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Abstract 
 

Recalcitrant unlike orthodox seeds do not show a sharp border between maturation and germination 

and remain highly hydrated and desiccation-sensitive at all developmental and post-harvest 

stages. In contrast with recalcitrant seeds, orthodox types retain viability for predictably long 

periods in the dry state and hence can be stored under low relative humidity and temperature 

conditions. Storage of recalcitrant seeds under conditions allowing little to no water loss, at 

moderate temperatures, allows for short- to medium-term storage but only facilitates viability 

retention for a matter of a few weeks to months, at best, because the seeds are metabolically 

active and initiate germination while stored. Cryopreservation, i.e. storage at ultra-low 

temperatures (usually in liquid nitrogen [LN] at -196°C), is a promising option for the long-term 

germplasm conservation of recalcitrant-seeded species but their seeds present some unavoidable 

difficulties in terms of the amenability of their germplasm to cryopreservation. Pre-conditioning 

treatments can reduce the amount of ‘free’ water available for freezing and may increase the 

chances of cells or tissues surviving exposure to cryogenic temperatures. Such conditioning may 

be imposed by physical dehydration or cryoprotection, i.e. exposure to compounds that depress 

the kinetic freezing point of water and so reduce the likelihood of lethal ice-crystal formation 

during cooling (i.e. exposure to LN at -196°C or sub-cooled LN at -210˚C) and subsequent 

thawing. Partial dehydration is presently a standard pre-treatment for the cryopreservation of 

recalcitrant zygotic germplasm and explant cryoprotection has been shown to improve post-

thaw survival in some recalcitrant-seeded species. However, there is a paucity of information on 

the physiological and biochemical basis of post-thaw survival or death in recalcitrant seeds, and 

this is the major focus of the current contribution. Additionally, in light of the lack of 

understanding on how cryo-related stresses imposed at the embryonic stage are translated or 

manifested during subsequent seedling growth, this study also investigated the effects of partial 

dehydration and the combination of partial dehydration and cooling of recalcitrant zygotic 

embryos on subsequent in and ex vitro seedling vigour. All studies were undertaken on the 

zygotic embryos of two recalcitrant-seeded members of the Amaryllidaceae, viz. Amaryllis 

belladonna (L.) and Haemanthus montanus (Baker); both of which are indigenous to South 

Africa. 

 Studies described in Chapter 2 aimed to interpret the interactive effects of partial 

dehydration (rapidly to water contents > and <0.4 g g-1), cryoprotection (with sucrose [Suc; non-

penetrative] or glycerol [Gly; penetrative]) and cooling rate (rapid and slow) on subsequent 

zygotic embryo vigour and viability, using three stress markers: electrolyte leakage (an indicator 

of membrane integrity); spectrophotometric assessment of tetrazolium chloride-reduction (an 
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indicator of respiratory competence); and rate of protein synthesis (an indicator of biochemical 

competence). These studies showed that in recalcitrant A. belladonna and H. montanus zygotic 

embryos, stresses and lesions, metabolic and physical, induced at each stage of the 

cryopreservation protocol appear to be compounded, thus pre-disposing the tissues to further 

damage and/or viability loss with the progression of each step. Maximum post-thaw viability 

retention in both species appeared to be based on the balance between desiccation damage and 

freezing stress, and the mitigation of both of these via Gly cryoprotection. Post-thaw viabilities 

in both species were best when Gly cryoprotected + partially dried zygotic embryos were 

rapidly, as opposed to slowly, cooled. However, the rate at which water could be removed 

during rapid drying was higher in A. belladonna and this may explain why the optimum water 

content range for post-thaw survival was <0.40 g g
-1 
for A. belladonna and >0.40 g g

-1 
for H. 

montanus. These results suggest that to optimise cryopreservation protocols for recalcitrant 

zygotic germplasm, attention must be paid to pre-cooling dehydration stress, which appears to 

be the product of both the ‘intensity’ and ‘duration’ of the stress.  

Cryoprotection and dehydration increased the chances of post-thaw survival in A. 

belladonna and H. montanus zygotic embryos.  However, transmission electron microscopy 

studies on the root meristematic cells from the radicals of these embryos (described in Chapter 

3) suggest that their practical benefits appear to have been realised only when damage to the 

sub-cellular matrix was minimised: when (a) pre-conditioning involved the combination of 

cryoprotection and partial dehydration; (b) the cryoprotectant was penetrating (Gly) as opposed 

to non-penetrating (Suc); and (c) embryos were rapidly cooled at water contents that minimised 

both dehydration and freezing damage. 

 The ability of A. belladonna and H. montanus embryos to tolerate the various 

components of cryopreservation in relation to changes in extracellular superoxide (
.
O2

-
) 

production and lipid peroxidation (a popular ‘marker’ for oxidative stress) was investigated in 

studies featured in Chapter 4. Pre-conditioning and freeze-thawing led to an increase in 

oxidative stress and the accompanying decline in viability suggests that oxidative stress was a 

major component of cryoinjury in the embryos presently investigated. Post-thaw viability 

retention in Gly cryoprotected + partially dried embryos was significantly higher than non-

cryoprotected + partially dried embryos, possibly due to the relatively lower post-drying lipid 

peroxidation levels and relatively higher post-drying and post-thawing enzymic antioxidant 

activities in the former. 

Exposure of certain plant tissues to low levels of oxidative or osmotic stress can improve 

their tolerance to a wide range of stresses. In contrast, exposure of H. montanus zygotic 

embryos to low levels of oxidative stress provoked by exogenously applied hydrogen peroxide 
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(H2O2) or exposure of A. belladonna embryos to low levels of osmotic stress provoked by low 

water potential mannitol and polyethylene glycol solutions (in studies featured in Chapter 5) 

increased their sensitivity to subsequent dehydration and freeze-thaw stresses. Exposure of Gly 

cryoprotected and non-cryoprotected amaryllid embryos to such stress acclimation treatments 

may pre-dispose A. belladonna and H. montanus embryos to greater post-drying and post-thaw 

total antioxidant and viability loss than untreated embryos. 

To assess the vigour of seedlings recovered from partially dried H. montanus embryos, 

seedlings recovered from fresh (F) and partially dried (D) embryos in vitro were hardened-off ex 

vitro, and subsequently subjected to either 42 days of watering or 42 days of water deficit (in 

studies described in Chapter 6).  In a subsequent study (described in Chapter 7), seedlings 

recovered from fresh (F), partially dried (D) and cryopreserved (C) A. belladonna embryos were 

regenerated in vitro, hardened-off ex vitro and then exposed to 12 days of watering (W) or 8 

days of water stress (S) followed by 3 days of re-watering. Results of these studies suggest that 

the metabolic and ultrastructural lesions inflicted on A. belladonna and H. montanus zygotic 

embryos during cryopreservation may compromise the vigour (e.g. development of persistent 

low leaf water and pressure potentials and reduced photosynthetic rates) and drought tolerance 

of recovered seedlings, compared with seedlings recovered from fresh embryos. While the 

adverse effects of freeze-thawing were carried through to the early ex vitro stage, certain 

adverse effects of partial drying were reversed during ex vitro growth (e.g. the increased relative 

growth rate of seedlings from partially dried embryos). The reduced vigour and drought 

tolerance of seedlings recovered from partially dried and cryopreserved embryos in the present 

work may therefore disappear with an extension in the period afforded to them for hardening-off 

under green-house conditions, and in the field. 

The results presented in this thesis reinforce the notion that each successive manipulation 

involved in the cryopreservation of recalcitrant zygotic germplasm has the potential to inflict 

damage on tissues and post-thaw survival in such germplasm relies on the minimisation of 

structural and metabolic damage at each of the procedural steps involved in their 

cryopreservation. The results also highlight the need to design research programmes aimed not 

only at developing protocols for cryopreservation of plant genetic resources, but also at 

elucidating and understanding the fundamental  basis of both successes and failures. 
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CHAPTER ONE:  

General Introduction and Study Rationale 
 

1.1 Plant biodiversity  

 Biodiversity, defined as the sum of the taxonomic, ecological and genetic variety of all life on 

earth or within a particular habitat (Lovejoy, 1996), is under severe pressure from human 

activities (Paunescu, 2009). The Food and Agricultural Organisation (FAO, 2001) reported that 

with global forest cover shrinking at a rate of 9 million hectares per year, up to 100,000 plant 

species (more than one third of all the world’s plant species) are currently threatened or face 

extinction (Botanic Gardens Conservation International [BGCI], 2005). This is a global 

phenomenon but the rate of loss of floral biodiversity appears to be particularly alarming in 

Africa; this has been variously attributed to one or more of: civil war; wild fires; invasive aliens; 

conversion of land for agriculture and silviculture; poor land management; urbanisation; non-

sustainable harvesting for food; medicine; fuel and construction; overgrazing; displacement and 

loss of landraces; pests and diseases; pollution; and incomplete knowledge of the biology (e.g. 

reproductive and adaptive abilities) of many plant species (Eneobong, 1997; Geldenhuys, 2000). 

Also, pressure placed on wild plant populations by the global market for medicinal plants has 

lead to diminishing populations of numerous wild species (World Wildlife Fund, 2009). The 

World Wildlife Fund (WWF, 2009) has identified China and India as being two of the largest 

markets for medicinal plants but it is believed that the extent of the African medicinal plant 

trade is grossly under-estimated (van Wyk et al., 1997; von Ahlefeldt et al., 2003). Additionally, 

climate change over the past ∼30 years has been associated with numerous shifts in the 

distribution and abundance of plant species (Thomas et al., 2004) and even been implicated in 

species-level extinction (Pounds et al., 1999). However, responsiveness of plant species to 

recent and past climatic changes suggests that anthropogenic activities could represent a major 

cause of extinctions in the near future, with the Earth set to become warmer than at any other 

period in the past  1 - 40 million years (Thomas et al., 2004). 

 However, a global strategy for plant conservation, viz. the Convention on Biological 

Diversity (1993), was developed to halt the loss of plant biodiversity systematically. This 

strategy involves understanding, documenting, conserving and generating awareness around 

plant biodiversity, implementing its sustainable use and building infrastructure and human 

capacity for the conservation of this diversity. Some of the targets identified by this strategy 

include: protection of 50% of the globe’s priority areas of plant diversity; conservation of 70% 

of the genetic diversity of crop and other socio-economically important plant species; 

conservation of 60% of the world’s threatened species in situ; and safeguarding 60% of 
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threatened species in accessible ex situ collections (of which 10% should be directed towards 

recovery and restoration programmes). 

Germplasm is defined as the total genetic diversity of a species encompassing both 

cultivated and wild varieties (Ford-Lloyd and Jackson, 1991) and an increasing number of 

agencies  have adopted germplasm conservation as part of their mandate (Ashmore and Drew, 

2005). Additionally, biotechnology, i.e. the use of living organisms or parts thereof to 

manufacture or modify a product, develop microorganisms for specific uses, or improve plants 

or animals (Uyoh et al., 2003), has become an important component of contemporary 

germplasm conservation efforts (Berjak and Pammenter, 2004a; Paunescu, 2009).  

 

1.2 Plant germplasm conservation 

Plant genetic resources may be conserved in situ or ex situ. In situ conservation encompasses the 

maintenance of plants in their native environments, e.g. in nature reserves or national parks, 

allowing for the evolution of species in their natural habitats, or in the case of domesticated 

species, in the surroundings where they have developed their distinctive properties (Ford-Lloyd 

and Jackson, 1991; Krøgstrup et al., 1992; Shands, 1993; Meilleur and Hodgkin, 2004). In the 

context of in situ conservation there are a number of social and economic factors that need to be 

considered including the availability of a sufficient number of individuals to maintain viable 

populations, the availability of land, and maintenance costs of natural reserves (Berjak et al., 

1996). In situ conservation is perhaps the best way of biodiversity preservation but to allow 

plant material to be readily available for research, breeding and in vitro and long-term 

conservation, this must operate in tandem with ex situ conservation.  

Ex situ conservation refers to the conservation of components of biological diversity outside 

their natural habitats and includes: field genebanks; arboreta and botanical gardens; seed, pollen 

and DNA storage; and in vitro storage. Some of these practices are labour- and/or land-intensive 

(Maxted et al., 1997). A key requirement for this type of conservation is the acquisition of 

genetically representative populations or samples. Ideally, for successful ex situ storage the 

diversity within a species should be determined before germplasm collection is carried out, so 

that the sample size accommodates for this (Krøgstrup et al., 1992; Berjak et al., 1996; 

McFerson, 1998). For any given gene pool, a number of complementary approaches and 

methods are necessary for its efficient, cost-effective and safe conservation (Benson, 2008a). 

Most plant species are presently conserved using one or more of the five distinct germplasm 

types: (1) cultivars in current use; (2) obsolete cultivars; (3) special genetic stock such as those 

with induced mutations; (4) primitive varieties; and (5) related wild species (Wilkins and 

Dodds, 1983). While the method of preservation employed is dictated by the cellular and 



 

 

3 

metabolic nature of the tissue or organ selected, ex situ germplasm acquisitions are stored as 

either active or base collections (Krøgstrup et al., 1992).  

Active collections refer to those that are readily available for distribution and require 

methods of storage that retain the viability of samples for short (a few weeks) to moderate 

(several years) periods. Currently, most active collections around the world consist of orthodox 

seeds, which are dried and stored at temperatures above 0°C but below 15°C, and are 

periodically removed for regeneration, multiplication, characterisation, evaluation, or 

distribution (Krøgstrup et al., 1992; Watt et al., 2000). Ex situ collections of living plants 

growing under field or nursery conditions are often referred to as ‘field gene banks’. These are 

generally placed within the category of active gene banks and are used for material which would 

be difficult to maintain as seed, e.g. species with desiccation-sensitive seeds (Guarino et al., 

1994).  

A base collection functions for long-term (decades) conservation of germplasm which is not 

intended for extensive distribution, but serves as back up for active collections. Base collections 

have traditionally been comprised of accessions of orthodox (i.e. desiccation-tolerant [Roberts, 

1973]) seeds dried to low water content (WC), sealed in airtight containers and stored at low 

temperatures (usually 0°C to -20°C), often for decades (Ford-Lloyd and Jackson, 1991; 

Krøgstrup et al., 1992; Guarino et al., 1994; Rao et al., 2006). Accessions from base collections 

are removed only: (1) for regeneration, to assess whether their viability has declined to below an 

acceptable standard; (2) to provide material for an active collection for regeneration, when 

stocks held by the active collection are more than two or three regeneration cycles removed 

from the original material; and (3) when stocks of an accession can no longer be obtained from 

an active collection (Guarino et al., 1994). 

 

1.2.1 Seed storage 

Seed storage is widely regarded as the most efficient and cost-effective means of ex situ plant 

germplasm conservation, being used for the majority of accessions maintained world-wide 

(International Board for Plant Genetic Resources [IBPGR], 1976; Withers, 1988; Vertucci and 

Roos, 1990; Hong and Ellis, 1996; Engels and Engelmann, 1998). Since each seed represents a 

genetically unique individual, stored seeds are ideal for re-establishing wild populations of 

threatened taxa, especially when the sample size and collection methods employed ensure a 

genetically representative sample (Frankel, 1990; McFerson, 1998). However, seed storage 

cannot be applied to all plant species with the same efficacy since post-harvest behaviour of 

seeds, which determines the most suitable method of conservation, differs. These differences are 

reflected in the categorisation of seeds as orthodox, recalcitrant (Roberts, 1973) and 
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intermediate (Ellis et al., 1990a; 1991), based on their physiological responses to dehydration, 

and storage relative humidity (RH) and temperature, as determinants of longevity.  

Based on their desiccation tolerance, orthodox seeds can generally be dried without damage 

to water (moisture) contents of c. 0.05 g H2O per g dry mass (dmb; g g-1) (Roberts, 1973; Chin 

and Roberts, 1980; Hong and Ellis, 1996), which is generally lower than those achieved in the 

field where WC of mature seeds equilibrates to ambient RH (Roberts, 1973; Bewley and Black, 

1994).  At low WCs and at temperatures of  -18°C to -20°C (King and Roberts, 1980; Rao et al., 

2006), or even as low as -150°C to -196°C (Walters and Engels, 1998; reviewed by Pritchard 

and Nadarajan, 2008), high quality orthodox seeds can be stored for decades with little viability 

loss. Examples include: rice, millet and peanut (Hu et al., 1998), sesame and soybean (Chai et 

al., 1998), cucumber (Zeng et al., 1998), wheat (Stefani et al., 2000) and rye (Specht and 

Börner, 1998), all of which were stored at low but not cryogenic temperatures, and lettuce 

(Walters et al., 2004, 2005) which was stored at cryogenic temperatures. 

Ellis and Roberts (1980) suggested that the period for which high quality orthodox seeds 

can be stored without loss of viability is predictable from the storage temperature and seed 

moisture content, with storage longevity increasing logarithmically with decreasing water 

(moisture) content. However, there appear to be limits of dehydration below which no further 

advantage is gained (Ellis et al., 1986, 1990b) and, in fact, if exceeded, may be damaging 

(Vertucci and Roos, 1990, 1993; Walters, 1998; Walters and Engels, 1998; Buitink et al., 2000). 

(It must be noted though, that there is not unanimity about this [e.g. Hong et al., 2005]). 

Deterioration of ultra-dry (0.01 - 0.05 g g-1) stored seeds (manifested as a decline in vigour and 

viability) may be based on the fact that water is not only the suspension medium within cells, 

but also a structural component of proteins and other macromolecules (Bernal-Lugo and 

Leopold, 1992); for successful ultra-dry storage removal of this structure-implicated water 

should be avoided (Walters and Engels, 1998).  

Although seeds of most commercial crop species exhibit orthodox post-harvest seed 

behaviour, conventional crops constitute less than 0.1% of all higher plants and as seed biology 

studies are extended, seed recalcitrance is encountered in an increasing number of species 

(Berjak and Pammenter, 2001). The phenomenon has been found to occur in hardwoods of 

tropical provenance (e.g. Trichilia spp. [Choinsky, 1990]; Shorea spp. [Krishna and Naithani, 

1998]; Artocarpus heterophyllus [Chin and Roberts, 1980; Fu et al., 1993; Wesley-Smith et al., 

2001a]) and temperate species (e.g. Quercus spp. [Connor and Sowa, 2002]); mangroves (e.g. 

Avicennia marina [Farrant et al., 1989]); tropical crop plants (e.g. Theobroma cacao [Li and 

Sun, 1999]; Persea americana [Raja et al., 2001]); Hevea brasiliensis [Berjak et al., 1989]); 

various monocotyledonous species (e.g. Cocos nucifera [Chin, 1978]; Zizania palustris [Probert 
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and Longley, 1989], including several amaryllid species [Sershen et al., 2008a]). Some 

gymnosperms (e.g. Araucaria spp. [Tompsett, 1984]; Podocarpus henkelii [Farrant et al., 1989; 

Mbamezeli and Reynolds, 2002] and Encephalartos spp. [Woodenberg, 2009]) also produce 

recalcitrant propagules.  

Recalcitrant seeds are sensitive to desiccation (Roberts, 1973; Chin and Roberts, 1980), 

freezing (for reviews see Walters et al. 2008; Berjak and Pammenter, 2008) and very often to 

chilling, in some cases at temperatures ≈15°C (Berjak et al., 1995). This precludes their 

maintenance under conventional storage conditions as developed for orthodox seeds (e.g. King 

and Roberts, 1980; Farrant et al., 1989; Kioko et al., 1993; Sershen et al., 2008b; Wen, 2009). 

At present, the only conditions under which recalcitrant seeds can be stored in the short- to 

medium-term is by maintenance of their WC as close to that at shedding, at ambient or slightly 

reduced temperatures (referred to as ‘hydrated-storage’ from here on [e.g. Berjak, 1989; Kioko 

et al., 1993; Eggers et al., 2007]). However, under these conditions recalcitrant seeds initiate 

germination-associated events (Berjak, 1989; Bonner, 1990; Kioko et al., 1993; Pammenter et 

al., 1994; Motete et al., 1997; Berjak and Pammenter, 2004a & b; Sershen et al., 2008b), 

culminating in intracellular changes, including extensive vacuolation, and the initiation of cell 

division (Berjak, 1989). At this stage additional water is required and as this is not supplied in 

storage, the seeds are exposed to an initially mild, but increasingly severe, water stress 

(Pammenter et al., 1994, 1997). The deleterious events associated with this stress, which include 

unbalanced metabolism and the consequential generation of damaging free-radicals, culminate 

in seed death (Dussert et al., 2006; Ratajczak and Pukacka, 2006). Storage at temperatures 

lower than ambient can postpone the onset of germination by slowing down metabolic rate in 

recalcitrant seeds (e.g. for Araucaria hunsteinii [Pritchard et al., 1995a]), provided that the 

seeds are not chilling-sensitive. However, even then, storage longevity generally ranges from a 

few weeks to months (e.g. for Scadoxus membranaceus and Landolphia kirkii [Farrant et al., 

1989]; A. hunsteinii [Pritchard et al., 1995a]; Symphonia globulifera [Corbineau and Côme, 

1986, 1988]; Azadirachta indica [Nayal et al., 2000; Neya et al., 2004]; Quercus spp. [Connor 

and Sowa, 2002]; and various amaryllid species [Sershen et al., 2008b]). Where seeds can be 

stored for more extended periods, it is most likely a consequence of their being shed relatively 

immature and continuing development before germination is initiated (Berjak et al., 1989; 

Woodenberg, 2009). Hydrated storage lifespan of recalcitrant seeds is often further curtailed by 

the proliferation of a spectrum of fungi (Pongapanich, 1990; Mycock and Berjak, 1990; Calistru 

et al., 2000; Sutherland et al., 2002), even when seeds are treated with fungicidal agents 

(Mycock and Berjak, 1995; Berjak, 1996).  
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In vitro storage, i.e. the employment of tissue culture, by which cells, tissues or organs are 

excised from parent plants, decontaminated and thereafter transferred to artificial growth media 

in vitro (Krøgstrup et al., 1992; George, 1993; Mandal et al., 2000), represents another short- to 

medium-term germplasm storage option for recalcitrant-seeded species. Media can be 

manipulated to produce different cultures such as unorganised, undifferentiated callus or 

organised tissues and organs that can be converted into plantlets in the next phase of 

regeneration. Storage of actively growing cultures, minimal-growth storage and 

cryopreservation are the three basic approaches to in vitro storage of plant germplasm, and their 

application to seeds and seed-derived germplasm is discussed below. 

Minimal-growth storage, which involves exposing cultures to factors that limit growth, has 

been successfully applied to recalcitrant seed germplasm (e.g. Chin, 1996; Sershen et al., 

2008b). Variations to impose minimal growth include reductions in nutrients (e.g. Schnapp and 

Preece, 1986) and/or sucrose concentration (e.g. Kartha and Engelmann, 1994) in the growth 

medium, alterations to the osmotic potential of the culture media (using osmotica such as 

mannitol [e.g. Zandvoort et al., 1994]), or the addition of plant growth regulators such as 

abscisic acid (ABA) (e.g. Jarret and Gawel, 1991; Taylor et al., 1996). Lowering the partial 

pressure of oxygen, with temperature (between 0°C and 10°C [e.g. Blakesley et al., 1996; 

Bonnier et al., 1997]) or light (e.g. Grout, 1995) to below optimum in the culture environment, 

can also limit in vitro growth. However, irrespective of whether germplasm is stored in vitro as 

actively growing cultures (e.g. Krøgstrup et al., 1992) or as minimal-growth cultures (e.g. 

Schnapp and Preece, 1986), such storage will at some stage require the transfer of material onto 

new media (Krøgstrup et al., 1992; Mandal et al., 2000, Mycock et al., 2004), introducing the 

risk of contamination. Surviving, uncontaminated material can potentially be rapidly 

micropropagated to bulk up reserves (Razdan and Cocking, 1997; Mandal et al., 2000) but such 

clonal propagation, apart from being labour intensive and expensive, limits biological diversity 

within the collection and can impose selection pressures and environmental stresses, resulting in 

plants with genetic modifications (Reed and Chang, 1997; Staritsky, 1997). Like all tissue 

culture techniques clonal propagation introduces the risk of somaclonal variation during culture 

(Ashmore, 1997; Panis and Lambardi, 2006) but the use of organised systems such as embryos, 

meristems and shoot tips could reduce this risk (Ford-Lloyd and Jackson, 1991; Krøgstrup et al., 

1992; Berjak et al., 1996; Engelmann, 1997; Mandal et al., 2000).  

Conventional in vitro storage and seed banking techniques are unsuitable for the long-term 

storage of the genetic resources of recalcitrant-seeded species and other methods of germplasm 

conservation are required. To date, the most promising method for the long-term storage of 

recalcitrant seed germplasm appears to be cryopreservation (Normah et al., 1986; Withers, 
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1988; Berjak et al., 1999a; Engelmann, 1999, 2004; Walters et al., 2008). Cryopreservation 

involves the cooling of biological material to, and subsequent storage at, ultra-low temperatures 

- generally in liquid nitrogen (LN) at -196°C, the vapour above LN at c. -150°C or, less ideally, 

at some temperature below -80°C (Finkel and Ulrich, 1983; Withers, 1988; Kartha and 

Engelmann, 1994; Berjak et al., 1999a). Cryopreservation is regarded as the ultimate long-term 

storage approach since it is believed to arrest metabolic activity and deterioration, thus 

minimising, if not precluding, genetic changes (Krøgstrup et al., 1992; Krishnapillay, 2000; 

Lynch, 2000; Kioko et al., 2003; Engelmann, 2004; reviewed by Harding, 2004). 

 The absence of water that readily freezes and causes irreversible damage in cells (Burke et 

al., 1976; Levitt, 1980; Stanwood, 1985) has facilitated successful cryopreservation of the dry 

seeds of a number of orthodox-seeded species (Walters et al., 2005; reviewed by Pritchard and 

Nadarajan, 2008). However, recalcitrant seed germplasm must remain partially hydrated, yet be 

stored under conditions that preclude ice-crystal formation: in terms of the well documented 

desiccation and freezing sensitivity of recalcitrant seeds, cryopreservation of zygotic embryos or 

embryonic axes from such seeds remains a challenge (Berjak et al., 1996, 1999a; Dumet et al., 

1997; Engelmann, 2004, 2009). Nevertheless, considerable success has been achieved in terms 

of excised zygotic embryos and axes of a variety of amaryllid species (Sershen et al., 2007). The 

current studies go further, to investigate factors influencing vigour and viability after 

cryopreservation of whole zygotic embryos (i.e. embryonic axis with intact cotyledon), excised 

from recalcitrant seeds of two members of the Amaryllidaceae, viz. Amaryllis belladonna (L.) 

and Haemanthus montanus (Baker). To contextualise the studies described in later chapters, at 

this juncture the post-harvest responses and desiccation tolerance/sensitivity associated with 

orthodox and non-orthodox seeds are reviewed. 

 

1.3 Post-harvest seed behaviour  

In orthodox seeds tolerance to desiccation is acquired during development (Berjak et al, 1989; 

Vertucci and Farrant, 1995; Pammenter and Berjak, 1999) which is characterised by three 

phases, viz., histodifferentiation, reserve deposition and maturation drying (Bewley and Black, 

1994; reviewed by Kermode and Finch-Savage, 2002). Undifferentiated cells divide during the 

phase of histodifferentiation, developing function-specific tissues. During the deposition phase, 

reserves in various forms are accumulated in the endosperm, or ultimately in the cotyledons, 

providing nutrients that serve to sustain seedling development (Bewley and Black, 1994). Dry 

and fresh mass of orthodox seeds increases during the first two phases and while the duration of 

the period of dry matter accumulation varies among species, it always ends when the vascular 

connection between the parent plant and seed are severed at physiological maturity (Kermode 
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and Finch-Savage, 2002). At this stage of physiologically maturity, which coincides with the 

attainment of maximum dry mass, the seeds undergo metabolic shutdown accompanied by a 

loss of water (and hence fresh mass) as part of the maturation drying phase (Vertucci and 

Farrant, 1995; Kermode and Finch-Savage, 2002). Orthodox seeds acquire desiccation tolerance 

during development prior to maturation drying and are shed from the parent plant usually upon 

completion of all three phases, remaining quiescent until water becomes available for 

germination (Farrant et al., 1993; Vertucci and Farrant, 1995; Kermode and Finch-Savage, 

2002). Metabolic events associated with germination are not triggered in the dry state, and non-

dormant orthodox seeds will germinate only upon imbibition, providing that environmental 

conditions are favourable (Bewley and Black, 1994).  

Recalcitrant-seeded species, which appear to be most common in tropical to sub-tropical 

regions, produce highly hydrated seeds that are intolerant to desiccation and may be sensitive to 

low temperatures (Roberts, 1973; Chin and Roberts, 1980; King and Roberts, 1980; Berjak, 

1989; Pammenter and Berjak, 1999; Berjak and Pammenter, 2008; Wen, 2009). The final phase 

of orthodox seed development, maturation drying, is absent in recalcitrant types and these seeds 

are shed wet and metabolically active (Berjak et al., 1989; Farnsworth, 2000; Kermode and 

Finch-Savage, 2002); they remain so throughout their development, although rate of metabolism 

may be lowest immediately prior to shedding (Berjak et al., 1989; Farrant et al., 1989). The WC 

of recalcitrant seeds at shedding has been found to be in the range of 0.3 - 4.0 g g-1, varying by 

species, but also inter-seasonally (Chin and Roberts, 1980; Pritchard et al., 1999; Berjak and 

Pammenter, 2004b). 

 

1.3.1 Seed responses to desiccation  

Desiccation tolerance is defined as the ability of biological material to dry to equilibrium with 

atmospheric RH and resume normal functioning upon rehydration (Alpert and Oliver, 2002; 

Phillips et al., 2002; Berjak, 2006). Desiccation-tolerant organisms, or life-cycle stages of an 

organism, generally survive for protracted periods at tissue WCs in the range 0.05 - 0.15 g g-1 

(reviewed by Berjak, 2006; Berjak et al., 2007). While response to desiccation is probably the 

major factor differentiating orthodox from recalcitrant seeds, the categories orthodox and 

recalcitrant (Roberts, 1973) have been suggested to account for only those species that display 

the extremes of post-harvest behaviour: the ability or inability to tolerate desiccation (Berjak 

and Pammenter, 1994; Kermode and Finch-Savage, 2002; Berjak et al., 2007). This may explain 

why these categories were later augmented by a third seed category, described as being 

‘intermediate’ between the extremes of recalcitrant and orthodox behaviour. Seeds so 

categorised are relatively desiccation tolerant (but not to the extent of orthodox seeds) and may 
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be chilling sensitive in the dry state, particularly if they are of tropical origin (Ellis et al., 1990a; 

Hong and Ellis, 1996). This wide range in post-harvest responses suggests open-endedness to 

the three categories, such that post-harvest physiology may be considered as constituting an 

extended continuum of seed behaviour, which grades from extreme desiccation-sensitivity, 

through a range of responses, to seeds capable of extreme desiccation tolerance (Berjak and 

Pammenter, 1994; Kermode and Finch-Savage, 2002; Berjak et al., 2007).  

The acquisition and maintenance of desiccation tolerance in orthodox seeds involves inter 

alia the protection of cellular membranes and intracellular components from the consequences 

of drying and appears to be based on “the presence and interplay of a suite of mechanisms and 

processes expressed during development” (Pammenter and Berjak, 1999), under complex 

genetic control (which is not fully understood [Berjak et al., 2007]). An appreciation of the 

physiological status of seeds at various water potentials and the properties of water at the 

various hydration levels corresponding to specified water potential ranges (see Vertucci and 

Farrant, 1995; Pammenter et al., 2000; Walters et al., 2001) has also led to suggestions that 

while desiccation tolerance in orthodox seeds is based on the operation of a suite of interactive 

protection mechanisms and/or repair processes, desiccation sensitivity is probably characterised 

by the absence or poor expression of at least one, but probably more, of these (Oliver and 

Bewley, 1997; Pammenter and Berjak, 1999; Berjak and Pammenter, 2001; Walters et al., 

2002a; Berjak et al., 2007). The individual components of the suite, and their interactions, have 

been extensively reviewed and are outlined below (for reviews see Pammenter and Berjak, 

1999; Kermode and Finch-Savage, 2002; Walters et al., 2002a; Berjak and Pammenter, 2008).    

 
Intracellular physical characteristics 

The ability to withstand the mechanical stresses associated with volume reduction is a major 

requirement for desiccation tolerance in plants cells (Iljin, 1957). Features contributing to 

orderly responses to such stresses include minimisation of vacuolation, protection of the 

integrity of the DNA, and orderly dismantling of cytoskeletal elements (Pammenter and Berjak, 

1999; Berjak and Pammenter, 2008). 

In all orthodox and also some recalcitrant seeds, physical protection includes a marked 

minimisation of fluid-filled vacuoles, brought about by either their sub-division into smaller 

bodies and/or their filling with insoluble reserve material (Vertucci and Farrant, 1995; 

Pammenter and Berjak, 1999; Walters et al., 2008). Among several unrelated species of 

desiccation-sensitive seeds there appears to be a relationship between the extent of vacuolation 

and accumulation of insoluble reserves (primarily starch, protein or lipid bodies [Vertucci and 

Farrant, 1995]) and the degree of desiccation sensitivity (Berjak et al., 1989; Farrant et al., 

1989, 1997).  



 

 

10 

The microtubules and microfilaments comprising the plant cytoskeleton provide internal 

support to cells as well as imposing spatial organisation on the intracellular milieu (Hoffman 

and Vaughn, 1995). The cytoskeleton has been suggested to dissociate upon dehydration in 

orthodox seeds, and reassemble upon imbibition (Pammenter and Berjak, 1999). In support of 

this theory Faria et al. (2005) using an α-tubulin antibody in an immunocytochemical assay, 

showed that in the dry state of orthodox Medicago truncutula seeds, axes exhibited only 

disassociated tubulin granules, but radicles that had protruded by 1 mm showed well-established 

cortical arrays of microtubules. In contrast, extensive cortical microtubule arrays were present in 

embryo cells of fresh mature Inga vera seeds, which are recalcitrant (Faria et al., 2004); 

however, disassociation following injurious levels of dehydration, gave rise initially to tubulin 

granules, which disappeared on further dehydration. Further to this, upon re-hydration, the 

damaged cells appeared to have lost the capacity for microtubule reconstitution (Faria et al., 

2004). These results complement other findings indicating the failure of the reconstitution of 

cytoskeletal microfilaments following injurious degrees of dehydration in recalcitrant 

embryonic axes of Quercus robur (Mycock et al., 2000) and Amaryllis belladonna (Naidoo et 

al., 2005). 

Since certain cytomatrical enzyme systems are functional as multi-enzyme complexes based 

on the binding of their key or anchor enzymes to cytoskeletal elements (Masters, 1984, 1992; 

Shearwin and Masters, 1990), incomplete re-assembly of the cytoskeleton after dehydration 

would have structural as well as physiological consequences in the cells of desiccation-sensitive 

seed tissues (Pammenter and Berjak, 1999). 

The maintenance of the integrity of genetic material during dehydration, in the dry state, and 

upon rehydration, with the ability for repair on rehydration, is a critical requirement for 

desiccation tolerance (Osborne and Boubriak, 1994; Pammenter and Berjak, 1999). While DNA 

in desiccation-sensitive seed tissue becomes degraded during dehydration as a result of non-

repaired double-strand breaks (Boubriak et al. 2000), DNA in desiccation-tolerant tissue appears 

to be stable in the dry state and exhibits repair upon rehydration (Osborne and Boubriak, 1994). 

Also, while DNA conformational change and orderly reversible chromatin compaction are 

associated with desiccation tolerance, chromatin decondensation characterises the desiccation-

sensitive state upon germination of orthodox seeds (Deltour, 1985; Pammenter and Berjak, 

1999).  

In contrast, once compacted as a response to injurious degrees of dehydration of recalcitrant 

axes/embryos, the chromatin does not decondense when water again becomes available (Berjak 

et al., 1999b; Wesley-Smith et al., 2001a; Kioko et al., 2006). This suggests that whereas 

chromosome condensation and decondensation in orthodox axes/embryos are consequences of 
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controlled processes, although appearing grossly similar, condensation is an injury response 

which is ultimately irreversible, in recalcitrant axes/embryos. 

 

Intracellular dedifferentiation  

In orthodox seeds, intracellular organelles such as mitochondria and plastids de-

differentiate, i.e. their internal structure regresses at the onset of maturation drying (Vertucci 

and Farrant, 1995; Pammenter and Berjak, 1999), while re-differentiation accompanies water 

uptake during early germination (Galau et al., 1991). Additionally, the endoplasmic reticulum 

becomes reduced while cisternae of Golgi bodies appear to dissociate during maturation drying 

(Pammenter and Berjak, 1999). The absence of such phenomena in developing recalcitrant 

seeds and the resultant retention of highly differentiated organelles during drying is believed to 

contribute towards their desiccation sensitivity (Farrant et al., 1997; Berjak and Pammenter, 

2008). In some recalcitrant seeds metabolic rate may be at its lowest at, or shortly before, the 

seeds are shed, but Farrant et al. (1989, 1997) showed for several species that mitochondria 

retain well-developed cristae indicating the potential for ongoing respiration. As discussed 

below, the respiratory process itself is considered to be a major source of ‘escaped’ free-radicals 

and hence potentially lethal metabolism-linked damage during dehydration of recalcitrant 

axes/embryos/seeds (Pammenter et al., 1998; Walters et al., 2001, 2002a). 

 
Metabolic ‘switch-off’ and oxidative metabolism  

Oxidative metabolism supplies life sustaining energy in all aerobic organisms and the free-

radicals and reactive oxygen species (ROS) generated as a consequence of this metabolism are 

strong oxidising agents (Leprince et al., 1994, 2000; Bailly et al., 1998; reviewed by Bailly, 

2004). Formed as a consequence of the transfer of high energy state electrons to molecular 

oxygen, ROS, which include singlet oxygen (1O2), hydrogen peroxide (H2O2) and the 

superoxide (.O2
-) and hydroxyl (OH⋅) radicals, have long been considered as toxic species that 

can cause indiscriminate oxidative damage to nucleic acids, lipids and proteins (e.g. Wilson and 

McDonald, 1986; Halliwell, 1987; Hendry, 1993, Scandalios, 1997; Suzuki and Mittler, 2006). 

Such damage, in turn, results in the generation of a variety of biochemical and physiological 

lesions, which can cause metabolic impairment and even cell death (Dat et al., 2000; Halliwell, 

2006). However, aerobic organisms have evolved an impressive array of endogenous enzymic 

and non-enzymic antioxidants that minimise, or ideally, prevent the injurious consequences of 

escaped free-radicals and ROS in hydrated cells (Bailly et al., 2001; Buitink et al., 2002; 

Haslekås et al., 2003; Mayaba and Beckett, 2003; Kranner and Birtić, 2005). While the strict 

control of ROS must occur in hydrated cells, oxidative damage occurs in plants during exposure 

to a wide range of stresses, including freezing and dehydration (Doke, 1997; Mittler, 2002; Beck 
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et al., 2007). In a review of specific and non-specific responses of plants to cold and drought 

stress Beck et al. (2007) identified oxidative stress as principally associated with both primary 

and secondary damage. While primary damage occurs when there is a dislocation of electron 

transport control and redox metabolism (Benson, 1990; Benson and Bremner, 2004), secondary 

damage results from the impacts of cold and excessive light energy, which leads to uncontrolled 

damage, but also could be implicated in controlled (adaptive) responses (Beck et al., 2007). 

Such responses may occur not only in the short-term but could possibly have long-term effects 

on morphology and plant growth habit as well (Beck et al., 2007). 

The possession and effective operation of a suite of both enzymic and non-enzymic 

antioxidants is therefore of prime importance during dehydration of orthodox seeds and 

desiccation-tolerant vegetative tissues, in the dry state, and again as soon as rehydration 

commences in the desiccated cells (Pammenter and Berjak, 1999; Kranner et al., 2002; Bailly, 

2004; Kranner and Birtić, 2005; Berjak, 2006; Berjak et al., 2007). Different levels of tissue 

hydration allow for the operation of different biochemical and physiological processes (Vertucci 

and Leopold, 1986; Vertucci and Farrant, 1995; Pammenter et al., 2000).  Although low level 

electron transport may occur in dehydrated orthodox seeds (Vertucci, 1993), metabolic activity, 

which includes respiration, membrane and protein synthesis and DNA processing, has been 

reported to cease upon dehydration in desiccation-tolerant material  (reviewed by Bewley, 1979; 

Vertucci and Leopold, 1986; Vertucci and Farrant, 1995). This down-regulation and eventual 

shutdown of metabolism during maturation drying in orthodox seeds is held to play an 

important role in avoiding oxidative stress and/or accumulation of by-products of oxidative 

stress to toxic levels, during the last phase of orthodox seed developmental (Leprince et al., 

2000). Also, although metabolism is ‘switched-off’ in orthodox seeds during maturation drying, 

certain components of their antioxidant systems remain active, facilitating safe dehydration, 

maintenance of the dry state and rehydration (Bailly et al., 2001, Bailly, 2004; Türkan et al., 

2005; reviewed by Berjak, 2006), making maturation drying a biologically successful strategy.  

It is has been conjectured that certain antioxidants may be operative within localised regions of 

higher water activity within desiccated cells. Interestingly, there may be localised regions with 

water activity adequate to facilitate molecular mobility in the desiccated state (Rinne et al., 

1999; Leubner-Metzger, 2005). If such regions were to occur in the milieu of the chromatin, 

then it is possible that 1-cys-peroxiredoxin (localised to nuclei in imbibed, dormant barley 

embryos by Stacy et al. [1999]) could function to protect the genome against ROS in desiccated 

seeds, given that the cysteinyl residue (of 1-cys-peroxiredoxin) can be regenerated (Berjak, 

2006) ultimately by electron donors such as thioredoxins and glutaredoxins (Dietz, 2003). In 

this regard, Leubner-Metzger (2005) has shown localised β-1,3-glucanase activity in the inner 
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testa of air-dried tobacco seeds and suggested it to be instrumental in after-ripening. Similarly, 

the activity of other enzymic and non-enzymic antioxidants (Bailly, 2004) may be maintained in 

localised regions of greater water activity within intracellular glasses in dehydrated seeds 

(discussed below). 

In contrast to the situation in orthodox seeds, recalcitrant types do not undergo maturation 

drying during the latter stages of development and metabolism is sustained at measurable levels 

throughout development (Farrant et al., 1989, 1993; reviewed by Kermode and Finch-Savage, 

2002; Faria et al., 2004). During dehydration, and especially when water loss proceeds slowly, 

metabolism is held to become unbalanced and the deleterious aqueous-based reactions 

associated with such metabolism can result in considerable intracellular damage (i.e. 

metabolism-linked damage) and death of seeds/embryos at surprisingly high WCs (Pammenter 

et al., 1998; Walters et al., 2001, 2002a). Deleterious aqueous-based reactions are most likely to 

be free-radical-mediated and oxidative stress is held to be a major injurious factor during partial 

dehydration in recalcitrant seed tissues (Hendry et al., 1992, Hendry, 1993; Smith and Berjak, 

1995; Vertucci and Farrant, 1995; Côme and Corbineau, 1996; Pammenter et al., 1998; Walters 

et al., 2001; Pukacka and Ratajczak, 2006; Berjak and Pammenter, 2008; Roach et al., 2008; 

Whitaker et al., 2010).  

It is now widely accepted that recalcitrant seeds appear to lack some of the mechanisms that 

allow orthodox seeds to tolerate dehydration (Oliver and Bewley, 1997; Pammenter and Berjak, 

1999; Berjak and Pammenter, 2001, 2008; Walters et al., 2002a) and even though recalcitrant 

seeds must necessarily possess antioxidant mechanisms, these are held to become non-

functional or otherwise unable to cope with the level of ROS generated as a consequence of 

water stress (Hendry et al., 1992; Chaitanya and Naithani, 1994, 1998; Côme and Corbineau, 

1996; Leprince et al., 1999; Chaitanya et al., 2000; Greggains et al., 2001; Varghese and 

Naithani, 2002; Dussert et al., 2006; Francini et al., 2006). Francini et al. (2006) for example, 

showed a transient increase in antioxidant activity in recalcitrant Araucaria bidwillii embryos 

upon initial dehydration but, with further water loss, activity declined. Further to this, those 

authors showed this decline to be accompanied by an increase in free radicals and thiobarbituric 

acid-reactive substances (TBARS), the latter indicating increasing lipid peroxidation (and by 

implication, substantial membrane damage); this trend of dehydration-induced increase in lipid 

peroxidation has also been reported in other studies on recalcitrant seeds (e.g. Chaitanya and 

Naithani, 1994; Varghese and Naithani, 2001).  

Lipid peroxidation is widely considered to be a major ultimate contributor to seed 

deterioration (Priestly, 1986; Wilson and McDonald, 1986; Gutteridge and Halliwell, 1990; 

Hendry, 1993; Bailly 2004) and occurs when any activated -CH2- groups of unsaturated fatty 
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acids are attacked by ROS to generate lipid free-radicals, which react with oxygen to form lipid 

hydroperoxides (LOOHs). In vivo these peroxides are reduced to the corresponding hydroxy 

acids, the most common of which are hydroxyoctadecadienoic acids (HODEs). An alternate fate 

of LOOHs is decomposition and rearrangement into secondary reaction products. Some of these 

products, such as ethane and ethylene, are relatively innocuous whilst others like 

malondialdehyde (MDA), can be highly toxic and mutagenic (Esterbauer et al., 1991). 

Membrane lipids are a primary target for free radical attack and oxidised fatty acid products 

consequential to such attack can serve as reliable ‘markers’ of oxidative stress (e.g. Apgar and 

Hultin, 1982; Benson 1990; Varghese and Naithani, 2008); these compounds include conjugated 

dienes, lipid peroxides, aldehyde breakdown products, volatile hydrocarbons, and Schiff’s bases 

(formed when aldehydic reaction products of lipid peroxides cross-link with protein groups) 

(Benson and Bremner, 2004). 

The control of ROS by the spectrum of antioxidants is vital, since when they are out of 

control, as a result of exposure to a stress, the destructive effects of ROS come to the fore 

(Kranner et al., 2006; Roach et al., 2008). However, apart from their role in stress-induced 

intracellular damage, ROS have been established to be agents of intracellular signalling in 

hydrated tissue and are likely to play this dual role in hydrated recalcitrant seeds (Laloi et al., 

2004; Bailly, 2004; Foyer and Noctor, 2005; Suzuki and Mittler, 2006; Bailly et al., 2008; 

Oracz et al., 2009). Reactive oxygen species are believed to act as second messengers in a 

variety of signal transduction cascades (Foyer and Noctor, 2005, and references therein), with 

H2O2 and .O2
- being singled out due to their implication in many plant developmental and 

growth processes.  

Oxidative stress (primary and secondary) appears to be a major component of chilling and 

cryoinjury in a variety of plant cells and tissues (Tapell, 1966; Benson, 1990; Prasad et al., 

1994; Benson et al., 1995; Doke 1997; Day et al., 1998; Park et al., 1998; Harding, 1999; Fleck 

et al., 2000, 2003; Benson and Bremner, 2004; Blagojević, 2007; Johnston et al., 2007). This is 

held to be true for non-orthodox seeds tissues as well (Dussert et al., 2003; Varghese and 

Naithani, 2008; Walters et al., 2008; Whitaker et al., 2010) and with the focus of the present 

study being the cryopreservation of recalcitrant zygotic germplasm, the role of oxidative stress 

in cryoinury in seed tissues will be elaborated in Chapter 4.   

 

The presence of protective molecules 

Sucrose and late embryogenic abundant proteins (LEAs) are held to be essential for the 

acquisition and maintenance of desiccation tolerance in orthodox seeds (e.g. Buitink et al., 

2002; Kermode and Finch-Savage, 2002; Berjak, 2006; Berjak and Pammenter, 2008). A 
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number of studies have reviewed the categorisation and possible functions of LEAs (Close et 

al., 1989; Cuming, 1999; Tunnacliffe and Wise, 2007). To date, six groups of LEAs have been 

identified on the basis of particular peptide motifs; these proteins generally lack cysteine 

residues and are composed predominantly of charged and uncharged polar amino acid residues 

(reviewed by Cuming, 1999). Except for those belonging to Group 5, LEAs are highly 

hydrophilic and heat stable (Cuming, 1999). It has been postulated that the amphipathic nature 

of LEAs allows for interaction with a wide range of macromolecules, thus counteracting their 

denaturation under dehydrating conditions (Blackman et al., 1995; Stupnikova et al., 2006). For 

instance, the hydrophilicity of LEAs may allow some of these protein groups to provide a 

protective hydration shell around intracellular structures and macromolecules (Berjak and 

Pammenter, 2008 and references therein).  

Induction by abscisic acid and desiccation, salt and cold stress has become one of the 

expression hallmarks  for LEA protein genes (Wise, 2003) and improved stress tolerance is 

often correlated with increased LEA gene expression (Tunnacliffe and Wise, 2007). Cuming 

(1999) indicated that the evidence for LEAs being involved in desiccation tolerance derives 

mainly from “correlative and circumstantial evidence rather than by direct experimental 

demonstration”. However, according Berjak and Pammenter (2008), the basis of the evidence is 

convincing: the appearance of LEAs accompanies orthodox seed maturation, and the imposition 

of a variety of stresses causing dehydration stress in plant cells (Cuming, 1999). In support of 

the above, Buitink et al. (2006) demonstrated that 18 genes coding for LEAs and two heat shock 

proteins (HSPs) were upregulated and identified as being common to the acquisition of 

desiccation tolerance in Medicago truncutula seeds, and its experimental re-imposition in 

recovered seedlings. What is noteworthy, in terms of desiccation tolerance, is that dehydration 

(particularly in the presence of sucrose) induces at least some LEAs to assume the α-helical 

conformation (Wolkers et al., 2001), suggested to be the basis of the formation and maintenance 

of the intracellular glassy state in desiccated cells (Berjak, 2006; Berjak et al., 2007). A further 

link between LEAs and desiccation tolerance is the fact that their appearance is concomitant 

with abscisic acid (ABA) regulation of LEA gene transcription (reviewed by Bray, 1993; 

Cuming, 1999; Kermode and Finch-Savage, 2002; Berjak et al., 2007). 

There has been much conjecture about the role of sucrose, particularly in the desiccated 

state of seed tissues (reviewed by Berjak et al., 2007). Orthodox seeds accumulate sucrose and 

certain raffinose series oligosaccharides during maturation drying (Koster and Leopold, 1988; 

Leprince et al., 1993; Obendorf, 1997) and upon dehydration these constituents contribute 

towards a highly viscous, supersaturated solution known as a glass (Leopold et al., 1994). It 

must, however, be noted that although first proposed as being the consequence of a 
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supersaturated sugar solution (Koster and Leopold, 1988; Williams and Leopold, 1989), there 

are now suggestions that many other intracellular molecules, such as LEAs, may contribute to 

the glass (e.g. Walters, 1998; reviewed by Berjak, 2006). In fact, it has been proposed that 

intracellular glasses in seeds (Berjak, 2006; Manfre et al., 2009) and pollen (Wolkers et al., 

2001) may be based on sucrose in interaction with coiled LEAs and residual water. In narrow 

intermembrane spaces, however, a sugar-based phase might occur (Bryant et al., 2001), with 

LEAs being excluded on the basis of size (Berjak, 2006). 

Glasses have been suggested to curtail molecular diffusion and so minimise the potential 

for, and extent of, unregulated metabolism during dehydration (Pammenter and Berjak, 1999; 

Berjak and Pammenter, 2001, 2004b; Hoekstra et al., 2001; Kermode and Finch-Savage, 2002; 

Alpert, 2006; Berjak, 2006: Lehner et al., 2006). Also, concentrated sugars within the aqueous 

phase have been postulated to hinder the close approach of membranes to one another, and 

hence preventing their intimate lateral proximity during water loss (Koster and Bryant, 2005; 

Halperin and Koster, 2006). Close proximity of membranes could occasion phase transition of 

some phospholipids and even the demixing of membrane components, which is associated with 

the exclusion of integral proteins (Cordova-Tellez and Burris, 2002; Walters et al., 2002a). It is 

likely that the intracellular glassy state is a major factor in the extended life span of dry 

orthodox seeds and the ultimate breakdown of glasses may underlie seed deterioration in storage 

(Leopold et al., 1994; Lehner et al., 2006; Manfre et al., 2009).  

In showing that sugars from desiccation tolerant zygotic embryos form glasses at ambient 

temperatures, whereas those from embryos that do not tolerate desiccation only form glasses at 

sub-zero temperatures, Koster (1991) suggested that the formation of intracellular glass may 

help protect embryos from damage due to desiccation. Results of a wide-ranging survey of 

sucrose accumulation among both orthodox and non-orthodox seeds showed that a variety of 

recalcitrant seeds accumulate substantial quantities of sucrose relative to oligosaccharide 

(Steadman et al., 1996). Other studies have similarly shown recalcitrant embryonic axes to 

accumulate substantial amounts of sugars (Farrant et al., 1993; Pritchard et al., 1995b; Connor 

and Sowa, 2003) and in some cases this accumulation was found to accompany dehydration 

(e.g. Berjak et al., 1989). However, the formation of glasses in axes of these seeds seems to only 

occur at sub-zero temperatures and/or at WCs where viability has already been lost (Pammenter 

and Berjak, 1999; Berjak and Pammenter, 2001). That is, WCs of c. 0.3 g g-1 coincide with a 

marked increase in cytoplasmic viscosity, indicative of glass formation (Buitink and Leprince, 

2004), but under natural, slow, drying conditions recalcitrant seeds die at WCs well above those 

at which any protective benefits could be derived from the contribution of sucrose to 
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intracellular glasses, or counteracting lateral contact between membranes (Pammenter et al., 

1998; Pammenter and Berjak, 1999; Walters et al., 2001, 2002a; Berjak and Pammenter, 2008). 

The situation regarding the occurrence of LEAs in recalcitrant seeds is unclear, as dehydrins 

have been found to occur in a range of species from different habitats while apparently being 

absent from others (reviewed by Kermode and Finch-Savage, 2002). Group 2 LEAs (i.e. 

dehydrins) have been identified in recalcitrant seeds of some temperate trees (Finch-Savage et 

al., 1994; Gee et al., 1994), other temperate species and some of tropical/sub-tropical 

provenance (Farrant et al., 1996), and in grasses (e.g. Porteresia coarctata, Zizania spp. and 

Spartina anglica [Gee et al., 1994]). However, no dehydrin-type LEAs were found to occur in 

seeds of ten tropical wetland species (Farrant et al., 1996). It must be noted though, that those 

investigations were confined to the analysis of dehydrin-type, Group 2 LEAs only, which have 

since been found to be expressed in a wide range of plant and animal tissues (reviewed by 

Berjak, 2006). Consequently, studies need to be extended to the other groups of LEAs, 

particularly those unique to seeds. It must be noted though that slowly dried recalcitrant seeds 

generally die as a consequence of metabolism-linked damage (Pammenter et al., 1998; 

Pammenter and Berjak, 1999; Walters et al., 2001, 2002a) at WCs much higher than the range 

at which few, if any, of the mechanisms of protection suggested for LEAs would be operative 

(Berjak and Pammenter, 2008).  

 

Other factors that may contribute to desiccation tolerance 

Lipid composition 

Differences in lipid composition between orthodox and recalcitrant seeds, particularly the 

proportion of saturated fatty acids in membrane phospholipids (Nkang et al., 2003; Liu et al., 

2006) and the relative abundance and behaviour of lipid storage bodies during dehydration 

(Smith and Berjak, 1995), could possibly contribute to desiccation tolerance in orthodox seeds 

and its absence in recalcitrant types. For instance, in terms of membrane lipid composition, the 

highly desiccation sensitive axes of Artocarpus heterophyllus have been shown to have a higher 

proportion of 16:0 and 18:0 saturated fatty acids, but lack stigmasterol. Stigmasterol is a major 

sterol component of orthodox seeds (e.g. Adenthera pavonina [Nigam et al., 1973]) and less 

(desiccation) sensitive temperate recalcitrant axes of Aesculus hippocastanum (D. Govender, 

2010, pers. comm.1). 

 Lipid composition may also change in response to dehydration conditions. Nkang et al. 

(2003) for example, showed that agronomically mature seeds of Telfairia occidentalis were 

U 
1 D. Govender, Plant Germplasm Conservation Research, University of KwaZulu-Natal, South Africa. 
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characterised by predominantly saturated fatty acids when total lipids were evaluated. However, 

while dehydration at 28°C increased accumulation of both mono- and polyunsaturated fatty 

acids and was accompanied by viability loss, dehydration at 5°C led to a retention of high levels 

of saturated fatty acids and a delay in the marked decline in viability. Lipid composition has also 

been shown to be associated with deterioration of seeds exhibiting ‘intermediate’ post-harvest 

physiology, particularly in terms of their chilling sensitivity. In Cuphea carthagenensis seeds 

for example, crystallisation of the predominantly saturated storage lipid occurs at both high and 

very low WCs, after maintenance at 5°C (Crane et al., 2006). Those authors went on to show 

rehydration without a preceding melting of crystallised triacylglycerides to be lethal. Despite the 

information presently available it is not possible to clearly identify the exact effects of lipid 

composition, of both membranes and storage bodies, on desiccation sensitivity and tolerance in 

seeds. 

 
Endogenous amphiphilic substances 

It was proposed that certain endogenous amphiphilic molecules might migrate into 

membranes of desiccation-tolerant pollen and seed embryos during dehydration and be reversed 

upon rehydration (Hoekstra et al., 1997; Golovina et al., 1998). Flavinols (which exhibit strong 

antioxidant potential) were identified as amphiphilic molecules that could possibly fulfill this 

migratory role in vivo (Hoekstra et al., 1997). These amphiphiles were subsequently suggested 

to maintain core fluidity of membranes in the dry state but even though these substances can 

fluidise membrane surface, this phenomenon could not be correlated with desiccation tolerance 

with any confidence (Golovina and Hoekstra, 2002). To date, no evidence supporting a 

migratory stabilising role for amphiphilic substances has been forthcoming from in vivo studies 

(E.A. Golovina, 2009, pers. comm.2). 

 

Oleosins 

In plant cells, lipid droplet bodies are surrounded by a layer of unique proteins, oleosins 

(Huang, 1992). Oleosins, which probably maintain oil bodies as discrete entities, were 

suggested to be present in inadequate proportions (to oil bodies), or to be completely lacking in 

lipid-rich recalcitrant seeds such as Theobroma cacao (Leprince et al., 1998). However, 

subsequent studies involving cloning and characterisation of the cDNA and peptide sequencing 

suggest that oleosins are present in mature T. cacao seeds (Guilloteau et al., 2003). The role that 

oleosins may play in stabilising lipid bodies during dehydration and subsequent rehydration is 

presently unclear. 

U 
2 E.A. Golovina, Laboratory of Plant Physiology, Wageningen University, The Netherlands. 
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Repair 

 The hypothesis that the primitive mechanism of desiccation tolerance in vegetative tissues 

probably involves a low intensity but constitutively functioning protection mechanism that is 

coupled with active cellular repair has existed for some time now (Oliver et al., 2000). Early 

studies suggested that vegetative desiccation tolerance may rely to some degree on repair 

mechanisms (Gaff, 1989; Bartels et al., 1993) but recent evidence concerning desiccation 

tolerance of desiccation-tolerant plants show that they utilise preventive mechanisms that rely 

heavily on inducible cellular protection systems and extensive repair may not be a major part of 

their desiccation tolerance strategy (reviewed by Kranner et al., 2008 and Toldi et al., 2009). 

Hypotheses used to explain desiccation tolerance in desiccation-tolerant seeds are based 

largely on protective mechanisms against damage (Bewley and Oliver, 1992). However, the 

success of desiccation tolerance as the survival mechanism of dry orthodox seeds relies also on 

the repair of damage incurred during drying, and after inbibition is initiated (Vertucci and 

Farrant, 1995), during the lag phase of water uptake before radicle protrusion (e.g. Osborne, 

1983). At least some repair mechanisms appear to be either poorly expressed or absent in 

recalcitrant seeds; for example, while mechanisms involved in DNA repair have been observed 

in orthodox seeds (e.g. Boubriak et al., 1997), in recalcitrant A. marina seeds, DNA did not 

repair fully after only 8% water loss, and DNA related damage was irreparable after 22% water 

loss (Boubriak et al., 2000). In the context of repair also, Connor and Sowa (2003) showed that 

dehydration-induced viability loss in recalcitrant Quercus alba acorns was accompanied by a 

decline in the ability to reverse the gel to liquid crystalline phase in membranes. To withstand 

such extensive drying, orthodox seeds are presumably able to protect and repair cellular 

constituents and according to Vertucci and Farrant (1995) the ability to repair requires some 

level of structural integrity. Mechanisms that appear to stabilise the subcellular organisation of 

tissues in orthodox seeds during drying appear to be either absent or poorly expressed in 

recalcitrant types, with axes/embryos of such seeds generally losing cytomatrical organisation 

and/or organellar integrity as a consequence of dehydration (reviewed by Berjak and 

Pammenter, 2000). This does not appear to be repaired upon rehydration (e.g. cytoskeletal 

disassembly in Inga vera seeds [Faria et al., 2005]). 

 

Drying rate  

Recalcitrant seeds are generally large, highly hydrated, metabolically active structures 

(Pammenter and Berjak, 1999; Berjak and Pammenter, 2004b). After shedding such seeds lose 

water more or less rapidly, under similar conditions, the rate being species related (Farrant et al., 

1989; Pammenter et al., 2002). Accompanying the progressive reduction in freezable water 
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upon dehydration (Vertucci and Farrant, 1995) recalcitrant seed metabolism continues but 

becomes increasingly unbalanced (Berjak et al., 1990; Pammenter et al., 1998; Pammenter and 

Berjak, 1999; Walters et al., 2001). The degree of damage incurred as a consequence has been 

shown to be related to the rate at which this water is removed (Pammenter et al., 1991, 1998; 

Walters et al., 2001, 2002a; Pammenter et al., 2002, 2003). Although loss of viability in 

Hydration Level III (0.45 - 0.25 g g-1; Ψ= > -11 MPa) appears to typify slowly dried recalcitrant 

seeds across species, rapid dehydration, particularly flash drying (originally devised by Berjak 

et al., 1989),  facilitates axis viability retention well into Hydration Level III, and occasionally 

just into Level II (0.25 - 0.08 g g-1; Ψ= > -150 MPa) (Vertucci and Farrant, 1995). Flash drying 

does not render recalcitrant axes desiccation tolerant since they rapidly lose viability at ambient 

or refrigerator temperatures if allowed to remain at the low WCs attained (Walters et al., 2001; 

Berjak and Pammenter, 2008). However, flash drying allows recalcitrant embryos/axes to 

tolerate dehydration transiently to considerably lower WCs than slow drying, by achieving the 

rapid passage through the intermediate WC ranges at which aqueous-based metabolism-linked 

damage occurs: i.e., the time during which unbalanced metabolism occurs and associated ROS-

mediated damage accumulates is curtailed (Pammenter et al., 1998; Pammenter and Berjak, 

1999; Walters et al., 2001). The major benefit of flash drying is that it allows dehydration of 

recalcitrant zygotic germplasm to WCs sufficiently low for successful cryostorage (e.g. Wesley-

Smith et al., 2001b, 2004a; Sershen et al., 2007) , which is currently considered to be the only 

means by which the genetic resources of recalcitrant-seeded species can be conserved, in the 

long-term. The significance of partial dehydration to the cryopreservation procedure for 

recalcitrant seed germplasm is discussed in section 1.4.1. 

 

Developmental status 

A number of studies have shown desiccation sensitivity in recalcitrant seeds to be 

influenced by their state of development, before and after harvest (e.g. Finch-Savage, 1992; 

Farrant et al., 1993; Vertucci et al., 1994; Sershen et al., 2008a). Recalcitrant seeds remain 

metabolically active after shedding and display a steadily changing metabolic status as they 

approach germination (Tompsett and Pritchard, 1993; Hong and Ellis, 1995; Berjak and 

Pammenter, 2004b). Metabolic rate has been shown to decrease with development (e.g. 

Aesculus hippocastanum [Tompsett and Pritchard, 1993]; Coffea canephora [Hong and Ellis, 

1995]) and most recalcitrant seeds appear to be least desiccation-sensitive when their metabolic 

rate is lowest; which appears generally to be at, or just before natural shedding (Pammenter and 

Berjak, 1999). Desiccation sensitivity generally increases as germination progresses in relation 
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to the increase in rate and complexity of metabolism (e.g. as shown for A.  marina [Farrant et 

al., 1988]; Landolphia kirkii [Berjak et al., 1992]; Camellia sinensis [Berjak et al., 1993]). 

 

1.3.1.1 Dehydration damage  

The cellular damage associated with the removal of water may be explained by two major - and 

not mutually exclusive - mechanisms (reviewed by Vertucci and Farrant, 1995; Pammenter and 

Berjak 1999; Walters et al., 2001). Damage sensu stricto results from mechanical stresses that 

perturb organelle structures at high moisture levels (reviewed by Levitt, 1980) or 

macromolecule structures at lower levels (reviewed by Wolfe and Bryant, 1999). Studies have 

also shown that when metabolically active cells are dehydrated to intermediate moisture levels 

such cells may continue to respire but may be incapable of scavenging toxic metabolic by-

products that accumulate (Leprince et al., 1990, 2000; reviewed by Hand and Hardewig, 1996; 

Leprince and Hoekstra, 1998) and cause free-radical-associated damage (McKersie et al., 1988; 

Hendry et al., 1992; Finch-Savage et al., 1994; reviewed by Berjak et al., 2007).  

In recalcitrant seeds the nature of dehydration damage is dependent on whether water is 

removed above or below the minimum WC tolerated by that species (Pammenter et al., 2000; 

Walters et al., 2002a, 2008). While dehydration of recalcitrant seeds to WCs above the upper 

limit of desiccation sensitivity sensu stricto (generally taken to be ~0.25 g g-1 [Vertucci and 

Farrant, 1995]) has been suggested to be accompanied by deleterious aqueous-based reactions 

that give rise to what is referred to as metabolism-linked damage, removal of water below the 

lower limit tolerated directly affects macromolecular structure and membrane and organellar 

integrity, i.e. desiccation damage sensu stricto (Pammenter et al., 1998, 2000; Walters et al., 

2001; Kim et al., 2005).  

The loss of turgor pressure of cells is regarded as an early indication of desiccation stress 

and is a feature of hydrated tissue that is losing water (Iljin, 1957; Walters et al., 2002a; 

Corbineau et al., 2004). More severe dehydration can lead to loss of membrane integrity which 

has been suggested to involve fusion of intracellular membrane (Koster and Bryant, 2005), 

resulting in the exclusion of integral proteins and micelle formation between the membranes 

(Cordova-Tellez and Burris, 2002; Walters et al., 2002a). Consequently, cellular contents 

generally leak from the cell especially upon rehydration (e.g. Sacandé et al., 2001; Varghese 

and Naithani, 2002), presumably because membrane permeability has been severely 

compromised (Pammenter et al., 2002). Separate lipid bilayers may be reformed upon 

rehydration but these are likely to be a combination of more than one type of membrane 

(Cordova-Tellez and Burris, 2002; Walters et al., 2002a), and non-functional. Also, excluded 
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proteins are likely to be denatured and, in any case, would not be re-incorporated (Connor and 

Sowa, 2003).  

Irrespective of the nature of the consequences of the two types of damage discussed above, 

dehydration-induced vigour and viability loss in recalcitrant seeds may be exacerbated by the 

absence and/or poor expression of post-dehydration repair mechanisms (e.g. Boubriak et al., 

1997; Connor and Sowa, 2003). Since cellular dehydration leads to physical and physiological 

changes which, if not lethal, may be reversible upon rehydration, desiccation damage may not 

be inferred from the differences between the hydrated and dry state, but rather only by the 

resumption of normal activity upon rehydration (Walters et al., 2002a). Intracellular changes 

induced by dehydration in recalcitrant seed tissues, which include a dramatic increase in the 

degree of vacuolation, the loss of cytomatrical organisation and organellar integrity (Berjak et 

al., 1984; Farrant et al., 1997; reviewed by Berjak and Pammenter, 2000; Wesley-Smith et al., 

2001a; Raja et al., 2005; Kioko et al., 2006), and cytoskeletal disassembly (Faria et al., 2005), 

are seldom reversed and will be discussed further in Chapter 3.  

 

1.4 Long-term conservation of the germplasm of recalcitrant-seeded species  

Development of long-term storage strategies for desiccation-sensitive germplasm remains 

challenging, but imperative for conservation of the genetic resources of recalcitrant-seeded 

species (Berjak et al., 1996, 1999a; Dumet et al., 1997; Engelmann, 2004, 2009; Benson, 2008a; 

Walters et al., 2008). Cryopreservation, which involves the cooling of biological material and 

subsequent storage at ultra-low temperatures (between -140 and -196°C; above or in liquid 

nitrogen [e.g. Finkel and Ulrich, 1983; Withers, 1988; Kartha and Engelmann, 1994; Sakai, 

1997]) has proved to be the most promising long-term storage option for germplasm of 

recalcitrant-seeded species (Dumet et al., 1997; Engelmann, 2000, 2004, 2009; Berjak et al., 

2004a; Chaudhury and Malik, 2004; Panis and Lambardi, 2006; Benson, 2008a; Berjak and 

Pammenter, 2008; Normah and Makeen, 2008; Walters et al., 2008). According to Keller et al. 

(2008), even though a number of institutions utilising more traditional genebank approaches still 

prefer traditional in vitro storage techniques, cryopreservation is regarded as the tool to best 

preserve genetic integrity (reviewed by Harding, 2004). Arrest of cellular metabolic processes in 

plant tissue during maintenance at cryogenic temperatures has been suggested to minimise, if 

not preclude, genetic changes, allowing for germplasm to be theoretically stored at such 

temperatures for unlimited periods (Krøgstrup et al., 1992; Krishnapillay, 2000; Lynch, 2000; 

Kioko et al., 2003; Engelmann, 2004; reviewed by Harding, 2004). Noting that deleterious 

events can occur at cryogenic temperatures (reviewed by Benson and Bremner, 2004; Walters et 

al., 2004), cryostorage obviates problems of increased ploidy, decline or loss of morphogenic 
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and biosynthetic capacity and the production of undesirable phenotypes, usually associated with 

in vitro storage (Kartha, 1985; Blakesley et al., 1996; Harding, 2004).  

However, the successful application of cryostorage to recalcitrant seed germplasm is 

challenged by the sensitivity of such germplasm to desiccation, freezing and to chilling, in some 

cases at temperatures <15°C (Berjak et al., 1995; for reviews see Walters et al. 2008; Berjak 

and Pammenter, 2008). Thus, even though cryopreservation offers the potential for recalcitrant 

seed germplasm conservation, the variable success obtained across and within different species 

(see Table 1.1) has been a matter of concern for some time and demands further investigation 

(Berjak et al., 1999a; Engelmann, 2000; Pammenter et al., 2010). The present study was 

designed to contribute to this investigation – aiming, among other things, to generate a more 

fundamental understanding of the physiological and biochemical basis of this variable success. 

Over approximately the past 30 years, there have been over 100 peer-reviewed publications 

on cryopreservation of recalcitrant seeds and/or their zygotic germplasm (for reviews see Dumet 

et al., 1997; Engelmann, 1997, 1999, 2000, 2004, 2009; Chaudhury and Malik, 2004; Walters et 

al., 2008; Pammenter et al., 2010; and see Table 1.1 for citations on experimental work). A 

common thread that runs through many of these publications is that the distinction between 

recalcitrant and orthodox seeds yields a useful dichotomy upon which to base cryopreservation 

procedures for hydrated and dry tissue, respectively. In many ways this dichotomy has 

influenced contemporary cryopreservation theory and practice, which is expanded on below.   

 

1.4.1 Cryopreservation: guiding principles 

With the exception of mature orthodox seeds (Pritchard and Nadarajan, 2008) and certain 

varieties of pollen (Ganeshan et al., 2008) and spores (Ingram and Bartels, 1996), biological 

tissues almost always contain considerable cellular water. However, their successful 

cryopreservation is best achieved when lethal intracellular ice-crystal formation is avoided, as 

this can cause irreversible intracellular damage (Burke et al., 1976; Stanwood, 1985; Wesley-

Smith, 1992; Sakai, 1995; Mazur, 2004). Cryopreservation is generally considered in terms of 

the liquid and solid (ice) phases of water but it is also possible to cryopreserve plant material by 

the process of vitrification, i.e. the solidification of the liquid phase without ice-crystal 

formation (Sakai, 2004). This comprises a glassy state as the system is amorphous and lacks 

organised structure, yet is still characterised by the mechanical and physical properties of a solid 

(Taylor et al., 2004). In biological systems, vitrification of water is dependent on increased cell 

viscosity, as cell solutes become concentrated. Even though the vitrified state is metastable (i.e. 

not in a thermodynamic state with the lowest free energy, which does not preclude its break-

down) it inhibits the association of water molecules to form ice. The phenomenon of 
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vitrification has allowed for the development of ‘ice-free’ cryopreservation which, even though 

pioneered for animal cells (Fahy et al., 1984, 1986a), has been extensively applied to plant 

tissues (Sakai et al., 1992; Steponkus et al., 1992). However, freezing of plant tissues that 

inherently have high WCs will inevitably involve the conversion of at least some of the water to 

ice (Burke et al., 1976; Wesley-Smith et al., 1992).  

 While the bulk of the water in plant tissues  is involved in solvation and is available for 

freezing (termed free water), water associated with macromolecular constituents (which has 

been termed bound/structure associated water) plays a structural and functional role and does 

not contribute to lethal ice-crystal formation (Lyons, 1973; Burke et al., 1976; Levitt, 1980). 

Earlier studies showed that the removal of a large amount of freezable water from plant tissues 

by dehydration, coupled with appropriate cooling and re-warming rates, could preclude 

formation of lethal intracellular ice-crystals (e.g. Mazur, 1984; Steponkus, 1985). In recent years 

it has become increasingly apparent that success of cryopreservation protocols for recalcitrant 

zygotic germplasm depends on the optimisation of cooling rates in conjunction with tissue-

hydration level, to eliminate or at least minimise nucleation of intracellular ice-crystals (Wesley-

Smith et al., 2004a; Chaudhury and Malik, 2004; Sershen et al., 2007; Walters et al., 2008). 

Success in this regard has, however, been hampered by the following: (a) lethal freezing damage 

occurring when hydrated seeds/embryos/axes are exposed to LN (Wesley-Smith et al., 1992; 

Berjak et al., 1999b); and (b) drying to WCs precluding ice formation to the extent of 

desiccation damage, which generally culminates in loss of viability (Pammenter et al., 1998, 

2000; Walters et al., 2008; and other references cited in Table 1.1). In contrast, pollen (reviewed 

by Ganeshan et al. 2008) and seeds and somatic embryos of most desiccation-tolerant species 

(reviewed by Pritchard and Nadarajan, 2008) appear to be highly amenable to cryopreservation, 

shifting the focus for successful cryopreservation of hydrated plant germplasm from freezing 

tolerance to dehydration tolerance (Engelmann, 2004, 2009; Panis and Lambardi, 2006). 

However, it must be noted that even though cooling and dehydration are the greatest sources of 

failure, and under other circumstances, the greatest contributors to post-cryo survival, the 

success or failure of any plant cryopreservation protocol is a consequence of all the 

manipulations involved in the preparation of the tissue for cooling, and all the steps involved in 

the recovery of that tissue after cooling (Berjak et al., 1999b; Benson and Bremner, 2004; 

Pammenter et al., 2010). These manipulations generally include those featured in Figure 1.1 and 

some of the intricacies of their application, to seed germplasm in particular, are discussed 

below. 
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ADAPTIVE METABOLISM 

OR HARDENING 

Figure 1.1 Generalised cryopreservation protocol for hydrated plant tissue. 

EXPLANT EXCISION: 

- may be accompanied by treatments 
that combat the effects of wounding 

 

EXPLANT SELECTION  

AND 

PREPARATION: 

- establishment of short- to medium- 
term seed storage conditions 

- establishment of in and/or ex vitro 
growth protocols 

- developmental studies 
- adaptive metabolism or hardening 
- decontamination 

CRYOPROTECTION: 

- by preculture or immersion 

DEHYDRATION: 

 - physical or osmotic 
 - rapidly or slowly 

COOLING: 

- at equilibrium or non-equilibrium rates 

THAWING:  
          - dry or wet 

- rapidly or slowly 
 

CRYOSTORAGE:  

- in the cryogen or its vapour 

REHYDRATION:  

- rapidly or slowly 

RECOVERY:  

- in and/or ex vitro 
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Explant selection and excision 

 Explants that can be used for cryopreservation include buds, shoots, meristems, cell 

cultures, protoplast cultures, anthers, pollen, somatic and zygotic embryos, embryonic axes, 

callus, and whole seeds, if they are sufficiently small (Kartha, 1985; Benson, 2008a). A few 

studies have succeeded in cryopreserving whole non-orthodox seeds (e.g. Hor et al., 1990; 

Chaudhury and Chandel, 1994; Hu et al., 1994; Berjak and Dumet, 1996; Dussert et al., 1997; 

Potts and Lumpkin, 2000; Kioko et al., 2003), plant meristems (Chandel et al., 1993; 

Matsumoto et al., 1994; Dumet et al., 2002; Varghese et al., 2009) and somatic embryos of 

recalcitrant-seeded species (e.g. Mycock and Berjak, 1993; Hatanaka et al., 1994; Mycock et 

al., 1995; Dumet et al., 1997). However, over approximately the past 25 years, embryonic axes 

and zygotic embryos have become the most popular choice of explant in cryopreservation 

studies involving non-orthodox-seeded species (see Table 1.1).  

 Zygotic embryos and embryonic axes constitute a much smaller volume of tissue than the 

usually bulky, highly hydrated, seeds from which they are excised, facilitating much faster 

drying and cooling rates (Wesley-Smith, 2001a; Pammenter et al., 2002). However, a 

prerequisite for post-thaw success appears to be selecting embryos at the most appropriate 

developmental stage (Chandel et al., 1995; Engelmann et al., 1995; Goveia et al., 2004). It 

seems reasonable to suppose that for any particular species there might be an optimal 

developmental stage that would facilitate successful cryopreservation which could well, be at 

full maturity (Vertucci et al., 1991; Dumet et al., 1997; Kim et al., 2002, 2005). Identifying this 

stage in recalcitrant seeds is challenging, however, since there are no clear-cut indications as to 

what constitutes full maturity; furthermore, seeds of the same species seem not invariably to be 

shed at exactly the same stage (Finch-Savage, 1992; Kermode and Finch-Savage, 2002). 

Irrespective of the developmental stage selected, however, excision most often involves 

severing the attachment of the axis to its cotyledon/s flush with the surface of the former, but 

which has been shown to have detrimental consequences (Goveia et al., 2004; Roach et al., 

2008; Pammenter et al., 2010). Those authors indicated that excision results in an oxidative 

burst (i.e. an enhanced production of ROS) as part of a primary wounding response.  

 The oxidative damage associated with this wounding response is believed to pre-dispose the 

explants to further damage as they pass through the various manipulations involved in 

cryopreservation (Pammenter et al., 2010). In some recalcitrant-seeded species, excising the 

cotyledons flush with the axis surface has been shown to damage the shoot apical meristem 

lethally, thus precluding shoot development, right at the outset of explant processing (Fig. 1.1) 

(Goveia et al., 2004; Perán et al., 2006). The genes controlling the development of meristematic 

tissue have been reported to be inhibited in response to wounding (Souer et al., 1996) but the 
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exact nature of the damage response observed in shoot meristem of some recalcitrant axes 

remains to be resolved (e.g. Goveia et al., 2004; Roach et al., 2008; Pammenter et al., 2010).  

 

Cryoprotection 

Natural Freeze tolerance 
Seasonal sub-zero temperatures limit growth, development, and distribution of plants, and 

most tropical and sub-tropical species lack the ability to adapt to such temperatures, often being 

injured below 10°C (Xin and Browse, 2000). In contrast, many temperate, a few sub-tropical 

and all cold-adapted plant species will naturally withstand sub-zero temperatures; such plants 

are characterised by a range of mechanisms which are enhanced in response to a preceding 

period of low but non-freezing temperatures, subsequently facilitating survival of freezing 

temperatures (Hirsh, 1987; Pearce, 2004). This conditioning, which allows for survival of 

dormant tissue, is termed cold hardening or cold acclimation (Levitt, 1980), which is an 

extremely complex phenomenon, involving many biochemical and physiological changes, as 

well as the altered expression of hundreds of genes (Guy, 1990). One of these changes involves 

the synthesis of intracellular solutes which increase osmolality and reduce plasmolysis injury at 

freezing temperatures (Reed, 2008), although Meryman and Williams (1985) cautioned that 

such freeze avoidance mechanisms may permit tolerance only to temperatures around -15°C. 

However, based on evidence of the formation and stability of intracellular glasses at relatively 

high, sub-zero temperatures in plant tissues, it was proposed that proteins in conjunction with 

sugars may cause solutions to have glass transitions at temperatures lower than those of water 

and sugars alone (Hirsh, 1987). Since then a number of studies have suggested that cold 

acclimation may be used to pre-condition explants for exposure to cryogenic temperatures 

(reviewed by Reed, 1996, 2008; Benson, 2008b).  

If plant tissues are amenable to cold acclimation, this can be induced in the laboratory by 

exposing the plants to low in vitro growth temperatures (1 - 6°C) generally in combination with 

shortened day-length and/or high-sugar pre-treatments (Reed, 1996, 2008). The responses of 

amenable plants after exposure to such conditions include:  reduced hydration status; reduced 

growth rate; increased transcription; increased antioxidant production and/or activity; altered 

osmotic regulation; accumulation of sugars, polyols, betaine, proline; cell wall modification; 

and changes in lipid composition of membranes and hormone status (e.g. abscisic acid) (Xin and 

Browse, 2000).  

The bio-molecular mechanisms that have been proposed to be involved in cold acclimation 

are very likely to be related to those facilitating dehydration tolerance (for reviews see 

Thomashow, 1999; Xin and Browse, 2000; Pearce, 2004). As partial dehydration is an integral 

step in cryopreservation protocols, this may explain why, in cases where cold acclimation has 
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been successful in enhancing the ability of explants to withstand LN exposure, the species 

concerned has been of temperate provenance or naturally cold-hardy (Reed, 1996, 2008).  It is 

probably relevant that most tropical plants tested do not respond to cold acclimation (Zhao et 

al., 2008); however, some of the events occurring during cold acclimation of amenable plants 

could be achieved in vitro for explants of tropical species, e.g. culture on sucrose-enriched 

media which causes osmotic dehydration and accumulation of solutes and/or exposure to ABA 

which inter alia induces the in vivo synthesis of carbohydrates (Dumet et al., 1993a; Xu and 

Bewley, 1993). Those observations, as well as successful attempts at increasing axis desiccation 

and freezing tolerance prior to cryopreservation in temperate species such as Acer saccharinum 

(Beardmore and Whittle, 2005) have generated much interest in the use of pre-conditioning 

treatments, other than cold hardening, to increase post-thaw survival of tropical plant 

germplasm. Some of these pre-conditioning treatments are described in Chapter 5. 

 

Exogenous application of cryoprotectants 

 Any pre-conditioning that reduces the amount of ‘free’ water available for freezing may 

increase the chances of cells or tissues surviving exposure to cryogenic temperatures (Meryman 

and Williams, 1980; Reed, 1996). Such conditioning may be imposed by physical dehydration 

or the application of cryoprotectants (Meryman and Williams, 1980, 1985; Sakai, 1985; Kartha 

and Engelmann, 1994; Lynch, 2000; reviewed by Fuller, 2004).  

 The benefits of cryoprotection are best explained when they are related to the biophysical 

changes brought about by the transition of water to ice during cooling; this is the main cause of 

damage, rather than other effects of low temperatures (Mazur, 1990, 2004; Karlsson and Toner, 

1996). The growth of extracellular ice-crystals gives rise to an effective osmotic stress as the 

solute concentration surrounding the cells is concentrated into an ever decreasing solvent 

volume. This ‘freeze-dehydration’ is one of the most harmful consequences of cryopreservation, 

with the potential to cause severe damage including changes in the ultrastructure of membranes, 

separation of membrane bilayers and organelle disruption (Lovelock, 1954; Mazur, 2004). At 

sufficiently low temperature (usually < -80°C) the remaining, highly viscous solution within and 

outside the cells transforms into a glassy matrix; this is the relatively stable form for long-term 

preservation.  

 The propagation of intracellular ice-crystals is the second major damaging event during cell 

freezing (Leibo et al., 1978; Mazur, 2004) and ice-crystal-mediated damage includes membrane 

and organelle disruption and air bubble formation. The potential for intracellular ice formation 

increases if the osmotic potential inside the cell becomes dislocated from that in the surrounding 

medium on a kinetic basis (Mazur, 2004), e.g. during rapid cooling when there is insufficient 
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time for water to move down the chemical potential gradient from the relatively more dilute 

intracellular solution, to the concentrated extracellular medium. However, if cells are cooled 

under conditions that effectively inhibit ice-crystal formation down to the region of low 

temperature glass, then successful cryopreservation can be achieved (Fuller, 2004). 

 Cryoprotectants are a heterogeneous group of compounds that depress the kinetic freezing 

point of water (often referred to as the ‘supercooling point’ in biological solutions [Wilson et 

al., 2003]), and so reduce the likelihood of lethal ice-crystal formation during cooling and 

subsequent thawing after cryostorage (Kartha and Engelmann, 1994; Santarius and Franks, 

1998; reviewed by Fuller, 2004). Glycerol (Gly) was the first compound to be shown to have 

cryoprotective action (Lovelock, 1953) and since, a variety of natural and synthetic chemicals 

have been shown to confer cryoprotection (e.g. natural: methanol; ethanol; sorbitol; and 

trehalose [Morrisey and Baust, 1976] and synthetic: dimethylsulphoxide [DMSO]; dextran; and 

polyvinylpyrolidene [PVP] [Meryman and Williams, 1985]). Already in 1969, Karow recorded 

56 solutes with cryoprotective activity; however, the large majority of these are not used in 

contemporary cryopreservation protocols because of their low efficiency. Also, most, if not all, 

cryoprotectants exhibit some degree of cytotoxicity (reviewed by Fuller, 2004). 

 Cryoprotectants may be used individually or in combination (see Table 1.1) and their 

application usually involves one of the following: (1) soaking explants in the cryoprotectant 

solution for a predetermined period prior to dehydration and cooling (e.g. Meryman and 

Williams, 1985; Mycock et al., 1995; Valladares et al., 2004); (2) immersing explants in the 

cryoprotectant solution during cooling (e.g. Sakai et al., 1992); or (3) pre-culturing the explants 

on a growth medium enriched with cryoprotectants, usually sucrose, before dehydration and 

cooling (e.g. Dumet et al., 1994; Thierry et al., 1997; Thammasiri, 1999; Lynch, 2000). 

Cryoprotectants are broadly categorised as either penetrating or non-penetrating, based on their 

ability/inability to move across biological membranes (Meryman and Williams, 1985). While 

penetrating cryoprotectants, e.g. DMSO and Gly, are able to diffuse through the plasma 

membrane and equilibrate in the cytoplasm, non-penetrating cryoprotectants (e.g. sucrose and 

mannitol), do not enter the cytoplasm but may accumulate apoplastically (Grout, 1995; 

Muldrew et al., 2004). At this juncture it is worth mentioning that there is evidence that sucrose 

might be taken up by yeast cells with the aid of plasma membrane sucrose-binding proteins 

(SBP’s) (Overvoorder et al., 1997).  Proteins that share sequence and structural similarities with 

SBP’s have been identified in seeds (e.g. those of maize), however, they were unable to mediate 

sucrose uptake when expressed in yeast (Overvoorder et al., 1997). While it is unlikely that 

sucrose diffuses through lipid bilayers to any significant extent during the short exposure 

periods required for the cryoprotection of explants in sucrose solutions, sucrose may well be 
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taken up by plant cells after hydrolysis during extended periods of exposure, e.g. tissue culture. 

However, in the absence of concrete evidence for the rapid, active uptake of sucrose by plant 

cells sucrose is still widely regarded as a non-penetrating cryoprotectant in plant cryo-literature 

(e.g. Finkle et al., 1985; Liu et al., 2004; Winkelmann et al., 2004) and will be referred to as 

such throughout this thesis. 

Following the discovery by Polge et al. (1949) that Gly protects avian sperm cells against 

freezing some cryobiological research explored the mode of action of cryoprotectants in terms 

of colligative action (Lovelock, 1953; Meryman and Williams, 1980, 1985). The colligative 

property of a solution depends on the ratio of the number of particles of solute and solvent in the 

solution, and not the identity of the solute. The two fundamentals of the theory of colligative 

cryoprotection are: (1) cryoprotectants must be able to penetrate the cell, otherwise, they will 

cause osmotic dehydration, resulting in the very injury they are employed to avoid; and (2) 

cryoprotectants must be non-toxic to the cells at the concentrations required for their efficacy 

(reviewed by Benson, 2008b).  

Based on the molar depression of freezing point associated with mixtures of solutes in 

solution, Lovelock (1953) proposed that at any given temperature below the ice transition 

during cooling, the increase in solute (salts) would be ameliorated by the presence of the 

penetrating cryoprotectant, glycerol. He went on to suggest that this would prevent critical 

damaging concentration of salts while the whole system was cooled sufficiently to achieve the 

glassy matrix state. In the words of Benson (2008b), “glycerol acts as antifreeze by reducing the 

concentration of extracellular salt and water loss due to osmosis”. In general, penetrating 

cryoprotectants contribute to the overall osmolality of the cell and an additive such as Gly 

increases the initial osmolality of the cell colligatively prior to the initiation of the freezing 

process. As a result, the amount of water that needs to be frozen out to achieve osmotic 

equilibrium is far less and the extent of the freeze-induced dehydration that occurs is better 

tolerated (Lovelock, 1953; Meryman and Williams, 1985; Sakai, 2000). The added protective 

advantage is that this occurs at a lower temperature, as the additive depresses the freezing point. 

Arakawa and Timasheff (1982) have presented a series of arguments in which they suggest the 

modes of action of cryoprotectants to be related to inter-molecular interactions between these 

agents and biologically important macromolecules. In this regard, penetrating cryoprotectants 

such as DMSO and Gly have the ability to substitute reversibly for water in the hydration sheath 

of polysaccharides, proteins and nucleic acids, thereby altering their macromolecular structure 

(Chang and Simon, 1968; Barnett, 1972; Arakawa and Timasheff, 1982), which may render 

them less amenable to radiation-induced injury (Benson and Bremner, 2004), giving rise to the 

term ‘radioprotectants’. Apart from the physiological mechanisms of protection described thus 
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far, certain cryoprotectants, and especially radioprotectants such as Gly and DMSO may confer 

biochemical protection during dehydration and freezing, mainly by scavenging harmful free-

radicals (Polge et al., 1949; Benson and Bremner, 2004). 

Non-penetrating cryoprotectants such as sucrose (Suc) withdraw water from cells by 

osmosis and, via this dehydrating action (together with their ability to form hydrogen-bonds 

with water), generally increase intracellular viscosity, arrest the molecular motion of water 

molecules and consequently reduce the amount of ‘free’ water available for lethal intracellular 

ice-crystal formation (Meryman and Williams, 1985; Kartha and Engelmann, 1994; reviewed by 

Fuller, 2004). The combination of these effects will promote vitrification during freezing (Fahy, 

1986a; Dumet and Benson, 2000) but the use of non-penetrating cryoprotectants at high 

concentrations can result in osmotic injury, since they act by dehydrating cells before freezing 

(Leibo et al., 1978; Muldrew et al., 2004).  

There has been much conjecture about the role of sucrose particularly in the desiccated state 

of seed tissues (reviewed by Berjak et al., 2007). The disaccharide sugars, sucrose and trehalose, 

have also been suggested to stabilise membranes during hypertonic exposure as ice-crystals 

grow by interacting with polar head groups of phospholipids (Rudolph and Crowe, 1985; 

Strauss and Hauser, 1986). However, Bryant et al. (2001), Koster and Bryant (2005) and 

Halperin and Koster (2006) offer a more convincing argument for the role of sucrose, based on 

sound evidence: the role of sucrose is dynamic in hindering the close approach of membranes to 

one another, and hence preventing their lateral proximity. Such proximity would promote phase 

transition of some phospholipids and even the demixing of membrane components, 

accompanied by exclusion of integral proteins.  

Some large polymer non-penetrating cryoprotectants, e.g. PVP and dextran, demonstrate 

cryoprotective action under certain conditions (Fuller, 2004). For example, at high concentration 

such cryoprotectants can exert appreciable effects on freezing point depression of the system 

(Connor and Ashwood-Smith, 1973) and are effective in red blood cell cryopreservation, but not 

for nucleated cells when used as a sole cryoprotectant (reviewed by Fuller, 2004). Fuller (2004) 

does however, suggest that such polymers may make a significant contribution to post-thaw 

survival when used in combination with other cryoprotectants. 

The propensity for cryoprotectants to enhance viscosity of the cytoplasm to such an extent 

that intracellular ice-crystal formation is completely inhibited, i.e. the process of vitrification, is 

a very important aspect of their utilisation (Nash, 1966; Meryman and Williams, 1980, 1985). In 

this process extracellular freezing occurs but cells do not freeze intracellularly and are presumed 

to be preserved in a glassy matrix state. In this glassy state, the distribution of diffusible 

components and thus the potential interactions of these components is minimised (Lovelock, 
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1953; Buitink et al., 1998, 2000). Also, glasses may minimise cellular collapse during freeze-

induced dehydration (Sakai, 2000). Increasing cell viscosity to the point at which ice nucleation 

is inhibited and water becomes vitrified on exposure to cryogenic temperatures is key to 

developing effective cryoprotective vitrification strategies (Benson, 2008b). Most plant 

vitrification protocols achieve this increase in cytoplasmic viscosity by the combination of 

cryoprotectants at high concentrations, followed by removal of water by evaporative 

dehydration. There is one drawback, however: in general, applied vitrification requires very 

high (>45% weight for weight) cryoprotectant concentrations (often in mixtures) and at such 

high concentrations cryoprotectants are often toxic (reviewed by Fuller, 2004). It must also be 

noted that there are biophysical implications, including mechanical stresses in the glassy matrix 

at low temperatures, which can give rise to ice-crystal growth during warming (Fuller, 2004). It 

is therefore recommended that mixtures of penetrating and non-penetrating cryoprotectants be 

used for this purpose, since this appears to reduce the toxicity of any single additive, limits the 

impacts of severe evaporative drying and helps to stabilise the glasses formed (Fahy et al., 1984, 

1986b). For instance, polyols and sugars enhance the glass-forming tendency of aqueous 

solutions and when applied in combination with other cryoprotectants may reduce the 

cryoprotectant concentrations required to achieve a stable glass (reviewed by Fuller, 2004). 

However, this effect may also be affected by the steric conformation of the cryoprotectant 

employed, since the number and orientation of hydroxyl (OH) groups in sugar and polyol 

cryoprotectants influence the vitrification achieved. In this regard, Turner et al. (2001a) 

suggested that polyols like Gly with relatively more OH groups may be more efficient than 

sugars at promoting vitrification due to their increased ability to replace water and interact with 

membrane phospholipids.  

When cryoprotectants have been applied alone and/or in combination with dehydration to 

recalcitrant zygotic germplasm the outcomes assessed by subsequent growth/performance have 

not been universally successful (see Table 1.1). In most cases, cryoprotectants alone do not 

provide the protection necessary to ensure post-thaw survival of tropical plant germplasm, but 

when combined with other pre-conditioning treatments such as partial dehydration (using air 

flow or desiccants) with or without prior preculture by incubation on media incorporating 

various sugars or other osmotically active substances, cryoprotection can greatly improve post-

thaw survival of zygotic embryos (Pence, 1991; Sam and Hor, 1999), embryonic axes 

(Engelmann, 1997; Walters et al., 2002b; Sershen et al., 2007) and somatic embryos (Dumet et 

al., 1994; Mycock et al., 1995) of a range of  non-orthodox-seeded species.  

The mode of action of cryoprotectants is likely to be multi-factorial (Fuller, 2004) but 

minimising physical, and metabolic injury associated with cryopreservation is core to the 
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principles of cryoprotection. In affecting tissue water concentration, and hence the range of 

temperatures at which water freezes  in plant tissues, cryoprotectants offer the possibility of 

altering the relationship between WC and the required cooling rate in seed tissues (Volk and 

Walters, 2006; Benson, 2008b; Walters et al. 2008).  

 

Partial dehydration  

The high degree of hydration of embryonic axes/zygotic embryos from recalcitrant seeds 

contributes to a considerable thermal mass (Bachmann and Mayer, 1987) and also promotes 

lethal ice-crystal growth at sub-zero temperatures, making them unamenable to cryopreservation 

in their native state (Wesley-Smith et al., 1992, 2004a; Pritchard et al., 1995a; Walters et al., 

2008). Consequently, partial dehydration is necessary to reduce the heat to be dissipated during 

cooling (Wesley-Smith, 2004a; Walters et al., 2008). Partial dehydration also increases 

cytoplasmic viscosity (Leprince et al., 1999; Wesley-Smith et al., 2001b; Walters et al., 2008) 

and so impedes intracellular ice-crystal growth during cooling in hydrated seed tissues 

(Stanwood, 1985; Steponkus, 1985; Wesley-Smith et al., 1992). Additionally, the lower 

freezing temperature (Pritchard et al., 1995a) and higher glass transition temperature 

(Wikefeldt, 1971) associated with lower WC, reduces the range of temperature at which ice-

crystal growth during cooling and warming is promoted. As discussed earlier, with an adequate 

reduction of water, ice-crystal formation may be avoided through glass formation (Steponkus et 

al., 1992; Sakai, 2000). The relative stability of the intracellular glassy state is thought to 

maintain viability (although not indefinitely) in dry orthodox seeds; however, intracellular 

glasses would not normally form in most recalcitrant seeds, as vitrification requires low water 

contents (≤0.3 g g-1; reviewed by Berjak and Pammenter, 2008). According to Buitink and 

Leprince (2004) WCs of approximately 0.3 g g-1 coincide with a marked increase in 

cytomatrical viscosity, indicative of glass formation, but under the slow drying conditions which 

would prevail in the field, recalcitrant seeds die at much higher WCs (Pammenter et al., 1993, 

1998; Pritchard et al., 1995a; Pammenter and Berjak, 1999; Walters et al., 2001, 2002a). 

However, it is possible that intracellular glasses could be formed as a consequence of rapid 

dehydration which permits transient viability retention at suitably low WCs for cryopreservation 

in excised recalcitrant embryonic axes/zygotic embryos (Berjak et al., 1990; Berjak and 

Pammenter, 2008).   

 The potential of cryopreservation protocols for recalcitrant seed germplasm has therefore 

come to depend (apart from ice-crystal avoidance) on embryo/axis sensitivity to partial 

dehydration, which has become a standard pre-treatment for such germplasm (for reviews see 

Engelmann, 1999, 2000; Walters et al., 2008; Berjak and Pammenter, 2008; also see Table 1.1). 
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It is most often achieved by one of the following methods: (a) the use of dehydrating agents 

such as silica gel (e.g. Dumet et al., 1993b; Fu et al., 1993); (b) drying in a laminar flow cabinet 

(e.g. Fu et al., 1990; Pence, 1992); (c) drying over saturated salt solutions, i.e. drying under 

controlled humidity conditions (e.g. Pammenter et al., 2002); or d) drying explants in a direct 

stream of dry air, referred to as flash drying (originally devised by  Berjak et al., 1989; 

Pammenter et al., 1991; Vertucci et al., 1991; Wesley-Smith et al., 1992, 2001b).  

The rapidity with which water is removed, and hence the shortening of the time during flash 

drying spent by the tissue at intermediate hydration levels (at which deleterious aqueous-based 

reactions occur [Pammenter et al., 1998; Walters et al., 2001]), has made flash drying the most 

efficient method for the partial dehydration of recalcitrant embryonic axes/zygotic embryos 

(Pammenter et al., 2000, 2002; Engelmann, 2009). The success achieved with flash drying has 

spurred suggestions that the faster the drying rate, the lower the WC - within limits - to which 

recalcitrant embryonic axes/zygotic embryos can be dried without viability loss (Pammenter et 

al., 2002; Walters et al., 2001, 2002a). However, there is a caveat here: flash drying does not 

confer the property of desiccation tolerance and flash-dried axes will not survive for longer than 

a few hours, if not rehydrated or frozen at cryogenic temperatures (Walters et al., 2001).  

 

Cooling (i.e. exposure to cryogenic temperatures) 

‘Freeze-dehydration’ and intracellular ice-crystal formation are the most harmful of the 

biophysical consequences of exposure to cryogenic temperatures and can cause a number of 

damaging events (Lovelock, 1954; Leibo et al., 1978; Mazur, 2004). The attempts of Luyet and 

Gehenio (1940) to achieve the glassy state in biological systems by cooling sufficiently quickly 

to avoid ice-crystal formation on a kinetic basis, and the subsequent work of Luyet et al. did not 

achieve a robust protocol which facilitated recovery of living cells (reviewed by Fahy et al., 

1984). However, those studies were the precursors of later cryopreservation studies, including 

those on recalcitrant zygotic embryos/embryonic axes (e.g. Vertucci, 1989; Wesley-Smith et al., 

1992). According to those authors, the higher the final embryo/axis WC after drying, the more 

rapid the rate of cooling should be to restrict ice-crystallisation and associated freezing damage. 

Later work on the recalcitrant embryonic axes of Poncirus trifoliata (Wesley-Smith et al., 

2004a)  showed that at low axis WCs intracellular viscosity was high, slowing down ice-crystal 

formation and making survival largely independent of cooling rate, while at high axis WCs, the 

intracellular viscosity was lower, facilitating rapid ice-crystal formation accompanied by 

viability loss.  

Cooling rate is a function of the thermal mass of the material to be cooled, and the heat 

transfer properties of the cooling system (Bald, 1987). However, before reviewing the classical 
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and contemporary methods of cooling it must be noted that there exists some disparity in the 

literature with regards to the actual cooling rates termed ‘rapid’.  While some reports term rates 

of 3 - 10°C s-1 rapid [e.g. Vertucci, 1989; Panis and Lambardi, 2006), others associate rapid 

cooling with rates of hundreds of °C s-1 (e.g. Wesley-Smith et al., 2001b; 2004a & b). These 

disparities have been largely unavoidable, since cooling has been achieved using a variety of 

methods (see Table 1.1). For the purpose of this review, the term ‘slow’ will be used to describe 

cooling rates of  between 0.5 and 2.0°C min-1 (usually achieved using programmable freezing 

devices or an alcohol bath in a commercial -70°C freezer [Kartha, 1985; Poulsen et al., 1992]), 

while cooling rates achieved by enclosing explants within polypropylene cryovials or semen 

straws before plunging into LN, which generally result in cooling rates of c. 3 - 10°C s-1 (e.g. 

Vertucci, 1989; Panis and Lambardi, 2006), will be referred to as ‘intermediate’. The term, 

‘rapid’, will be used to describe cooling rates achieved by: (a) droplet freezing, i.e. suspending 

explants in a droplet of cryoprotectant on aluminium foil strips before plunging into cryogens 

such as isopentane (-160°C), LN (-196°C) or sub-cooled nitrogen (-210°C; Echlin, 1992); (b) 

tumble-mixing naked (unenclosed) explants in isopentane, LN or sub-cooled nitrogen; and (c) 

plunging naked explants into isopentane, LN or sub-cooled nitrogen using a spring-loaded or 

compressed-air driven plunging device. These methods facilitate cooling rates in the range of 

>10 to hundreds of °C s-1 and in some cases thousands of °C s-1 (e.g. Walters et al., 2002b; 

Wesley-Smith et al., 1992, 2004a & b).  

 With the above terminology in place, cryopreservation protocols based on what are termed 

classical methods (reviewed by Engelmann, 1997) generally involve explant chemical 

cryoprotection, followed by slow cooling (0.5 - 2.0°C min-1) down to -30 to -40, or even -60°C 

(Krøgstrup et al., 1992). This controlled slow cooling (step 1) is said to encourage the formation 

of extracellular ice, progressively dehydrating the cells, as intracellular water is lost to exterior 

ice nucleation sites. This step is usually followed by immersion in LN (step 2). Optimally, the 

majority of cells are exposed to cryogenic temperatures (step 2) at a particular cytoplasmic 

concentration precluding lethal intracellular ice formation since most, if not all, intracellular 

freezable water is removed during the slow cooling step (Kartha and Engelmann, 1994; 

Engelmann, 1997). However, when freeze-induced dehydration during step 1 is too intense, 

various damaging events associated with the concentration of intracellular salts and changes in 

cellular membranes are possible (Mazur, 1990; Pritchard et al., 1995a). Also, some of the cells 

may fail to reach the optimum intracellular concentration and upon supercooling undergo lethal 

intracellular ice-crystal formation (Mazur, 1990). Thus, while slow cooling may retain the 

integrity of individual cells, it may be less efficient at retaining the tissue integrity necessary for 

the survival of complex tissues, e.g. meristems and embryos (Panis and Lambardi, 2006). 
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Nevertheless, this ‘two-step’ cooling method, regarded as the first standard protocol developed 

for hydrated plant tissue (e.g. Withers and King, 1980), has not been completely abandoned and 

still finds application in the cooling of undifferentiated culture systems such as cell suspensions 

and calli (e.g. Withers and Engelmann, 1997), and even differentiated structures such as the 

shoot apices of cold-tolerant species (e.g. Reed and Chang, 1997) and embryonic axes/zygotic 

embryos of a few recalcitrant-seeded species, e.g. Ilex spp. (Mroginski et al., 2008).  

While classical cryopreservation protocols employed freeze-induced dehydration, modern 

protocols are predominantly vitrification-based (e.g. Fu et al., 1990, 1993; Pence, 1992; 

reviewed by Engelmann, 1997, 2000, 2009).  Here, cell dehydration to increase cytoplasmic 

viscosity precedes cooling, promotes the formation of glasses and avoids the factors that 

encourage ice-crystal formation - before exposure to the cryogen (e.g. Stanwood, 1985; Wesley-

Smith et al., 1992, 2004a; reviewed by Chaudhury and Malik, 2004; Sershen et al., 2007; 

reviewed by Walters et al., 2008). Cooling rates typically used to cool embryonic axes/zygotic 

embryos in these modern protocols, range from c. 10°C min-1 (e.g. Vertucci, 1989; Sershen et 

al., 2007) to hundreds of °C s-1 (e.g. Wesley-Smith et al., 2001b, 2004a & b; Walters et al., 

2002b; Sershen et al., 2007).  

The rate of cooling influences the number, size and location of ice-crystals formed within 

cells and tissues (Wesley-Smith et al., 1992, 2004a). Traditional views on the freezing process 

have favoured slow (i.e. 0.5 and 2.0°C min-1) over rapid cooling rates since the former 

encourage the formation of relatively few, large extracellular ice-crystals (Mazur, 1990; Kartha 

and Engelmann, 1994). However, at cooling rates of ≥1.6°C s-1 exosmosis can still occur and 

since this is usually at a rate much slower than the rate of formation of extracellular ice-crystals, 

the cytoplasm becomes increasingly supercooled, pre-disposing the cells to intracellular ice-

crystal formation (Acker and Croteau, 2004). If samples are cooled at rates of ≥16°C s-1 the ice-

crystals that form may be very small and therefore relatively innocuous (Muldrew et al., 2004) 

but the amount of ice formed in cells and solutions at physiological concentration appears to be 

best limited by increasing cooling rates above 100°C s-1 (Luyet et al., 1962). Such rapid rates 

can be achieved by various methods originally developed for the preparation of biological tissue 

for cryo-microscopy (see Bald, 1987; Ryan and Purse, 1985) but it is the rapid non-equilibrium 

cooling methods (pioneered by Luyet et al., 1962), in particular, that have proved to be most 

useful for cryopreservation of recalcitrant zygotic germplasm (e.g. Walters et al., 2002b; 

Wesley-Smith et al., 2004a & b; Sershen et al., 2007).  

Rapid non-equilibrium cooling methods demand direct contact between the explant and the 

cryogen (see Luyet et al., 1962); however, when naked specimens at room temperature are 

plunged into LN to intensify cooling rates, many bubbles appear suddenly on the surface of the 
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sample, quickly enclosing them in a vapour film and so preventing direct contact with the LN 

(see Han et al., 1995). This vapour film acts as thermal insulation between LN and the sample, 

restricting heat transfer and greatly reducing the cooling rate within the sample (referred to as 

the Leidenfrost phenomenon; Bald, 1987).  The only way of counteracting this and intensifying 

the cooling rate is to keep the vapour film from being stable and complete; this is generally 

achieved by employing forced convection (Han et al., 1995; reviewed by Walters et al., 2008), 

or using sub-cooled nitrogen (i.e. nitrogen slush at -210°C [Echlin, 1992]).  However, since 

recalcitrant embryonic axes/zygotic embryos almost always exceed the upper size limit (0.1 mm 

linear dimensions [Bailey and Zasadzinski, 1991]) required to surpass the benchmark cooling 

rate of 104
°C s-1, which is thought to preclude freezing artefacts in cryo-fixation for electron 

microscopy (Moor, 1971), the complete avoidance of intracellular freezing may be unattainable 

in such explants (Wesley-Smith et al., 2004a). Those authors suggest that in recalcitrant 

embryonic axes/zygotic embryos rapid cooling may, at best, only limit the amount of ice formed 

intracellularly.  

A common feature of all contemporary plant cryopreservation protocols is that the critical 

step to achieve post-thaw viability is dehydration and not cooling, as in classical protocols. The 

relationships among WC, cooling rate and post-thaw survival in recalcitrant embryonic 

axes/zygotic embryos will be discussed in greater detail in Chapter 2  but, it must be noted that 

while the lower limit of the ‘optimal hydration window’ in recalcitrant embryonic axes/zygotic 

embryos is constrained by desiccation sensitivity of the tissue, its upper limit may be 

constrained by freezing injury due to intracellular ice formation at relatively high WCs (Becwar 

et al., 1983; Pritchard and Prendergast, 1986; Pence, 1992; Wesley-Smith et al., 1992; Sun, 

1999; reviewed by Walters et al., 2008). Thus, if samples to be frozen using dehydration-based 

techniques are amenable to desiccation to appropriately low WCs with little or no viability loss, 

then there is likely to be little to no post-thaw viability loss. Partial dehydration, in minimising 

or even precluding ice formation during cooling (Stanwood, 1985; Wesley-Smith et al., 1992), 

makes dehydration-based protocols less operationally complex than the classical methods.  

 

Thawing and rehydration  

Once the explants have been introduced into the cryogen, they can theoretically be stored at 

these ultra-low temperatures (at or near -196°C) for considerable periods (Kartha and 

Engelmann, 1994; Berjak et al., 1999a; Walters et al., 2004; Benson, 2008a). However, non-

injurious retrieval from cryostorage is critical to the ultimate success of any cryopreservation 

protocol, necessitating the optimisation of thawing and rehydration procedures. In partially 

dehydrated explants which have been cryopreserved, water uptake during thawing and 
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subsequent rehydration can be damaging (Dussert et al., 2003). Water content, temperature of 

the rehydration medium and rate of water uptake, all influence the sensitivity of partially dried 

seed tissue to imbibitional injury (Hoekstra et al., 1999; Perán et al., 2004); possibly because 

these factors affect the structure and organisation of intracellular membranes and conformation 

of DNA (Osborne et al., 2002).  

During warming there is the danger that small ice-crystals might coalesce into larger, 

damaging ones (Mazur, 1984), but rapid warming should obviate (re)crystallisation (Wesley-

Smith et al., 2004a; Panis and Lambardi, 2006). For best results, rapid non-equilibrium thawing, 

which usually involves immersing cryotubes or naked explants into a thawing medium held at 

40 - 45°C is preferred (Dumet et al., 2002; Sershen et al., 2007). Interestingly though, while 

rapid cooling followed by slow warming is almost invariably detrimental, slow warming was 

found to be less damaging to slowly-cooled recalcitrant embryonic axes of Poncirus trifoliata 

(Wesley-Smith et al., 2004a).  

For rehydration after thawing, the explants can be simply transferred to the same medium 

(as used for thawing) held at ambient temperature, but the medium used appears to be critical to 

its success (Sershen et al., 2007). There are suggestions that for partially dried recalcitrant 

embryonic axes/zygotic embryos, the addition of Ca2+ and Mg2+ cations to the rehydration 

medium has positive effects on subsequent survival (Sershen et al., 2008a) and regeneration 

(Berjak and Mycock, 2004). This appears to be at least partly because Ca2+ and Mg2+ cations 

facilitate the reconstitution of cytoskeletal elements in the partially dried axis tissues upon 

rehydration and also normalise starch accumulation (Berjak and Mycock, 2004). Also, for 

recalcitrant embryonic axes/zygotic embryos, rapid rehydration by direct immersion into the 

medium has been demonstrated to be far superior to slow equilibration with saturated relative 

humidity, probably because slow rehydration extends the time spent at undesirable intermediate 

WCs (Péran et al., 2004).   

 

Recovery 

Given the variety of factors that influence post-thaw viability, specific in vitro conditions 

must be optimised before cryopreservation can be attempted. Unless involving small, intact 

desiccation-tolerant seeds, which can be directly planted out after thawing (e.g. Walters et al., 

2005), cryopreservation requires in vitro methods of recovery to assess viability of the explants 

before, and following cryostorage, and to generate plants after cryopreservation (Mycock et al., 

2004; reviewed by Reed, 2008). Successful in vitro germination demands aseptic conditions and 

an efficient, non-injurious explant decontamination protocol, as micro-organisms degrade 

explant tissues rapidly, resulting in viability loss (Reed et al., 2004). This is especially true for 
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zygotic embryos/embryonic axes excised from recalcitrant seeds, since they frequently harbour 

a wide spectrum of fungal and bacterial contaminants (Mycock and Berjak, 1995; Berjak 1996; 

Sutherland et al., 2002; Sershen et al., 2008b).  

The culture medium used for recovery should ideally contain macro- and micronutrients, 

essential minerals, a carbon source, and perhaps the plant growth regulators that would have 

originally been supplied by the seed storage tissues. The appropriate combination of nutrients, 

minerals and vitamins in the medium are likely to be species-specific and, depending on the 

morphogenic result required, the medium can be manipulated by the addition of plant growth 

regulators (e.g. auxins and/or cytokinins) to stimulate either root production, shoot production, 

or callus growth (Turner et al., 2001b; Renau-Morata et al., 2005), or by the alteration of 

environmental conditions such as temperature and light (Reed et al., 2004). For some species, 

even minor modifications in the hormonal balance of the culture medium can lead to dramatic 

improvements in post-thaw viability and onwards development (e.g. Normah and 

Vengadasalam, 1992; Perán et al., 2006).  

Environmental factors such as light and temperature are equally important since these 

influence in vitro development and morphogenesis (Amirato, 1989). In vitro cultures are 

generally not photoautotrophic, which implies that their light requirements are different from 

those required for photosynthesis, but light may be critical for photomorphogenic and 

phototropic responses (Thorpe, 1980). High light intensities should be avoided immediately 

after recovery from LN, since these can promote oxidative stress in frozen-thawed embryonic 

axes/zygotic embryos and, in some cases, an interim dark period immediately after recovery 

from cryostorage is essential before introduction to full light conditions (e.g. for Zizania 

palustris [Touchell and Walters, 2000]; and various amaryllids [Sershen et al., 2007]). The in 

vitro effect of temperature on plant growth is based on its in vivo effects (Wayne et al., 1998), 

and for recalcitrant embryonic axes/zygotic embryos cultures temperatures of ∼25°C are usually 

favoured for in vitro recovery (e.g. Berjak et al., 1999b; Wesley-Smith et al., 2001b). 

The ultimate aim of all plant cryopreservation protocols is recovery and ex vitro 

establishment of normal, vigorous seedlings. This implies that the most rigorous means of 

gauging the success of any cryopreservation protocol is to quantify the number of frozen-thawed 

explants that produce normal seedlings capable of surviving ex vitro establishment. However, 

except for the requirement that seedlings developed from cryopreserved explants in vitro should 

be hardened-off in a misthouse and probably require to be treated with systemic fungicides 

before transfer to ex vitro conditions (unpublished data; Plant Germplasm Conservation Unit, 

University of KwaZulu-Natal, Durban, South Africa), there is at present a paucity of 

information on the precautions that should be taken during the ex vitro recovery step.  
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1.5 Rationale for the present study and thesis outline 

Cryopreservation of recalcitrant seed germplasm is extremely challenging (see Berjak et al., 

1999b; Walters et al., 2008; Engelmann, 2009; Pammenter et al., 2010). One of the basic 

problems is that recalcitrant seeds do not undergo maturation drying and associated metabolic 

arrest, and are always desiccation-sensitive (reviewed by Kermode and Finch-Savage, 2002; 

Faria et al., 2004; reviewed by Berjak and Pammenter, 2008). Furthermore, successful 

cryopreservation of hydrated tissue requires the largest possible volume:mass ratio to facilitate 

rapid dehydration and cooling, generally precluding the use of whole recalcitrant seeds. This has 

prompted the preferential selection of zygotic embryos and embryonic axes as explants for 

cryopreservation of recalcitrant seed germplasm, since they constitute a much smaller volume of 

tissue than the usually bulky, highly hydrated, seeds from which they are excised. However, in 

some cases zygotic embryos are too large, making them impossible to dry or cool sufficiently 

rapidly without lethal consequences (e.g. Theobroma cacao and Crinum bulbispermum: >1.5 cm 

in length [unpublished data; Plant Germplasm Conservation Unit, University of KwaZulu-Natal, 

Durban, South Africa]). For some species, the size of the zygotic explant can be reduced by 

severing the attachment of the axis to its cotyledon/s flush with the surface of the former; 

however, this has recently been shown to have detrimental consequences in a number of cases 

(Goveia et al., 2004; Perán et al., 2006; Roach et al., 2008; Pammenter et al., 2010). 

Nevertheless, manipulation of the combination of dehydration techniques and cooling rates, and 

in some cases the application of cryoprotectants, has resulted in the successful cryopreservation 

of the zygotic germplasm of a number of recalcitrant-seeded species (see Table 1.1). However, 

the extensive list of species given in Table 1.1 belies the difficulties in the quantitative and 

qualitative achievements of seedling and plant production from cryopreserved zygotic explants, 

particularly because it is frequently not possible to ascertain exactly what is meant by 

‘successful’ cryopreservation. This is mainly because explanations as to how post-cryo viability 

was assessed are not provided - i.e. whether, in fact, ‘success’ simply indicates that explants did 

not die, or at the opposite extreme, retained the full capacity to produce both roots and shoots. 

 In reviewing the studies listed in Table 1.1, it was evident that many of them reported post-

cryo viability as indicated by explant greening, elongation, expansion or callus growth (e.g. 

Chandel et al., 1995; Berjak and Dumet, 1996; Pence, 2004) rather than actual seedling 

regeneration. Additionally, where root and shoot production were reported, survival percentages 

were seldom as high as those achieved with frozen-thawed somatic embryos (e.g. Bertand-

Desbrunais et al., 1992; Dumet et al., 1993b; Mycock and Berjak, 1993; Hatanaka et al., 1994; 

Mycock et al., 1995), nucellar and pollen embryos (reviewed by Ganeshan et al., 2008), cell 

suspension cultures (e.g. Aguilar et al., 1993), shoot tips (e.g. Demeulemeester et al., 1993; 
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Harding and Benson, 1994), or plant meristems (Chandel et al., 1993; Varghese et al., 2009). 

Also in some studies reviewed in Table 1.1 and elsewhere (e.g. Engelmann, 1997, 2000; 

Pammenter et al., 2010) the low seedling recovery rates following cryopreservation of 

recalcitrant zygotic explants reflect a high incidence of abnormal embryo/axis growth. A 

prevailing problem is that while zygotic explants, particularly of tropical and sub-tropical 

species, survive to form roots and/or callus - shoot production often fails to occur (e.g. Wesley-

Smith et al., 2001b; Perán et al., 2006; Sershen et al., 2007; Pammenter et al., 2010). In rare 

cases, shoots are formed but roots fail to develop (e.g. Pence, 1992).  

The reporting of post-thaw survival is further complicated for certain species, as the seeds 

were initially considered as recalcitrant, but have emerged as not being so. For instance, the 

seeds of oil-palm were originally classified as being recalcitrant (Chin and Roberts, 1980) but 

are now regarded as showing intermediate storage behaviour (Ellis et al., 1991), while the seeds 

of Azadirachta indica show post-shedding responses resulting in their being categorised as 

orthodox (e.g. Tompsett and Kemp, 1996), intermediate (e.g. Varghese and Naithani, 2002) or 

recalcitrant (Berjak et al., 1995), which may well be related to provenance.  

Apart from the inconsistencies in the categorisation of seeds (in terms of post-harvest 

behaviour) and assessment of post-cryo viability, the major hindrance to the wider application 

of recalcitrant seed germplasm cryopreservation is the unavailability of protocols that will 

produce reproducible results across species (irrespective of provenance). This is of particular 

concern in Africa since many indigenous species are now emerging as producing short-lived, 

recalcitrant seeds (Sacandé et al., 2004). Reviewing the literature suggested that irrespective of 

the species concerned or treatment combination selected, the success and reproducibility of any 

plant germplasm cryopreservation protocol demands the optimisation of all the manipulations 

involved in the preparation of the explant for cooling, the actual cooling, and its thawing and 

recovery after cooling, as illustrated in Figure 1.1 (Grout, 1986; Hor et al., 1990; Mycock et al., 

1991; Hu et al., 1994; Kartha and Engelmann, 1994; Engelmann et al., 1995; Berjak et al., 

1999b; Engelmann, 2000; Benson and Bremner, 2004; Benson, 2008a & b; Normah and 

Makeen, 2008; Walters et al., 2008). It is also clear that the optimisation of any of these 

manipulations is best achieved when the process is informed by a fundamental understanding of 

the physiological and biochemical consequences of the manipulation concerned on the tissues 

composing the explant.  

Therein lies the problem: while there is some understanding of the physical factors (e.g. ice 

formation and intracellular dehydration) associated with freezing and desiccation sensitivity of 

recalcitrant seed tissue (see Wesley-Smith et al., 1992, 2001b, 2004a; Pritchard et al., 1995a; 

Walters et al., 2008), there is a paucity of information on the physiological and biochemical 
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basis of post-cryo viability and death in recalcitrant seed germplasm. Consequently, the present 

study investigates some of the morphological, physiological, biochemical, and ultrastructural 

consequences of cryoprotection, partial dehydration and freeze-thawing on whole Amaryllis 

belladonna (L.) and Haemanthus montanus (Baker) zygotic embryos, both of which are 

recalcitrant-seeded amaryllids (Sershen et al., 2008a). In doing so, the present study aimed to 

understand the fundamental basis of the successes and failures of conventional recalcitrant seed 

germplasm cryo-protocols and assess the potential for the use of selected markers of cryo-

related stress to optimise cryo-protocols for such germplasm. 

Figure 1.1 shows that cryopreservation of hydrated germplasm involves a number of pre- 

and post-cooling manipulations: each successive manipulation, viz. excision; decontamination; 

cryoprotection; partial dehydration; exposure to the cryogen; thawing; rehydration; and in vitro 

regeneration, has the potential to impose potentially lethal damage on critical tissues of the 

explant (Berjak et al., 1999b; Benson and Bremner, 2004; Pammenter et al., 2010).  As the 

current investigation aimed to inform future cryopreservation protocols for recalcitrant seed 

germplasm, the experimental design had to allow for an appreciation of the independent and 

interactive physiological and biochemical effects of the various procedures. In an attempt to 

achieve this, experiments in this study were designed to trace the ‘metabolic/stress history’ of A. 

belladonna and H. montanus zygotic embryos consequential to the various procedural steps 

involved in their cryopreservation (e.g. cryoprotection, partial drying, freeze-thawing). This 

involved investigating the relationships among vigour, viability, respiratory activity, rate of 

protein synthesis and electrolyte leakage after individual and various combinations of these 

procedural steps. Results of these studies are featured in Chapter 2. 

Membranous sub-structure and intracellular organisation are essential to proper cell 

functioning and damage to this sub-structure during dehydration (Berjak et al., 1989; Walters et 

al., 2001; Faria et al., 2005) and cryopreservation (Wesley-Smith et al., 1992; Naidoo et al., 

2005) can affect subsequent explant regeneration (Mycock, 1999). Hence, electron microscopy 

was used to observe the ultrastructural responses of A. belladonna and H. montanus zygotic 

embryos to the various procedures of cryopreservation (in particular, cryoprotection, partial 

dehydration and freeze-thawing). Results of these studies are presented in Chapter 3.  

Reactive oxygen species are produced during periods of stress (Oliver et al., 2001) and 

oxidative stress (primary and secondary) has been identified as a major component of chilling 

and cryoinjury in plant tissues (Levitt, 1980; Benson, 1990; Benson et al., 1995; Fleck et al., 

2003; Johnston et al., 2007). In light of suggestions that oxidative stress metabolism may be a 

major determinant of post-thaw survival in recalcitrant seed tissues (Normah and Makeen, 2008; 

Varghese and Naithani, 2008; Walters et al., 2008; Pammenter et al., 2010; Whitaker et al., 
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2010), the present study considered the oxidative stress metabolism, in particular, lipid 

peroxidation, extracellular superoxide production and enzymic antioxidant status, following the 

various procedures involved in the cryopreservation of A. belladonna and H. montanus zygotic 

embryos (in particular, cryoprotection, partial dehydration and thawing after cryogenic 

exposure). Chapter 4 features the results of these studies. 

Based on their desiccation- and/or chilling sensitivity (particularly if they are of tropical 

origin [Roberts, 1973; Ellis et al., 1990a; Hong and Ellis, 1996]), recalcitrant seeds and their 

zygotic explants are not ideal candidates for cold acclimation applications (described in section 

1.4.1). However, many of the responses observed during cold acclimation are strikingly similar 

to responses to other stresses, e.g. drought and salinity, suggesting the existence of a web of 

overlapping signals in stress response pathways (Gazzarrini and McCourt, 2001). Also, the 

induction of tolerance to one particular stress may result in acquired tolerance to other stresses, 

a phenomenon referred to as cross-tolerance (Xiong et al., 2002). In this regard, the exogenous 

application of H2O2, an active oxygen species and signal molecule involved in stress 

transduction (Azevedo Neto et al., 2005; Hung et al., 2005; Wahid et al., 2007), and the 

application of non-lethal osmotic stress (Guan and Scandalios, 1998; Guan et al., 2000) 

represent two potential methods of improving plant tolerance to a wide range of stresses, 

including chilling (Murphy et al., 2002). Enhanced stress tolerance is thought to be related to 

the direct expression of a number of genes, some of which are involved in plant defence 

(Kovtun et al., 2000), antioxidants and cell rescue/defence protein expression (Robert and 

David, 2004; Hung et al., 2005). Hence, studies described in Chapter 5 investigated whether 

the exogenous application of H2O2 to A. belladonna zygotic embryos or exposure of H. 

montanus zygotic embryos to a non-lethal osmotic stress, prior to cryopreservation, could 

enhance cryo-tolerance. Also, since elevated antioxidant status has been implicated in cryo-

tolerance in plant tissues (Dussert et al., 2003; Johnston et al., 2007; Varghese and Naithani, 

2008), the study related post-thaw viabilities to antioxidant activities after thawing.  

In some cases seedlings recovered from cryopreserved zygotic explants have been reported 

to exhibit morphological abnormalities (e.g. Pence, 1992; Kioko et al., 1998; Wesley-Smith et 

al., 2001b; Sershen et al., 2007). Apart from cooling, the manipulation of these explants prior to 

freezing, especially partial dehydration, can lead to physico-chemical damage, which could 

explain the post-thaw growth abnormalities observed when recalcitrant zygotic explants of a 

number of species have been set to germinate (e.g. Dumet et al., 1997; Wesley-Smith et al., 

2001b; Péran et al., 2004; Sershen et al., 2007). This requires urgent investigation for future 

remediation, as the ultimate aim of cryopreservation of zygotic explants is the ex vitro 

establishment of normal, vigorous plants. In light of this, the current contribution assessed the 
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effects of zygotic embryo dehydration (in H. montanus [Chapter 6]) and dehydration and 

cooling (in A. belladonna [Chapter 7]) on subsequent in and ex vitro seedling vigour.  

 Results for each chapter are discussed independently but the salient points from all studies 

are drawn together in Chapter 8. In evaluating the extent to which this study has answered the 

research questions posed here, Chapter 8 also presents suggestions for future studies and 

highlights the contradictions and problems that emerged during the experimental phase of this 

thesis.  
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                Table 1.1 Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds. 

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection and ng=not given. g g-1= g H2O per g 
dry mass.  

 

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Araucaria 

hunsteinii K. 
Schum. 
(EA) 

Slow; LF 
 

0.25 g g-1; no CP 
 

Slow; CV 0.25 g g-1=80% Root meristem 
survival 

High incidence of abnormal 
growth after 

decontamination, 
dehydration and freezing. 

Pritchard and 
Prendergast, 1986 

Camellia 

sinensis [L.] 
O. Kuntze 

(EA) 

Slow; LF 
 

1.05, 0.33, 0.15, & 
0.12 g g-1; no CP 

Slow; CV 0.15 g g-1=95% 
 

Root+shoot Post-cryo seedling 
phenotype (in vitro) similar 

to control. 

Chaudhury et al., 
1991 

Juglans regia 
[L.] CV 

Franquette 
(EA) 

No physical 
dehydration 

0.05 & 
 0.25 g g-1+1,2-
propanediol+Suc 

CP 

Slow; CV 0.05 g g-1+CP=61% & 
0.25 g g-1+CP=75% 
 

Shoot Toxic effects of 
cryoprotectants disappeared 

after freezing. Freezing 
induced a 2 month delay in 

growth.  

de Boucaud et al., 
1991 

Theobroma 

cacao 

(immature 
ZE) 

No physical 
dehydration 

Suc-DMSO CP Two-step cooling: 
0.4°C min-1 down  
to -40°C then into 

LN 

Suc-DMSO CP=<20% Somatic embryos 
or callus 

No roots or shoots after 
freezing. 

Pence, 1991 

Landolphia 

kirkii Dyer  
(EA) 

Rapid; stream of 
nitrogen gas 

1.77-0.60,  0.59-
0.45, 0.44-0.30 & 
<0.29 g g-1; no CP 

 

Slow: 16°C min-1 
down to -70°C 

within DSC pans 
in chest freezer 

0.44-0.30 g g-1=93% 
 

Greening+root Freezing induced a 4 week 
delay in growth. 

 

Vertucci et al., 
1991 

Musa 

acuminata & 

Musa 

balbisiana  
(ZE) 

Slow; LF 0.12-0.18 g g-1 for 
M. acuminate; 

0.12-0.16 g g-1 for 
M. balbisiana; 

no CP 

Slow; CV 0.12-0.18 g g-1 for M. 

acuminata=80-83% & 
0.12-0.16 g g-1  for M. 

balbisiana=80-92% 

Root+shoot Post-cryo seedling 
phenotype (in vitro) similar 

to control. 

Abdelnour-
Esquivel et al., 

1992a 

Coffea 

arabica; 
Coffea 

canephora & 
Coffea 

arabusta 
(ZE) 

Slow; LF 0.19 g g-1  for C. 
arabica; 

0.41  g g-1 for C. 
canephora;   

0.38  g g-1 for C. 
arabusta; 

no CP 

Rapid; foil 
envelopes 

plunged into LN 

0.19 g g-1  for C. 
arabica=96%; 
0.41  g g-1  for C. 
canephora=42% & 
0.38  g g-1  for C. 
arabusta=84% 

Root+shoot Development of frozen 
embryos delayed compared 

to control. 

Abdelnour-
Esquivel et al., 

1992b 
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             Table 1.1 continued…Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds.  

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection and ng=not given. g g-1= g H2O per g 
dry mass.  

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Cocos 

nucifera 
(ZE) 

No physical 
dehydration 

Gly & Sorbitol CP Slow; CV Gly CP=1 embryo 
 

Root+shoot Freezing induced a 6 week 
delay in growth. 

 

Assy-Bah and 
Engelmann, 1992a 

Cocos 

nucifera; 
4 varieties 

(EA) 

Slow; LF 0.07-0.08 g g-1 

+Gly-Glucose CP 
 

Slow; CV 0.07 g g-1=93% for variety 
1; 
0.08  g g-1=73% for 
variety 2; 
0.08 g g-1=86% for variety 
3 & 
0.07 g g-1=88% for variety 
4 

Root+shoot Post-cryo seedling 
phenotype (in vitro) similar 

to control but growth of 
haustorium suppressed and 
delayed by 8 weeks. CP 

slowed growth. 

Assy-Bah and 
Engelmann,  

1992b 

Coffea 

liberica  
Bull. Ex 
Hiern 

Slow; LF 0.11, 0.12, 0.18, 
0.24, 0.26, 0.39, 

0.89 & 1.52  g g-1; 
no CP 

Slow; CV 0.18 g g-1=c. 51% Root+shoot Growth hormones required 
for root and shoot 

production. 

Normah and 
Vengadasala, 

1992 

Quercus 

robur 
(EA) 

Slow; LF 0.33  g g-1; no CP Two-step cooling: 
-1°C min-1 down to 
-38°C then into LN 

0% Root+shoot Drying was more 
detrimental to shoots than 

roots. 

Poulsen, 1992 

Camellia 

sinensis 

(EA) 

Rapid; FD >1.6 1.6-1.1, 
1.1-0.7, 0.7-0.4  & 
0.4-0.3 g g-1; no CP 

 

10°C min-1; 200°C 
min-1 & 1000’s of 

°C s-1 
 
 

1.6-1.1 g g-1+1000’s 
of °C s-1=100%; 

0.7-0.4 g g-1+200°C min-1 
=60% & 0.4-0.3 g g-1+ 
10°C min-1=14% 

Root No shoot production. Wesley-Smith et 
al., 1992 

Euphoria 

longan Lour. 
(EA) 

Slow; silica gel 0.22  g g-1; no CP 
 

Slow; glass tubes 
plunged into LN or 
held for 30 min  at 
-18°C then into LN 

0.22  g g-1+directly into 
LN=25% &  
0.22  g g-1+ -18°C and 
then into LN=50% 

 

Root+shoot Plumule growth inhibited by 
dehydration. Post-cryo 

growth retarded. 

Fu et al., 1993 

Camellia 

sinensis [L.] 
O. Kuntze 

(EA) 

0.15 & 0.11 g g-1; 
no CP 

0.15  g g-1=95% 
 
 

Theobroma 

cacoa 

(EA) 

Slow; LF 

1.08 & 1.17-1.50 g 
g-1; no CP 

Slow; CV 
 

 
 

0% 
 

Elongation of 
radicle and 
plumule 

 

 Chandel et al., 
1995 
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             Table 1.1 continued…Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds. 

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection and ng=not given. g g-1= g H2O per g 
dry mass.  

                 

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Artocarpus 

heterophyllus 

(EA) 

Slow; LF 0.16  g g-1; no CP 
 

Slow; CV 
 

0.16  g g-1=30% Elongation of 
radicle and 
plumule 

 Chandel et al., 
1995 

Araucaria 

hunsteinii 

(ZE) 

Slow; saturated 
salt 

solutions+LF 

0.18-3.00 g g-1; no 
CP 
 

Slow; CV above 
LN 

0% Root+shoot Callus from radicle only. 
Dehydration stunted growth. 

Pritchard et al., 
1995a 

Azadirachta 

indica (EA) 
Slow; silica gel 0.23 & 0.19 g g-1; 

no CP 
Slow; CV 0.23 g g-1=100% & 

0.19 g g-1=85% 
Expansion  Berjak and Dumet, 

1996 
Prunus 

persica [L.] 
Battsch 
(EA) 

Slow; LF 4.00, 0.54,  0.43,  
0.14, 0.10, & 0.08 
g g-1; 0.54 g g-1 

+1,2-propanediol-
Suc CP & 

35%+PVS2 CP 

Slow; CV 0.54  g g-1=95%; 
0.43  g g-1=96%;  
0.54  g g-1+1,2-
propanediol-Suc=95% & 
0.54  g g-1+modified 
PVS2=85% 

Shoot  de Boucaud et al., 
1996 

Camellia 

japonica 

(EA) 

Slow; LF 
 

ng Slow; CV 8.3-13.3% Root+shoot  Janeiro et al., 
1996 

Citrus hystrix 

(EA) 
0.65, 0.18, 0.12, 
0.10 & 0.06 g g-1; 

no CP 

0.12 g g-1=60% 

Citrus halimii 

(EA) 

Slow; LF 
 

1.61, 0.20, 0.10, 
0.07 & 0.06 g g-1; 

no CP 

Rapid; foil 
envelopes 

plunged into LN 
0.20 g g-1=100% 

Root+shoot 
 

 Normah et al., 
1997 

Trichilia 

dregeana 

(EA) 

Rapid; FD 0.16 g g-1+Gly-
DMSO CP &  0.16 
g g-1+Gly-Suc CP 

Slow; CV 
Rapid; SL 

 

0.16 g g-1+Gly-DMSO 
+slow=49% & 
0.16 g g-1+Gly-Suc 
+slow=40% 

Root Shoots failed to develop 
with and without drying and 

cooling. 

Kioko et al., 1998 

Quercus 

rubra 

(EA) 

Slow; LF 
 

0.6-1.7 g g-1;  
no CP 

≤10°C min-1 then 
in LN; 100°C  

min-1 then into LN 

0 % 
 

Root+shoot  Sun, 1999 

Artocarpus 

heterophyllus 
Lamk. cv.  

(EA) 

Slow; LF Suc-Gly CP+ 
vitrification & 
3.00-0.14 g g-1 

Slow; CV 
 

Suc-Gly CP+vitrification= 
50% 
 

Root+shoot Post-cryo seedling 
phenotype (in vitro) similar 

to control. 

Thammasiri, 1999 
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Table 1.1 continued…Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds. 

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection and ng=not given. g g-1= g H2O per g 
dry mass.  
 
 
 
 

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Zizania 

palustris 

(ZE)  

Rapid; stream of 
nitrogen gas 

0.56, 0.36 & 0.30  
g g-1; no CP 

Rapid 
(250°C s-1); SL 

0.56 g g-1=50-60% & 
0.36 g g-1=50-60% 
 

Coleoptile length  Touchell and 
Walters, 2000 

Aesculus 

hippo-

castanum 

(EA) 

Rapid; FD 
 

>1, 1-0.8, 0.8-0.5,  
1.0-0.5, <0.5 & 

<0.4 g g-1; no CP 

Rapid: EAs 
plunged into SL & 

isopentane  
(40-850°C s-1) 

Isopentane: 
0.8-0.5 g g-1=80%  
& 0.5-0.3 g g-1=100% 
SL: 0.5-0.3 g g-1=100% 

Root+shoot Freezing induced abnormal 
growth; absence of roots, 
presence of callus and 

stunted growth. 

Wesley-Smith et 
al., 2001b 

Sechium 

edule  

Jacq. Sw.; 
2 cultivars 

 (ZE) 
 

Slow; LF 0.30 & 0.23 g g-1; 
no CP   

Slow; CV 
 

0.30 g g-1=10% for 
cultivar 1 & 
0.23 g g-1=20-30% for 
cultivar 2  
 

ng Desiccation reduced 
viability (by 80% at 0.30 g 
g-1 in cultivar 1 and by 30% 
g g-1 at 0.23 g g-1 in cultivar 
2). Excision of cotyledons 

affected viability 

Abdelnour-
Esquivel  and 

Engelmann, 2002 

Quercus 

suber 

(EA) 

0.51 & 0.22 g g-1; 
no CP 

Slow (28°C s-1); 
CV & 

Rapid (45°C s-1); 
SL 

0.22 g g-1+slowly 
cooled=<10% 

 

Desiccation reduced 
viability (by 40% at 

 0.51 g g-1 and by 30% at 
0.22 g g-1) 

0.28 & 0.15 g g-1; 
no CP 

Slow (28°C s-1); 
CV 

 
 
 

0.15 g g-1=<20% Quercus ilex  
(EA) 

Slow; LF 

1.16, 0.34 &  
0.22 g g-1; no CP 

Rapid (45°C s-1); 
SL 

0.22 g g-1=<20%  

Shoot 
 

Many radicles elongated but 
turned necrotic later. 
Desiccation reduced 

viability (by 60% at 0.28  
g g-1  and by 80% at  

0.15 g g-1) 

González-Benito 
et al., 2002 

Camellia 

sinensis [L.] 
(EA & EA+ 
cotyledons) 

Slow; LF 0.23 g g-1 for 
EA+cotyledons & 
0.22 g g-1 for EA; 

no CP 

Slow; CV 
 

0.23 g g-1 for EA+ 
cotyledons=71.7% & 
0.22 g g-1 for EA= 
56.2% 

Root+shoot Desiccation reduced 
viability. 

Kim et al., 2002 

Zizania 

texana 

(ZE) 

Rapid; stream of 
nitrogen gas 

0.3 & 0.6 g g-1 
+CP with 

mixture of sugars 

Rapid 
(250°C s-1); SL 

 

-CP: 0.3 g g-1=5% & 
+CP: 0.6 g g-1=70% 

Coleoptile length  Walters et al., 
2002b 
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                 Table 1.1 continued…Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds. 

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection; RH=relative humidity and ng=not  
given. g g-1= g H2O per g dry mass.  

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Citrus sinensis 
[L.] OSB 

(EA) 

Slow; silica gel 0.50-0.12 g g-1+Suc 
CP 
 

Slow (78°C  
min-1); CV 

 

0.50-0.12 g g-1+Suc 
CP=80-93% 

 

Root+shoot Desiccation reduced 
viability. Post-cryo seedling 
  phenotype (in vitro) similar 

to control. 

Santos and 
Stushnoff, 2003 

Castanea 

sativa 
(EA)  

Slow; LF 1.94, 1.04,  0.54, 
0.410,0.32, 0.25 & 
0.22  g g-1; no CP  

Slow; CV 0.25 g g-1=63%  Root+shoot  Corredoira et al., 
2004 

Aesculus 

hippocastanum 

(EA) 

>0.67 g g-1; no CP  >0.67 g g-1=90% 

Aesculus 

glabra 

(EA) 

0.41 g g-1; no CP  0.41 g g-1=70% 

Quercus 

palustris 

(EA) 

Slow; LF 

ng; no CP 

Slow; CV 

0% 

Greening, 
swelling 

root or shoot 
production 

 Pence, 2004 

Poncirus 

trifoliata 

(EA) 

Rapid; FD 1.7, 0.8 & 0.26 
g g-1; no CP 

Ultra-rapid(400-
1300°C s-1 ); Rapid 
(200-500°C s-1); 

Slow(80-90°C s-1);  
Slow-programmed 
(10, 200˚C min-1)  

1.7 g g-1+0.17˚C s-1=40%; 
0.8 g g-1+686˚C s-1 ≥70%  
& 
0.26 g g-1+0.17- 
1300˚C s-1 ≥70% 

Root+shoot  Wesley-Smith et 
al., 2004a 

Acer 

saccharinum 

[L.] 
(EA) 

Slow;  over 
sodium 

bromide (58% 
RH) + calcium 
chloride (31% 

RH)  

0.11 g g-1; 
0.11 g g-1+20 µM 

ABA+tetcyclacis & 
10%+60 µM 

ABA+tetcyclacis 

Two-step cooling: 
0 to -40°C at  

-0.33°C m-1 then 
plunged within 
CVs into LN 

0.11 g g-1+60 µM ABA 
+tetcyclacis=55% 

Root+shoot Cryopreservation had a 
more detrimental effect on 

shoots than roots. 

Beardmore and 
Whittle, 2005 

Citrus 

suhuiensis 

(EA) 

Slow; LF 0.15 g g-1; no CP Slow; CV 
 

0.15 g g-1=83% Root+shoot  Makeen et al., 
2005 

Ekebergia 

capensis, 

Sparrm. 
(EA) 

Rapid; FD 
 

0.4 g g-1; no CP Rapid; plunged 
into LN within 

plastic net 
envelopes 

0.40 g g-1=50% 
 

Root+shoot 80% post-cryo root 
production only; growth 

hormones required for shoot 
production. 

Perán et al., 2006 
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                Table 1.1 continued…Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds. 

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection; PVS2=plant vitrification solution-2 and 
ng=not given. g g-1= g H2O per g dry mass.  
 

 

 

 

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Brunsvigia 

gregaria 

(ZE) 

Rapid: 0.24 g g-1+Gly= 
60% & 
Slow: Vitrification=15% 

Amaryllis 

belladonna 

(ZE) 

Rapid: 0.17 g g-1+Gly= 
75% & 
Slow: 0.21 g g-1+Suc= 
40% 

Strumaria 

discifera 

(ZE) 

Rapid: 0.20 g g-1+Gly= 
65% & 
Slow: 0.20 g g-1+Gly= 
45% 

Haemanthus 

humulus 

humulus 

(ZE) 

Rapid: 0.24 g g-1+Gly= 
70% & 
Slow: 0.24 g g-1+Gly= 
70% 

Brunsvigia 

orientalis 

(ZE) 

Rapid: 0.22 g g-1+ Gly= 
55% & 
Slow: 0.30 g g-1=25% 

Nerine 

humulus 

(ZE) 

Rapid: 0.21 g g-1+Suc= 
40% & 
Slow: 0.21 g g-1+Suc= 
20%; 0.24 g g-1+ 
Suc-Gly-DMSO=20% 

Nerine 

huttoniae 

(ZE) 

Rapid: 0.23 g g-1+Suc= 
40% & 
Slow: 0.32 g g-1=20% 

Nerine 

bowdenii 

(ZE) 

Rapid; FD 
 

Dried to ≤0.4  
g g-1±Suc, Gly, 

Suc-Gly, Suc-Gly-
DMSO, dextran, 

PVP CP & 
vitrification with 

PVS2 

Slow; CV & 
Rapid; SL 

 

Rapid: 0.31 g g-1=35% & 
Slow: 0.31 g g-1=35% 

Root+shoot Stunted growth after 
cooling. 

Sershen et al., 
2007 



 

 

51 

            Table 1.1 continued…Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds. 

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection; PVS2=plant vitrification solution-2 and 
ng=not given. g g-1= g H2O per g dry mass.  
 

 

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Boophane 

disticha 

(ZE) 

Rapid: 0.30 g g-1=30% & 
Slow: =0% 

Haemanthus 

bakerae 

(ZE) 

Rapid: 0.18 g g-1+Suc= 
30%  & 
Slow: 0.20 g g-1+Suc-Gly 
=10% 

Haemanthus 

coccineus 

(ZE) 

Rapid: 0.20 g g-1+Suc 
=35% & 
Slow: 0.20 g g-1+Suc 
=20%; 
Slow: vitrification=20% 

Crinum 

bulbispermum 

(ZE) 

Rapid: 0.41 g g-1+Gly= 
15% & 
Slow: =0% 

Scadoxus 

puniceus 

(ZE) 

Rapid: 0.25 g g-1=55%  & 
Slow: vitrification=15% 

Nerine 

filifolia 

(ZE) 

Rapid: 0.26 g g-1= 
50% & 
Slow: 0.26 g g-1= 
30% 

Haemanthus 

deformis 

(ZE) 

Rapid; FD Dried to ≤0.4  
g g-1±Suc, Gly, 

Suc-Gly, Suc-Gly-
DMSO, dextran, 

PVP CP & 
vitrification 
with PVS2 

Slow; CV & 
Rapid; SL 

Rapid: 0.14+Gly=40%  & 
Slow: 0.14+Gly=20%; 
Slow: vitrification=20% 

Root+shoot Stunted growth after 
cooling. 

Sershen et al., 
2007 

Bactris 

gasipaes 

(EA) 

Slow; LF 0.25 g g-1; no CP  Slow; CV 
 

0.25 g g-1=29% Root+shoot Stunted growth after drying 
and cooling. Ex vitro 
seedling mortality in 

seedlings recovered from 
cryopreserved EAs higher 

than control. 

Steinmacher et al., 
2007 



 

 

52 

                                  Table 1.1 continued…Review of selected cryopreservation studies on embryonic axes/zygotic embryos from non-orthodox seeds.  

LF=laminar flow; FD=flash drying; CV=cryovials; SL=nitrogen slush; EA=embryonic axes; ZE=zygotic embryos; CP=cryoprotection and ng=not given. g g-1= g H2O per g 
dry mass.  
 

Species 

& 

explant type 

Dehydration 

rate/method 

 

Explant 

water content* 

& 

cryoprotection 

Cooling 

rate/method 

 

Highest post-cryo 

viability (%) 

 

Method of 

viability 

assessment 

 

Post-drying 

& 

post-cryo 

growth 

Reference 

Ilex brasiliensis 

(ZE) 
Two-step: 0.33 g g-1 

+Suc=37% & 
Slow: 0.33 g g-1=67% 

Ilex brevicuspis 

(ZE) 
Two-step:0.33 g g-1 

+Suc=3%; 
Two-step: 0.33 g g-1=3% 
& Slow: 0.33 g g-1=15% 

Ilex dumosa 

(ZE) 
Two-step: 0.33 g g-1 

+Suc=83% & 
Slow: 0.33 g g-1+Suc= 
67% 

Ilex 

pseudoboxus 

(ZE) 

Two-step: 0.33 g g-1= 
27% & 
Slow: 0.33 g g-1=27% 

Ilex theezans 

(ZE) 
Two-step: 0.33 g g-1+ 
Suc=20% & 
Slow: 0.33 g g-1+Suc= 
65% 

Ilex 

intergerrima 

(ZE) 

Two-step: 0.33 g g-1 

+Suc=14% & 
Slow: 0.33 g g-1+Suc= 
50% 

Ilex 

paraguariensis 

(ZE) 

Two-step: 0.33 g g-1 

+Suc=50% &  
Slow: 0.33 g g-1=57% 

Ilex tauberiana 

(ZE) 

Slow; alginate 
beads dried in 

silica gel 

0.33 g g-1±Suc CP 
 

Slow; CV  & 
two-step cooling:  
1°C min-1 down to 

-30°C then 
plunged within 
CVs into LN. 

Two-step: 0.33 g g-1 + 
Suc=18% & 
Slow: 0.33 g g-1+Suc 
=24% 

Root+shoot  Mroginski et al., 
2008 

Trichilia 

dregeana Sond. 
(ZE) 

Rapid; FD 0.27 & 0.64 g g-1; 
no CP  

Slow; CV 
 

0%  Assessed for root 
and shoot after 
cryo but not 
stated for 
control. 

7% of explants dried to 0.27 
g g-1 callused.   

Whitaker et al., 
2010 
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1.6 Choice and details of species studied 

Little to nothing is known of the post-harvest behaviour of the spectrum of African tree and 

shrub species that produce, or are suspected to produce, recalcitrant seeds (Sacandé et al., 2004). 

Even where basic information on seed storage behaviour is available, tissue culture protocols for 

zygotic germplasm culture have generally not been developed, so that cryopreservation studies 

of germplasm of such species must start with these aspects.  It was therefore logical to undertake 

the present studies on species, for which short- to medium-term seed storage techniques and 

tissue culture protocols were already in place. Selected members of the Amaryllidaceae 

provided ideal candidates, since previous studies on 15 species had yielded a sound 

understanding of the post-harvest behaviour of these recalcitrant amaryllid seeds (Sershen et al., 

2008a & b).  

The family Amaryllidaceae is made up of 59 genera and about 850 species worldwide 

(Snijman, 2000), some of which produce recalcitrant seeds (Sershen et al., 2008a). South 

America hosting 28 genera and South Africa, which hosts 18, are the major centres of amaryllid 

diversity, while the Mediterranean has eight genera and Australia just three (Snijman, 1984). 

Southern Africa as a whole boasts 210 indigenous amaryllid species, 77% of which are endemic 

(Snijman, 2000). The reasons for the specific selection of Haemanthus montanus and Amaryllis 

belladonna (Fig. 1.2C, D) for use in this study were four-fold: (1) both are endemic to South 

Africa; (2) the locations of wild populations of these species had already been established; (3) 

plants comprising these specific populations (Fig. 1.2A, B) seldom failed to set seed; and (4) 

unlike the zygotic embryos/embryonic axes of many other tropical recalcitrant-seeded species 

(Engelmann, 2000), the zygotic embryos excised from H. montanus and A. belladonna seeds 

(see Fig. 1.2E) could be easily generated into seedlings under in vitro conditions. 

Plants of a number of amaryllid species are consistently utilised for traditional medicinal 

preparations; the bulbs and leaves are used as poultices and decoctions for treating sores and 

digestive disorders (Gericke et al., 2002; von Ahlefeldt et al., 2003). Harvesting of entire 

amaryllid bulbs (i.e. plants), which is common practice across Africa, effectively removes 

potential seed-bearing individuals from a population, threatening the existence of geophytes like 

the amaryllids, which take years to reach maturity, let alone set seed. Aside from the curtailed 

seed storage life span (Sershen et al., 2008b) and non-sustainable harvesting of many amaryllid 

species, predation of amaryllid plants and seeds by the amaryllis caterpillar as well as habitat 

loss further threaten the survival of some species of the Amaryllidaceae. With dwindling wild 

populations (von Ahlefeldt et al., 2003) and poor recruitment rates, 59 amaryllid species were 

listed as endangered or vulnerable in South Africa about 10 years ago, while a further 58 were 

categorised as near-threatened at that time (Snijman, 2000; Victor, 2002). According to the 2009 
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version of “The Red Data List of South African Plant Taxa” (South African National 

Biodiversity Institute, 2009), some amaryllid species that were previously categorised as near-

threatened are now listed as endangered, but the number of species that are listed as near-

threatened remains comparable to that quoted almost 10 years ago (Snijman, 2000; Victor, 

2002). The ephemeral nature of amaryllid seeds is also believed to have contributed to the 

endangered or near-threatened status of over half of the 210 amaryllid species indigenous to 

southern Africa (Snijman, 2000). Seasonal gathering of plant components and governmental 

legislation have failed to ensure sustainable harvesting of amaryllids (Snijman, 2000) and the 

plants of several amaryllid species are presently being sold within and across the borders of 

South Africa, with little or no restriction (author’s unpublished information). All of this 

validates the choice of A. belladonna and H. montanus as the species of interest in the present 

study, the outcomes of which will hopefully improve prospects for germplasm conservation and 

ultimate sustainability of the Amaryllidaceae. 
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Figure 1.2 [A] Amaryllis belladonna and [B] Haemanthus montanus populations sampled in this study; [C] H. 
montanus seeds; [D] A. belladonna seeds; and [E] an A. belladonna zygotic embryo, lying within the endosperm. The 
structure visible is principally comprised of the single cotyledon with the small (2-3 mm) axis attached at the broader 
end (encircled). Bar = 10 mm. (Image B courtesy of C. McMaster [African Bulbs, Stutterheim, South Africa]). 
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CHAPTER TWO: 

Interpreting the effects of cryopreservation on recalcitrant Amaryllis 

belladonna and Haemanthus  montanus zygotic embryos using selected stress 

markers 
     

Abstract 

A study on cryopreservation of the zygotic embryos of two recalcitrant-seeded amaryllid 

species, viz. Amaryllis belladonna (L.) and Haemanthus montanus (Baker) is reported. This 

study aimed to interpret the interactive effects of water content (WC), cryoprotection and 

cooling rate on subsequent zygotic embryo vigour and viability, using three stress markers: 

electrolyte leakage; spectrophotometric assessment of tetrazolium chloride-reduction; and rate 

of protein synthesis. Cryopreservation studies involved cooling partially dried (rapidly; to WCs 

> and <0.4 g g-1) and fully hydrated embryos, with and without prior sucrose (non-penetrative) 

and glycerol (penetrative) cryoprotection, at rapid and slow cooling rates. Zygotic embryos of 

both species lost some viability at relatively high WCs upon partial dehydration, with this loss 

being more severe at WCs <0.40 g g-1. Zygotic embryos of both species could nevertheless be 

dried to WCs between 0.29 and 0.33 g g-1, while retaining ≥70% viability. However, the rate at 

which this water could be removed was higher in A. belladonna. Partial dehydration generally 

led to enhanced protein synthesis, an increase in electrolyte leakage and a decline in respiratory 

activity and vigour. Sucrose (Suc) cryoprotection induced greater viability loss than glycerol 

(Gly) cryoprotection. Cryoprotection + partial dehydration decreased vigour and often 

depressed protein synthesis and respiratory activity more than partial dehydration alone. 

Cooling led to the greatest over-all decline in viability, respiratory activity, protein synthesis 

and vigour. Glycerol was superior to the non-penetrating cryoprotectant, Suc, at enhancing post-

thaw viability retention. Post-thaw viabilities for both species were best when Gly cryoprotected 

+ partially dried embryos were rapidly, as opposed to slowly, cooled, but the optimum WC 

range for post-thaw viability differed between species. The stresses and lesions, metabolic and 

physical, induced at each stage of the cryopreservation protocol appear to be compounded, thus 

pre-disposing the tissues to further damage and/or viability loss with the progression of each 

step. The results also suggest that to optimise cryopreservation protocols for recalcitrant zygotic 

germplasm, attention must be paid to pre-cooling dehydration stress, which appears to be the 

product of both the ‘intensity’ and ‘duration’ of the stress. The stress markers employed here 

were useful in differentiating among the effects of the various treatments, however, the mixture 

of living, weakened and dead cells in frozen-thawed embryos appears to have compromised the 

accuracy with which some of the markers (e.g. electrolyte leakage and tetrazolium chloride-

reduction) forecasted the post-thaw viability associated with these treatments.  
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2.1 Introduction 

Essentially, successful cryopreservation of hydrated tissues demands the application of stresses 

(which include desiccation and ice formation) faster than the resulting potential damage can 

accumulate. Post-thaw viability of hydrated seed tissues is generally improved when partial 

dehydration is used as a pre-treatment (e.g. Pritchard and Prendergast, 1986; Pence, 1992; 

Kioko et al., 1998; Wesley-Smith et al., 2001, 2004a; Sershen et al., 2007) since it reduces the 

heat to be dissipated during cooling (Wesley-Smith, 2004b; Walters et al., 2008), increases 

cytoplasmic viscosity (Leprince et al., 1999; Wesley-Smith et al., 2001; Walters et al., 2008), 

and slows down intracellular ice-crystal growth during cooling (Stanwood, 1985; Wesley-Smith 

et al., 1992). When the removal of a large amount of water from tissues by desiccation is 

accompanied by appropriate cooling and re-warming rates, lethal intracellular ice-crystal 

formation can be avoided (Mazur, 1984; Steponkus, 1985). Also, there have been suggestions 

that the exogenous application of cryoprotectants may improve survival in recalcitrant zygotic 

germplasm of tropical provenance (Engelmann, 1997; Normah and Makeen, 2008; Walters et 

al., 2008) and their benefits appear to maximised when they are applied in combination with 

optimum embryo/axis water contents (WCs) and cooling rates (Sershen et al., 2007).   

Sensitivity to desiccation stress (physical and osmotic) is therefore a fundamental 

physiological feature dictating cryopreservation strategy in recalcitrant (Roberts, 1973) seed 

germplasm. The moderately dense cytoplasm of mature recalcitrant embryos/axes and their 

ability to tolerate moderate dehydration allow the achievement of lower cellular water 

potentials, easing the stringent requirements for the exogenous application of cryoprotectants 

and super-fast cooling (reviewed by Walters et al., 2008). However, the success of most 

cryopreservation protocols involving recalcitrant seed germplasm is often hampered by the fact 

that ice-crystal formation invariably occurs when hydrated embryos/axes are exposed to liquid 

nitrogen (LN) (e.g. Wesley-Smith et al., 1992), while drying to WCs precluding ice formation 

generally leads to lethal desiccation damage (King and Roberts, 1980; Walters et al., 2008). 

This may explain why ‘seedling’ recovery in cryopreservation studies involving recalcitrant 

zygotic germplasm is often very low (0-30%; e.g. Poulsen, 1992; Assy-Bah and Engelmann, 

1992a; Abdelnour-Esquivel and Engelmann, 2002; González-Benito et al., 2002; Steinmacher et 

al., 2007; some species in Sershen et al., 2007), and/or accompanied by a high incidence of 

‘abnormal’ growth (i.e. no roots, no shoots or callus; e.g. de Boucaud et al., 1991; Pence, 1992; 

Poulsen, 1992 ; Kioko et al., 1998; Wesley-Smith et al., 2001; Perán et al., 2006 ; Steinmacher 

et al., 2007; Sershen et al., 2007). Of late, a number of studies have suggested that each 

successive manipulation involved in the cryopreservation of plant germplasm; excision, 

decontamination, partial dehydration (which may or may not be preceded by cryoprotection), 
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exposure to the cryogen, thawing and rehydration, and in vitro recovery, has the potential to 

inflict lethal damage on tissues (Berjak et al., 1996; Dumet et al., 1997; Mycock, 1999; Benson 

and Bremner, 2004; Péran et al., 2004; Sershen et al., 2007; Pammenter et al., 2010). The 

empirical approach adopted by many cryopreservation studies involving recalcitrant zygotic 

germplasm has placed great limitations on the conclusions drawn though, and the development 

of improved methodologies demands a more fundamental understanding of the type and degree 

of physiological and biochemical damage associated with the different components of 

cryopreservation.  

The present study aimed to interpret the interactive effects of WC, cryoprotection 

(penetrative and non-penetrative) and cooling rate (rapid and slow) on subsequent embryo 

vigour and viability, using three stress markers: (1) electrolyte leakage, which has been 

correlated with membrane integrity (Bramlage et al., 1978, Mckersie and Tomes, 1980); (2) 

spectrophotometric assessment of tetrazolium chloride-reduction, which is an indication of 

respiratory competence (Harding and Benson, 1995; Verleysen et al., 2004); and (3) rate of 

protein synthesis, which is an indicator of biochemical competence (Motete et al., 1997). These 

studies were undertaken on zygotic embryos excised from the recalcitrant seeds of Amaryllis 

belladonna (L.) and Haemanthus montanus (Baker), two wild geophytes indigenous to South 

Africa.  

For all the studies described below embryos were dried to WCs slightly above and below 

0.4 g g-1. This was based on the findings of a previous study on the cryopreservation of the 

zygotic embryos of 15 amaryllids species (Sershen et al., 2007) which showed embryo WCs 

<0.4 g g-1 to be superior to those >0.4 g g-1, in promoting post-thaw viability. So, in 

cryopreserving embryos at WCs above and below 0.4 g g-1 this study measured the selected 

viability indicators at WCs that were presumably either ‘sufficiently low’ or ‘deleteriously high’ 

for amaryllid zygotic embryo cryopreservation. To assess whether the stresses and lesions 

induced at each stage of the cryopreservation protocol are compounded, thus pre-disposing the 

tissue to further damage and/or viability loss with the progression of each step, the selected 

stress indicators were measured after cryoprotection, dehydration, cooling and after all possible 

combinations of these procedures.  

In desiccation-sensitive tissue, the effect of a stress, particularly a mild stress, is unlikely to 

be instantaneous. In fact, if a stress induces a metabolic disorder, it takes time for the damage 

consequent upon that disorder to accumulate (Walters et al, 2001). In most cases the damage 

incurred may be evident only after the system has rehydrated fully, and metabolism has been re-

initiated. Additionally, recovery from cryostorage involves a series of complex events and while 

severely damaged tissues undergo degradative processes that lead to cell death, less damaged 
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tissues can stabilise, recover and return to normal metabolic status (Benson and Noronha-Dutra, 

1988). Based on the above, protein synthesis, respiratory activity, vigour and viability were 

measured on rehydrated embryos after an in vitro recovery period. These measurements are 

therefore presumed to reflect the damage caused by the treatment as well as the damage that 

accumulated or declined during recovery. Electrolyte leakage was the only parameter measured 

immediately after rehydration (in cooled and non-cooled embryos), since the avoidance of 

desiccation damage requires not only that membranes be stabilised when dry, but also that they 

remain intact during dehydration and rehydration (Halperin and Koster, 2006). The importance 

of measuring electrolyte leakage immediately after any particular treatment was highlighted by 

results of a pilot study which showed leakage values to peak shortly after rehydration but to 

decline dramatically after the embryos were introduced to tissue culture. The electrolyte leakage 

measurements carried out here are therefore presumed to reflect the damage caused by the 

treatment and not the damage that accumulated or declined during recovery.  

 

2.2 Materials and Methods 

Plant material  

In two consecutive years, mature fruits were harvested directly from parent plants and 

transported in plastic bags to the laboratory with minimum delay (1-2 d) or water loss. Upon 

arrival, the external fruit covering was removed and seeds were decontaminated for 10 min in 

1% aqueous sodium hypochlorite (3:1 dilution of commercial bleach) and left to dry back to their 

original mass on paper towel, at ambient temperature. The seeds were then dusted with Benlate, 

a surfactant fungicide, (active ingredient: benomyl [benzimidazole], Dupont, USA), and stored 

‘moist’ (i.e. in a monolayer on a grid suspended approximately 200 mm above sterile, 

moistened paper towel that lined the base of individual buckets which sealed with lids), at 6°C 

(after Sershen et al., 2008).  

 

Embryo pre-treatment 

Zygotic embryos were excised with the entire cotyledonary body attached (see Fig. A1 

[Appendix A] for a description of amaryllid zygotic embryo morphology) and collected within 

closed Petri dishes on filter paper moistened with sterile calcium-magnesium solution (CaMg 

solution: 0.5 µM CaCl2.2H2O and 0.5 mM MgCl2.6H2O [Mycock, 1999]). In order to minimise 

the potential variation in drying and/or cooling rate as a function of embryo size, only embryos 

of between 4-6 mm in length were used for all the experiments described below. Excised 

embryos were rapidly dehydrated via flash drying (devised by Berjak et al., 1990) to: (a) WCs 

between 0.40 and 0.25 g g-1 (referred to as ‘<0.4 g g-1’ from here on);  (b)  WCs between 0.60 
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and 0.40 g g-1 (referred to as ‘>0.4 g g-1’ from here on); and (c) WCs > and <0.40 g g-1 after 

cryoprotection (CP) with either aqueous glycerol (Gly) or sucrose (Suc). The WC ranges used in 

the present study were defined by constructing WC and viability vs. drying time curves for each 

species (see Fig. A2, Appendix A). For CP, freshly excised embryos were immersed in a 5% 

solution of Gly (v/v) or a 0.5 M solution of Suc for 1 h, and thereafter transferred to a 10% Gly 

(v/v) or 1 M Suc solution for a further hour. The selection of the cryoprotectants and 

concentrations used here was based on the results of a previous study which showed Suc and 

Gly (as opposed to dimethylsulphoxide, dextran, polyvinylpyrolidene and the combination of 

Suc and Gly) to be least harmful to the zygotic embryos of more than ten amaryllid species 

(including the two investigated in the present study), at the concentrations employed here 

(Sershen et al., 2007). It is also important to note that the molar concentrations of the Suc and 

Gly cryoprotectant solutions used in this study were very similar (e.g. 0.5 M for sucrose and 

0.55 M for 5% glycerol), implying that their water potentials would have been comparable. 

Partially dried embryos (with and without CP) were subsequently cooled at: (a) rapid, non-

equilibrium (c. 200°C s-1), cooling rates by direct immersion of naked embryos in nitrogen slush 

(LN sub-cooled to -210˚C [Echlin, 1992]); or (b) slow, equilibrium cooling rates (1˚C min-1 in 

an isopropanol bath [Mr Frosty®] within a -70˚C freezer) down to -40˚C followed by direct 

immersion in nitrogen slush. Freshly excised embryos subjected to no dehydration or CP, as 

well as embryos exposed to CP but no dehydration, were also subjected to both cooling rates. 

After cooling in nitrogen slush embryos were transferred under LN into LN-containing 

cryovials (Greiner™), mounted on aluminium cryo-canes (10 embryos per vial) and immersed 

in LN for no longer than a week before use; LN entered the cryovials. Upon retrieval from LN, 

embryos were rapidly thawed by direct immersion in sterile CaMg solution at 40˚C for 2 min, 

rehydrated in CaMg solution at ambient temperature for 30 min in the dark, and recovered in 

vitro. Freshly excised embryos exposed to none of the treatments described above were also 

recovered in vitro to serve as a control. 

 

Water content determination  

Immediately after each of excision (referred to as ‘fresh’ from here on), partial dehydration 

(D), CP and CP+D, 10 embryos from each of the non-cooled treatment combinations were 

weighed individually using a 6-place balance (Mettler, MT5; Germany) and dried in an oven at 

80°C for 48 h before being re-weighed to determine the dry mass. Water content was expressed 

on a dry mass basis (dmb; g H2O per g dry matter [g g-1]). 
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In vitro recovery and vigour and viability assessment  

For in vitro vigour and viability assessments,  10 or 15 embryos from each of the 27 

treatment combinations (see Table 2.1), were decontaminated after rehydration (and in the case 

of fresh embryos, immediately after excision) with 1% (w/v) aqueous calcium hypochlorite for 

3 min, washed with sterile CaMg solution (3 times) and then set to germinate with five embryos 

per Petri dish on full-strength Murashige and Skoog medium (Murashige and Skoog, 1962), 

containing 3% (w/v) sucrose. All Petri dishes were initially placed in the dark, and transferred 

upon signs of root and shoot development to a growth room with cool fluorescent lights (52 µE 

s-1 m-2) and a 16 h photoperiod, at ~25ºC. Embryos directed towards protein synthesis and 

respiratory activity studies were also recovered in vitro as described above.  

Root and shoot production was scored daily across all 27 treatments for a period of 60 d. 

Embryos were regarded as having germinated upon callus free root and shoot production and 

from here on germinated embryos will be referred to as being ‘viable’.  Vigour, or speed of 

germination as it is often referred to, was assessed by using the daily germination records to 

calculate two commonly used indices of germination speed via Equations 1 and 2: 

Mean time to germinate (d) = Σ(Dn) / Σn                        [1]                                        

where n is the number of propagules that germinated on day D and D is the number of days 

from the beginning of the germination test (Ellis and Roberts, 1981) and; 

Germination Index = (Maximum of % germination / D) × (Total % germination / D)        [2] 

where D is the number of days from the beginning of the germination test (Czabator, 1962). 

(Maximum of % germination / D) is commonly referred to as the ‘peak value’. While viability 

was measured for years 1 and 2, vigour was measured for year 1 only. 

 

Electrolyte leakage 

 Electrolyte leakage from each of seven embryos across all 27 treatments was measured 

using a CM100 multi-cell conductivity meter (Reid and Associates, Durban, South Africa). 

Conductivity of individual embryos immersed in 2 ml distilled water was measured after a 16 h 

equilibration period. Fresh embryos were measured immediately after excision, dried embryos, 

immediately after drying, cryoprotected embryos, immediately after incubation at the highest 

concentration of the cryoprotectant, and cooled embryos immediately after thawing. After the 

final reading, embryos were dried in an oven at 80°C for 48 h and weighed using a 6-place 

balance (Mettler, MT5; Germany) to determine the DW. Leakage was expressed as total 

conductivity after 16 h, less the average conductivity of the distilled water blanks, in units of 

mSiemens m-1 g-1 DW. This parameter was measured for year 1 only. 
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Rate of protein synthesis 

 Protein synthesis was measured using a protocol modified after Farrant et al. (1985). The 

incorporation of [3H] amino acids was measured on three replicates of five embryos each, by 

incubating each batch of five embryos in 200 µl of an aqueous solution of 0.5 µCi ml-1 [3H] 

amino acid cocktail (specific activity: 9.25 MBq mmol-1, 250 µCi mmol-1 [Amersham 

International, UK]) after 48 h in vitro growth. After incubation in the precursor solution for 4 h 

at room temperature (c. 24°C) in the dark, embryos were rapidly rinsed in 2 × 1 ml changes of 

distilled water, ground in LN and suspended in 1 ml 0.1 M Tris-HCl buffer (pH 7.0).  Samples 

were then gently centrifuged for 5 min, after which 200 µl of the supernatant was spotted onto 

three 15-mm-diameter discs of Whatmann 3MM filter paper. The discs were further processed 

according to Mans and Novelli (1960) to remove all material except protein; for this, disks were 

immersed in a cold aqueous solution of 10% trichloroacetic acid (TCA; w/v) for 1 h, and then 

washed in  5% TCA (w/v) at 90°C for 30 min to remove lipids. De-fatted discs were then 

washed in a 1:1 solution of ethanol and di-ethyl ether at 37°C for 30 min and dehydrated in 

99.7% di-ethyl ether for 30 min at room temperature.  

 For determination of [3H] amino acid incorporation into protein, the ether dehydrated discs 

for each replicate (i.e. 3 disks for each of 3 replicates) were immersed in 10 ml of Beckman 

liquid scintillation cocktail and the radioactivity was measured using a Beckman LS 6000IC 

scintillation counter. The counts generated were used to calculate the degradations min-1 g-1 

DW; indicative of the incorporation of amino acids, and hence of protein synthesis. This 

parameter was measured for year 1 only. 

 

2,3,5-triphenyl tetrazolium chloride spectrophotometric test  

 The reduction of colourless tetrazolium chloride (TTC) to insoluble pink/red triphenyl 

formazan was taken as a measure of respiratory activity. The assumption here is that TTC is 

reduced by components of the mitochondrial electron transport chain (Moore, 1962), however, 

it must be noted that TTC can be reduced by dehydrogenase enzymes in the presence of a 

reducing agent, which may or may not be mitochondrial (Schatz et al., 1956). Using a protocol 

modified after Harding and Benson, (1995) and Verleysen et al. (2004), five embryos from each 

of the 27 treatments were individually incubated in 300 µl of aqueous TTC-solution (2% [w/v] 

of TTC in Tris-HCl buffer [0.05 M, pH 7.5]) and 1.2 ml Tris-HCl buffer (0.05 M, pH 7.5), after 

48 h in vitro growth. Embryos were incubated in the TTC-solution for 12 h in the dark at room 

temperature. Embryos were then cut in half longitudinally, and incubated for 12 h in 3 ml of 

95% ethanol at room temperature. After gentle centrifugation, the absorbance of 1 ml of the 

supernatant was read at 500 nm in a UV-Vis Spectrophotometer (Cary 50 Conc UV Vis 
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spectrophotometer, Varian). Embryos were thereafter dried in an oven at 80°C for 48 h and 

weighed individually using a 6-place balance (Mettler, MT5; Germany) to determine the DW, 

which was thereafter used to express respiratory activity in units of µmol formazan g-1 DW. 

This parameter was measured for year 1 only. 

 

Data interpretation and analysis 

Inter-treatment differences in respiratory activity, protein synthesis and electrolyte leakage 

were tested for by Analysis of Variance (ANOVA; SPSS, Version 15). Multiple comparisons 

were then made using a Duncan’s mean separation test. Respiratory activity and protein 

synthesis data were not normally-distributed (p < 0.05; Komolgirov-Smirnov test) and had to be 

transformed to conform data to parametric assumptions. With transformation, inter-treatment 

differences within cooled and non-cooled treatment groups were poorly resolved (by mean 

separation). However, when respiratory activity, protein synthesis and electrolyte leakage data 

for cooled and non-cooled treatments were separated, with ‘fresh’ as the common control group, 

these separated datasets did not require transformation for normality  (p > 0.05; Komolgirov-

Smirnov test) and inter-treatment differences within cooled and non-cooled treatment groups 

were better resolved, statistically (by mean separation).  So, in order to better identify inter-

treatment differences in electrolyte leakage, respiratory activity and protein synthesis within the 

cooled and non-cooled treatment groups by ANOVA, data for cooled and non-cooled treatments 

were analysed separately, with ‘fresh’ as the common control group. Correlations between 

viability and MTG, GI, electrolyte leakage, respiratory activity and rate of protein synthesis 

were tested for using a Pearson correlation test (SPSS, Version 15). Data for cooled and non-

cooled treatments were pooled (and transformed where necessary) for these analyses and 

viability percentages were arcsin transformed to conform data to parametric test assumptions. 

Root, shoot and viability data were tested for significant inter-treatment differences using null-

model chi-squared analyses (specifically designed to assess non-parametric data) (EcoSim 

Version 7.72 [developed by Gotelli and Entsminger, 2009]). Water content data were tested for 

significant differences using a Mann-Whitney-U test (SPSS, Version 15). All statistical tests 

were performed at the 0.05 level of significance. 

 

2.3 Results 

Embryo water content, root and shoot production, and viability were measured for both species, 

for years 1 and 2, and unless otherwise stated, the trends reported for these data are applicable to 

both species and both years. Where it was necessary to discuss these parameters in terms of 

actual values, values for both species and both years are quoted. Vigour (i.e. mean time to 
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germinate and germination index), electrolyte leakage, respiratory activity and protein synthesis 

were measured for both species, but for year 1 only.  

 

Drying characteristics 

The embryos of both species were shed highly hydrated (A. belladonna: c. 4.67 and 5.71 g 

g-1; H. montanus: c. 4.66 and 5.05 g g-1 [Table 2.1A, B]). Freshly excised embryos lost viability 

at relatively high WCs upon rapid dehydration (A. belladonna: c. 0.53 g g-1; H. montanus: c. 

0.43 and 0.55 g g-1 [Table 2.1A, B]), with this loss being significantly more severe at WCs <0.4 

g g-1. A description of the vigour and viability responses of H. montanus and A. belladonna 

embryos to a broader range of WCs is given in Appendix A (Table A1 and Fig. A2). Even 

though embryos could be dried to WCs between 0.29 and 0.33 g g-1 while retaining ≥70% 

viability, the rate at which this water was lost differed between species, i.e. there were inter-

species differences in drying kinetics. For instance, while embryos of A. belladonna could be 

dried to WCs of 0.42±0.09 and 0.53±0.09 g g-1 in 15 and 5 min, respectively, H. montanus 

embryos took 180 and 240 min to reach 0.52±0.15 and 0.43±0.13 g g-1, respectively. Also, 

embryos of A. belladonna could be dried to WCs of 0.32±0.10 and 0.29±0.09 g g-1 in 30 and 15 

min, respectively, while H. montanus embryos took 300 and 240 min to reach 0.34±0.09 and 

0.33±0.13 g g-1, respectively (see Table A1 and Fig. A2, Appendix A). Except for the fact that 

embryo dehydration to 0.42 g g-1 stimulated germination rate in A. belladonna (i.e. decline in 

MTG and increase in GI) compared to fresh embryos, partial dehydration generally increased 

MTG and decreased GI relative to fresh embryos (Table 2.1A, B).  The decline in GI in both 

species was based largely on a decline in total germination, rather than peak value.  

 

Vigour and viability 

Cryoprotection  and partial dehydration  

 Glycerol CP led to a significant reduction in embryo WC relative to fresh embryos and in 

keeping with its non-penetrative nature, the dehydrative effect of Suc CP was significantly 

greater (Table 2.1A, B). Cryoprotection had no adverse effect on viability in A. belladonna, but 

led to a slight decrease in viability in H. montanus (10% for Suc and Gly in year 1 and 10% for 

Suc in year 2) (Table 2.1A, B). Cryoprotection did not lead to any dramatic changes in MTG 

and except for the fact that Gly CP increased GI relative to fresh embryos in A. belladonna, CP 

always depressed GI (based on a reduction in peak value; Table 1A, B).  

 Unlike CP, partial dehydration of A. belladonna embryos to WCs >0.4 g g-1 and <0.4 g g-1, 

led to significant declines in viability, being slightly more severe at WCs <0.4 g g-1 (Table 
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2.1A). In H. montanus, partial dehydration was more detrimental than CP, leading to viability 

losses of 10 and 30% at WCs >0.4 g g-1 and 30% at WCs <0.4 g g-1 (Table 2.1B). 

 When partial dehydration was preceded by CP (CP+D) post-drying viabilities were 

significantly lower in Suc CP embryos, irrespective of whether they were dried to WCs > or 

<0.4 g g-1 (Table 2.1A, B). Viabilities after Suc CP+D were also significantly lower than those 

associated with non-CP embryos dehydrated to comparable WCs (i.e. >0.4D and <0.4D). 

Viabilities after Gly CP+D were either marginally higher or similar to those associated with 

non-CP embryos dehydrated to comparable WCs.  

 In A. belladonna, MTG in >0.4D-Gly and <0.4D-Gly embryos decreased while GI declined 

due to a decline in viability (Table 2.1A). In A. belladonna >0.4D-Suc  and <0.4D-Suc embryos, 

MTG increased slightly while the marked decrease in viability led to GIs much lower than fresh 

and  Gly CP+D embryos. In H. montanus, CP+D generally led to an increase in MTG (being 

slightly higher for Gly CP+D embryos) while GI in CP+D embryos was always lower than fresh 

embryos, owing to the combined decline of peak value and total germination (Table 2.1B). 

Between species, partial dehydration, CP and CP+D appeared to be more detrimental, in terms 

of a decline in viability, in H. montanus (Table 2.1A, B). 

 While root meristems were more sensitive to dehydration (with and without prior CP) than 

those of shoots in A. belladonna (most especially for year 1), root meristems were relatively less 

sensitive to desiccation in H. montanus (Table 2.1A, B). Seedlings recovered from partially 

dried embryos of both species appeared to be less vigorous than those from fresh embryos, even 

after 2 months of in vitro growth. These observations were, however, purely qualitative (Fig. 

2.1). 

  

Cooling 

 Cooling most often led to a dramatic reduction in viability, relative to fresh, CP and 

partially dehydrated embryos and when post-thaw viability was observed, this was generally 

confined to treatments that involved CP+D (Table 2.1A, B). Except for Suc-rapid (20% post-

thaw viability in H. montanus), fully hydrated and CP embryos did not survive 

cryopreservation. 

 Of the six treatments in which post-thaw viability was observed in A. belladonna, two 

(>0.4D-slow and <0.4-Suc-slow) resulted in 7% viability (but for year 1 only) while four 

(>0.4D-Gly-rapid, >0.4D-Gly-slow, <0.4D-Gly-rapid and <0.4D-Gly-slow) involved Gly CP+D 

and resulted in 10-80% viability (Table 2.1A). Of the four favourable Gly CP+D treatments, 

post-thaw viability was highest (73 and 80%) when embryos were rapidly cooled at WCs <0.4 g 

g-1, lower (47 and 40%) when embryos were slowly cooled at WCs <0.4 g g-1, and lowest (20 
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and 10%) when embryos were cooled at WCs >0.4 g g-1. In frozen-thawed A. belladonna 

embryos, vigour was greatly reduced relative to fresh and partially dried embryos; while post-

thaw GI declined due to the combined reduction of total germination and peak value, post-thaw 

MTG was higher than fresh embryos in four of the six treatments in which post-thaw viability 

was observed (Table 2.1A).  

 Of the eight treatments in which post-thaw viability was observed in H. montanus, two 

(>0.4D-rapid, >0.4D-slow) involved non-CP+D embryos and resulted in 10% viability (but for 

year 1 only), three (Suc-rapid [for year 1 only], <0.4D-Suc-rapid and <0.4D-Suc-slow [for year 

2 only]) involved Suc CP and resulted in 10-20% viability, while three involving Gly CP+D 

embryos (>0.4D-Gly-rapid, >0.4D-Gly-slow and <0.4D-Gly-rapid) resulted in 10-60% viability 

(Table 2.1B). Within these eight treatments, post-thaw viability was highest (50 and 60%) when 

Gly CP embryos were rapidly cooled at WCs >0.4 g g-1, lower (10-30%) in >0.4D-Gly-slow and 

<0.4D-Gly-rapid embryos, and lowest (10%) in Suc CP and non-CP+D embryos. Mean time to 

germinate within these eight treatments was most often higher than partially dried embryos and 

in at least six cases, higher than fresh embryos (Table 2.1B). Also, GI in these treatments was 

often lower than fresh and partially dried embryos due to the combined decline of peak value 

and total germination (Table 2.1B).  

 Root and shoot meristems did not appear to be differentially sensitive to cooling in A. 

belladonna (Table 2.1A) but in H. montanus, shoot meristems were generally more sensitive to 

cooling than root meristems (Table 2.1B). Seedlings recovered from cryopreserved embryos of 

both species appeared to be less vigorous than those from fresh embryos, even after 2 months of 

in vitro growth. These observations were, however, purely qualitative (Fig. 2.1).  
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Table 2.1 Water content, vigour and viability for fresh, cryoprotected, partially dried and cooled [A] A. belladonna and [B] H. montanus zygotic embryos. 

 

 

 

A 
YEAR 1 YEAR 2

  

Treatment WC
1 
(g g

-1
) 

Roots 

(%) 

Shoots 

(%) 

Viability
2
 

(%) 
*
MTG

3
  

*
GI

4
  WC

 
(g g

-1
) 

Roots  

(%) 

Shoots  

(%) 

Viability  

(%) 

Treatment 

categories 

     Fresh 4.67±0.57 100 100 100 9.3 69.4 5.71±1.25 100 100 100 

>0.4D 0.42±0.09 100 100 100 5.3 204.1 0.53±0.09 90 90 90 

<0.4D 0.32±0.10 80 93 80 10.0 14.2 0.29±0.05 80 90 80 

Gly 3.16±0.46 100 100 100 7.0 82.6 3.28±0.64 100 100 100 

Suc 1.86±0.15 100 100 100 8.7 51.0 1.81±0.10 100 100 100 

>0.4D-Gly 0.44±0.02 100 100 100 6.6 61.5 0.46±0.03 90 90 90 

>0.4D-Suc 0.41±0.09 73 93 73 10.5 16.0 0.43±0.13 70 70 70 

<0.4D-Gly 0.31±0.07 87 93 87 6.8 37.6 0.31±0.04 80 80 80 

<0.4D-Suc 0.29±0.05 73 100 73 12.4 13.0 0.31±0.02 60 60 60 

 

 

Control + 

dehydrated  to 

< or > 0.4 g g-1 ,  with 

or without 

cryoprotection. 

Fresh-rapid 4.67±0.57 0 0 0 0 0 5.71±1.25 0 0 0 

Fresh-slow 4.67±0.57 0 0 0 0 0 5.71±1.25 0 0 0 

Gly-rapid 3.16±0.46 0 73 0 0 0 3.28±0.64 0 80 0 

Suc-rapid 1.86±0.15 0 0 0 0 0 1.81±0.10 0 0 0 

Gly-slow 3.16±0.46 0 0 0 0 0 3.28±0.64 0 0 0 

Suc-slow 1.86±0.15 0 0 0 0 0 1.81±0.10 0 0 0 

 

Cooled rapidly or 

slowly with or without 

cryoprotection; no 

flash drying. 

>0.4D-rapid 0.42±0.09 7 0 0 0 0 0.53±0.09 20 0 0 

>0.4D-slow 0.42±0.09 7 7 7 9.0 1.2 0.53±0.09 0 0 0 

<0.4D-rapid 0.32±0.10 0 0 0 0 0 0.29±0.05 0 0 0 
<0.4D-slow 0.32±0.10 0 0 0 0 0 0.29±0.05 0 0 0 

 Dehydrated to 

< or > 0.4 g g
-1
   

and cooled 

rapidly or slowly. 

>0.4D-Gly-rapid 0.44±0.02 27 20 20 13.0 0.6 0.46±0.03 10 10 10 
>0.4D-Suc-rapid 0.41±0.09 0 0 0 0 0 0.43±0.13 10 0 0 
>0.4D-Gly-slow 0.44±0.02 27 20 20 11.0 0.8 0.46±0.03 20 10 10 
>0.4D-Suc-slow 0.41±0.09 0 0 0 0 0 0.43±0.13 0 0 0 

<0.4D-Gly-rapid 0.31±0.07 73 80 73 19.4 4.9 0.31±0.04 80 90 80 

<0.4D-Suc-rapid 0.29±0.05 0 0 0 0 0 0.31±0.02 0 0 0 
<0.4D-Gly-slow 0.31±0.07 67 47 47 16 2.5 0.31±0.04 50 40 40 
<0.4D-Suc-slow 0.29±0.05 7 7 7 9 1.2 0.31±0.02 0 0 0 

  

 

Dehydrated to 

< or > 0.4 g g
-1

 ,  

with cryoprotection,  

and cooled 

rapidly or slowly. 

1 water content; 2 viability = root and shoot production; 3 mean time to germinate; 4 germination index. >0.4D = dried to >0.4 g g-1; <0.4D = dried to <0.4 g g-1; -Gly = cryoprotected with 
glycerol; -Suc = cryoprotected with sucrose; -slow = cooled slowly; -rapid = cooled rapidly. MTG and GI were based on viability. Water content, viability and root and shoot data were 
tested for significant inter-treatment differences within years: p < 0.05 for WC (Mann-Whitney-U test, n = 10); p < 0.001 for viability and % root and shoot production (null-model chi-
squared analysis, n = 10 except for A. belladonna year 1 where n = 15). * Replicated once; not tested for significant differences. 
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Table 2.1 Continued…Water content, vigour and viability for fresh, cryoprotected, partially dried and cooled [A] A. belladonna and [B] H. montanus zygotic embryos. 

B 
YEAR 1 YEAR 2

  

Treatment WC
1 
(g g

-1
) 

Roots 

(%) 

Shoots 

(%) 

Viability 
2
 

(%) 
*
MTG

3
 

*
GI

4
 WC

 
(g g

-1
) 

Roots 

(%) 

Shoots 

(%) 

Viability 

(%) 

Treatment 

categories 

Fresh 5.05±0.92 100 100 100 12.6 44.4 4.66±0.76 100 100 100 
>0.4D 0.55±0.09 100 90 90 15.9 6.2 0.43±0.13 80 70 70 
<0.4D 0.34±0.09 80 70 70 13.7 4.8 0.33±0.13 70 70 70 
Gly 4.77±1.59 90 90 90 14.0 3.9 4.26±0.35 100 100 100 
Suc 1.79±0.28 100 90 90 13.3 32.0 1.49±0.13 90 90 90 

>0.4D-Gly 0.53±0.09 90 90 90 17.3 8.9 0.55±0.08 80 80 80 
>0.4D-Suc 0.50±0.11 80 70 70 12.0 8.5 0.44±0.07 60 60 60 
<0.4D-Gly 0.33±0.05 90 90 70 18.9 4.1 0.32±0.04 70 70 70 
<0.4D-Suc 0.30±0.02 80 60 60 16.3 4.1 0.31±0.02 60 50 50 

 

 

Control + 

dehydrated  to 

< or > 0.4 g g-1 ,  with 

or without 

cryoprotection. 

Fresh-rapid 5.05±0.92 0 0 0 0.0 0.0 4.66±0.76 0 0 0 
Fresh-slow 5.05±0.92 0 0 0 0.0 0.0 4.66±0.76 0 0 0 
Gly-rapid 4.77±1.59 0 0 0 0.0 0.0 4.26±0.35 0 0 0 
Suc-rapid 1.79±0.28 40 10 10 16.5 0.6 1.49±0.13 30 0 0 
Gly-slow 4.77±1.59 0 0 0 0.0 0.0 4.26±0.35 0 0 0 
Suc-slow 1.79±0.28 60 0 0 0.0 0.0 1.49±0.13 0 0 0 

 

Cooled rapidly or 

slowly with or without 

cryoprotection; no 

flash drying. 

>0.4D-rapid 0.52±0.15 20 10 10 13.0 0.6 0.52±0.15 30 0 0 
>0.4D-slow 0.52±0.15 0 0 0 23.0 0.2 0.52±0.15 20 10 10 
<0.4D-rapid 0.34±0.09 50 0 0 0.0 0.0 0.33±0.13 0 0 0 
<0.4D-slow 0.34±0.09 10 0 0 0.0 0.0 0.33±0.13 10 0 0 

 Dehydrated to 

< or > 0.4 g g-1   

and cooled 

rapidly or slowly. 

>0.4D-Gly-rapid 0.53±0.09 60 50 50 28.2 1.5 0.55±0.08 70 60 60 
>0.4D-Suc-rapid 0.50±0.11 20 0 0 0.0 0.0 0.44±0.07 20 0 0 
>0.4D-Gly-slow 0.53±0.09 30 10 10 7.0 2.0 0.55±0.08 70 20 20 
>0.4D-Suc-slow 0.50±0.11 0 40 0 0.0 0.0 0.44±0.07 0 0 0 
<0.4D-Gly-rapid 0.33±0.05 50 20 20 27.0 0.2 0.32±0.04 50 30 30 
<0.4D-Suc-rapid 0.30±0.02 10 10 10 23.0 0.2 0.34±0.14 40 20 20 
<0.4D-Gly-slow 0.33±0.05 0 0 0 0.0 0.0 0.32±0.04 0 0 0 
<0.4D-Suc-slow 0.30±0.02 30 20 10 12.0 0.7 0.34±0.14 10 0 0 

  

 

Dehydrated to 

< or > 0.4 g g
-1
 ,  

with cryoprotection,  

and cooled 

rapidly or slowly. 

1 water content; 2 viability = root and shoot production; 3 mean time to germinate; 4 germination index. >0.4D = dried to >0.4 g g-1; <0.4D = dried to <0.4 g g-1; -Gly = cryoprotected 
with glycerol; -Suc = cryoprotected with sucrose; -slow = cooled slowly; -rapid = cooled rapidly. MTG and GI were based on viability. Water content, viability and root and shoot data 
were tested for significant inter-treatment differences within years: p < 0.05 for WC (Mann-Whitney-U test, n = 10); p < 0.001 for viability and % root and shoot production (null-
model chi-squared analysis, n = 10 except for A. belladonna year 1 where n = 15). * Replicated once; not tested for significant differences. 
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Electrolyte leakage 

 In A. belladonna, leakage in non-dehydrated CP embryos was significantly higher than 

fresh embryos (Fig. 2.2A) but this was not true for H. montanus (Fig. 2.2B). Partial dehydration, 

with and without prior CP, increased electrolyte leakage relative to fresh embryos and except 

for >0.4D, these differences were always significant (Fig. 2.2A, B). These rises in electrolyte 

leakage with partial dehydration were often, but not always (e.g. >0.4D-Gly in A. belladonna), 

accompanied by a decline in viability. Within the non-cooled treatments, higher leakage was 

often associated with lower viability but the degree of increase relative to fresh embryos was not 

proportional to the decline in viability. 

 In A. belladonna, leakage in cooled treatments involving Gly CP (except for <0.4D-Gly-

slow) were often similar to fresh embryos but post-thaw viability in these treatments was always 

significantly lower (Fig. 2.2A). Leakage across all other cooled treatments in A. belladonna was 

significantly higher than fresh embryos, comparable to the relatively high leakage associated 

with most partially dehydrated and cryoprotected non-cooled treatments, and except for three 

treatments, accompanied by complete viability loss.  

 In H. montanus, leakage across cooled treatments was very rarely as high as that associated 

with partially dried embryos (Fig. 2.2B). In fact, leakage after cooling was often similar to fresh 

embryos and in a few treatments significantly lower. However, even when leakage was lower 

than fresh embryos, post-thaw viability was either completely lost or significantly lower than 

fresh embryos.  

Haemanthus montanus Amaryllis belladonna 

F F D C D C 

Figure 2.1 60 day old seedlings recovered from fresh (F), partially dried (D) and cryopreserved (C) zygotic 
embryos. Bar = 1 cm. 
 



 

 

93 

 Within the cooled treatments in which post-thaw viability was observed in both species, 

leakage values were not proportional to the declines in viability (Fig. 2.2A, B) and when data 

for cooled and non-cooled treatments were pooled for analysis, correlation analyses showed no 

significant relationships between electrolyte leakage and viability, GI or MTG (A. belladonna: r 

< 0.15, p > 0.60 across all three combinations; H. montanus: r < 0.50, p > 0.10 across all three 

combinations). 

 Finally, it must be noted that the partially dried and cooled embryos may have leaked 

extensively into the rehydration/thawing solution and, thus, the leakage of those samples could 

have been greater than that recorded. 

 

Respiratory activity 

Compared to fresh embryos, partial dehydration and cooling led to a significant decline in 

respiratory activity, being significantly more severe in cooled treatments (Fig. 2.3A-D). The 

decline in respiratory activity with partial dehydration was often correlated with a decline in 

viability but this was not without exception; example >0.4D and >0.4D-Gly in A. belladonna 

(Fig. 2.3A). Within the non-cooled treatments the degree of viability was not proportional to the 

decline in respiratory activity (Fig. 2.3A, C).  

 While Suc and Gly CP (no drying and no cooling) significantly depressed respiratory 

activity in A. belladonna (Fig. 2.3A), respiratory activities in CP H. montanus embryos were 

comparable to fresh embryos (Fig. 2.3C).  

Within the partially dried treatments respiratory activities in CP+D embryos, except for > 

0.4D-Gly in H. montanus, were significantly lower than non-CP+D embryos (Fig. 2.3A, C). 

Within the CP+D treatments in H. montanus, respiratory activities in embryos dried to <0.4 g g-1 

were often relatively lower than those dehydrated to WC >0.4 g g-1, while respiratory activity 

within the partially dehydrated treatments was significantly lowest in Suc CP+D embryos.  

 In A. belladonna post-thaw respiratory activities in Gly CP+D embryos were relatively (but 

not always significantly) higher than Suc+D and non-CP+D treatments (Fig. 2.3B). Cooled 

treatments involving Gly CP+D A. belladonna embryos were associated with the highest post-

thaw viabilities, but within these, respiratory activity was not an accurate predicator of post-

thaw viability. Respiratory activity in the two treatments in which 10% post-thaw viability was 

recorded in A. belladonna (>0.4D-slow and <0.4D-Suc-slow) was also not significantly higher 

than many of the treatments in which no post-thaw viability retention was observed. 
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Figure 2.2 Electrolyte leakage and viability for [A] A. belladonna and [B) H. montanus zygotic embryos. 
Viability = root and shoot production; >0.4D = dried to >0.4 g g-1; <0.4D = dried to <0.4 g g-1; -Gly = 
cryoprotected with glycerol; -Suc = cryoprotected with sucrose; -slow = cooled slowly; -rapid = cooled rapidly. 
When testing for significant inter-treatment differences in electrolyte leakage, cooled and non-cooled treatments 
were analysed separately, with ‘fresh’ as the common control group. Leakage values represent mean±SD and are 
significantly different when followed by different letters (lower-case for non-cooled and upper-case for cooled 
treatments; ANOVA, n = 7, p < 0.05). p < 0.05 when viability data were tested for significant inter-treatment 
differences (null model chi-squared analysis, n = 10).  
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 Within the cooled treatments in H. montanus, respiratory activity was often relatively higher 

in Gly CP+D and >0.4D embryos (Fig. 2.3D). However, except for >0.4D-Gly-rapid, which 

resulted in 50% post-thaw viability in H. montanus, these relatively high post-thaw respiratory 

activities were accompanied by either very low (i.e. 10-20%), or no, post-thaw viability 

retention in this species.  

 When data for cooled and non-cooled treatments were pooled for analysis there were 

significant positive correlations between respiratory activity and both viability (A. belladonna: r 

= 0.76, p < 0.001; H. montanus: r = 0.83, p < 0.001) and GI (A. belladonna: r = 0.71, p < 0.001; 

H. montanus: r = 0.85, p < 0.001), but not between  respiratory activity and MTG (A. 

belladonna: r = 0.15, p > 0.05; H. montanus: r = 0.38, p > 0.05). Thorough qualitative 

assessments of TTC-staining were not carried out here but it was interesting to note that while 

the end of the cotyledon devoid of meristematic tissue (see Fig. A1, Appendix A) generally 

stained negatively, all positively stained tissues were almost always confined to the embryonic 

axis end. 
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Figure 2.3 Respiratory activity and viability for [A-B] A. belladonna and [C-D] H. montanus zygotic embryos. [A] and [C] feature non-cooled treatments while [B] and [D] show cooled 
treatments. Viability = root and shoot production; >0.4D = dried to >0.4 g g-1; <0.4D = dried to <0.4 g g-1; -Gly = cryoprotected with glycerol; -Suc = cryoprotected with sucrose; -slow = cooled 
slowly; -rapid = cooled rapidly. When testing for significant inter-treatment differences in respiratory activity, cooled and non-cooled treatments were analysed separately, with ‘fresh’ as the 
common control group. Respiratory activity values represent mean±SD and are significantly different when followed by different letters (lower-case for non-cooled and upper-case for cooled 
treatments; ANOVA, n = 5, p < 0.05). p < 0.05 when viability data were tested for significant differences (null model chi-squared analysis, n = 10).  
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Rate of protein synthesis 

 Except for <0.4D-Suc, partial dehydration (with and without CP) and CP generally enhanced 

protein synthesis relative to fresh embryos (Fig. 2.4A, B). These differences were sometimes 

marginal and not always significant but the following trends were observed across the non-cooled 

treatments: (a) dehydration stimulated protein synthesis rates relative to fresh embryos; however, 

in CP+D treatments this trend was less pronounced in H. montanus; (b) within cryoprotectants, 

post-drying protein synthesis rates were comparable across WC ranges (i.e. < and > 0.4 g g-1); (c) 

except for <0.4D-Suc, CP, partial dehydration and CP+D never depressed protein synthesis rates 

below that of fresh embryos; and (d) <0.4D-Suc resulted in the lowest protein synthesis rates and 

the lowest post-drying viabilities (Fig. 2.4A, B). 

With cooling, protein synthesis rates were generally lower than fresh embryos, and by 

implication, lower than all non-cooled treatments except <0.4D-Suc (Fig. 2.4A, B). Protein 

synthesis was detectable even in treatments in which post-thaw viability was zero. There was a 

tendency for cooled treatments involving Gly CP embryos to exhibit relatively higher protein 

synthesis rates than other cooled treatments; this was often correlated with significantly higher 

post-thaw viability retention (e.g. A. belladonna: >0.4D-Gly-rapid and <0.4D-Gly-rapid; H. 

montanus: >0.4D-Gly-rapid).  

 Post-thaw viabilities were not proportional to protein synthesis rates (Fig. 2.4A, B). When data 

for cooled and non-cooled treatments were pooled for analysis there were significant positive 

correlations between rate of protein synthesis and both viability (A. belladonna: r = 0.86, p < 

0.001; H. montanus: r = 0.82, p < 0.001) and GI (A. belladonna: r = 0.83, p < 0.001; H. montanus: 

r = 0.62, p = 0.001), but not between  rate of protein synthesis and MTG (A. belladonna: r = 0.19, 

p > 0.10; H. montanus: r = 0.07, p > 0.10). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Rate of protein synthesis and viability for [A] A. belladonna and [B] H. montanus zygotic embryos. 
Viability = root and shoot production; >0.4D = dried to >0.4 g g-1; <0.4D = dried to <0.4 g g-1; -Gly = 
cryoprotected with glycerol; -Suc = cryoprotected with sucrose; -slow = cooled slowly; -rapid = cooled rapidly. 
When testing for significant inter-treatment differences in protein synthesis rates, cooled and non-cooled 
treatments were analysed separately, with ‘fresh’ as the common control group. Protein synthesis values 
represent mean±SD and are significantly different when followed by different letters (lower-case for non-cooled 
and upper-case for cooled treatments; ANOVA, n = 3, p < 0.05). p < 0.05 when viability data were tested for 
significant inter-treatment differences (null model chi-squared analysis, n = 10).  
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2.4 Discussion 

The present study aimed to interpret the effects of the various components of cryopreservation on 

subsequent vigour and viability of recalcitrant A. belladonna and H. montanus embryos, using 

three stress markers: electrolyte leakage (an indicator of membrane integrity); spectrophotometric 

assessment of tetrazolium chloride-reduction (an indicator of respiratory competence); and rate of 

protein synthesis (an indicator of biochemical competence).  

 

Pre-conditioning for cryopreservation 

 Like other recalcitrant-seeded species, viz., Landolphia kirkii (Pammenter et al., 1991), 

Avicennia marina (Farrant et al., 1993), Quercus robur (Finch-Savage and Blake, 1994) and 

Shorea robusta (Chaitanya et al., 2000), the seeds of A. belladonna and H. montanus possessed 

highly hydrated embryos at shedding (both >4.0 g g-1; Table 2.1A, B). Sucrose and Gly CP had a 

dehydrative effect on the embryos of both species, being significantly more severe with Suc CP 

(Table 2.1A, B). This was not surprising since non-penetrating cryoprotectants, like Suc, act by 

dehydrating cells before freezing (Muldrew et al., 2004) but the net effect of all cryoprotectants, be 

they membrane penetrating (e.g. Gly) or non-penetrating (e.g. Suc), is to effect some measure of 

dehydration (reviewed by Fuller, 2004). The embryos of both species responded differently to 

cryoprotection, in that viability was adversely affected by CP in H. montanus, but not in A. 

belladonna (Table 2.1A, B). However, while the increase in electrolyte leakage relative to fresh 

embryos induced by cryoprotection was significant in A. belladonna (Fig. 2.2A), this increase was 

not significant for H. montanus (Fig. 2.2B). This suggests that cryoprotectant toxicity rather than 

osmotic injury may not have been the major cause of the decline in viability observed by 

cryoprotection in H. montanus. Unlike Gly CP, Suc CP had an adverse effect on vigour (Table 

2.1A, B) and respiratory activity in both species (significant for A. belladonna only; Fig. 2.3A, C). 

Most, if not all, cryoprotectants exhibit some degree of cytotoxicity (reviewed by Fuller, 2004; 

Mycock et al., 1995) but non-penetrating cryoprotectants such as Suc can result in osmotic injury 

at high concentrations, since they act by dehydrating cells before freezing (Finkle et al., 1985; 

Muldrew et al., 2004).  

Recalcitrant seeds characteristically lose viability during drying at WCs ranging from 0.6 to  

0.2 g g-1, with this wide range in sensitivity being variably attributed to differences in the rate of 

drying, stage of development and cellular differentiation, metabolic status, climatic conditions 

during development, and genetic back-ground (Vertucci and Farrant, 1995; Berjak and Pammenter, 

1997; Daws et al., 2006). In this study, partial dehydration to embryo WCs >0.4 and <0.4 g g-1 was 

more detrimental than CP alone (for both species), leading to a significant decline in viability 

(Table 2.1A, B), respiratory activity (Fig. 2.3A, C) and membrane integrity (as assessed by 

electrolyte leakage; significant for <0.4D; Fig. 2.2A, B), relative to fresh embryos. In recalcitrant 
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embryos/axes membrane damage precedes viability loss during desiccation to WCs above and 

below the level of freezable water (generally taken to be >0.25-0.28 g g-1 [Pammenter et al., 1991; 

reviewed by Kermode and Finch-Savage, 2002]). As in other recalcitrant-seeded species (e.g. 

Quercus rubra [Sun, 1999]), the degree of viability loss (Table 2.1A, B) and membrane damage 

(Fig. 2 A, B) incurred was significantly greater at relatively lower embryo WCs (i.e. <0.4 g g-1). A 

decline in respiratory activity (as estimated by TTZ-extraction) has been previously correlated with 

desiccation-induced viability loss in embryos (e.g. Becwar et al., 1982) and the reduction observed 

here was most certainly a consequence of desiccation-intolerance (and the associated cell death) 

and not a coordinated down-regulation of metabolism, typical of the desiccation-tolerant state in 

seeds (Leprince et al., 1994; reviewed by Vertucci and Farrant, 1995). As in other recalcitrant-

seeded species (e.g. A. marina [Farrant et al., 1985, 1992]) protein synthesis rates in both species 

were relatively low in fresh embryos but enhanced upon partial dehydration (Fig. 2.4A, B). Studies 

have shown that slight dehydration can stimulate germination in recalcitrant seeds (Eggers et al., 

2007). One of the key steps in seed germination is de novo protein synthesis and during the early 

stages after imbibition it is mediated by preformed mRNA transcribed during embryogenesis 

(Cheung et al., 1979). The enhancement in protein synthesis in partially dried embryos 48 h into in 

vitro recovery observed here suggests that partial dehydration to embryos WCs >0.25 g g-1 may 

not have damaged preformed mRNA transcribed during embryogenesis.  

Despite their desiccation sensitivity, the embryos of both species could be dried to WCs 

between 0.34 and 0.29 g g-1 while retaining ≥70% viability (for both years; Table 2.1A, B). Studies 

have shown that rapid (as opposed to slow) drying allows for the survival of the embryos/axes of 

several recalcitrant-seeded species to similarly low WCs (c. 0.20-0.44 g g-1), and as in this study, 

close to the point where only non-freezable water remains (e.g. Normah et al., 1986; Pritchard and 

Prendergast, 1986; Berjak et al., 1993; Pammenter et al., 1993; reviewed by Normah and Makeen, 

2008). The influence of drying rate is important in studies of this nature, since desiccation damage 

in recalcitrant seeds appears to be a function of two interrelated parameters: the degree and the 

duration of dehydration (Pammenter et al., 1998, 2002, 2003; Walters et al., 2001; Liang and Sun, 

2002). In the recalcitrant embryos/axes of some species, the faster the drying rate, the lower the 

WC that can be tolerated without effective loss of viability (Berjak et al., 1984; Farrant et al., 

1985; Pritchard, 1991; Pammenter et al., 1998; Wesley-Smith et al., 2001). In the present study the 

embryos of both species were dehydrated via flash drying (associated with rapid dehydration 

rates), however, there were marked inter-species differences in drying kinetics in that A. 

belladonna embryos could be dried to WCs around 0.40 g g-1, more than ten times faster than those 

of H. montanus (also see Fig. A2 and Table A1, Appendix A). Studies on the effects of 

dehydration rate on desiccation-sensitivity in recalcitrant seeds suggest that when seed tissues 

spend a longer period of time at intermediate WCs, the time for aqueous-based deleterious 
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processes to occur is extended, promoting viability loss (Vertucci and Farrant, 1995; Pammenter et 

al., 1998). So, when the time spent at intermediate WCs is shortened the progress of aqueous-

based deleterious reactions and hence, viability loss, is presumably limited (Berjak et al., 1990, 

1993; Pammenter et al., 1998; Walters et al., 2001). This may explain why post-drying viabilities 

at comparable WCs were slightly lower (by 10-20%) in slower-drying H. montanus embryos 

(Table 2.1A, B). Respiratory activity data were not congruent with this hypothesis (Fig. 2.3 A and 

C) but H. montanus embryos appeared to have incurred greater membrane damage (as inferred 

from the proportion by which electrolyte leakage was increased relative to fresh embryos) than A. 

belladonna upon dehydration to WCs <0.4 g g-1 (Fig. 2.2A, B). Electrolyte leakage is usually a 

good indicator of membrane damage in seeds, embryonic axes and zygotic embryos (Pammenter et 

al., 1997; Chaitanya and Naithani, 1998; Sacandé et al., 2001; Varghese and Naithani, 2002).   

 Compared with Gly CP, Suc CP had a significantly greater dehydrative effect in the absence of 

physical drying and this may have pre-disposed Suc CP embryos to a greater degree of damage 

during partial dehydration, since the former exhibited greater post-drying viability losses than Gly- 

and non-CP embryos (at comparable WCs; Table 2.1A, B). This relatively higher post-drying 

viability loss with Suc CP was correlated with relatively lower respiratory activity (Fig. 2.3A, C) 

and protein synthesis rates (Fig. 4A, B). As mentioned earlier, impermeable sugar cryoprotectants 

can inflict severe osmotic injury at high (≥1 M) concentrations (Finkle et al., 1985; Muldrew et al., 

2004). However, exposure of plant tissue to almost any cryoprotectant causes some degree of 

stress, the results of which (i.e. damage) can be reflected by an increase in electrolyte leakage, a 

decrease in germination rate (Verleysen et al., 2004), and/or biochemical abnormalities such as a 

lag in protein synthesis during germination (e.g. Davison and Bray, 1991). Consistent with this,  

CP+D in this study always decreased vigour relative to fresh embryos (Table 2.1A, B) and often 

resulted in protein synthesis rates (Fig. 2.4A, B) and (except for >0.4D-Gly in H. montanus) 

respiratory activities that were relatively lower than those of non-CP+D embryos (at comparable 

WCs) (Fig. 2.3A, C).  

 The existence of inter-species differences in drying characteristics in this study was further 

supported by the fact that irrespective of whether embryos were CP or not, root meristems 

appeared to be more sensitive to dehydration than those of shoots in A. belladonna, while the 

opposite was true for H. montanus (Table 2.1A, B). Inter-tissue differences in tolerance of 

dehydration is well documented for embryos/axes (Fu et al., 1993) and has been variably attributed 

to differential WC distribution during non-equilibrium drying (Pritchard et al., 1995a), variability 

in sub-cellular organisation and differences in the matrix-bound water fraction between tissues 

(Finch-Savage, 1992). 
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Post-thaw vigour and viability as influenced by pre-conditioning 

 Except for Suc-rapid in H. montanus (which resulted in 10% post-thaw viability in year 1), 

fully hydrated and non-dehydrated CP embryos of both species failed to survive cooling (Table 

2.1A, B). This was not surprising since plant tissues seldom survive exposure to cryogenic 

temperatures at such high (in this case 1.49-4.77 g g-1) WCs (Pence, 1990). However, even with 

pre-conditioning (i.e. partial dehydration and cryoprotection) cooling most often lead to a 

significant decline in vigour and viability (Table 2.1 A, B), respiratory activity (Fig. 2.3) and rate 

of protein synthesis (except for >0.4D-Gly-rapid in H. montanus; Fig. 2.4), relative to fresh and 

partially dried embryos (with comparable WC × cryoprotectant combinations). An increase in the 

lag before the first germination or a decrease in the rate of germination may indicate the ongoing 

repair of damage (Pammenter et al., 2002) and post-thaw re-growth of plant material (Verleysen et 

al., 2004) such as recalcitrant embryos/axes is often ‘slow’ or ‘poor’ (Abdelnour-Esquivel and 

Engelmann, 2002; González-Benito et al., 2002; Steinmacher et al., 2007; Sershen et al., 2007). 

Overzealous decontamination, excessive drying and even poor growth conditions may not produce 

such symptoms in control (uncooled) embryos/axes, but may do so in cryo-exposed ones by 

exacerbating freezing damage (Walters et al., 2008). Ironically, cryoprotectants are sometimes also 

the cause of post-thaw viability loss and can prolong re-growth procedures (Verleysen et al., 

2004). A dramatic decline in TTC-reduction post-thawing, as observed here is generally but not 

always indicative of a decline in viability, since cells that exhibit signs of respiration after thawing 

can eventually die or regenerate abnormally (e.g. Verleysen et al., 2004). The post-thaw 

depression in protein synthesis rates observed here, suggests that unlike partial dehydration, 

cooling may have damaged preformed mRNA transcribed during embryogenesis and/or the 

cellular machinery involved in protein synthesis.  

In A. belladonna, post-thaw viability was generally confined to treatments involving Gly CP 

embryos and when viability was observed in non-Gly CP embryos (e.g. <0.4D-Suc-slow and 

>0.4D-slow), this was generally very low (≤10%) (Table 2.1A). The ability of Gly cryoprotection 

to limit cryo-induced metabolic and physical damage to non-lethal levels in A. belladonna, was 

evidenced by the fact that >0.4D-Gly-rapid, >0.4D-Gly-slow, <0.4D-Gly-rapid and <0.4D-Gly-

slow embryos exhibited the highest over-all post-thaw viabilities (20-73%) and respiratory 

activities (Fig. 2.3B). One contributory factor could have been that in A. belladonna Gly CP 

(except for <0.4D-Gly-slow) generally decreased freeze-thaw-induced membrane damage, relative 

to Suc CP+D and non-CP+D embryos (Fig. 2.2). Cell lysis in frozen non-cold acclimated cells has 

also been shown to occur during thawing and subsequent rehydration (Steponkus and Lynch, 

1989) and increased post-thaw survival has been attributed to a reduction in electrolyte leakage 

(e.g. Verleysen et al., 2004). Additionally, in rapidly cooled Gly CP+D A. belladonna embryos 

this greater retention of post-thaw structural integrity was accompanied by relatively superior post-
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thaw metabolic competence, since protein synthesis rates  in >0.4D-Gly-rapid and <0.4D-Gly-

rapid embryos were significantly higher than all cooled Suc CP+D treatments (Fig. 2.4A).  

Of the eight treatments in which post-thaw viability was observed in H. montanus,  two 

involved no CP (>0.4D-rapid and >0.4D-slow) and resulted in 10% viability, but for one year only, 

three involved Suc CP (Suc-rapid [in year 1 only], <0.4D-Suc-rapid and <0.4D-Suc-slow [in year 

2 only]) and resulted in 10-20% viability, while viabilities of 10-60% were observed in three 

treatments involving Gly CP (namely: >0.4D-Gly-rapid; >0.4D-Gly-slow; and <0.4D-Gly-rapid) 

(Table 2.1B). Except for the treatments involving Suc CP, all those treatments were generally 

associated with significantly higher post-thaw respiratory activity, with the highest over-all post-

thaw respiratory activity and viability (50%) occurring in >0.4D-Gly-rapid embryos (Fig. 2.3D). 

However, high respiratory activity was not necessarily indicative of high post-thaw viability 

retention in H. montanus embryos, since some treatments that exhibited exceptionally low 

respiratory activities (e.g. Suc-rapid, >0.4D-Gly-slow and <0.4D-Suc-rapid) still resulted in some, 

though low (10-20%), post-thaw viability. This suggests that viable embryos/axes immediately 

after recovery from LN and early during in vitro recovery can still die during recovery while, on 

the other hand, post-thaw viability may be facilitated in some embryos by the survival of only a 

few critical (most likely meristematic) cells. In contrast to A. belladonna, the ability of Gly to 

promoted post-thaw viability retention in H. montanus was not correlated with a reduction in 

freeze-induced membrane damage, since leakage values across cooled treatments were generally 

significantly lower than fresh embryos, even when post-thaw viability was completely lost (Fig. 

2.2B). This suggests that even though the mechanisms via which Gly conferred cryoprotection 

were effective enough to promote post-thaw viability retention in both species, these mechanisms 

may not necessarily have been the same and/or equally effective in both species.  

 A wide range of cryoprotectants have been applied to desiccation-sensitive zygotic germplasm  

(alone and in combination with dehydration) with variable success (e.g. de Boucaud et al., 1991, 

1996; Pence, 1991; Assy-Bah and Engelmann, 1992a & b; Kioko et al., 1998; Thammasiri, 1999; 

Walters et al., 2002; Sershen et al. 2007). The results obtained here lend support to other 

suggestions that cryoprotection can improve post-thaw recovery in zygotic germplasm of non-

orthodox-seeded species (Engelmann, 1997; Walters et al., 2002; Normah and Makeen, 2008), 

most especially those of tropical provenance (Walters et al. 2008). Penetrating cryoprotectants like 

Gly are able to diffuse through the plasma membrane and equilibrate in the cytoplasm while non-

penetrating CPs like Suc do not enter the cytoplasm but may accumulate apoplastically (Grout, 

1995; Muldrew et al., 2004). Differences in the degree/type of protection conferred by Suc and 

Gly in this study are best understood in terms of the theory of ‘colligative cryoprotection’ (see 

Lovelock, 1953; Meryman and Williams, 1980, 1985). Most colligative additives have the 

potential to enhance viscosity of the cell contents (Benson, 2008) and so inhibit intracellular ice-
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crystal formation (Meryman and Williams, 1980, 1985; reviewed by Fuller, 2004); however, one 

of the essential attributes of the colligative theory of cryoprotection is that cryoprotectants must be 

able to penetrate the cell, otherwise, they will cause osmotic dehydration, resulting in the very 

injury they are employed to guard against (Benson, 2008). The superiority of Gly over Suc 

cryoprotection in this study may therefore have been based, apart from other factors, on glycerol’s 

penetrative ability, which is usually accompanied by an increase in cytoplasmic viscosity but a 

decrease in the efflux of water from the cytoplasm during cooling (Polge, 1949; Benson, 2008). 

Additionally, penetrating cryoprotectants may also reduce freezing injury by acting as a solvent for 

electrolytes that accumulate in the cytoplasm during ice-crystal formation (Finkle et al., 1985; 

Muldrew et al., 2004) and stabilising proteins at high salt concentration (Popova and Busheva, 

2001). The ability of penetrating cryoprotectants to reduce the magnitude of freezing injury by 

lowering the kinetic freezing point (often referred to as the ‘supercooling point’ in biological 

solutions [Wilson et al., 2003]) of cell solution by increasing intracellular osmolality prior to 

freezing and thus the temperature at which ice nucleation occurs is also well documented (Finkle 

et al., 1985; Gusta et al., 2004).  In fact, they may prevent ice-crystal formation altogether when 

applied at very high concentrations since the temperature at which nucleation occurs may be 

substantially decreased while the temperature at which water is transformed into glass increases 

(Bronshteyn and Steponkus, 1995; Muldrew et al., 2004). Reference to recent and past literature 

on the use/action of cryoprotectants suggests that the superiority of Gly over Suc cryoprotection in 

this study was more likely due to a combination of factors, rather than any single one. Some of 

these factors, such as (1) the superiority of penetrating, compared to non-penetrating, 

cryoprotectants in extending protection to internal organelles (Fuller, 2004), and (2) the ability of 

radioprotectants1 like Gly to confer biochemical protection during cryopreservation, mainly by 

scavenging harmful free-radicals (Polge et al., 1949; Smirnoff and Cumbes, 1989; Benson and 

Bremner, 2004), are addressed further in studies featured in Chapters 3 and 4, respectively. 

 

Post-thaw vigour and viability as influenced by embryo water content and cooling rate 

 While the lower limit of the “optimal hydration window” in recalcitrant embryos/axes is 

constrained by desiccation sensitivity of the tissue, its upper limit may be constrained by freezing 

injury due to intracellular ice formation at relatively high WCs (Becwar et al., 1983; Pritchard and 

Prendergast, 1986; Pence, 1992; Wesley-Smith et al., 1992; Sun, 1999). Additionally, the number, 

size and location of ice-crystals formed within recalcitrant embryos/axes is influenced by cooling 

rate (Wesley-Smith et al., 1992, 2004a). As mentioned earlier, water loss enhances cytoplasmic 

                                                
1 Penetrating cryoprotectants that can substitute reversibly for water in the hydration sheath of 
polysaccharides, proteins and nucleic acids, thereby altering their macromolecular structure, which may 
render them less amenable to radiation-induced injury (Benson and Bremner, 2004). 
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viscosity in seed tissues (Buitink et al., 1998; Leprince et al., 1999) and rapid cooling of 

‘sufficiently’ dehydrated embryos/axes can slow-down ice nucleation in such tissues (Wesley-

Smith et al., 1992, 2004b; Walters et al., 2008). This may explain why post-thaw viabilities across 

both species in this study were best when partially dehydrated Gly CP embryos were rapidly, as 

opposed to slowly, cooled (Table 2.1A, B); however, any further discussion of these data demands 

an appreciation of the relationship between cooling rate and  freezing damage.  

 While slow cooling rates encourage the formation of a few, large extracellular ice-crystals, 

rapid cooling rates can result in a greater number of ice nuclei, both intra- and extracellularly 

(Mazur, 1990; Kartha and Engelmann, 1994). During rapid cooling (≥100°C min-1) exosmosis 

usually occurs at a rate much slower than the rate of formation of extracellular ice-crystals.  As a 

consequence, the cytoplasm becomes increasingly supercooled, pre-disposing the cells to 

intracellular ice-crystal formation and hence mechanical shearing of cell membranes (Acker and 

Croteau, 2004). However, if samples are cooled at rates of ≥1000°C min-1 the ice-crystals that form 

may be very small and therefore relatively innocuous (Muldrew et al., 2004). The amount of ice 

formed in cells and solutions at physiological concentration during rapid cooling can be further 

limited by increasing cooling rates above 100˚C s-1 (Luyet et al., 1962). The cooling rates 

associated with non-equilibrium cooling methods (pioneered by Luyet et al., 1962), such as the 

rapid cooling method employed here (see section 2.2 for details), are generally in the order of 

hundreds of °C s-1 (e.g. Wesley-Smith, 2004a & b). Cooling rates in this order are thought to 

restrict intracellular ice-crystallisation below lethal levels by minimising the time spent by the 

tissue at temperatures favouring ice formation and growth (generally taken to be 0 to -80°C [Moor, 

1973]). Rapid cooling rates have been successfully applied to the recalcitrant embryos/axes of a 

number of species (e.g. Camellia sinensis [Wesley-Smith et al., 1992]; Aesculus hippocastanum 

[Wesley-Smith et al. 2001]; Quercus suber and Quercus ilex [González-Benito et al., 2002]; 

Poncirus trifoliata [Wesley-Smith et al., 2004a]; Ekebergia capensis [Perán et al., 2006]; and a 

number of amaryllid species [Sershen et al., 2007]). 

 Step 1 of the ‘two-step’ cooling method (e.g. Withers and King, 1980; Krøgstrup et al., 1992), 

i.e. controlled slow cooling (0.5-2.0°C min-1) down to -30 to -40, or even -60°C, is characterised 

by extracellular ice formation, using components of the cell wall as ice-crystal nucleators (Levitt, 

1980). This results in an efflux of water from cells, however, since temperature declines slowly 

(0.2-10°C min-1) the cells lose water at a rate slow enough to maintain equilibrium with the 

extracellular solution (Muldrew et al., 2004). This freeze-induced dehydration (during step 1) is 

often too intense though, giving rise to a variety of deleterious effects such as solute toxicity, 

osmotic contraction and plasmolysis, and even cell lysis (Mazur, 1990; Pritchard et al., 1995b; 

Muldrew et al., 2004). On the other hand, some cells may fail to reach the optimum intracellular 
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concentration during step 1 and upon supercooling can become victim to lethal intracellular ice-

crystal formation (Mazur, 1990). Freeze-induced dehydration during slow cooling can also affect 

the transition of the phospholipid bilayer from the liquid crystalline to the gel phase, subsequently 

limiting the exit of water from cells and increasing the potential for intracellular ice formation 

(Webb and Steponkus, 1993). The significantly lower post-thaw viabilities achieved with ‘two-

step’ cooling in this study were therefore, not surprising (Table 2.1A, B). In fact, ‘two-step’ 

cooling has only been successfully applied to the embryos/axes of a limited number of recalcitrant-

seeded species (e.g. Ilex spp. [Mroginski, 2008]) and there are suggestions that while slow cooling 

methods may be good at retaining the integrity of individual cells, they may be less efficient at 

retaining the tissue integrity necessary for the survival of complex tissues (e.g. meristems and 

embryos [Panis and Lambardi, 2006]).  

 The optimal WC for cryopreserving desiccation-sensitive embryo/axes varies widely among 

species, drying rates, cooling rates, storage temperature and embryo maturity (Wesley-Smith et al., 

2004a; Makeen et al., 2005; Sershen et al., 2007; reviewed by Normah and Makeen, 2008); being 

as high as 1.1-1.6 g g-1 for Camellia sinensis (Wesley-Smith et al., 1992), to 0.36-0.56 g g-1 in 

Zizania palustris (Touchell and Walters, 2000), and as low as 0.23 g g-1 for Azadirachta indica 

(Berjak and Dumet, 1996), and  0.15 g g-1  for Citrus suhuiensis (Makeen et al., 2005). There is 

now consensus that successful embryo/axis cryopreservation protocols involve optimising cooling 

rates in conjunction with tissue hydration level, to eliminate or at least minimise, nucleation of 

lethal intracellular ice-crystals (Wesley-Smith et al., 1992, 2004a; Normah and Makeen, 2008; 

Walters et al., 2008). Since WC influences cytoplasmic viscosity, it influences the mobility of 

water within cells (Vertucci and Roos, 1990) and drying seed tissues to c. 0.25 g g-1 (Ψ≈ -1.2 MPa) 

is said to be sufficient enough to increase cytoplasmic viscosity to such an extent that ice 

formation during relatively slow cooling is limited, and axis survival becomes independent of the 

time of exposure to temperatures that promote ice-crystallisation (Wesley-Smith et al., 2004a). 

However, dehydration to such low WCs is rarely tolerated in desiccation-sensitive embryos/axes 

and it is now widely accepted that the higher the final embryo/axis WC after drying, the more 

rapid the rate of cooling should be to restrict ice-crystallisation and associated freezing damage 

(Vertucci, 1989; Wesley-Smith et al., 1992; Walters et al., 2008). It must be stressed though that 

even at rapid, non-equilibrium, cooling rates the mobility of water and the cooling rate required to 

prevent lethal intracellular ice-crystallisation are inter-linked (Luyet et al., 1962). 

 Additionally, post-thaw viabilities in plant tissue depend to a large extent on the length of the 

drying period (Niino and Sakai, 1992) and in recalcitrant zygotic germplasm prolonged periods of 

dehydration, while not lethal in themselves, can act synergistically and lethally with freezing rates 

(Pritchard et al., 1995b; Berjak et al., 1999; Kioko et al., 1998; Sun, 1999; Wesley-Smith et al., 

2001; 2004a). In the present study, while post-thaw viability losses in Gly CP+D embryos were 
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lowest (27 and 20%) at WCs <0.4 g g-1 in A. belladonna, viability losses in H. montanus were 

lowest (50 and 40%) at WCs >0.4 g g-1 (Table 2.1A, B). This species-specific relationship between 

WC range and post-thaw viability held true for slowly cooled Gly CP+D embryos as well. As 

discussed earlier, there were marked inter-species differences in drying kinetics, with A. 

belladonna embryos drying so rapidly that the difference in the duration of drying between target 

WCs (< and >0.4 g g-1) was limited to 10-15 min, as opposed to ≥1 h, in H. montanus. This may 

explain why the WC range that was presumably associated with a greater degree of desiccation 

stress, i.e. <0.4 g g-1, resulted in significantly lower post-thaw viabilities in H. montanus (Table 

2.1B). However, the opposite was true for A. belladonna (Table 2.1A). All that can be proposed at 

this stage is that, in contrast to H. montanus, the difference in the ‘duration’ of the pre-cooling 

dehydration stress between target WCs in A. belladonna may have been too small to influence 

post-thaw viability, making water content, or rather the ‘intensity’ of the dehydration stress the 

over-riding determinant of post-thaw viability.  

 

2.5 Concluding remarks 

 In recalcitrant A. belladonna and H. montanus embryos, stresses and lesions, metabolic and 

physical, induced at each stage of the cryopreservation protocol appear to be compounded, thus 

pre-disposing the tissues to further damage and/or viability loss with the progression of each step. 

Maximum post-thaw viability in both species appeared to be based on the balance between 

desiccation damage and freezing stress, and the mitigation of both of these via Gly cryoprotection. 

The results obtained here also suggest that to optimise cryopreservation protocols for recalcitrant 

zygotic germplasm attention must be paid to pre-cooling dehydration stress, which appears to be 

the product of both the ‘intensity’ and ‘duration’ of the stress. Pammenter et al. (2002) suggested 

that it is the, “concept of ‘intensity’ vs. ‘duration’ of a stress that underlies the confusion that has 

obscured the interpretation of the effects of drying rates on desiccation-sensitive seed material”. 

This concept of ‘intensity’ vs. ‘duration’ of a stress appears to be just as relevant to our 

interpretation of the effects of the various components of cryopreservation on post-thaw viability 

in recalcitrant embryos/axes.  

 The present work allowed for an assessment of the value of three markers of cryo-related 

stress (namely, electrolyte leakage, spectrophotometric assessment of tetrazolium chloride-

reduction and rate of protein synthesis) that may be used to better optimise future cryopreservation 

protocols for recalcitrant zygotic germplasm. Markers such as electrolyte leakage (Jitsuyama et al., 

2002) and tetrazolium chloride-staining (reviewed by Verleysen et al., 2004) have previously been 

shown to be accurate indicators of freezing tolerance in simple homogenous tissue systems. The 

markers employed here were useful in differentiating among the effects of the various treatments, 

however, the mixture of living, weakened and dead cells in frozen-thawed embryos appears to 
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have compromised the accuracy with which some of the markers (e.g. electrolyte leakage and 

tetrazolium chloride-reduction) forecasted the post-thaw viability associated with these treatments.  

Finally, as in other studies on recalcitrant zygotic germplasm (e.g. Steinmacher et al., 2007) 

pre-conditioning and cooling appeared to compromise vigour in recovered seedlings. However, 

these observations were purely qualitative (see Fig. 2.1A, B) and this phenomenon was 

investigated further in studies featured in Chapters 5 and 6.  
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CHAPTER THREE: 

Ultrastructural responses of recalcitrant Amaryllis belladonna and 

Haemanthus montanus zygotic embryos to cryopreservation 
 

Based on  

Sershen, Berjak, P., Pammenter, N.W., Wesley-Smith, J. 2011. The effects of various parameters during 

processing for cryopreservation on the ultrastructure and viability of recalcitrant zygotic embryos of 

Amaryllis belladonna.  Protoplasma (In press). 

      & 

Sershen, Berjak, P., Pammenter, N.W., Wesley-Smith, J. 2011. Rate of dehydration, state of subcellular 

organisation and nature of cryoprotection are critical factors contributing to the variable success of 

cryopreservation: Studies on recalcitrant zygotic embryos of Haemanthus montanus. Protoplasma (In 

press). 

 

Abstract 

The ultrastructural responses of recalcitrant Amaryllis belladonna (L.) and Haemanthus 

montanus (Baker) zygotic embryos to cryoprotection, partial dehydration and thawing after 

cryogenic exposure were investigated. Cryopreservation studies involved cooling partially dried 

(to water contents > or <0.4 g g
-1
) and fully hydrated embryos, with and without prior sucrose 

(non-penetrative) or glycerol (penetrative) cryoprotection, at rapid or slow cooling rates. 

Embryos were exposed to these treatments and after a 48 h in vitro recovery period, root 

meristems were excised and prepared for conventional transmission electron microscopy. 

Untreated (fresh) embryos (of both species) exhibited 100% viability and ultrastructurally their 

cells showed a centrally positioned, irregularly shaped nucleus (with dispersed 

heterochromatin), regular cell walls with contiguous plasmalemmae, a few, small vacuoles, each 

with intact tonoplast, and signs of ongoing active metabolism, e.g. polysomes, Golgi bodies, 

mitochondria and rough endoplasmic reticulum. Some viability loss accompanied 

cryoprotection (CP), partial dehydration, thawing after cryogenic exposure, and combinations of 

these procedures for both species, being most severe after thawing. For both species, the decline 

in viability after pre-conditioning and freeze-thawing was generally accompanied by some 

degree of ultrastructural derangement, increased vacuolation, tonoplast dissolution, and/or total 

sub-cellular destruction, in some or all cells. While glycerol CP alleviated post-drying 

ultrastructural derangement and viability loss in both species, sucrose CP exacerbated these 

adverse effects of drying. For both species, freeze-thaw-induced ultrastructural irregularities 

were least conspicuous in rapidly cooled, glycerol CP embryos, which also survived 

cryopreservation best. Results of this study suggest that damage to the sub-cellular matrix and 

ultrastructural irregularities induced at each stage of the cryopreservation protocol may be 

compounded with each progressive step, thus pre-disposing tissues to increasing damage and/or 

viability loss. Cryoprotection and dehydration increased the chances of post-thaw survival but 

their practical benefits appear to have been realised only when damage to the sub-cellular matrix 
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was minimised. For both species this was best achieved when: (a) pre-conditioning involved the 

combination of cryoprotection and partial dehydration; (b) the cryoprotectant was penetrating 

(glycerol) as opposed to non-penetrating (sucrose); and (c) embryos were rapidly cooled at WCs 

that minimised both dehydration and freezing damage.   

 

3.1 Introduction 

Studies described in Chapter 2 suggested that in Amaryllis belladonna (L.) and Haemanthus 

montanus (Baker) zygotic embryos, the metabolic and physical stresses and lesions induced at 

each stage of the cryopreservation protocol appeared to be compounded, thus pre-disposing the 

tissues to further damage and/or viability loss with the progression of each step. Using 

transmission electron microscopy (TEM), the present aspect of the study investigated whether 

the ultrastructural responses of these embryos to the various procedural steps involved in their 

cryopreservation were consistent with this suggestion.  

Ultrastructural and other microscopical studies have been immensely valuable, in providing 

evidence for the explanation of recalcitrant seed behaviour and responses under a variety of 

conditions (reviewed by Berjak and Pammenter, 2000). Apart from revealing sub-cellular 

damage, ultrastructural studies can also reflect the physiological status of particular cell-types in 

time, and in response to particular stimuli. Mycock (1999) suggested that biochemical 

imbalances and perturbation of the sub-cellular matrix (including the cytoskeleton) could be 

prevalent during pre-freezing manipulations. The present study on the ultrastructural responses 

of A. belladonna and H. montanus zygotic embryos to cryoprotection, partial dehydration and 

thawing after cryogenic exposure was motivated by reports that sub-cellular changes induced in 

recalcitrant embryo tissues following dehydration (Berjak et al., 1984, 1999; Farrant et al., 

1985; Salmen Espindola et al., 1994; Mycock et al., 2000; Wesley-Smith et al., 2001a; Kioko et 

al., 2006) and cooling (Wesley-Smith et al., 1992, Chandel et al., 1995; Berjak et al., 1999; 

Berjak and Pammenter, 2000; Mycock et al., 2000; Wesley-Smith, 2003; Perán et al., 2006), 

may have severe metabolic and physiological consequences on subsequent growth. This may 

explain the abnormal growth often observed after cryopreservation of zygotic germplasm from 

recalcitrant seeds (e.g. Pence, 1992; Dumet et al., 1997; Wesley-Smith et al., 2001b; Sershen et 

al., 2007; Steinmacher et al., 2007). In relating ultrastructural responses to the most 

unambiguous indicator of post-cryo survival, germinability and seedling establishment, the 

present study also aimed to identify ultrastructural markers of cryo-related stresses.  

In the present study ultrastructure was assessed after cryoprotection, dehydration, recovery 

from the cryogen, and after all possible combinations of these procedures. Studies described in 

Chapter 2 (section 2.3) showed that zygotic embryo WCs <0.4 g g-1 were superior to those >0.4 
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g g
-1
, in facilitating post-thaw survival for A. belladonna, while the reverse was true for H. 

montanus. Based on those findings, A. belladonna and H. montanus zygotic embryos in this 

study were cryopreserved at WCs > and <0.40 g g
-1
, i.e. at WCs that were presumed to be 

sufficiently low and at WCs that were potentially too high for successful cryopreservation. 

Embryos dried to WCs in both these ranges, with and without prior sucrose (Suc; non-

penetrative) or glycerol (Gly; penetrative) cryoprotection (CP), were, in turn, cooled rapidly or 

slowly to observe the interactive effects of WC, cooling rate and cryoprotection on subsequent 

cellular sub-structure, intracellular organisation and viability.  

 In desiccation-sensitive tissues, the effect of a stress, particularly a mild stress, is unlikely to 

be instantaneous. In fact, if a stress induces a metabolic disorder, it takes time for the damage 

consequent upon that disorder to accumulate (Walters et al, 2001). In most cases the damage 

incurred may be evident only after the system has rehydrated fully, and metabolism has been 

reinitiated. Further to this, recovery from cryostorage involves a series of complex events and, 

while severely damaged tissues undergo degradative processes that lead to cell death, less 

damaged tissues can stabilise, recover and return to apparently normal metabolic status (Benson 

and Noronha-Dutra, 1988). Therefore in a study aiming optimise a plant germplasm 

cryopreservation protocol, knowledge of the tissues ability to recover from the stresses imposed 

and damage incurred during cryopreservation may be more useful in identifying the treatment 

combinations that are optimum for post-thaw survival than ‘real state’ effects (i.e. those evident 

immediately after the treatment), since real state effects may disappear or worsen in frozen-

thawed tissues during the in vitro recovery period (Kaczmarczyk et al., 2008). Based on the 

above, freshly-excised embryos and those subjected to pre-conditioning or cooling were 

processed for TEM after rehydration and a subsequent 48 h in vitro recovery period. Results of 

these studies are therefore presumed to reflect the damage caused by the treatment as well as 

that accumulated or ameliorated during early recovery.  

 

3.2 Materials and Methods 

Plant material  

Mature fruits of A. belladonna and H. montanus were harvested directly from parent plants 

and transported in plastic bags to the laboratory with minimum delay (1-2 d). Upon arrival, the 

seeds were decontaminated and stored in the hydrated condition, as described in Chapter 2 

(section 2.2).  
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Embryo pre-treatment 

 After 14 d of hydrated storage, individual zygotic embryos were excised with the entire 

cotyledonary body attached (see Fig. A1, Appendix A) and collected within closed Petri dishes 

on filter paper moistened with sterile calcium-magnesium solution (CaMg solution: of 0.5 µM 

CaCl2.2H2O and 0.5 mM MgCl2.6H2O [Mycock, 1999]). In order to minimise the potential 

variation in drying and/or cooling rate as a function of embryo size, only embryos of between 4-

6 mm in length were used for all the experiments described below. Excised embryos were flash-

dried (rapid dehydration; originally devised by Berjak et al., 1990) to: (a) WCs between 0.53 

and 0.41 g g-1 (dry mass basis [dmb]) (referred to as >0.4 g g-1 from here on); (b)  WCs between 

0.33 and 0.29 g g
-1
 (referred to as <0.4 g g

-1
 from here on); and (c) WCs > and <0.40 g g

-1 
after 

CP with either aqueous Gly or Suc. The WC ranges used were obtained by constructing WC and 

viability vs. drying time curves for each species (see Fig. A2, Appendix A). For cryoprotection, 

freshly excised embryos were immersed in a 5% solution of Gly (v/v) or a 0.5 M solution of Suc 

for 1 h, and thereafter transferred to a 10% Gly (v/v) or 1.0 M Suc solution for a further hour.  

Partially dried embryos (with and without CP) were subsequently cooled at: (a) rapid, non-

equilibrium (c. 200°C s-1) cooling rates by direct immersion of the naked embryos in nitrogen 

slush (liquid nitrogen sub-cooled to -210°C [Echlin, 1992]); or (b) slow, equilibrium cooling 

rates (1°C min-1 in an isopropanol bath [Mr Frosty®] within a -70°C freezer) down to -40°C 

followed by direct immersion in nitrogen slush. Freshly excised embryos not subjected to 

dehydration or CP (referred to as ‘fresh’ embryos from here on), as well as those exposed to CP 

but no dehydration were also subjected to both cooling rates. After cooling in nitrogen slush, the 

embryos were transferred under liquid nitrogen (LN) into LN-containing cryovials (Greiner™), 

mounted on aluminium cryo-canes (10 embryos per vial) and immersed in LN for up to a week 

before use. Upon retrieval from LN, embryos were rapidly thawed by direct immersion in sterile 

CaMg solution at 40°C for 2 min, rehydrated in fresh CaMg solution at ambient temperature for 

30 min in the dark, and recovered in vitro. Freshly excised embryos not exposed to any of the 

treatments described above were also recovered in vitro to serve as a control.  

 

Water content determination  

Immediately after each of excision (referred to as ‘fresh’ from here on), partial dehydration 

(D), CP and CP+D, 10 embryos from each of the non-cooled treatment combinations were 

weighed individually using a 6-place balance (Mettler, MT5; Germany) and dried in an oven at 

80°C for 48 h before being re-weighed to determine the dry mass. Water content was expressed 

on a dry mass basis (dmb; g H2O per g dry matter [g g
-1
]). 
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In vitro recovery and viability assessment 

Immediately after rehydration, 15 embryos from each of the 27 treatment combinations (see 

Table 2.1) were decontaminated and recovered in vitro for 60 d, as described in Chapter 2 

(section 2.2). Viability was assessed on 10 embryos (as five were used for ultrastructural 

studies) after 60 d in vitro growth and was defined by root and shoot production. 

 

 

Ultrastructural studies 

Fixation 

Of the 15 embryos that were recovered in vitro for each treatment, the radicle tip (see Fig. 

A1c, Appendix A) of each of five randomly selected specimens from all treatments and the 

untreated control was excised after 48 h in vitro recovery and fixed for TEM. Samples were 

fixed in 2.5% phosphate-buffered glutaraldehyde (0.1 M, pH 7.2) for 24 h at 4°C. Following 

several rinses with phosphate buffer, specimens were post-fixed in 0.5% aqueous osmium 

tetroxide for 1 h at room temperature and rinsed three times with phosphate buffer. Specimens 

were then dehydrated in a graded acetone series (30%, 50%, 75%, each for 5 min and 100% for 

10 min) followed by infiltration and embedding in low-viscosity resin (Spurr, 1969) and 

polymerisation for 8 h at 70°C. Specimens were sectioned using an Ultracut E ultramicrotome 

(Leica, Austria). Ultra-thin sections of root meristem showing copper/gold interference colours 

were collected on 600 mesh copper grids and contrasted for electron microscopy using a 

standard double-staining procedure: saturated (2.5%) uranyl acetate followed by lead citrate 

(Reynolds, 1963).  

 

Microscopy, image processing and analysis 

Ultra-thin sections of root meristem cells were viewed using a Jeol JEM 1010 transmission 

electron microscope (JEOL, Japan) at 100 kV. The ultrastructure of root meristem cells from 

each of five embryos for all treatments, including the untreated control, was assessed and 

images that represented the general appearance of cells from each treatment were captured 

digitally for subsequent analysis. Image-Pro
 
Plus (Version 6.1; MediaCybernetics, USA) was 

used for measuring vacuolar area and abundance across 25 root meristem cells for each of five 

embryos, for all treatments and the untreated control. The area within the wall of each cell was 

also measured, and the corresponding percentage area occupied by vacuoles was calculated. As 

in other ultrastructural studies on recalcitrant seeds (e.g. Farrant et al., 1997; Wesley-Smith, 

2003) degree of vacuolation was expressed here as area, and not volume, in line with the 
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thinness of the section. This measure was based on the assumption that area equates to volume 

within the meristematic cells investigated here.   

 

Statistical analysis 

As data for vacuolar area and quantity were not normally distributed (p > 0.05; Komolgirov-

Smirnov test), even with transformation, inter-treatment differences in vacuolar area and 

number were tested for using a Mann-Whitney-U test (SPSS, Version 15). Inter-treatment 

differences in viability were tested for using null-model chi-squared analyses (specifically 

designed to assess non-parametric data) (EcoSim Version 7.72 [developed by Gotelli and 

Entsminger, 2009]). All statistical tests were performed at the 0.05 level of significance. 

 

3.3 Results and Discussion 

Untreated embryos (Fresh) 

For both species, axes excised from fresh seeds were at WC >4.0 g g-1 (c. 4.67 g g-1 for A. 

belladonna and 5.05 g g
-1 
for H. montanus; data not shown) and viability was 100% (Fig. 3.1A, 

B). Ultrastructurally, root meristem cells of fresh embryos of both species showed a centrally 

positioned, irregularly shaped nucleus (N) with dispersed heterochromatin, regular cell walls 

(CW) with contiguous plasmalemmae, and normally-distributed organelles (Fig. 3.2a & e), an 

indication of their underlying cytoskeletal organisation (Berjak et al., 1999). These cells also 

showed signs of ongoing active metabolism: abundant polysomes (Fig. 3.2d & f) and Golgi 

bodies (Gb; Fig. 3.2a & f-insert); mitochondria (M; Fig. 3.2b & f); and peripherally located 

profiles of rough endoplasmic reticulum (rER; Fig. 3.2c & e, f).  

While the irregular profiles of the nuclei were similar to those reported for the recalcitrant 

seeds of Trichilia emetica (Kioko et al., 2006), the presence of cytomatrical polysomes is 

indicative of de novo protein synthesis (e.g. Farrant et al., 1985). Membrane proteins and also 

proteins contained within membranous vesicles are processed to glycoproteins within Golgi 

bodies (Zhang and Staehelin, 1992), making these organelles important indicators of 

physiological status. Their presence within the cells of fresh embryos here was therefore 

suggestive of membrane flow and carbohydrate metabolism (reviewed by Berjak and 

Pammenter, 2000). Short cristae were visible within the mitochondria of both species (Fig. 3.2b 

& f); such mitochondria are generally taken as sign of active respiration (e.g. as described for 

root meristems of the recalcitrant seeds of Avicennia marina [Farrant et al., 1992]). 

Mitochondria within A. belladonna cells also showed a central membranous formation (black 

arrow; Fig. 3.2b), the functional significance of which is unknown. The rough endoplasmic 

reticulum (rER) is the starting point of the protein secretory pathway. Proteins destined for other 
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compartments of the endomembrane system
 
or the apoplast are initially inserted into the rER 

and then transported to the Golgi complex en route to their final destinations (Vitale et al., 1993; 

Galili et al., 1998). Apart from being the site of aggregation
 
and accumulation of some classes 

of storage proteins in seeds of some plants, the rER is the site of synthesis of all the 

endomembranes within cells (Vitale et al., 1993; Berjak and Pammenter, 2000). The strong 

development of rER, as in the cells of fresh embryos of both species presently studied (Fig. 3.2c 

& e), is held to be indicative of active membrane synthesis (Novikoff, 1976; Berjak and 

Pammenter, 2000). Profiles of rER within the cells of fresh embryos of both species were also 

generally peripherally located (Fig. 3.2c & e). In plant cells this situation is thought to be 

indicative of the functional role that the endoplasmic reticulum (ER) plays in vesicle-mediated 

secretion and/or membrane recycling (Craig and Staehelin, 1988). The ultrastructural signs of 

active metabolism observed within cells of fresh embryos for both species investigated here are 

typical of mature recalcitrant seeds (e.g. those of Podocarpus henkelii [Dodd et al., 1989]; A. 

marina [Farrant et al., 1992]; Artocarpus heterophyllus [Wesley-Smith et al., 2001a]; and 

Trichilia emetica [Kioko et al., 2006]), which grade into germinative metabolism after 

shedding. 
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Figure 3.1 Viability, percentage of cell occupied by vacuoles and number of vacuoles per cell, for fresh, 

cryoprotected, partially dried and cooled [A] A. belladonna and [B] H. montanus zygotic embryos. Viability 

= root and shoot production; >0.4D = dried to >0.4 g g-1; <0.4D = dried to <0.4 g g-1; -Gly = cryoprotected 

with glycerol; -Suc = cryoprotected with sucrose; -slow = cooled slowly; -rapid = cooled rapidly. p < 0.001 

when viability data were tested for significant differences across treatments (null-model chi-squared 

analysis, n = 10). Values for percentage of cell occupied by vacuoles and number of vacuoles per cell 

represent mean±SD and when tested for significant differences across treatments p was < 0.05 (Mann-

Whitney-U test, n = 25). 
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The cells within fresh embryos of both species showed many plastids (P), containing starch 

grains (SG; Fig. 3.2a & e) in keeping with the observation that starch is the only complex form 

of carbohydrate reserve in fresh A. marina embryos (Farrant et al., 1992, 1997) and the 

predominant insoluble reserve in recalcitrant embryos of other species (e.g. those of P. henkelii 

[Dodd et al., 1989] and Camellia sinensis [Berjak et al., 1993]). Internal membranes were 

observed within the matrices of a few plastids in A. belladonna cells (Fig. 3.2b) but such detail 

could not be visualised within the starch-occluded matrices of the plastids in H. montanus cells 

(Fig. 3.2e; f-insert). However, there were substantial areas of cytomatrix between starch-

containing plastids within the cells of both species (Fig. 3.2a & e). This suggests that 

dehydration would probably bring about considerable intracellular collapse as one factor in their 

desiccation-sensitivity, since such cytomatrical ‘space’ is minimised in cells of orthodox 

embryos by accumulation of insoluble reserves (Vertucci and Farrant, 1995; Farrant et al., 

1997). 

Vacuoles, which are the major lytic compartments of plant cells, may be formed from large 

ER-derived vesiculations, or by cytolysome formation, i.e. the sequestration of volumes of the 

cytomatrix, which may or may not contain organelles (Matile and Moor, 1968; Lamb and 

Berjak, 1981; Staehelin, 1997). Root meristem cells of fresh embryos of both species 

investigated here showed a few, small clearly defined (i.e. no obvious signs of tonoplast 

dissolution) vacuoles (V; Fig. 3.2d & g), which is typical of meristems of axes of newly-

harvested recalcitrant seeds (e.g. those of Landolphia kirkii [Farrant et al., 1989] and T. emetica 

[Kioko et al., 2006]). For both species investigated here, vacuoles within cells of fresh embryos 

collectively occupied less than 10% of the cell area (Fig. 3.1A, B) and showed intra-vacuolar 

inclusions (Fig. 3.2d & g). These inclusions, which were in some cases membranous in 

appearance (encircled; Fig. 3.2b), may be indicative of intracellular turnover (Berjak and 

Pammenter, 2000), or what is more likely in embryo cells, of the ontogeny of the vacuoles 

themselves (Lamb and Berjak, 1981).  

Lamb and Berjak (1981) described two possible modes of vacuolation, including 

cytolysome formation with or without regional differentiation, both of which involve 

sequestration of a considerable volume of cytomatrix, initially by a barrier consisting of double 

membranes, originating from the endoplasmic reticulum. In the first mode, the sequestered 

cytoplasm contains a variety of organelles, while regional differentiation involves clearing the 

cytoplasm isolated within the nascent cytolysome (vacuole) of organellar components. In both 

cases ultimately only the outermost membrane of the sequestering ER sheets persists so that the 

provacuole and ultimately the vacuole, is typically single-membrane bounded (Lamb and 

Berjak, 1981). In the present study, some vacuoles within cells of fresh embryos of both species 
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resembled the single-membrane-bound provacuoles that were shown to develop via cytoplasmic 

regional differentiation during early imbibition in Zea mays root cap cells (Lamb and Berjak, 

1981). According to those authors, vacuolation by regional differentiation of the cytoplasm has 

the advantage of the rapid removal of large volumes of ground cytoplasm, while still conserving 

organelles. 

A few cells within H. montanus fresh embryos showed vesiculation of the plasma 

membrane (white arrowhead; Fig. 3.2f & f-insert). From their occasional observation it was not 

possible to tell whether these were indicative of endo- or exocytosis; however, these 

vesiculations are suggestedly more likely to be endocytotic, in view of importation of 

substances from the endosperm via the cotyledon, which would be expected in these 

developing/germinating axes.  
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Figure 3.2 

Root meristem cells of fresh (untreated) A. belladonna [a-d] and H. montanus [e-g] zygotic 

embryos are illustrated. a) whole cell showing centrally positioned, irregularly shaped, nucleus 

with nucleolus and heterochromatin, starch grains within plastids, Golgi bodies, and regular cell 

wall with contiguous plasmalemma; b) plastids, mitochondria (one showing central 

membranous formation and both showing short cristae) and polysomes; c) profiles of rough 

endoplasmic reticulum located peripherally; d) small  vacuole with inclusion; note the abundant 

polysomes; e) whole cell showing segment of centrally positioned, irregularly shaped, nucleus 

with heterochromatin, plastids with starch grains, rough endoplasmic reticulum and regular cell 

wall with contiguous plasmalemma; f) mitochondria showing cristae, apparent vesiculation of 

the plasmalemma and insert showing plastid, Golgi body, profiles of rough endoplasmic 

reticulum, polysomes and apparent vesiculation of the plasmalemma; g) small vacuole with 

inclusion. N=nucleus; P=plastids; SG=starch grains; M=mitochondria; rER=rough endoplasmic 

reticulum; V=vacuole; Gb=Golgi body; CW=cell wall; white arrowheads=apparent vesiculation 

of the plasmalemma; black arrow=central membranous formation within mitochondrion. 

Bar=100 µm for (a), 20 µm for (b, c, e), 5 µm for (f, f-insert) and 0.5µm for (d, g). 
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Glycerol (penetrative) cryoprotection in the absence of drying and cooling (Gly) 

Glycerol CP had no adverse effect on viability in A. belladonna embryos and in view of the 

uncompromised ultrastructure and small degree of dehydration (see below) the apparent 10% 

decline in viability in Gly CP H. montanus embryos may well indicate nothing more than one 

poor quality embryo among the 10 assessed (Fig. 3.1A, B, respectively). Cells of Gly 

cryoprotected embryos of both species were similar to those of fresh embryos, showing highly 

organised ultrastructure: centrally positioned, irregularly shaped, nucleus (not shown) with 

dispersed heterochromatin (N; Fig. 3.3b); regular cell walls (CW; Fig. 3.3c & d) with 

contiguous plasmalemmae; and normally-distributed organelles. Intracellular constituents 

included: cytomatrical polysomes (Fig. 3.3a, c & d, f), Golgi bodies (Gb), mitochondria (M) 

(Fig. 3.3a & d); and long profiles of rough endoplasmic reticulum (rER) (Fig. 3.3c & d, f). The 

presence of these various organelles and the frequency of polysomes were indicative of ongoing 

active metabolism. Cristae were not clearly visible within the mitochondria of Gly CP cells for 

either species, although central membranous formations could be discerned (*; Fig. 3.3a & d). 

While plastids (P) in A. belladonna Gly CP cells contained many prominent starch grains (SG; 

Fig. 3.3b), such prominent starch-filled plastids were not observed in H. montanus cells, in 

contrast to the situation in control material (Figs 3.3e  & 3.2e, respectively). There was an 

increased incidence of plasmalemma-associated vesiculations (white arrowheads; Fig. 3.3c & e) 

perhaps indicating an endocytotic route of Gly uptake.  

Glycerol CP led to a reduction in embryo WC relative to fresh embryos (A. belladonna: by 

∼32% to c. 3.16 g g-1 but only by ∼5.5% in H. montanus: to c. 4.77 g g-1 [data not shown]), as 

well as an increase in the proportion of the area occupied by vacuoles (which showed no 

obvious signs of tonoplast dissolution) (Fig. 3.3b & e) particularly in the cells of H. montanus, 

but little increase in the number of vacuoles per cell in either species (Fig. 3.1A, B). 

Ultrastructural studies have shown many similarities in plant cell responses during exposure to 

cryoprotection and desiccation (Wilkinson et al., 2003; Kaczmarczyk et al., 2008). Vacuolation 

often occurs in response to stresses to which cells are subjected (Berjak and Pammenter, 2000) 

and an increase in the degree of vacuolation in response to physical drying has been reported for 

tissues of axes from recalcitrant seeds of a variety of species (Berjak et al., 1989, 1990; 1999; 

Farrant et al., 1989; Mycock et al., 2000; Wesley-Smith et al., 2001a). Since the number of 

vacuoles in cells of Gly CP embryos did not increase relative to cells of fresh embryos in this 

study (Fig. 3.1A, B), the accumulation of Gly (or products of CP) and/or the osmotic 

dehydration accompanying Gly CP, may have increased solute concentrations within vacuoles, 

rendering these compartments more sensitive to osmotic expansion upon rehydration during in 

vitro recovery. Digestion by hydrolysis of intravacuolar content too, could have contributed to 
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the osmotic potential of these compartments. In view of the disappearance of plastidial starch in 

Gly CP H. montanus embryos, a further factor possibly contributing both to vacuolar osmotic 

properties and the very small drop in water content could have been starch hydrolysis. 

The observation of relatively amorphous areas of cytoplasm that appeared to have been 

sequestered by ER (black arrows; Fig. 3.3d) in cells of Gly CP H. montanus embryos was 

suggestive of cytoplasmic regional differentiation which precedes cytolysome formation (e.g. 

Lamb and Berjak, 1981). Those authors showed that in certain instances, cytolysome formation 

may involve many ER membrane shells which are invariably concentric about one or more 

provacuoles or small vacuoles typified by their dense content. The interior of the resulting 

structure then becomes packed with degenerating membrane, which disappears with time. 

Noting that this phenomenon is also a form of autophagy, such advanced stages of cytolysome 

formation, forming vacuoles, were observed within the cells of Gly CP embryos of both species 

(Fig. 3.3c & f). It is not possible to state unequivocally that the vacuolar structures described 

above were of ER origin but long profiles of ER were often found in relatively close proximity 

to these structures (Fig. 3.3c & d, f). This is a common response to stress in plant cells and is 

regarded as indirect evidence for the conversion of ER membranes to vacuolar membranes – i.e. 

for the specialisation of membrane being differentiated at the rER, to form cytolysomes and 

hence vacuoles (reviewed by Staehelin, 1997).  
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Figure 3.3 

Root meristem cells of glycerol cryoprotected A. belladonna [a-c] and H. montanus [d-f] 

zygotic embryos are illustrated. a) numerous polysomes, Golgi bodies and mitochondria, one 

showing central membranous formations; b) plastids crammed with starch grains, segment of 

nucleus with heterochromatin, and vacuoles; c) regular cell wall and apparent vesiculation of the 

plasmalemma, long profiles of rough endoplasmic reticulum and evidence of cytolysome 

formation; d) regular cell wall with contiguous plasmalemma, polysomes, Golgi bodies, long 

profiles of rough endoplasmic reticulum, signs of vacuolation by cytoplasmic regional 

differentiation (arrowed region) which precedes cytolysome formation, and mitochondria, one 

showing inner non-cristate membranous formations; e) small plastid with starch grain, vacuoles, 

and apparent plasmalemma vesiculations; f) long profiles of rough endoplasmic reticulum, signs 

of advanced cytolysome formation forming a vacuole, and abundant polysomes. N=nucleus; 

P=plastids; SG=starch grains; M=mitochondria; *=central membranous formation; rER=rough 

endoplasmic reticulum; C=cytolysome formation; V=vacuole; Gb=Golgi bodies; CW=cell wall; 

white arrowheads=apparent vesiculation of the plasmalemma; black arrows=signs of 

vacuolation by cytoplasmic regional differentiation. Bar=0.5 µm for (a-c) and 10 µm for (d-f). 
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Sucrose (non-penetrative) cryoprotection in the absence of drying and cooling (Suc) 

 As observed for the Gly CP treatment, Suc CP had no adverse effect on embryo viability in 

A. belladonna but again a 10% decline in viability in those of H. montanus was recorded (Fig. 

3.1A, B, respectively). Cells of Suc CP embryos of both species were similar to those of fresh 

and Gly CP specimens in that the nucleus was centrally positioned and irregularly shaped (not 

shown) with the heterochromatin dispersed (N; Fig. 3.4d), and organelles were normally-

distributed. The metabolic potential of these cells was evidenced by the presence of: 

cytomatrical polysomes and Golgi bodies (Gb) (Fig. 3.4a & f), and mitochondria, some with 

long cristae (M; Fig. 3.4c & h). The mitochondrial development observed could indicate that 

Suc CP was associated with respiratory enhancement. If this conjecture is correct, then these 

embryos would have had an enhanced metabolic rate as a consequence of Suc CP, and therefore 

may have become more desiccation sensitive (with reference to the work of Berjak et al., 1989 

and Farrant et al., 1992). This could have been one major factor in the greater viability loss 

upon flash drying and cryopreservation, than shown by Gly CP embryos (discussed later). Long 

parallel profiles of rough endoplasmic reticulum (rER), which were generally peripherally 

located, were apparent in cells of both species (Fig. 3.4b & e). Impermeable sugar 

cryoprotectants can inflict severe osmotic injury at high (≥1 M) concentrations (Finkle et al., 

1985; Muldrew et al., 2004). In the present study, a concentration of 1 M was used in the second 

phase of Suc CP, which may explain why, despite the signs of active ongoing metabolism and 

the intact cell walls with contiguous plasmalemmae (Fig. 3.4c & g), cells of Suc CP embryos 

showed a number of ultrastructural irregularities, not seen in fresh and Gly CP specimens. These 

included cell walls with slightly undulating profiles as well as dense plastids (P) containing 

what are presumed to be small plastoglobuli (white arrowheads) (Fig. 3.4c & g). The electron 

dense appearance of plastidial stroma is generally indicative of the presence of intraplastidial 

phenols (e.g. Vaughn and Wilson, 1981; Saranpää, 1988). If this was true for the plastids in 

cells of Suc CP A. belladonna embryos here, then this could have been a stress-induced 

response, since plants generally synthesize and accumulate phenols, often within plastids (Wise 

and Hoober, 2006), in response to physiological stress (Dixon and Paiva, 1995). Additionally, in 

some instances in A. belladonna cells, plastids were occasionally abnormally attenuated (Fig. 

3.4d). 

 There were no visible signs of plasmalemma-associated vesiculation within Suc CP cells of 

either species and irrespective of the species or WC range, the proportion of the area occupied 

by vacuoles (which showed no obvious signs of tonoplast dissolution) was increased relative to 

fresh embryos (Fig. 3.4d & h; Fig. 3.1A, B). There were also signs of vacuolar fusion (black 

arrows; Fig. 3.4d & h) and what may have been autophagically-derived content within the 
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vacuoles in these cells (Fig. 3.4d & h). As discussed for cells of Gly CP embryos, the responses 

of plant cells to cryoprotection have been likened to those observed after dehydration, e.g. 

increased vacuolation and autophagy (Wilkinson et al., 2003; Kaczmarczyk et al., 2008).  

Ultrastructural studies on the responses of vegetative tissues to the procedures involved in 

cryopreservation report damage inflicted during cryoprotection to be associated with a loss of 

ultrastructural integrity (Wilkinson et al., 2003; Ding et al., 2008; Kaczmarczyk et al., 2008), 

the forerunner of which could be the vacuolar fusion presently observed (black arrows; Fig. 3.4d 

& h).  The increased vacuolation and autophagy observed in Suc CP embryos could be a 

consequence of the fact that Suc CP led to a significantly greater reduction in embryo WC than 

Gly CP (A. belladonna: c. 1.86 g g-1; H. montanus: 1.79 g g-1 [data not shown]). With reference 

to the work of Berjak et al. (1989), increased autophagy in Suc CP cells may have provided a 

mechanism for the removal of structures that were damaged during (osmotic) dehydration.  
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Figure 3.4 

Root meristem cells of sucrose cryoprotected A. belladonna [a-d] and H. montanus [e-h] zygotic 

embryos are illustrated. a) polysomes, Golgi bodies and a mitochondrion showing formation of 

cristae; b) parallel profiles of  rough endoplasmic reticulum and a plastid showing a dense 

matrix; c) dense plastids with small starch grains and cell wall having a slightly undulating  

profile; d) part of an irregularly shaped nucleus with dispersed heterochromatin, vacuoles, signs 

of autophagy and vacuolar fusion, and an attenuated plastid; e) long profiles of endoplasmic 

reticulum and a mitochondrion showing central membranous formations; f) Golgi bodies and 

cytomatrical polysomes; g) segment of nucleus showing heterochromatin, plastids containing 

what are presumed to be small plastoglobuli, and cell wall having a slightly undulating  profile; 

h) vacuoles, signs of autophagy and vacuolar fusion. N=nucleus; P=plastids; M=mitochondria; 

rER=rough endoplasmic reticulum; V=vacuole; Gb=Golgi bodies; CW=cell wall; white 

arrowheads=plastoglobuli; black arrows=signs of vacuolar fusion; AV=autophagic vacuole. 

Bar=0.5 µm for (a, b c, g); 5 µm for (e, f) and 1 µm for (d, h). 
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Partial dehydration by flash drying in the absence of cryoprotection (>0.4D and <0.4D) 

 For both species, cells within four of the five specimens sampled for each WC range 

showed regular cell walls with contiguous plasmalemmae (Figs 3.5d & f; 3.6b & d). The 

metabolic potential of these cells was evidenced by the presence of: Golgi bodies (Gb; Figs 3.5b 

& f; 3.6b & e), plastids (P) with starch grains (SG) (Figs 3.5c & f; 3.6a-insert & d); 

mitochondria (M; Figs 3.5b & f; 3.6b-insert & d); and cytomatrical polysomes (Fig. 3.5b; 3.6b-

insert). Other studies have similarly shown recalcitrant embryonic axes to retain intracellular 

organisation and viability after dehydration to WC ≥0.3 g g-1 and subsequent rehydration, 

provided they were dried rapidly, and not slowly (e.g. those of T. emetica [Kioko et al., 2006] 

and A. heterophyllus [Wesley-Smith et al., 2001a]). This is presumed to be the outcome of the 

limited time allowed during rapid drying, in which damaging metabolism-linked reactions can 

occur (reviewed by Pammenter and Berjak, 1999; Walters et al., 2001; Berjak and Pammenter, 

2008). However, even when recalcitrant embryos/axes of some species are dried rapidly to WC 

much higher than 0.3 g g-1, a measure of ultrastructural disruption may be observed (e.g. A. 

heterophyllus flash-dried to c. 0.7 g g
-1 
[Wesley-Smith et al., 2001a]). In the present study, 

partial dehydration by ∼91% to WC >0.4 g g
-1
 (c. 0.42 g g

-1
) and by ∼93% to WC <0.4 g g

-1
 (c. 

0.32 g g-1) was accompanied by a decline in viability in A. belladonna embryos, and this was 

exacerbated in the latter case (Fig. 3.1A). Partial dehydration was also detrimental in H. 

montanus embryos, with viability losses of 30% being recorded both at WC > and <0.4 g g-1 

(∼89% to c. 0.55 g g-1 and ∼93% to c. 0.34 g g-1, respectively; Fig. 3.1B). Partially dried 

embryos of both species also showed a number ultrastructural irregularities, the frequency 

and/or severity of which was greater at WC <0.4 g g-1.  

 Ultrastructural studies on the responses of plant tissues to dehydration have shown many 

similarities in cell response across a number of species and a variety of tissue types. While 

slight rapid dehydration can result in ultrastructure that is consistent with normal functioning in 

recalcitrant seed tissues (reviewed by Berjak and Pammenter, 2000; Kioko et al., 2006) 

dehydration to lethal WCs is often immediately accompanied by an increase in the 

vacuole:cytoplasm ratio, or at very low WC, total sub-cellular destruction (e.g. Pritchard and 

Prendergast, 1986; González Arnao et al., 1993; Isaacs and Mycock, 1999; Mycock et al., 2000; 

Wilkinson et al., 2003; Kioko et al., 2006). Nuclear architecture and spatial arrangement of the 

organelles that is normally observed at high WC is often lost after dehydration to relatively low 

WC (Wesley-Smith et al., 1995, 2001a; Berjak et al., 1999; Kioko et al., 2006), possibly as a 

result of damage to the nucleo- and cytoskeleton (Kioko et al., 1998; Mycock, 1999; Berjak and 

Pammenter, 2000). However, this post-drying loss of ultrastructural integrity, and associated 

viability, is far more severe when tissues are dried slowly (Wesley-Smith 2001a; Berjak and 
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Pammenter, 2000; Kioko et al., 2006); presumably due to the extended time for deleterious 

metabolism-linked reactions to occur (reviewed by Pammenter and Berjak, 1999; Walters et al., 

2001). Membranes are a primary site of desiccation damage (Senaratna and Mckersie, 1986) 

and damage to sub-cellular membranes, which is curtailed during rapid drying, is prominent 

among the damaging consequences of slow drying (Kioko et al., 1998; Pammenter et al., 1998).  

 The WCs attained after flash drying here are greater than those reported to induce structural 

damage in membranes (∼0.25 g g-1 or -11 MPa; Vertucci and Farrant, 1995) and, although 

dehydration was relatively rapid, some metabolic lesions caused by de-regulated metabolism 

may nevertheless have occurred (reviewed by Vertucci and Farrant, 1995; Pammenter and 

Berjak, 1999; Leprince et al., 2000). Partial dehydration was seen to be associated with a 

number of ultrastructural irregularities in both species: fragmented profiles of endoplasmic 

reticulum (ER) (Figs 3.5d & f; 3.6b & e); essentially spherical nuclei (N; Figs 3.5a & e-insert; 

3.6a), some showing chromatin condensation (Fig 3.5a, e-insert & 3.6a, c); and cell walls (CW) 

having an undulating profile (Figs 3.5a & 3.6a, f). Condensation of the nuclear chromatin and 

aberrant nuclear profiles (e.g. Fig. 3.6c) have been cited as signs of desiccation injury in 

recalcitrant embryonic axes (e.g. Berjak et al., 1999; Wesley-Smith et al., 2001a; Kioko et al., 

2006) and germinating axes of Zea mays (Crévecoeur et al., 1976). The change in nuclear shape 

to spherical in some cells of both species presently investigated is taken to indicate derangement 

of the nucleoskeleton with concomitant loss of nuclear morphology. As organisation of the 

nucleoskeleton is intrinsic to spatial localisation of the chromatin (Shumaker et al., 2003), the 

abnormalities seen in some of the cells in the present study are considered to be incipiently 

lethal. As shown for Araucaria angustifolia axes (Salmen Espindola et al., 1994), in recalcitrant 

embryos/axes such damage is unlikely to be repaired upon rehydration.  

 The undulating profiles of cell walls observed in some dehydrated A. belladonna and H. 

montanus specimens here, could have been induced by a reduction in cell volume (Wesley-

Smith et al., 2001a) and persisted after rehydration, possibly because cells of desiccation-

sensitive, unlike those of desiccation-tolerant seeds (Webb and Arnott, 1982), are not pre-

programmed to contract. Alteration of ER disposition following partial dehydration has been 

reported for recalcitrant embryonic axes (e.g. those of A. heterophyllus [Wesley-Smith et al., 

2001a]) and during maturation of orthodox seeds (e.g. mustard [Bergfeld and Schopfer, 1984]). 

The functional significance of the short profiles of ER observed within the cells of partially 

dehydrated embryos in this study is not yet known; however, in light of reports that the 

derangement of ER is associated with a cessation of growth (Bergfeld and Schopfer, 1984) and 

protein synthesis (Kandasamy and Kristen, 1989) in plant tissues, ER fragmentation during 
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dehydration of A. belladonna and H. montanus embryos may well have had the potential to pre-

condition them adversely, when exposed to cryogenic conditions. 

 Another striking feature of partially dried A. belladonna and H. montanus embryos was the 

significant increase in the number of vacuoles (V; which were clearly defined) and the 

proportion of the area occupied by these vacuoles, relative to fresh embryos (Figs 3.5a & e; 3.6b 

& f; 3.1A, B). The degree of this increase was greater at WC <0.4 g g-1 in A. belladonna (Fig. 

3.1A) and vacuoles within many of the cells belonging to this treatment were exceptionally 

large, dominating the intracellular space to such an extent that organelles were confined to a 

narrow strip of cytoplasm along the periphery of the cell (Fig. 3.6c). An increase in the degree 

of vacuolation in response to physical drying has been reported for tissues of axes from 

recalcitrant seeds of a variety of species (Berjak et al., 1989, 1990; 1999; Farrant et al., 1989; 

reviewed by Berjak and Pammenter, 2000; Mycock et al., 2000; Wesley-Smith et al., 2001a). 

Working on the recalcitrant embryonic axes of A. heterophyllus, Wesley-Smith et al. (2001a) 

suggested that drying increased solute concentration within vacuoles, rendering these 

compartments increasingly susceptible to osmotic expansion upon rehydration. Similar results 

have been reported for non-acclimated tubers of Jerusalem artichoke that had been subjected to 

freeze-dehydration (Murai and Yoshida, 1998).  Irrespective of the species or WC range, there 

was definite evidence of autophagy (AV; Figs 3.5a & g; 3.6b & d) and vacuolar fusion (black 

arrows; Figs 3.5a & e; 3.6b & d) within cells of non-CP+D embryos of both the species 

presently investigated. Vacuoles are critical to the maintenance of homeostasis within cells 

(Marty, 1999) and when partially dried, desiccation-sensitive cells are rehydrated, autophagy 

may provide a mechanism for the elimination of intracellular components that have been 

damaged during drying. Autophagy may thus represent a mechanism to re-establish cellular 

homeostasis in such cells (Berjak et al., 1989, 1990; Wesley-Smith et al., 2001a).  

 Responses of recalcitrant axis/embryo cells to dehydration stress are not manifested on an 

all-or-none basis (e.g. Salmen Espindola et al., 1994; Kioko et al., 2006). It has become 

apparent that cells - which may be near neighbours – show disparate responses, and apparently 

functional, highly organised cells may be contiguous with others which are extensively 

deteriorated (e.g. Berjak et al., 1999; Mycock et al., 2000). In the present study, ultrastructural 

integrity appeared to have been retained after dehydration (irrespective of the WC range) in 

some embryo cells of both species, as evidenced by: mitochondria (M; Figs 3.5b & e; 3.6a & d); 

cytomatrical polysomes (Figs 3.5b & f; 3.6b-insert & d); and Golgi bodies (Figs 3.5b & f; 3.6b 

& e). 

  However, H. montanus embryos were more sensitive to partial dehydration than were those 

of A. belladonna (Fig. 3.1A, B). Consistent with this, intracellular responses to partial 
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dehydration such as autophagy were more pronounced in H. montanus embryos (see Fig. 3.5g) 

and in contrast to the situation in A. belladonna cells (Fig. 3.5b), matrices within some 

mitochondria in H. montanus cells were translucent with the organelles, generally lacking 

internal structure (Fig. 3.5g). Poorly differentiated or deranged mitochondria are a sign of 

reduced respiratory competence (Farrant et al., 1992). These inter-species differences are 

suggested to be the consequence of H. montanus embryos requiring significantly longer drying 

times to reach comparable WCs and hence being exposed to a greater degree of dehydration 

stress. While embryos of A. belladonna could be dried to WCs of c. 0.42 and 0.32 g g-1 in 5 and 

15 min, respectively, H. montanus embryos took 240 and 300 min to reach c. 0.55 and  

0.34 g g-1, respectively (data not shown). In recalcitrant seed tissues, the effects of dehydration 

are based on two inter-related parameters, viz. intensity and duration, and when such tissues 

spend a longer period at intermediate WCs, the time for aqueous-based deleterious processes to 

occur is extended (Pammenter et al., 1998; reviewed by Pammenter and Berjak, 1999; Walters 

et al., 2001).  
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Figure 3.5 

Root meristem cells of non-cryoprotected A. belladonna [a-d] and H. montanus [e-g] zygotic 

embryos dried to >0.4 g g
-1 
are illustrated. a) whole cell showing essentially spherical nucleus 

with condensed heterochromatin, two nucleolar sites, signs of autophagy and vacuolar fusion, 

and cell wall having a slightly undulating  profile; b) Golgi bodies, mitochondria (one showing 

the central membranous formation) and abundant polysomes; c) plastids with starch grains; d) 

profiles of fragmented rough endoplasmic reticulum, vacuoles and regular cell wall; e) 

mitochondria showing central membranous formations, vacuole showing signs of autophagy 

and vacuolar fusion and large vesicles, and insert showing essentially spherical nucleus with 

condensed heterochromatin; f) regular cell wall, short (fragmented) profiles of rough 

endoplasmic reticulum, Golgi bodies,  and plastid with starch grains; g) signs of intensive 

autophagy and mitochondria with translucent matrices, generally lacking internal structure. 

N=nucleus; Nu=nucleolus; P=plastids; SG=starch grains; M=mitochondria; *=central 

membranous formations; rER=rough endoplasmic reticulum; V=vacuole; Ve=vesicles; 

Gb=Golgi bodies; CW=cell wall; black arrows=signs of vacuolar fusion; AV=signs of 

autophagy. Bar=100 µm for (a); 10 µm for (b, e & f); 20 µm for (c & d) and 5µm for (g). 
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Figure 3.6 

Root meristem cells of non-cryoprotected A. belladonna [a-c] and H. montanus [d-f] zygotic 

embryos dried to <0.4 g g-1 are illustrated. a) whole cell showing spherical nucleus with 

condensed heterochromatin, mitochondria, cell wall having markedly undulating  profile, and 

insert showing plastids with starch grains; b) Golgi body, signs of vacuolar fusion, and short 

profiles of rough endoplasmic reticulum, and insert showing polysomes and mitochondria; c) 

highly vacuolated cell; d) signs of intensive autophagy and vacuolar fusion, plastids with large 

starch grains, and regular cell wall; e) short profiles of rough endoplasmic reticulum, Golgi 

body and vacuole; f) cell showing portion of irregular cell wall (top, left), and many relatively 

small vacuoles with considerable content suggested to be autophagically-derived. N=nucleus; 

P=plastids; SG=starch grains; M=mitochondria; *=central membranous formations; rER=rough 

endoplasmic reticulum; V=vacuole; Gb=Golgi body; CW=cell wall; black arrows=signs of 

vacuolar fusion; AV=signs of autophagy. Bar=50 µm for illustration (a); 20 µm for (a, b, f); 100 

µm for (c) and 10 µm for (b-insert, d, e). 
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Partial dehydration with prior cryoprotection 

Sucrose cryoprotection + partial dehydration (>0.4D-Suc and <0.4D-Suc) 

 There has been much conjecture about the role of sucrose, particularly in the desiccated 

state of seed tissues (Koster and Bryant, 2005; Halperin and Koster, 2006; reviewed by Berjak 

et al., 2007). Orthodox seeds accumulate sucrose and certain raffinose series oligosaccharides 

during maturation drying (Koster and Leopold, 1988; Leprince et al., 1993; Obendorf, 1997) 

and upon dehydration these constituents together with others, contribute towards a highly 

viscous, supersaturated solution known as a glass (Leopold et al., 1994). Intracellular glasses 

have been suggested to curtail molecular diffusion and so minimise the potential for, and extent 

of, unregulated metabolism in the dehydrated state of desiccation-tolerant material (reviewed by 

Pammenter and Berjak, 1999; Berjak and Pammenter, 2001, 2004; Hoekstra et al., 2001; 

Kermode and Finch-Savage, 2002; Alpert, 2006; Berjak, 2006; Lehner et al., 2006). However, 

when applied exogenously to hydrated/partially hydrated specimens, non-penetrating CPs like 

Suc are held not to enter the cytoplasm and may accumulate apoplastically, whereas penetrating 

cryoprotectants, like Gly, diffuse through the plasma membrane or perhaps enter cells via 

endocytotic vesicles (e.g. Fig. 3.3c) and equilibrate in the cytoplasm (Grout, 1995; Muldrew et 

al., 2004). Non-penetrating cryoprotectants such as Suc can also lose their cryoprotective effect 

at high concentrations, since they act by dehydrating cells before freezing and can inflict severe 

osmotic injury (Finkle et al., 1985; Muldrew et al., 2004).  

 In light of the above, the injurious effects of non-penetrative CP (osmotic) and physical 

(flash drying) dehydration may have been additive in this study since viabilities for Suc CP+D 

embryos were significantly lower than those associated with non-CP embryos dehydrated to 

comparable WCs (Fig. 3.1A, B). In fact, when partial dehydration was preceded by CP post-

drying viabilities for both species were significantly lower in Suc CP embryos (Fig. 3.1A, B).  

This was true for WCs greater (0.41 and 0.50 g g
-1
 for A. belladonna and H. montanus, 

respectively) and less than (0.29 and 0.30 g g-1 for A. belladonna and H. montanus, respectively) 

0.4 g g
-1
. Within each WC range, for both species, root meristem cells of some of the Suc CP+D 

embryos appeared well organised with normally-distributed organelles (Fig. 3.7a, b, c & g, i) 

and indications of ongoing active metabolism in terms of  polysomes and Golgi bodies (Gb) 

(Fig. 3.7b & g); plastids (P) (Fig. 3.7a & h); rough endoplasmic reticulum (rER; Fig. 3.7b & g, 

h); and mitochondria (M; Fig. 3.7a, b & h). Nevertheless, a few cells in some of these embryos 

showed wall abnormality (Figs 3.7a, b), or incipient and complete autolysis (Fig. 3.7h, k). 

Additionally, all cells in the remaining specimens (one to two of five) were autolysed in both 

species (Fig. 3.7f & l). 
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 However, even when cells were not autolysed, Suc CP+D was associated with a number of 

ultrastructural irregularities: short profiles of rER (Fig. 3.5b & g); cell walls having an irregular 

profile (Fig. 3.7e & h) and some showing middle lamella separation (Figs 3.7a, b); spherical 

nuclei (N) with highly condensed heterochromatin (Fig. 3.5a-insert & g-insert);  plastids, largely 

devoid of starch grains (Fig. 3.7a & h), and some having abnormal attentuated or lobed profiles 

(Fig. 3.7a & d). Autolysing and autolysed cells, referred to above (white arrows), were scattered 

amongst others which were ultrastructurally intact (Fig. 3.7e, h & k). Aberrant nuclear profiles, 

condensation of the chromatin (e.g. Berjak et al., 1999; Wesley-Smith et al., 2001a; Kioko et 

al., 2006), and abnormal ER disposition (Wesley-Smith et al., 2001a) have all been cited as 

signs of desiccation injury in seed tissues, while sparse starch deposition within plastids attests 

to a reduced metabolic state (Berjak and Pammenter, 2000). Enhanced autophagy (AV; Fig 3.7a 

& g) was observed within cells of Suc CP+D embryos of both species and, as discussed for non-

CP+D embryos, this could represent a mechanism for the re-establishment of cellular 

homeostasis (Berjak et al., 1989, 1990; Wesley-Smith et al., 2001a). Additionally, as in the cells 

of non-CP+D embryos, cells of Suc CP+D embryos of both species showed a significant 

increase in the proportion of area occupied by vacuoles (which were clearly defined), but this 

was not associated with an increase in the number of vacuoles, relative to cells of fresh embryos 

(Figs 3.1A, B; 3.7a, e & g, k). Dehydration generally leads to an increase in the degree of 

vacuolation in tissues of axes from recalcitrant seeds (e.g. Berjak et al., 1989, 1990; 1999; 

Farrant et al., 1989; Mycock et al., 2000; Wesley-Smith et al., 2001a). Also, non-penetrating 

cryoprotectants, like Suc, act by dehydrating cells before freezing (Muldrew et al., 2004), and in 

the present study autolytic breakdown products and osmotic dehydration accompanying this CP, 

could have acted synergistically with physical dehydration to increase solute concentration 

within vacuoles, rendering them more sensitive to osmotic expansion upon rehydration during 

in vitro recovery.  

In terms of survival between the species, H. montanus embryos were more adversely 

affected than were those of A. belladonna after Suc CP+D (Fig. 3.1A, B). Ultrastructural 

observations were consistent with this; for instance, while autolysed cells occurred amongst 

others which were ultrastructurally intact only at <0.4 g g
-1
, in A. belladonna (Fig. 3.7e), they 

were a common feature at both WC ranges in H. montanus (Fig. 3.7h & k). Also, while some 

vacuoles within the cells of Suc CP+D embryos of both species showed signs of autophagically-

derived content, only cells of H. montanus Suc CP+D embryos showed relatively amorphous 

areas of cytomatrix that appeared to be being sequestered by rER (black arrows; Fig. 3.7j). This 

is suggestive of de novo vacuolation via the cytolysome route (Lamb and Berjak, 1981), which 

is a common response to stress in plant cells (reviewed by Staehelin, 1997). These inter-species 
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differences are suggested to be the consequence of the longer drying times to which H. 

montanus embryos were exposed and reinforce the suggestion that the deleterious effects of 

Suc-CP and physical dehydration may have been additive in the embryos presently studied.  
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Figure 3.7 

Root meristem cells of sucrose cryoprotected A. belladonna [a-f] and H. montanus [g-l] zygotic 

embryos dried to >0.4 g g
-1
 [a, b & g, h] and <0.4 g g

-1
 [c-f & i-l] are illustrated. a) vacuole, 

attenuated plastid, mitochondria, cell wall with middle lamella separation, signs of autophagy; 

insert showing spherical nucleus with highly condensed chromatin and nucleoli; b) polysomes, 

short rough endoplasmic reticulum profile, Golgi bodies, and mitochondria; g) vacuole, 

polysomes, short fragments of rough endoplasmic reticulum, Golgi body, signs of autophagy; 

insert showing spherical nucleus with nucleolus and condensed chromatin; h) irregular cell wall, 

lysed cell (white arrowhead), mitochondria and plastid. c) cylindrical plastid, surrounding 

cytomatrical material, and regular cell wall; d) abnormally, lobed plastid with small, dark starch 

grains; e) vacuole within ultrastructurally intact cell showing irregular cell wall, adjacent to 

deteriorating (autolysed) cell (lower left); f) autolysed cells; i) regular cell walls; j) early signs 

of cytolysome formation (long circularly-disposed profiles of rough endoplasmic reticulum to 

right of autophagic vacuole); k) Vacuole within ultrastructurally intact cell adjacent to 

deteriorating cell (middle); l) autolysed cells.  N=nucleus; Nu=nucleolus; P=plastids; SG=starch 

grains; M=mitochondria; rER=rough endoplasmic reticulum; V=vacuole; Gb=Golgi body; 

CW=cell wall; AV=signs of autophagy; black arrows=signs of cytolysome formation; white 

arrowheads=lysed cell. Bar=1 µm for (a, f, k); 0.5 µm for (b, c, d, e); 10 µm for (g, h, j); 20 µm 

for (i, l); and 50 µm for (a-insert, g-insert). 
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Glycerol  cryoprotection + partial dehydration (>0.4D-Gly and <0.4D-Gly) 

 Though, not as severe, Gly (penetrating) like Suc (non-penetrating) CP, led to dehydration 

of the embryos of both species (discussed earlier). When this was followed by flash drying 

viabilities were either marginally higher than (as in >0.4D-Gly: 0.44 and 0.53 g g-1 for A. 

belladonna and H. montanus, respectively) or similar to (as in <0.4D-Gly: 0.32 and 0.33 g g
-1
 

for A. belladonna and H. montanus, respectively) those associated with non-CP+D embryos, at 

comparable WCs. Further to this, within species, viabilities after Gly CP+D were always higher 

than those following Suc CP+D, at comparable WCs (Fig. 3.1A, B).  

One of the essential attributes of the colligative theory of cryoprotection is that the relevant 

cryoprotectants must be able to penetrate the cell, otherwise they will cause osmotic 

dehydration, resulting in the very injury against which they are employed to prevent (Benson, 

2008). The superiority of Gly over Suc cryoprotection in limiting post-drying ultrastructural 

damage and viability loss of the species presently studied, may have been the outcome of a 

combination of factors: glycerol penetrates cells (Polge et al., 1949) and may confer protection 

on internal organelles (reviewed by Fuller, 2004) as well as on the plasmalemma during 

dehydration; glycerol acts as a solvent for electrolytes that accumulate in the cytoplasm when 

water is removed (Finkle et al., 1985; Muldrew et al., 2004), limiting injury otherwise resulting 

from high solute concentrations (Popova and Busheva, 2001); and glycerol may confer 

biochemical protection, mainly by scavenging harmful free-radicals (Polge et al., 1949; 

Smirnoff and Cumbes, 1989; reviewed by Benson and Bremner, 2004).  

Ultrastructural observations provided evidence for the basis of the superior post-drying 

viability retention in Gly CP embryos. Gly CP+D cells across all the specimens sampled for 

both species (five at each WC range) showed retention of regular cell walls with contiguous 

plasmalemmae; normally-distributed organelles (Fig. 3.8a, d & e, f); and an absence of lysed 

cells. The features of cells were indicative of ongoing active metabolism (e.g. cytomatrical 

polysomes and Golgi bodies [Fig. 3.8b & f]) and, in contrast to the situation in Suc CP+D 

embryos, nuclei showed well dispersed (but somewhat condensed) heterochromatin (Fig. 3.8a & 

h), small plastids having regular morphology and containing some starch grains (Fig. 3.8b, c, d-

insert & f), and an absence of fragmented profiles of rER (Fig. 3.8b, d & e, f). Some Gly CP+D 

H. montanus cells also showed very long profiles of rER arranged in parallel ranks (Fig. 3.8e, f) 

which is generally taken to be indicative of active membrane synthesis (Novikoff, 1976; Berjak 

and Pammenter, 2000). 

 Irrespective of the WC range or species, vacuoles within cells of Gly CP+D embryos were 

clearly defined (Fig. 3.8a, d & e, h) and often showed signs of what probably was 

autophagically-derived content (Fig. 3.8d & e), which may indicate that some structures were 
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damaged during dehydration and subsequently removed autophagically (with reference to the 

work of Berjak et al., 1989, 1990 and Wesley-Smith et al., 2001a).  

As in the Suc CP+D treatments, viability loss was more severe (Fig. 3.1A, B) after Gly 

CP+D in H. montanus specimens with occasional cells/small groups of cells appearing 

ultrastructurally compromised. As an example, Fig. 3.7g shows neighbouring cells in which the 

nuclear matrices are dense, while the cytomatrix shows a ‘cleared’ appearance suggestive of a 

diminution of the occurrence of polysomes (indicative of reduced protein synthesis [e.g. Farrant 

et al., 1985]), and perhaps incipient loss of cytomatrical organisation.  

Some cells of Gly CP+D H. montanus embryos also showed long profiles of rER arranged 

peripherally in parallel ranks, adjacent to vacuoles (white arrowheads; Fig. 3.8e, f). This is a 

common response to stress in plant cells and is regarded as indirect evidence for the synthesis of 

vacuolar membrane (and lytic enzymes) from specialised ER membranes (reviewed by 

Staehelin, 1997). Additionally, the peripheral location of profiles of rER could be a consequence 

of the functional role this system plays in vesicle-mediated secretion and/or membrane recycling 

(Craig and Staehelin, 1988). 

In A. belladonna, the proportion of the cell occupied by vacuoles in > and <0.4D-Gly 

embryos was essentially similar to cells of fresh specimens; however, in cells of > and <0.4D-

Gly H. montanus embryos, this parameter was higher than that in cells of fresh specimens (Fig. 

3.1A, B; also see Fig. 3.8h). These data suggest that penetrative cryoprotectants like Gly may 

limit the degree of post-drying vacuolation in recalcitrant seed tissues, but that this may be 

negated by protracted drying times.  
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Figure 3.8 

Root meristematic cells of glycerol cryoprotected A. belladonna [a-d] and H. montanus [e-h] 

zygotic embryos dried to >0.4 g g
-1
 [a, b, c & e, f] and <0.4 g g

-1
 [d & g, h] are illustrated. a) 

whole cell showing centrally positioned, spherical nucleus with dispersed, somewhat condensed 

chromatin, vacuoles with inclusions, and regular cell walls; b) profiles of rough endoplasmic 

reticulum and plastid; c) mitochondrion, plastid, Golgi body and polysomes (noting the darker 

aspect of the cell above); e) evidence of autophagy, regular cell walls, parallel ranks of rough 

endoplasmic reticulum, peripherally located and adjacent to vacuole; f) mitochondria, plastids 

with starch grains, Golgi bodies, polysomes and parallel, peripheral ranks of rough endoplasmic 

reticulum adjacent to vacuole. d) rough endoplasmic reticulum, regular cell wall, signs of 

autophagy; insert showing mitochondrion and plastids with dense starch grains; g) nuclei with 

denser matrices than in control material (see Fig. 3.2e) and organelles scattered in relatively 

amorphous cytoplasm which had a ‘cleared’ appearance; h) whole cell showing centrally 

positioned, spherical nucleus with dispersed chromatin and vacuoles with inclusions. 

N=nucleus; P=plastids; SG=starch grains; M=mitochondria; rER=rough endoplasmic reticulum; 

V=vacuole; Gb=Golgi body; CW=cell wall; AV=signs of autophagy. Bar=50 µm for (a); 20 µm 

for (b, c, d, d-insert, e, g, h); and 10 µm for (f). 
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Exposure to cryogenic temperatures and subsequent thawing 

The extent of ultrastructural deformation exhibited by cryopreserved zygotic embryo cells 

often makes it difficult to account for the survival obtained but germination is believed to be 

more likely when cells in the primary meristem retain their capacity to divide following 

recovery from cryostorage (Wesley-Smith, 2003). In this regard, survival of even a small 

number of suitably located meristematic cells can subsequently result in organised growth (e.g. 

Sussex, 1952; Pritchard and Prendergast, 1986; Wilkinson et al., 2003; Kaczmarczyk et al., 

2008). In cryopreserved plant cells, e.g. those of potato shoot tips, ultrastructural changes 

became apparent within 1 h after re-warming but the totality of cell death was evident only days 

later (Kaczmarczyk et al., 2008). Wesley-Smith (2003) proposed that recovery of cryopreserved 

recalcitrant embryos/axes in vitro can be assumed to progress at three levels, viz. the ability of 

individual cells to repair damage, the recovery of a critical number of cells to allow function 

within each tissue, and the ability of tissues to resume interactions that facilitate growth and 

development.  

 

Cooling of fully hydrated (Fresh-rapid and Fresh-slow), cryoprotected (Suc-rapid and Suc-slow; 

Gly-rapid and Gly-slow) and flash-dried (>0.4D-rapid and >0.4D-slow; <0.4D-rapid and <0.4D-

slow) material 

In the present study, almost without exception, zygotic embryos (of both species) that  were 

cooled after cryoprotection but not flash-dried, or flash-dried without cryoprotection, generally 

did not survive cryogenic cooling, irrespective of whether this was at slow or rapid rates (Fig. 

3.1A, B). Similarly, no survival was obtained when fresh embryos were exposed to cryogenic 

temperatures (Fig. 3.1A, B). Embryos from these treatments displayed total sub-cellular 

destruction: the cytoplasm showed typical signs of extraction, indicating rupture of the 

plasmalemma (Fig. 3.9 a-d & e-g). Nucleoli (Nu) from disintegrated nuclei generally persisted 

among the débris (Fig. 3.9d & g), besides which nothing could be discerned other than starch 

grains (SG; 3.9c & e). Of the numerous explanations of freezing injury, damage to sub-cellular 

compartments and to the plasmalemma appear to be most relevant in the current observations 

(e.g. Mazur, 1966; Sherman and Kim, 1967; Fujikawa, 1980; Mazur, 1984; Chandel et al., 

1995; Steponkus, 1984; Berjak et al., 1999; Acker and McGann, 2001; Perán et al., 2006; 

Kaczmarczyk et al., 2008).  

Physical damage to cellular compartments during freezing and upon recovery from 

cryostorage can destroy the ordered partitioning of ions, macromolecules and enzymes across 

selectively permeable membranes, but while all cellular compartments are presumably equally 

important to survival, some of these may survive freezing to a better extent than others (Wesley-

GGGbbb   
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Smith, 2003). Further to this, all individuals of a particular organelle type, or cells within the 

same tissue, may not be similarly affected (Grout and Henshaw, 1980; Fukai, 1995; Wesley-

Smith, 2003; Wilkinson et al., 2003). For instance, in one of five Suc-slow H. montanus 

embryos sampled here, some cells (c. <5%) displayed intact, but irregular, cell walls (CW) with 

contiguous plasmalemmae and large autophagic vacuoles (Fig. 3.9h), while the remaining cells 

were lysed. This may explain the 10% post-thaw viability observed in this treatment for H. 

montanus (Fig. 3.1B). The limited number of apparently intact cells did not allow for a 

statistically robust estimation of the degree of vacuolation but Suc-slow H. montanus cells with 

intact plasmalemmae generally showed 1-2 very large vacuoles that dominated the intracellular 

space. Despite the 10% post-thaw viability observed in >0.4D-slow for both species, all cells, 

within all (five) of the other specimens sampled for this treatment showed total sub-cellular 

destruction (Fig. 3.9c & g). 

The results described above are in agreement with other studies (e.g. Pence, 1990; Sershen 

et al., 2007) which have shown that zygotic germplasm from recalcitrant seeds rarely survive 

freezing at WCs as high as those associated with fully hydrated and undried+CP embryos in this 

study (1.49-4.77 g g-1). It is now well established that removal of most freezable water is 

necessary to reduce the damage caused to the cells by ice formation during freezing and thawing 

(Grout and Henshaw, 1980; Wesley-Smith et al., 1992; Benson, 1999). However, while the 

upper limit of the ‘optimal hydration window’ in recalcitrant zygotic germplasm is constrained 

by freezing injury due to intracellular ice formation at relatively high WCs, its lower limit may 

be constrained by desiccation sensitivity of the tissues (Becwar et al., 1983; Pritchard and 

Prendergast, 1986; Pence, 1992; Wesley-Smith et al., 1992; Sun, 1999). In this regard, results 

obtained here and elsewhere suggest that excessive partial dehydration can disrupt intracellular 

and intranuclear spatial organisation and induce an abnormally high degree of vacuolation (e.g. 

Figs 3.5 & 3.6)  (Berjak et al., 1989, 1990, 1999; Mycock et al., 2000; Wesley-Smith et al., 

2001a; Kioko et al., 2006). Such damage may be exacerbated by freezing (Berjak et al., 1999; 

Mycock, 1999) and probably precluded the successful cryopreservation of non-CP+D embryos 

in this study.  
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Figure 3.9 

Root meristem cells of non-cryoprotected and undried treatments that resulted in little, or no, 

post-thaw viability for A. belladonna [a-d] and H. montanus [e-h] zygotic embryos are 

illustrated. a) <0.4D-slow: lysed cell; b) Suc-rapid: lysed cells; c) <0.4D-slow: starch grains 

amongst cellular débris; d) Gly-rapid: disintegrated nucleolus within plasmolysed cell; e) 

<0.4D-rapid: starch grains amongst cellular débris; f) >0.4D-rapid: lysed cells; g) Gly-rapid: 

nucleolus from disintegrated nucleus within completely deteriorated cell; h) Suc-slow: one of 

the isolated cells that showed some cytomatrical organisation, irregular cell walls and 

indications of possible autophagy. SG=starch grains; Nu=nucleolus; CW=cell wall; AV=signs 

of autophagy. Bar=50 µm for (a, c); 200µm for (b); 100µm for (d, g); 5 µm for (e, f); 2 µm for 

(h). 
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Cooling after cryoprotection + flash drying (>0.4D-Suc-rapid and >0.4D-Suc-slow; <0.4D-Suc-

rapid and <0.4D-Suc-slow; >0.4D-Gly-rapid and >0.4D-Gly-slow; <0.4D-Gly-rapid and <0.4D-
Gly-slow) 

 

a) Treatments that resulted in low post-thaw viability retention. 

Of the five CP+D treatments that enabled post-thaw viability retention for some H. 

montanus embryos, two involved Suc CP+D embryos (namely, < and >0.4D-Suc-rapid) and 

resulted in 10-20% viability retention while three involving Gly CP+D embryos (namely, 

>0.4D-Gly-slow, <0.4D-Gly-rapid and >0.4D-Gly-rapid) yielded post-thaw viabilities of  20-

50% (Fig. 3.1B).  Several cryoprotectant treatments have been applied to recalcitrant zygotic 

germplasm (alone and in combination with dehydration) with variable success (e.g. de Boucaud 

et al., 1991, 1996; Pence, 1991; Assy-Bah and Engelmann, 1992a & b; Kioko et al., 1998; 

Thammasiri, 1999; Walters et al., 2002a; Sershen et al. 2007). The results obtained here lend 

support to other suggestions that cryoprotection can improve post-thaw survival in zygotic 

germplasm of non-orthodox-seeded species (Engelmann, 1997; Walters et al., 2002a; Normah 

and Makeen, 2008; Walters et al. 2008).  

However, cryoprotection and prolonged periods of dehydration, though not lethal in 

themselves, can act synergistically and lethally with freezing stress (Berjak et al., 1999; 

Mycock, 1999; Wilkinson et al., 2003). In the present study, Suc CP+D was accompanied by a 

considerable degree of vacuolation and ultrastructural perturbation (see Fig. 3.7), and when 

followed by freezing and subsequent thawing, just one of the five Suc CP+D-rapid H. montanus 

embryos sampled (at each WC range) showed a few non-lysed cells having some evidence of 

cytomatrical organisation (Fig. 3.10a, b). Organelles could be discerned within the cytomatrix of 

non-lysed Suc CP+D-rapid H. montanus cells but nuclei (N) (presumably out of the plane of the 
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section), rough endoplasmic reticulum (rER) and Golgi bodies (Gb) were not visualised (Fig. 

3.10a, b). These cells were also highly vacuolated (V) (Fig. 3.10a, b), with the proportion of the 

area occupied by vacuoles being the highest across all treatments (Fig. 3.1B). All cells in the 

remaining four Suc CP+D-rapid H. montanus specimens (Fig. 3.10d), and all Suc CP+D+slowly 

cooled H. montanus and Suc CP+D+cooled (slow and rapid) A. belladonna specimens, were 

lysed. Loss of sub-cellular organisation and organellar integrity is often observed during in vitro 

recovery of recalcitrant zygotic germplasm retrieved from cryostorage (e.g. Berjak et al., 1999; 

Perán et al., 2006) while increased vacuolar sensitivity to osmotic expansion is a common post-

drying (e.g. Wesley-Smith et al., 2001a) and post-freezing (e.g. Murai and Yoshida, 1998) 

response in plant tissues (probably due to increased vacuolar solute concentrations). Suc CP+D-

rapid H. montanus embryos also showed considerable evidence of autophagy (AV; Fig. 3.10b), 

which if operationally effective,  may have provided a mechanism for the removal of damaged 

structures and the re-establishment of cellular homeostasis (e.g. Berjak et al., 1989, 1990; 

Wesley-Smith et al., 2001a). 

Consistent with the 20% post-thaw viability recorded for >0.4D-Gly-slow and <0.4D-Gly-

rapid H. montanus embryos, a few of the specimens sampled from these treatments  (two of five 

for >0.4D-Gly-slow and one of five for <0.4D-Gly-rapid) showed a similar general 

ultrastructure to fresh embryos: irregularly shaped nuclei (N; Fig. 3.10e-insert) with well 

dispersed heterochromatin; regular cell walls (CW; Fig. 3.10e & h) with contiguous 

plasmalemmae (but portions of some of these cell walls were irregular [black arrows; Fig. 

3.10h]); and signs of ongoing active metabolism such as, long profiles of rER (Fig. 3.10e, f & g, 

h), mitochondria (Fig. 3.10e, f & g, h), Golgi bodies and plastids (Fig. 3.10g), and cytomatrical 

polysomes (Fig. 3.10f & g). The proportion of the area occupied by vacuoles within these cells 

was also not as high as in those of Suc CP+D-rapid embryos, while the number of vacuoles was 

relatively lower than fresh embryos (Fig. 3.1B). All that can be suggested at this stage, is that 

the vacuoles in cells of Suc CP+D embryos may fuse and contract during cooling and/or upon 

retrieval from cryostorage, so reducing their number and volume during in vitro recovery. There 

were also signs of autophagy within these cells (AV; Fig. 3.10e & g, h), possibly contributing to 

the re-establishment of cellular homeostasis (Berjak et al., 1989, 1990; Wesley-Smith et al., 

2001a). The cells within >0.4D-Gly-slow and <0.4D-Gly-rapid embryos that showed 

intracellular organisation were, however, frequently contiguous with lysed cells (white 

arrowheads; Fig. 3.10e, f & g). Also, all the cells in the remaining H. montanus >0.4D-Gly-slow 

and <0.4D-Gly-rapid specimens examined were extensively deteriorated (Fig. 3.10i), which is 

in keeping with viability loss of 80% of the embryos after retrieval from cryostorage (Fig. 

3.1B).   
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Figure 3.10 

Root meristem cells of treatments that resulted in low post-thaw viabilities for H. montanus 

zygotic embryos are illustrated. (a, b) >0.4D-Suc-rapid: a) highly vacuolated cells showing 

irregular cell walls; and b) large autophagic vacuole and irregular cell wall. (c, d) <0.4D-Suc-

rapid: c) highly vacuolated cell; and d) lysed cells. (e, f) >0.4D-Gly-slow: e) signs of autophagy, 

long scattered profiles of rough endoplasmic reticulum, cell wall with regular profile, 

mitochondria; note adjacent lysed cells; insert showing irregularly shaped nucleus with 

dispersed heterochromatin; and f) organised cell with long profiles of rough endoplasmic 

reticulum, mitochondria, polysomes and adjacent autolysed cell. (g, h, i) <0.4D-Gly-rapid: g) 

long profiles of rough endoplasmic reticulum, signs of autophagy, Golgi body, mitochondria, 

polysomes, plastids; note adjacent lysed cell (mid-left); h) signs of autophagy, long profiles of 

rough endoplasmic reticulum, mitochondria and irregular portion of cell wall (black arrows); 

and i) a region of extensively deteriorated cells. N=nucleus; M=mitochondria; rER=rough 

endoplasmic reticulum; V=vacuole; Gb=Golgi body; CW=cell wall; AV=signs of autophagy; 

white arrow heads=lysed cell. Bar=2 µm for (a, b, c, e, e-insert, f, i); 100 µm for (d); and 1 µm 

for (g, h). 
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 Of the four treatments that resulted in some post-thaw viability retention in A. belladonna, 

all involved Gly CP (Fig. 3.1A). Of these treatments viability was lowest (10%) when Gly CP 

embryos were rapidly cooled at WC >0.4 g g
-1
 and relatively higher (40%) when they were 

cooled slowly at WC <0.4 g g-1 (Fig. 3.1A). Cells within the majority of >0.4D-Gly-slow A. 

belladonna embryos were lysed (Fig. 3.11c) but cells within two of the embryos examined 

showed spherical nuclei with dispersed heterochromatin and signs of ongoing active metabolism 

evidenced by plastids with starch grains, long profiles of rER, mitochondria and Golgi bodies 

(Fig. 3.11a). Also, despite the high viability loss associated with >0.4D-Gly-slow A. belladonna 

embryos, in intact cells of >0.4D-Gly-slow A. belladonna embryos the proportion of the area 

occupied by vacuoles, as well as the number of vacuoles was comparable to that measured for 

cells within fresh embryos (Fig. 3.1A). However, cell walls were irregular (Fig. 3.11a), having a 

‘washed-out’ appearance. Additionally, vacuoles within these cells were poorly defined and 

showed signs of tonoplast dissolution (white arrowheads; Fig. 3.11a-insert). In one of the five 

>0.4D-Gly-rapid A. belladonna embryos sampled, some cells showed disintegrated organelles, 

no visible vacuoles, highly irregular cell walls and an abundance of starch grains within plastids 

aggregated around the nucleus, which is indicative of cytoskeletal collapse (Berjak et al., 1999) 

(Fig. 3.11b). All cells in the remaining four specimens for this treatment were lysed (not 

shown).  

 Consistent with the 40% post-thaw viability observed for <0.4D-Gly-slow A. belladonna 

embryos, two of the five embryos sampled for this treatment showed non-lysed cells, within 

which organelles could be discerned (Fig. 3.11d), but all cells in the remaining three specimens 

were lysed (not shown). Organelles that could be discerned within non-lysed <0.4D-Gly-slow A. 

belladonna cells included: plastids with starch grains; nuclei with condensed chromatin (Fig. 

3.11d); and long profiles of rER (Fig. 3.11e, e-insert). Apart from these signs of metabolic 

potential, the proportion of the area occupied by vacuoles in <0.4D-Gly-slow A. belladonna 

cells, as well as the number of vacuoles per cell, was comparable to fresh embryos (Fig. 3.1A). 

This was possibly a consequence of dehydration of A. belladonna embryos with prior Gly CP, 

which may have limited the extent of vacuolation, compared with dehydration after no, or after 

Suc CP (Fig. 31.A). These data also suggest that the degree of vacuolation is not the over-riding 

determinant of post-thaw survival, at least in A. belladonna zygotic embryos. 

 However, vacuoles within <0.4D-Gly-slow A. belladonna cells were poorly defined and 

some showed signs of localised tonoplast dissolution (white arrowheads; Fig. 3.12e). Other 

ultrastructural irregularities observed in <0.4D-Gly-slow A. belladonna cells included: irregular 

cell walls (Fig. 3.11d); spherical nuclei in some cells, within which chromatin was condensed 

(Fig. 3.12d); and the presence of lysed cells (Fig. 3.11f) amongst ultrastructurally intact ones. 
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Tonoplast dissolution, the signs of which were observed in cooled >0.4D-Gly and slowly cooled 

<0.4D-Gly A. belladonna embryos in this study, is a phenomenon that has been previously 

reported to occur in frozen-thawed recalcitrant embryonic axes (e.g. those of Acer saccharinum 

[Wesley-Smith, 2003]), and can be lethal, as shown in non-acclimated freeze-dried Jerusalem 

artichoke protoplasts (Murai and Yoshida, 1998). Tonoplast dissolution results in the leakage of 

vacuolar contents into the cytoplasm, which generally precedes autolysis. As at least a 

proportion of vacuoles are lytic compartments (Pitt and Stewart, 1981; reviewed by Marty, 

1999), leakage of hydrolytic enzymes normally sequestered within vacuoles is rapidly fatal to 

cells in which this occurs. Tonoplast dissolution is therefore generally regarded as the beginning 

of the end and the amorphous appearance of the cytomatrix in some <0.4D-Gly-slow (Fig. 

3.11e, e-insert) and >0.4D-Gly-rapid (Fig. 3.11b) A. belladonna cells, together with the 

perinuclear arrangement of plastids (Fig. 3.11b), essentially implies intracellular collapse. 
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Figure 3.11 

Root meristem cells of treatments that resulted in low post-thaw viabilities for A. belladonna 

zygotic embryos are illustrated. >0.4D-Gly-slow: a) irregular ‘washed-out’ cell wall, Golgi 

bodies, plastid with starch grain, a few profiles of rough endoplasmic reticulum, nucleus with 

relatively condensed chromatin, poorly defined vacuoles, and insert showing vacuoles with 

signs of tonoplast dissolution (white arrowheads). >0.4D-Gly-rapid: b) whole cell showing 

disintegrated organelles, except for distended plastids containing many starch grains in close 

proximity to the nucleus, relatively amorphous cytoplasm and  irregular cell walls; and c) 

extensively deteriorated cells. <0.4D-Gly-slow: d) whole cell showing spherical nucleus with 

condensed chromatin, discernible organelles and irregular, ‘washed-out’ cell wall; e) irregularly 

shaped lobe of nucleus, plastids with starch grains, and vacuole showing signs of tonoplast 

dissolution; e-insert) long profiles of rough endoplasmic reticulum, irregularly shaped nuclear 

lobe and plastids with starch grains; and f) lysed cell showing cellular débris and starch grains. 

N=nucleus; Nu=nucleolus; P=plastid; SG=starch grains; M=mitochondria; rER=rough 

endoplasmic reticulum; V=vacuole; Gb=Golgi body; CW=cell wall; white arrowheads=signs of 

tonoplast dissolution. Bar=20 µm for (a); 0.5 µm for (a-insert); 100 µm for (b, c); and 50 µm for 

(d, e, f). 
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b) Treatments that resulted in the best post-thaw viability retention. 

Post-thaw viability for H. montanus embryos was best (50%) when Gly CP embryos were 

rapidly cooled at WC >0.4 g g
-1 
(Fig. 3.1B).  The cells of three of five H. montanus embryos 

sampled for this treatment showed irregularly shaped nuclei (Fig. 3.12c), intact cell walls (Fig. 

3.12a, d) with contiguous plasmalemmae, and signs of intracellular organisation and organellar 

integrity (Fig. 3.12a, b, d, e). The metabolic potential of these cells was also evidenced by the 

presence of cytomatrical polysomes (Fig. 3.12b, e), long and shorter profiles of rER (Fig. 3.12a, 

b, e); plastids (Fig. 3.12a, b, e), some containing starch grains (Fig. 3.12e); mitochondria (Fig. 

3.12d); and Golgi bodies (Fig. 3.12a, e). There was also evidence of autophagic activity having 

occurred in >0.4D-Gly-rapid H. montanus cells (Fig. 3.12b, e). However, tonoplast dissolution 

was also seen in some otherwise highly organised cells (black arrow; Fig. 3.12d, e), which 

would have presumably led to autolysis as shown in Fig. 3.12f.  The proportion of the area 

occupied by vacuoles (Fig. 3.12a, b) within these cells was significantly greater than in cells of 

fresh material, but significantly lower than in all the other cooling treatments after which post-

thaw viability retention was observed for H. montanus (Fig. 3.1B).  

There is no doubt that Gly CP promoted post-thaw viability retention in partially dried H. 

montanus embryos, which was best when drying time (i.e. the duration of the dehydration 

stress) and the proportion of the area occupied by vacuoles were minimised, as in  >0.4D-Gly-

rapid H. montanus embryos (Fig. 3.1B). Dehydration damage can be exacerbated by freezing 

(Berjak et al., 1999; Mycock, 1999). In the present study Gly CP followed by flash drying may 

have rendered H. montanus cells less susceptible to vacuolation during the recovery phase 

following cryogen exposure by limiting the extent of post-drying vacuolation preceding 

freezing. As indicated above, however, some cells showed signs of tonoplast dissolution, 

probably indicative of freezing damage (Murai and Yoshida, 1998; Wesley-Smith, 2003). 

The endoplasmic reticulum plays a pivotal role during dehydration (e.g. Bergfeld and 

Schopfer, 1984; Wesley-Smith et al., 2001a) and the dynamic and varied response of this 

membrane system to stress has been highlighted by conformational changes that occur during 

equilibrium freezing in parenchyma cells of cold-acclimated mulberry (Fujikawa and Takabe, 

1996). The endoplasmic reticulum system is also involved in the formation of vacuoles via 

several routes (Matile and Moor, 1968; Lamb and Berjak, 1981; Staehelin, 1997; Berjak and 

Pammenter, 2000) and in stressed cells, these ER-derived lytic organelles are often observed to 

be involved in autophagy of cellular components – an event that has been suggested to be an 

important survival mechanism (reviewed by Staehelin, 1997; Marty, 1999). There was no direct 

evidence of vacuolation via ER vesiculation within the cells of >0.4D-Gly-rapid H. montanus 

embryos, but isolated cells within the >0.4D-Gly-rapid embryos showed long profiles of rER 
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arranged in parallel ranks adjacent to large vacuoles (Fig. 3.12a, b), which is a common 

response to stress in plant cells and is regarded as indirect evidence for the specialisation of ER 

membranes as vacuolar membranes (reviewed by Staehelin, 1997). Considering the present 

evidence for vacuolation via cytolysome formation (e.g. after Gly CP), the ranked ER could 

well represent a prelude to cytolysome formation, perhaps encompassing pre-existing vacuoles. 

As in the cells of fresh and Gly CP embryos, it was not possible to tell whether the 

plasmalemma-associated vesiculation observed in >0.4D-Gly-rapid H. montanus cells 

(encircled; Fig. 3.12d) were indicative of endo- or exocytosis; however, importation of 

substances from cotyledons is typical of germinating axes, making endocytosis the more 

probable phenomenon. As in all the H. montanus treatments in which post-thaw viability was 

recorded, some lysed cells were present amongst ultrastructurally intact ones in >0.4D-Gly-

rapid H. montanus embryos (white arrowheads; Fig. 3.12f). In contrast, in embryos 

representative of the 50% of non-survivors, all cells were lysed (not shown). 

 For A. belladonna, post-thaw viability was best (70%) when Gly CP embryos were rapidly 

cooled at WCs <0.4 g g
-1 
(Fig. 3.1A). Cells within four of the five specimens sampled for this 

treatment showed irregularly shaped lobed nuclei (Fig. 3.13a), intact cell walls with contiguous 

plasmalemmae, and clear signs of intracellular organisation and organellar integrity (Fig. 3.13a). 

The metabolic potential of these cells was evidenced by the presence of long profiles of rER 

(Fig. 3.13c, d), plastids containing many lightly-contrasted starch grains (Fig. 3.13c), 

cytomatrical polysomes (Fig. 3.13e), mitochondria and Golgi bodies (Fig. 3.13b). The 

proportion of the area occupied by vacuoles in cells of <0.4D-Gly-rapid embryos (Fig. 3.13a) 

was comparable with fresh embryos and the other Gly CP+D treatments in which relatively 

lower post-thaw viabilities were recorded, but the number of vacuoles per cell was significantly 

higher than fresh embryos (Fig. 3.1A). For A. belladonna embryos, Gly CP promoted post-thaw 

viability retention in partially dried embryos, which was maximised when embryo WC (i.e. 

potential for damaging ice-crystal formation) and the proportion of the area occupied by 

vacuoles were low, as in <0.4D-Gly-rapid (Fig. 3.1A).  

 Vacuoles in <0.4D-Gly-rapid A. belladonna cells showed signs of what could have been 

autophagically-derived content (Fig. 3.13b) but unlike the cells of >0.4D-Gly-rapid H. 

montanus embryos, tonoplast dissolution was rarely observed. This could have been the basis of 

the better post-thaw viability retention for A. belladonna than that for H. montanus (Fig. 3.1A, 

B) However, despite the relatively high post-thaw viability retention associated with <0.4D-

Gly-rapid A. belladonna embryos, cells within these embryos did show a number of 

ultrastructural irregularities: irregular (‘washed-out’) cell walls (Fig. 3.13c); amorphous areas of 

cytoplasm in some cells (black arrows; Fig. 3.13c, d), which suggest initiation of deterioration 
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in the cells concerned, perhaps presaging their lysis (although regional differentiation of the 

cytoplasm [Lamb and Berjak, 1981] cannot be precluded); the presence of a few (<5%) lysed 

cells (white arrowhead; Fig. 3.13f); and highly attenuated plastids in a few cells (Fig. 3.13e). 

Also, in one of the five <0.4D-Gly-rapid A. belladonna embryos sampled, all cells were lysed 

(not shown), which is in keeping with the 30% of non-surviving embryos (Fig. 3.1A). 
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Figure 3.12 

Root meristem cells following the treatment that resulted in the best post-thaw viability for H. 

montanus zygotic embryos, viz. >0.4D-Gly-rapid, are illustrated. a) cell wall with contiguous 

plasmalemma, cytomatrical polysomes, Golgi body, plastids with little starch apparent, 

vacuoles, long profiles of rough endoplasmic reticulum ranked adjacent to vacuole; b)  signs of 

autophagy, shortish (slightly distended) rough endoplasmic reticulum ranked near a large 

vacuole and plastid with plastoglobuli; c) irregularly shaped nuclear lobe with heterochromatin; 

d) mitochondria, irregular cell wall, vacuoles showing signs of tonoplast dissolution and 

apparent vesiculation of the plasmalemma (encircled); e) Golgi body, autophagic vacuoles 

showing signs of tonoplast dissolution, plastid with starch grain and short profiles of rough 

endoplasmic reticulum; and f) lysed cell flanked by ultrastructurally intact cells. N=nucleus; 

P=plastid; SG=starch grains; pg=plastoglobuli; M=mitochondria; rER=rough endoplasmic 

reticulum; V=vacuole; Gb=Golgi body; CW=cell wall; black arrows=signs of tonoplast 

dissolution; white arrowheads=plasmolysed cell. Bar=1 µm for (a, b, c, e, f); and 0.5 µm for (d). 
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Figure 3.13 

Root meristem cells following the treatment that resulted in the best post-thaw viability for A. 

belladonna zygotic embryos, viz.  <0.4D-Gly-rapid, are illustrated. a) whole cell showing intact 

cell wall with contiguous plasmalemma, vacuoles, irregularly shaped, lobed nucleus with 

heterochromatin, and normally-distributed organelles; (b) mitochondria, Golgi bodies and 

vacuoles showing what could be autophagically-derived, hydrolysed flocculent content;  (c) 

plastids containing many, lightly-contrasted starch grains,  irregular cell wall, long profiles of 

rough endoplasmic reticulum and regions of relatively non-granular cytomatrix (black arrows); 

note the ‘washed-out’ appearance of the wall between the two cells to the right; d) long profiles 

of rough endoplasmic reticulum and a relatively amorphous region of cytomatrix; e) highly 

attenuated plastid; and f) vacuole within ultrastructurally intact cell, adjacent to lysed cell (left). 

N=nucleus; P=plastid; SG=starch grains; M=mitochondria; rER=rough endoplasmic reticulum; 

V=vacuole; Gb=Golgi body; CW=cell wall; black arrows=signs of tonoplast dissolution; white 

arrowhead=lysed cell. Bar=1 µm for (a, b, c, e, f); and 0.5 µm for (d). 
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3.4 Concluding remarks 

The ultrastructural responses of recalcitrant A. belladonna and H. montanus zygotic 

embryos to cryoprotection, partial dehydration and thawing after cryogenic exposure were 

investigated. Untreated (fresh) embryos (of both species) exhibited 100% viability and 

ultrastructurally their cells showed a centrally positioned, irregularly shaped nucleus (with 

dispersed chromatin), regular cell walls with contiguous plasmalemmae, a few, small vacuoles, 

each with intact tonoplast, and signs of ongoing active metabolism, e.g. polysomes, Golgi 

bodies, mitochondria and rough endoplasmic reticulum. Some viability loss accompanied 

cryoprotection (CP), partial dehydration, thawing after cryogenic exposure, and combinations of 

these procedures for both species, being most severe after thawing. For both species, viability 

loss after pre-conditioning and upon thawing was generally accompanied by some degree of 

ultrastructural derangement, increased vacuolation, tonoplast dissolution, and/or total sub-

cellular destruction, in some or all cells. While Gly CP alleviated post-drying ultrastructural 

derangement and viability loss in both species, sucrose CP exacerbated these adverse effects of 

partial drying. For both species, freeze-thaw-induced ultrastructural irregularities were least 

conspicuous in rapidly cooled, Gly CP embryos, which also survived cryopreservation best.  

The better retention of viability  associated with Gly CP+D, as opposed to Suc CP+D, may 

be based on the penetrative ability of glycerol, which is held to bring about an increase in 

cytoplasmic viscosity but a decrease in the efflux of water from the cytoplasm during cooling 

(Polge et al., 1949; Benson, 2008), i.e. limiting freeze-dehydration. The cooling rate required to 

prevent the formation of ice-crystals and the mobility of water are closely related (Luyet et al., 

1962; Rall, 1987) and increasing intracellular cytoplasmic viscosity limits ice-crystallisation, 

and hence promotes post-thaw survival in recalcitrant embryonic axes (as shown for Poncirus 

trifoliata [Wesley-Smith et al., 2004a]). The ability of penetrating cryoprotectants to reduce the 

magnitude of freezing injury by lowering the freezing point of cell solution by increasing 

intracellular osmolality prior to freezing; decreasing the temperature at which ice nucleation 

occurs; and increasing the temperature at which water is transformed into glass, is well 

documented (Finkle et al., 1985; Bronshteyn and Steponkus, 1995; Gusta et al., 2004; Muldrew 

et al., 2004).  

However, the incidence of ultrastructural irregularities in Gly CP+D+cooled embryos, even 

within treatments in which post-thaw viability retention were relatively good, suggests a further 

factor: i.e. the protective benefits of Gly may also have been based on the limitation of 

metabolic lesions. In this regard, damage by dehydration (Pammenter et al., 2000; Roach et al., 

2008; Walters et al., 2002b, 2008) and freezing (Touchell and Walters, 2000; Dussert et al., 

2003; Normah and Makeen, 2008; Varghese and Naithani, 2008; Pammenter et al., 2010) in 
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recalcitrant seed tissues is thought to be largely free-radical-mediated. Radioprotectants like Gly 

have been suggested to confer biochemical protection during cryopreservation, mainly by 

scavenging harmful free-radicals (Polge et al., 1949; Smirnoff and Cumbes, 1989; Benson and 

Bremner, 2004). The possibility that Gly CP promoted post-thaw viability retention in partially 

dried A. belladonna and H. montanus embryos, at least partly, by alleviating the oxidative stress 

associated with cryopreservation, is explored in studies described in Chapter 4. 

Even though dehydration and cryoprotection may facilitate successful cryopreservation of 

plant germplasm, post-thaw survival is critically related to the rate of cooling (Meryman and 

William, 1985; Wesley-Smith 2001b, 2004a; reviewed by Walters et al., 2008).  During cooling 

at ≥100°C min
-1
, exosmosis is likely to occur at a rate much slower than the rate of formation of 

extracellular ice-crystals.  As a consequence, the cytoplasm becomes increasingly supercooled, 

pre-disposing the cells to intracellular ice-crystal formation and hence the potential for 

mechanical shearing of cell membranes (Acker and Croteau, 2004). However, if samples are 

cooled at rates of ≥1000°C min-1, the ice-crystals that form may be very small and therefore 

relatively innocuous (Muldrew et al., 2004). Rapid cooling rates have been reported to hinder 

ice nucleation in hydrated seed tissues (Wesley-Smith et al., 1992, 2004b; reviewed by Walters 

et al., 2008) facilitating successful cryopreservation of the zygotic germplasm of a number of 

recalcitrant-seeded woody dicot species at relatively high WCs (e.g. Camellia sinensis [Wesley-

Smith et al., 1992]; Aesculus hippocastanum [Wesley-Smith et al. 2001b]; Quercus suber and 

Quercus ilex [González-Benito et al., 2002]; Poncirus trifoliata [Wesley-Smith et al., 2004a]; 

Ekebergia capensis [Perán et al., 2006]). The rapid non-equilibrium cooling method employed 

here facilitated cooling rates that permitted the maintenance of ultrastructural integrity in a 

sufficient number of cells to account for the high post-thaw viabilities observed in >0.4D-Gly-

rapid H. montanus and <0.4D-Gly-rapid A. belladonna embryos.  

The relatively poorer retention of post-thaw cytomatrical organisation, organellar integrity 

and viability in slowly cooled Gly CP+D embryos in this study may be related to the fact that 

while slow cooling rates encourage the formation of a few, large extracellular ice-crystals 

(Mazur, 1990; Kartha and Engelmann, 1994), the freeze-induced dehydration associated with 

slow cooling can be too intense. Such freeze-dehydration could give rise to a variety of 

deleterious effects, viz. solute toxicity, osmotic contraction and plasmolysis, and even cell lysis 

(Mazur, 1990; Pritchard et al., 1995; Muldrew et al., 2004). In fact, there are suggestions that 

while slow cooling methods may retain the integrity of individual cells, they may be less 

efficient at retaining the tissue integrity necessary for the survival of complex tissues (e.g. 

meristems and embryos [Panis and Lambardi, 2006]).  
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It is difficult to separate the effects of cooling rate and WC on axis/embryo survival 

following non-equilibrium cooling, since these variables are co-dependent (Wesley-Smith et al., 

2004a). In general though, with increasing hydration the greater mobility of water demands that 

the axes/embryos be cooled correspondingly faster, if lethal ice-crystallisation is to be avoided 

(Wesley-Smith et al., 1992, 2001b). This suggests that more rapid cooling rates may have 

allowed for the improved retention of ultrastructural integrity and associated viability in >0.4D-

Gly A. belladonna and H. montanus embryos. Slow cooling can lead to intracellular ice-

crystallisation at higher WCs (Franks, 1985), and is therefore most successful when explants are 

dehydrated to (or close to) non-freezable WCs (e.g. González-Benito et al. 2002). However, it is 

only at WCs ≤0.2 g g
-1
 that all the water within recalcitrant seed tissue is believed to be non-

freezable (Pritchard and Prendergast, 1986; Pammenter et al., 1991; Berjak et al., 1993) and 

embryos/axes of recalcitrant seeds will seldom survive dehydration below this level, at least in 

terms of organised growth (Pammenter et al., 1993). Amaryllis belladonna and H. montanus 

embryos in this study were subjected to slow cooling at WCs considerably higher than 0.2 g g
-1
, 

which may explain the greater degree of ultrastructural damage and lower post-thaw viability 

retention associated with slowly cooled specimens of both species, even after Gly CP and flash 

drying.  

In summary, the results obtained here complement those described in Chapter 2, in showing 

that intracellular and apoplastic damage, induced at each stage of the cryopreservation protocol 

may be compounded, thus pre-disposing tissues to further damage and ultimately viability loss 

with each progressive step. Cryoprotection and dehydration increased the chances of post-thaw 

survival in these amaryllid embryos but the practical benefits appear to have been realised only 

when damage to the cells was minimised. For both species this was best achieved when: (a) pre-

conditioning involved the combination of cryoprotection and partial dehydration; (b) the 

cryoprotectant was penetrating (glycerol), as opposed to non-penetrating (sucrose); and (c) 

embryos were rapidly cooled at WCs that minimised dehydration and freezing damage.   

The loss of cytomatrical organisation, organellar integrity and/or simply the induction and 

retention of certain ultrastructural irregularities within the meristematic cells of recalcitrant 

embryos/axes during processing for cryopreservation may underlie the abnormal growth often 

recorded after retrieval of cryopreserved recalcitrant zygotic germplasm from cryogenic 

conditions (e.g. Pence, 1992; Dumet et al., 1997; Sershen et al., 2007; Steinmacher et al., 2007). 

Results of studies reported in Chapter 2 (see section 2.3) showed seedlings recovered from 

cryopreserved embryos of A. belladonna and H. montanus to be less vigorous than those from 

fresh embryos. The potential consequences of the ultrastructural damage and irregularities 

induced within the meristematic cells of recalcitrant A. belladonna and H. montanus embryos 
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during cryopreservation, on subsequent ex vitro seedling growth, are reported in Chapters 5 and 

6. 
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CHAPTER FOUR: 

Ability of Amaryllis belladonna and Haemanthus montanus zygotic 

embryos to tolerate cryopreservation in relation to oxidative stress 

 

Abstract 

Oxidative stress is a major component of cryoinjury in plant tissues. The present study 

investigated the ability of Amaryllis belladonna (L.) and Haemanthus montanus (Baker) 

zygotic embryos to tolerate the various components of cryopreservation (i.e. short-term 

hydrated storage; cryoprotection [CP]; partial dehydration [D]; and freeze-thawing) as 

related to changes in extracellular superoxide (
.
O2

-
) production and lipid peroxidation. The 

study also investigated whether glycerol (Gly) CP promoted post-thaw viability retention in H. 

montanus and A. belladonna embryos by protecting enzymic antioxidant activities. Short-term 

hydrated storage of whole seeds was accompanied by.O2
- production and lipid peroxidation but 

.O2
- levels were lower than D and cooled embryos and viability was 100%, possibly associated 

with the high activities of certain antioxidant enzymes. Partial dehydration and CP (in H. 

montanus only) increased 
.
O2

- 
production (especially in CP+D embryos) and was associated 

with some viability loss, but this was not correlated with enhanced lipid peroxidation. Partial 

dehydration was always accompanied by some viability loss but this was not correlated with 

enhanced lipid peroxidation. Enzymic antioxidant activities often declined relative to fresh 

embryos after D but this decline was consistently less severe in Gly CP, as opposed to non-CP, 

embryos. Post-drying activities of certain antioxidant enzymes were even enhanced relative to 

fresh embryos in some Gly CP+D treatments. Cooling generally led to the greatest increase in 

.O2
- production, and decline in viability.  Post-thaw lipid peroxidation levels were generally 

higher than fresh and pre-conditioned embryos, but in A. belladonna only. Partial dehydration 

and cooling decreased enzymic antioxidant activities but this decrease was consistently less 

severe in Gly CP+D, as opposed to non-CP+D, embryos. Oxidative stress was a major 

component of cryoinjury in the embryos investigated here. Post-thaw viability retention in Gly 

CP+D embryos was significantly higher than non-CP+D embryos, possibly associated with the 

relatively lower post-drying lipid peroxidation levels and relatively higher post-drying and post-

thawing enzymic antioxidant activities in the former. Pre-conditioning treatments, such as Gly 

CP, may enhance post-thaw viability in recalcitrant zygotic embryos by providing/protecting 

ROS scavenging agents during pre-conditioning for, and after retrieval from, cryostorage. 

 

4.1 Introduction 

While there is some understanding of the physical factors (e.g. ice formation and intracellular 

dehydration) associated with freezing sensitivity of recalcitrant seeds (see Wesley-Smith et al., 
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1992, 2001, 2004; Walters et al., 2008), there is a paucity of information on the physiological 

and biochemical basis of post-thaw survival, and death, in such seeds. In this regard, the role of 

oxidative stress metabolism in determining post-thaw survival is of particular interest since 

oxidative stress has been identified as a major component of chilling and cryoinjury in plant 

tissues (Tapell, 1966; Levitt, 1980; Steponkus, 1985; Benson and Withers, 1987; Benson, 1990; 

Benson et al., 1992, 1995; Prasad et al., 1994; Doke 1997; Park et al., 1998; Fleck et al., 1999, 

2000, 2003; Day et al., 1998; Johnston et al., 2007).  Any assessment of oxidative stress in 

cryopreserved germplasm should consider the two key factors of dehydration (osmotic and 

evaporative) and ice formation in freezing injury (for reviews see Levitt, 1980; Benson, 2008), 

as both can have effects on the ability of a system to participate in free-radical chemistry 

(Benson and Bremner, 2004).  

In cryopreservation studies on desiccation-sensitive germplasm such as recalcitrant seeds, 

embryonic axes and zygotic embryos, for which partial dehydration is now a standard pre-

treatment (for reviews see Walters et al., 2008; Engelmann, 2009), the effects of dehydration on 

oxidative stress metabolism are of particular interest. When water is removed from cells damage 

sensu stricto results from mechanical stresses that perturb organelle structures at high (>-5 MPa) 

moisture levels (reviewed by Levitt, 1980) or macromolecule structures at slightly lower levels 

(reviewed by Wolfe and Bryant, 1999). However, when metabolically active cells are 

dehydrated to intermediate moisture levels these cells may continue to respire but may be 

incapable of scavenging toxic metabolic by-products that accumulate (Leprince et al., 1990, 

2000; reviewed by Hand and Hardewig, 1996; Leprince and Hoekstra, 1998) and cause free-

radical-associated damage (McKersie et al., 1988; Hendry et al., 1992; Finch-Savage et al., 

1996).  Dehydration of recalcitrant seeds to water contents (WCs) above their upper limit of 

desiccation sensitivity (generally taken to be ~0.25 g g
-1
 [Vertucci and Farrant, 1995; Wesley-

Smith et al., 2004]) has been suggested to result in deleterious aqueous-based reactions that lead 

to what is referred to as ‘metabolism-derived damage’ (Pammenter et al., 1998, 2000; Walters et 

al., 2001). This damage is thought to be largely free-radical-associated (Pammenter et al., 2000; 

Walters et al., 2002, 2008). For successful cryopreservation recalcitrant zygotic germplasm 

generally need to be dried to WCs between 0.4 and 0.10 g g
-1
 (e.g. Normah et al., 1986; 

Pritchard and Prendergast, 1986; de Boucaud et al., 1991; Berjak and Dumet, 1996; Touchell 

and Walters, 2000; Wesley-Smith et al., 2004; Makeen et al., 2005; Sershen et al., 2007) but as 

alluded to above, dehydration of recalcitrant seeds to WCs in, or slightly above, this range 

generally results in the generation of damaging free-radical species and/or the failure of 

antioxidant systems (e.g. Hendry et al., 1992; Chaitanya and Naithani, 1994; Krinsky, 1994; 

Côme and Corbineau, 1996; Greggains et al., 2001; Varghese and Naithani, 2002; Dussert et al., 
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2006; Francini et al., 2006; Pukacka and Ratajczak, 2006; Roach et al., 2008). Suggestions that 

oxidative stress may be a major component of cryoinjury in recalcitrant seed tissues are 

therefore not surprising (Touchell and Walters, 2000; Dussert et al., 2003; Normah and Makeen, 

2008; Varghese and Naithani, 2008; Pammenter et al., 2010; Whitaker et al., 2010).  

Since oxidative stress is essentially the consequence of imbalances between prooxidative 

and antioxidative processes (Kranner et al., 2006; Roach et al., 2008), antioxidant status is an 

important consideration in studies on cryo-tolerance (Harding and Benson, 1995). Protection 

from oxidative stress in orthodox and recalcitrant seeds is believed to arise from the production 

of enzymic (e.g. superoxide dismutase, catalase and peroxidases) and non-enzymic (e.g. vitamin 

E, ascorbate and glutathione) antioxidants and metabolically inert, highly water soluble, 

carbohydrates and proteins (Kermode and Finch-Savage, 2002; Bailly, 2004; Walters et al., 

2008). However, the induction of certain components of this antioxidant system is hypothesised 

to occur to a lesser extent, or not at all, in recalcitrant seeds (Pammenter and Berjak, 1999; 

Walters et al., 2008). Antioxidant protection has been implicated in post-thaw recovery in 

vegetative (e.g. Green et al., 1986; Fleck et al., 2000; Johnston et al., 2007) and seed (Dussert et 

al., 2003; Varghese and Naithani, 2008; Walters et al., 2008) tissues and the susceptibility of 

non-orthodox seed tissue to oxidative damage during freezing and/or thawing (Dussert et al., 

2003; Varghese and Naithani, 2008; Whitaker et al., 2010), and regeneration (Touchell and 

Walters, 2000) may be a consequence of insufficient and/or inappropriate free-radical 

scavenging capacity. Reports that recovery media that suppress production of free-radicals or 

provide free-radical scavenging elements, sustain higher post-thaw recovery rates in non-

orthodox zygotic embryos/embryonic axes (e.g. Chandel et al., 1996; Touchell and Walters, 

2000; Walters et al., 2008) also lend support to this hypothesis. Cryopreservation protocols for 

recalcitrant seed germplasm may therefore be improved by a more fundamental understanding 

of how reactive oxygen species (ROS), free-radical mediated processes, and antioxidant 

capacity moderate differential tolerance to the various components of cryopreservation. 

The present study investigated the ability of Amaryllis belladonna (L.) and Haemanthus 

montanus (Baker) embryos to tolerate the various components of cryopreservation (i.e. 

short-term hydrated storage, cryoprotection, partial dehydration and freeze-thawing) in 

relation to changes in extracellular superoxide (.O2
-) production and lipid peroxidation (a 

popular ‘marker’ for oxidative stress [e.g. Leprince et al., 2000; Varghese and Naithani, 2000, 

2008]). Additionally, studies featured in Chapter 2 (see section 2.3) indicated that post-thaw 

viability of H. montanus and A. belladonna embryos could be enhanced when partial 

dehydration was preceded by glycerol (Gly; penetrative), as opposed to sucrose (Suc; non-

penetrative) or no, cryoprotection (CP). The tendency for reactions to proceed at low 
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temperatures is influenced by the terminal freezing temperatures and hydration status of the 

tissues (Fennema and Sung, 1980), and since the processes by which secondary oxidative 

reactions proceed during cooling may be the result of both enzymic and non-enzymic reactions, 

the colligative behaviour of the solute/solvent system is a significant factor in how pro-oxidative 

enzyme reactions proceed (Benson and Bremner, 2004). While water activity can change, 

enhance, and suppress free-radical reactions (Heckly and Quay, 1983), ice formation generally 

accelerates oxidative reactions, possibly related to the concentration of reactants in the non-

frozen portion of water remaining in the cell (Apgar and Hultin, 1982). Based on their 

colligative mode of action, cryoprotectants like polyols (e.g. Gly) and sugars (e.g. Suc) can 

differentially, remove freezable water through osmotic dehydration, increase cell viscosity, 

enhance the glass-forming tendency of aqueous solutions and inhibit ice-crystallisation (for 

reviews see Fuller, 2004; Benson, 2008). Since the extent and/or localisation (e.g. aqueous or 

organic phase distributions) of secondary oxidative reactions may be influenced by both ice-

crystal formation (Apgar and Hultin, 1982) and the characteristics of glasses in water-organic 

solute systems (Symons, 1982), cryoprotectant mode of action is practically important to the 

study of oxidative stress in plant material during cryopreservation. In light of the above, the 

present study also investigated whether Gly CP promoted post-thaw viability retention in H. 

montanus and A. belladonna embryos by protecting post-drying and post-thaw enzymic 

antioxidant activities; the enzymes assayed included: superoxide dismutase, catalase, 

glutathione reductase, ascorbate peroxidase and guaiacol peroxidase.  

Extracellular .O2
- production, lipid peroxidation and enzyme activities (for non-CP and Gly 

CP embryos only) were assessed immediately after the treatment, i.e. immediately after CP, D, 

CP+D and CP/D/CP+D + freeze-thawing. The 
.
O2

-
, lipid peroxidation and enzyme activity 

measurements are therefore presumed to reflect the damage caused by the treatment and not the 

damage that accumulated or declined during in vitro recovery.  

 
4.2 Materials and Methods 

Plant material  

Mature fruits of A. belladonna and H. montanus were harvested directly from parent plants 

and transported in plastic bags to the laboratory with minimum delay (1-2 d). Upon arrival, the 

seeds were decontaminated and stored hydrated, as described in Chapter 2 (section 2.2).  

 

Embryo pre-treatment 

 After 14 d of hydrated storage, embryos were excised with the entire cotyledonary body 

attached (see Figure A1, Appendix A) and collected within closed Petri dishes on filter paper 
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moistened with sterile calcium-magnesium solution (CaMg solution: 0.5 µM CaCl2.2H2O and 

0.5 mM MgCl2.6H2O [Mycock, 1999]). In order to minimise the potential variation in drying 

and/or cooling rate as a function of embryo size, only embryos of between 4-6 mm in length 

were used for all the experiments described below. Embryos were rapidly dehydrated via flash 

drying (devised by Berjak et al., 1990) to: (a) water contents (WCs) between 0.50 and 0.42 g g-1 

(dry mass basis [dmb]) (referred to as ‘>0.4 g g-1’ from here on); (b)  WCs between 0.33 and 

0.30 g g
-1
 (referred to as ‘<0.4 g g

-1
’ from here on); and (c) WCs > and <0.40 g g

-1 
after CP with 

either aqueous Gly or Suc. As explained in Chapter 2 (section 2.2), embryos were dried to WCs 

above and below 0.4 g g
-1
 based on the results of a previous study on the cryopreservation of the 

zygotic embryos of 15 amaryllids species (Sershen et al., 2007) which showed embryo WCs 

<0.4 g g-1 to be superior to those >0.4 g g-1 in promoting post-thaw viability. The WC ranges 

used in the current contribution were defined by constructing WC and viability vs. drying time 

curves for each species (e.g. Fig. A2, Appendix A). For cryoprotection, freshly excised embryos 

were immersed in a 5% solution of Gly (v/v) or a 0.5 M solution of Suc for 1 h, and thereafter 

transferred to a 10% Gly (v/v) or 1 M Suc solution for a further hour.  

Partially dried embryos (with and without CP) were subsequently cooled at: (a) rapid, non-

equilibrium (c. 200°C s-1), cooling rates by direct immersion of naked embryos in nitrogen slush 

(liquid nitrogen sub-cooled to -210°C [Echlin, 1992]); or (b) slow, equilibrium cooling rates 

(1°C min
-1
 in an isopropanol bath [Mr Frosty® Nalgene, Rochester, New York] within a -70°C 

freezer) down to -40°C followed by direct immersion in nitrogen slush. Freshly excised 

embryos subjected to no dehydration or CP (referred to as ‘fresh’ embryos from here on), as 

well as embryos exposed to CP but no dehydration were also subjected to both cooling rates. 

After cooling in nitrogen slush embryos were transferred under liquid nitrogen (LN) into LN-

containing cryovials (Greiner™), mounted on aluminium cryo-canes (10 embryos per vial) and 

immersed in LN for no longer than a week before use; LN entered the cryovials. Upon retrieval 

from LN, embryos were rapidly thawed by direct immersion in CaMg solution at 40°C for 2 

min, rehydrated in sterile CaMg solution at ambient temperature for 30 min in the dark, and 

recovered in vitro. Freshly excised embryos exposed to none of the treatments described above 

were also recovered in vitro to serve as a control. 

 

Water content determination  

Immediately after each of excision (referred to as ‘fresh’ from here on), partial dehydration 

(D), CP and CP+D, 10 embryos from each of the non-cooled treatment combinations (see Table 

4.1) were weighed individually using a 6-place balance (Mettler, MT5; Germany) and dried in 
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an oven at 80°C for 48 h before being re-weighed to determine the dry mass. Water content was 

expressed on a dry mass basis (dmb; g H2O per g dry matter [g g-1]). 

 

In vitro recovery and viability assessment 

After rehydration, 10 embryos from each of the 27 treatment combinations (see Table 4.1) 

were decontaminated and recovered in vitro for 60 d, as described in Chapter 2 (section 2.2). 

Viability was assessed after 60 d in vitro growth and was defined by root and shoot production. 

 

Reagents 

Epinephrine, dithiothreitol (DTT), ethylene diamine tetra-acetic acid (EDTA), riboflavin, 

sodium phosphate polyethylene glycol (PEG) 4000, trichloroacetic acid (TCA), 

polyvinylpolypyrrolidone (PVP), thiobarbituric acid (TBA), methionine, nitroblue tetrazolium 

(NBT), ascorbic acid, NADPH (the reduced form of nicotinamide adenine dinucleotide 

phosphate), glutathione and guaiacol and superoxide dismutase from horseradish lyophilized 

powder (1000-4000 units per mg protein) were purchased from Sigma Chemical Co. 

(Germany). All other reagents were analytical grade and locally available.  

 

Superoxide assay 

The assay of extracellular .O2
- was carried out according to Misra and Fridovich (1972), 

with slight modifications after Beckett et al. (2003). Here, ·O2
- production was measured 

spectrophotometrically by NADH-mediated oxidation of epinephrine to adrenochrome. Three 

batches of five embryos from all 27 treatment combinations were shaken in 2.0 ml of 1 mM 

epinephrine (pH 7.0) for 15 min in the dark, at ∼25ºC. Fresh embryos were incubated 

immediately after excision, CP embryos immediately after 1 h incubation at the highest CP 

concentration (followed by gentle dabbing on filter paper to remove external traces of 

cryoprotectant solution), D and CP+D embryos immediately after drying and cooled embryos 

immediately after thawing. After incubation, the oxidation of epinephrine, measured as the 

increase in absorbance relative to a reagent blank (epinephrine without tissue) at 490 nm (UV-

Vis spectrophotometer; Varian), was used to assess 
·
O2

-
 levels. This was calculated using the 

molar extinction coefficient for adrenochrome (4.47 mM
-1 cm-1), and expressed as µmol of 

epinephrine oxidised min
-1
 g

-1
 DW. Embryo batches were dried in an oven at 80°C for 48 h to 

determine DW. Each data point represents the mean±SD of six measurements carried out with 

three different extracts (i.e. two measurements on each extract). 

Since epinephrine can be oxidised non-specifically and possibly by some enzymes (e.g. 

tyrosinases) (Baker and Orlandi, 1995), the validity of the epinephrine assay for the detection of 
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extracellular 
·
O2

-
 production (see Misra and Fridovich, 1972) in the embryos investigated here 

was assessed. Here superoxide dismutase (from horseradish lyophilized powder) was added to 

2.0 ml of 1 mM epinephrine (pH 7.0) to give a final concentration of 0.10 µg ml-1 before fresh, 

D and frozen-thawed embryos were incubated in the assay mixture. In all cases, and for both 

species, the addition of superoxide dismutase inhibited the oxidation of epinephrine by more 

than 50% after 15 min incubation (data not shown), validating the use of the assay for the 

detection of extracellular 
·
O2

-
 production in this study. 

Other studies on ROS production in recalcitrant seeds illustrate the value of carrying out 

time course of ROS production; while initial rates may be high these may remain high or 

decline with time (Roach et al., 2008; Whitaker et al., 2010). However, the limited number of 

seeds available did not permit time course measurements of ROS production in the present 

study. 

 

Lipid peroxidation  

The thiobarbituric acid-reactive substances (TBARS) assay (originally described by Heath 

and Packer, 1968) has been widely used to measure aldehydic lipid peroxidation products in 

plants (see Hodges et al., 1999 and references therein), but phenolic and carbohydrate 

compounds can cause interference problems in such colorimetric assays since many of them 

also absorb at 532 nm (Du and Bramlage, 1992). This threat of over-estimation has therefore 

demanded assay modification and careful interpretation to limit interference and improve 

specificity in a number of studies (e.g. Du and Bramlage, 1992; Hodges et al., 1999). The 

method described by Heath and Packer (1968) involves assessing the thiobarbituric acid-

malondialdehyde (TBA-MDA) complex in terms of Equation 1: 

MDA equivalents (nmol ml
-1
) = [(A532 - A600) / (155 000)]10

6    
[1] 

where 532 nm represents the maximum absorbance of the TBA-MDA complex, 600 nm the 

correction for non-specific turbidity, and 155 000 the molar extinction coefficient for MDA. 

To correct for interference generated by TBA-sugar complexes Du and Bramlage (1992) 

modified this method, where MDA equivalents (nmol ml
-1
) were determined according to 

Equation 2: 

[[(A532 - A600)-[(A440 - A600) (MA of Suc at 532 nm/MA of Suc at 440 nm)]]/157 000]106     [2] 

where MA is the molar absorbance of Suc. Du and Bramlage’s (1992) results indicated that the 

absorbance of Suc at 440 nm was proportional to the concentration of Suc being measured and 

they calculated MA of 1±10 mM sucrose at 532 nm and 440 nm to be 8.4 and 147, respectively, 

giving a ratio of 0.0571. The results of these studies yielded a modified procedure for MDA 
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estimation which involved measuring absorbance at 532, 600 and 440 nm and rectifying the 

interference of soluble sugars in samples using a standard curve for sucrose (2.5-10 µmol ml
-1
).  

In the present study, Suc concentrations (estimated via a colorimetric anthrone assay 

[Jermyn, 1956]) of fresh, Suc CP and Gly CP embryos across both species were between 1.42 

and 1.77 mg g
-1
 DW and always <0.10 µmol ml

-1
 (detailed data [Table B1] and methodology 

given in Appendix B). Also, within species, concentrations were not significantly different 

across the three treatments (see Table B1, Appendix B). These data suggested that sucrose 

concentrations across all three treatments (for both species) were lower than the interfering 

range (2.5-10.0 µmol ml
-1
) as suggested by Du and Bramlage (1992). Additionally, if 

interference did occur, the degree of interference was likely to have been comparable across CP 

and non-CP treatments. With this in mind, lipid peroxidation in the present study was assessed 

via the formation of TBARS as described by Heath and Packer (1968), with slight modifications 

after Varghese and Naithani (2008), who also estimated TBARS production in recalcitrant 

embryos using the Heath and Packer (1968) method. Here, three batches of 15 embryos each (c. 

100 mg) from all 27 treatment combinations, were homogenised in LN and suspended in 1 ml of 

0.1% (w/v) TCA, and 3 ml of 0.5% 2-TBA in 20% (w/v) TCA. Fresh embryos were 

homogenised immediately after excision, CP embryos immediately after 1 h incubation at the 

highest CP concentration (followed by rinsing with water to remove residual cryoprotectant), D 

and CP+D embryos immediately after drying and cooled embryos immediately after thawing. 

The homogenate was heated at 95ºC for 30 min and thereafter incubated on ice for 10 min. After 

cooling the samples were centrifuged for 15 min at 8,000 g and the absorbance of the 

supernatant taken at 532 nm (UV-Vis spectrophotometer; Varian); this reading was subtracted 

for any non-specific absorbance at 600 nm. The concentration of MDA was calculated using the 

molar extinction coefficient of 155 mM
-1 cm-1 in terms of µmol MDA g-1 DW. However, since 

aldehydes other than MDA can also react with TBA to produce pink chromophore (Du and 

Bramlage, 1992) with an absorbance of 532 nm, we refer to lipid peroxidation in terms of µmol 

TBARS g-1 DW from here on. Each data point represents the mean±SD of six measurements 

carried out with three different extracts. 

 

Enzyme extraction and estimation 

Three batches of 15 embryos each (c. 100 mg) from all partially dried and partially dried + 

cooled treatments involving non-CP and Gly CP embryos, as well as fresh embryos (not dried or 

cooled), were homogenised in LN and suspended in 0.1 M sodium phosphate buffer (pH 7.8) 

containing 2 mM DTT, 0.1 mM EDTA, 1.25 mM polyethylene glycol (PEG) 4000 and 1% (w/v) 

PVP (after Farrant et al., 2004). Fresh embryos were homogenised immediately after excision, 
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D and Gly CP+D embryos immediately after dehydration and D + cooled and Gly CP+D + 

cooled embryos immediately after thawing. Extracts were incubated on ice for 15 min, with 

gentle vortexing every 5 min, before centrifugation at 16,000 g for 30 min at 4ºC. The 

supernatants were collected and immediately stored at -70°C before use in all subsequent 

antioxidant enzyme assays. Absorbances were taken using a UV-Vis spectrophotometer 

(Varian), at a constant temperature of 25ºC. The volume of enzyme extract used in the assay 

mixture was optimised independently for each enzyme. Assay reagent blanks (sample replaced 

with same volume of extraction buffer) were used to check for any change in absorbance owing 

to assay reagents, and corrected for, where necessary. Five different antioxidant enzymes 

(identified below) were assayed twice on three different extracts.  

  

Superoxide dismutase (SOD) assay 

Superoxide dismutase activity was assayed in terms of its ability to inhibit the 

photochemical reduction of nitroblue tetrazolium (NBT) according to Beauchamp and Fridovich 

(1971). The assay mixture consisted of 50 mM sodium phosphate buffer, 1.17 µM riboflavin, 

0.01 M methionine, 0.056 mM NBT and 10 (for A. belladonna) or 100 (for H. montanus) µl 

enzyme extract. The assay mixture was illuminated for 5 min by a 55 W fluorescent tube light 

(Phillips, South Africa), in aluminium foil-lined container, and absorbance was read against 

unilluminated samples. One unit of SOD corresponded to 50% inhibition of photochemical 

reduction of NBT (measured as the increase in absorbance at 560 nm), and SOD activity was 

expressed as units of SOD g
-1
 DW.  

 

Catalase (CAT) assay 

Catalase was assayed according to Clairbone (1985). The final assay mixture comprised 

37.5 mM potassium phosphate buffer (pH 7.0), 10 mM H2O2 and 100 (for A. belladonna) or 50 

(for H. montanus) µl enzyme extract. The enzymic break-down of H2O2, measured as a decline 

in absorbance at 240 nm, was used to assess CAT activity. This was calculated using the molar 

extinction coefficient for H2O2 (0.0436 mM
-1 cm-1), and expressed as µmol H2O2 decomposed 

min-1 g-1 DW.  

 

Glutathione reductase (GR) assay 

The activity of GR was estimated according to Esterbauer and Grill (1978). The assay 

mixture comprised 50 mM potassium phosphate buffer (pH 7.8), 0.5 mM NADPH, 10 mM 

glutathione, 3 mM MgCl2 and 100 µl enzyme extract. The oxidation of NADPH to NADP, 

which measured as the decline in absorbance at 340 nm, was used to assess GR activity. This 
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was calculated using the molar extinction coefficient for NADPH (6.22 mM
-1 

cm-1), and 

expressed as µmol NADPH oxidised min-1 g-1 DW.  

 

Ascorbate peroxidase (AsPX) assay 

Ascorbate peroxidase activity was estimated according to Nakano and Asada (1981). The 

rate of H2O2 dependent oxidation of ascorbate was determined in an assay mixture that 

contained 50 mM sodium phosphate buffer (pH 7.0), 0.5 mM ascorbic acid, 0.1 mM EDTA, 0.1 

mM H2O2 and 100 µl enzyme extract. The reaction was started by addition of H2O2 and the 

oxidation rate of ascorbate, estimated by monitoring the decline in absorbance at 290 nm, was 

used to assess AsPX activity. This was calculated using the molar extinction coefficient for 

ascorbate (2.8 mM
-1 cm-1) and expressed as µmol ascorbate oxidised min-1 g-1 DW.  

 

Guaiacol peroxidase (POX) assay 

Guaiacol peroxidase activity was estimated according to Chance and Maehly (1955). The 

assay mixture comprised 25 mM sodium acetate-HCl buffer (pH 5.0), 8.26 mM of guaiacol and 

50 (for A. belladonna) or 20 (for H. montanus) µl enzyme extract. The reaction was started by 

the addition of 8.8 mM H2O2 and the oxidation of guaiacol to tetraguaiacol, measured as the 

increase in absorbance at 470 nm, was used to assess POX activity. This was calculated using 

the molar extinction coefficient for tetraguaiacol (26.6 mM
-1 cm-1), and expressed as µM 

guaiacol oxidised min-1 g-1 DW. From here on guaiacol peroxidase will be abbreviated as ‘POX’ 

and not ‘GPX’ since the guaiacol-based assay used here tests for the activity of Class III 

peroxidases and not glutathione peroxidase. 

 

Statistical analysis 

 Inter-treatment differences in extracellular 
.
O2

-
 production, lipid peroxidation and enzyme 

activity were tested for by Analysis of Variance (ANOVA; SPSS, Version 15). Multiple 

comparisons were then made using Duncan’s mean separation test. Inter-treatment differences 

in viability were tested for using null-model chi-squared analyses (specifically designed to 

assess non-parametric data) (EcoSim Version 7.72 [developed by Gotelli and Entsminger, 

2009]). Correlations between viability and extracellular 
.
O2

-
, TBARS levels and antioxidant 

enzyme activity, as well as between extracellular 
.
O2

-
 and TBARS levels were tested for using 

Pearson correlation analysis (SPSS, Version 15). For all correlation analyses viability 

percentages were transformed (arcsin) to conform data to parametric test assumptions. All 

statistical tests were performed at the 0.05 level of significance.    
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4.3 Results  

All parameters were assessed for both species and unless otherwise stated, the trends reported 

for these data below, are applicable to both species. Where it was necessary to discuss these 

parameters in terms of actual values, those for both species are given. 

 

Viability 

 The embryos excised from seeds stored for 14 d (referred to as ‘fresh’ from here on) were 

highly hydrated (>4.0 g g-1) and incurred some (10-30%) viability loss upon rapid dehydration 

to WCs > and <0.4 g g-1 (Table 4.1); being slightly greater at WCs <0.4 g g-1. The embryos of 

both species could be dried to WCs of 0.30-0.48 g g
-1
 while retaining ≥60% viability but while 

A. belladonna embryos could be dried to WCs of 0.48±0.09 and 0.31±0.07 g g-1 in 5 and 15 min, 

respectively, H. montanus embryos took 180 and 240 min to reach 0.48±0.08 and 0.33±0.09 g g
-

1
, respectively (data not shown). Cryoprotection led to a significant reduction in embryo WC 

relative to fresh embryos, the effect being significantly greater with Suc CP (Table 4.1). After 

Gly CP+D, viabilities were either marginally lower or similar to non-CP embryos dehydrated to 

comparable WCs, but with Suc CP+D viabilities were significantly lower than Gly CP and non-

CP embryos dehydrated to comparable WCs.  Cooling generally led to a dramatic reduction in 

viability, relative to fresh, CP and D embryos (Table 4.1). Fully hydrated embryos did not 

survive cooling. Of the six treatments in which post-thaw viability was observed in A. 

belladonna, one involved non-CP embryos (>0.4D-slow) and facilitated in 10% viability, while 

four (>0.4D-Gly-rapid, >0.4D-Gly-slow, <0.4D-Gly-rapid and <0.4D-Gly-slow) involved Gly 

CP+D embryos and facilitated between 20-70% viability (Table 4.1). Of the six treatments in 

which post-thaw viability was observed in H. montanus, one (>0.4D-slow) involved non-CP+D 

embryos and facilitated 10% viability, two (Suc-rapid, <0.4D-Suc-rapid) involved Suc CP 

embryos and facilitated 10% viability, while three involving Gly CP+D embryos (>0.4D-Gly-

rapid, >0.4D-Gly-slow and <0.4D-Gly-rapid) facilitating 10-50% viability (Table 4.1).  
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Extracellular superoxide  

 Superoxide levels were low in fresh embryos and even though D (in both species) and CP 

(in H. montanus) generally led to an increase in these levels, inter-treatment differences were 

seldom significant (Fig. 4.1A, B). The post-drying increase in .O2
- levels relative to fresh 

embryos was slightly (but not significantly) more pronounced in CP+D embryos but did not 

differ significantly across CP+D treatments. Within the non-cooled treatments, higher 
.
O2

-
 levels 

 A. belladonna H. montanus  

Treatment 
WC

1 
(g g

-1
) 

 

Viability
2
  

(%) 

WC
 
(g g

-1
) Viability 

(%) 

Treatment 

categories 

  Fresh  5.19±0.91 100 4.85±0.84 100 

>0.4D 0.48±0.09 90 0.48±0.08 80 

<0.4D 0.31±0.07 80 0.33±0.09 70 

Gly 3.22±0.55 100 4.52±0.07 90 

Suc 1.84±0.13 100 1.64±0.21 90 

>0.4D-Gly 0.43±0.04 80 0.50±0.08 80 

>0.4D-Suc 0.42±0.07 70 0.47±0.09 70 

<0.4D-Gly 0.33±0.06 80 0.32±0.06 80 

<0.4D-Suc 0.30±0.03 60 0.30±0.08 60 

 

 

Control + 

dehydrated  to 

< or > 0.4 g g
-1
 ,  

with or without 

cryoprotection. 

Fresh-rapid 5.19±0.91 0 4.85±0.84 0 

Fresh-slow 5.19±0.91 0 4.85±0.84 0 

Gly-rapid 3.22±0.55 0 4.52±0.97 0 

Suc-rapid 1.84±0.13 0 1.64±0.21 10 

Gly-slow 3.22±0.55 0 4.52±0.97 0 

Suc-slow 1.84±0.13 0 1.64±0.21 0 

 

Cooled rapidly or 

slowly with or 

without 

cryoprotection; no 

flash drying. 

>0.4D-rapid 0.48±0.09 0 0.52±0.15 0 

>0.4D-slow 0.48±0.09 10 0.52±0.15 10 

<0.4D-rapid 0.31±0.07 0 0.33±0.11 0 

<0.4D-slow 0.31±0.07 0 0.33±0.11 0 

Dehydrated to 

< or > 0.4 g g
-1
   

and cooled 

rapidly or slowly. 

>0.4D-Gly-rapid 0.43±0.04 20 0.50±0.08 50 

>0.4D-Suc-rapid 0.42±0.07 0 0.47±0.09 0 

>0.4D-Gly-slow 0.43±0.04 20 0.50±0.08 10 

>0.4D-Suc-slow 0.42±0.07 0 0.47±0.09 0 

<0.4D-Gly-rapid 0.33±0.06 70 0.32±0.06 20 

<0.4D-Suc-rapid 0.30±0.03 0 0.30±0.08 10 

<0.4D-Gly-slow 0.33±0.06 40 0.32±0.06 0 

<0.4D-Suc-slow 0.30±0.03 0 0.30±0.08 0 

 

  

Dehydrated to 

< or > 0.4 g g-1 ,  

with cryoprotection,  

and cooled 

rapidly or slowly. 

1 
water content; 

2 
viability = root and shoot production. >0.4D = dried to >0.4 g g

-1
; <0.4D = dried to <0.4 g 

g
-1
; -Gly = cryoprotected with glycerol; -Suc = cryoprotected with sucrose; -slow = cooled slowly; -rapid = 

cooled rapidly. p < 0.05 for water content (Mann-Whitney-U test, n = 10) and p < 0.001 for viability (null-

model chi-squared analysis, n = 10) when these data were tested for significant differences across 

treatments.
  

Table 4.1 Water content and viability for fresh, cryoprotected, partially dried and cooled  

A. belladonna and H. montanus zygotic embryos. 
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were generally accompanied by greater viability loss (Fig. 4.1A, B). Cooling led to the greatest 

increase in 
.
O2

-
 production, with levels across all cooling treatments being significantly higher 

than fresh, D, CP and most often CP+D treatments. These high post-thaw .O2
- levels were 

generally accompanied by high or, very often, complete viability loss (Fig. 4.1A, B).  

Within the cooled treatments in A. belladonna, inter-treatment differences in 
.
O2

-
 production 

were seldom significant but the following trends were observed (Fig. 4.1A):  (a) embryos that 

were not dried or cryoprotected before cooling yielded higher post-thaw 
.
O2

-
 levels than non-

cooled CP, D and CP+D treatments; (b) across the CP, D and CP+D treatments, post-thaw .O2
- 

levels were often relatively higher in treatments involving Suc CP (e.g. >0.4D-Suc-rapid and 

Suc-slow); and (c)  where post-thaw viability was observed, 
.
O2

-
 levels were often relatively 

lower (e.g. >0.4D-Gly-slow and >0.4D-Gly-rapid), but this was not without exception (e.g. 

<0.4D-Gly-Slow). Differences in .O2
- production across the cooled treatments in H. montanus 

were also seldom significant but the following trends were observed (Fig. 4.1B): (a) except for 

<0.4D-Gly-slow, fully hydrated, non-CP+D and Suc CP+D treatments generally exhibited 

higher post-thaw 
.
O2

- 
levels than treatments involving Gly CP embryos; and (b) lower 

.
O2

- 
levels 

were not necessarily indicative of post-thaw viability retention (e.g. Gly-slow and Gly-rapid). 

Within the treatments in which post-thaw viability retention was observed, viability was not 

proportional to .O2
- levels but when data for non-cooled and cooled treatments were pooled, 

there was a significant negative correlation between extracellular 
.
O2

- 
production and viability 

(A. belladonna: r = -0.73, p < 0.001; H. montanus: r = -0.88, p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

193 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lipid peroxidation   

Cryoprotected and non-CP + partially dried embryos exhibited some (10-40%) viability loss 

but lipid peroxidation levels (as assessed by TBARS production) in treatments involving such 

embryos were comparable to fresh embryos (Fig. 4.2A, B). Interestingly, TBARS levels in 

Figure 4.1 Extracellular superoxide production and viability for [A] A. belladonna and [B] H. montanus 

zygotic embryos. >0.4D = dried to >0.4 g g
-1
; <0.4D = dried to <0.4 g g

-1
; -Gly = cryoprotected with 

glycerol; -Suc = cryoprotected with sucrose; -slow = cooled slowly; -rapid = cooled rapidly. Superoxide 

values represent mean±SD and are significantly different when followed by different letters (ANOVA, n = 5, 

p < 0.05). p < 0.05 when viability data were tested for significant differences across treatments (null-model 

chi-squared analysis, n = 10).  
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embryos excised from seeds immediately after harvest (i.e. zero-time control) were marginally, 

but not significantly (data not shown), lower than those excised from seeds that had been stored 

for 14 d (i.e. ‘fresh’ embryos). Lipid peroxidation levels in Gly CP+D embryos were 

significantly lower than fresh, CP and non-CP+D embryos, while TBARS levels and the degree 

of viability loss in Suc CP+D treatments were relatively higher than Gly CP+D treatments (Fig. 

4.2A, B).  

In A. belladonna, cooling often facilitated TBARS levels that were higher than fresh, CP, D 

and Suc CP+D treatments (Fig. 4.2A). Except for Gly-rapid embryos, there was a trend for 

cooling treatments involving Gly CP embryos to exhibit TBARS levels that were either lower 

(e.g. <0.4D-Gly-rapid) or similar (e.g. <0.4D-Gly-slow, >0.4D-Gly-slow and Gly-slow) to fresh 

embryos in A. belladonna; this was often accompanied by higher post-thaw viability retention 

(e.g. <0.4D-Gly-rapid) than treatments involving Suc or no, cryoprotection. When data for 

cooled and non-cooled A. belladonna treatments were pooled, there was a significant negative 

correlation between viability and TBARS levels (r = -0.68, p < 0.001).  

Except for >0.4D-rapid and >0.4D-slow, TBARS levels within the cooled treatments in H. 

montanus were generally similar to or, in a few cases, slightly lower (e.g. <0.4D-Gly-slow and 

<0.4D-Suc-slow) than fresh embryos (Fig. 4.2B). Low TBARS levels were not necessarily 

indicative of post-thaw viability retention in H. montanus embryos though, and when data for 

cooled and non-cooled treatments were pooled, there was no significant correlation between 

viability and TBARS levels (r = -0.20, p = 0.31). 

Finally, TBARS levels in either species were not significantly correlated with extracellular 

.O2
- production (r < 0.04 and p > 0.05 for both). 

 

Antioxidant enzyme activity 

As mentioned earlier, post-drying and post-thaw antioxidant enzyme activities were 

assessed and compared across treatments involving non-CP and Gly CP embryos, only. 

 

Superoxide dismutase 

Partial dehydration always led to some (10-30%) viability loss in both species but while 

SOD activity was high in fresh A. belladonna embryos and declined significantly after D (Fig. 

4.3A), SOD activity was low in fresh H. montanus embryos and increased after D (Fig. 4.3B). 

This post-drying enhancement of SOD activity in H. montanus embryos was marginal for non-

CP treatments but significantly higher for Gly CP. The post-drying decline of SOD activity in A. 

belladonna embryos was slightly, but not significantly, more pronounced in Gly CP+D embryos 

(Fig. 4.3A). 
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With cooling, SOD activity in A. belladonna declined to levels significantly lower than 

fresh embryos (Fig. 4.3A). In treatments that were associated with no post-thaw viability 

retention in A. belladonna SOD activity was either zero or confined to one replicate while its 

Figure 4.2 Lipid peroxidation (as the concentration of thiobarbituric acid-reactive substances [TBARS]) and 

viability for [A] A. belladonna and [B] H. montanus zygotic embryos. >0.4D = dried to >0.4 g g-1; <0.4D = 

dried to <0.4 g g
-1
; -Gly = cryoprotected with glycerol; -Suc = cryoprotected with sucrose; -slow = cooled 

slowly; -rapid = cooled rapidly. TBARS values represent mean±SD and are significantly different across 

treatments when followed by different letters (ANOVA, n = 6, p < 0.05). p < 0.05 when viability data were 

tested for significant differences across treatments (null-model chi-squared analysis, n = 10).  
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activity in treatments that did result in post-thaw viability retention was generally higher and 

detectable across more replicates (detailed data not shown).  

In H. montanus, post-thaw SOD activity was detected in just three cooled treatments (Fig. 

4.3B), all of which involved Gly-CP+D embryos.  These treatments were accompanied by some 

(10-50%) post-thaw viability and embryos exhibited SOD activities that were significantly 

higher than fresh and D embryos. However, >0.4D-slow in H. montanus exhibited no SOD 

activity even though it facilitated 10% post-thaw viability. 

For both species, post-thaw viability was not proportional to SOD activity (Fig. 4.3A, B). 

When cooled and non-cooled treatments were pooled, there was a significant positive 

correlation between SOD activity and viability in A. belladonna (r = 0.67, p = 0.01), but not in 

H. montanus (r = -0.02, p = 0.94), despite Gly apparently promoting SOD activity in some 

embryo treatments of this species. 

 

Catalase 

Partial dehydration led to a significant decline in CAT activity in A. belladonna relative to 

fresh embryos and this was always accompanied by some (10-20%) viability loss; however, the 

post-drying decline in CAT activity was less severe in <0.4D-Gly embryos (Fig. 4.4A). Except 

for <0.4D-Gly, partial dehydration always brought about a significant decline in CAT activity in 

H. montanus (Fig. 4.4B). As in A. belladonna, partial dehydration led to some (20-30%) 

viability loss across all treatments, even in <0.4D-Gly, which exhibited CAT activities that were 

statistically comparable to fresh embryos.  

Post-thaw CAT activity and viability declined to levels lower than fresh embryos in both 

species (Fig. 4.4A, B) and, except for >0.4D-Gly-rapid in H. montanus, this decline in activity 

was always significant.  This post-thaw decline in CAT activity was less severe across all 

rapidly cooled Gly-CP+D treatments (although significant for A. belladonna only), with post-

thaw CAT activities in rapidly cooled Gly-CP+D embryos in A. belladonna being just a high as 

some of the partially dried  treatments. 

In A. belladonna, CAT activity, except for 0.4D-rapid, was detected only in treatments that 

yielded post-thaw viability (Fig. 4.4A). In H. montanus, CAT activity was detected across all 

cooled treatments and except for >0.4D-Gly-rapid, which exhibited CAT activities that were 

statistically comparable to fresh embryos, these activities were often statistically comparable to 

partially dried treatments (Fig. 4.4B).  

In both species, the highest post-thaw CAT activity corresponded to the highest post-thaw 

viability and there was a tendency for cooled treatments that were accompanied by post-thaw 

viability retention to exhibit CAT activity across relatively more replicates than those that did 
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not (detailed data not shown). Also, when data for cooled and non-cooled treatments were 

pooled, there was a significant positive correlation between viability and CAT activity for either 

species (A. belladonna: r = 0.86, p < 0.000; H. montanus: r = 0.62, p = 0.02). 

 

 

 

 

Figure 4.3 Superoxide dismutase (SOD) activity and viability for [A] A. belladonna and [B] H. montanus 

zygotic embryos. >0.4D = dried to >0.4 g g
-1
; <0.4D = dried to <0.4 g g

-1
; -Gly = cryoprotected with 

glycerol; -slow = cooled slowly; -rapid = cooled rapidly. Values represent mean±SD and are significantly 

different across treatments when followed by different letters (p < 0.05, ANOVA, n = 6). p < 0.05 when 

viability data were tested for significant differences across treatments (null-model chi-squared analysis, n 

= 10).  
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Glutathione reductase 

Partial dehydration reduced GR activity relative to fresh embryos, in both species (Fig. 

4.5A, B). Even though all dried treatments were accompanied by some (10-30%) viability loss, 

Figure 4.4 Catalase (CAT) activity and viability for [A] A. belladonna and [B] H. montanus zygotic 

embryos. >0.4D = dried to >0.4 g g
-1
; <0.4D = dried to <0.4 g g

-1
; -Gly = cryoprotected with glycerol;  

-slow = cooled slowly; -rapid = cooled rapidly. Values represent mean±SD and are significantly different 

across treatments when followed by different letters (p < 0.05, ANOVA, n = 6). p < 0.05 when viability 

data were tested for significant differences across treatments (null-model chi-squared analysis, n = 10).  
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GR activity in both species was often unaffected (e.g. >0.4D-Gly in A. belladonna and <0.4D-

Gly in H. montanus) or enhanced relative to fresh embryos in treatments involving Gly CP+D 

embryos (e.g. <0.4D-Gly in A. belladonna). 

In A. belladonna, cooling generally led to a significant decline in GR activity (e.g. >0.4D 

cooled embryos) relative to fresh embryos, but GR activity in rapidly cooled Gly-CP+D 

embryos was as high as non-cooled D embryos, and facilitated post-thaw viabilities of 20 and 

70% (Fig. 4.5A). In A. belladonna, >0.4D-slow exhibited 10% post-thaw viability and very low 

GR activity; however, there were treatments that exhibited some post-thaw viability (e.g. 

>0.4D-Gly-slow: 20% and <0.4D-Gly-slow: 40%) but no GR activity, while others showed GR 

activity but no post-thaw viability (e.g. <0.4D-rapid).  

In H. montanus, all cooled treatments exhibited GR activity (Fig. 4.5B). Except for <0.4D-

Gly-slow there was a trend for Gly CP+D embryos in H. montanus to exhibit post-thaw GR 

activities that were either comparable to, or higher than, fresh and D embryos; this was often 

accompanied by higher post-thaw viability. In H. montanus, the highest post-thaw viability 

corresponded to the highest post-thaw GR activity but there were treatments that were 

accompanied by no post-thaw viability, yet still exhibited GR activity (e.g. <0.4D-rapid).  

Within the cooled treatments in both species, GR activity was not proportional to viability. 

Even though Gly protected GR activity in some treatments, when data for non-cooled and 

cooled treatments were pooled, there was no significant correlation between viability and GR 

activity for either species (r < 0.3 and p > 0.10 for both). 

 

Guaiacol peroxidase  

Partial dehydration was always accompanied by some (10-30%) viability loss (Fig. 4.6A, 

B). In non-CP+D A. belladonna embryos this was accompanied by a significant decline in POX 

activity, relative to fresh embryos (Fig. 4.6A). This post-drying decline was not apparent in Gly 

CP+D A. belladonna embryos; in fact, POX activity in <0.4D-Gly embryos of this species was 

significantly higher than fresh embryos. Viability within the non-cooled treatments in A. 

belladonna was not proportional to POX activity. In A. belladonna cooling led to a significant 

decline in POX activity relative to fresh embryos. This decline was significantly less severe in 

treatments involving rapidly cooled Gly CP+D embryos, which facilitated 20 and 70% post-

thaw viability. In A. belladonna, POX activity was detected in >0.4D-slow which facilitated a 

post-thaw viability of 10%, yet it was not detected in slowly cooled Gly CP+D treatments which 

were accompanied by post-thaw viabilities of 20 and 40%.  

In H. montanus, except for <0.4D, partial dehydration led to a slight but insignificant 

decrease in POX activity relative to fresh embryos (Fig. 4.6B). Partial dehydration always led to 
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some (20-30%) viability loss in H. montanus, even when POX activity was not lower than fresh 

embryos (as in <0.4D).  Even though cooling led to a considerable decline in viability, POX 

activity (except for <0.4D-slow) was detected across all cooled treatments in H. montanus. 

Within the treatments involving Gly CP+D embryos, rapidly cooled embryos exhibited the 

highest POX activities and post-thaw viabilities. In H. montanus, some treatments exhibited 

post-thaw POX activity but no viability; however, this was usually confined to just one or two 

replicates (e.g. <0.4D-rapid; detailed data not shown). 

Even though Gly CP protected POX activity in some treatments, when data for non-cooled 

and cooled treatments were pooled, there was no significant correlation between viability and 

POX activity for either species (r
 
< 0.50 and p > 0.10 for both). 

 

Ascorbate peroxidase 

Partial dehydration always led to some (10-40%) viability loss but post-drying AsPX 

activities were either comparable to or, as in Gly CP+D embryos, slightly higher than fresh 

embryos (significant for > and <0.4D-Gly in A. belladonna and for <0.4D-Gly in H. montanus; 

Fig. 4.7A, B). Within the non-cooled treatments, AsPX activity was not proportional to 

viability.  

In A. belladonna, AsPX activity was detected across all cooled treatments (Fig. 4.7A). 

However, post-thaw AsPX activities in Gly CP+D embryos were significantly higher than fresh, 

non-cooled and cooled non-CP+D embryos; this was often accompanied by relatively higher 

post-thaw viabilities.    

In H. montanus, post-thaw AsPX activity was only detected in treatments involving Gly 

CP+D embryos and the single non-CP treatment associated with post-thaw viability retention 

(i.e. >0.4D-slow); activities in these treatments were significantly higher than fresh embryos but 

not proportional to post-thaw viability (Fig. 4.7B).  

Even though Gly protected AsPX activity in some treatments, when data for non-cooled and 

cooled treatments were pooled, there was no significant correlation between viability and AsPX 

activity for both species (r < 0.40 and p > 0.20 for both species). 
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Figure 4.5 Glutathione reductase (GR) activity and viability for [A] A. belladonna and [B] H. montanus 

zygotic embryos. >0.4D = dried to >0.4 g g
-1
; <0.4D = dried to <0.4 g g

-1
; -Gly = cryoprotected with 

glycerol; -slow = cooled slowly; -rapid = cooled rapidly. Values represent mean±SD and are significantly 

different across treatments when followed by different letters (p < 0.05, ANOVA, n = 6). p < 0.05 when 

viability data were tested for significant differences across treatments (null-model chi-squared analysis, n 

= 10).  
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Figure 4.6 Guaiacol peroxidase (POX) activity and viability for [A] A. belladonna and [B] H. montanus 

zygotic embryos. >0.4D = dried to >0.4 g g
-1
; <0.4D = dried to <0.4 g g

-1
; -Gly = cryoprotected with 

glycerol; -slow = cooled slowly; -rapid = cooled rapidly. Values represent mean±SD and are significantly 

different across treatments when followed by different letters (p < 0.05, ANOVA, n = 6). p < 0.05 when 

viability data were tested for significant differences across treatments (null-model chi-squared analysis, n 

= 10).  
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4.4 Discussion 

The present study investigated the ability of A. belladonna and H. montanus embryos to 

tolerate the various components of cryopreservation in relation to changes in oxidative 

Figure 4.7 Ascorbate peroxidase (AsPX) activity and viability for [A] A. belladonna and [B] H. montanus 

zygotic embryos. >0.4D = dried to >0.4 g g
-1
; <0.4D = dried to <0.4 g g

-1
; -Gly = cryoprotected with 

glycerol; -slow = cooled slowly; -rapid = cooled rapidly. Values represent mean±SD and are significantly 

different across treatments when followed by different letters (p < 0.05, ANOVA, n = 6). p < 0.05 when 

viability data were tested for significant differences across treatments (null-model chi-squared analysis, n 

= 10).  
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stress.  The study also investigated whether Gly CP promoted post-thaw viability retention in H. 

montanus and A. belladonna embryos by protecting or promoting post-drying and post-thaw 

enzymic antioxidant activities.  

 

Zygotic embryo viability in relation to changes in oxidative stress metabolism 

Hydrated storage 

Storage of seed at low (usually -20°C) rather than ultra-low, i.e. cryogenic temperatures 

(usually -196°C), is still the most popular method of conserving plant germplasm (Rao et al., 

2006) but there is considerable evidence that seeds stored at -18 to -20°C are susceptible to 

oxidative stress (Hendry, 1993 and references therein). The data may be conflicting and mainly 

correlative due to the physiological complexity of studying seed storage parameters, but what 

these data do show is that pre-storage status of seeds can significantly influence the oxidative 

stress profiles obtained with respect to seed hydration, age and biochemical composition 

(Benson and Bremner, 2004).  

Prior to embryo or axis excision for cryopreservation, recalcitrant seeds almost always need 

to be stored in the short-term (days). As in the current contribution, this is often achieved via 

hydrated storage which involves the maintenance of their moisture content at, or slightly below, 

their shedding WC, while at ambient or slightly reduced temperatures (e.g. Berjak et al., 1989). 

Reactive oxygen species (ROS) metabolism is a characteristic feature of fresh mature non-

orthodox (Chaitanya and Naithani, 1994, 1998; Varghese and Naithani, 2002) and orthodox 

(Garnczarska et al., 2008) seeds and free-radical production in immature and mature non-

orthodox seeds appears to be a natural consequence of respiration (Francini et al., 2006). In the 

present study, extracellular .O2
- was detected in embryos excised from seeds that had been stored 

hydrated for 14 d but these levels were lower than D and cooled embryos (Fig. 4.1A, B), 

possibly associated with the relatively high activities of certain antioxidant enzymes in fresh, 

compared with D and cooled embryos (e.g. SOD and POX in A. belladonna; CAT and GR in 

both species; Figs 4.3-4.6). However, hydrated storage was accompanied by lipid peroxidation 

with TBARS levels in fresh embryos being just as high as those in CP, D and CP+D embryos 

(Fig. 4.2A, B). Recalcitrant seeds exhibit ongoing metabolism during storage (Farrant et al., 

1989) and as their embryos progress towards germination in storage, an intracellular water stress 

develops (Farrant et al., 1986; Berjak et al., 1989; Pammenter et al., 1994, 1997). The 

consequences of this stress appear to be similar to those associated with the oxidative stress-

induced deterioration of orthodox seeds in dry storage (Cakmak et al., 1993; Hendry, 1993; 

Bailly et al., 1998), and include free-radical mediated lipid peroxidation (and hence membrane 

damage [Côme and Corbineau, 1996; Finch-Savage et al., 1996; Kermode and Finch-Savage, 



 

 

205 

2002; Dussert et al., 2006; Ratajczak and Pukacka, 2006]). In the present study, TBARS levels 

in embryos excised from seeds that had been stored for 14 d (i.e. ‘fresh embryos’) were, 

however, not significantly higher than those excised from freshly harvested seeds (data not 

shown). Also, despite the comparable TBARS levels in fresh and D embryos, viability declined 

in the latter only (i.e. fresh embryos exhibited 100% viability; Table 4.1). The retention of 

viability in fresh embryos, despite the evident lipid peroxidation, may be related to fact that 
.
O2

-
 

production in fresh embryos was limited to lower levels than D embryos (Fig. 4.1A), while the 

activities of certain antioxidant enzymes in fresh embryos were often higher than D embryos 

(see Figs 4.3-4.6). Protective mechanisms against ROS during seed storage are predominantly 

enzymic (Bailly, 2004).  

During zygotic embryogenesis SOD, CAT and AsPX activities and/or expression change 

markedly (Puntarulo et al., 1991; Bailly, 2004). So, the inter-species differences in enzymic 

antioxidant activities observed in fresh embryos here (e.g. SOD [Fig. 4.3A, B]), may have 

simply been a consequence of them being at different developmental stages.  

 

Pre-conditioning 

One of the common responses during exposure to many different types of abiotic stress is 

the production of ROS, which if uncontrolled can lead to severe cellular damage and even cell 

death (Oliver et al., 2001; Pastori and Foyer, 2002). Studies on oxidative stress in seeds, such as 

an electron paramagnetic resonance study by Leprince et al. (1995) which demonstrated that 
.
O2

- 

exacerbated free-radical production in orthodox seeds exposed to desiccation, are of particular 

interest to studies on the cryopreservation of plant germplasm. The Leprince et al. (1995) study 

did not involve exposing seeds to LN, but informed our thinking around why desiccation 

tolerance is frequently a prerequisite for cryo-tolerance in plant germplasm (reviewed by 

Benson, 1990; Dumet et al., 2000; Dumet and Benson, 2000). In the present study, evaporative 

(i.e. flash drying) and osmotic (i.e. during cryoprotection) dehydration (in H. montanus embryos 

only) increased .O2
- levels relative to fresh embryos and this trend was significantly more 

pronounced for both species when flash drying and cryoprotection were combined (Fig. 4.1A, 

B).  

Desiccation stress, apart from resulting in the loss of hydrophilic interactions and the 

associated perturbation of macromolecule structure (reviewed by Crowe and Crowe, 1986; 

Pammenter and Berjak, 1999; Walters et al., 2002), can significantly enhance free-radical 

production in non-orthodox seeds (Hendry et al., 1992; Leprince et al., 1993; Varghese and 

Naithani, 2002; Bailly, 2004; Francini et al., 2006; Pukacka and Ratajczak, 2006; Roach et al., 

2008). This increase in free-radical production, believed to be the consequence of uncoordinated 
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metabolism that occurs at intermediate hydration levels during dehydration (Pammenter et al., 

1998, 2000; Côme and Corbineau, 1996; Walters et al., 2002; Bailly, 2004), generally leads to 

lipid peroxidation and an accompanying decline in viability (Hendry et al., 1992; Chaitanya and 

Naithani, 1994, 1998; Leprince et al., 1994; Li and Sun, 1999; Greggains et al., 2001; Varghese 

and Naithani, 2002; Francini et al., 2006). In the present study, elevated post-drying 
.
O2

-
 levels 

were accompanied by declines in viability (Fig. 4.1A, B) but in contrast to the studies 

referenced above, this was not correlated with an increase in TBARS levels (Fig. 4.2A, B). In 

fact, post-drying TBARS levels in both species were either similar to, or lower than fresh 

embryos. Xin et al. (2010) have similarly shown TBARS accumulation and viability loss to be 

unrelated in rapidly dried recalcitrant Antiaris toxicaria axes. Those authors suggest that 

viability loss under rapid drying in recalcitrant axes may be associated with mechanical or 

physical damage, rather than have a metabolic basis. 

 

Cooling  

As mentioned earlier, oxidative stress (primary and secondary) appears to be a major 

component of chilling and cryoinjury in a variety of plant tissues (Tapell, 1966; Benson, 1990; 

Prasad et al., 1994; Benson et al., 1995; Doke 1997; Day et al., 1998; Park et al., 1998; 

Harding, 1999; Fleck et al., 2000, 2003; Benson and Bremner, 2004; Blagojević, 2007; 

Johnston et al., 2007). Cryoinjury in seed tissues has also been attributed to an increase in 

oxidative stress (Dussert et al., 2003; Walters et al., 2004; Varghese and Naithani, 2008; 

Whitaker et al., 2010). In the present study, cooling generally led to the greatest increase in 
.
O2

-
 

production (Fig. 4.1A, B), and the greatest decline in enzymic antioxidant activity (e.g. SOD in 

A. belladonna; CAT, GR, POX and AsPX in both species [Figs 4.3, 4.4, 4.6 and 4.7 

respectively]).  This was accompanied by considerable or, most often complete post-thaw 

viability loss and when data for cooled and non-cooled treatments were pooled, there was a 

significant negative correlation between .O2
- production and viability for both species (Fig. 

4.1A, B). The results of such correlations should always be interpreted with caution since they 

are not necessarily causative. However, the loss of compartmentalisation and metabolic 

uncoupling that often accompanies freezing (Singh and Miller, 1985) can have catastrophic 

effects on both primary metabolism (reviewed by Tapell, 1966) and antioxidant defences (Guy, 

1990). This can in turn inflict physical and metabolic ‘lesions’ on plant tissues, leading to an 

enhancement in free-radical production and an accompanying decline in viability (Benson and 

Withers, 1987; Benson and Noronha-Dutra, 1988; Benson et al., 1992, 1995; Okuda et al., 

1994; Fleck et al., 1999, 2000, 2003; Varghese and Naithani, 2008).  

In the present study, post-thaw TBARS levels in A. belladonna were relatively higher than 

fresh and pre-conditioned embryos, while post-thaw TBARS levels in H. montanus (except for 
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>0.4D-rapid and >0.4D-slow) were generally similar to, or slightly lower than fresh embryos 

(Fig. 4.2A, B).  Potential explanations for these inter-species differences in post-thaw lipid 

peroxidation patterns, include the possibility that the majority of lipid hydroperoxides (LOOHs) 

generated as a consequence of lipid free-radical production in H. montanus, were reduced to 

hydroxy acids (e.g. HODEs) in vivo, as opposed to be being decomposed and rearranged into 

secondary reaction products such as MDA (as discussed by Esterbauer et al., 1991), which was 

the major thiobarbituric acid-reactive substance measured here.  

 

Influence of glycerol cryoprotection on post-drying and post-thaw viability as related to 

changes in oxidative stress metabolism 

The nature of the damage associated with dehydration-induced oxidative stress can vary, as 

free-radicals can either directly or indirectly cause four types of cellular damage: (1) 

mitochondrial dysfunction; (2) enzyme inactivation; (3) membrane perturbation; and (4) genetic 

damage (Hendry, 1993; Riley, 1994; Foyer et al., 2006). In the event of antioxidant enzyme 

inactivation one must consider that CAT and peroxidase are involved in the metabolism of 

H2O2, a product of SOD catalyzed dismutation of 
.
O2

- 
(Fridovich, 1986) and that a decrease in 

CAT and peroxidase activities could lead to an accumulation of H2O2, which is cytotoxic (in the 

presence of metal catalysts; i.e. the Fenton reaction). More specifically, H2O2 can lead to lethal 

levels of hydroxyl radicals and related lipid peroxidation (MacRae and Ferguson, 1985).  

The actual mechanism by which enzyme inhibition occurs in plants may be enzyme 

dependent and influenced by physico-chemical factors such as the WC of tissues prior to 

freezing (Benson and Bremner, 2004). Water content also affects the range of temperatures at 

which tissue water freezes and the cooling rate required to traverse that temperature range 

before ice nucleation, but since cryoprotectants actually alter the freezing properties of water, 

they have the potential to change the relationship between WC and the required cooling rate 

(Volk and Walters, 2006).  Certain cryoprotectant additives may even offer ‘biochemical’ and 

‘physical’ protection during cryopreservation (Benson and Bremner, 2004; Fuller, 2004). The 

ability of certain cryoprotectants like Gly (Polge et al., 1949) and dimethyl sulphoxide (DMSO) 

(Benson and Withers, 1987; Fleck et al., 2000) to scavenge free-radicals for instance, may make 

a significant contribution to their protective efficacy as well as their colligative and osmotic 

properties (Benson and Bremner, 2004). Ultrastructural studies described in Chapter 3 (section 

3.3) clearly showed Gly cryoprotection to promote the post-drying and post-thawing retention of 

ultrastructural integrity in the embryos investigated in this study and based on the results 

obtained here this may have been facilitated by the superior antioxidant protection in Gly CP, as 

opposed to non-CP, embryos after drying and cooling.  
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In the present study, except for SOD in H. montanus (Fig. 4.3B) and AsPX in both species 

(Fig. 4.7A, B), enzymic antioxidant activities in both species were often reduced relative to 

fresh embryos after partial dehydration (Figs 4.4-4.6A, B). In non-orthodox seeds enzymic 

antioxidants are often inactivated or function sub-optimally under conditions of water stress and, 

as observed here (Figs 4.4-4.6A, B), this loss of enzymic antioxidant capacity is often 

accompanied by a decline in viability (e.g. Hendry et al., 1992; Chaitanya et al., 2000; 

Greggains et al., 2001; Varghese and Naithani, 2002; Francini et al., 2006; Tommasi et al., 

2006). The absence or poor expression of mechanisms that allow orthodox seeds to avoid and 

recover from free-radical-induced injury during dehydration, such as the maintenance and/or 

stimulation of antioxidant defences (Leprince et al., 2000; De Tullio and Arrigoni, 2003; Bailly, 

2004; Boudet et al., 2006), may therefore represent one of the major determinants of desiccation 

sensitivity in the amaryllid embryos investigated here.  

The post-drying decline in enzyme activity observed here was, however, consistently less 

severe in Gly CP, as opposed to non-CP, embryos (e.g. CAT: <0.4D-Gly for both species [Fig. 

4.4A, B]; GR: > and <0.4D-Gly for both species [Fig. 4.5A, B]; POX: > and <0.4D-Gly for A. 

belladonna [Fig. 4.6A]). In fact, post-drying activities for AsPX (in both species [Fig. 4.7A, B]) 

and SOD (in H. montanus only [Fig. 4.3B]) were even enhanced relative to fresh embryos in 

some Gly CP+D treatments. A dehydration-induced increase in SOD and/or AsPX activity has 

been observed in other non-orthodox seeds (e.g. Araucaria bidwilli [Francini et al., 2006]; 

Azadirachta indica [Varghese and Naithani, 2002, 2008]; Acer saccharinum [Pukacka and 

Ratajczak, 2006]). As in other seed-based studies (e.g. Varghese and Naithani, 2002; 

Garnczarska et al., 2008), the post-drying enhancement of SOD activity observed in H. 

montanus here, may have been associated with the desiccation-induced accumulation of 
.
O2

-
 

(discussed earlier). Ascorbate peroxidase activity may have been enhanced (in both species) to 

compensate for the post-drying decline in CAT and GR activity, both of which also scavenge 

H2O2. Compared with orthodox seeds, recalcitrant types are often characterised by enhanced 

activity of the enzymes of the ascorbate-glutathione pathway, such as AsPX, and in recalcitrant 

seeds decreased sensitivity to dehydration may be correlated with enhanced AsPX activity (see 

Tommasi et al., 1999). Such results are often attributed to the presence of AsPX in all cell 

compartments and its high affinity for H2O2 (Pukacka and Ratajczak, 2006).  

Both Gly and Suc CP failed to reduce post-drying .O2
- production relative to non-CP 

embryos (Fig. 4.1A, B). However, the relatively higher post-drying antioxidant enzymic 

activities in Gly CP compared with non-CP embryos (discussed above) was accompanied by 

relatively lower lipid peroxidation levels (Fig. 4.2A, B). Post-drying viability retention in non-

orthodox seeds has been correlated with reduced lipid peroxidation and the retention of enzymic 
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antioxidant activity elsewhere (e.g. Chaitanya and Naithani, 1994; Varghese and Naithani, 

2001) and this may explain why post-drying viabilities in Gly CP embryos were consistently 

higher than non-CP embryos (at comparable WCs; Table 4.1). Sucrose and similar sugars are 

believed to stabilise membranes during the removal of water by interacting with the polar head 

groups of phospholipids during hypertonic exposure, replacing water that usually forms 

hydrogen-bonded bridges with the lipids (Rudolph and Crowe, 1985; Strauss and Hauser, 1986). 

However, membrane impermeable sugars often lose their protective effect at high (≥1 M) 

concentrations, mainly due to the severe osmotic injury they inflict at such concentrations 

(Finkle et al., 1985; Muldrew et al., 2004). This may have been the case in Suc CP+D embryos 

in this study. These data suggest that the potential for a cryoprotectant to reduce free-radical 

mediated damage (e.g. lipid peroxidation) in recalcitrant seed tissues may be realised, only 

when its osmotic properties are undamaging to the tissue.   

Despite the reputation of glycerol as an effective free-radical scavenger (Polge et al., 1949; 

Benson and Bremner, 2004; Fuller, 2004), Gly CP did not lead to a significant decline in post-

thaw .O2
- production (Fig. 4.1A, B) or lipid peroxidation (Fig. 4.2A, B), relative to non-CP + 

cooled  embryos. In spite of this, the highest post-thaw viabilities and antioxidant enzyme 

activities (across all five enzymes), across both species, were associated with Gly CP, as 

opposed to non-CP, embryos (Figs 4.3-4.7A, B). As in other studies (e.g. Guy, 1990; Thomas et 

al., 1999; Varghese and Naithani, 2008), SOD (in A. belladonna only) and CAT activities often 

declined after cooling in the embryos investigated here (Figs 4.3A and 4.4A, B respectively). 

However, SOD activity was detected in a number of Gly CP treatments in which post-thaw 

viability retention was observed, with its activity in these treatments being relatively higher than 

the cooled treatments that led to no viability retention, in A. belladonna, and relatively higher 

than fresh and partially dried embryos, in H. montanus. Superoxide dismutase-enhanced 

tolerance to freezing stress in plant tissues has been previously reported (McKersie et al., 1996; 

Park et al., 1998) and the over-expression of SOD in transgenic plants has been shown to confer 

some protection against enhanced oxidative stress (Sen Gupta et al., 1993).  

A further consideration is that H2O2 is produced by the reaction of SOD and if allowed to 

accumulate in cells, becomes toxic via Fenton chemistry (for reviews see Scandalios, 1997; 

Benson and Bremner, 2004).  Its removal by CAT is therefore a vital component of cellular 

antioxidant protection (for reviews see Scandalios, 1990, 1997) but AsPX, due to its high 

affinity for H2O2 and presence in all cell compartments, is just as important an enzyme in H2O2 

detoxification in plant cells (Pukacka and Ratajczak, 2006). Ascorbate peroxidase catalyses the 

reaction between ascorbic acid and H2O2 which forms monodehydroascorbate. Ascorbate is 

thereafter regenerated from monodehydroascorbate through an enzymic route 
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(monodehydroascorbate reductase) or via spontaneous transformation of monodehydroascorbate 

into dehydroascorbate (DHA) (see Pukacka and Ratajczak, 2006). The regeneration of ascorbic 

acid from DHA occurs via a catalytic reaction by dehydroascorbate reductase coupled to a 

glutathione-oxidised glutathione (GSH-GSSG) cycle in which reduced GSH is oxidised to the 

disulphide GSSG (for a review see Kranner et al., 2006). The regeneration of GSH is carried out 

by glutathione reductase (for a review see Sharma and Davis, 1997). So, together with CAT, 

control of H2O2 levels by the ascorbate-glutathione enzymes (mentioned above) is critically 

important to the amelioration of oxidative stress in vegetative (Asada, 1992) and seed (Pukacka 

and Ratajczak, 2006) tissues. With reference to other studies (e.g. Aebi, 1983; MacRae and 

Ferguson, 1985; Fridovich, 1986) the relatively higher post-thaw SOD activities in the Gly CP 

treatments that facilitated post-thaw viability retention in this study (Fig. 4.3A, B), probably led 

to increased levels of H2O2, most especially in treatments in which CAT and/or AsPX activities 

were compromised. This may explain, (1) why there was the tendency for treatments associated 

with post-thaw viability retention in H. montanus to exhibit CAT activity across relatively more 

replicates than those associated with complete viability loss (Fig. 4.4B; detailed data not 

shown); (2) why (except for >0.4D-rapid) post-thaw CAT activity in A. belladonna was 

detected only in treatments that facilitated post-thaw viability retention (Fig. 4.4A); (3) why 

across the five enzymes assayed, it was only for CAT that enzyme activity was significantly 

correlated with viability (for both species; Fig. 4.4A, B); (4) why, for both species, the 

treatments that were associated with the two highest post-thaw viabilities exhibited SOD and 

CAT activities that were relatively higher than the other cooled treatments; (5) why the four 

highest post-thaw AsPX activities in A. belladonna were associated with the four highest post-

thaw viabilities (Fig. 4.7A); and (6) why (except for <0.4D-Gly-slow) post-thaw AsPX activity 

in H. montanus was detected only in treatments that facilitated post-thaw viability retention 

(Fig. 4.7B).  

The protective roles of SOD, CAT and AsPX in relation to free-radical-mediated damage of 

cellular membranes are well documented (Touchell and Walters, 2000; Bailly, 2004; Benson 

and Bremner, 2004; Kibinza et al., 2006), and there are reports on the impairment of cellular 

metabolism in seeds upon failure of these enzymic antioxidants (Chaitanya and Naithani, 1994, 

1998). Hydrogen peroxide levels were not measured here but the post-thaw patterns in SOD, 

CAT and AsPX antioxidant activities discussed above, suggest that Gly CP embryos may have 

been more efficient than non-CP embryos at the enzymatic detoxification of H2O2. Also, higher 

post-thaw viabilities in Gly CP embryos were often accompanied by relatively higher POX 

activities than non-CP embryos (Fig. 4.6A, B). This suggests that protection against substrate 

level peroxidation by this guaiacol specific peroxidase (for a review see Elstner and Osswald, 
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1994) may have also favoured post-thaw viability retention in Gly CP embryos. Studies on plant 

(Fleck et al., 2003) and animal (Zhou et al., 2008) cells have reported post-thaw viability 

retention in CP cells to be correlated with the maintenance or enhancement of antioxidant 

activity. The exact mechanism/s upon which this relationship is based have yet to be identified 

but some possibilities are discussed in Chapter 8.  

A further consideration is that viable tissues recovered from cryostorage are influenced by 

their pre-storage ‘metabolic history’, such that the status of cell signalling mechanisms and 

redox states upon freezing, influences the subsequent manifestation of free-radical injury during 

and after retrieval from storage (Fennema and Sung, 1980; Benson and Bremner, 2004). 

Incipient, deleterious metabolic reactions may actually be ‘fixed’ at the point of freezing and 

‘held in suspension’ until their effects are manifested on thawing and devitrification (Fuller et 

al., 1988; Benson, 1990; Benson and Bremner, 2004). Presently, the post-drying decline in 

enzymic antioxidant activities, and increase in lipid peroxidation were more severe in the 

absence of Gly CP. This suggests that the cumulative effects of storage- and dehydration-

induced lipid peroxidation (Fig. 4.2A, B), and dehydration-induced decline in enzymic 

antioxidant activities (Figs 4.3-4.7A, B), may have pre-disposed non-CP+D embryos to greater 

freeze-thawing damage than Gly-CP+D embryos. 

As in other studies (e.g. Fleck et al., 2003), enzymic antioxidant activity was detected in 

non-viable embryos here. Glutathione reductase in H. montanus (Fig. 4.5B) for example, was 

detected across all cooled treatments, irrespective of whether they facilitated post-thaw viability 

retention or not. Data about the regulation of enzymes such as GR during periods of abiotic 

stress are less clear than for CAT and AsPX and do not permit the construction of a clear picture 

of their possible roles in the tolerance of abiotic stresses (Bailly, 2004). However, Fleck et al. 

(2003) also caution that since abiotic (chemical as opposed to metabolic) free-radical mediated 

oxidative reactions continue to occur in dead cells, lethally damaged cells can display residual 

enzyme activity.  

 

4.5 Concluding remarks 

Pre-conditioning and freeze-thawing led to an increase in oxidative stress and the accompanying 

decline in viability suggests that oxidative stress was a major component of cryoinjury in the 

embryos investigated here. Post-thaw viability retention in Gly CP+D embryos was significantly 

higher than non-CP+D embryos, possibly related to the relatively lower post-drying lipid 

peroxidation levels and relatively higher post-drying and post-thawing enzymic antioxidant 

activities in Gly CP embryos. The results of this study lend support to other suggestions that 

oxidative stress is a major component of cryoinjury in recalcitrant seeds (e.g. Chandel et al., 
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1996; Touchell and Walters, 2000; Normah and Makeen, 2008; Walters et al., 2008) and 

corroborate findings of others who have concluded that enzymic antioxidant protection has a 

role in low temperature and cryo-tolerance (Green et al., 1986; Prasad, 1996; Fryer et al., 1998; 

Fleck et al., 2000; Touchell and Walters, 2000; Xin and Browse, 2000; Dussert et al., 2003; 

Sung et al., 2003; Odani et al., 2003; Johnston et al., 2007; Varghese and Naithani, 2008). 

However, in the present study the retention of antioxidant activity was not always accompanied 

by the retention of viability. This reinforces the notion that post-thaw survival in plant 

germplasm relies on the protection of the suite of integrated systems responsible for gross 

physiological regulation. 

Pre-conditioning treatments that provide pathways for reduction of ROS may play a part in 

facilitating viability retention in recalcitrant zygotic germplasm thawed after retrieval from 

cryostorage. Treatments such as Gly cryoprotection, may act either by checking ROS 

production or by providing/protecting ROS scavenging agents during pre-conditioning for, and 

after retrieval from, cryostorage. Additionally, adaptations of classical cryo-based ‘stress 

acclimation’ methods (e.g. Reed and Yu, 1995; Benson et al., 1996; Dumet et al., 2000) may 

decrease cryo-sensitivity in recalcitrant zygotic germplasm by enhancing stress tolerance 

mechanisms such as antioxidant protection; this forms the basis of Chapter 5.  
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CHAPTER FIVE: 

Can osmotic or oxidative stress pre-treatment decrease Amaryllis belladonna 

and Haemanthus montanus zygotic embryo cryo-sensitivity? 
 

Abstract 

Exposure of certain plant tissues to low levels of oxidative or osmotic stress can improve their 

tolerance to a wide range of stresses. This study investigated whether exposure of recalcitrant 

Haemanthus montanus (Baker) zygotic embryos to low levels of oxidative stress provoked by 

exogenously applied hydrogen peroxide (H2O2), or exposure of recalcitrant Amaryllis 

belladonna (L.) embryos to low levels of osmotic stress provoked by low water potential 

mannitol and polyethylene glycol solutions, reduces their sensitivity to subsequent dehydration 

and freeze-thaw stresses associated with cryopreservation. Since increased antioxidant activity 

has been correlated with enhanced tolerance to abiotic stresses, viability of embryos in this 

study was related to changes in post-drying and post-thaw total antioxidant activity (TAA). 

Exposure of A. belladonna zygotic embryos to osmotica decreased embryo water content and 

very often viability as well. The variability in osmotic stress-induced viability loss across 

different water potential × temperature × incubation time combinations was considerable but 

there was a trend for viability loss to be greater at lower water potentials and longer incubation 

times. With rapid drying and freeze-thawing the decline in viability and TAA relative to fresh 

embryos, was consistently more severe in osmotica pre-treated, as opposed to untreated, 

embryos. Exposure of H. montanus zygotic embryos to H2O2 concentrations >0.10 mM led to a 

decline in viability relative to fresh embryos (100% viability). Exposure to 0.10 mM H2O2 for 

30 min had no adverse effect on viability. However, when this pre-treatment was followed by 

rapid drying and freeze-thawing, the post-drying and post-thaw decline in viability and TAA 

relative to fresh embryos was generally more severe when embryos were pre-treated with H2O2. 

The results suggest that exposure of recalcitrant amaryllid zygotic embryos to osmotic and 

oxidative stress pre-treatments may pre-dispose such explants to greater post-drying and post-

freezing TAA and viability loss than untreated zygotic embryos, rather than inducing some 

stress tolerance.   

 

5.1 Introduction 

Improving the vigour and viability of plant tissues exposed to the dehydration and freeze-

thaw stresses associated with cryopreservation is based on fundamental studies of cold 

tolerance. A commonly used method of improving cryo-tolerance in plant germplasm is stress 

acclimation, particularly cold acclimation or cold hardening, during which the tolerance of 

explants to freezing is enhanced by gradual exposure to low but above zero temperatures in 
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combination with shortened day-length, osmotic changes and/or abscisic acid (ABA) treatment 

(e.g. Reed and Yu, 1995; Benson et al., 1996; Dumet et al., 2000; reviewed by Panis and 

Lambardi, 2006). These treatments are based on observations that the tolerance of a number of 

species (mainly temperate) to freezing can increase during late autumn or early winter, when 

these plants perceive the seasonal changes in temperature. This triggers a change in gene 

expression, referred to as ‘adaptive metabolism’, which leads to enhanced freezing tolerance 

(Guy, 1990; Xin and Browse, 2000; Kaplan et al., 2004). Adaptive metabolism therefore has 

important implications for cryopreservation, since it may allow for the manipulation of explants 

to produce such responses and so improve cryo-tolerance (Benson et al., 1996; Johnston et al., 

2007; Benson, 2008).  

A number of natural and simulated cold-adaptations have been exploited to improve 

cryostorage protocols for plant germplasm but these have been successful almost exclusively in 

temperate species (Reed and Yu, 1995; Benson et al., 1996; Johnston et al., 2007; reviewed by 

Benson, 2008). Additionally, the low in vitro growth temperatures (e.g. Yongjian and Reed, 

2000) and/or high-sugar pre-treatments (e.g. Borochov et al., 1989; Johnston et al., 2007) 

generally associated with simulated cold adaptations preclude their application to recalcitrant 

seeds, which are desiccation- and very often chilling-sensitive as well (Chin and Roberts, 1980; 

Ellis et al., 1990; Hong and Ellis, 1996). However, reports of a web of overlapping signals in 

stress response pathways, where induction of tolerance to one particular stress may result in 

acquired tolerance to other stresses (a phenomenon referred to as ‘cross-tolerance’ [Pastori and 

Foyer, 2002; Kozlowski and Pallardy, 2002; Xiong et al., 2002]), offer some hope for plant 

tissues that are not amenable to conventional cold acclimation. In this regard, many of the 

responses observed during cold acclimation are strikingly similar to responses to other stresses, 

e.g. drought and osmotic stress (Gazzarrini and McCourt, 2001).  

As in other plant tissues (Tapell, 1966; Levitt, 1980; Steponkus, 1985; Benson and Withers, 

1987; Benson, 1990; Benson et al., 1992, 1995; Prasad et al., 1994a; Doke, 1997; Day et al., 

1998; Park et al., 1998; Fleck et al., 1999, 2000, 2003; Johnston et al., 2007) oxidative stress 

appears to be a major source of chilling and cryoinjury in seed tissues (Touchell and Walters, 

2000; Dussert et al., 2003; Varghese and Naithani, 2008; Whitaker et al., 2010). Exposure of 

certain plant tissues to low levels of oxidative stress (usually in the form of exogenous hydrogen 

peroxide [e.g. Azevedo Neto et al., 2005; Hung et al., 2005; Wahid et al., 2007]) or osmotic 

stress (e.g. Bueno et al., 1998; Guan and Scandalios, 1998; Guan et al., 2000) can improve their 

tolerance to a wide range of abiotic stresses by, among other things, regulating the expression of 

a number of ‘defence’ genes. Some of these genes are involved in antioxidant protection 

(Kovtun et al., 2000; Robert and David, 2004; Pearce, 2004; Hung et al., 2005) and increased 
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antioxidant activity has been correlated with enhanced tolerance to a number of different 

stresses in plants (e.g. drought, salinity, chilling and freezing [Dhindsa and Matowe, 1981; 

Senaratna and McKersie, 1986; Leprince et al, 1990; Dhindsa, 1991; Price and Hendry, 1991; 

Anderson et al., 1992; Seel et al., 1992; Reuzeu and Cavalie, 1995; O’Kane et al., 1996; Scebba 

et al., 1999; Baek and Skinner, 2003]).  

A practical application may be derived from the above findings, where H2O2 and osmotica 

pre-treatments could be used to induce stress acclimation in cryo-sensitive plant material such as 

recalcitrant zygotic germplasm prior to partial dehydration (which is a standard pre-treatment 

for the cryopreservation of such explants) and freezing, and so reduce their cryo sensitivity. The 

present study tested this hypothesis by investigating whether the exposure of recalcitrant 

Haemanthus montanus (Baker) zygotic embryos to low levels of oxidative stress (provoked by 

exogenously applied H2O2), or recalcitrant Amaryllis belladonna (L.) zygotic embryos to low 

levels of osmotic stress (provoked by low water potential solutions of osmotica) reduces their 

sensitivity to subsequent partial dehydration and freeze-thawing. Solutions of sucrose or even 

sucrose pre-culture could have been used to expose embryos to low water potentials.  In fact, 

sucrose pre-culture has been shown to increase freezing tolerance in vegetative and 

embryogenic tissues, however, sucrose when applied in solution or culture serves as a carbon 

substrate facilitating the in vivo synthesis of carbohydrates (Dumet et al., 1993; Xu and Bewley, 

1993). In the amaryllid embryos investigated here provision of a carbon substrate may have 

stimulated germinative events during pre-treatment and as shown by Sershen et al. (2008), 

amaryllid embryos become more desiccation-sensitive as germination progresses. So, to avoid 

the stimulation of germination, mannitol and polyethylene glycol were selected as osmotica here 

since solutions of these membrane impermeable compounds (Michel et al., 1983) were unlikely 

to have provided an additional carbon substrate for the embryos during pre-treatment. 

To assess the role of antioxidant protection in dehydration and freezing tolerance, which is 

well documented in plant tissues (Green et al., 1986; O’Kane et al., 1996; Prasad, 1996; Xin 

and Browse, 2000; Touchell and Walters, 2000; Dussert et al., 2003; Sung et al., 2003; Odani et 

al., 2003; Johnston et al., 2007; Varghese and Naithani, 2008), H. montanus and A. belladonna 

post-drying and post-thaw viabilities were related to changes in total antioxidant activity (TAA) 

in the present study. Several total antioxidant assays have been employed to determine 

antioxidant scavenging activity (see Arnao et al., 1999; Rice-Evans, 2000). One particular 

method, namely, the 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical 

scavenging assay has been used for a variety of applications (Rice-Evans, 2000; Johnstone et 

al., 2006), including the estimation of TAA in different types of plant germplasm (e.g. Johnston 

et al., 2006, 2007) and was employed here. The ABTS assay is based on the scavenging of the 
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ABTS radical (ABTS•+; which occurs as a blue-green chromophore) generated from ABTS and 

K2S2O8. More specifically, the assay is designed to measure the rate at which ABTS•+ is 

reduced back to ABTS by antioxidants; the rate of this decrease depends on the type and amount 

of antioxidants (Johnston et al., 2006).  

Additionally, studies described in Chapter 4 (section 4.3) showed post-thaw viability and 

enzymic antioxidant activity (of selected enzymes) to be maximised for both species when 

partial dehydration and cooling was preceded by glycerol (Gly) cryoprotection (CP). To 

distinguish between the effects of the osmotic and oxidative stress pre-treatment and CP, H2O2 

pre-treatment + dehydration/freezing and osmotic stress pre-treatment + dehydration/freezing 

experiments were carried out with and without prior Gly CP. 

Studies described in Chapter 2 (section 2.3) showed zygotic embryo WCs <0.4 g g-1 to be 

superior to those >0.4 g g-1, in promoting post-thaw viability for A. belladonna, while the 

reverse was true for H. montanus. Those studies also showed post-thaw viability in both species 

to be best when embryos were rapidly cooled. Based on those findings, zygotic embryos were 

cooled here, either at WCs in the optimum range (as in A. belladonna) or at WCs that are 

presumably ‘sufficiently low’ or ‘deleteriously high’ (as in H. montanus) for cryopreservation, 

but using rapid cooling rates only.  

It would have been ideal to estimate total antioxidant activity immediately after H2O2 and 

osmotic stress exposure, as well as after H2O2/osmotic stress pre-treatment + drying and 

H2O2/osmotic stress pre-treatment + freeze-thawing. However, as is often the case with 

recalcitrant seeds, seed numbers were limiting; since this study is primarily concerned with the 

ability of zygotic embryos to tolerate the oxidative stress associated with cryopreservation, it 

was decided to estimate TAA after the procedures shown to induce harmful free-radical 

production in A. belladonna and H. montanus zygotic embryos, viz. dehydration and freeze-

thawing (see Chapter 4; section 4.3). Further to this, in desiccation-sensitive tissue the effect of 

a stress, particularly a mild stress, is unlikely to be instantaneous and if a stress induces a 

metabolic disorder, it takes time for the damage consequent upon that disorder to accumulate 

(Walters et al, 2001). In fact, the damage incurred may be evident only after the system has 

rehydrated fully, and metabolism has been reinitiated. In light of this, TAA was measured here, 

immediately after rehydration for cooled and partially dehydrated embryos, and immediately 

after excision for untreated (fresh) embryos. However, this does rely on the assumption that the 

metabolic status of cells during this early recovery phase is a reflection of damage incurred 

during the stress as well as mitigation against the stress.  
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5.2 Materials and Methods 

Plant material  

Mature A. belladonna and H. montanus fruits were harvested directly from parent plants and 

transported in plastic bags to the laboratory with minimum delay (1-2 d) or water loss. Upon 

arrival, the seeds were decontaminated and stored ‘hydrated’, as described in Chapter 2 (section 

2.2).  

 

Reagents 

Ethylene diamine tetra-acetic acid (EDTA), 2,2’-azino-bis-3-ethylbenzthiazoline-6-

sulphonic acid (ABTS), polyethylene glycol (PEG) 8000, polyvinylpyrrolidone (PVP), mannitol 

(MAN), hydrogen peroxide (H2O2), potassium persulfate (K2S2O8), sodium chloride (NaCl), 

calcium chloride (CaCl2) potassium chloride (KCl), sodium di-hydrogen phosphate (NaH2PO4) 

and  Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) were purchased from 

Sigma Chemical Co. (St. Louis, MO, U.S.A.). All other reagents were analytical grade and 

locally available.  

 

Embryo pre-treatments 

Seeds were stored for between 7-10 d prior to experimentation. For these experiments 

zygotic embryos were excised and collected within closed Petri dishes on filter paper moistened 

with sterile calcium-magnesium solution (CaMg solution: 0.5 µM CaCl2.2H2O and 0.5 mM 

MgCl2.6H2O [Mycock 1999]), before exposure to any of the treatments described below.  In 

order to minimise the potential variation in drying and/or cooling rate as a function of embryo 

size, only embryos of between 4-6 mm in length were used for these experiments.  

 

Oxidative stress pre-treatment 

As in others studies (e.g. Gadjev et al., 2006) oxidative stress was provoked in H. montanus 

embryos by exogenous application of H2O2 and to optimise the concentration of H2O2 used in 

subsequent H2O2 pre-treatment + cryopreservation experiments, H. montanus embryos were 

initially immersed in solutions of 0.05, 0.10, 0.15 and 0.20 mM aqueous H2O2 for 30 min in the 

dark (with ten embryos at each concentration). Immediately after the exposure period, embryos 

were decontaminated and recovered in vitro to assess viability. Viability (based on the 

production of roots and shoots) was assessed daily for 7 d and based on these results (described 

in section 5.3), embryos were exposed to 0.1 mM H2O2 for 30, 60 and 120 min (with ten 

embryos at each time interval) to optimise the exposure time for all subsequent H2O2 pre-

treatment + cryopreservation studies. These embryos were also decontaminated and recovered 
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in vitro immediately after the appropriate exposure period, and subsequently assessed for vigour 

and viability to identify the treatment with maximum exposure time, yet minimum vigour and 

viability loss.  

 

Osmotic stress pre-treatment 

A. belladonna embryos were exposed to sterile aqueous solutions of MAN and PEG with 

water potentials (Ψ) of -0.3, -0.6 and -1.2 MPa at temperatures of 6, 16 and 25°C, respectively. 

Solutions possessing these target water potentials (WPs) were prepared using equations 1 and 2 

(after Michel et al., 1983): 

  ΨMAN = -0.078 [MAN] T - 22.75 [MAN]                                        [1] 

                                      ΨPEG = 1.29 [PEG]2 T – 140 [PEG]2 – 4 [PEG]                                  [2] 

where Ψ is WP (in bars); [MAN] is mannitol concentration in molal; [PEG] is polyethylene 

glycol concentration in g/g H2O; and T is temperature in °C.   

To optimise the WP × temperature × incubation time combination to be used in subsequent 

osmotic stress pre-treatment + cryopreservation studies, 15 embryos were exposed to each of the 

27 possible WP × temperature × incubation time combinations. Here, freshly excised embryos 

were immersed in 20 ml osmoticum (of -0.3, -0.6 and -1.2 MPa) within glass vials and 

maintained at the desired temperature (6, 16 and 25°C) using water baths, in the dark. 

Polyethylene glycol solutions were continually aerated with an oxygen-enriched gas mixture 

containing 7.5 parts oxygen and 2.5 parts nitrogen (after Bujalski et al., 1989). After incubation 

for the prescribed time, five embryos were used to determine average water content (WC) on a 

dry mass basis (as described below) while the remaining ten embryos were recovered in vitro to 

assess vigour and viability. Results of these studies were used to select four WP × temperature × 

incubation time combinations (two for each osmoticum) with maximum exposure time, yet 

minimum vigour and viability loss.  

 

Osmotic stress pre-treatment + cryopreservation studies  

Immediately after exposure to -0.3 MPa MAN at 16°C for 12 h, -0.3 MPa MAN at 6°C for 

24 h, -0.3 MPa PEG at 16°C for 12 h, and -0.3 MPa PEG at 6°C for 12 h, 115 A. belladonna 

embryos from each treatment, as well as 115 freshly excised embryos, were rapidly dehydrated 

via flash drying to WCs in the range 0.36-0.29 g g-1 (collectively referred to as ‘<0.4D’ from 

here on), with and without prior Gly CP. For cryoprotection, embryos were immersed in a 5% 

solution of Gly (v/v) for 1 h, and thereafter transferred to a 10% Gly (v/v) solution for a further 

hour. Immediately after flash drying five embryos were assessed for WC while 55 embryos 

were rehydrated in CaMg solution at 25ºC for 30 min, in the dark. Ten of these rehydrated 



 

 

227 

embryos were recovered in vitro to assess viability while 45 were immediately measured for 

TAA. The remaining 55 non-rehydrated embryos were immediately rapidly cooled (at hundreds 

of °C s-1) and stored in liquid nitrogen (LN) as described in Chapter 2 (section 2.2). After 48 h, 

embryos were recovered from LN and immediately after thawing and rehydration (as described 

below), ten embryos were recovered in vitro to assess viability, while 45 embryos were 

immediately measured for TAA.  

 

Oxidative stress pre-treatment + cryopreservation studies  

Low levels of oxidative stress were provoked in freshly excised H. montanus embryos by 

exposing them to 0.1 mM H2O2 for 30 min. Immediately after exposure, 115 embryos were 

subjected to each of the following treatments: (1) flash drying to WCs <0.4 g g-1 (c. 0.35-0.30 g 

g-1; referred to as ‘<0.4D’ from here on);  (2)  flash drying to WCs >0.4 g g-1 (c. 0.51-0.44 g g-1; 

referred to as ‘>0.4D’ from here on); and (3) flash drying to WCs > and <0.4 g g-1 after Gly CP 

(referred to as ‘>0.4D-Gly’ and ‘<0.4D-Gly’ from here on). Freshly excised embryos that had 

not been exposed to H2O2 were also subjected to the above treatments. Cryoprotection was 

carried out as described for the osmotic stress pre-treatment + cryopreservation studies after 

exposure to H2O2. Immediately after flash drying five embryos were assessed for WC while 55 

embryos were rehydrated in CaMg solution at 25ºC for 30 min, in the dark. Ten of these 

rehydrated embryos were recovered in vitro to assess viability while 45 were immediately 

measured for TAA. The remaining 55 non-rehydrated embryos were immediately rapidly cooled 

(at hundreds of °C s-1) and stored in LN as described in Chapter 2 (section 2.2). After 48 h, 

embryos were recovered from LN and immediately after thawing and rehydration, 10 embryos 

were recovered in vitro to assess viability, while 45 embryos were immediately measured for 

TAA.  

 

Vigour and viability assessment for optimisation of oxidative/osmotic stress pre-treatments 

Immediately after osmotic/oxidative stress pre-treatment, zygotic embryos were 

decontaminated and recovered in vitro, as described in Chapter 2 (section 2.2). Root and shoot 

production was scored daily across all treatments, for 7 d as in the H2O2 pre-treatments, or 30 d 

as in the osmotic stress pre-treatments. Viability was based on root and shoot production and 

daily germination records were used to calculate vigour, in terms of the two indices employed in 

the studies discussed in Chapter 2 (see section 2.2 for a description of these indices): (1) mean 

time to germinate (MTG; after Ellis and Roberts, 1981); and (2) germination index (GI; after 

Czabator, 1962).  
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Thawing, rehydration and in vitro viability assessment of cooled zygotic embryos 

For H2O2 pre-treatment + cooled and osmotic stress pre-treatment + cooled treatments, 

embryos retrieved from LN were thawed in CaMg solution held at 40°C for 2 min and 

rehydrated in CaMg solution at 25ºC for 30 min, in the dark. Ten of these rehydrated embryos 

were decontaminated and recovered in vitro for 40 d, as described in Chapter 2 (section 2.2), 

with one sub-culture after 20 d. In vitro grown embryos were assessed for viability daily for 40 

d; viability was defined by root and shoot production.  

Ten embryos (with shedding WCs of c. 4.67 g g-1 for A. belladonna and 5.05 g g-1 for H. 

montanus) exposed to none of the embryo treatments described above (i.e. fresh embryos) were 

also assessed for vigour and viability in vitro.  

 

Water content determination  

For WC determinations, embryos were weighed individually using a 6-place balance 

(Mettler, MT5; Germany) and dried in an oven at 80°C for 48 h before being re-weighed to 

determine the dry mass. Water content was expressed on a dry mass basis (dmb; g H2O per g 

dry matter [g g-1]). 

 

Extraction and assay of total antioxidant activity (TAA) 

Total antioxidant activity was measured via the ABTS radical cation decolorization assay, 

as described by Re et al. (1999). Immediately after rehydration, 45 embryos from each treatment 

for which antioxidant activity was to be estimated were divided into three replicate batches of 

15 embryos and immediately extracted for total antioxidants. For this, the three embryo batches 

were homogenised separately in LN with 0.1 g insoluble PVP and suspended in 1.5 ml cold 

(4°C) 50 mM KH2PO4 buffer (pH 7) containing 1 mM CaCl2, 1 mM KCl and 1 mM EDTA 

(Johnston et al., 2006). Insoluble PVP was used to reduce phenolic-induced background 

interference and was removed along with cell debris at the first centrifugation step. Extracts 

were incubated on ice for 20 min, with gentle vortexing every 5 min. Samples were then 

centrifuged for 15 min at 4ºC and 12,000 g, and the supernatant transferred to pre-cooled (4ºC) 

microcentrifuge tubes on ice. Antioxidant assays were performed immediately. Three batches of 

freshly excised embryos that had not been exposed to any pre-treatment, dehydration or cooling 

were also analysed for TAA. 

For the ABTS assay an aqueous solution of 7 mM ABTS and 2.45 mM K2S2O8 was prepared 

and allowed to stand at room temperature for 14-16 h in the dark before first use. The resulting 

ABTS radical solution was diluted with phosphate buffered saline (5 mM NaH2PO4 + 37.5 mM 

NaCl, pH 7.4) until an absorbance of 0.70±0.02 at 734 nm (read using a UV-Vis 
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spectrophotometer; Varian) was obtained. For both standards and samples, 1 ml of diluted 

ABTS radical solution was added to a 1.5 ml plastic cuvette, and the absorbance read at 734 nm 

for the 0 min reading. Then without delay, 10 µl of aqueous tissue extraction or Trolox standard 

was added to the cuvette, the reaction mixed by inverting the cuvette three times, and the 

decrease in absorbance at 734 nm was read after 0.5, 1 and 2 min. Assays were performed twice 

on three different extracts, in the dark. A standard curve was created with a water-soluble ∝-

tocopherol analogue; 0.05-1.0 mM Trolox in phosphate antioxidant extraction buffer. Change in 

absorbance was calculated for samples and expressed as Trolox equivalents on a dry weight 

basis using the standard curve. 

 

Statistical analysis 

Total antioxidant activity data were tested for significant inter-treatment differences by 

Analysis of Variance (ANOVA; SPSS, Version 15). Multiple comparisons were then made using 

a Duncan’s mean separation test. Correlations between TAA and viability were tested for using 

a Pearson correlation test (SPSS, Version 15). For all correlation analyses involving viability, 

viability percentages were arcsin transformed to conform data to parametric test assumptions. 

All viability data were tested for significant inter-treatment differences using null-model chi-

squared analyses (specifically designed to assess non-parametric data) (EcoSim Version 7.72 

[developed by Gotelli and Entsminger, 2009]). Water content data were tested for significant 

differences using a Mann-Whitney-U test, or ANOVA where data were parametric (SPSS, 

Version 15). All statistical tests were performed at the 0.05 level of significance. 

 

5.3 Results 

Optimisation of osmotic stress pre-treatment for A. belladonna zygotic embryos 

Mannitol 

Exposure to all MAN-based osmotic stress pre-treatment combinations decreased embryo 

WC, with exposure to WPs of -0.3 MPa resulting in WCs of 4.11-4.86 g g-1; WPs of -0.6 MPa 

resulting in WCs of 4.07-4.61 g g-1; and WPs of -1.2 MPa resulting in WCs of 3.97-4.54 g g-1 

(data not shown). Except for the fact that longer exposure times resulted in slightly lower WCs, 

within any particular WP category, there were no consistent trends among incubation time, 

temperature and embryo WC. 

There were just three treatments (-0.6 MPa 25°C 1 h; -0.6 MPa 16°C 12 h; and -0.3 MPa 

16°C 24 h) that did not reduce viability relative to fresh embryos (100% viability) (Table 5.1). 

Except for -1.2 MPa 16°C 1 h (10% viability loss), exposure to WPs of -1.2 MPa resulted in 20-

70% viability loss. Except for one treatment (-0.6 MPa 16°C 24 h) in which viability loss was 
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equivalent to 50%, exposure to WPs of -0.3 and -0.6 MPa resulted in 10-30% viability loss. 

Viability loss across all three WPs was generally higher for longer incubation times (Table 5.1). 

Exposure to WPs of -0.3 and -0.6 MPa generally enhanced vigour in terms of an increase in 

germination index (GI) relative to fresh embryos (Table 5.1). This increase was most often 

based on an increase in peak value (PV) and except for -0.6 MPa 25°C 1 h, generally occurred 

after exposure to MAN, at relatively lower temperatures (i.e. 6 and 16°C). While exposure to 

WPs of -1.2 MPa generally decreased GI relative to fresh embryos, -0.3 MPa 16°C 1 h resulted 

in the greatest increase in GI relative to fresh embryos.  

An increase in mean time to germinate (MTG) relative to fresh embryos, indicative of a 

decline in vigour, was observed in a number of treatments across all three WPs but this increase 

was slightly more common at WPs of -0.6 and -1.2 MPa (Table 5.1). In the isolated cases where 

MTG was substantially reduced relative to fresh embryos at WPs of -0.6 and -1.2 MPa, viability 

loss was relatively high (e.g. -0.6 MPa 16°C 24 h = 50% viability). Except for -0.6 MPa 25°C 1 

h, high GIs were generally accompanied by low MTGs. 

There were indications that treatments involving incubation temperatures of 25°C led to a 

slightly more severe loss of vigour and viability than temperatures of 6 and 12°C (Table 5.1). 

Based on the fact that they resulted in just 10% viability loss, increased vigour (in terms of 

an increase in GI and a decrease in MTG) relative to fresh embryos, and maximised the time 

available for stress acclimation, -0.3 MPa 16°C 12 h and -0.3 MPa 6°C 24 h were selected as the 

two MAN-based osmotic stress pre-treatments for subsequent cryopreservation studies. 

 

Polyethylene glycol 

Exposure to all PEG-based osmotic stress pre-treatment combinations decreased embryo 

WC relative to fresh embryos with exposure to WPs of -0.3 MPa resulting in WCs of 3.54-3.95 

g g-1; WPs of -0.6 MPa resulting in WCs of 3.21-3.55 g g-1; and WPs of -1.2 MPa resulting in 

WCs of 3.27-3.65 g g-1 (data not shown). As in the MAN treatments, longer exposure times 

resulted in slightly lower WCs within any particular WP, but there were no consistent trends 

among incubation time, temperature and embryo WC. 
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A number of treatments did not decrease viability relative to fresh embryos (100% viability) 

and except for -0.3 MPa 6°C 1 h, -0.3 MPa 25°C 12 h and -0.6 MPa 25°C 12 h, these treatments 

most often involved the shortest exposure time (i.e. 1 h) (Table 5.1). Except for isolated 

treatments (e.g. -0.3 MPa 25°C 24 h and -0.6 MPa 16°C 24 h) exposure to WPs of -0.3 and -0.6 

MPa led to 10-30% viability loss while exposure to WPs of -1.2 MPa generally resulted in 

higher viability loss (10-70%). The level of viability loss across all three WPs was generally 

higher for longer incubation times (Table 5.1). 

Mannitol Polyethylene glycol Treatment 
1MTG* 2GI* 3Viability MTG* GI* Viability 

Fresh 9.8 18.9 100 9.8 18.9 100 

-0.3MPa 6°C 1h 9.1 4.6 90 7.1 74.1 90 

-0.3MPa 16°C 1h 13.6 4.4 90 5.3 100.0 80 

-0.3MPa 25°C 1h 15.1 6.6 80 14.6 20.7 100 

-0.3MPa 6°C 12h 7.6 27.8 70 6.9 96.4 90 

-0.3MPa 16°C 12h 5.8 140.6 90 6.3 41.7 90 

-0.3MPa 25°C 12h 11.6 9.7 70 8.8 22.7 80 

-0.3MPa 6°C 24h 8.6 38.6 90 9.8 16.5 80 

-0.3MPa 16°C 24h 14.5 6.3 100 5.4 180.0 80 

-0.3MPa 25°C 24h 10.4 4.7 60 6.3 49.4 80 

-0.6MPa 6°C 1h 7.8 34.6 90 13.3 6.6 100 

-0.6MPa 16°C 1h 6.9 33.6 80 7.8 13.7 100 

-0.6MPa 25°C 1h 11.5 49.6 100 8.2 27.7 100 

-0.6MPa 6°C 12h 7.0 51.8 70 14.5 7.7 100 

-0.6MPa 16°C 12h 6.8 51.0 100 8.0 61.7 80 

-0.6MPa 25°C 12h 12.0 10.5 70 6.3 82.6 100 

-0.6MPa 6°C 24h 8.1 68.8 80 35.3 24.3 70 

-0.6MPa 16°C 24h 1.0 25.0 50 8.0 17.4 100 

-0.6MPa 25°C 24h 69.9 2.4 70 9.6 21.4 80 

-1.2MPa 6°C 1h 14.4 9.3 80 10.3 14.8 100 

-1.2MPa 16°C 1h 14.7 4.6 90 10.3 17.4 100 

-1.2MPa 25°C 1h 11.5 2.4 80 6.7 69.4 100 

-1.2MPa 6°C 12h 10.7 13.2 70 10.1 18.1 80 

-1.2MPa 16°C 12h 8.4 24.6 70 6.0 55.6 80 

-1.2MPa 25°C 12h 9.8 7.7 50 18.4 1.8 50 

-1.2MPa 6°C 24h 8.5 10.4 40 11.0 0.8 20 

-1.2MPa 16°C 24h 15.5 2.8 40 5.0 16.0 20 

-1.2MPa 25°C 24h 22.0 0.3 30 5.0 4.0 10 
1 mean time to germinate; 2 germination index; 3 viability = root and shoot production. MTG and GI 
were based on root and shoot production. p < 0.05 when viability data were tested for inter-treatment 
differences (null-model chi-squared analysis, n = 10). *Experiment performed once, not subjected to 
statistical analysis. Treatments shaded in grey resulted in 10% viability loss, increased vigour relative 
to fresh embryos, and maximised time for stress acclimation; these pre-treatments were selected for 
all subsequent osmotic stress + cryopreservation studies. 
 

Table 5.1 Vigour and viability of A. belladonna zygotic embryos after exposure to various 
mannitol- and polyethylene glycol-based osmotic stress pre-treatments. 
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Germination index was enhanced relative to fresh embryos in a number of treatments across 

all three WPs but the frequency of this increase (which was generally based on an increase in 

PV) was much higher in treatments involving WPs of -0.3 and -0.6 MPa (Table 5.1). Vigour 

was enhanced in terms of a decrease in MTG in >60% of the treatments; however, this increase 

in vigour was most often accompanied by a significant decline in viability relative to fresh 

embryos (Table 5.1). Except for -0.3 MPa 25°C 1 h, treatments that increased MTG relative to 

fresh embryos generally involved WPs of -0.6 or -1.2 MPa. When a decrease in MTG was 

observed, this was often most pronounced at incubation temperatures of 16°C.  

Based on the fact that they resulted in just 10% viability loss, increased vigour (in terms of 

an increase in GI and a decrease in MTG) relative to fresh embryos, and maximised the time 

available for stress acclimation, -0.3 MPa 6°C 12 h and -0.3 MPa 16°C 12 h were selected as the 

two PEG-based osmotic stress pre-treatments for subsequent cryopreservation studies.  

 

Viability of A. belladonna zygotic embryos after osmotic stress pre-treatment + dehydration and 

osmotic stress pre-treatment + freeze-thawing as related to changes in total antioxidant activity 

(TAA)  

The selected osmotic stress pre-treatments (see Table 5.1) decreased embryo WC relative to 

fresh embryos, but these differences were not significant (Table 5.2). Irrespective of whether 

embryos were CP, osmotically stressed or osmotically stressed + CP before drying, embryos 

across treatments could be partially dried to statistically comparable WCs of c. 0.29-0.36 g g-1 

while still retaining viabilities of ≥60% (Table 5.2).   

Osmotic stress pre-treatment with PEG and MAN led to a slight decline in viability relative 

to fresh embryos (Table 5.2). Partial dehydration, irrespective of whether it was preceded by CP 

or osmotic stress pre-treatment + CP, always led to a significant decline in viability and TAA 

and compared to fresh embryos (Fig. 5.1). This decline in TAA was significantly more 

pronounced in osmotically stressed + dehydrated treatments and often (particularly in the non-

CP treatments) accompanied by slightly higher viability loss than embryos dehydrated without 

osmotic stress pre-treatment. Within the osmotically stressed + partially dried treatments, TAA 

was always significantly higher in Gly CP treatments, while post-drying viability loss in non-CP 

treatments was often slightly higher than CP treatments.  
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Cooling always led to a significant decline in viability and TAA and except for Gly+D+C 

this decline was always significantly greater than that observed after drying or osmotic stress 

pre-treatment + drying (Table 5.2; Fig. 5.1). This post-thaw decline in TAA was significantly 

more severe in treatments involving osmotic stress pre-treatment (Fig. 5.1). All four of the 

treatments that resulted in post-thaw viability involved Gly CP and within these, post-thaw 

viability was highest (60%) in the one treatment that excluded osmotic stress pre-treatment, 

lower (20 and 30%) in the two treatments that involved PEG-based osmotic stress pre-treatment 

and lowest (10%) in the single treatment that involved MAN-based osmotic stress pre-treatment 

Treatment 
2
Viability (%) 

1
WC 

Fresh 100 4.67±0.57 

M[-0.3MPa 16°C 12h] 90 4.47±0.35 

M[-0.3MPa 6°C 24h] 90 4.15±0.97 

P[-0.3MPa 16°C 12h] 90 3.82±0.85 

P[-0.3MPa 6°C 12h] 90 3.95±0.76 
D 80 0.31±0.05 

Gly+D 80 0.34±0.04 
M[-0.3MPa 16°C 12h]+D 70 0.35±0.06 
M[-0.3MPa 6°C 24h]+D 60 0.30±0.07 
P[-0.3MPa 16°C 12h]+D 70 0.29±0.08 
P[-0.3MPa 6°C 12h]+D 70 0.32±0.06 

M[-0.3MPa 16°C 12h]+Gly+D 80 0.36±0.03 
M[-0.3MPa 6°C 24h]+Gly+D 70 0.32±0.05 

P[-0.3MPa 16°C 12h]+Gly+D 80 0.31±0.07 
P[-0.3MPa 6°C 12h]+Gly+D 70 0.34±0.05 

M[-0.3MPa 16°C 12h]+D+C 0 0.35±0.06 
M[-0.3MPa 6°C 24h]+D+C 0 0.30±0.07 

P[-0.3MPa 16°C 12h]+D+C 0 0.29±0.08 
P[-0.3MPa 6°C 12h]+D+C 0 0.32±0.06 

D+C 0 0.32±0.10 
Gly+D+C 60 0.31±0.07 

M[-0.3MPa 16°C 12h]+Gly+D+C 0 0.36±0.03 
M[-0.3MPa 6°C 24h]+Gly+D+C 10 0.32±0.05 
P[-0.3MPa 16°C 12h]+Gly+D+C 30 0.31±0.07 
P[-0.3MPa 6°C 12h]+Gly+D+C 20 0.34±0.05 

Table 5.2 Viabilities and water contents for A. belladonna zygotic embryos exposed  
to various combinations of mannitol- and polyethylene glycol-based osmotic stress  
pre-treatment, glycerol (Gly) cryoprotection, partial dehydration, and rapid cooling. 

1 water content (g g-1; dry mass basis); 2 viability = root and shoot production.  Gly = 
cryoprotected with glycerol; M = mannitol pre-treatment; P = polyethylene glycol pre-
treatment; C = cooled at hundreds of °C s-1; D = dried to water contents <0.4 g g-1.  p < 
0.05 when viability (null-model chi-squared analysis, n = 10) and water content (Mann-
Whitney U test, n = 10) data were tested for inter-treatment differences; p > 0.05 when 
WC data for osmotically stressed treatments were tested for inter-treatment differences 
(ANOVA, n = 10).  
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(Table 5.2). The treatment with the highest post-thaw viability namely, Gly+D+C, was also 

associated with the highest post-thaw TAA, and the two PEG-based osmotically stressed 

treatments that resulted in 20 and 30% post-thaw viability exhibited slightly (but not 

significantly) higher TAA than the other osmotically stressed + freeze-thawed treatments (Fig. 

5.1). However, high post-thaw TAA was not always indicative of post-thaw viability retention; 

D+C for example, exhibited significantly higher TAA than many of the osmotically stressed + 

freeze-thawed treatments, yet resulted in no post-thaw viability retention (Fig. 5.1). Correlation 

analyses with all treatments pooled showed a significant relationship between TAA and viability 

(Fig. 5.2). 

 

Optimisation of oxidative stress pre-treatment for H. montanus zygotic embryos 

Exposure of H. montanus embryos to a range of H2O2 concentrations indicated that while 

concentrations >0.10 mM led to a decline in viability relative to fresh embryos (100% viability), 

concentrations of 0.10 and 0.05 mM had no adverse effect on viability (Table 5.3A). The higher 

of the two concentrations was selected for all subsequent studies, to maximise the potential 

effects of H2O2 exposure.  

 When embryos were exposed to 0.10 mM H2O2 for any longer than 30 min, viability was 

significantly reduced relative to fresh embryos while exposure for 30 min resulted in 100% 

viability (Table 5.3B). Irrespective of the duration of exposure, vigour (as indicated by a 

reduction in GI and an increase in MTG) declined relative to fresh embryos (Table 5.3B). The 

severity of this decline increased as the duration of exposure increased. 

 Based on the fact that exposure to 0.10 mM H2O2 for 30 min resulted in the least severe 

decline in vigour and was the only exposure time that did not result in viability loss, this H2O2 

treatment combination was selected for all H2O2 pre-treatment + cryopreservation studies (Table 

5.3B).  
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Figure 5.1 Total antioxidant activity and viability for A. belladonna zygotic embryos exposed to various 
combinations of mannitol- and polyethylene glycol-based osmotic stress pre-treatment, glycerol cryoprotection, 
partial dehydration, and rapid cooling. Viability = root and shoot production; M = mannitol pre-treatment; P = 
polyethylene glycol pre-treatment; Gly = cryoprotected with glycerol; D = dried to water contents <0.4 g g-1; C = 
cooled at hundreds of °C s-1.  Values for antioxidant activity represent the mean±SD and are significantly 
different across treatments when followed by different letters (ANOVA, n = 6, p < 0.05). p < 0.05 when viability 
data were tested for inter-treatment differences (null model chi-squared analysis, n = 10).  
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Table 5.3 Vigour and viability of H. montanus zygotic embryos after [A] exposure to  
different concentrations of H2O2 and [B] exposure to 0.1 mM H2O2 for varying durations. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[A] 

Treatment 
1
Viability (%) 

Fresh 100 
0.05 mM for 30 min 100 
0.10 mM for 30 min 100 
0.15 mM for 30 min 80 

0.20 mM for 30 min 70 

[B] 

Treatment Viability (%) 
2
MTG

*
 

3
GI

*
 

Fresh 100 8.2 69.4 

0.1 mM for 30 min 100 9.2 69.4 
0.1 mM for 60 min 70 10.0 59.2 
0.1 mM for 120 min 50 10.6 39.1 

1 viability = root and shoot production; 2 mean time to germinate;  
3germination index. MTG and GI were based on viability. p < 0.05 
when viability data were tested for significant inter-treatment 
differences (null-model chi-squared analysis, n = 10). Experiment 
performed once, not subjected to statistical analysis. The treatment 
shaded in grey resulted in no viability loss and decreased vigour the 
least relative to fresh embryos; this treatment was selected for all 
subsequent H2O2 + cryopreservation studies.

 

Figure 5.2 Relationship between total antioxidant activity and viability for A. belladonna 
zygotic embryos exposed to various combinations of mannitol- and polyethylene glycol-based 
osmotic stress pre-treatment, glycerol cryoprotection, partial dehydration and rapid cooling. 
Open symbols = non-osmotically stressed treatments and closed symbols = osmotically 
stressed treatments. r = 0.79 and p < 0.01 for Pearson correlation test.  
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Viability of H. montanus zygotic embryos after H2O2 pre-treatment + dehydration and H2O2 pre-

treatment + freeze-thawing as related to changes in total antioxidant activity (TAA)  

 Drying and cooling significantly decreased viability and TAA relative to fresh embryos 

(Fig. 5.3). Except for <0.4D, this decline in TAA, within any particular drying or cooling 

treatment, was always more severe when the treatment was preceded by H2O2 exposure. Except 

for >0.4D-Gly-rapid+/-H2O2, these differences were always significant. Irrespective of whether 

drying or cooling was preceded by H2O2 exposure or not, the decline in TAA at <0.4 g g-1 was 

always greater than that at >0.4 g g-1. Within the drying treatments that did not involve H2O2 

exposure there was a trend (not significant) for Gly CP embryos to exhibit relatively higher 

TAA than non-CP embryos but this was not necessarily accompanied by higher viability 

retention. Except for TAA in >0.4D, the decline in TAA and viability within any particular 

drying treatment was exacerbated by cooling; these differences were most often significant.  

All four of the treatments that resulted in post-thaw viability involved Gly CP (Fig. 5.3). 

Within these treatments, post-thaw viability was highest in the two treatments that excluded 

H2O2 pre-treatment. Additionally, TAA across these four treatments was significantly higher in 

treatments dried to >0.4 g g-1 and within the treatments that were not exposed to H2O2, this was 

accompanied by relatively higher post-thaw viability retention. Gly+>0.4D+C resulted in the 

highest post-thaw viability and exhibited one of the highest antioxidant activities; however, high 

post-thaw TAA was not always indicative of post-thaw viability retention. >0.4D+C, for 

example, exhibited a post-thaw TAA that was statistically similar to Gly+>0.4D+C, but 

exhibited no post-thaw viability retention, while Gly+<0.4D+C exhibited a post-thaw TAA that 

was statistically similar to treatments that resulted in no post-thaw viability retention, yet it 

exhibited  a post-thaw viability of 20%. Nevertheless, correlation analyses with all treatments 

pooled showed a significant relationship between TAA and viability (Fig. 5.4).  
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Figure 5.3 Total antioxidant activity and viability for H. montanus zygotic embryos exposed to various 
combinations of exogenous H2O2 exposure, glycerol cryoprotection, partial dehydration, and rapid cooling. 
Viability = root and shoot production; H = exposed to 0.1 mM H2O2; Gly = cryoprotected with glycerol; <0.4D = 
dried to water contents <0.4 g g-1; >0.4D = dried to water contents >0.4 g g-1; C = cooled at hundreds of °C s-1. 
Values for antioxidant activity represent the mean±SD and are significantly different across treatments when 
followed by different letters (ANOVA, n = 6, p < 0.05). p < 0.05 when viability data were tested for inter-
treatment differences (null model chi-squared analysis, n = 10).  
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5.4 Discussion 

This study investigated whether exposure of recalcitrant zygotic embryos to low levels of 

osmotic (in the case of A. belladonna) or oxidative (in the case of H. montanus) stress reduces 

their sensitivity to subsequent dehydration and freeze-thaw stresses associated with 

cryopreservation. Sensitivity, or rather viability, was also related to post-drying and post-thaw 

total antioxidant activity (TAA), since enhanced antioxidant levels have been correlated with 

increased stress tolerance in plants (Dhindsa and Matowe, 1981; Senaratna and McKersie, 1986; 

Leprince et al, 1990; Dhindsa, 1991; Price and Hendry, 1991; Anderson et al., 1992; Seel et al., 

1992; Reuzeu and Cavalie, 1995; O’Kane et al., 1996; Scebba et al., 1999; Baek and Skinner, 

2003), and pre-treatments that encourage stress acclimation can enhance antioxidant protection 

(Wahid et al., 2007). 
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Figure 5.4 Relationship between total antioxidant activity and viability for H. montanus zygotic 
embryos exposed to various combinations of exogenous H2O2 exposure, glycerol cryoprotection, 
partial dehydration, and rapid cooling. Open symbols = H2O2 treated and closed symbols = H2O2 
untreated. r = 0.72 and p = 0.001 for Pearson correlation test.  
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Effects of osmotic stress pre-treatment on dehydration and cryo-sensitivity of A. belladonna 

zygotic embryos as related to changes in total antioxidant activity 

The osmotic stress pre-treatments used in this study are similar to those regularly employed 

to improve orthodox seed performance (Heydecker et al., 1973; Heydecker, 1978; Job et al., 

2000). Termed ‘osmopriming’, this practice is generally defined as the uptake of sufficient 

water to initiate early germinative events, in previously dry, seeds but not sufficient to permit 

radicle protrusion (McDonald, 2000). In orthodox seeds the results of such priming include: 

increased vigour; more uniform germination (Tarquis and Bradford, 1992); and counteraction of 

the effects of lipid peroxidation in aged seeds by reversal of the loss of lipid-peroxidation-

detoxifying enzymes (Bailly et al., 1997, 1998, 2008; McDonald, 2000; Gallardo et al., 2001; 

Posmyk et al., 2001; Chiu et al., 2002).  

Unlike the dry orthodox seeds, to which osmopriming is usually applied (reviewed by 

McDonald, 2000), recalcitrant seeds are shed highly hydrated (0.4-4.0 g H2O per g dry matter; 

Pammenter and Berjak, 1999) and grade into germinative metabolism on shedding, or even 

before (Berjak et al., 1989; Farrant et al., 1992). The application of osmopriming to recalcitrant 

seeds therefore constitutes an osmotic stress, since water is either removed or not provided in a 

sufficient amount to allow for radicle protrusion. The embryos of A. belladonna used in this 

study displayed typically high shedding WCs of c. 4.67 g g-1 and exposure to osmotica 

decreased embryo WC, and very often viability as well (Table 5.1). The variation in osmotic 

stress-induced viability loss across the different WP × temperature × incubation time 

combinations was considerable for both osmotica but there was a trend for this loss to be higher 

for WPs of -1.2 MPa and longer incubation times (within particular WPs) (Table 5.1). The 

negative correlation between WC and viability is widely documented for physically (Pammenter 

et al., 2000; Walters et al., 2001; reviewed by Kermode and Finch-Savage, 2002) and 

osmotically (e.g. Probert and Longley, 1989; Dussert et al., 1999; Sun and Liang, 2007) dried 

recalcitrant seeds. Dehydration to intermediate hydration levels induces uncoordinated 

metabolism in recalcitrant seeds (reviewed by Côme and Corbineau, 1996; Pammenter et al., 

1998; Walters et al., 2001) and the free-radical generation associated with such metabolism can 

have lethal consequences, most especially during slow dehydration (Smith and Berjak, 1995; 

Côme and Corbineau, 1996; Walters et al., 2002).  This brings us to the important point of 

‘drying rate’. In this regard, recalcitrant embryos, including those of A. belladonna in this study 

(see Fig. A2, Appendix A), can be rapidly dried (via flash drying) to WCs of 0.3-0.4 g g-1 with 

little to no viability loss (Wesley-Smith et al., 1992; Kioko et al., 1998; Sershen et al., 2008); 

however, osmotically stressed embryos in this study exhibited as much as 90% viability loss at 

WCs >3.0 g g-1 (Table 5.1). Desiccation damage in recalcitrant seeds is a function of two 
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interrelated parameters: the rate and duration of dehydration (e.g. Pammenter et al., 1998, 2002, 

2003; Walters et al., 2001) and when desiccation-sensitive seed tissues spend a longer period at 

intermediate WCs, the time for aqueous-based deleterious processes to occur is extended, 

promoting viability loss (Pammenter et al., 1998; reviewed by Pammenter and Berjak, 1999; 

Walters et al., 2001). The high viability losses at relatively high WCs in osmotically stressed 

embryos in this study may therefore be attributed to them spending hours at intermediate 

hydration levels (i.e. an increase in the duration of the stress). Consistent with this suggestion, 

the severity of viability loss within particular WPs, generally increased with an increase in 

incubation time (Table 5.1).  

Slight dehydration has been shown to stimulate vigour in some recalcitrant seeds (Eggers et 

al., 2007), and this may explain the enhanced vigour observed across a few of the osmotic stress 

pre-treatments here (mainly those involving WPs of -0.3 and -0.6 MPa); however, this 

enhancement was almost always accompanied by some viability loss (Table 5.1). While 

emergence rate is often increased by priming, percentage emergence can be decreased (e.g. 

onion [Haigh et al., 1986]). There were indications that MAN-based treatments were more 

detrimental than PEG-based treatments, at similar WPs and incubation times (Table 5.1), and 

this may be related to the fact that MAN unlike PEG (which has a relatively higher molecular 

weight) can be absorbed by axial tissue (Michel and Kaufmann, 1973), often with toxic effects 

(Bradford, 1995).  

Despite the lethal effects of osmotic stress pre-treatment, four WP × temperature × 

incubation time combinations, viz. PEG[-0.3 MPa 6°C 12 h]; PEG[-0.3 MPa 16°C 12 h]; 

MAN[-0.3 MPa 6°C 24 h]; and MAN[-0.3 MPa 6°C 24 h] (two for each osmoticum), were 

shown to result in 90% viability and increase vigour relative to fresh embryos (Table 5.1). 

Exposure of a variety of plant tissues to non-lethal osmotic stress can enhance their tolerance to 

a wide range of abiotic stresses (e.g. Bueno et al., 1998; Guan and Scandalios, 1998; Guan et 

al., 2000). However, when rapid drying was preceded by osmotic stress pre-treatment in this 

study, viability loss and TAA reduction, relative to fresh embryos, was consistently more severe 

than that in flash-dried non-pre-treated embryos (Table 5.2 & Fig. 5.1). Dehydration of 

recalcitrant embryonic axes and embryos to even relatively high WCs (>0.25 g g-1) is often 

characterised by the failure of antioxidant systems (e.g. Hendry et al., 1992; Chaitanya and 

Naithani, 1994, 1998; Côme and Corbineau, 1996; Varghese and Naithani, 2002; Pukacka and 

Ratajczak, 2006) and the relatively greater decline in TAA in osmotically stressed + partially 

dried, compared to non-stressed + partially dried, embryos in this study may have been a 

consequence of embryos exposed to the former spending more time at intermediate hydration 

levels. Priming of orthodox seeds has been shown to be an effective approach to overcome 
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abiotic stresses (e.g. Wahid and Shabbir, 2005; Ashraf and Foolad, 2005) but, as observed here, 

the combination of osmopriming and dehydration can be detrimental (includes a loss of 

membrane integrity), even in orthodox seeds (e.g. soyabean [Armstrong and McDonald, 1992]). 

Interestingly, the post-drying decline in TAA observed here was significantly less severe in Gly 

CP embryos, irrespective of whether the embryos were osmotically stressed or not (Fig. 5.1). 

These data are in agreement with the results of studies described in Chapter 4 (section 4.3), 

which showed Gly cryoprotection to limit the decline in enzymic antioxidant capacity 

associated with partial dehydration. The possible basis of this protection of the antioxidant 

system by Gly has already been addressed in Chapter 4 (section 4.4). 

Enhanced antioxidant activity can increase freezing tolerance in non-orthodox seeds by 

alleviating the effects of freezing-thaw-induced oxidative stress (Touchell and Walters, 2000; 

Dussert et al., 2003; Varghese and Naithani, 2008). In the present study, post-thaw TAA was 

always significantly lower than in fresh embryos, irrespective of the combination of pre-

conditioning treatments (i.e. osmotic stress pre-treatment, CP or osmotic stress pre-treatment + 

CP) (Fig. 5.1). These results corroborate other reports that antioxidant activity may decline in 

plant tissues following freezing (Guy, 1990; Thomas et al., 1999; Varghese and Naithani, 2008). 

Contrary to the hypothesis proposed for this study, osmotic stress pre-treatment did not decrease 

the sensitivity of A. belladonna zygotic embryos to subsequent dehydration and freeze-thaw 

stresses. Further to this, post-thaw TAAs in osmotically stressed + partially dried embryos were 

always (and often significantly) lower than non-stressed + partially dried embryos (in CP and 

non-CP embryos; Fig. 5.1). As explained for the results of the osmotic stress pre-treatment + 

partial dehydration studies earlier, osmotic stress pre-treatment, extended the time spent by 

embryos at intermediate WCs, compared to partial dehydration simply by flash drying. This, 

could have lead to a relatively greater accrual of metabolism-induced damage in osmotically 

stressed + partially dried embryos, compared to non-stressed + partially dried embryos, pre-

disposing the former to a greater degree of freeze-thaw damage. In recalcitrant seeds prolonged 

periods of dehydration, while not lethal in themselves, can act synergistically and lethally with 

freezing (Pritchard et al., 1995; Kioko et al., 1998; Berjak et al., 1999; Sun, 1999; Wesley-

Smith et al., 2001, 2004). This may also explain why within the four cryoprotected treatments in 

which post-thaw viability retention was observed here (Fig. 5.1), post-thaw viability retention 

and TAA was lower in the three treatments that involved osmotic stress pre-treatment. 

Finally, TAA in this study may not always have been indicative of post-thaw viability 

retention (e.g. <0.4D-rapid) but TAA and viability were positively correlated (Fig. 5.2), lending 

support to other suggestions that antioxidant protection has a role in low temperature and 

freezing tolerance in plant tissues (e.g. Green et al., 1986; Prasad, 1996; Fryer et al., 1998; 
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Fleck et al., 2000; Touchell and Walters, 2000; Xin and Browse, 2000; Dussert et al., 2003; 

Odani et al., 2003; Sung et al., 2003; Johnston et al., 2007; Varghese and Naithani, 2008).   

 

Effects of H2O2 pre-treatment on dehydration and cryo-sensitivity of H. montanus zygotic 

embryos as related to changes in total antioxidant activity 

The major components of the generic pathway of stress response include the stimulus, 

signals, transducers, transcription regulators, target genes and finally, a morphological, 

physiological or biochemical stress response, which ultimately confers stress resistance 

(Monroy and Dhindsa, 1995; Netting, 1999; Pearce, 2004; for a review see Verslues and Zhu, 

2005). In addition to triggering the expression of genes directly involved in protection against a 

particular stress, transducers may also trigger the activation of genes whose products regulate 

gene expression and secondary signal transduction. Secondary signal molecules such as H2O2 

(and other active oxygen species), abscisic acid (a phytohormone widely accepted as a stress 

hormone), and inositol-1,4,5-triphosphate, initiate different response pathways from the primary 

signals and may be shared by different stress pathways; this is possibly the underlying factor 

governing cross tolerance (Xiong et al., 2002). Hydrogen peroxide can also lead to lethal levels 

of hydroxyl radicals (in the presence of metal catalysts; i.e. the Fenton reaction) and related lipid 

peroxidation (MacRae and Fergusion, 1985; Foyer et al., 1994; Samuilov et al., 2001; Sairam et 

al., 2002). However, there is increasing evidence for a role for H2O2 as an intermediate signal 

molecule and/or second messenger (when produced internally or applied externally at low 

concentrations) in signal transduction pathways that elicit plant stress responses and ultimately 

stress acclimation (Foyer et al., 1997; Bowler and Fluhr, 2000; Dat et al., 2000; Desikan et al., 

2004; Hung et al., 2005). This has encouraged its (exogenous) application to a variety of plant 

tissues (e.g. Azevedo Neto et al., 2005; Hung et al., 2005; Wahid et al., 2007) as a pre-treatment 

to enhance tolerance to abiotic stresses such as chilling (Prasad et al., 1994b; Murphy et al., 

2002) and freezing (Mora-Herrera et al., 2005).  

In line with its well-documented toxicity in plant cells (MacRae and Fergusion, 1985; Foyer 

et al., 1994; Samuilov et al., 2001; Sairam et al., 2002) exposure of H. montanus embryos to 

H2O2 concentrations >0.10 mM led to a decline in viability relative to fresh embryos in the 

present study. However, at a concentration of 0.10 mM, which was the concentration used for all 

H2O2 pre-treatment + cryopreservation studies here, H2O2 had no adverse effect on viability, 

provided that the duration of exposure was no longer than 30 min (Table 5.3A). These data also 

indicated that H. montanus embryo tolerance of oxidative stress was limited by both the 

intensity and duration of the stress. Considering that the seeds of a number of orthodox-seeded 

species tolerate exposure to c. 0.10 mM, or even higher, concentrations of H2O2 for hours 
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without lethal consequences (e.g. Orobanche aegyptica [Nun et al., 2003] and Triticum 

aestivum [Wahid et al., 2007]), it was interesting to note that the antioxidant system within H. 

montanus embryos was over-whelmed by H2O2 exposure (i.e. H2O2 became lethal) after just 30 

min (Table 5.3B). There are many reports of H2O2 breaking dormancy in orthodox seeds 

(Wanga et al., 1998; Hsiao and Quick, 2006) and improving germination (Breusegem et al., 

2001; Ogawa and Iwabuchi, 2001; Schopfer et al., 2001) by stimulating radicle protrusion 

(Morohashi, 2002). However, exposure of H. montanus embryos to 0.10 mM H2O2 reduced 

vigour relative to fresh embryos (Table 5.3B), irrespective of the duration of exposure. These 

data may well be a reflection of the suggestion that the induction of certain components of the 

antioxidant system usually present in orthodox seeds, may occur to a lesser extent, or not at all, 

in recalcitrant seeds (Pammenter and Berjak 1999; Walters et al., 2008). 

Hydrogen peroxide has been variably implicated in the signalling mechanism involved in  

polar growth, hormone transduction and stress signalling (reviewed by Mori and Schroeder, 

2004). The mechanism(s) by which H2O2 enhances stress tolerance are still elusive but two 

suggestions, in particular, have gained widespread support: (1) H2O2 accumulation leads to 

modifications in Ca2+ channels and subsequent fluxes in Ca2+ (McAinsh et al., 1996), a key 

component of stress responses (Gao et al., 2004); and (2) H2O2 directly regulates the expression 

of genes involved in defense (Kovtun et al., 2000), antioxidants (Prasad et al., 1994a & b; 

Azevedo Neto et al., 2005; Wahid et al., 2007), and/or cell rescue/defense proteins (Murphy et 

al., 2002; Robert and David, 2004; Hung et al., 2005).  Most interestingly, Roach et al. (2010) 

have recently shown that the exogenous application of H2O2 to recalcitrant Castanea sativa 

seeds may mimic the transient ROS burst at the onset of desiccation, counteracting viability loss 

of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. 

Those authors suggest that extracellular ROS produced by embryonic axes may be important 

signalling components involved in wound response, regeneration and growth. 

Hydrogen peroxide pre-treatment did not decrease H. montanus embryo sensitivity to 

dehydration and freeze-thaw stresses in this study though, since the post-drying and post-thaw 

decline in viability and TAA, relative to fresh embryos, was generally (except for <0.4D) more 

severe when the drying or cooling treatment was preceded by H2O2 exposure (Fig. 5.3). 

Dehydration (Hendry et al., 1992; Chaitanya and Naithani, 1994, 1998; Côme and Corbineau, 

1996; Varghese and Naithani, 2002; Pukacka and Ratajczak, 2006) and freezing (Touchell and 

Walters, 2000; Dussert et al., 2003; Varghese and Naithani, 2008) can lead to the failure of 

antioxidant systems and concomitant viability loss in recalcitrant seeds. In H. montanus 

embryos the post-drying and post-thaw decline in TAA was always relatively more severe at 

WCs <0.4 g g-1, irrespective of whether the treatment involved H2O2 exposure or not (Fig. 5.3). 
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The greater degree of pre-cooling desiccation stress (i.e. longer drying times and lower WCs) 

inflicted on H. montanus embryos dried to WCs <0.4 g g-1, compared to those dried to WCs 

>0.4 g g-1, may have pre-disposed the antioxidant system in the former to a relatively greater 

degree of freeze-thaw damage since dehydration damage in recalcitrant seed tissues is often 

exacerbated by freezing (Pritchard et al., 1995; Kioko et al., 1998; Sun, 1999; Wesley-Smith et 

al., 2001, 2004). Consistent with this, except for TAA in >0.4D, the decline in TAA and 

viability within any particular drying treatment, appeared to be exacerbated by cooling.  

As in the osmotic stress pre-treatment + cryopreservation studies, Gly CP generally 

enhanced post-thaw viability retention and TAA, relative to non-CP embryos (Fig. 5.3), but 

across the four Gly CP treatments in which post-thaw viability was recorded, viability and TAA 

were significantly higher in the two treatments (namely, >0.4D-Gly-rapid and <0.4D-Gly-rapid) 

that excluded H2O2 exposure. The concentration of H2O2 employed in these studies was not 

lethal but it led to a reduction in vigour, relative to fresh embryos (Table 5.3B). This implies 

that H. montanus embryos may well have incurred some damage (allbeit not lethal) during H2O2 

exposure, since an increase in the lag before the first germination or a decrease in the rate of 

germination is usually indicative of ongoing repair of damage (Pammenter et al., 2002). This 

implies that even when oxidative stress is not lethal in itself, it may act synergistically and 

lethally with freeze-thawing.  

As in the osmotic stress pre-treatment + cryopreservation studies, high post-thaw TAA was 

not always accompanied by post-thaw viability retention (e.g. >0.4D-rapid), reinforcing the fact 

that the antioxidant system is an internal system integrated into a number of cellular and 

physiological regulatory systems (Blagojević, 2007), making it just one of the many 

determinants of post-thaw survival. Correlation analyses did, however, indicate a significant 

relationship between TAA and viability, even when H2O2 exposed and unexposed treatments 

were analysed separately (Fig. 5.4). These results complement the existing evidence for the role 

of antioxidant protection in low temperature and freezing tolerance in plant tissues (e.g. Green 

et al., 1986; Prasad, 1996; Fryer et al., 1998; Fleck et al., 2000; Touchell and Walters, 2000; 

Xin and Browse, 2000; Dussert et al., 2003; Odani et al., 2003; Sung et al., 2003; Johnston et 

al., 2007; Varghese and Naithani, 2008).   

 

5.5 Concluding remarks 

Exogenous use of various chemicals to alleviate the adverse effects of abiotic stresses has 

great implications both from theoretical and practical perspectives (Uchida et al., 2002; 

Sivritepe et al., 2003, 2005). In this study, pre-treatment of A. belladonna embryos with MAN 

and PEG and H. montanus embryos with H2O2 failed to decrease embryo sensitivity to 
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dehydration and freeze-thaw stresses. While damage accrued in A. belladonna embryos in the 

sub-imbibed state appears, at best, to negate any possible benefits of osmotic treatments, the 

failure of H2O2 pre-treatment to decrease cryo-sensitivity may be based on a number of factors, 

including: (1) the genes coding for enzymes involved in cell defense (e.g. those involved in 

ROS degradation) that are usually induced by H2O2 in orthodox-seeded systems (Desikan et al., 

2001; Neill et al., 2002) may be absent, poorly expressed, or reliant on different induction 

pathways and/or signal molecules in recalcitrant types; and (2) the free-radical-mediated 

damage incurred during H2O2 pre-treatment and the subsequent dehydration- and freeze-

thawing-induced enhancements in free-radical production  (shown to occur in these embryos 

[see Chapter 4; section 4.3]), may have simply been additive. Finally, these results tie in with 

two prevailing ideas on cryo-related stresses in plant tissues: (1) stresses associated with the 

different procedures involved in cryopreservation are additive in their effect/s (Pammenter et 

al., 2010); and (2) tissues tolerant of stresses must possess efficient antioxidant systems 

(Touchell and Walters, 2000; Benson and Bremner, 2004).   
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CHAPTER SIX: 

Effects of partial dehydration of recalcitrant Haemanthus montanus zygotic 

embryos on vigour of recovered seedlings 
 

Based on  
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202. 

 

Abstract 

Cryopreservation is the most promising route for the long-term conservation of recalcitrant seed 

germplasm. Partial dehydration is a standard pre-treatment for the cryopreservation of zygotic 

embryos or embryonic axes excised from recalcitrant seeds since it reduces the likelihood of 

lethal ice-crystal generation during cooling. However, there is presently little to no 

understanding of how pre-conditioning treatments such as partial dehydration imposed at the 

embryonic stage are translated or manifested during subsequent in and ex vitro seedling growth. 

The present study assessed the vigour of seedlings recovered from partially dried (D) zygotic 

embryos, excised from recalcitrant Haemanthus montanus (Baker) seeds. Seedlings recovered 

from fresh (F) and partially dried (D) embryos in vitro, were hardened-off ex vitro, and 

subsequently subjected to either 42 d of watering (W) or 42 d of water deficit (S). The adverse 

effects of partial dehydration on seedling dry mass accumulation observed after 60 d in vitro 

growth did not disappear with an extension of the in vitro growth period but did appear to be 

reversible during ex vitro growth. A water stress during ex vitro growth dominated over the 

effects of embryo pre-treatment with relative growth rates in FS-seedlings (recovered from fresh 

embryos and subsequently stressed) and DS-seedlings (recovered from dried embryos and 

subsequently stressed) being statistically comparable. D- and F-seedlings responded typically to 

the water stress but DS-, compared with FS-seedlings, appeared to have incurred permanent 

damage to their photosynthetic machinery, attained lower predawn water potentials, were less 

efficient at adjusting leaf water potential to meet transpirational demands, did not exhibit signs 

of osmotic adjustment, failed to adopt growth patterns that reduce transpirational water loss, and 

were more susceptible to persistent turgor loss. It was therefore not surprising that ex vitro 

seedling mortality occurred in more DS- than FS-seedlings. These results suggest that partial 

dehydration of recalcitrant H. montanus zygotic embryos, even when not followed by cooling, 

can reduce the vigour and drought tolerance of recovered seedlings.  
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6.1 Introduction 

Partial dehydration, in reducing explant heat capacitance and mass, can facilitate faster cooling 

rates and reduce the formation of lethal ice-crystals during the cryopreservation of seed tissues 

(Wesley-Smith et al., 2001, 2004), and has become a standard pre-treatment for the 

cryopreservation of zygotic embryos or embryonic axes excised from recalcitrant seeds (e.g. 

Pritchard and Prendergast, 1986; Pence, 1992; Pritchard et al., 1995; Sershen et al., 2007; 

Steinmacher et al., 2007). Seedlings recovered from partially dehydrated, cryopreserved 

orthodox zygotic embryos or embryonic axes have been reported to be morphologically similar 

to those generated from control axes, going on to produce flowers and fruit in the field (e.g. 

Gagliardi et al., 2002). However, partial dehydration represents a source of physicochemical 

damage in recalcitrant zygotic germplasm (Walters et al., 2001), with a number of studies 

showing seedlings recovered from partially dried and/or cryopreserved recalcitrant zygotic 

germplasm to exhibit abnormal phenotype (e.g. Pence, 1992; Berjak et al., 1996; Dumet et al., 

1997; Wesley-Smith et al., 2001, 2004) and/or reduced growth (e.g. Fu et al., 1993; Sershen et 

al., 2007; Steinmacher et al., 2007). Similarly, qualitative observations made in studies 

described in Chapter 2 (section 2.3; see Fig. 6.1A) suggested seedlings recovered from partially 

dried (D) zygotic embryos of Haemanthus montanus (Baker), a recalcitrant-seeded wild 

geophyte, to be less vigorous than those from fresh (F) embryos, even after 60 d in vitro growth. 

The present study involved a quantitative assessment of the effects of partial dehydration of 

excised H. montanus embryos on subsequent seedling vigour. Also, based on reports that losses 

of phenotypic fidelity in plants recovered from cryopreserved samples are often temporary (e.g. 

sugarcane callus [Martínez-Montero et al., 2002]; oil palm polyembryonic cultures [Konan et 

al., 2007]), this study investigated whether the effects of partial dehydration on subsequent in 

vitro seedling growth disappear with an extension of the in vitro growth period.  

There is at present little to no understanding of how stresses imposed at the embryonic stage 

are translated or manifested during subsequent ex vitro seedling growth, in recalcitrant-seeded 

species. Reports in orthodox-seeded species suggest that there exists within developing embryos 

(zygotic and somatic) some ‘memory’ based mechanism that senses environmental signals such 

as duration of imbibition (Forsyth and van Staden, 1983) and temperature during embryogenesis 

(Kvaalen and Johnsen, 2007), which in turn influences adaptive traits in the seedlings they give 

rise to. If such a mechanism were to exist within recalcitrant zygotic germplasm it would have 

implications on the design of future plant germplasm cryopreservation protocols, the ultimate 

aim of which is to re-introduce healthy, vigorous, seedlings back into the wild. Since the success 

of such re-introduction will depend on the ability of recovered seedlings to tolerate abiotic 

stresses such as drought, most especially during the early seedling establishment phase, the 
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current contribution assessed the effects of H. montanus zygotic embryo partial dehydration on 

subsequent ex vitro seedling vigour. Seedling vigour was assessed in terms of physiological and 

growth responses to an ex vitro water stress.  

 

6.2 Materials and Methods 

Plant material  

Mature H. montanus fruits were harvested directly from parent plants and transported in 

plastic bags to the laboratory with minimum delay (1-2 d) or water loss. Upon arrival, the seeds 

were decontaminated and stored ‘hydrated’, as described in Chapter 2 (section 2.2).  

 

Embryo partial dehydration, in vitro recovery and growth assessment  

All experiments were carried out on seeds stored for between 7-10 d, never longer. Zygotic 

embryos were excised and collected within closed Petri dishes on filter paper moistened with 

sterile calcium-magnesium solution (CaMg solution: 0.5 µM CaCl2.2H2O and 0.5 mM 

MgCl2.6H2O [Mycock, 1999]). In order to minimise the potential variation in drying rate as a 

function of embryo size, only embryos of between 4-6 mm in length were used for all the 

experiments described below. Excised embryos were rapidly dehydrated via flash drying 

(devised by Berjak et al., 1990) for various times. At each drying interval, water content (WC) 

of 10 embryos was determined gravimetrically and expressed on a dry mass basis (as described 

in Chapter 2, section 2.2) while 20 embryos were rehydrated, decontaminated with 1% (w/v) 

aqueous calcium hypochlorite for 3 min, washed with sterile CaMg solution (3 times) and then 

set to germinate with 5 embryos per Petri dish on full-strength Murashige and Skoog medium 

(Murashige and Skoog, 1962), containing 3% (w/v) sucrose. All Petri dishes were initially 

placed in the dark, and transferred upon signs of root and shoot development to a growth room 

with cool fluorescent lights (52 µE s
-1
 m

-2
) and a 16 h photoperiod, at ~25ºC. Embryos were 

grown in vitro for 60 d with one sub-culture at 30 d and a sample of those that subsequently 

produced seedlings with normal (i.e. callus free) roots and shoots were assessed for dry mass 

accumulation. For this, 5 seedlings from each drying interval were oven-dried individually for 

72 h at 80°C to a constant weight, for dry mass estimation.  

For recalcitrant amaryllid zygotic germplasm, optimum WCs for successful cryopreservation 

are generally in the range of 0.40-0.25 g g-1 (Sershen et al., 2007). So, for subsequent 

experiments 250 zygotic embryos were rapidly dehydrated to c. 0.28 g g-1, rehydrated, 

decontaminated and, together with a second batch of 250 freshly excised embryos (WC of c. 

6.63 g g
-1
), recovered in vitro. These embryos were recovered in vitro for 90 d with two sub-

cultures (one at 30 d and one at 60 d). Of those that subsequently produced seedlings with 
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normal (i.e. callus free) roots and shoots, 6 from each treatment were separated into bulb, leaves 

and roots and oven-dried for 72 h at 80°C, to a constant weight for dry mass estimation.  The 

remaining seedlings were directed towards the ex vitro studies; however, to validate the 

comparison of physiological measurements between F- and D-seedlings in  these studies, we 

had to ascertain whether D- and F-seedlings were at the same developmental, as opposed to 

culture, age after 90 d in vitro growth. This was challenging since germination across different 

embryos from the same seed lot is not synchronous, even when they are not dried. Further to 

this, as explained in Chapter 2 (section 2.3; see Table 6.1B) partial dehydration of H. montanus 

embryos to WCs <0.4 g g
-1
 decreased germination speed relative to fresh ones. Nevertheless, 

“ageing” plants by their morphology rather than chronological time using the leaf plastochron 

index (LPI) (originally described by Erickson and Michelini, 1957) provides an effective, non-

destructive, method of estimating leaf age under normal stable growth conditions (Groot and 

Meicenheimer, 2000; Chen et al., 2009) and was employed here to compare leaf age between D- 

and F-seedlings after 90 d in vitro growth. H. montanus seedlings generally produced two leaves 

by day 85 of in vitro recovery. Leaf 1 and 2 (numbered in the order that the leaves were 

produced) length was measured for five D- and F-seedlings on day 85 using calipers, and then 

again on day 90. These data suggested that growth had not leveled-off and leaf length in both 

treatments was still actively increasing during this period (data not shown).  With this mind, leaf 

lengths recorded on day 90 were used to calculate the plastochron index (PI) for each of five D- 

and F-seedlings, according to Erickson and Michelini (1957) using Equation 1: 

                                         PI = n + (ln Ln (t) - ln λ) / [ln Ln (t) - ln Ln+1 (t)]                                  [1] 

where n is the position number for the smallest leaf (which in this case was leaf 2) that is greater 

than or equal to the reference length λ; λ is designated as a leaf length of 1.0 cm during the 

exponential growth stage, and Ln (t) is the length of leaf n at time t. The mean leaf plastochron 

index (LPI) for leaf 1 was then calculated using Equation 2:  

                              LPI1 = PI - 1 = n − 1 + (ln Ln (t) - ln λ) / [ln Ln (t) - ln Ln+1 (t)]                     [2] 

When calculated, mean LPI1 in F-seedlings (-10.99±1.81) was statistically comparable to that of 

D-seedlings (-10.24±1.63) (p > 0.05, ANOVA; data not shown), suggesting that D- and F-

seedlings were at approximately the same developmental age upon introduction to ex vitro 

conditions (i.e. day 91).  

 

Ex vitro experimental design  

After 90 d in vitro growth, 190 randomly selected seedlings generated from partially 

dehydrated embryos, and a further 190 randomly selected seedlings that had been recovered 

from freshly excised (F) embryos, were transplanted independently into plastic inserts, filled 
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with a mixture of 1 part pine bark, 1 part potting soil, and 1 part coarse river sand, and placed in 

a misthouse for 14 d to harden-off. Seedlings subjected to hardening-off were then directed 

towards the ex vitro studies described in Figure 6.1. Here, seedlings (still within plastic inserts) 

were transferred to natural conditions of illumination in a polycarbonate-clad greenhouse. After 

7 d (111 d since embryo excision) D- and F-seedling groups were sub-divided in two batches of 

95 seedlings each, with one batch being subjected to a water stress for 42 d, by with-holding 

water, while the second batch were watered daily (with 5 ml  of water) for 42 d. From here on, 

when the labels ‘F’ or ‘D’ are followed by the letter ‘S’ it refers to seedlings exposed to a water 

stress while the letter ‘W’ indicates the absence of this stress. CO2-assimilation, potential 

photochemical efficiency as well as leaf water, osmotic and pressure potential were measured 

across all embryo pre-treatment × watering regimes (referred to as ‘all treatments’ from here on) 

on days 0, 12, 29 and 39, while growth responses (seedling dry mass and biomass partitioning) 

and leaf chlorophyll content were assessed after 90 d in vitro growth and after 63 d ex vitro 

growth (that is, 42 days after the initiation of the stress treatment).  
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Figure 6.1 Ex vitro experimental design. Measured: CO2-assimilation, potential 

photochemical efficiency, leaf water, osmotic and pressure potential measured on this day. 

Seedlings were generated from (F) fresh and (D) partially dried zygotic embryos. 

Recovered seedlings were either (S) water stressed by with-holding water for 42 d or (W) 

watered daily for 42 d. The number of replicates associated with each treatment 

combination is given within brackets. 
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Photosynthetic capacity 

Chlorophyll content 

Chlorophyll (chl) content was measured at the final harvest (day 42) using one leaf from 

each of 4 seedlings (only living leaf material sampled), across all treatments. After determining 

their fresh weight (FW) individual leaves were ground in a pestle and mortar with LN and 

chlorophyll immediately extracted in 5 ml of 80% acetone, in the dark (after Arnon, 1949).  

After 6 h, the leachate was filtered and its absorbance read at 663 nm for chl a and 645 nm for 

chl b (after Arnon, 1949). Chlorophyll a, b and total chl content were thereafter expressed on a 

FW basis. The chlorophyll assay employed here may seem outdated in light of Ultra 

Performance Liquid Chromatography- and High Performance Liquid Chromatography-based 

methods (e.g. Rodrigues-Amaya and Kimura, 2004) presently used for qualitative and 

quantitative measurement of caretenoids in plant tissue. However, rather than aiming to identify 

and quantify individual caretenoids present, the current study simply aimed to quantify changes 

in leaf chl content in response to drought stress. In such cases, spectrophotometric pigment 

assays such as the one used here (after Arnon, 1949) are sufficient (Bulda et al., 2008), but 

stability of the pigment extract should be checked since extraction with acetone solutions can 

lead to chl degradation to phaeophytin by co-extracted acids (Rodrigues-Amaya and Kimura, 

2004). This was unlikely to have been the case here, since the absorbance of acetone chl extracts 

of H. montanus leaves remained stable (to the third decimal) for as long as 6 h after filtration 

(when kept in the dark). 

 

Steady-state gas exchange  

All gas exchange measurements were carried out using the Li-Cor 6400 portable 

photosynthesis measuring system, fitted with an Arabidopsis chamber and configured as an 

open system (Li-Cor, Nebraska, U.S.A.). On experimental days 0, 4, 12, 29 and 39, 

instantaneous (spot) measures of leaf-based CO2-assimilation rates (A) were carried out at 

carbon dioxide concentration (Ca): 400 µmol. mol-1 and then at above ambient Ca: 600 µmol. 

mol
-1
, across all treatments. Measurements were carried out around midday, on non-senescing 

leaves and under natural illumination. For each treatment, three consecutive measurements were 

taken for one leaf from each of 7 seedlings, when the total percentage coefficient of variance [% 

∆ H2O; ∆CO2; ∆ flow rate] was <1%. The mean of these three measurements yielded the final 

reading for that leaf.  Only values measured at a photosynthetic photon flux density (PPFD) 

>800 µmol m
-2
 s

-1
 (i.e. light saturated) were used for subsequent analyses.  

The ratio between A at Ca: 600 and 400 µmol. mol
-1
, referred to as ‘A@600 : A@400’ from 

here on, was also calculated. This ratio has been used to assess the effects of water stress on A in 
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other studies (e.g. Osmond et al., 1980), since the response of A to changing Ca is believed to be 

a reliable indication of stomatal limitation of A (Cornic et al., 1983); a higher ratio being 

indicative of greater stomatal limitation. 

 

Potential photochemical efficiency  

On experimental days 0, 4, 12, 29 and 39, a Plant Efficiency Analyser (Hansatech 

Instruments Ltd., Kings Lynn, U.K.) was used to measure chlorophyll fluorescence transients on 

one fully expanded, non-senescing, mature leaf from each of 6 seedlings, across all treatments. 

After samples were dark adapted for 20 min, transients were induced by red light of 1500 µmol 

m
-2 
s
-1
 generated by six light-emitting diodes (peak 650 nm). These diodes covered the exposed 

area of the leaf (4 mm in diameter) in homogenous illumination and fluorescence signals were 

recorded within a time span of 10 µs to 1 s with a data acquisition rate of 10 µs for the first 2 ms 

and 1 ms thereafter. Fv/Fm, the ratio of variable (Fv) to maximum fluorescence (Fm), is a measure 

of potential photochemical efficiency of photosystem II (PSII) and was calculated from the 

fluorescence data using Biolyzer 3.0 software (developed by Maldonado-Rodriguez, 2002).   

 

Leaf water status  

Leaf water, osmotic and pressure potential 

On experimental days 0, 4, 12, 29 and 39, leaf water potential (Ψw) measurements were 

carried out at predawn (pd) and 5-6 h into the light period (md) using thermocouple 

psychrometers (Model C-52; Wescor, Logan, U.S.A.) in combination with a microvoltmeter. 

For this, leaf discs were excised from the middle of one fully expanded, non-senescing, mature 

leaf from each of 4 seedlings, across all treatments, and Ψw recorded after a pre-determined 

equilibration period. The microvoltmeter was calibrated against NaCl standards, at 25°C, and a 

cooling period of 20 s was used to measure the dew point.  The difference between pd Ψw and 

md Ψw, referred to as ‘pd-md’, was also calculated. pd-md Ψw reflects the extent to which md 

Ψw is lowered from that at pd, to generate the Ψw gradient between soil and leaf to drive water 

through the plant and hence meet the transpirational demand during the light period.  

After Ψw was determined, leaf samples were wrapped in at least four layers of Parafilm
™ 

(American National Can) covered with aluminium foil and plunged repeatedly into LN for 30 s 

intervals, over a period of 5 min. After thawing, samples were unwrapped, placed immediately 

into C52 sample chambers and Ψw recorded. If apoplastic water is negligible, Ψw after cooling 

and thawing of tissue in this way is generally regarded as the ‘osmotic’ potential (Ψs), or water 

activity (Jones and Rawson, 1979).  Pressure potential (Ψp) was calculated as the difference 

between osmotic and water potential. 
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Ex vitro growth response 

After the in vitro and ex vitro growth periods, six seedlings from each treatment were 

separated into bulb, leaves and roots and oven-dried for 72 h at 80°C to a constant weight. 

Relative growth rate (RGR) was calculated via Equation 3 below:  

RGR = 

 [individual seedling DM after 63 d ex vitro growth (g) - mean seedling DM after 90 d in vitro growth (g)] 

                                    mean seedling dry mass after 90 d in vitro growth (g)                                                   63 d 

 

where DM refers dry mass. 

 

Statistical analysis 

Leaf plastochron and in vitro biomass data were compared between treatments by one-way 

Analysis of Variance (ANOVA; SPSS, Version 15). All other variables were tested for 

differences across treatments, within time intervals, by two-way ANOVA. Two-way ANOVAs 

were factorial in design, testing for the main-effects of embryo pre-treatment (referred to as 

‘Embryo’) and water stress (referred to as ‘Stress’), as well as the interaction between these 

(referred to as ‘Embryo×Stress’) (STATISTICA Version 6.1, StatSoft Inc. Tulsa, U.S.A.). 

Multiple comparisons were made using a Scheffe’s mean separation test. Where the original 

data were expressed as a proportion (%) these values were arcsin transformed to conform data to 

ANOVA assumptions. At the end of the in vitro and ex vitro growth period’s embryo/seedling 

viability (%) was compared across all treatments using null-model chi-squared analyses 

(EcoSim Version 7.72 [developed by Gotelli and Entsminger, 2009]). All statistical tests were 

performed at the 0.05 level of significance. 

 

6.3 Results 

Zygotic embryo water content vs. seedling biomass after 60 d in vitro growth 

Freshly excised embryos had a shedding WC of c. 6.13 g g
-1
 and seedlings generated from 

such embryos (F-seedlings) exhibited a biomass of c. 0.033 g after 60 d in vitro growth (Fig. 

6.2). With dehydration to an embryo WC of 0.79 g g-1, subsequent seedling biomass was 

significantly reduced and the severity of this reduction increased with a further decline in 

embryo WC. For instance, embryo dehydration to 0.28 g g
-1 

reduced subsequent seedling 

biomass by 48% to c. 0.017 g, while further dehydration to 0.11 g g
-1
, reduced seedling biomass 

by 63% to c. 0.012 g.  
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Growth responses after 90 d in vitro growth 

While 84% of zygotic embryos dehydrated to c. 0.28 g g-1 produced seedlings after 90 d in 

vitro growth, 96% of F-embryos (i.e. undried embryos) produced seedlings after a similar in 

vitro growth period (data not shown). Total biomass of D-seedlings was significantly lower than 

F-seedlings after 90 d in vitro growth (Fig. 6.3A). Bulb, leaf and root dry mass were relatively 

lower in D-seedlings (significant for leaves and roots; Fig. 6.3A) but biomass partitioning to 

different organs did not differ significantly between treatments (Fig. 6.3B). 

 

Ex vitro growth responses 

Except for FS-seedlings, all treatments exhibited positive relative growth rate (RGRs) (Table 

6.1). Relative growth rate was greater in unstressed seedlings but this trend was significant for 

D-seedlings only. Within the stressed treatments RGR was higher in D-seedlings, but not 

significantly so. 
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Figure 6.2 Drying time, embryo water content and total dry mass of recovered 

seedlings. Dry mass was assessed for individual seedlings after 60 d in vitro growth. 

Water content (n = 10) and biomass values (n = 5) represent mean±SD. Columns 

labelled with different letters are significantly different across treatments (p < 0.05, 

ANOVA, n = 5). 
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Figure 6.3 [A] Total and organ-based biomass and [B] biomass partitioning for 

seedlings generated from fresh (F) and partially dried (D) embryos after 90 d in 

vitro growth. Blocks labelled with different lower-case letters are significantly 

different when compared within organs, while upper-case letters indicate inter-

treatment differences in total seedling dry mass (p = 0.01, ANOVA, n = 6). Bars 

represent SD. 

 

 Table 6.1 Ex vitro seedling relative growth rate (RGR; g g
-1
 DM d

-1
). 

RGR = relative growth rate ([Individual seedling 

dry mass after 63 d ex vitro growth (g) - Mean 

seedling dry mass after 90 d in vitro growth (g) / 

Mean seedling dry mass after 90 d in vitro growth 

(g)] / 63 d) for seedlings generated from fresh (F) 

and partially dried (D) embryos, subjected to 

watering (W) or water deficit (S). Values represent 

mean±SD and are significantly different when 

followed by different letters (p < 0.05 for Stress and 

Embryo, ANOVA, n = 6). 
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Total seedling dry mass and bulb dry mass in unstressed seedlings were greater than stressed 

ones but this trend was significant for F-seedlings only (Fig. 6.4A). Leaf biomass in FW-

seedlings was also significantly higher than FS-seedlings (Fig. 6.4A). Within the unstressed 

treatments, biomass partitioning to leaves was significantly lower in D-seedlings, however, 

biomass partitioning to leaves in DS-seedlings was significantly higher than DW-seedlings (Fig. 

6.4B). Biomass partitioning to bulbs in D-seedlings was also slightly, but not significantly, 

lower when stressed (Fig. 6.4B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 [A] Total and organ-based biomass and [B] biomass partitioning for seedlings 

generated from fresh (F) and partially dried (D) embryos, subjected to watering (W) or water 

deficit (S). Blocks labelled with different lower-case letters are significantly different when 

compared within organs, while upper-case letters indicate inter-treatment differences in total 

seedling biomass. For [A]: total dry mass: p = 0.001 for Stress; bulb: p = 0.002 for Stress; 

leaves: p = 0.003 for Stress and for [B]: leaves: p = 0.02 for Embryo×Stress (ANOVA, n = 6). 
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Plant water relations 

Leaf water, osmotic and pressure potential 

Water, osmotic and pressure potential data were tested for differences across treatments, 

within a measurement day. On day 0, embryo pre-treatment had no significant effect on 

predawn (pd) Ψw, the difference between pd and midday (md) Ψw (pd-md Ψw) (Fig. 6.5), Ψs 

(Fig. 6.6) or Ψp (Fig. 6.7).  

After day 12 pd Ψw in DW-seedlings was consistently, but not significantly, slightly lower 

than FW-seedlings (Fig. 6.5A). Water stress depressed pd Ψw in stressed seedlings, relative to 

their respective unstressed controls, but this trend was significant on day 39 only (Fig. 6.5A, B). 

Pre-dawn Ψw in DS-seedlings was lower than FS-seedlings on day 39 (Fig. 6.5A). In FS-

seedlings, pd-md Ψw was often higher than DS- and FW-seedlings but this trend was not 

significant (Fig. 6.5B).    

Except that pd Ψs in FS-seedlings was consistently lower than FW-seedlings throughout the 

experimental period, Ψs displayed no consistent trends across or within treatments throughout 

the experimental period (Fig. 6.6).  

Within the unstressed treatments, Ψp exhibited no consistent trends (Fig. 6.7). During the 

stress pd Ψp in DS-seedlings was progressively depressed relative to DW-seedlings (Fig. 6.7A), 

suggesting the onset of permanent turgor loss. This trend was also observed at md, but 

significant on day 29 only (Fig. 6.7B).  During this time, Ψp in FS-seedlings was occasionally 

slightly, but never significantly, lower than FW-seedlings. Predawn and md Ψp in DS-seedlings 

was also significantly lower than FS-seedlings. 
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Figure 6.5 [A] Predawn (pd) leaf water potential and [B] Predawn - midday water potential 

difference (pd-md) of seedlings recovered from fresh (F) and partially dried (D) embryos, 

subjected to watering (W) or water deficit (S). Columns labelled with different letters are 

significantly different when compared within experimental days (pd Ψw: p = 0.01 for Stress 

and p = 0.004 for Embryo on day 39, ANOVA, n = 4). Bars represent ±SD. 
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Figure 6.6 [A] Predawn (pd) and [B] midday (md) leaf osmotic potential of seedlings 

recovered from fresh (F) and partially dried (D) embryos, subjected to watering (W) or water 

deficit (S). Columns labelled with different letters are significantly different when compared 

within experimental days (pd Ψs: p < 0.01 for Stress on days 4 and 39 and for 

Embryo×Stress on day 12, ANOVA, n = 4). Bars represent ±SD. 
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Figure 6.7 [A] Predawn (pd) and [B] midday (md) leaf pressure potential of seedlings 

recovered from fresh (F) and partially dried (D) embryos, subjected to watering (W) or water 

deficit (S). Columns labelled with different letters are significantly different when compared 

within experimental days (pd Ψp: p < 0.01 for Embryo×Stress on days 12 and 39 and for 

Embryo on day 29; md Ψp: p = 0.03 for Stress and < 0.01 for Embryo on day 29, ANOVA, n 

= 4). Bars represent ±SD. 
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Photosynthetic characteristics 

Leaf chlorophyll content 

Embryo pre-treatment did not affect leaf chl content significantly but chl a, b and total leaf 

chl content in stressed seedlings were significantly lower than their respective unstressed 

controls, at the final harvest (Fig. 6.8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2-assimilation 

On day 0, and throughout the experimental period leaf-based CO2-assimilation rates (A) at 

Ca: 400 µmol. mol-1 in D-seedlings were significantly lower than F-seedlings, for both stressed 

and unstressed treatments (Fig. 6.9). Water stress significantly depressed A in DS- and FS-

seedlings, relative to their respective unstressed controls, throughout the experimental period. 

The ratio A at Ca: 600 µmol. mol
-1
: A at Ca: 400 µmol. mol

-1
 (A@600:A@400), and hence the 

degree of stomatal limitation of A, in D-seedlings was significantly higher than F-seedlings in 

the absence of a stress but consistently significantly lower when stressed (Table 6.2).  

A@600:A@400 in FS-seedlings was also consistently significantly higher than FW-seedlings 

(Table 6.2). 

 

Figure 6.8 Leaf chlorophyll content of seedlings recovered from fresh (F) and 

partially dried (D) embryos, subjected to watering (W) or water deficit (S).  

Chlorophyll content was measured only at the end of the ex vitro growth period. 

Columns labelled with different letters are significantly different when compared 

within categories (p = 0.04 for Stress, ANOVA, n = 4). Bars represent ±SD.  
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Chlorophyll fluorescence  

Within the unstressed treatments there was little, to no difference in potential photochemical 

efficiency of PSII (Fv/Fm; Fig. 6.10A), maximal fluorescence intensity (Fm; Fig. 6.10B) and 

fluorescence intensity at 50 µs (Fo; Fig. 6.10C).  Values of Fv/Fm in DS-seedlings were 

consistently lower than DW-seedlings (significant on day 39 only) and on day 39 this was 

accompanied by a significant decline in Fm. Fv/Fm in DS-seedlings was also relatively lower than 

FS-seedlings on days 4, 12, 29 and 39 (significant on day 39 only). Fv/Fm in FS-seedlings was 

occasionally slightly, but not significantly, lower than FW-seedlings. 

 

Day FW DW FS DS 

0 2.04±0.24
a
 2.76±0.64

a
 NA NA 

4 1.70±0.12
b
 2.11±0.14

a
 2.06±0.25

a
 1.61±0.06

b
 

12 1.59±0.11
b
 2.03±0.15

a
 2.32±0.16

c
 1.91±0.24

a
 

29 1.59±0.34
a
 2.13±0.30

b
 2.48±0.28

b
 1.65±0.06

a
 

39 1.05±0.41
a
 2.04±0.23

b
 2.46±0.30

b
 1.58±0.26

a
 

Figure 6.9 Instantaneous leaf-based CO2-assimilation rates (at Ca: 400 µmol. mol
-1
) 

of seedlings recovered from fresh (F) and partially dried (D) embryos, subjected to 

watering (W) or water deficit (S). Columns labelled with different letters are 

significantly different when compared within experimental days (p < 0.01 for 

Embryo on days 0, 4, 12, 29 and 39; p < 0.01 for Embryo on days 4, 12, 29 and 39, 

ANOVA, n = 7). Bars represent ±SD.  

 

     Table 6.2 Ratio of CO2-assimilation rate at Ca: 600 µmol. mol
-1 
to CO2-assimilation rate at Ca: 400 µmol. mol

-1
. 

Ratio was calculated for seedlings recovered from fresh (F) and partially dried (D) embryos, subjected to 

watering (W) or water deficit (S). Values followed by different letters are significantly different when 

compared within a measurement day (p < 0.01 for Embryo×Stress on days 4, 12, 29 and 39, ANOVA, n = 7). 

Values represent mean±SD. NA = not applicable.  
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Figure 6.10 Potential photochemical efficiency (Fv/Fm), maximal 

fluorescence intensity (Fm) and fluorescence intensity at 50 µs (Fo) of 

seedlings recovered from fresh (F) and partially dried (D) embryos, 

subjected to watering (W) or water deficit (S). Columns labelled with 

different letters are significantly different when compared within 

experimental days (Fv/Fm:  p < 0.01 for Stress on day 39; Fm: p < 0.01 

for Stress on day 39, ANOVA, n = 6). Bars represent ±SD.  
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Seedling mortality  

When unstressed, seedling mortality did not differ by much between embryo pre-treatments 

(Table 6.3). Mortality was significantly higher in stressed seedlings; within the stressed 

treatments mortality was significantly higher in DS-seedlings (Table 6.3).  

 

 

 

 

 

6.4 Discussion  

There are differences among species in growth and developmental responses of plantlets or 

seedlings recovered from partially dried zygotic embryos or embryonic axes with some, 

particularly those of orthodox-seeded species, showing normal phenotype whilst others, 

particularly those of recalcitrant-seeded species, exhibit reduced growth and development rates 

(see Introduction for details). Even though partial dehydration is widely used as a pre-

conditioning treatment in cryopreservation protocols for zygotic germplasm (see Engelmann, 

2004), information on how dehydration stresses imposed at the embryonic stage are translated 

or manifested during subsequent seedling growth is scarce. There are a few studies (e.g. 

Gagliardi et al., 2002; Steinmacher et al., 2007) in which the ex vitro growth of plants derived 

from partially dried zygotic germplasm has been reported; however, those studies were almost 

always based on phenotypic descriptions and there are presently few, if any published reports on 

the physiological performance of seedlings or plantlets recovered from partially dried or 

cryopreserved zygotic embryos or embryonic axes. The present contribution reports on the in 

and ex vitro growth of seedlings recovered from partially dried embryos of the wild species H. 

montanus. Since seedlings derived from cryopreserved zygotic germplasm of such species are 

unlikely to be carefully tended upon re-introduction to the wild and will be subject to the 

vagaries of the weather, the effects of embryo partial dehydration on subsequent ex vitro 

seedling vigour are important. This was assessed here by observing physiological and growth 

responses of recovered seedlings to an ex vitro water stress. 

 

Growth responses 

The poor in vitro vigour of H. montanus seedlings recovered from D- compared with F-

embryos (Fig. 6.2) is in accordance with the results of other studies (e.g. Sershen et al., 2007; 

Steinmacher et al., 2007) which suggest that partial dehydration of recalcitrant zygotic 

Treatment FW DW FS DS 

% Mortality 5 7 25 41 

  Table 6.3 Total seedling mortality over the entire ex vitro growth period. 

Seedlings were generated from fresh (F) and partially dried (D) 

embryos and subjected to watering (W) or water deficit (S). p < 

0.05 when values were compared across treatments (null model chi-

squared test, n = 95).  
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germplasm, can induce morphological abnormalities and/or reduced vigour in recovered 

seedlings. The adverse effects of partial dehydration on seedling biomass accumulation 

observed after 60 d in vitro growth (Fig. 6.2) did not disappear with an extension of the in vitro 

growth period (Fig. 6.3). These effects were not isolated to any particular organ but were most 

apparent at the shoot level, possibly compromising light-harvesting capacity of D-seedlings 

upon introduction to the ex vitro environment. The final biomass achieved during the ex vitro 

growth period (Fig. 6.4) could be a consequence of either or both ex vitro growth rates or the 

amount of material at the start of this growth phase. To assess this, RGRs (relative to the dry 

mass at the end of the in vitro growth period) were calculated. The adverse effect of embryo 

partial drying observed during the in vitro growth phase appeared reversible during subsequent 

ex vitro growth (Table 6.1). However, a water stress during this period dominated over the 

effects of embryo pre-treatment, with RGRs in DS- and FS-seedlings being statistically 

comparable. Reduced growth in droughted seedlings (e.g. Hsiao, 1973; Frensch and Hsiao, 

1994) has been variably attributed to a reduction in leaf Ψw, turgor loss (e.g. Hsiao, 1973; 

Frensch and Hsiao, 1994) and/or a reduction in the photosynthetic uptake of carbon (Katul et 

al., 2003); all of which were observed here (see Figs 6.5 and 6.7 for Ψw and Ψp respectively and 

Fig. 6.9 for A). Interestingly, FS- unlike DS-seedlings exhibited a negative RGR. This was most 

likely a consequence of drought-induced root and leaf senescence in FS-seedlings, since final 

values for root and shoot dry mass in this treatment (leaf: 0.018 g; root: 0.016 g) were both 

lower than initial values (leaf: 0.022 g; root: 0.045 g). The leaf senescence observed in FS-

seedlings is consistent with typical geophytic growth strategy which selects for bulb increment 

during a stress event, since survival in the season following dormancy is determined by the 

reserves stored in this organ, while leaf area is progressively reduced via shoot die-back to 

reduce the transpirational demand on the roots (e.g. von Willert et al., 2000). Additionally, roots 

produced in vitro are often dysfunctional and usually senesce, being replaced with new roots 

during ex vitro growth (Barry-Etienne et al., 2002). This replacement process may have been 

more a feature of FS- than DS-seedling growth strategy since FS-seedlings entered the ex vitro 

growth phase with considerably more root dry matter than DS-seedlings (Fig. 6.3A).  

 

Plant water relations 

Water stress is usually quantified in terms of the extent to which tissue Ψw falls below that 

at full turgor (Fitter and Hay, 2002) and pd Ψw was indiscriminately reduced in stressed 

seedlings  in this study (Fig. 6.5A). Such a decrease is often initiated to increase the Ψw gradient 

between soil and plant and drive water through the plant (Barker et al., 1993; Galmés et al., 

2007). The decrease in Ψw in stressed seedlings was significantly greater in D-seedlings, and 
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DS- unlike FS-seedlings did not exhibit any signs of long-term osmotic adjustment, reflected in 

a decrease in Ψs in FS-seedlings relative to their well watered controls (Fig. 6.6). Many species 

exhibit a decrease in Ψs during a water stress to maintain turgor at low Ψw (Barker et al., 1993; 

Galmés et al., 2007). However, such an adjustment demands considerable metabolic investment 

(Barker et al., 1993) and the absence or poor expression of this response in DS-seedlings may 

have been a consequence of the relatively lower A (Fig. 6.9) in D-seedlings. Pd-md Ψw values in 

FS-seedlings were often higher than FW- and DS-seedlings, suggesting that FS-seedlings may 

have been more efficient than DS-seedlings at generating a gradient between soil and leaf Ψw to 

meet transpirational demands. Failure to equilibrate with soil Ψw overnight can severely depress 

Ψw in droughted seedlings (Fitter and Hay, 2002) and prolonged exposure to such low Ψw can 

be extremely stressful in juvenile plants (Hsiao, 1973). This may explain why DS-seedlings 

exhibited greater and more prolonged turgor loss than FS-seedlings (Fig. 6.7); prolonged turgor 

loss is indicative of permanent leaf-wilting (Leopold et al., 1981; Galmés et al., 2007). 

In the absence of a stress there were no significant differences in the measured water 

relations parameters between F- and D-seedlings, indicating that the effects of partial drying of 

excised embryos were reversible in the long-term (Figs 6.5 and 6.7). 

The estimates of osmotic and turgor potential were variable within treatments though and 

this may have been due to non-negligible apoplastic water content. The use of a vapor-pressure 

osmometer to measure leaf osmotic potential (e.g. Ball and Oosterhuis, 2005) may have 

overcome the limitations of the present approach. Pressure chamber techniques may represent 

an alternate option for estimating turgor potential in the seedlings investigated here but it must 

be noted that such techniques have been shown to over-estimate leaf water potential relative to 

thermocouple psychrometer measurements (Wright et al., 1988).  

                                                    

Photosynthetic characteristics 

The light-energy transducing system of a plant is sensitive to tissue water status and a 

decrease in chl content after a drought often results in a decrease in light harvesting capacity 

(Alberte et al., 1974). In H. montanus chl content decreased indiscriminately in stressed 

seedlings (Fig. 6.8); this may explain the drought-induced reduction in A observed in these 

seedlings (Fig. 6.9). Additionally, a reduction in A during a drought event (e.g. Hsiao, 1973; 

Tezara et al., 1999; Flexas et al., 2006) is generally attributed to a restriction of leaf gas 

exchange, mediated by the closure of stomata during turgor loss (Björkman and Powles, 1984; 

Galmés et al., 2007; McDowell et al., 2008). As discussed earlier, stressed seedlings in this 

study did exhibit a significant decrease in Ψp (Fig. 6.7).  
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Interestingly, A in D-seedlings was significantly lower than F-seedlings, irrespective of 

whether they were stressed or not (Fig. 6.9). These differences were unlikely to have been 

related to differences in leaf chl content (Fig. 6.8). In the absence of a stress the ratio A@600 : 

A@400 (taken as a measure of stomatal limitation) in D-seedlings was significantly greater than 

F-seedlings (Table 6.2), suggesting that the significantly lower A in D-seedlings may have been 

a consequence of stomatal limitation. However, when subjected to a water stress stomatal 

limitation was greater in F-seedlings. These data suggest that the reduction of A in DS-seedlings 

was, to some degree, a consequence of damage to the photosynthetic machinery. Plants can 

incur permanent damage to their photosynthetic machinery during a water stress (Flexas et al., 

2006) and as in other studies (Burke and Hatfield, 1987; Govindjee et al., 1981), DS-seedlings 

may have incurred such damage as a consequence of metabolic disruption and membrane 

rupture associated with prolonged turgor loss (Leopold et al., 1981). Such damage depresses 

photosynthesis (Radin and Ackerson, 1981) and phytochemical efficiency (Govindjee et al., 

1981) and consistent with this, Fv/Fm values in DS-seedlings declined significantly towards the 

latter stages of the stress (Fig. 6.10). Other studies (e.g. Havaux and Lannoye, 1983; Rolando 

and Little, 2003) have also reported a depression in Fv/Fm in droughted seedlings and such a 

decrease is believed to be a reliable indicator of a reduction in seedling vigour (Maxwell and 

Johnson, 2000). A depression in Fv/Fm is often related to a rise in Fo (fluorescence intensity at 

50µs) and/or a decrease in Fm (maximal fluorescence intensity) (e.g. Rolando and Little, 2003). 

The former was not observed here, but Fm did decline significantly on day 39 in DS-seedlings 

(Fig. 6.10B). 

 

Seedling mortality  

In the absence of a water stress D-seedlings did not appear to be more susceptible to 

mortality than F-seedlings (Table 6.3) and under such ideal conditions the significantly higher 

RGRs in D-seedlings (Table 6.1) may assist D-seedlings in overcoming the adverse effects of 

dehydration, aiding successful seedling establishment. The decrease in Ψw in stressed seedlings 

was typically (see McDowell et al., 2008) accompanied by greater seedling mortality than their 

respective well watered controls (Table 6.3). Drought-induced seedling mortality was, however, 

significantly higher in DS-seedlings, possibly due to the combination of insufficient adjustment 

of Ψw to meet transpirational demands (Fig. 6.5), a failure to adopt growth patterns that reduce 

transpirational water loss (Fig. 6.4), exposure to significantly lower pd Ψw than FS-seedlings 

(Fig. 6.5), poor osmotic adjustment (Fig. 6.6), and the onset of permanent leaf wilting (Fig. 6.7); 

all of which promote hydraulic-failure (see McDowell et al., 2008) in juvenile plants (e.g. 

Hsiao, 1973). The influence of carbon-starvation (i.e. stomatal closure to prevent hydraulic 

R 
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failure) cannot be ruled out, since Fv/Fm (Fig. 6.10A) also declined in DS-seedlings, but carbon-

starvation is after all believed to be brought about by hydraulic-failure (McDowell et al., 2008). 

   

6.5 Concluding remarks  

The results obtained here suggest that the exposure of recalcitrant H. montanus embryos to a 

dehydration stress can compromise the vigour and drought tolerance of recovered seedlings. 

While certain adverse effects of partial dehydration may be reversed during ex vitro growth (e.g. 

higher RGR) the adverse effects on physiological components, such as the photosynthetic 

machinery, may be carried through to the early ex vitro stage. An extended period of ex vitro 

acclimatization before re-introduction of such seedlings into the wild may alleviate such effects, 

but this remains to be tested. The results obtained here warrant an investigation of the effects of 

recalcitrant embryo cryopreservation on the vigour of recovered seedlings; this forms the basis 

of studies described in Chapter 7, where the study was extended to another species.  
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CHAPTER SEVEN: 

Effects of cryopreservation of recalcitrant Amaryllis belladonna zygotic 

embryos on vigour of recovered seedlings  
 

Based on  

Sershen, Berjak, P., Pammenter, N.W. 2010. Effects of cryopreservation of recalcitrant Amaryllis 

belladonna zygotic embryos on vigour of recovered seedlings: a case of stress ‘hangover’?  Physiologia 

Plantarum 139, 205-219. 

 

Abstract 

Cryopreservation is the most promising long-term storage option for recalcitrant (i.e. 

desiccation-sensitive) seed germplasm, however, its effects on the vigour of recovered seedlings 

is unclear. This study looked at the vigour of seedlings recovered from partially dried (D) and 

cryopreserved (C) recalcitrant zygotic embryos of Amaryllis belladonna (L.). Seedlings 

recovered from fresh (F), D- and C-embryos were recovered in vitro, hardened-off ex vitro and 

then exposed to 12 d of watering (W) or 8 d of water deficit (S), followed by 3 d of re-watering. 

Seedling vigour was assessed in terms of physiological and growth responses to the imposed 

water stress. Compared with F-embryos, partial dehydration and cryopreservation reduced the 

number of embryos that produced seedlings, as well as the subsequent in vitro biomass of these 

seedlings. DW- and CW-seedlings (recovered from dried and cryopreserved embryos and 

watered for 12 d) exhibited lower CO2-assimilation rates and abnormal root growth. Stomatal 

density was also lower in C-seedlings.  DS- and CS-seedlings (recovered from dried and 

cryopreserved embryos and stressed) were exposed to persistent low leaf water and pressure 

potentials and unlike FS-seedlings, displayed signs of having incurred damage to their 

photosynthetic machinery. Consistent with this, leaf chlorophyll content was lower in D- and C-

seedlings than F-seedlings, and potential photochemical efficiency was significantly reduced in 

CS-seedlings. CS-seedlings were less efficient at adjusting leaf water potential to meet 

transpirational demands and more susceptible to persistent turgor loss than DS- and FS-

seedlings. DS-seedlings performed slightly better than CS-seedlings but drought-induced 

seedling mortality in both these treatments was higher than FS-seedlings. These results suggest 

that seedlings recovered from partially dried and cryopreserved embryos were less vigorous and 

more susceptible to hydraulic-failure than those from fresh embryos.  

 

7.1 Introduction 

Cryopreservation (i.e. storage at ultra-low temperatures, usually -196°C) is the most promising 

long-term storage option for recalcitrant seed germplasm, which otherwise cannot be stored for 

any useful period of time (Berjak and Pammenter, 2004). Unlike the success achieved with 

somatic (e.g. Mycock et al., 1995) and nucellar embryos (e.g. Kartha, 1985), and even zygotic 
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embryos from orthodox seeds (e.g. Gagliardi et al., 2002), recovery after cryopreservation of 

recalcitrant zygotic embryos or embryonic axes very seldom results in the production of callus free 

plants, rid of morphological abnormalities (for reviews see Engelmann, 2004; Berjak et al., 2010). 

In fact, a number of studies (e.g. Pence, 1992; Dumet et al., 1997; Wesley-Smith et al., 2001, 

2004; Sershen et al., 2007; Steinmacher et al., 2007), have observed abnormal phenotype in 

seedlings recovered from recalcitrant zygotic germplasm exposed to partial dehydration or the 

combination of partial dehydration and cooling. Further to this, the cryopreservation tissue-

culture regeneration process may also expose recovered seedlings to the effects of somaclonal 

variation, resulting in changes to their genotypic and/or phenotypic profiles (reviewed by 

Harding, 2004; Panis and Lambardi, 2006).  

It has been known for some time now that exposure to different types of stress can alter 

subsequent plant responses (Bruce et al., 2007) but there is, at present, little to no understanding 

of how stresses imposed at the embryonic stage are translated or manifested during subsequent 

in and ex vitro seedling growth. A few reports suggest that there exists within developing 

embryos (zygotic and somatic) some ‘memory’ based mechanism that senses environmental 

signals such as duration of imbibition (Forsyth and van Staden, 1983) and temperature during 

embryogenesis (Kvaalen and Johnsen, 2007), which in turn influence adaptive traits in the 

seedlings they give rise to. If such a mechanism were to exist within recalcitrant zygotic 

embryos or embryonic axes, the dehydration and freezing stresses imposed on these explants 

during cryopreservation, together with the morphological abnormalities that often characterise 

recovered seedlings (reviewed by Engelmann, 2004; Steinmacher et al., 2007), may compromise 

the aim of plant cryopreservation - to regenerate true-to-type seedlings.  

There have been reports of no observed differences in morphological characters between 

plants recovered from control or cryopreserved: shoot apices (e.g. Helliot et al., 2002), 

meristems (e.g. Bajaj, 1983; Matsumoto et al., 1994; Caswell and Kartha, 2009), somatic 

embryos (Aronen et al., 1999), embryogenic cell suspensions (e.g. Côte et al., 2000), 

polyembryonic cultures (Konan et al., 2007), shoot tips (e.g. Benson et al., 1996; Wang et al., 

2005), non-orthodox whole seeds (e.g. Potts and Lumpkin, 2000; Popov et al., 2004), and even 

zygotic embryos from recalcitrant seeds (Assy-Bah and Engelmann, 1992). Also, there are an 

increasing number of reports indicating no phenotypical, biochemical, chromosomal or 

molecular modifications of thawed material attributed to cryopreservation (for reviews see 

Harding, 2004; Engelmann, 2004). Many of those observations have been made very soon after 

cryopreservation and on a small number of individuals, often using material still cultured in 

vitro or after a short period of growth ex vitro. However, there are cases (e.g. Engelmann, 1991; 

Benson et al., 1996; Côte et al., 2000; Martínez-Montero et al., 2002; Konan et al., 2007; 



 282 

Caswell and Kartha, 2009) where many plants (often hundreds) derived from cryopreserved 

germplasm have been grown and assessed in the field for many months, to years. Those studies 

have shown recovered plantlets of a number of (mainly crop) species (including: potato, banana, 

sugarcane and apple and oil palm) to exhibit normal phenotype and even flower, fruit and 

produce seed. These observations were based on a comparison of a wide range of developmental 

and morphological growth characteristics of plants recovered from frozen and unfrozen 

samples, however, except for one report on the photochemical activities of two photosystems in 

frozen-thawed Bratonia orchid protocorms during in vitro recovery (Bukhov et al., 2006) there 

are, at present, no published reports on the in or ex vitro physiological performance and/or stress 

tolerance of plants recovered from cryopreserved samples.  Ex vitro physiological performance 

and stress tolerance of seedlings recovered from cryopreserved germplasm is of special interest 

to programs concerned with the cryopreservation of the germplasm of endangered wild species, 

which ultimately aim to re-introduce plants or seedlings recovered from cryopreserved samples 

back into the wild. Since the successful re-introduction of recovered seedlings will depend on 

their ability to tolerate abiotic stresses such as drought, most especially during the early seedling 

establishment phase, the current contribution looked at the in and ex vitro vigour of seedlings 

recovered from partially dried and cryopreserved, recalcitrant zygotic embryos. The studies 

were undertaken on the recalcitrant zygotic embryos of the wild geophyte Amaryllis belladonna 

(L.) and seedling vigour was assessed in terms of physiological and growth responses to an ex 

vitro water stress.  

 

7.2 Materials and methods 

Plant material  

Mature A. belladonna fruits were harvested directly from parent plants and transported in 

plastic bags to the laboratory with minimum delay (1-2 d) or water loss. Upon arrival, the seeds 

were decontaminated and stored ‘hydrated’, as described in Chapter 2 (section 2.2).  

 

Embryo pre-treatment, in vitro seedling regeneration and ex vitro hardening-off 

All experiments were carried out on seeds stored for between 7-10 d, never longer. Zygotic 

embryos were excised and collected within closed Petri dishes on filter paper moistened with 

sterile calcium-magnesium solution (CaMg solution: 0.5 µM CaCl2.2H2O and 0.5 mM 

MgCl2.6H2O [Mycock, 1999]). In order to minimise the potential variation in drying and/or 

cooling rate as a function of embryo size, only embryos of between 4-6 mm in length were used 

for all the experiments described below. Excised embryos were subjected to one of the 

following treatment combinations: (a) no cryoprotection, no dehydration and no cooling (i.e. 
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freshly excised embryos possessing water content of  c. 4.65 g g
-1
); (b) cryoprotection with 

glycerol (Gly; a combination of 5 and 10% [v/v]), rapid dehydration to c. 0.31 g g
-1
 (via flash 

drying [devised by Berjak et al., 1990]) and rapid rehydration in CaMg solution; and (c) 

cryoprotection with Gly, rapid dehydration to c. 0.31 g g
-1
, rapid cooling (hundreds of °C s

-1
) of 

naked embryos in nitrogen slush (liquid nitrogen [LN] sub-cooled to -210°C [Echlin, 1992]), 

transfer under LN into LN-containing cryovials and storage in LN for 24 h;  followed by 

thawing in CaMg solution held at 40°C for 2 min and rehydration in CaMg solution at 25ºC for 

30 min. For cryoprotection (CP), embryos were immersed in 5% (v/v) aqueous Gly and 

thereafter transferred to a 10% (v/v) aqueous solution of the cryoprotectant, for 1 h at each 

concentration. Embryos subjected to each of these three treatment (300 embryos for each) 

combinations (a to c) were then decontaminated with 1% (w/v) aqueous calcium hypochlorite 

for 3 min, washed with sterile CaMg solution (3 times) and then set to germinate with 5 

embryos per Petri dish on full-strength Murashige and Skoog medium (Murashige and Skoog, 

1962), containing 3% (w/v) sucrose. All Petri dishes were initially placed in the dark, and 

transferred upon signs of root and shoot development to a growth room with cool fluorescent 

lights (52 µE s
-1
 m

-2
) and a 16 h photoperiod, at ~25ºC.   

Embryos were grown in vitro for 150 d with two sub-cultures (at 50 and 100 d) and those 

that subsequently produced seedlings with callus free roots and shoots were transplanted 

independently into plastic inserts (5-cm-wide; 15-cm-deep), filled with a mixture of 1 part pine 

bark and 1 part coarse river sand, and placed in a misthouse for 14 d to harden-off.  

 

Ex vitro experimental design 

From here on, seedlings generated from fresh embryos will be labelled ‘F’, dried ‘D’ and 

cryopreserved ‘C’.  Where any of these labels is followed by the letter ‘S’ it refers to seedlings 

exposed to a water deficit, imposed by with-holding water, while the letter ‘W’ indicates the 

absence of this stress (i.e. seedlings that were watered daily). To validate the comparison of 

physiological measurements among F-, D- and C- seedlings during the ex vitro studies, we had 

to ascertain that seedlings recovered from such pre-treated embryos were at the same 

developmental stage after the 90 d in vitro growth period. As described for Haemanthus 

montanus seedlings in Chapter 6 (section 6.2), A. belladonna seedlings in this study were ‘aged’ 

by their morphology rather than chronological time using the leaf plastochron index (LPI) 

(originally described by Erickson and Michelini, 1957). A. belladonna seedlings generally 

produced two leaves by day 85 of in vitro regeneration. Leaf 1 and 2 (numbered in the order that 

the leaves were produced) length was measured for five D-, F- and C-seedlings on day 85 using 

calipers, and then again on day 90. These data suggested that growth had not leveled-off and 
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leaf length across all treatments was still actively increasing during this period (data not shown).  

With this mind, leaf lengths recorded on day 90 were used to calculate LPI1 for each of five D-, 

F-, and C-seedlings, according to Erickson and Michelini (1957) (see Chapter 6, section 6.2 for 

detailed description of calculations). When calculated, mean LPI1 was statistically comparable 

across F- (-11.95±1.88), D- (-12.01±1.72) and C- (-11.82±1.68) seedlings (ANOVA, p >0.05; 

data not shown), suggesting that seedlings across these treatments were at approximately the 

same developmental age upon introduction to ex vitro conditions (i.e. day 91).  

After hardening-off, plants were transferred to natural conditions of illumination in a 

polycarbonate-clad greenhouse. Plants were fertilised upon transfer to the greenhouse and after 

7 d D-, F- and C-seedling groups, now composed of 174 (randomly selected) seedlings each, 

were further sub-divided into two batches of 87. Within each group, one seedling batch was 

subjected to a water stress by with-holding water for 8 d, followed by 3 d of re-watering while 

the second batch was watered daily for 12 d (see Fig. C1, Appendix C). Instantaneous leaf-

based CO2-assimilation rate, potential photochemical efficiency as well as leaf water, osmotic 

and pressure potential, were measured across all embryo pre-treatment × watering regimes 

(referred to as ‘all treatments’ from here on) on days 0, 8 and 12, while growth responses 

(seedling biomass, biomass partitioning) and leaf chlorophyll content were  assessed after the in 

and ex vitro growth period. Root morphology and stomatal density were assessed across all 

treatments at the end of the ex vitro growth period. 

 

Photosynthetic capacity 

Chlorophyll content 

Chlorophyll (chl) content was measured on experimental day 0 (ex vitro) and at the final 

harvest (day 12) using one leaf from each of 4 seedlings (only living leaf material sampled), 

across all treatments. Chlorophyll was extracted and chl a, b and total chl was measured 

spectrophotometically according to a method described by Arnon (1949) (see Chapter 6; section 

6.2). As in studies based on the vigour of H. montanus seedlings (described in Chapter 6), 

stability of the pigment extract was checked since extraction with acetone solutions can lead to 

chl degradation to phaeophytin by co-extracted acids (Rodrigues-Amaya and Kimura, 2004). In 

this regard, the absorbance of acetone chl extracts of A. belladonna leaves remained stable (to 

the third decimal) for as long as 6 h after filtration (when kept in the dark). This suggested that 

chl degradation to phaeophytin was unlikely to have affected the results obtained in subsequent 

studies. 
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Steady-state gas exchange  

All gas exchange measurements were carried out on experimental days 0, 8 and 12 using the 

Li-Cor 6400 portable photosynthesis measuring system fitted with an Arabidopsis chamber (Li-

Cor, Nebraska, U.S.A.). Instantaneous (spot) measures of leaf-based CO2-assimilation rates (A) 

were carried out at carbon dioxide concentration (Ca): 400 µmol. mol
-1
 and then at above 

ambient Ca: 600 µmol. mol
-1
, across all treatments, according to the methods described for H. 

montanus in Chapter 6 (section 6.2). The ratio between A at Ca: 600 and 400 µmol. mol
-1
, 

referred to as ‘A@600 : A@400’ from here on, was also calculated. This ratio is a reflection of 

the response of A to changing Ca and is believed to be a reliable indication of stomatal limitation 

of A (Osmond et al., 1980; Cornic et al., 1983); a higher ratio is indicative of greater stomatal 

limitation. 

 

Potential photochemical efficiency  

On experimental days 0, 8 and 12 a Plant Efficiency Analyser (Hansatech Instruments Ltd., 

Kings Lynn, U.K.) was used to measure chlorophyll fluorescence transients on one fully 

expanded, non-senescing, mature leaf from each of 6 seedlings, across all treatments. 

Measurements were carried out according to the methods described for H. montanus in Chapter 

6 (section 6.2) and Fv/Fm, the ratio of variable (Fv) to maximum fluorescence (Fm), which is a 

measure of potential photochemical efficiency of photosystem II (PSII), was calculated from the 

fluorescence data using Biolyzer 3.0 software (developed by Maldonado-Rodriguez, 2002).  

Fluorescence intensity at 50 µs (Fo) and maximal fluorescence intensity (Fm) were also 

calculated in this way. 

 

Leaf water status  

On experimental days 0, 8 and 12  leaf water potential (Ψw) measurements were carried out 

at predawn (pd) and 5-6 h into the light period (md), on one  fully expanded, non-senescing, 

mature leaf from each of four seedlings across all treatments, using thermocouple psychrometers 

(Model C-52; Wescor, Logan, U.S.A.) in combination with a microvoltmeter. The difference 

between pd Ψw and md Ψw, referred to as ‘pd-md’, was also calculated. pd-md Ψw reflects the 

extent to which md Ψw is lowered from that at pd, to generate the Ψw gradient between soil and 

leaf, to drive the water flow through the plant to meet the transpirational demand during the 

light period. After Ψw was measured, ‘osmotic’ potential (Ψs) or water activity was measured on 

the same samples and pressure potential (Ψp) was calculated (as the difference between osmotic 

and water potential). The methods of measurement and calculations used for these studies were 

the same as those described for H. montanus in Chapter 6 (section 6.2).  
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Growth and biomass 

 After the in vitro growth period (150 d) six seedlings were separated into bulb, leaves and 

roots, on a per individual basis, and oven-dried for 72 h at 80°C to a constant weight, for dry 

mass estimates. Dry mass of these organs was similarly determined for six seedlings at the end 

of the ex vitro growth period and used to calculate relative growth rate (RGR) via Equation 1:  

[1] 

Individual seedling DM after 33 d ex vitro growth (g)  - Mean seedling DM after 150 d in vitro growth (g)         

                                            Mean seedling dry mass after 150 d in vitro growth (g)                                           33d 

 

where DM refers to dry mass. 

 

Stomatal density  

Only fully expanded leaves were used to investigate the effect of embryo pre-treatment and 

subsequent ex vitro growth (with and without an imposed water stress) on stomatal density. In 

A. belladonna leaves the region of highest density and most regular stomatal distribution was 

found to lie in a 1 cm wide band across the middle portion of the adaxial surface, so this portion 

of the leaf was excised and used for all subsequent estimates. One leaf from each of 10 

seedlings across all treatments was sampled early in the morning, on day 12 and fixed in 

gluteraldehyde immediately after excision. Samples were dehydrated using an ethanol series 

after fixation, critical point dried and directly sputter-coated with gold in a Polaron E5100 

sputter coater.  Surface structure was viewed using a Leo 1450 Scanning Electron Microscope 

(SEM).  

Stomatal density on the left and right-hand side of the selected leaf portion was captured at a 

constant magnification and field of view. The left- and right-hand side of each leaf sample was 

further sub-divided into a top and bottom half, such that each sample was represented by four 

sectors: left-top and -bottom and right-top and bottom. The number of stomata (opened and 

closed) in each sector was counted keeping the sample area constant (µm2). The counts for the 

four sectors of each leaf were then averaged to yield a mean stomatal density for each leaf.  

 

Root morphology  

Roots from each of 10 seedlings across all treatments were excised after the ex vitro growth 

period. Roots of individual seedlings were divided into tips, middle (portion between the bulb 

base and root tip) and bulb-base (portion immediately beneath the bulblet), prior to fixation in 

gluteraldehyde. After fixation, samples were dehydrated using an ethanol series, critical point 

dried, directly sputter-coated with gold and viewed using a Leo 1450 SEM.  
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Statistical analysis 

Leaf plastochron and in vitro biomass data were compared across treatments by one-way 

Analysis of Variance (ANOVA; SPSS, Version 15). All other variables were tested for 

differences across treatments, within time intervals, by two-way ANOVA. Two-way ANOVAs 

were factorial in design, testing for the main-effects of embryo pre-treatment (referred to as 

‘Embryo’) and water stress (referred to as ‘Stress’), as well as the interaction between these 

(referred to as ‘Embryo×Stress’) (STATISTICA Version 6.1, StatSoft Inc. Tulsa, USA). 

Multiple comparisons were made using a Scheffe’s mean separation test. Where the original 

data were expressed as a proportion (%) these values were arcsin transformed to conform data to 

ANOVA assumptions. At the end of the in vitro and ex vitro growth period’s embryo/seedling 

viability (%) was compared across all treatments using null-model chi-squared analyses 

(EcoSim Version 7.72 [developed by Gotelli and Entsminger, 2009]). All statistical tests were 

performed at the 0.05 level of significance. 

 

7.3 Results 

In vitro growth responses 

While 98% of freshly excised embryos developed into seedlings, significantly (p < 0.05) 

fewer embryos produced seedlings after partial dehydration (83%) and the combination of 

partial dehydration and cooling (72%) during in vitro recovery (data not shown). 

After the in vitro growth period leaf, bulb, root and total dry mass were highest in F-

seedlings and lowest in C-seedlings (Fig. 7.1A). While biomass partitioning to bulbs and roots 

in C-seedlings was significantly lower than F- and D-seedlings, biomass partitioning to leaves 

was significantly higher (Fig. 7.1B). Biomass partitioning to roots in D-seedlings was also 

significantly lower than F-seedlings.  

 

Ex vitro growth responses 

Relative growth rate (RGR) in CW-seedlings was significantly lower than DW- and FW-

seedlings (Table 7.1). In DS- and FS-seedlings, RGR was significantly reduced relative to their 

respective unstressed controls but stress did not further affect the already low RGR of C-

seedlings significantly.  

In the absence of a stress total seedling dry mass in F-seedlings was significantly higher than 

D- and C-seedlings while water stress significantly reduced dry mass accumulation across all 

embryo pre-treatments (Fig. 7.2A). Within the stressed treatments, dry mass accumulation was 

significantly higher in FS- and lower in CS-seedlings.  Irrespective of whether the seedlings 

were stressed or not, bulb and root dry mass was significantly higher in F- and lower in C-
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seedlings. Water stress decreased bulb and root dry mass across all embryo pre-treatments; these 

differences were significant for F- and D-seedlings for bulb, and for F- and C-seedlings for root. 

While leaf dry mass in DW- and CW-seedlings was significantly lower than FW-seedlings, 

water stress significantly reduced leaf dry mass across all embryo pre-treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FW 0.049±0.008a FS 0.017±0.002b 

DW 0.041±0.009
a
 DS 0.019±0.001

b
 

CW 0.023±0.007b CS 0.023±0.001b 

Figure 7.1 [A] Total and organ-based dry mass and [B] biomass 

partitioning of seedlings recovered from fresh (F), partially dried (D) 

and cryopreserved (C) embryos, after 150 d in vitro growth. Blocks 

labelled with different lower-case letters are significantly different 

across treatments when compared within organs, while upper-case 

letters indicate inter-treatment differences in total dry mass (p < 0.05, 

ANOVA, n = 6). Bars represent SD. 
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  Table 7.1 Ex vitro seedling relative growth rate (RGR; g g-1 DM d-1). 

RGR = relative growth rate ([Individual seedling dry mass after 33 d 

ex vitro growth (g) - Mean seedling dry mass after 150 d in vitro 

growth (g) / Mean seedling dry mass after 150 d in vitro growth (g)] / 

33 d) of seedlings recovered from fresh (F), partially dried (D) and 

cryopreserved (C) embryos, subjected to watering (W) or water deficit 

(S). Values represent mean±SD and are significantly different when 

followed by different letters (p < 0.01 for Embryo, Stress and 

Embryo×Stress, ANOVA, n = 6). 
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Leaf stomatal density 

Since there were no significant differences in stomatal density between stressed and 

unstressed leaves, stomatal density data were pooled based on embryo pre-treatment for all 

subsequent analyses, which showed stomatal density of C-seedlings to be significantly lower 

than F- and D-seedlings (Table 7.2; also see Fig. C2, Appendix C).  

Figure 7.2 [A] Total and organ-based dry mass and [B] biomass 

partitioning of seedlings recovered from fresh (F), partially dried (D) and 

cryopreserved (C) embryos, subjected to watering (W) or water deficit (S). 

Blocks labelled with different lower-case letters are significantly different 

across treatments when compared within organs, while upper-case letters 

indicate inter-treatment differences in total dry mass (for [A]: p < 0.01 for 

Embryo and Stress and = 0.01 for Embryo×Stress; for [B]:  p < 0.01 for 

Embryo; roots: p < 0.01 for Stress and Embryo×Stress; leaves: p < 0.01 for 

Stress, ANOVA, n = 6). Bars represent SD. 
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Root morphology  

This was assessed at the end of the ex vitro growth period across all treatments; however, 

within embryo pre-treatments there were no obvious differences between stressed and 

unstressed seedlings so root morphology is presented only for non-stressed F-, D- and C-

seedlings. Results of these studies were not quantitative and in light of their descriptive nature 

only features that occurred in more than five out of the ten replicates for each embryo pre-

treatment are shown.  

Scanning electron micrographs of roots produced by unstressed F-, D- and C-seedlings 

revealed root hair density to be greatest (qualitative assessment) in F-seedlings (Fig. 7.3A, D, 

G). Root hairs in F-seedlings occurred across all three sections of the root (i.e. tip, middle and 

bulb base) but were most abundant in the middle portion (Fig. 7.3D). In D-seedlings, root hair 

density was also greatest in the middle portion of the root but unlike F-seedlings, root hairs were 

sporadically distributed across the three portions and clearly absent in some areas (Fig. 7.3B, E, 

H). Root tips in D-seedlings were characterised by root hairs that were relatively shorter 

(qualitative assessment) than those associated with the root tips of F-seedlings (Fig. 7.3G and H, 

respectively). In C-seedlings large areas across all three root portions were devoid of root hairs 

(Fig. 7.3C, F, I) while root hair density in the middle portion, the site of the greatest root hair 

density in other treatments, was also far lower (qualitative assessment) than F- and D-seedlings 

(Fig. 7.3D, E, F).  

The roots of D- and F-seedlings tapered towards the tip while the root tips of C-seedlings 

were almost nodular and often exhibited a tuft of relatively long root hairs (Fig. 7.3G, H, I). In 

C-seedlings the section of the root immediately beneath the bulb was almost always abnormally 

thick, when compared with F- and D-seedlings (Fig. 7.3A, B, C).  

 

Treatment 
Stomatal density 

(no. of stomata mm
-2
) 

Fresh 36.43±5.21
a
 

Dried 35.75±8.34a 

Cryopreserved 15.56±5.11
b
 

Table 7.2 Adaxial stomatal density. 

Estimated from SEM images of individual leaves of 

seedlings recovered from fresh, partially dried and 

cryopreserved embryos after 33 d ex vitro growth. 

Values represent mean±SD (data for stressed and 

unstressed treatments were pooled within embryo pre-

treatments) and are significantly different across 

treatments when followed by different letters (p < 0.01, 

ANOVA, n = 10). 
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Plant water relations 

On day 0, Ψw, Ψs and Ψp in CW-seedlings were significantly lower than FW- and DW-

seedlings at pd, but not at md (Figs 7.4A, 7.5A, B and 7.6A, B) (note md Ψw data not shown). 

While pd-md Ψw was close to zero in CW-seedlings on day 0, this parameter was significantly 

higher in DW- and FW-seedlings (Fig. 7.4B), suggesting that DW- and FW-seedlings were 

more efficient at adjusting Ψw to meet transpirational demands than CW-seedlings. Within the 

unstressed treatments pd Ψw and pd-md Ψw in C-seedlings remained significantly (on days 8 and 

12) lower than D- and F-seedlings throughout the experimental period (Fig. 7.4A, B) but pd-md 

Ψw values did become more positive (relative to day 0) in CW-seedlings as the experimental 

period progressed. 

By day 8, water stress had depressed pd Ψw across all embryo pre-treatments and even with 

re-watering (i.e. day 12) pd Ψw across all stressed treatments never recovered to levels 

comparable with their respective unstressed controls (Fig. 7.4 A, B). On day 8, pd-md Ψw across 

all stressed treatments was relatively lower than their respective unstressed controls (significant 

for D-seedlings only), while within the stressed treatments pd-md Ψw was significantly lower in 

CS-seedlings (Fig. 7.4B). When stressed plants were re-watered pd-md Ψw in these treatments 

remained significantly lower than their respective unstressed controls. 

Irrespective of whether they were stressed or not, Ψs in C-seedlings was significantly lower 

than D- and F-seedlings at pd and md on days 8 and 12 (Fig. 7.5A, B). On days 8 and 12, Ψs in 

FS- and DS-seedlings was significantly lower than their respective unstressed controls at pd, 

and at pd and md for CS-seedlings.   

On day 8, water stress depressed Ψp across all embryo pre-treatments but this trend was 

significant at md only (Fig. 7.6A, B). Even though Ψp in FS-seedlings was slightly higher than 

DS- and CS-seedlings at pd and md on day 8, these differences were not significant. With re-

watering Ψp in DS- and FS-seedlings recovered to levels comparable with their respective 

unstressed controls on day 12 (being more pronounced at pd); however, Ψp in CS-seedlings 

remained relatively lower than in CW-seedlings (significant at md only), and DS- and FS-

seedlings.  

Tip 
Middle 

F 
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Figure 7.3 Scanning electron micrographs of roots of seedlings derived from [A, D, G] fresh, [B, E, H] partially dried and [C, F, I] cryopreserved embryos after 33 d ex vitro 

growth.  [A, B, C] = root portion immediately beneath bulb; [D, E, F] = middle portion of root; [G, H, I] = root tip. Bar = 200 µm. 
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Figure 7.4 [A] Predawn (pd) leaf water potential and [B] Predawn – midday water potential 

difference (pd-md) of seedlings recovered from fresh (F), partially dried (D) and 

cryopreserved (C) embryos, subjected to watering (W) or water deficit (S). Columns labelled 

with different letters are significantly different when compared within experimental days (p 

< 0.01 for Embryo, Stress and Embryo×Stress, ANOVA, n = 4). Bars represent ±SD. 
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Figure 7.5 [A] Predawn (pd) and [B] midday (md) leaf osmotic potential of seedlings 

recovered from fresh (F), partially dried (D) and cryopreserved (C) embryos, subjected to 

watering (W) or water deficit (S). Columns labelled with different letters are significantly 

different when compared within experimental days (p < 0.01 for Embryo and 

Embryo×Stress, ANOVA, n = 4). Bars represent ±SD. 
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Figure 7.6 [A] Predawn (pd) and [B] midday (md) leaf pressure potential of seedlings 

recovered from fresh (F), partially dried (D) and cryopreserved (C) embryos, subjected to 

watering (W) or water deficit (S). Columns labelled with different letters are significantly 

different when compared within experimental days (p < 0.01 for Embryo, Stress and 

Embryo×Stress, ANOVA, n = 4). Bars represent ±SD. 
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Photosynthetic characteristics 

Leaf chlorophyll content 

After 150 d in vitro growth, chl a, b and total leaf chl content did not differ significantly with 

embryo pre-treatment (data not shown). With ex vitro growth, chl a and total chl content in F-

leaves were significantly higher than D- and C-leaves, while chl b content in F- and D-leaves 

was significantly higher than C-leaves (Fig. 7.7). Total chl content in D-leaves was also 

relatively higher than C-leaves but this trend was significant for unstressed material only.  DS- 

and CS-seedlings exhibited a decline in chl a, b and total chl content, relative to their respective 

unstressed controls (significant for total chl in D-seedlings only) but this decline was not 

observed in FS-seedlings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2-assimilation rates 

On day 0 and throughout the experimental period leaf-based CO2-assimilation rates (A) at Ca: 

400 µmol. mol
-1
 were significantly higher in FW-seedlings (Fig. 7.8). On days 8 and 12, A in 

DW-seedlings was relatively higher than CW-seedlings (significant on day 12 only). On day 8, 

water stress depressed A across all embryo pre-treatments (significant for F-seedlings only). 

Figure 7.7 Leaf chlorophyll content of seedlings recovered from fresh (F), 

partially dried (D) and cryopreserved (C) embryos, subjected to watering 

(W) or water deficit (S).  Chlorophyll content was measured at the end of the 

ex vitro growth period only. Columns labelled with different letters are 

significantly different when compared within categories (p < 0.01 for 

Embryo and Stress, ANOVA, n = 4). Bars represent ±SD.  
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Within the stressed treatments A was highest in FS-seedlings and lowest in CS-seedlings (not 

significant). With re-watering, A in stressed treatments did not recover to levels comparable 

with their respective unstressed controls on day 12.    

Within the unstressed treatments, the ratio of A at Ca: 600 µmol. mol-1 : A at Ca: 400 µmol. 

mol
-1
 (A@600 : A@400), and hence the degree of stomatal limitation of A, did not differ 

significantly across embryo pre-treatments throughout the experimental period (Table 7.3). 

However, A@600 : A@400 in FS-seedlings was significantly higher than DS- and CS-seedlings 

on days 8 and 12. Interestingly, A@600 : A@400 in FS-seedlings was also significantly greater 

than FW-seedlings on days 8 and 12.   

 

 

 

 

 

 

 

 

Figure 7.8 Instantaneous leaf-based CO2-assimilation rates (at Ca: 400 µmol. mol
-1
) of 

seedlings recovered from fresh (F), partially dried (D) and cryopreserved (C) embryos, 

subjected to watering (W) or water deficit (S). Columns labelled with different letters are 

significantly different when compared within experimental days (p < 0.01 for Embryo on days 

0 and 12 and = 0.01 on day 8; p = 0.04 for Stress and = 0.01 for Embryo×Stress on day 8, 

ANOVA, n = 7). Bars represent ±SD.  
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Chlorophyll fluorescence  

On days 0 and 8, potential photochemical efficiency (Fv/Fm), fluorescence intensity at 50 µs 

(Fo) and maximal fluorescence intensity (Fm) did not differ significantly with embryo pre-

treatment in unstressed material (Fig. 7.9A, B, C).   On day 8 and after re-watering (i.e. day 12), 

Fv/Fm in CS-seedlings was significantly lower than CW-seedlings and DS- and FS-seedlings 

(Fig. 7.9A). On day 12, Fm in CS-seedlings was relatively lower (Fig. 7.9B), while Fo was 

relatively higher, than CW-, DS- and FS-seedlings (not significant; Fig. 7.9C).  

 

Ex vitro seedling mortality  

In the stressed treatments ex vitro seedling mortality was higher than in their respective 

unstressed controls (Table 7.4). Within the stressed treatments mortality was highest in CS-

seedlings and lowest in FS-seedlings. Mortality in DS-seedlings was only slightly lower than 

CS-seedlings, while within the unstressed treatments mortality in DW- and CW-seedlings was 

marginally higher than FW-seedlings. 

 

 

 

 

 

 

 

 

 

 

 

Day FW DW CW FS DS CS 

0 2.29±0.60
a
 2.11±0.55

a
 1.85±0.35

a
 NA NA NA 

8 1.68±0.44b 1.66±0.70b 1.81±0.35b 2.48±0.23a 1.57±0.15b 1.76±0.47b 

12 1.68±0.10
b
 1.61±0.17

b
 1.51±0.15

b
 2.36±0.53

a
 1.66±0.45

b
 1.43±0.20

b
 

Treatment FW DW CW FS DS CS 

% Mortality 5 11 9 26 41 48 

     Table 7.3 Ratio of CO2-assimilation rate at Ca: 600 µmol. mol-1 : CO2-assimilation rate  at Ca: 400 µmol. mol-1. 

Ratio was calculated for seedlings recovered from fresh (F), partially dried (D) and cryopreserved 

(C) embryos, subjected to watering (W) or water deficit (S). Values followed by different letters are 

significantly different when compared within a measurement day (p < 0.01 for Embryo on days 8 

and 12 and for Stress and Embryo×Stress on day 12; p < 0.05 for Stress and Embryo×Stress on day 

8, ANOVA). Values represent mean±SD (n = 7). NA = not applicable.  

 

 Table 7.4 Total ex vitro seedling mortality (%) over the entire ex vitro growth period. 

Seedlings were recovered from fresh (F), partially dried (D) and 

cryopreserved (C) embryos and subjected to watering (W) or water deficit 

(S). p < 0.05 when values were compared across treatments (null-model 

chi-squared test, n = 87).  
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Figure 7.9 Potential photochemical efficiency (Fv/Fm), maximal 

fluorescence intensity (Fm) and fluorescence intensity at 50 µs (Fo) of 

seedlings recovered from fresh (F), partially dried (D) and cryopreserved 

(C) embryos, subjected to watering (W) or water deficit (S). Columns 

labelled with different letters are significantly different when compared 

within experimental days (p < 0.05 for Stress and Embryo×Stress on days 

8 and 12 and p < 0.01 for Embryo on day 8, ANOVA, n = 5). Bars 

represent ±SD.  
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7.4 Discussion 

There are differences among species and explants in growth and morphological responses of 

recovered plantlets or seedlings following cryopreservation, with some studies showing no 

effects whilst others have demonstrated morphological abnormalities and reduced development 

rates (see Introduction for details). Of the studies cited there are a few examples (e.g. Côte et al., 

2000; Martínez-Montero et al., 2002; Konan et al., 2007) where plants (of mainly crop species) 

derived from cryopreserved germplasm have been grown in the field for a long period. 

However, those studies were almost always based on phenotypic descriptions and there are 

presently few, if any published reports on the physiological performance of seedlings or 

plantlets recovered from cryopreserved material. The present contribution reports on the growth 

and physiological performance of seedlings derived from cryopreserved zygotic embryos of the 

wild species A. belladonna. The ultimate aim of cryopreservation of the germplasm of 

endangered wild species is to re-introduce plantlets or seedlings back into the wild. Under such 

conditions the seedlings are unlikely to be carefully tended after planting and will be subject to 

the vagaries of the weather, and so the vigour of such seedlings is important; this was assessed 

by observing the response of such seedlings to an ex vitro water stress.  

 

Growth characteristics 

Phenotypic variation in in vitro recovery times, plant heights and modes of regeneration in 

plants recovered from cryopreserved germplasm have been previously reported (Harding and 

Benson, 1994; Harding, 1996). While seedlings recovered from cryopreserved orthodox 

embryonic axes have been reported to be similar to those generated from partially dehydrated 

and control axes, going on to produce flowers and fruit in the field (Gagliardi et al., 2002), 

Steinmacher et al. (2007) showed partial dehydration and cryopreservation of recalcitrant peach 

palm embryos to result in plantlets with significantly lower plant height and deficient 

haustorium development. A number of studies have also observed a reduction in the actual 

number of embryos that produce roots and shoots (compared with the control) following 

dehydration and/or cryopreservation (e.g. Pence, 1992; Dumet et al., 1997; Wesley-Smith et al., 

2001, 2004; Sershen et al., 2007). In the case of excised embryos of A. belladonna, both partial 

drying alone, and drying followed by exposure to cryogenic temperatures, reduced dry matter 

accumulation (Fig. 7.1A) and partitioning to roots during the in vitro growth phase, relative to 

fresh embryos (Fig. 7.1B). The final biomass achieved after the ex vitro growth period (Fig. 

7.2A) could be a consequence of either or both ex vitro growth rates or the amount of material at 

the start of this growth phase. To assess this RGRs (relative to the dry mass at the end of the in 

vitro growth period) were calculated. The adverse effect of embryo partial drying observed 
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during the in vitro growth phase was reversible during subsequent ex vitro growth, but the 

adverse effect of exposure to cryogenic temperatures as well, was carried through to early ex 

vitro growth (Table 7.1). However, a water stress during this period dominated over the effects 

of embryo pre-treatment and RGRs for all embryo pre-treatments were comparable. Growth 

limitation during a water stress is not uncommon (e.g. Hsiao, 1973; Frensch and Hsiao, 1994) 

and has been correlated with a reduction in leaf water and pressure potential (e.g. Hsiao, 1973) 

and/or a reduction in the photosynthetic uptake of carbon (Katul et al., 2003). Water stress 

depressed Ψw (Fig. 7.4), Ψp (Fig. 7.6), A (Fig. 7.8) and dry mass accumulation (Fig. 7.2A) 

across all embryo pre-treatments. The lack of response to the stress by C-seedlings, in terms of 

RGR (Table 7.1), is probably because the combination of partial dehydration and 

cryopreservation impaired their ability to acquire resources to such an extent that a withdrawal 

of resources (i.e. water) had no effect on overall performance. The significantly lower ex vitro 

light and water harvesting capacity in D- and C-seedlings, compared with F-seedlings (Fig. 

7.2A), may have also compromised their physiological performance and/or stress tolerance. 

There have been suggestions that cryopreservation of recalcitrant zygotic germplasm may 

compromise vigour in recovered seedlings (e.g. Dumet et al., 1997; Steinmacher et al., 2007); 

however, none of those studies reported RGRs for recovered seedlings.  

Not only did partial drying and cryopreservation affect partitioning of biomass to roots (Fig. 

7.2B), they also resulted in abnormal roots (Fig. 7.3). These phenotypic and morphological 

responses could be expected to reduce the abilities of plants derived from D- and C-embryos to 

acquire water, particularly under water limited conditions. Additionally, unlike FS- and DS-

seedlings, CS-seedlings failed to significantly increase biomass partitioning to roots relative to 

their unstressed control (Fig.7.2B). 

Shoot growth is usually most severely affected by drought (e.g. Frensch and Hsiao, 1994) 

and was so across all embryo pre-treatments here (Fig. 7.2A, B). Typical geophytic growth 

strategy selects for below-ground (generally bulb) increment during a water stress (since 

survival in the season following dormancy is determined by the reserves stored below-ground) 

while leaf area is progressively reduced via shoot dieback (e.g. von Willert et al., 2000). It was 

therefore interesting to note that unlike FS- and DS-seedlings, CS-seedlings failed to 

significantly increase biomass partitioning to roots relative to their unstressed control; rather, 

CS-seedlings invested significantly more biomass in leaves than FS- and DS- seedlings (Fig. 

7.2B). This preferential investment in shoot biomass during a drought could have further 

increased the transpirational demand on the already compromised root system in CS-seedlings 

and may explain why Ψw (Fig. 7.4) and Ψp (Fig. 7.6) generated in CS-seedlings were 

significantly lower than DS- and FS-seedlings. Also, partial dehydration and cryopreservation 
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resulted in abnormalities in ex vitro root morphology in recovered seedlings (Fig. 7.3).  These 

phenotypic and morphological responses could be expected to reduce the abilities of plants 

derived from D- and C-embryos to acquire water, particularly under water limited conditions.  

 

Plant water relations 

The generation of relatively low pd Ψw as a consequence of a water stress is not uncommon 

(Petrie and Hall, 1992), while turgor loss is generally the first sign of water stress (Leopold et 

al., 1981; Galmés et al., 2007) and can develop during even a relatively mild stress (Hsiao, 

1973). Many species also exhibit a decrease in Ψs during a drought to maintain turgor at a low 

Ψw and when rapidly initiated, osmotic adjustment can prolong the life of a leaf under water 

stress (Galmés et al., 2007). In the present study, within the unstressed seedlings there were no 

significant differences in the measured water relations parameters between F- and D-seedlings 

(except for Ψp), indicating that the effects of partial drying of excised embryos were reversible 

in the long term (Figs 7.4, 7.5, 7.6). C-seedlings had lower pd Ψw and did not develop lower md 

Ψw, indicating that little transpiration was occurring, in keeping with the relatively lower 

partitioning of biomass to roots and the observed root abnormalities. There were declines in 

both pd Ψw and pd-md Ψw (Fig. 7.4), and an indication of long-term osmotic adjustment, 

reflected in a decrease in Ψs in both FS- and DS-seedlings relative to their well watered controls 

(Fig. 7.5). There also appeared to be some diurnal osmotic adjustment with md Ψs being lower 

than pd Ψs, maintaining positive (although reduced) Ψp within FS- and DS-seedlings (Fig. 7.6), 

permitting some transpiration and hence positive pd-md Ψw. CS-seedlings demonstrated further 

reductions in Ψw and Ψs, but no diurnal osmotic adjustment and also appeared to be less 

efficient than DS- and FS-seedlings at adjusting Ψw to meet transpirational demands (i.e. 

exhibited lower pd-md Ψw values [Fig. 7.4B]). Failure to equilibrate with soil Ψw overnight can 

severely depress Ψw in droughted seedlings (Fitter and Hay, 2002) and prolonged exposure to 

such low Ψw can be extremely stressful in juvenile plants (Hsiao, 1973). This may explain why 

permanent wilting was observed in CS-seedlings (Fig. 7.6): cell plasmolysis and membrane 

rupture are associated with permanent leaf-wilting (Leopold et al., 1981; Galmés et al., 2007), 

and the decrease in Ψs observed in CS-seedlings on day 8 (Fig. 7.5) may have been a 

consequence of tissue dehydration, rather than osmotic adjustment. By three days after re-

watering there was no recovery in pd Ψw in any of the stressed treatments and no development 

of substantial differences between pd and md Ψw. Positive turgor is a requirement for cell 

expansion and the generally lower values of pd Ψp for stressed seedlings, although not 

significant using a factorial ANOVA design, are consistent with the lower RGRs measured in 
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these seedlings (Table 7.1). The generally lower values of pd-md Ψw (Fig. 7.4B) of stressed 

seedlings are also consistent with the reduced RGRs associated with these seedlings (Table 7.1).  

As in the experiments described in Chapter 6, estimates of osmotic and turgor potential 

were variable within treatments though and may have been due to non-negligible apoplastic 

water content. Alternate approaches to measuring these parameters have already been discussed 

in Chapter 6 (section 6.4). 

 

Photosynthetic characteristics 

Although not always statistically significant there was a consistent trend of D- and C-

seedlings having lower A than F-seedlings (Fig. 7.8), possibly because of lower leaf chl content 

compared with F-seedlings (Fig. 7.7). The significantly lower stomatal density of leaves of C-

seedlings, compared with F- and D-seedlings (Table 7.2), may have also contributed to the 

relatively lower A in C-seedlings, by reducing the influx of CO2 for photosynthesis.   

A drought-induced reduction in A, as observed across all embryo pre-treatments here (Fig. 

7.8), has been widely documented (e.g. Hsiao, 1973; Tezara et al., 1999) and can be a 

consequence of restriction of CO2 supply, through reduction in stomatal conductance, or of the 

rate of mesophyll processes (these could be the result of either damage or a controlled down-

regulation of the biochemical and/or photochemical components of CO2 fixation) (see 

McDowell et al., 2008). Except for one report of photosynthetic electron transport being 

strongly inhibited in freeze-treated Bratonia protocorms, examined immediately after thawing 

(Bukhov et al., 2006), there is little by way of studies on the photosynthetic characteristics of 

plants recovered from cryopreserved germplasm. Bukhov et al. (2006) suggested that in 

Bratonia protocorms freeze-thawing caused partial disorders in linear electron transport 

between PSII and PSI, with the functional interactions among carriers in the electron-transport 

chain being disturbed between the plastiquinone pool and the PSI reaction centre, resulting in a 

reduction in photosynthetic capacity during in vitro culture.  

In the case of A. belladonna the ratio A@600 : A@400, taken as a measure of stomatal 

limitation, did not differ among embryo pre-treatments in unstressed plants (Table 7.3), 

suggesting that differences in A were not a consequence of stomatal limitation (despite the 

reduced stomatal density of C-seedlings). When subjected to a water stress, stomatal limitation 

was greater in F-seedlings (A@600 : A@400 was higher for FS-than FW-seedlings), than in D- 

and C-seedlings (A@600 : A@400 was similar for DS- and DW-, and for CS- and CW-

seedlings). These data suggest that the reduction in A experienced by D- and C-seedlings was, to 

some degree, a consequence of damage to the photosynthetic machinery. Consistent with this, 

leaf chl content was lower in D- and C-seedlings than F-seedlings, and Fv/Fm was significantly 
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reduced in CS-seedlings. A drought-induced decline in chl content has been correlated with a 

loss of photosynthetic capacity in other studies (e.g. Alberte et al., 1974) while a reduction of 

Fv/Fm is generally indicative of a decrease in seedling vigour (e.g. Strasser et al., 2000; Rolando 

and Little, 2003) and often precedes seedling mortality (Havaux and Lannoye, 1983). When 

observed in droughted seedlings (e.g. Havaux and Lannoye, 1983; Rolando and Little, 2003) 

this decrease is usually induced by a reduction in Fm (e.g. Rolando and Little, 2003) but this was 

not the case in CS-seedlings here (Fig. 7.9B). The lower Fv/Fm values in CS-seedlings were also 

sustained after re-watering, suggesting the onset of hydraulic failure in CS-seedlings; 

plasmolysis and membrane rupture associated with permanent leaf-wilting (Leopold et al., 

1981) can depress photosynthesis (Radin and Ackerson, 1981) and phytochemical efficiency 

(Govindjee et al., 1981). As was the case with leaf water potential, within 3 d of re-watering leaf 

chl and A did not recover to levels similar to their respective unstressed control values, but 

recovery from a water stress can be slow, from days to weeks (Flexas et al., 2006). 

 

Seedling mortality  

Steinmacher et al. (2007) showed ex vitro mortality in seedlings generated from 

cryopreserved recalcitrant zygotic embryos to be almost 50% higher than seedlings recovered 

from control embryos. Similarly, ex vitro seedling mortality within the unstressed treatments 

was slightly higher in DW- and CW-seedlings here (Table 7.4). Water stress led to mortality in 

significantly more seedlings across all embryo pre-treatments (Table 7.3), being more severe in 

DS- and CS-seedlings (Table 7.4). Seedling mortality was highest in CS-seedlings (Table 7.4), 

possibly due to the combination of insufficient adjustment of Ψw to meet transpirational 

demands (Fig. 7.4), a failure to adopt growth patterns that reduce transpirational water loss (Fig. 

7.2), exposure to significantly lower pd Ψw than DS- and FS-seedlings (Fig. 7.4), and the onset 

of permanent leaf wilting (Fig. 7.6); all of which promote hydraulic-failure (see McDowell et 

al., 2008) in juvenile plants (e.g. Hsiao, 1973). The signs of hydraulic-failure were not as 

pronounced in DS-seedlings but, D-, like C-seedlings exhibited abnormalities in root 

morphology and when stressed incurred a loss of light harvesting capacity (i.e. reduction in chl 

content; Fig. 7.7) and developed relatively lower Ψw and Ψp  than FS-seedlings (Figs 7.4 and 7.6 

respectively).  

 

7.5 Concluding remarks 

Partial dehydration and cryopreservation of recalcitrant A. belladonna zygotic embryos can 

compromise vigour and drought tolerance of recovered seedlings. The effect of partial drying 

alone did appear to be reversible (in terms of RGR) within the time-frame of this study, and so 

R 



 305 

an extended period of ex vitro acclimatization before re-introduction of such seedlings into the 

wild may alleviate the adverse effects of cryopreservation on seedling vigour; but this remains 

to be tested. Cryopreservation studies involving explants other than recalcitrant zygotic 

germplasm “indicate a clear ‘consensus’ for plants displaying morphological normality after 

cryopreservation” (Harding, 2004) but in seedlings recovered from cryopreserved recalcitrant 

zygotic germplasm, the retention of ‘morphological normality’ may not necessarily be equated 

to stress-related physiological responses. The results of this study highlight the need to 

investigate the potential impacts of cryoinjury on the genome,  transcriptome, proteome and 

metabolome of recovered plants (see Harding and Benson, 1994; Harding et al., 2009), which in 

disrupting established patterns of growth and reproduction, may impact on the re-introduction of 

such plants into natural environments.  
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CHAPTER EIGHT:  

Concluding Remarks and Recommendations for Future Studies 

 

8.1 Introduction 

The purpose of the present work was to investigate the factors influencing vigour and viability 

after cryopreservation of excised zygotic embryos from recalcitrant seeds of two indigenous 

geophytes, viz. Amaryllis belladonna (L.) and Haemanthus montanus (Baker). This 

encompassed an investigation of some of the physico-chemical consequences of the procedural 

steps in the cryopreservation of these explants: cryoprotection; partial dehydration; exposure to 

cryogenic temperatures; subsequent thawing; and in vitro recovery. In doing so, the present 

study aimed to understand the fundamental basis of the successes and failures of current cryo-

protocols for recalcitrant seed germplasm, and identify physiological and biochemical markers 

of cryo-related stresses that may be used to better optimise future cryopreservation protocols for 

these explants. Lastly, in investigating the ex vitro vigour of seedlings recovered from partially 

dried and cryopreserved recalcitrant zygotic embryos, the current contribution aimed to inform 

re-introduction programmes involving seedlings recovered from cryopreserved germplasm of 

wild recalcitrant-seeded species. The salient points from studies described in Chapters 2 through 

7, the difficulties encountered during the experimental phase of this work, and recommendations 

for future studies are discussed below. 

 

8.2 Partial dehydration as a pre-treatment for cryopreservation  

The cryopreservation of zygotic germplasm from recalcitrant seeds requires that all metabolic 

activities be halted without injury, followed by storage at water contents (WCs) and ultra-low 

temperatures that preclude degradative reactions (reviewed by Walters et al., 2008). Unlike 

orthodox seeds which can tolerate the loss of most or all freezable water, facilitating their 

storage at cryogenic temperatures without freezing injury (e.g. Stanwood, 1985; Vertucci, 1989a 

& b; reviewed by Pritchard and Nadarajan, 2008), desiccation-sensitive (recalcitrant) propagules 

are shed hydrated (generally at 0.4-4.0 g g-1 [Berjak and Pammenter, 2004) and therefore require 

partial dehydration to increase the likelihood of survival after cryogenic exposure (Wesley-

Smith et al., 1992; reviewed by Normah and Makeen, 2008; Walters et al., 2008). The benefits 

conferred by partial drying are many-fold: it reduces the thermal mass of the axes/embryos, 

allowing these to traverse rapidly the critical range of temperatures supporting ice-crystal 

growth (Wesley-Smith et al., 1992); it reduces the range of the critical temperatures supporting 

crystallisation, as the freezing point is lowered (Rasmussen et al., 1975; Wesley-Smith et al., 

1992; Pritchard et al., 1995); it raises the glass transition temperature (Williams et al., 1993; 
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Buitink et al., 1996); and increases cytoplasmic viscosity, hindering the process of ice-crystal 

growth by reducing the intracellular mobility of water (Luyet et al., 1962; Leprince and 

Hoekstra, 1998; Leprince et al., 1999). 

 The present work (Chapter 2) confirmed the findings of Sershen et al. (2008) in showing 

that the zygotic embryos of A. belladonna and H. montanus are recalcitrant, and as suggested by 

those authors, there were inter-species differences in drying kinetics: A. belladonna zygotic 

embryos could be dried to target WCs (i.e. > and <0.4 g g-1), more than ten times faster than 

those of H. montanus (Fig. A2 and Table A1, Appendix A). Studies on the effects of 

dehydration rate on desiccation-sensitivity in recalcitrant seeds suggest that when seed tissues 

spend a longer period of time at intermediate WCs, the time for the accumulation of damage 

associated with aqueous-based deleterious processes is extended, promoting viability loss 

(Berjak et al., 1990, 1993; Vertucci and Farrant, 1995; Pammenter et al., 1998; Walters et al., 

2001). Post-thaw viabilities in plant tissues depend to a large extent on the length of the drying 

period (Niino and Sakai, 1992). Results of studies discussed in Chapters 2 through 4 suggest 

that the extended drying times required to achieve target WCs in H. montanus embryos reduced 

vigour, which probably pre-disposed the tissues to damage associated with exposure to 

cryogenic temperatures. This brings us to one of the most important recommendations to come 

out of the present work: to optimise cryopreservation protocols for recalcitrant zygotic 

germplasm attention must be paid to pre-cooling dehydration stress, which appears to be the 

product of both the ‘intensity’ and ‘duration’ of the stress.  

The present work has provided some of the first quantitative evidence that partial 

dehydration of recalcitrant zygotic gemplasm, even when not followed by cooling, can reduce 

the vigour and drought tolerance of recovered seedlings (see Chapters 6 and 7). When partial 

dehydration was followed by exposure to cryogenic temperatures and subsequent thawing, 

seedling vigour and drought tolerance were further compromised. The post-drying and post-

cooling loss of cytomatrical organisation and organellar integrity within the meristematic cells 

of the embryos presently investigated (see Chapter 3; section 3.3), may underlie their abnormal 

growth and poor vigour following recovery from cryostorage (see Chapters 2 and 7). However, 

the biological basis of these differences, and their permanence (discussed further in section 8.8), 

demands further investigation since there are an increasing number of reports indicating no 

phenotypical, biochemical, chromosomal or molecular modifications of thawed material 

attributed to cryopreservation (Bajaj, 1983; Assy-Bah and Engelmann, 1992a; Matsumoto et al., 

1994; Benson et al., 1996; Aronen et al., 1999; Côte et al., 2000; Potts and Lumpkin, 2000; 

Helliot et al., 2002; reviewed by Harding, 2004; reviewed by Engelmann, 2004; Wang et al., 

2005; Konan et al., 2007; Caswell and Kartha, 2009). Further investigation of the post-cryo 
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growth of seedlings recovered from cryopreserved recalcitrant zygotic germplasm will also 

improve our currently poor understanding of how stresses imposed at the embryonic stage are 

translated or manifested during subsequent ex vitro seedling growth in recalcitrant-seeded 

species. Based on the gaps in the present work, some of the things that future studies should 

compare between cryopreserved and control recalcitrant zygotic germplasm include: (a) 

cytoskeletal architecture, which has crucial functions in a number of cellular processes that are 

essential for cell morphogenesis, organogenesis and development (reviewed by Kost et al., 

1999); (b) the levels of the various plant growth regulators, the effects and balance among 

which have been shown to change in stressed material (Cavusoglu and Kabar, 2007); and given 

the pivotal and multi-faceted role that reactive oxygen species (ROS) play in seed physiology 

(reviewed by Bailly et al., 2008), (c) germination related oxidative signaling (reviewed by El-

Maarouf-Bouteau and Bailly, 2008).  

 

8.3 Cryoprotection and post-thaw survival 

Cryoprotectant additives are frequently employed in cryopreservation procedures and 

‘traditionally’ (Benson, 1999) involve the use of both penetrating and non-penetrating additives 

(reviewed by Fuller, 2004). The ability of this heterogeneous group of compounds to depress the 

kinetic freezing point of water (often referred to as the ‘supercooling point’ in biological 

solutions [Wilson et al., 2003]), and so reduce the likelihood of lethal ice-crystal formation 

during cooling and subsequent thawing is widely documented (Kartha and Engelmann, 1994; 

Santarius and Franks, 1998; reviewed by Fuller, 2004; Muldrew et al., 2004). The potential 

reasons for the superiority of glycerol (Gly; penetrating) over sucrose (Suc; non-penetrating) 

cryoprotection in promoting post-thaw survival in both the species presently investigated has 

been discussed at length in Chapters 2 through 4. However, a major short-coming of the present 

work is that it did not allow for an assessment of intracellular ice-crystal formation (e.g. via 

freeze-fracture electron microscopy [Wesley-Smith et al, 1992]), nor the thermal properties of 

tissue water (e.g. via differential scanning calorimetry [Vertucci et al., 1991; Wesley-Smith et 

al., 1992]). It was therefore impossible to interpret the differences between Suc and Gly 

cryoprotection in terms of the biophysical changes brought about by the transition of water to 

ice during cooling, which are the main causes of damage, rather than low temperatures per se 

(Mazur, 1990, 2004; Karlsson and Toner, 1996). Nevertheless, results of ultrastructural studies 

involving conventional transmission electron microscopy suggest that the superiority of glycerol 

over sucrose in promoting post-thaw survival in the embryos presently investigated may have 

been based on its presumed ability to extend protection to internal organelles (reviewed by 

Fuller, 2004). Additionally, cryoprotecting the embryos in this study with radiolabeled glycerol 
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(e.g. Zheng et al., 2003; Neves et al., 2004) may have aided in elucidating the uptake and the 

extent and nature of the interaction between glycerol and intracellular constituents, as this would 

have allowed traceability of glycerol at the ultrastructural level.  

The ability of cryoprotectants like Gly to confer biochemical protection, aside from their 

osmotic effects, has been documented (Polge et al., 1949; Smirnoff and Cumbes, 1989; Benson 

and Bremner, 2004) and  may explain why partially dried Gly cryoprotected embryos were 

associated with higher post-thaw and post-drying respiratory and antioxidant activities. 

However, it must be stressed that even though the mechanisms via which Gly conferred 

cryoprotection were effective enough to promote post-thaw viability in both species, these 

mechanisms may not necessarily have been the same and/or equally effective in both species.  

Although the zygotic germplasm of a number of temperate species (e.g. Camellia sinensis 

[Wesley-Smith et al., 1992; Kim et al., 2002]; Aesculus hippocastanum [Wesley-Smith et al. 

2001a; Pence, 2004]; Quercus suber and Quercus ilex [González-Benito et al., 2002]; Poncirus 

trifoliata [Wesley-Smith et al., 2004]) have been successfully cryopreserved, similar success 

has not been achieved with tropical species (Walters et al., 2008; Engelmann, 2009; Pammenter 

et al., 2010; Whitaker et al., 2010). The use of cryoprotectants followed by rapid partial drying 

and cooling of axes/embryos from seeds of tropical species has been tried, but with variable 

success (e.g. Pence, 1991; Assy-Bah and Engelmann, 1992a & b; Kioko et al., 1998; 

Thammasiri, 1999; Sershen et al. 2007). The present work endorses other suggestions that 

cryoprotection can improve post-thaw recovery in zygotic germplasm of non-orthodox-seeded 

species (Engelmann, 1997; Walters et al., 2002; Normah and Makeen, 2008), including those of 

tropical provenance (Walters et al. 2008). However, in some tropical species cryoprotectants 

may be injurious (e.g. Trichilia dregeana [Berjak et al., 1999a] and Boophane disticha [Sershen 

et al., 2007]). At the moment there is no explanation for these differing responses to 

cryoprotectants, even for species within the same genus (e.g. Sershen et al., 2007).  

 

8.4 The problem of uneven drying 

Irrespective of how rigorously the pre-freezing WC of recalcitrant embryos/axes is optimised, if 

such explants are dried rapidly using the flash drying technique, the possibility of uneven drying 

should not be ignored (Pammenter et al., 1998, 2002; Wesley-Smith et al., 2001b). The concern 

here is that axis WCs in such studies are generally taken as representative of all the tissues, 

when they are actually a mass-weighted average of the different tissues in the axis. Wesley-

Smith et al. (2001b) for instance, showed microscopically that cells of the root cortex of 

recalcitrant Artocarpus heterophyllus axes dried more rapidly than those of the procambial 

cylinder, i.e. that an uneven distribution of water resulted when axes were dehydrated rapidly. 
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Consequently the meristem would have been exposed to relatively less intense drying than the 

cortical cells and so suffered less damage. In contrast, upon slow dehydration (days vs. hours), 

the WC of the various tissues would have been close to equilibrium; however, the meristematic 

cells would have been exposed to a relatively greater degree of drying stress (i.e. longer and 

more injurious) (Wesley-Smith et al., 2001b). This uneven distribution of water is likely to have 

implications on the response of recalcitrant embryos/axes to exposure to cryogenic temperatures, 

with the more hydrated tissue being more susceptible to ice-crystal formation. This may be one 

reason why post-thaw survival for some of the treatments in this study was high (i.e. 50-70%), 

but never 100%. 

 Additionally, for both species, post-thaw survival was best achieved when embryos were 

rapidly cooled at WC that minimised dehydration and freezing damage. However, the benefits 

of this optimal WC appeared to have been realised only when pre-conditioning involved the 

combination of (Gly) cryoprotection with partial dehydration. It would be interesting to look at 

whether the post-thaw success achieved with solution-based cryoprotectants, such as Gly in this 

study, are based on the presumed ability of such additives to increase water permeability and 

therefore effectively improve the movement of water through samples (Walters et al., 2008); 

thus avoiding large water potential gradients, which can be harmful in both large and very small 

samples for different reasons (Wesley-Smith et al., 2003). In this regard, future studies should 

look at whether methods such as magnetic resonance imaging (Matsushima et al., 2009) and 

phase-contrast X-ray micro-imaging (Lee and Kim, 2008), which are presently used to visualise 

water in vivo in plants, can be used to investigate whether cryoprotectants alter the behaviour of 

water in tissues such as those composing the embryos presently investigated, during drying and 

freezing.  

 

8.5 The balance between dehydration and freezing damage 

Rapid cooling rates may restrict intracellular ice-crystallisation below lethal levels by 

minimising the time spent by the tissue at temperatures favouring ice formation and growth 

(generally taken to be 0 to -80°C [Moor, 1973]), and have been successfully applied to the 

zygotic germplasm of a number of recalcitrant-seeded species (e.g. Camellia sinensis [Wesley-

Smith et al., 1992]; Aesculus hippocastanum [Wesley-Smith et al. 2001a]; Quercus suber and 

Quercus ilex [González-Benito et al., 2002]; Poncirus trifoliata [Wesley-Smith et al., 2004]; 

Ekebergia capensis [Perán et al., 2006]; and a number of amaryllid species [Sershen et al., 

2007]). Consistent with this, rapid, as opposed to slow, cooling resulted in significantly better 

post-thaw survival in both species presently investigated but as discussed above, one of the 

short-comings of the present work was that it did not employ techniques that allow for an 



 314 

appreciation of the relationships among ice-crystal formation, cooling rate and post-thaw 

viability. Nevertheless, with reference to the parameters measured in studies discussed in 

Chapters 2 through 4, the following suggestions can be made with regards to the 

cryopreservation of A. belladonna and H. montanus zygotic embryos: 

(1) post-thaw viabilities are maximised when partially dried embryos are rapidly, as 

opposed to slowly cooled, possibly due to the freeze-induced dehydration usually 

associated with slow cooling; 

(2) post-thaw viabilities are best when embryos are cooled after Gly (penetrating), as 

opposed to Suc (non-penetrating) cryoprotection + partial dehydration, possibly because 

Suc cryoprotection exacerbates the injurious effects of dehydration while Gly 

cryoprotection alleviates some of these; 

(3) the optimum WC-range for cryopreservation is species-specific and based on the 

‘intensity’ and ‘duration’ of the dehydration stress associated with particular target WCs 

(note: the duration of the dehydration stress is dependent on the drying kinetics of the 

embryonic tissues, which are species-specific) and;  

(4) while post-thaw survival depends on the balance between dehydration and freezing 

damage, the benefits of relatively lower WCs are negated at extended drying times. 

Future studies should look at whether the benefits of partial drying, cryoprotection and rapid 

cooling in the embryos presently investigated included the avoidance of lethal intracellular ice-

crystallisation. In this regard, the processing of embryos for transmission electron microscopy 

by freeze-substitution (e.g. Wesley-Smith, 2003) immediately after cooling may reveal the 

contrasting degree and distribution of intracellular ice-crystals across the various treatments 

investigated. Such studies may also help in elucidating whether it was the avoidance of 

intracellular ice per se that promoted survival in Gly cryoprotected + partially dried + rapidly 

cooled embryos in the species presently investigated, or whether this was influenced by the 

actual localisation of ice crystals within different intracellular compartments.  

Additionally, it is now widely accepted that the higher the final embryo/axis WC after 

drying, the more rapid the rate of cooling should be to restrict ice-crystallisation and associated 

freezing damage (Vertucci, 1989b; Wesley-Smith et al., 1992; Walters et al., 2008). The 

possibility that more rapid cooling rates than those presently used (hundreds of °C s-1) could 

improve post-thaw viability in H. montanus embryos at the relatively high WCs (>0.4 g g-1) 

shown to be optimum for this species, should therefore be investigated. 

 

 

 



 315 

8.6 Oxidative stress as a determinant of post-thaw survival  

An increasing number of studies have suggested oxidative stress to be a major component of 

cryoinjury in recalcitrant seed tissues (Touchell and Walters, 2000; Dussert et al., 2003; 

Normah and Makeen, 2008; Varghese and Naithani, 2008; Pammenter et al., 2010; Whitaker et 

al., 2010). Results of the present work endorse these suggestions. In this regard, studies 

discussed in Chapter 4 showed enzymic antioxidant activities and viability to often decline 

relative to fresh embryos after partial dehydration and freezing in both species; however, this 

decline was consistently less severe in Gly cryoprotected (CP), as opposed to non-CP, embryos. 

These results are encouraging in that they provide some evidence for previous suggestions that 

cryoprotectants such as Gly (Polge et al., 1949) and dimethyl sulphoxide (Benson and Withers, 

1987; Fleck et al., 2000) may confer ‘biochemical’ as well as ‘physical’ protection during 

cryopreservation (Benson and Bremner, 2004; Fuller, 2004). Those authors suggested that this 

biochemical protection is mainly based on the scavenging of damaging free-radicals. In the 

present study Gly CP failed to reduce post-drying and post-freezing extracellular superoxide 

(.O2
-) production (relative to non-CP embryos), but Gly cryoprotection was associated with the 

maintenance or enhancement of post-drying and post-cooling antioxidant activity (see Chapters 

4 and 5). The exact mechanism/s upon which this protection of the antioxidant system by Gly 

was based are at present unknown and it must be stressed that the sustained or enhanced post-

drying and post-thaw antioxidant activities in Gly CP embryos observed in this study should be 

confirmed via an investigation of antioxidant gene expression levels (e.g. Yang et al., 2003; 

Jitesh et al., 2006) - an objective of studies that have already been planned for the immediate 

future. All that can be suggested at present is that Gly CP may have promoted the retention of 

ultrastructural integrity (Chapter 3; section 3.3) by conserving metabolic integrity, e.g. 

antioxidant protection. Also, hydrogen peroxide levels (H2O2) were not measured here but 

results of studies discussed in Chapter 4 suggest that Gly CP embryos may have been more 

efficient than non-CP embryos at the enzymatic detoxification of H2O2. Studies planned for the 

immediate future will therefore involve the measurement of post-drying and post-thaw H2O2 

production in Gly CP and non-CP A. belladonna and H. montanus embryos, as well as an 

assessment of the gene expression levels of the antioxidant enzymes involved in the 

detoxification of H2O2 (e.g. catalase and ascorbate peroxidase [reviewed by Scandalios, 1997]).  

Although exposure of A. belladonna (exposed to osmotic stress pre-treatment) and H. 

montanus (exposed to oxidative stress pre-treatment) embryos to stress acclimation pre-

treatments failed to decrease their cryo-sensitivity, it was encouraging to note that Gly CP 

promoted post-thaw viability retention in the embryos of both species, even after exposure to 

the apparently injurious stress acclimation treatments (see Chapter 5). These data reinforced 
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earlier indications that Gly CP promoted post-thaw viability in partially dried, rapidly cooled 

embryos by maintaining or enhancing enzymic antioxidant protection (see Chapter 4).  

Chemical pre-treatments have been used to induce embryo desiccation- and cryo-tolerance 

in temperate recalcitrant-seeded species (e.g. abscisic acid in Acer saccharinum [Beardmore and 

Whittle, 2005). Results of the present work are not substantive enough to rule out the use of 

chemical pre-treatments to alleviate the adverse effects of stresses (e.g. Uchida et al., 2002; 

Sivritepe et al., 2003, 2005) such as dehydration and freezing in the recalcitrant zygotic 

germplasm of tropical species. However, they do suggest that certain stress acclimation 

treatments, e.g. osmotic or oxidative stress pre-treatments, may pre-dispose the tissues of 

recalcitrant zygotic germplasm to increasing damage and/or viability loss during 

cryopreservation, rather than inducing some stress tolerance.  

This brings us to a very interesting growing opinion in the field of cryo-conservation: the 

process of cryopreservation involves a number of procedural steps, each one of which, while not 

lethal in itself, could represent a stress; and if any one or more of these stresses is intensified, 

then the cumulative effect of the process of cryopreservation could lead to increased viability 

loss (Berjak et al., 1999b; Padayachee et al., 2009; Pammenter et al., 2010). For instance, a 

burst of ROS has been identified as accompanying cotyledon excision and being the causative 

factor in shoot tip necrosis in axes of T. dregeana (Pammenter et al., 2010).  Whitaker et al. 

(2010), in taking these investigations further, identified two loosely-bound cell wall peroxidases 

that are responsible for the generation of a burst of .O2
- at every stage (including thawing) of the 

cryopreservation protocol. Interestingly, the ROS burst from the tropical T. dregeana axes was 

considerably higher than those from temperate Castanea sativa seeds, which may account for 

the lower desiccation sensitivity of C. sativa (Whitaker et al., 2010). These results suggest that 

ROS bursts constitute a major, and perhaps the major, factor in the difficulties experienced with 

dicotyledenous species that possess fleshy cotyledons. This may explain the relatively high 

shoot production obtained for both amaryllid species presently investigated, since it is generally 

not difficult to excise the entire relatively non-fleshy cotyledonary body from recalcitrant 

amaryllid seeds, without imposing excision damage on the axis (Pammenter et al., 2010).  

 

8.7 The use of stress markers for cryo-protocol optimisation 

The major hindrance to the wider application of recalcitrant seed germplasm cryopreservation is 

the unavailability of protocols that will produce reproducible results across species (irrespective 

of provenance). With reference to some of the pioneering and contemporary publications on the 

subject  (e.g. Normah et al., 1986; Grout, 1986; Withers, 1988; Hor et al., 1990; Pence, 1990; 

Wesley-Smith 1992, 2001a & b, 2004; Hu et al., 1994; Berjak et al., 1999b; Engelmann, 1999, 
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2004, 2009; Mycock et al., 2000; Normah and Makeen, 2008; Walters et al., 2008; Pammenter 

et al. 2010), irrespective of the species concerned or treatment combination selected, the success 

and reproducibility of the protocol, demands the optimisation of all the manipulations involved 

in the preparation of the embryos/axes for cooling, the actual cooling and their subsequent 

thawing and in vitro recovery. The empirical approach adopted by many cryopreservation 

studies involving recalcitrant zygotic germplasm has, however, placed limitations on the 

intellectual and scientific conclusions drawn to date. The present work was in no way void of 

empiricism but its investigation of some of the physico-chemical consequences of the various 

procedural steps involved in the cryopreservation of A. belladonna and H. montanus embryos 

confirmed that the development of improved cryo-methodologies for such explants demands a 

more fundamental understanding of the consequences of these procedural steps on their basic 

biology.  

Importantly, the present work allowed for an assessment of the value of a number of 

markers of cryo-related stress that may be used to better optimise future cryopreservation 

protocols for recalcitrant zygotic germplasm. In this regard, markers such as electrolyte leakage, 

spectrophotometric assessment of tetrazolium chloride-reduction, thiobarbituric reactive 

substance production, extracellular superoxide production, antioxidant status and rate of protein 

synthesis, were useful in interpreting the interactive effects of WC, cryoprotection and cooling 

rate on subsequent zygotic embryo vigour and viability. Stress markers such as electrolyte 

leakage  have been successfully used as indicators of freezing tolerance for embryonic cell 

suspensions (e.g. Jitsuyama et al., 2002), while others such as tetrazolium chloride-staining 

have even been used to quantify the cells critical to survival (and injured cells) in simple 

homogenous tissue systems (reviewed by Verleysen et al., 2004). However, as shown for both 

species presently investigated (Chapter 3; section 3.3), cryopreserved embryos/axes contain a 

mixture of living, weakened and dead cells (e.g. Sussex, 1952; Pritchard and Prendergast, 1986; 

Wilkinson et al., 2003; Kaczmarczyk et al., 2008), which apparently compromised the accuracy 

with which some of the markers employed here (e.g. electrolyte leakage and tetrazolium 

chloride-reduction) reflected the effects of the various pre-conditioning and cooling treatments, 

and/or forecasted the post-thaw viability associated with these treatments. Results of the present 

work also suggested that while markers of oxidative stress such as lipid peroxidation levels and 

extracellular superoxide production can be used to differentiate between the effects of pre-

conditioning and cooling in complex heterogeneous tissue systems such as the embryos 

presently investigated, they may not be as accurate as markers based on tissue metabolic 

competence, e.g. antioxidant status, at forecasting post-thaw viability.  
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Microscopical studies have been immensely valuable in providing evidence for the 

explanation of recalcitrant seed behaviour and responses under a variety of conditions (reviewed 

by Berjak and Pammenter, 2000). The ultrastructural studies carried out here were useful in 

substantiating one of the major outcomes of the physiological and biochemical studies described 

in this work: damage incurred at each stage of the cryopreservation protocol may be 

compounded, thus pre-disposing tissues to further damage and/or viability loss with each 

progressive step. Microscopical studies also allowed for the observation of living and dead cells 

and facilitated the identification of a number of dehydration- and cryo-induced ultrastructural 

changes, e.g. an increase in the degree of vacuolation and endoplasmic reticulum fragmentation 

(see Chapter 3; section 3.3). Such changes may underlie the changes measured in physico-

chemical markers of cryo-related stresses; however, the laborious and lengthy preparative 

procedures associated with ultrastructural studies make them inappropriate for optimising cryo-

protocols for short-lived recalcitrant zygotic germplasm. Nevertheless, they may be useful for 

fine-tuning an already established protocol. In the present work, ultrastructural responses were 

not compared directly to changes in stress markers as the material used for ultrastructural 

studies was harvested in 2007, while that used for the stress marker and oxidative stress studies 

was harvested in 2008. The reasoning behind this is that recalcitrant seeds are metabolically 

active, at and after shedding (Berjak et al., 1989; Farnsworth, 2000; Kermode and Finch-Savage, 

2002), and in some species the shedding WC, rate of development and degree of desiccation-

sensitivity vary considerably from one fruiting season to the next (Pritchard et al., 1999; Berjak 

and Pammenter, 2004; Sershen et al., 2008). Additionally, seed developmental stage, which 

generally varies among seed lots (unpublished, personal observation), can influence the 

response to cryogenic temperatures (Kioko et al., 2003). So, as a matter of caution, if markers of 

cryo-related stresses are to be compared among treatments for recalcitrant zygotic germplasm 

then these markers should ideally be measured on seeds from the same harvest.  

 

8.8 The vigour of seedlings recovered from cryopreserved zygotic germplasm 

Despite the relatively higher post-thaw viability retention associated with Gly CP + partially 

dried embryos in this study, these embryos showed a number of ultrastructural irregularities (e.g. 

irregular cell walls, areas of amorphous cytoplasm, and condensed nuclear chromatin [Chapter 

3]; these may have been associated with the reduced vigour observed in recovered seedlings 

(see Chapters 6 and 7). It has been known for some time now that overzealous decontamination, 

excessive drying and even poor growth conditions may not produce such symptoms in control  

recalcitrant embryos/axes, but may do so in cryo-exposed ones by exacerbating freezing damage 

(Berjak et al., 1999b; Walters et al, 2008). Results of studies described in Chapters 6 and 7 
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suggest that while certain adverse effects of partial drying may be reversed during ex vitro 

growth (e.g. increased relative growth rate), the adverse effects of freeze-thawing may be 

carried through to the early ex vitro stage. However, there are a number of cases where cryo-

derived plants have been grown to maturity with no observed phenotypic difference from 

controls  (e.g. Engelmann, 1991; Benson et al., 1996; Côte et al., 2000; Martínez-Montero et al., 

2002; Konan et al., 2007; Caswell and Kartha, 2009) and the reduced vigour and drought 

tolerance of seedlings recovered from partially dried and cryopreserved embryos in the present 

work may well disappear with an extension in the period afforded to them for hardening-off 

under green-house conditions, and in the field. The results obtained here do, however, highlight 

the need to investigate the potential impacts of cryoinjury on the genome,  transcriptome, 

proteome and metabolome of cryo-derived plants (see Harding and Benson, 1994; Harding et al., 

2009; Volk, 2010), which in disrupting established patterns of growth and reproduction may 

impact on the re-introduction of such plants into natural environments.  

The in vitro-based manipulations involved in cryopreservation may result in genetic change 

(a process described as somaclonal variation [Scowcroft, 1984]), while  exposing plant 

germplasm to the physical, chemical and physiological stresses associated with the procedural 

steps involved in cryopreservation may also cause cryoinjury, for which the effects upon the 

genome are unknown (Harding et al., 2009; Berjak et al., 2010). The restoration of species 

derived from cryopreserved germplasm is becoming increasingly relevant in the face of climate 

change (Lynch et al., 2007; Berjak et al., 2010), making the assessment of the magnitude of 

genomic alteration in material recovered from cryostorage fundamental to cryopreservation 

(Harding, 1999, 2004; Harding et al., 2009; Volk, 2010). Whilst various molecular techniques 

(e.g. random amplified polymorphic DNA and amplified fragment length polymorphism 

[Aronen et al., 1999; Helliot et al., 2002]) confirm genetic stability of plants recovered from 

cryopreserved explants, their results should be interpreted with caution (Peredoa et al., 2008), 

particularly as such analyses may cover only ~0.001% of the genome (reviewed by Harding, 

2004). This was the motivation for Berjak et al.’s (2010) recent suggestion, “…until available 

techniques become genomically more widespread (Johnston et al., 2010) it would be prudent to 

reserve drawing definitive conclusions and mitigate against the potential risk of genetic change 

(Scowcroft, 1984)”. Interestingly, there is a growing opinion that epigenetic factors may well 

give rise to genomic changes in material recovered from cryostorage (e.g. Peredoa et al., 2008; 

Johnston et al., 2009) and studies planned in the immediate future will look at possible DNA 

methylation and/or acetylation as a consequence of each procedural step in the cryopreservation 

of the species presently investigated. 
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8.9 The problems encountered in this work and their relevance to the field of non-

orthodox seed cryo-conservation 

The problems encountered in this work reinforce the views of Berjak et al. (2010), who in 

reviewing the status of the cryo-conservation of germplasm from non-orthodox-seeded species 

said that problems associated with attempts to cryopreserve such germplasm fall into two 

categories: (a) the practical aspects of developing appropriate protocols, often approached 

empirically; and (b) the intellectual problems of understanding the impact of the 

cryopreservation procedures on the underlying biology. Harding et al. (2009) also suggested 

that the lack of a fundamental understanding of the physico-chemical consequences of 

cryopreservation hampers our ability to generate generic protocols for different types of material, 

or comprehend the reasons for failure. 

A major problem, of an intellectual nature, discussed in the Introduction to this thesis, and 

evidenced by the cryo-successes and failures cited throughout this work, is that explants of 

temperate species are far more amenable to the manipulations required for successful 

cryostorage. The cryopreservation of the zygotic germplasm of tropical/sub-tropical species has 

turned out to be much more difficult (for reviews see Walters et al., 2008; Berjak et al., 2010). 

As discussed in overviews by Berjak and Pammenter (2004) and Walters et al. (2008) the 

reasons for this are not fully understood and even now, success remains elusive in many cases 

(Engelmann, 2009). Even though certain treatments employed in the present work resulted in 

relatively high post-thaw viability retention, a number of difficulties were encountered during 

the experimental phase of this thesis and some of these are discussed below. 

While embryo WCs associated with particular drying times remained relatively constant for 

non-cryoprotected material, from any given seed lot, for 2-3 weeks, this was not true when 

embryos were cryoprotected prior to partial dehydration (data not shown). As a consequence, 

the drying time required to achieve a target WC in cryoprotected embryos from a given seed lot 

had to be applied to those embryos within days of its optimisation, for reproducibility.  

A pilot study aimed at optimising the fixation and embedding protocol for the ultrastructural 

studies carried out here, showed cryoprotected embryos to resist the infiltration of resin during 

embedding, even when the size of the specimen was dramatically decreased; evidenced by the 

presence of holes in ultra-thin sections. This was rectified by simply extending the incubation 

time in 100% resin from 12 to 18 h. 

Ultrastructural studies revealed embryos within the same treatment to display one of three 

variations: (1) all cells lysed; (2) all cells ultrastructurally intact; or (3) a mixture of non-lysed 

and ultrastructurally intact cells. This is a common phenomenon in plant germplasm recovered 

from cryostorage (e.g. Benson and Noronha-Dutra, 1988; Wilkinson et al., 2003; Kaczmarczyk 
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et al., 2008) and in such cases a suitably high number of specimens need to sampled for an 

accurate assessment of the responses of the explants to the treatment. Due to limited seed 

availability, just five embryos could be sampled for each treatment in ultrastructural studies 

carried out here. The images subsequently analysed were selected on the basis that they 

represented the general appearance of cells from each treatment; however, it is suggested that 

future studies on the ultrastructural responses of recalcitrant zygotic germplasm to 

cryopreservation employ significantly larger sample sizes, to ensure an accurate assessment of 

ultrastructural responses.  

Recalcitrant seeds remain metabolically active after shedding and display a steadily changing 

metabolic status as they approach germination (Tompsett and Pritchard, 1993; Hong and Ellis, 

1995; Berjak and Pammenter, 2004). Desiccation sensitivity generally increases as germination 

progresses, in relation to the increase in rate and complexity of metabolism (e.g. as shown for 

Avicennia marina [Farrant et al., 1988]; Landolphia kirkii [Berjak et al., 1992]; Camellia 

sinensis [Berjak et al., 1993]). Cryo-sensitivity of recalcitrant seeds is therefore assumed to 

change with developmental status (Kioko et al., 2003; Sershen et al., 2007). As a consequence 

in studies such as the present one, measures of stress markers and embryo viability can only be 

compared among different treatments when these treatments have been applied to seeds that are 

of the same ‘storage age’, which does not necessarily equate to ‘developmental age’. In the 

present work, this had two major implications: firstly, the number of parameters that could be 

measured as part of any particular experiment was limited by the number of seeds available at 

each harvest; and secondly, the period between the optimisation of the individual procedures 

involved in the cryopreservation of the material and their combined application in the cryo-

protocol had to be limited to a few days (usually 2-4 d). Additionally, embryo drying kinetics  

and the period required for post-cryo recovery (i.e. root and shoot production), differed among 

seed lots so it is recommended that any future studies aiming to repeat the cryopreservation 

protocols presented in this work, recognise and accommodate for these differences (no matter 

how slight they may be).  

Lastly, the measurement of leaf-based photosynthetic rates for ‘small-leaved’ seedlings is 

practically difficult. The use of a portable photosynthesis measuring system fitted with a 

chamber specially designed for small leaves, such as the Arabidopsis chamber (Li-Cor, 

Nebraska, USA) used in this study, can aid in measuring ‘real’ changes in chamber carbon 

dioxide (CO2) concentration; however, when CO2 exchange rates are very low, as in stressed 

material, differences in CO2 concentration are often too small to measure. 
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8.10 Concluding remarks 

The results of the present work reinforce the notion that each successive manipulation involved 

in the cryopreservation of recalcitrant zygotic germplasm has the potential to inflict damage on 

tissues and post-thaw survival in such germplasm relies on the minimisation of structural and 

metabolic damage at each of the procedural steps involved in their cryopreservation (Berjak et 

al., 1999b; Pammenter et al., 2010). The results also highlight the need to design research 

programmes aimed not only at developing protocols for cryopreservation of plant genetic 

resources, but also at elucidating and understanding the fundamental  basis of both successes 

and failures (e.g. see Harding et al., 2009).  
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APPENDIX A 

 
Germination characteristics and embryo morphology of recalcitrant amaryllid seeds 

Germination in amaryllid seeds is unusual in that part of the cotyledon, termed the cotyledonary 

body, to which the embryonic axis is attached, grows right out of the seed (Fig. A1a). Zygotic 

embryos (Fig. A1b) do not exhibit any visible attachment to the surrounding endosperm and in 

Haemanthus montanus (Baker) and Amaryllis belladonna (L.) seeds, range from c. 0.5-1.0 cm 

in length. The root and shoot meristems (Fig. A1c), each of which can occupy an area of 

between 0.5-1.0 µm
2
, lie within 3-4 µm of each other and cannot be differentiated from the 

surrounding cotyledonary tissue with the naked eye. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Drying characteristics of Haemanthus montanus and Amaryllis belladonna zygotic embryos  

Materials and Methods 

Freshly excised zygotic embryos were rapidly dried via flash drying (devised by Berjak et 

al., 1990) for various times. In order to minimise the potential variation in drying rate as a 

function of embryo size, only embryos of between 4-6 mm in length were used for all the 

experiments described below. At each drying interval, water content (WC) of ten embryos was 

determined gravimetrically while ten to fifteen embryos were rehydrated, decontaminated and 

regenerated in vitro as described in Chapter 2 (section 2.2). Vigour (in terms of mean time to 

Figure A1 [a] Typical progression of germination in amaryllid seeds; [b] 

zygotic embryo lying within fleshy endosperm with box indicating the location 

of the embryonic axis (e); and [C] cross section of amaryllid embryonic axis, 

showing root (r) and shoot (s) meristems enveloped by cotyledonary sheath, as 

visualised by fluorescence microscopy. Bar = 1 cm for [A] and [B] and 1µm for 

[c]. 
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germinate [MTG] and germination index [GI]) and viability were thereafter assessed as 

described in Chapter 2 (section 2.2). Results of these studies were used to construct curves of 

water content (WC) and viability vs. drying time, which informed the cryopreservation studies 

described in Chapter 2. 

 

Results and Discussion 

As is characteristic of recalcitrant seeds (King and Roberts, 1980; Farrant et al., 1986; 

Pammenter and Berjak, 1999), A. belladonna and H. montanus possessed highly hydrated 

embryos at shedding (c. 4.7 and 5.1 g g-1, respectively), which upon rapid dehydration lost some 

viability at relatively high WCs (1.0-0.42 g g
-1
; Fig. A2a, b; Table A1a, b). This was not 

surprising since many of the processes that lead to viability loss during dehydration in 

recalcitrant seeds appear to be aqueous-based and can occur at relatively high (intermediate) 

WCs; in the order of 1.0-0.3 g g-1 (Vertucci and Farrant, 1995; Farrant et al., 1997; Walters et 

al., 2001). Unlike the desiccation curves of whole seeds, the pattern of which are usually 

characterised by a simple exponential function (e.g. Tompsett and Pritchard, 1998; Pammenter 

et al., 1998; Makeen et al., 2005), initial dehydration in the embryos of both species were faster 

than exponential; a trend observed in the embryos/axes of other recalcitrant-seeded species (e.g. 

Citrus suhuiensis cv. Limau langkat [Makeen et al., 2005]; and a number of amaryllids [Sershen 

et al., 2008]). As reported for recalcitrant embryonic axes/zygotic embryos elsewhere (e.g. 

Pammenter et al., 2003), WC decreased in a non-linear fashion with damage accumulating until 

a point at which some viability loss occurred. The fact that this loss in viability was most severe 

at WCs <0.34-0.29 g g-1 was not surprising since recalcitrant seeds characteristically lose 

viability during drying at WCs ranging from 0.6-0.2 g g
-1
 with this wide range in sensitivity 

being attributed to morphological, physiological, biochemical and genetic differences (Vertucci 

and Farrant, 1995; Berjak and Pammenter, 1997; Daws et al., 2006). These differences may 

even give rise to variability among embryos/axes of the same seed lot or from one seed lot to 

another (Berjak et al., 1996). In this study, the degree of desiccation sensitivity (assessed as the 

WC at which viability was first lost) differed slightly between harvests, most especially in H. 

montanus, but the embryos/axes of both species could nevertheless be dried to WCs between 

0.34 and 0.29 g g
-1
 while still retaining ≥70% viability, over both harvests (Fig. A2a, b; Table 

A1a, b).
   
As discussed in Chapter 2, such rapid (as opposed to slow) drying allows for the 

survival of the embryos/axes of several recalcitrant-seeded species to very low WCs (c. 0.20-

0.44 g g-1 [e.g. Normah et al., 1986; Pritchard and Prendergast, 1986; Berjak et al., 1993; 

Pammenter et al., 1993; reviewed by Normah and Makeen, 2008); possibly because the tissue 

passes through intermediate WCs so fast that damage typically associated with intermediate 
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WCs (that can be lethal) may not have time to accumulate (Pammenter et al., 1998; Walters et 

al., 2001, 2002). 

Additionally, there were three striking inter-species differences in terms of drying 

characteristics in the embryos presently investigated. Firstly, while root meristems were more 

sensitive to desiccation than shoot meristems in A. belladonna, these growing points appeared to 

be equally sensitive to desiccation in H. montanus (Table A1a, b). Differences in sensitivity 

between root and shoot meristems in recalcitrant zygotic germplasm, may be based on 

differences in desiccation tolerance per se, perhaps as a consequence of cell architecture (e.g. 

degree of vacuolation), differential WC, differential drying rates (and hence time of exposure to 

the dehydration stress), or a combination of these factors (Assy-Bah and Engelmann, 1992; 

Pritchard and Manger, 1998). Secondly, while slight dehydration stimulated germination rate in 

A. belladonna this effect was not observed in H. montanus (Table A1a, b). Partial drying can 

have an initial promotive effect in recalcitrant seeds but as observed in both species here (see 

Table A1a, b), any further drying is usually followed by a decline in GI and/or viability (Farrant 

et al., 1985; Tompsett and Pritchard, 1998; Eggers et al., 2007). In other species (e.g. embryos 

of Zizania palustris [Aldridge and Probert, 1992] and Acer pseudoplatanus seeds [Hong and 

Ellis, 1990]) this promotive effect has been attributed to a continuation of the earlier maturation 

processes which occur naturally on trees as seeds become drier (Tompsett and Pritchard, 1998). 

Alternatively, a decline in vigour, as observed at some of the lower embryo WCs here (Table 

A1a, b), is usually indicative of damage incurred and/or repair processes (Pammenter et al., 

2002). Lastly, there were marked inter-species differences in drying kinetics: A. belladonna 

embryos could be dried to comparable WCs more than ten times faster than H. montanus 

embryos (Table A1a, b; Fig. A2a, b). This was unlikely a consequence of inter-species 

differences in embryos mass since mean fresh mass of freshly excised embryos were 

comparable between species (0.0080±0.0021 g for A. belladonna and 0.0071±0.0013 g for H. 

montanus). As explained in Chapter 2, desiccation damage in recalcitrant seeds appears to be a 

function of two interrelated parameters; i.e. the intensity and duration of dehydration 

(Pammenter et al., 1998; 2002; 2003; Walters et al., 2001; Liang and Sun, 2002; Pammenter et 

al., 2003). This suggests that at comparable WCs, H. montanus embryos may have been 

exposed to a greater degree of desiccation stress than those of A. belladonna. 
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Table A1 Embryo water content, drying time, vigour and viability for rapidly dried [a] A. belladonna and 

[b] H. montanus zygotic embryos. 

 

 

 
 

 

Drying time 

(min) 

Embryo WC
1
 

(g g
-1
) 

Roots 

(%) 

Shoots 

(%) 

Viability
2
 

(%) 
*
MTG

3
 

*
GI

4
 

YEAR 1: 0 4.67±0.57 100 100 100 9.3 69.4 

15 0.42±0.09 100 100 100 5.3 204.1 

30 0.32±0.10 80 93 80 10.0 14.2 

60 0.17±0.04 20 87 20 9.3 0.7 

90 0.16±0.02 13 87 20 14.0 0.4 

120 0.13±0.01 7 80 13 9.0 0.3 

180 0.17±0.15 7 87 7 17.0 0.2 

240 0.10±0.01 0 40 7 0 0 

300 0.08±0.03 0 33 0 0 0 

YEAR 2: 0 5.71±1.25 100 100 100   

5 0.53±0.09 90 90 90   

15 0.29±0.05 80 90 80   

30 0.17±0.04 30 80 30   

60 0.13±0.02 0 40 0   

90 0.10±0.03 0 20 0   

120 0.10±0.02 0 20 0   

180 0.07±0.02 0 10 0   

240 0.07±0.02 0 0 0   

Drying time 

(min) 

Embryo WC
1
 

(g g
-1
) 

Roots 

(%) 

Shoots 

(%) 

Viability
2
 

(%) 
*
MTG

3
 

*
GI

4
 

YEAR 1: 0 5.05±0.92 100 100 100 12.6 44.4 

60 1.17±0.36 100 100 100 11.9 39.1 

120 1.01±0.19 100 90 90 13.7 14.6 

150 0.73±0.14 100 90 90 12.1 28.8 

180 0.67±0.25 100 90 90 15.6 14.1 

210 0.67±0.28 100 90 90 15.1 6.7 

240 0.52±0.15 100 90 90 15.9 6.2 

300 0.34±0.09 80 70 70 13.7 4.8 

330 0.29±0.10 30 20 20 13.5 1.1 

YEAR 2: 0 4.66±0.76 100 100 100   

120 0.94±0.37 100 100 100   

180 0.43±0.13 80 70 70   

240 0.33±0.13 70 70 70   

300 0.26±0.11 40 40 40   

360 0.22±0.15 30 40 30   

a 

b 

1 water content; 2 mean time to germinate; 3 viability = root and shoot production; 4 germination index. Mean time to 

germinate and germination index was based on viability. Water content, % root and shoot production and viability 

data (after 40 d) were tested for significant differences across drying times, within years: p < 0.05 for water content 

data (Mann-Whitney-U test, n = 10); p < 0.05 viability and % root and shoot production data (null model chi-squared 

analysis, n = 10 for year 1 and n = 15 for year 2). 
* 
Replicated once; not tested for significant differences. 

 



 

 

333 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
References 

Aldridge, C.D., Probert, R.J. 1992. Effects of partial drying on seed germination in the aquatic 

grasses Zizania palustris and Porteresia coarctata (Roxb.) Tateoka. Seed Science Research 

2, 199-205. 

Figure A2 Water content and viability vs. drying time for [a] A. belladonna and [b] H. 

montanus zygotic embryos. For water content n = 10; for viability n = 15 for year 1 and n = 

10 for year 2. 

a

0

1

2

3

4

5

6

7

8

0 30 60 90 120 150 180 210 240 270 300

Drying time (min)

W
a
te
r 
c
o
n
te
n
t 
(g
 g
-1
 D
W
)

0

20

40

60

80

100

V
ia
b
ili
ty
 (
%
)

WC-year 1 WC-year 2
Viability-year 1 Viability-year 2

b

0

1

2

3

4

5

6

7

8

0 30 60 90 120 150 180 210 240 270 300 330 360

Drying time (min)

W
a
te
r 
c
o
n
te
n
t 
(g
 g
-1
D
W
)

0

20

40

60

80

100

V
ia
b
ili
ty
 (
%
)



 

 

334 

Assy-Bah, B., Engelmann, F. 1992. Cryopreservation of mature embryos of coconut (Cocos 

nucifera L.) and subsequent regeneration of plantlets. CryoLetters 13, 117-126. 

Berjak, P., Pammenter, N.W. 1997. Progress in the understanding and manipulation of 
desiccation sensitive (recalcitrant) seeds. In: Ellis, R.H., Black, M., Murdoch, A.J., Hong, 

T.D. (Eds.), Basic and applied aspects of seed biology. Kluwer Academic Publishers, 

Dordrecht, pp. 689-703.  

Berjak, P., Vertucci, C.W., Pammenter, N.W. 1993. Effects of developmental status and 

dehydration rate on characteristics of water and desiccation-sensitivity in recalcitrant seeds 

of Camellia sinensis. Seed Science Research 3, 155-166. 

Berjak, P., Farrant, J.M., Mycock, D.J., Pammenter, N.W. 1990. Recalcitrant (homoiohydrous) 
seeds: the enigma of their desiccation-sensitivity. Seed Science and Technology 18, 297-310. 

Berjak, P., Mycock, D.J., Wesley-Smith, J., Dumet, D., Watt, M.P. 1996. Strategies of in vitro 

conservation of hydrated germplasm. In: Normah, M.N., Narimah, M.K., Clyde, M.M. 

(Eds.), In vitro conservation of plant genetic resources. Percetakan Watan Sdn. Bhd., Kuala 

Lumpur, Malaysia, pp. 19-52. 

Daws, M.I., Cleland, H., Chmielarz, P., Gorian, F., Leprince, O., Mullins, C.E., Thanos, C.A., 

Vandvik, V., Pritchard, H.W. 2006. Variable desiccation tolerance in Acer pseudoplatanus 

seeds in relation to developmental conditions: a case of phenotypic recalcitrance? Functional 

Plant Biology 33, 59-66. 

Eggers, S., Erdey, D., Pammenter, N.W., Berjak, P. 2007. Storage and germination responses of 

recalcitrant seeds subjected to mild dehydration. In: Adkins, S., Ashmore, S., Navie, S.C. 

(Eds.), Seeds: biology, development and ecology. CABI Publishing, Wallingford, UK, pp. 

85-92. 
Farrant, J.M., Berjak, P., Pammenter, N.W. 1985. The effect of drying rate on viability retention 

of recalcitrant propagules of Avicennia marina. South African Journal of Botany 51, 432-

438. 

Farrant, J.M., Pammenter, N.W., Berjak, P. 1986. The increasing desiccation sensitivity of 

recalcitrant Avicennia marina seeds with storage time. Physiologia Plantarum 67, 291-298. 

Farrant, J.M., Pammenter, N.W., Berjak, P., Walters, C. 1997. Subcellular organization and 

metabolic activity during the development of seeds that attain different levels of desiccation 
tolerance. Seed Science Research 7, 135-144. 

Hong, T.D., Ellis, R.H. 1990. A comparison of maturation drying, germination, and desiccation 

tolerance between developing seeds of Acer pseudoplatanus L. and Acer platanoides L. New 

Phytologist 116, 589-596. 

King, M.W., Roberts, E.H. 1980. Maintenance of recalcitrant seeds in storage. In: Chin, H.F., 

Roberts, E.H. (Eds.), Recalcitrant Crop Seeds. Tropical Press Sdn. Bhd., Kuala Lumpur, 

Malaysia, pp. 53-89. 
Liang, Y., Sun, W.Q. 2002. Rate of dehydration and cumulative desiccation stress interacted to 

modulate desiccation tolerance of recalcitrant cocoa and ginko embryonic tissues. Plant 

Physiology 128, 1323-1331. 

Makeen, M.A., Noor, N.M., Dussert, S., Clyde, M.M. 2005. Cryopreservation of whole seeds 

and excised embryonic axes of Citrus suhuiensis cv. Limau Langkat in accordance to their 

desiccation sensitivity. CryoLetters 26, 259-268. 

Normah, M.N., Makeen, A.M. 2008. Cryopreservation of Excised Embryos and Embryonic 

Axes.  In: Reed, B.M. (Ed.). Plant Cryopreservation: A Practical Guide. Springer, New 

York, pp. 211-239. 

Normah, M.N., Chin, H.F., Hor, Y.L. 1986. Desiccation and cryopreservation of embryonic 

axes of Havea brasiliensis Muell-Arg. Pertanika 9, 299-303.  

Pammenter, N.W., Berjak, P. 1999. A review of recalcitrant seed physiology in relation to 

desiccation-tolerance mechanisms. Seed Science Research 9, 13-37. 
Pammenter, N.W., Vertucci, C.W., Berjak, P. 1993. Responses to desiccation in relation to non-

freezable water in desiccation-sensitive and -tolerant seeds. In: Côme, D., Corbineau, F. 



 

 

335 

(Eds.), Fourth International Workshop on Seeds, Basic and Applied Aspects of Seed 

Biology. ASFIS, Paris, pp. 867-872. 

Pammenter, N.W., Naidoo, S., Berjak, P. 2003. Desiccation rate, desiccation response and 
damage accumulation: can desiccation sensitivity be quantified? In: Nicolás, G., Bradford, 

K., Côme, D., Pritchard, H.W. (Eds.), The Biology of Seeds. Recent Research Advances. 

CABI Publishing, UK, pp. 319-340. 

Pammenter, N.W., Berjak, P., Wesley-Smith, J., Vander Willigen, C. 2002. Experimental 

aspects of drying and recovery. In: Black, M., Pritchard, H.W. (Eds.), Drying without dying: 

desiccation and survival in plants. CABI Publishing, New York, pp. 93-110. 

Pammenter, N.W., Greggains, V., Kioko, J.I., Wesley-Smith, J., Berjak, P., Finch-Savage, W.E. 
1998. Effects of differential drying rates on viability retention of Ekebergia capensis. Seed 

Science Research 8, 463-471. 

Pritchard, H.W., Prendergast, F.G. 1986. Effects of desiccation and cryopreservation on the in 

vitro viability of embryos of the recalcitrant seed species Araucaria hunsteinii K. Schum. 

Journal of Experimental Botany 37, 1388-1397. 

Pritchard, H.W., Manger, K.R. 1998. A calorimetric perspective on desiccation stress during 

preservation procedures with recalcitrant seed of Quercus robur L. CryoLetters Supplement 

no.1, 23-30. 

Sershen, Berjak, P., Pammenter, N.W. 2008. Desiccation sensitivity of excised embryonic axes 

of selected amaryllid species. Seed Science Research 18, 1-11. 

Tompsett, P.B., Pritchard, H.W. 1998. The effect of chilling and moisture status on the 

germination, desiccation tolerance and longevity of Aesculus hippocastanum L. seed. Annals 

of Botany 82, 249-261. 
Vertucci, C.W., Farrant, J.M. 1995. Acquisition and loss of desiccation tolerance. In: Kigel, J., 

Galili, G. (Eds.), Seed development and germination. Marcel Dekker Inc., New York, pp. 

237-271. 

Walters, C., Pammenter, N.W., Berjak, P., Crane, J. 2001. Desiccation damage, accelerated 

aging and respiration in desiccation tolerant and sensitive seeds. Seed Science Research 11, 

135-148. 

Walters, C., Farrant, J.M., Pammenter, N.W., Berjak, P. 2002. Desiccation stress and damage. 
In: Black, M., Pritchard, H.W. (Eds.), Drying without dying: desiccation and survival in 

plants. CABI Publishing, New York, pp. 263-281. 

 



 336 

APPENDIX B 

 
Estimation of zygotic embryo sucrose concentration to check for potential interference 

caused by carbohydrates in the thiobarbituric acid-reactive substances assay (Heath and 

Packer, 1968) 

Rationale 

When estimating lipid peroxidation via colorimetric assays such as the thiobarbituric acid-

reactive substances (TBARS) assay (originally described by Heath and Packer, 1968) there is 

always the risk that phenolic and carbohydrate compounds can cause interference, since, like 

TBARS, many of them also absorb at 532 nm (Du and Bramlage, 1992). Correction for 

interference caused by carbohydrates (monosaccharides and disaccharides, such as sucrose and 

trehalose) in sugar-rich plant tissue has been suggested to guard against over-estimation of lipid 

peroxidation (Du and Bramlage, 1992). Those authors presented a modified TBARS assay for 

sugar-rich plant tissue extracts which involved, apart from measuring absorbance at 400, 532 

and 600 nm instead of just at 532 and 600 nm as in the original TBARS assay described by 

Heath and Packer (1968), rectifying the interference of soluble sugars in samples using a 

standard curve for sucrose (2.5-10.0 µmol ml-1). In the present study, sucrose concentration of 

freshly excised (fresh) and sucrose (Suc) and glycerol (Gly) cryoprotected (CP) Amaryllis 

belladonna (L.) and Haemanthus montanus (Baker) zygotic embryos was estimated using the 

colorimetric anthrone assay (after Jermyn, 1956). This was done to assess whether CP enhanced 

tissue sucrose concentrations relative to fresh embryos, and if so, whether these concentrations 

fell within the interfering range (i.e. 2.5-10.0 µmol ml
-1
) for sucrose (see Chapter 4; section 4.2), 

as suggested by Du and Bramlage (1992).  

 

Materials and Methods 

Embryo pre-treatment 

After 14 d of ‘hydrated’ storage (see Chapter 2; section 2.2), zygotic embryos of A. 

belladonna and H. montanus were excised with the entire cotyledonary body attached and 

cryoprotected with either aqueous Gly or Suc as described in Chapter 2 (section 2.2). After CP, 

embryos were briefly rinsed with water to remove residual cryoprotectant and immediately 

measured for Suc concentration as described below. 

 

Reagents 

Anthrone reagent was purchased from Sigma Chemical Co. (Germany) and all other 

reagents were analytical grade and locally available.  
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Extraction of water soluble carbohydrates and estimation of sucrose concentration 

Four batches of 15 embryos each (c. 100 mg) from fresh, Suc CP and Gly CP treatments, 

were freeze-dried, ground (using inert sand) in a pestle and mortar to pass a 0.5 mm mesh and 

extracted for water soluble carbohydrates (WSC) according to Trethewey and Rolston (2009), 

with slight modifications after Chow and Landhäusser (2004). Here, weighed samples (four 

samples of approximately 20 mg each, across all three treatments) were extracted three times 

with 1 ml 80% (v/v) aqueous ethanol by heating the samples in capped glass tubes in a 95°C 

water bath for 10 min. This fraction is termed the ‘mobile’ fraction and is composed of low 

molecular weight WSC, mainly sucrose and monosaccharides (Carpita et al., 1989). Extracts 

were then centrifuged at 13,000 g for 10 min, combined and evaporated under vacuum to 

remove pigments, and then re-suspended in 2 ml deionised water. Sucrose concentration was 

thereafter determined using a colorimetric anthrone assay (Jermyn, 1956), whereby 1 ml 

extracts were mixed with 25 ml of anthrone reagent (62.5% [v/v] sulphuric acid, 37.5% [v/v] 

ethanol, 0.00125% anthrone [v/v]), incubated at 100°C for 20 min and then read for absorbance 

at 620 nm. Sucrose concentration was calculated using a sucrose standard curve and expressed 

as mg sucrose g
-1 

DW. Assays were carried out twice on four different extracts. For dry weight 

estimation, three batches of five embryos each, across all three treatments, were dried in an oven 

at 80°C for 48 h to determine DW. 

 

Results and Discussion 
Sucrose concentrations in fresh embryos of both species (Table B1) were much lower than 

concentrations reported for zygotic embryos or embryonic axes of other recalcitrant-seeded 

species (Steadman et al., 1996). Cryoprotection did result in a marginal increase in Suc 

concentration relative to fresh zygotic embryos but these differences were not significant. When 

mg/g DW Suc concentrations were translated to µmol ml-1 concentrations, all treatments for 

both species exhibited mean concentrations that were <0.1 µmol ml-1 (Table B1). These data 

suggested that sucrose concentrations across all three treatments (for both species) were lower 

than the interfering range (2.5-10.0 µmol ml-1) as suggested by Du and Bramlage (1992). Also, 

if interference did occur in the assays carried out according to Heath and Packer (1968) in 

studies described in Chapter 4 (section 4.2) then the degree of interference was likely to have 

been comparable across CP and non-CP treatments.  
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Table B1 Sucrose concentration in terms of mg g
-1
 DW and µmol ml

-1
 for fresh and cryoprotected (CP) 

A. belladonna and H. montanus zygotic embryos. 
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Sucrose concentration in terms of mg g
-1
 DW 

 Fresh Suc CP Gly CP 

A. belladonna 1.65±0.21
a
 1.71±0.19

a
 1.77±0.21

a
 

H. montanus 1.42±0.13
a
 1.51±0.20

a
 1.60±0.24

a
 

Sucrose concentration in terms of µµµµmol ml
-1
 

A. belladonna 0.022±0.003
a
 0.026±0.003

a
 0.025±0.003

a
 

H. montanus 0.023±0.002
a
 0.019±0.002

a
 0.025±0.004

a
 

Values represent mean±SD. Values followed by similar letters are not significantly different; p > 

0.05 when tested for significant differences across embryo pre-treatments, within species (ANOVA, 

n = 4). 
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APPENDIX C 

 

Experimental design for studies on ex vitro vigour of Amaryllis belladonna (L.) seedlings 

recovered from fresh, partially dried and cryopreserved zygotic embryos 
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          (174) 
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Figure C1 Ex vitro experimental design. Measured: CO2-assimilation, potential photochemical efficiency, 

leaf water, osmotic and pressure potential measured on this day. Seedlings were generated from fresh (F), 

partially dried (D) and cryopreserved (C) zygotic embryos. Recovered seedlings were subjected to either 12 

d of watering (W) or 8 d of water deficit followed by 3 d of re-watering (S). The number of replicates 

associated with each treatment combination is given within brackets. 
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Leaf stomatal density of Amaryllis belladonna seedlings recovered from fresh, partially 

dried and cryopreserved zygotic embryos 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C2 Scanning electron micrographs of stomata (arrow heads) on 

adaxial leaf surface of unstressed seedlings generated from (a) fresh; (b) 

dried; and (c) cryopreserved zygotic embryos. All images were captured at 

magnification: 200×, using a constant field of view (0.988 mm
2
). Bar = 10 

µm. 
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