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ABSTRACT 
 

 
 

A typical petro-chemical or oil-refining plant is known to operate with hundreds if not 

thousands of control loops. All critical loops are primarily required to operate at their 

respective optimal levels in order for the plant to run efficiently. With such a large 

number of vital loops, it is difficult for engineers to monitor and maintain these loops 

with the intention that they are operating under optimum conditions at all times. Parts of 

processes are interactive, more so nowadays with increasing integration, requiring the use 

of a more advanced protocol of control systems. The most widely applied advanced 

process control system is the Model Predictive Controller (MPC). The success of these 

controllers is noted in the large number of applications worldwide. These controllers rely 

on a process model in order to predict future plant responses.  

Naturally, the performance of model-based controllers is intimately linked to the quality 

of the process models. Industrial project experience has shown that the most difficult and 

time-consuming work in an MPC project is modeling and identification. With time, the 

performance of these controllers degrades due to changes in feed, working regime as well 

as plant configuration. One of the causes of controller degradation is this degradation of 

process models. If a discrepancy between the controller’s plant model and the plant itself 

exists, controller performance may be adversely affected. It is important to detect these 

changes and re-identify the plant model to maintain control performance over time. 

In order to avoid the time-consuming process of complete model identification, a model 

validation tool is developed which provides a model quality indication based on real-time 

plant data. The focus has been on developing a method that is simple to implement but 

still robust. The techniques and algorithms presented are developed as far as possible to 

resemble an on-line software environment and are capable of running parallel to the 

process in real time. These techniques are based on parametric (regression) and non-

parametric (correlation) analyses which complement each other in identifying problems 
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within on-line models. These methods pinpoint the precise location of a mismatch. This 

implies that only a few inputs have to be perturbed in the re-identification process and 

only the degraded portion of the model is to be updated. This work is carried out for the 

benefit of SASOL, exclusively focused on the Secunda plant which has a large number of 

model predictive controllers that are required to be maintained for optimal economic 

benefit. The efficacy of the methodology developed is illustrated in several simulation 

studies with the key intention to mirror occurrences present in industrial processes. The 

methods were also tested on an industrial application. The key results and shortfalls of 

the methodology are documented.  
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CHAPTER  

1  

INTRODUCTION 
 

 

 

 

 

 

 

 

1.1. OVERVIEW 

 
In a society where the needs of the people are insatiable, the demands put on consumer 

products and products for the industrial markets are ever increasing. The highest quality 

is demanded at the lowest possible price. Many companies are competing to fulfill the 

day to day needs of both consumers and industries. As a result of increasing demands in 

production efficiency, industry has turned to more Advanced Process Control systems 

(APC). These control systems can be encountered in chemical and petrochemical 

processes such as oil refining, production of petrol and synthetic by-products. One class 

of advanced controllers is Model Predictive Control (MPC).  

 

Model-based Predictive Control constitutes a class of computer algorithms that make 

direct use of a process model in order to predict the future response of the plant (Seborg, 

Edgar and Mellichamp, 2004). Coupled with the capacity to handle multiple-input, 

multiple-output systems (MIMO), the attractiveness of MPC, to an extent, is owed to the 

aptitude of MPC algorithms to handle constraints that are frequently met in industrial 

processes. These constraints are not particularly well addressed within other control 

approaches (Kocijan, 2003).  

 

This chapter presents the introduction to this work. It begins with an overview of the main 

areas of focus in this thesis by providing a general idea and brief background into the field of 

Model Predictive Control in industry and the necessity of closed-loop on-line model validation. 

The chapter thereafter delves into the major objectives, research contribution and scope. The 

last section of this thesis presents the structure to follow, providing an indication as to what 

each subsequent chapter entails. 
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Central to the success of the MPC technique is the derivation of accurate process models 

(Huang and Tamayo, 2000). Modeling and identification has been shown to be the most 

intricate and time-consuming work in an MPC project (Zhu et al., 1997). These models, 

which are generally identified at the commissioning stage, are never accurate and contain 

some mismatch with the plant, due to the inherent non-linearity of most chemical 

processes. The models are typically linear and thus represent these processes over a 

restricted range around the operating point. Consequently, changes in the desired plant 

dynamics together with the non-linearities of the process magnify the gap present 

between the model and the plant itself which may subsequently lead to a drop in MPC 

performance (Qiang and Shaoyoun, 2005).  

 

The impact of poor controller performance is immense in that if affects product quality, 

plant economy and safety. It can be noted that in many industries, intrusive open-loop 

plant tests, often associated with the re-identification of models, entail high costs due to 

large production losses. These facts stress the necessity for the development of efficient 

on-line techniques that are capable of identifying a Model-Plant Mismatch (MPM) under 

normal operating conditions, especially for MIMO systems. This would go a long way in 

providing a model quality indication and assist, if necessary, in re-identification and 

tuning of the controller. A continued maintenance program would maintain the 

productivity gains from MPC (Brisk, 2004).  

 

1.2. BACKGROUND  

 
Performance monitoring of controllers is a field of interest for academia and industry. 

However in the case of MPC, the focus has primarily been to ensure for optimal control. 

According to a recent survey, there have been noted to be over 5500 industrial 

applications of MPC worldwide (Qin et al., 2003). Various studies indicate that as many 

as 66% of controllers have some kind of performance problem (Miller, 2001). The major 

causes of poor control loop performance in Model-Based Control systems (MBC) are 

depicted in figure 1.1 below: 
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Figure 1.1: Information flow diagram for causes of poor controller performance 

 

The majority of the relevant work in the field of controller performance assessment has 

focused primarily on obtaining statistics for performance evaluation from routine plant 

data. There are no systematic ways of detecting the underlying issues as shown in figure 

1.1 above if these statistics provide an indication of poor performance. Considering the 

extensive application of MPC systems, it is to some extent rather surprising that the area 

of diagnostics remains a largely unsolved problem (Loquasto, 2003).  

 

This thesis focuses primarily on the detection and diagnosis of Model-Plant Mismatch 

(MPM). Loquasto (2003) acknowledges that the variation in plant characteristics are 

possibly due to feed-stocks changes or a corresponding change feed flow-rates, changes 

exhibited in operating conditions or product grade, changes in process variations for 

example fouling in heat exchangers and catalyst deactivation, environmental variations 

such as weather changes, and so forth. If such a change occurs, the process model(s) may 

no longer describe the plant behavior adequately.  

 

When performance of a Model-Based Controller degrades, the first step would therefore 

be to correct for any MPM, due to the performance of such controllers being intimately 

linked to the quality of the process models. It has been argued that on the basis of the 

MPC controller tuning, performance may be improved in the presence of MPM (Schafer, 

2004). However, from a strictly pragmatic view, the likelihood of achieving satisfying 

controller performance through retuning increases if the plant model is correct. 
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1.3. MOTIVATION  

 
It is reiterated that identification of models is regarded as a very time consuming process 

and becomes an even more complex process for large MIMO controllers. For example, a 

10 × 10 MIMO system would contain 100 univariate models. A full plant test can take 5-

15 days to complete (Qin et al., 2003), depending on the size of the MIMO control 

system. These plant tests involve step testing each input independently in order to 

determine the relevant dynamical relationship between inputs and outputs. Webber and 

Gupta (2008) state that large cost savings can be made if one is capable of detecting 

certain specific input–output pairings that contain the mismatch. This implies that the re-

identification process would require a few inputs to be perturbed and can thus focus only 

on the subset of models that require re-identification.  

 

The work presented in this thesis was carried out for SASOL for their Secunda plant 

located in Mpumalanga. Applying proven Multivariable Predictive Control coupled with 

robust online product quality predications has proven to maximize profitability for a large 

number of units in the SASOL Secunda plant. These controllers are required to be 

maintained to ensure optimal benefit.  

 

1.4. APPROACH 

 

The role of model validation during the identification process is to guarantee that the 

delivered model contains the most significant dynamics of the process. Model validation 

at this stage is normally qualitative. After the designed controller has been implemented, 

a more challenging task is: how to continuously monitor the model quality under closed-

loop conditions.  

 

The proposed methodology is depicted in figure 1.2 below and is based on residual 

analysis. The techniques and algorithms proposed are developed as far as possible to 

resemble an on-line software environment. These techniques are based on quantitative 

(regression) and qualitative (correlation) analyses which complement each other in 

identifying problems within on-line models.   
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Figure 1.2: Proposed scheme for Model validation of MIMO systems 

START 

 

CLOSED LOOP 

PLANT DATA 

Measurement 

variables 

PLANT INPUT: 

u1, u2, . . . , un 

Measurement 

variables 

MODEL OUTPUT: 

ym1, ym2, . . . , ymn 

 

Measurement 

variables 

PLANT OUTPUT: 

yp1, yp2, . . . , ypn 

Measurement 

variables 

ERROR FORM: 

e1, e2, . . . , en 

 

 

RESIDUAL 

ANALYSIS 

 

QUALITATIVE 

APPROACH: 

 

Input-output 

pairings 

QUANTITATIVE 

APPROACH: 

 

Specific parameter 

changes 

 

MODEL 

QUALITY 

INDICATION 

 

DETAILED OUTPUT TO THE OPERATOR/ 

SUPERVISOR 

 

(k+1)
 th

 interval 

k
 th

 interval 



-6- 

 

Correlation analysis based on the correlation between the prediction error and 

corresponding model inputs, developed by Webber and Gupta (2008), is capable of 

detecting which specific input–output pairings of a model-based controller, within a 

model matrix, are mismatched. This method may be employed to screen an entire model 

set and thereby select candidate models for re-identification. Delving further into the 

sphere of model validation, knowing which parameters within a certain model (albeit the 

steady state gain or the time delays) are mismatched, would provide the maintenance 

engineer with extensive information needed when he is required to re-identify 

mismatched models. It should be noted that SASOL presents their models in an input-

output form (refer to chapter 5, section 5.1). Thus there would be no interaction amongst 

outputs in this model formulation because their interactive contributions are effectively 

dealt with by substituting their behaviour in terms of the inputs. This effectively implies 

that an n x m MIMO system can be considered as n separate MISO systems, allowing for 

simpler computation. The proposed methodology is demonstrated via representative 

simulation examples as well as an industrial case study. 

 

1.5. OBJECTIVES  

 

The principal objective for this thesis is to develop a tool that is capable of providing 

model quality indications for the models present in a MIMO system coupled with 

indications as to which models and correspondingly which parameters within these 

models are mismatched.  

 

This tool should be easy to implement and applicable to different types of plants. The 

methods developed within the tool should be automatic in order to run in parallel with an 

industrial process.  

 

The research objectives are broken down and given by the following points: 

 

• Compile an extensive literature survey on pertinent system identification 

principles and model validation approaches. 
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• Specific focus should be on model validation techniques that are capable of 

being implemented in an on-line environment. 

 

• Specifically concentrate on cross-correlation and regression techniques and use 

simulation models to test the applicability of the tool developed via Monte 

Carlo simulations. 

 

• Extend these simulations to emulate industrial situations in order to obtain an 

understanding regarding practical issues that may arise when the model 

validation techniques are implemented. 

 

• Test model validation techniques on an industrial case study provided by 

SASOL for a petrol debutanizer unit.  

 

1.6. RESEARCH CONTRIBUTION 

 
Model validation is a very interesting topic of great practical relevance. Although it has 

been studied over the past two decades (Soderstrom, 1993), there are still many open 

problems to address. The conventional method, under open-loop conditions, is based on 

residual correlation analysis (Ljung, 2002). Many industrial control engineers do not even 

use most open-loop validation techniques developed. Substitution of off-line techniques 

with the on-line closed-loop methodology could save SASOL, as well as other companies 

in the same field, valuable time and production cost. This will in turn ensure the success 

of the MPC technique.  

 

1.7. SCOPE 

 
This thesis focuses exclusively on performance of MPC controllers being affected by 

MPM. Diagnosis of other issues, depicted in figure 1.1, resulting in a degradation of 

controller performance lie beyond the scope of this thesis. However, if it is found that 
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controller performance has dropped and the technique developed does not recognize that 

it is as a result of MPM, then the maintenance engineer can zero in on the other factors.  

 

The model validation tool is developed and implemented in MATLAB ®. The techniques 

are designed, as far as possible, to represent an on-line software environment. Success of 

the methodology would result in the next stage of this topic being developed in VISUAL 

C++, and hence is not requirement for this thesis. 

 

The argumentation will be based on a simulation study and real data provided by SASOL 

will be tested. The method is to be used on runtime data. A verification of the method 

would require plant data, the faulty model and a new updated plant model for 

comparison. Although provision was made for real-time data for a specific Model-

Predictive Controller from the Secunda plant, verification based on additional industrial 

data will not be achieved as the controller provided has been decommissioned due to 

modifications on the plant.   

 

1.8. THESIS ORGANIZATION 

 
This thesis begins with an introduction of the main areas of focus by providing an 

overview and brief background into the field of Model-Predictive Control in industry and 

the necessity of closed-loop on-line model validation. Chapter 2 introduces the 

development of the SASOL Secunda plant and products and the turn to advanced process 

control. Thereafter, the chapter introduces Model-Predictive Control as an innovative 

means of industrial control, highlighting its history and its concepts. Chapter 3 presents 

the fundamental theory related to the topic. This theory focuses on the background of 

model representation and model identification. Chapter 4 offers insight into the related 

work for closed-loop model validation techniques. Chapter 5 deals with the theory and 

algorithms developed for the proposed methodology. The regression techniques are 

introduced and developed. Key industrial situations such as correlation amongst inputs, 

absence of disturbances and noise levels are addressed and modifications are made to the 

techniques to deal with the aforementioned industrial situations. Chapter 6 deals with the 
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development of the algorithms within MATLAB ® as well as the challenges faced. 

Chapter 7 covers simulations on the methods developed in the previous chapters. 

Simulations are performed on a heavy oil fractionators and a Continuous Stirred Tank 

Heating (CSTH) system. Key industrial occurrences are simulated and the results 

compiled and rules of thumb are developed for diagnosis of significant MPM. The effect 

of signal-to-noise ratio is also tested and a limit to this ratio is proposed. Chapter 8 

focuses on the real-plant data provided for a petrol debutanizer unit which is tested and 

key results are noted. Chapter 9 presents the relevant conclusions related to the research 

and results obtained. Chapter 10 highlights the recommendations and what is required to 

implement the techniques online.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-10- 

 

 

 

 

  

 

 

 

  



-11- 

 

 

 

CHAPTER  

2  

PRELIMINARIES 
 

 

 

 

 

 

 

 

2.1. SASOL INDUSTRY AND ADVANCED PROCESS CONTROL 

 
The SASOL consortium consists of diversified fuel, chemical and related manufacturing 

and marketing operations. This thesis serves as a project for the SASOL Secunda plant 

located in Mpumalanga. This 14 km² site is known to be the world's largest production 

facility of synthetic fuels (synfuels) with its core feedstock obtained from coal. Depicted 

in figure 2.1 is an aerial view of the Secunda plant. The east and west sections of this 

plant are exact replicas of each other.  

 

Apart from being the universal leader in Coal-to-Liquid (CTL) gas production, SASOL’s 

Secunda plant has a diverse range of business operating sectors. These can be broadly 

divided into the following 4 subdivisions (SASOL PTY LTD, 2010): 

 

The Polymers business operates several plants such as a polypropylene plant as well as a 

combined ethylene cracking and separation plant. Solvents (inclusive of 12 smaller 

plants) serve to remove Non-Acidic Chemicals (NACs) from synthol wash water and 

subsequently converting them into possible marketable products. The Carbo-tar facility 

processes raw tar and several carbon products. Lastly, the Nitro business comprising 3 

This chapter introduces the development of the SASOL Secunda plant, products and its turn to 

advanced process control. Thereafter, the chapter introduces Model-Predictive Control as an 

innovative means of industrial control as opposed to conventional control and provides a brief 

history of the different types of MPC. The concept of MPC is then introduced and the 

importance of the process model in MPC techniques is highlighted.  
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plants; its primary function is to produce fertilizers, but it also includes a special facility 

for the development of explosives. 

 

 

Figure 2.1: Aerial view of the SASOL Secunda plant 

 

These various business sectors require rigorous and efficient control systems in place in 

order to achieve day-to-day economic targets. SASOL, amongst the majority of industrial 

companies, have thus turned to Advanced Process Control systems as opposed to 

Conventional Process Control systems (CPC) in order to cater for the ever-demanding 

need for financial dominance. In control theory, Advanced Process Control is a broad 

term implying different kinds of process control tools, often used for solving 

multivariable control problems (Hasseloff et al., 2007). These include statistical process 

control, neural network control, and model predictive control.  
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Advanced Process Control and optimization technologies are applied in industrial 

processes and in this plant specifically for the following purposes: 

 

• APC technology is capable of maximizing the throughput as well as adhering to 

operational and safety restrictions thereby increasing operating profits and 

operational efficiency. 

   

• Techniques applied in APC squeeze the variation of main variables and push 

them to their respective operating constraints in order to reduce operation loss.  

 

• APC ensures process units are in a safe operating condition, improving plant 

availability as well as reducing maintenance and utility costs. 

 

The first of the aforementioned points is highlighted by figure 2.2 below. It should be 

noted that actual savings depend on energy costs, product values and operating 

objectives, but many APC projects are known to have a Return on Investment (ROI) 

period of 3-9 months (Selvanathan and Tangirala, 2010).  

 

 

Figure 2.2: Effect of the implementation of an APC control system 
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2.2. CONTROL STRUCTURES 

 
A complete control system for large scale industrial processes is a combination of several 

control layers, each with different priorities. Figure 2.3 illustrates this concept, showing a 

conventional control structure on the left (unit 1) and an APC structure on the right (unit 

2), e.g. an MPC structure. 

 

As can be seen, a plant-wide optimizer which is representative of the first control layer 

evaluates and implements optimal steady-state settings for both units in the plant. This is 

referred to as the linear programming (LP) layer. This takes material supply and demand, 

price fluctuation and other economic parameters into consideration and is normally done 

for a whole industrial site. 

 

These steady-state settings are then sent to the second level, where local optimizers 

compute further optimal economic steady-states for each unit. Such optimizers operate 

more regularly than is possible at the above plant-wide level. These optimizers keep the 

process within specified safe operating ranges and optimize production based on the rules 

decided in the level above. The steady-states computed at this stage are thereafter passed 

to base layer control systems (third hierarchical layer) for implementation. 

 

Whilst minimizing any constraint violations experienced along the way, the dynamic 

constraint control scheme moves the plant from one constrained steady-state to another. 

The conventional control structure in unit 1 accomplishes this by implementing a 

distinctive arrangement of PID algorithms, lead-lag (L/L) blocks and high/low select 

logic. Difficulty is often encountered in embarking on translating the control 

requirements into an appropriate structure for conventional control. 

 

From a more beneficial stand point, in MPC methodology, the complex inter-connections 

of base-layer control are replaced by a single MPC controller (unit 2). Coupled with the 

large savings and the ability to replace a combination of control algorithms, MPC 

technology is seen to be highly favoured in the control of industrial processes. 
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Figure 2.3: Hierarchy of control system functions (Qin et al., 2003) 
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2.3. MODEL PREDICTIVE CONTROL (MPC) TECHNOLOGY 

 
Model Predictive Control is referred to a class of computer control algorithms which 

make use of an explicit process model to predict the future plant response. MPC has 

become the new paradigm for industrial process control stemming over the last four 

decades. This widely applied supervisory technique has gained increasing acceptance due 

to the following influential factors as indicated by Morari (1989): 

 

• Within its capacity, MPC can handle processes that are unstable, processes 

containing large dead time shifts as well as non-minimum phase processes. 

 

• MPC can handle constraints employed to provide output products with pre-

determined quality specifications in a systematic way irrespective of industrial 

process limitations such as valve capacity and other technological requirements.  

 

• Finally MPC can adapt to structural changes including equipment failure such as 

sensor and actuator failures in a limited manner, however its capabilities are 

inhibited by changes in system parameters and system structure as this represents 

the heart of MPC operation. 

 

 

Figure 2.4: Approximate genealogy of linear MPC algorithms (Qin et al., 2003) 
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2.3.1. Brief History of MPC technology 

The development of model-based control used for multivariable control can be traced 

back to the early 1960s. The most significant industrial algorithms are illustrated in figure 

2.4, with emphasis placed on the connections of these algorithms in the evolution tree 

from generation to generation. From the approximate genealogy shown in figure 2.4, the 

evolution of MPC technology from basic technology to a technology capable of operating 

within well defined constraints (Bequette, 1991) is evident. Further details of this 

development are given below. 

 

The work of Kalman post World War II laid the foundation for the development of 

modern control concepts (Kalman, 1960). This work entailed the development of an 

algorithm termed Linear Quadratic Regulator (LQR) which was designed to minimize an 

unconstrained quadratic objective function of states and inputs. This algorithm was later 

combined with a Kalman filter and adopted the name Linear Quadratic Gaussian (LQG) 

controller. The infinite prediction horizon endowed the algorithm with powerful 

stabilizing properties. Although extensions to deal with practical issues such as obtaining 

offset-free control and computation of steady-state targets swiftly followed 

(Kwakermaak, 1972), the LQG algorithm had little impact in the control community. The 

reason for this lies in the absence of constraints in its formulation, the nonlinearities of 

the real systems, and above all, the ‘culture of the industrial process control community’ 

during this period. Control engineers and laboratory technicians lacked foresight or had 

no exposure to optimal control concepts and thus rendered them impractical. 

 

A number of individuals set out to develop technologies capable of addressing the key 

concepts noted in the failure of LQG theory. The earliest breakthroughs were made in the 

late 1970s with the very first generation of MPC technology represented by the IDCOM 

and DMC algorithms. Their impact on the industrial community was colossal and had 

immense success in tackling the areas that needed to be addressed and served to describe 

the ‘industrial MPC paradigm’. The first account of MPC applications during this era 

were presented by Richalet et al., (1976). Their approach was referred to as Model 

Predictive Heuristic Control (MPHC). The software package for this approach was called 
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IDCOM, a contraction for IDentification and COMmand. Three years later, Cutler and 

Ramaker developed an unconstrained multivariable control algorithm (Cutler and 

Ramaker, 1979). Their approach was named Dynamic Matrix Control (DMC). Both 

applications made use of quadratic performance objectives, but differed with the 

remaining features depicted below: 

 

Table 2.1 

Comparison of IDCOM and DMC adapted from Qin et al (2003) 

FEATURE IDCOM DMC 

Plant 

Model 

 

Impulse response model for the 

plant. 

 

Linear step response model for the plant. 

 

 

Output 

behavior 

 

Future plant behavior specified 

by a reference trajectory.  

 

Future plant behavior specified to follow 

the set point as closely as possible. 

 

Optimal 

inputs 

Optimal inputs computed using 

heuristic iterative algorithm.  

Optimal inputs computed as solutions to 

a least-squares problem. 

 

Although the first generation of MPC technology provided a large degree of the 

fundamental progress in the control society, the issue of constraint handling still 

remained somewhat underdeveloped. This weakness was addressed by posing the DMC 

algorithm in a manner in which input and output constraints were shown to appear 

explicitly. The QDMC algorithm, presented by Cutler in a 1983 AIChE conference paper, 

exhibits similar properties to the original DMC algorithm together with its ability to deal 

with constraints (Cutler, Morshedi and Haydel, 1983). QDMC represents the second 

generation of MPC technology.   

 

The challenges and problems faced grew larger and more complex as MPC technology 

gained wider acceptance. Although the QDMC algorithm provided a systematic approach 

to handle hard constraints, it could not provide any sustainable results in the case of an 

infeasible solution. This issue, amongst others, was addressed in the third generation of 
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MPC technology which included the IDCOM-M, HIECON, SMCA, and SMOC 

algorithms; others include the PCT algorithm and the RMPC algorithm. These algorithms 

lead to the following developments: 

 

• These algorithms were capable of distinguishing between several levels of 

constraints i.e. hard, soft, and ranked. 

 

• They provided some mechanism to recover from an infeasible solution and 

provided a richer set of options for feedback control. 

 

• They allowed for a wider range of process dynamics (stable, integrating and 

unstable) and controller specifications.  

 

The only difference amongst these algorithms was that the model for the SMOC (Shell 

Multivariable Optimizing Controller) algorithm was formulated in a State-Space form as 

opposed to an Input/Output model formulation. Further details regarding the 

distinguishing features of these two types of model formulation as well as their major 

differences can be found in Chapter 3, section 3.2.2.   

 

DMC-plus and RMPCT are representative of the fourth generation of MPC technology 

and have both been formed as a result of increased competition in the last 15 years. 

DMC-plus is an Aspen Technology ® product and was formed in early 1996 by merging 

SMCA and DMC technologies. The RMPC algorithm was merged with the PCT 

controller to create RMPCT sold by Honeywell. SASOL employs RMPCT technology in 

its Secunda plant. This fourth generation of MPC technology includes features such as: 

 

• Prioritized control objectives can be addressed as a result of multiple optimization 

levels and graphical user interfaces. 

 

• Additional flexibility is allowed for quality performance as well as economic 

objectives. 
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• This generation allows for direct consideration of model uncertainty in the form 

of robust control design. 

 

2.4. MPC PRINCIPLES 

 
While the MPC paradigm covers numerous dissimilar variants as depicted in the previous 

section, each one unique to its desired application, the foundation of all MPC systems lies 

in the realization of computing future process inputs as solutions to an on-line 

optimization problem. A process model and process measurements form the basis on 

which this problem is constructed. Process measurements are obtained attributable to the 

feedback and, optionally, feed forward constituent in an MPC structure. Figure 2.5 shows 

the structure of a general MPC scheme. Several possibilities exist for the process model 

and disturbance prediction, optimization criteria (and objective cost functions), process 

measurements and lastly constraint handling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.5: Model Predictive Control Scheme (Deshpande, 1995) 
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2.4.1. Structure of MPC 

The basic structure of a model predictive controller is shown in figure 2.5 (Deshpande, 

1995).  An MPC controller is a form of Internal Model Control.  Figure 2.6 shows a 

schematic of IMC configuration where Gp, Gm, Q, and Gd denote process, model, 

controller, and disturbance transfer functions, respectively. The observed output is 

denoted by yp (k), while the prediction of the model is denoted by ym (k) respectively.  

 

 

 

Figure 2.6: Schematic representation of internal model control (Ljung, 1999) 

 

MPC applications deal with MIMO systems. A MIMO system may have m inputs u and n 

outputs y: 

  

 

                                                                                                                                        (2.1) 

 

 

 

Different structures are available in order to model the relations between u(k) and y(k) 

and will be discussed in detail in the chapters to come. 
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2.4.2. Control and Prediction Horizons 

MPC is based on an iterative, finite horizon optimization of plant performance. As 

depicted in Figure 2.7, at time tk the current plant output is sampled. This enables the 

controller to compute future input movements for a relatively short time horizon in the 

future in order to track the reference trajectory.  

 

Only one input movement is implemented, with the plant output being sampled again, 

resulting in the repetition of the calculations at the new state, yielding a new control and 

new predicted output path. Two different limits are used; control horizon, m, and 

prediction horizon, p. At each step the controller calculates a series of m future control 

signals: [u(k),u(k+1), . . . ,u(k+m−1)]. The system behavior is then evaluated up to 

prediction horizon p > m, with u(k) kept constant for m < k < p. 

 

 

 

 

Figure 2.7: A conceptual picture of MPC  

 

2.4.3. Optimization Criteria and Performance Indices 

Optimization algorithms are generally applied to calculate a series of future input and 

output signals which minimize certain performance indices in the presence of constraints. 

There are various performance indices for MPC optimization criteria. As a general rule, 

the formulation of a performance-index or cost-criterion is based on the measurement of 

CONTROL HORIZON 

uk 
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the reference tracking error (output form) and the control action (input form). The general 

2-norm performance index is introduced below: 

 

                                                                                                                                        (2.2) 

 

N.B.                          is the prediction of                      at time k, for i = 1, 2. 

 

Where z1(k) is a signal illustrating the reference tracking error and let z2(k) is a signal 

reflecting the control action. The prediction horizon is given by the variable p and the 

minimum cost-horizon is denoted by the variable q. Three performance indices often 

appear to be documented in literature and are found in industrial applications of MPC. 

These include Generalized Predictive Control (GPC) performance index; Linear 

Quadratic Predictive Control (LQPC) performance index and the Zone performance 

index. All three performance indices can be displayed in the standard form of (2.2) as 

shown below. The GPC or the LQPC performance indices are frequently dealt with in 

most papers on predictive control as they are clearly weighted squared 2-norms. 

 

Table 2.2: 

Summary of zi terms for different performance indices (Stoorvogel, 2010) 
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2.4.4. Constraint Handling 

In practice, a number of process variables in industrial processes are by and large subject 

to constraints. Certain signals must not contravene the desired bounds set as a result of 

the following factors:  

 

• Safety limitations: all units are expected to function in a safe operating region; 

specific bounds are kept in place to prevent signals from entering an unsafe 

region. 

 

• Environmental regulations: These limits are in place for water and air pollution 

control, recycling, waste disposal, and public health issues. 

 

• Consumer specifications: products are required to be in a certain range and meet 

certain standards for consumer usage, for example, in the production of Biodiesel, 

the water and sediment content is required to be <0.05 % on a volume basis and a 

total glycerin content of <0.24 % by mass (Van Gerpen et al., 2004). 

 

• Physical limitations: including temperature and pressure limits; limits on the level 

in reactor tanks; limits on flows through pipes.  

 

These signals are prevented from reaching these bounds by appropriate setting of the 

controller parameters. However, control systems are designed to drive process variables 

as close as possible to their respective constraints without violating them due to fiscal 

motives. Maximum profit is attained in most cases when these process variables are 

closer to their respective limits. Hence model predictive control employs a more direct 

approach simply by implementing the optimal unconstrained solution in a manner in 

which those constraints are not violated. Optimization techniques such as linear 

programming (LP) or quadratic programming (QP) techniques are often applied in this 

instance.  
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                                                                                                                                        (2.3) 

 

                                                                                                                                         

2.4.5. Process Model  

The process model and the concept of open-loop optimal feedback are at the heart of 

MPC operation. The process model is used to generate a prediction of future subsystem 

behavior. The behavior of complex dynamic systems is determined by the applied 

models. The models compensate for the impact of non-linearities of variables. The 

prediction ym(k) in figure 2.5 is based on dynamical models. Common model 

representations in MPC are polynomial models, step response models, impulse response 

models or state space models. These models are often linear empirical models found by 

system identification.  
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CHAPTER  

3  

IDENTIFICATION PRINCIPLES 
 

 

 

 

 

 

 

 

 

 

3.1. LINEAR SYSTEM REPRESENTATION 

 
A system or a transform maps input(s), u(t), into output(s), y(t): 

 

                                                                                                    (3.1) 

 

: Where Γ denotes the transform, a function from input signals to output signals.  

 

Not all systems can be characterized as being linear, but many important ones in the 

chemical industry, especially in the hydrocarbon field can be. The possibility of utilizing 

the responses to a small set of inputs to predict the response to any probable input 

becomes large when a system qualifies as a linear system.  

 

Figure 3.1 below depicts the manner in which a multivariable system and its 

surroundings are coupled through signals which are referred to as Process Variables 

(PVs).  

 

In this chapter the framework required for sound knowledge of developing model identification 

and validation techniques is described. Pertinent concepts relating to linear system 

representation are first given together with a brief description of linear response modeling. 

These concepts also include the representation of models as Laplace and Fourier transforms 

and the idea of discretization. A general survey of the different classes of models is given, with 

later sections delving into the structure of models as well the manner in which models may be 

formulated. The chapter closes with a general description of system identification.  

[ ]( ) ( )y t u t=Γ
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Input variables, also known as manipulated variables (MVs), are declared as those 

variables that influence the system by exerting an action upon the system. The controlled 

input denoted with u can be manipulated. A measurement of this signal is assumed to be 

available at all times. Measured and unmeasured disturbance variables (DVs) contribute 

to a special class of input variables, commonly referred to as uncontrolled input variables. 

The uncontrolled input or disturbance, denoted with d, cannot be manipulated. This 

signal is divided into a part w that is known and a part v that is not known. Output 

variables, also known as Controlled Variables (CVs), are those variables that originate in 

the system. The measured output, denoted y, is available for control. 

 

   

 

 

 

 

 

 

 

 

Figure 3.1: Linear multivariable system representation 

 

3.1.1. Signals 

A very well understood and common approach to identification is to introduce known 

input disturbances to the system and record the system’s response. From knowledge of 

the input and the type of response it yields, system dynamics may be extracted and 

represented in an appropriate form. Typical inputs for such approaches are depicted 

below:  
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Figure 3.2: Typical input responses for linear system modeling 

 

Impulse and Pulse Signal: mathematically, an impulse response is given as the 

following representation: 

 

                                                                                                                                        (3.2) 

 

 

One very useful way of thinking of an impulse response is as a limiting case of a pulse 

signal:  

 

                                                                                                (3.3) 
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N.B. the time, τ represents the time at which the input occurs and is found by locating  

 

 

The impulse signal is equal to a pulse signal when the pulse gets infinitely short: 

 

                                                                                                             (3.4) 

 

Step signal: The unit step signal is zero for all times less than zero, and 1 for all times 

greater than or equal to zero: 

 

                                                                                                             (3.5) 

 

Sinusoidal signal: although the bulk of this project is based on discrete-time approaches, 

it is useful to note the sine-wave response for system representation: 

 

                                                                                               (3.6) 

 

 

3.1.2. Linear System Description 

The concerned systems to be dealt with are known to be time-invariant, linear and causal 

(Corriou, 2004). The system is said to be time-invariant if its “response to a certain 

input signal does not depend on absolute time”, in other words the parameters within the 

model that depict the system do not change with time. It is said to be linear if its “output 

response to a linear combination of inputs is the same linear combination of the output 

responses of individual inputs”. Furthermore, it is said to be causal if the “output at a 

certain time depends on the input up to that time only”.  

 

It should be noted that although the pertinent area of attention is focused on multivariable 

systems, single-input single-output systems are discussed initially in order to focus on 

important concepts hence forth. These concepts will be shown to extend to MIMO cases. 
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System without Disturbance: The linear system of input, u(t) and output, y(t), which is 

time-invariant and causal, can be described by its impulse response g(k) such that:  

  

                                                                                                     (3.7) 

 

The impulse response is often used as it is a complete characterization of the system. This 

can be seen by the stair-case approximation of a continuous-time signal. Any signal can 

be expressed as a sum of scaled and shifted impulses. 

 

 

Figure 3.3: Staircase approximation of a continuous-time signal (Heeger, 2000) 

 

In order to simplify the notation the sampling instants are denoted by 0, 1, 2 … as if they 

were separated by a unit sampling period Ts. It should be noted that y(t) depends on u(t-

1), u(t-2), …, but not on u(t), because it is estimated that output is not immediately 

influenced by the input, even if the system presents no time delay.  

 

System with Disturbance: A system is subjected to disturbances, so that the output 

cannot be calculated in relation to the input alone. The disturbances may come from the 

measurement noise, also known as uncontrolled inputs. They are simply represented by 

adding a term to the output as shown below: 

 

                                                                                                (3.8) 

 

The disturbance model is written as: 
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At this point it is convenient to introduce the basic notation that will be used to represent 

essential components that describe a system from here on. Introduce the delay operator, 

q
-1

, such that:  

 

                                                                                                        (3.10) 

 

Recall equation (3.6) and introduce the delay operator to simplify the equation: 

 

 

 

                                                                                                                                      (3.11) 

 

 

Thus the transfer function of the linear system is given by:  

 

                                                                                                        (3.12) 

 

Similarly the disturbance model can be re-written as: 
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of independent random variables), which is often chosen as white noise with a zero mean 

and variance λ
2
.  

 

3.1.2.1. Transforms and Transfer Functions 

Fourier and Laplace transforms form the basis of classical control design. The Laplace 

transform of a function f(t), defined for all real numbers t>0, is the function F(s), defined 

by: 

 

                                                                                           (3.15) 

 

The Laplace transform is a fundamental transform possibly second only to the Fourier 

transform in its effectiveness in solving physical problems. It is predominantly helpful in 

solving linear ordinary differential equations.  

 

There are several common conventions for defining the Fourier transform; however for 

this thesis the following definition will be used: 

 

                                                                                             (3.16) 

 

Applying the Laplace and Fourier Transforms to the underlying linear time-domain 

differential equations leading to the discrete equation (3.14) yields similar functional 

forms: 

 

                                                                                           (3.17) 

                                                                                                                                      (3.18) 
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system equations much easier. For this reason, transfer functions are very practical in 

terms of quantitative descriptions of a system.  

 

3.2. MODEL CLASSIFICATION, FORMULATION AND STRUCTURE 

 
It is necessary to choose a type of model that would adequately represent the system 

before proceeding to system identification. After the choice of the model class, form, and 

structure is made, it will then be possible to estimate the parameters of this model.  

 

3.2.1. Model Classification 

Model classification is largely dependent on the extent of prior knowledge in addition to 

physical insight of a system. Several classes of models exist in literature which is readily 

available. The choice of model classification is governed primarily by the following 

requirements: 

 

• Required level of flexibility: A model designed to assist in a long term design 

project is required to be flexible so as to sustain any unexpected design changes. 

 

• Available Resources: On occasion, the type of model implemented is restricted 

by the available computing power. In such cases, the model must be simplified or 

broken down to ease the computational strain. 

 

• The number of approximations: The efficiency of a model can be significantly 

increased by making numerous apposite approximations. This is satisfactory with 

the provision that the applied approximations do not appreciably reduce model 

accuracy. 

 

  

 

 

Figure 3.4: Classification of models based on physical insight 

BLACK-BOX GREY-BOX WHITE-BOX 

Physical Insight 0 100 
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The literature customarily distinguishes between three model classes (figure 3.4). A black 

box model is employed in cases where the underlying mechanisms of a system are not 

considered. They are generally empirical in nature i.e. they do not have any physical 

meaning. Grey box models represent the majority of simulation models. In these models, 

some physical representation is described, but some of the physics is approximated. A 

white box model characterizes the real process as closely as possible and is regarded as 

the most detailed type of model. 

 

Black-box models: generally consists of a body of rules and equations that are capable of 

running very efficiently and optimized easily. The direct implication is that black-box 

models require minimal computing power. However, a major shortcoming of a black box 

model is that it is inflexible in addition to its absence of any form of physical meaning. 

 

Grey-box models: In those cases that require flexibility, a more general model is 

required which can be adapted in the case of model inconsistencies in a design. Grey box 

models are regarded as more flexible than the latter mentioned class. It also facilitates the 

use of modeling to optimize a design. A significant disadvantage lies in the fact that 

several approximations that are made when grey-box models are used may affect the 

model accuracy adversely. 

 

White-box models: are analogous to real processes or systems. The models 

representation of a real process unit is extremely close to its actual behavior. As a result 

of white box models containing no or few approximations, they are the most intricate 

types of model to implement. The complexity of a white box model means it requires a 

large amount of computational effort and vast amounts of memory. 

 

Although it can be seen that grey-box and white-box models seem to be the best choice 

for model usage, industry still employs the black-box as its primary class. Industry 

believes in the old adage of keeping it simple and black-box modeling has been noted to 

provide sufficient performance as linear models.  
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3.2.2. Model Formulation 

Models may be represented in several ways. The two most frequently used 

representations are the state space model (illustrated by figure 3.5) and a transfer function 

model, also known as an input/output model (see example in figure 3.6 below). Although 

the input/output model representation was mentioned in the previous section, the 

mathematical illustration of these 2 forms of model representation is covered in greater 

detail in section 3.2.3. The two forms stated above are mathematically equivalent, 

meaning that one can transfer a state space model into a transfer function model and vice 

versa. However, each presentation has its own distinctive characteristics. For instance, 

there can be specific parameters to characterize the time delay, gain and time constant in 

a transfer function model, whereas there are no such parameters in a state space model. It 

is also easy to define a sensitivity function and a complementary sensitivity function 

using transfer function models whereas it is not straightforward to do the same using state 

space model. 

 

 

Figure 3.5: State-Space Representation of a model 

 

3.2.3. Model Structure 

This section will focus primarily on multivariable model structures. Depending on how 

one parameterises the model in equation (3.19), different parameter estimation methods 

or model structures studied in literature can be derived. Model structures can be derived 

from first principles and may also exhibit non-linearity as depicted in figure 3.6 below, 

but most models used in industrial Model Predictive Control are empirical in nature and 
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are often linear. The left-hand side of the diagram represents empirical models derived 

exclusively from operating data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Schematic of model formulations and structures 

 

3.2.3.1. Input/Output Model Structures 

Input/output models are classified as parametric and non-parametric model. Considering 

parametric models first, the most general parametric model structure of input/output 

models is given by the ARMAX model, with the acronym translating to: Auto-

Regressive Moving Average eXogenous. This model structure is given by:  

 

 

                                                                                                                                      (3.19) 
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This model can be rearranged in a linear form: 

 

                                                                               (3.20) 

 

Polynomials, A(q), B(q) and C(q) are defined as:  

 

                                                                                                 (3.21) 

 

                                                                                                      (3.22) 

 

                                                                                                    (3.23) 

 

 

The model is called ARMAX, as the part A(q)y(t) is the regressive part in the expression 

y(t), C(q)e(t) is the moving average term and B(q)u(t) is the exogenous part (external 

input). This model can be translated into different forms of parametric models depending 

on the particular values of na, nb and nc:  

 

AR (autoregressive) model if nb = nc = 0. The output is expressed as a pure time series 

without any input signal: 

 

                                                                                                              (3.24) 

 

MA (moving average) model if na = nb = 0. The output does not depend on the input and 

is equal to: 

 

                                                                                                              (3.25) 
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ARMA (autoregressive moving average) model if nb = 0. The output simply describes 

the influence of a disturbance in a general manner and is expressed as the relation: 

 

                                                                                                     (3.26) 

 

ARIMA (autoregressive integrated moving average) model if nb = 0 and if one forces 

the polynomial matrix A(q) to contain as a factor a differentiator term (1 - q
-1

) which is 

useful in suppressing offset in control. The output is expressed according to the 

relation:  

 

                                                                                                      (3.27) 

 

ARX (autoregressive exogenous) model if nc = 0. This model is the simplest and most 

applied parametric input/output model in industrial processes. In this structure, the plant 

model and the disturbance possess the same dynamics as they are both specified by the 

denominator A(q). The output is expressed as follows:  

 

                                                                                        (3.28) 

 

FIR (finite impulse response) model if na = nc = 0. This model is a special form of an 

ARX model. This model is referred to as a non-parametric model. The difference 

between the other models defined above and FIR is that parametric models are much 

more compact and necessitate fewer parameters to illustrate the similar dynamic 

behavior. For FIR, the output is simply equal to: 

 

                                                                                        (3.29) 
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ARARX model: this is obtained from an ARX model by replacing the error term taken 

as a moving average by an autoregressive error term. The ARARX model is thus written 

as: 

 

                                                                                    (3.30) 

 

 

 

ARARMAX model: this is obtained by using an autoregressive moving average type 

(ARMA) for the equation error: 

 

                                                                                 (3.31) 

 

OE (output error) model: the simplest output error model that can be developed is in 

the following form: 

 

                                                                                                   (3.32) 

 

In this case the error, ε(t), bears only on the output y(t), hence the name of this model. In 

this model the transfer function is denoted by B(q)/F(q) instead of B(q)/A(q) as in the 

ARX model to distinguish the different roles played by A(q) and F(q) in each model 

structure.  

 

BJ (Box-Jenkins) model: the previous model can be improved by introducing a transfer 

function for white noise ε(t):  

 

                                                                                         (3.33) 
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3.2.3.2. General Model for Identification  

The most general model which is illustrated by figure 3.7 can be written as: 

 

                                                                             (3.34) 

 

The advantage of having various forms of parametric models is that there is more 

freedom in describing the properties of the disturbance term. Table 3.1 provides a 

summary of the common model structures as well as a comparison of these structures in 

terms of the following important points: 

 

• The compactness of the model. 

• The numerical complexity in parameter estimation 

• The consistency of the model in closed loop. 

 

 

 

 

 

 

 

 

Figure 3.7: General Structure Transfer Function Representation 

 

Table 3.1 

Comparison of various model structures adapted from Ljung (1987) 

Model 

Structure 

Polynomials 

used in (3.37) 

Numerical 

Difficulty 

Compactness 
Consistency in 

closed-loop? 

FIR B Low Low No 

ARX AB Low Medium Yes 

OE BF High Highest No 

ARMAX ABC High High Yes 

Box-Jenkins BFCD High Highest Yes 
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3.2.3.3. Multivariable Extensions 

The extension of most model structures to the multivariate condition is mostly a matter of 

notation changes. Equation (3.14) can be extended to a multivariable case by defining the 

following transfer function matrices: G
o
 and H

o
: 

 

                                                                                           (3.35) 

 

G
o
 and H

o
 is defined by the following matrices: 

 

 

 

                                              (3.36) 

 

 

 

 

 

                                     (3.37) 

 

 

 

Where u(t) is an m-dimensional input vector (MVs), y(t) is an n-dimensional output 

vector (CVs) and ε(t) is also an n-dimensional vector. G
o
(q) is defined as a n x m model 

matrix and H
o
(q) is defined as a n x n matrix. 

 

Polynomials, A(q), B(q), C(q), D(q) and F(q) are extended as polynomial matrices 

defined as follows: 
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                                                                                                  (3.40) 

                                                                                                       

                                                                                            (3.41) 

                                                                                                   

                                                                                                (3.42) 

 

 

3.2.3.4. Multivariable State-Space Model Structures 

State-space models are useful in handling stable, unstable and integrating processes (Zhu 

et al., 1997). Zhu showed that the state-space model of a linear process with a disturbance 

can be given as: 

 

                                                                                     (3.43) 

 

Where x(t) is the state vector, the constant matrices A, B, C and D form the state-space 

description of the process and the constant matrix K
*
 is the Kalman gain that 

characterizes the state noise є(t). The state-space model is equivocal to an input/output 

model as in equation (3.35) by defining the following transfer functions: 

 

 

    

 

3.3. SYSTEM IDENTIFICATION  

 
System identification deals with the problem of building mathematical models of 

dynamic systems from routine operating data. For a MPC application, the most time 

consuming process is the identification of models. The different sectors of concern for the 

implementation of a Model Predictive Control system are shown below together with the 

percentage of time spent on each sector (Zhu et al., 1997): 
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• Pre-test: 10% 

• Model Identification: 40%. 

• Controller simulation and tuning: 15% 

• Controller commissioning: 25% 

 

It is shown that approximately 40% of the total time is spent of the identification of 

models due to the fact that MIMO systems possess a large number of models. This is no 

doubt the most important part of MPC implementation.  

 

3.3.1 System Identification Procedure 

Ljung (1989) suggests that three basic entities are involved in the construction of a model 

as depicted in the system identification loop below (Figure 3.8): 

 

• The data record 

• a set of candidate models 

• A rule by which candidate models can be assessed using the data 

 

The data record: The input-output data are occasionally recorded during an exclusively 

planned identification experiment. The user may establish which signals to measure and 

when to measure them and may also choose the input signals. The objective of the 

experimental design is consequently to make these choices so that the data becomes more 

informative, subject to the corresponding constraints that may be at hand. 

 

The set of models: A set of candidate models is obtained by specifying within which 

collection of models one should look for an apt model. It is at this stage that prior 

knowledge, engineering perception and insight are combined with recognized properties 

of models. On occasion the model may be obtained from careful modeling.  

 

Determining ‘best’ model guided by the data: This stage requires the use of an 

identification method. The model quality is characteristically assessed on the basis of 

how the models perform when they attempt to reproduce separately measured data. 
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                                                                       Not OK: REVISE 

 

                                                                        OK: USE MODEL! 

 

Figure 3.8: The System Identification Procedure adapted from Ljung (1989) 

 

Table 3.2 illustrates the available MPC technology employed by industrial MPC vendors. 

This table indicates the structure of models used as well as the estimation methods 

employed. 

 

Table 3.2: 

Comparison of linear MPC identification technology (Qin, 2003) 

Product Model Form Est. Method 

DMC-plus FIR, LSS MLS 

RMPCT FIR, ARX, BJ LS, GN, PEM 

AIDA LSS, FIR, TF, MM PEM-LS, GN 

Glide TF GD, GN, GM 

Connoisseur FIR, ARX, MM RLS, PEM 
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3.3.2. System Identification Methods 

The coefficients to be determined, in general, are not known through the knowledge of 

the physical model but by black-box representation, thus these coefficients enter the 

model as parameters to be determined by estimation techniques. The parameter vector is 

denoted by θ. The structure of the parameter vector depends on the type of model 

structure chosen. The system model given by equation (3.14) could be written in these 

conditions as: 

 

                                                                                     (3.44) 

 

It is advisable to compare this model to the prediction model where the output depends 

solely on both past inputs and outputs and is given by: 

 

                                                   (3.45) 

 

In order to simplify the notation of the above equation, the following expressions are 

established: 
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Model sets: the search for a suitable model is typically conducted over a set of candidate 

models. Quite naturally, a model set is defined as: 
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Once a model is chosen, a specific estimation method for the parameter vector, θ, is used 

to calculate the model. 

 

Data sets: for the calculation of a certain model, experimental data is collected. Data 

collected for any identification test is denoted by the following sequence: 

 

                                                                          (3.48) 

 

Where u(t) is an m-dimensional input vector (MVs), y(t) is an n-dimensional output 

vector (CVs) and N is the number of samples. 

 

3.3.2.1. Prediction Error Framework: Linear Regression 

Consider a single input-output relationship, represented by an ARX model structure, 

described as a linear difference equation. N.B: The extension to multivariable regression 

simply involves a change in notation as shown in section 3.3.2.2.  
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The parameter vector is defined as: 

 

                                                                                                 (3.50) 

 

With G(q,θ) = B(q)/A(q) and H(q,θ) = 1/A(q), the ARX equation can be written in 

predictor form according to equation (3.45): 
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With the definition of the parameter vector coupled with the definition of the observation 

vector, the predictor of the output can be written in vector form: 

 

                                                                                             (3.53) 

 

With the predictor being a linear function with respect to the parameters, the problem is a 

linear regression problem and the parameters can be searched by least-squares 

procedures:  

 

Consider that the observed data has been generated by: 

 

                                                                                                 (3.54) 

 

Where θo is depicted as the ‘true value’ of the parameter vector. The idea of least-squares 

regression is to minimize the prediction error defined as follows:  

 

                                                                                          (3.55) 

 

Various criterion functions (for minimization) may be defined; the simplest case is given 

below: 
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The exclusive characteristic of this criterion is that it is a quadratic function in θ. For that 

very reason it can be minimized systematically if the indicated inverse exists which 
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The desired properties of θN would be that: 

1. It is close to θo. 

2. It converges to θo as N tends to infinity. 

 

It is noted that for other model structures other than ARX and FIR, the regression is not 

strictly linear. For example, the observation vector for an ARMAX model structure 

becomes: 

 

                             (3.58) 

 

The resulting predictor becomes: 

 

                                                                                                  (3.59) 

 

This is a pseudo-linear regression, due to the non-linear effect of θ on           .  

 

3.3.2.2. Multivariable Extensions 

Representing a multivariable system as a parametric model structure is done in a very 

similar way to its scalar counterparts. Equation (3.49) is written as follows for a MIMO 

system:  

 

                                   (3.60) 

 

Here A(q) and B(q) are defined by equations (3.38) and (3.39) respectively, where Ak are 

n x n matrices and Bk are n x m matrices. The parameter vector becomes somewhat 

complex and large for a system composed of n outputs and m inputs. This is because the 

parameter vector is now extended and defined as a [na 

. 
n + nb 

. 
m] x n matrix: 
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The number of parameters that need to be evaluated is found as [na 

. 
n

2
+ nb 

. 
m 

.
 n]. Table 

3.3 provides an indication as to the number of parameters that need to be found for a 

number of different combinations of MVs and CVs that are found in industrial processes, 

if na and nb are kept at a constant order of 3. In most processes, this order is often higher. 

 

Table 3.3: 

Summary of the number of parameters found by system identification 

na nb n (CVs) m (MVs) Np 

3 3 5 3 120 

3 3 10 5 450 

3 3 20 10 1800 

3 3 40 20 7200 

 

For a relatively small system of 5 outputs and 3 inputs, the number of parameters, Np, is 

120. However for a large system of 40 outputs and 20 inputs it is 7200. This makes the 

time for system identification of MIMO systems exceedingly long, and of course the data 

would have to be sufficiently variable to elucidate all parameters.  

 

3.3.2.3. Other System Identification methods 

The ASYM method: it was primarily developed for the application in large-scale 

industrial processes. Initially, the method identifies a higher order ARX model. A model 

order reduction is then performed to obtain a reduced model that still represents the plant 

adequately. The final model is then represented in a BJ format. Besides performing 

parameter estimation, the method dictates solutions to optimal test design, order selection 

and model validation. 

 

The Subspace Method: Larimore (1990) proposed the subspace method in 1990, which 

estimates a state-space model from routine input/output data.  
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3.3.3. Model Validation 

The model validation techniques considered for the system identification process are 

normally carried out in open-loop. After an MPC controller is implemented, constant 

monitoring of the quality of the process model under closed-loop conditions is imperative 

for maintaining optimal controller performance.  

 

Chapter 4 seeks to establish the fundamental theory of closed-loop model validation as 

well as some of the previous work done. This provides the link required for the 

development of the present work.  
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CHAPTER  

4  

MODEL VALIDATION THEORY 
 

 

 

 

 

 

 

 

 

 

 

 

4.1. CLOSED-LOOP MODEL VALIDATION 

 
How to continuously monitor the quality of process models under closed-loop conditions 

is a challenging problem. Closed-loop model validation means that the process models 

are analyzed for any MPM whilst the underlying process is fully under feedback control. 

 

 

 

 

 

 

 

 

Figure 4.1: Concept of closed-loop vs. open-loop systems 

 

The need to constantly monitor MPC controllers by model quality indications is imperative in 

maintaining the required performance level of such controllers. This chapter presents the 

relevant theoretical background of closed-loop model validation. The methods involved are 

capable of running parallel to the plant in an online manner or making use of historical process 

data. This chapter proceeds with the concept of closed loop vs. open loop. This leads to the 

need for closed-loop model validation by highlighting some of the issues that hinder open-loop 

identification. Thereafter, an overview of the different classes of model validation is presented 

coupled with the related work in each class. The chapter closes with a section on residual 

analysis, as this forms the mainstay of the most applicable model validation techniques in 

closed-loop.   
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Figure 4.1 illustrates the concepts of closed and open-loop configurations. Under closed-

loop conditions, a signal feedback mechanism is incorporated to control a variable(s) by 

manipulating another. For open-loop conditions there is no control on the input to the 

system which can thus be manipulated as desired. Most model validation techniques are 

designed to work under these conditions as it provides data that is rich and informative. 

However, the need for closed-loop model validation techniques is pivotal from a process 

operation point of view and a control theoretical point of view. Some processes are 

inherently unstable in open-loop conditions; in other cases where MPM may be present it 

will be too costly to perform a complete re-identification. The following factors 

contribute enormously to the need to monitor process models under closed-loop 

conditions: 

 

Large Scale and complex plant set-ups: Industrial processes exhibit various 

combinations of MVs and CVs. In general a small MPC controller may have in the range 

of 3 to 5 MVs in conjunction with 5 to 10 CVs. On the other hand, a large sized MPC 

controller will have 10 to 20 MVs controlling CVs in the region of 20 to 40.  Some CVs 

are known to have a very slow response i.e. they possess dominant time constants which 

range from 30 minutes to several hours. This dictates relatively long times for 

identification tests. Examples of such CVs are product grades or qualities. Other CVs are 

very fast with time constants being a few minutes such as valve positions. Common to 

MPC applications are the existence of inverse responses, non-minimum phase behaviour, 

oscillating behaviour as well as time delays. For a large controller, a large number of 

inputs have no effect on some of the outputs i.e. the transfer functions relating these 

inputs to outputs are practically sparse. Zhu (2003) states that as much as 50 % of the 

process transfer functions are zero and they need to be located and fixed at zero. 

 

High level and slow disturbances: Unmeasured disturbances typically possess slow and 

irregular variations. A typical source of such disturbances stem from, for example, feed 

composition variations and weather changes. During an identification test, the 

contribution of disturbances can be as high as 40% of that of the CV variation and as a 
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result, the test signal amplitudes become too large. This is not allowed as they will result 

in off-specification of product and/or nonlinearity. 

 

Local nonlinearity: Models identified for use in MPC applications are often linear in 

their range of operation. However, in the case where CVs are very pure product qualities 

or valve positions close to their limits, some non-linear behaviour may still show up. 

 

Based on these observations, model validation under closed-loop conditions will serve to 

benefit industry immensely as techniques developed will run parallel with the plant and 

thus will not cause any disruptions to the running of the plant. 

 

4.2. CLOSED-LOOP MODEL VALIDATION TECHNIQUES 

 
Developing automated model quality indications and MPM detection techniques under 

closed-loop conditions has been studied by researchers not until very recently as demand 

for MPC maintenance and sustainable performance heightens. A number of methods have 

been proposed and developed and these can be divided into four different classifications: 

 

Table 4.1: 

Summary of the classes of model validation methods 

Process history-

based methods 

Statistical 

analysis 

Qualitative 

methods 

Quantitative 

methods 

Quality Trend Analysis 

(QTA) 

Minimum 

Variance 

Residual 

Plots 

Gain 

Identification 

Principal Components 

Analysis (PCA) 

Statistical Indices 

(Harris Index) 

Residual cross-

correlation analysis 

Recursive Least-Squares 

Regression 

MPC monitoring by 

Neural Networks 

Generalized Likelihood 

Ratio (GLR) 

Spectral 

Analysis 

Kalman Filter for 

parameter estimation 

 

4.2.1. Process History-based Methods 

Process history-based methods, also known as Pattern Classification methodology, only 

require large amounts of historical process data in order to monitor the performance of 
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MPC controllers by providing a diagnosis for a degradation of performance if poor 

performance has been noted. These techniques are widely applied in process industries 

since they are easy to implement and require very little modeling. 

   

4.2.1.1. Quality Trend Analysis (QTA) 

This is by the far the simplest of the pattern classification methods since it merely 

requires the graphical representation of process data. It does, however, provide an 

intuitive idea as to whether or not the data is producing the vital results. This form of 

analysis seeks to find these significant factors: 

 

• Detection of an outlier(s). 

• Detection of a change in process data trends. 

• Detection of an abrupt shift in data levels. 

 

Detection of an outlier: This is illustrated in figure 4.2. The point that is circled is an 

outlier. If the data had been taken in a real industrial process, the manner in which data 

such as the encircled point is acquired should be reexamined i.e. there could possibly be a 

sensor or transmitter fault. 

 

Detection of a change in process data trends: Maintenance engineers often have an 

idea of the trend that certain data sets should follow (with respect the data’s set-point). 

However over time the underlying process may shift from its expected trend as shown in 

figure 4.3. Often process data shifts are accompanied by the influence of environmental 

changes or plant changes. This plot provides a good indication of which factors may 

influence this trend change (e.g. day/night conditions) but cannot provide further 

information in order to distinguish between the underlying causes.  

 

Detection of an abrupt shift in data levels: often it is seen that abrupt changes in data 

plots are accompanied by process parameters changes. For example, figure 4.4 illustrates 

the abrupt change in the data plot over a certain period. This plot illustrates that the 
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shifted plot still exhibits similar variations to the expected plot and could thus be seen as 

a process gain (K) change (see chapter 5 for definition of process gain). 

 

 

Figure 4.2: Illustration of the detection of an outlier. 

 

 

 

 

Figure 4.3: Illustration of a change in trend 
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Figure 4.4: Illustration of a detection of an abrupt shift in level 

 

4.2.1.2. Principal Components Analysis and Neural Networks 

These two methods form the crux of MPC monitoring by pattern classification. Due to 

their modest computational requirements and sound theoretical basis, each method has 

been regarded as highly desirable techniques upon which one may base tools for 

monitoring processes.  

 

PCA: The primary benefit of Principal Components Analysis is its ability to reduce large 

data sets to smaller ones that still contain the pertinent information found in the larger 

sets. A reduced set is much easier to analyze and interpret. Loquasto and Seborg (2003) 

developed a tool primarily with the use of PCA. This tool required the development of 

pattern classifiers which depicted several closed-loop behavioral MPC responses. These 

classifiers coupled with the use of PCA on current operating data aids in classifying the 

MPC behavior as either normal or abnormal; which is regarded as either an unusual plant 

disturbance or a significant plant change. If a plant change has occurred, this method does 

not distinguish which submodel(s) within the model matrix of the MPC is responsible for 

the mismatch detection. 

 

Neural Networks: Loquasto and Seborg (2003) developed another pattern classification 

technique by using neural networks instead of PCA. This method works in the same 
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manner as the previous technique in that it requires a database of closed-loop responses 

for MPC behavior. The additional benefit of this method lies in the fact that it contains 

other classifiers which subsequently diagnose specific submodel(s) that no longer 

represent the plant accurately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: monitoring techniques using PCA and Neural Networks (Loquasto, 2003) 

 

Although these techniques are suitable for the diagnosis of model mismatches, its major 

limitation is in the availability of measurements.  

 

4.2.2. Statistical Analysis 

The majority statistical controller performance assessment techniques simply entail the 

comparison of the current controller behavior to some standard, usually formed at the 

commissioning stage. Harris (1996) laid the foundations of this research by proposing a 

performance benchmark based on the performance of a minimum variance controller. 
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This prediction index compares the minimum achievable prediction error variance to the 

actual variance. 

 

                                                                                                         (4.1) 

 

 

Numerous other indices have been established based on the tightness of control and all 

indices are defined as equation (4.1) but with the prediction error variance given by the 

standard of control. Figure 4.6 depicts these diverse standards of control: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Set of standard control structures (Hugo, 2001) 

 

This type of benchmark can be significantly affected by unmeasured disturbance 

characteristics. Consequently, it cannot not differentiate between the effect of a model 

mismatch or unmeasured disturbances on controller performance. It does however serve 

as the foundation for controller monitoring.  
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Another MPC monitoring and diagnosis tool using statistical analysis was developed by 

Qiang and Shaoyuan (2005). This tool is also based on a bench-mark standard. However 

the benchmark is achieved by recording a set of output data for when the control 

performance is good according to the maintenance engineer’s discretion. Model 

validation was done by making use of a method known as the Generalized Likelihood 

Ratio (GLR) method. This method distinguishes the cause of poor controller performance 

as either a plant-model mismatch or due to a disturbance term. The shortfall here, 

although rather minor, is the choice of the benchmark for this tool.  

 

4.2.3. Other Related Work 

Algorithms to detect abrupt parameter changes have been favoured over the past few 

years - primarily due to the fact that they require much less effort in the detection of 

model changes by parameter detection algorithms than by complete re-identification of 

models (Zhang et al., 1994). Several parameter change and fault detection algorithms 

have been developed (Basseville, 1998). Among them is the ‘local’ approach which has 

regained noteworthy interest in recent times. This method has been employed in 

monitoring several critical processes such as nuclear power plants, gas turbines, catalytic 

converters etc., which reiterate the effectiveness and reliability of this approach. The 

local approach has a number of distinct features; the most important is perhaps its ability 

to detect small parameter changes.  

 

Haung (1999) developed a methodology for model validation in MPC systems based on a 

two-model divergence algorithm. This method is capable of detecting MPM regardless of 

the nature of the disturbance changes. It relies heavily on input excitation; however the 

author proposed that such signal excitation may be injected into the system via the 

optimizer. Parametric techniques such as the local approach and the two-model 

divergence algorithms based on simulated as well as live plant test results remain 

exceptionally good quality tools for model validation for MPC systems. They are, 

however, fairly complicated to implement in an online environment.   Selvanathan (2010) 

developed a new quantity in the frequency domain, called the plant model ratio (PMR), 

which provides a unique signature plot (or quantitative measure) for parameters such as 
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gain, time delay and time constants. Although this method is very sound in its approach, 

it is limited only to SISO systems.  

 

4.3. RESIDUAL ANALYSIS 

 
Residual analysis forms the basis for the qualitative and quantitative methods given in 

table 4.1; the residual representing the “difference between various functions of the 

outputs and the expected values of the functions under normal operating conditions”. 

Residual analysis is a very well developed field of model diagnosis as it allows for the 

study of the existence and nature of model inadequacies. The methods developed on the 

basis of residuals serve as the forefront of the present work because of their moderate 

complexity and efficient applicability to MIMO system model validation. These 

techniques are also suitable for development in an online environment. 

 

 

 

 

 

 

                                 

 

Figure 4.7: Residual schematic 

 

Figure 4.7 depicts the manner in which a residual is obtained. It should be noted that the 

input and error terms can be denoted in a variety of ways; all notation from this point is in 

keeping with notation of the methodology developed for the present work. They are 

denoted as β(t) and α(t). The choice of error and input form is linked to quantitative 

analysis and is useful to handle several industrial situations which will be shown in 

chapter 5. For the qualitative approach, the input, denoted by u(t) and error, denoted by 

e(t) will be used. 
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4.3.1. Qualitative Methods 

The qualitative approach in terms of residuals involves standard residual plotting, 

residual cross-correlation analysis and spectral analysis. 

 

4.3.1.1. Standard Residual Plotting  

Standard Residual Plotting is similar to QTA plots, in this case residuals, e(t,θ), are 

plotted against predicted model values, y(t,θ). A residual plot allows you to determine if 

your regression model is a good fit to your data.  

 

 

 

 

 

 

 

 

 

(a) Acceptable residual plot 

 

 

             

 

 

 
(b) Unacceptable residual plot 

 

 

 

 

 

 

 

 

 

(c) Unequal variance 

 

 

             

 

 

 

 

 

 
(d) Normally distributed random scatter 

 

Figure 4.8: Comparison of residual plots 
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When plotted, the residuals should: 

 

• Be a horizontal band of haphazard points as in figure 4.8(a). If the residual pattern 

has a slope or is curved, then your regression model is not accounting for all but 

the random variation in the data. An example of the latter is shown in figure 

4.8(b).  

 

• They must have about the same width throughout the range. If they do not, then 

the model does not meet the requirement for equal variance. This is illustrated by 

figure 4.8(c). 

 

• They must be uniformly scattered along the horizontal axis as in figure 4.8(d). If 

they are not then that data is regarded as clustered and the regression model could 

be biased. 

 

• They must be random. There should be no recognizable pattern. Good regression 

models give uncorrelated residuals. 

 

The random and haphazard representation of residual plots can be explained by recalling 

equation (3.44) and (3.45):  

 

 

 

 

 

The difference between the two equations gives a form of error as: 
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Thus for an accurate model, the residuals should be Gaussian (white noise) with a fixed 

variance and a zero mean.  

 

4.3.1.2. Residual Correlation Analysis  

Analysis of the correlation amongst residuals and between residuals and system inputs 

are common tools employed for linear model validation approaches. Correlation amongst 

residuals is referred to as the whiteness test and correlation amongst these residuals and 

corresponding system inputs is referred to as the independence test.  

 

According to the whiteness test criteria (Mathworks, 2010), “a good model has the 

residual autocorrelation inside the confidence interval of corresponding estimates, 

indicating that the residuals are uncorrelated”. The residual auto-covariance is given by: 

 

                                                                                                  (4.3) 

 

This equation is normalized to range from -1 to 1 by division of the product of the 

standard deviations of the two variables involved. It is referred to as the residual auto-

correlation: 

 

                                                                                                             (4.4) 

 

According to the independence test criteria (Mathworks, 2010), “a good model has 

residuals that are uncorrelated with past inputs. Evidence of a correlation indicates that 

the model does not describe how part of the output relates to the corresponding input”. 

The covariance between a residual and input say, ui, is given by: 

 

                                                                                             (4.5) 

 

This equation, referred to as the cross-correlation, can also be normalized as follows: 

 

                                                                                                      (4.6) 
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Equation (4.5) and (4.6) are exceptionally useful in dealing with MIMO systems. For 

example consider the following 3 x 3 system: 

 

 

Figure 4.9: illustration of a 3 x 3 system with correlation between u1 and u3 

 

  

                                                                                               (4.7) 

 

 

The residual matrix, using equation (4.6), for the above 3 x 3 system is given by:  

 

 

                                                                                               (4.8) 

 

 

Suppose G11 is contains a mismatch with the plant then: 
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Due to the feedback mechanism of MPC controllers, some inputs may become correlated 

with each other, which is unavoidable. Such correlations amongst MVs may confound the 

regular correlation analysis between residuals and MVs. This may result in an incorrect 

diagnosis of MPM, for example if u1 and u3 are correlated then: 

 

 

 

The cross-correlation indicates that G13 may contain a mismatch but this is due to 

correlation amongst the inputs.  One may use a cross-correlation of the inputs (with time 

shift) to check the correlation of the inputs: 

 

                                                                                           (4.9) 

 

                                                                                                   (4.10) 

 

 

From these correlation analysis methods, coupled with the analysis of correlation 

amongst inputs, the following diagnosis table is formulated: 

 

Table 4.2:  

Significance of correlation combination results 

 

 

  

= 0 = 0 
No MPM: 

system model is adequate 

≠ 0 = 0 
MPM present: 

system model is inadequate 

≠ 0 ≠ 0 
MPM present in model Gij; wrong diagnosis for 

model Gii due to correlation between ui and uj.  

= 0 ≠ 0 
No MPM:  

correlation present amongst ui and uj 
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Badwe et al., (2008) developed a method of MPM detection based on the correlation 

approach. Instead of using the conventional residual correlation analysis, they opted to 

remove the effect of other inputs on a specific input thereby removing the influence of 

correlated inputs. In this case, only correlations between residuals and inputs (free of the 

effects of other inputs) are tested. A method developed in the present work, in chapter 5, 

is also established to handle the case of correlated inputs. 

 

4.3.2. Quantitative Methods 

Qualitative methods that are used for the diagnosis of MPM are useful for detecting 

MPM in MIMO systems by providing an indication of which submodel(s) contain the 

mismatch. Intuitively this is often what is required. However, they do not provide an 

indication of the extent of the mismatch i.e. is it 10% mismatch in the time-delay term or 

is it 50% mismatch in the gain term? Thus, these qualitative methods can be used as an 

initial indication of the presence of MPM, but quantitative methods are required to 

provide an exact value(s) that describes by how much a model is mismatched to the plant.   

   

The area of quantitative model validation techniques has received very little attention in 

this particular field of study. Quantitative model-based methods include linear regression 

and the use of the Kalman filter adapted for parameter estimation. These methods are 

often associated with the evaluation of a large number of coefficients and thus seen as 

time-consuming techniques to be employed in an online environment under closed-loop 

conditions when the major requirement for regression is rich informative data. However, 

when the regression is focused on the important parameters such as the gain, time delay 

and time constant, then these techniques become extremely important in model diagnosis.  

 

Chapter 5 extends on the idea of using regression theory to provide a diagnosis for MPM. 

Several relevant factors limit the ability to develop these techniques under closed-loop 

conditions. Such factors include the correlation of inputs, set-point excitation and noise 

levels. A detailed study of quantitative methods as well as ideas to tackle these factors is 

dealt with in chapter 5.   
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CHAPTER  

5  

REGRESSION IDENTIFICATION THEORY 
 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. GENERAL CONSIDERATIONS 

 
The choice of the MPC algorithm which is employed in the SASOL Secunda plant is the 

RMPCT algorithm. For the identification of the models used for control in these 

controllers, RMPCT adopts a three-step technique for the identification of its models. 

Firstly, a Box-Jenkins model is identified using a LS method or by PEM; alternatively the 

Cholesky decomposition is employed to identify an FIR model is identified using (Qin et 

al., 2003). The identified model is then fitted to a low-order ARX model to smooth out 

large variance due to possible over-parameterization in the FIR model. These lower order 

ARX models are then converted into Laplace transfer functions. 

 

From these observations, it can be seen that these models are formulated in an input- 

output form. Thus there would be no interaction amongst outputs in this model 

formulation because their interactive contributions are effectively dealt with by 

This chapter presents the methods developed in the present work. Closed-loop model 

validation for Model Predictive Control has been seen to rely primarily on qualitative 

approaches. This chapter seeks to shift this paradigm by employing techniques that will detect 

MPM and subsequently quantify the extent of the mismatch. Although the theory is limited to 

gain mismatch identification, it is shown to extend to the remaining parameters present in a 

model(s) to some extent. This chapter illustrates the theory developed for the models employed 

for SASOL controllers. The various types of error definitions are given. The regression 

methods, composed of least squares regression and kalman filter parameter estimations, are 

based on a general form of error which allows for a choice of error definition suitable for a 

specific industrial situation. Several factors noted at the end of chapter 4 are covered at the end 

of this chapter. 
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substituting their behaviour in terms of the inputs. The benefit drawn from here is that 

each output can be dealt with independently from the rest i.e. an n x m MIMO system can 

be considered as n separate MISO systems. Another observation is that these models are 

presented as Laplace domain models (See appendix B). Thus, an approximation for the 

Laplace domain operator, s, is required to convert these models into a form that can be 

used on a real-time basis.  

 

5.2. MODELLING 

 
Consider a single output of the MIMO system expressed in input-output form: 

 

 

 

 

                                                                                                                                        (5.1) 

 

 

This model needs to be converted from the above continuous form into a discrete form 

because one of the basic goals of discretization is fulfilling the need for practical 

realizations. In the process of discretization of a continuous system, one can use the well-

known mapping of the s-domain into q-domain by substituting: 

 

                                                                                                              (5.2) 

 

T in this instance represents the sampling period and is interchangeable with ∆t.  
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Starting from the basic relation defined by (5.2) above, the following equivalent can thus 

be written:  

 

 

                                                                              (5.3) 

 

 

After the numerator and denominator on the right hand side of (5.3) have been expanded 

by Taylor series expansions, with all but the first order approximation retained, (5.3) 

becomes: 

 

 

                                                                                                                                        (5.4) 

 

 

By solving (5.5) for the complex variable, s, the following first order approximation is 

obtained: 

 

                                                                                                                                        (5.5) 

 

Table 5.1: 
Generalization of some known transformations (Sekara, 2003) 

γ s – q
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 approximation Name of approximation 

 

 

 Euler approximation first order – forward 

difference (FD) 

 

 

 
Tustin approximation – Bi linear (BL) 

 

 

 Euler approximation first order – Backward 

difference (BD) 
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Table 5.1 depicts several common approximations for the Laplace operator, s. By 

transforming the s-domain transfer functions (using one of the approximations listed in 

the table above and replacing dead-time lags, τ, by an integer number of sampling 

periods, T), one obtains the following equation:  

 

  

 

 

 

 

 

                                                                                                                                        (5.6) 

 

 

 

In the discrete form, one expects the steady-state gain to be defined as: 

 

                                                                                                   (5.7) 
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based on ui values at the same intervals.  In practice, ni cannot be less than 1 because an 

output cannot occur at the same time as an input. If the given equation [1] implies that 

any τi≤T, it is corrected to T without much error for small T.  

 

In order to simplify the notation of equation (5.6), the following lag polynomials are 

defined: 
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Substituting these lag polynomials into equation (5.6), one obtains the following 

simplified output representation, which is an ARX model structure: 

 

                                                                                     (5.10) 

 

This is how the “model output” ym(t) will be calculated below, i.e. it will be taken that: 

 

                                                                                 (5.11) 

 

To evaluate this in practice one needs the difference form obtained by multiplying 

through by the common denominator: 
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acting on ym will be 1, so a more useful predictive form is obtained by putting all of the 

lagged components on the right-hand-side, i.e.: 
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and yp(t) [actual plant] curves should then have similar shapes and local variations, but 

will be offset from each other, since the modeled response might only be fixed on the 

plant response at the initial point, if at all. This type of prediction could be called an 

open-loop predictor.  

 

 

Figure 5.1: graphical representation of the use of open-loop predictor 

 

On the other hand, the one-step predictor is obtained from equation (5.13) by 

“borrowing” previous measured outputs of the plant for the right-hand-side of the 

equation: 

 

 

        (5.14) 
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Figure 5.2: graphical representation of the use of one-step predictor 

 

In the proposed regression, it is sought to reveal a “connection” between the predictive 

error of this model, and a particular ui, in order to determine which part of the original 

model in (5.1) is the likely source of error. 

 

5.3. ERROR DEFINITIONS 

 

Error definitions may be separated into two classes, with the basic form being the output 

error (OE), as shown in equation (3.55) and the latter class being the equation error (EE). 

Each of these classes contains various descriptions of error forms.  

 

5.3.1. Output Error 

The very basic definition is given by: 
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Applying the definitions of the two predictive forms given by equations (5.13) and (5.14) 

respectively, the following computational forms are thus obtained: 

 

Output Error, Open-loop Predictor: 

 

 

           (5.16) 

 

 

Output Error, One-step Predictor: 

 

 

                        (5.17) 

 

 

 

 

 

 

 

 

Figure 5.3: Principle of output prediction error 

 

One notes that the error will contain the offset between plant and model, not just the 
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regression, but it is usually convenient to eliminate its effect by differentiating equation 

(5.15): 
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This is a model structure with the combination of an ARX model in conjunction with an 

integrator. Here a differencing multiplier (1-q
-1

) is passed through the equation: 

 

 

 

 

 

The change of error over the recent step T thus arises from the change in the model prediction 

minus the change in the plant measurement. In this difference form equations (5.16) and (5.17) 

become: 

 

Output Error, Open-loop Predictor, difference form: 
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Output Error, One-step Predictor, difference form: 
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Figure 5.4: conceptual view of the use of differential variables 
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Apart from eliminating offset, the difference forms make it easier to handle integrating 

terms in equation (5.1) (i.e. when a factor 1/s is present). The figure above illustrates the 

response to a first order model containing an integrator term. A response to a step input 

for an integrator results in a constant ramp to infinity. This results in output response 

values reaching excessively large numbers, making it difficult to assess model 

inaccuracy. However employing differential forms to both the input and output reveals a 

bounded response.  

 

5.3.2. Equation Error 

So far, four possible forms (5.16), (5.17), (5.19) and (5.20) have been proposed for 

computation of the “model error”. The intention is to regress this e(t) against ui(t)  

[i=1,...,N], or  ∆e(t) against ∆ui(t)  [i=1,...,N], in order to associate any error with a 

particular ui, and thus establish which term in the model is responsible for the error. 

However, a better synchronization can be obtained by comparing inputs and outputs with 

their various lags applied (figure 5.5).  

 

 

 

 

 

 

 

 

Figure 5.5: Principle of equation error 
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So here the relationship for computing e(t) is: 

 

 

                       (5.22) 

 

 

Because the y contributions to the error are now spread over the range of y-lags, this turns 

out to be a smoother regression. In the case where the one-step predictor form is used for 

the prediction of the model output, ym(t), note that: 
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Finally, equations (5.16), (5.17), (5.19) and (5.20) can be written out for the equation-

error form as follows: 

 

Equation-error, open-loop predictor & one-step predictor: 
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Equation-error, open-loop predictor & one-step predictor, difference form 
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5.4. GENERAL REGRESSION EQUATION 

 

One seeks “best fit” ki in a relationship defined below N.B. kN+1 is an offset: 

 

                                                                                                (5.26) 

 

From equation (5.10), the output error is:  

 

                                               (5.27) 

 

 

The difference form of the output error is: 
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One should note that at steady state the gain is given by: 
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Table 5.2: 

Summary of expected ki parameter fittings for the various cases 

Eqn Form α β 
Expected ki at 

steady state 

Expected kN+1 

at steady state 
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In the cases of the output error forms [(5.16), (5.17), (5.19) and (5.20)], consider a model 

error caused by a gain Kmi in equation (5.1) being a factor of 1.5 × its correct (Kpi) value. 

Output-error, 

open-loop 

predictor 

Equation-error, 

open-loop 

predictor & one-

step predictor, 

difference form 

Output-error, 

open-loop 

predictor, 

difference form 

Equation-error, 

open-loop 

predictor & one-

step predictor 

Output-error, 

one-step 

predictor, 

difference form 

Output-error, 

one-step predictor 
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The regression would determine a coefficient on the corresponding ui which increases 

above its correct value of zero to: 

 

 

 

In the cases of the equation error forms (5.24) and (5.25), ki gives the relative gain error 

directly, e.g. if Kmi=2Kpi [but Ami(1) =Api(1)], one would obtain ki=+0.5.  

 

5.5. RECURSIVE REGRESSION BY MOVING WINDOW 

 

Regression Analysis (RA) is a conventional statistical technique that is commonly used in 

control theory. One particular class of RA is the Moving Window Regression (MWR) 

method. The MWR method uses the same general linear regression model as the RA. The 

only difference is that the regression is being applied to a smaller area (a window) instead 

of the whole data record. Therefore, several regressions are performed in order to cover 

the data period. By doing so, the MWR method is able to capture temporal variations in 

the study region in which the RA method does not have the capability to do so. An 

additional benefit is that this form of regression can be implemented in an online 

environment with a slight reliance on historical data based on the window size.  

 

5.5.1. Moving Window Concept 

The moving window concept is depicted below. The notation used for the representation 

of data is defined as: 

 

 

 

In this case the subscript, i, indicates the respective time interval i. 
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Figure 5.6: Moving Window Concept 

 

Computation is made efficient by advancing the window one position on each time-step 

and removing the outgoing data point and adding in the incoming point. This maintains 

the window size at each time-step.  

 

5.5.2. Mathematical Formulation 

The general regression equation (5.26) is re-written in matrix vector-form as: 
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One has corresponding and
t t

α β  at a series of times t =1, 2 ... M in a moving window, 

and wishes to obtain an appropriate set of k values for the present window. The following 

objective function is defined: 

 

 

                                        (5.31) 

 

 

 

 

 

 

 

 

 

 

 

Here the expected k values (kexp) are set to zero marking the point where model and plant 

should be in agreement (see table 5.2 above). The offset term kN+1 is also given a target of 

zero to reduce its wandering, but with a much lower weighting than the coefficient ki’s.  
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M
T

t t

t 1

cov ariance matrix
=

 
=  
 
∑ β β  

M

t t

t 1

scalar vector product α

=

 
=  
 
∑ β  

 

The calculation is made efficient for advancing the window one position on each time-

step by maintaining the summed covariance matrix and the summed scalar vector product 

in registers which merely subtract the outgoing point and add the incoming point on each 

time-step. 

 

5.6. REGRESSION BY KALMAN FILTER 

 

Since the publication of Kalman’s landmark paper in 1960, Kalman filters have become 

ubiquitous in state estimation, system identification, adaptive control, signal processing 

and have found many industrial applications. In a chemical engineering process, Kalman 

filters are frequently used to estimate unmeasurable process variables based on available 

measurements of other process variables, or to filter the measured process variables if 

they are noisy.  

 

5.6.1. Mathematical Formulation 

Consider a general linear system in the state space: 
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The appropriate Kalman filter and recursive update for the covariance matrix P and 

Kalman gain K
*
 is given by: 
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In the above representation, ŷ  is defined as the actual observation available. 

 

This filter can be cast in a form to find the coefficients k of the error regression problem 

by setting x→k, A→I, B→0, ŷ →α and C→ββββ
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One can recall that the matrix R, which is usually diagonal represents the variance of 

errors to be expected in each measurement, the matrix Q, also usually diagonal, 

represents the error variance to be expected in the state equations, which in this case 

merely express the expected constant nature of k. The initial covariance matrix P0 is 

started off as a (small) diagonal. 

 

As in the case of the moving window above, a special measure must be implemented to 

allow suppression of the movement of the ki away from their expected values. This is 

done by extending the observations ŷ  and the observation matrix C as follows: 
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The updating equations now become: 
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The filter attempts to close the gap between the two terms within the square bracket of 

the k updating equation. The rate at which it does this is controlled by the individual 

values on the diagonal of the R matrix. The smaller these are relative to those on the Q 

matrix diagonal, the more closely α and the expected k values will be tracked.  

 

5.7. EXTENSIONS FOR INDUSTRIAL SITUATIONS 

 

Correlation of inputs, set-point excitation and noise levels are common factors that need 

to be considered in MPM. Due to the feedback mechanism of MPC controllers, inputs are 

often correlated, for example, in a combustion process the flow of fuel and air flow are 

highly correlated. Correlation amongst inputs may also result in a false diagnosis of 

MPM (refer to section 4.3.1.2). 
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The underlying assumption in system identification and validation techniques is that the 

data is sufficiently rich. However, the primary goal of a controller, in closed-loop, is to 

reach a desired set-point. On the other hand the upper layer in a typical MPC operation 

regularly computes new set-point targets. For this reason, it can occasionally be assumed 

that enough setpoint excitation exists owing to these regular computations. 

 

Noise levels and unmeasured disturbances are critical for the performance of the method. 

It is necessary that the magnitude of the modeling error dominates over these effects. If 

this is not the case, then it becomes difficult to determine MPM. Although this thesis 

focuses on the deterministic modeling errors in plant dynamics, characteristics relating to 

signal-to-noise ratio are developed.  

 

5.7.1. Partial Correlations 

In order to alleviate the effect of correlations amongst inputs, a technique which removes 

the influence of other variables on a specific variable is required. The method developed 

below focuses on the work of Badwe et al (2009). Suppose that u1, u2 ... um are inputs 

affecting the error, e, and suppose that the ui’s are correlated with each other. Then, to 

evaluate the partial correlation between, e and ui, for example, e and u1 are first linearly 

regressed on u2, u3... um:   
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                                                                           (5.39) 
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Equations (5.35) to (5.38) remove the effect of other inputs on e. It is also imperative to 

remove the effect of other inputs on a specific input: 
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                                                                           (5.44) 

 

 

 

Equations (5.39) to (5.42) remove the effect of the other inputs on ui. A new equation is 

defined which relates the two residual errors (єi and δi) with the influence of other 

variables removed: 
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The partial correlation coefficient, ρi, is found by minimizing Ei:  
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The objective function is defined as: 
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Minimizing equation (5.49): 
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Rearranging for ρi: 

 

 

                                                                                                              (5.52) 

 

 

The summations above are computed efficiently in the same way as the covariance 

matrix summation and the scalar product summation in the moving window recursive 

regression (see section 5.4).  

 

5.7.2. Set-point excitation  

In a limited way one could use the regressed offset (non-differential forms) to detect MPM and 

relate it to an input when the variability goes ‘quiet’, for example equation (5.24) can be used in 

this case. This concept can be illustrated graphically:  

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 5.7: Lack of informative data 

 

Coupled with an offset, the model and plant outputs allow for 2 points denoted by (x) in 

the figure above. The slope found between the 2 points is related to the fitting parameters 

ki. For example, the model may expect 20m
3
h

-1 
through a certain valve which is 50% 

open, but only 15m
3
h

-1 
is being measured. So a linear gain error will be determined on the 

valve using the offset.        

 

 
x 

 
x 

MODEL 

PLANT 

OFFSET 

∑

∑

=

=

∈

=
M

j

ii

M

j

ii

i

jj

jj

1

1

δδ

δ

ρ



-93- 

 

5.7.3. Noise Levels 

The effect of the noise on a system is determined by a signal-to-noise ratio. Signal-to-

noise ratio (SNR or S/N) is defined as a measure employed in science and engineering to 

quantify the impact that noise has on a signal. The signal in this case is the plant output. 

A ratio much higher than 1:1 indicates more signal than noise which is desired. For this 

thesis, the following definition of SNR is used: 

 

                                                                                                            (5.53) 

 

Numerous other ratios can be defined which will equally describe the effect of noise on a 

signal. Among the most desirable forms of ratios is one relating the standard deviation (or 

variance) of the output error to the standard deviation (or variance) exhibited by the 

noise: 

 

                                                                                                          (5.54) 

 

In the case of no MPM present, this ratio will exhibit a 1:1 relationship according to 

equation (4.2). A ratio greater than 1:1 implies MPM. Conversely, a ratio close to or less 

than 1:1 implies that the error formed is principally due to the influence of noise rather 

than any MPM in the dynamic system. 

 

In cases where the variance of the noise signal cannot be obtained (as it is already 

embedded in the plant output signal), the following ratio may be employed: 

 

                                                                                                           (5.55) 

 

 

This ratio, defined as the variance of the plant output to the model output can be used to 

determine the presence of noise. If the ratio is greater than 1:1 then can be deduced that 

the system is influenced by the presence of a noise signal.  
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CHAPTER  

6  

EXPERIMENTAL DESIGN THEORY 
 

 

 

 

 

 

 

 

 

 

 

 

6.1. PROGRAM 

 
MATLAB ® software was chosen for the implementation of the methodology developed 

in the previous chapter. MATLAB ® was developed by MathWorks and is highly 

favored for mathematical computations which require stringent matrix manipulations. 

MATLAB ® allows for the plotting of functions and data, implementation of graphical 

user inferfaces and is easily adapted into other programming languages such as C. C++ 

and FORTRAN.  Figure 1.2 (see section 1.4) illustrates a simplified flow diagram of the 

program. The related function files and main program descriptions can be found in 

Appendix B and all the programs written and used in this thesis are provided on the 

attached CD. The code is developed generically for any number of inputs and measured 

disturbances. Due to the fact that model matrix structure in which SASOL represents its 

models is in an input-output form, each output can be considered separately within the 

program.   

 

This chapter provides insight into the manner in which the theory developed in the previous 

chapter is implemented in a software environment. The software used in this thesis is 

MATLAB ®. Indeed, MATLAB ® is known for its efficiency concerning matrix 

manipulations which are required for computational purposes here. Prior to the implementation 

of the methods developed, several factors need to be addressed. These include the choice of 

sampling interval for simulations, discrete approximation choice, input data representation 

(closed-loop forms), output evaluation and data preparation. One should note that in the case of 

testing real industrial plant data the sampling interval is used according to the intervals in 

which the data is provided. Once these factors are dealt with, the manner in which the methods 

are implemented in MATLAB ® subsequently follows. 
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6.2. PRELIMINARIES 

 
Prior to the implementation of the methodology developed in chapter 5, factors such as 

sampling interval, discretization properties, input representation and output evaluation 

need to be addressed.  

 

6.2.1. Sampling Interval 

The choice of a data sampling interval, T, is critical in the retention of vital information 

that describes the systems important dynamics. A T that is much greater than the resulting 

time constants of a particular system would then defer data with very little information 

regarding the plant dynamics. A small T, on the other hand, would be inefficient because 

insufficient process change would occur between samples. A good choice of T should 

thus be a trade-off between noise reduction and relevance for the dynamics. For a MISO 

system, the optimal choice of the sampling interval lies in the region of the shortest time 

constant of the system.    

 

Recall equation 5.1:  

 

 

 

It is often convenient to factor the polynomials in the numerator and denominator, and to 

write the transfer function in terms of those factors: 

 

 

 

 

 

                                             (6.1) 

 

 

...)(
...1

...1
)(

...1

...1
)( 22

2221

2

2221
212

1211

2

1211
1

21
+

+++

+++

+

+++

+++

=
−−

su
sdsd

scsc
eKsu

sdsd

scsc
eKsy

ss ττ

∑
∏

∏

=

=

=−

−

+

+

=

+

+++

+++

=

N

i

iM

j

ij

M

j

ij

s

i

Mdd

Mccs

su

s

s

eKsy

su
sss

sss
eKsy

d

c

i

d

c

1

1

1

1

12111

12111

1

)(

)1(

)1(

)(

...)(
)1)...(1)(1(

)1)...(1)(1(
)( 1

τ

τ

τττ

τττ

τ

τ



-97- 

 

The numerator represents the zeros of the system and the denominator represents the 

poles. Setting the denominator to zero gives the time constants of the system as shown 

below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: conceptual view of the poles of a system 

 

For a MISO system the desirable sampling interval is related to the fastest acting time 

constant i.e. the most negative pole. For example, the fastest time constant in figure 6.1 is 

given as τ1. Poles that are positive imply that the system is unstable. In the case of an 

integrator where the pole is zero, the time constant is corrected to a value close to zero. 

Figure 6.2 illustrates the manner in which the discretization error changes with the choice 

of the sampling interval: 

 

 

 

 

 

 

 

 

Figure 6.2: Discretization error as a function of sampling interval adapted from Ljung (1989) 
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Based on the observations of figure 6.2 above, a sampling time close to that at which 1/10 

of the full response is achieved, as indicated in Fig. 6.3, was found to be satisfactory: 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Satisfactory sampling interval 

 

 

                                                                                                                    (6.2) 

 

From figure 6.3 above, it can be seen that the suitable sampling interval is based on 
1
/10 of 

the slope through the 63% point of a first order step response. 

 

6.2.2. Discretization 

The commonly used transformations for the Laplace variable, s are given in table 5.1. In 

this work, each approximation is analyzed for stability in the transformation as well as 

reduction in discretization errors. Stability implies lying to the left in the s-plane or 

correspondingly within a unit circle in the q-plane.  

 

6.2.2.1. Forward Difference Approximation    

Figure 6.4 below illustrates the mapping of the left-half s-plane for the forward difference 

approximation onto the region depicted for the q-plane. This maps more than the unit 

circle. This implies that a transfer function, G(s), with high frequency or lightly damped 

poles will give a discrete transfer function, G(q) which is unstable.  

6.3
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Figure 6.4: Forward difference mapping (Sekara, 2005) 

 

6.2.2.2. Backward Difference Approximation    

This mapping (figure 6.5) is shown to be inside the unit circle. Thus a stable G(s) implies 

a stable G(q). G(q) cannot have lightly damped poles even if G(s) has lightly damped 

poles.     

 

 

Figure 6.5: Backward difference mapping (Sekara, 2005) 

 

6.2.2.3. Bilinear (TUSTIN) Approximation    

This approximation which is shown in figure 6.6 below maps the entire left-half plane 

onto the unit circle. The implication here is that G(q) is stable for any stable G(s). This is 

why the Tustin approximation is the most commonly used discrete time transformation. 

Furthermore this approximation allows the reduction of discretization error compared to 

the other approximation methods. The Tustin approximation was used to convert 

equation (5.1) into a real-time form.    

 

q 



-100- 

 

 

Figure 6.6: Bilinear mapping (Sekara, 2005) 

 

6.2.3. Simulated Input Design 

At this point it is desirable to present some input sequences that are encountered in 

industrial processes.  

 

6.2.3.1. Random (Gaussian) signal  

Gaussian signals are white noise signals with Gaussian distributions. These signals are 

favorable for linear modeling and sometimes occur under closed-loop conditions. This 

signal is illustrated below for a case where time-correlation has been applied to the signal 

(smoothing): 

 

 

 

 

 

 

 

 

Figure 6.7: Gaussian signal 

 

6.2.3.2. Pseudo-Random Binary Signal (PRBS) 

These signals are subjected to upper and lower limit constraints. Mathematically this is 

given by:  

q 
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                                                                                                             (6.3) 

 

N.B. u1 and u2 represent the limits placed on the input signal. The signal is called binary 

as it only switches between two values and pseudo-random because the actual sequence 

is artificially created: 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: PRBS signal 

 

6.2.3.3. Multi-level Signal 

Often encountered in industrial processes is a combination of Gaussian and PRBS 

signals. In this case the signal amplitudes randomly vary in the range between the binary 

signal values:  

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Multilevel signal 
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Signals behave in this manner because Model Predictive Controllers compute the set-

points to the regulatory layers recurrently. For simulations, a random sequence with 

realistic time-correlation from point to point is generated in the following manner: 

 

 

 

% N_records - recorded time period set by user 
for it=1:N_records 

    % sampling time interval  
    t=it*dt;  
    % Nterm - NUMBER OF INPUTS 
    for k=1:Nterm 

         
        if (it==1) 
            % initially set to the mean input 
            ubar(k)=umean(k); 
        else 
            % random data generated in a range specified by the user 
            % the equation below represents a smoothing filter: 
            % ufactor - smoothing coefficient 
            % umean - mean of each input 
            % urange - range of input 
            u1(k)=ufactor(k)*umean(k)+ (1-ufactor(k))... 
                  *(umean(k)+urange(k)*(rand()-0.5)); 
            % double filter now 
            ubar(k)=ufactor(k)*ubar(k)+(1-ufactor(k))*u1(k);   
        end 

         
    end 

  
    for k=1:Nterm 
        u(k)=ubar(k); 
    end 

     
    % stored for analysis 
    u_PLOT(:,it)=u'; 

. 

. 

 
end 

 

 

 

It should be noted that all MATLAB ® code presented from this stage forward are all 

found within a single time-loop and only relevant portions are shown to explain certain 

concepts. 

INPUTS GENERATED IN AN ONLINE MANNER 
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6.2.4. Simulated Output Design 

Recall equations (5.12) and (5.13)  

 

 

 

 

 

 

 

 

In order to simplify the notation, the following modifications are made to the equations 

above: 

 

                (6.4) 

 

 

                  (6.5) 

 

 

N.B. max is defined as: N x maximum [Mc, Md]. 

 

Equations (5.12) and (5.13) can now be re-written as: 

 

                                                              (6.6) 

 

                                  (6.7) 

 

The model output is evaluated using equations (6.6) and (6.7) depending on the type of 

error chosen i.e. equation error or output error. It is reiterated that these equations depend 

on past outputs and inputs in order to evaluate the current output. The new defined 

polynomials, equations (6.4) and (6.5), show that the lag coefficients are arranged from 
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the highest power to the lowest power. This means that the previous contributions of both 

inputs and the output need to arranged in a form to match these coefficients. This is 

accomplished by the development of ‘stacks’: 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Illustration of ‘stacks’ for past data to match the lag coefficients 

 

Figure 6.10 above illustrates the manner in which the model output is calculated. The 

implementation of data ‘stacks’ requires 2 stages: updating ‘stacks’ and thereafter 

manipulating the updated ‘stacks’ to form ordered ‘stacks’ as required: 

 

 
 

  

% 1. Input stack 
if (ipu<1) 
    for jj=1:MaxPower*Nterm 
        for k=1:Nterm 
            

ustack(k,jj)=u(k); 
        end 
    end 
    ipu=1; 
else 
    ipu=ipu+1; 
    if (ipu>MaxPower*Nterm) 
        ipu=1; 
    end 
    for k=1:Nterm 
        ustack(k,ipu)=u(k); 
    end 

% 2. Output stack 
if (ipy<1) 
    for 

ii=1:MaxPower*Nterm 
        ystack_m(ii)=y_m; 
        ystack_p(ii)=y_p; 
    end 
    ipy=1; 
else 
    ipy=ipy+1; 
    if 

(ipy>MaxPower*Nterm) 
        ipy=1; 
    end 
    ystack_m(ipy)=y_m; 
    ystack_p(ipy)=y_p; 
end

      end 
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% 1. Ordered output stack 

for ii=1:MaxPower*Nterm 
    ip=ipy-ii+1;                    
    % must go backwards  

    % to have older values at 

end 
    if (ip<1) 
        ip=ip+MaxPower*Nterm; 
    end 
    

y_ordered_p(ii)=ystack_p(ip); 

         
    if (use_plant_stack) 
        % ONE-STEP PREDICTOR    

        % equation (5.14) 
        

y_ordered_m(ii)=ystack_p(ip); 
     else 
        % OPEN-LOOP PREDICTOR   

        % equation (5.13) 
        

y_ordered_m(ii)=ystack_m(ip); 
    end 
end 

% 2. Ordered input stack 

 

for jj=1:MaxPower*Nterm 
    ip=ipu-jj+1; 
    if (ip<1) 
        ip=ip+MaxPower*Nterm; 
    end 
    for k=1:Nterm 
        

u_ordered(k,jj)=ustack(k,ip); 
    end 
end 
 

for jj=1:MaxPower*Nterm 
    ip=ipu-jj+1; 
    if (ip<1) 
        ip=ip+MaxPower*Nterm; 
    end 
    for k=1:Nterm 
        

u_ordered(k,jj)=ustack(k,ip); 
    end 
end 

 

 

 

For simulations of a real-time MPM detector, both the model output and plant output are 

evaluated using equation (6.7). The plant is the true representation of the system and the 

program is tested for MPM by inserting a mismatch in the model.  

 

6.2.5. Industrial Data Design 

A vital component of testing the validity of a model validation tool is to use real plant 

data. For this thesis, the mode in which real plant data is fed into the program is 

analogous to the manner in which data would be received from the plant in real time. The 

simulated data shown above is seen to be generated at every time step. Conversely, 

industrial data is stored in a data file and read into the program as follows: 

 

 

ORDERED STACKS 
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for it=1:N_records 

 
    if (it==1) 
        %... open file: example of file 
        fid = fopen('plant_CV2.dat'); 
    end 

         
    % Nout - number of outputs (set to 1 for MISO systems) 
    for i=1:(Nout+Nterm) 
        % read one-at a time ie. size = 1 
        dum = fscanf(fid,'%g',1);  
        % select only the output of interest here 
        if (i==j_out) 
            % stored temporarily 
            y_PLANT=dum;          
        end 

 
        if (i>Nout) 
            % the rest are the inputs (including dvs) 
            u(i-Nout)=dum;       
        end 
    end 

         
    if (it==1) 
        % initialising 
        y_p=y_PLANT;               
        y_m=y_p;                   
    end 

. 

. 

. 
end 

 

 

The sampling interval used for the testing of industrial data is 0.5 min, the sampling rate 

of the plant data supplied by SASOL. This interval should lie within 0.5x to 2x the 

optimal interval determined by equation 6.2.  

 

6.2.6. Error Definitions 

The choice of error definition depends on the type of model (presence of integrator terms, 

or higher order models), offset between model and plant outputs as well as the variability 

of the data (most validation tools cannot extract any information from data that is 

‘quiet’). 

INDUSTRIAL DATA 
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Six factors contribute to the choice of error definitions to be used for the detection of 

model degradation. Each of these factors is assigned a binary logic value to depict each 

choice: 

 

 

 

 

 

 

 

Figure 6.11: Graphical Binary logic inverse symbol 

 

The table below demonstrates the several possible combinations of the six factors stated 

above: 

 

Table 6.1: 

Combinations of Predictor, error and difference form 

 COMBINATIONS   

  A B C D E F G H 
Predictor  

form 
0 1 1 1 0 0 1 0 

Error  

form 
0 0 1 1 1 0 0 1 

Difference 

form 
0 0 0 1 1 1 1 0 

 

One can recall that the one-step predictor is useful in reducing the offset between the 

model and plant and allows the model to track the plant more closely. When the 

variability of data is high, one can use the output error form as the data provides 

sufficient information. For a more stable regression however, the equation error form 

should be used. It’s also beneficial in that it considers previous lag contributions. The 

difference form is particularly useful in eliminating the offset between the model and the 

plant. It also prevents integrating terms from producing excessively large outputs. 

Combinations D and G are suitable for cases where data is sufficiently informative. In the 

One-Step Predictor 

 

Equation Error 

 

Differential form 

Open-loop Predictor 

 

Output Error 

 

Non-Differential  
1 0 
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case where data is ‘quiet’ one may opt for either A or H in trying to detect MPM in a 

limited manner. Difference forms are handled in the following means: 

 

 

    

% Input difference form  

% Deal with difference forms 
if (it==1) 
    du=0*u; 
    ulast=u; 
else 
    du=u-ulast; 
    ulast=u; 
end 

 

% Error difference form 
% Deal with difference forms 
if (it==1) 
    dee=0; 
    elast=ee; 
else 
    dee=ee-elast; 
    elast=ee; 
end 

 

 

The extract below exemplifies the approach in which the equation error form is put 

together: 

 

 

 

% model-weighted yp, ym & u 

yp_LHS_mw=y_p+sum(c_m.*y_ordered_p(1:MaxPower*Nterm)); % PLANT 
ym_LHS_mw=y_m+sum(c_m.*y_ordered_m(1:MaxPower*Nterm)); % MODEL 

     
% equation error  
e_LHS_mw=-(yp_LHS_mw-ym_LHS_mw); 

     
% RIGHT HAND SIDE OF EQUATION (6.7) 
for k=1:Nterm 
    u_RHS_mw(k)=sum(d_m(k,:).*u_ordered(k,1:MaxPower*Nterm)); 
end 
 

 

    

The ability to provide a more stable regression without any influence of an offset is 

useful to handle numerous generic cases. This is provided by the combination of an 

equation error difference form: 

DIFFERENCE FORMS 

EQUATION ERROR FORM 
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if (it==1) 
    de_LHS_mw=0; 
    e_LHS_mw_last=e_LHS_mw; 
    for k=1:Nterm 
        du_RHS_mw(k)=0; 
        u_RHS_mw_last(k)=u_RHS_mw(k); 
    end 
else 
    % equation error difference form 
    de_LHS_mw=e_LHS_mw-e_LHS_mw_last; 
    e_LHS_mw_last=e_LHS_mw; 
    % equation error difference form 
    for k=1:Nterm 
        du_RHS_mw(k)=u_RHS_mw(k)-u_RHS_mw_last(k); 
        u_RHS_mw_last(k)=u_RHS_mw(k); 
    end 
end 

 

 

 

6.3. DATA PREPARATION 

 
Computational effort for correlation and regression analyses depends on how the 

covariance summation in the correlation equation and the summations in the least squares 

objective function are handled respectively. Both methodologies require a range of data. 

Computation is made efficient by the development of a ‘moving window’ of data. This 

window moves forward at each time step taking in the new data point and removing the 

old data point (see figure 5.6). Depending on the combination chosen as shown in table 

6.1, the moving window is developed as follows: 

 

 

 

p=p+1; 
% increment pointer 
if (p>window) 
    p=1; 
end 
% save before over-written 
ew_lost=ew(p); 
% _autocorr - notation used for correlation analysis 
% e = ym - yp; used for correlations 

EQUATION ERROR DIFFERENCE FORM 

MOVING WINDOW CYCLIC STORAGE 
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ew_autocorr_lost=ew_autocorr(p);             
for k=1:Nterm 
    % save before over-written 
    uw_lost(k)=uw(p,k);    
    % save before over-written 
    rel_uw_lost(k)=SSgain_m(k)*uw(p,k);      
    uw_autocorr_lost(k)=uw_autocorr(p,k); 
end 

  
if (differential_basis) 
    if (use_LHS_RHS) 
        % differential + equation error 
        ew(p)=de_LHS_mw; 
        % dee = e - e_last 
        ew_autocorr(p)=dee; 
        for k=1:Nterm 
            uw(p,k)=du_RHS_mw(k); 
            uw_autocorr(p,k)=du(k); 
            rel_uw(p,k)=SSgain_m(k)*du_RHS_mw(k); 
            % SSgain_m -> 1 for "use_LHS_RHS" 
        end 
    else 
        ew(p)=dee; 
        ew_autocorr(p)=dee; 
        for k=1:Nterm 
            uw(p,k)=du(k); 
            uw_autocorr(p,k)=du(k); 
            rel_uw(p,k)=SSgain_m(k)*du(k); 
        end 
   end 

else 
    % non-differential + equation error 
    if (use_LHS_RHS) 
        ew(p)=e_LHS_mw; 
        ew_autocorr(p)=ee; 
        for k=1:Nterm 
            uw(p,k)=u_RHS_mw(k); 
            uw_autocorr(p,k)=u(k); 
            rel_uw(p,k)=SSgain_m(k)*u_RHS_mw(k); 
            % SSgain_m -> 1 for "use_LHS_RHS" 
        end 
   % non-differential + output error     
   else 
       ew(p)=ee; 
       ew_autocorr(p)=ee; 
       for k=1:Nterm 
           uw(p,k)=u(k); 
           uw_autocorr(p,k)=u(k); 
           rel_uw(p,k)=SSgain_m(k)*u(k); 
       end 
   end 
end 
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6.4. METHODS FOR DETECTING MPM 

 
The methods developed as shown in chapter 4 are based on residual analysis. Correlation 

analyses (correlations between residuals and inputs and correlations between inputs 

themselves) serve to provide a qualitative view of any discrepancies in a model(s). 

Regression analyses provide a more detailed view of MPM by giving a quantitative 

measure of the extent of the mismatch. For these methods the same notation is used for 

differential and non-differential modes. 

 

6.4.1. Correlation Analyses 

The sample cross-covariance between e and ui at lag m are calculated as: 

 

                                                                             (6.8) 

 

Computation of equation (6.8) is made efficient by employing the moving window 

concept: 

 

 

 
for j=1:R_range % range of correlation plot (lag = M)  
    if (j==1) 
    % covariance summation 
    sum_eu(j,k)=sum_eu(j,k)-ew_autocorr_lost*uw_autocorr_lost(k)... 
                +ewg(window-R_range+1)*uwg(window-R_range+1,k);   
    else 
    % covariance summation 
    sum_eu(j,k)=sum_eu(j,k)-ewg(j-1)*uw_autocorr_lost(k)... 
               +ewg(window-R_range+j)*uwg(window-R_range+1,k);  
    end 
end 

 

 

 

Equation (6.8) is adapted for the covariance between ui and uj:  

 

                                                                       (6.9) 
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The covariance summation is computed in a similar manner as above: 

 

 

 
for j=1:R_range 

 
   if (j==1) 

 
   sum_uu(j,k,kk)=sum_uu(j,k,kk)... 
              -uw_autocorr_lost(k)*uw_autocorr_lost(kk)... 
              +uwg(window-R_range+1,k)*uwg(window-R_range+1,kk); 

 

   else 

 

   sum_uu(j,k,kk)=sum_uu(j,k,kk)... 
              -uwg(j-1,k)*uw_autocorr_lost(kk)... 
              +uwg(window-R_range+j,k)*uwg(window-R_range+1,kk); 

 

   end 

end 

 

 

 

The cross covariance may be normalized by the individual variances to become the 

sample cross-correlation: 

 

                                                                                             (6.10) 

 

 

                                                                                          (6.11) 

 

 

If an error exists, a correlation analysis between the error and the corresponding inputs 

would reveal that portion of the model causing the error, by means of a significant 

correlation. At certain time intervals graphical cross-correlation results are displayed. 
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From these plots, one can check for any detection of MPM as well as correlations 

amongst inputs which may compound any error that may exist.  

 

6.4.2. Moving Window Regression 

The recursive regression based on the moving window approach puts an equal weighting 

on each point within the window, thus the response time to reach the intended fitting 

parameter is longer but smoother: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Concept of weighting placed on window data for MWR 

 

Recall the covariance matrix and the scalar product terms found in equation (5.32):  
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These terms are computed as shown below in an efficient manner. N.B. In this form of 

regression, the offset term can be searched for or it can be fixed.   

 

 

 
% W_C_varo defined as (1:Nterm+1)  
% regression searches for an offset (Nterm+1) term 
W_C_varo(1:Nterm)=rel_uw(p,:); 
W_C_lost_varo(1:Nterm)=rel_uw_lost(:)'; 

 
% COVARIANCE MATRIX 
W_M_varo=W_M_varo+W_C_varo'*W_C_varo-W_C_lost_varo'*W_C_lost_varo; 

             
% SCALAR PRODUCT 
W_EC_varo=W_EC_varo+ew(p)*W_C_varo'-ew_lost*W_C_lost_varo'; 

 
if (rank(W_M_varo+Nlamda_VARO)==size(W_M_varo,1)) 
% FITTING PARAMETER ki                

W_param_varo=(W_M_varo+Nlamda_VARO)\(W_EC_varo+Nlamda_kex_VARO); 
else 
W_param_varo=zeros(Nterm+1,1); 
end 
% variance of error        

sigma_e_varo=sqrt(W_param_varo'*W_M_varo*W_param_varo/window); 

 

 

 

 

 
% W_C_fixo defined as (1:Nterm) 
% offset is fixed to a certain point 
W_C_fixo=rel_uw(p,:); 
W_C_lost_fixo=rel_uw_lost(:)'; 

             
% COVARIANCE MATRIX 
W_M_fixo=W_M_fixo+W_C_fixo'*W_C_fixo-W_C_lost_fixo'*W_C_lost_fixo; 

             
% SCALAR PRODUCT 
W_EC_fixo=W_EC_fixo+ew(p)*W_C_fixo'-ew_lost*W_C_lost_fixo';       
if (rank(W_M_fixo+Nlamda_FIXO)==size(W_M_fixo,1)) 
% FITTING PARAMETER ki          

W_param_fixo=(W_M_fixo+Nlamda_FIXO)\(W_EC_fixo+Nlamda_kex_FIXO); 
else 
W_param_fixo=zeros(Nterm,1); 
end 
sigma_e_fixo=sqrt(W_param_fixo'*W_M_fixo*W_param_fixo/window); 

 

 

VARIABLE OFFSET MWR 

FIXED OFFSET MWR 
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6.4.3. Kalman Filter 

The Kalman filter depends largely on more recent values. The rate at which the expected 

fitting parameters are reached depends on the values along the diagonal of the R matrix 

(see section 5.6.1). The Q matrix (error covariance-model error) provides an indication of 

the weighting placed on past values that are used to predict current values and is usually 

diagonal. Large values along the diagonal of the Q matrix cause a quicker loss of the 

effect of older measurements; the converse is applicable for smaller values. This matrix 

can be adjusted depending on the information content of the data. For example, if the 

operating point suddenly moves to a new location, the older data probably are less 

relevant and therefore should be ‘forgotten’.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Concept of information retention for a Kalman Filter 
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K_obs(1)=ew(p);     
K_C(1,1:Nterm)=rel_uw(p,:); 

 
% KALMAN GAIN: K 
K_K=K_M*K_C'/(K_C*K_M*K_C'+K_R); 

 
% FITTING PARAMETERS ki 
K_param=K_param+K_K*(K_obs-K_C*K_param); 

 
% smoothing filter 
K_param_SMOOTHED=(1-K_alpha)*K_param+K_alpha*K_param_SMOOTHED;    
             

% COVARIANCE MATRIX: P 
K_M=(eye(Nterm+1)-K_K*K_C)*K_M+K_Q; 

 

 

 

The reduced weighting on older measurements results in responses that are variable and 

requires a smoothing filter to view the desired results. 

 

6.4.4. Partial Correlations 

The computational effort of linear partial correlations is dependent on the linear 

regression performed. In this work, the partial correlation regression is implemented 

recursively which reduces the runtime at each step and allows for a real-time 

implementation. However, computation time is much longer in comparison to MWR and 

the Kalman Filter. This is due to the fact that it requires the computation of 3 sets of 

partial correlation coefficients: 

 

a) Partial correlation coefficients for the error , equation 5.37:   

 

b) Partial correlation coefficients for u, equation (5.41):  

 

c) Partial correlation coefficients between єi (the error with the influence of other 

inputs, except ui completely removed) and δi (the input with the effect of the other 

inputs removed).  

KALMAN FILTER 

ϑϑϑϑ

φφφφ
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The coefficients in a) and b) are computed as follows: 

 

 

  

U_C_varo(1:Nterm)=rel_uw(p,:); 
U_C_lost_varo(1:Nterm)=rel_uw_lost(:)'; 

  
for k=1:Nterm 

     
    U_EC_varo(:,k)=U_EC_varo(:,k)+rel_uw(p,k)*U_C_varo'... 
        -rel_uw_lost(k)*U_C_lost_varo'; 
end 
for k=1:Nterm 

 
    % W_M_varo - covariance matrix from MWR 
    % Mex_v - extraction matrix 
    Mat=Mex_v(:,:,k)*W_M_varo*Mex_v(:,:,k)'; 
    if (rank(Mat)==Nterm) 

 
        % partial correlation coefficient for u(k) 
        param_v(:,k)=Mex_v(:,:,k)'*(Mat\(Mex_v(:,:,k)*U_EC_varo(:,k))); 

 
        % partial correlation coefficient for the error 
        % W_EC - scalar product from MWR 
        param_ve(:,k)=Mex_v(:,:,k)'*(Mat\(Mex_v(:,:,k)*W_EC_varo)); 
    else 
        param_v(:,k)=zeros(Nterm+1,1); 
        param_v(:,k)=zeros(Nterm+1,1); 
    end 
end 

 

 

 

These coefficients are calculated at every time step. Once these coefficients are found, 

the third set of coefficients is evaluated:  

 

 

 
for k=1:Nterm 
 for i=1:window 

 
 % THIS WILL TAKE A LOT OF TIME 
 % pred error - skips the u in question e.g equation(5.35) 
 % param_ve - computed by regression 
 av(i,k)=ew(i)-rel_uw(i,:)*param_ve(1:Nterm,k)-param_ve(Nterm+1,k); 

 

PARTIAL CORRELATION COEFFICIENTS: a) and b)  

PARTIAL CORRELATION COEFFICIENTS: c)  
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 % pred error - skips the u in question e.g equation(5.39) 
 % param_v - computed by regression 
 bv(i,k)=rel_uw(i,k)-rel_uw(i,:)*param_v(1:Nterm,k)-param_v(Nterm+1,k); 

 
 sig_abv(k)=sig_abv(k)+av(i,k)*bv(i,k); 
 sig_bbv(k)=sig_bbv(k)+bv(i,k)*bv(i,k); 
 end 

 

 
 if (sig_bbv(k)~=0) 

 
 % one-dimensional fit for desired partial correlation coefficient 
 gamma_v(k)=sig_abv(k)/sig_bbv(k); 
  

 else 
 gamma_v(k)=0; 
  

 end 

end 

 

 

 

It should be noted that this approach to determining the coefficients relating the error, e, 

to individual input terms, ui, produces exactly the same coefficients as a direct least 

squares fit (see chapter 7, section 7.1.2). This is because the direct fit is capable of 

quantitatively isolating the contributions from each input regardless of the correlation 

between the input terms.  

  

Within the main program, titled model_error_detector.m (see Appendix A), the user is 

given the option to skip any of the methods developed above and focus on a single 

method at a time. At the end of the total recorded time, graphical results are displayed 

which provides adequate information for the provision of the quality of a model(s).  
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CHAPTER  

7  

SIMULATION STUDIES 
 

 

 

 

 

 

 

 

 

 

 

7.1. SHELL HEAVY OIL FRACTIONATOR 

 

For the initial simulation studies the Shell Heavy Oil Fractionator is considered (Figure 

7.1). Three product draws and three circulating loops characterize the heavy oil 

fractionator unit (Patwardhan and Shah, 2002). The feed enters the column in a vapour 

state and subsequently provides the column’s heat requirement. Economics and operating 

constraints determine the product specifications for the top and side draws. The bottom 

draw has no product specification but the lower column temperature is required to be 

maintained within a desired operating range. The desired product separation is achieved 

by the three circulating loop present. In order to minimize utility losses, the heat 

exchangers in the intermediate and upper loops are integrated into other parts of the plant 

thus having a variation in heat duty requirements. These are regarded as disturbances to 

the column. Heat removal in the bottom loop is regulated by adjusting the steam intake. 

This is accomplished by an Enthalpy controller. 

 

 

The theory developed in chapter 5 and the methodology implemented in the previous chapter is 

applied to two simulation cases. The first case study is based on the Shell heavy oil 

fractionator. Scenarios such as gain mismatch, correlation amongst inputs, ‘quiet data’, 

influence of noise levels and time delay mismatch on MPM detection were considered. The 

second case study is based on a CSTH system and involves the testing of other parameters 

found in a model for MPM detection. Together with the intuitive qualitative results and 

quantitative measures, rules of thumb are developed which one may use to detect any MPM in 

industrial cases. The idea of reducing the model set is thereafter established.   
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Figure 7.1: Shell Heavy Oil Fractionator 

 

Table 7.1 gives the list of CVs and MVs for this particular system:  

 

Table 7.1: 

List of Process variables for the Shell heavy oil fractionator 

CV Description MV Description 

CV1 Top end temperature MV1 Top product draw 

CV2 Side point temperature MV2 Side product draw 

CV3 Bottoms reflux temperature MV3 Bottoms reflux duty 
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The 3 x 3 model is as follows, with time units in minutes: 

 

 

 

 

                                                   (7.1) 

 

 

 

 

Simulations will be carried out on a discretized version of G converted with a sampling 

time related to the dominant time constant obtained from the table below: 

 

Table 7.2: 

Sampling interval evaluation 

 CV1 CV2 CV3 

Root (min
-1

) 1/50 1/40 1/19 

Time constant (min) 50 40 19 

Sampling time (min) 7.94 6.35 3.02 

 

The MVs were modelled as ML type signals for all simulations unless otherwise stated. 

The typical constraints placed on each MV are shown below (figure 7.2): 

 

Table 7.3: 

Input constraints 

MV Description Min Max 

MV1 Top product draw -20 40 

MV2 Side product draw 10 90 

MV3 Bottoms reflux duty 50 125 
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Figure 7.2: Input signals 

 

Correlation plots for these inputs (figure 7.3) reveal that no input is correlated with 

another, which is to be expected since the model is being excited in open loop. 
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Figure 7.3: Sample Auto-Correlation plots for inputs 

 

All simulations are carried out in an ‘online’ manner where ‘plant’ data is generated and 

subsequently compared to model generated data. The model and the plant output are 

simulated in the same way, but with model parameter changes inserted into parameters 

used to generate the model output to demonstrate the efficacy of the methodology. The 

resultant error is then being tested for links to ui by means of correlation analyses as well 

as regression techniques. These tests would reveal the extent of MPM, if any. The 

equation error form coupled with differential inputs and outputs (equation 5.25) is used 

for all simulations except in the case of ‘quiet data’, section 7.1.3.2. Diverse cases were 

simulated in order to portray realistic occurrences such as gain, time delay and time 

constant mismatches. In industrial applications, mismatch would be evident in input-

output channels: thus the challenge for the methodology lies in its ability to identify the 

source(s) of significant MPM. Each output, yj, is dealt with independently. This is 

possible due to the fact that the models are presented in input-output form. The rate with 

which a model error is introduced does not alter the likelihood of detection. This is 

because the models are time-invariant. Simulations were carried out for 3000 sampling 

points. Model errors are inserted at one-third of the total recorded time. One should be 

reminded that correlation plots are available at set intervals throughout the data set and 

only sample plots, spanning 100 second separations, obtained in the middle of the data set 
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are shown. The window size for the moving window regression is taken as 800 sampling 

points, representing 2416 seconds for the chosen sampling interval of 3.02 s. One can 

recall that the matrix Q and the matrix R, both usually diagonal, determine the efficacy of 

the Kalman Filter operation. For all simulations performed below, the values along the 

diagonal of Q, corresponding to the ki estimates, were taken as 0.0001. In terms of the R 

matrix, the first value along the diagonal, corresponding to the α observation, was taken 

as 0.1, with all but the last remaining values set at 1. The final offset term within the R 

matrix diagonal was given a value of 100.  

 

7.1.1. Scenario 1 – Gain Mismatch 

In this case, mismatch was added in such a way as to create a situation where the gain in 

the MV1 – CV1 channel is over-estimated by +50%. This means that the model gain is 

50% higher than the plant gain or conversely, the plant gain in this channel is 33 
1
/3 % 

lower than the assumed model gain for which the plant was designed. In order to create a 

more realistic scenario, mismatches of +10% and -10% were added in channels MV2 – 

CV1 and MV3 – CV1 respectively. Figure 7.4 illustrates the error that forms due to these 

model mismatches: 

 

 

 

 

 

 

 

 

 

Figure 7.4: Error due to gain MPM 

 

The correlation between this error and the respective inputs is shown below. Figure 7.5(a) 

shows a significant correlation in model MV1 – CV1. Small correlations are attributed to 

the channels MV2 – CV1 and MV3 – CV1 as they exhibit small mismatches. 
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Figure 7.5: Cross - Correlation plots for gain mismatch 

 

Although these plots are useful in isolating channels that exhibit MPM, they do not 

provide any information as to the extent of the MPM. 

 

Conversely, the regression plots reveal the extent of the mismatch. Recalling table 5.2 

and the expected ki fitting related to equation (5.25), the following plots are obtained for 

the Moving Window Regression and the Kalman filter correspondingly:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Moving Window Regression plot – mismatch detection for CV1 

 

 

(a) 

                    (a)                                                     (b)                                                      (c) 
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Figure 7.7: Kalman Filter parameter estimation plot – mismatch detection for CV1 

 

Table 7.4 presents a summary of the overall fitting parameters obtained through 

regression. 

 

Table 7.4:  

Summary of the overall fitting parameters obtained 

 k1 k2 k3 

EXPECTED ki 0.3333 0.091 -0.1111 

MOVING WINDOW REGRESSION 0.3327 0.092 -0.1108 

KALMAN FILTER 0.3273 0.089 0.1089 

 

These fitting parameters represent the way the error relates to a particular ui expressed as 

a fraction of the gain used in the model for that ui term. Both regression techniques 

displayed above, show the expected result. It is interesting to note the time each method 

takes to reach the correct parameter fittings. The Kalman filter depends largely on more 

recent values and hence takes a shorter period of time to obtain it’s fitting parameters as 

shown by the box labeled (b) in figure 7.7. This makes the Kalman Filter desirable in 

terms of time taken for computation. The recursive regression based on the moving 

(b) 
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window approach puts an equal weighting on each point within the window as illustrated 

by box (a) in figure 7.6, thus the response to reach the intended result is longer but 

smoother in comparison to the Kalman filter response. It can also be deduced from table 

7.4 that applying equal weighting to past data results in a closer fit to the expected 

parameters. 

 

7.1.1.1. Fitting Parameter multiplicative factors 

In a more practical view, one may obtain the actual factors by which the gain has 

changed. One may recall the expected fitting parameter ki related to equation (5.25): 

 

    

                                                                                              (7.2) 

 

 

Suppose there is no mismatch in the lag polynomials (Ami = Api) and that the model gain 

(Kmi) is ηi x plant gain (Kpi). Equation (7.2) then becomes: 

 

                                                                                                             (7.3) 

 

Rearranging equation (7.3) and cancelling common factors, one obtains an equation that 

results in the actual factor by which a model gain has changed: 

 

                                                                                                                   (7.4) 

 

 

Table 7.5:  

Summary of fitting parameter factors obtained 

 η1 η2 η3 

EXPECTED ηi FACTORS 1.50 1.10 0.90 

MOVING WINDOW REGRESSION 1.4986 1.1017 0.9002 

KALMAN FILTER 1.4865 1.0971 0.9018 
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It should be noted that this form is limited only to the detection of GAIN mismatches. 

The results relating to the expected factors are shown above and the graphical results are 

shown below: 

 

 

Figure 7.8: Moving Window Regression factor plot – mismatch detection for CV1 

 

 

Figure 7.9: Kalman Filter factor estimation plot – mismatch detection for CV1 
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7.1.2. Scenario 2 – Correlation amongst inputs 

In closed-loop operation (see section 2.4.1, figure 2.5), the multivariable controller, Q, 

computes each MV in u at every sampled instant. It can be seen that the same error vector 

forms the basis for the calculation of each MV. This results in coordinated adjustments of 

the MVs and depending on the controller design, this may lead to the correlation between 

MVs. The regular correlation analysis between the residuals and the inputs may be 

confounded by such correlations amongst inputs resulting in false model error detection. 

  

 

Figure 7.10: Correlation plots for correlation amongst inputs 
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For example, consider the same case of mismatch in section 7.1.1 (only mismatch 

exhibited in channel MV1 – CV1 for simplicity), but with MV3 having 50% of the 

behavior exhibited by MV1. Figure 7.10 shows the correlation plots for the inputs. It can 

be seen from these plots that MV1 and MV3 are correlated. With reference to figure 7.11, 

although the first model term in figure 7.11(a) is at fault, there is a misleading correlation 

of the output error in y with u3 as shown in figure 7.11(c) (as well as the expected 

correlation with u1). This is because the correlation analysis does not view each input 

independently and thus does not remove their interactive contributions. 

 

 

 

 

 

 

 

 

 

Figure 7.11: Correlation plots with correlation amongst inputs 

 

It should be noted again the Kalman Filter settings for the matrices Q and R are the same 

in this scenario as detailed in the introduction to section 7.1. 

 

The partial correlation methodology serves to provide the correct result, as depicted in 

figure 7.12, since it removes the influence of other variables when dealing with a specific 

input-output pairing.  

                    (a)                                                     (b)                                                      (c) 



-132- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: Partial correlation coefficient plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13: Moving Window Regression plot – correlation amongst inputs 
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Figure 7.14: Kalman Filter parameter estimation plot – correlation amongst inputs 

 

As noted in section 6.4.4, the partial correlation regression (figure 7.12) produces the 

same results as direct regression (Figure 7.13). Apart from the slight drift away from zero 

for the partial correlation plot relating to u3, the results are as expected. The slight drift is 

due to the fact that the window is still filling up during this period, indicated by box (c). 

In contrast, to the cross-correlations, the regression techniques illustrated above are 

shown to be capable of dealing with the quantitative effects of each MV separately.  

 

7.1.3. Scenario 3 – ‘Quiet’ data 

The concept of persistent signal excitation allowing for informative data is often regarded 

as a given in the development of closed – loop model validation methods (Badwe et al., 

2009). The reasoning behind this is that under typical MPC operation, the targets (set-

points) are regularly computed by the upper LP layer. However, it is shown that the 

condition of informative data in a closed – loop system is generally not guaranteed by 

sufficient signal excitation (Ljung, 1987). Gustavsson (1977), whose work concerned the 

identification of closed – loop processes, elaborated on the statement by Ljung by 

(e) 
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articulating that one of the natural purposes of a feedback controller is to minimize the 

output variance and consequently minimize the output information content.  

 

7.1.3.1. Limited informative data 

In the absence of sufficient signal excitation, the methodology developed can only 

display results in a limited capacity. Consider that the output CV1 is nearing its intended 

target and the input signals are now shown to be exhibiting a few movements as shown in 

figure 7.15. Due to the few movements of each input signal, the provision of ‘enough’ 

informative data is made possible for the limited detection of any MPM. Consider the 

same mismatch implemented in scenario 1, but with only the gain in channel MV1 – CV1 

being overestimated by 50%. The Cross – Correlation results are shown below in figure 

7.16 together with the regression results. Ideally one would expect the same results 

obtained for k1 in table 7.4.  
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Figure 7.15: Input signals – limited informative data 

 

 

Figure 7.16: Correlation plots for gain mismatch with limited informative data 

 

Table 7.6:  

Summary of overall fitting parameters: limited informative data 

 k1 k2 k3 

EXPECTED ki 0.3333 0.00 0.00 

MOVING WINDOW REGRESSION 0.2757 2.83 x 10
-3

 3.32 x 10
-3

 

KALMAN FILTER 0.1703 1.93 x 10
-3

 1.27 x 10
-3

 

 

The fitting parameters differ from the expected result due to the flat nature of the input 

data with reference made to boxes labeled (f) through to (h). If the excitation reduces, the 

input term (β) in equation (5.32) will tend to get smaller and the default kexp values will 

be given. Also due to the flat nature, the moving window regression takes a while to 

                    (a)                                                     (b)                                                      (c) 

 

(h) 

(c) 
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reach a steady fitting parameter, shown by box (i). The Kalman filter is shown to drop 

back to zero at one instance, illustrated by box (j). This is because u1 is relatively flat and 

thus lacks any informative content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17: Moving Window Regression plot – limited informative data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18: Kalman Filter parameter estimation plot – limited informative data 
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7.1.3.2. Set – point target reached 

When a set – point target is reached and is required to be maintained at this respective 

point, the current error definition form used in the methodology to detect any model 

degradation fails to provide adequate results. The correlation plots reveal no significant 

mismatch in channel MV1 – CV1 even though a mismatch is evident in the model gain 

(figures 7.19 to 7.21): 

 

 

Figure 7.19: Correlation plots for gain mismatch – set-point target reached 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20: Moving Window Regression plot – set-point target reached 

                    (a)                                                     (b)                                                      (c) 
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Figure 7.21: Kalman Filter parameter estimation plot – set-point target reached 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.22: Moving Window Regression plot with fixed offset – set-point target reached 
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Although it can be seen in both figure 7.20 and 7.21 that there does exist a deviation 

away from zero for k1, these values are too minute to provide evidence that a mismatch is 

present. Nevertheless, by using a direct form of inputs and outputs together with an open-

loop predictor, as shown by equation 5.24, one is capable of providing an indication of a 

significant deviation away from zero by fixing the offset term, although it may not 

provide the expected result due to the lack of information present in the data. This result 

is shown above in figure 7.22. Recall that the preceding results were based on the 

differential equation error form, equation 5.25, so that the offset information is lost.  

 

7.1.4. Scenario 4 – Sensitivity to noise levels 

Noise levels are critical for the performance of the method. It is necessary that the 

magnitude of the modelling error dominates over process noise. Noise often corrupts the 

signal obtained from the plant i.e. the plant inputs and outputs. Consequently these noise 

signals add to the error that is formed possibly due to MPM. In this case, the effect of 

dissimilar noise levels on the ability to detect MPM will be demonstrated. These tests 

will be performed on the gain mismatch in channel MV1 – CV1 to maintain a level of 

consistency.  

 

All noise signals are modelled as Gaussian white noise signals with varying ranges which 

is added to the plant output, yp. Table 7.7 shows the various standard deviations of the 

noise signals used as well as the signal – to – noise ratios. One should note that the 

equation error, differential form for the error formulation is employed in this section. 

 

Table 7.7:  

Various SNR ratios  

 Noise std deviation  

σnoise 

Error std deviation  

σerror 

Signal – to – 

noise ratio SNRe 

Case 1 0.0832 0.4179 5.0228 

Case 2 1.0091 3.2812 3.2561 

Case 3 8.4236 22.5631 2.6785 

 



-140- 

 

7.1.4.1. Case 1 

In this case the standard deviation of the noise is relatively low compared to the standard 

deviation of the output error. Due to the fact that the error standard deviation dominates 

over the noise standard deviation, the results obtained are as expected. This is because the 

error is predominantly due to MPM rather than excessive noise present. The results 

obtained are shown below in figures 7.23 to 7.25: 

 

 

Figure 7.23: Correlation plots – noise levels case 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.24: Moving Window Regression plot – noise levels case 1 

                    (a)                                                     (b)                                                      (c) 

Effect of noise 
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Figure 7.25: Kalman Filter parameter estimation plot – noise levels case 1 

 

The correlation plot in figure 7.23(a) is similar to the plot shown in figure 7.5(a) except 

that here the correlation plot is slightly smaller.  

 

The moving window regression plot illustrates the slight effect of the noise in the period 

before the mismatch is inserted. The regression does not know which model parameters 

contribute to the error formed prior to the mismatch as the window is being filled for the 

first time and thereby attributes the error to all parameters involved. However, once the 

mismatch is inserted, the moving window provides the expected result by attributing the 

error formed to the gain in channel MV1 – CV1.  

 

The same Kalman Filter settings described in section 7.1 are used for these simulations. 

The Kalman filter, on the other hand, is shown to be more susceptible to disruption by the 

presence of noise. This is because the Kalman filter is highly sensitive to the effect of 

recent data values and thus produces a more variable response in comparison to the 

moving window regression. 
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7.1.4.2. Case 2 

In this case the standard deviation of the noise signal is increased and the effect to this 

increase in noise variance is shown below. As the SNR value starts to drop, the 

methodology no longer views the error formed as simply a modeling error (figures 7.26 

to 7.28): 

 

 

Figure 7.26: Correlation plots – noise levels case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.27: Moving Window Regression plot – noise levels case 2 

 

 

                    (a)                                                     (b)                                                      (c) 
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Figure 7.28: Kalman Filter parameter estimation plot – noise levels case 2 

 

Figure 7.26(a) shows a drop in the magnitude of the correlation plot. Cross – Correlation 

plots deal with the correlation between the output error and the corresponding inputs. If 

the variance of the noise signal is increased, the magnitude of the correlation coefficients 

drop as the error formed is not only due to MPM but also due to the influence of noise 

present.  

 

The influence of the noise signal is more pronounced on the moving window regression 

plot depicted in figure 7.27. As the noise levels increase, the regression tries to determine 

the modeling error as shown by the fitting of parameter k1, but also attributes portions of 

the noise signal as an error to the remaining parameters. 

 

The Kalman filter produces a rather random display of fitting parameters in figure 7.28 

due to the effect of the noise levels. From this plot it is difficult to perceive which 

parameter deviates away from zero due to a modeling mismatch. Thus for the purpose of 

determining a modeling mismatch in the presence of noise levels, the parameters 
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obtained from the Kalman filter regression may be required to be passed through a 

smoothing filter to view adequate results.    

 

7.1.4.3. Case 3 

Here, the noise signal is further increased, dropping the SNR value further down. In this 

case, the noise is primarily dominant over modeling error. 

 

 

Figure 7.29: Correlation plots – noise levels case 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.30: Moving Window Regression plot – noise levels case 3 

 

                    (a)                                                     (b)                                                      (c) 
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Figure 7.31: Kalman Filter parameter estimation plot – noise levels case 3 

 

All the plots depicted in figure 7.29 show correlation coefficients that are essentially 

zero. The implication here is that the noise signal dominates over the modeling error 

obtained. Thus, the correlation analysis cannot determine which input – output pairing is 

mismatched.  

 

Both regression plots shown in figure 7.30 and 7.31 respectively show that the 

parameters exhibit a haphazard behavior in trying to fit to the error that is formed. At this 

stage, with such high levels of noise, it is nearly impossible to determine the extent of a 

model mismatch. Even though different types of process noise also could be considered 

as modelling errors, where a noise model is defined (ARMAX form of model definitions, 

see equation 3.19), this is not considered. This thesis focuses on the deterministic 

modelling errors in plant dynamics. In order to combat the effect of noise influencing the 

plant signal, one is required to use a low-pass or high-pass filter (depending on the 

frequency of noise) to reduce the influence of the noise on the signal to an extent so that 

the methodology may be applicable in cases where high levels of noise signals are 

present.  
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7.1.5. Scenario 5 – Time Delay Mismatch 

In this case, the time delay term from equation 7.1 in channel MV1 – CV1 is 

overestimated by 50%. This means that the plant lags the model by half the time delay 

value which was initially desired. The mismatch is placed in the same channel (MV1 – 

CV1) as the scenario in section 7.1.1. This is done in order to compare the results 

obtained for these two cases. The error plot in figure 7.32 for this mismatch covers a 

larger range compared to figure 7.4: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.32: Error due to time delay 

 

The Cross - Correlations plots for this case are plotted in figure 7.33: 

 

 

 

  

 

 

 

 

Figure 7.33: Cross – Correlation plots for time delay mismatch 

                    (a)                                                     (b)                                                      (c) 
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It can be seen that significant correlation is exhibited in figure 7.33(a) which is as 

expected. An interesting feature however is the shape of the correlation plot in figure 

7.33(a) compared to that exhibited in figure 7.5(a). Each plot has a unique characteristic 

pattern depicted. Thus one may study these plots alone in order to gain some insight into 

which factor may have caused this mismatch, refer to figure 7.5(a) and 7.33(a). For 

example, for gain mismatch the correlation plot is illustrated in figure 7.5(a) to have a 

single large peak (either negative or positive) whereas the for a time delay figure 7.33(a) 

shows that it exhibits two large peaks.  

 

The regression plots also reveal interesting results. Figure 7.34 and figure 7.35 reveal a 

k1, reaching a point greater than 1. Although the regression techniques developed are 

primarily employed to target gain changes, troubleshooting revealed that due to a large 

shift between the model and plant due to a delay change, large ki values are possible. This 

can be explained intuitively by referring to figure 7.36, a typical response to a pulse 

input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.34: Moving Window Regression plot – time delay mismatch 
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Figure 7.35: Kalman Filter parameter estimation plot – time delay mismatch 

 

In figure 7.36, a typical response to a pulse input together with a shifted response to the 

same input is shown. Points labeled (a), (b) and (c) represent lag points that are used in 

the computation of an equation error form. Points x, y and z are representative of the 

output response at points (a), (b) and (c) respectively. The table below shows the 

approximate values from the plots depicted below as well as the relative gain at these 

points. The gain is defined as the output relative to the input. They are negative due to a -

10 % change in the input. 

 

Table 7.8: 

Summary of intuitive results for a shifted response 

 X Y Z 

Output - Typical Response 58 35 22 

Output - Shifted Response 68 68 60 

Typical Response Gain (output/input) -5.8 -3.5 -2.2 

Shifted Response Gain (output/input) -6.8 -6.8 -6.0 
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Figure 7.36: Typical response plots to a pulse input 
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The relative gains in table 7.8 for a shifted response are higher in magnitude than that for 

a typical response. The equation-error form finds k values that relate to the input. In this 

case it will be equal to the difference in the gain-magnitudes that can be much larger than 

unity.  

 

7.2. CONTINUOUS STIRRED TANK HEATER 

 
For this scenario, a different unit is used as the models possess higher order lag 

polynomials in the denominator and numerator. A continuous stirred tank heater (CSTH) 

is used for this aspect of the study. A simple schematic of the CSTH system is shown 

below: 

 

 

 

 
Figure 7.37: Simple schematic of the CSTH system (Thornhill et al., 2008) 
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The CSTH system has two inputs; cold water (MV1) and steam (MV2); and two outputs; 

water level (CV1) and outlet water temperature (CV2). The models relating the outlet 

water temperature to both MVs is given below (time units – minutes): 

 

 

                                        (7.5) 

 

 

The sampling interval was found to be 3.18 minutes and the inputs were modeled as ML 

(multi-level) signals. The idea behind this case study is to illustrate the effect of the 

higher order coefficients found in the lag polynomials on the fitting parameters ki.  

 

7.2.1. Mismatch in higher order coefficient in denominator 

For this test, emphasis is placed on model 2 (MV2 – CV2) as it contains higher order 

polynomials in both the denominator and numerator. A gain underestimated by 50% 

would give a ki value of -1.00. Suppose now that the coefficient 240.4 is increased by a 

factor of 2, the results obtained are shown below: 

 

 

 

 

 

 

 

 

 

Figure 7.38: Correlation plots for denominator coefficient mismatch 
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Figure 7.39: Moving Window Regression plot – denominator coefficient mismatch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.40: Kalman Filter parameter estimation plot – denominator coefficient mismatch 
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Table 7.9: 

Summary of results for denominator coefficient mismatch 

 k1 k2 

EXPECTED ki FOR UNDERESTIMATED GAIN 0.00 -1.00 

MOVING WINDOW REGRESSION 0.0041 -0.9361 

KALMAN FILTER 0.0421 -0.5124 

 

The correlations plots reveal the expected result i.e. a mismatch in channel MV2 – CV2. 

The regression plots on the other hand reveal the results that one would expect for a gain 

underestimated by 50%. The fitting parameter obtained for k2 is fairly close to the 

expected result for such a gain error for the moving window form of regression, whereas 

the fitting parameter obtained by the Kalman filter regression is approximately half of the 

moving window value.  

 

The closeness of the fitting parameter obtained for a higher order coefficient found in the 

denominator which is twice the plant value compared, to that which is obtained for a gain 

underestimated by 50%, can be explained by considering the following model form: 

 

                                                                                                   (7.6) 

 

In this 2
nd

 order model coupled with a 1
st
 order lead (same form as model 2 in equation 

7.5), coefficients a, b and c are arbitrary constants. Neglecting any time delay mismatch, 

and substituting a forward difference approximation (simplest form of a discrete 

approximation; see table 5.1) for the Laplace operator, s, and assuming a unit sampling 

interval, one obtains the following form for equation (7.6):  

 

                                                                               (7.7) 

 

 

Expanding all polynomials within the model, the following is obtained: 
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                                                                  (7.8) 

 

 

The appropriate discrete model form is obtained by dividing throughout by (1 + a + b):  

 

 

                                                                 (7.9) 

 

 

The following assumptions can be made: 

 

 

 

 

 

 

 

Equation (7.9) thus simplifies to: 

 

 

                                                                                       (7.10) 
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                                                                                             (7.11) 

 

 

From equation (7.11), it can be seen that if the coefficient a is significantly large, it 

becomes directly linked to the gain of the system. Equation (7.5) shows that a = 240.4 is 

significantly larger than that of the other coefficients. 

 

7.2.2. Mismatch in coefficient in numerator  

Suppose that mismatch was added in such a way that coefficient c (c = 0.0295) in channel 

MV2 – CV2 from equation (7.5) is underestimated by 50%. As a result of this factor 

being much smaller than the actual gain (500 times smaller), one would expect very small 

fitting coefficients. The results pertaining to this scenario are shown below, in figures 

7.41 – 7.43: 

 

 

 

 

 

 

 

 

 

Figure 7.41: Correlation plots for numerator coefficient mismatch 
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Figure 7.42: Moving Window Regression plot – numerator coefficient mismatch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.43: Kalman Filter parameter estimation plot – numerator coefficient mismatch 
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7.2.3. Mismatch in lower order coefficient in denominator  

Coefficient b (b = 3.6) in channel MV2 – CV2 is underestimated by 50%. One would 

expect negligible fitting parameters for this scenario as equation (7.11) shows that 

coefficient is not present in the models discrete form for large a coefficients. This is 

shown by figures 7.45 and 7.46.   

 

 

 

 

 

 

 

 

 

 

Figure 7.44: Correlation plots for lower order denominator coefficient mismatch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.45: Moving Window Regression plot- lower order denominator coefficient 

(c)                                             (b) 
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Figure 7.46: Kalman Filter parameter estimation plot- lower order denominator coefficient 

 

7.3. RULES FOR DETECTING SIGNIFICANT MISMATCH 

 
In order to make the provision of model diagnostic results better suited for interpretation 

by a maintenance engineer monitoring a Model Predictive Controller, a number of 

strategic warning mechanisms are implemented within the MATLAB ® program. These 

warning mechanisms provide information when certain limits are violated. These 

warning mechanisms include increased error variance, correlation coefficients violating 

certain confidence bounds as well as regression coefficients violating set confidence 

levels.  

 

7.3.1. Error Variance  

The benchmark for error variance depends on the variance set for the description of the 

noise model in an ARX model equation; see equation (3.28). Badwe et al., (2009) 

describes the noise model in their simulation studies as having a variance of 0.0075. For 

this work, the noise model is given a variance of 0.01. In the absence of any MPM, the 

noise model is shown to be equal to the model error obtained: 
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Figure 7.47: Error plot in the absence of MPM 

 

This is regarded as the benchmark for optimal control. If for any reason, the variance of 

this error is shown to be greater than the benchmark standard variance, a first warning is 

issued, informing the user that they may be a modeling mismatch present, or other factors 

which may cause the error variance to increase: 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.48: Warning Flag mechanism for increased variance 

  1 

 

 

 

  0 

Flag = 0 � 

benchmark standard 

maintained 

Flag = 1 � 

benchmark standard 

violated 

Time 



-160- 

 

7.3.2. Cross – Correlation Confidence Bounds  

Webber and Gupta (2008) suggest that 95% confidence bounds (range of -0.05 to 0.05 for 

correlation coefficients) are suitable for the detection of significant MPM in Cross – 

Correlation analyses. For this work, larger confidence bounds are used as significant 

mismatches are found to be in a correlation coefficient range outside -0.5 to 0.5. If it is 

shown that a correlation plot reveals that the coefficients are outside the range of -0.5 to 

0.5, a second warning is issued which implies the presence of MPM. These flags are 

issued for each input – output pairing. Coefficients within range do not necessarily imply 

that no MPM is present. As shown in section 7.1.4, the influence of noise signals reduce 

the magnitude of the correlation coefficients notably even in the presence of MPM.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.49: Warning Flag mechanism for the violation of correlation bounds 

 

7.3.3. Regression fitting parameters confidence bounds 

These bounds can be set by the user depending on how much a gain may be mismatched 

in a specific application. For example small bounds are required to be set for a system 

that requires a temperature to be maintained in a tight range. In the case of maintaining 

the level in a tank, larger bounds may be used as the tank may be operating such that it 

does not overflow or run dry. For this work confidence levels, for the ratio of equation 

error to plant value of the RHS of equation (5.25), ranging from -1 to 1 is used. If a 
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parameter is shown to be outside this range, a third warning is issued for a gain 

mismatch. Another range outside of -1 to 1 is incorporated in this mechanism to issue a 

warning for the presence of a time delay mismatch (see section 7.1.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.50: Warning Flag mechanism for the violation of regression parameter bounds 

 

If the above warning mechanism issues a warning for a gain mismatch, then another 

mechanism is employed on the multiplicative factors to determine the significance of the 

mismatch. These bounds may be set by the user: 

 

 

 

 

 

 

 

 

 

Figure 7.51: Warning Flag mechanism for the violation gain bounds 
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These bounds depend on the application of the model as well as whether the controller is 

performing well under the circumstances wherein a mismatch is present. The typical 

bounds applied in this thesis ranges from 0.7 to 1.5. 

 

7.3.4. Variability of data 

High variability of the input data is paramount to the efficacy of this methodology. In the 

case where variability is low, the resulting fitting parameters are shown to be less 

significant. Thus another warning mechanism is developed which issues a warning when 

the variability of the data is low. This informs the user that he should switch to a non – 

differential, open – loop prediction form in order to obtain a reasonable result (see figure 

7.50). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.52: Warning Flag mechanism for the variability of input data 

 

7.3.5. Noise levels 

Noise levels disrupt the efficacy of the methodology tremendously. In the presence of 

significant noise levels, figure 7.48 may exhibit random switching between flags, making 

it difficult to distinguish the source of MPM. If, however the MPM dominates over the 

noise signal over a range of time, one may obtain a reasonable diagnosis. 
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7.3.6. Diagnosis Table 

Each of the warning mechanisms shown above are combined to provide an overall 

diagnosis displayed in the table below: 

 

Table 7.10: 

Diagnosis table for Model validation methodology 
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DIAGNOSIS 

0 0 0 0 
• Model Quality indication � good 

• No MPM present  

1 1 1 0 
• MPM – gain mismatch detected  

• Not significant (user discretion)  

1 1 1 1 
• MPM – gain mismatch detected  

• Controller performance affected  

0 1 0 0 
• MPM – lower order polynomial 

• Coefficients mismatch 

1 1 2 X 
• MPM – time delay mismatch 

• Model requires attention 

1 0 0, 1, 2 X 
• Influence of noise  

• Difficult to distinguish model error 

*x – user is required analyze the results carefully in order to make a diagnosis 

 

The maintenance engineer may use this table when the models used in a Model Predictive 

Controller are being tested. In the case where the input data has low variability, a warning 

is issued to the user to change the error detection form to a form which is suitable for 

cases of ‘quiet’ data i.e. non - differential equation error with fixed offset. 
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7.3.6.1. Application of the diagnosis table  

The validity of the above diagnosis table is tested using the results obtained for section 

7.1.4.2. This scenario is representative of a typical industrial process where the influence 

of noise on a plant signal is inevitable. Suppose that one does not know that a mismatch 

relating to channel MV1 – CV1 for the Shell Heavy Oil Fractionator. In this case, careful 

observations for each warning mechanism are needed in order to provide a diagnosis.  

 

The first step is to view the warning mechanism related to the error variance: 

 

    

 

 

 

 

 

 

 

Figure 7.53: Error variance warning flag 

 

This flag indicates that the variance of the error obtained is higher than the benchmark in 

the case of no model mismatch or excessive noise signals. The next step is to view the 

correlation warning flags which provide an indication of which input – output pairing 

may be responsible for the error obtained.  
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Figure 7.54: Correlation coefficients bounds violation flags 

 

No flag is issued for any of the input – output pairings involved (figure 7.54). One may 

deduce that the error obtained is influenced by the presence of noise, which subsequently 

reduces the magnitude of the correlation coefficients. The next step is to determine 

whether the regression fitting parameters are within the -1 to 1 range. Flag mechanisms 

are set up for both moving window regression and the Kalman filter: 
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Figure 7.55: MWR parameter flag 1 

 

A flag warning of 0 implies that the parameters are in the desired range. A flag warning 

of 1 implies that the parameters lie outside the desired bounds. In this case, k1 is found to 

be within the -1 to +1 range but outside its desired bounds of -0.3 to +0.3. 
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Figure 7.56: Kalman Filter parameter flag 1 

 

In the case of the Kalman filter, haphazard switches between flag options are due to the 

susceptibility of the Kalman filter to disruption by noise. Nevertheless, all flags above 

indicate that the parameters all lie in the range -1 to +1, ruling out the possibility of a 

time delay mismatch. Also due to the fact that a flag warning of 1 implies a parameter 

fitting outside the range of -0.3 to +0.3 a mismatch in lower order parameters is 
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subsequently ruled out. It can thus safely be assumed that the error is due to a gain 

mismatch or purely the influence of noise.  

 

The next mechanism focuses on the multiplicative factors. A range of 0.5 (the model gain 

is 50% smaller than the plant gain) to 1.3 (the model gain is 30% higher than the plant 

gain). A flag warning of 1 would imply a significant mismatch in the gain, if and only if 

the flag remains constant for long period of time: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.57: MWR parameter flag 2 
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From the figure 7.57 above one can deduce that there exists a significant gain mismatch 

due to the persistent flag warning of 1 issued for k1. The random switch in flag warning 

depicted for k2 is primarily due to the influence of noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.58: Kalman Filter parameter flag 2 
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The Kalman filter also lies in agreement with the flags issued for the moving window 

regression. The complete diagnosis in this case is as follows: a significant gain mismatch 

exists in channel MV1 – CV1 (see figure 7.55 and 7.56); there exist some level of noise 

signal influence due to small correlation coefficients (see figure 7.52); thus the error 

formed is due to a gain mismatch in channel MV1 – CV1 as well as due to the influence 

of an unmeasured noise signal. 

 

7.3.7. Model Set reduction  

The technique of reducing model sets in order to determine true and significant model 

mismatches is an important one especially in the case where plant input and output 

signals are disrupted by the influence of noise. It is important to clarify that the purpose 

of reducing model sets is to look for the situation where one of the sets produces no 

correlated error, and merely brings more noise that could mask correlated error in the 

other set. Those inputs that are disrupted by noise compound the error that forms and 

results in spurious mismatch detections. Reducing model sets simply means holding an 

input constant. In differential mode this means the differential input is zero, effectively 

leaving out the model related to that specific input. When one decides to reduce the 

model set, the open – loop prediction form for the model output needs to be employed as 

one may not ‘borrow’ previous plant output values, see section 5.2, equation 5.24. The 

differential mode eliminates the effect of the offset. Model set reduction minimizes the 

effect of noise signals and subsequently provides adequate results (see section 8.2.1).  

 

 

 

 

 

 

 

 

 

 



-171- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-172- 

 

 

 

CHAPTER  

8  

INDUSTRIAL CASE STUDY 
 

 

 

 

 

 

 

 

 

 

 

8.1. PETROL DEBUTANIZER 

 

From an operating point of view, the Petrol Debutanizer serves a dual purpose. In petrol 

mode, it is used as an additional feed debutanizer to the next phase of operation. In diesel 

mode, it is used to remove light components (C4 and lighter) from the petrol/diesel 

product sent to the next phase of operation. Any light components in this product will be 

flared, since the next phase of operation has no facility to remove or process excess light 

material.  

 

The petrol debutanizer has several Process Variables. These include 6 CVs, 6 MVs and 6 

measured DVs. A simplified Process and Instrumentation Diagram of the system, for 

which the petrol debutanizer controller is employed, is shown below. All process 

variables are highlighted within the diagram and listed in the table below. Process 

variables that are not depicted in the PID below are found in upstream processes.  

 

 

In the previous chapter, known model mismatches and their expected simulated responses 

allowed for the investigation of various scenarios that are applicable in industrial applications. 

This chapter seeks to extend the results and rules for significant mismatch detection to a real 

plant system. A petrol Debutanizer model, supplied by SASOL together with industrial data, is 

used to test the validity of the methodology developed in this work. This system contains 

several Process Variables and the requirement to focus on smaller subsets of models 

established in chapter 7 is further addressed. For this purpose CV2 is considered initially to 

develop this requirement. The results pertaining to the remaining CVs are documented and 

pertinent observations are discussed.     
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Table 8.1: 

Summary of Process Variables for Petrol Debutanizer unit 

CV Description MV Description 

CV1 Level in Reflux drum DM -1 MV1 V-2 Column feed 

CV2 V-2 Tray 7 temperature MV2 Petrol Bypass  

CV3 V-2 Top temperature MV3 Reboiler Steam 

CV4 V-2 Column Differential Pressure MV4 V-2 reflux 

CV5 V-2 Bottoms level MV5 V-1 feed flow 

CV6 Petrol feed flow to next unit MV6 UHCCP flow from DVs 

    

DV Description   

DV1 Rectifier 1 bottoms product   

DV2 Rectifier 2 bottoms product   

DV3 Petrol Recycle 1   

DV4 Petrol Recycle 2   

DV5 Mod 1    

DV6 Mod 2   

 

Each Process Variable is labeled in one of three colours in order to differentiate between 

inputs (MVs and DVs) and outputs (CVs).  

 

The Model Predictive Controller is primarily employed for the operations of column V-2. 

The feed to the V-2 column is drawn from DM-1, the reflux drum of V-1. This drum also 

provides the petrol recycle to the reactors in the next phase of operation through a poly-

debutanizer. The feed to V-2 is normally running on flow control, and the level is 

controlled with a petrol bypass line around V-2 routed directly to the next phase feed 

tank.  The control objectives of the petrol debutanizer controller are to stabilize the level 

in DM-1, and obtain the desired petrol fraction in bottoms product of column V-2. The 

optimization objective is to minimize the petrol bypass flow labeled as MV2 in the 

diagram above.  
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The model matrix for this particular controller can be found in Appendix B, figures B.1 

to B.3. There are no models in channels that are left blank since that specific MV or DV 

does not affect the corresponding CV. 8264 samples of data were provided by SASOL 

with a sampling interval of 0.5 minutes (approximately 3 days worth of data). A suitable 

subset of data (a days worth of data ~ 3000 data points) was chosen from the provided 

data which encompasses the various scenarios covered in chapter 7.      

 

8.1.1. Manipulated Variables 

Each of the 6 MVs present in this system is imperative in achieving the controller’s 

optimization objectives and control objectives. Each MV is represented below. N.B. 

dotted lines (
….

) indicate periods of time in which the data is relatively flat. 
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Figure 8.2: Manipulated Variables 
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Due to the nature of the operation of a MPC controller, these manipulated variables need 

to be tested in order to determine which (if any) inputs are correlated amongst each other. 

Correlation plots are provided below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3: Correlation plots for all MVs 
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Each of the inputs is correlated with itself as expected. The only two inputs that are found 

to be correlated with each other are MV1 (V-2 column feed) and MV5 (V-1 column 

feed). These correlation plots are highlighted in red in the figure above. There is also an 

indication that the correlation between the two variables is negative implying that they 

exhibit an inverse relationship. This inverse relationship is justified by the following 

argument: when the flow to column V-2 gets too high (which is obtained from the reflux 

drum in column V-1), the feed to column V-1 is decreased in order to maintain control of 

the level in DM -1 (reflux drum in column V-1).  

 

8.1.2. Measured Disturbance Variables 

Controlled variables are influenced by a large number of disturbance variables present in 

the system. Although some of the disturbance variables are found in upstream processes, 

their influence on each CV is tantamount to the influence of the MVs. The variables are 

regarded as feed-forward variables, thus they will not exhibit any correlation amongst 

each other as they are uncontrolled variables. These DVs are displayed below: 
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Figure 8.4: Disturbance Variables 
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8.1.3. Controlled Variables 

This system has 6 CVs, each equally important in the operation of the petrol debutanizer. 

One of the primary objectives of the controller is to maintain the level in DM-1, which is 

CV1 (highlighted in blue in figure 8.1). Maintaining this level within its desired limits 

minimizes the amount of light carbon compounds being flared (MV2) as well as provides 

column V-1 with a suitable feed flow. CV2, which is the temperature of tray 7 in column 

V-2, is responsible for yielding the desired petrol/diesel ratio in the bottoms product. The 

desired separation in the column is formed as a result of the top column temperature 

(CV3) and the differential column pressure (CV4). CV5 represents the bottoms level in 

V-2. CV6 represents the petrol feed to the next phase of processing. These controlled 

variables are shown below:  
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Figure 8.5: Controlled Variables 
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8.2. INDUSTRIAL RESULTS 

 
This section presents and discusses the model validation results obtained for the models 

employed in the petrol debutanizer controller. Prior to the presentation of all the results, 

the models related to CV2 are first tested to demonstrate the concept of reducing the 

model set. Reducing the model set implies reducing the number of parameters that 

contribute to the error as well as reducing the impact of those signals that are influenced 

by the presence of unmeasured disturbances. The results for the remaining model sets are 

thereafter presented. The reader is referred to Appendix C for the full model set results.  

 

8.2.1. Tray 7 Temperature in column V-2 – CV2  

This temperature is influenced by MV1, MV2, MV4, DV5 and DV6. The models related 

to each of these pairings can be found in Appendix B, the second row of the model 

matrix. Equation (5.25) is used to define the error form. In the first instance, all models in 

CV2 are incorporated in the error formed and the results obtained are displayed below: 

 

 Figure 8.6: Correlation plots for CV2 

                   (d)                                                      (e) 

                   (a)                                                       (b)                                                      (c) 
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Figure 8.7: Moving Window regression plot for CV2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 8.8: Kalman Filter plot for CV2 
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The correlation plots imply that a mismatch exists in channels relating CV2 to MV1, 

MV4, DV5 and DV6. These plots do not display strong correlations which could be a 

result of the influence of noise on the plant signals.  

 

The magnitude of the ki values obtained by the respective regressions in figures 8.5 and 

8.6 are dissimilar due to the moving window applying equal weighting to each point 

within its window and thus allowing for a smoother response and the Kalman filter’s 

reliance on more recent values. Models relating MV4-CV2, DV5-CV2 and DV6-CV2 

exhibit large ki values. From the model matrix presented by SASOL, the models in DV5-

CV2 and DV6-CV2 contain a delay term of zero. Pragmatically, a delay term of zero is 

not possible, as the output cannot occur at the same time as the input. In this case, the 

diagnosis would be a time delay mismatch in the aforementioned channels. However, in 

the case of a large model set, noise signals can compound the error due to the large 

number of model coefficients. This subsequently makes the fitting parameters larger than 

one anticipates. One may consider using smaller subsets of models in order to find 

significant modeling errors. Smaller subsets will reduce the influence of plant noise. 

Webber and Gupta (2008) employed this tactic by holding certain MVs constant with the 

intention of reducing the subset of models that contain a mismatch.  

 

8.2.1.1. Effect of MVs on CV2 

Consider the results obtained for a reduced model set containing the models relating to 

the MVs:  

 

Figure 8.9: Correlation plots for CV2 relating to each MV 

                    (a)                                                       (b)                                                   (c) 
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Figure 8.10: Moving Window regression plot for CV2 and each MV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.11: Kalman Filter plot for CV2 and each MV 
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Figure 8.12: Moving Window regression factor plot for CV2 and each MV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.13: Kalman Filter factor plot for CV2 and each MV 
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It should be reiterated that the fitting parameters, ki, in figures 8.10 to 8.13, represent the 

way the error relates to a particular ui expressed as a fraction of the gain used in the 

model for that ui term. Although the correlation plots display the same results obtained in 

the case where all variables were considered, the regression plots are now more distinct. 

It can also be seen that parameter in channel MV4-CV2 is strongly influenced by noise in 

figure 8.7. However, its variance is lowered as a result of reducing the model set. A 

diagnosis can now be made by considering the warning mechanisms developed in chapter 

7. 

 

The results for each warning mechanism are displayed below. This enables the 

maintenance engineer to locate the source of error.  

 

 

 

 

 

 

 

 

 

Figure 8.14: Error Variance for CV2 related to its MVs 

 

 

 

 

 

 

 

 

 

Figure 8.15: Warning Flag for high error variance 
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Figure 8.16: Warning Flag for correlation bounds violation 

 

 

 

 

MV1 

MV3 

MV4 



-189- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.17: MWR Warning Flag for gain or time delay mismatch  
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Figure 8.18: KF Warning Flag gain or time delay mismatch for CV2 and its MVs 
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Figure 8.19: Significance of model error: MWR 
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Figure 8.20: Significance of model error: KF 
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Figure 8.14 displays the increase of the error variance over the sampled data time period. 

This variance is shown to be significantly higher than the benchmark established in 

chapter 7. A warning is therefore issued (figure 8.15). The correlation flags issued in 

figure 8.16 are all zero over the time frame indicating that there is no MPM or that there 

is an influence of noise in the system, which reduces the ability of the correlation 

analyses to detect MPM. The next set of flags is used to determine the form of parameter 

mismatch present (if it exists). Figure 8.17 (MWR flag) shows that for MV4, a flag 

warning of 1 is issued for a long period of time. This implies that the parameter obtained 

is in the range -1 to 1, ruling out a mismatch possibility due to a time delay. In figure 8.18 

(Kalman Filter flag), a flag of 1 is issued for MV4-CV2 but for a shorter period of time. 

This is due to the fact that the input data variability is not sufficiently high. The next 

warning mechanism determines how significant the model mismatch is by considering it 

as a model gain change (or a higher order polynomial coefficient). Figures 8.19 and 8.20 

reveal a flag warning of 1 for the channel related to MV4. This is to due to a significant 

gain mismatch in this channel. Hence the diagnosis for these MVs is as follows: there 

exists no MPM in channels relating CV2 to MV1 and MV3. A significant gain mismatch 

is found for MV4-CV4. The actual regression fitting parameters and factors are displayed 

in the tables below for the period of time in which the flag warnings were issued:  

 

Table 8.2: 

Overall Regression parameters for CV2 in relation to MVs 

 k1 k3 k4 

MOVING WINDOW REGRESSION 1.511x10
-3

 1.531x10
-4

 0.5921 

KALMAN FILTER 2.214x10
-4

 3.450x10
-6

 0.2988 

 

Table 8.3: 

Overall Regression multiplicative factors for CV2 in relation to MVs 

 η1 η3 η4 

MOVING WINDOW REGRESSION 1.0016 1.0001 2.4517 

KALMAN FILTER 1.0002 1.0000 1.4262 
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The results displayed in the tables above were obtained by averaging the data in the 

periods where the flags were issued. The difference in the values obtained for the moving 

window regression (a model gain being ~2.45 times higher than the plant gain) and the 

Kalman Filter (a model gain being ~1.42 times higher than the plant gain) is due to the 

properties of each method and its ability to deal with low variance data and the influence 

of noise. The reader is to refer to figure 8.2 which illustrate periods of low variance input 

data. 

 

It should also be noted that the mismatch displayed for the model MV4-CV2 could 

possibly be as a result of a mismatch in the higher order polynomial coefficient in the 

denominator as it is shown to be significantly larger than the gain itself (refer to appendix 

B, figure B.1).  

 

8.2.1.2. Effect of DVs on CV2 

In this instance, the respective DVs were considered separately from the MVs. The 

results are illustrated below: 

 

 

 

 

 

 

 

 

 

Figure 8.21: Correlation plots for CV2 related to each DV 

 

 

 

 

 

 

                    (a)                                                       (b) 
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Figure 8.22:  Moving Window regression plot for CV2 and its DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.23:  Kalman Filter plot for CV2 and its DVs 
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The magnitude of the coefficients in the correlation plot in figure 8.21(b) is shown to 

range between -0.3 to +0.3 in comparison to the plot displayed in figure 8.6(e) which has 

a range of -0.2 to +0.2.  

 

The regression plot obtained in figure 8.22 is in agreement with the results obtained in 

figure 8.7 as the fitting parameter related to DV6-CV2 is shown to have a steady reading 

greater than 1 for a extended period of time. In the case of the parameter obtained for 

DV5-CV2, figure 8.7 illustrates that it exceeds a value of 1 over a period of time. 

However, due to the fact that the model set was reduced to handle MVs and DVs 

separately, the magnitude of this parameter is shown to fall into the region of -1 to +1. 

The Kalman filter also shows a drop in the magnitude of the parameters related to each 

DV when figure 8.23 is compared to figure 8.8.  

 

These results together with the warning mechanisms below were used to diagnose the 

modeling error: 

 

 

 

 

 

 

 

 

 

Figure 8.24:  Error variance due to the influence of the DVs 
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Figure 8.25:  Error variance warning flag due to the influence of the DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.26:  Correlation confidence bounds violation for DVs 
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Figure 8.27:  MWR Warning Flag gain or time delay mismatch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.28:  KF Warning Flag gain or time delay mismatch 
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The variance of the error formed due to the disturbance variables in figure 8.24 is much 

lower than the variance obtained in comparison to figure 8.15. Thus is can be stated that 

the bulk of the error formed when all the variables were considered can be owed to the 

models linked to the respective manipulated variables. Nonetheless, the variance obtained 

in figure 8.24 is still significant (see figure 8.25). The correlation warning flags show that 

DV6-CV2 exceeds the bounds set for significant mismatch. The subsequent warning 

mechanism (employed for the MWR fitting parameters) show that the fitting parameter 

for DV5-CV2 lies in the range of -1 to +1 implying the presence of a gain error, but the 

parameter for DV6-CV2 lies outside these bounds illustrating that a time delay mismatch 

is present in this model. The very same means is applied to the Kalman Filter parameters 

and yields conflicting results reiterating the fact that the Kalman Filter is most suitable 

when the data is highly informative. Channel DV5-CV2 was tested for the significance of 

the mismatch present with the factor plot displayed below, followed by the next warning 

mechanism and summary of the overall parameter results: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.29: Moving Window regression factor plot for CV2 and DV5 
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Figure 8.30: Significance of model error: MWR 

 

Table 8.4: 

Overall Regression parameter and multiplicative factor for DV5-CV2 

 k1 

MWR fitting parameter 0.5305 

 η1 

MWR multiplying factor 2.1299 

 

The gain error is significant in DV5-CV2 and the model gain is found to be ~2 times 

higher than that of the plant. Careful consideration of the parameters present in the model 

in channel DV5-CV2 shows that the coefficients in the numerator and denominator are 

significantly large in magnitude. This suggests that this mismatch could be due to a 

mismatch of ~2 times the higher order coefficient in the numerator or ~0.5 times the 

higher order coefficient in the denominator. A mismatch in the numerator directly implies 

that a mismatch exists in the gain due to the fact that the gain is extracted as a common 

factor from the coefficients in the numerator.  

 

The overall diagnosis for the disturbance variables is as follows: the warning mechanisms 

together with the regression results reveal that channel DV6-CV2 contains a time delay 

mismatch and channel DV5-CV2 shows the possibility of a gain mismatch or the 

mismatches mentioned above.  
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Mismatch in the models shown for both those related to the MVs and DVs could result in 

improved controller performance (depending on the controller tuning) or cause the 

temperature in tray 7 (CV2) in column V-2 to shift away from its desired range. The 

latter point could be detrimental when the column is operated in diesel mode. If this 

temperature is found to be out of its desired range, then the possibility of light 

components entering the bottoms product increases. The phase to which this bottoms 

product is sent next does not have a facility to process these LPG compounds and they 

are thus flared. This is a regarded as a loss as the LPG compounds are normally removed 

in the distillate and sent for further processing into marketable products.  

 

8.2.2. Top Column Temperature in column V-2 – CV3  

The top column temperature is controlled by MV1, MV3, and MV4 and affected by DV5 

and DV6. The results displayed below involve reducing the models related to CV3 into 

two sets as shown for CV2. The reader is referred to Appendix C for the results of the full 

model set. It should be noted henceforth that warning mechanisms will be shown only in 

the instance where a significant mismatch is detected.   

 

8.2.2.1. Effect of MVs on CV3 

The results relating the models of CV3 to MV1, MV3 and MV4 are shown below. These 

models are responsible for maintaining the top column temperature within its desired 

limits in order to sustain the purity of the top product.  

 

 

Figure 8.31: Correlation Plots for CV3 related to MVs 
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-202- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.32:  Moving Window regression plot for CV3 and MVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.33:  Kalman Filter plot for CV3 and MVs 
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Figure 8.34:  MWR factor plot for CV3 and MVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.35:  KF factor plot for CV3 and MVs 
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Figure 8.36:  Error variance for CV3 due to the influence of the MVs 

 

 

 

 

 

 

 

 

 

Figure 8.37:  Error variance flag for CV3 due to the influence of the MVs 

 

 

 

 

 

 

 

 

 

 

Figure 8.38:  Warning flag for significant gain or time delay mismatch detection  
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The correlation plots reveal that possible mismatches were found in channels MV1-CV3 

and MV4-CV3. The range of the correlation coefficients lie within the confidence bounds 

set and no warning flags were issued accordingly. The error variance is shown in figure 

8.36 to be greater than the benchmark. The extent of the mismatches is illustrated in 

figures 8.32 and 8.33. The unsteady response of these variables is owed to the fact that 

during certain periods of time the inputs involved were saturated at their limits. The 

difference in the range of the parameters obtained for the Moving window regression and 

the Kalman Filter is again owed to the variance of the input data. These plots suggest that 

channel MV4-CV3 contains a gain mismatch. Careful analysis of figure 8.32 suggests 

that this parameter is not in violation of the confidence bounds set i.e. within -0.3 to +0.3. 

As a result, no warning was issued for a significant gain mismatch apart from a warning 

issued for a short period of time in figure 8.38. This time period is regarded as too short 

to provide evidence of a significant gain mismatch. The overall fitting parameters and 

multiplicative factors are displayed in the table below: 

 

Table 8.5: 

Overall Regression parameters and multiplicative factors for MVi-CV3 

 k1 k3 k4 

MWR fitting parameters 1.58 x 10
-3

 -8.27 x 10
-6

 0.2301 

Kalman Filter parameters -1.44 x 10
-4

 -1.03 x 10
-6

 0.0623 

 η1 η3 η4 

MWR multiplying factors 1.00 1.00 1.2989 

Kalman Filter multiplying factors 1.00 1.00 1.0664 

 

The overall diagnosis for this model set is as follows: although the gain in channel MV4-

CV3 is shown to be ~1.3 times higher than the plant gain, all the models in this model set 

(MV1-CV3, MV3-CV3, MV4-CV3) are shown to represent the plant fairly well.  
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8.2.2.2. Effect of DVs on CV3 

The results pertaining to the respective DVs involved are shown below: 

 

 

 

 

 

 

 

 

 

Figure 8.39: Correlation Plots for CV3 related to DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.40:  Moving Window regression plot for CV3 and DVs 
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Figure 8.41:  Kalman Filter plot for CV3 and DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.42:  MWR factor plot for CV3 and DVs 
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Figure 8.43:  Error variance for CV3 due to the influence of the DVs 

 

 

 

 

 

 

 

 

 

Figure 8.44:  Error variance flag for CV3 due to the influence of the DVs 

 

 

 

 

 

 

 

 

 

 

Figure 8.45:  Warning flag for significant gain or time delay mismatch detection  
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Table 8.6: 

Overall Regression parameters and multiplicative factors for DVi-CV3 

 k5 k6 

MWR fitting parameters -0.0208 0.2511 

Kalman Filter parameters -0.0024 0.01960 

 η5 η6 

MWR multiplying factors 0.9796 1.3353 

Kalman Filter multiplying factors 0.9979 1.0120 

 

The results obtained suggest that channel DV6-CV3 contains a gain mismatch which is 

within the desired bounds. The model in channel DV5-CV3 represents its portion of the 

plant fairly accurately.  

 

The top column temperature manipulates the amount of reflux returned to the column. 

Reflux represents cooled, condensed top product returned to the tower top and, as such it 

is being reprocessed. If the top temperature is increased the reflux return will be 

increased. If the models were found to be inaccurate, this top column temperature may 

possibly rise to values outside the columns mode of operation. This could possibly result 

in a too high reflux ratio which may cause flooding in the tower resulting in poor 

separation and causing 'off-spec' products throughout the system.  

 

8.2.3. Column Differential Pressure in column V-2 – CV4  

The column pressure is important as it affects the boiling point temperature of the 

overhead liquid products. It is controlled by MV1, MV2 and MV3. The disturbance 

variables acting on this CV are DV5 and DV6. The models in the channels related to 

CV4 are divided into 2 model sets as shown before.  
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8.2.3.1. Effect of MVs on CV4 

The column feed (MV1), petrol bypass (MV2) as well as the reboiler steam (MV3) serve 

to regulate the column pressure in V-2. The results pertaining to these model channels are 

shown below: 

 

 

Figure 8.46:  Correlation plots for CV4 related to MVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.47:  Moving Window Regression plot for CV4 related to MV1 and MV2 
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Figure 8.48:  Moving Window Regression plot for CV4 related to MV3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.49:  Kalman Filter plot for CV4 related to MV1 
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Figure 8.50:  Kalman Filter plot for CV4 related to MV2 and MV3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.51:  MWR factor plot for CV4 related to MV3 
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Figure 8.52:  Error variance for CV4 due to the influence of the MVs 
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Figure 8.53:  Warning flags for CV4 for gain or time delay mismatch: MWR 
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Figure 8.54:  Warning flags for CV4 for error gain or time delay mismatch: KF 

 

 

 

 

 

 

 

 

 

 

Figure 8.55:  Warning flag for gain greater than 50% of plant gain 

 

The correlation plots in figure 8.46 suggest that channels MV1-CV4 and MV2-CV4 

contain a mismatch. The regression plots illustrate that the parameters fitted for these 

models are excessively large. This is due to the fact that the error variance (figure 8.52) is 

exceptionally high. This suggests that the current model output prediction form is not 

well suited in the case where the output covers a range of negative and positive values as 

it fails to track the plant output adequately. This significantly large variance in the error 

obtained could also be owed to the fact that the input MV2 shows very little movement 

over large periods of time. Each model relating to CV4 contains time delay terms of zero 

(refer to row 4 in the model matrix found in Appendix B). It can be stated that CV4 reacts 

much faster to changes in the reboiler steam flow rate (MV3) than to changes in the 

column feed (MV1) or the petrol bypass flow (MV2). As a result, the parameter fitting in 
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than 1.5 times the 

plant gain   



-216- 

 

channel MV3-CV4 is not formed as a consequence of a time delay mismatch (lies within 

the range of -1 to +1), whereas the fitting parameters obtained for MV1-CV4 and MV2-

CV4 can be owed to a significant time delay mismatch (refer to figure 8.53). Figure 8.54 

presents the warning mechanism issued for the parameters obtained through the Kalman 

Filter computation. This agrees with the results obtained for the moving window 

regression, apart from the warning issued for channel MV3-CV4. The Kalman Filter does 

not recognize that a mismatch is present in this channel as the bulk of the error formed is 

due to the models in channels MV1-CV4 and MV2-CV4.  

 

The mismatch in channel MV3-CV4 is tested for its significance and it is found to be 

greater than 1.5 times the plant gain. The overall fitting parameter and multiplicative 

factor for this channel is displayed in the table below: 

 

Table 8.7: 

Overall Regression parameter and multiplicative factor for MV3-CV4 

 k3 

MWR fitting parameter 0.3452 

 η3 

MWR multiplying factor 1.5271 

 

8.2.3.2. Effect of DVs on CV4 

The results for each DV related to CV4 are shown below: 

 

 

 

 

 

 

 

 

Figure 8.56: Correlation Plots for CV4 related to its DVs 
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Figure 8.57:  Moving Window Regression plot for CV4 related to its DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.58:  Kalman Filter plot for CV4 related to its DVs 
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Figure 8.59:  Error variance for CV4 due to the influence of the DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.60:  MWR Warning flag for gain of time delay mismatch 
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Figure 8.61:  KF Warning flag for gain of time delay mismatch for CV4 related to its DVs 

 

The error variance is again shown to be extremely high (figure 8.59). This again 

emphasizes the trouble that the prediction model output form (equation error differential 

form) would have in tracking the plant output, which covers both a negative and positive 

range. In this case, both regression methods suggest that the mismatch present in 

channels DV5-CV4 and DV6-CV4 are both time delay mismatches. This result is further 

emphasized by the persistent warning flag value of 2 being issued (refer to figures 8.60 

and 8.61).  

 

If these model mismatches shown for all the models related to CV4 cause the column 

pressure to increase beyond its upper limit, the consequence is that the liquid top product 

will start to boil at higher temperatures (an increase in the column pressure causes an 

increase in the boiling point temperature of the top product constituents).  
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8.2.4. Bottoms level in column V-2 – CV5  

The bottoms level in the petrol debutanizer column is controlled by MV1, MV2, MV4 

and MV6. It is also affected by DV5 and DV6.  

 

8.2.4.1. Effect of MVs on CV5 

The results related to these model channels are shown below. The bottoms level is 

required to be operated adequately (by the control of the aforementioned MVs) as the 

bottoms level ensures that vapor does not exit through the bottom of the column.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.62: Correlation Plots for CV5 related to its MVs 
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Figure 8.63:  Moving Window Regression plot for CV5 related to its MVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.64:  Moving Window Regression plot for CV5 related to MV4 
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Figure 8.65:  Kalman Filter plot for CV5 related to MV3 and MV6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.66:  Kalman Filter plot for CV5 related to MV1 and MV4 
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Figure 8.67:  Error Variance for CV5 related to its MVs 
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Figure 8.68:  MWR Warning Flag for gain or time delay mismatch for CV5 
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Figure 8.69:  KF Warning Flag for gain or time delay mismatch for CV5 
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From figure 8.62, strong correlations were exhibited by channels MV1-CV5 and MV4-

CV5. These strong correlations are attributed to those sources which create the bulk of 

the error. From figure 8.63 and 8.64, the parameters obtained for MV1-CV5 and MV4-

CV5 were found to be much larger in comparison to the parameters acquired for the other 

models. The bulk of the large error variance in figure 8.67 is thus owed to these two 

channels. The large fitting parameters have been proven to be synonymous with large 

time delay mismatches (see figure 8.68). The Kalman filter plots in figure 8.65 and 8.66 

are in agreement with these results (see figure 8.69). The results obtained for the 

parameters in those channels related to MV3 and MV6 suggest that the gain in each 

model is matched. The gains in these channels were tested for the extent of the gain 

mismatch and the following results were obtained: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.70:  MWR Warning Flag for significant gain mismatch 
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These warning mechanisms suggest that the gain is higher than 1.5 times the plant gain. 

The actual fitting parameters and the multiplicative factors are displayed in the table 

below:  

 

Table 8.8: 

Overall Regression parameters and multiplicative factors for MVi-CV5 

 k4 k6 

MWR fitting parameter 0.6151 0.3527 

 η4 η6 

MWR multiplying factor 2.5981 1.5449 

 

The overall diagnosis of these models is as follows: channels MV1-CV5 and MV4-CV5 

exhibited significantly large time delay mismatches. The remaining channels MV3-CV5 

and MV6-CV5 both show that the gain is mismatched significantly. All the models 

relating the MVs to CV5 were found to be significantly mismatched. This may adversely 

affect the regulation of the level in column V-2.  

 

8.2.4.2. Effect of DVs on CV5 

The results for these DVs are as follows: 

 

 

 

 

 

 

 

 

 

Figure 8.71: Correlation Plots for CV5 related to its DVs 
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Figure 8.72:  Moving Window Regression plot for CV5 related to its DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.73:  Kalman Filter plot for CV5 related to its DVs 
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Figure 8.74:  Error Variance for CV5 related to its DVs 

 

 

 

 

 

 

 

 

 

 

Figure 8.75:  Warning flag for correlation bounds violation for DV6 
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Figure 8.76:  Warning flag for gain or time delay mismatch related to DVs 

 

A strong correlation is shown in figure 8.71(b) for channel DV6-CV5. This correlation is 

shown to be in violation of the bounds set for the correlation plots (figure 8.75). A 

smaller correlation is shown for channel DV5-CV5, which may be assumed to be due to 

the influence of noise. The moving window regression plot illustrates that both fitting 

parameters are greater than +1 with the fitting parameter related to DV5-CV5 being the 

larger of the two. This confirms the assumption that the unmeasured disturbances 

influence DV5 to a greater extent (in comparison to DV6) resulting in the error variance 

(figure 8.74) owing largely to the output contribution of model DV5-CV5. The warning 

mechanisms in figure 8.76 confirm that a time delay mismatch is persistent over a long 

period for each DV.  

 

All the models related to CV5 contain a degree of mismatch. This could result in high 

liquid levels in the column sump or low liquid levels. In the case of high liquid levels, the 

column will consequently become flooded.  
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8.2.5. Petrol feed to next phase of operation – CV6  

The bottoms product from column V-2 is controlled by MV1, MV2 and MV6. DV5 and 

DV6 serve as the measured disturbance variables. One of the control objectives for the 

petrol debutanizer is to obtain the desired petrol fraction in the bottoms product.  

 

8.2.5.1. Effect of the MVs on CV6 

The column feed, the petrol bypass and the stream that is split from CV6 regulates this 

controlled variable. The modeling error results in relation to the models linked to each of 

the above mentioned MVs are shown below: 

 

 

Figure 8.77: Correlation Plots for CV6 related to its MVs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.78:  Moving Window Regression plot for CV6 related to its MVs 

 

                    (a)                                                       (b)                                                   (c) 

Small 

mismatch in 

gain for 

MV2-CV6 

NEGLIGIBLE 



-232- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.79:  Kalman Filter plot for CV6 related to its MVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.80:  MWR factor plot for CV6 related to its MVs 
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Figure 8.81:  Error Variance for CV6 related to its MVs 

 

Due to the fact that the input data for MV2 and MV6 are shown to be flat for long periods 

of time, the non-differential, open-loop prediction error formulation is employed; refer to 

equation 5.24. The correlation plots in figure 8.77 suggest that there is a mismatch in all 

channels tested. On the other hand the deviation away from zero for the fitting parameters 

in figure 8.78 and 8.79 is negligible apart from the mismatch found in channel MV2-

CV6. Hence it can be deduced that the error is due to lower order coefficients present in 

the models. No warning is issued for the mismatch detected in channel MV2-CV6 as the 

model gain is found to be only ~ 0.86 times that of the actual plant gain (figure 8.80). 

These models represent the plant system reasonably accurately.    

 

8.2.5.2. Effect of the DVs on CV6 

The relevant results related to DV5-CV6 and DV6-CV6 is shown below: 

 

 

 

 

 

 

 

 

 

Figure 8.82: Correlation Plots for CV6 related to its DVs 
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Figure 8.83:  Moving Window Regression plot for CV6 related to its DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.84:  Kalman Filter plot for CV6 related to its MVs 
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Figure 8.85:  Error Variance for CV6 related to its DVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.86:  Warning flag for gain or time delay mismatch related to DVs 
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The correlation plot for DV5, figure 8.82(a), exhibits a stronger correlation in comparison 

to figure 8.82(b). However, the regression fitting parameters in figure 8.83 show that the 

parameter related to DV6-CV6 deviates further away from zero than the parameter 

obtained for DV5-CV6. It is suggested that the signal DV6 is influenced largely by 

unmeasured disturbances compared to DV5. Thus it can be deduced that the large error 

variance in figure 8.85 is primarily due to the influence of DV6 (and the unmeasured 

noise acting upon it). Figure 8.84 illustrates the response for the Kalman filter which does 

not produce reasonable results when the input data is not sufficiently rich. The fitting 

parameters obtained by the moving window regression are found to be outside the range 

of -1 to +1 prompting the warning flags to suggest that these channels are subject to time 

delay mismatches.  

 

CV6, the petrol product is sent to the next phase for further processing. Mismatches in 

the models related to CV6 will imply that the next phase of operation will receive a too 

high flow rate or a too low flow rate which could result in production losses.  

 

8.2.6. Level in DM-1 – CV1  

One of the major control objectives of this controller is to maintain the level in this reflux 

drum. Maintaining the level in this drum implies that the petrol bypass flow and 

subsequent production loss is minimized. This level is influenced by MV1, MV2, MV5, 

DV1, DV2, DV3 and DV4. All of these models are integrator type models (see Appendix 

B, row 1 in figures B.1 through to B.3). These models produce very large prediction 

outputs (on a direct basis) making the use of differential inputs and outputs vital in the 

detection of model mismatches in these channels (see section 5.3.1). As a consequence, 

these models are divided into 3 model sets to avoid large outputs. Large model sets 

containing integrator terms in all models make it difficult to detect any model mismatch 

as the fitting parameters obtained by regression become extremely large in order to fit the 

extremely high error formed (refer Appendix C, figures C.14 and C.15). 
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 8.2.6.1. Effect of MVs on CV1 

The first of the 3 models sets contains all the manipulated variables related to CV1. The 

results for these models are illustrated below: 

 

 

Figure 8.87: Correlation Plots for CV1 related to its MVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.88:  Moving Window Regression plot for CV1 related to its MVs 
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Figure 8.89:  Kalman Filter plot for CV1 related to its DVs 

 

 

 

 

 

 

 

 

 

 

Figure 8.90:  Error Variance for CV1 related to its MVs 
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Figure 8.91:  Warning flag for gain or time delay mismatch related to MVs 

 

One may recall that in figure 8.3 it was deduced that MV1 and MV5 are correlated with 

each other. The effect of this correlation amongst these inputs can be seen in figure 8.87. 

The correlation plot in figure 8.87(c) has the same local variations and shapes as that 

obtained in figure 8.87(a) albeit with a smaller magnitude. These plots suggest there is a 

mismatches in channels MV1-CV1 and MV5-CV1. However, the Moving window 

regression plot and the Kalman Filter plot in figures 8.88 and 8.89 respectively suggest 

the there is no mismatch present channel MV5-CV1. The correlation plot revealed a false 

indication of a mismatch due to the correlation amongst the inputs. Low variance data 

results in smaller magnitudes of fitting parameters obtained by Kalman filter estimations 

(figure 8.89). Distinguishing the source of model error for MV1-CV1 was seen to be 

impossible as the influence of noise signals produced a fitting parameter that has a 

somewhat oscillatory behavior. The methodology fails to recognize true model 

mismatches in the presence of the large amounts of noise disruption. The large error 
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variance in figure 8.90 suggests that the error is compounded by noise signals. The fitting 

parameter for channel MV2-CV1 produces a steady reading which lies within the range 

of -1 to +1, thus it is regarded as a gain mismatch (Figure 8.91). The multiplicative factor 

for this fitting parameter is shown below in figure 8.92: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.92:  MWR factor plot for CV1 related to its MV2 

 

 

 

 

 

 

 

 

 

 

Figure 8.93:  Warning flag issued for significant gain mismatch 
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Table 8.9: 

Overall Regression parameter and multiplicative factor for MV2-CV1 

 k2 

MWR fitting parameter 0.4856 

 η2 

MWR multiplying factor 0.6731 

 

This gain mismatch was found to be significant in the time period between 500 and 1000 

minutes. The fitting parameter obtained was ~ 0.5 and as a result the multiplying factor 

was found to be ~ 0.67.  

 

8.2.6.2. Effect of DV1 and DV2 on CV1 

The second model set related to CV1 contains the models related to DV1 and DV2. The 

corresponding results are given below: 

 

 

 

 

 

 

 

 

 

Figure 8.94: Correlation Plots for CV1 related to DV1 and DV2 
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Figure 8.95:  Moving Window Regression plot for CV1 related to DV1 and DV2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.96:  Kalman Filter plot for CV1 related to DV1 and DV2 
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Negligible deviations away from zero for the regression plots, in figure 8.95 and 8.96 

suggest that these models represent the plant accurately. The small correlation deviations 

imply that mismatches may be present in the lower order polynomial coefficients.   

 

8.2.6.3. Effect of DV3 and DV4 on CV1 

The third model set is composed of channels DV3-CV1 and DV4-CV1. The results are as 

follows: 

 

 

 

 

 

 

 

 

 

Figure 8.97: Correlation Plots for CV1 related to DV3 and DV4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.98:  MWR plot for CV1 related to DV3 and DV4 

                    (a)                                                       (b) 
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Figure 8.99:  Kalman Filter plot for CV1 related to DV3 and DV4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.100:  MWR factor plot for CV1 related to DV3 and DV4 
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Figure 8.101:  Error Variance for CV1 related to DV3 and DV4 

 

Table 8.10: 

Overall Regression parameters and multiplicative factors for DVi-CV1 

 k3 k4 

MWR fitting parameter -0.2251 0.2736 

 η3 η4 

MWR multiplying factor 0.8163 1.3767 

 

In this instance, the each model in this set is shown to contain a gain mismatch. This gain 

mismatch is not regarded as significant.  

 

The overall diagnosis for CV1 is as follows: channels MV5-CV1, DV1-CV1 and DV2-

CV2 show no significant mismatch and thus resemble the plant accurately in that aspect. 

A diagnosis could not be provided for MV1-CV1 as the behavior of the fitting parameter 

obtained is disrupted by noise signals. Channels DV3-CV1 and DV4-CV1 were both 

detected for gain mismatches, which were subsequently found to be within the desired 

range.  
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8.3. DIAGNOSIS CHART 

 

Once all the models in a model matrix are tested and a model quality indication is 

provided, the following chart is provided to the maintenance engineer that illustrates the 

specific input-output pairings that exhibit the different forms of mismatch: 

 

Figure 8.102:  Diagnosis chart for the Petrol debutanizer 

 

It provides a simple yet informative tool that shows the precise location(s) that contain a 

mismatch. If the controller is performing badly, the maintenance engineer would know 

where the mismatch lies and subsequently which inputs to perturb in the re-identification 

process. Furthermore, when this chart is viewed as a whole, the user can determine if a 

certain input is causing a certain mismatch. For example, if all the models related to a 

specific input contain some degree of a mismatch then it can safely be assumed that there 

could be a fault with the equipment used to acquire that specific input. Such is the case 

for the disturbance variables DV5 and DV6. Conversely, if all of the models relating to a 

specific output are in error, the measurement of that output, presently or in the 

commissioning stage, could be in error.   
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CHAPTER  

9  

CONCLUSIONS 
 

 

 

 

 

 

 

 

9.1. GENERAL REMARKS 

 

The ever increasing competition between industrial companies is an incentive to push the 

limits of the performance of industrial plants in which large sums of money are invested. 

As a consequence, a number of industries have turned to Advanced Process Control 

systems such as the widely applied Model Predictive Controller. Model Predictive 

Control has been widely used throughout the petroleum, chemical, metallurgical and pulp 

and paper industry over the years. It is industrially attractive because it handles hard 

constraints, usually on input and output signals. MPC technology has progressed steadily 

since the first MPC applications 34 years ago. Despite the numerous strides made in these 

applications throughout the years, the ‘Achilles heel’ of these applications, however, still 

remains with the accuracy of the process model. Performance monitoring and diagnosis 

of any MPM are necessary to assure effectiveness of process control and consequently 

safe and profitable plant operation. The primary application of the methodology 

developed in this work is envisaged in the provision of a quality indication for the models 

employed for MPC systems under closed-loop conditions. The methods are shown to be 

capable of locating the precise position of MPM and subsequently defining the extent of 

the mismatch.  

The conclusions gathered from the research covered, simulation studies and the industrial case 

study are presented. The general outcomes satisfying the required objectives are initially 

highlighted. A brief view of the advantages and shortfalls of the methodology is given by the 

explanation of the simulation results obtained in chapter 7. The efficacy of the methods is 

shown in the diagnosis of the results obtained for the industrial case study.       
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The following were successfully achieved as a means to satisfy the objectives of this 

work: 

 

• Different model validation approaches, specifically those that are capable of 

being implemented in an online manner or making use of historical data, were 

surveyed.  

   

• The methodology developed was based on the ability to provide a qualitative 

view of a model mismatch as well as present the extent of the mismatch 

quantitatively. For these purposes, methods based on correlation analyses and 

regression analyses were developed based on the error. 

 

• The regression techniques included recursive regression by the moving window 

approach and the Kalman Filter adapted for parameter estimations. 

 

• Validation simulations were performed on two simulation units and were 

designed to mirror industrial occurrences. This aided in establishing the 

effectiveness of the methodology in industrial applications.  

 

• Simulation results revealed a number of positive attributes of the developed 

methodology under industrial situations as well its shortfalls.  

 

• The methods developed were tested on an industrial application provided by 

SASOL, a petrol debutanizer, and were shown to provide reasonable results 

coupled with the reduction of model sets.  

 

The following sections detail some of the key conclusions drawn considering the 

simulated results obtained as well as those obtained for the industrial application.  
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9.2. PROPOSED METHODOLOGY 

 

The methodology developed involved several intricate concepts. These concepts included 

model form, discretization, optimal sampling intervals and suitable error formulations. 

The model for the predicted output was an ARX model type. The models presented by 

SASOL were in a continuous-time form (Laplace transforms). These models were 

required to be converted to a form that can be employed in real-time. A Tustin 

approximation for the Laplace operator was used for this purpose. In the case of 

simulation studies, the optimal sampling interval was chosen to be a fraction of the 

shortest time constant in the system. Several error forms were defined, each with their 

advantages and shortfalls. The proposed methods were designed to solve for gain 

mismatches. The regression methods were developed with the idea of reducing 

computation complexity making them suitable for online implementation. These methods 

were modified to handle certain industrial occurrences such as the absence of 

disturbances.   

 

9.3. MATLAB ® SOFTWARE 

 
Although the methods developed were easily implemented in order to mirror an online 

environment, several built-in MATLAB ® functions were employed. Nevertheless, each 

method is capable of running efficiently due to the ease of computation of the methods 

developed apart from the application of the partial correlations method and the 

computation of the correlation amongst inputs. This method requires three regression 

stages. The correlation amongst N inputs requires the computation of N
2
 correlation plots. 

The program is set in a manner such that each method may be skipped if it is not 

required.  

 

9.4. SIMULATION STUDIES 

 
The method provided accurate and expected results for simple scenarios such as a gain 

mismatch. It was also shown to detect mismatches for small changes as well as larger 

ones. In the case of a system exhibiting correlations amongst some inputs, the proposed 
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methodology was shown to separate the interactive relationship between these variables 

and subsequently provided the expected result. Most model validation methods, if not all, 

have a need for persistent signal excitation. It is shown that if the excitation reduces, the 

input term (β) in equation (5.32) will tend to get small and the default kexp values will be 

given. The methods in this work provided reasonable results to an extent in a situation 

were data remained relatively flat. Noise levels present the biggest threat to the efficacy 

of the methodology. Simulation results reveal that the methodology fails to distinguish 

underlying modeling errors as the noise signals begin to dominate the overall error that 

forms. Although the proposed methodology primarily focused on relative gain 

mismatches, simulations reveal the ability to detect changes in time delay, and other 

parameters present in a model. Simple warning mechanisms were developed to provide 

an indication of the type of parameter mismatch and subsequently determine its 

significance.  

 

9.5. INDUSTRIAL CASE STUDY 

 

Several pertinent observations were noted in this case. The model matrix provided by 

SASOL contained 33 models. The proposed methodology focused on each output 

independently. It was found that large model sets related to each output resulted in errors 

that are compounded by a combination of noise signals and MPM. The idea of reducing 

the model sets to smaller sets produced reasonable results. Coupled with the warning 

schemes as well as the analysis of the regression plots model diagnostics were provided 

for each model. The fitting parameters are shown to vary due to the nature of the input 

data and the non-linearity present in the system. Several models were found to be 

mismatched significantly and key consequences of mismatch related to each CV were 

documented. In some instances (for example in channel MV1-CV1), the methodology 

failed to provide a model mismatch diagnosis. In comparison to the simulation results 

obtained for levels of noise, this failure could be owed to large levels of noise disruption. 

A simple diagnosis chart was developed which serves as a quick means of providing 

mismatch model locations if a controller is found to be performing poorly.   
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CHAPTER  

10  

RECOMMENDATIONS 
 

 

 

 

 

 

 

10.1. RECOMMENDATIONS 

 

Given the conclusions stated in the previous chapter, an understanding towards providing 

model quality indications is evident. The following points, however, deserve attention in 

related research projects in future. 

 

10.1.1. Noise Reduction  

The topic of model output sensitivity to noise is acknowledged as being reasonably 

important and worthy of further discussions. The impact of noise signals is emphasized in 

chapter 7. Although this thesis is limited to the detection of models that represent plant 

dynamics (hence the choice of an ARX model), it is suggested that during intrusive plant 

testing that noise models be identified and introduced into the model matrix (ARMAX 

model). In this instance, the effect of noise will be considered within the models and as a 

result it will inhibit the disruption of the proposed methodology.  

 

Another means of handling the effect of noise is by implementing a data pre-filtering 

system which allows plant data to pass through and subsequently have the effect of noise 

reduced. Ljung (1987) emphasizes a filter termed the ‘anti-aliasing filter’, which removes 

that portion of a signal which occupies the high frequency band. Developing such a 

means of noise reduction will go a long way in ensuring the success of the proposed 

In this chapter recommendations are made with respect the model validation approaches based 

on the results and conclusions presented in this work. These include the ability to deal with 

noise sensitivity. Additionally suggestions into further studies are made in terms of developing 

the proposed method online.        
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methodology in various types of plants. It would be desirable to determine the impact of 

introducing such a filtering system on maintaining the plant dynamics within the plant 

output. 

 

10.1.2. Adaptive Control  

A more in depth recommendation would be to investigate Adaptive Model Predictive 

Control, where system identification and model validation techniques are implemented 

online in efforts to continuously update the model being used. There is a strong market 

for self-tuning MPC controllers. Validating the different models being generated by a 

continuous stream of data and subsequently have the controller vary the model 

parameters is an interesting problem.  

 

10.2. IMPACT OF MPM ON CONTROLLER PERFORMANCE 

 
Little work has been done in the area of quantifying the impact of MPM on controller 

performance. Even though the poor models in the controller are detected, a more 

pertinent question to ask is: what is the quantitative effect of MPM on MPC 

performance? Is it significant in which case one can apply the proposed technique? 

Otherwise one should look at other causes for poor MPC performance. A poor model 

may not necessarily lead to degradation in the controller performance. Hence it is highly 

desirable to isolate the role of MPM in poor control and quantify its impact.  

 

10.3. FUTURE WORK 

 

The future work will involve further investigation into data pre-filtering in order to 

reduce the noise. The next step would be to develop this tool online. This would imply 

that the MATLAB ® built-in functions would have to be removed and programmed 

generically. At this stage one expects the periods of best excitation to give the best 

estimates. They can be expected to vary though due to non-linearity. One may examine 

the possibility of investigating reduced Λ diagonal terms in equation (5.31) to see if the 

ki's go more constant. 
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APPENDIX  

A  

SOFTWARE DESCRIPTION 
 

 

 

 

 

 

 

 

 

 

 

 

A.1. FUNCTION FILES  

 

These files are essential in the running of the model validation tool developed in this 

work. These files include model selection, obtaining a suitable sampling interval, 

discretization, coefficient handling and window data handling.  

 

A.1.1. Model selection  

The function files cv_parameters_plant.m and cv_parameters_model.m store the 

coefficients related to the models in the Laplace domain. A specific value for ‘cv’ allows 

for the choice of models to be analyzed. Currently ‘cv’ values of 0.1, 0.2 and 0.3 provide 

the models related to each output of the Shell Heavy Oil Fractionator and values from 1 

through to 6 correspond to the models for each output of the Petrol Debutanizer 

controller.      

 

A.1.2. Sampling interval 

Once the model set is chosen, the function file get_dt.m is used to find the suitable 

sampling interval based on the dominant time constant found in the model set. In the case 

of the models used for the Petrol Debutanizer, the sampling interval is found and 

All programs written and used in this work are provided in the attached CD in a folder entitled 

‘SOFTWARE’. This folder contains two subsequent folders entitled ‘FUNCTION FILES’ and 

‘MAIN ERROR DETECTOR PROGRAM’. The folder ‘FUNCTION FILES’ contains all the 

scripted files used to develop the preliminary concepts explained in section 6.2. The latter 

folder contains the main simulation program which is briefly described below. A copy of this 

thesis is also found on the accompanying disc together with a ‘turnitin’ report. 
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compared to the set sampling time provided by SASOL. A warning is issued when the 

sampling interval obtained using this function file differs by a marginal limit set within 

the main program, deeming the sampling interval provided by SASOL as inadequate.  

 

A.1.3. Discretization  

The function file s_to_z.m takes the model coefficients from the model set and converts 

them into a form that can be used in real time. The discrete approximation is set by 

assigning a value to ‘m’, either 1, 2 or 3 for the desired choice. The discrete form 

coefficients are obtained by using the built-in MATLAB ® function numden. This 

function enables the coefficients to be found in numerical form. This script also makes 

use of the function simple to cancel off any common factors when the discrete 

approximation is substituted for the Laplace operator.  

 

A.1.4. Coefficient handling  

These function files handle the discrete coefficients by displaying them into a form as 

depicted by figure 6.9. The c_coeff.m file produces the coefficients related to polynomial 

for the lagged output. It is obtained by using the built-in function conv which takes the 

product of all model lag polynomials and subsequently arranges the resulting coefficients 

from the highest order to the lowest. The d_coeff.m file produces the coefficients related 

to the lag polynomials for the inputs. In this case, division of polynomials is required for 

which the deconv function is used.  

 

A.1.5. Window data handling  

The moving window concept is maintained by the implementation of these two function 

files; ewg.m and uwg.m. The ewg.m file allows for each error value computed at each 

time step to be placed in its correct position in the moving window. Similarly, the uwg.m 

file positions each input value in relation to the time it entered.  
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A.2. MAIN ERROR DETECTION PROGRAM  

 

The methods developed in this work are all implemented within this program under a 

single time loop in order to envisage an online environment. Prior to the execution of the 

main time loop, a number of decisions which are set by the user, are required to be made. 

Among these decisions are the choice of error definition as well as which method to skip 

or run. A binary logic value of 1 is assigned to cases which are required to be 

implemented and a value of 0 is assigned in cases where certain methods are negated. 

Each method operates in an online manner, computing results at each time step. For the 

correlation analysis, correlation plots are obtained at set intervals within the designated 

time frame, defined by the user. On the other hand, the regression fitting parameters are 

computed at each time step and are stored for plotting and analysis.  
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APPENDIX  

B  

DEBUTANIZER MODELS AND PID 
 

 

 

 
 

Figure B.1: Debutanizer model matrix (inputs MV1 – MV4) 
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Figure B.2: Debutanizer model matrix (inputs MV5 – MV6, DV1 – DV2) 
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Figure B.3: Debutanizer model matrix (inputs DV3 – DV6) 
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APPENDIX  

C  

FULL INDUSTRIAL RESULTS 
 

 

 

 

 

 

 

 

 

 

 

 

C.1. TOP COLUMN TEMPERATURE (CV3) 

 

 

Figure C.1: correlation plots for CV3 

 

The full results pertaining to the studies performed in chapter 8 are shown here. Chapter 8 

demonstrates the concept of reducing the model set in order to obtain suitable results. This 

Appendix illustrates the effect of including large model sets for analysis. Common features of 

performing the designed methodology on large model sets are the small magnitude of the 

correlation coefficients as well as the excessively large regression fitting parameters. These 

results seek to further establish the benefit of handling smaller model sets.    
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Figure C.2: Moving window regression plot for CV3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3: Kalman Filter plot for CV3 
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C.2. COLUMN DIFFERENTIAL PRESSURE (CV4) 

 

Figure C.4: Correlation plots for CV4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.5: Moving window regression plot for CV4 
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Figure C.6: Kalman Filter plot for CV4 

 

C.3. BOTTOMS LEVEL (CV5) 

 

Figure C.7: Correlation plots for CV5 
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Figure C.8: Moving window regression plot for CV5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.9: Kalman Filter plot for CV5 
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C.4. PETROL BOTTOMS PRODUCT (CV6) 

 

Figure C.10: Correlation plots for CV6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.11: Moving window regression plot for CV6 
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Figure C.12: Kalman Filter plot for CV6 

 

 

C.5. LEVEL IN DM-1 (CV1) 

 

 

 

Figure C.13: Correlation Plots for CV1 
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Figure C.14: Moving window regression plot for CV1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.15: Kalman Filter plot for CV1 
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