Illodule ~1 a submodule o(t~), and to every homomorphism

f : M->-P the homomorphi sm f / o(M), such t ha t .

(.i) " If r~ is a subrnodule of M then a(N) =- N n o(M).

(~ii) a(M/o(M)) = 0 for a-ll modules _ ~1.

Throughout this thesis torsion radicals will be denoted by 0,1 etc.

1.2.3.2 A module t1 i s vca l l ed c-Lore i on -, iff 0 (11)

if o(M) O.

Mand a-torsion free

The c1ass 0 f a - ~ 0 r S ion 111 0 du1e s \'i i 1-I " bedenoted by '1'0 and the c1ass

of a-torsion free modules by Fo' ('l'o,Fo) is then calle-d a (hereditary)

torsion theory.

1.2.3.3 Note

It follows easily from 1.2.3.1(i) that a (M) is a-torsion and contains
\ :

every a-torsi on submodul e N of ~1.
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1.2.3.4 Theorem ([66])

Let R be :a ring and 0 a torsion radical on R-mod. (7'o,Fo) satisfies

the following:

(i ) T is closed under submodules, factor modules, direct sumso

and module extensions.

(ii) Fo is closed under submodules, djrect products ,module extensions

and essential extensions.

(iii) F€Fo iff Hom(T,F) 0 for all T€T o and

(iv) T€T o iff Hbm(T,F) = 0 for all F£F~.

1.2.3.5 Note

Gi ven an .heredi tary tors i on theory we ' defi ne the ass QCi ated fi 1ter

L o = {Ill is a left ideal of Rand R/I£J'o}' It then follows easily

that o(M) = {m€MIAnn m€L o } .

I

1.2.3.6 Theorem ([37] and [67])

Let a be a torsion radical and let L o be as defined above. Then

La has the following properties:

(i) If 11£Lo and 12 is a left ideal of R such that I1~12' then

(ii) If I1,I 2€L o ' then 11 n 12€Lo '

(iii) If r€R and I€L o ' then Ann(r+I)£La .

(iv) If I€L o and K is a left ideal of R such that Ann(a+K)£Lo for

all a€I, then K€L a.

Given (i), (ii), (iii) and (iv), it is further true that

(v) If I, J€Lo then I.J€Lo .( [ 37]).
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1.2.3.7 Remark

A set La of left ideals satisfying 1.2.3.6 is called a GabrieZ

'l'opoZogy and is also uniquely determined -by (J.'a.;Fa) ([67], Theorem 5.1,

page 146).

Given a Gabriel Topology La' we may in turn define a by

a(M) {xEMIAnnxELa} for any module M.

a thus defined is a torsion radical ' and is again uniquely determined

by La ([ 67] ). Thus a torsion theory. may be defined by specifying either

1.2.3.8 Example

Let R be a commutative integral domain. Define for an R-module M,

a(M) {mEMlr.m = 0 for some rER, r~O}. It is routine to verify that

a is a torsion radical on R-mod and that La is the set of nonzero ideals

of R.

In particular if R = u, a(G) is , the ,t or s i on subgroup of an Abelian

group G (see [33]). We shall refer to this as the usuaZ torsion theory

on the category of AbeZian groups.

1.2.4 a-Injectivity

1.2.4.1 Definition' ([37])

A mod~le E is 6alled a-injeative iff for each submodule N of any

module Msuch that M/N is a-torsion, any homomorphism f:N+E can be extended

to a homomorphism g:M+E.

1.2.4.2 lemma ([37], Proposition 3.2)

The following are equivalent for a module E:
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(i) E i.s o-injective.

(ii) If 1EL o and f:1 +E is a homomorphism, then f can be extended

to a h~m?mo~phism g:R+E.

1.2.4.3 Definition ([44])

Let Mbe an R-module and let E(M) be its injective hull.

Ea(M) {xEE(M)!Ann( x+M)ELa} is called th~ o- in jective hull of M.

1.2.4. '1 Theorem ([ 53], Propos it ion O.7)

Ea (M) i s a 0 - i nj ect i ve, P. ssent i ale x.tens ion _0 f ~~ and Eo un I ME r a .

Moreover, any' other a- i nj ect i ve , essential - extension E of ~1 such that

ElM is a-torsion is isomorphic to Ea(M).

1.2.4.5 Definition ([ 44] )

Let R be a ring and a a torsion radical on R-mod.

Let N be a submodule of the module M,: I,JELa such that I~J

and let .i 1 : 1+J , i2:N~M be the f nclus i on maps~N is called a a-nea t submodul.e

iff whenever homomorphisms f:I+N, g:J+M exist such that g'i 1 = i 2·f, ·there

is a left ideal K such that I~K$J and a homomorphism g:K+N such that

gl I .= f. I

(This is -an equi vale nt form eft fIe c' efin i t ion 9i ven i n [44] as

noted on page 1139 of that article).

1.2.4.6 Remarks

(i) A a-neat submodule of a o- i nj ect i ve module is a-injective

([ 44], Proposition 2).
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(ii) Homomorphic images of a-injecti~e modules are a-injective

iff every IELa is projective ([34] ,Propos.ition 4.6) ..

( i i i ) Di rect summands, fi ni te di rect sums and di rect products of .

o-injective modules are a-injective ([35], Proposition 8.4) .

. (i v) Arbitrary direct sums of o-injective modules need not be

a-injective:

Let R be any non-Noetherian ring and take La to be the set of all

left ideals in R. For this a, o-injectivity is equivalent to injectivity.

Since R is not Noetherian, it follows from Theorem 17.2 of [45]

that there is a direct sum of injective R-modules which is not injective.

Thus we have a family of o-injective modules whose direct sum is not

o-injective.

. (v) iIf O-+F-->-E-rL+O is exac t , F is a-'i nj ec t i ve and Lis a- tors i on,

then the sequence splits. If, further, a(E) = 0, then F = E ([37],

Proposition 3.4).

1.2.5: The Condition "Every IELa is f.g."

1.2.5~1 Theorem

Let R be a ring and a a torsion radical on R-mod. The following

.are equi va1ent :

(i) Every direct sum of o-injective 'modul es is o-injective and

La contains a cofinal subset of left ideals of the form ffiJa where each
a

Ja is countably generated.

. ( i i )

(i i i )

If 1££0 then I is f.g.

Every essential (left) ideal in £0 is f.g.



It:

Proof

(Do is called a-Noe t.hericm iff whenever 1\$.1 2 $ ••. is a countably

i nfin i tea sce ndin 9 c ha i n 0 f 1eft i dea1s 0 f I~ such t hat

then InE:L o for some n([36])).

That (ii) implies (i) is in Theorem 2 of (36].

U I r
kE:LJ o '

k

Suppose (i) holds. The condition "di r ect sums of o-injective modules

are o-injective ll is shown, in Theorem 1 of (36], to be equivalent to:

II Lo is o-Noetherian and has the ' ascending cha i n cond i t t on".

This condition, together wi th "La contains a cofinal subset of

left ideals of the form (!)Ja whe r e each Ja' is count abl y generated ll
. implies

a

(i i) by Theorem 2 of [36].

To complete the proof we only need to show that (iii) implies (ii).

Suppose, therefore, that eve ry essential (le ft) ideal in La is f.g.

and let 1 be an arbitrary ideal in La . Suppose 1 is not f.g. and let

S == ' {Jd~all~J and J is not f .g.}. S 1- 1> ; since rE S, and is inductive,

hence It. has a maximal element ~i (say).

Let N be any nonzero left ideal of R. If Nn .~1 == 0 then, by max imal i ty :

of ~1' in -s , M+N (==MffiN) is f.g. Hence M is f.g., which is a contradiction.

Hence, M~R and the fact'that M is not f.g. is in conflict with our :

assumptior. Thus every I ELo is f.g. and (ii) holds.

1.2.5.2 ' Theorem

Suppose R is a commutative ring and 0 a torsion radical on R-mod.

Then the following are equivalent:

. (i) Every IEL a is f.g.

( i i )

( i i i )

Proof

Every sern i pr i IT1e i dea1 I e. Lo i s f.9.

Every prime ideal IELo is f .. g. ;

\ :



n
L siri EJ and there exist tiER
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Suppose (iii) holds and let S = {IELaII is not f.g.}. If st~,

it is inductive and ,has a maximal element M (say), by Zorn1s Lemma.

M is not prime since it is not f.g. Thus there exist ideals A,B

such' that A.B~M but AiM and BiM. Let aEA~M, bEB-M. By maximality of

M, M+Ra is f.g. Suppose M+Ra can be generated by the set {ml+rla,

m2+r2a, .... -. ,mn~ rn a } for some miE~1, riER. Let J = Ann (a+~l). Since

a.b£~1 and b~M, it is clear that M~M+Rb~J. By maximality of ~1, J is f.g.,

say by the set {jl' j2'···· ·jk}·
n

Let x£~', then xEM+Ra and there exist si£R such that x = L si(mi+ri a).
i=l

· n n
Thu~ ( L siri)a = x- L simi£M, whence

i=l i=l
n k

such that L siri = L tiji·
-i =l i=l

n k
11ence x = L s imi + L t i j i a and t~ can begenera t ed by the set

i=l i=l

{ml'm2' ..... mn, jla,j2a' ..... jka}, which is a contradiction. That is,

s = ~ as required.

1.2.5.3 Example

If R is Noetherian then every I£L a is f.g. for all torsion radicals

a on' R-mod. ' There are non-Noetherian rings which admit a torsion radical

a satisfying this condition.

The following example is due to A.R. Meijer (personal communication):

Let S be a non-Noetherian, commut~tive ring with identity and F

a field. Put R = SffiF = {(s,f)ls£S, fEF} ~ith componentwise operations.

M= {(S,O)ISES} is a maximal ideal of R (for R/M~F is simple).

If we take La = {M;R}; then La contains only f.g. ideals. We show La

is indeed the filter of a torsion radical:
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1.2.3.6(i) follows by maximality of Mand 1.2.3.6(ii) is clearly

valid in this case.

(iii): Suppose I£L o and r£R. Thus I = Mor R. Let J = Ann(r+I).

Clearly M~J, so J = Mor R. Hence J£Lo ·

(iv) Suppose I£L o and K is an ideal of R such that Ann(a+K)£L o

for all ar l . Thus Ann ((l,O)+K)£L o and therefore Ann((l,O)+KI) =' Mor ",

R. In either case ~1~Ann( (l,O)+K) and ~1( 1,0) = M~K. He'nce K = Mor

Rand K£L o as required.

§1.3 PURITY:

1.3.1 Pure Theories

1.3.1.1 D.J; Fieldhouse in [29] describes a generalization of the

concept of purity to arbitrary categories. We will adapt his definition

of a Pure Theory to the category R-mod.

For this purpose we need the following result:

1.3.1.2 Lemma ([26], Theorem 3)

Suppose

is a commutative diagram of left R-modules with exact rows. Then the

following are equivalent:

(i ) There is a homomorphism 1l:Az+B 1 such that f 1 llOCil·

(ii) There is a homomorphism T:A 3+Bz such that f 3 = SZ·T.
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1.3.1.3 Definitions ([ 29] )

(i) Given short exact sequences:
(xl ."' 81 (l2 82

A:0+A1~A2~A3+0 and B:0+B1~B2~B3+0 of (left) R-modules we

every commutative diagram
(l1 81

".1 f :r fl-r· )0
0,---+)B1 ) B2 rB 3- - -+)0

(l2 82

one of the equivalent conditions of Lemma 1.3.1.2 holds. (Note that

e is not a symmetric relation).

(ii) The collection E of ~ll short e~act sequences of R-modules

forms a category with morphisms F = (f1,f2,f 3):A+B, where the fi:Ai+Bi

are R-h9momorphisms making the above diagram commute.

If C is any collection of short exact sequences in E then we define

C* {B€E'IGeB for all GEC} and C+ = {AEE'IAeG for all GEC}. A pure theory

is then an ordered pair (p~Q) of classes pf short exact sequences such

that Q = p+ and P = Q*.

( i"i i ) We say that P "left generates" and Q "right generates" · the

pure theory (p~ Q) and note that (p~ "'?) = ((p+)* ,p+) = (Q*, (Q*)+).

(iv) . (p~Q) is called projectively generated iff the middle. term

of each short exact sequence in Q is projective.

(v) The elements of P are called the pure exact sequences and

those of Q the copuri exact sequences .? f the pure theory.

(vi) If 0!t-P1~·P2-S.PTrO is a pure exact sequence, we call a a

pure monomorphism and B a pure epimorphism.

(vii) We will say that a submodule N Of a module Mis pure in M

iff the inclusion map i:N+M is a pure mon?morphism.
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A module P is called pure projective iff Hom(P ,P2)+Hom(P ,P3)+0

B:

A:

1.3.1.4 Lemma ([29], Theorem 4.3)

Let

Ct l SI

O~fl fl fl--+)O
0---+)B 1 >B 2 )B3---+)0

Ct 2 S2

be a commutative diagram with exact rows in R-mod and let (p, Q) be a

pro.ject i vel y generated pure theory in R-mod.

(i) If f 1 is monic, f 1(A 1 ) is pure in B1 and B is pure exact,

then A is pure exact.

(i i )

(where i is the inclusion map) and A is pure exact, then B is pure exact.

1.3.1.5 Theorem ([ 31], Theorem 5.1)

Let E~F~G be R-modules and 1et i», Q) be a projectively generated

pure theory in R-mod.

(i) If E is pure in F and F is pure"in G, then E is pure in G.

.(i i ) If E is pure in G then Eis pu re in F.

(i i i ) If F is pure in G then FIE is pure in G/E.

(iv) If FIE is pure in G/E and Eis pure in G, then F is pure in G.

1.3.2 eohn Purity

1.3.2.1 Definition ([12])

We call a submodule N of a mo dule M~ Cohn pure submodule iff the
n

solvability of the system of equations ~ f i j Xi = aj (where ajEN, rijER,
i=l

j = l,~, .... m) in Mimplies its solvabil ity in N.



T:M+,ID "Ai such that a·T
,£1

n
Since Mis f.q., M~ ID A,'

. i = 1n .
and (d) that.IDAi is f.p.

,=1
Cohn pure projective.
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1.3.2.2 P.M. Cohn, in [12], shows that N is a Cohn pure submodule
1K®i

of the module Miff the induced mappinq K@N )K@M is monic for all

right R-modules K (where i:N+M the inclusion map).

1.3.2.3 D.J. Fieldhouse in [26] and Doman in [13] discuss some of

the properties of this concept. Many of these have counterparts for

a-purity. We list a few of the properties, which are important for our

purposes, below:

(i) A module N is Cohn pure in Miff every f.p. module is projective

i Tfwith respect to the sequence O+~~M/N+O ([45], Theorem 16.5).

"(ii) Cohn purity forms a pure theory right generated by the family

Q = {O+Gr-~~G2--L.G3+0IGl,G 2 are f.g. and G2 is free} ([29], Theorem 7.1).

(iii) For every module Mthe~e is a direct sum $ Ai of f.p. modules,
Ai and a Cohn pure exact sequence O+kera+qlAi~M+O ([ 45], Theorem 16.6).,

(iv) A module M'is f.g. and Cohn pure projective iff it is f.p.

This result is mentioned by Fieldhouse on page 15 of [29]. (He

attributes it (without reference) to Zimmerman, and for completeness

sake we would like to include a proof).

Proof

If Mis f.p. then it is f.g. and Cohn "pure projective by (i) above.

Conversely suppose Mis f.g., Cohn pure projective. By (iii) above,

there is a Cohn pure exact sequence O+kera~.ID1 Ai~~~O where the
- , €

Ai are f.p. Since Mis Cohn pure projective there is a homomorphism

= 1M and hence Mis a direct summand of ID Ai.
i € I

for some integer n. It foJlows from 1.2.1.3(c)
n

and, since Mis f.g., (i!~i )/M "i s f.p. and hence
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n
is Cohn in ID A· (being direct summand)M~ ID A·~ mA· and M pure a

. 1 1 . I 1 . I 11= 1£ lE:
n

hence,' by 1.3.1.5(ii), M is Cohn pur.e in mAi. Thus the sequence
i=l

. n n
O+~~ mAi~( mAi)/t1+0 splits and M' is therefore the quotient of

i=l . i=l
n

a f.p. module (isomorphic to .m Ai) by a f~g. module (isomorphic to
1=1

n.
(.m Ai)/M), i.e. Mis f.p. (1.2.1.3(d)).
1=1

(v) A module Mis Cohn ..pure projective iff it is a direct summand

of a direct sum of f.p. modules ([45], Theorem 16.7).

1.3.2.4 Definition

A 1eft R-modul e F is ca11 ed i'l.at: ([ 45]) i ff for any exact sequence

O+N+M of right R-modules the induced sequence O+N~F+M§F is exact.

1.3.2.5 There are a number of equivalent .characterizations of flatness:

(i) F is flat iff O+J~F+ReF is exact -for all right ideals J of

R ([45], Theorem 14.6)~

(ii) Because of the exactness of the sequence Torl(R/J,F)+J@F+R~F,

F is flat iff Torl(R/J,F) = 0 for all right ideals J of R ([61]).

(iii) F is flat iff its character module F* = HomZ(F,Q/Z) is injective.

This is a · famous characterization by Lambek ([ 54]).

(iv) F is flat iff every exact sequence of the form O+N+M+F+O is

Cohn pure exact ([ 30] ).

1.3.2 ..6 . Definition

A ring is called reguZar iff a£aRa for all aE:R. This concept was

introduced by von Neumann in [58].

The following interesting result will be used later on:
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1.3.2.7 Theorem ([32], Theorem 2)
I

A ring R is regular iff every left rdea l is Cohn pure in R.

1.3.3 0- Purity: Some Fundamental P~operties

1.3.3.1 Remark

The following are equivalent for an Abelian group G, subgroup H

of G and the usual torsion theory on Z-mod:

Ci) nG'n H = nH for all neZ (i .e. H'i s pure in G in the sense usual

for Abe1i an groups, see, for examp1e , Fuchs ,,r 33] ).

(ii) Every cyclic, torsion group is projective with respect to

i 1Tthe exact sequence O+~~~G/H+O.

(i i i ) Every f.p~ Abelian group is projective with respect to this

sequence (i.e. H is Cohn pure in G).

Proof

Since Z is Noetherian, the concepts of finitely generated Abelian

groups and finitely presented Abelian groups "coi nci de ([45], Theorem 3.6).

Furthermore, since any finite cyclic group is torsion (being isomorphic

to Z/(n) for some natural number n>l ) and every infinite cyclic group

'i s 'proj ect i ve (being isomorphic to Z) the · result follows from Theorem 6;18

of [6] 'and Theorem 29.3 of [33].

The previous result suggests the following definitions:

1.3.3.2 Definition ([44])

Let R be a ring and a a torsion ~adical on R-mod.

A short exact sequence O+Pl~P2~P 3+0 of R-modu les is calied

a-pure exact iff every cyclic, a-torsion module P is projective with

respect to this sequence. A submodule N of Mis called a a-pure submodule

iff the sequence O+~~M/N+O is a-pure exact.
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1~3.3.3 Definition ([44])

Let R be a ring and a a torsion radical on R-mod.

A ~ubmodule N of an R-module Mis called§trongly o-pure iff every

a-torsion module is projective with respect to the sequen~e O+~~~M(N70.

1.3.3.4 leltll1a

Let R be a ring, N a submodule of an R-module Mand let a be a

torsion radical on R-mod. Then the fo l lowi nq are equivalent:

(i) . N is a-pure in M.

(ii) For each x€M and 1€L a such, tha t 1x~N, there is a YEN

with l(x-y) = o. (Thus a-purity coincides with Lambek's purity introduced

in [53]).

Proof

(i) implies (ii): Suppose that N is a-pure in Mand that 1x~N for

some x£M, and some lELa . R/1 is then cyclic, a-torsion and a:R/l+M/N

defined by a(r+l) = rx+N, for rER, is an -R-homomorphism. Let TI:tr1r+~1/N

be the canonical epimorphism. Since N is' a-pure in M, there is a

homomorphism S:R/l+Msuch that TI-S = a. Let S(1+1) = z and put y = x-z,

then TI(Y) = TI(x)-TI(z) = (x+N)-TI·S(1+1) = (x+N)-a(l+l) = O+N, hence YEN.

Sin~e S(1+1) = z it follows that lz = 0, -and since z = X-Y with YEN,

this proves (ii).

(ii) implies (i): Suppose that T~R/J is cyclic, a-torsion and

let a:R/l+M/N be a homomorphism, with a(1+1) = x+N for some XEM. Then

Ix~N and,by (ii),:there is a y€N with 1(x-y) = o. The map S:R/I+~1 defined

by 6(1+1) = x-y is therefore a well defin~d R-homomorphism and TI·S = a,

whence N is a-pure in M.
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1.3.3.5 Lerrma

Let R be a ring and a a torsion rad;Gal on R-mod. If every I£La

;s f.g. then the union of an ascending chain {M;}; of a-pure submodules

of a module r~ i s a-pure i n ~1 ([ 64], Proposition 7.3).

1.3.3.6 Theorem

Let R-be a ring and a a torsion radiGal on R-mod. Let I be some

index set and, for each ; £1, let P; be a submodule of a module Mi. Then '

(i ) ID p. is a-pure in ffi ~1i iff Pi is a-pure in Mi for each i .. I 1,£ ;£1

(i i ) IT p. is a-pure in IJ Mi iff each Pi is a-pure in each Mi.
i

, ,
(iii) 6) p. ; s a- pu re in JJ Pi·. ,, ,
(iv) $ p. ;s a-pure in n ~' . iff Pi is a-pure ;n M· for each i ., , . , ,,

Proof

( i ) Supp0 sethat I£La and t hat I (m i )i s$ Pi for some (mi). ; £~ ~1;., . ,
Then Im;~P; for each; and, since Pi ;s a-pure ;n M;, for each

nonzero m; we can choose a P;EP; with I(mi-Pi) = O. Since there are

only a finite number of nonzero Pi, (Pi); E$ Pi and I((mi)-(Pi)) = (O)i',
Thus, $ Pi is a-pure in $ ~1;.

, 1

Co~versely, suppose that e Pi is a-pure in $ Mi and that Imi~P;
, 1

for some mi£Mi' IELa.

Define {ni)i€$ Mi by nJ· = {mi ;f j =; Then I(nl·),·~$ Plo and,
, 0 if j ~ i ' 1

by assumpt i on , there is a (Pi)i£$ Pi with )((ni)i-(Pi)i) = (O)i. Thus, .. .

I(mi-p;) = 0 with PiEP; and P; is a-pure ;n Mi.

(ii) The proof is very similar to (;).

(iii) Let a:R/I+(DP;)/($ Pi) be any R~homomorph;sm, and suppose, ,
that a(l+I) = (p;); + $ Pi' Then I(Pi)i~$ Pi ahd therefore Ip; = 0, ,
for all except at most a finite. number of i, say IPi ~ 0 iff iE10 where
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10 is a finite set. Let n: ijPi+(nPi)/($ Pi) be the canonical epimorphism.
, i ,

( ) h {P"'" if iiIODefine S:R/1+TI,P,' by S(l+l) = q,' " w. ere qi =, 0 if iE10·

S is then a well defined homomorphism (since Iqi 0 for all i) and,

moreover, (Pi)i-(qi)iE$ Pi, i.e. (noS)(l+l) = (qi)i + $ Pi = (Pi)i + e Pi, "

i nO+ffi Pi )lJMi )( lJMi
i , ,

where ~ is the monomorphism ~(mi+Pi)

= a(l+I). Hence noS = a.

(iv) Suppose that Pi is a-pure in Mi for all iE1. Then, by (i),

$ Pi. i s a- pure i n ~ Mi . By (i i i ), $ Mi i s a- pure i n lJ ~1 i and by t ransit i vi t Y, , , ,
of a-purity, $ Pi is a-pure in ijMi (1.3.1.5(i))., ,

Conversely, suppose that $ Pi is a-pure in ijMi. Let I£La and let, ,
a:R/1+Mi/Pi be an R-homomorphism for som~ iE1.

Consider the diagram

n ',

T '. ,

/($ Pi),
(0, .. 0,mi ,0, . 0)+$ Pi, Ti : lJ Mi+~1 i, ,

are the usual projections and n ,n i the canonical epimorphismso ~ has

a 1eft inverse, u, defi ned by u[ (mi )i+$ Pi)] = mi+Pi.,
I t i seasi 1y ver i fie d t hat u0 n = 'TT i 0 Ti . . Since ffi Pi i s a - pure

i
in lJMi' there is a ' homomorphism T: R/ 1+lJ Mi such that noT = ~·a. Then, , .

TioT:R/1+Mi satisfie~ TI,o(T ,oT) = ~o nOT = lJo~·a = a and therefore Pi
. "

i's ci-pure in Mi as required.

1.3.4 a-Purity, Strong a-Purity as Pure Theories .

1.304.1 Theorem

1f .R is a ring and a is a torsion radical on R-mod then a-purity

forms a (projectively generated) pure theory right generated by the
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i 1T
set Q cons l s t inq of all short exact sequences of the form O+I-rR~R/I+O

where h:L q • (Thi s resul t was recorded, i ndependentl y, in 1. 23 of [ 57] ).

Proof

See ' t41J, The0 rOe m 4. 2 .

1.3.4.2 Corollaries

(i) O+P c-~+P 2 is a a-pure monomorphi sm i ff for each IELo and each

commutative square

1-------+)R

where i is the inclusion map, there is a: homomorphism 1l:R+P 1 such that

ll·i = f 1 ([29], Corollary to Proposition 3.2).

(ii) If S,T are submodules of a module ~1 and S n.T is a-pure in T,

then S is a-pure in S+T ([40], Corollary ·5 . 4 ).

1.3.4.3 Theorem

Let R be a ring and 0 a torsion radical on R-mod. The strongly

a-pure exact sequences of R-mod are the pure exact sequences of the

pure theory right g~nerated by the family Q = {O+Ql+Q2+Q3+0IQ3ETa and

Q2 is projective} ·or equivalently by Q' = {O+Ql+Q2+Q3+0IQ3ETa and Q2

is free l.

Proof

Suppose that P:O+P1+Pz---LP3+0 is in Q* (or (QI )*) and let f:Q3+ P3

be a homomorphism where Q3ETo . Let a:Q2~Q3 be an epimorphism where O2

is free.



24

i .
If Q1 ' = kera then 0~Q1~Q2~Q3~0 is in Q(QI ) and we can form

a commutative diagram

. )0Q:

P:

O~>!l '!2 a '!:
Ol-----+-yP1 ) P2 B )P3..,...--'---+)0

. By assumption QeP so there exists a homomorphism T:Q3~P2 with SOT = fo

Hence every a-torsion module is projective with respect to P and P is

therefore strongly a-pure exact.

Conversely, suppose that O~Pl---~P2~P3~0 is strongly a-pure exact,

that the sequence 0:0~Ql~Q2~Q3~0 is in Q (or QI) and that we are given

a commutative diagram

OJ---+':l-~r ,!:,_....o-.-.r)0

0---+)P1---+)P2 B )P3---+)0

By assumption, Q3ETa ~nd hence there is a homomorphism T:Q3~P2

with BOT = f.

Thus QeP. Since Q was arbitrary in Q(or QI ) , PEQ.* (or (QI )*:).

1.3.4.4 Definition

Let R be a ring a~d a a torsion radical on R-mod. A module P is

called a-pure projective iff for every a-pure exact sequence

0~P1~P2~P3~0 and ~very homomorphism ~ : P~P3 there exists a homomorphism

~:P~P2 such that Bo ~ = ~ .

In the usual way one can show that dir~ct sums and summands of a-pure

projective modules are a-pure projective.
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1.3.4.5 Remark

is CO-a-pure exact iff for every commutative diagram
Ul Bl

O----.-+f:jl f~j2 .f~j3-----+)O

O----~)Pl )P 2 )P3----~)O

U 1 B2

Q:

P:

It follows from the discussion in §1.3.1.3 that a short exact sequence
. Ul Bl

O+Q 1---+Qz---+Q3+0

where P is a-pure exact, there is a homomorphism T:Q3+P2 such that

B2° T = f 3 •

This raises the question of the relationship between a-pure projectives

and CO~a-pure exact sequences .

. 1.3.(.6 Theorem

Let R be a ring and a a torsion radical on R-mod. A module Mis

a-pure projective iff every exact sequence of the form O+X+Y+~~O is

cO-a-pure exact.

Proof

U 1 B1Suppose that .the sequence Q:O+X---+Y---+~~O is exact where Mis

a-pure projective.
U2 82

Let P:O+P1---+P2---+P3+0 be a-pure exact and consider the commutative

diagram
Ul Blo )X )Y yM )0

f1j f2j f3,
o )PI )P2---->-P3~O

u2 82

Since Mis a-pure projective there exists a homomorphism T:M+P 2 such

that B2"T = f 3 , and O+X+Y+~~O is therefore CO-a-pure exact.
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C~nversely, suppose every short exact sequence with Min the third

nonzero position ;s CO-a-pure exact. Let P: O+P 1+P 2+P 3+O be a .a-pure

exact sequence and let f 3:M+P 3 be a homomorphism. Form the pullback

diagram

y- -

I
I
I
I
1
P2-----+>P3

and hence the cpmmutative diagram
al 81

o >X >y lM -o

f l ] f 2 ] · f 3 )

o lP1 lP2 l P 3~0
a 2 B2

By assumption, the top sequence is CO-a-pure exact and therefore

there is a homomorphism T: M+P2 such that 82°T = f 3 , whence Mis a-pure

projective.

1.3.4.7 lerrma {[64], Proposition 2.3(i»

Let R be a ring and a a torsion radical on R-mod. For any R-module

Mthere exists a direct sum S of projective and cycli~, a-torsion modules

such that for some homomorphism a:S+M the sequence O+ker~~~~O is

a-pure exact.

1.3.4.8 Theorem ([64], Proposition 2.4(iii»

Let. R be a ring, a a torsion radical on R-mod and let Mbe an R-module~

The following are equivalent:
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(i i)

(iii)
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Mis .a-pure projective.

Every a-pure exact sequence of the form O+X+Y+M+O splits.

Mis a direct summand of a direct sum of projective and cyclic,

a~torsion modules.

1.3.4.9 ' Lerrma

Let R be a ring and a a torsion radical on R-mod. Then there exists
62 61

an exact sequence .. ;+S2---rSl---rM+O such that ker6i is a-pure in Si,

f'or all i.

Proof

Let Mbe any R-module. By 1.3.4.7, there is a a-pure exact sequence
(Xl - S I

O+K l---+S 1---+M+O where SI is a-pure projective. Similarly, there is

a ·a- pure projective module S2 and a a-pure exact sequence
(X2 S2

O+K2~S2---+Kl+0 and so on. (Note that CX 1'CX2 are the inclusion maps).

We may join -these seq~ences to form the commutative diagram

63 62 61=81
.......+S3----rS2----r~1 l ~1+0

It is then easy to verify that ker6i (c:Ki) is a-pure in Si for all i
62 61

and that. ,,+S2---+S1---+M+O is an exact sequence.

1.3.4.10 Definitions
62 61

·( i ) ,An exact sequence. "S2---+S1---+M+O such that ker6i is a-pure

in Si· and each Si is? a-pure project; ve rnodul e is ca11 ed a a-pure

projective resoZution for M.
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(ii) The smallest n (if it exists) Tor which keron is a-pure projective

in a a-pure projective resolution will be called the a-pure project{ve

dimension of M (appdM).

1.3.4.11 Remarks

(,. ) S on S . SOl ~ 0 . . t iIf .... + n---+ n-1+....+ ---+I'~ lS a a-pure proJec lve

resolution of a module Mand keroi is a-pure projective, for some i,

then keroi+j will be a-pure projective for all j~l.

Proof ·

°i+1 .O+keroi+1+Si+1 llmoi+1+0 is a-.pure exact and, since imoi+1 =

keroi is a-pure projective, this sequence splits. Hence keroi+1 is

a-pure projective.

(ii) appdM is 1ndependent of the particular a-pure-projective

resolution that is . used to calculate it.

Proof

An easy extension of Theorem 3.5 of [13].

(iii) If ~1 = e~ii ' for some modules ~1i' (i£I), then
1

appdM = sup{appdMi liEI}.

Proof Easy.

1.3.5 a-Purity,' Strong a-Purity as S~Purities

1.3.5.1 In [69] C.P. Walker discusses S-purity where S is any class

of modules closed under quotients. She defines a sub~odule L of a module

Mto be S-pure in ~1 iff L is a direct summand of every module K such

that L~K~M and K/L£S.
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1.3.5.2 Theorem ([57], 1.48)

a-purity t san S-purity if S is taken as the class of all cyclic,

a-torsion modules, (i.e. L is a a-pure submodule of a module Miff L

is a direct summand of every submodule K ~f Mcontaining L, such that

K/L is cyclic, a-torsion).

1.3.5.3 Theorem

Strong a-purity is an S-purity, if S is the class of all a-torsion

modules.

Proof

Suppose L is strongly a-pure in Mand K is a submodule of Mcontaining

--:>-0

L such that K/LE~ra .

Form the commutative diagram

0 )L
i 1

lK
IT 1

l K/L

III ji 3 ji"
0 'L i z

' ~1------+M/LITz

with inclusions ij and canonical epimorphtsms ITi.

Since K/L is a-torsion and L is strongly a-pure in M, there ' is a

ho~omorphism T:K/L+M with IT zoT = i 4 . By Lemma 1.3.1.2, this is equivalent

to the existence of a left inverse for i 1, hence the top sequence splits

as required.

Conversely, suppose that L is a direct summand of every submodule

K of ~1 containing L, for which K/LETa. If T is a-torsi.on and a:T+M/L

a homomorphism with a(T) = K/L(K~M), then K/LEfa and, by assumption,

L is a direct summand of K. Let S: K/ L+K be a right inverse for the

canonical e~imorphism IT:K+K/L. Then Soa:T+M satisfies

ITo(Soa) = lK/Loa = a and therefore L is strongly a-pure in M.
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1.3.5.4 Remark

a-purity and strong a-purity are therefore examp l es of some

well-established generalizations of the concept of purity.

1.3.6 Some Relationships between our three Pure Theories

1.3.6.1 Remark

The concepts of a-purity, strong a-purity and Cohn purity are

distinct in general.

Clearly every strongly a-pure submodule is a-pure. This is

in fact the only implication which holds for all R, a:

The following example is found on page 596 of [59].

Example 1

Let (Ta,Fa) be the usual torsion theory on Ab~lian groups. Let

G = ; C( p'") wher-e C(pi) is the cycl ic group of order pi ,p a fixed prime
n=l

00

and let M= {(xi)iEGlpk(xi)i = (O)i for some k}. Further, let N = ID C{pn).
n=l

Then N is a-pure in Mbut not strongly a-pure in M.

Example 2

Let R be a non-von Neumann regular ring and let La = {R}. Then every

R-module is a-torsion free (apply 1.2.3.5).

If O+~~~M/N+O is any short exact sequence and TETa then

Hom(T,M/N) = 0 (1.2.3.4(iii)) and the sequence is strongly a-pure exact,

vacuously. Hence every submodule of every R-module is strongly a-pure.

Since R is not regular, there is a left ideal I of R which is not Cohn

pure in R (1.3.2.7). This is therefore a strongly a-pure submodule of

R which is not Cohn pure.
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Example 3

Let R be any ring which is not left Noetherian and La the filter

of a torsion radical ·whi ch contains at least one left ideal I which is

not f.g. (e.g. take La as the set of all left ideals in R).

By [611, Corollary 3.42, R/I is not f.p. Since R/I is f.g. it is

not Cohn pure ~rojective (1.3.2.3(iv)). ~here is therefore a Cohn pure

exact sequence O+~~K+O with respect to which R/I is not projective.

Since R/I is cyclic, a-torsion, this sequence is not a-pure exact.

1.3.6.2 Remark

The examples of §1.3.6.1 show that there are no universally valid

relationships between a-purity, strong a-purity and Cohn purity, other

than the fact that strong a-purity implies a-purity. Lemma 1.3.3.1 shows,

however, that Cohn purity and a-purity are in fact equivalent for Abelian

groups if a is the usual torsion radical.

This makes one ask what restrictions on R andlor a have to be imposed

in order to get equivalence of these purities. The rest of this paragraph

is devoted to addressing this question.

1.3.6.3 · lelTlTla

Let R be a ring and a a torsion radical on R-mod. Then every IELa

is f.g. iff every Cohn pure submodule is ~lso a a-pure submodule. (The

fact that Cohn purity implies a-purity if every IELa is f.g. is mentioned

on page 170 (§14) of [64]).

Proof

Suppose that every IELa is 1.g.

If O+~~~~p+O is a Cohn pure exact sequence and RII is a cyclic,

a~torsion module, then,since I is f.g., R/I is f.p. and hence projective
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with respect to this sequence, and the sequence is therefore a-pure exact.

Conversely, suppose Cohn pure submodules are also a-pure and let 1ELa .

. Then RI! is cyclic, a-torsion and therefore projective with respect

to a-pure exact sequences. By assumption any Cohn pure exact sequence

is also a-pure exact and R/I is thereforg projective with respect to such

a sequence. That is R/I is, f.g., Cohn pure projective. By 1.3.2.3(iv),

R/I is f.p. and by 1.2.1.3(a), I is f.g.

1.3.6.4 Definitions ([61])

(i) An integral domain R is called a Prufer ring iff it is

seIn[.; heredita ry (i . e. eve ry f. g. i dea1 i s pro j ect i ve) .

(i i) A Noetheri an .Prufer ri ng is ca1'1 er' a Dedekind ring.

1.3.6.5 Warfield in [71], Proposition 5 (page 706) shows that an integral

domain is a PrUfer ring iff every f.p. module is a direct summand of a

direct sum of cyclic modules.

1.3.6.6 Lerrma

For any R-module Mand any torsion radical a o~ R-mod there. is a

dir~ct sum S of cyclic submodules of Ma~d a homomorphism a:S+M such that

the sequence O+kera~~~'l+O is c-pure exact.

Proof

Let M= {mi :iEA], where A is a suitable index set.

Put S ID Rmi and define a:S+M by a:(rimi)i~ L rimi, where ri ER.
i EA i EA

Clearly a is an epimorphism. Suppose that IELa with Is~kera for some

SESe If a(s)

t J
' = 1mi if jo if j

= mi E~1,

= i
1 i .

the n a (s) = a (t) whe re t = (t i )i E S i s gi ven by

Hence s-t.e kere and Imi = «( Is ) = 0 (.since Is~ker(x), and thus

I(s-(s-t)) = It = 0 and, since s-tEkera, this proves that kera is
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a-pure in S (1.3.3.4).

1.3.6.7 Theorem

Let R be a ring. For any torsion radical a on R-mod, strong

a-purity and a-purity are equivalent iff every a-torsion 'module is a direct

summand of a direct sum of cyclic, a-torsion modules.

Proof

Suppose that the stated condition holds and that O+N+M+K+O is a

a-pure exact sequence. It is then clear that any a-torsion module T (being '

a direct summand of a direct sum of cyclic, a-torsion modules) is projective

with respect to this sequence, which is therefore strongly a-pure exact.

Conversely, suppose that a-pure exact sequences are also strongly

a-pure exact. Let Mp~ any a-torsion module. By 1.3.6.6, there is a

a-pure exact sequence: O+kera~~~~O where S is a direct sum, ,m Rmi'
lEA

of 'cyclic submodules of M, which are therefore a-torsion. This sequence

is, by assump~ion, strongly a-pure exact and since Mis a-torsion the

sequence splits, as required.

1.3~6.8 , Theorem (c f. [64], Proposition 14.1)

Let R be an integral domain. The following pairs of conditions are

equivalent (where a is a torsion radical pn R-mod):

I: (a) Cohn purity and a-purity are equivalent

and (b) La contains every nonzero projective ideal of R.

11: (a) R is a Dedekind ring

and ' (b) La contains every nonzero ideal of R.
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Proof

Suppose that I holds and let Mbe a f.p. module.

By 1.3.6.6, there is a direct sum S of cyclic modules' and a ~-pure

exact sequence O+ker~~M+O. ~1 is Cohn pure projective and therefore

a-pure projective, by I(a). Therefore this sequence splits and Mis a

direct summand of a direct sum of cyclic modules. By 1.3.6.5, R is a

PrUfer ring.

Let J be any nonzero ideal of R. J contains a nonzero f.g. ideal

K (say) which is projective since R is a Pr~fer ring. By I(b), KcLa hence

JcLd , and II(b) holds. By I(a), Cohn pure submodules are also a-pure

and, by 1.3.6.3, every ideal in La is f.g. That is, every ideal of R

is f.g., .R is Noetherian and II(a) holds.

Conversely, suppose that 11 holds. It 'only remains to prove I(a).

Since R is Noetherian, Cohn purity implies a-purity, by 1.3.6.3.

Every cyclic module is a-pure projective by II(b). If Mis any f.p.

module, N is a direct summand of a di rect sum of cyclic modules (1.3.6.5)

and therefore Mis a-pure projective. It follows now that a-pure exact

sequences are also Cohn pure exact and I(a) holds.

§1.4 THE a-PURE INJECTIVE HULL

1.4.1 In this paragraph we show that results in [24] and [64] can

be used to construct alia-pure injective hull" of any module M, provided

every IcLa is f.g. We adapt definitions given in those two papers to

the category R-mod:

1.4.2 Definition

Let R be a ring and a a torsion radical on R-mod. A module Mis called

a-pure injective iff f6r each a-pure monomorphism a:X+Y, any homomorphism

~:X+M can be extended to a homomorphism ~ : Y+M .
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Let R be a ring and a a torsion radical on R-mod. The class of

a-pure monomorphisms is closed under pushouts and the class 'of a-pure

epimorphisms is closed under pullbacks.

(This fact has been noted, independently, by B. Stenstrom ' on page 160

of [64]).

Proof

See [41], Lemma 6.1.

1.4.4 Remark

By 1.3~1.5 and 1.4.3 the class of a-pure monomorphisms is a "proper

class" in the sense of [24] and [64].

1.4.5 Definitions

Let R be a ring and a a torsion radical on R-mod.

(i) A module Mis called a a-pure essential extension 'of a submodule

L iff L is a-pure in Mand there are no nonzero submodules N of Msuch

that N n L = 0 and (L+N)/N is a-pure in M/N.

(ii) A a-pure essential extension M'of a module L is called a

maximal a-pure essential extension iff it is not properly contained in

any a-pure essential extension of M.

1.4.6 LelllTla ([ 41], 7. 2. 3)

Let R be a ring and a a torsion radical on R-mod. If {Mi}i£A (where

A is some suitable index set) is a chain of a-pure essential extensions

of a module L, then M= ~Mi is also a a-pure essential extension of L.
1
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Let R be a ring and a a torsion radical on R-mod. Suppose Mis a

a-pure essential extension of a submodule L. For each a-pure injective

module Kand a-pure monomorphism a : L+K, there is a monomorphism S:M+K

such that the diagram

L------+lM
,/

/ '
/

a
/ .' B

/

/

Ki"

commutes, where i is the inclusion map.

1.4.8 Lemma ([24], Proposition 2)

Let R be a ring and a a torsion radical on R-mod such that every

IELa is f.g. The following are equivalent for an R-module module Q:

(i )

( i i )

(i i i )

(i v)

1.4.9

Q is a-pure injective.

If a~Q+M is a a-pure monomorphism then a has a left inverse.

Q has no non-trivial a~pure essential extension.

Q is a maximal a- pure essential extension of . some submodule L.

Definition

Let R be a ring .and a a torsion radical on R-mod. A maximal a-pure

essential extension of a module Mwill be 'called a a-pure injective h~ZZ

of M.

1.4.10 Le ITD11a ( [ 57], 1. 51)

Let R be a ring and a a torsion radical on R-mod such that every

1ELd is f.g. Then every module may be embedded, as a a-pure submodule,

in a a-pure injective module.
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"Let R be a ring and a a torsion radical on R-mod such that every

IEL a ' i sf. 9. The n every modu1e Mhas a a - pure - i nj eet i ve hull, vi hi chi s

un i que up to ani somo r phi sm t hat fix es ~i' po i nt wi se.

1.4.12 Coro11ary ([ 57], 1. 18)

Let R De a ring and a a torsi on radical on R-mod such that every

IE:L a is f.g. An exact sequence O-+K-LL is a- pure exact iff every a-pure

injective module M is injective with respect t o it.

1.4.13 " ' Remark

Let R be a ring and a a torsion radical on R-mod such that every

IE:L a is f.g. If Mis a a- pure injective R-module and LsM then Mcontains

the a-pure injective hull of L. In parti cula r the a- pure- i nj ect i ve hull

of every module Mis a submodule of its injective hull.

Proof

Follows easily from 1.4.6 and 1.4.7 . .

1.4 ~14 , Example

Suppose R is a-injective (as an R-module) for some torsion ~adical

a on R-mod. Then the injective and a~ p u re injective hulls of R coincide.

(For example, any self-injective ring R abd any torsion radical a on R-mod).

Proof

By [57],1.7,1.30 and 1.31, R is a-:- pure in its injective hull, E(R).

By 1.4.13, E(R) contains a maximal a-pure essential extension S, (say),

of R (which is the a-pure injective hull of R). Since R is essential

in E(R), E(R) is a a- pure essential extension of R and therefore E(R) = S.
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Let R be a commutative ring and a a torsion radical on R-mod such

that every IEL(Jis f.g. If Mis a' a-tor~ion free R-module, then the

a-pure injective hull of Mis a-torsion free.

Proof

Let P denote the a-pure injective hull of Mand let S = a(P) =

{xEPIIx = 0 for some 'IELa} (1.2.3.5). sn ~i::: 0 by assumption. Suppose

IELo ~nd I(p+S)~(M+S)/S for some PEP. Let I be generated byal,aZ···an·

For each iE{1,2, ... n}, there is an miEM such that ai.p-miES. Thus there

exis t i dea1s J.i €La SUCh t hat J i (a i . P-mi ) .= 0, i = 1, 2. ~ . n.

J = J1.J Z ... JnELa (1.2.3.6(v)) and J.I.p~M. Since M, is a-pure in

P and J.I€La, it follows from 1.3.3.4 that there is an XEM with J.I(p-x)

= O. Hence p-XES and p+S = x+S€(M+S)/S. - Hence, (M+S)/S is a-pure in

PIS. Since P is a a-pure essential extension of M; it follows that S = O.

1.4.16 Remark

If Ri,s a ring ijnd a a torsion radical on R-mod such that every module

Mcan be embedded, as a a-pure submodule, in a a-pure injective module,

then we .say U(R,a) admits a-pure injective hul.Le" (This holds, in particular,

if every IELa is f.g., by 1.4.10).

§1.5

1~5.1

a-PURE INJECTIVE DIMENSION AND GLOBAL DIMENSION

Definition

Let R be a ring and a a torsion radical on R-mod.
do d1Let O+~El---+Ez+ .... be a a-pure exact sequence and suppose

that each Ei is a-pure injective.
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This sequence is then called a a-pure injective resoZution of M.

The smallest n for which imd n is' a-pure injective (if it exists) wi l l

be called the a-pure injective dimension (apidM) of M.

1.5.2 Lell!T1a

Let R be a ring and a a torsion radical on R-mod such that every

IELa is f.g. Then every module Mhas a a-pure injective resolution.

Proof

Follows easily from 1.4.11.

The proofs of the results which are listed below are standard and

shall be omitted (see [13)).

Let R be a ring and a a torsion radi€al on R-mod.

1.5.3
do d1Suppose that in a a-pure injective r~solution O+~Eo---+El+.. '

we have that imdi is a-pure injective for some i. ' Then . ;mdi+j is a-pure

injective for all j~l.

1.5.4

·api dMis uniquely determined (i.e. it is independent of the particular

a-pure injective resolution used).

1.5.5

apid(V M;) = inf{apidM;1 for any collection of modules {Mil;EI.

1~5.6 Theorem

Let R be a ri ng .and a a tors ion rad i ca1 on R-mod. Then the fo 11 owi ng

are equivalent for fixed R-modules A and B:
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(i) Every a-pure exact sequence of the form O+A+~~B+O splits.

(ii) For any a-pure exact sequence of the form O+N+M+B+O, the

induced sequence O+Hom(B,A)+Hom(M,A)+Hom(N,A)+O is exact.

(iii) . For any a-pure exact sequence of , the form O+N+M+B+O, where Mis

a-pure projective, the sequence O+Hom(B,A)+Hom(M,A)+Hom(N,A)+O is exact.

Proof

(i) implies (ii): Let the sequence O+N~~B+O be a-pure exact.

We only ne~d to prove exactness of Hom(M,A)+Hom(N,A)+O. Let ~:N+A be

a homomorphism. We need to find a homomorphism ~:~~A su~h that ~·a = ~.

Form the pushout diagram

a

y

r\
u

(where F = (MffiA)/T for T

= 8(m) (for mE M, aEA) .

{(a(n),-~(n))ln£N}). Define e:F~B by e((m,a)+T)

It is routine to verify that e is a ~ell-defined R-homomorphism and

t~at , the sequence O+~F~B+O is exact. By 1.4.3, this sequence is

a-pure exact. By (i), the sequence splits and hence there is a homomorphism

o:F+A such that O·lJ = lA. Define ~:M+A by ~ o·y, then ~·a = ~, proving (ii) .

. That (f t ) implies (iii) is obvious.

(iii) implies (i): Let O+A~r~B+O be a a-pure exact sequence.

(For simplicity we may take a to be the inclusion map). 'By 1.3.4.7, there

is a a-pure projective module S and a a-pure exact sequence

O+kerE~~B+O. Hence there is a homomorp~ism p:S+M such that 8·p = E.

Complete the commutative diagram
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By (iii), there is a homomorphism ~:?+A such that ~·i =.f. By

1.3.1.2, there is a homomorphism ~ : B+M such that a'~ = lB' This proves

( i ) .

1.5.7 Theorem

Let ~ be a ring and a a torsion rad{cal on R-mod such that R-mod

admits a-pure injective hulls. Then the .fol l owi ng are equivalent for

modules A and B:

(i) Any a-pure exact sequence of the form O+A+K+B+O splits.

(ii) For any a-pure exact sequence of the form O+A+N+r~O, the induced

sequence O+Hom(B,A)+Hom(B,N)+Hom(B,M)+O ts exact.

(iii) For any a-pure exact sequence of the form O+A+N+~~O;where N

is a-pure injective, the induced sequence O+Hom(B,A)+Hom(B,N)+Hom(B,M)+O

is exact.

Proof

Dual to 1.5.6

1.5.8 Definition

Let R be a ring and a a torsion radical on R-mod. Let A,B be any

two R-modules. We call A and Ba-pure projecti ve l y equivalent iff there

exist a-pure projective modules Pl,P2 such that AffiPl~BffiP2. (We then

write A~B).
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It is clear that ~ is an equivalenc.e relation. The equivalence class

of a module Munder ~ will be de~oted by [M]a'

1.5.10 Lemma.
. cx 1 B1

Let R be a ring and a a torsion radical on R-mod. If O+K---+P---+A+O

cx? B2and O+K '--4-P'--rA '+O are two a-pure exact sequences, where P and pi

are a-pure projective and A~A' then KciK '.

Proof ·

By assumption, there are a-pure projective modules S and SI such
al Bl

that AIDS~A'ffiS'. Construct the exact sequences O+K---+pm~AffiS~O and
-

. 0. B
O~K'~p'ms'~A'IDS'+O where ~l(k) = (al(k),O) and ~2(ki) == (a2(k '),O),

for all kE:K, k'E:K ', Bl(P,S) = (61(P)',S) for all (p,s)E:PffiS and B2(P' .s ")

= (62(P' ),s') for all (pi .s ' )E:P'ffiS '. (Exac tnes s is routinely verified).

Let IE:La and (p,s)E:PffiS such that I(P,S)~~l(K). Then Is = °and

Ip~al(K). Since al(K) is a-pure in P there is, by 1.3.3.4, an element

kE:K such that I(P-al(k)) = 0. Then I((P,S)-~l(k)) = I((p,S)-(al(k),O)) °
and therefore al (K) 'i s e-pure in PffiS. Sjmil ar-l y , the second sequence is

a-pure exact.

Let w:A'ffiS'+AffiS be the given isomorphism. Then the sequences

O+K ul )Pffi~AffiS+O a~d O+K'~P'ffiS' ~'62)AffiS+O are a-pure exact.

Thus there are homomorphisms a: PffiS+P 'ffiS I and a ' :P'ffiS'·+PffiS such that

~oi32oa ='81 and 01'a~ = ~'82' Let 6 = 1Pffis-a'oa and 6' = IplffiSI-aocx'.

It is easy to see that imB ~~l(K) and im6' ~~~(K'). Define, further,

y:PffiSffi~2(K' )+p lffis 'm;i1K) by y((p,s)';2(k ' j) =

(a.(P?s}+;2(k ' ),B(p,S)-CX:~2(k')) and 1" :P lffiS 'ffi;1(K)+PffiSffi;2(K ') by

l' I ( ( p' ,S I.) ,;1(k)) = (a I (p I ,S I ) +; 1(k), 6 I (p I,S I ) - a .; 1(k) ) 0
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It is then routine to verify that y and y' are well-defined

R-homomorphisms~ which are mutual inverses. Hence it follows that"

p'ms'mK~PffiSffiKI and therefore K~K', as required.

1.5.11 Definition

Let R be a ring and a a torsion radical on R-mod. If the sequence

O+K+P+A+O is a-pure exact and P is a-pure projective, then we denote the

a-pure projective equivalence class of K by Pa(A) (Pa is well-defined

by 1.5.10).

1.5.12 Definition

Let R be a ring and a a torsion radical on R-mod. Let A be an R-module.

We define PaO(A) = A and Pan(A) = Pa(X) where X€[Pan-l(A)]a' n = 1,2, .

1.5~13

(I)

Remarks

Given a module A, Pan (A) is the a-pure projective "equi val ence

class of keron in any a-pure projective resolution
" 0i 01

...+Si~Si-l+.....+Sl-+-A+O for A, nzl ,

(2) In such a a-pure projective resolution, keron is a-pure projective

iff every element of Pan(A) is a-pure projective.

(3) It follows therefore that appdA is the smallest natural number

n such that every element of Pan(A) is a-pure projective.

1.5.14 Definition

Let R be a ri ng and a a tors ion rad i.ca1 on R-mod . . Let A, B be

R-modules. We call A andB a-pure injeotiveZy equivaZent iff th~re exist

a-pure injecti"ve modules 11 and 12 such that AlBI1~BffiI2. If O+A+E+K+O

is a-pure exact and E is a-pure injective, we denote by Ia(A) "the

a-pure injective equivalence class of K and by Ian(A) the a-pure injective
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equivalence class of imdn in a a-pure injective resolution
do d10+A---+E 1---+E2 ••• of A.

1.5.15 Remark

Dual versions of 1.5.10, 1.5.11, 1.5 ..12 and 1.5.13 can be formulated.

1.5_16 Lemma

Let R be a ring, a a torsion radical on R-mod and let Band C be

R-modules such that every a-pure exact seq~ence of the form O+C+X+B+O

splits. If D is a-pure injectively equivalent to C, then every a-pure-exact

sequence of the form O+D+Y+B+O splits.

Proof

·Suppose 11 and Iz are a-pure injective modules such that DffiIl~cmIz.

Let O+A~Z~B+Obe a-pure exact and f:A+CffiI z a homomorphism. Let

TIl,TIZ be the projection maps from CffiI z onto C and 12 respectively.

By our assumption,every a-pure exact sequence of the form

O+C+X+B+O splits and, by 1.5.6, there is a homomorphism .91:Z+C such that

gl'a = TIl-f. · Since I z is a-pure injective, there is a homomorphism 9z:Z+Iz

such that gz-a = TIz·f. Define g:Z+Cffil z by g(z) = (gl(z), gz(z)).

Then if aEA, (g-~)(a) = (gl(a(a)), 9z(a(a))) = ((TI1 .-f)(a),(TIz-f)(a))

= f(a). Hence Hom(Z,CffiIz)+Hom(A,CffiIz)+O is exact and therefore

Hom(Z,DffiI1)+Hom(A,DffiI1)+0 is exact. It now follows easily that

Hom(Z,rr)+Hom(A,D)+O is exact and, by 1.5.6, every a-pure exact sequence

of the form O+D+Y+B+O splits.

1.5.17 Lemma

Let R be a rin9 and a a torsion radical on R-mod such that R-mod

admits a-pure injective hulls. Then the following are equivalent for

R-modules A and B:
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(1) Every a-pure exact sequence of the form O+A+M+C+O, where CEPa(B),

splits.

(ii) Every a-pur~ exact sequence of the form O+D+N+B+O, where DEIa(A),

splits.

Proof

We prove only that (i) implies (ii) since the converse is dual.

iSuppose (i) holds and choose a-pure exact sequences O+K--+P+B+O and

O+A+~C+O where P is a-pure p~ojective and Q is a-pure injective (see

1.3.4.7).

Let f:K+C be a homomorphismand consider the diagram

c
A

. Then K€Pa(B) and, by (i), every a-pur.e exact sequence of the form

O+A+M+K+O splits. By 1.5.7, there is a homomorphism g:K+Q such that

u·g = f.

Since Q is a-pure injective there is a homomorphism h:P+Q such that

h·i = g. " Hence ~ = u·h:P+C satisfies ~ · i u·g = f an~ we have therefore

shown that O+Hom(B,C)+Hom(P,C)+Hom(K,C)+O ; is exact for any a-pure exact

sequence O+K+P+B+O, where P is a-pure projective. By 1.5.6, it follows

that every a-pure e~act sequence of t~e form O+C+X+B+O will split.

Further, CEIa(A) since O+A+Q+C+O is a-pur€ exact with Q a-pure injective,

and from 1.5~16 it follows that (ii) holds.

1.5.18 Remark

A simple inductive argument will show that 1.5.17 holds when Pa(B)

and Ia(A) are replaced by Pan(B) and I an(A) respectively, n~l.
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Let R be· a ring and a a torsion radical on R-mod. We define global

dimensions gap~dR = sup{apidMIM is a (left) module} and gappd = sup{appdMIM

is a (left) R-modul~}. (If either of these suprema does not exist we

set the global dimension equal to 00).

1.5.20 Theorem

Let R be a ring and suppose that R-mod admits a-pure injective hulls

(for a torsion radical a on R-mod). Then gapidR = gappdR.

Proof

Suppose gappdR = n. We show that gapidR~n (the converse is dual).

We may assume n<oo. Let A and B be arbitrary R-modules. Then appdB~n
I

and hence Pan(B) consists of the class of all a-pure projective modules

(see 1:3.4.11(i) and 1.5.13). Hence eve~y a-pure exact sequenc~ of the

form O+A+M+C+O, where C£Pan(B), splits and by 1.5.18 every a-pure exact

sequence of the form O+D+N+B+O where D£Ian(A) splits.

Since R-modadmits a-pure injective ·hulls it follows that every element

of Ian(A) is a-pure injective, for all modules A. That is, in any a-pure
do d1injective resolution O+~El-+-E2+.'.. (of an arbitrary module A),

we have that imdn is a-pure injective and therefore gapidR~n.

1.5.21 Remarks

Let R be a ring and a a torsion radical on R-mod such that (R,a)

a.dmfts a~ pure i n.iect i ve hull s. Then

(a) The following are equivalent:

. (i) gapidR = 0 ( = gappdR).

(ii) Every a-pure submodule of every R-module is a direct summand.

(iii) Every R-module is a-pure projective.
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(iv) Every R-module is a-pure ihjective.

(b) The following are equivalent:

(i) gapidRs1 .

. (ii) Epimorphic images of a-pure injective R-modules are

a-pure injective.

(iii) Submodules of a-pure projective modules are a-pure projective.

1.5.22 Example

Let R be any uniserial ring and let La consist of all the left ideals

of R. Then any left R-module Mis a direct sum of cyclic, (a-torsion),

modu1es ([ 52]) and hen ce i s a - pure proj ect i ve . Thus gappdR = O.

Note, further, this example shows that gappdR is not necessarily

equal to the global projective dimension of R, since, not every uniserial

ring is semisimple ('see [21]).
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CHAPTER TWO

RELATIVE INJECTIVITY

§2.1 -INTRODUCTION

~1addox ([ 55]) and ~legibben ([ 56]) have studied the concept of

absolute purity for Cohn purity. In the first part of this chapter

we study absolutely a-pure modules, which are the same as the

a-injective modules of Goldman ([37]), from the point of view of

purity.
do d1An exact sequence O+M+QO---+Ql---+.... where each Q. is injective

1

is called an injective resolution. The smallest n for which imd n- 1

is injective (if it exists) is uniquely determined and is call~d

the injective dimension of M, injM ([49]). Requiring instead that

imd n- 1 be a-injective, we obtain a new di~ension, called the absolutely

a-pure dimension, ada(M) of ~i . . We show that ada(M) =

inf{n~OIExtn-l(X,M) = 0 for all (cyclic,)' a-torsion (left) R-moaules X}

and 'st udy the corresponding global dimension briefly.

We. also introduce semi-a-injective modules, defined by suitably

restricting conditions pertaining to a-injective modules. These

are characterized in various ways and we investigate the rings R

for which every R-module is semi-a-injective. As a result, a Quasi-Frobenius

ring R (together with any torsion radical a on R-mod) is shown to

have certain equivalent properties, related to a-injectivity.

§2.2 ABSOLUTELY a-PURE MODULES:

2.2.1 Definition

A module Mis called absolutely a-pure iff Mis a-pure in every

module NI containing N as a submodule.
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The following theorem shows that absolute a-purity is equivalent

to a-injectivity and also to the absolute ~ - p u r i ty of Golan ([34]).

2.2.2 - Theorem (c f. [57], 1.7, 1.30, and 1.31; [34], Proposition 4.1)

Let R be a ring and a a torsion radical on R-mod. Then the

following are equivalent for a module fV:.,.
- 0

(i ) Mis absolutely a-pure.

(i i) ~i is a-pure in any injective module containing ~1.

(iii) M is a-pure in E(~1) .

(i v) tvi is a- i nject i ve.

(v) a ( E( ~1 ) / M) = ,0.

(vi) ~1 ; Sa'"" neat i n any module containing M.

Proof:

The facts that (i) implies (ii) and (ii) implies (iii) are obvious.

(iii) implies (iv): Su ppose (iii) holds, let 1£La and suppose

that a:1+M is a homomo~phism. Complete the diagram

I )R

N- >-E( fvl )j

commutatively usirg the injectivity of E(M) (where i ,j are the inclusion

maps). From 1.3.4.2(i) we have , since Mis a-pure in E(M), that

there is a homomorphism e : R+Msuch that e · i = a. Thus Mis a-injective.

(f v) implies (v): Ea(M)/M = a(E(M)/H) by 1.2 . .4.4. But, by (iv),

M= Ea(M), and therefore (v) follows.

(v) implies (i): Suppose (v) holds and M' is any module containing

M. Since E(M)/M is a-torsion free, Horn (R/1,E(M)/M) = 0 for all 1£L
a

(1.2.3.4). Hence Mis a-pure in E(M), vac~ously.
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E(M) is a direct summand of E(M') and therefore is a-pure in

E(M' ) • By 1. 3. 1. 5( i ), Mis a-pure in E(~11 ) and hence (by 1. 3. 1. 5(i i ) ) ,

Mis a-pure in M' as required to prove (i).

If (i) holds then (vi) follows from Proposition 7 of [44].

Conversely, if (vi) holds, then Mis a-neat in its injective hull

and, by Proposition 2 (3) of [44], Mis a-injective. This completes

the proof.

A proof in terms of a-purity simplifies the following result

considerably:

2.2.3 Remark

The class of absolutely a~pure ~odules is closed under injective

hulls and (module) extensions ([ 35], Proposition 8.4).

Proof:

Since any injective module . is obviously absolutely a-pure, by

2.2.2, closure under injective hulls is clear.

For closure under extensions, suppose that N is a submodule

of a module Mand that both Nand M/N are absolutely a-pure. Let

M' be any module containing M. Then M/N 'i s a-pure in M'/N and N

i s a- ptJ rei n ~'j'. By 1. 3. 1. 5(i V). ~1 i s a-.pure i n MI. Thus Mi s

absolutely a-pure.

2.2.4 Definition ([55])

A module Mis called absolutely 'pure iff it is Cohn pure in
. -

every module containing it as a submodule.
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2~2.5 Remark

Let R be a ring and a a torsion radi~al on R-mod such that every

I£L~ is f.g. Then an absolutely .pure module is a-injective.

Proof:

Follows easily from 1.3.6.3 and 2.2.2.

§2.3

2.3.1

A FURTHER CHARACTERIZATION OF a-INJECTIVITY

Theorem

Let R be a ring and a' a torsion radi~al on R-mod such that (R~a)

admits a-pure injective hulls. Then the following are equivalent

for a module ~1:

(i) Every diagram of the form

where K'is an arbitrary submodule of the module L, i is the inclusion

map and P is a-pure injective, can be completed commutatively as

indicated.

(i i )

(i i i)

Mis a-injective.

i ITThere is a a-pure exact sequence O+t~I--+I/~~O, in which I

is a-injective.

(iv) i ITThere is a a-pure exact sequence O+~I--+I/M+O, in which I

is injective.

(v) Every homomorphism a:~~P, where P is a-pure injective,

factors through an injective module.
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Proof

(i) implies (ti): Suppose (i) holds, let AEL a and let a:A+M be a

homomorphism.

Let P(M) be a a-pure injective module containing Mas a a-pure

submodule and let j:r~p(M) be the inclusion map. If i:A+R is the

inclusion map; there is, by (i), a homomorphism S:R+P(M)· such that

S-i = .i-«.

Hence the diagram

i

a s

commutes and~ since Mis a-pure in P(M), there is a homomorphism

<t> : R+~1 such t hat <t> -i = a (1. 3. 4. 2( t ) ) . Thus Mi s a - i nj ect i ve, as

required.

That (ii) implies (iii) is trivial (take I = M).

(iii) implies (iv): Suppose that there is a a-injective module
. i 'TT

I and a a-pure exact sequence O+~~I~I/M+O. Let E(M) be the injective

hull of M, suppose that AEL a and that the commutative diagram

k

a

j

s

is given, where k,j are the inclusion maps. Since I is a-injective

there is a homomorphism <t>:R+I such that <t>·k = i-a.

Thus· the diagram
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k

ex

i
Mf----....".----+-

commutes and since Mis a-pure in I, there is a homomorphism ~:R+M

such that ~·k = a. Referring back to the previous diagram, we see

that this means that Mis a-pure in E(M) (1.3.4.2(t)). Thus

O+~1-+E(M)+E(N)/M+O is a-pure exact, proving (tv).

(tv ) implies (v): Suppose that (fv ) holds and let a:M+P be a

homomorphism, where P is a-pure-injective. Let I be an injective

module containing Mas a a-pure submodule. If i:M+I is the inclusion

map there is, by a-pure injectivity of P, a homomorphism ~:I+P such

that ~·i = a. Thus a factors through I and (v) holds.

(v) implies (i): ' Suppose Cv) holds and K is an arbitrary submodule

of a module L in the ~iagram

where i is the inclusion map and P is a-pure injective. By assumption,

there is 'an injective module I and homomorphisms ~:M+I and e:I+P

such that S = 8·~. By injectivity of I, there is a homomorphism

~:L+I such that ~·i = ~·a. Then ~ = e·~:L+P satisfies

~·i = e·~·i = e'~'a = S·a. That is, (i) holds and the theorem is

proved.
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§2.4 ABSOLUTE a-PURITY, EXT AND THE TENSOR PRODUCT

Let R be a ring. For any left R-module Mwe denote by N* the

character modul-e Hbmu,(M,Q/h). ~1* is then a right R-module under

(~r)(m) = ~(rfu) for ~EM*, rER and mEM. It also follows that M* = 0

i ff M = 0 '(see r 54] ). A famous result of Lambek ([ 54], page 239)

states (essen~ially) that M* is injective iff for every exact sequence

O+Nl~N2 the sequence O+Nl§~~N2~M is exact. If 0 is a torsion radical

on R-mod, we show that a similar relationship exists between

o-injectivity and the tensor product (2.4~2).

2.4.1 LelllTla

Let R be a ring and a a torsion radical on R-mod~ Then a module

Mis o-injective iff 'Ext1{R/L,M) = 0 for al l LE:L o (see [66], page 29).

2.4.2 Theorem

Let R be a commutative ring and 0 a torsion radical on R-mod.

For a left R-mudule M, M* is a-injective iff O+L~~1+ReM is exact for

Proof

M* is o-injective iff Ext1(R/L,M*) = 6 for all LE:L a (2.4.1) iff

[Torl{R/L,M)]* = 0 (see §1.2.1.7) iff Torl{R/L,M) = 0 for all LE:Lo.

Hence the result follows from the exactness of the sequence

Torl{R/L,M)+L~M+R~M.

2.4.3 Remarks

1. . If we take La to be the set of all ideals of R in 2.4.2

th~n ~e get the following special case: Mis flat iff M* is injective



55

([ 54]) iff ~l*is a-injective iff O+L8~t+R~M is exact for all ideals

L of R. This is just Theorem 14.6 of [45].

2. Suppose the class of a-injective modules is closed under

homomorphic images (e.g. if every IELa is projective - see 1.2~4.6{ii))

Then the following are equivalent:

(i) Mis a-injective.

(t t ) . Extn{S,M) = 0 for all a-torsion 'modul es Sand n = 1,2.

(iii) Extn(S,M) = 0 for all cyclic, a~torsion modules Sand n = 1,2.

Proof:

Suppose ti) holds and let S be a a-torsion module.
, i 1T
The exact sequence O+~E(M)--+E(M)/M+O induces an exact sequence

Hom(S,E(M)/M)+Ext1(S,M)+Ext1{S,E(M)) . . Since E(M) is injective,

Ext1(S,E(M)) = O. By (i), E(M)/M is a-torsion free (2.2.2) and hence

Hom(S,E(M)/M) = O. The exactness of the above sequence thus implies

t~at Ext1(S,M) = O.

We have therefore shown that Ext1(S,M) 0 for all a-torsion

modules,S, whenever M'is a-injective.

Suppose now that 'the class of a-injective modules is closed

under epimorphic images. Then, E(M)/M is a-injective and, by the

above, Ext1(S,E(M)/M) = 0 for all a-torsion modules S.

Let S be a a-torsion module. In, the exact sequence

Ext1(S,E(M))+Ext1(S,E(M)/M)+Ext2(S,M}+Ext2(S,E(M)), the fact

that E(M) is injective forces Ext2(S,E(M)} = Ext1(S,E(M)) = o. Thus

Extl(S,E(M)/M)~Ext2{S,M) and hence Ext2(S,M) = o. Thus (i) implies

( i i ) .

That (ii) implies (iii) is obvious.

The fa ct . t hat ( t i i) imp1i es (i) i sin Lemma 2. 4. 1.
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ABSOLUTE a~PURE DIMENSION

In [27] D.J. Fie1dhouse defines an absoZuteZy pure dimension

by apd M= inf{n~OIExtn+l(X,M) = 0 for all f.p. modules ·X}. The

f.p. modules are the modules in the third .nonzero position of the

co-a-pure exact sequ~nces for Cohn purity, corresponding to the cyclic,

a-torsion modules for a-purity. It is therefore natural to define

an absoZuteZy a-pure dimension as follows (where a is a torsion

radical): ·

ada(M) = inf{n~OIExtn+l(X,M) = 0 for all cyclic, a-torsion X}. We

define further ad;(~1)-= inf{n~OIExtn+l(X,M) = 0 for all a-torsion X}.

( If nos uch n exi st s we defin e ada ( M) = 00 0 r ad~ (~1) = (0 ) .

Fie1dhouse also qefines a weak injec iive dimension

w-inj M= inf{n~OIExtn+l(X,M) = 0 for all cyclic, f.p.X}~ It follows

that for all M, w-inj M~inj Mwhere inj M= inf{n~OIExtn+l(X,M) = 0

for all 1eft 'R-modu1es X} is the well known i.n.iectiue dimension of M

(see [49]).

2.5.2 Remarks

(i) ado(M) = 0 iff ad;(M) .= 0 iff M js a-injective.

(i1) . ada(M)sad;(M)~inj Mfor all M.

(iii) If every IELa is f.g., then ada(M)~apd Mand adcr(M)~w-inj M,

for all M. Thus ada(M) is seen to be not greater than many of the

well known dimensions.

(iv) From (i) above, it follows that Mis a-injective iff M

is strongly a-pure in its injective hull.

Proof

(i) ad;(M) = 0 iff Ext1(S,M) = 0 for all a-torsion S iff

Ext1(S,M) = 0 for all cyclic, a-iorsion S (see the proof of 2.4.3(2))

iff Mis a-injective (2.4.1).
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(ii) If ad~(M) = n, then Extn+ 1(S,M) = 0 for all a-torsion modules

S and hence Extn+ 1(S,M) = 0 for all cycli~, a-torsion modules Sand

therefore ada(M)~n.

. . Similarly ad~(M)~inj M.

(iii) If every ItL a is f.g., then every cyclic, a-torsion module

is f.p., cyclic and therefore, as before; we get that ada(M)~apd M

and ada(M)~w-inj M.

(iv) If Mis strongly a-pure in E(M), then it follows from 2.2.2

that Mis a-injective.

C~nversely, suppose Mis a-injective. By (i), ad~(M) = 0 and

hence Ext1(S,M) = 0 for all a-torsion modules S.

The exact sequence .O+M+E(M)~E(M)/M+O induces an exact sequence:

...+Hom(S:E(M)~Hom(S,E(M)/M)+Extl(S,M)= 0, where e(~) = n · ~ for

~EHom(S~E(M)). Thus if S is a-torsion, e is epic and therefore M

is strongly a-p~re in E(M).

2.5.3 Theorem

Let R be a ri ng and a a torsi on radi ca1 on R-mod . . Then the

following are equivalent for any R-module ,M:

( i ) .. do d1In any lnjectlve resolution o+r~Qo---+Ql---+.... of M, im dn-1

is a-injective.

(i i ) There exists an injective resolution, as above, in which

im dn- 1 is a-injective.

(i i i ) Extn+ 1(X,M) = 0 for all a-torsion modules X.

(i v) Extn+1(X,M) = 0 for all cyclic, a-torsion modules X.

Proof

That (i) implies (ii) is clear.
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(t.i) implies (iti): Suppose that (ti ·) holds and let
do dl

O+V~QO---+Ql---+ +Qn-l+Kn+O be an exact sequence, where Qi is

injective, i = O,1, n-1 and Kn = im dn- 1 is a-injective. By The

Shifting Theorem for Injectives, ([49], page 54), we have that

Extn+l(X,M) = Ext1(X,Kn) for all modules X. If X is a-torsion then

Ext1(X,Kn) = 0 (see 2.4.3(2)) and therefore (iti) follows.

That (iii) implies (iv) is clear.
do

(iv) implies (i): Suppose that (iv) ho l ds and let O+M+QO---+Ql+....

be any injective resolution of M. By another application of The

Shifting Theorem for.lnjectives we have that, for any module X, .

Extn+1(X,M) = Extl(~,im dn- 1). Hence it follows from (tv) that

Extl(X,im dn- 1) = 0 for all cyclic, a-torsion modules X and hence

im dn- 1 is a-injective (2.4.1), as required to prove (i).

2.5.4 Corollary 1

ada(M) (= ad~(M)) is the (uniquely determined) least positive
dointeger n such that tn any injective re sol ution O+t4+Q o-r.... of M,

im dn-1 is a-injective.

2.5.5 Corollary "2:

Let R be a ring and a a torsion radical on R-mod. Suppose,

further, that O+K~L~~~O is an exact sequence, where .L is injective.

(i) If K is not a-injective, then ada(K) = ada(M)+l.

(ii) If Mis a-torsion, but not a-injective, then ada(K) = ada(M)+l.

(iii). ada(K) is finite iff ada(M) is finite.

Proof

(i)
.: W do
Let O+~QO---+Ql+ .... be any injective resolution of M.

Then kerdo = im w~~1 = im s~im w· s . Further ke r»- S = kers = im ex
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et. ia- 8 do ' . .. t i 1 t tand hence the sequence O+K~L----'-+Qo--+Q'l-~'" .1S an mjec lye reso u i on

of K.

Clearly (i) now follows from 2.5.4.

(ii) ~f ada(K) = 0, the sequenc~ splits by 1.2.4. ~ :(v). This

would be contrary to the assumption that ~1 is not a-injective. Thus

K is not a-injective and the result follows from (i).

(iii) By The Shifting Theorem for Injectives Extn+1(X,K) = Extn(X,M)

for all left R-modules X.

2.5.6 Definitions

Let R be a ring and a a torsion radical on R-mod. We define

the global absolutely a-pure dimension ADa(R) = sup{ada(M)IM is a

left R-module}. (If no supremum exists we write ADa(R) = ,00 ) . We

also define a ring R to be (left) a-regul~r iff every submodule of

every (~eft) R-module is a a-pure submodule.

2.5.7 Note

Let R' be a ring. In the Dimension Theorem ('[49], .page 48) we

find the following: If Mis a (left) R-module then the projective

dim~nsion of Mis given by pr M= inf{n~OI.Extn+l(M,X) = 0 for all

left R-modules X}.

2.5.8 Theorem

Let R be a ring and a a torsion radical on R-mod. Then

(i) ADa(R) = 0 iff R is a-regular iff every R-module is a-injective.

(ii) ADa(R)~sup{pr SIS is a cyclic, a-torsion R-module}.

(iii) If ADa(R)10, then ADa(R) = l+sup{ada(E(M)/M)IM is not ~-injective}.

(iv) ADa(R)~l iff E(M)/M is a-injective for all modules Msuch

that M'i s not a-injective. (This is true, for example, if every IELa
is projective - see 1.2.4.6(ii}).
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Proof

(i) R is a-regular iff every exact sequence of R-modules

O+N+M+M/N+O is a-pure exact iff every R-module N is absolutely g-pure

iff .adaN ~ 0 for all (left) R-modules N (2.2.2) iff ADa(R) = O.

. (iil Suppose that sup{pr SIS is cyclic, a-torsion} = n. Then

pr S~n for all cyclic, a-torsion S.

Then Extn+1(S,X) ·= 0 for all cyclic, a-torsion modules Sand

all' (left) R-modules X (see §1. 2.1.4(a.)) and hence ado(X)~n, for

all modules X, proving that AOa(R)~n .

. (iii) If r~ is not a-injective it follows from exactness of the

sequence O+M+E(M)+E(M)/~~O that ada(M) = 1 + ada(E(M)/M) (2.5.5).

Since ADa (R) ·i s nonzero, there is at 1east one modul e ~, such

that ada(M) is nonzero, and hence ADo(R) = sup{ada(M)lado(M) is nonzero}

= sup{l + ado(E(M)/M)IM is not a- i nj ect i ve}.

(iv) If ADa(R) = 1, then it follows from (iii) above that

sup{ada(E(M)/M)IM is not o-injective} = O. If ADa(R) = 0, then all

R-modules are o-injective, by (i) above.

Conversely, suppose the stated condition holdi :and let Mbe

any R-module ~/hich is not o-injective. There is an injective resolutlon
d

of the form O+M+E(M)~Ql+'" .and, by assumption, E(M)/M~im do is

a-injective. Thus ada(M)~l.

2.5.9 Example

If R is a left semi-hereditary ring, but not a-regular, where

o is a torsion radical on R-mod such that every 1££0 is f.g., (e.g. R = £

with the usual torsion theory), then ADa(R) = 1.
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Proof

If S is cyclic, a-torsion then S~R/I for some I€L a , where, by

assumption, I is f.g. and therefore projective. Hence
d1 .d0O+I---+R---+R/I+O is a projective resolution of R/I such that I~im d l

is projective.

Thus pr S~l and since S was an arbitrary cyclic, a-torsion module,

ADa(R)~sup{pr SIS ;s cyclic, a-torsion}~l. But R is not a-regular

and by 2.5.8(i) ADa(R)tO. That is, ADa(R) = 1.

§2.6 SEMI-o-INJECTIVE MODULES:

2.6.1 Definition

form

A module Mis called semi-a-injec tive iff every diagram of the

O+K----·--+l
/

/

/

/

ex /
/

/
/

where K is ~ projective submodule of L, L/K is a-torsion, (and i

is the inclusion map), can be completed commutatively as indicated .

. Obviously every a-injective module is semi-a-injective. It

follows in the usual way that direct summands, finite direct sums

and direct products of semi-a-injective modules are semi-o-injective.

2.6.2 Lerrma

Let R be a ring and a a torsion radical on R-mod. Epimorphic

images of semi-a-injective R-modules are semi-a-injective.
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Proof

Suppose that Mis a semi-a-injective R-module and that N is

a submodule of M. Suppose further that K is projective, L/K is

a-torsion and a:K~M/N is an R-homomorphism.

Let n:r~M/N be the canonical epimorphism. Since K is projective

there is a homomorphism B:K~~l such that H·B = a.

Since Mis semi-a-injective, we can ,compl et e the diagram

O~K------+) L
/

/
/

commutatively.

B

..­
M!.i.

l3/

/

Hence (n·e)·i = a and M/N is therefore semi-a-injective.

2.6.3 Remark

Let R be a ring and a a torsion radical on R-mod such that every

lELa is projective le.g. if R is hereditary). Then semi-o-injective

modules are o-injective.

Proof

2.6~4 LeJllJ1a

Let R be a ring and a a torsion radical on R-mod. Then projective,

semi-a-inJective R-modules are o-inJective.
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Proof

Let Mbe such a module, let Ea(M) be the a-injective hull of

Mand let i:r~Ea(M) be the inclusion map.

Since M i s projective and .Ea (M)/ Mis a-torsion (1.2.4.4), there

is a homomorphism ~:Ea(M)+M such that ~·i = IM (M is semi-a-injective).

That is, Mis a direct summand of Ea(M) and is therefore a-injective.

2.6.5 Theorem

Let R be a ring and a a torsion radical on R-mod and let ~1 be

an R-module. Then the following are equivalent:

(i) Mis semi-a-injective.

(ii) Every homomorphism a:P +M where P is a projective module,

can be factored through a a-injective module.

(i i i )
i 11 .

There is an exact sequence of the form O+M--rs-:.:-rS/M+O,

where S is semi-a-injective and a(S/M) = O.

Proof

(i) implies (ii): Suppose that Mis semi-a-i'njective, P is projective

and that a:P+M is a homomorphism. Let Ea(P) be the a-injective hull

of P and let i:P+Ea(P) be the inclusion map.

Since Mis semi-o"-injective, a homomorphism ~:Ea(P) -)-N exists

such that ~·i = a. Hence a factors through Ea(P).

(ii) implies (i): Suppose, conversely, that every homomorphism

a:P+M, where P is projective, factors through a a-injective module.

Let P be projective, X/P a-torsion and a:P+M a homomorphism. Then

a factors through a o-injective module, I (say). Let i:P+X be the

inclusion map.

Consider the diagram
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where a factors as e·s. Since I is a-injective, there is a .homomorphi sm

~:X+I such that ~·i = s. Hence e·~:X+M satisfies (e·~)·i = e·s = a

and Mis semi-a-injective, as required.

That (i) implies (iii) is clear. (Take S = M).

(iii) implies (i): Suppose O+~S~S/t~~O is an exact sequence

where S is semi-a-injective and a(S/M) = o.

Let K be a projective submodule of a module L such that L/K

is a-torsion and suppose that a:K+M is a homomorphism. Let j:K+L

be the inclusion map.

Since S is semi-a-injective, there is a homomorphism g:L+S such

that the diagram

s

commutes. Let xEL. Let A = Ann (g(x)+M) and let B = Ann(x+K).

BELa, because L/K is a-torsion and it is easy to see that B~A. Hence

AE La and, since a(S/M) = 0, it follows that g(x)EM. Thus g(L) ~M,

which proves (i).
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The equivalence of (i) and (iii) in 2.6.5 is the semi-a-injective

version of "RN is a-injective iff a (E/ Oi)/ t·1) = a" (see 2.2.2).

'2. 6. 7 Definition

Let R be a ring and a a torsion radical on R-mod. An R-module

F is called [-f l a t iff whenever we have a commutative diagram of

the form
IT 1

Of--~) ~'r-J----~) ~1t-----~)F·---~O

where K is projective and L/K is a-torsion, there exists a homomorphism

2.6.8 Theorem

Let R be a ring and a a torsion radjcal on R-mod. The following

are equivalent for an R-module M:

(i) · Mis semi-a-injective.

(i i) There is a c- pur e exact sequence O-+f"I+S+S/M+O, where S is

semi-a-injective and S/M is [-flat . .

(iii) Every homomorphism a:~~~P, where P is a a-pure injective

module, factors as MJ.+S~P, where Mis a a- pure submodule of the

semi-a-injective module Sand S/M is [ -flat (i is the inclusion map).

(iv) There is a strongly a-pure exact sequence of the form

O-+M+S-+S/M+O, where S is semi-a-injective.
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Proof

That (i) implies (ii) is clear (take S = M).

(ii) implies (iii):Let O+~~S+S/~~O be a a-pure exact sequence

where S is semi-a-injective and S/M is ~-flat (i is the inclusion

map). Further, let a:~~P be a homomorphism where P is a-pure injective.

Since Mis a-pure in Sand P is a-pure-injective, there is a homomorphism

s:S+P such that the diagram

MI---- - -+)S
,

/
/

/ S
/

/
JI

P

commutes, proving (iii).

(iii) implies (i): Let K be projective, L/K a-torsion and l-J:K+~1

a homomorphism. Let P be the injective hull of M. By (iii), there

is a semi-a-injective module S such that the inclusion map a:M+P

factors through S, as ~~~P, where is the inclusion map, M

is a-pure in Sand S/M is ~-flat. Let j;K+L be the ·i ncl usi on map

and n:S+S/M the canonical epimorphism.

Si~ce S is semi-a-injective, there is a homomorphism y:L+S such

that the diagram

commutes.

Complete the commutative diagram
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j

lJ. 8

M----~)S'r-----~)S/M
TT

Since S/M is L~flat, there is a homomorphism ~:L/K+S such that

TI·~ = 8. By 1.3.1.2, there is a homomorphism ~:L+M such that ~.j = lJ·

That is, Mis semi-a-injective, proving (i).

The proof of the fact that (i) is equivalent to (iv) follows

similar lines and is left to the reader.

2.6.9 Remarks

1. · Let E(M) be the injective hull of a module M. If E(M)/M

is L-flat that it is easy to see that Mwill be semi-a-injective ~

2. When working with R-modules one is often aware of a two-way

relationship between R-mod and R. Conditions on R affect characteristics

that R-modules may have and (si~ce R is an R-module) properties of

R-mod carry back onto the ring R. A famous example of this is the

result ([67] ·, Proposition 3.5) that R is a Noetherian ring iff every

f;g. R-module is a Noetherian module. Some of our theorems are of

this type. R is, of course, projective as an R-module but not necessarily

injective. The next theorem provides in t er al i a , conditions on R-mod

which hold iff R is a-injective (when every 1EL a is f.g.). See also

3.4.4.

3. A module F is called a- f l at iff· every exact sequence of

the form O+K+L+F+O is a-pure exact ([29}). It is then clear from

definition 2.6.7 that ~henever strong a-purity is equivalent to

a-purity, a-flatness implies L-flatness.
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2.6.10 Theorem

Let R be a ring and a a torsion radical on R-mod. Then the

following are equivalent:

(i) Every R-module is L-flat.

(ii) Every projective R-module is a~injective.

(iii) If K is projective and L/K is a-torsion, then K is a direct

summand of L.

(iv) Every R-module is semi-a-injective.

Suppose, further, that every I££a is f.g. Then the above conditions

are equivalent to:

(v) R is o-injective.

(vi) Every R-module is an epimorphic image of a a-injective

module.

Proof

(i) implies (ii): Let r·1 be a projective R-module and Eo(M) its

a-injective hull. Ea(M)/M is a-torsion and L- f l at , by (i). It then

follows easily from Definition 2.6.7 that Mis a direct summand of

Ea(M), proving (ii).

(ii) implies (ii .i): If K is projective and L/K is a-torsion,

then K is a-injective, by (ii). Hence, if i:K~L is the inclusion

map, there is a homo~orphism a:L~K such that aoi = lK- That is,

K is a direct summand of L.

That (iii) implies (iv) is clear.

(iv) implies (i): Let F be any R-module, and suppose that the

diagram
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0---+)K-- - - ---+)L- - - - -rL/K---+)0

Ol--~N-------+) ~1f------+)F----+)0

commutes where K is projective and L/K is a- t ors i on. K is

semi-a-injective, by' (iv), and hence the top sequence is split exact.

This proves (i).

That (iv) implies (v) follows from 2.6.4.

Suppose now that every I c 0a is f. g.

(v) implies (vi): By 1.2.5.1, direct sums of a-injective modules

are .o-injective and hence, by (v), every f ree R-module is o-injective.

Since every R-module .i s an epimorphic image of a free R-module, (vi)

follows.

That (vi) implies ( iv) follows di rectly from 2.6.2.

2.6.11 Remarks

1. A ring R satisfying the equivalent conditions (i) to (iv)

of 2.6.10 will be called L-regular .

2. . An example of a ring R satisfying all the conditions of

2.6.10 is any Quasi-Frobenius ring R (together with any torsion radical

o. on, R-mod). (Since a Q.F. ring is Noetherian and has the property

that projective R-modules are injec tive - see [49]).

3. If every I cL a is f.g . and proj ective then R is a-injective

iff R i.s a- regul ar .
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4. It is easy to show that a weaker form of 2.6.10(ii), namely

the condition "a-pure projective R-modules are semi-a-injective"is

equivalent to the conditions of 2.6.10 when every IeL a is f.g.

5. Semi-a-injective modules need not be a-injective:

(i) Let R = 011 = {O,1,'2,3} - the ring of congruence cl as ses

mod 4.' Consider {to},{O,'2},R}. This is the filter of a torsion

radical 0 on R-mod, as is easily verified.

R is a-injective: Suppose I£La and a:I~R is a homomorphism.

The cases I = {O} or I = R are trivial so suppose I = {O,'2}.

The only nonzero homomorphism a is the inclusion map and therefore

1R extends a.

By 2.6.10(iv), {O,'2} is semi-a-injective. It is not, however,

a-injective, since there is no homomorphism B making the diagram

commute, ({O,'2} not being a direct summand of R).

(ii) In view of 2.5.8(i), it follows from [35],

Proposition 8.10 that a ring R is a-regu)ar (for a torsion radical

o on R-mod) iff every I£La is a direct summand of R.

Let R be a ring 'and 0 a torsion radical on R-mod such that R is

a-injective, every I£La is f.g. but R is not a-regular. (We may take

any Noetherian, self-injective ring Rand any torsion radical 0 on

R-mod such that La contains ideals which are non-direct summands
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of R). Then, by 2.6.10, every R-module is semi-a-injective but,

by 2.5.8(i), not every R-module· is a-injective.

6. If R is a-regular then the first four conditions of 2.6.10

hold (since every R-module is then a-inj~ctive). That is, if R is

a-regular then it is ·[-regular. The converse is not necessarily

true: Let R = Z4 = {O,1,2,3} and La = {{O},{O,2},R}. It was shown,

in (5) above, that R is a-injective. Since every IEL a is f.g. it

follows by 2.6.10 that every R-module is semi-a-injective, and

therefore R is E-regular. R is not, however, a-regular since otherwise

{O,2} would have to be a direct summand of R, which it ·i s not.

7. R is a-regular iff R is [-regular and every IELa is

projective.

Proof

If R is a-regular then it is [-regular (see 6 above) and every

IEL a is a direct summand of R and is therefore projective.

Conversely, suppose R is [-regular and every IELa is projective.

Then every R-module is semi-a-injective and hence a-injective (by

2.6.3). Hence R is a-regular (2.5.8(i)).

8. The following are equivalent for a ring R and a torsion

radical a on R-mod:

(;) A module ~1 is semt-o-Tnjec t i ve and a-torsion-free.

(;;) If K is a projective submodule of a module Land L/K is

a-torsion, then a homomorphism u:K+M extends to a unique homomorphism

I3:L+~1.

Proof

(i) implies (ii): Let K, L and Mbe as given and let u:K+M be

a homomorphism. By definition there exists a homomorphism 13 which

extends u. We only need to show uniqueness of 13.



Suppose, therefore, that 81 and 82 both extend a. Define

8' :L/K+M by 8' (x+K) = 81(X)- 82(X ) , for XE: L. 8' is a homomorphism

and since L/K is a-torsion and Mis a-torsion-free, S' = o. That

is, 81 = 82.

(ii) implies (i): By (ii), the zero map from 0 to Mhas a unique

extension to a homomorphism 8:a(M) +M in the diagram

O----~) a (M)

8

f-,

Clearly 8 = 0 and since the inclusion map i:a(M)+M also makes this

diagram commute,i = o. That is, a (M) = 0, proving (i).

72
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CHAPTER THREE

RELATIVE REGULARITY AND FLATNESS

§3.1 INTRODUCTION

We have already noted that a ring R is von Neumann regular iff

every ideal is Cohn pure in R. This result inspired Fieldhouse to

define an R-module Mto be regular iff every submodule is Cohn pure

([ 32] ) . In thi s chapter we extend thi s to a- pur i ty in the obvious

v·-Iay.

Some of our results are extensions of basic properties of regular

modules found in [29] and [32]. He fur.ther characterize a-regul ar

rings for the case of an arbitrary ring, a commutative ring and a

commutative, Quasi-Frobenius ring. We also show how a-regularity

of rings is related to their von Neumann regularity (3.4.3) and briefly

tonsider properties of modules over a-regular rings (3.4.6). We

note, la~tly, that a- regul ar i t y is equivalent to the concept of

a-semisimplicity, defined in [62], for rings (but not arbitrary R-modules).

In the second part of this chapter we collect together the known

properties of a-flatness which are important for our purposes (.including

proofs in our terminology) and derive some new properties. More

specifically, we extend the main result (Theorem 2.4) of [13] to

a-flatness (see 3.5.1.7). We also use a-flatness to characterize

a-regular rings (3.5.. 1.10).

Lastly, we introduce semi-a-flat modules, show .that they have

properties analogous to those of a-flat modules, in many instances,

and characterize rings R for which every R-module is semi-a-flat

(3.5.3.2).
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3.2.1

a-REGULAR MODULES

Definition
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"Let R be a ring and a a torsion radical on R-mod. We define

an R-module Mto be a-regular iff every exact sequence of the form

O+N~~M/N +O is a-pure exact.

3.2.2 Theorem

Let R be a ring and a a torsion radical on R-mod. If N is a

submodule of an R-module N, then Mis a- regul ar i ff N and ~1/N are

a-regular and N is a-pure in M. In particular, thus, submodules

and ho~omorphic images of a:..regular modules are a-regular.

Proof

. A direct extension of Theorem 6 of [32].

3.2.3 Lerrma

Let R be a ring and let a be a to~sion radical on R-mod such that

every 1EL a is f.g. If P is a submodule of an R-module 'M such that

every f.g. submodule of P is a-pure in M, then P is a-pure in M.

Proof

Let {Pi liEI} be the collection of f.g. submodules of P. Obviously

P = ~ Pi. Let ai:Pi+M be the inclusion map for each i. Suppose that
1

AEL a and that the diagram

j

f

4­
~11------ +M

k

g

commutes, where j,k are the inclusion m~ps.
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f ( ) P f . I " 1 2 n Pk = P.]' 1 + PJ' z +..... +P J' na i c j i 0 r some J i E , 1 = ,. . .. . .

is a f.g. submoduleof P, f(A) ~Pk and the diagram
j

commutes.

f g

Since Pk is a-pure in M, there is a homomorphism p:R+Pk~P such

that p.. j = f. Thus P is a- pure in t~, by 1.3.4.2(i).

3.2.4 Theorem

Let R be a ring and a a torsion radical on R-mod such that every

Then ~Mi (and hence ~Mi) is a-regular iff every Mi
1 1

is a-regular.

Proof

A direct extension of Theo rem 7 of [32].

§3.3

3.3.1

a-REGULAR SOCLE

Definition

Let R be a ring and a a torsion radical on R-mod. For any R-module

M, denote by r(M) the sum of all the a-regular submodules of M.

3.3.2 Theorem

Let R be a ring and a a torsion radical on R-mod such that every

A€L a is f.g .. . If Mis an R-module, r(M) is the maximal a-regular

submodule of Mand r is a torsion socle in the sense of Fieldhouse

([32]) (i.e. it satisfies 1.2.3 .1(i) and (ii)).

Proof

Routine,
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3.3.3 Remarks

1. There is a smallest torsion r~dical, which we will denote

byE I SUch t hat E(M)~ EI (~1) for all modu1es M.

. It follows that El (~1) n {N ~MI/~ (t'i/ N) 0 for all MI (see [37],

Proposition 1.1, Theorem 1.6).

2. A module M is E-torsion iff it is a-regular.

§3.4

3./1.1

a-REGULAR RINGS

Definition

Let R be a ring . and a a torsion radical on R-mod. A ring R

is called (left) a-r8guZar iff -it is a-regular as a (left) R-module

i.e. iff every (left) ideal of R is o-pure in R.

3.4.2

The following theorem and its corollary shows the anaIoqy between

the a-regularity and the von Neulllann regularity of rings:

The.orem

Let R be a ring and a a torsion radical on R-mod. Then the

following are equiva~ent:

(i) Every cyclic " a-torsion module is a-regular.

(ii) Every cyclic, a-torsion module is semi s i mp l e ; .

(iii) Given cyclic, a-torsion modules F and G, and a homomorphism

a: F-+G, there is a homcmo rph i sm r~:G -+F such that a'S'a = c .

tvlqreover, if every A€lJa is f. g., then the above condi ti ons are

equivalent to:

(iv) f.g. submQdules of cyclic, a-torsion modules are direct

summands.
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Proof

(i) implies (ii): Suppose that (i) holds. Let G be a cyclic,

a~torsiDn R-module and F a submodule of G. Then G/F is cyclic, ~-torsion

and G is a-regular, by (i), hence O+F~~G/F+O is a-pure exact.

It follows that the above sequence splits and G is therefore semisimple,

as required to prove (ii).

(ii) implies (iii): Suppose that (ii) holds, F and G are cyclic,

a-torsion modules and a:F+G is a homomorphism. Say G~R/Ll' F~R/L2

for some L1,LzELo' Factor a through ima, i.e. put a = jo; where ~:F+ima

ann j is the inclusion map from ima to G.

By (ii), ima is a direct summand of G. Suppose that w:G+ima

is the left inverse of j and that ima ~F/kera~R/T, where kera~T/L 2

(for a left ideal T of R containing L2)o ' Then, by (ii), the exact

sequence O+kera+F~ima+O splits and thus there is a homomorphism

,:ima+F suchthat a o, = lima' Hence ,0w:G+F satisfies ao,owoa = lima oll oa

lima~llojo; = limaolimao~ = a. Thus (iji) holds, with a = lOll.

(iii) implies (i): Suppose that (iii) holds and that F is a

cyclic, a-torsion R-module with submodule L. Let 'TI~F+F/L be the

can6nical epimorphism. Since F and F/L are cyclic, o-t~rsion, there

is a homomorphism a:F/L+F such' that IT oaolT = 1T (by (1'ii))o Since

IT is epic, this means that IF/L = IT oa and hence the sequence
i . IT

O+L~F--+F/L+O splits. Thus L is a-pure in F, as required to prove (i)o

That (ii) implies (iv) is clear.

(iv) .f mp l te s (iii): Suppose that (iv) holds, every AEL o is f.g.,

and F,G are cyclic, a-torsion modules with a:F+G a homomorphism.

Say G~R/Ll' F~R/Lz for some L1,L zELo' As before, we put a = joa

where ~:F+ima and j is the inclusion map from ima to G.
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Ima is f.g. since it is an epimorphic image of the cyclic module

F. Thus, by (iv), it is a direct summand of G. Suppose that ~:G+ima

is the left inverse of j and that ima~F/kera~R/T where kera~T/L2 as a

submodule of F. Then R/T is a-torsion, TELa and therefore T is f.g.

Hence kera is f.g. and, by (iv), the exact sequence O+kera+F~ima+O

" "

splits and, as before, this implies the existence of a homomorphism

B:G+F such that a·B·a = a, proving (iii).

3.4.3 Corollary

Let R be a ring and a a torsion radical on R-mod. If R is a

a-regular ring then every cyclic, a-torsion R-module has a von Neumann

regular endomorphism ring.

Proof

Suppose R/A is a cyclic, a-torsion module with submodule L/A,

(for a left ideal L of R). Since R is a-regular, L is a-pure in

R and; by 1.3.1.5(iii), L/A is a-pure in R/A. Thus every cyclic,

a-torsion module is a-regular and taking F = G = R/A in 3.4.2(iii),

we see that for any aEHom(R/A,R/A) there is a BEHom(R/A,R/A) such

that a·B·a = a. Hence Hom(R/A,R/A) is a von Neumann regular ring.

The following theorem shows that a torsion theory for which

the ring R is a-regular is, in a sense, at the opposite extreme from

the Goldie torsion theory, in that every ideal in La is a direct

summand. The filter L of the Goldie torsion theory contains all they
essential ideals of R, (see [1]) and e.g. if ~ ( R ) = 0 it consists

exactly of all the essential ideals of R"(see [34], Example 8, page 312).
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The following are equivalent for a ring R (and a torsion radical

a on R-mod):

(i) R is a-regular.

(ii) Every A£La is a direct summand of R.

(iii) Every R-module is a- regul ar .

(iv) Every cO-a~pure exact sequence of R-modules is a-pure exact.

(v) Every cyclic, a-torsion (a-pure projective) R-module is

projective.

(vi) Every maximal ideal of R is a- pure in R.

(vii) - Every maximal ideal of R which lies in La is a direct summand

of R.

(viii) For every cyclic, a- t or s i on mod~le R/I, exact sequence

~C+O and a homomorphism a :R/ I+C such that a (R/ I ) is a a-pure submodule

of C, there is a homomorphism y:R/I+B such that S'y = a .

Proof

(i) implies (ii): Suppose (i) holds and A£L a .

Since R is a-regular, A is a- pure i~ R and therefore lR/A lifts

to a homomorphism a:R/A+R. That is, A is a direct summand of R,

as required.

(ii) implies (iii): If (ii) holds t hen every cyclic, a-torsion

mod~le is projective and (iii) follows easily.

(.iii) implies (iv): If (iii) holds then every short exact sequence

is a-pure exact. In particular, (iv) is true.

(iv) implies (v): If (iv) holds and ~'i is a a-pure-projective

module, then, by 1.3.4.6, every exact sequence of the form o+x+Y+r~o

is CO-a-pure exact, therefore a- pure exact, by (iv), and hence split

exact. That is, Mis projective, which proves (v).
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That (v) implies (vi) follows easily.

That (vi) implies (vii) is clear.

(vii) implies (ii): Suppose that (vii) holds but (ii) does not

hold. Then there is an IELo' which is not a direct summand of R.

Let· 5 {JELoII~J and J is not a directsummand of R}. 5 is inductive:

Suppose {Ai}i is an ascending chain of elements of 5 and suppose

that there exists a (left) ideal Kof R such that (VAi)IDK = R. Then
1

1 = ai~k for some ai EAi and kEK. This implies that R = AiffiK, contrary

to the fact that AiE5.

By Zorn1s Lemma, 5 has a maximal element, M (say). If M~M'~R

for "a (left) ideal HI of R, then, by maximality of Min 5, M'IDK = R

for some (left) ideal K of R. Since .KtO, MIDK is a direct summand

of R by maximality of Min 5 , ~gain. Hence Mis a direct summand

of R, which is contradictory. Thus Mis a maximal ideal and, by

(vii), a direct summand of R. This is a contradiction and therefore

(vii) imp1i es (i i ) .

(ii) implies (viii): If (ii) holds ·t hen every cyclic, a-torsion

modul eri s projective' and (viii) follows trivially.

(viii) implies (ii): Suppose (viii) holds and lELo.

Consider ' the diagram

RII'
/

/ .

/

/

TT

(where TT is the canonical epimorphism).
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By (viii), there is a homomorphism y:R/I ~R such that noY = lR/I·

This p~oves (ii).

(ii) implies (i): If (ii) holds then every cyclic, a-torsion

module is projective· and hence every short exact sequence is a-pure

exact.

3.4.5 Corollary

Let R be a ring and a a torsion radical on R-mod such that (R,a)

admits a-pure injective hulls. Then the following are equivalent:

( i )

( i i )

( i i i )

Proof

R is a-regular.

Every a-p~re-injective R-module is injective.

Every a-pure-injective R-module is a- i nj ect i ve .

(i) implies (ii): Suppose (i) holds .and let P be a a-pure-injective

R-module.

Since any left ideal L of R is a- pure in R, a homomorphism a:L+P

wi l l extend to a homomorph i sm S:R+P. Thus P is inject i ve.

T~at (ii) implies (iii) is trivial.

(i.ii) implies (,i): Suppose (iii) holds, let t·1 be an arbitrary

module and N a submcidule of M.

Let P(N) be a a-pure-injective R-module containing N as a a-pure

submodul~. Suppose that AELa and that the diagram

AI-.- ----+) R

NI-------+) ~1

commutes, (where ;1,i 2 are the inclusion maps). Let i 3:N+P(N) be

the inclusion map.
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By (iii), P(N) is .a- i nj ect i ve and hence i 3·f l:A+P(N) extends to

a homomorphism ~:R+P(N). That is, the diagram

/\

commutes and, since N is a-pure in P(N), there is a homomorphism ~:R+N

such that w·il = f l (1.3.4.2(i)).

Referring back to our .first diagram we see that N is a-pure in

M (by 1.3.4.2{i)). Thus R is a- regul ar , proving (i).

3.4.6 Theorem

Let R be a ring and a a torsion radical on R-mod such that R is

a-regular.

Then (i) Every a-torsion R-module is semisimple ([62]).

(ii) Every f.g ., a-torsion R-mo~ule with n generators is a

direct .sum of n cyclic, a-torsion R-modules.

(iii) An R-module ~1 is a- t or s i on ' i f f it is a direct sum of

cyclic, a-torsion R-modules (each of which is isomorphic to a direct

summand .of R, and is therefore projective). In particular, it follows

that for a a-regular ring, a-purity is equivalent to strong a-purity.

': ( ( i i i ) extends Theorem 8.7 of [29]).

Proof

(i) Let ~1 = IRxi be any a- t or si on module. Since R is a- regul ar ,
i

every cyclic, a-torsion module is a-regular (by 3.4.4( iii)) and by 3.4.2,
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every cyclic, a-torsion module is semisimple. Thus Mis a sum of semisimple

modules, proving (i).

n
. ( i i ) Let M I RXi be a f.g., a-torsion module (with n generators).

i=l
By (i) above, Mis ,semi s impl e .

We argue by induction. If Mhas o~ly one generator, the result

is clear. Suppose that all a- t or si on modules with n-1 generators can

be written as a direct sum of n-1 cyclic, a- t or si on modules. Consider
n- l

M= I+Rxn where I = L Rxi·
, i =1

Since Mis semisimple, I is a direct summand. Let ~:~r~I be the

canonical projection.

Then I+Rxn~I + ~(Rxn) + (lM-w )(Rxn)

~I + (lM-~)(Rxn)

(lM-~)(Rxn) is cYclic, a-torsion and, by our induction assumption,

I is a direct sum of n-1 cyclic, a-torsion modules; hence the result

follows.

(i i i ) If Mis a a- t or si on module then, by (i) above, Mis semisimple

and is therefore a direct sum of cyclic, a-torsion modules. Since R

is a-regular, every cyclic, a-torsion module is isomorphic to a direct

summand of R. The converse is clear.

The _second statement follows from Theorem 1.3.6.7.
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Let R be a commutative ring and a a torsion radical on R-mod. Then

the following are equivalent:

(i ) R is a-regular

(i i ) Every semi prime ideal in La is a direct summand of R.

(i i i) Every prime idea 1 in Lo is a d~rect summand of R.

(iv) Every prime idea 1 of R is a-pure in R.

(v) Every semi prime ideal of R is o- pure in R.

Proof

The facts that (i) implies (v) and (v) implies (iv) are clear.

(iv) implies (iii): Let P be a prime ideal in La . Then P is a-pure

in R, by (iv), and since RIP is a-pure projective, P is a direct summand

of R.

(iii) implies (i): Suppose (iii) holds but R is not a-regular.

Then there is an I£La which is not a direct summand of R. Let

S = {J£LaII ~J and J is not a direct summand of R}. sf~, since I£S.

S is inductive (see the proof of 3.4.4.) and by Zorn1s Lemma has a

maximal element M, (say).

Mis not prime, by (iii), and hence there exist ideals A,S such

that A.B$.M while A$M, B~M. By maximality of Min S, A+M and B+M are

direct summands of R. Say (A+M)IDX = R = (B+M)ffiY for ideals X,Y of R.

If X = V = 0, then A+M = R = B+M and hence R = R2 = (A+M)(B+M)~M

which is contrary to the fact that Mis not a direct summand of R.

Suppose XfO. Then M+X = MffiX is a di-rect summand of R by maximality

of M. This means that Mis a direct summand of R, which is contradictory.

Sim~larly if VfO we get a contradiction. Therefore (iii) implies (i).

Cl~arly (i) implies (ii) and (ii) implies (iii) and hence the

result follows.
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3.4.8 Theorem

Suppose R is commutative, Quasi-Frobenius ring and a a torsion

radical on R-mod. Then R is a-regular iff O+I®N+RSN is exact for

all R-modules N and all 1ELa .

Proof

If R is a-regular, then every IELa is a direct summand of Rand

hence the one implication is easy.

Conversely, suppose 0+IGN+R8N is exact for all left R-modules N

and all IELa.

Let Mbe any left R-module. By Corollary 1.2 of [50], M~M**.

By Theorem 2.4.2, N* is a-injective for all (left) R-modules N.

Since R is commutative, Mis also a right R-module and hence N = M*

is a left R-module with N* = M**(~M) p-injective. That is, every

R-module is a-inj~ctive and R is a-regular (2.5.8(i)).

3.4.9 Examples

One wonders, especially in view or the equivalence of (i) and

(ii) in 3.4.2, whether all a-regular rings will be semisimple and/or

van Neumann regular. The following examples of a-regular rings show

these conjectures to be false:

1. Let S be any commutative ring with unit, which is not von

Neumann regular. Let F be a field and form R = SffiF with componentwise

operations. If Mis the maximal ideal M= {(S,O)ISES}, then La = {M;R}

is the filter of a torsion radical on R-mod (see §1.2.5.3).
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Since every ideal of Da is a direct sunmand , R is a-regu·lar.

Since S is not von Neumann regular, there is an SE:S such that no

XE: 'Sex i s t S \'1 i t h s xs = s. Thus (s,°)E:R itnd the rei s n0 ( x , f )1::R \'1 i t h

(s,O)( x,f)(s,O) = (s,O). Hence R is not von Neumann regular. (In

particular, R is not sem i s impl e ) .

2 . I t f 0 110 vi S fro III 1. 3 . G. 3 t hat i f I~ i s a v0 n Neumann re gu1ar

r i ng and a a tor s ion I~ad'i ca '1 0 n R- mod s uch t hat eve ry I E: L a i sf. g. ,

then R is a-regular. Such a ring will ',no t necessarily be semisimple:

If we take, in Example 1 above, S fo be von Neumann regular (but

not semisimple), then R vii11 be a von Neumann regular ring and a

a torsion radical Oil H-lIlocl su ch that every I EL,o is f.g., vrh i l e R

is not senrl s i mpl e .

3. l.as t l y , we note that any ring ' R will be a-regulal~ if. we let

The next paragraph (7:11. t er a l. i.a } further clarifies the re l at i onsh i p

, be t ween a-regularity and semts impl tc tty. (Proofs are easy and are

"omitted):

3.".10 Remarks

1. The following are equivalent for a ring R and a torsion radical

a on R-mod:

(i) Every o- r egul a r , o-pure pro jec t i ve module is sernisimple.

(ii) Homomorphic images of a-regular, a-pure projective modules

are (a-regular,) a-pure proje ctive.
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2. The following are equivalent for a ring R:

(i) R i5 semisimple.

(ii) R is a-regular and every epimorphic image of R is a-pure

projective for all torsion radicals a on R-mod.

3 J.S. Golan has shown (in [35], Proposition 8.10) that for

a r~ng R and a torsion radical, a , on R-mod the following equivalent

conditions inter alia are valid:

(i) Every I €La is a direct summand of R.

(ii) Every (left) R-module is a-injective.

(iii) Every a-torsion (left) R-module is projective.

(iv) Every simple, a- t or si on (left) R-module is projective.

3.5. a-FLAT AND SEft'iI-a-FLAT ~IODULES

3.5.1 Properties of a-Flat "Modvles

3 . 5. 1. 1 Defin i t i on ([ 29] )

Let R be a ring and a a torsion radical on R-mod. A module

F is called a-fla t iff every short exact sequence of the form

O~N~~~F~O is a-pure exact.

We ,can characterize a-flatness as follows when every I€La is f.g.:

3.5.1.2 Theorem

Let R be a ring and a a torsion radical on R-mod such that every

I€L a is f.g.

A nonzero module F is a- f l at iff in every exact se~uence of

the form O+K+G+F+O, where K is nonzero, K must contain a nonzero

a-pure submodule of G.
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Proof

Suppose F is a-flat and that O+K+G+F+O is exact where K is nonzero.

Since F is a-flat, K is a- pure in G and the proof in one direction

is complete.

Conversely, suppose that in every exact sequence of the form

O+K+G+F+O where K is nonzero, K contains a nonzero a-pure submodule

of G. Let O+K+~F+O be exact with K+O. We only need to show

that K is a-pure in G to prove that .F is a- f l at . By assumption,

K must contain a a- pure submodule N+O $ay, of G. Using Zorn1s

Lemma and 1.3.3.5, we may choose N to be maximal among the a-pure

submodules of G contained in K. Define S:G/ N+ F by S(g+N) = a (g) ,

for g£G. It follows easily that O+K/N+G/~F+O is exact.

If KIN = 0 then K = N is a-pure in G, proving our result. Suppose

KIN is nonzero. By assumption, KIN contains a nonzero a- pure submodule

of GIN, SIN say. Since N is a- pure in G, S is a- pure in G, by

1.3.1.5(iv). · By the maximality of N, S = N, a contradiction.

3.5.1.3- Example

A· a-flat module which is not flat:

Put R = SffiF where S is any non-regular, commutative ring with

identity (e.g. the ring of integers) and F is a field. Put La = {M;R}

where M= {(s,o)ls€S}, as in §1.2.5.3.

R is a-regular since every 1££a is a direct summand and therefore

every R-module is a-flat. Let I be an ideal of S, not Cohn pure

in S, then (SffiF)/(IffiF) is a left R-module, a-flat by the above,

but not flat.

The following lemma relates a-flat .modules and projective modules.

In particular it shows that any projective R-module is a-flat (for

all torsion rad icals a on ~-mod):
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3.5.1.4 lelTlJla

Let R be a ring. The following are equivalent for any R-module

Mand for any torsion radical a on R-mod:

(i) M is a-flat .

.(ii) There is a ?-pure exact sequence O+kera+P~M+O with P

projective.

(iii) Every homomorphism s : R/ I+M, where IELa, factors through

a projective module.

(The equivalence of (i) and (ii) was : proved independently in

1. 12 of [57]).

Proof

The proof of the fact that (i) implies (ii) is trivial.

(ii) implies (iii): Suppose (ii) holds and let IELa with S:R/I+M

a homomorphism.

Let O+kera+P~~1-+0 be a a-pure exact' sequence with P projective.

Then there is a homomorphism y:R/I+P with a ·y = B and therefore

B factors through P, proving (iii).

(iii) implies (i): Suppose (iii) holds and O+K+~M+O is any

e~act .sequence with Min the third nonzero position. Suppose IEL o

and a:R/I+M isa homomorphism. By (iii), a factors through a projective

module P, (say).

Suppose that the diagram

R/I

commutes.

B
a

p-------+
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Since .P is projective y:P+M lifts to p: P+N such that ~.p = y.

Thus ~ = p·S:R/I+N satisfies ~.~ = a an~ it follows that Mis a-flat.

3.5.1.5 Example

If a(R) = 0, then a module F is a-flat iff it is a-torsion free

(see [57], 2. 21 ).

Ifa is the usual torsion radical on Abelian groups then a-purity

is equivalent to Cohn purity (see Lemma 1.3.3.1). Since a(Z) = 0,

a module is a-flat iff it is flat iff it is torsion-free. (Compare

[45], Theorem 14.9). In this case then, homomorphic images of

a- f l at modules are ·not a- f l at . Quotients of a- f l at modules by

a-pure submodules are, howeve r , a-fl at :

3.5.1.6 lemma . ([29], Theorem 6.2)

Suppose O+A+B+C+O is exact and B is a-flat. Then A is a-pure

in B iff C is a-flat.

3.5.1.7 Theorem

Let R be a ring and a a torsion rad~cal on R-mod . . An R-module

Mis a-flat iff for every epimorphism ~C, every I££a and every

homomorphism a:R/I+C which factors through M, there is a homomorphism

~:R/I+B such that ~ . ~ = a.

Proof

Suppose Mis a-flat and the diagram
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is given. -

By Lemma 3.5.1.4, B factors through a projective module P, say

in the diagram

RI!

B '~p

/~
M<"

Since P is projective there is a homomorphism o:P+B such that

~·o = y·s. Then ~ = o·~ satisfies ~.~ = a, as required.

Conversely, suppose the stated condition is satisfied, and let

any exact sequence O+X+Y~M+O and a homomorphism a:R/l+M be given,

where IEL o . a factors trivially through Mand hence there is a

~:R/I+Y . such that ~.~ = a. This proves that M~s d-flat, as required.

3.5.1~8 Remark

In Theorem 3.5.1.7 it is sufficient 't o test epimorphisms ~:B+C

only for injective B.

Proof

Suppose that lELo and suppose that every diagram of the form
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tr

R/I

a '~M

-:
B~---------~)B/kern

where B is injective, (and a factors through M), can be completed

commutatively as indicated. Suppose further that we hive an arbitrary

epimorphism ~A/kern and a homomorphism a:R/I~A/kenr which factors

through Mas a = yeS.

'Let E(A) be the lnjective hull of A and construct the commutative

diagram

n

j

IT

(where i,j ,are the -inclusion maps and 1(1 is the canonical eptmorpht sm) ,

j'a factors through Min the diagram

AIkern

j j joy

E(A) n )E(A) I k~ rn

By assumption, there is a homomorphjsm ~:R/I~E(A) such that

'TT' o~ = joa. It is then easy to verify that ~(R/I)~A and the result

follows.
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3.5.1.9 Corollaries

1. A a-flat, cyclic, a-torsion module is projective.

2. The class of a-flat modules is ,cl osed under module extensions,

· i . e . "i f N, M/N are a-flat, then so is ~1 ([57],1.14).

3. If G is a a-pure submodule of F and F and P are a-flat,

. then the pushout of the diagram

G~-----r)F

P

is also a-flat (where i is the inclusion map).

Proof

We may take X = (FffiP)/S where S = {(x,-I3(x))lxEG} -. Let h:P+X

be the monomorphism defined by h(p) = (O,p)+S (for PEP). Define

If:X/~(P)+F/G by If([ (f,p)+S]+h(P)) = f+G (for fEF., PEP.

If is 1-1: Suppose fEG. Then (f,p)-~O,P+B(f))ES aRd therefore

(f,p)+S = (O,p+S(f))+SEh(P) .

. If 'is cl~arly an R-epimorphism hence X/h(P) ~F/G. Since F is

a-flat and G is a-pure in F, F/G~X/h(P) is a-flat (3.5.1.6). Since

h(P)~P is a-flat it follows from (2) above that X is a-flat.

4. Let {Mi}i be a collection of R-modules. Then eMi is a-flat
1

iff Mi is a-flat for all i. ([7], Theorem 9).

Suppose every 1ELa is projective. Then certainly every 1ELa

is a-fl at ". Thus if R/I is a-torsion then I is a-flat. The following

shows that (more generally) if every 1EL a is projective, Mis an
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arbitrary a-flat module and N is a submodule N for which M/N is

a-torsion, then N is a-flat:

5. Suppose that every I£La is projective. Then a module M

is a-flat iff every submodule N of Mwith M/N a-torsion is a-flat.

Proof

The "if" statement is trivial. Suppose therefore that ~1 is

a-flat and let N be a submodule of Msuch that M/N is a-torsion.

Let ~C+O be exact, where B is injective, let I£La and let a:R/1+C

be a homomorphism, which factors through N. Then B is a-injective

and, by 1. 2.4.6 (i i·), C is 0- i n.iec t i ve. Suppose a factors through

N as y·S. Since M/N is a-torsion, y:N+C extends to a homomorphism

e:M+C, by the a-injectivity of C. Let i:N+M be the inclusion map.

Then the diagram

commutes and since Mis a-flat, there is a homomorphism ~:R/1+B

with ~.~ = a. By 3.5;1.8, N is a-flat. '

3.5.1.10 Theorem

Let R be a ring and a a torsion radical on R-mod. Then the

follow~ng are equivalent:

(; 1

(; i )

. (iii)

R is a-regular.

Every (simple) R-module is a-flat .

Every countably generated, a-torsion R-module is . projective.
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(iv) Every f.g., a-torsion R-module is projective.

'( v ) Every a-torsion R-module is a-flat. '

If, further, R is commutative then the above conditions are

equivalent to:

(vi) (a) Every 1££a is idenlrotent and

(b) Every semiprime ring, which is also an R-module, is a-flat.

Proof

If (i) holds then, hy Theorem 3.4.4, every R-module i~ a-regular,

hence every short exact sequence is a-pure exact an~ therefore

every R-module is a-flat, proving (ii).

Conversely, if every simple R-module is a-flat then every maximal

ideal of R is a-pure in Rand R is a-regular by 3.4.4. again.

Thus (i) and (ii) are equivalent.
00

(i) implies (iii): Let M = L Rxi be a countably generated, a-torsicn
i=1

module.

By The 0 rem 3. 4. 6, t" i s sem i s imp 1e, i f (i ') hold s . Thus Mi s

a direct sum of cyclic, a-torsion modules. But anycyc l tc , a-torsion

module is pro.jec ti ve , by 3.4.4{v). · This proves (iii).

That (iii) implies (iv) is clear.

( i v) i Ii1 P1i es (v): Let ~1 = LRxi be a- tors ion •
i

For any submo·dul .e Nof' RXf' Rxi/N is cyclic, a-torsion,

a- f 1at . by (i v) ancl the re fore N i sa. cl' rect summand 0 f Rx i .

Thus we have ~hown that each Rx; ' is semisimple and hence M

is semisimple. But then Mis a direct ~um 6f cyclic, a-torsion

modules which are projective and ·t heref ore a~flat by (iv) and (v)

follows from 3.5.1.9(4).
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(v) implies (i): If (v) holds then for every AEL a, R/A is a-flat

and hence A is a-pure in R. Since R/A is a-pure-projective, A

is a direct summand of R and (i) follows.

(-i) implies (vi): Suppose R is a-regular. Then every IELa is

a direct summand of R and hence I = Re for an idempotent element

e of R ([2], Proposition 7.1). Since.. R has an identity, (vi)(a)

holds. (vi)(b) is clear since if R is a-regular every R-module

is a-flat.

Conversely, suppose (vi) holds. Suppose MEL a. Si.nee R is commutative,

RIM is a ring. If IIM is an ideal of the ring RIM with (I/M)n = 0

then IiL a and In~M. By (vi)(a), I = In and therefore I/M = O.

Thus. R/ ~1 has no nonzero nilpotent ideals (i.e. it is a eemi.pi-ime

ring), and by (vi)(b) it is a-flat as an R-module. Hence Mis

a direct summandof Rand R is a-regular.

3.5.2 Semi-a-Flat Modules

3.5.2.1 Definition

Let R be a ring and a a torsion radical on R-mod~ A module

Mis called semi-a-flat iff for any exact sequence B+C+O where

C is injective, given IELa,eyery homomorphism a:R/I+C which factors

through Mlifts to a homomorphism from R/I to B. (This extends

the concept of a semi fl at modul e introduced by Doman in [13]).

3.5.2.2 Remark

Lt follows from Theorem 3.5.1.7 that a a-flat module is also

semi-a-flat. If R is hereditary, so that epimorphic images of

injective modules are injective ([ 11]) then the two concepts are

equivalent (by 3.5.1.8).
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3.5.2.3 Lemma

Submodules of semi-a-flat modules are ' semi-a-flat.

Proof

Easy

3.5.2.4 Theorem

Let R be a ring and a a torsion radical on R-mod.

A module Mis semi-a~flat iff for every I £L a and every homomorphism

.a : R/ I+M, there is an embedding of a (R/ l ) into a projective module P.

Proof

. Suppose Mis semi-a-flat, IELa and a : R/ I+Mis a homomorphism.

R/J~a(R/I) is cyclic, a-torsion and R/~ is semi-a-flat, since it

is a submodule of M. Let E(R/J) be its injective hull, and let

j:R/J+E(R/J) be the inclusion map. There is a projective module

P and an epimorphism ~:P~E(R/J).

Since R/J is semi-a-flat, there is a homomorphism ~:R/J+P such

that the diagram

R/J 1 ----+R/ J

j

P~-----------+)E(R/J)

commutes. It then follows that ~ is a monomorphism.

Conversely, suppose the stated condition holds, C is injective,

IELa and a:R/I+C is a homomorphism, w~ich factors through Min

the diagram
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13

B,----!----+

where ~C+O is e~act.BY assumption, there is a projective module P

and an embedding i:S(R/1)+P. Since C is injective, there is a

homomorphism e:P+C such that the diagram

13 (RI I )-----)-P

C

commutes. Since P is projective, e lifts to a homomorphism ~:P+B

such that $.~ = 8. Then ~·i·S:R/1+B s~tisfies $·~·i·S = a. Hence

M·is ·semi-a-flat.

The following is the ·semi-a-flat equivalent of 3.5.1.6:

3.5.2.5 Theorem

Let R be a ring and a a torsion radical on R-mod. An R-module

Mis semi-a-flat iff ·there is a a-pure exact sequence of the form

O+K+L+M+O, where L is semi-a-flat.

Proof:

Only one direction is non-trivial.

Suppose O+K~L~M+O is a-pure exact, where L is semi-a-flat.

Let C be injective, ~C+O exact, I(L a and ~:R/I+C a homomorphism

such that the diagram



is commutative.

Since K is a-pure in L, there is a homomorphism E:R/I+L such

that S·E = e. Since L is semi-a-flat, there is a homomorphism

o:R/I+B such that y·o = ~·S·E. But ~·~·E = ~·e = ~ and it follows

that Mis semi-a-flat.
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3.5.2.6 Remarks

Let R be a ring and a a torsion radical on R-mod.

1. For a collection {Mi:i€I} of R-modules,~Mi is semi-a-flat
1

i f f ~1 i i s semi-a- f 1at for all i.

Proof

By 3.5.2.3, only one direction is ~on-trivial.

Suppose Mi is semi-a-flat for each iE1. Let 1ELa .and suppose

that .u:R/1+~Mi is a homomorphism. Let o;:$M;+M; be the projection
1 1

maps ..

By 3.5.2.4, there are projective modules Pi and embeddings

ki:(oi·u)(R/I)+Pi, iEI. Thus ~ki:a(R/I)+~Pi is an embedding and
1 1

it follows from 3.5.2.4 that 'Mi is semi-a-flat.
1

2. The following are equivalent for a module M:

(i) Mis semi-a-flat.

(ii) Every f.g. submodule of Mis semi-a-flat.

(iii) Every cyclic submodule of Mis semi-a-flat.

(iv) Every cyclic, a-torsion submodule of Mis semi-a-flat.
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Proof

(iv) implies (i): Let I€ La , suppose C is injective, ~C+O

is exact and a:R/I+C is a homomorphism which factors through M as

follows:

R/I

B

Then ~(R/I) is a cyclic, a-torsion submodule of Mand, by assumption,

is semi-a-flat. That is, a factors through a semi-a-flat module

and hence there is a homomorphism ~ : R / I+ B such that B· ~ = a . Hence

(i) is prqved.

The other implications are clear.

3. It follows from 3.5.2.2 and 3.5.2.3 that if R is hereditary

then submodules of a-flat modules are a-flat. This is a remark

of Rohlina mention~d on page 29 of [57].

, 3.5.2.7 Examples

1. Let R be a ring and 0 a torsion radical on R-mod such that

a(R) = O. Then Mis semi-a-flat iff a(M) = 0 (iff Mis a-flat).

Proof

i n vie ~'J 0 f :3. 5. 1'. 5· i ton1y re mains top r0 vethat i f ~1 i s

semi-a-flat then a (M) = O.
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Suppose Mis semi-a-flat, T is a-torsion and aEHom(T,M). If

xET then Rx is cyclic and a-torsion. Let S:Rx-+~l be the restriction

of a to Rx .

. By' 3.5.2.4, there is an embedding of S(Rx ) into a projective

module P. Since a(R) = 0, P is a-torsion-free and hence so is

S(Rx). Since S(Rx) is a-torsion it follows that ~(Rx) = 0 and

hence a(x) "= O. Since x was an arbitrary element of T, Hom(T,M) 0

and therefore M is a-torsion free.

2. A semi-a-flat module which is not a-flat:

Consider R = Zy = {O,1,2,3}, the ring of congruence classes

mod 4. La = {{O},{O,2},R} is the filter of a torsion radical, a.

S - {O,2}, as a submodule of {the a-flat R-module) R, is semi-a-flat.

RjS is cyclic, a-torsion and if a : R/ S-+S is the isomorphism ~efined

by mapping 1+s to 2, t here is no homomorphism ~:RjS -+R making the

diagram

RjS
I

I
I

~ / 1
I

I

~ .

R~R/S~S
n a -I

commute, since otherwise S would be a direct summand of R, which

it is not. This shows that S is not a- f l at (3.5.1.7). (In particular

this also shows that submodules of a-flat modules need not always

be a-flat).
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3.5.3 Semi-a-Regular Rings

3.5.3.1 Definitions

1. If A~B then A is called a co pure submoduZe of B iff

B/A is injective. A module Mis ca11ed copure injective iff M

is injective with respect to exact sequences of the form O+A+B

where A is copure in B ([ 17]).

2. An R-module Mwill be called ~orsionZe s s iff the map

a:M+M** defined by [-a(m)] ( <f» = <f> (m) (for <f>£ M*) , is monic ([49]).

RM is torsionless iff it can be embedded in a direct product

of copies of R. (See [49], Chapter 5).

3. Let R be a ring and a a torsion radical on R-mod.

Since R is a- regul ar iff every R-module is a- f l at (see 3.5.1.10),

the question of whether it is possi -ble to characterize rings R

. (and torsion radicals a on R-mod) for which every R-module is semi-a-flat

suggests itself. Such a ring will be called semi - a- r eguZar .

3.5.3.2 Theorem

The following -are equivalent for a ring R and a torsion radical

a on R-mod:

(i )

(ii)

(iii)

(i v) -

(v)

(vi)

(vi i)

(viii)

(i x)

R is semi-a-regular.

Injective R-modules are a-flat.

-The injective hull of every cy~lic, a- t or si on module is a-flat.

Direct sums of injective R-modules are semi-a-flat.

Every R-module can be embedded in a a-flat R-module.

Every f.g~ R-module can be embedded in a ~emi-a-flat R-module.

Every f.g. R-module is semi-a-flat.

Every copure submodule of an R-module Mis a-pure in M.

Every cyclic, a-torsion module is semi-a-flat.
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(x) Every cycli c , o- t or s i on module can be embedded in a projective

module.

(xi) : '

Proof

Epimorphic images of semi- a-fl 'at modules are semi-a-flat.

(i) implies (ii): Suppose M is injective, let IEL a, and let

a:R/I -)-M be a homomorphism. Let P be projective such that P~t'I+O

is exact for some~. In the diagram

(since Mis semi-a-flat, by (i)) the re is a homomorphism B:R/I+P such

that ~·B = a. That is, a factors through a projective ' module and,

by 3.5'.1.4, Mis a-flat.

(ii) implies (i): Every R-module is a submodule of its injective

hu11 whi ch , by (i i ), i s semi -o- f 1at. By Le mma 3. 5. 2. 3', (i) h01ds .

That (ii) i~plies (iii) is clear.

(iii) implies (if~: Suppose C is any injective R-module, and

let O+A+~}-C~O be exact. Suppose IELa and let a:R/I+C be a homomorphism.

If i:R/I+E(R/I) is the inclusion map, then there is a homomorphism

a i :E(R/I)+C such that al·i = a. Thus a ': ,factors through E(R/I), which

is a-flat, by (iii), and hence there is, by 3.5.1.7, a homomorphism

B:R/I+B such that n'B = a .

proving that C is a-flat.

11 ,.
O-)-A+~C-)-O is therefore a-pure exact,
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The facts that (iv) implies (i) and that (ii) implies .(v) follow from

· t he fact that every R-module may be embedded in an injective R-module.

The facts that (i) implies (iv), that (v) implies (vi), that (vi) implies

. (vii) and that (vii) implies (ix) are immediate.

(vi) implies (ii): Let Mbe an injective R-module. ~, is the

direct limit of its f.g. submodules, {Mi}i, say ([63]). Let Fi be

semi-a-flat modules and Qi:Mi+Fi the embeddings given by (vi). Let

6i:Mi~M be the canonical monomorphisms!

-Suppose P is projective, ~~~O is exact and R/I is cyclic,

a-torsion with S:R/I+M a homomorphism. S(R/I)~6i(Mi) for some i. Since

Mis injective, there are homomorphisms 8i:Fi+M such that 8i' Qi = 6i,

for each i.

Hence the diagram

R/I

F'1

P------~)M

is commutative.

Since Fi is semi-a-flat, there is a homomorphism ~:R/I+r such

that ~.~ = S. By 3.5.1.4, Mis a-flat proving (ii).

(ii) implies (viii): Let A be a , copure submodule of a module

B. Then B/A is injective and, by (ii), B/A is a-flat. Hence A is

a-pure in B.
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(viii) implies (ix): Suppose I r:: Do ' Embed RI! in its i n.iect i ve

hull .E, say. Let 0~K+L+E40 be any exact sequence with E in the third

nonzero position. Since E is injective, K is copure in L and therefore

K is a-pure in L, by (viii). That is, E is a-flat and since RI! is

i somorpht c to a submodul e of E, (i x) fo 11 ows .

(ix) implies (x): Let RI! be cyclic, a- t or s i on. Then R/I is

semi-a-flat, by (ix), and applying 3.5.2.4 to the identity map on R/I we

see that there is an embedding of R/l fn to a projective module P.

That (x) implies (i) f ol l ows fro m. 3.5.2.6(2).

That (i) implies (xi) is clear and the fact that (xi) implies

( i ) f 0 110 'r~ S, since eve ry R- mod u1e i san' epim0 r phi c image 0 f a pro j ect i ve

module .

3.5.3.3

1.

Remarks

3.5.3.2(viii) is the semi- a- regular version of 3.4.4(iv).

2. A ring R is Quasi~Frobcnius iff injective R-modules are

projective ({ 23] , .Theorern\5.3) . Every Quasi-Frobenius ring R, with

any torsion radical a on R-mod, is ther~fore an example of a ring satisfying

the conditions of 3.5.3.2 since 3.5.3.~(ii) is satisfied.

3. Since not ev~ry Quasi-Frobenius ring is semisimple (see,

for example, exercises 17 and 21 on page 82 of [49]),. it is easy to

find examples of semi- a-regular rings which are not a-regular.

For such a ring R, every R-module is semi- a-flat but not every

R-module is a-flat. Hence every such r';ng provides us with examples

of semi-a-flat modules which are not a- f l at .

4. Every a-regular ring is semi- o-regular. Conversely, if R

is (left) semi-hel~ed;tary and semi -a-regular, then it is a-regular. \ '
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Proof

Suppose that 1F: Lo and let a : R/ l+Mbe a homomorphism, where M is

an arbitr~ry R-module. By assumption, M is semi-a-flat. By Theorem

3.5.2.4, there is an embedding of a (R/} ) into a projective R-module.

a(R/~) is a f.g. submodule of a projective module and since R is

semi-hereditary, a (R/ I ) is projective. Hence a factors through a

projective R-module and by Lemma 3.5.1 ~4, Mis a-flat. Hence R is

o~regular (3.5.1.10).

, 5. Let R be a l~ i ng wit h un itancl VIi t h0 ut di vis 0 r s 0 f le r o . The n

the folluwing are equivalent (where a ts a torsion radical on R-mod):

(a) R is a-regular.

(b) R is sellli- o-regu "lar.

(c) [,0 = {O,R} or L o = {RI.

(d) R i sad i v i s ion ri ng o'revery R-m0 cl u1e i s 0 - tor si 0 n f re e .

Proof

That (a) implies.(b) is obvious.

(b) implies (c):'Suppose R is semi- a-regular. By].5.3.2(X :),

if IE:[,o then R/1 is torsionless. Let ci: R/ I-·}H( i ) be an embedding of

R/1 into a direct product of copies of ,R. SUppose 1 ~ R, then a(R/I)

is nonzero and hence a ( l+1) = (ai)i ~ O. If se I then, a(s+l) = 0 = (sa ',);.
1

Since R has no divisors of zero, s = 0 and hence I = O. This proves (c).

(c) implies (cl): If L a = {O,R} is "t o be the filter of a torsion

radi ca'\ , the n c1ear1y R has 0 n1y the t V(O t r i vi a'\ 1eft i dea'\ s 0 and R.

Alternatively, if L a = {RI, then every R-module is o-torsion-fr~e.

This proves (d).



(d) implies (a): If the conditions of (d) hold then there are

only two p~ssible radical filters, on R-mod: Lo = {O,R} or L o = {R}.

Thus in all possible cases, every IELo is a direct summand and (a)

follows.

107



108

(""PTER FOUR

a-PERFECT RINGS AND A RELATIVE JACOBSON RADICAL

§4.1. INTRODUCTION

Let R be a ring and a a torsion radical on R-mod. In this chapter

vIe introduce two related constructions: a- per f ect rings, and a new "rad i cal ",

denoted by Ja.

a- pe r f ect rings are an extension of ·t he concept of a perfect ring

(defined in [4]).

In 4.2.9 and 4.2.11 we qeneralize a .f amous result of H. Bass (Theor~m P

of [4]).

SecondlY,we introduce a new re l at i viied fo rm of the Jacobson Radical,

(defined in terms of a-flatness). We sh~~ that many of the properties

of the Jacobson Radical as well as those of a radical of J.S. Golan ([ 35],

Chapter 24), extend to Ja and consider, inter a Zi a , the case when Ja(M) = 0

for all modules M. (4.3.20).

§4.2

4.2.1

a-PERFECT RINGS

Definitions

. We 'cpl l a submodule S of a module P, 'emal.L in P,( S«P), iff whenever

K+S = P for a submodul e K of P, then K = P ([ 11] ). H. Bass (see [4]) ca 11 s an

exact sequence O+S~,P~H+O, where P is projective and S = kera is small

in P, a pro.jea t-i oe c over of M. A ring t s i cal l ed perfect iff every R-module

has a projective cover ([ 4] ).

It is well known that R is perfect iff every flat R-module is

projective ([30], Theorem 3.1, page 7). We use this characterization of

a perfect ring to extend the concept to a ~ p u r i ty :
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4.2.2 Definition

Let R be a ring and a a torsion radical on R-mod. A ring R is called

a-perfect iff every a- f l at module is projective.

4.2.3 Remark

In Theorem 3 of [28] D. J. Fieldhouse shows that a projective module

can have no nonzero small (Cohn) pure submodules. Thus if O+S+P+M+O is a

projective cover of Mthen S contains no nonzero (Cohn) pure submodules

of P. We use this result to extend the concept of a projective cover,

as follows:

4.2.4 Definition

An exact sequence O+K+P+M+O where P is projective and K contains no

nonzero a-pure submodules of P is called a;a-pro j ective cover.

4.2.5 lemma

An ~xact sequence O+ker~+P~~~~O is a-a-projective cover for Miff

P is projective and for any commutative diagram

\/
G

where B is epic and G is a- f l at , B must be-an isomorphism.

Proof

Suppose O+kera+P~M+O is a a- proj ect i ve cover of Mand the commutative

diagram
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is given where B is epic and G is a-flat. Let N = kerB, then clearly

Nske r«. Since PIN is a-flat, N is a-pure in P. Since O+kero:+P~M-)-O is

a a-projective cover, N = 0 and S is an isomorphism.

Conversely, suppose the stated condition is satisfied by the exact

sequence O-)-kero:+P~M+O, where P is projective, and let N be a a-pure

submodule of P contained in kero:.

Then B:P/N+M defined by S(p+N) o:(p) (for PEP) is a well-defined

homomorphism. Since N is a-pure in P and P is a-flat, PIN is a-flat,

by 3.5.1.6. If n:P+P/N is the canonical epimorphism then the diagram

0:P------+-)M
-:1'

11

B

PIN

commutes and, by assumption, n is monic. Thus N

O+kero:+P~M+O is a a-p'rojective cover of M.

o and it follows that

4.2.6 Definition

Let R be a ring and a a torsion radical on R-mod. Let Mbe an R-module
dId0

and ,+Pl~PO--)-M+O a projective resolution of N. The smallest

integer n~O for which imd n is a-flat (if it ~xists) is called the a-flat
. .

dimension 3 afdM, of M. If no such inteqer n exists we say afdM = 00

4.2.7 Lemma

afdM is uniquely determined.
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Proof
dl' do - a1 au

Suppose ... P1---~Po---+M+O and . "P1---+Pu---~M+O are two

projective resolutions for a module Mand imd n = kerdn- 1 is a-flat.

(It is clear that imdo is a-flat iff Mis a-flat iff imao is a-flat

and we may assume that n~l). It is then easy to verify (see e.g. Theorem

8.8 of [45]) that keran-1ffiPn-lffiPn-zID ... ,ffiPo is isomorphic to

kerdn- 1IDP n- 1ID... IDP o' Since this second module is a-flat, kera n_ 1 = ima n

is a-flat (by 3.5.1.9(4)).

4.2.8. Remark

Let O~K~P~M+O be exact where P is projective and Mis not a-flat.

Then afdM = afdK+1.(Dual of 2.5.5(i)).

4.2.9 Theorem

The following are equivalent for a ring R and a torsion radical

a on R-mod:

(i) R is a-perfect.

(ii) Every a-flat module has . a a-projective cover.""

(iii) Every a-flat module is a-pure projective.

(i~) , A a-pure submodule of a a-flat module is a direct summand.

(v) afdM = prM for all R-modules M.

(vi) A direct sum of modules each of which has a-flat dimension ~n

has projective dimension ~n.

(vii) A direct limit of a-flat modules; such that the canonical

0i:Mi~lim Mi are all monic, is projective.
. ~I

Proof

(i) imp 1i es (i i ): Supp0 se R, i s a - per f~ctand 1et F be a a - f 1at

module. By assumption, F is projective and O~O~F~F~O is a a-projective

cover for F.
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(ii) implies (iii): Let F be a a-flat 'module with a a-projective cover

O+K+P-~F+O. Since F is a-flat, K is a- pure in P and by definition of a

a-projective cover, K = O. Thus f~P is projective (and therefore ' a-pure

project i ve) .

( i t t ) implies (iv): Let F be a a-flat .module, and let K be a a-pure

submodule of F. By 3.5.1.6, F/K is a-flat and therefore a-pure projective

by (iii).
i 1TBut then the sequence O+K->-F-4F/K+O splits, proving (f v) ."

(iv) implies (v): Suppose prM = nand afdM = m for some module M.
. ' d2 dl do

Then there is a projective re solut i on.... P- 2--+Pl--+PO--+tJ1+0 with imd n

proje~tive: imd n is therefore a-flat and i~ follows that m~n. Further,

hy 4.2.7, imdm is a-flat. Consider the exact sequence

d
O+kerdm+P~imdm~O. Since imdm is a-flat, kerdm is a-pure in Pm and,

by (iv), the sequence splits. Thus imdm i~ projective and it follows that

n~m. Hence n = m, pr?ving (v).

(v) implies (vi): Suppose (v) holds and {Mi} is a collection of modules,
, di di

where afd~1i~n for all i. Let .. +Pi ~Pi 0 )~1i+0 be a projective
1 • 0

resolution for ~1i' By' (v), pr~1i ~n and hence imdin is projective for all

is a projective resolution for ~Mi
1

IDimdi is projective. Hence pr~Mi;;;n
i n 1

(see page 60 of [45]).
d1 do

Thus ... +ffiPi ---+ffiPi ---+ffiMi+O
i 1 i 0 i

(where dm = ~di for all m) and imd n =
1 m .

as required.

(v) implies (vii): Let {Mi:6~} be a directed system of a-flat modules
1

where the can~nical 6i:Mi~M

a:R/I +M be an R-homomorphism.

1im Mi are al l mon i c , Let rELa and let
+1
Then ima ~6i (Mi ) ~Mi for some i ([ 45] ,

Lemma 4.3) and by 3.5.1.4, a factors through a projective module.

By 3.5.1.4 ag~in, Mis a-flat. Thus afdM = 0 and Mis projective by (v).
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That (vi) or (vii) implies (i) follows easily since any given

a-flat module Mis trivially a direct sum of a-flat modules (and therefore

also a direct limit of a-flat modules, v/ith the canonical 0i monic) and

hence if either (vi) or (vii) hold then Mmust be projective.

4.2.10 Examples

1. Any semisimple ring R is a- per f ect for all torsion radicals a

on R-mod.

2. Suppose that R-mod is ~-cyclic (i.e. every R-module is a direct

sum of cycl ic R-modules). Examples are Z~, n = 1,2 .... (see [21], 25.0.1)

and any Artinian principal ideal (i.e. un i.eer i .a l i ring (see [52]). Let

L a consist of all the (left) ideals of R. Then R is a-perfect.

Proof

Let Mbe any (left) R-module. Then Mis a direct sum of cyclic modules

which are a-torsion since R is. Thus Mis a- pure projective and by

4.2.9(i1i), R is a-perfect.

3. Let R be any perfect, PrUfer r i nq. (In particular, we may take

R = Q, the ring of rational numb~rs. Since QQ is simple R is a PrUfer

ring and'the Jacobson radical J = o. Since R/J is therefore (semi) simple

and J is nilpotent, it follows from [2], Theorem 28.4 that R is a perfect

ring). Take La = {Left Ideals of R}, then R is a-perfect.

Proof

If X is f.p. then X is a direct summand of a direct sum of cyclic,

(a-torsion) modules (Propost t i onf (page 706) of [71]). Thus X is a-pure

projective.



114

If Mis a-flat then every short exact sequence of the form O+K+L+M+O

is a-pure exact and by the above~ every f.p. module X is projective with

resp~ct ·to such a sequence which means that every such sequence is Cohn

pure exact and hence Mis flat. Since R is perfect, Mis projective and

the result follows.

4.2.11 Theorem

Let R be a ring and a a torsion radical on R-mod such that every

IELa .is f.g. Then R is a-perfect iff every R-module has a a-projective

cover.

Proof

Let R be a-perfect and let Mbe any R-module. Let P be projective

with a:P+M an epimorphism. Let S = {NIN is a a- pure submodule of P

contained in ke ro ] . 5 is nonempty, s i nce Oc5. 5 is inductive, by

1.3.3.5? and has a maximal element N, by Zorn1s Lemma. Let B:P/N+M be

the epimorphism defined by 'S(p+N) = a(p), (for PEP). Since N is a-pure

in P and P is a-flat, it follows from 3.5.1.6 that PIN is a-flat and

ther~fore projective, by assumption. We use 4;2.5 to show that

O+k~rB+P!N·Sr'1+0 is a a- proj ect i ve cover for M.

PIN - - -:.:...-- ---4-) M

Suppose therefore that the diagram

B

G

commutes, where G is a-flat and ~ is an epimorphism. Then G=P/K where

kerw = KIN (for some submodule K of P containing N). Since G is a-flat,

K is a-pure in P and it is easy to verify that K~kera. By the maximality

of N, K = Nand w is an isomorphism as required.
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Conversely, if every R-module has a a-projective cover then it follows

from 4.2.9 that R is a-perfect.

4.2.12 Remarks

1. If every I£L a is f.g. and R is a ~a-perfect ring then

a-projective covers are unique up to isomorphism (in the category of short

exact sequences).

Proof
. i 1 11 1 i 2 1T 2

Let A:O+K1---+P1---+M+O and B: O+K 2----~P2---+M+O be two a-projective
" .

covers for the R-module M. Let F be a flat R-module and O+K+L+F+O any

short exact sequence with F in the third nonzero position. K is then Cohn

pure in L and by 1.3.6.3 it is a- pure in L. Thus F is a-flat and therefore

111

Complete the diaqram
i 1

projective. Hence R is a perfect ring and Mhas a projective cover

C: O+K--rP~H+O .

1T
0'-----+)K--~.-t-P----~Mr---+O

1

commutatively, using the "projectivity of Plo A diagram chase reveals

that K+imf 2 = P and since K is small in P"f2 is epic.

Consider the ~iagram

P
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P t s a-flat . and by Lemma 4.2.5, f 2 t s an .i..somorphism. A simple diagram

chase shows t~at f 1 is an isomorphism. Hence A and Care isomorphically

equivalent short exact sequences. Simila~ly for Band C and hence the

sequences A and B are isomorphic.

2. In the course of proving 4.2.11 ·we proved that if every lELo

is f. g. then for each modul e ~1 there is an exact sequence O+K+F+~1+0 such

that F is a-flat and K contains no nonzero a- pure submodules of F ~ We

call such an exact sequence a a- flat cover for M.

3. A simple adapt~tion of 4.2.5 shows that an exact sequence

O-~kenx4·F~~1+0 is a a- f l at cover i ff F is o- f l at and for every commutative

diagram:

F a lM

~/
G

whel-e G is o- f l at and B is epi c , B must be- an i somcrpht sm.

4. Suppose that every l EL a is f.g. Then a module M is a-flat iff

in 'eve ry a-flat cover O+K+F+M+O of M, we must have K = O.

Proof

Suppose the stated condition is valid "for a module M. By (2) above,

there is a a-flat cover O+K+F+M+O for Mand,hy assumption, K = 0 proving

that M is a-flat.

The converse follows by definition ~F a a- f l at cover.

5. Let R be a ring and a a torsion radical on R-mod such that R

is a-perfect. Then the following are equivalent:

(a) Every lELa is f.g . and every a-pure injective module is

copure injective.
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(b) R is semi-a-regular.

(c) R is Quasi-Frobenius.

(d) R is Noetherian and every R-module is copure injective.

Pro"of

(a) implies (b): Let Mbe any i njec t tve R-module.

is exact and a:K+P is a homomorphisrn where. P is a-pure injective, then,

by (a), P is copure injec tive and, since k is copure in L, there is a

homomorphism S: L+P such that S· i a. Since every 1ELa is f.g. it follows

from 1.4.12 that K is a- pure in L. Tha t 'i s , M is a-flat.

We have therefore proved that ev~ry tnjective R-module is a-flat.

By 3.5.3.2, this is equivalent to (b).

(b) implies (c): If (b) holds,inject~ve modules are a-flat and, since

R is a-perfect, this means that every inj~ctive R-module is projective,

whence R is Quasi-Frobenius.

(c) implies (d).: oIf R is Quasi-Frobenius t hen it is Noetherian([49D.

Since every injective modu'l-e is projecti"ve every copure exact sequence

splits and therefore (d) holds. That (d) implies (a) is clear.

06 . Let·R be a PrUrer ring and let L a = (Left Ideals of R}. Then R

is Quasi-Frobenius iff tt is a-perfect and semi-a-regular.

Proof

I f R i sq. F. i t has mi nimum condi t ion 0 n rig ht i dea1s ([ 49], Le mma 2,

page 77) and hence it is a perfect ~.in .g (..[2], Theorem 28.4). By 4.2.10(3),

R i s a - per f ect. 8y 3. 5:.3 :3 (2) :; R i s s~ Ini- a- r'~gu1ar. °

Conversely if R is a-perfect and se~i-o-regular then, by (5) above,

R is Quasi-Frobenius.
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A RELATIVIZED JACOBSON RADICAL

Introduction

J.S. Golan in Chapter 24 of [35] illustrates one way of defining a

Jacobson Radical relative t o a torsion theory. His radical is defined

usi ng a type of "puri ty" whi ch does not form a Pure Theory (name1y : N ~M

i SlipUre 11 i n M i f f a ( ~1/N) = 0). For t his re ason we bel i eve t hat i t i s

relevant to relativize the Jacobson Radical in terms of a-purity. It also

turns out that our radical, Ja(M), contains the Jacobson Radical, RadM,

of M.

4.3.2 Definitions

. 1. If Mis an R-module we will denote by HadM the intersection of

all the maximal submodules of M ([2]). (This is the classical

"Jacobeon jfadical"). If R is a ring, the Jacobson Radical of R is defined

to be Rad(RR).

2. Let R be a ring and a a torsi6n radical on R-mod. We define,

for an R-module ~1, Ja(M) = n {K:£ MIM/ K is simple and a-flat}. (If there
I

are no such submodules we set Ja(M) = M).

4.3.3 Remarks

1. RadM:£Ja(M) for all mQdules M.

2. If F is a- f l at then Ja(F) = n {K~FIK is maximal and a-pure in

F} (apply 3.5.1. 6).

3.

4.

If R is a-regular then Ja(M) ~ RadM for all R-modules M.

If P is a f.g., projective module then Ja(P) = RadP iff Ja(P)«P.
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Proof

Suppose Ja(P) == RadP. By Proposition 17.10 of [2], RadP = J.P (where

J Racl RR) ~ nd by Nakayama I s Le mm a ([ 2], i 5. 13 ), Ra dP< <P, t hat is, J a ( P)<<P.

Conversely, if Ja(P) «P then J a(P) ~ L:L"K;;PIK«P} = RadP ([2],9.13)

and therefore RadP == J a(P).

5. If R is a- pe r f ec t and M is an R ~module then J a(M) == n{K~MIK

ismaxi ma1 i n ~1 and MI K i s pro j ec t i ve }. Ifence I.J 0 ( R) = n {I s RI I OJ K == R for

some minimal left ideal K of R}.

6. J a "4 Rad:

(i) Let R be any local ring such that the maximal ideal ,M,is not a direct

s umm ~ nd 0 fR.. Ta ke L a as the set 0 f all 1eft i dea1sin R, the n M i s not

a-pure in R and hence Ja(R) =R.
i

whereas ' Rad R == M.

(ii) Let R == u and let L a be the set of nonzero ideals of R.Since

every nonzero ideal of R i s essential no maximal ideal can be a-pure in R

4.3.4 ' LeJTll1a

Let 'R be a ri~g ~nd 0 a torsion radical on R-mod. If M is an R-module,

Proof

Let N be any submodule of M such that M/N is simple and a-flat.

If n:~1-+M/N is the canonical ep imorph i sm then kern = N and hence

n{kerhlhEHom(M,U), U simple and a - f l a t }~ N . Since Ja(M) is the intersection

of all such N, n \kerhlhE:llorn(M,U), U simple and a-flat} ~Ja(~1).

Conversely, suppose othE!foll1(M,U) where U is simple and a-flat.

Then imh = U and M!kerh~U. Hence M/kerh is simple and a-flat and

Ja(M)~kerh, ' by definition. That is, J a(M)$. n {kerhlhE:Hom(M,U), U is simple

and a-flat}.
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Theorem

Let R be a ring and a a to~sion radi cal on R-mod. For any R-module M,

Ja(M) is the unique smallest submodule K of M such that M/K is cogenerated

by U = {RUIU is simple and a- f l at} .

Proof

Let the family {K IM/K€U} be indexed by I.

If x€ ~ we define g(x+Ja(M)) to be that element of IT M/Ka whose
a€I

a-th component is x+Ka , aE I (g is therefore a homomorphism from M/Ja(M)

to IT ~i/Ka). Since Jo(M) = n Ka ; 9 is a monomorpht sm. This shows that
a€I a

M/Ja(M) is cogenerated by U.

To ,prove minimality, suppose K~~1 and that h:~1/K+ITUa j s a monomorphism
a

where Ua€U for all aE I . Let n : M+M/ K he the canonical epimorphism and

na : n Ua~Ua the projection maps, aE I . By 4.3.4,
a

Ja(M) ~ h ker( na·h·n)~kerh· n = kern = K.
a

4.3.6 Corollary

The following are equivalent for a ring R and a torsion radical 0

on R-mod:

(i) RR is cogenerated by the class U = {RUIU is a simple, a-flat

R-modul e} .

(i i )

(i i i )

Proof

R is isomorphic to a subdirect .sum of simple; a-flat modules.

An easy consequence of 4.3.5.

4.3.7 Theorem

Ja is a r-ad i ca l i l t n the sense of [67]). That is, Ja is a suhfunctor

of the identity functor on R-mod and Ja(N/Ja(N)) = 0 for all modules N.
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Proof

(i) Let f:M+N be an R-homo~orphism. We show that f(Ja(M))~Ja(N).

Suppose U is simple and a- f l at and h£Hom(N,U).

By 4. 3 . 4, Ja nn = ' n {b? rgig£Hom(M, U); U simp 1e and a - f 1at} . Thus

if x£Ja(M), (h·f)(x) = 0 and therefore f( xhkerh. That is,

f(x)£ n {kerhlh£Hom(N,U), U is simple and a- f l at } = Ja(N).

(ii) Let N be any R-module and let M= N/Ja(N). Then, M/(O) is

cogenerated by U {Simple, a- f l at R-modules } (4.3.5). By the minimality

clause of 4.3.5, Ja(M) = o. That is, Ja(N/Ja(N)) = O.

4.3.8 Definition

,Let R be a ring and a a torsion radical on R-mod. We call a submodule

N of a module M a-pure-Bmal~ i n M iff whenever N+N I = M for a a-pure

submodule NI, of M we must hav~ NI = M. (Thus every small submodule is

a-pure-small).

4.3.9 Remarks

1. Ja(M) contains all the a- pure- smal l submodules of M.

Proof

Suppose N is a-pure-small in Mand K is a submodule of Msuch that

M/K is a-flat and simple. If N$K then by maximality of K, N+K = M. Since

K is a-pure in M, K = M. This is contradictory, hence N~K and therefore

N~Ja (~1) .

, 2. ' · Suppose R is a local ring. Then R is a- regul ar iff Ja(R) = RadR.
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Proof

Suppose Jo(R) = RodR. Then the un i ouajna x i ma l ideal of R is also

o- pU l~ei n R. By 3. 4 . 4, I~ i s 0 - r e ~J u1a Y' •

The other impl ication f ol l ows t r i vall y .

4.3.10 Remark

Ja(R) is a two-sided ideol of R and h~nce if Ja(R)fR then

Ja(R) ::: n [Ann UIU is a simple, a-flat R-module}.

Proof

That J 0 ( R) i S b·1O - S i de J f 01 1Ovlsdi re ~ ~1Y from 4. 3 . 7 ([ 67 ] ) .

Let , U be s i 111 P'I e Cl ncl 0 - f l a t, the n U is 'eye 1i c, 0 r the for 111 U ::: Hx (s ay ) .

Conversely if :t;(E:R) ann i H'i 1ate s every simple, o-fl at module and K

i s a 1eft ideal of R such t.hat R/K i s sirnrle onc! a-flat, then .1:(R/K) = 0

and hence xrK. ThlJs :l:E n lK~RIR/K is. si mp l e and o-flnt} ::: J a (R) .

'1.3.11 Remark

Let t~1iJ~E:I be a co l l ac t i nn of R..:mocJules. Then Jo(~~1i)
1

Proof

Follows from 4.3.7' (see [67]).
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Let R be a ring and u a torsion ·rRdi·cal on R-mod.

Ju(R).~1$Ja(M) for 011 R-modu1es M and 'i f P is a f.g., projective module,

Proof

That JaO\). t·1;:;Ju( M) for till R-moc.Jules M follows from 4.3.7 U.671)0

Suppo se , t .herefore, t ha t Pis a f. 'CJ . , proiec ti vc rnodu1 e. Thrn thp.re

exists a f.g. 1 free module F such that P(JJP' = F for sono p'~r. (Thus F = R(A)

for some finite set A).

11en ce J a ( PQ) P') = J (] (P) ID ~J 0 ( P') = J 0 ( I~ ( A)) :: (Ja' (f~ ) ) (A) (4. 3. 11 i. Sin ce

Ju(R) is a two-sided ideol of R (~.3.10)f Ja(R).R(A)~(Jo(R))(A).

Conversely, suppose (ai) ·jF.(Jo(R)){/\) and let inj:R+R(A) be the canonical

injections, jEI\. The~ tli.ini(l)€Ja(R).R(I'.) for all i. Henr:e

( a i ) i = La i . i ni ( 1)EJ a (f~ ) . rd A) . VI e havet here fore shownthat
i

(Jo(R),)~A) .:: ·Jo(R).R\A)( :: Ja:(R).F.). Hence, by the above, v-le have that

Jo(P)IDJo(P') :: Jo(fO.F$Jo(f\J.POJJo(R).P'.

" Let ,:J.~EJa(P), . then ,there ore elements aE:Jo(l~):P(~.Jo(P)) ancl

bEJO(R) .. P' (~JU(PI)) such that ~; :: a-b . Thus x-a = bE:Jo(P) n Jo(P') :: o.

That ; s a: :: a E:J 0 ( R) . P, pro v ; n9 the res u1t '.

11.3.13 Corollary

Let R be a van Neumann re qu l a r r i no and 0 a torsion radical on R-mod

such t hat every Id~o is f.g. Then JoUq =. O.
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Proof

By Theorem 4 of [32] every submodule of every R-module is Cohn pure

and therefore a-pure by 1.3.6.3. That is, R is a-regular and hence

Ja'( R') = Rad R = 0 ( si nce R is von Neumann regul ar (see [21 If).

4.3.14 Definition

Let R be a ring and 0 a torsion radi~al on R-mod. We call a module M

a-local iff M has () unique maximal submodule, wh i ch is also a-pure in M.

A ring R is called a-local iff R is a-local as a left R-module.

4.3.15 Theorem

The following are equivalent (for a ring R and a torsion radical a

on R-mod):

(i) Ja(R) is maximal and a- pure in R.

(ii) R has one and only one ideal which is both maximal and ~-pure

in R.

(iii) " Jo(R) is a-pure in R and every nonzero element of R/Jo(R) has

a left inverse.

(iv) Jo(R) is a-pure in Rand Jo,(R) = [xcRlx+Jo(R) has no left inverse}.

Proof

That (i) implies (ii) is clear frnm thr definition ~f Ja(M).

(ii) implies (iii): If (ii) holds then ' clearly Ja(M) is the unique

max ima l , a-pure ideal. If :J~+Ju(R)+O then x t J a ( R ) and by maximality,

Ja ( R)+Rx R. i-I enee ' t hp. re ex i st e1eInen t s r c Rand j £ J0 ( R) such t hat

1 = rx+j. From this it follows that l+Ja(R) = (r+Jo(R))(x+Ja(R)), provinq

(iii).



125

(iii) implies (iv): Suppose x+Ja(R) has no left inverse in R/Ja(R).

By (iii), x+Ja(R) = 0 and xE Ja (R) . Conversely, if xEJa(R), then clearly

x+Ja(R) ( = 0) has no left inverse in R/Ja(R). Hence Ja(R) = {xERlx+Ja(R)

h~s no left inverse in R/Ja(R)}.

(iv) implies (i): If xt Jo(R) then, by (iv), there is an r€R such that

rx+Ja(R) = l+Ja(R). Hence lERx+Ja(R), Ja(R)+Rx R and we have proved

that Ja(R) is maximal in R. Ja(R) is a- pure in R by (iv).

4.3.16 Theorem

Let R be a ring and a a torsion ·r~dical on R-mod. Then the following

are equivalent for a projective R-module .P:

(i) P is ·the projective cover of a simple, a-flat R-module.

(ii) Ja(P) is the unique maximal ~ small and a-pure submodule of P.

(iii) Ja(P) is small and maximal in P.

(iv) Ja(P)rP and if xE P - J a ( P ) ~ then Rx P.

(v) P is isomorphic to a direct summand of R, and P is a-local.

(vi) P is f.g. and a-1Qcal.

Proof
r

(i) implies (ii): Let O+K+P~M+O b~ a projective cover, where Mis

simple and a-flat.

Then P/K~M and by definition of Ja(P), Ja(P)~K. Since K«P,

K~L{S~PIS«P} = RadP~Ja(P). Thus Ja(P) = K and Ja(P) is therefore maximal,

small and a-pure in P.

If S is ~ny other maximal, a- pure submodule of P, then PIS is simple

and a-flat (by 3.5.1.6). Hence Ja(P)~S and by maximality of Ja(P),

Ja(P) = S. This proves uniqueness.

That (ii) implies (iii) is clear.



126

(iii) implies (iv): Since Ja(P) «P, Ja( P) t P. Let XE P- JO (P) . Since

Ja(P) is maximal in P, ~a(P) +Rx = P. Since Jo(P) «P, Rx = P.

(iv) implies (v): Let xcP- Jo (P) . By (iv). P = Rx~R/Annx. Since P

is projective, Annx is a direct summand of R and hence P is isomorphic

to a direct summ~nd of R.

If XEP-Ja(P) then (iv) implies that Ja(P)+Rx = P, hence Ja(P) is

maximal in P. Suppose Ja(P)+S P for a submodule S of P. If XE S- Ja (P) ,

then it follows from (iv) th at P Rx~S. Hence S = P and Ja(P) «P. Thus

Ja(P) ~L~K~PIK«P} = RadP and it follows that Ja(P) = RadP. This means

that RadP is maximal in P and hence P has a unique maximal submodule (which

is RadP = Jo(P)). Since P t Jo(P), this uniq ue ma ximal submodule must

be a-pure in P and hence P is a- l ocal.

It ~s easy to sep that (v) implies (~i).

(vi) implies (i): If (vi) holds then RadP is a maximal, a- pure submodule

of P. Since RadP~Jo(P), it f ol l ows that Rad P = Ja(P). (Thus Ja(P) is

maximal and a- pure in P). Furthe r, since P is f.g .• it follows that Ja(P)

(= RadP) is small in P (see 4.3.3(4)).

Hence P/J a(P) is a simple, a-f lat module and O+Ja(P) +P+P/J a(P) +O is

a projective cover, proving (i) . ·

4.3.17 Corollary

The following are equivalent for a r i ng R and a torsion radical a

on R-mod:

. (i) RR is a-local.

(ii) R is a- regul ar and local.

(iii) Ja(R) is maximal in R and if Mis a f.g. R-module and I is a

left ideal of R such th at I ~Ja(R), then I.M« M.

(iv) Ja(R) is small and maximal i n R.
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Proof

(i) implies (ii): If R is «- Tcca l then it has a unique maximal ideal

and is therefore local. Since this maximal ideal is a-pure in R, R is

a-regular by 3.4.4.

( i i) i r~p1i e s (i i i ): I f R i s a- re gufa r the n J a ( R) = Ra dR whi chi s a

ma xi ma1 i dea1 0 f R by (i i ) . The sec 0 nd par t 0 f (i i i) f 0 11ow s from Nakayama.'

Le mm Cl ( l 2], 15. 13 ), since Re dR = Ja ( R) .

(iii) implies (iv): If (iii) holds then Jo(R)$Ja(R).R«R. Ja(R) is

maximal by (iii).

That (iv) implies (i) follows from :4.3.16.

4.3.18 Examples

Let R be either a di :vision ring and let La = {O,R} or a local ring an:

L a = {R}. Then R is a o-regular, local r~ng and is therefore a a- l ocal

ring. It also satisfies the ~quivalent conditions of 4.3.15 and

4.3.16 (with P = R in the latter).

4.3.19 Remark

Sfnce it is -.easy to see that ep imorphi c images of local rings are

local and epimorphic i'maqes of a - r egul a r .rings are a-regular, it follows

from 4.3.17(ii) that epimorphic images of a- l oca l rings are a-local.

4.3.20 Theorem

Let R be a ring and 0 a torsion radi~al on R-mod. Then the following

are equivalent:

( i ) J a (~1) = 0 for all (1 eft) R- mo du1e s ~1.

(ii) (a) Injective hulls of simple, (a-flat) R-modules are simple

(and a-flat)and

(b) Every nonzero -Rvmodu l e has a simple, a-flat eo tmo rnh i c image.
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(iii) (a) RadM = 0 for every (left) R-module M (i.e. R is a (left)

V-ring ([ 20] )) and

(b) Every nonzero R-module has a simple, a-flat epimorphic image.

(iv) (a) Every left ideal of R is the intersection of maximal, a-pure

left ideals of Rand

(b) Every nonzero R-module has a simple, a-flat epimorphic image . .

Proof

(i) implies (iv): (a) Let I be a left ideal of R. By (i), Ja(R/I) O.

Let Mill be the ideals of R/I such that (R/I)/(Mi/I)~R/Mi is simple and

a-flat. Then each Mi i? maximal and a-pure in R and from 0 = Ja(R/I) = n Mill
i

it follows that 1= 0 Mi' proving (iv)(a).
1

(b) Suppose RM t- O. By (i), Ja"U1) = O. By Lemma 4.3.5, there
. .

are simple, a~flat modules Uj and an embedding a:r~~Uj. Let TIk:~Uj~Uk

be the projection maps. Since ~1 :f 0, (TIj'a)(M) :f 0 for at least one j.

Since Uj is simple, ( llj'a){r~) = Uj and Uj is therefore a .simp l e , a-flat

epimorphic image of M.

(iv) implies (iii): If (iv) holds then certainly every t deaLof R

is the intersection of m~ximal ideals of R and by Theorem 7.32A of [20],

RadM 0 Tor all R-modules M.

(iii) implies (ii): 'By Theorem 7.32Aof [20], if (iii) holds then

every simple module is injective 3nd this clearly means that (ii)(a) holds.

(ii) implies (i): Let Mbe any R-module and suppose Ja(M) :f O. By

(ii)(b), there is a (proper) submodule K of Ja(M) such that Ja(M)/K is

simple and a-flat. By (ii)(a), F = E(Ja(M)/K) is simple and a-flat.

By injectivity of F, there is a map a:~~F such that the diagram
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F=E(Ja(M)/K)

commutes, (where k,~ are the inclusion maps "and TI is the canonical

epimorphi sm) .

Since K "I J0 ( M), a t- 0 and by s imp1i city 0 f F, i met = F. Thus

~1/kera ~ima is simple and a- f l at . Bv definition, Ja(Mh;keret. ThlJS

o = rdJo(M)) = lr(J a(M)) which is contradictor.v. Hence Ja(M) = 0 proving (i).

4.3.21 Remark

The following are equivalent for a ring R and a torsion radical a

on R-niod:

(a) Ja(M) = 0 for all .a- f l at R-modules M.

(b) Every a-pure submodule of a a- f l at R-module Mis an

intersection of maximal, a-pure submodules of M.

Proof

Using 3.5.1.6 the proof follows lines similar to those in 4.3.20.

4.3.22 Theorem

Let R be a ring and a a torsion radical on R-mod. Then the following

are equivalent:



( i )

( i i )

( t i i \

(iv)

Cv)
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M/Jo(M) is semisimple for all R-modules M.

R/Jo(R) is (left) Artinian.

R/Ja(R) is a direct sum of finitely many simple, a-flat R-modules.

R/Jo(R) is semisimple.

A direct product of simple, a-flat R-modules is semisimple.

S = R/Ja(R) is a T- per f ect ring for all torsion radicals T on

S-mod such that every IELT is f.g.

Proof

(i) implies (ii): If (i) holds then R/Ja(R) is semisimple and therefore

Artinian.

( i i ) imp1i es (i i i ): Let S = R/ J0 ( R) . By 4. 3. 5, S can beembedded

in a direct product of simple, a- f l at R-~odules, Si (say). Since S is

Arti~ian, by (ii), S is finitely cogener~ted by Proposition 10.10 of [2].

Hence S can be embedded in a direct sum of finitely many of the Si. It

then follows that S is itself a direct sum of finitely many simple,

a-flat R-modules ([45], Theorem 5.4).

That (iii) implies (iv) is clear.

(iv) implies (v): Let {Mi:i EI} be a collection of simple, a-flat

R-modules, and let M= ijMi. By 4.3.10, Jd(R).M = 0 and hence Mis an R/Jo(R)
1

module. (If (iv) ho l ds 'then Jo(R) ., R). By (iv), R/Ja(R) is semisimple

and hence t·1 is a semi suiip t e R/Ja(R) module ([ 45J, Theorem 5.1}. But any

simple R/Jo(R) submodule of M is also simple as an R-module and hence M

is semisimple as an R-module, proving (v).

(v) implies (i): Let ~1 be any R-modu 'le. By 4.3.5, M/JaUrl) can be

embedded in a direct product of simple, a~ f l a t R-modules, which is

semisimple by (v). Hence (i) follows.
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That (i) implies (vi) is clear.

(vi) i~plies (iv): Suppose T is a torsion radical on S-mod such that

every JEL T is f.g. (We may take LT = {S}; if necessary). By 1.3.6.3,

flat S-modules are T-flat and hence projective, (since S is T-perfect,

by assumption). That is, S is a oerfect ring and by Theorem 28.4 of [2],

S/RadS is a semt s i mp l e S-module. But RadS~ ,J(j(S) = 0 and therefore S is

a ssmts tmp l e S-module. Since Ja(R).S = 0 ·i t follows that S is also

semisimple as an R-module, provin9 (iv).

4.3.23 Corollary

If R is n left Artinian ring and R-mod admits a torsion radical a

such that Ja(R) = 0, then R is semisimple.

4.3.24

1.

Examples

Let R be a commutative, von Neumann-regular ring and a a torsion

radical on R-mod such that every IEL a is f.g. (see e.g. 3.4.9(2)). Then

the equivalent conditions Of , 4. 3. 20 are valid for (R,a).

Proof

By Theorem 6 of [60], R is a (left) V-ring. Hence if Mis any nonzero

module~ RadM = 0 = n 1K~MIK is maximal in .M} and hence there is an

embedding o::M+ijSi where the S' are simple. R-modules.
1 1

It follo\'ls as in

the proof of 4.3.20 that one of the Si is an epimorphic image of M. By

1.3.6.3, R is a-regular and hence Si is a simple, a-flat epimorphic image

of 'M. Hence 4.3.20(iii) is valid for (R,a).

2. Let R be any perfect ring and a any torsion radical on R-mod.

Then the ' equivalent conditions of 4.3.22 are valid for (R,a).
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Proof

By Theorem 28.4 of [2], R/RadR t s semt simp l e . But R/Jo(R) i s an

ep;morph;c image of R/RadR and hence R/Jo(R) is semisimple ([45],

Theorem 5.4).
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