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ABSTRACT 

 
Differences in coral reef fish assemblages were investigated on six South African and one southern 

Mozambican reef under varying management regimes. All of the South African reefs fall within 

marine protected areas (MPA) but are zoned for differing types and intensities of human activity. 

Reefs where no human activities are allowed were termed Sanctuaries, while those on which 

restricted fishing and SCUBA diving are permitted were termed Protected. The reef in southern 

Mozambique is subjected to unrestricted fishing and SCUBA diving and was consequently termed 

Open.  

 

This study consists of two parts. The first dealt with a community assessment which investigated 

and provided baseline data on the trophic structure, density, and species diversity of fish 

assemblages on each of the seven study reefs. The objective was to compare the aforementioned 

metrics between reefs and thereafter compare them between the different protection zones. The 

second part of this study focused on assessing the impacts of human activities using 25 fish 

indicator species. These species were selected a priori based on their ecological importance and 

sensitivity to human activity (fishing and diving). The selection process was then guided by the 

results of the community assessment. The objective was to use these species as indicators of 

recreational diving and fishing pressure in the different protection zones. Density, biomass and size 

frequency analyses comprised the primary metrics in this assessment.  

 

Randomly stratified underwater visual censuses (UVC) were used to collect the fish data and these 

were conducted on reefs inhabited by a coral community considered to be the core community on 

South Africa’s reefs in terms of biodiversity and coral cover. The fish community assessment 

consisted of timed counts in which all non-cryptic fish species were quantified. Indicator species 

counts employed the point count technique with a radius of 10 m. An average of 11 community 

counts and an average of 62 point counts were conducted per reef. Various environmental variables 

and habitat characteritics were recorded during the UVCs.  

 

Multivariate analysis of the fish assemblages indicated that the fish community structure differed 

significantly according to reef protection status. Sanctuary reefs were significantly different from 

the Open reef in Southern Mozambique. Mean fish abundance was highest on Sanctuary reefs and 

lowest on the Open reef. In terms of overall species diversity, a total of 284 species belonging to 50 

families were recorded, this being comparable to other reefs in the WIO region. Six families 
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contributed more than 50% towards the fish community composition: Labridae, Acanthuridae, 

Chaetodontidae, Lutjanidae, Pomacentridae and Serranidae. All predator categories were well 

represented on Sanctuary reefs, while top-level predators were scarce on the High-Diving and the 

Open reef. Generalised linear model (GLM) regression analysis indicated that human activities 

were significant variables in accounting for the variance in fish community structure.   

 

The total fish abundance and biomass of the selected indicator species were significantly higher in 

Sanctuary zones and lowest in the Open zone. In addition, Sanctuary zones were characterised by 

high numbers of large predators, while non-Sanctuary zones were characterised by higher 

abundances of prey species. Target species were also larger and more abundant in Sanctuary zones.  

The data revealed that recreational fishing and high diving intensity may be influencing the fish 

community structure on southern African coral reefs, which was confirmed by GLM regression 

analysis. Long-term monitoring of these fish communities is recommended to confirm the trends 

observed in this data set.   
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CHAPTER 1 
 

GENERAL INTRODUCTION 

Human resource use in the marine environment 

Human use of marine ecosystems extends back thousands of years (Jackson 1997, Jackson et al. 

2001, Myers & Worm 2003). However, only recently have scientists begun examining historical 

records to assess the extent of this exploitation. The evidence suggests that major structural and 

functional changes caused by overfishing occurred worldwide in coastal marine ecosystems 

centuries ago (Salvat 1981, Hay 1984, Birkeland 1997, Jackson et al. 2001, Pandolfi et al. 2005, 

Sims & Southward 2006). So great was the historical magnitude of overexploitation that many 

species (e.g. turtles, sea cows, sharks, manatees, dugongs, jewfish, swordfish and shellfish) have 

failed to regain their former abundance or are absent from most coastal ecosystems (Jackson et al. 

2001). This overexploitation preconditioned modern ecological investigations and has thus provided 

inappropriate reference points for identifying targets for rehabilitation measures (Pauly 1995). This 

is known as the ‘shifting-baseline’ theory and is one of the reasons why scientists throughout the 

past century have been unable to recognise the continual and rapid decline of marine ecosystems 

(Pauly 1995, Sale 2008).  

 

The lack of baseline models for pristine marine ecosystems is particularly acute in the case of coral 

reefs. Few, if any, coral reefs remain today that have not been impacted by some form of human 

activity (Hodgson 1999, Jackson 2001). Without insights into the natural structure and functioning 

of such biologically complex ecosystems, scientists are left with a limited and poor understanding 

of undisturbed communities on which to base future management decisions (CoML 2009). In 

addition, there appears to be a ‘focus-shift’ in the current marine management ethos. Due to global 

concern for escalating exploitation rates, gathering baseline data has become secondary to marine 

science focusing on mitigation of the effects of human activity on marine ecosystems. A 

consequence is that, due to the escalating intensity of human impacts on the marine environment, 

considerable biodiversity may have already been lost before it could be documented (Paulay 1997, 

Reaka-Kudla 1997). 

 

In the 1970-1980s, land-derived sources of pollution were considered the greatest threat to coral 

reefs (Hatcher et al. 1989) that caused local to regional losses in coral cover and biodiversity. 

Scientific opinion changed dramatically in 1997-98 when global threats to coral reefs, such as coral 
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bleaching (Buddemeier 1999, Hoegh-Guldberg 1999, Wilkinson 1999) and chemical imbalances in 

sea water following increased CO2 emissions became apparent (Kleypas et al. 1999). The grounds 

for change were that isolated, previously ‘pristine’ reefs were being severely damaged (Wilkinson 

1999). The global bleaching event of 1998 effectively destroyed 16% of the coral reefs of the world, 

with losses in the Indian Ocean attaining almost 50% (Wilkinson 2004). It is anticipated that future 

changes in ocean chemistry due to higher atmospheric carbon dioxide concentrations may cause 

weakening of coral skeletons and reduce reef accretion (Kleypas et al. 1999, Kleypas & Langdon 

2006). The loss of living coral on such a large scale has enormous implications for the biological 

communities that rely on the architectural complexity of coral reefs (Graham et al. 2006, Flechet 

2008, Graham et al. 2008).  

 

Nevertheless, the severity of global threats does not permit one to ignore or underestimate local or 

regional impacts. Direct anthropogenic impacts listed by Hatcher et al. (1989) continue to threaten 

coral reefs as both human population and economic growth are increasing exponentially (Wilkinson 

1999, Risk et al. 2001). In their analysis of global threats to coral reefs, Donner & Potere (2007) 

estimated that 10% of the world’s population live within 100 kilometres of coral reefs and over 91% 

live in ‘developing’ nations.  The demand for goods and services derived from coral reefs is thus 

enormous, given that coral reef fisheries are the main, and, in many instances, the only source of 

protein for many of the poorest societies in the world (Bryant et al. 1998). Consequently, threats 

such as destructive fishing practices (Edinger et al. 1998, Fox et al. 2005, Obura et al. 2006b) and 

overexploitation of marine species (Pauly 1995, Hodgson 1999, Jackson et al. 2001, Knowlton & 

Jackson 2008, Agnew et al. 2008, Sandin et al. 2008) appear as pervasive as ever and are among the 

most significant of anthropogenic impacts on coral reefs.  

 

Marine protected areas – old but new concept  

Global concern caused by fisheries collapse and a shift from managing single species fisheries to 

viewing whole communities as ecological units promoted the promulgation of marine protected 

areas (MPAs) as an alternative management approach to marine conservation (Palumbi 2001). In 

fact, MPAs were advocated as the ‘ideal’ management solution because they were perceived to 

simultaneously address issues of overfishing, habitat degradation, and tourism development 

(Kelleher & Kenchington 1992). During the late 1950-60s, conservation science and principles for 

establishing and managing MPAs developed rapidly (Chape et al. 2005). By 1985, 430 MPAs had 

been proclaimed in 69 countries (De Silva et al. 1986) and, by 1995, the total number of MPAs 

exceeded 1300 (Kelleher et al. 1995).  
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Although the concept of marine protected areas (MPAs) is fairly recent, there is some evidence to 

suggest that the custom of setting areas aside for restricted access and the creation of sanctuaries to 

facilitate species recovery has its roots in traditional or indigenous communities, particularly in 

oceanic islands (Johannes 1978, 1981, 2002, Ruddle 1993, Mantjoro 1996). However, the 

demarcation of areas for aesthetic western values and the establishment of contemporary MPAs also 

owe much to protected area initiatives which began in the late 1880s and centred on the protection 

of terrestrial wildlife in the western world (Redford & Sanderson 2000). It was not until 1935 that 

the first complete marine park was proclaimed at Fort Jefferson National Monument in Florida with 

the protection of all the underwater areas within its boundaries (Randall 1968, Gare 1975). 

However, the term ‘marine protected area’ only gained prominence in international marine 

terminology in the latter half of the twentieth century (Chape et al. 2005). 

 

Over the past two decades, a large literature base has been published on MPAs, their uses and the 

benefits they provide. Empirical evidence from numerous studies has demonstrated that MPAs can 

enhance the abundance of target species (Russ & Alcala 1989, Polunin & Roberts 1993, Russ & 

Alcala 1996a, McClanahan & Arthur 2001, Roberts et al. 2001, Friedlander & Demartini 2002, 

Unsworth et al. 2007, Lester et al. 2009), increase species diversity or richness (Jennings et al. 

1996, McClanahan & Arthur 2001, Barrett et al. 2007), increase total fish densities (McClanahan & 

Shafir 1990, Lester et al. 2009), increase the size of target species (Russ & Alcala 1996b, Wantiez 

et al. 1997, Barrett et al. 2007, Watson et al. 2009) and provide export stock for adjacent areas open 

to fishing (Russ & Alcala 1996a). Although, these studies suggest that MPAs are effective 

conservation tools from a fisheries management perspective, numerous authors highlight the fact 

that more MPAs are unsuccessful than successful in achieving their management objectives 

(Kelleher et al. 1995, Alder 1996, McClanahan 1999, Mora et al. 2006).   

 

MPAs are not ‘cure-alls’ 

Alder (1996) identified several factors limiting MPA effectiveness when the concept of MPAs 

gained impetus in the 1960s and developed in the 1970 and 1980s. These included: the lack of a 

clear definition for MPAs, limited skills in managing the dynamic nature of marine ecosystems and 

a lack of information about marine resources and their use (Alder 1996). This author noted that, of 

particular concern, there was a lag between the proclamation of many tropical MPAs and the 

formulation and implementation of management plans, which may take between 1-2 years to 

collate. However, many nations have proclaimed at least one MPA every year since the 1970s, 

which suggests a prevalence of ‘paper parks’ throughout the tropics (Alder 1996).  
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Currently, there are 5161 MPAs in 176 counties (WDPA-Marine 2008). Nevertheless, the positive 

impression created by the rapid acceleration in MPA proclamation is tempered by the recognition 

that, while 18.1% of worldwide coral reefs lie within MPA boundaries, only 1.6% fall within 

adequately managed MPAs (Mora et al. 2006). It thus appears that the management problems 

identified by Alder (1996) have resulted in limited progress in the last decade. Most MPAs still face 

difficulty in implementation and enforcement due to poor governance, and a lack of management 

guidance and evaluation (White et al. 2006). The mixed success and performance of many current 

MPAs demonstrate the need to build capacitiy in MPA management teams. This is necessary to 

evaluate their effectiveness so that decision-makers can adapt their efforts and enhance their 

protective strategies over time (Pomeroy et al. 2005).  

 

Defining MPAs 

The most commonly used definition of a MPA is that provided by the International World 

Conservation Union (IUCN), ‘any area of intertidal or subtidal terrain, together with its overlying 

water and associated flora, fauna, historical and cultural features, which has been reserved by law or 

other effective means to protect part or all of the enclosed environment’ (Kelleher & Kenchington 

1992).  MPAs are specifically intended to limit human activities in designated locations (Sale et al. 

2005, Mora et al. 2006) and the degree to which human activities are limited determines the type of 

MPA. In most instances, MPAs can be classified into two broad types; areas that are open to 

resource use and areas closed to resource use. No-take MPAs are areas closed to exploitation and, 

for the purpose of this study, will be termed sanctuary or no-take zones. Sanctuary areas offer the 

greatest protection for marine resources and ecosystems (Gell & Roberts 2003, Lester et al. 2009). 

The second type of MPA allows harvesting of resources, but under protective regulations that 

pertain to each species being harvested. In addition, the types of fishing or harvesting gear may be 

restricted. Such MPAs are multiple resource use zones and most often permit recreational activities 

such as SCUBA diving, snorkelling, whale watching and fishing. 

 

Despite the shortcomings of MPAs, they are still advocated as one of the most viable and useful 

management tools for conserving coral reefs (McClanahan 1999, Roberts & Hawkins 2000, 

Lubchenco et al. 2003, IUCN-WCPA 2008).  This is particularly true of coral reefs in developing 

nations where few other fisheries management options are available (Alcala & Russ 2006). In 

addition, MPAs provide an area that acts as a buffer against unforeseen yet potentially disastrous 

management mistakes. In science-based conservation, this is termed the precautionary principle. It 
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is what drives managers to avoid actions that produce irreversible changes to ecosystems at all costs 

and to err on the side of conservation in the face of scientific uncertainty (Agardy 1994, Sale 2008).  

 

MPA evaluation through monitoring 

Well-designed monitoring programmes are needed to gather data about the pathways of biological 

components and ecosystem rebuilding, to assess the benefits of conservation, increase the 

knowledge of resources users and scientists, and improve the level of protection (Sumaila et al. 

2000). Monitoring programmes should first establish baseline conditions through biodiversity 

inventories, which then feed directly into stress identification and mitigation programmes (Risk 

1999). Inventories form the foundation of any monitoring programme and provide an understanding 

of how processes such as predation, reproduction and competition regulate marine biodiversity, and 

aid in predicting the potential consequences of biodiversity loss (Bellwood & Huges 2001). To gain 

a holistic idea of ecosystem biodiversity, inventories should be assessed in terms of a range of 

functions that include functional and genetic descriptors as well as species richness and abundance 

(Ormond & Roberts 1997).  

 

The scope of coral reef monitoring has expanded considerably over the past two decades. Broad-

scale efforts by large institutions include regional networks such as the Caribbean Coastal Marine 

Productivity network (CARICOMP 2002), the Atlantic and Gulf Rapid Reef Assessment (AGRRA 

1997-2000; Kramer 2003), and the Global Coral Reef Monitoring Network (GCRMN 2008). 

Recently, volunteer-based monitoring programmes such as Reef Check (Hodgson 2000) and Reef 

Watchers (CERMES 2008) have made important advances in informing the plight of coral reefs to 

the general public and initiating community involvement. In addition, a number of monitoring 

protocols have been developed by scientists for non-scientists to bridge the gap between academic 

concepts and reef management (Rogers et al. 1994, McClanahan 2008, Goffredo et al. 2010). These 

monitoring manuals and protocols have been designed to document changes in various biotic and 

abiotic variables on coral reefs. However, few are capable of diagnosing what is actually causing a 

change (Jameson et al. 2001). Without the forensic data linking biological change to causative 

agents, resource managers and scientists are only able to say that ‘reefs are ill’ or ‘reefs are dying’, 

but are unable in being able to rectify the situation (Downs et al. 2005). 

 

Indicator-based monitoring 

The concept of using indicators to assess ecological condition has become an important tool in coral 

reef research (see Jameson et al. 2001, Jameson & Kelty 2004 for review). Traditionally, indicators 

were developed based on single physical, chemical or biological variables or species (ICES 2000). 
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However, an approach that takes the entire ecosystem into account has recently been advocated as 

ecosystems are so complex and unpredictable that suites of indicators are needed to provide an 

adequate representation of reef condition (Rice & Rochet 2005). As ecological understanding has 

advanced, composite indicators have been developed that are both specific and widely applicable, 

and that may be based on indirect or direct measures of relevant ecosystem processes (Fabricius 

2006). According to Dale & Beyer (2001), the ecological basis of such indices should reflect 

various key elementss of ecosystems, namely their structure (abundance, population composition), 

function (biomass, tropho-dynamics, reproduction) and composition (diversity, dominance, 

density). The rationale for this is based on the selection of a suite of representative indicators that 

will provide a link between these key ecosystem elements and ecosystem processes. The challenge 

in developing such ecological indicators is in determining which of the numerous measures of 

ecosystems characterise them but are simple enough to be effectively monitored (Dale & Beyeler 

2001). In reality, the choice is which taxa to select as indicators, because their presence or absence 

and fluctuations will reflect changes in the ecological processes (Noon et al. 1999).  

 

 

Indicators of coral reef health 

A broad spectrum of organisms and metrics has been used as indicators to assess coral reef status 

(Table 1.1). Jameson et al. (1998 & 2001) provide the most recent reviews of these indicators and 

their metrics used in biomonitoring (indicator-based monitoring programmes) which, according to 

the authors, have the greatest potential for development. Fish have been successfully used as 

indicators of environmental change in a variety of aquatic habitats (Karr 1981, 1986, Whitfield 

1996, but see Table 1.1 for coral reef references). There are many advantages in focusing on fish 

species as indicators on coral reefs: 1) they comprise a large proportion of the biomass; 2) they 

provide ecosystem services to humans; 3) they show clear responses to fishing; 4) extensive life-

history information is available for most species; 5) fish are relatively easy to identify; 6) coral reef 

fish communities include a range of species that represent a variety of trophic levels; 7) they include 

many life forms and functional groups and are thus likely to reflect changes in most components of 

coral reefs affected by human activities; 8) they include mobile and sedentary species and thus will 

reflect stressors with a narrow and broad spatial coverage; and 9) they have high public awareness 

value such that the general public are more likely to relate to information on fish community 

condition than on invertebrates or algae (Karr 1981, Whitfield & Elliott 2002, Rice 2003). There are 

also a number of disadvantages in using fish taxa as indicator; however, these are associated with 

the use of any major taxon (Karr 1981, Whitefield & Elliot 2002).  
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Table 1.1 Coral reef bioindicators commonly used to assess coral reef health.  

Indicator Metric Oceanic region Reference: 
Colony size structure Caribbean, Pacific, Indian Bak & Meesters 1998 
Coral fecundity Caribbean, Pacific, Indian Brown 1988, Edinger and Risk 1999 
Coral recruitment Caribbean, Pacific, Indian Ward & Harrison 1997, Harrison & Ward 2001 
Coral Damage Index Red Sea Jameson et al. 1999 
Disease Western Atlantic Richardson 1996, Peters 1997 
Percent coral bleaching Caribbean, Pacific, Indian Brown 1988, Jones 1997 
Percent coral cover Caribbean, Pacific, Indian Aronson et al. 1994, English et al. 1994, 1997 

Coral growth rates Caribbean, Pacific 
Brown 1988, 
Cortes & Risk 1985, Brown & Suharsono 1990, Risk et al. 1995  

Bioeroders Caribbean, Pacific, Indian 
Sammarco & Risk 1990, Risk et al. 1995, Holmes et al. 2000, Linton & 
Warner 2003, Cooper et al. 2009 

Coelobites (cavity dwellers) abundance Pacific, Indian Choi 1982, Risk et al 2001, Linton & Warner 2003 
Foraminifera Western Atlantic Hallock 1996, 2000 

Corals 

Corallivore abundance (Acanthaster planci and Drupella 
sp) 

Pacific  

Butterflyfish abundance and behaviour Pacific 
Reese 1981 & 1995, Hourigan et al. 1988, Crosby & Reese 1996, 
Erdmann & Caldwell 1997 

Ectoparasites Caribbean, Pacific, Indian Evans et al. 1995 
Larval fish assemblages Caribbean, Pacific, Indian Doherty 1991 
Target fish species abundance  McManus et al. 1997 
Trophic structure Pacific Bozec et al. 2005, Gascuel et al. 2005 
Exploitation rate   Trenkel & Rochet 2003 

Fish 

Size of target species  Shin et al. 2005 

Corals, fish, 
invertebrates  

Target fish species abundance, percent hard coral cover, 
percent dead coral, sponge, invertebrate abundance, 
butterflyfish abundance 

World Hodgson 1999 (Reef Check), CERMES 2008 (Reef Watchers) 

Coral and fish 
Fish abundance, coral cover and colony size, coral 
bleaching and disease, rugosity,  

Atlantic  McField & Kramer 2007 (Healthy Reefs for Health People) 

Gastropod Gastropod imposex Caribbean, pacific, Indian 
Gibbs & Bryan 1994, Evans et al. 1995, Gibson & Wilson 2003 
 

Macrophytes Macrophytic algal blooms Caribbean, Pacific, Indian  McManus et al. 1997  
Giant clam Giant clam zooxanthellae, shell growth rates Pacific, Indian Ambariyanto & Hoegh-Guldberg1997 
Foraminifera Sediment constituent analysis, formaniferal assemblages,  Western Atlantic Hallock 1996, 2000  
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Assessing reef fish communities 

The most widely used methods to assess reef fish communities are underwater visual census (UVC) 

techniques. UVCs have been used to estimate fish abundance since the 1950s (Brock 1954) and are 

believed to be the best method for estimating reef fish abundance and biomass because they are 

non-destructive, cost-effective and easily implementable in monitoring programmes (Watson & 

Quinn 1997, Kulbicki et al. 2010). In addition, UVCs are particularly useful because they are 

independent of fishing (Samoilys & Carlos 2000) and destructive methods such as ichthyocides 

(Ackerman & Bellwood 2000). All methods of UVCs have inherent biases (Sale 1991) and may be 

inaccurate through e.g. the underestimation of cryptic species (Brock 1982, Fowler 1987, Kulbicki 

1998). Thus, UVCs are most suited to quantify diurnally exposed fish species (Brock 1982, 

Samoilys & Carlos 2000). 

 

Transect counts and point counts (Bohnsack & Bannerot 1986, Samoilys & Carlos 2000) are the 

main types of UVC employed to estimate fish densities. Differences betweeen transect and point 

count UVCs have been highlighted by several authors and, as yet, there is no accepted ‘best’ 

method (Samoilys & Carlos 2000, Edgar et al. 2004, Kulbicki et al. 2010). Transect UVCs allow 

the rapid census of diverse fish assemblages across large spatial scales (Edgar et al. 2004); however, 

Brock (1982) suggested that UVC accuracy may be increased by conducting a greater number of 

shorter (20-25 m) rather than longer (100-200 m) transects. In contrast, Samoilys and Carlos (2000) 

found that transects and point counts were equally effective UVC methods, although point counts 

were preferred because they could be conducted more quickly and allow for increased replication. 

Point counts also allow recording of habitat characteristics such as benthic composition and 

topography within a smaller spatial scale which is particularly advantageous for reefs of varied 

topography and habitat.   

 

Single-versus multiple-species approach 

Chaetodons or butterflyfish are among the fish species that have received considerable attention as 

bioindicators of coral reef health. Reese (1977) first proposed that obligate corallivores, such as 

butterflyfish, could serve as bioindicators, a theory which was then adopted by numerous other 

authors. The premise is that corallivorous butterflyfish have coevolved with and are intimately 

linked to the corals on which they feed (Reese 1981, Harmelin-Vivien & Bouchon-Navaro 1983, 

Reese 1991, Crosby & Reese 1996). However, the effectiveness of butterflyfish as indicators 

remains unresolved. Roberts et al (1988) argued that butterflyfish are not appropriate indicators to 

compare coral health between different sites, as pristine sites may naturally have low live coral 



9 

cover. In addition, coral declines may be slow and changes in butterflyfish abundance may be even 

slower.  

 

The proposed use of chaetodons as indicators of coral reef status provides an example of a 

monitoring approach that is based on parameters associated with individual species or simple 

community metrics such as abundance. Alternative approaches to ecosystem assessment were 

proposed more than two decades ago. Karr (1981) introduced the concept of using a representative 

number of fish species to assess the biotic integrity of stream-fish communities. This author 

designed an approach that assessed the status of a freshwater stream using twelve fish community 

parameters; including relative abundance, trophic levels, and species richness. This multi-species 

and multi-parameter approach has received considerable attention since its conception, particularly 

with regard to fish communities (Fausch et al. 1984, Karr et al. 1986, Simon & Emery 1995, 

Hodgson 2000).  

 

The concept of developing a multi-species index to assess community condition formed the basis of 

this study, which aimed to develop and apply indicators to assess the impacts of human activities on 

South African coral-inhabited reefs. The fish indicator species were selected using a combination of 

methods. First, a literature search was conducted to compile a list of potential indicators species that 

are targeted by fishers, sensitive to diver presence or associated with undisturbed reefs. The 

indicator list was then validated using the results of a baseline community assessment. A final list of 

fish indicator species was compiled termed the Fish-index.  

 

South Africa has a long history of MPAs and human resource use in the marine environment and 

thus provided an opportunity to test the indicator concept and comment on the role of MPAs in 

coral reef conservation. It is at this point that a review of South African coral reef MPAs is 

appropriate.  
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South African MPAs 

South Africa has a rich diversity of marine and coastal resources, which has provided important 

social and economic opportunities for food, commercial gain, recreation and transport (Attwood et 

al. 2000). South Africa’s increasing population density is placing ever-growing demands on marine 

resources, as is the case in other developing nations in the Western Indian Ocean (WIO) (Tunley 

2009). However, unlike many other African countries, South Africa appears to be well-endowed 

with MPAs (Hockey & Branch 1997, WDPA-Marine 2008).  

 

South Africa is a signatory to several international conventions and protocols that advocate the 

implementation of MPAs as a tool for marine conservation. These include the Convention on 

Biological Diversity, and the related Jakarta Mandate, WSSD Johannesburg Accord, Nairobi 

Convention, and FAO Code of Conduct for Responsible Fisheries (Lemm & Attwood 2003). In 

addition, South Africa has made a commitment to meet the international target set during the Fifth 

World Parks Conference of establishing a representative and effectively managed MPA network by 

2012 (DEAT 2006).   

 

The first MPA in South Africa was declared in 1964 and, since then, twenty-one MPAs have been 

promulgated under national legislation – the Marine Living Resources Act No. 18 of 1998 (MLRA). 

This equates to approximately 18% of South Africa’s coastline, with 5% located within no-take or 

sanctuary zones (Attwood et al. 1997). The MLRA lists three objectives for MPAs, viz.: 1) the 

protection of marine life; 2) the facilitation of fisheries management; and 3) the reduction of user-

conflict. MPAs are thus an important aspect of marine conservation in South Africa and are 

considered essential for fisheries management (Attwood et al 1997). Numerous types of MPAs have 

been promulgated, including multiple resource use MPAs, no-take zones or sanctuaries, Ramsar 

Sites, a World Heritage Site and a UNESCO Biosphere Reserve (Tunley 2009).  

 

The MPAs in South Africa also include a wide variety of ecosystems and range considerably in 

size. The major ecosystems included in the MPAs are intertidal habitats, estuaries and offshore reefs 

(coral and rocky reefs).  

 

The South African coral-inhabited reefs 

South Africa’s coral-inhabited reefs occur at the limits of tropical reef distribution (27-28°S) and 

are thus considered high-latitude, marginal reefs (Kleypas et al. 1999). Reef formation on marginal 

reefs such as those in South Africa is said to be constrained by low aragonite saturation state (Ω-

arag <3.4), which hinders the creation of the massive biogenic carbonate structures typical of 
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tropical reefs (Stoddart 1969). Instead, marginal reefs comprise non-accretive communities or 

veneers of living coral (Goreau 1969). Consequently, the term ‘coral community’ has been 

suggested as an alternative to ‘coral reef’ because such ecosystems do no conform to the geological 

definition of typical coral reefs (Kleypas et al. 1999).  

 

Most high-latitude reefs are characterised by large standing crops of macroalgae (see table 2 in 

Johannes et al. 1983). This is untrue of South Africa’s coral-inhabited reefs where corals are the 

prominent fauna, constituting between 50-70% of the benthic cover on the reefs (Riegl 1993, Jordan 

& Samways 2001, Celliers & Schleyer 2008). Furthermore, hermatypic coral diversity is higher 

than many other reefs at similar latitudes; 95 species representing 46 genera have been recorded on 

the reefs (Schleyer & Celliers 2003). In comparison, 70 hermatypic coral species representing 32 

genera have been identified in the Houtman Abrolhos Islands in Western Australia (Crossland et al. 

1984) and 57 species in 33 genera at Lord Howe Island (Veron & Done 1979). In addition, fish 

diversity on the coral-inhabited reefs is high with 399 recorded species (Chater et al. 1993). This is, 

however, considered an underestimate as 500 species are expected to occur on the reefs (Dennis 

King pers. comm.). Approximately 80% of the fish community is comprised of tropical Indo-Pacific 

reef species (Chater et al 1993). Thus, although the South African coral-inhabited reefs represent 

marginal coral communities from a structurally and geological perspective, from an ecological and 

biological perspective, they appear to represent diverse, high-latitude coral reef ecosystems. This 

view is shared by other authors who acknowledge that the importance of marginal coral reefs or 

coral communities should not be considered any less significant than their tropical counterparts 

because they perform the same ecological function as coral reefs (Spalding et al. 2001). For the 

purposes of this study, South Africa’s coral-dominated reefs will thus be referred to as coral reefs.  

 

The South African coral reefs are located on the Maputaland coast and are hence known as the 

Maputaland reefs. Certain biological components of these coral reefs have been well documented. 

Schleyer and Celliers (2003) provide a review of studies and key events relating to coral community 

research on the Maputaland coral reefs. An updated literature search contributed an additional eight 

peer-reviewed articles, bringing the total number of research publications to thirty two. In 

comparison, there have been only two investigations assessing the fish communities on South 

African coral reefs (Chater et al. 1993, 1995). 

 

The coral reefs lie within two contiguous MPAs; the St Lucia MPA and the Maputaland MPA. A 

number of the Maputaland coral reefs have a long history of human resource use, particularly 

recreational gamefishing and SCUBA diving (Schleyer 2000). In contrast, there are also sanctuary 

or no-take zones that have been closed to human activities for more than 20 years. The Maputaland 
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reefs thus presented an opportunity to investigate the nature of the coral reef fish communities 

exposed to contrasting levels of human resource use. Prior to this study, observations indicated that 

the reef fish communities varied on reefs subjected to different levels of protection (Michael 

Schleyer pers comm.). The purpose of this study was to establish whether these observations were 

real and quantifiable. If this proved the case, it would be useful to include a non-MPA study reef in 

which unregulated reef resource use occurred. For this reason a reef in southern Mozambique at 

Ponta Malongane was also included. The major focus of this study; however, remained the 

Maputaland reefs.  

 

Key questions and research plan 

The overall aim of this research was to assess the nature of the fish communities on South African 

coral reefs relative to their protection from extractive and non-extractive use. The following 

following key questions were formulated: 

  

1. Do reef fish communities differ between reefs in terms of their abundance, diversity, family 

composition and trophic structure? 

2. Do the above community metrics differ between reefs of varying protection status? 

3. Are there any species that appear to be more ecologically important than others i.e. do they 

have indicator value? 

4. Are there differences in abundance, biomass, trophic strucure and size of the selected 

indicator species between the different protection zones? 

5. Are there any indicator species that manifested unexpected trends in the presence of human 

activities? 

6. Are these indicator species effective in assessing the impacts of human activity on South 

African coral reefs? 

7. What value, if any, do the indicator species have in assessing the effectiveness of MPA 

management on South African coral reefs? 

 

Thesis outline 

This thesis consists of five chapters and primarily draws on field-based research to achieve the 

research objectives. Chapter 1 is the general introduction, which provides the theoretical 

background, rationale, and current literature that contextualises this study and its concepts. Chapter 

2 consists of a description of the study sites providing relevant biological, physical and geological 

information. Detailed 3-D maps of the reefs are included. Chapter 3 provides the baseline data for 

this study by describing the fish communities on southern African coral reefs. In addition, it 
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compares the fish communities in terms of reef protection status. Finally, the analysis of the fish 

community in Chapter 3 identifies a number of ecologicall important species. This list of species 

was used to validate 25 a priori selected indicator species that are further investigated in Chapter 4. 

Chapter 4 used the 25 fish indicator species to assess the impacts of human activities in the different 

MPA zones. The management implications of these results are dicussed. Chapter 5 concludes the 

thesis and comprises the general discussion. Here, the general findings of the thesis are discussed in 

a regional and global context. In addition, the strengths and limitations of the study are discussed as 

well as recommendations for future research.  
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CHAPTER 2 
 
STUDY SITES 

2.1 Study site description 

The study area was located along the north-east coast (Maputaland) of South Africa and extended 

10 km beyond the South African border into southern Mozambique (Fig. 2.1). The latitudinal extent 

of the area was from 26°46’S to 27°50’S and covered a distance of 160 km from north to south. 

Seven separate reefs were included in the study area, six of which are located in the Maputaland 

region of South Africa and one in southern Mozambique at Ponta Malongane. The GPS co-

ordinates are listed in Figure 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.1 Location of the seven study reefs along the Maputaland coast of South Africa and at 
Ponta Malongane in southern Mozambique. The dark shaded section represents the St Lucia MPA 
and the light shaded area represents the Maputaland MPA.  

Reef 
Geographical 
co-ordinates 

Shallow Malongane  (SM) 
 

26° 46.903S 
32° 54.008E 

 
Rabbit Rock (RR) 27° 02.876S 

32° 51.793E 
 

Nine-mile Reef (NMR) 27° 24.689S 
32° 43.574E 

 
Seven-mile Reef (SMR) 27° 27.211S 

32° 42.678E 
 

Two-mile Reef (TMR) 27° 31.649S 
32° 41.061E 

 
Red Sands (RS) 27° 46.176S 

32° 37.767E 
 

Leadsman Shoal (LMS) 27° 50.108S 
32° 36.390E 
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2.1.2 Climate 

The study area has a humid, sub-tropical climate due to the presence of the warm Agulhas Current 

which feeds moisture to the overlying atmosphere (Jury et al. 1993). The seasonal cycle is unimodal 

with peak rainfall and temperatures in the summer months (December to February) (Jury 1998). 

The mean annual rainfall exceeds 800 mm and the mean temperature range along the coast is 

between 16-25° C for Maputaland and 22-24° C for southern Mozambique (Hunter 1988, Hatton 

1995). The predominant winds have a strong north-easterly component with a maximum wind 

speed of 14-16 knots (Fig. 2.2). The south-westerly winds are less frequent, but have a greater 

maximum velocity of 20-24 knots. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 2.2 Wind rose for the study period January 2007 to February 2009. Data is for Richards Bay, 
supplied by the CSIR, Stellenbosch, collected on behalf of the Transnet National Port Authority 
(TNPA). 
 

2.1.3 Oceanography 

No major rivers flow into the sea near the reefs; the coastal waters are thus oligotrophic and the 

average visibility ranges between 10-15 m (Schleyer 2000). The mean seasonal sea surface 

temperatures (SSTs) range from 22°C in winter to 27 °C in summer (Smith et al. 1996). Celliers and 

Schleyer (2008) showed an increase in mean sea temperature from 1994 to 2000 of 0.15° C pa, and 

a decline in temperature of 0.07 °C pa from 2000-2006. These fluctuations were attributed to local, 

macro-cyclical phenomena (Schleyer & Celliers 2003). Sea temperatures recorded at a fixed 

monitoring station on Nine-mile Reef during the study period are presented in Figure 2.3.  

Knots 



17 

 

The Agulhas Current is the predominant regional current carrying warm water southwards at a 

mean peak velocity of 1.4 m/s (Lutjeharms 2006). The average surface velocity in the region is 0.27 

m/s (Morris 2009). This current is a western boundary current within the South West Indian Ocean 

subgyre, an anti-cyclonic wind-driven circulation system present throughout the year (Lutjeharms 

2006). Results of Acoustic Doppler Current Profiler records from Nine-mile Reef showed that 

southerly currents are predominant, while counter-currents flowing north are infrequent (Morris 

2009). The primary driving force of the northerly reversals is southerly winds (Morris 2009). The 

prevailing north-easterly and south-westerly winds (Fig 2.2) generate considerable swell (Schleyer 

2000) with a predominant south-easterly component (Fig. 2.4). An occasional reversal due to 

southerly winds occurs in conjunction with approaching low-pressure frontal systems (Tyson & 

Preston-Whyte 2000).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 2.3 Mean monthly temperatures at a depth of 18 m on Nine-mile Reef in the Central Reef 
Complex for the period January 2007 to February 2009.  
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Figure 2.4 Swell rose for the study period January 2007 to February 2009. Data is for Richards Bay, 
supplied by the CSIR, Stellenbosch, collected on behalf of the Transnet National Port Authority 
(TNPA). 
 

2.1.4 Geology 

The South African and southern Mozambican coral reefs are confined to the narrow continental 

shelf which extends two to seven km offshore along the length of the coastline. The coast is linear 

and sandy (Ramsay 1994) but has late-Pleistocene beachrock and aeolianite outcrops comprising 

the dominant consolidated lithology on the shelf (Ramsay 1996).  

 
The reefs can be classified as patch reefs and lie approximately 1 km offshore (Ramsay & Mason 

1990). The size of the reefs varies between 1-2 km in length and between 0.6-1 km in width. None 

of the reefs reach the surface and the depth range of the reefs is 10-25 m (Schleyer 2000). They are 

atypical of tropical coral reefs because they are not massive carbonate structures, but instead consist 

of the aforementioned late-Pleistocene beachrock which originated from submerged coastal sand 

dunes (Ramsay 1996). Carbon-14 dating of a fossilised coral fragment (Favia sp) found in an 

intertidal beachrock sequence 35 km north of Sodwana Bay date the Maputaland reefs to a 

minimum age of 3780 ± 60 years BP  (Ramsay & Mason 1990).  

 

 

 

 

 

 

m 
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Figure 2.5 Geospatial 3-dimensional maps of the South African study reefs showing the varied 
beachrock topography (data extracted from Ramsay et al. (2006)) and the extent and area of the 
dominant coral community (Cluster 6; (Celliers & Schleyer 2008), see 2.1.5 below). Data for 
Shallow Malongane Reef were unavailable. 
 

 SM RR NMR SMR TMR RS LMS 
Depth of core community (m) 12-15 13-18 10-18 14-17 10-16 10-18 10-18 
Area of core community (km2)  1.18 0.208 0.13 1.12 0.46 2.18 
 

Seven-mile Reef 

Leadsman Shoal 

1 km 

Nine-mile Reef 

0.5 km 

Red Sands Reef 

1 km 

Two-mile Reef 

1 km 

Rabbit Rock 

1 km 

0.5km 
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The topography of the reefs is variable (Fig 2.5) and lack most geomorphological features of true 

tropical reefs such as reef crests and steep reef slopes. The major topographical features are gullies, 

pinnacles and reef tops (Schleyer 2000) (Fig 2.6). Leadsman Shoal, Red Sands Reef and Two-mile 

Reef consist of shallow pinnacles (8-10 m), extensive deep subtidal reef flats (14-18 m) and a 

gently a sloping seaward edge (24-27 m) (Celliers & Schleyer 2008). Seven-mile Reef is a small 

table-like feature (12-15 m deep) with a prominent drop-off from 17 m to a larger, low relief reef at 

22 m (Celliers & Schleyer 2008). Nine-mile Reef forms shallow platforms 6-18 m deep, and steep 

drop-offs from 12–20 m (Riegl et al. 1995, Schleyer 2000). Rabbit Rock is similar to Two-mile 

Reef, but has a greater average depth of 15 m. Shallow Malongane Reef is similar in topography to 

Two-mile Reef. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Representative reef (Leadsman Shoal) illustrating the typical gully and pinnacle 
topography of the study reefs.  
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2.1.5 The benthic communities  

The coral reefs of Maputaland and southern Mozambique are the most southerly in the Western 

Indian Ocean (Riegl et al. 1995). The coral communities colonised the coastal beachrock and 

aeolianite outcrops subsequent to a glacial maximum sea-level rise (Ramsay 1994). The maximum 

coral thickness found on the central complex reefs is 30-40 cm (Ramsay and Mason, 1990).  

 

Despite the marginal classification of the Maputaland and southern Mozambique coral reefs, corals 

are the dominant fauna on the reefs, contributing 50-70% towards the living benthic cover (Jordan 

& Samways 2001, Pereira 2003, Celliers & Schleyer 2008). The coral communities on these reefs 

consist of a rich mix of predominantly Indo-Pacific species (Pereira 2003, Celliers & Schleyer 

2008). On the South African reefs, 46 hard coral genera and 11 soft coral genera have been 

recorded, representing a total of 133 coral species (Schleyer 2000, Schleyer & Celliers 2003). Nine 

of the soft coral species are endemic to the area (Schleyer & Celliers 2003). Thirteen soft coral 

genera and 40 hard coral genera have been recorded on the Ponta Malongane reefs (Robertson et al. 

1996, unpub. data). It is anticipated that further investigations on the reefs will yield similar 

numbers of hard coral genera and species to the Maputaland reefs. 

 

Celliers & Schleyer (2008) conducted a detailed community structure analysis on the South African 

coral reefs, which yielded 16 significantly different benthic communities. The most widespread and 

abundant coral community consists of a diverse blend of hard and soft coral species, with soft corals 

contributing more than 25% towards the living cover component (Table 2.1). This particular 

community appears to comprise the ‘core’ community on South African coral reefs (Celliers & 

Schleyer 2008) (Fig. 2.7). Colloquially referred to as ‘Cluster 6’, this coral community constitutes 

the most abundant benthic community type on the six South African study reefs (Fig 2.5).  

 

Previous studies have reported similarities between the South African reefs and southern 

Mozambican coral community structure (Robertson et al. 1996, Pereira 2003). A comparison 

between the South African core coral community and the most abundant coral community on 

Shallow Malongane supports these observations (Table 2.1).  
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Figure 2.7 Representative view of the core coral community (Cluster 6; Celliers & Schleyer 2008) 
on Leadsman Shoal with its rich mix of hard and soft coral species. The predominant coral 
morphologies and genera are listed in terms of their percent contribution to total benthic cover 
(Celliers & Schleyer 2008).  
 
 
 
Table 2.1 Comparisons of the predominant benthos on the South African and southern Mozambican 
study reefs (Schleyer et al. 2008). Data for Shallow Malongane are from Schleyer et al. (in prep).  

Percentage cover Hard corals Soft corals 
South African  25.9 33.2 
Shallow Malongane  23.6 25.6 
Major coral taxa Sinularia spp Lobophytum spp Montipora spp Acropora spp 
South African  20.8 7.6 7.0 5.3 
Shallow Malongane  23.0 5.3 6.2 4.3 

 

2.1.6 Marine Protected Area zonation and human resource use 

The St Lucia MPA was declared in 1979 (Notice P 35/79), includes a shoreline of 73 km and covers 

a total area of 414 km2. The Maputaland MPA was proclaimed in 1986 (Notice GN 404/86), 

includes a similar length of shoreline (72 km) and covers a total area of 408 km2. Both MPAs 

extend 3 km offshore. These MPAs constitute the greater marine component of the iSimangaliso 

Wetland Park, a World Heritage Site (Act No. 49 of 1999). This protected area was formally known 

as the Greater St Lucia Wetland Park (GSLWP) and underwent a name change in 2007. Although 

the MPAs are covered by dual legislation, the conservation enforcement authorities (Ezemvelo 

KwaZulu-Natal Wildlife) in the St Lucia and Maputaland MPAs follow the Marine Living 

Resources Act (MLRA) regulations because, legally, the MLRA has precedence over the World 

Heritage Convention Act (Lemm & Attwood 2003).  

Category, Genus 
Percent 
cover 

Massive corals 
    Platygyra spp, 
    Favia spp, 
    Favities spp 

9.9  
1.9 
1.2 
1.7 

Submassive corals 1.6 

Encrusting corals 
    Montipora spp 

10.0  
6.6 

Acropora spp 5.0 

Lobophytum spp 6.9 
Sinularia spp 20.7 
Sarcophyton spp 3.0 
 



23 

 

In terms of the MLRA, the St Lucia and Maputaland MPAs are zoned into restricted and sanctuary 

zones. The sanctuary zones prohibit all human activities and are considered no-take zones. In the 

restricted zones, recreational fishing (boat and shore-based), spearfishing and SCUBA diving are 

permitted. These zones may be classified as multiple resource use zones. All boat-based fishing 

activities are restricted to gamefish species. According to the MLRA, ‘gamefish’ are pelagic bony 

fish of the families Scombridae, Carangidae, Pomatomidae, Coryphaenidae, Rachycentridae, 

Xiphiidae, Ostiophoridae and Sphyraenidae, the species Aprion virescens, as well as pelagic 

cartilaginous fish of the families Carcharinidae, Isuridae, Sphyrnidae, Alopiidae and 

Odontaspididae (Section 3.1 (G) Regulation R1429). In line with the MLRA, a permit is required to 

SCUBA dive in a MPA, while all marine recreational fishing activities require a permit, regardless 

of the locality in South Africa.  

 

The coral reefs have been divided into three reef complexes; the Northern, Central and Southern 

Reef Complexes (Riegl et al. 1995) and resource use varies between each reef complex (Table 2.2). 

The sanctuary zones include all reefs within the Southern Reef Complex and certain reefs in the 

Northern Reef Complex. The reefs in the Central Reef Complex are subjected to high levels of 

human extractive and non-extractive resource use. Recreational fishing, spearfishing and SCUBA 

diving are the most common activities on the reefs. Only SCUBA diving is permitted on Two-mile 

Reef (TMR); however, the diving intensity on this reef is 18 times higher than on the other reefs. 

This high diving intensity is attributed to the close proximity of TMR to the launch site, Jesser 

Point. The remaining study reefs in the Central Reef Complex (Seven-mile and Nine-mile Reef) are 

subjected to lower levels of diving intensity. Recreational fishing for gamefish species is permitted 

on these reefs.  

 

The diving intensity (number of divers per annum) for this study was based on 2007-2008 statistics. 

SCUBA diving numbers for South African reefs were obtained from the conservation authorities 

(Ezemvelo KwaZulu-Natal Wildlife) responsible for enforcing the MPA regulations (Pieters 2009). 

Diving intensity in on Shallow Malongane Reef (SM) was obtained from the only dive resort at 

Ponta Malongane (Parque de Malongane pers.comm). Due to the absence of formal coastal 

management in southern Mozambique in the past, these are the most accurate data available.  
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Table 2.2 MPA zonation of the seven study reefs and the types of human activities permitted in 
each zone (Extracted and adopted from the KwaZulu-Natal Wildlife Nature Conservation Services 
Marine Zone 2003 Management Plan for the Greater St Lucia Wetland Park). 

Resource use 
Location Reef MPA zone 

SCUBA diving Fishing Fishing 

Ponta Malongane SM N/A 
SCUBA diving  

(4500 dives/year) 
Unrestricted 
recreational 

Northern Complex RR Sanctuary Nil Nil 

NMR 
Multiple 

use 
SCUBA diving 

(1400 dives/year) 
Restricted recreational 
(gamefish species only) 

SMR 
Multiple 

use 
SCUBA diving 

(2800 dives/year) 
Restricted recreational 
(gamefish species only) 

Central Complex 

TMR 
Multiple  

use 
SCUBA diving 

(54 000 dives/year) 
Nil 

RS Sanctuary Nil Nil 
Southern Complex 

LMS Sanctuary Nil Nil 
 

When the present study was undertaken, southern Mozambique had no MPAs protecting the coral 

reefs at Ponta Malongane. However, two decrees pertaining to marine resources are relevant to the 

coral reefs. Article 61 (Decree n. 45/2006 of 30 November) prohibits all activities that may damage 

coral or coral reefs or the biodiversity that is characteristic of coral reefs. The Recreational and 

Sport Fishing Regulation (Decree 51/99 of 31 August) requires users to obtain a licence in order to 

participate in such activities. This decree also provides complete protection to vulnerable species 

and imposes daily bag limits on selected target species (Table 2.3).   

 
 
Table 2.3 Details of the Recreational and Sport Fishing Regulation in Mozambique (Decree 51/99 
of 31 August).  
 Fully Protected species 

Carcharodon carcharias  Polysteganus undulosus 
Epinephelus lanceolatus Petrus rupestris 
Epinephelus tukula   

Restricted species Daily allowance 
Sharks  2 
Scarids 1 
Serranids 4 
Sparids (Chrysoblephus punceus, Cheimerius nufar,  Polysteganus 
coeruleopunctatus 

4 
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CHAPTER 3 
 

 

A BASELINE ASSESSMENT OF SOUTH AFRICAN 
CORAL REEF FISH COMMUNITIES: 
COMPARISONS BETWEEN REEFS AND BETWEEN 
REEF PROTECTION STATUS  

3.1 Introduction 

Monitoring programmes often focus on the most prominent and ecologically important fauna in an 

ecosystem (Linton & Warner 2003). On coral reefs, these are undoubtedly fish and coral species. 

Fish are the most diverse vertebrate group on earth (Smith & Heemstra 1986) and are considered by 

some to be the best-studied marine taxon (Knowlton & Jackson 2008). Yet, fish assemblages in 

certain parts of the world still remain comparatively under-documented (Garpe & Öhman 2003).  

One such area is the Western Indian Ocean (WIO); a discrete subregion of the Indian Ocean 

(Sheppard 1987). Ecosystem and species diversity are high in this region (Sheppard & Wells 1988) 

which, although largely explored, remains the area in which coral reef fish are the least studied in 

the world (Heemstra et al. 2004).  

 

In the WIO, coral reefs and their associated fauna provide benefits to tens of millions of people 

through tourism revenue (Ahamada et al. 2004) and as sources of food (Obura et al. 2004). The 

estimated economic value in the form of goods and services provided by coastal habitats such as 

coastal and mangrove forests, coral reefs and seagrass beds is over US$25 billion per year (WIO-

Lab). Certain areas of the WIO have also received more attention than others, as well as certain 

coral reef taxa. Check-lists of coral species and quantitative descriptions of coral communities in 

the WIO are well documented in the literature (Pichon 1972, Faure 1977, Hamilton & Brakel 1984, 

Lemmens 1993, Riegl 1993, Hoeksema & Borel-Best 1994, Riegl et al. 1995, McClanahan et al. 

1999, Schleyer 2000, Muhando & Mohammed 2002, Pereira 2003, Schleyer & Celliers 2003, Obura 

et al. 2006a, Obura et al. 2006b). Numerous studies of fish communities are available. However, 

many of the data are qualitative in nature and lack detailed ecological information. Inventories of 

fish assemblages have been compiled for southern Madagascar (Harmelin-Vivien 1979), Maldives 

(Randall & Anderson 1993), Mauritius (Adjeroud et al. 1998), the Mascarene Archipelago (Fricke 

1999), Mozambique (Pereira 2000), Mayotte (Chabanet 2002), Glorieuses Islands (Durville et al. 

2003), Reunion Island (Letourneur et al. 2004), Rodrigues (Heemstra et al. 2004), Juan De Nova 

(Chabanet & Durville 2005) and the sub-tropical east coast of South Africa (Chater et al. 1993, 
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1995). Some studies have provided quantitative fish data for the region; however, they have largely 

focused on the affects of anthropogenic impacts on selected families of reef fish and have not 

yielded species inventories (Jennings et al. 1995, McClanahan & Kaunda-Arara 1996, McClanahan 

& Arthur 2001, Mohammed 2002).  

 

The coral reefs of the WIO constitute a wide diversity of structures from oceanic atolls and fringing 

reefs in the tropics to marginal coral reefs at higher latitudes (Sheppard 2000). Marginal coral reefs 

are those that exist near the limits of their environmental tolerance or latitudinal distribution 

(Kleypas et al. 1999). In the WIO, high-latitude coral communities are found in marginal 

environments in South Africa (Kleypas et al. 1999) and southern Mozambique. These coral 

ecosystems are among the southernmost coral reefs in the world (Ramsay 1996). Despite being at 

the latitudinal limit of coral distribution in the WIO region, they attain high biodiversity south of the 

equator (Benayahu & Schleyer 1995, 1998). 

 

The coral communities of South Africa were first investigated in the 1970s (Heydorn 1972, Ballard 

1973) and have subsequently received considerable attention (see Schleyer & Celliers 2003 for 

review). The fish communities by comparison were only investigated 20 years later by Chater et al. 

(1993) who provided the first check-list of the reef-associated fish assemblages on selected reefs. 

Realizing the importance of providing reef managers with detailed fish community data, Chater et 

al. (1995) returned to the reefs to conduct quantitative surveys on the abundance of the reef fish 

assemblages. In their first study, Chater et al. (1993) highlighted the problems associated with 

multi-species surveys and only thirteen families of fishes, typical of reefs in the area, were chosen 

for the subsequent (1995) quantitative study.  

 

Since the end of the Mozambican civil war in 1992, several studies have investigated the 

biodiversity of coral reefs in the Ponta Malongane area. Robertson et al. (1996) and Pereira (2000) 

were among the first to collect data on reef fish species. Pereira (2003) conducted a more detailed 

investigation on the effects of recreational SCUBA diving on selected coral reefs in the region. To 

date, no studies have examined the effects of SCUBA diving and recreational fishing on the fish 

communities on coral reefs in southern Mozambique. 

 

The aims of this investigation were three-fold. The first aim was to describe the fish communities 

on South African coral reefs in term of their abundance, diversity and trophic ecology and compare 

these parameters between each reef to provide baseline comparisons for long-term monitoring 

studies. The second aim was to compare these fish community metrics between reefs in terms of 

their differing protection status. The purpose was to investigate whether patterns observed in the 
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fish communities may be related to human activities such as fishing and diving or environmental 

factors. The third aim was to use these baseline data to validate the selection of 25 indicator species 

that were used to investigate the effects of human activities on reef fish communities. This is dealt 

with in Chapter 4.   
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3.2 Materials and methods 

3.2.1 Study site description 

See Chapter 2 for details.  

 

Levels of reef protection  

A description of human resource use and reef protection on the seven study reefs is listed in Table 

3.1. The Central Reef Complex is the focal point of marine tourism in the iSimangaliso Wetland 

Park. For the purpose of this Chapter, these reefs were classified as ‘Protected’ reefs. All the reefs 

in the Southern Reef Complex and certain parts of the Northern Reef Complex are categorised as 

no-take zones where no human activities are permitted. In this study, these reefs were termed 

‘Sanctuary’ reefs and included Rabbit Rock (RR), Leadsman Shoal (LMS) and Red Sands Reef 

(RS). Due to the lack of law enforcement on the Ponta Malongane reefs, Shallow Malongane Reef 

(SM) was termed ‘Open’.  

 

Diving intensity was separated into three categories. Reefs that experienced more than 50 000 dives 

per year were deemed to have high diving intensity, which included only TMR. Low diving 

intensity was deemed to occur on reefs that are subjected to less than 10 000 dives per year and this 

included SM, SMR and NMR. The zero-diving intensity category included Leadsman Shoal (LMS), 

Red Sands Reef (RS) and Rabbit Rock (RR).  

 

Fishing intensity was also separated into three categories. High fishing intensity occurs on reefs 

where there are fishing regulations, but the lack of enforcement by marine officers and low 

compliance by fishers resulted in unrestricted fishing. This category included only SM. Low fishing 

intensity occurs on reefs where only the removal of bait and gamefish is allowed, which included 

SMR and NMR. The zero-fishing intensity category included reefs where all types of fishing were 

prohibited, comprising TMR, LMS, RR and RS.   
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Table 3.1 Description of human resource use and reef protection on the seven study reefs. SCUBA 
diving statistics are averages for the period 2007-2008. Reefs are ordered north to south. 

Human activities 
Reef name Reef protection status 

Diving Fishing 

Shallow Malongane (SM) Open 
Low  

(4500 dives/year) 
Unrestricted  

Rabbit Rock (RR) Sanctuary Nil Nil 

Nine-mile Reef (NMR) Protected 
Low 

(1500 dives/year) 
Restricted  

(gamefish species only) 

Seven-mile Reef (SMR) Protected 
Low 

(2900 dives/year) 
Restricted  

(gamefish species only) 

Two-mile Reef (TMR) Protected 
High 

(54 000 dives/year) 
Nil 

Red Sands Reef (RS) Sanctuary Nil Nil 

Leadsman Shoal (LMS) Sanctuary Nil Nil 
 

3.2.2 Surveys of reef fish communities 

During the period January 2008 to February 2009, five fieldtrips were undertaken to the 

iSimangaliso Wetland Park and two fieldtrips to southern Mozambique. Data were collected using 

SCUBA and all diving operations were conducted from a semi-rigid inflatable vessel. Study sites on 

were randomly selected using geo-spatial data on the reefs from Celliers & Schleyer (2008) (Fig. 

3.1). These data allowed the survey sites to be selected within the dominant coral community type 

(‘Cluster 6’ see Chapter 2) and required depth range.   

 

Surveys of fish diversity and abundance were undertaken using point count underwater visual 

census (UVC) techniques adapted from Samoilys and Carlos (2000). The point count technique was 

selected because it is effective in estimating abundances of mobile species (Samoilys & Carlos 

2000) and is suitable for the varied topography of South African coral reefs. It was anticipated that 

some degree of underestimation would be incurred due to the nature of UVC sampling techniques 

(see Chapter 1). Thus the fish assessments were focused on diurnally active fish species.  

 

Each census (community count) consisted of a 60 minute timed swim that covered a large circular 

area of reef and was equivalent to one dive. Fish abundance was subsequently quantified per unit 

time (one hour) as opposed to per unit area. The aim of the community counts was to enumerate as 

many species as possible. The search time was maximised due to the expected high number of fish 

species. A total of 77 community counts were completed, with 10-12 counts conducted per reef 

(Table 3.2). All fish taxa observed on a reef and within the water column during the counting period 

were recorded. Fish were identified to species level. Where necessary, identification of species was 

aided by identification guides (Smith & Heemstra 1986, King 1996) and websites (Fishbase 2009). 
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Only two divers entered the water at any one time, a data recorder and a buddy diver. To minimise 

the impact of diver disturbance caused by the divers entering the water, the data recorder waited 

five minutes before beginning each count. The same diver conducted all community counts to 

minimize variation and error incurred by diver bias. Community counts on each reef were separated 

by at least 100 m. The time of each community count was conducted between 0800 and 1400. All 

counts were conducted in the depth range of 12-15 m.  

 
 
Table 3.2 Summary of survey dates and number of fish community counts conducted on the seven 
study reefs on South African and southern Mozambican coral reefs during 2008-2009. Each  
community count represents one dive. Reefs are ordered from north to south. The total numbers of 
community counts per reef are highlighted in bold. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reef 
January  
2008 

February 
2008 

June 
2008 

July  
2008 

September 
2008 

December 
2008 

February 
2009 

Total 

SM - - - - 5 - 6 11 
RR - 6 - 6 - - - 12 

NMR 1 1 2 4 - 2 2 12 
SMR 1 - - 4 - 2 3 10 
TMR 2 - - 3 - 2 3 10 
RS 3 - 6 - - 2 1 12 

LMS 2 - 6 - - - 2 10 
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Fig. 3.1. Location of survey sites on the six South African study reefs. Geo-spatial data are from 
Celliers & Schleyer (2008). No data were available for the southern Mozambican reef. 
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Trophic levels 

Species were allocated to one of nine trophic groups; top-level predators, medium-level predators, 

low-level predators, planktivores, omnivores, herbivores, benthivores, corallivores and invertivores. 

The allocation of each species to a trophic guild was done according to diet information retrieved 

from the FishBase website (http://www.fishbase.org) and supplemented by field observations.  

 

Predators were defined as species that feed predominantly on other fish. This category was 

subdivided into three categories based on body size as it has been proposed to determine the 

vulnerability of species to exploitation (Gislason 2002). Larger-bodied species, although more 

fecund, are slower growing and reach sexual maturity at a later age than smaller-bodied species 

(Hutchings 2002). Not only are larger-bodied species vulnerable to exploitation due to their life 

history traits (Dulvy et al 2004a) they also tend to be more heavily targeted by fishers due to size 

selective fishing (Pauly et al. 1998, Pinnegar et al, 2002, Berkeley 2004).  

 

Small predators such as cirrhitids (hawkfish) and small lutjanids (snappers) were included in the 

low-level predator category, while species such as carangids (excluding C. ignobilis) and smaller-

bodied serranids (rockcods) were categoriesd as medium-level predators. Top-level (apex) predators 

were defined as species with no predator, residing at the top of the food web and included large 

species such as sharks and giant serranids (e.g. Epinephelus tukula).  

 

Benthivores were specialist consumers of sponges and ascidians. Invertivores included species that 

feed on crustaceans, echinoderms and polychaetes. Planktivores were fish species that feed on 

plankton in the water column. Omnivorous species were those species that were non-selective in 

their feeding habits. Herbivores were those species that feed predominantly on algae. Lastly, 

corallivores were those species that feed exclusively on coral polyps or coral mucus.  

 

Measuring environmental variables and habitat characteristics 

Depth and topography were recorded during each fish community count. In addition, hourly water 

temperatures were obtained from an underwater temperature recorder stationed on NMR at a depth 

of 18 m. Depth was measured using a dive computer and recorded as a mean of six depth readings 

during each community count. Topographic complexity for this study referred to the structural 

variation of the underlying bedrock and was assessed as the height of the substratum above the 

sand. An area of reef with pinnacles more than 2 m high was categorised as having high 

topographic complexity. Medium topography complexity described a reef area with substratum 

between 1-2 m high and low complexity areas had substratum less than 1 m in height. A three point 
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scale was used because the community counts were conducted over a large area and a rapid method 

was needed to describe the topography. Coral cover was not included as a habitat variable in these 

analyses due the large spatial scale and because all fish surveys were conducted within the same 

benthic community type (‘Cluster 6’, see Chapter 2 for details).  

 

3.2.3 Statistical analysis 

The stepwise process of the statistical analyses used in this study is diagrammatically represented in 
Figure 3.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 Diagrammatic summary of the sampling protocol and data analyses undertaken in the 
assessment of fish communities on coral reefs in South Africa and southern Mozambique. 
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Sample size test 

Power analysis was used to determine whether the mean of 11 community counts conducted per 

reef were sufficient to provide the statistical validity needed to detect changes in population 

estimates. The power analysis technique was used according to Kapadia et al. (2005). The minimum 

sample size required was calculated as that required to detect a 10% change in the mean estimate at 

a significance level of 0.05 and a power of 80% (Fairweather 1991, Length 2001).  

 
Univariate analysis 

Univariate analyses were carried out using one-way analysis of variance (ANOVA). Before 

proceeding with an ANOVA, the data were tested for normality using the Shapiro-Wilk test. If data 

were not normally distributed, non-parametric Kruskal-Wallas (K-W) one-way ANOVA on ranks 

was used. This method of comparing different groups does not require the assumption that all 

samples are drawn from normally distributed populations with equal variances (Analyze-It 2008). If 

differences between fish abundance parameters were detected, pairwise multiple comparison 

procedures were employed. Two post-hoc tests were used to detect differences; Dunn’s method and 

the Holm-Sidak test (Analyse-It 2008). Dunn's method is appropriate for K-W ANOVA on ranks 

when the sample sizes in the different treatment groups are different. The Holm-Sidak test is more 

powerful than the Tukey and Bonferroni test and, consequently, it is able to detect differences that 

the Bonferroni test cannot (Analyze-It 2008). Univariate analyses were conducted using the 

statistical package Sigma Plot 11.0 (2008), Analyze-It (2008) and GenStat 12.1 (2009) software. 

The criterion for significance of all tests was p≤0.05. 

 

All analyses were conducted using abundance data for between-reef and within reef protection 

status comparisons. Abundance data were estimated as number of fish per unit hour of the survey. 

Trophic levels and family composition comparisons were examined. To study the changes in 

species diversity the following indices were used: 

Margalef’s richness index (d) (Margalef 1958): 

d = (S-1)/logeN), 

where S is the total number of species and N is the total number of individuals in the sample.  

Simpson’s evenness index (1-λ) (Simpson 1949): 

1-λ = 1-[∑iNi(Ni-1)] /[N(N-1)], 

where Ni, is the number of individuals of the ith species in the sample. 

 (3) Shannon’s diversity index (H’ ) (Shannon 1949): 

   H’  = -∑pi(log pi), 

where pi is the total count of each sample represented by the ith species. 
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Generalised linear models (GLM) were used to examine the influence of various habitat 

characteristics and independent variables on fish community parameters. GLMs were chosen 

because the data included continuous (temperature and depth) and categorical (topography, fishing 

intensity and diving intensity) independent variables. Regression models were tested for a number 

of dependent variables, which included total fish abundance, number of species, Margalef species 

richness, Shannon diversity, and fish abundance with trophic levels. Total fish abundance data were 

fourth-root transformed.  

 

Multivariate analysis 

All multivariate analyses were analysed using PRIMER v.6 (Clarke & Gorley 2006). 
 
Transformation 

All multivariate analyses were conducted using Bray-Curtis dissimilarities on fourth-root 

transformed abundance data. The degree of transformation was determined by a simple linear 

regression of the log of the standard deviation of each abundance mean against the log of the mean 

(Clarke & Warwick 2001). The slope of the linear equation determines the degree of transformation 

necessary. Figure 3.3 gives an example of the linear regression using data from NMR. Due to the 

high number of zeros in the abundance data, the purpose of the transformation was to define the 

balance between contributions from common and rarer species, and not to achieve normality. The 

fourth-root transformation is a more severe transformation (Clarke & Gorley 2006). However, it 

provides a means of down-weighting the importance of highly abundant species so that the sample 

similarities depend equally on less common species (Gillibrand et al. 2007). All comparisons were 

between individual reefs and between reef protection status. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Linear regression of the log of the standard deviations of non-zero means against the log 
of mean fish abundance on NMR 
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Community analysis 

Non-metric multidimensional scaling (MDS) was used to examine differences in community 

species composition. Stress values in the MDS plots tended to be high (>0.2). In order to present 

accurate descriptions of the observed patterns, MDS ordinations were included only after being 

compared with less sensitive multivariate analyses (e.g. cluster analysis). Analysis of similarity 

(ANOSIM) was also used to investigate differences in assemblage structure. An ANOSIM R-

statistic of <0.25 implies that there is too much overlap for sites to be separable (Clarke & Gorley 

2006). R-statistics > 0.5 were considered significant. Hierarchical agglomerative clustering with 

group-average linking was performed on the Bray-Curtis similarity abundance matrix to confirm 

trends observed in the MDS plots and ANOSIM results.  

 

Discriminating species 

SIMPER analysis was used to identify those species responsible for the Bray-Curtis dissimilarity 

between reefs and between-reef protection status. Due to the high number of species, only those 

species contributing 33% to the species accumulation were included. SIMPER may also be used to 

determine discriminating species between sampling areas. The main objective of applying SIMPER 

to the data was to determine which species were responsible for the differences in fish community 

structure i.e. which species are good discriminating species. In order to determine this, it is 

necessary to examine the contribution of each species to the dissimilarity between reef fish 

populations as well as the average abundance of the species and the dissimilarity-standard deviation 

ratio (Clarke and Warwick 2001). 

 

Environmental variables, human resource use and community composition 

At each sampling site, two environmental variables and three habitat characteristics were recorded: 

depth, temperature, topography, fishing intensity and diving intensity. Potential relationships 

between spatial patterns in fish communities and these environmental variables and habitat 

characteristics were examined using the BEST procedure (PRIMER v6 2006). Among a set of 

independent variables (and habitat characteristics), the BEST procedure identifies the most 

influential variable or combination of variables which give rise to the largest rank correlation (ps) 

(Clarke & Warwick 2001). All variables were normalised according to the requirements of the 

BEST procedure.  

 

Human resource use and species distribution patterns 

Further MDS plots were generated to examine the relationship between fish abundance and human 

activities, using the same fishing and diving intensity categories described above. Species 

abundance MDS plots were factored according to ‘human activities’ and certain discriminating 
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species identified by SIMPER were superimposed on the MDS abundance ordinations. Only those 

species that revealed an abundance pattern linked to human activities have been included in the 

results.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



38 

LMS RS TMR SMR NMR RR SM

T
ot

al
 a

bu
nd

an
ce

 (
fis

h 
hr

-1
)

0

200

400

600

800

1000

1200

1400

1600

1800

Sanctuary Protected Open

T
ot

al
 a

bu
nd

an
ce

 (
fis

h 
hr

-1
)

0

200

400

600

800

1000

1200

1400

1600

1800

3.3 Results 

3.3.1 Abundance  

Figure 3.4 illustrates the total number of fish recorded per unit time on the individual reefs and for 

the reefs combined according to their protection status. Kruskal-Wallis one-way ANOVA on ranks 

revealed that there were no significant differences in total fish abundance between the individual 

reefs. Leadsman Shoal (LMS) had the highest fish densities and Shallow Malongane (SM) the 

lowest densities. Total fish abundance was highest on Sanctuary reefs and lowest on the Open reef. 

Differences between protection zones were not significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Boxplots (5th and 95th percentile) of mean (±SD) number of fish recorded in fish 
communities on the South African and southern Mozambique coral reefs per unit time on A) 
individual reefs and B) reefs combined according to reef protection status. Means are indicated by 
dotted lines and medians are indicated by solid lines. Reefs are ordered from south to north.  
 

 

3.3.2 Spatial distribution of fish assemblages 

The ANOSIM multivariate analyses (Table 3.3) demonstrated a large measure of overlap between 

sites on different reefs and that the separation between certain reefs was more distinct than others. 

SM was conspicuous as it was significantly different from all reefs except Two-Mile Reef (TMR) 

and Nine-Mile Reef (NMR) (R=0.414, p<0.0005). Fish abundance was also significantly different 

between Seven-Mile Reef (SMR) and all Sanctuary reefs. The multi-dimensional scaling (MDS) 

ordination echoed this pattern as SM formed a discrete cluster (Figure 3.5A). SMR also formed a 

cluster, but was only significantly different to LMS. When the factor ‘protection status’ was 

A B 
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overlaid on the abundance MDS plot (Figure 3.5B), three distinct groupings were evident. 

ANOSIM was again used to determine whether differences between-reef protection status were 

significant (Table 3.4). The results confirmed varying degrees of separation, but only Sanctuary and 

the Open reef were found to be significantly different from each other.  

 

Table 3.3 Results of an analysis of similarity (ANOSIM) run on fourth-root transformed fish 
species abundance data for between reef differences. Global R=0.414. Significance of Global R 
<0.00005. Significant differences between reefs are in bold. R-statistics >0.5 were considered 
significant. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3.4 Results of ANOSIM run on fourth-root transformed species abundance data for between-
reef protection status differences. Global R=0.394. Significance of Global R <0.00005. Significant 
differences are in bold. P=Protected, S=Sanctuary, O=Open. R-statistics >0.5 were considered 
significant. 
 
 

 

 

 

 

 

 

Pairwise Tests R Statistic 
Significance  

Level % 
TMR, SMR 0.323 0.008 
TMR, NMR 0.209 0.2 
TMR, LMS 0.244 0.1 
TMR, RR 0.305 0.003 
TMR, RS 0.282 0.04 
TMR, SM 0.45 0.001 
SMR, NMR 0.355 0.007 
SMR, LMS 0.664 0.001 
SMR, RR 0.552 0.0002 
SMR, RS 0.717 0.0002 
SMR, SM 0.621 0.001 
NMR, LMS 0.402 0.002 
NMR, RR 0.352 0.0001 
NMR, RS 0.424 <0.0005 
NMR, SM 0.477 0.0003 
LMS, RR 0.247 0.4 
LMS, RS 0.134 4 
LMS, SM 0.612 0.001 
RR, RS 0.339 0.008 
RR, SM 0.619 0.0002 
RS, SM 0.703 0.0002 

Pairwise Tests R statistic Significance level % 
P, S 0.283 <0.0002 
P, O 0.465 0.002 
S, O 0.701 <0.0002 
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Figure 3.5 Non-metric multidimensional (MDS) ordination of samples based on fourth-root 
transformed fish species abundance showing groupings according to A) reef and B) protection 
status. P=Protected, S=Sanctuary and O=Open.  
 

 

Superimposition of the MDS ordination plots on the Bray-Curtis similarity cluster further 

emphasized the relationships between the sample sites on each reef. Sanctuary reefs and the Open 

reef formed distinct groups. Cluster analysis confirmed the trend that sample sites clustered 

according to their protection status.   
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3.3.3 Fish community characteristics 

Diversity Indices 

A total of 284 fish species were recorded on the seven study reefs (Appendix 1). Of these, nine 

species were cartilaginous (Class Chondrichthyes) and the remaining 275 were bony fish (Class 

Osteichthyes).  There was a large variation in diversity indices between reefs (Table 3.5). The 

highest total number of species was recorded on RR. This reef also had the highest Margalef’s 

(species richness) index. NMR had the highest diversity and Simpson’s evenness index between 

reefs. SM had the highest taxonomic distinctness, but the lowest total number of species. Despite 

the large differences in diversity indices, significant differences were found only in terms of 

taxonomic distinctness between SM-TMR and SMR-TMR. 

 
 
Table 3.5 Results of diversity indices (number of species, Margalef’s richness, Shannon’s diversity, 
Simpson’s evenness index and Taxonomic Distinctness) for each individual reef. The highest values 
for each index are highlighted in bold. 

 
 

Diversity data were combined according to reef protection status and compared using the same 

diversity indices (Table 3.6). Shannon diversity and Margalef’s species richness were highest on 

Sanctuary reefs.  The total number of species and Margalef’s richness index was highest for 

protected reefs. Taxonomic distinctness continued to demonstrate a contrasting pattern with highest 

Delta* being found on the Open reef, SM. One-way ANOVA revealed that the only significant 

difference was found in the average number of species between Sanctuary and Open reefs 

(p=0.038).  

 
Table 3.6 Results of diversity indices (number of species, Margalef’s richness, Shannon’s diversity, 
Simpson’s evenness index and Taxonomic Distinctness) for Sanctuary, Protected and Open reefs. 
The highest values for each index are highlighted in bold. 

 
 

 

 

 

 

Diversity index LMS RS TMR SMR NMR RR SM 

Number of species (S) 181 168 189 179 188 197 172 
Margalef’s richness (d) 11.85 10.89 10.93 11.73 11.22 12.14 10.94 
Shannon’s diversity (H') 2.95 2.94 2.81 2.98 3.04 2.99 2.82 
Simpson’s evenness (1-λ) 0.88 0.87 0.87 0.89 0.9 0.88 0.82 
Taxonomic Distinctness (Delta*) 56.45 58.11 55.61 60.46 58.21 59.81 60.6 

Diversity index Sanctuary Protected Open 
Number of species (S) 238 242 172 
Margalef’s richness (d) 35.22 36.34 26.67 
Shannon’s diversity (H') 3.822 3.684 3.157 
Simpson’s evenness (1-λ) 0.9499 0.9362 0.8677 
Taxonomic Distinctness (Delta*) 58.79 58.77 60.83 
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The fish abundance on each reef was dominated by a small number of species which, when 

combined, contributed more than 40% to the over all species abundance: Chromis dimidiata, 

Pseudanthias squamipinnis, Chromis weberi, Parapriacanthus ransonneti and Nemanthias 

carberryi. However, not all of these species were present on each reef.  C. dimidiata was the most 

abundant species on RR (12%), TMR (14%), RS (16%), and LMS (18%). The fish abundance on 

SMR and NMR was dominated by P. squamipinnis, which contributed 20% and 23% to the fish 

abundance respectively. On SM, P. ransonneti was the most abundant species contributing 32% to 

the overall fish abundance. Interestingly, P. ransonneti was absent from SMR and RS. Similarly, N. 

carberryi was absent from LMS, RS, RR and SM.  

 
 
Family composition 

A total of 50 fish families were recorded on the seven study reefs. The families showed differences 

in abundance and species composition of fish between the reefs. Table 3.7 lists the six families that 

included the most species observed on the reefs, contributing at least 50% to the overall species 

composition. The greatest number of species belonged to the labrid family, which contained almost 

twice the number of species than the next biggest family, the Acanthuridae. Of the remaining 50 

families, between 11 and 20 families were represented by only one species. 

 

Table 3.7 Percentage of fish species within families on the seven study reefs. Only families with the 
most species on each reef have been included. The combined species in the listed families 
contributed 55% to the overall fish species composition.  

 

In terms of abundance, family composition per reef manifested much more variation than the 

species count per family (Figure 3.6). The Pomacentridae dominated the family community 

structure on five of the seven reefs; LMS, RS, TMR, NMR and RR. SM was dominated by the 

Pempheridae and SMR by the Serranidae. The substantial contribution of the Serranidae to the 

family composition on all reefs except RR and SM was attributable to an abundance of species of 

the subfamily Anthiinae, which includes seagoldies.  

  

 

 

Family LMS RS TMR SMR NMR RR SM 
Acanthuridae 21 16 18 19 16 20 17 
Chaetodontidae 15 13 14 12 13 17 13 
Labridae 33 30 30 30 35 34 30 
Lutjanidae 10 11 11 13 9 12 8 
Pomacentridae 12 12 12 9 12 12 12 
Serranidae 12 10 12 12 14 13 7 
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Figure 3.6 Percent composition of coral reef fish communities at family level on the seven study 
reefs in South Africa and southern Mozambique. Only families contributing 80% towards overall 
abundance on each reef have been included. 
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Trophic levels 

The most abundant trophic category on all reefs was the planktivores (Table 3.8), ranging from 400 

fish/h at NMR to 601 fish/h at LMS. The invertivores were the next most abundant trophic level and 

abundances in this group varied greatly between reefs. Top predators were most abundant on RR 

and uncommon on SM. High level predators were also most abundant on RR. High abundances of 

medium-level predators were recorded on RR and SM. However, the high value found on SM was 

attributable to a single sighting of a large number of Scomberoides lysan. If this species is omitted 

from the analyses, the abundance of medium-level predators on SM is reduced to 32.6 fish/h. 

Obligate coral feeders were most abundant on RS and herbivores ranged from very low numbers on 

SM (31 fish/h) to relatively high abundances on LMS (140 fish/hr).  

 
Table 3.8 Mean abundance of the nine trophic guilds on each of the seven study reefs. Abundance is 
presented as the number of fish per hour. The highest abundance in each category is in bold.  
Trophic level LMS RS TMR SMR NMR RR SM 
Top-level predator 3.11 2.33 0.7 1.6 1.33 4.25 0.2 
Medium-level predator 30 20.58 24.4 29 16.67 55.25 62.6 
Low-level predator 4.67 10.08 9.2 14.9 8.33 13.33 4.3 
Invertivore 141 115.75 137.4 146.7 103.08 177.75 72.8 
Benthivore 24.33 9.33 4.7 5.1 8.5 16.92 2.1 
Corallivore 6.44 7.08 3.9 1.7 2.25 5.75 5 
Planktivore 601.33 453.17 534.9 577.9 433.33 480.42 400.4 
Omnivore 38.67 30 34.4 27.3 24.25 27 30.8 
Herbivore 140.33 69.67 60.4 51.3 39.08 59.83 31.3 
 

The most common species on the reefs in terms of trophic level were invertivores (Table 3.9).  

When the three predator levels are combined for each reef, species numbers were highest on SMR 

and lowest on NMR. The highest number of herbivore species was recorded on LMS and RS. RS, 

together with TMR, also had the highest number of benthivore species. Planktivore species were 

most common on NMR and corallivorous species were most abundant on SM. 

 
Table 3.9 Trophic structure of the fish communities on each study reefs according to number of 
species. Values are expressed as a percentage of total number of species per reef. The highest value 
in each category is in bold. 

Trophic level LMS RS TMR SMR NMR RR SM 

Top-level predator 2.2 1.8 2.1 3.9 1.6 3.1 1.7 

Medium-level predator 13.2 12.5 13.6 14.6 11.2 12.7 15.0 
Low level predator 3.3 3.6 2.6 4.5 3.7 4.6 4.1 

Invertivore 35.7 39.3 39.8 37.1 40.4 39.1 35.8 

Benthivore 3.9 4.2 4.2 3.9 3.7 4.1 3.5 

Corallivore 3.3 2.4 2.1 1.1 1.6 3.1 3.5 
Planktivore 14.8 14.3 14.1 14.6 17.0 12.7 13.9 

Omnivore 10.4 8.9 11 8.4 10.1 9.1 12.1 
Herbivore 13.2 13.1 10.5 11.8 10.6 11.7 10.4 
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Trophic category abundances were grouped according to reef protection status (Figure 3.8). Despite 

large apparent differences between trophic categories in the three reef categories, ANOSIM 

detected no significant differences according to reef protection status. For most of the trophic 

categories, abundances were highest in Sanctuaries and decreased as protection status decreased. 

Benthivores, corallivores, invertivores, herbivores, omnivores and top predators were most 

abundant on Sanctuary reefs. Medium-level predators were most abundant on the Open reef, where 

top predators were almost completely absent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8 Mean (±SE) abundance of trophic categories according to reef protection status. Fish 
abundance is expressed as number of fish per hour. 
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3.3.4 Discriminating species 

The SIMPER algorithm was used to determine the species that made the largest contribution to the 

dissimilarity in fish abundance between reefs (Appendix 2) and between reef protection status 

(Appendix 3). Due to the high number of species, only those contributing a cumulative contribution 

of 33% to the overall dissimilarity have been included in Appendix 3. Not all of the species that 

contributed the most to the between-reef dissimilarity may constitute good discriminating species. 

In terms of between-reef comparisons, seven species contributed the most towards the dissimilarity: 

Chromis nigrura, Pseudanthias squamipinnis, Caesio xanthonota, Chromis weberi, Odonus niger, 

Nemanthias carberryi and Lutjanus gibbus. The dissimilarity contribution of any of these species 

never exceeded 3% and the average dissimilarity contribution of the remaining species was between 

0.95 and 1.05 %. The greatest average dissimilarity was between TMR and SM (54.03%).  

 

In terms of comparisons between reef protection status, four of the already-mentioned species 

contributed the most towards the dissimilarity: P. squamipinnis, O. niger, C. nigrura and C. 

xanthonota. The contribution of these species towards the dissimilarity ranged from 1.36-2.3%. The 

greatest average dissimilarity was between Protected reefs and the Open reef (53.49%). The species 

considered to be potential discriminating species are highlighted in Appendix 2 and 3. As was 

expected, there was considerable overlap in SIMPER results for between-reef abundance and 

between-reef protection status.  

 

A total of 26 discriminating species were identified by the SIMPER analyses (Table 3.10). These 

species were responsible for the dissimilarity in fish assemblage structure between reefs, rendering 

them potential indicator species of variance between reefs or reef protection status. Preliminary 

analyses were carried out to investigate relationships between potential indicator species abundance 

patterns and human activities in section 3..3.6. 
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Table 3.10 Summary of discriminating species obtained from SIMPER analyses with family, 
common name and trophic level. Species are arranged alphabetically according to family. Data are 
for South African and southern Mozambican coral reefs fish communities.  

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.3.5 Linking environmental variables and habitat characteristics to fish 

community structure 

Multivariate analyses indicated that there were no significant relationships between fish assemblage 

composition and the abiotic sample variables (Table 3.11). The variable with the highest rank 

correlation (ps), and thus the habitat characteristic most likely to be responsible for influencing the 

fish community structure, was fishing intensity. However, this ps value is too low to be considered 

significant and it thus appears that none of the tested environmental variables or habitat 

characteristics accounted significantly for the variation in fish community composition between 

reefs. Conversely, univariate analyses identified a number of significant relationships between 

certain fish assemblage parameters and independent variables (Table 3.12), in particular human 

activities. According to the Generalised Linear Model (GLM) regression analyses, numerous fish 

assemblage parameters were significantly influenced by fishing and diving intensity. Combined 

these variables accounted for 13.3% and 7.5% of the variance in total fish abundance, respectively. 

Species Family Trophic level 
Zebrasoma scopes Acanthuridae Herbivore 
Balistoides conspicillum Balistidae Invertivore 
Odonus niger Balistidae Planktivore 
Caesio xanthonota Caesionidae Planktivore 
Caranx melampygus Carangidae Medium-level predator 
Plectorhinchus flavomaculatus Haemulidae Invertivore 
Plectorhinchus playfairi Haemulidae Invertivore 
Sargocentron caudimaculatum Holocentridae Invertivore 
Thalassoma amblycephalum Labridae Planktivore 
Lethrinus crocineus Lethrinidae Invertivore 
Aprion virescens Lutjanidae Medium-level predator 
Lutjanus bohar Lutjanidae Medium-level predator 
Lutjanus gibbus Lutjanidae Invertivore 
Lutjanus kasmira Lutjanidae Invertivore 
Pervagor  janthinosoma Monacanthidae Invertivore 
Oplegnathus robinsoni Oplegnathidae Benthivore 
Pomacanthus rhomboids Pomacanthidae Benthivore 
Amphiprion allardi Pomacentridae Omnivore 
Chromis dimidiate Pomacentridae Planktivore 
Plectroglyphidodon dickii Pomacentridae Omnivore 
Plectroglyphidodon johnstonianus Pomacentridae Corallivore 
Priacanthus hamrur Priacanthidae Invertivore 
Cephalopholis miniata Serranidae Medium-level predator 
Epinephelus tukula Serranidae Top-level predator 
Nemanthias carberryi Serranidae Planktivore 
Pseudanthias squamipinnis Serranidae Planktivore 
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However, in trophic groups such as top-level predators, benthivores and herbivores, human 

activities accounted for at least 40% of the variance. Depth was the only recorded environmental 

variable that had a significant influence on the fish assemblages (medium-level predators, 14.2% 

variance) 

 

Table 3.11 Results of BIO-ENV procedure, taken at k time, yielding the best combinations of 
abiotic and biotic similarity matrices for each k, as measured by Spearman rank correlation ps.  
 

k Best variables ps 
1 Fishing intensity 0.380 
2 Depth, Fishing intensity 0.361 
3 Topography, Depth, Fishing intensity,  0.377 
4 Topography, Depth, Fishing intensity, diving intensity 0.367 
5 Topography, Depth, Diving intensity, Fishing intensity, temperature 0.337 

 
 
Table 3.12 Results of GLM regression analysis on the influence of various environmental variables 
and human activities on fish assemblages on the seven study reefs. Only significant interactions 
have been included.  

 
 

Dependent variable Independent variable P F 
Wald 
statistic 

Percentage 
variance 

Diving intensity 0.05 2.46 9.84 7.3 
Total abundance 

Fishing intensity  0.04 3.37 6.73 6 

Number of species Diving intensity  0.05 2.5 10.01 7.5 

Diving intensity  <0.001 14.52 58.01 42.2 
Top-level predators 

Fishing intensity <0.001 13.8 27.6 25.7 

Medium-level predators Depth 0.01 3.04 18.24 14.2 

Fishing intensity  0.02 4.21 8.41 8 
Invertivores 

Diving intensity 0.05 2.5 10.01 7.5 

Fishing intensity <0.001 11.26 35.59 29.9 
Benthivores 

Diving intensity <0.001 8.27 33.1 28.2 

Fishing intensity <0.001 9.74 19.49 19.1 
Herbivores 

Diving intensity <0.001 5.2 20.81 18.5 
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3.3.6 Linking species abundance distribution to human activities 

Multivariate analyses indicated that human activities such as fishing and diving intensity were not 

significantly associated with fish community composition. However, certain species displayed 

patterns that relate to these activities when superimposed on the MDS abundance plots Fig. 3.9-

3.16). Although the MDS technique is not an analytical tool, it provided a useful graphical 

technique illustrating which species may or may not represent potential indicators of human 

activity. The following MDS plots show a number of selected species abundance distribution 

patterns in relation to human activities.  

 
 

Aprion virescens 

Aprion virescens is commonly targeted by recreational fishers in South Africa and Mozambique. 

According to the SIMPER revealed it to be a good discriminating species between reefs (Appendix 

3). The abundance of A. virescens was consistently higher in areas of no human activity and almost 

absent from areas of high fishing intensity (Figure 3.9). The low abundance of A. virescens at sites 

open to fishing suggests that fishing intensity has an influence on this species.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9 Aprion. virescens abundance superimposed on non-metric multi-dimensional scaling 
(MDS) ordination based on 4th root transformed fish abundance and factored for human activities. 
0=no fishing, HD=high diving intensity, F=restricted fishing, HF=high fishing intensity, D=diving. 
The circle size reflects the number of fish at that sampling site. 
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Caranx melampygus and Plectorhincus flavomaculatus  

SIMPER identified Caranx melampygus as a marginal discriminating species. However, it is a 

gamefish species commonly targeted by fishers in South Africa and Mozambique. The relationship 

between the abundance of C. melampygus and the main recreational activities on the study reefs is 

depicted in Figure 3.10A. The abundance of C. melampygus was higher at Sanctuary sites. Diving 

intensity did not appear to have a large effect on the distribution of this species. However, sites with 

high fishing intensities had considerably lower abundances, emphasizing the importance of this 

activity. Plectorhincus flavomaculatus manifested similar trends to C. melampygus (Figure 3.10B). 

  

 

 

 

 

 

 

 

 

  

Figure 3.10 A) Caranx melampygus and B) Plectorhincus flavomaculatus abundance superimposed 
on non-metric multi-dimensional scaling (MDS) ordination based on 4th root transformed fish 
abundance and factored for human activities. 0=no fishing, HD=high diving intensity, F=restricted 
fishing, HF=high fishing intensity, D=diving. The magnitude of the symbols reflects the number of 
fish at that sampling site 
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Carcharhinus amblyrhynchos and Epinephelus tukula 

Carcharhinus amblyrhynchos and Epinephelus tukula are two of the largest top-level predators on 

the study reefs. C. amblyrhynchos was not common at the sample sites and thus does not feature in 

the SIMPER results. However, it is the most common reef shark on the South African coral reefs. 

The MDS plot (Figure 3.11A) revealed the absence of this species from almost all sites with human 

activity. The highest abundances were recorded at sanctuary sites. The highest abundance of E 

tukula was also recorded on reefs with no human influence (Figure 3.11B).  

 

 

 

 

 

 

 

 

 
Figure 3.11 A) Carcharhinus amblyrhynchos and B) Epinephelus tukula abundance superimposed 
on non-metric multi-dimensional scaling (MDS) ordination based on 4th root transformed fish 
abundance and factored for human activities. HD=high diving intensity, F =restricted fishing, 
HF=high fishing intensity, D=diving. The magnitude of the symbols reflects the number of fish at 
that sampling site 
 

Balistoides conspicillum 

Balisoides conspicillum decreased in abundance with increasing diving intensity (Figure 3.12). 

More fish were observed in the sanctuary areas where human activities are not permitted. This 

species was recorded at only a few sites at which there is high diving intensity.  

 

 

 

 

 

 

Figure 3.12 Balistoides conspicillum abundance superimposed on non-metric multi-dimensional 
scaling (MDS) ordination based on 4th root transformed fish abundance and factored for human 
activities. 0=no fishing, HD=high diving intensity, F=restricted fishing, HF=high fishing intensity, 
D=diving. The magnitude of the symbols reflects the number of fish at that sampling site.
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Lethrinus crocineus and L. rubrioperculatus 

Lethrinus crocineus and L. rubrioperculatus were limited in their distribution patterns in terms of 

abundance (Figure 3.13). Almost all records of these species were in the sanctuary areas where no 

human activities are allowed. It is difficult to separate the effects of either fishing and diving 

intensity because so few fish were recorded where such activities occur.  

 

 

 

 

 

 

 

 

Figure 3.13 A) Lethrinus crocineus and B) L. rubrioperculatus abundance superimposed on non-
metric multi-dimensional scaling (MDS) ordination based on 4th root transformed fish abundance 
and factored for human activities. 0=no fishing, HD=high diving intensity, F=restricted fishing, 
HF=high fishing intensity, D=diving. The magnitude of the symbols reflects the number of fish at 
that sampling site.  
 
Lutjanus bohar and Oplegnathus robinsoni 

Lutjanus bohar and Oplegnathus robinsoni manifested similar trends in their distribution patterns 

(Figure 3.14). Both species were most common in sanctuary areas. They were also present at sites 

experiencing high diving and restricted fishing. O. robinstoni, however, was less common at these 

sites. The low abundance of L. bohar and O. robinsoni suggests that high fishing intensity is a 

limiting factor on the distribution of these species. 

 

 

 

 

 

 

 

 

 

Figure 3.14 A) L. bohar and B) O. robinsoni abundance superimposed on non-metric multi-
dimensional scaling (MDS) ordination based on 4th root transformed fish abundance and factored 
for human activities. 0=no fishing, HD=high diving intensity, F =restricted fishing, HF=high fishing 
intensity, D=diving. The magnitude of the symbols reflects the number of fish at that sampling site. 
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Plectroglyphidodon dickii and P. johnstonianus 

The damselfish Plectroglyphidodon dicki and P. johnstonianus had similar distribution patterns as 

both species were most common at sites with no human activities (Figure 3.15). Sites with high 

diving intensity had low abundances, while sites at which there is both high fishing and diving had 

very low numbers or none of these species.  

 

 

 

 

 

 

 

 

 

 

Figure 3.15A) Plectroglyphidodon dickii and B) P. johnstonianus abundance superimposed on non-
metric multi-dimensional scaling (MDS) ordination based on 4th root transformed fish abundance 
and factored for human activities. 0=no fishing, HD=high diving intensity, F=restricted fishing, 
HF=high fishing intensity, D=diving. The magnitude of the symbols reflects the number of fish at 
that sampling site. 
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Contrasting patterns 

A number of species revealed distribution trends that were contrary to the already-mentioned 

species. Aulostomus chinesis, Lutjanus kasmira, Mulloides vanicolensis and Nemanthias carberryi 

were recorded in greater abundances at sites experiencing human activities (Figure 3.15). Not only 

were the abundances of these species low at the sanctuary sites, they were also absent at many of 

them. N. carberryi was the extreme case, being completely absent from all sanctuary sites (Figure 

3.16D). In addition, it was also completely absent from all sites with high fishing intensities. L. 

kasmira (Figure 3.16B) and M. vanicolensis (Figure 3.16c) were also largely absent from the high 

fishing intensity sites.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.16A) Aulostomus chinesis, B) Lutjanus kasmira, C) Mulloides vanicolensis and D) 
Nemanthias abundance superimposed on non-metric multi-dimensional scaling (MDS) ordination 
based on 4th root transformed fish abundance and factored for human activity. 0=no fishing, 
HD=high diving intensity, F=restricted fishing, HF=high fishing intensity, D=diving. The 
magnitude of the symbol reflects the number of fish at that sampling site. 
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3.4 Discussion 

Spatial variation in fish assemblages  

These surveys constitute one of the few studies in the WIO to document variations in mean fish 

abundance between reefs on a regional scale. Fish studies in the region have either presented fish 

inventories that are descriptive in nature (Harmelin-Vivien 1977, Chater et al. 1993, Heemstra et al. 

2004, Chabanet & Durville 2005, Gillibrand et al. 2007), have focused on selected fish families or 

species (Chater et al. 1995, Jennings et al. 1996, Garpe & Öhman 2003, Obura et al. 2006a) or have 

provided quantitative data for a particular aspect of the fish community such as trophic categories 

(Chabanet 2002, Durville et al. 2003). While fish abundance data were collected in this study, direct 

comparisons with the studies referred to above are precluded because abundance was quantified per 

unit time rather than per unit area. Measures of density of fish per unit area are more suitable for 

large scale comparisons with reefs in other geographic locations. Unfortunately, the logistical 

considestraints of this study precluded such density measurements. Nevertheless, densities of 

selected fish species are presented in Chapter 4 where their comparisons with other studies in the 

WIO will be discussed in detail. 

 

As is often found with underwater visual censuses (Brock 1982, Samoilys & Carlos 2000, 

Thompson & Mapstone 2002), there was considerable variation in mean fish abundance between 

reefs. All of the South African study reefs had higher fish abundances compared to the southern 

Mozambican reef. When reefs were grouped according to protection status, the highest abundances 

were found within Sanctuary zones. There is much evidence for enhanced abundances of target 

species in marine reserves (Watson & Ormond 1994, Bohnsack 1996, Russ & Alcala 1996, Wantiez 

et al. 1997, Unsworth et al. 2007, Watson et al. 2007), while non-targeted fish manifest varying 

abundances in protected areas (Mumby et al. 2006, Watson et al. 2007). In order to show the 

protective value of a MPA, comparisons of fish communities should be conducted before and after 

the proclamation of control measures. Halpern (2003) demonstrated that the density of organisms in 

MPAs roughly doubled and Wantiez et al. (1997) found a 160% increase in fish densities on islands 

in New Caledonia after five years of protection from fishing. Without historical data, it is difficult 

to demonstrate whether factors such as habitat, history or larval supply may account for the higher 

abundances observed on the South African Sanctuary reefs or whether anthropogenic factors are 

influencing the distribution of fish communities. This study nevertheless confirmed that Sanctuary 

reefs had higher fish abundances compared to Protected and Open reefs. The benefits of Sanctuary 

zones along the Maputaland coast are further demonstrated by a study on surf-zone fish in the St 



56 

Lucia MPA (Mann 2008); in this the abundance of surf-zone fish assemblages doubled after eight 

years of closure to shore-based recreational fishing.   

 

Fish community characteristics 

Sample size 

The number of replicates (community counts) or the sample size is an essential component of any 

experimental design (Samoilys 1997). In any field-based study there is a trade-off between the 

minimum sample size required for statistical validity and the maximum number of samples that can 

be collected within the financial and logistical constraints of a project (Green 1979). Recording data 

underwater is particularly challenging because of the constraints imposed by SCUBA diving. In this 

study, depth and distance to the study reefs were factors that limited data collection. The northern 

Sanctuary site (Rabbit Rock) was particularly difficult to access as it was located 34 km away from 

the nearest launch site. Conducting pilot studies is useful to determine what sample size is needed; 

however, few studies have the financial means to include such preliminary surveys.  The mean 

sample size in this study of 11 community counts per reef was initially based on work done by 

Samoilys and Carlos (2000), who suggested that a minimum sample size of ten counts is 

recommended based on statistical considerations such as degrees of freedom, which are particularly 

relevant when dealing with highly variable distributions typical of reef fish.  

 

Power analysis was conducted to determine the effects of increasing the sampling effort per reef. 

The results revealed that the mean sample size of 11 community counts per reef resulted in a 

statistical power of 79%. In order to increase the power of the sampling effort to 80% (Fairweather 

1991, Lenth 2001), the required sample size would have been 14 community counts per reef. 

Logistically, this would have been difficult to achieve on the southern African reefs and Samoilys 

(1997) found no appreciable change in precision in density estimates of fish beyond 10 to 15 

replicates. It therefore would appear that the sample size used in this study was sufficient to detect 

differences in the the fish community assemblages on the South African and southern Mozambican 

coral reefs.  

 

Diversity 

Chater et al. (1993) produced a checklist of 399 fish species belonging to 73 families on South 

African coral reefs. It differed from the current study in two regards: their fish surveys were carried 

out using both SCUBA censuses and angling, and the fish assessments were not quantitative. 

Nevertheless, their results constitute important baseline work that provides many useful 

comparisons. A total of 284 species of fish belonging to 50 families were recorded in the current 
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study. This is considerably lower than the number of species recorded by Chater et al. (1993). These 

authors expanded their sampling capacity with angling and were able to target pelagic and deeper 

(20-40 m) water species. Angling would account for the absence of 45 such species from the current 

study, but not for the absence of 126 typically reef-associated species. On the other hand, 44 of the 

species recorded in the current study were not found by Chater et al. (1993). This highlights the 

great variability in fish communities and in underwater visual censuses. Underwater visual censuses 

have further inherent problems (Brock 1982, Sale 1991) and typically underestimate cryptic species 

(Fowler 1987). Chater et al. (1993) acknowledged this and cryptic species were similarly 

underestimated in this study. Considerably more underwater time is needed to search for cryptic 

species and destructive methods such as rotenone must be employed to collect species living in 

crevices. Logistical constraints precluded employing either of these two techniques here.  

 

An unpublished checklist of fish is available for the Maputaland coral reefs and lists 1257 species 

(Polack 2007). This checklist, however, includes species from a depth of 200 m upwards, recorded 

using a variety of collecting techniques such as angling, rotenone, and deep SCUBA diving (100 

m). The estimate for the number of reef-associated fish species on the Maputaland coast is roughly 

1000 species (Dennis King pers. comm.). The South African coral reefs have a greater minimum 

depth  (>10 m) than typical tropical reefs, but coral cover diminishes rapidly below 25 m. Depth is 

an important consideration when comparing fish communities between regions, as it is a significant 

factor influencing habitat partitioning (Sherman et al. 1999). The number of fish species on the 

South African coral reefs is expected to exceed 399, but it is doubtful that it will reach 1000 in the 

depth range <25 m in which South African coral reefs are found. To be consistent with reefs in the 

WIO, but not exclude South Africa’s deeper reefs, it is proposed that assessments of reef-associated 

species be limited to 25 m depth. In this depth range it is estimated that at least 500 of fish may be 

recorded on South African coral reefs.  

 

The 284 species of fish recorded is comparable to that found in other studies in the WIO (Table 

3.13). These studies included a wide range of coral reefs, oceanic islands and fringing reefs along 

the east coast of Africa. The number of species recorded in this study was in fact higher than certain 

lower latitude reefs such as Mayotte (225: Chabanet 2002), Aldabra (221: Downing et al. 2004), 

Reunion (217: Letourneur 1996), southern Mozambique (239: Pereira 2003), Kenya (208: Church 

& Obura 2006) and Pemba (244: Richmond & Mohammed 2001). Fish communities 

characteristically decrease in species numbers in a gradient from low to high latitudes (Hobson 

1994). However, this pattern may not be as simple as originally thought. Benayahu & Schleyer 

(1995, 1998) demonstrated that soft coral diversity on South Africa’s coral reefs represent a 

diversity peak south of the equator. The high number of fish species found on these reefs 
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corroborates their work suggesting that there is a biodiversity peak on South Africa’s coral reefs 

and highlights the unique nature of these high-latitude reefs.  

 
Table 3.13 Number of species and families on WIO coral reefs recorded <25 m. Bold type indicates 
isolated oceanic islands. Records obtained by angling have not been included. Reefs have been 
ranked according to the number of species recorded. *Sampling techniques included underwater 
visual census as well as other techniques such as rotenone and/or explosives. 

  
 
The species diversity indices of the current surveys show few trends and the between-reef 

comparisons were too variable to draw any conclusions. However, when diversity was analysed 

according to reef protection status, more obvious patterns emerged. Conventional diversity indices 

such as species richness and Shannon Diversity Index were highest on Sanctuary reefs, lower on 

Protected reefs and lowest on the Open reef, SM. The number of species per reef was highest on the 

Sanctuary reefs; however, when combined, the Protected reefs had the highest number of species. 

The trend of higher biodiversity within MPAs is consistent with the findings of Halpern (2003), 

who established that the diversity of fish communities was 20–30% higher inside protected areas. In 

addition, Jennings et al. (1995) demonstrated increased species richness in fish communities in 

Seychelles’s MPAs as did Wantiez et al. (1997) in New Caledonia. 

 

Family composition 

The most abundant coral reef fish families (Labridae, Acanthuridae, Chaetodontidae, 

Pomacentridae, Serranidae and Lutjanidae) were well represented on South Africa’s coral reefs in 

terms of species numbers. SM had fewer species, in comparison, particularly in the serranid and 

lutjanid families. Both of these families include species that are targeted by fishers for recreational 

and commercial purposes (Chabanet & Durville 2005). In South Africa, only gamefishing is 

Country Region/reef Family Species Reference 
Tanzania Mafia Island 56 394 Garpe & Öhman 2003 
Tanzania Mnazi Bay 47 369 Obura et al. 2006 
South Africa Maputaland 66 354 Chater et al. 1993 
Madagascar Andavadoaka 58 334 Gillibrand et al. 2007 
France Glorieuses Islands 57 332 Durville et al. 2003 
France Basass da India 49 305 van de Elst & Chater 2000* 
France Juan De Nova 55 299 Chabanet & Durville 2005 
South Africa Maputaland 50 284 Current study 
Tanzania Pemba  244 Richmond & Mohammed 2001 
Mozambique Southern Mozambique 71 239 Pereira 2003 
Comoros Mayotte 35 225 Chabanet 2002 
Seychelles Aldabra 45 221 Downing et al. 2004 
France Réunion  44 217 Letourneur 1996 
Kenya Kiunga Bay  208 Church & Obura 2006 
Madagascar Tulear 44 200 Harmelin-Vivien 1977* 
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permitted on reefs in the Central Reef Complex north of TMR and bottom-fishing for reef species is 

prohibited. The protective legislation and hence the (near) absence of bottom-fishing on these reefs 

probably explains the similarity un numbers of serranid species observed between the South African 

reefs. Within the lutjanid family, only one coral reef-associated species is classified as a gamefish, 

Aprion virescens. With this exception, lutjanids are also largely protected from fishing on South 

African coral reefs. A contrasting trend was evident on the southern Mozambican coral reef. At the 

time of data collection, despite regulations specifying daily limits for certain target species, the 

combination of poor enforcement and low compliance by fishers had lead to unrestricted fishing on 

these reefs. Species commonly removed by fishing from the reefs included gamefish as well as 

other bottom-dwelling fish species (van der Elst et al. 1996). In addition, illegal semi-industrial 

fishing vessels have been observed in close proximity to the reefs (Pereira 2003). The low numbers 

of lutjanid and serranid species on SM are thus probably a consequence of fishing intensity and 

their lack of protection.  

 

Trophic structure 

Trophic structure of fish communities on the South African reefs varied greatly between reefs in 

terms of abundance and number of species. Benthivores and herbivores manifested no particular 

distribution pattern, except that these categories were particularly abundant on LMS. Planktivores 

were the most abundant feeding category (in terms of number of fish) on all the reefs, but were 

highest on LMS and SMR. Planktivore abundance has been observed to be highest along the reef 

edges near deeper water (Hobson 1991). Garpe and Öhman (2003) suggested that hydrodynamic 

factors may regulate fish community composition, particularly if plankton feeders rely on exposure 

and surge to replenish food resources. A similar distribution pattern emerged on SMR and LMS 

where planktivores were most abundant near pinnacles and drop-offs. Corallivores were most 

abundant on RS and LMS and least abundant on SMR. Differences in percentage coral cover 

between reefs may account for this distribution pattern as coral cover estimates were on average 

higher on RS and LMS compared to SMR. A positive relationship between fish species diversity, 

abundance and coral cover has been reported in numerous studies (Chabanet et al. 1997, Adjeroud 

et al. 1998, McClanahan & Arthur 2001). It is a logical assumption that the abundance of a 

specialist’s food source would have considerable influence on its distribution (Öhman et al. 1997, 

Graham et al. 2008).  

  

According to Harmelin-Vivien (1979), carnivore levels observed on a healthy reef usually 

constitute between 60-80% of the trophic composition depending on geographic location (Table 

3.14). A comparison of carnivore abundance across the western Indian Ocean supports this theory, 

as published values for Mayotte (Chabanet et al. 2002), Glorieuses (Durville et al. 2003), south 
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Madagascar (Harmelin-Vivien 1979), Reunion (Chabanet 1994) and Juan de Nova range from 51 to 

74%. The contribution of carnivores to the fish community abundance in these studies was 

calculated (as per Chabanet 2002) by combining all trophic categories except omnivores and 

herbivores. When the nine trophic categories in this study are considered in these three simplified 

groups, the average carnivore levels are close to 80%, making them among the highest on WIO 

coral reefs and implying that the trophic structure of the fish communities has not been influenced 

by anthropogenic or natural stresses. This is, however, not the case. While this approach allows 

comparisons between reefs over large geographic areas, it oversimplifies the trophic structure of 

reefs on a regional scale. More importantly, it may provide reef managers with spurious information 

on the number of predators in an ecosystem. As predators are often the species most targeted by 

fishers, such simplified results may underestimate the effects of fishing. 

  

Table 3.14 Trophic structure of fish communities, expressed as a percentage of total number of 
species on different WIO coral reefs.  
 
Reef Carnivore Omnivore Herbivore Reference 
Tuléar (Madagascar) 74 13.5 12.5 Harmelin-Vivien 1979 
Réunion 51 24 25 Chabanet 1994 
Andavadoaka  76 11 11 Gillibrand et al. 2007 
Mayotte 69 12.5 18.5 Chabanet 2002 
Juan de Nova 73 11 16 Chabanet & Durville  2005 
Geyser et Zéléé 69 16 15 Chabanet et al. 2002 
Glorieuses 73 12 15 Durville et al. 2003 
South Africa 79 9 12 Present study 
Shallow Malongane 77 12 11 Present study 
 

Predators are important species in coral reef ecosystems because of their functional role in 

regulating fish abundance (Connell 1998, Steele et al. 1998, Dulvy et al. 2004a, Pala 2007). Top-

level (apex) predators are disproportionately removed by fishing (Koslow et al. 1988, Russ & 

Alcala 1989) and, as a consequence, have received much attention in the literature (Polunin & 

Roberts 1993, Watson & Ormond 1994, McClanahan & Arthur 2001, Watson et al. 2007). 

However, it is important also to understand the dynamics of smaller predators as they consume a 

significant but smaller proportion of the fish biomass by preying on new recruits, juveniles and 

other smaller fish (Hixon 1991). In this study, predators were divided into three categories; low, 

medium, and top-level predators. Medium-level predators were most abundant on SM, but this was 

only due to a single sighting of a large shoal of the transient species, Scomberoides lysan. When this 

species was omitted from the analyses, the abundance of medium-level predators on SM was 

reduced by half from 62.6 fish/hr to 32.6 fish/hr. This indicates that the contribution of predators to 

fish community structure may best expressed as the number of species rather than the number of 



61 

individuals as a high abundance of a single species may bias the data. In addition, it may be prudent 

to exclude shoaling species or species that are not truly reef-associated . 

 

Environmental and habitat variables 

Numerous studies have focused on the relationship between the distribution of fish species and  

factors such as substratum complexity (Luckhurst & Luckhurst 1978, Friedlander 2003), water 

quality (Rodriquez 2006), wave exposure (Friedlander 2003), substratum composition (Galzin et al. 

1994, Holbrook et al. 2006), depth (Friedlander & Parrish 1998) and reef zonation (Williams 1991) 

to name a few. Live coral cover, in particular, has been shown to be a strong predictor of species 

abundance and diversity (Chabanet et al. 1997, McClanahan & Arthur 2001). This relationship 

tends to be positive; however, the correlation is not as linear as initially thought as numerous 

authors have found conflicting results (Luckhurst & Luckhurst 1978, Öhman & Rajasuriya 1998, 

Friedlander 2003). The aim of this study was to document and quantify the fish communities on 

South African coral reefs. Thus, every attempt was made to keep variation in environmental factors 

to a minimum by standardizing the study area in terms of substratum composition, limiting the 

depth range at which the counts were conducted and standardizing the seasonality in the sampling 

trips. Fish censuses were conducted only at study sites that were located within a specific coral 

community (Celliers & Schleyer 2008). This coral community was selected because it was the most 

widespread community on the reefs and thus represented the core coral community. It also provided 

a means of standardizing the benthic composition.  

 

The influence of depth and topography on fish distribution was considered in this study. It is a well-

established fact that fish assemblages change along a depth gradient (Williams 1991, Bouchon-

Navaro et al. 1997, Gillibrand et al. 2007). In this study, multivariate analyses indicated that depth 

had no influence on the distribution of the fish communities on the study reefs. Generalised Linear 

Model (GLM) regression analysis confirmed this as the abundance of only medium-levels predators 

was associated with depth. However, the depth range of the reefs in this study was narrow (12-15 

m) and probably too small to have a significant effect on fish community structure. Several studies 

have also highlighted the importance of topographic complexity in shaping fish community 

structure (Luckhurst & Luckhurst 1978, McClanahan 1994, Öhman & Rajasuriya 1998, Friedlander 

2003), which has been linked to variations in fish diversity (Roberts & Ormond 1987) and habitat 

selection during larval settlement (Booth & Wellington 1998). Multivariate analyses (BEST, 

PRIMER E v6) and GLM regression models indicated that topography did not significantly affect 

the fish community structure on the reefs.  
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Fishing and diving intensity were included as habitat characteristics in the multivariate (BEST) and 

GLM regressioin analyses. According to the BEST analysis, neither variable had a significant 

influence on the overall fish community assemblages. However, the GLM regression analysis 

indicated that fishing and diving intensity accounted significantly for variance in the fish 

community. The BEST and GLM regression procedures were included in the analyses because they 

focus on different aspects of the fish community data. Multivariate analyses such as the BEST 

procedure examine the ‘best’ match between the multivariate among-sample patterns of an 

assemblage and associated environmental variables (Clarke & Gorley 2006). GLM regression 

analysis uses univariate variables such as species abundance, trophic level abundance or diversity 

indices for comparisons with independent variables and thus do not explore among-sample i.e. 

variation between species. High species numbers may thus disguise associations in fish assemblage 

structure and independent variables in such multivariate analyses. This suggests that the BEST 

procedure is most useful as an exploratory test to investigate subsets of species with similar 

characteristic such as trophic levels.  

 

Discriminating species, indicators and human activities  

The third aim of this chapter was to use the results of the fish community analyses to validate 

potential indicator species that were identified a priori through literature reviews. SIMPER was 

used to reveal the species most responsible for the dissimilarity between reefs or groups. A total of 

26 discriminating species were identified (Table 3.10). These and additional species were 

superimposed on MDS abundance plots and factored for human activities. A number of the selected 

species showed some degree of correlation between abundance and human activity, while some 

species manifested less obvious trends. The list of 26 species was reassessed according to the trends 

revealed in the MDS plots and through other selective criteria discussed below. 

 

Target species such as Aprion virescens, Caranx melampygus and Lutjanus bohar were low in 

abundance on reefs with high fishing intensity. Non-target species such as Balistoides conspicillum 

appeared to be affected by high diving intensity as their abundance was low at popular diving sites. 

These four species were retained as indicators. In terms of reef protection, a number of the 

discriminating species were more abundant in the Sanctuary areas. However, there were also a 

number of species that manifested no pattern relative to human activities, while others were more 

numerous in areas of increased human activity. Species that manifested no correlations or 

ambiguous correlations with human activities were removed from the list of potential indicators to 

reduce high variance (Plectrorhinchus spp, Pervagor janthinosoma, Nemathias carberryi and 

Sargocentron caudimaculatum). A further three species were removed from the list because their 
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shoaling behaviour increased variability in the data (Caesio xanthonota, Lutjanus gibbus and L. 

kasmira). P. rhomboides was replaced with P. imperator which was less patchy in its distribution 

and because of its conspicuous colouration. In two instances, species (Thalassoma amblycephalum, 

and Cephalopholis miniata) were replaced with similar species (T. herbraicum and Variola louti) 

that were deemed to be of greater importance in terms of trophic function because they were more 

abundant on the reefs. Zebrazoma scopas was replaced with Z. desjardini because the latter was 

more abundant on reefs devoid of human activity and its distribution extends to other WIO coral 

reefs.  

 

Additional species were added as potential indicators based on numerous criteria such as their ease 

of identification, vulnerability to exploitation by fishing and hobbyists, and status as rare species.  

Ease of identification was an important consideration because monitoring may be carried out by 

non-scientists. Thus, species such as Acanthaster leucosternon, forcipiger flavissimus and 

Chaetodon madagaskariensis were included because of their trophic status and conspicuous 

colouration. Species such as Scarus rubroviolaceus were included because they are targeted on 

southern Mozambican reefs, but not on South African reefs.  Similarly, Amphiprion allardi was 

selected because it is not actively protected from aquarists in southern Mozambique. The shy or 

uncommon species, Pygoplites diacanthus, was added to the list due to its potential sensitivity to 

diving intensity. Three corallivorous chaetodons were included in the list due to their reliance on 

corals for food.  

 

The revised indicator list totaled 25 species and was termed the Fish-index (Table 3.15). This Fish-

index formed the basis of a monitoring protocol in which fish indicator species were used to assess 

the effects of human activities on South African and southern Mozambican coral reefs (Appendix 

6). The effectiveness of these indicators will be dealt with in Chapter 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



64 

Table 3.15. List of indicator species used to assess reef fish community condition in Chapter 4. 
Species have been ordered alphabetically according to family.   
 
Species Family Trophic level 
Zebrasoma desjardini Acanthuridae Herbivore 
Acanthurus leucosternon Acanthuridae Herbivore 
Balistoides conspicillum Balistidae Invertivore 
Odonus niger Balistidae Planktivore 
Caranx melampygus Carangidae Medium-level predator 
Chaeodon madagaskariensis Chaetodontidae Omnivore 
Chaetodon trifascialis Chaetodontidae Corallivore 
Chaetodon trifasciatus Chaetodontidae Corallivore 
Chaetodon meyeri Chaetodontidae Corallivore 
Forcipiger flavissimus Chaetodontidae Invertivore 
Bodianus Diana Labridae Invertivore 
Labroides dimidiatus Labridae Invertivore 
Thalassoma herbraicum Labridae Invertivore 
Aprion virescens Lutjanidae Medium-level predator 
Lutjanus bohar Lutjanidae Medium-level predator 
Pomacanthus imperator Pomacanthidae Benthivore 
Pygoplites diacanthus Pomacanthidae Benthivore 
Amphiprion allardi Pomacentridae Omnivore 
Plectroglyphidodon johnstonianus Pomacentridae Corallivore 
Oplegnathus robinsoni Oplegnathidae Benthivore 
Epinephelus tukula Serranidae Top-level predator 
Variola louti Serranidae Medium-level predator 
Scarus rubroviolaceus Sacridae Herbivore 
Siganus sutor Siganidae Herbivore 
Diplodus cervinus hottentotus Spadidae Invertivore 

 

 

Benchmark ecosystems 

Due to the advanced state of human impacts on the marine environment, ecosystems that are 

unaltered by human influence are all but extinct (Jackson et al. 2001, Friedlander & Demartini 

2002, DeMartini et al. 2008). However, South Africa is fortunate in that it has coral reefs with long 

histories of protection from human interference. These relatively undisturbed coral reefs may 

constitute benchmarks that can provide baseline data for comparisons with similar reefs in the 

region that are less protected and exposed to human resource use. The potential of South African 

Sanctuary reefs as benchmark ecosystems thus requires further validation and is dealt with in 

Chapter 4.  
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CHAPTER 4 
 
FISH AS INDICATORS OF DIVING AND FISHING 
PRESSURE ON SOUTH AFRICAN CORAL REEFS. 

4.1 Introduction 

In the 1980s, reef managers and scientists fervently adopted the marine protected area (MPA) 

approach in an attempt to find a universal solution to the growing global coral reefs crisis (see 

Kelleher et al. 1995, McClanahan 1999, Sale 2008 for a review of this subject). Empirical studies 

are frequently cited as evidence that local resource users gain direct benefits from the proclamation 

of MPAs (Russ & Alcala 1989, Polunin & Roberts 1993, Russ & Alcala 1996, McClanahan & 

Arthur 2001, Roberts et al. 2001, Barrett et al. 2007, Lester et al. 2009, Watson et al. 2009). 

Conversely, the lack of effectiveness in MPAs is also highlighted by many authors (Kelleher et al. 

1995, Alder 1996, McClanahan et al. 1999), which raises the question: Why are MPAs not 

effective? In the past decade, approximately 40 new MPAs were created per year worldwide, which 

included coral reefs (Mora et al. 2006). Under the current scientific and management ethos of coral 

reef protection, it appears that the conservation endeavors of a country are measured by the 

percentage of its coastline that is given such protection. Consequently, there is a growing concern 

that over-zealous advocacy has lead to the approach that MPAs are a ‘cure-all’ for conserving 

biodiversity and fisheries management (Jameson et al. 2002, Agardy et al. 2003, Lubchenco et al. 

2003). Without the necessary compliance, efficient management, clearly defined objectives and 

scientific knowledge, many MPAs are doomed to remain ‘paper’ parks (Burke et al. 2002, Halpern 

2003, Burke & Maidens 2004, Pomeroy et al. 2005). 

 

Among the major challenges restricting effective management is a lack of scientific information 

about the status and nature of conditions operating within a MPA (Kelleher et al. 1995, Pomeroy et 

al. 2005, Wells et al. 2007). Obtaining such information requires regular assessment of biological 

and socio-economic processes within the MPA boundaries (Pomeroy et al 2005). In their 

investigation of the status of MPAs in three east African countries - Kenya, Tanzania and 

Mozambique – Wells et al. (2007) revealed that few baseline surveys had been conducted and 

appropriately designed monitoring programmes were lacking. The authors suggested that better 

monitoring systems were needed to measure progress and also demonstrate the benefits of MPAs on 

biodiversity and the livelihoods of people within or near the MPA boundaries. Assessment of MPA 

effectiveness is a matter of great urgency and importance given the multitude of stressors 
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threatening the future of coral reefs. This is particularly pertinent as many MPAs are promulgated 

as multiple resource use zones where extractive activities such as fishing are permitted. Thus, it is 

imperative that such zones are evaluated to assess the impacts of human activities on the biological 

components of the coral reef and whether these impacts are consistent with the management 

objectives of the MPA.  

 

The coastal regions of the Western Indian Ocean (WIO) are characterized by high biodiversity, high 

human population densities and comparatively low Gross Domestic Product (Keesing & Tennille 

2005). MPAs in the WIO are of particular significance because they are advocated as a means of 

alleviating poverty through fisheries protection and tourism (IUCN 2004). Like many other 

countries in the Western Indian Ocean, MPAs have been a part of South Africa’s marine 

conservation strategy since the 1960s (Lemm & Attwood 2003). However, MPAs in South Africa 

include a wider variety of habitats including sandy beaches, subtidal rocky reefs, mangroves, 

estuaries and coral reefs. South African coral reefs are unique for several reasons: they are the 

southern most coral reefs in Africa, they are considered marginal reefs (Kleypas et al. 1999) but 

attain high biodiversity (Benayahu & Schleyer 1995, 1998), and they have not been as heavily 

affected by stressors such as coral bleaching, destructive fishing practices, or disease, that plague 

their east African counterparts (Schleyer & Tomalin 2000, Floros et al. 2004, Celliers & Schleyer 

2008, Schleyer et al. 2008, Wilkinson 2008).  

 

One of their most distinctive traits is that they are all situated within the boundaries of two long-

standing MPAs; the Maputaland Marine Reserve and the St Lucia Marine Reserve. At present, two 

types of conservation zones are recognized in the MPAs: areas where human activities are 

prohibited and areas of restricted or controlled human activity. Despite the proclamation of these 

MPAs more than 20 years ago, a recent assessment of the MPA management strategy revealed that 

a rigorous monitoring programme evaluating the effectiveness of the MPAs was missing (Lemm & 

Attwood 2003). 

 

The South African coral communities have been intensively investigated and studies include reef 

zonation (Riegl et al. 1995), reproduction (Schleyer et al. 1997), diver damage (Schleyer & Tomalin 

2000, Walters & Samways 2001), biodiversity (Schleyer & Celliers 2003), coral bleaching  

(Celliers & Schleyer 2002, Floros et al. 2004) and reef modeling (Schleyer & Celliers 2005). 

However, the fish communities on the South African coral reefs have received far less attention. 

Two studies investigating the fish communities were conducted in the early 1990s (Chater et al. 

1993, Chater et al. 1995), which provide valuable checklists of fish species on the coral reefs and 
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abundance data for selected fish species. However, to date, no study has investigated the effects of 

human activities on the fish communities.  

 

Recreational fishing and SCUBA diving are the most common activities on the South African coral 

reefs (Schleyer 2000). Fishing is known to have a direct effect on fish communities via the harvest 

of target and bait species, and the removal of functional groups (Hall 1999, Dulvy et al. 2004a). 

Even recreational fishing increases mortality rates above the natural mortality threshold and has the 

potential to cause significant changes in the structure of reef fish communities (Cooke & Cowx 

2004, Dulvy et al. 2004b). SCUBA diving on certain reefs is amongst the highest in the world 

(Hawkins et al. 1999, Tratalos & Austin 2001, Zakai & Chadwick-Furman 2002, Barker & Roberts 

2004, Hawkins et al. 2005) and the paucity of empirical studies investigating the effects of high 

diving intensity on fish communities in the literature represents a ‘knowledge-gap’. In light of the 

many threats facing coral reefs, it is thus both timely and pertinent that the effects of human impacts 

on the South African coral reef fish assemblages are assessed for efficient MPA management.  

 

The evaluation of the effectiveness with which a MPA achieves its management objectives may be 

linked to ecological indicators. Ecological indicators include living components of the reef that 

reflect disturbances that alter the natural functioning of reef processes (Linton & Warner 2003). 

Fish species have been recommended as effective indicators because they comprise a large 

proportion of the biomass in marine ecosystems, they provide ecosystem goods to humans, and they 

show clear responses to human activities (Karr 1981, Whitfield 1996, Rice 2003). The use of 

indicators has broad applications because it can serve multiple audiences, including policy makers, 

managers, researchers and conservationists (Pomeroy et al. 2005). Indicator-based monitoring 

programmes provide an inexpensive method of gathering scientific information that does not 

require highly skilled personnel. Moreover, interpretation of such data is uncomplicated because 

most indicator programmes are based on studies that have proven cause-and-effect relationships. 

Results gained from indicator-based monitoring programmes can be used to evaluate MPA 

management, assist in identifying strong or weak areas of the MPA management strategy and aid in 

setting new conservation objectives or goals.  

 

The aim of this study was to investigate the effects of human activities on South African coral reef 

fish communities using 25 fish indicator species. Termed the ‘Fish-index’, this multi-species 

assemblage consisted of fish species selected due to their ecological importance and susceptibility 

to human activities. Furthermore, the selection of species was validated by the results of the 

community analyses in Chapter 3.  
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The main objectives of this chapter were to: 

1. Compare the Fish-index in terms of density, biomass, size frequency analysis and trophic 

structure on reefs of varying reef protection status 

2. Document any unusual trends in the Fish-index in the presence of human activities 

3. Determine the effectiveness of the Fish-index in assessing the effects of human activities on 

South African coral reefs 
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4.2 Materials and methods 

4.2.1 Study site description 

See Chapter 2 for details.  
 
 
Reef protection status and human resource use 

The reefs were categorised according to the intensity and type of human activity (Table 4.1). These 

categories were Sanctuary, High-Diving, Diving-Fishing and Open zones. Sanctuary zones 

consisted of reefs that were not subjected to any human activities and included Leadsman Shoal 

(LMS), Red Sands (RS) and Rabbit Rock (RR). The High-Diving zone included Two-mile Reef 

(TMR), where only SCUBA diving is permitted. The Diving-Fishing zone included Seven-mile 

(SMR) and Nine-mile Reef (NMR), where SCUBA diving and restricted (gamefishing) fishing are 

permitted. Finally, the Open zone included the shallow reef at Ponta Malongane reef in southern 

Mozambique, known as Shallow Malongane, where the absence of law enforcement on the reef 

meant SCUBA diving and fishing was unregulated. 

 

Table 4.1 Categorisation the reefs in the study area based on SCUBA diving and fishing intensities. 
SCUBA diving statistics are averages for the period 2007-2008. 

Human activities 
Zone 

SCUBA diving intensity Fishing intensity 
Reef name 

Open Low (4500 dives/year) 
High (unrestricted angling 

and spearfishing) 
Shallow Malongane 

Diving-Fishing Low (~2100 dives/year) 
Restricted (angling and 
spearfishing, gamefish 

only).  

Seven-mile Reef, Nine-
mile Reef 

High-Diving 
High (~54 000 

dives/year) 
Nil Two-mile Reef 

Sanctuary Nil Nil 
Leadsman Shoal, Red 
Sands, Rabbit Rock 

 

 

4.2.2 Surveys of reef fish communities 

During the period August 2007 to February 2009, six fieldtrips were undertaken to the Maputaland 

coral reefs and two fieldtrips to southern Mozambique. Data were collected using SCUBA and all 

diving operations were conducted from a semi-rigid inflatable vessel. Study sites on each reef were 

selected using the same method described in Chapter 3. Figure illustrates the position of each 

sampling site on the South African study reefs.  
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An underwater visual census technique was used to estimate the numerical abundance and biomass 

of the 25 preselected fish-index species. The technique consisted of the point count method adapted 

from Samoilys and Carlos (2000). Each census (point count) consisted of a five minute count within 

a circle 10 m in diameter, which enclosed an area of 78 m2 for each point count. A minimum of 60 

point counts were completed per reef (Table 4.2). Sampling was conducted in summer and winter to 

test whether patterns in fish assemblages were consistent over time. All Fish-index species observed 

on the reef and within the water column during each point count were recorded and their sizes were 

estimated. Size estimates of fish were conducted in 5 cm increments. Estimates of fish length were 

used to generate biomass using known length-weight regression coefficients from Fishbase 

(www.fishbase.com). When a length-weight relationship for a given species was not available, 

values were taken from a species with a similar morphology, always from the same genus. Only two 

divers entered the water at any one time, a surveyor and a buddy diver. To minimise the impact of 

diver disturbance caused by divers entering the water, the surveyor waited five minutes before 

beginning each count. The same diver conducted all point counts to minimize variation and error 

incurred by diver bias. Point counts within each reef were separated by at least 50 m. The time of 

each point count was conducted between 0800 and 1400. All counts were conducted at a depth 

range of 12-15 m. 

 

Table 4.2 Summary of survey dates and number of fish point counts conducted in each resource use 
zone on South African and southern Mozambican coral reefs during 2007-2009.  

Zone 
August 
2007 

January 
2008 

February 
2008 

June 
2008 

July 
2008 

November 
2008 

December 
2008 

February 
2009 

Total 

High-Diving 6 12 0 0 24 9 0 14 65 
Diving-Fishing 9 4 5 10 22 0 10 17 77 
Sanctuary 11 12 33 0 33 0 10 6 105 
Open 0 0 0 0 30 0 0 30 60 

 

Trophic levels 

Similar methods to those described in Chapter 3 were used to allocate species to trophic levels, the 

only difference being that there were reduced to eight and not nine due to the absence of low-level 

predators in the Fish-Index.  

 

Measuring environmental variables and habitat characteristics 

On completion of each visual census, certain aspects of the reef habitat were described within the 

perimeter of the 10 m diameter circle. These included depth, topography and coral cover. Coral 

cover was estimated using a rapid visual assessment tenchique adapted from English et al. (1994). 

The estimates were divided into three categories according to the percentage of coral (hard and soft) 

covering the point count area.  An area of more than 50% coral was categorised as high. Medium 
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cover constituted 30-50% coral cover, while areas with less than 30% coral cover were classified as 

low. Depth was also recorded using similar methods described in Chapter 3. The topographic 

complexity of the substratum was visually estimated using a six point scale system adapted from 

Polunin and Roberts (1993). The adaptations were specific to South African coral reefs and 

included the following categories: 1- flat reef; 2 – low undulating spur and groove; 3 – medium 

slopes or ridges with no grooves or gullies; 4 – medium spur and groove or pinnacles; 5 – high 

slopes or ridges; and 6 – high spur and groove, overhangs or pinnacles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1. Location of survey sites on the six South African coral reefs. Geo-spatial data are from 
Celliers & Schleyer (2008). No data were available for the southern Mozambican reef.  
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Diver-orientated behavour in a top predator 

Epinephelus tukula was observed to display contrasting diver-orientated behaviour between 

Sanctuary and non-Sanctuary reefs. Comparisons of E. tukula density data derived from the two 

UVC techniques employed in this study were used to investigate whether the behavioural responses 

could be quantified. Community count estimates were used to represent the total E. tukula densities 

observed in each level of protection, while point count estimates were used to estimate the densities 

of E. tukula approaching divers. The null hypothesis was that densities of E. tukula would be 

similar between the two UVC estimates. If community count estimates of E. tukula were higher 

than the point count density estimates, this may indicte that diver presence influences E. tukula 

behaviour. Approach ratios were calculated (count density divided by community count density) to 

determine the likelihood of E. tukula approaching a diver on a scale from 0-1. The closer the ratio 

approaches 1, the more likely E. tukula is unaffected by the presence of divers i.e. it will approach a 

diver. No E. tukula were recorded in the Open zone and the latter site was thus excluded from the 

analysis. 
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4.2.3 Statistical analysis. 

The stepwise process of the statistical analysis is diagrammatically represented in Figure 4.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.2 Diagrammatic summary of the sampling protocol and data analysis undertaken in the 
assessment of the Fish-index assemblage on South African and southern Mozambican coral reefs. 
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Sample size test 

Power analysis was used to determine whether the minimum number of 60 point counts per reef 

were sufficient to provide the statistical validity needed to detect changes in population estimates. 

The power analysis technique was applied according to Kapadia et al. (2005). The minimum sample 

size required was calculated as that required to detect a 10% change in the mean estimate at a 

significance level of 0.05 and a power of 80% (Fairweather 1991, Length 2001).  

 

Univariate analysis 

The same univariate analyses were used to analyse the Fish-index abundance and biomass data as 

those described in Chapter 3.  

 
Multivariate analysis 

All multivariate analyses were analysed using PRIMER v.6 (PRIMER-E 2006). 
 
Transformation 

Similar methods to those described in Chapter 3 were used to determine the degree of 

transformation necessary (Fig 4.4). All abundance data were fourth-root transformed, while the 

log(x+1) transformation was used for biomass data due to large differences in the values generated by 

the presence and absence of large predatory fish.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 Linear regression of the log of the standard deviations of means against the log of mean 
fish abundance for Sanctuary zones. 
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Fish-index analysis 

Non-metric multidimensional scaling (MDS) was used to examine differences in spatial distribution 

of Fish-index assemblages across the different resource use zones. Analysis of similarity 

(ANOSIM) was also used to confirm or refute trends observed in the MDS ordinations. An 

ANOSIM R-statistic of <0.25 implies that there is too much overlap for sites to be separable 

(Clarke and Gorley 2006). R-statistics greater than 0.450 were considered significant. Hierarchical 

agglomerative clustering with group-average linking was performed on the Bray-Curtis similarity 

abundance matrix to confirm trends observed in the MDS plots and ANOSIM results.  

 

Discriminating species 

SIMPER analysis was used to identify those Fish-index species responsible for the Bray-Curtis 

dissimilarity between resource use zones. Species that contribute consistently towards the average 

dissimilarity and have a large average dissimilarity/stand deviation ratio are potentially good 

discriminating species (Warwick & Clarke 2001).  

 

Environmental variables, human resource use and community composition 

A suite of two environmental variables and four habitat characteristics were recorded at each 

sampling site: depth, temperature, topography, coral cover, fishing intensity and diving intensity. 

Potential relationships between spatial patterns of fish communities and these environmental 

variables and habitat characteristics were examined using BEST procedure (PRIMER v.6 2006). 

This procedure identifies the most influential variable or combination of variables which gives rise 

to the largest rank correlation (ps) among a set of independent variables (and habitat characteristics) 

(Warwick & Clarke 2001). All variables were normalised according to the requirements of the 

BEST procedure. The GLM regression analysis used to investigate the association between 

environmental parameters, habitat characteristics and fish assemblage metrics were similar to those 

described in Chapter 3.   
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4.3 Results 

4.3.1 Spatial distribution of species 

The multidimensional scaling (MDS) configurations demonstrated similar trends in the abundance 

and biomass data (Figure 4.5A & B). Sanctuary reefs formed clusters that were distinct from the 

other protections zones. ANOSIM tests confirmed the trends observed in both abundance and 

biomass MDS plots. In terms of abundance, the results differed significantly between Sanctuary 

zones and the High-Diving zone, and between Sanctuary and Diving-fishing zones (Global R=0.423 

p=<0.001) (Table 4.3). ANOSIM analysis of biomass data revealed that the Fish-index structure on 

Sanctuary reefs was significantly different to the other three resource use zones (Global R=0.423; 

p<0.0001) (Table 4.4).   

 

A       B 

 

 

 

 

 

 

 

 
 
Figure 4.5 Non-metric multidimensional scaling ordination of samples based on A) fourth-root 
transformed abundance data and B) log(x+1) transformed biomass data. The sanctuary clusters are 
demarcated by the dotted circle.  
 
 
Table 4.3 Results of ANOSIM run on fourth-root transformed species abundance data for 
differences between resource use zones. Global R=0.423. Significance of Global R<0.000005. 
Significant differences are in bold 

Pairwise Tests R 
Statistic 

Significance 
Level % 

High-Diving, Fishing-Diving 0.302 0.006 

High-Diving, Sanctuary 0.429 0.005 

High-Diving, Open 0.087 9.2 

Diving-Fishing, Sanctuary 0.461 <0.0001 
Fishing-Diving, Open 0.235 0.6 

Sanctuary, Open 0.6 0.0005 
 

2D Stress: 0.26

usage
High-Diving
Diving-Fishing
Sanctuary
Open

Resource use 

2D Stress: 0.25

usage
High-Diving
Diving-Fishing
Sanctuary
Open

Resource use 
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Table 4.4 Results of ANOSIM run on fourth-root transformed species biomass data for differences 
between resource use zones. Global R=0.423. Significance of Global R<0.000005. Significant 
differences are in bold 

Pairwise Tests R Statistic 
Significance  

level % 
High-Diving, Diving-Fishing 0.202 0.2 
High-Diving, Sanctuary 0.516 0.0005 
High-Diving, Open 0.162 1.7 
Diving-Fishing, Sanctuary 0.468 <0.0001 
Diving-Fishing, Open 0.236 0.4 
Sanctuary, Open 0.713 0.0005 

 

4.3.2 Total abundance and biomass 

A combined total of 2072 fish were recorded during the study period. The total mean fish 

abundance and total mean biomass manifested similar trends across resource use zones with the 

highest values observed on Sanctuary reefs and the lowest on the Open reef (Fig. 4.6). The total 

mean abundance per point count ranged from 16.49 (±4.71SD) on Sanctuary reefs to 10.0 

(±4.76SD) on the Open reef. Univaritate data analysis revealed differences in mean abundances to 

be significant between Sanctuary and High-Diving, and Sanctuary and Open reefs (p<0.001). In 

addition, mean abundances between Diving-Fishing and Open reefs were also significantly 

different. Total mean biomass on Sanctuary reefs (22.47 kg/78 m2, ±26.54 SD) was significantly 

greater than in all other resource use zones (p<0.001). The biomass in the other resource use zones 

was at least three times lower than on Sanctuary reefs.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.6 Mean values (±SE) for total abundance (A) and total biomass (B) per point count for the 
Fish-index species in each resource use zone on the South African and southern Mozambican study 
reefs.  

A B 
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4.3.3 Abundance Biomass Comparisons  

Abundance biomass comparison (ABC) curves were generated to provide an insight into the 

relationship between species abundance and biomass across the four resource use zones. When total 

biomass and abundance were ranked cumulatively for each species, notable differences were 

evident between resource use zones (Figure 4.7). There was an apparent trend of decreasing 

biomass relative to abundance from Sanctuary to Open zones, which was confirmed by the 

decreasing W-statistic, which represents the magnitude of separation between these curves. 

Sanctuary zones and, to a lesser degree the High-Diving zones, had biomass curves elevated above 

their respective abundance curve, indicating the predominance of a few large individuals. 

Conversely, the biomass curves lay above the abundance curves in the Diving-Fishing and Open 

zones. This reversal of the curves suggested a predominance of a large number of small individuals 

in these two resource use zones. Despite the large difference between w-statistics in each resource 

use zone, post hoc analysis revealed differences only to be significant between the Sanctuary and 

Diving-Fishing zones (p<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Abundance biomass comparison (ABC) plots for species totals in the different resource 
use zones: A) High-Fishing, B) Diving-Fishing, C) Sanctuary and D) Open. Abundance data was 
fourth-root transformed and biomass data were log(x+1) transformed.  
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4.3.4 Trophic levels 

The trophic composition of the Fish-index abundance and biomass data differed across the resource 

use zones. Six out of the eight trophic levels differed significantly in abundance and biomass in the 

different zones. Invertivore values were similar across the zones, contributing approximately 30% 

to the trophic abundance in each zone (Figure 4.8A), which was mainly due to high numbers of 

Thalassoma herbraicum.  Herbivores were the second most abundant trophic group across resource 

use zones, except on Diving-Fishing reefs where planktivores were more numerous. Top and 

medium-level predators manifested a significant trend of decreasing abundance with increasing 

human activity (p<0.001) and top predators were absent from the Open zone. Corallivore and 

benthivore densities also decreased from Sanctuary to Diving-Fishing zones. Corallivore abundance 

was significantly lower on Diving-Fishing reefs (P<0.001). Planktivores were at least twice as 

abundant in the Diving-Fishing zones compared to the other zones. Analysis of the trophic 

contributions to biomass revealed converse trends to the abundance data (Figure 4.8B). Herbivore 

biomass contributed the most towards the trophic composition on the High-Diving, and Open reefs, 

while predator and herbivore biomass were equal on the Diving-Fishing reefs. In contrast, predator 

biomass constituted 80% of the trophic composition in the Sanctuary zones and was at least six 

times that of the biomass in the other resource use zone. The high biomass values on the Sanctuary 

reefs were due to E. tukula, A. virescens and L. bohar. Predator biomass varied between 30-40% on 

Diving-Fishing and High-Diving reefs, while only 10% of the biomass on the Open reefs was 

attributable to medium predators.  
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Figure 4.8 Trophic structure of the Fish-index species in the four resource use zones on the South 
African and southern Mozambican study reefs in terms of A) abundance and B) biomass. 
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4.3.5 Species distribution, abundance and biomass 

The presence and absence of the 25 Fish-index species varied across the different resource use 

zones (Table 4.5). All species were present in the Sanctuary zones, while a total of seven species 

where absent from the remaining three resource use zones. The highest number of Fish-index 

species were absent in the Open zone. The most abundant species in all resource use zones was 

Thalassoma herbraicum and the most uncommon species were Pygoplites diacanthus and 

Chaetodon trifasciatus. ANOVA was used to test for differences in mean abundance and biomass 

between species across the four resource use zones. The statistical analyses of certain uncommon 

species were inconclusive. Significant differences in abundance between resource use zones were 

found for ten species, eight of which were most numerous in the Sanctuary reefs. The biomass of 

twelve species was found to be significantly different between resource use zones (Table 4.6). Eight 

of the 25 Fish-index species had high biomass values in the Sanctuary zones, the species with the 

highest biomass being E. tukula followed by L. bohar.   

 
Table 4.5 Mean abundance (fish/78m2) of the Fish-index species and differences in their mean 
abundance between resource use zones shown by one-way ANOVA.  Highest values are 
highlighted in bold. *Indicates species that were inconclusive in the ANOVA or Post Hoc 
comparison due to their uncommon status. 

 Sanctuary 
High-
Diving 

Diving-
Fishing 

Open P 

Acanthurus leucosternon 0.904 1.200 1.296 0.353 NS 
Amphiprion allardi 0.220 0.077 0.576 0.333 <0.001 
Aprion virescens 0.617 0.062 0.024 0 <0.001 
Balistoides conspicillum 0.072 0.046 0.464 0.059 0.007* 
Bodianus Diana 0.502 0.554 0.464 0.333 NS 
Caranx melampygus 0.919 0.615 0.288 0.098 0.003 
Chaetodon madagaskariensis 0.804 0.754 0.984 0.706 NS 
Chaetodon meyeri 0.885 0.400 0.144 0.549 <0.001 
Chaetodon trifascialis 0.038 0.169 0 0.137 0.007* 
Chaetodon trifasciatus 0.024 0 0 0.078 0.007* 
Diplodus cervinus 0.019 0.385 0 0 NS 
Epinephelus tukula 0.292 0.077 0.080 0 <0.001 
Forcipiger flavissimus 0.512 0.292 0.352 0.294 NS 
Labroides dimidiatus 1.507 2.338 2.704 2.235 0.005 
Lutjanus bohar 1.512 0.138 0.184 0.118 <0.001 
Odonus niger 2.129 1.754 4.024 1.137 NS 
Oplegnathus robinsoni 0.502 0.108 0.104 0.039 0.005 
Plectroglyphidodon johnstonianus 0.464 0.369 0.032 0.235 <0.001 
Pomacanthus imperator 0.187 0.246 0.144 0.039 NS 
Pygoplites diacanthus 0.005 0.015 0.016 0 NS* 
Scarus rubroviolceus 1.292 1.569 1.200 0.725     NS 
Siganus sutor 0.072 0.215 0.080 0.137 NS* 
Thalassoma hebraicum 3.024 2.462 2.576 2.294 NS 
Variola louti 0.531 0.185 0.184 0.098 <0.001 
Zebrasoma desjardini 0.014 0.092 0.024 0 NS* 
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Table 4.6 Mean biomass (kg/78m2) of the Fish-index species and differences in their mean biomass 
between resource use zones shown by one-way ANOVA.  Highest values are highlighted in bold. 
*Indicates species that were inconclusive in the ANOVA or Post Hoc comparison due to their 
uncommon status. 

 
Sanctuary High-Diving 

Diving-
Fishing 

Open P 

Acanthurus leucosternon 0.125 0.145 0.193 0.036 0.047 
Amphiprion allardi 0.004 0.001 0.016 0.012 <0.001 
Aprion virescens 1.914 0.062 0.017 0 <0.001 
Balistoides conspicillum 0.102 0.029 0.069 0.119 NS 
Bodianus Diana 0.045 0.056 0.038 0.025 NS 
Caranx melampygus 2.393 0.828 0.402 0.092 <0.001 
Chaetodon madagaskariensis 0.020 0.046 0.031 0.031 NS 
Chaetodon meyeri 0.058 0.031 0.017 0.046 <0.001 
Chaetodon trifascialis 0.001 0.019 0 0.019 0.011* 
Chaetodon trifasciatus 0.001 0 0 0.010 NS* 
Diplodus cervinus 0.005 0.029 0 0 NS* 
Epinephelus tukula 8.126 1.075 2.077 0 <0.001 
Forcipiger flavissimus 0.025 0.015 0.018 0.018 NS 
Labroides dimidiatus 0.010 0.016 0.025 0.015 0.004 
Lutjanus bohar 4.361 0.407 0.215 0.048 <0.001 
Odonus niger 1.079 0.731 1.244 1.000 NS 
Oplegnathus robinsoni 1.197 0.134 0.190 0.114 0.04 
Plectroglyphidodon  johnstonianus 0.002 0.002 0.001 0.003 <0.001 
Pomacanthus imperator 0.194 0.329 0.209 0.058 NS 
Pygoplites diacanthus 0.000 0.001 0.001 0 NS* 
Scarus rubroviolaceus  1.340 2.571 2.508 1.243 <0.001 
Siganus sutor 0.050 0.133 0.066 0.125 NS* 
Thalassoma hebraicum 0.242 0.258 0.314 0.239 NS 
Variola louti 1.170 0.490 0.151 0.215 <0.001 
Zebrasoma desjardini 0.005 0.021 0.009 0 NS* 

 

 

4.4.7 Discriminating species 

Simper revealed which species contributed to the largest dissimilarity in abundance and biomass 

between the four resource use zones (Appendix 4 & 5). Table 4.7 summarises the species that make 

the greatest contribution to the average dissimilarity between the Sanctuary zones and each of the 

other resource use zones. Comparisons between Sanctuary zones and the other resource use zones 

revealed that six species were the top contributors to the dissimilarity in each pairwise comparison. 

These species were E. tukula, L. bohar, A. virescens, C. melampygus, V. louti and O. robinstoni and 

their cumulative contribution to the dissimilarity between each comparative group was almost 50%.  

They comprise important predator species and species targeted by fishing.   
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Table 4.7 Results of SIMPER analysis. Only species providing the highest % contribution towards 
the average dissimilarity in abundance and biomass data between resource use zones have been 
included. Species highlighted in bold are those contributing 50 % to the over all dissimilarity. 
 High-Diving vs Sanctuary Diving-Fishing vs Sanctuary Open vs Sanctuary 
Epinephelus tukula 10.32 9.18 9.85 
Lutjanus bohar 9.84 8.65 9.58 
Aprion virescens 8.37 9.42 9.51 
Caranx melampygus 6.97 6.9 7.73 
Variola louti 7.19 6.96 7.18 
Oplegnathus robinsoni 6.31 6.63 6.68 
Odonus niger 5.88 7.1 6.55 
Pomacanthus imperator 5.44 5.45 4.94 
Acanthurus leucosternon 4.34 4.31 4.06 
Balistoides conspicillum 3.67 4.71 3.86 
Chaetodon meyeri 3.65 4.61 3.77 
Scarus rubroviolaceus  3.26 3.12 3.63 
Bodianus diana 3.74 3.99 3.35 
Siganus sutor 2.57 2.77 3.34 
Forcipiger flavissimus 3.44 3.25 3.25 
Chaetodon trifascialis 2.12 0 2.47 
Amphiprion allardi 0 3.28 2.36 
Average dissimilarity 45.01 44.11 52.49 

 

 

Length frequency graphs of core indicator species 

Length-frequency graphs were generated to investigate the size class distribution of the six species 

responsible for the dissimilarities between resource use zones (Table 4.7). Statistical comparisons 

were inconclusive for certain species between resource use zones due to the low abundances and 

absence of these species from non-Sanctuary zones. Nevertheless, a clear trend was evident in the 

monotonic decrease in the abundance and mean body size of all these species from Sanctuary to 

Open zones. The results revealed varying responses of the species to fishing and diving activities. 

Most of the species appeared to be susceptible to a combination of fishing and diving activities; 

however, a few species manifested a direct response to a particular activity.  

 

Target species 

Fishing was positively associated with reduced numbers of A. virescens as only five individuals 

were recorded in the Diving-Fishing zone, while no individuals were recorded in the Open zone 

(Figure 4.9A). In contrast, an average of 48 A. virescens was recorded per Sanctuary reef.  A. 

virescens abundance was also low on the High-Diving reefs. The mean body size of A. virescens on 

Sanctuary reefs was 1.5 and 1.7 times larger than on High-Diving and Diving-Fishing reefs, 

respectively. Not surprisingly, fishing and diving were similarly associated with low numbers of 

another target species, C. melampygus (Figure 4.9B). The mean body size for this species was 1.3 

times higher on Sanctuary reefs. Low densities of sexually mature individuals were observed in the 
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High-Diving and Diving-Fishing zones, while none were recorded on the Open reef. The density 

peak observed on the High-Diving zone was due to a single sighting of a large school of small 

individuals (30 cm).  

 

Non-target species 

The remaining four species were all observed to have higher densities and body size in zones distant 

from human activities; however, the correlations with diving and fishing activities in this regard 

appeared to differ. Large individuals of V. louti were more numerous on the High-Diving reef 

compared to the reefs in the other three resource use zones (Figure 4.9D). E. tukula was uncommon 

on the High-Diving reef, but was present in higher densities on the Fishing-Diving reefs (Figure 

4.9E). No E. tukula were recorded on the Open reef during the study period. The length distribution 

of L. bohar differed in the non-Sanctuary zones (Figure 4.9F). Large individuals were uncommon in 

all of these zones, and no individuals larger than 20 cm were observed in the Open zone. O. 

robinsoni appeared to be equally affected by diving and fishing as abundances and their mean body 

size was highest in the Sanctuary zones (Figure 4.9C). 
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Figure 4.9 Length frequency distribution plots of target species and non target-predators on reefs in 
the four different resource use zones. A) Aprion virescens, B) Caranx melampygus, C) Oplegnathus 
robinstoni, D) Variola louti, E) Epinephelus tukula and F) Lutjanus bohar.  Circles indicate mean 
length at sexual maturity. 
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4.3.8 Investigating diver-orientated response in a top predator  

Figure 4.10 illustrates the results of comparisons the community count versus point count density 

estimates for E. tukula in each of the South African protectin zones. On the High-Diving reefs, (~54 

000 dives/year), two E. tukula were recorded in the community counts, while only one E. tukula 

was recorded in the point count area. On the Diving-Fishing reefs (~ 2300 dives/year), higher E. 

tukula abundances were recorded in the community counts, but only a few individuals were 

recorded in the point counts. In contrast, at least three times as many E. tukula were recorded in the 

community counts in the Sanctuary zones and almost all of these individuals were recorded in the 

point counts. These results are mirrored in the approach ratios which were close to one for 

Sanctuary zones (0.98, Fig. 4.10A).  
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A) Sanctuary zones  
 
 
 
 
 
 
 
 
 
 
 
 
 
B) Diving-Fishing zones   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C) High-Diving zone  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10 Comparison of restricted versus unrestricted visual census data for E. tukula on reefs in 
three different resource use zones. Unrestricted counts are expressed as abundance per hour and 
restricted counts are expressed as abundance per 78 m2.  
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4.3.9 Factors influencing species distribution: habitat characteristics and 

human resource use 

Synthesis of the effects of habitat characteristics and human use on the fish communities revealed 

that anthropogenic activities (fishing and diving) appeared to be more accountable for the variance 

in Fish-index abundance and biomass than depth, topography and coral cover (Table 4.8 & 4.9). 

The Generalised Linear Model (GLM) regression analysis revealed that both fishing and diving 

intensity had a significantly negative affect on the Fish-index abundance and biomass. According to 

the GLM, these activities were responsible for more than 40% of the variance in the total abundance 

and biomass (P<0.001) between zones. Combined, fishing and diving appeared to account for 46% 

and 60% of top- and medium-level predator abundance and biomass repectively. These two 

variables also appeared to explain >50% of the variance observed in corallivore abundance and 

biomass. The GLM analysis further identified topography as the only significant habitat 

characteristic accounting for >10% of the variance in any of the recorded fish abundance parameters 

(herbivore abundance; 10.8%, P=0.004).  In terms of biomass parameters, depth was the most 

influential recorded environmental variable (corallivore biomass; 18.8%, P=0.001). 

 

Table 4.8 Results of Generalised Linear Model regression analysis of habitat characteristics and 
human use on the Fish-index abundance. Abundance is expressed as fish/78m2. 

Dependent variable 
Independent variable F statistic Wald statistic 

Percentage 
variance 

P 

Diving 15.23 30.45 25.5 <0.001 
Total fish abundance  

Fishing 8.61 17.22 15.5 <0.001 
Diving 12.56 50.2 35.8 <0.001 

Top predator abundance 
Fishing 6.56 13.11 11.8 0.002 
Diving 16.01 64.04 42.0 <0.001 

Medium predator abundance 
Fishing 15.15 30.31 25.4 0.002 
Fishing 22.6 44.11 33.7 <0.001 

Corallivore abundance 
Diving 17.03 34.07 27.9 <0.001 
Fishing 8.25 16.5 14.9 <0.001 Benthivore abundance 
Diving 4.44 17.78 14.2 0.003 

Diving 5.9 23.59 19.1 <0.001 

Topography 6 12 10.8 0.004 Herbivore abundance 

Fishing 4.01 8.01 6.8 0.022 

Planktivore abundance Diving 2.58 11.52 8.3 0.028 
Diving 2.61 10.42 7.2 0.04 

Omnivore abundance 
Fishing 3.7 7.39 6.1 0.03 
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Table 4.9 Results of Generalised Linear Model regression analysis of habitat characteristics and 
human use on the Fish-index biomass. Biomass is expressed as kg/78m2. 

Dependent variable 
Independent variable 

F 
statistic 

Wald 
statistic 

Percentage 
variance 

P 

Diving 12.19 48.38 34.8 <0.001 
Total fish biomass  

Fishing 11.79 23.58 20.6 <0.001 

Diving 13.55 54.22 37.7 <0.001 
Top predator biomass 

Fishing 6.46 12.92 11.6 0.002 

Diving  12.74 50.98 36.1 <0.001 
Medium predator biomass 

Fishing  13.72 27.45 23.5 <0.001 

Diving 9.4 37.61 28.8 <0.001 
Fishing 15.15 30.31 25.4 <0.001 Corallivore biomass 
Depth 4.21 25.27 18.8 0.001 

Benthivore biomass Fishing  7.08 14.16 12.8 0.001 

Diving 3.17 12.68 9.5 0.018 
Topography 4.79 9.58 8.4 0.011 Herbivore biomass 
Fishing 3.67 7.34 6 0.019 

Topography 3.95 7.9 6.6 0.02 
Omnivore biomass 

Fishing 3.15 6.29 5 0.05 
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4.4 Discussion 

The effect of human activities 

Fishing 

The results represent the first investigation of the effects of recreational fishing on fish communities 

on South African and southern Mozambiquen coral reefs. The fishing intensity on the coral reefs in 

these two regions differs considerably. Although recreational fishing is the only form of fishing 

permitted in both regions, only gamefish species may be legally targeted on South African coral 

reefs, while the only reef-associated species completely protected from recreational fishing in 

southern Mozambique is E. tukula (Decree Nr 51/99). Each of the six core indicator species 

identified through the SIMPER analysis showed a decrease in abundance and biomass from 

Sanctuary reefs to the Open reef, highlighting the differences between protected and unprotected 

fish communities. Increased mortality and low densities of target fish species are expected 

consequences of fishing (Russ & Alcala 1989). Carangids, lutjanids and serranids are families 

commonly targeted by fishers on coral reefs throughout the world due to their large size (Jennings 

et al. 1999) and historical records from Ponta Malongane support this trend as 24% of the angling 

catch-composition in 1996 constituted species from these three families (van der Elst et al. 1996). 

Thus, it is most likely that the low densities of the core indicator species in southern Mozambique 

are a result of unrestricted fishing.  

 

The absence of two conspicuous reef-associated predatory species, A. virescens and E. tukula, on 

the Open reef poses numerous questions. Only one reef was sampled in southern Mozambique 

which raises the possibility that low sampling sampling effort rather than human activity may 

account for the low abundance of these species. However, similar sampling effort on the Sanctuary 

reefs yielded high abundances of A. virescens. This species is a preferred target species for 

spearfishers and anglers (van der Elst et al. 1996). Thus the absence of this species on the Open reef 

is most likely related to high levels of human activity.  

 

It is, however, unclear why E. tukula was also absent from the southern Mozambique study reef. 

Pereira (2003) recorded E. tukula on two out of six study reefs at Ponta Malongane and a popular 

dive site named ‘Bass city’ confirms the presence of E. tukula in the region. A number of 

possibilities may explain this result. Fishing cannot be completely excluded because industrial, 

semi-industrial, artisanal and subsistence fishers have been noted to catch this and other reef fish 

species in the southern Mozambique (Marcos Pereirra pers. coms). Alternatively, the differences in 

E. tukula densities may be related to the inherent variability associated with UVC techniques 
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(Samoilys & Carlos 2000). However, similar sampling effort was conducted on each of the study 

reefs, some of which yielded high abundances of E. tukula. In addition, the results of the power 

analysis revealed that the sample size per reef yielded a power of 0.84, suggesting that a minimum 

of 60 point counts was sufficient to detect differences in fish communities between the resource use 

zones. It is possible that the presence of only one Open reef represented unbalanaced sampling in 

the study. This shortcoming was unavoidable due to limited access to the reefs in southern 

Mozambique and it is recommened that future studies should include other reefs in southern 

Mozambican to refute or confirm these findings.  

 

The low densities of sexually mature target species (Figure 4.9) on the southern Mozambican reef 

highlights the need for marine regulations protecting the coral reef fish communities. In July 2009, 

a new Marine Protected Area was proclaimed (Decree 42/2009 of 21 August): the Ponta do Ouro 

Partial Marine Reserve (PPMR). The PPMR is effectively an extension of the Maputaland MPA 

(Figure 4.11) and stretches north along the coast to Inhaca Island in Delagoa Bay. The PPMR has 

been zoned to include multiple resource use areas as well as sanctuary and restricted areas. 

Although marine laws are now in place to provide legal protection to the various ecosystems such 

as coral reefs, there is still no specific regulation of fishing activities other than the prohibition of 

bottom-fishing. Additional regulations such as daily quotas and minimum size limits will be 

necessary to protect the fish communities on southern Mozambican coral reefs. It is thus anticipated 

that the fish data from this study will provide valuable baseline information for the Mozambican 

authorities in the development of the PPMR management plan.  

 

Efforts have been made to regulate fishing on the South African coral reefs by restricting the 

extraction of species to gamefish. In addition to the species restrictions, the Marine Living 

Resources Act (MLRA) stipulates daily fishing quotas for each target species. C. melampygus has a 

daily quota of five, while A. virescens has a daily quota of ten. However, a total bag limit of ten fish 

per day may not be exceeded. There are no minimum size limits for these species. Despite the daily 

quotas, the results presented here suggest that fishing is having an effect on populations of the 

aforementioned target fish species.  Low densities and small mean body sizes of target species are 

detectable effects of over-fishing on coral reefs (Russ & Alcala 1989). In the Diving-Fishing zones, 

the reduced mean size of target species corresponded closely to theoretical predictions (see Dulvy et 

al. 2004b, Graham et al. 2005), with all target species showing significantly smaller mean sizes. 
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Figure 4.11 Major biological and geographical features of the Ponta do Ouro Partial Marine 
Reserve in southern Mozambique showing (courtesy of Peace Parks Foundation).  
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A reduction in the mean size of targeted species in fished areas is termed size selective fishing or 

‘age truncation’ and is due to fishers targeting larger individuals (Berkeley et al. 2004). Age 

truncation can have an important effect on fish assemblage structure and function, potentially 

affecting the productivity and resilience of fish populations (Baskett et al. 2005). Body size is 

related to life history traits such as fecundity, growth rate and age at maturity (Hutchings 2002). 

Consequently, fecundity is a power function of body length in fishes (Harmelin et al. 1995). Thus, 

resident populations lacking sufficient densities of large individuals may not be able to reproduce, 

particularly with increased mortality due to fishing.  

 

The low abundance of sexually mature individuals recorded in the Diving-Fishing zones could have 

significant ramifications for future generations of targeted species and indirect implications for non-

target species. In the Diving-Fishing zones, sexually mature C. melampygus occurred at low 

densities, while only immature A. virescens were recorded. Thus, populations of either of these 

species may be reliant on juveniles from surrounding no-take zones to replenish stocks. Sanctuary 

or no-take zones have been advocated as areas of high reproductive output because there are greater 

densities of larger, sexually mature fish present. It has been further suggested that the increased 

reproductive output, whether in the form of eggs, larvae or juvenile fish, may repopulate areas open 

to fishing (Berkeley et al. 2004, Francini-Filho & Moura 2008). Whether this occurs, depends on 

the location of Sanctuary zones, the oceanographic conditions in the region, larval dispersal and 

larval life history characteristics (Watson et al. 2009). It was not within the scope of this study to 

demonstrate whether ‘spill-over’ is taking place from the Sanctuary zones. However, it does 

highlight the need for such studies in light of the extractive resource use that is taking place within 

the non-Sanctuary zones.  

 

The results of this study suggest that, despite the location of South Africa’s coral reefs within a 

MPA, certain targeted or gamefish species are of reduced mean size and density in areas open to 

fishing. The MLRA states that gamefish include pelagic bony fish of the families Scombridae, 

Carangidae, Pomatomidae, Coryphaenidae, Rachycentridae, Xiphiidae, Ostiophoridae and 

Sphyraenidae, the species Aprion virescens, as well as pelagic cartilaginous fish of the families 

Carcharinidae, Isuridae, Sphyrnidae, Alopiidae and Odontaspididae (Section 3.1 (G) Regulation 

R1429). There is no definition for gamefish in this regulation, which has allowed for much 

speculation on the reasoning behind the inclusion of these particular species and families. Of the 

two target Fish-index species, A. virescens appeared to be most susceptible to fishing pressure. 

Commonly known as kaakap in South African waters, this species is frequently targeted by anglers 

and spear-fishers. However, the reasons for its inclusion as a gamefish species are unclear as it is 

the only lutjanid included in this category.  
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According to van der Elst (2008), the definition of ‘gamefish’ is a pelagic fish that is actively 

pursued by anglers because of its fighting ability. Pelagic, by definition, refers to species living in 

the open ocean (Allaby 1992) and suggests species that are transient in their movements. Recent 

studies have found A. virescens to have site fidelity to core areas on atolls in the Northwestern 

Hawaiian Islands (Meyer et al. 2007). Furthermore, Pilling et al (2000) suggested that length-based 

growth estimates for A. virescens may have overestimated mean growth rates and asymptotic 

length. This implies that lutjanids may have slower growth rates and a longer life-span than 

indicated by previous length-based assessments and they may therefore be vulnerable to 

overfishing. With these new insights on the ecology and biology of A. virescens, it is recommended 

that the classification of this species as a gamefish be reassessed due to its vulnerability as a target 

species. 

 

The other target species, C. melampygus, has also been shown to display strong site fidelity on reefs 

(Holland et al. 1996). Acoustic telemetry studies provided empirical evidence that the dispersal of 

C. melampygus is much less than might have been predicted for a highly mobile, predatory species 

(Holland et al. 1996). The growth rate of C. melampygus is faster than that of A. virescens (Fishbase 

2009); however, the resident nature of C. melampygus warrants implementation of a minimum size 

limit for this species to prevent further population depletion. The trends manifested by these target 

species emphasise the need to include biologically-based criteria for the selection of species as 

gamefish. The new definition and recommendations for effective management of reef-associated 

target species will be dealt with in the Management Guidelines section in Chapter 5.  

 

SCUBA diving  

Due to increased mortality of target species associated with fishing, it was anticipated that the 

densities and biomass of these species would be lowest in the Diving-Fishing zones and similar in 

the Sanctuary and High-Diving zones. Differences between Sanctuary and Diving-Fishing zones 

were significant; however, so too were the differences between Sanctuary and High-Diving zones. 

The High-Diving zone is designated as a no-take area and thus the differences in densities of the 

target species require closer examination. There are two possible explanations. Firstly, there may be 

a lack of compliance by the fishers in the High-Diving zone. The lack of ‘fenced’ boundaries in 

marine reserves makes it difficult to clearly demarcate restricted areas. Illegal fishing may be 

occurring along the northern perimeter of the High-Diving reef, but the high volume of divers on 

this reef would make it likely that suspicious fishing activity would be reported to the authorities. 

Secondly, and more likely, the high diving intensity in this zone may be having a negative effect on 

the abundance of the target species.  
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Chater et al. (1995) conducted a comparison of selected fish species on the reefs categorized as 

High-Diving and Sanctuary zones. Although different visual techniques were employed to this 

study, 13 of the Fish-index species were included in the Chater et al. (1995) study. This allows for a 

temporal comparison of mean fish abundance between High-Diving and one of the Sanctuary reefs 

(Leadsman Shoal) (Table 4.10). Almost twenty years ago, six of the Fish-index species were more 

abundant on the High-Diving reef compared to the Sanctuary reef. At the time of this study, only 

three species were more abundant in the High-Diving zone.  

 

Whether this is due to an increase in species densities in the Sanctuary zones or a decrease in 

abundances in the High-Diving zones is unclear and the reasons for the changes must be 

speculative. The reefs are approximately 30 km apart so it is likely that any oceanographic changes 

over the past 30 years would have affected both sites equally. Both of the reefs in question are 

situated within the St Lucia MPA which was proclaimed in 1979 (Notice P 35/79). Fishing is 

prohibited on both of the reefs, while SCUBA diving is permitted only on the High-Diving reef. 

SCUBA diving intensity increased by a factor of six between 1987 and 1996, when it reached 

approximately 100 000 dives/year (Schleyer 2000), but it currently stands at 54 000 dives/year 

(Pieters 2009). The changes in SCUBA diving intensity may not be directly linked to the observed 

changes in the species abundances; however, it does stress the need for long-term monitoring 

studies on these reefs to assess trends in fish assemblages in the different resource use zones. 

 

Table 4.10 Temporal comparisons of selected fish species in High-Diving and Sanctuary zones on 
South African coral reefs. Years in parenthesis are dates of fieldwork. The symbol x denotes in 
which zone the mean abundance of a species was highest in the study period. 

 

 
Chater et al. 1995  

(1987-1992) 
This study 

(2007-2009)  

Species 
High-Diving  

zone 
Sanctuary  

Zone 
High-Diving 

 zone 
Sanctuary 

zone 

Acanthurus leucosternon x  x  
Amphiprion allardi  x  x 
Aprion virescens  x  x 
Bodianus diana x  x  
Chaetodon madagaskariensis x   x 
Caranx melampygus x   x 
Diplodus cervinus cervinus  x x  
Epinephelus tukula x   x 
Forcipiger flavissimus x   x 
Lutjanus bohar  x  x 
Oplegnathus robinsoni  x  x 
Thalassoma herbraicum  x  x 
Variola louti  x  x 
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Of the six core indicator species, sexually mature Variola louti occurred in greater densities on the 

High-Diving reef; however, these were by no means similar to values recorded in the Sanctuary 

zones. The low densities of the other predatory species suggest that factors such as high diving 

pressure may be influencing the fish assemblage in this zone. The low densities of the top-level 

predator, E. tukula on the High-Diving reef, were of particular concern on the High-Diving reef. As 

one of the most significant large-bodied predators on South African coral reefs, E. tukula or potato 

bass play a key role in structuring coral reef communities and a large population is indicative of a 

thriving and productive reef community (Bohnsack et al. 1994, Costa et al. 2003). Serranids and 

particularly E. tukula are highly sought after for the live-fish food trade and reefs in many oceanic 

regions have depleted or no serranids due to over-fishing (Beet & Friedlander 1992, Sadovy & 

Colin 1995, Costa et al. 2003). In contrast, it is unlikely that the low densities of E. tukula can be 

attributable to fishing on the High-Diving reefs for two reasons. E. tukula is classified as a no-take 

species and the High-Diving reef is a no-take zone. Nevertheless, historic records and anecdotal 

accounts of higher abundances of E. tukula on the High-Diving reef during the 1980s to early 1990s 

(Koornhof 1991, Chater et al. 1995) indicate that a reduction in population numbers has occurred 

during the last three last decades. It is suggested that this decline is linked to persistent high diving 

intensity. In spite of the fact that diving intensity has decreased in the last decade, the current diving 

level on the High-Diving reef is still amongst the highest in the world. E. tukula is a large resident 

predator known to show aggressive territorial behaviour towards divers on reefs isolated from 

human activities (Delbelius 2001, Peschak 2009). SCUBA divers may be viewed as large predators 

by E. tukula and thus seen as a threat. In this study, all E. tukula encountered on Sanctuary reefs 

displayed aggressive or curious behaviour towards the divers which included open mouth displays, 

bumping of divers, biting of the buoy-reel and stalking of divers throughout the dive. In contrast, E. 

tukula behaviour on the Diving-Fishing reef was cautious and the divers were seldom approached. 

Furthermore, E. tukula were most commonly observed at the edge of diver visibility where they 

moved from one overhang to another.   

 

The comparison of density data from the two UVC techniques provided insight into the different 

behavioural responses of E. tukula to varying levels of diving intensity. It is suggested that similar 

numbers of E. tukula recorded in the two methods were indicative of a natural behavioural 

response, while E. tukula recorded only in the community count were indicative of individuals 

affected by diver presence. On the High-Diving reef, a total of two E. tukula were recorded in the 

community counts despite the same percentage of reef being surveyed as on the Sanctuary reefs 

where 20 of these fish were recorded. Similar numbers of E. tukula on the Sanctuary reefs were 

recorded in the point counts, while one of two E. tukula approached the diver on the High-Diving 

reef. The decreasing gradient of E. tukula densities with increasing diving pressure coupled with the 
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different behavioural responses suggests that high diving intensity may be causing diver-orientated 

behaviour in this large resident fish species. The almost constant presence of divers on the High-

Diving reef (approximately 150 dives per day) may be influencing the territorial nature of E. tukula 

and appears to be affecting its abundance. .  

  

Few studies have documented the behavioural responses of fish to diver presence alone. In their 

investigation of the biases induced by underwater visual census techniques, Kulbicki (1998) 

measured the behavioural response of 293 coral reef species to diver presence on reefs of different 

disturbance levels. This author reported that most species avoided the observer as the disturbance 

intensity increased. Other studies have observed altered fish behaviour indirectly. Bohnsack (1983) 

reported how spearfishing not only reduces the number of large predatory species by extraction, but 

that target species become agitated and secretive in their habits in the presence of a diver. Similarly, 

Friedlander & DeMartini (2002) observed large, highly-prized parrotfish to show conditioned 

aversion to divers in the main Hawaiian islands, which the authors concluded was a response to the 

high spear-fishing intensity in the region. In an assessment of the effects of recreational SCUBA 

diving on Caribbean fish communities, Hawkins et al. (1999) reported a significant difference in 

serranid abundance in high-versus low-use areas. However, when fish size was converted to 

biomass, the difference was not significant.  

 

The paucity of studies documenting the effects of diving on fish behaviour makes the interpretation 

of trends difficult. Recreational activities, particularly diving, are increasing in popularity on most 

reefs throughout the world (Davis & Tisdell 1995). It is important that reef managers and scientists 

are cognisant of the fact that escalating diving intensity has the potential to become a threat to coral 

reef fish communities and make allowance for this in their future management strategies. The 

results on E. tukula constitute an important finding in this regard. 

 

Prey species and reef protection 

Marine Protected Areas are known to protect marine ecosystems against direct and indirect effects 

of fishing (Botsford et al. 1997, Pauly et al. 1998). Predatory fish species are the most significant 

consumers of fish biomass on coral reefs, and their removal by fishing has been suggested to 

influence the abundance and body size distribution of their prey (Hixon & Beets 1993, Graham et 

al. 2003). Fishing down food webs by removing higher trophic levels can result in relaxation of top-

down control and can lead to an ecosystem dominated by lower trophic guilds, which is termed a 

phase shift (Pauly et al 1998). Evidence for an increase in prey abundance (prey-release) in the 

absence of predators has been well documented for closed systems such as lakes (Jones 1982), but 
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the evidence in coral reef fish communities is equivocal (Jennings & Polunin 1997, Russ & Alcala 

1998).  

 

Russ and Alcala (1989) suggest two possible reasons why the removal of top predators will not 

necessarily result in prey-release. Firstly, many predators are generalists and the high diversity of 

these species on coral reefs will restrain any populations of prey species from becoming abundant. 

Secondly, predation may not be the ultimate process governing population densities of coral reef 

fish.  The southern Mozambican coral reef had the lowest densities of predatory fish species; 

however, the only potential prey species with a high abundance on this reef was Chaetodon 

trifasciatus. C. trifasciatus is considered uncommon on South African reefs because it is at the 

southernmost extreme of its distribution (King 1996), which may explain why its abundance was 

slightly higher on the southern Mozambican reef. Thus, the absence of large predators such as E. 

tukula and A. virescens did not appear to result in prey-release on the Open reef.   

 

On South African coral reefs, there appeared to be some compensatory response to low densities of 

predators as 14 potential prey species occurred at higher abundances and biomass outside the 

Sanctuary zones. Both of the High-Diving and Diving-Fishing zones contained larger numbers of 

smaller-bodied species such as labrids, chaetodons and acanthurids. Similarly Graham et al. (2003) 

reported the negative effect of protection on a selection of non-target species, which they attributed 

to increased predation. Interestingly, Scarus rubroviolaceus were more abundant and of 

significantly greater mean length in the High-Diving zone. Large-bodied scarids at the Abrolhas 

Islands were also found to more abundant in the non-fished areas (Watson et al. 2007). The authors 

attributed the higher abundances of these large-bodied parrotfish species to a reduction in the 

abundance of their small-bodied, non-target competitors for habitat and food. There was no such 

reduction in the abundance of other herbivores such as Siganus sutor and Acanthurus leucosternon 

on the South African reefs, making such an explanation unlikely for the presence of large scarids in 

the High-Diving zone. It is more likely that S. rubroviolaceus was able to attain greater abundances 

and length due to reduced predator densities in the High-Diving zone. The reason that S. 

rubroviolaceus did not attain such a large body size on the Open reef may be due to size-selective 

fishing. The low abundances of potential prey species in Sanctuary zones and their higher 

abundances in zones of reduced predation may constitute evidence of an important structuring force 

in predator-prey relationships on South African coral reefs.  

 

Habitat characteristics 

In order to show the effect of protection on fish community assemblages, it is necessary to assess 

fish communities prior to and after the implementation of any protective legislation (Francini-Filho 
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& Moura 2008). No studies were conducted on South African coral reefs prior to the declaration of 

the Maputaland and St Lucia Marine Reserves, and the differences observed in the Fish-index 

assemblages between the resource use zones may be attributable to factors other than the different 

intensities of human activity. Among the most important documented factors that influence fish 

community structure are benthic composition (Galzin et al. 1994, Jennings et al. 1996, Garpe & 

Öhman 2003, Wilson et al. 2009), topographic complexity (Öhman et al. 1997, Friedlander & 

Parrish 1998, Öhman & Rajasuriya 1998) and depth (Friedlander & Parrish 1998, Sherman et al. 

1999). 

 

Assessment of the fish community structure on South African coral reefs (see Chapter 3) revealed 

that habitat characteristics such as topography, coral cover and depth were not significant 

contributors to the variation in fish assemblage structure between reefs. However, investigating 

potential abiotic-biotic relationships using a large number of species involves a high level 

taxonomic complexity, which may cause certain correlations to appear ambiguous. Yet, pooling of 

the data to lower the taxonomic complexity (family and trophic level) did not change the 

significance of the habitat effects on the fish community parameters. Multiple regression analysis of 

interactions between the habitat variables and the Fish-index species confirmed these findings. 

Thus, the fish community assessment and the Fish-index study suggest that, while habitat 

characteristics are important in structuring fish communities, the influence of human activities on 

South African and southern Mozambican reef fish populations are at present more significant. 

Nevertheless, long-term research on the links between fish assemblage structure and habitat 

characteristics would further elucidate trends in the fish communities on the South African coral 

reefs.  

 

Inverted biomass pyramids and Benchmark ecosystems 

Data collected in the Sanctuary zones provided insight into the fish community structure on South 

African coral reefs in the absence of human activities. The biomass densities of predators in these 

zones (Figure 4.7B) constituted 80% of the total fish biomass, which were three-fold greater than 

those on the non-Sanctuary zones where prey biomass was dominant. A typical fish biomass 

pyramid on most coral reefs throughout the world, including the reefs open to diving and fishing in 

South Africa, has high densities of small prey species and low densities of medium- or large-sized 

predators (Sandin et al. 2008). The significantly greater biomass of predators recorded on South 

African Sanctuary reefs may represent an example of an inverted biomass pyramid. Such a reversal 

of predator-prey biomass relationships has only been documented on certain coral reefs isolated 

from human disturbance in the Northwestern Hawaiian Islands (Friedlander & DeMartini 2002) and 
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Northern Line Islands (DeMartini et al. 2008, Sandin et al. 2008). In these studies, the biomass of 

top-level (apex) predators such as sharks, carangids and lutjanids relative to the total standing fish 

biomass was 54 and 85%, respectively. Excluding sharks, the predators observed in these studies 

were the same as those included in the Fish-index. The high biomass of predators in South African 

Sanctuary zones is thus higher than that on the undisturbed coral reefs in the North Western 

Hawaiian Islands and comparable to that on coral reefs in the Northern Line Islands. 

 

Biomass pyramids dominated by predators are rare in ecological studies (DeMartini et al. 2008). It 

has been suggested that this is an artefact of the generally degraded condition of most coral reefs 

worldwide, where reductions of top-level predators due to over-fishing have drastically altered fish 

assemblage dynamics (DeMartini et al. 2008). The paucity of inverted biomass pyramids in coral 

reef ecosystems highlights the uniqueness of ecosystems dominated by predators. South African 

Sanctuary zones appear to have the high predator biomass characterstic of inverted pyramids. 

However, in depth studies investigating population growth, death and turnover rates of major 

predator and prey species (DeMartini et al. 2008) are required to validate this suggestion.  

 

Demartini et al (2008) proposed that high estimates of predator biomass on the reefs in the Northern 

Line Islands should be viewed as representative of undisturbed central Pacific reefs and may 

constitute baselines for other reef fish assemblages in the region. The results in Chapter 3 similarly 

suggest that the fish communities on South African Sanctuary reefs represent benchmark 

communities for South African and southern Mozambican coral reefs. The high biomass values 

presented in this study provide support for this suggestion and promote the use of Sanctuary zones 

as relatively undisturbed ecosystems on which future management plans should be based. Thus, it is 

suggested that these Sanctuary zones should continue to be no-take zones in which human activities 

are excluded. Considering their long history of closure to human activities and their higher 

abundance of sexually mature fish, the Sanctuary reefs may also be conserving spawning stocks and 

acting breeding refugia for non-Sanctuary zones (Francini-Filho & Moura 2008). The increased size 

of target species within Sanctuary zones is highly significant because they represent higher biomass 

and fecundity (Watson et al. 2009). Thus fish populations within Sanctuary zones have older, larger 

and more fecund individuals, capable of producing larvae with greater survival potential than their 

smaller counterparts (Berkeley et al. 2004).  

 

Morris (2009) suggested that the predominantly south-flowing Agulhas Current could transport 

spawned coral propagules and larvae from reefs southwards from the northern reaches of the 

Maputaland coast. Similarly, fish larvae or fish eggs may be conveyed from the northern Sanctuary 

reefs to the High-Diving and Diving-Fishing reefs in the central complex. It is important to establish 
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an understanding of larval connectivity between MPA sites and adjacent regions (Mora & Sale 

2002, Palumbi 2003). Further studies are needed to investigate the network relationships between 

the different reefs along the north-south gradient to determine whether the reef fish communities are 

self-seeding or acting as valuable breeding reservoirs. The Sanctuary reefs in the Northern Reef 

Complex are potentially the most important no-take coral reefs in South Africa because of their 

strategic position and it is suggested that they should continue to receive the highest level of 

protection.  
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CHAPTER 5 

 

GENERAL DISCUSSION 
The overall aim of this study was to assess the nature of southern African coral reef fish 

communities in the context of human activities. Three fundamental principles of coral reef research 

guided this study. The first of these was baseline community assessment. As stated by Green et al. 

(2006), conservation planning that targets ecosystem-based protection objectives cannot be 

achieved without the baseline data needed to monitor progress. Many baseline surveys may be 

limited in their application because they focus on species inventories alone. The present fish 

community investigation incorporated baseline information such as species diversity and species 

abundance with process-orientated data such as trophic functioning. In addition, assessments were 

made of the structure of the fish communities on reefs subjected to different human resource use. 

Such data can be integrated with previous studies (Chater et al. 1993, Chater et al. 1995) to form the 

basis for long-term monitoring programmes.  

 

Results of the present fish community surveys were also compared with those on other coral reef 

fish communities in the Western Indian Ocean (WIO) bioregion. The results indicated that despite 

the marginal distribution of these coral reefs, the fish communities are, in fact, quite similar to their 

East African and WIO counter parts. In terms of species numbers (Table 3.13), the Maputaland fish 

communities were similar to and more specios than certain tropical WIO reefs. This trend mirrors 

that of the Maputaland coral communities which represent a biodiversity peak south of the equator 

(Benayahu & Schleyer 1995, 1998),. In addition, the fish communities are comprised of 

predominantly Indo-Pacific species (80%), demonstrating considerable overlap in species 

composition with other tropical reefs in the WIO and on certain Indo-Pacific reefs (Kenya: 

McClanahan 1994, New Caledonia: Wantiez et al. 1997, north-western Hawaii Islands: Friedlander 

& Martini 2002, Tanzania: Garpe & Öhman 2003, Glorieuses Islands: Durville et al. 2003, 

Reunion: Letourneur et al. 2004, Juan De Nova: Chabanet & Durville 2005, Andavadoaka: 

Gillibrand et al. 2007, Bazaruto: Maggs et al. 2010).  

 

This taxonomic ‘sharing’ of fish species extends to key functional species such as top and medium-

level predators as well as large herbivorous species and implies that the trophic structure on the 

Maputaland reefs may be similar to that of many tropical coral reefs. Trophic relationships are 

among the major forces that structure biological communities (Polunin & Pinnegar 2002, Cury et al. 
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2003), and the nature of the fish communities on the Maputaland reefs thus suggests that their 

ecological functioning is more similar to that of coral reefs and less similar to that of other marginal 

coral communities (e.g. Lord Howe Island: Francis 1993, Harriott et al. 1995; Houtman Abrolhos: 

Hutchins 1997, Crossland et al. 1984; Gulf of Aqaba: Khalaf & Kochzius 2002). Despite not 

conforming to the true geological definition of tropical coral reefs and not being as accretive 

(Kleypas et al. 1999), one should not underestimate the functional importance of these diverse 

ecosystems.  

 

Application of the Fish-index 

The second guiding principle was the use of indicators as tools in ecosystem monitoring. The need 

for indicators to assess coral reef health has grown out of the notion that resource managers and 

stakeholders require relatively simple ways of assessing the impacts that humans have on natural 

resources (Alban et al. 2004). Although the indicator species were developed for southern African 

coral reefs, it is not the species but the concepts that they represent which are central to the 

effectiveness of the Fish-index. The Fish-index was developed to assess the effects of human 

activities and the major stresses affecting coral reefs are comparable among nations (Risk 1999). 

The Fish-index species were selected as indicators that may act as links between biological change 

and causative agents. While the dominant species may change from one region to the next, coral 

reef fish families are universal and manifest similar characteristics in their responses to human 

activities (Clua et al. 2005).  

 

To elucidate this further, consider the overexploitation of fish species, which is one of the most 

severe threats posed to coral reef ecosystems worldwide. Certain reef-associated species such as the 

lutjanid, Aprion virescens, were included in the Fish-index to assess the effects of recreational 

fishing on the study reefs in question. Using abundance and biomass data, this species manifested 

trends that suggested high levels of fishing are occurring on certain South African and southern 

Mozambican reefs. Although A. virescens may not occur on reefs in other oceanic provinces, its 

incorporation in the Fish-index may be substituted with species targeted at a similar trophic level on 

other coral reefs. Similarly, the species selected to represent the functional groups in this study may 

be substituted with other, similarly important species. Those species which are prominent trophic 

contributors need only be identified and incorporated into a site-specific Fish-index. This should be 

done through fish community surveys and highlights the importance of conducting baseline studies. 

These principles of developing a Fish-index relate to processes that structure coral reefs fish 

communities such as predation, competition and reproduction. Species that signal changes in the 
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functioning of these processes will provide an insight into the nature of and changes in the coral 

reef fish communities.  

 

The concepts employed in the development of the Fish-index are not novel as there is a large 

literature documenting and promoting the use of ecological (diversity, trophic levels) and biological 

(biomass, abundance and length-frequency) indicator metrics to assess coral reef fish communities 

(see Pelletier et al. 2005 for review). In addition, there are a number of monitoring manuals that 

have been developed for non-scientists (Reef Check, AGRRA 2005, CRAMP, McClanahan 2008, 

Wilkinson et al. 2003). There are also other metrics that may be used to investigate human impacts 

on reef fish communities, particulalry fishing. Size metrics are a useful ecosystem metric of 

exploitation effects (Dulvy et al. 2004).  Thus size-frequency ditrbutions for each of the six coral 

indicator species were calculated to investigate trends in body size in each protection zone. 

Alternatively, size-spectra analysis may be employed as it has been shown to be a useful indicator 

of the effects of fishing on reef fish assemblages (Graham et al. 2005; Friedlander et al. 2010). The 

inclusion of this type of analysis could have provided a direct measure of fishing effects on the fish 

communities in this study. However, such analyses require quantitative data on fishing intensities 

for each reef in question to provide upper and lower limits of extractive resource use. Such data are 

not always available, particularly in developing countries where the necessary infrastructure is 

missing or in countries like South Africa where monitoring of coral reef fishing is not yet this 

detailed. Nevertheless, it is recommended that future studies make every effort to obtain such 

information.  

 

The United Nations Commission on Sustainable Development (CSD) (1993 and 1994) emphasized 

the need for a ‘Menu of Indicators’ to provide the basis for early warning systems, a cost-effective 

means of data collection, monitoring and assessment of trends, and informed decision-making, 

particularly for natural resource systems (Garcia & Staples 2000). While every attempt has been 

made to ensure the results of this study were statistically and scientifically grounded, the fact that 

only one Open reef could be included is recognized as a limitation that should be addressed in 

future studies with the inclusion of more Open sites. Nevertheless, the Fish-index has been 

developed for scientists or reef managers to rapidly assess differences in fish communities and the 

results of this study suggest it to be a useful monitoring and management tool.  
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The effectiveness of protected area management on South African coral 

reefs 

The third key principle was MPA assessment in the context of coral reef conservation. Fish 

communities on South African coral reefs have not been exposed to the same stresses that plague 

coral reefs in the Western Indian Ocean and Indo-Pacific (Wilkinson 2008). This is most likely 

attributable to the protection afforded by the St Lucia and Maputaland MPAs for more than 20 years 

and their relative inaccessibility prior to this. However, the results of Chapter 3 revealed that the 

fish communities differed on reefs of varying protection status. Furthermore, Chapter 4 focused the 

study by using 25 fish indicator species to elucidate trends evident in the community data. While 

the results were not unexpected, the trends manifested by the indicator species suggest that 

recreational fishing and SCUBA diving intensity are having an effect on the fish community 

structure. The question may thus be asked: Is coral reef protection within our MPAs effective? 

Chapter 4 dealt with this issue and deduced that reefs within South African MPAs had higher fish 

abundance, biomass and species diversity than the non-MPA reef in southern Mozambique. 

However, further significant differences became apparent when the fish communities between the 

South African study reefs were compared. As mentioned in Chapter 1 and 4, many MPAs are not 

achieving their management objectives with regard to the reef-associated fish communities. The 

following discussion deals with this issue in the context of South African coral reef MPA 

management.  

 

At present the theoretical management framework surrounding South African coral reef MPAs is in 

an indeterminate state due to an over-emphasis of legislative Acts and a lack of an adaptive 

management plan for the different MPA zones. Over the past decade, the changes bought about by 

the proclamation of the iSimangaliso Wetland Park as a World Heritage Site has not resulted in 

concurrent changes in the relevant management plans. The most recent management plan available 

for the St Lucia and Maputaland MPAs is for the Greater St Lucia Wetland Park (GSWLP, its 

earlier name) dated 2003. Another significant complication is the dual legislative protection 

afforded to the reefs by the Marine Living Resources Act (MLRA) and World Heritage Convention 

Act (WHCA) (see Attwood et al. 1997 for details). This has introduced considerable confusion with 

respect to the number of zones in the park, their boundaries and the activities permitted in them 

(Lemm & Attwood 2003). Under the MLRA, there are two types of zones in the MPAs; sanctuary 

and restricted (multiple resource use) zones. According to the WHCA, there are three types of 

zones; Sanctuary (no-take), Restricted (Diving-Fishing) and Controlled (High-Diving). To ensure 

consistency between these legislations, the conservation enforcement agency, Ezemvelo KwaZulu-

Natal Wildlife, adopted the WHCA zonation under the MLRA regulations in their GSLWP 2003 
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management plan (Fig. 5.1). The objectives presented in the 2003 GSLWP zonation management 

plan will be used as in the ensuing discussion to assess the effectiveness of coral reef protection 

and, hence, MPA management 

 

According to the GSLWP 2003 management plan, the goals for the MPAs are classified in three 

functional categories: protection, fisheries management and utilization, these differing according to 

habitat type, species under protection and human activity. All objectives relevant to coral reefs and 

coral reef fish communities were extracted and assessed according to the reef zonation (Table 5.1). 

Several trends are evident in Table 5.1. The no-take, no-entry policy applied to the Sanctuary zones 

has ensured that all the objectives and goals for the St Lucia and Maputaland MPAs have been 

successfully achieved. The prohibition of any type of human activity in these areas has provided 

benchmark areas for scientific research, protected vulnerable life-histories of reef fish (targeted and 

non-targeted), maintained spawner biomass, and provided potential breeding reservoirs of fish 

species, supplying recruits to adjacent areas where harvesting is permitted. This highlights the 

importance of these areas in maintaining natural processes in reef fish communities. The Controlled 

and Restricted zones appeared to achieve only five of the thirteen management objectives (Table 

5.1). These two zones are effective in protecting the coral reef habitat for fish communities; 

however, the results of this study suggest that, in terms of fisheries management, the Controlled and 

Restricted zones are of questionable value. The low numbers of sexually mature targeted fish 

species indicate that high levels of resource use are occurring in the Restricted and Controlled 

zones. Despite the fact that only restricted fishing is permitted in these zones, there is growing 

evidence that the effects of recreational fishing are greater than previously thought.  Recent research 

in New Zealand revealed that partial closure that still permitted recreational fishing was ineffective 

as a conservation tool and that angling effort in partially closed areas was equal to that in sites 

afforded no protection (Westera et al. 2003). In addition, the low densities of sexually mature, non-

targeted predatory species in the Controlled zones suggest that high diving intensity may also be 

influencing the fish community structure to some degree. Thus, neither the Restricted nor 

Controlled zones appear to be providing sufficient protection for the reefs under the current levels 

of human consumptive and non-consumptive recreational activity.  
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Figure 5.1 The offshore zonation plan for the St Lucia and Maputaland MPAs according to the 
Greater St Lucia Wetland Park management plan 2003.  
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Table 5.1 The conservation objectives relevant to coral reefs in the St Lucia and Maputaland MPA 
in the three different zonation areas. Zone A – Sanctuary, zone B – Restricted and zone C – 
Controlled. (Extracted from the KZNW Marine Zone Management Plan for the GSLWP 2003). 

 

 

Inclusion of a southern Mozambican reef provided a valuable comparison for the overall assessment 

of the effectiveness of reef conservation in the different MPA zones. The large difference in fish 

communities between the Sanctuary and Open zones was significant, but not unexpected. On the 

other hand, the lack of a clear separation between the fish communities in the High-Diving zone 

(Controlled zone), Diving-Fishing (Restricted zone) zones and the Open zone was not anticipated. 

Two possibilities may explain the unexpected similarities in fish communities between these zones. 

Firstly, factors other than human resource use may be influencing the fish communities in these 

zones; this seems unlikely in view of the similarity of the reefs. Secondly, and alternatively, the 

levels and effects of human resource use may be similar in the High-Diving, Diving-Fishing zones 

and the Open zone, despite the differences in protective legislation. Studies to investigate these 

Objective achieved 
Objective Function 

Zone A Zone B Zone C 

1 Ensure protection of representative sections of the 
marine environment in the eastern Indo-Pacific 
biogeographic region 

Protection Yes Yes Yes 

2 To maximize habitat diversity Protection Yes Yes Yes 

3 To ensure protection of rare, localized or endemic 
species through protection of their habitats 

Protection Yes Yes Yes 

4 To protect areas essential for the completion of 
vulnerable life stages 

Protection Yes ? ? 

5 To prevent over exploitation by providing refuge 
areas for exploited sedentary species 

Protection Yes Yes Yes 

6 To protect vulnerable life-history stages of mobile 
or migratory exploited species 

Protection Yes ? ? 

7 
To improve or sustain yields in adjacent areas 

Fisheries 
management 

Yes ? ? 

8 
To maintain spawner biomass 

Fisheries 
management 

Yes ? ? 

9 To provide undisturbed localities, populations and 
communities for research 

Fisheries 
management 

Yes ? ? 

10 To provide sites in which monitoring can be 
conducted 

Fisheries 
management 

Yes ? ? 

11 To promote and facilitate the development of 
tourism in South Africa 

Utilisation N/A Yes Yes 

12 To provide sites for low impact, non consumptive 
recreation 

Utilisation N/A ? ? 

13 To allow exploitation of selected taxa at a 
sustainable level 

Utilisation N/A ? ? 
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possibilities further would be benefical for to assess the effectiveness of management of these 

MPAs.   

 

The results of this study thus suggest that non-Sanctuary zones in the St Lucia and Maputaland 

MPAs may not be achieving all of their current management objectives. However, this does not 

imply that such MPA zones cannot be effective. Multiple resource use zones are important aspects 

of MPAs because they can offer benefits to a wide variety of stakeholders or constituents and 

provide a fame-work for resolving user-conflict (Agardy et al. 2003). In addition, they offer a basis 

for encouraging public awareness and promoting responsible attitudes and resource use. Although 

multiple resource use areas permit access to marine resources to a wider range of stakeholders, they 

represent a more complex management zone and thus require a multi-disciplinary management 

approach to balance the trade-off between sustainable resource use, conservation objectives and 

environmental change.  

 

It appears that more rigorous measures may be needed to monitor and assess the current levels of 

human activities on the Maputaland reefs. The aspects of the MLRA recreational fishing regulations 

that warrant modification were discussed in detail in Chapter 4. In particular, it was recommended 

that biologically-based criteria for the selection of ‘gamefish’ be incorporated into the MLRA 

recreational fishing regulations so species vulnerable to overexploitation, such as Aprion virescens, 

may be excluded. These criteria are presented in the final management recommendations below. In 

addition, reduced daily bag limits and the implementation of minimum size limits were suggested to 

prevent the extraction of potential brood stock. The recommended minimum size limits were set 

higher (10 cm) than the mean length at 50% sexual maturity to ensure that at least  half the 

individuals of a cohort caught have had a chance to spawn at least once (Caddy & Mahon 1995). 

This recommendation pertains to Caranx melampygus and the details are included in the 

management recommendations below.  

 

Concomitant with the proposed adaptations to the regulations, a new management approach is also 

put forward for the Maputaland reef fish communities. As stated by Bellwood et al. (2004), the 

rapid decline of reef systems calls for more rigorous, innovative and adaptive management 

strategies. The application of adaptive management was advocated more than a decade ago (Agardy 

1994) and numerous monitoring tools are available that support adaptive management (see IUCN-

WCPA 2008 Table 16). Adaptive management differs from conventional strategies in that it has a 

strong emphasis on forward-looking components, with the aim that mangers become proactive 

rather than reactive in their decision making (Biggs & Rogers 2003, Nyström 2006, IUCN-WCPA 

2008).  
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The suggested approach for the Maputaland reef fish communities is based on the management 

strategy employed in South Africa’s largest terrestrial reserve, the Kruger National Park (KNP), 

where goal-setting and monitoring end-points have been combined to discern thresholds of potential 

concern (TPC) (Biggs & Rogers 2003). A TPC is an operational goal towards which a component 

of an ecosystem is managed with upper or lower limits set along a continuum of change according 

to selected ecosystem indicators. TPCs are predicted levels of acceptable or unacceptable change in 

ecosystem structure, function and composition (Foxcroft 2009), and provide managers with an 

understanding of the possible implications of change, and the response-measures needed to sustain 

or mitigate these changes.  

 

Suggested TPCs for the southern African coral reef fish communities are presented in Table 5.2  

and integrate the results of Chapter 4 to determine the upper and lower limits of acceptable change. 

They thus aim to provide a link between science, monitoring and adaptive management at three 

levels for a number of indicator metrics. TPC-1 represents a benchmark reference point based on 

the fish communities in the Sanctuary zones because these fish communities were considered 

undisturbed. TPC-2 is a threshold limit that signals acceptable change has been exceeded and 

management intervention is needed to return to TPC-1. TPC-3 represents overexploitation of an 

indicator metric and signals that immediate management intervention is needed.  

 

Predatory and targeted species were most affected by human activities in the different zones and 

were thus considered appropriate indicators of fish community change. Herbivores have been 

included as they represent a key functional group that is a critical source of resilience and 

vulnerability to ecosystem phase shifts from coral- to algal-dominated states (Bellwood et al. 2004). 

Although herbivores such as scarids are protected on South African reefs, adaptive management 

requires an ecosystem approach that goes beyond the traditional concepts of monitoring targeted 

species alone for sustainable fisheries management (Bellwood et al. 2004). Thus indicators have 

been included that may promote the early prediction of possible threats, allowing proactive rather 

than reactive management. Continued monitoring of the fish communities will allow modification 

of indicators if deemed necessary.  

 

The trophic level (TL) metric has been included because the trophic structure in coral reef fish 

assemblages may provide an insight into the functioning of the entire reef ecosystem (Bozec et al. 

2005). The TL score was generated by summing each of the Fish-Index species TL (Appendix 

6.1.2), providing useful comparisons of zones of different human resource use. The sum of TLs per 

reef was used rather than the average TL per reef (as per Pauly et al. 1998) because the low 
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abundance of fish in the Open zone produced spurious results. The TL score is useful for relative 

comparisons between reefs and not between regions.  
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Table 5.2 Thresholds of potential concern (TPC) for southern African coral reefs fish communities within the zones of present human resource use. The 
total trophic level category constitutes the sum of each Fish-index species trophic level.  
 

Implication 

 
Indicator metric 

Reproductive potential 

Zone Reef 
Number of top 

predators 
Number of 
herbivores 

Number of 
target & 
predatory 
species  

Total 
Trophic 

level 

Top 
predators 

Herbivores 
Target 
species 

Management action 

Sanctuary 
Rabbit Rock 

Red Sands Reef 
Leadsman Shoal 

abundant abundant abundant  60 normal normal normal 
Continued monitoring to 
assess long-term changes 

High-Diving Two-Mile Reef rare abundant low 42 impaired normal reduced Reduce diving intensity 

Diving-Fishing Seven-Mile Reef 
Nine-Mile Reef 

present but 
wary 

abundant very low 50 reduced normal impaired 
Reassess fishing 

restrictions 

Unrestricted 
fishing & diving 

Shallow 
Malongane 

absent low rare 32 absent reduced inhibited 
Implement relevant 

fishing restrictions and 
active law enforcement  

TPC-1 TPC-2 TPC-3 

Benchmark Threshold Overexploited 
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Management guidelines and recommendations 

The results of this study highlight the following key points: 

1. Total fish abundance and biomass was highest in Sanctuary zones. 

2. Top-level predators were more abundant and larger in Sanctuary zones. 

3. The above points suggest that Sanctuary zones are achieving their management objectives.  

4. The Open reef had the lowest total fish abundance and biomass. 

5. Similarities between the Open zone, Controlled and Restricted zones suggest that certain 

MPA zones may not be fully achieving their management objectives. 

6. A low abundance of sexually mature target species may indicate that fishing is influencing 

fish communities on the Diving-Fishing reefs.  

7. The low abundance of large no-take predators on the High-Diving Reef requires further 

investigation. 

8. The designation of certain species and families as gamefish by the MLRA requires re-

examination.  

With regards to the above points, the following management recommendations are proposed:  

1. Sanctuary areas should remain no-take and no-entry areas where all forms of human 

activity are excluded apart from essential monitoring and research  

2. Further research is required to assess whether fish communities on South African coral 

reefs are self-seeding or inter-connected. Such studies should include larval dispersal, 

genetic and tagging studies. 

3. The MPA management plan should include measures to investigate and address the low 

numbers of sexually mature resident target species such as Caranx melampygus and Aprion 

virescens. Such measures may include: 

A - The implementation of a minimum size limit and a daily bag limit for Caranx 

melampygus. The minimum recommended forklength would be 50 cm, which is 10 cm 

larger than the mean length at 50% sexual maturity. The recommended bag limit for C. 

melampygus is three. 

 B - The declaration of a moratorium on the capture of Aprion virescens. 

4. Reevaluation of zonation in the Central Reef Complex and implementation of diving 

carrying capacities for each reef.  

5. The development of biologically-based criteria for the designation of fish species as 

gamefish in the MLRA, e.g.:  
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Conclusion   

This study has demonstrated that the southern African coral reef fish communities have several 

unique traits. They are associated with high-latitude coral communities that occur at the limit of 

coral reef distribution, yet they are diverse and appear to have strong functional similarities with 

coral reef fish communities on other WIO and Indo-Pacific reefs. In addition, the Sanctuary zones 

appear to maintain relatively undisturbed fish communities, which is uncommon in the current 

global environment of human resource use and climate change. The results contribute valuable 

information to the growing body of literature demonstrating the importance of no-take zones as 

conservation and management tools for coral reef fish communities. However, the results also 

demonstrated that multiple resource use zones may not be providing the same levels of protection to 

the reef fish communities as Sanctuary zones, despite the fact that they share the same MPA 

management objectives. Such zones have the potential to be effective in coral reef conservation. 

Yet, it is critical that managers set aside the notion of a ‘one size fits all’ approach and that they 

align their management objectives to suit the different types of MPA zones and their respective 

resource use.  

Criteria Include  Exclude  

Movement 
Species that are nomadic or migratory Species that aggregate for spawning or 

mating, or that show site fidelity including 
residency and/or territoriality  

Stock status 
Species that are under-exploited or 
optimally exploited (see Griffiths et al. 
1999 for biological reference points) 

Species that are over-exploited or where the 
stock has collapsed  (see Griffiths et al. 1999 
for biological reference points) 

Fertilisation and 
fecundity 

Species that are external fertilisers and 
broadcast spawners  

Species that are viviparous or ovoviviparous 
with low fecundity (i.e. sharkds) 

Growth and 
maturation 

Species that are early maturing and fast 
growing (low vulnerability index) 

Species that are slow growing and slow 
maturing (high vulnerable index) 
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Appendix 1  

Mean abundance of all fish taxa recorded on the seven study reefs, expressed as fish/hr. Species 
have bee ordered alphabetically. Distribution (D) refers to the species range. IP = Indo-Pacific, 
WIO = Western Indian Ocean, I = Indian Ocean, C = cosmopolitan, E = endemic.  

Species D LMS RS TMR SMR NMR RR SM 
Acanthuridae         
Acanthurus blochii Cuvier and Valenciennes, 1835 IP 0 3.58 0 1.2 1.17 1.17 0.2 
Acanthurus dussumierii Valenciennes, 1835 IP 2.33 0.92 0.3 0.4 1.58 3.5 0.6 
Acanthurus leucocheilus  Herre 1927 IP 0.22 0 0 0.4 0 0 0 
Acanthurus leucosternon Bennet, 1833 IP 6.78 5.25 5.5 8.6 1.92 2.67 1.4 
Acanthurus lineatus (Linnaeus, 1758) IP 0.11 0.08 0.2 0 0 0.17 0 
Acanthurus mata  (Cuvier, 1829) IP 2.22 1.42 1.1 0.4 0.17 11.08 4.3 
Acanthurus nigrofuscus (Forsskål, 1775) IP 61.44 25.58 15.8 21.1 17.42 17.5 11.5 
Acanthurus tennenti Günther, 1861 I 19.22 11.42 7.3 2.4 3.33 5.75 3.7 
Acanthurus thompsoni Fowler, 1923 IP 6.78 8.58 4.4 3 1.42 4.42 1 
Acanthurus triostegus (Linnaeus, 1758) IP 0 0 0.3 0 0 0.5 0 
Acanthurus xanthopterus Cuvier & Valenciennes, 
1835 IP 1.44 0 1.5 1.1 0.42 3.67 0 
Ctenochaetus binotatus Randall, 1955 IP 0.78 0.75 2.1 1.2 1.25 0.25 1.5 
Ctenochaetus striatus (Quoy & Gaimard, 125) IP 0.89 0.25 0.6 0.2 0.25 0.08 0.1 
Ctenochaetus truncatus Randall & Clements, 2001 IP 23.44 7.42 6.3 2.5 0.92 2 3.8 
Naso brachycentron (Cuvier & Valenciennes, 1835) IP 0.89 0 0.2 0.1 0 0.33 0.2 
Naso brevirostris (Cuvier, 1829) IP 1.33 0 0 0 0 0 5.5 
Naso hexacanthus (Bleeker, 1855) IP 17.67 1.27 0.6 2.1 0.08 0.75 9.5 
Naso lituratus (Forster in Bloch & Schneider, 1801) IP 2.67 2.5 2.3 1.7 1.25 2 1.1 
Naso unicornis (Forsskål, 1775) IP 1.22 0.75 0.7 0.2 0.67 6.42 0.2 
Paracanthurus hepatus (Linnaeus, 1766) IP 6 0 0 0 0 0 0.3 
Zebrasoma gemmatum (Valenciennes, 1835) I 0.44 0.17 0 0.2 0.17 0.5 0 
Zebrasoma scopes (Cuvier, 1829) IP 0.78 2.17 1.8 1.1 0.08 2.58 1.1 
Zebrasoma desjardini (Bennett, 1836) WIO 0.11 0 0.1 0.1 0 0.33 0 
Apogonidae         
Apogon angustatus (Smith & Radcliffe in Radcliffe, 
1911) IP 0 0 0 0 0.08 0 0 
Apogon taeniophorus Regan, 1908 IP 0 0 0 0 0.08 0 0.1 
Apogon apogonoides (Bleeker, 1856) IP 0 0 3.1 0 0 1.58 0 
Cheilodipterus artus Smith, 1961 IP 0 0 0 0 0.33 0.08 0 
Aulostomidae         
Aulostomus chinensis Linnaeus, 1766 IP 0.11 0 0.5 1.6 0.58 0 0.4 
Balistidae         
Balistapus undulates (Mungo Park, 1797) IP 1.44 1.33 1.2 0.7 0.83 1.58 1.6 
Balistoides conspicillum (Bloch & Schneider, 1801) IP 0.89 0.67 0.2 0.4 0.17 1 0.4 
Balistoides viridescens (Bloch & Schneider, 1801) IP 0.22 0.09 0.4 0.1 0 0.08 0.2 
Melichthys indicus Randall & Klausewitz, 1973 I 0.56 1.08 1.1 2.2 0.83 1.25 1.9 
Odonus niger (Rüppl, 1836) IP 24.44 24.5 5.5 47.1 13.42 38.17 14 
Pseudobalistes flavimarginatus (Rüppell, 1829) IP 0.11 0 0 0 0 0 0 
Pseudobalistes fuscus (Bloch & Scneider, 1801) IP 0.11 0 0 0 0 0 0 
Sufflamen bursa (Bloch & Schneider, 1801) IP 0.22 0.17 1.2 1.2 1.08 0.92 0.4 
Sufflamen chrysopterus (Bloch & Schneider, 1801) IP 1.78 2.08 1.2 2.5 1.75 2.08 3.1 
Sufflamen fraenatus (Latreille, 1804) IP 1.11 0.67 0.9 0.5 0.67 0.83 1.1 
Blennidae         
Ecsenius midas Stark, 1969 IP 0 0 0.1 0 0.08 0 0 
Plagiotremus rhinorhynchus (Bleeker, 1852) IP 0.11 0.09 0.3 0.3 0.33 0.58 0 
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Species D LMS RS TMR SMR NMR RR SM 

Plagiotremus tapeinosoma (Bleeker, 1852)  IP 0.11 1.17 0.3 0.9 2.33 2.5 2.4 
Exallias brevis (Kner, 1868) IP 0.56 0 0.1 0 0 0.08 0.1 
Caesionidae         
Caesio caerulaurea (Lacepède, 1801) IP 0 45.45 13 3 9.75 27.5 0 
Caesio lunaris Cuvier, 1830 IP 6.44 0 0 0 1.25 0.08 0 
Caesio xanthonota Bleeker, 1853 IP 4.44 18.58 8.8 15.5 19.33 71.75 3.3 
Pterocaesio tile (Cuvier, 1830) IP 0 18.27 3.5 14.5 4.58 0 0 
Caracanthidae         
Caracanthus madagascariensis (Guichenot, 1869) WIO 0 0 0.1 0.3 0 0 0 
Carangidae         
Carangoides coeruleopinnatus (Rüppell, 1830) IP 0 0 0.1 0 0 0 2.5 
Carangoides fulvoguttatus (Forsskål, 1775) IP 2.56 0.17 0.5 2.5 4.92 16.67 0.5 
Caranx ignobilis (Forsskål, 1775) IP 0.33 0 0 0 0 0 0 
Caranx melampygus Cuvier & Valenciennes, 1833 IP 3.56 2.75 2.9 4.2 1.25 7.58 0.6 
Caranx heberi (Bennet, 1830) IP 3.56 0 0 1 0 0.33 1.8 
Caranx sexfasciatus Quoy & Gainard, 1825 IP 0 0 0 3.3 0 0 0 
Decapterus macrosoma Bleeker, 1851 IP 0 2.5 50 0 8.33 0 0 
Elagatis bipinnulata (Quoy & Gainard, 1825) IP 0 1.67 0 0 0 0 0 
Pseudocaranx dentex (Bloch & Schneider, 1801) IP/C 0 0 0 0 0.08 0 0 
Scomberoides lysan (Frosskål, 1775) IP 0.11 0 0 0 0 0 30 
Seriola rivoliana Valenciennes in Cuvier & 
Valenciennes, 1833 IP 0 0 0.3 0.5 0 0 0 
Seriolina nigrofasciata (Rüppell, 1829) IP 0 0 0.1 0 0 0 0.3 
Carcharhinidae         
Carcharhinus amblyrhynchos IP 0.11 0.18 0 0.1 0.08 0.42 0 
Triaenodon obesus (Rüppell, 1837) IP 0 0.09 0 0 0 0.08 0 
Chaetodontidae         
Chaetodon auriga (Forsskål, 1775) IP 2.11 1.75 0.7 1.5 1 1.25 0.9 
Chaetodon blackburnii Desjardins, 1836 WIO 1.67 0.42 0.8 2.5 1.58 0.5 0.3 
Chaetodon guttatissimus (Bennet, 1832) I 5 3.92 3.1 3.8 3.08 3 2.2 
Chaetodon interruptus Ahl, 1923 IP 5.89 6.92 5.4 3.8 3.83 8.17 7.3 
Chaetodon kleinii Bloch, 1790 IP 5.78 5 3.7 4.2 3.25 2.58 2.2 
Chaetodon lineolatus Cuvier in Cuvier & 
Valenciennes, 1831 IP 0 0 0 0 0 0.17 0 
Chaetodon lunula (Lacepède, 1802) IP 1.44 0.92 3.4 0.7 0.75 1.17 0.4 
Chaetodon madagaskariensis (Ahl, 1923) I 4.22 3.17 3.5 3.8 1.92 4.25 3.1 
Chaetodon meyeri (Bloch & Scneider, 1801) IP 4.22 3.5 1.6 1.6 1.58 4.5 3 
Chaetodon trifascialis (Quoy & Gaimard, 1825) IP 0.44 0.67 0.6 0 0 0.33 0.8 
Chaetodon trifasciatus (Mungo Park, 1797) IP 0.22 0 0 0 0 0.33 0.5 
Chaetodon vagabundus Linnaeus, 1758 IP 1.22 0.42 0.5 0 0.33 0.5 0.7 
Chaetodon xanthocephalus Bennet, 1832 I 0.33 0.25 0.4 0 0 0 0 
Chaetodon zanzibarensis Playfair in Playfair & 
Günther, 1867 WIO 0 0 0 0 0 0.17 0 
Forcipiger flavissimus Jordan & McGregor, 1898 IP 2.78 2.83 1.5 2.1 2.75 2.67 1.5 
Hemitaurichthys zoster (Bennet, 1831) I 6.67 7.17 0.3 4.4 2.33 4.25 1.1 
Heniochus acuminatus (Linnaeus, 1758) IP 0.44 0 0.2 0.1 0.42 0.25 0 
Heniochus diphreutes Jordan, 1903 IP 0 0 0 0 3.67 0 0 
Heniochus monoceros (Cuvier in Cuvier & 
Valenciennes, 1831) IP 0 0 0 0.4 0 0.17 0 
Cheilodactylidae         
Chirodactylus jessicalenorum Smith, 1980 E 0.56 0 0.1 0.5 0.17 0 0 
Cirrhitidae         
Amblycirrhitus bimacula (Jenkins, 1903) IP 0.11 0 0 0 0 0.08 0.3 
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Cirrhitichthys oxycephalus (Bleeker, 1855) IP 2.33 3.25 2.9 3.4 3.58 4.17 2.4 
Paracirrhites arcatus Cuvier in Cuvier & 
Valenciennes, 1829 IP 0.78 1.58 2.2 3.3 1.92 0.42 0.5 
Paracirrhites forsteri (Bloch & Schneider, 1801) IP 1.44 1.33 1.4 0.9 1.25 1.08 0.5 
Dasyatidae         
Dasyatis kuhlii (Müller & Henle, 1841) IP 0 0 0 0.1 0.08 0 0.1 
Himantura gerrardi (Gray, 1851) IP 0 0.09 0.1 0 0 0 0.2 
Taeniura lymma (Forsskål, 1775) IP 0 0 0 0.1 0 0 0 
Dinopercaidae         
Dinoperca petersi (Day, 1875) WIO 0 0 0.1 0 0.25 0.42 0 
Diodontidae         
Diodon hystrix Linnaeus, 1758 C 0 0.17 0.2 0 0.17 0.08 0.2 
Diodon holocanthus Linnaeus, 1758 IP 0 0 0.1 0 0 0 0 
Diodon liturosus Shaw, 1804 IP 0.11 0 0.1 0.1 0 0 0.3 
Echeneidae         
Echeneis naucrates Linneaus, 1758 C 0 0.17 0 0.1 0.08 0 0 
Ephippidae         
Tripterodon orbis Playfair, 1876 WIO 0 0 0.4 1.8 2.67 0 0 
Fistulariidae         
Fistularia commersonii Rüppell, 1838 IP 0 0 0.6 1.1 0 0 0.1 
Gobiidae         
Nemateleotris magnifica Fowler, 1938 IP 1 0.17 0.5 1.4 2.25 0.67 0.9 
Ptereleotris evides (Jordan & Hubbs, 1925) IP 0.78 2.33 0 0.7 1.75 0 8 
Ptereleotris heteroptera (Bleeker, 1855) IP 1 0.5 0 0 0.08 0.25 0.5 
Valenciennea strigata (Jordan & Hubss, 1925) IP 0 0.75 0.6 0.8 1.67 1.08 1.6 
Haemulidae         
Diagramma pictum (Thunberg, 1792) IP 0 0 0 0 1.25 0 0 
Plectorhinchus chubby (Thunber, 1792) WIO 0 0.25 0.8 0 0.33 0.25 0 
Plectorhinchus flavomaculatus (Cuvier, 1830) IP 1 1.33 0.6 0.8 0.25 2.08 0.1 
Plectorhinchus playfairi (Pellegrin, 1914) WIO 0.44 0.17 0.8 0.5 1.08 1.58 0.2 
Plectorhinchus schotaf (Forsskål, 1775) IP 0.22 0 0 0 0.08 0 0 
Holocentridae         
Myripristis murdjan Frosskål, 1775 IP 0.78 1.55 4.8 8 2.58 2.5 1.2 
Sargocentron caudimaculatum Rüppell, 1838 IP 0.89 1.42 0.6 0.6 1.67 1.58 0.1 
Sargocentron diadema Lacepède, 1802 IP 0.89 0.42 1.3 0.6 0.5 2 0.7 
Sargocentron spiniferum Frosskål, 1775 IP 0 0 0.1 0 0 0.25 0 
Kyphosidae         
Kyphosus cinerascens Forsskål, 1775 IP 0.56 0.17 0 0 0 0 0 
Kyphosus vaigiensis (Quoy & Gaimard, 1825) IP 3.44 1 8 0 1.25 1.83 0 
Labridae         
Anampses caeruleopunctatus Rüppell, 1829 IP 2.22 2.58 1.6 2 4 1.58 2 
Anampses lineatus Randall, 1972 I 0.11 0 0.4 0.1 0.08 0 0 
Anampses meleagrides (Valenciennes, 1840) IP 1.33 0.83 1.3 0.9 0.92 1.33 0.9 
Anampses twistii Bleeker, 1856 IP 0.22 0 0.4 0 0 0.5 0.2 
Bodianus anthoides Bennet, 1832 IP 0 0 0 0.3 0.08 0 0.2 
Bodianus axillaries Bennet, 1832 IP 0.89 0.5 0.3 0.2 0.33 1.17 1.1 
Bodianus bilunulatus (Lacepède, 1801) IP 2.56 3.67 0.9 0.7 1.33 1.92 0.4 
Bodianus diana Lacepède, 1802 IP 2.33 2 2.1 3.1 3.92 2 0.9 
Bodianus perditio (Quoy & Gaimard, 1834) IP 0.22 0.67 0 0 0.08 0.5 0 
Cheilinus fasciatus (Bloch, 1791) IP 0.22 0.42 0 0 0.08 0 0 
Cheilinus trilobatus Lacepède, 1801 IP 0.56 0 0 0 0 1 0 
Cheilio inermis Frosskål, 1775 IP 0 0 0 0 0 0.17 0.1 
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Cirrhilabrus exquisitus Smith, 1957 IP 1.78 1.08 0.1 4.4 3.25 1.83 9.9 
Coris aygula (Lacepède, 1801) IP 0.56 0.17 0.4 0 0.25 0.42 0.1 
Coris caudimacula (Quoy & Gaimard, 1834) I 1.56 5.42 1 0.9 1.75 1.42 2.5 
Coris cuvieri (Bennett, 1831) I 0.56 0.5 0.3 0 0.5 0.33 0.3 
Coris formosa (Bennett, 1830) I 0.11 0 0.1 0.2 0.17 0.25 0 
Gomphosus caeruleus Lacepède, 1801 I 2.22 2.83 2.5 0.8 1.83 2.25 1.8 
Halichoeres cosmetus Randall & Smith, 1982 I 2.33 0.92 2.5 3.1 3.58 1.33 0.9 
Halichoeres hortulanus Lacepède, 1801 IP 3.22 3.17 2.4 0.4 2.75 2.67 2.4 
Halichoeres iridis Randall & Smith, 1982 WIO 0 0 0 0.1 0.08 0 0 
Halichoeres lapillus Smith, 1947 WIO 0.44 0.25 0 0.1 0.17 0 0 
Halichoeres nebulosus (Valeciennes in Cuvier & 
Valenciennes, 1839) IP 1.22 0.75 0.3 0.5 0.33 0.42 0.6 
Halichoeres scapularis Bennet, 1832 IP 0 0 0 0 0 0.08 0 
Hemigymnus fasciatus Bloch, 1792 IP 0.56 1.18 0.2 0.3 0.92 0.67 0.6 
Hologymnosus annulatus Lacepède, 1801 IP 0 0.18 0.1 0.1 0.17 1.42 0 
Hologymnosus doliatus Lacepède, 1802 IP 0 0.18 0 0 0 0.17 0.5 
Labroides bicolour Fowler & Bean, 1928 IP 0.22 0.27 0.8 0.4 0.67 1.5 0.4 
Labroides dimidiatus Valenciennes, 1839 IP 8.33 6.5 8.5 7.6 6.42 8 7.3 
Labropsis xanthonota Randall, 1981 IP 0.33 0.08 0 0.1 0.5 0 0.1 
Macropharyngodon bipartitus Smith, 1957 WIO 0 0.58 0.5 0.4 1.17 0.58 1 
Macropharyngodon cyanoguttatus Randall, 1978 I 0 0.09 0.2 0.2 0.33 0.08 0.4 
Novaculichthys taeniourus (Lacepède, 1801) IP 0.11 0 0.1 0 0 0.42 0 
Pseudocheilinus evanidus Jordan & Evermann, 1903 IP 0 0 0 0 0 0 0.1 
Pseudocheilinus hexataenia (Bleeker 1857) IP 1.78 1.17 0.8 0.7 1.08 1.25 2.2 
Pseudodax moluccanus (Valenciennes, 1840) IP 0.67 0.67 0.6 0.3 0.17 1.25 0 
Pseudojuloides cerasinus (Snyder, 1904) IP 0.56 0 0 0 0 0 0 
Stethojulis albovittata (Bonnaterre, 1788) I 0 0 0 0 0.08 0 0 
Stethojulis interrupta (Bleeker, 1851) IP 0 0 0.1 0.1 0.17 0.08 0.1 
Thalassoma amblycephalum Bleeker, 1856 IP 6.78 16.42 10.2 17.5 17.25 6.08 0.8 
Thalassoma genivittatum (Valenciennes in Cuvier & 
Valenciennes, 1839) I 0.56 0.33 0.2 0.4 0.42 0.58 0.1 
Thalassoma hardwicke Bennet, 1830 IP 0.22 0 0 0 0 0 0 
Thalassoma hebraicum Lacepède, 1801 I 24.22 30.67 9 6.5 8.92 13.83 6.1 
Thalassoma lunare Linnaeus, 1758 IP 1.78 1.08 2.9 0.6 1 0.33 1.3 
Lethrinidae         
Gnathodentex aureolineatus (Lacepède, 1802) IP 0 0 0 0 0 0.17 0 
Gymnocranius griseus (Temminck & Schlegel, 1843) IP 0.33 0.25 0.4 0 0.08 0 0.1 
Lethrinus crocineus Smith, 1959 WIO 7.33 1.92 0.3 0 0.08 0.75 0 
Lethrinus microdon Valenciennes in Cuvier & 
Valenciennes, 1830) IP 0 0 0.1 0 0 0.08 0 
Lethrinus nebulosus (Forsskål, 1775) IP 0 0 0.3 0 0 0.58 0 
Lethrinus rubrioperculatus Sato, 1978 IP 3.33 3.17 0 0 0 0.33 0 
Lethrinus mahsena (Forsskål, 1775) WIO 0 0 0 0 0 0.08 0 
Monotaxis grandoculis (Forsskål, 1775) IP 1.67 0.42 0.2 1 0.5 3 0.5 
Lutjanidae         
Aphareus furca (Lacepède, 1801) IP 0.33 0.55 1.3 1 0.42 0.25 0.2 
Aphareus rutilans Cuvier in Cuvier & Valenciennes, 
1830 IP 0.11 0 0 3 0 0.92 0.5 
Aprion virescens Valenciennes, 1830 IP 3.67 2.25 0.3 0.2 0.25 4.67 0.1 
Lutjanus argentimaculatus (Forsskål, 1775) IP 0 0 0 0.1 0 0.08 0 
Lutjanus bohar (Forsskål, 1775) IP 7.78 5.08 1.3 1.9 1 10.75 0.3 
Lutjanus fulviflamma (Forsskål, 1775) IP 0.11 0.08 6 8.2 0 24.17 0 
Lutjanus gibbus (Forsskål, 1775) IP 27.11 0.33 1 1.1 6.92 6.67 0.1 
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Lutjanus kasmira (Forsskål, 1775) IP 0 4.33 20.7 10.4 0.42 51.33 0.1 
Lutjanus Lutjanus Bloch, 1790 IP 0 0 10 7.2 0 0 0 
Lutjanus rivulatus (Cuvier in Cuvier & Valenciennes, 
1828) IP 0.56 0.33 0.5 0.1 0.25 0.58 0 
Lutjanus russelli (Bleeker, 1849) IP 2 0.33 5 6.6 0.17 0 0.3 
Lutjanus sebae (Cuvier, 1816) IP 0 0 0 0 0 0.08 0 
Macolor niger (Forsskål, 1775) IP 0.89 0.91 1.6 1.6 0 1.75 0.1 
Paracaesio sordidus Abe & Shinohara, 1962 IP 1.44 8.33 3.5 2.3 1.67 1.33 0 
Paracaesio xanthura (Bleeker, 1869) IP 0 0.08 0 0 0.08 0 0 
Malacanthidae         
Malacanthus brevirostris Guichenot, 1848 IP 0.44 0.17 0 0.1 0 0.33 0 
Malacanthus latovittatus (Lacepède, 1801) IP 0 0 0 0 0.08 0 0 
Mobulidae         
Manta birostris (Walbaum, 1792) IP 0.11 0 0 0 0 0 0 
Mobula kuhlii (Müller & Henle, 1841) IP 0 0 0 0.4 0 0 0 
Monacanthidae         
Cantherhines dumerilii (Hollard, 1854) IP 0 0.42 0.1 0 0.08 0.08 0.5 
Cantherhines pardalis (Rüppell, 1837) IP 0.33 0.58 0.3 0.9 0.75 0.08 1 
Paraluteres prionurus (Bleeker, 1851) IP 0 0.08 0 0.4 0.25 0 0 
Pervagor  janthinosoma (Bleeker, 1854) IP 0.78 0.08 0.5 2.4 0.17 0.67 1.7 
Mugiloididae         
Parapercis punctulata Cuvier in Cuvier & 
Valenciennes, 1829 I 0.67 0.42 0.1 0 0.08 0.08 0.3 
Mullidae         
Mulloidichthys vanicolensis (Valenciennes, 1831) IP 0 9.09 15.9 47 1 0.67 0 
Parupeneus bifasciatus (Lacepède, 1801) IP 0.22 0.58 0.4 0.5 0.25 1.75 0.2 
Parupeneus cyclostomus (Lacepède, 1801) IP 0.44 0.92 0.6 1 0.67 3.08 1.7 
Parupeneus indicus (Shaw, 1803) IP 1.78 0.08 0 0 0 0 0.1 
Parupeneus macronema (Lacepède, 1801) IP 0 2 3.2 1.8 1.75 4.08 12.4 
Parupeneus rubescens (Lacepède, 1801) IP 2.33 0 0 0 0.17 0.17 0 
Parupeneus pleurostigma (Bennett, 1832) IP 0 0 0.6 0.1 0 0 0.1 
Muraenidae         
Gymnomuraena zebra (Shaw, 1797) IP 0 0 0 0 0 0 0.1 
Gymnothorax breedeni McCosker & Randall, 1977 IP 0 0 0.2 0.3 0 0.25 0 
Gymnothorax eurostus (Abbott, 1860) IP 0 0 0 0.1 0 0 0.1 
Gymnothorax favagineus (Bloch & Schneider, 1801) IP 0 0.09 0.1 0.2 0 0 0 
Gymnocranius griseus (Temminch & Schlegel, 1843) WIO 0 0 0 0.2 0.08 0 0.1 
Gymnothorax meleagris (Shaw, 1795) IP 0 0 0.1 0.3 0 0.17 0.2 
Gymnothorax undulates (Lacepède, 1801) IP 0 0 0.1 0.2 0 0 0.1 
Odontaspididae         
Carcharias Taurus Rafinesque, 1810 IP 0 0 0 0.1 0 0 0 
Oplegnathidae         
Oplegnathus robinsoni Regan, 1916 WIO 4.22 1.25 1.2 0.7 0.67 1.75 0.3 
Ostraciidae         
Ostracion cubicus (Linnaeus, 1758) IP 0 0 0.4 0.1 0.08 0.25 0.1 
Ostracion meleagris Shaw, 1796 IP 0 0 0.4 0.4 0 0.08 0.2 
Pempheridae         
Pempheris adusta Bleeker, 1877 IP 33.33 0 7.5 0.1 7.08 5.17 0 
Parapriacanthus ransonneti Steindachner, 1870 IP 2.22 0 3 0 8.33 69.17 200 
Pomacanthidae         
Apolemichthys trimaculatus (Lacepède, 1801) IP 2.11 2 1.2 1.1 0.17 0.83 0.3 
Centropyge acanthops (Norman, 1922) WIO 5.44 2.92 1.2 1.6 0.67 2.33 1.9 
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Centropyge multispinis (Playfair, 1867) IP 0.33 2.08 3.5 2.9 2.58 3.33 5 
Centropyge bispinosa (Günther, 1860) IP 5.44 0 0.3 0 0.08 0.42 0.5 
Pomacanthus imperator (Bloch, 1787) IP 1 1.67 0.8 1.3 1.33 2.75 0.5 
Pomacanthus rhomboids (Gilchrist & Thompson, 
1908) WIO 11.33 3.33 0.8 0.9 3.75 9.33 0.3 
Pomacanthus semicirculatus (Cuvier, 1831) IP 0.78 0.25 0.3 0.7 1.08 0.5 0.4 
Pygoplites diacanthus (Boddaert, 1772) IP 0 0 0.1 0 0.17 0.08 0 
Pomcentridae         
Abudefduf natalensis (Hensley & Randall, 1983) I 2.78 2.5 8.8 1.8 10.83 1.5 0 
Abudefduf vaigiensis (Quoy & Gaimard) IP 0 0 4.9 0 0 0 0 
Amphiprion akallopisos (Bleekerm 1853) I 0.89 0 0 1.5 0.5 0 1.9 
Amphiprion allardi Klausewitz, 1970 I 1.67 0.75 1 2.7 6.17 3.5 2.9 
Chromis dimidiata (Klunzinger, 1871)  I 185.2 116.7 111.5 55.3 57.17 104.75 74.3 
Chromis nigrura (Smith, 1960) I 54.11 73.83 66.1 37.8 42.42 76.08 1.7 
Chromis opercularis (Günther, 1867) I 0 0.17 0.1 2.4 0.92 0.17 3.4 
Chromis weberi (Fowler & Bean, 1928) IP 94.44 19.5 104.6 94.1 54.67 23.08 39 
Dascyllus trimaculatus (Rüppell, 1829) IP 13.44 3 2.6 4.1 5.42 1.17 6.8 
Lepidozygus tapeinosoma (Bleeker, 1856) IP 0 0 4.9 0 0.83 0 0 
Neopomacentrus cyanomos (Bleeker, 1856) IP 1.67 0 0 0 0 0.33 0.5 
Plectroglyphidodon dickii (Liènard, 1839) IP 0.22 6.92 6.3 0 0.17 0.58 0.4 
Plectroglyphidodon johnstonianus Fowler & Ball, 
1924 IP 7.56 2.83 1.7 0 0.17 0.33 0.5 
Plectroglyphidodon lacrymatus (Quoy & Gaimard, 
1825) IP 1.11 0 0 0 0 0.17 0.8 
Plectroglyphidodon leucozonus (Bleeker, 1859) IP 0.11 0.25 0 0 0 0 0 
Pomacentrus caeruleus (Quoy & Gaumard, 1825) I 0 7.42 1.3 1.7 4.42 1.08 6 
Stegastes nigricans (Lacepède, 1802) IP 0 0.17 0 0 0 0 0 
Priacanthidae         
Priacanthus hamrur (Forsskål, 1775) IP 1.22 0.17 4.4 7.6 0.75 0.08 1.7 
Pseudochromidae         
Pseudochromis dutoiti Smith, 1955 WIO 0 0.17 0.5 2.1 0.42 0.5 0.3 
Pseudochromis natalensis Regan, 1916 WIO 0 0 0 0 0 0.08 0 
Rhincodontidae         
Rhincodon typus Smith, 1828 C 0 0 0 0 0 0 0.1 
Scaridae         
Calotomus carolinus (Valenciennes, 1840) IP 0.56 0.08 0.4 0.6 0.42 0.42 0.3 
Chlorurus atrilunula (Randall & Bruce, 1983) I 0.78 0.08 0.1 0.1 0 0.58 0.5 
Scarus cyanescens Valenciennes in Cuvier & 
Valenciennes, 1840 I 0.44 0.58 0 0 0 0.17 0 
Scarus frenatus (Lacepède, 1801) IP 0 0 0 0 0.08 0 0 
Scarus ghobban (Forsskål, 1775) IP 0 0 0 0 0.42 0 0.1 
Scarus rubroviolaceus Bleeker, 1847 IP 9.22 6.17 5.8 5.3 6.25 6.75 3.4 
Scarus tricolor Bleeker, 1847 IP 0.56 0.33 0 0.7 0.08 0 0.3 
Scombridae         
Euthynnus affinis (Cantor, 1849) IP 0 0 0 0 0 0.83 0 
Scomberomorus commerson (Lacepède, 1801) IP 0 0 0 0 0.08 0.25 0 
Scorpaenidae         
Pterois miles (Bennett, 1825) IP 0 0 0 0 0 0 0.1 
Scorpaenopsis diabolus (Cuvier, 1829) IP 0 0.08 0 0 0 0 0 
Scorpaenopsis venosa (Cuvier, 1829) IP 0.11 0 0 0.1 0 0.08 0.3 
Scorpaenopsis oxycephala (Bleeker, 1849) IP 0.11 0.25 0.5 0 0 0.08 0.1 
Sebastapistes cyanostigma (Bleeker, 1856) IP 0.11 0.17 0 0 0.17 0.08 0 
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Serranidae         
Aethaloperca rogaa (Forsskål, 1775) IP 0.78 0.67 1.2 0.5 0.33 0.5 0.3 
Cephalopholis argus Bloch & Schneider, 1801 IP 0.33 0.17 0.1 0 0.67 0.17 0 
Species D LMS RS TMR SMR NMR RR SM 
Cephalopholis miniata (Forsskål, 1775) IP 0.22 0.17 1 1.7 1 0.75 0.3 
Cephalopholis urodeta (Forster in Bloch & Schneider, 
1801) IP 0.22 0.92 0.1 0.6 0.25 0.67 1 
Dermatolepis striolatus (Playfair in Playfair & 
Günther, 1867) WIO 0 0 0 0 0 0.08 0 
Epinephelus caeruleopunctatus (Bloch, 1790) IP 0 0.08 0 0 0 0 0.1 
Epinephelus fasciatus  (Forsskål, 1775) IP 1.22 0.75 0.9 0 0.83 0.25 0 
Epinephelus flavocaeruleus (Lacepède, 1801) IP 0 0.25 0.2 0 0.25 0.17 0 
Epinephelus macrospilos (Bleeker ,1855) IP 0 0 0 0.1 0 0 0 
Epinephelus marginatus (Lowe, 1834) C 0.11 0 0 0 0.17 0 0 
Epinephelus posteli Fourmanoir & Crosnier, 1964 WIO 0.22 0 0 0 0.08 0.08 0 
Epinephelus tukula Morgans, 1959 IP 1.78 2.08 0.2 0.3 1.08 1.58 0 
Grammistes sexlineatus (Thunber, 1782) IP 0 0 0 0.2 0 0 0 
Nemanthias carberryi Smith, 1954 WIO 0 0 19 72 12.5 0 0 
Plectropomus punctatus Quoy & Gaiimard, 1824 I 0.89 0 0.2 0.2 0.17 1.33 0.1 
Pseudanthias cooperi (Regan, 1902) IP 14.44 0 17 12.6 1 0 0 
Pseudanthias squamipinnis Peters, 1855 IP 112.6 79.92 90.9 173 145.3 28.42 8.3 
Pseudanthias evansi (Smith, 1954) I 0 0 0 0.1 0 0.33 0 
Variola louti (Forsskål, 1775) IP 3.56 4.92 1.3 0.6 0.75 2.33 1.2 
Siganidae         
Siganus sutor (Valenciennes in Cuvier & Valenciennes, 
1835) WIO 2 0.25 1.1 2.1 0.17 0.67 1.3 
Sparidae         
Chrysoblephus puniceus (Gilchrist & Thompson, 
1908) WIO 0 0 0.8 0 8.33 0 0 
Diplodus cervinus hottentotus (Bleeker, 1844) E 1.22 0 2.4 0 0 0 0 
Polyamblyodon gibbosum (Pellegrin, 1914) WIO 4.78 0.67 0.2 0.2 1.33 1.58 0 
Polysteganus praeorbitalis (Günther, 1859) WIO 0.22 0.08 0 0 0 0 0 
Sphyraenidae         
Sphyraena jello Cuvier in Cuvier & Valenciennes, 1829 IP 0.22 0 0.1 0.2 3.25 7.5 20 
Sphyraena putnamiae Jordan & Seale, 1905 IP 0 0 0 0.3 0 0 0 
Synodontidae         
Synodus dermatogenys Fowler, 1912 IP 0 0 0 0.2 0 0 0.1 
Tetraodontidae         
Arothron hispidus (Linnaeus, 1758) IP 0.11 0.08 0.1 0.3 0.17 0 0.1 
Arothron meleagris (Lacepède, 1798) IP 0.11 0 0.1 0.2 0.17 0.17 0.1 
Arothron nigropunctatus Bloch & Schneider 1801 IP 0.11 0.17 0.1 0.2 0 0.08 0.3 
Canthigaster amboinensis (Bleeker, 1865) IP 0 0 0 0 0 0 0.1 
Canthigaster coronata (Vaillant & Sauvage, 1875) IP 0 0 0 0 0 0 0.1 
Canthigaster valentini (Bleeker, 1853) IP 0 0 0.5 0 0.25 0 0.9 
Zanclidae         
Zanclus canescens (Linnaeus, 1758) IP 2.78 2.75 2.3 4.4 2.92 3.42 1.5 
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Appendix 2  

SIMPER results of percent contribution of each species to overall dissimilarity between reefs. 
Cumulative cut-off to exclude species with low contributions was 33%. Species in bold are 
considered potentially good discriminating species according to criteria discussed in Clarke and 
Warwick (2001) 

 TMR NMR     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Chromis weberi 3.07 2.18 0.62 1.25 1.25 1.25 
Caesio xanthonota 1.09 0.94 0.61 1.22 1.25 2.5 
Chromis nigrura 2.23 2.26 0.59 1.37 1.19 3.69 
Lutjanus kasmira 1.2 0.12 0.58 0.97 1.19 4.88 
Thalassoma amblycephalum 1.15 1.63 0.56 1.25 1.15 6.03 
Plectroglyphidodon dickii 1.19 0.17 0.56 1.5 1.13 7.16 
Amphiprion allardi 0.5 1.45 0.53 1.5 1.09 8.25 
Abudefduf natalensis 0.51 0.95 0.52 1 1.07 9.32 
Odonus niger 0.52 0.88 0.51 0.96 1.04 10.36 
Mulloides vanicolensis 1.01 0.25 0.5 0.97 1.03 11.39 
Ctenochaetus truncatus 1.11 0.42 0.48 1.29 0.98 12.37 
Chromis dimidiata 2.89 2.59 0.46 1.53 0.93 13.3 
Pempheris adusta 0.64 0.56 0.45 0.84 0.92 14.22 
Carangoides fulvoguttatus 0.15 0.85 0.45 0.97 0.91 15.13 
Pseudanthias squamipinnis 2.88 3.25 0.44 1.21 0.89 16.03 
Myripristis murdjan 0.97 0.72 0.43 1.29 0.87 16.9 
Plectroglyphidodon johnstonianus 0.94 0.17 0.43 1.59 0.87 17.77 
Pomacentrus caeruleus 0.42 0.82 0.43 1.08 0.87 18.64 
Cirrhilabrus exquisitus 0.1 0.86 0.42 1.2 0.86 19.5 
Caesio caerulaureus 0.55 0.55 0.42 0.74 0.86 20.36 
Acanthurus thompsoni 0.78 0.52 0.41 1.09 0.84 21.2 
Acanthurus dussumieri 0.22 0.89 0.4 1.37 0.82 22.02 
Pomacanthus rhomboides 0.55 1.19 0.4 1.29 0.81 22.83 
Dascyllus trimaculatus 0.85 1.3 0.4 1.28 0.81 23.64 
Pomacanthus semicirculatus 0.13 0.81 0.39 1.56 0.8 24.44 
Priacanthus hamrur 0.75 0.39 0.39 1.05 0.79 25.23 
Hemitaurichthys zoster 0.3 0.87 0.39 1.28 0.79 26.02 
Lutjanus fulviflamma 0.76 0 0.38 0.78 0.77 26.79 
Paracaesio sordidus 0.57 0.55 0.38 1 0.77 27.56 
Caranx melampygus 0.7 0.44 0.37 1.07 0.76 28.32 
Nemanthias carberryi 0.37 0.49 0.37 0.55 0.74 29.06 
Epinephelus tukula 0.12 0.74 0.36 1.3 0.74 29.8 
Chaetodon lunula 0.7 0.55 0.36 1.11 0.73 30.53 
Sargocentron caudimaculatum 0.44 0.97 0.36 1.27 0.73 31.26 
Thalassoma lunare 0.54 0.73 0.36 1.22 0.73 31.98 
Plagiotremus tapeinosoma 0.3 0.75 0.36 1.1 0.72 32.71 
Zebrasoma scopas 0.73 0.08 0.35 1.1 0.72 33.42 
    Average dissimilarity = 49.16 

 
 

 SMR NMR     

Species Average 
abundance 

Average 
abundance 

Average 
diissimilarity 

Diss/SD Percent 
contribution 

Cumulative 
percent 

Nemanthias carberryi 2.59 0.49 1.08 1.92 2.28 2.28 
Odonus niger 2.57 0.88 0.87 1.81 1.83 4.11 
Mulloides vanicolensis 1.67 0.25 0.75 1.22 1.59 5.7 
Chromis weberi 2.66 2.18 0.62 1.3 1.32 7.02 
Pseudanthias cooperi 1.28 0.16 0.6 1.26 1.28 8.3 
Lutjanus kasmira 1.28 0.12 0.58 1.37 1.23 9.53 
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Caesio xanthonota 0.76 0.94 0.56 0.97 1.19 10.73 
Priacanthus hamrur 1.27 0.39 0.51 1.39 1.08 11.81 
Pseudanthias squamipinnis 3.32 3.25 0.47 1.13 1 12.81 
Myripristis murdjan 1.21 0.72 0.47 1.24 0.99 13.8 
Abudefduf natalensis 0.58 0.95 0.46 1.14 0.98 14.78 
Carangoides fulvoguttatus 0.22 0.85 0.45 1.01 0.94 15.72 
Caranx melampygus 1.04 0.44 0.43 1.31 0.91 16.63 
Pterocaesio tile 0.75 0.38 0.42 0.76 0.9 17.53 
Halichoeres hortulanus 0.4 1.19 0.41 1.58 0.87 18.4 
Cirrhilabrus exquisitus 0.75 0.86 0.41 1.24 0.87 19.27 
Pomacentrus caeruleus 0.65 0.82 0.4 1.19 0.86 20.13 
Pervagor  janthinosoma 0.92 0.17 0.4 1.38 0.84 20.97 
Thalassoma amblycephalum 1.82 1.63 0.4 1.1 0.84 21.81 
Macolor niger 0.83 0 0.39 1.48 0.83 22.64 
Lutjanus lutjanus 0.86 0 0.39 0.91 0.83 23.47 
Cephalopholis miniata 1.03 0.42 0.39 1.58 0.82 24.29 
Hemitaurichthys zoster 1.05 0.87 0.38 1.23 0.81 25.1 
Siganus sutor 0.86 0.17 0.38 1.31 0.8 25.9 
Paracaesio sordidus 0.98 0.55 0.38 1.37 0.8 26.7 
Ctenochaetus truncatus 0.93 0.42 0.38 1.28 0.8 27.5 
Lutjanus gibbus 0.76 0.5 0.37 1.13 0.79 28.3 
Acanthurus thompsoni 0.81 0.52 0.37 1.16 0.78 29.08 
Acanthurus dussumieri 0.32 0.89 0.36 1.3 0.76 29.83 
Chromis dimidiata 2.42 2.59 0.36 1.46 0.76 30.59 
Nemateleotris magnifica 0.64 0.63 0.35 1.12 0.75 31.34 
Lutjanus fulviflamma 0.76 0 0.35 0.76 0.75 32.09 
Lutjanus bohar 0.98 0.51 0.35 1.22 0.73 32.83 
Plagiotremus tapeinosoma 0.47 0.75 0.34 1.14 0.73 33.55 
    Average dissimilarity = 47.24 

 
 

 TMR LMS     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Lutjanus gibbus 0.37 1.64 0.66 1.37 1.36 1.36 
Chromis weberi 3.07 2.26 0.61 1.15 1.26 2.62 
Naso hexacanthus 0.16 1.27 0.59 1.08 1.21 3.83 
Lethrinus crocineus 0.22 1.4 0.59 1.8 1.2 5.03 
Thalassoma amblycephalum 1.15 0.62 0.53 1.21 1.1 6.13 
Lutjanus kasmira 1.2 0 0.53 0.94 1.09 7.22 
Chromis dimidiata 2.89 3.46 0.51 1.39 1.05 8.27 
Pomacanthus rhomboides 0.55 1.37 0.5 1.39 1.02 9.29 
Caesio xanthonota 1.09 0.59 0.49 1.18 1 10.29 
Dascyllus trimaculatus 0.85 1.11 0.49 1.29 1 11.29 
Ctenochaetus truncatus 1.11 1.49 0.49 1.3 1 12.29 
Chromis nigrura 2.23 2.69 0.48 1.41 0.99 13.28 
Aprion virescens 0.3 1.33 0.48 2 0.99 14.27 
Acanthurus thompsoni 0.78 0.84 0.45 1.11 0.92 15.19 
Mulloides vanicolensis 1.01 0 0.45 0.88 0.92 16.11 
Odonus niger 0.52 0.69 0.45 0.79 0.91 17.02 
Centropyge acanthops 0.51 1.31 0.45 1.44 0.91 17.94 
Lethrinus rubrioperculatus 0 0.94 0.44 1.29 0.91 18.85 
Acanthurus tennenti 1.16 1.92 0.43 1.48 0.88 19.73 
Epinephelus tukula 0.12 0.94 0.41 1.58 0.85 20.58 
Plectroglyphidodon dickii 1.19 1.06 0.41 1.3 0.85 21.42 
Myripristis murdjan 0.97 0.3 0.41 1.31 0.84 22.27 
Pseudanthias squamipinnis 2.88 2.94 0.41 1.28 0.84 23.1 
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Caranx melampygus 0.7 1.17 0.39 1.39 0.79 23.9 
Lutjanus bohar 0.8 1.59 0.38 1.29 0.78 24.67 
Thalassoma lunare 0.54 0.95 0.38 1.41 0.77 25.44 
Priacanthus hamrur 0.75 0.31 0.36 0.99 0.74 26.19 
Acanthurus dussumieri 0.22 0.86 0.36 1.25 0.74 26.93 
Lutjanus fulviflamma 0.76 0.11 0.36 0.85 0.74 27.66 
Balistoides conspicillum 0.12 0.8 0.36 1.65 0.73 28.39 
Kyphosus vaigiensis 0.66 0.37 0.35 0.81 0.73 29.12 
Pempheris adusta 0.64 0.23 0.35 0.73 0.72 29.84 
Hemitaurichthys zoster 0.3 0.73 0.35 0.94 0.72 30.56 
Cirrhilabrus exquisitus 0.1 0.74 0.34 1.13 0.7 31.26 
Chaetodon lunula 0.7 0.79 0.34 1.2 0.7 31.96 
Pomacentrus caeruleus 0.42 0.66 0.33 1.13 0.69 32.65 
Chaetodon auriga 0.46 0.97 0.33 1.25 0.68 33.33 
    Average dissimilarity = 48.70 

 
 
 

 SMR LMS     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Nemanthias carberryi 2.59 0 1.13 2.68 2.24 2.24 
Odonus niger 2.57 0.69 0.94 2.48 1.88 4.12 
Mulloides vanicolensis 1.67 0 0.71 1.16 1.41 5.54 
Thalassoma amblycephalum 1.82 0.62 0.65 1.71 1.29 6.83 
Lethrinus crocineus 0 1.4 0.63 2.26 1.25 8.08 
Chromis weberi 2.66 2.26 0.63 1.18 1.25 9.32 
Pseudanthias cooperi 1.28 0.38 0.61 1.31 1.22 10.54 
Naso hexacanthus 0.21 1.27 0.56 1.07 1.11 11.66 
Chromis dimidiata 2.42 3.46 0.55 1.53 1.11 12.76 
Lutjanus kasmira 1.28 0 0.55 1.4 1.1 13.87 
Priacanthus hamrur 1.27 0.31 0.51 1.46 1.01 14.88 
Pseudanthias squamipinnis 3.32 2.94 0.5 1.31 1.01 15.88 
Aprion virescens 0.2 1.33 0.49 2.56 0.98 16.86 
Lutjanus gibbus 0.76 1.64 0.48 1.14 0.96 17.82 
Myripristis murdjan 1.21 0.3 0.48 1.32 0.95 18.77 
Dascyllus trimaculatus 1.09 1.11 0.47 1.49 0.93 19.71 
Plectroglyphidodon dickii 0 1.06 0.46 1.25 0.91 20.62 
Hemitaurichthys zoster 1.05 0.73 0.44 1.32 0.87 21.49 
Caesio xanthonota 0.76 0.59 0.44 0.92 0.87 22.36 
Paracaesio sordidus 0.98 0.21 0.43 1.75 0.86 23.23 
Ctenochaetus truncatus 0.93 1.49 0.43 1.17 0.86 24.09 
Lethrinus rubrioperculatus 0 0.94 0.42 1.3 0.84 24.93 
Acanthurus thompsoni 0.81 0.84 0.42 1.26 0.84 25.77 
Acanthurus tennenti 1.02 1.92 0.41 1.29 0.82 26.59 
Pomacanthus rhomboides 0.82 1.37 0.4 1.48 0.8 27.39 
Variola louti 0.52 1.37 0.39 1.51 0.77 28.16 
Cephalopholis miniata 1.03 0.22 0.37 1.74 0.75 28.9 
Halichoeres hortulanus 0.4 1.16 0.37 1.5 0.74 29.64 
Epinephelus tukula 0.22 0.94 0.37 1.47 0.74 30.38 
Cirrhilabrus exquisitus 0.75 0.74 0.36 1.22 0.72 31.1 
Oplegnathus robinsoni 0.53 1.12 0.36 1.4 0.72 31.82 
Lutjanus lutjanus 0.86 0 0.36 0.91 0.72 32.55 
Aulostomus chinensis 0.84 0.11 0.36 1.39 0.71 33.25 
Amphiprion allardi 1.17 0.61 0.35 1.27 0.69 33.95 
    Average dissimilarity = 50.17 

 



143 

 NMR LMS     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD Percent 

contribution 
Cumulative 

percent 
Lutjanus gibbus 0.5 1.64 0.68 1.4 1.38 1.38 
Chromis weberi 2.18 2.26 0.66 1.31 1.36 2.74 
Thalassoma amblycephalum 1.63 0.62 0.65 1.51 1.34 4.08 
Lethrinus crocineus 0.08 1.4 0.64 2.09 1.3 5.38 
Naso hexacanthus 0.08 1.27 0.6 1.1 1.23 6.61 
Ctenochaetus truncatus 0.42 1.49 0.58 1.32 1.18 7.79 
Odonus niger 0.88 0.69 0.56 0.93 1.14 8.93 
Aprion virescens 0.18 1.33 0.54 2.53 1.11 10.04 
Lutjanus bohar 0.51 1.59 0.51 1.67 1.05 11.09 
Chromis dimidiata 2.59 3.46 0.51 1.5 1.04 12.13 
Caesio xanthonota 0.94 0.59 0.5 1 1.02 13.15 
Dascyllus trimaculatus 1.3 1.11 0.5 1.69 1.02 14.17 
Plectroglyphidodon dickii 0.17 1.06 0.46 1.24 0.95 15.12 
Amphiprion allardi 1.45 0.61 0.46 1.35 0.94 16.06 
Centropyge acanthops 0.46 1.31 0.46 1.48 0.94 17 
Lethrinus rubrioperculatus 0 0.94 0.45 1.3 0.92 17.92 
Abudefduf natalensis 0.95 0.25 0.45 0.95 0.91 18.83 
Pseudanthias squamipinnis 3.25 2.94 0.43 1.4 0.89 19.72 
Apolemichthys trimaculatus 0.17 1.04 0.43 1.77 0.89 20.61 
Caranx melampygus 0.44 1.17 0.43 1.57 0.89 21.5 
Carangoides fulvoguttatus 0.85 0.5 0.43 1.11 0.87 22.37 
Acanthurus thompsoni 0.52 0.84 0.42 1.12 0.86 23.24 
Hemitaurichthys zoster 0.87 0.73 0.42 1.29 0.86 24.1 
Pomacentrus caeruleus 0.82 0.66 0.4 1.25 0.81 24.91 
Pomacanthus rhomboides 1.19 1.37 0.39 1.45 0.79 25.71 
Polyamblyodon gibbosum 0.62 0.47 0.37 1.11 0.77 26.48 
Sargocentron caudimaculatum 0.97 0.41 0.37 1.42 0.75 27.22 
Oplegnathus robinsoni 0.6 1.12 0.37 1.37 0.75 27.97 
Variola louti 0.61 1.37 0.36 1.34 0.74 28.71 
Acanthurus tennenti 1.2 1.92 0.36 1.35 0.74 29.45 
Cirrhilabrus exquisitus 0.86 0.74 0.36 1.31 0.74 30.19 
Pomacanthus semicirculatus 0.81 0.29 0.35 1.48 0.71 30.9 
Coris caudimacula 0.89 0.58 0.34 1.3 0.7 31.6 
Nemateleotris magnifica 0.63 0.53 0.34 1.12 0.69 32.29 
Chaetodon madagaskariensis 0.76 1.37 0.34 1.21 0.69 32.98 
Myripristis murdjan 0.72 0.3 0.33 1.02 0.69 33.67 
    Average dissimilarity = 48.83 

 
 

 TMR RR     

Species Average 
abundance 

Average 
abundance 

Average 
diissimilarity 

Diss/SD Percent 
contribution 

Cumulative 
percent 

Caesio xanthonota 1.09 2.38 0.79 1.44 1.6 1.6 
Odonus niger 0.52 1.63 0.7 1.29 1.43 3.03 
Lutjanus kasmira 1.2 0.85 0.66 1.02 1.35 4.38 
Chromis weberi 3.07 1.93 0.56 1.34 1.14 5.52 
Chromis nigrura 2.23 2.67 0.55 1.35 1.11 6.63 
Pomacanthus rhomboides 0.55 1.46 0.52 1.52 1.06 7.7 
Lutjanus fulviflamma 0.76 0.56 0.49 0.89 0.99 8.69 
Parapriacanthus ransonneti 0.23 0.94 0.49 0.64 0.99 9.68 
Aprion virescens 0.3 1.28 0.49 1.66 0.99 10.67 
Chromis dimidiata 2.89 2.9 0.47 1.27 0.97 11.64 
Thalassoma amblycephalum 1.15 1.16 0.47 1.32 0.96 12.6 
Pseudanthias squamipinnis 2.88 2.1 0.46 1.34 0.94 13.54 
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Plectroglyphidodon dickii 1.19 0.38 0.46 1.38 0.94 14.48 
Mulloides vanicolensis 1.01 0.23 0.46 0.97 0.94 15.42 
Lutjanus bohar 0.8 1.62 0.45 1.48 0.92 16.35 
Epinephelus tukula 0.12 1.04 0.45 2.2 0.92 17.26 
Naso unicornis 0.46 1.19 0.45 1.34 0.91 18.17 
Lutjanus gibbus 0.37 1.01 0.45 1.15 0.91 19.08 
Caranx melampygus 0.7 1.17 0.44 1.27 0.9 19.98 
Acanthurus mata 0.41 0.78 0.43 0.9 0.88 20.86 
Acanthurus thompsoni 0.78 1.09 0.43 1.32 0.88 21.74 
Acanthurus dussumieri 0.22 0.93 0.41 1.24 0.83 22.57 
Pempheris adusta 0.64 0.47 0.41 0.84 0.82 23.39 
Caesio caerulaureus 0.55 0.54 0.4 0.65 0.82 24.21 
Amphiprion allardi 0.5 1.09 0.4 1.27 0.81 25.03 
Kyphosus vaigiensis 0.66 0.56 0.39 1.03 0.79 25.82 
Myripristis murdjan 0.97 0.8 0.38 1.28 0.77 26.59 
Acanthurus leucosternon 1.31 0.84 0.38 1.19 0.77 27.37 
Parupeneus cyclostomus 0.44 0.95 0.37 1.3 0.76 28.13 
Ctenochaetus truncatus 1.11 0.92 0.37 1.31 0.75 28.88 
Plectroglyphidodon 
johnstonianus 

0.94 0.27 0.37 1.47 0.75 29.63 
Paracirrhites arcatus 0.91 0.35 0.36 1.28 0.74 30.37 
Balistoides conspicillum 0.12 0.8 0.35 1.52 0.71 31.08 
Abudefduf natalensis 0.51 0.45 0.35 0.84 0.71 31.79 
Acanthurus tennenti 1.16 1.41 0.35 1.35 0.7 32.5 
Zebrasoma scopas 0.73 0.79 0.35 1.18 0.7 33.2 
Dascyllus trimaculatus 0.85 0.61 0.35 1.15 0.7 33.91 
    Average dissimilarity = 49.17 

 
 

 SMR RR     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Nemanthias carberryi 2.59 0 1.14 2.68 2.29 2.29 
Caesio xanthonota 0.76 2.38 0.87 1.53 1.76 4.05 
Pseudanthias squamipinnis 3.32 2.1 0.73 2.14 1.46 5.51 
Mulloides vanicolensis 1.67 0.23 0.7 1.22 1.41 6.91 
Lutjanus kasmira 1.28 0.85 0.65 1.37 1.31 8.23 
Odonus niger 2.57 1.63 0.59 1.31 1.19 9.42 
Pseudanthias cooperi 1.28 0 0.57 1.27 1.16 10.57 
Priacanthus hamrur 1.27 0.08 0.54 1.58 1.1 11.67 
Chromis weberi 2.66 1.93 0.54 1.33 1.09 12.76 
Naso unicornis 0.12 1.19 0.5 1.43 1.02 13.77 
Aprion virescens 0.2 1.28 0.49 1.91 0.99 14.76 
Lutjanus fulviflamma 0.76 0.56 0.46 0.87 0.93 15.69 
Chromis dimidiata 2.42 2.9 0.46 1.43 0.92 16.61 
Thalassoma amblycephalum 1.82 1.16 0.43 1.23 0.87 17.48 
Paracirrhites arcatus 1.26 0.35 0.42 1.65 0.84 18.32 
Acanthurus mata 0.4 0.78 0.41 0.98 0.83 19.15 
Myripristis murdjan 1.21 0.8 0.41 1.28 0.83 19.98 
Pomacanthus rhomboides 0.82 1.46 0.41 1.7 0.82 20.8 
Parapriacanthus ransonneti 0 0.94 0.4 0.55 0.81 21.62 
Acanthurus leucosternon 1.66 0.84 0.4 1.24 0.81 22.43 
Hemitaurichthys zoster 1.05 0.8 0.39 1.3 0.79 23.22 
Epinephelus tukula 0.22 1.04 0.39 1.82 0.79 24.01 
Paracaesio sordidus 0.98 0.37 0.39 1.54 0.79 24.79 
Halichoeres hortulanus 0.4 1.25 0.38 1.62 0.77 25.56 
Aulostomus chinensis 0.84 0 0.38 1.47 0.76 26.32 
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Acanthurus dussumieri 0.32 0.93 0.37 1.23 0.75 27.07 
Acanthurus thompsoni 0.81 1.09 0.37 1.28 0.75 27.81 
Caranx melampygus 1.04 1.17 0.37 1.16 0.74 28.56 
Lutjanus lutjanus 0.86 0 0.36 0.91 0.73 29.29 
Cirrhilabrus exquisitus 0.75 0.57 0.36 1.1 0.73 30.02 
Dascyllus trimaculatus 1.09 0.61 0.36 1.36 0.72 30.74 
Lutjanus gibbus 0.76 1.01 0.36 1.21 0.72 31.46 
Lutjanus bohar 0.98 1.62 0.35 1.42 0.71 32.17 
Centropyge acanthops 0.82 0.61 0.35 1.33 0.7 32.87 
Parupeneus cyclostomus 0.58 0.95 0.34 1.22 0.68 33.55 
    Average dissimilarity = 49.69 

 
 
 

 NMR RR     

Species Average 
abundance 

Average 
abundance 

Average 
dissimilarity 

Diss/SD Percent 
contribution 

Cumulative 
percent 

Caesio xanthonota 0.94 2.38 0.9 1.53 1.86 1.86 
Odonus niger 0.88 1.63 0.7 1.28 1.44 3.31 
Lutjanus bohar 0.51 1.62 0.56 1.67 1.17 4.48 
Pseudanthias squamipinnis 3.25 2.1 0.56 1.31 1.16 5.63 
Aprion virescens 0.18 1.28 0.54 1.92 1.12 6.75 
Carangoides fulvoguttatus 0.85 0.53 0.54 1.05 1.11 7.86 
Parapriacanthus ransonneti 0.26 0.94 0.5 0.63 1.03 8.89 
Chromis weberi 2.18 1.93 0.49 1.3 1.02 9.91 
Lutjanus gibbus 0.5 1.01 0.48 1.17 1 10.91 
Thalassoma amblycephalum 1.63 1.16 0.47 1.22 0.97 11.89 
Caranx melampygus 0.44 1.17 0.47 1.3 0.97 12.86 
Naso unicornis 0.46 1.19 0.46 1.32 0.96 13.82 
Abudefduf natalensis 0.95 0.45 0.45 1.08 0.93 14.75 
Chromis dimidiata 2.59 2.9 0.44 1.53 0.9 15.66 
Chromis nigrura 2.26 2.67 0.43 1.15 0.89 16.55 
Sargocentron diadema 0.21 1 0.43 1.7 0.89 17.44 
Acanthurus thompsoni 0.52 1.09 0.42 1.32 0.87 18.31 
Plectorhinchus flavomaculatus 0.18 0.98 0.42 1.55 0.86 19.17 
Lutjanus kasmira 0.12 0.85 0.42 0.61 0.86 20.03 
Caesio caerulaureus 0.55 0.54 0.41 0.69 0.86 20.89 
Dascyllus trimaculatus 1.3 0.61 0.4 1.43 0.83 21.72 
Pomacentrus caeruleus 0.82 0.36 0.4 1.05 0.82 22.54 
Acanthurus mata 0.1 0.78 0.4 0.75 0.82 23.36 
Anampses caeruleopunctatus 1.27 0.65 0.39 1.29 0.81 24.17 
Cirrhilabrus exquisitus 0.86 0.57 0.38 1.26 0.79 24.96 
Plagiotremus tapeinosoma 0.75 0.6 0.37 1.18 0.77 25.74 
Hemitaurichthys zoster 0.87 0.8 0.37 1.26 0.77 26.51 
Paracirrhites arcatus 1.01 0.35 0.37 1.41 0.77 27.28 
Pempheris adusta 0.56 0.47 0.37 0.79 0.77 28.06 
Myripristis murdjan 0.72 0.8 0.37 1.16 0.77 28.83 
Ctenochaetus truncatus 0.42 0.92 0.37 1.33 0.76 29.59 
Parupeneus cyclostomus 0.53 0.95 0.36 1.33 0.75 30.34 
Zebrasoma scopas 0.08 0.79 0.35 1.13 0.73 31.08 
Pomacanthus rhomboides 1.19 1.46 0.35 1.4 0.72 31.79 
Chaetodon madagaskariensis 0.76 1.38 0.34 1.2 0.7 32.49 
Acanthurus leucosternon 0.99 0.84 0.34 1.28 0.7 33.19 
Balistoides conspicillum 0.17 0.8 0.33 1.42 0.69 33.88 
    Average dissimilarity = 48.37 
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 LMS RR     

Species Average 
abundance 

Average 
abundance 

Average 
dissimilarity 

Diss/SD Percent 
contribution 

Cumulative 
percent 

Caesio xanthonota 0.59 2.38 0.87 1.68 1.89 1.89 
Odonus niger 0.69 1.63 0.7 1.27 1.53 3.42 
Naso hexacanthus 1.27 0.24 0.55 1.12 1.2 4.62 
Chromis weberi 2.26 1.93 0.55 1.19 1.19 5.81 
Parapriacanthus ransonneti 0.46 0.94 0.51 0.65 1.11 6.92 
Lutjanus gibbus 1.64 1.01 0.5 1.31 1.09 8.02 
Thalassoma amblycephalum 0.62 1.16 0.48 1.43 1.04 9.05 
Naso unicornis 0.33 1.19 0.47 1.33 1.02 10.07 
Pseudanthias squamipinnis 2.94 2.1 0.46 1.24 1.01 11.08 
Chromis dimidiata 3.46 2.9 0.46 1.25 1.01 12.09 
Dascyllus trimaculatus 1.11 0.61 0.45 1.26 0.98 13.07 
Acanthurus thompsoni 0.84 1.09 0.44 1.42 0.96 14.03 
Centropyge acanthops 1.31 0.61 0.42 1.38 0.92 14.95 
Plectroglyphidodon dickii 1.06 0.38 0.41 1.23 0.88 15.84 
Lethrinus crocineus 1.4 0.61 0.4 1.53 0.88 16.72 
Lethrinus rubrioperculatus 0.94 0.12 0.4 1.29 0.88 17.6 
Ctenochaetus truncatus 1.49 0.92 0.4 1.12 0.87 18.47 
Hemitaurichthys zoster 0.73 0.8 0.4 1.17 0.86 19.33 
Pomacanthus rhomboides 1.37 1.46 0.39 1.21 0.85 20.18 
Carangoides fulvoguttatus 0.5 0.53 0.39 0.77 0.85 21.03 
Acanthurus mata 0.23 0.78 0.38 0.76 0.83 21.86 
Acanthurus leucosternon 1.32 0.84 0.38 1.3 0.83 22.69 
Acanthurus nigrofuscus 2.4 1.84 0.37 1.06 0.8 23.49 
Amphiprion allardi 0.61 1.09 0.36 1.2 0.78 24.27 
Lutjanus kasmira 0 0.85 0.36 0.55 0.77 25.05 
Labroides bicolor 0.22 0.94 0.34 1.54 0.75 25.79 
Myripristis murdjan 0.3 0.8 0.34 1.11 0.74 26.54 
Polyamblyodon gibbosum 0.47 0.55 0.33 0.97 0.73 27.26 
Thalassoma lunare 0.95 0.33 0.33 1.42 0.72 27.99 
Apolemichthys trimaculatus 1.04 0.49 0.33 1.36 0.72 28.71 
Monotaxis grandoculis 0.35 0.7 0.33 1.03 0.72 29.42 
Acanthurus dussumieri 0.86 0.93 0.33 1.2 0.71 30.14 
Caranx melampygus 1.17 1.17 0.32 1.21 0.7 30.84 
Cirrhilabrus exquisitus 0.74 0.57 0.32 1.13 0.7 31.54 
Anampses caeruleopunctatus 0.97 0.65 0.32 1.22 0.69 32.23 
Acanthurus xanthopterus 0.47 0.57 0.32 0.93 0.69 32.92 
Epinephelus fasciatus 0.76 0.18 0.32 1.26 0.69 33.61 
    Average dissimilarity = 45.91 

 
 

 TMR RS     

Species Average 
abundance 

Average 
abundance 

Average 
dissimilarity 

Diss/SD Percent 
contribution

Cumulative 
percent 

Chromis weberi 3.07 1.54 0.82 1.44 1.72 1.72 
Odonus niger 0.52 1.18 0.62 1.04 1.3 3.02 
Caesio xanthonota 1.09 1.05 0.62 1.22 1.29 4.31 
Lutjanus kasmira 1.2 0.32 0.59 0.99 1.25 5.56 
Chromis nigrura 2.23 2.75 0.58 1.36 1.21 6.77 
Thalassoma amblycephalum 1.15 1.54 0.56 1.22 1.16 7.93 
Pseudanthias squamipinnis 2.88 2.45 0.54 1.25 1.14 9.07 
Mulloides vanicolensis 1.01 0.26 0.53 0.93 1.11 10.18 
Acanthurus thompsoni 0.78 1.02 0.5 1.19 1.04 11.22 
Epinephelus tukula 0.12 1.03 0.48 1.78 1.01 12.23 
Chromis dimidiata 2.89 3.1 0.46 1.38 0.96 13.2 
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Lethrinus rubrioperculatus 0 0.9 0.46 1.27 0.96 14.15 
Dascyllus trimaculatus 0.85 0.42 0.44 1.18 0.92 15.07 
Pomacentrus caeruleus 0.42 0.84 0.44 1.01 0.92 15.99 
Myripristis murdjan 0.97 0.55 0.42 1.27 0.88 16.87 
Pterocaesio tile 0.38 0.69 0.42 0.74 0.87 17.74 
Ctenochaetus truncatus 1.11 1.43 0.41 1.24 0.86 18.6 
Acanthurus tennenti 1.16 1.69 0.4 1.5 0.85 19.45 
Lethrinus crocineus 0.22 0.91 0.4 1.4 0.85 20.29 
Caranx melampygus 0.7 1.07 0.4 1.36 0.84 21.14 
Centropyge acanthops 0.51 0.84 0.4 1.18 0.83 21.97 
Caesio caerulaureus 0.55 0.39 0.39 0.56 0.83 22.79 
Aprion virescens 0.3 0.87 0.39 1.27 0.81 23.6 
Lutjanus fulviflamma 0.76 0.08 0.38 0.83 0.81 24.41 
Coris caudimacula 0.66 1.04 0.38 1.1 0.8 25.21 
Plectroglyphidodon dickii 1.19 1.32 0.38 1.21 0.8 26.01 
Pomacanthus rhomboides 0.55 0.99 0.38 1.2 0.79 26.8 
Thalassoma hebraicum 1.55 2.16 0.37 1.3 0.78 27.59 
Priacanthus hamrur 0.75 0.1 0.37 0.93 0.78 28.36 
Paracaesio sordidus 0.57 0.26 0.37 0.75 0.77 29.13 
Lutjanus bohar 0.8 1.37 0.36 1.21 0.76 29.89 
Parupeneus macronema 0.95 0.85 0.36 1.2 0.76 30.65 
Chaetodon lunula 0.7 0.58 0.36 1.09 0.75 31.4 
Thalassoma lunare 0.54 0.67 0.35 1.17 0.74 32.15 
Zebrasoma scopas 0.73 0.96 0.35 1.18 0.73 32.88 
Plectorhinchus playfairi 0.72 0.1 0.35 1.42 0.73 33.61 
    Average dissimilarity = 47.72 

 
 

 SMR RS     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Nemanthias carberryi 2.59 0 1.21 2.69 2.41 2.41 
Odonus niger 2.57 1.18 0.77 1.59 1.53 3.94 
Mulloides vanicolensis 1.67 0.26 0.76 1.17 1.52 5.46 
Chromis weberi 2.66 1.54 0.73 1.46 1.46 6.92 
Pseudanthias squamipinnis 3.32 2.45 0.73 1.56 1.45 8.37 
Plectroglyphidodon dickii 0 1.32 0.62 1.98 1.23 9.6 
Pseudanthias cooperi 1.28 0 0.61 1.27 1.22 10.82 
Lutjanus kasmira 1.28 0.32 0.59 1.38 1.17 11.98 
Caesio xanthonota 0.76 1.05 0.58 0.99 1.16 13.14 
Priacanthus hamrur 1.27 0.1 0.58 1.55 1.15 14.29 
Plectroglyphidodon 0 1.19 0.57 2.92 1.13 15.42 
Paracaesio sordidus 0.98 0.26 0.52 1.69 1.03 16.45 
Pterocaesio tile 0.75 0.69 0.5 0.84 0.99 17.44 
Hemitaurichthys zoster 1.05 0.59 0.5 1.36 0.99 18.43 
Dascyllus trimaculatus 1.09 0.42 0.48 1.52 0.95 19.38 
Myripristis murdjan 1.21 0.55 0.48 1.28 0.95 20.33 
Chromis dimidiata 2.42 3.1 0.47 1.43 0.93 21.26 
Cephalopholis miniata 1.03 0.1 0.46 2.24 0.91 22.17 
Acanthurus thompsoni 0.81 1.02 0.45 1.24 0.89 23.06 
Halichoeres hortulanus 0.4 1.32 0.44 1.78 0.88 23.93 
Variola louti 0.52 1.4 0.43 1.4 0.86 24.8 
Lethrinus rubrioperculatus 0 0.9 0.43 1.28 0.86 25.65 
Epinephelus tukula 0.22 1.03 0.43 1.62 0.85 26.5 
Lethrinus crocineus 0 0.91 0.42 1.63 0.84 27.34 
Amphiprion allardi 1.17 0.4 0.42 1.48 0.84 28.18 
Thalassoma amblycephalum 1.82 1.54 0.42 1.09 0.83 29.01 
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Pomacentrus caeruleus 0.65 0.84 0.42 1.12 0.83 29.84 
Pervagor  janthinosoma 0.92 0.08 0.41 1.43 0.81 30.65 
Aulostomus chinensis 0.84 0 0.4 1.47 0.8 31.45 
Macolor niger 0.83 0.15 0.39 1.49 0.78 32.23 
Siganus sutor 0.86 0.11 0.39 1.36 0.78 33.01 
Chaetodon blackburnii 1.05 0.35 0.39 1.48 0.78 33.79 
   Average dissimilarity = 50.27 

 
 

 NMR RS     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Odonus niger 0.88 1.18 0.67 1.12 1.4 1.4 
Caesio xanthonota 0.94 1.05 0.65 1.08 1.35 2.75 
Chromis weberi 2.18 1.54 0.64 1.34 1.34 4.09 
Plectroglyphidodon dickii 0.17 1.32 0.61 1.78 1.27 5.36 
Pseudanthias squamipinnis 3.25 2.45 0.61 1.21 1.26 6.63 
Dascyllus trimaculatus 1.3 0.42 0.58 1.89 1.21 7.84 
Amphiprion allardi 1.45 0.4 0.58 1.71 1.2 9.04 
Ctenochaetus truncatus 0.42 1.43 0.57 1.59 1.2 10.23 
Plectroglyphidodon 0.17 1.19 0.54 2.08 1.14 11.37 
Thalassoma amblycephalum 1.63 1.54 0.5 1.18 1.05 12.42 
Pomacentrus caeruleus 0.82 0.84 0.49 1.15 1.02 13.44 
Lutjanus bohar 0.51 1.37 0.48 1.47 1.01 14.45 
Acanthurus thompsoni 0.52 1.02 0.48 1.17 1 15.45 
Abudefduf natalensis 0.95 0.2 0.48 0.94 0.99 16.44 
Hemitaurichthys zoster 0.87 0.59 0.47 1.3 0.98 17.42 
Apolemichthys trimaculatus 0.17 1.02 0.46 1.7 0.97 18.39 
Lethrinus rubrioperculatus 0 0.9 0.46 1.28 0.96 19.35 
Zebrasoma scopas 0.08 0.96 0.46 1.6 0.96 20.31 
Carangoides fulvoguttatus 0.85 0.1 0.45 1 0.94 21.25 
Caranx melampygus 0.44 1.07 0.44 1.48 0.91 22.16 
Chromis nigrura 2.26 2.75 0.44 1.09 0.91 23.08 
Lethrinus crocineus 0.08 0.91 0.43 1.55 0.9 23.98 
Pterocaesio tile 0.38 0.69 0.43 0.71 0.89 24.87 
Cirrhilabrus exquisitus 0.86 0.35 0.42 1.27 0.89 25.76 
Aprion virescens 0.18 0.87 0.41 1.29 0.87 26.62 
Variola louti 0.61 1.4 0.41 1.25 0.86 27.48 
Caesio caerulaureus 0.55 0.39 0.41 0.6 0.85 28.34 
Chromis dimidiata 2.59 3.1 0.4 1.3 0.83 29.17 
Centropyge acanthops 0.46 0.84 0.4 1.23 0.83 30 
Plectorhinchus playfairi 0.81 0.1 0.39 1.58 0.82 30.82 
Halichoeres cosmetus 1.17 0.63 0.38 1.38 0.8 31.61 
Sargocentron caudimaculatum 0.97 0.52 0.38 1.36 0.79 32.4 
Myripristis murdjan 0.72 0.55 0.37 1.1 0.78 33.18 
Paracaesio sordidus 0.55 0.26 0.37 0.82 0.77 33.95 
    Average dissimilarity = 47.88 

 
 
 

 LMS RS     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Chromis weberi 2.26 1.54 0.7 1.32 1.63 1.63 
Lutjanus gibbus 1.64 0.27 0.67 1.4 1.56 3.19 
Odonus niger 0.69 1.18 0.64 1.03 1.49 4.68 
Thalassoma amblycephalum 0.62 1.54 0.63 1.46 1.46 6.15 
Naso hexacanthus 1.27 0.52 0.57 1.27 1.33 7.48 
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Pseudanthias squamipinnis 2.94 2.45 0.53 1.24 1.25 8.72 
Caesio xanthonota 0.59 1.05 0.53 1.05 1.23 9.96 
Dascyllus trimaculatus 1.11 0.42 0.51 1.09 1.19 11.15 
Acanthurus thompsoni 0.84 1.02 0.49 1.21 1.14 12.29 
Pomacanthus rhomboides 1.37 0.99 0.43 1.35 1 13.29 
Hemitaurichthys zoster 0.73 0.59 0.42 0.98 0.99 14.28 
Ctenochaetus truncatus 1.49 1.43 0.41 1.37 0.97 15.25 
Chromis dimidiata 3.46 3.1 0.41 1.46 0.95 16.2 
Pomacentrus caeruleus 0.66 0.84 0.41 1.17 0.95 17.16 
Plectroglyphidodon dickii 1.06 1.32 0.41 1.28 0.95 18.11 
Coris caudimacula 0.58 1.04 0.4 1.23 0.93 19.04 
Acanthurus nigrofuscus 2.4 2.01 0.38 1.11 0.89 19.93 
Centropyge acanthops 1.31 0.84 0.38 1.21 0.88 20.81 
Lethrinus rubrioperculatus 0.94 0.9 0.36 1.28 0.85 21.66 
Lethrinus crocineus 1.4 0.91 0.36 1.22 0.83 22.49 
Cirrhilabrus exquisitus 0.74 0.35 0.34 1.1 0.8 23.29 
Chaetodon blackburnii 0.92 0.35 0.34 1.34 0.79 24.09 
Cirrhitichthys oxycephalus 0.88 0.96 0.34 1.18 0.78 24.87 
Zebrasoma scopas 0.51 0.96 0.33 1.22 0.78 25.64 
Acanthurus leucosternon 1.32 1.23 0.32 1.21 0.76 26.4 
Acanthurus dussumieri 0.86 0.57 0.32 1.2 0.75 27.15 
Plectroglyphidodon 0.65 1.19 0.31 1.19 0.73 27.88 
Halichoeres cosmetus 0.86 0.63 0.31 1.19 0.73 28.61 
Chaetodon vagabundus 0.75 0.28 0.31 1.26 0.72 29.34 
Anampses meleagrides 0.67 0.46 0.31 1.14 0.72 30.06 
Amphiprion allardi 0.61 0.4 0.3 1.01 0.71 30.77 
Bodianus axillaris 0.71 0.28 0.3 1.25 0.71 31.48 
Forcipiger flavissimus 1.01 1.03 0.3 1.09 0.71 32.18 
Pterocaesio tile 0 0.69 0.3 0.56 0.7 32.88 
Macolor niger 0.62 0.15 0.3 1.14 0.7 33.58 
    Average dissimilarity = 42.85 

 
 
 

 RR RS     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Caesio xanthonota 2.38 1.05 0.84 1.39 1.81 1.81 
Odonus niger 1.63 1.18 0.7 1.3 1.52 3.33 
Plectroglyphidodon dickii 0.38 1.32 0.5 1.54 1.08 4.41 
Chromis weberi 1.93 1.54 0.49 1.31 1.07 5.48 
Thalassoma amblycephalum 1.16 1.54 0.48 1.3 1.04 6.52 
Plectroglyphidodon 0.27 1.19 0.46 1.82 1 7.51 
Pseudanthias squamipinnis 2.1 2.45 0.46 1.04 0.99 8.5 
Lutjanus kasmira 0.85 0.32 0.45 0.67 0.98 9.48 
Naso unicornis 1.19 0.47 0.45 1.31 0.98 10.47 
Lutjanus gibbus 1.01 0.27 0.44 1.16 0.96 11.42 
Acanthurus thompsoni 1.09 1.02 0.43 1.26 0.94 12.36 
Hemitaurichthys zoster 0.8 0.59 0.43 1.13 0.92 13.29 
Parapriacanthus ransonneti 0.94 0 0.43 0.55 0.92 14.21 
Amphiprion allardi 1.09 0.4 0.42 1.37 0.91 15.12 
Chromis dimidiata 2.9 3.1 0.42 1.25 0.91 16.03 
Lethrinus rubrioperculatus 0.12 0.9 0.42 1.28 0.9 16.93 
Pomacanthus rhomboides 1.46 0.99 0.41 1.32 0.89 17.82 
Pomacentrus caeruleus 0.36 0.84 0.41 0.99 0.88 18.7 
Acanthurus mata 0.78 0.17 0.4 0.75 0.87 19.57 
Sargocentron diadema 1 0.28 0.39 1.53 0.85 20.42 
Plectorhinchus playfairi 0.88 0.1 0.39 1.54 0.85 21.27 
Centropyge acanthops 0.61 0.84 0.39 1.15 0.84 22.11 
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Acanthurus leucosternon 0.84 1.23 0.39 1.22 0.83 22.94 
Labroides bicolor 0.94 0.18 0.39 1.69 0.83 23.78 
Coris caudimacula 0.61 1.04 0.39 1.21 0.83 24.61 
Caesio caerulaureus 0.54 0.39 0.38 0.52 0.82 25.43 
Chromis nigrura 2.67 2.75 0.37 1.46 0.79 26.22 
Acanthurus dussumieri 0.93 0.57 0.36 1.23 0.78 27.01 
Paracirrhites arcatus 0.35 1.02 0.36 1.45 0.78 27.78 
Myripristis murdjan 0.8 0.55 0.36 1.14 0.78 28.56 
Anampses caeruleopunctatus 0.65 0.99 0.35 1.2 0.76 29.32 
Caranx melampygus 1.17 1.07 0.35 1.17 0.76 30.08 
Apolemichthys trimaculatus 0.49 1.02 0.35 1.27 0.76 30.84 
Parupeneus cyclostomus 0.95 0.64 0.35 1.29 0.76 31.6 
Dascyllus trimaculatus 0.61 0.42 0.34 1.08 0.74 32.34 
Plagiotremus tapeinosoma 0.6 0.59 0.34 1.12 0.74 33.09 
Zebrasoma scopas 0.79 0.96 0.34 1.22 0.74 33.83 
    Average dissimilarity = 46.21 

 
 

 TMR SM     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Pseudanthias squamipinnis 2.88 0.91 1.08 1.8 2 2 
Chromis nigrura 2.23 0.63 0.93 1.53 1.72 3.72 
Chromis weberi 3.07 2.07 0.64 1.38 1.19 4.91 
Odonus niger 0.52 1.26 0.64 1.26 1.18 6.09 
Parapriacanthus ransonneti 0.23 1.12 0.63 0.59 1.17 7.26 
Lutjanus kasmira 1.2 0.1 0.61 0.98 1.13 8.39 
Ptereleotris evides 0 1.13 0.61 1.24 1.13 9.52 
Cirrhilabrus exquisitus 0.1 1.14 0.6 1.23 1.1 10.62 
Thalassoma amblycephalum 1.15 0.45 0.57 1.26 1.06 11.68 

Pomacentrus caeruleus 0.42 1.26 0.55 1.39 1.02 12.7 
Caesio xanthonota 1.09 0.63 0.54 1.21 1.01 13.71 
Chromis dimidiata 2.89 2.63 0.53 1.24 0.99 14.7 
Plectroglyphidodon dickii 1.19 0.32 0.53 1.42 0.99 15.69 
Mulloides vanicolensis 1.01 0 0.51 0.88 0.94 16.63 
Naso brevirostris 0 0.97 0.5 1.12 0.93 17.56 
Dascyllus trimaculatus 0.85 1.21 0.48 1.21 0.88 18.44 
Myripristis murdjan 0.97 0.38 0.46 1.3 0.84 19.29 
Naso hexacanthus 0.16 0.83 0.45 0.82 0.83 20.12 
Parupeneus macronema 0.95 1.71 0.45 1.25 0.83 20.95 
Oplegnathus robinsoni 0.87 0.13 0.44 1.69 0.82 21.77 
Ctenochaetus binotatus 0.42 0.91 0.43 1.52 0.8 22.58 
Priacanthus hamrur 0.75 0.73 0.43 1.22 0.8 23.38 
Ctenochaetus truncatus 1.11 1.1 0.43 1.29 0.79 24.17 
Amphiprion allardi 0.5 1.06 0.43 1.26 0.79 24.96 
Acanthurus thompsoni 0.78 0.38 0.42 1.02 0.78 25.75 
Plagiotremus tapeinosoma 0.3 0.91 0.42 1.31 0.78 26.53 
Lutjanus fulviflamma 0.76 0 0.4 0.78 0.74 27.27 
Paracirrhites arcatus 0.91 0.42 0.4 1.27 0.74 28 
Acanthurus leucosternon 1.31 0.8 0.39 1.19 0.72 28.73 
Siganus sutor 0.28 0.7 0.39 1.2 0.72 29.44 
Thalassoma lunare 0.54 0.71 0.38 1.2 0.71 30.15 
Pervagor  janthinosoma 0.42 1.02 0.38 1.32 0.71 30.86 
Centropyge acanthops 0.51 0.67 0.38 1.1 0.7 31.57 
Chaetodon lunula 0.7 0.32 0.38 1.02 0.7 32.27 
Lutjanus bohar 0.8 0.22 0.38 1.32 0.7 32.97 
Caranx melampygus 0.7 0.26 0.38 1.02 0.7 33.67 
    Average dissimilarity = 54.03 
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 SMR SM     

Species Average 
abundance 

Average 
abundance 

Average 
diissimilarity 

Diss/SD Percent 
contribution 

Cumulative 
percent 

Pseudanthias squamipinnis 3.32 0.91 1.32 2.05 2.46 2.46 
Nemanthias carberryi 2.59 0 1.28 2.68 2.38 4.84 
Chromis nigrura 2.39 0.63 0.89 2.14 1.65 6.5 
Mulloides vanicolensis 1.67 0 0.8 1.17 1.49 7.99 
Thalassoma amblycephalum 1.82 0.45 0.74 1.88 1.39 9.38 
Odonus niger 2.57 1.26 0.7 1.47 1.3 10.68 
Pseudanthias cooperi 1.28 0 0.65 1.26 1.21 11.88 
Chromis weberi 2.66 2.07 0.63 1.41 1.17 13.06 
Lutjanus kasmira 1.28 0.1 0.61 1.4 1.14 14.19 
Myripristis murdjan 1.21 0.38 0.54 1.39 1 15.19 
Parapriacanthus ransonneti 0 1.12 0.52 0.5 0.96 16.15 
Ptereleotris evides 0.37 1.13 0.51 1.18 0.96 17.11 
Cirrhilabrus exquisitus 0.75 1.14 0.51 1.25 0.95 18.07 
Caesio xanthonota 0.76 0.63 0.51 1 0.94 19.01 
Paracaesio sordidus 0.98 0 0.5 1.73 0.93 19.94 
Naso brevirostris 0 0.97 0.47 1.13 0.88 20.82 
Chromis dimidiata 2.42 2.63 0.47 1.4 0.87 21.69 
Caranx melampygus 1.04 0.26 0.47 1.35 0.87 22.56 
Pomacentrus caeruleus 0.65 1.26 0.46 1.3 0.85 23.42 
Priacanthus hamrur 1.27 0.73 0.45 1.3 0.83 24.25 
Acanthurus leucosternon 1.66 0.8 0.44 1.43 0.83 25.08 
Naso hexacanthus 0.21 0.83 0.44 0.83 0.83 25.9 
Paracirrhites arcatus 1.26 0.42 0.44 1.49 0.81 26.71 
Lutjanus bohar 0.98 0.22 0.44 1.53 0.81 27.52 
Cephalopholis miniata 1.03 0.22 0.43 1.8 0.81 28.33 
Hemitaurichthys zoster 1.05 0.58 0.43 1.28 0.81 29.14 
Chaetodon blackburnii 1.05 0.3 0.43 1.52 0.8 29.94 
Dascyllus trimaculatus 1.09 1.21 0.42 1.25 0.79 30.73 
Halichoeres hortulanus 0.4 1.22 0.41 1.53 0.77 31.5 
Lutjanus lutjanus 0.86 0 0.41 0.91 0.76 32.26 
Parupeneus macronema 0.94 1.71 0.4 1.21 0.74 33 
Bodianus diana 1.21 0.56 0.4 1.33 0.74 33.74 
    Average dissimilarity = 53.74 

 
 

 NMR SM     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Pseudanthias squamipinnis 3.25 0.91 1.27 1.88 2.41 2.41 
Chromis nigrura 2.26 0.63 0.94 1.91 1.78 4.19 
Thalassoma amblycephalum 1.63 0.45 0.74 1.53 1.39 5.58 
Odonus niger 0.88 1.26 0.67 1.27 1.26 6.84 
Parapriacanthus ransonneti 0.26 1.12 0.64 0.57 1.21 8.05 
Chromis weberi 2.18 2.07 0.6 1.39 1.13 9.19 
Pomacanthus rhomboides 1.19 0.13 0.6 2.21 1.13 10.32 
Ptereleotris evides 0.39 1.13 0.57 1.21 1.09 11.4 
Caesio xanthonota 0.94 0.63 0.57 1.05 1.08 12.48 
Naso brevirostris 0 0.97 0.51 1.13 0.96 13.44 
Pomacentrus caeruleus 0.82 1.26 0.51 1.28 0.96 14.4 
Cirrhilabrus exquisitus 0.86 1.14 0.5 1.28 0.94 15.35 
Ctenochaetus truncatus 0.42 1.1 0.49 1.41 0.92 16.27 
Sargocentron caudimaculatum 0.97 0.1 0.48 1.82 0.92 17.18 
Pervagor  janthinosoma 0.17 1.02 0.48 1.87 0.91 18.09 
Abudefduf natalensis 0.95 0 0.48 0.9 0.9 19 
Carangoides fulvoguttatus 0.85 0.15 0.48 0.99 0.9 19.9 
Bodianus diana 1.39 0.56 0.47 1.41 0.88 20.79 
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Chromis dimidiata 2.59 2.63 0.46 1.51 0.87 21.66 
Naso hexacanthus 0.08 0.83 0.45 0.82 0.85 22.51 
Acanthurus dussumieri 0.89 0.25 0.44 1.46 0.83 23.34 
Dascyllus trimaculatus 1.3 1.21 0.42 1.31 0.8 24.14 
Parupeneus macronema 0.98 1.71 0.41 1.17 0.77 24.9 
Plagiotremus tapeinosoma 0.75 0.91 0.4 1.25 0.76 25.66 
Halichoeres cosmetus 1.17 0.66 0.4 1.26 0.76 26.42 
Paracirrhites arcatus 1.01 0.42 0.4 1.33 0.75 27.17 
Sphyraena jello 0.21 0.63 0.4 0.57 0.75 27.92 
Myripristis murdjan 0.72 0.38 0.4 1.11 0.75 28.68 
Epinephelus tukula 0.74 0 0.4 1.37 0.75 29.42 
Ctenochaetus binotatus 0.5 0.91 0.39 1.31 0.74 30.17 
Forcipiger flavissimus 1.26 0.65 0.39 1.21 0.74 30.91 
Chaetodon blackburnii 0.87 0.3 0.39 1.29 0.74 31.66 
Nemateleotris magnifica 0.63 0.58 0.39 1.16 0.74 32.39 
Hemitaurichthys zoster 0.87 0.58 0.39 1.22 0.74 33.13 
Priacanthus hamrur 0.39 0.73 0.38 1.13 0.72 33.85 
    Average dissimilarity = 52.82 

 
 
 

 RR SM     

Species Average 
abundance 

Average 
abundance 

Average 
diissimilarity 

Diss/SD Percent 
contribution 

Cumulative 
percent 

Chromis nigrura 2.67 0.63 1.03 1.99 1.91 1.91 
Caesio xanthonota 2.38 0.63 0.97 1.75 1.8 3.71 
Parapriacanthus ransonneti 0.94 1.12 0.8 0.74 1.48 5.19 
Pseudanthias squamipinnis 2.1 0.91 0.72 1.4 1.34 6.53 
Lutjanus bohar 1.62 0.22 0.71 2.21 1.32 7.85 
Pomacanthus rhomboides 1.46 0.13 0.68 1.79 1.27 9.12 
Odonus niger 1.63 1.26 0.68 1.38 1.26 10.37 
Aprion virescens 1.28 0.1 0.59 2.12 1.1 11.48 
Ptereleotris evides 0 1.13 0.57 1.26 1.05 12.53 
Naso unicornis 1.19 0.2 0.54 1.45 1 13.54 
Pomacentrus caeruleus 0.36 1.26 0.53 1.42 0.98 14.52 
Caranx melampygus 1.17 0.26 0.52 1.36 0.96 15.48 
Epinephelus tukula 1.04 0 0.51 3.06 0.95 16.44 
Cirrhilabrus exquisitus 0.57 1.14 0.5 1.21 0.92 17.36 
Chromis dimidiata 2.9 2.63 0.49 1.16 0.91 18.27 
Lutjanus gibbus 1.01 0.1 0.49 1.16 0.91 19.19 
Dascyllus trimaculatus 0.61 1.21 0.48 1.43 0.89 20.08 
Thalassoma amblycephalum 1.16 0.45 0.47 1.36 0.88 20.96 
Sphyraena jello 0.54 0.63 0.47 0.73 0.88 21.84 
Acanthurus mata 0.78 0.42 0.47 0.83 0.87 22.71 
Naso brevirostris 0 0.97 0.47 1.13 0.87 23.58 
Acanthurus thompsoni 1.09 0.38 0.47 1.37 0.87 24.45 
Chromis weberi 1.93 2.07 0.46 1.39 0.86 25.31 
Plectorhinchus flavomaculatus 0.98 0.1 0.45 1.67 0.84 26.15 
Acanthurus dussumieri 0.93 0.25 0.43 1.26 0.81 26.96 
Naso hexacanthus 0.24 0.83 0.43 0.86 0.8 27.76 
Lutjanus kasmira 0.85 0.1 0.43 0.61 0.79 28.55 
Plagiotremus tapeinosoma 0.6 0.91 0.4 1.29 0.75 29.3 
Pomacanthus imperator 1.13 0.42 0.4 1.36 0.75 30.05 
Oplegnathus robinsoni 0.83 0.13 0.39 1.31 0.73 30.78 
Myripristis murdjan 0.8 0.38 0.39 1.18 0.73 31.51 
Plectorhinchus playfairi 0.88 0.2 0.39 1.43 0.72 32.22 
Centropyge acanthops 0.61 0.67 0.38 1.1 0.71 32.93 
Ctenochaetus binotatus 0.25 0.91 0.38 1.44 0.7 33.64 
   Average dissimilarity = 53.77  
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 LMS SM     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Pseudanthias squamipinnis 2.94 0.91 1.04 1.7 1.97 1.97 
Chromis nigrura 2.69 0.63 1.02 2.69 1.93 3.89 
Lutjanus gibbus 1.64 0.1 0.76 1.53 1.44 5.34 
Lethrinus crocineus 1.4 0 0.7 2.26 1.32 6.66 
Odonus niger 0.69 1.26 0.68 1.32 1.29 7.95 
Lutjanus bohar 1.59 0.22 0.67 2.63 1.27 9.22 
Chromis weberi 2.26 2.07 0.66 1.36 1.25 10.47 
Parapriacanthus ransonneti 0.46 1.12 0.64 0.61 1.22 11.69 
Pomacanthus rhomboides 1.37 0.13 0.63 1.53 1.18 12.87 
Naso hexacanthus 1.27 0.83 0.62 1.13 1.17 14.04 
Aprion virescens 1.33 0.1 0.6 3.41 1.14 15.18 
Chromis dimidiata 3.46 2.63 0.58 1.33 1.1 16.28 
Dascyllus trimaculatus 1.11 1.21 0.54 1.38 1.03 17.31 
Ptereleotris evides 0.3 1.13 0.51 1.22 0.97 18.28 
Oplegnathus robinsoni 1.12 0.13 0.51 1.63 0.97 19.25 
Caranx melampygus 1.17 0.26 0.49 1.8 0.93 20.18 
Lethrinus rubrioperculatus 0.94 0 0.47 1.3 0.89 21.07 
Epinephelus tukula 0.94 0 0.46 1.8 0.88 21.95 
Plectroglyphidodon dickii 1.06 0.32 0.46 1.25 0.87 22.82 
Naso brevirostris 0.31 0.97 0.46 1.15 0.86 23.68 
Ctenochaetus truncatus 1.49 1.1 0.45 1.2 0.85 24.53 
Pomacentrus caeruleus 0.66 1.26 0.45 1.38 0.85 25.37 
Cirrhilabrus exquisitus 0.74 1.14 0.45 1.2 0.85 26.22 
Centropyge acanthops 1.31 0.67 0.43 1.31 0.82 27.04 
Acanthurus thompsoni 0.84 0.38 0.43 1.03 0.81 27.85 
Macropharyngodon bipartitus 0 0.84 0.41 1.91 0.78 28.63 
Caesio xanthonota 0.59 0.63 0.41 1.02 0.78 29.41 
Apolemichthys trimaculatus 1.04 0.3 0.4 1.48 0.76 30.17 
Hemitaurichthys zoster 0.73 0.58 0.4 1.1 0.76 30.93 
Acanthurus tennenti 1.92 1.2 0.39 1.31 0.74 31.67 
Amphiprion allardi 0.61 1.06 0.39 1.26 0.74 32.41 
Acanthurus dussumieri 0.86 0.25 0.39 1.3 0.73 33.14 
Coris caudimacula 0.58 1.14 0.39 1.4 0.73 33.87 
    Average dissimilarity = 52.88 

 
 

 RS SM     

Species 
Average 

abundance 
Average 

abundance 
Average 

diissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Chromis nigrura 2.75 0.63 1.15 2.21 2.18 2.18 
Pseudanthias squamipinnis 2.45 0.91 0.94 1.44 1.79 3.96 
Odonus niger 1.18 1.26 0.71 1.33 1.34 5.3 
Thalassoma amblycephalum 1.54 0.45 0.7 1.54 1.33 6.63 
Lutjanus bohar 1.37 0.22 0.63 2.12 1.19 7.83 
Caesio xanthonota 1.05 0.63 0.61 1.13 1.15 8.98 
Dascyllus trimaculatus 0.42 1.21 0.6 1.35 1.14 10.12 
Chromis weberi 1.54 2.07 0.6 1.29 1.13 11.25 
Plectroglyphidodon dickii 1.32 0.32 0.58 1.64 1.1 12.35 
Cirrhilabrus exquisitus 0.35 1.14 0.56 1.23 1.07 13.42 
Ptereleotris evides 0.5 1.13 0.55 1.21 1.05 14.46 
Parapriacanthus ransonneti 0 1.12 0.55 0.5 1.04 15.5 
Epinephelus tukula 1.03 0 0.55 2.11 1.03 16.53 
Pomacentrus caeruleus 0.84 1.26 0.53 1.33 1.01 17.54 
Acanthurus thompsoni 1.02 0.38 0.51 1.13 0.96 18.5 
Chromis dimidiata 3.1 2.63 0.51 1.23 0.96 19.46 
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Pervagor  janthinosoma 0.08 1.02 0.5 2.23 0.95 20.41 
Naso brevirostris 0 0.97 0.5 1.13 0.95 21.36 
Pomacanthus rhomboides 0.99 0.13 0.5 1.45 0.94 22.31 
Naso hexacanthus 0.52 0.83 0.5 1.06 0.94 23.24 
Caranx melampygus 1.07 0.26 0.49 1.63 0.93 24.17 
Lethrinus rubrioperculatus 0.9 0 0.48 1.28 0.92 25.09 
Oplegnathus robinsoni 0.97 0.13 0.48 2.43 0.91 26 
Lethrinus crocineus 0.91 0 0.47 1.64 0.9 26.9 
Parupeneus macronema 0.85 1.71 0.47 1.29 0.89 27.79 
Bodianus bilunulatus 1.22 0.4 0.47 1.54 0.89 28.67 
Plectroglyphidodon 1.19 0.42 0.46 1.5 0.87 29.55 
Amphiprion allardi 0.4 1.06 0.45 1.37 0.86 30.4 
Aprion virescens 0.87 0.1 0.44 1.33 0.84 31.25 
Apolemichthys trimaculatus 1.02 0.3 0.44 1.5 0.83 32.08 
Hemitaurichthys zoster 0.59 0.58 0.42 1.03 0.8 32.88 
Ctenochaetus binotatus 0.31 0.91 0.42 1.53 0.8 33.67 
    Average dissimilarity = 52.83 
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Appendix 3 

SIMPER results for percent contribution of each species to overall dissimilarity between reefs 
protection status. Cumulative cut-off to exclude species with low contributions was 33%. Species in 
bold are considered potentially good discriminating species according to criteria discussed in Clarke 
and Warwick (2001). 
 
 Protected Open                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution  

Cumulative 
precent 

Pseudanthias squamipinnis 3.16 0.91 1.23 1.89 2.3 2.3 
Chromis nigrura 2.29 0.63 0.92 1.81 1.72 4.02 
Thalassoma amblycephalum 1.54 0.45 0.69 1.52 1.28 5.3 
Odonus niger 1.29 1.26 0.67 1.33 1.25 6.55 
Chromis weberi 2.61 2.07 0.62 1.4 1.16 7.72 
Parapriacanthus ransonneti 0.17 1.12 0.6 0.56 1.12 8.83 
Ptereleotris evides 0.26 1.13 0.57 1.21 1.06 9.89 
Nemanthias carberryi 1.11 0 0.55 0.76 1.03 10.92 
Caesio xanthonota 0.93 0.63 0.54 1.08 1.01 11.94 
Cirrhilabrus exquisitus 0.59 1.14 0.53 1.24 1 12.93 
Pomacentrus caeruleus 0.64 1.26 0.51 1.32 0.95 13.88 
Naso brevirostris 0 0.97 0.5 1.13 0.93 14.81 
Chromis dimidiata 2.63 2.63 0.49 1.36 0.91 15.72 
Mulloides vanicolensis 0.93 0 0.46 0.76 0.86 16.58 
Myripristis murdjan 0.95 0.38 0.46 1.25 0.86 17.43 
Naso hexacanthus 0.15 0.83 0.45 0.82 0.84 18.27 
Dascyllus trimaculatus 1.09 1.21 0.44 1.25 0.82 19.09 
Pomacanthus rhomboides 0.88 0.13 0.44 1.5 0.82 19.91 
Ctenochaetus truncatus 0.79 1.1 0.43 1.28 0.79 20.7 
Lutjanus kasmira 0.82 0.1 0.42 0.83 0.79 21.5 
Priacanthus hamrur 0.78 0.73 0.42 1.21 0.78 22.28 
Parupeneus macronema 0.96 1.71 0.42 1.21 0.78 23.06 
Bodianus diana 1.2 0.56 0.41 1.32 0.77 23.83 
Paracirrhites arcatus 1.06 0.42 0.41 1.36 0.77 24.6 
Ctenochaetus binotatus 0.44 0.91 0.41 1.43 0.76 25.36 
Plagiotremus tapeinosoma 0.52 0.91 0.4 1.28 0.75 26.11 
Pervagor  janthinosoma 0.48 1.02 0.39 1.4 0.73 26.84 
Chaetodon blackburnii 0.85 0.3 0.38 1.29 0.71 27.55 
Hemitaurichthys zoster 0.75 0.58 0.38 1.17 0.71 28.25 
Acanthurus thompsoni 0.69 0.38 0.38 1.03 0.7 28.96 
Acanthurus leucosternon 1.3 0.8 0.37 1.19 0.7 29.66 
Sphyraena jello 0.15 0.63 0.37 0.57 0.7 30.35 
Caranx melampygus 0.71 0.26 0.37 1.03 0.69 31.05 
Centropyge acanthops 0.59 0.67 0.37 1.15 0.69 31.74 
Forcipiger flavissimus 1.07 0.65 0.37 1.2 0.69 32.43 
Bodianus axillaris 0.26 0.85 0.37 1.39 0.69 33.12 
Lutjanus bohar 0.75 0.22 0.36 1.2 0.68 33.8 

   Average dissimilarity = 53.49 
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 Sanctuary Open                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution  

Cumulative 
percent 

Chromis nigrura 2.7 0.63 1.07 2.2 2.01 2.01 
Pseudanthias squamipinnis 2.46 0.91 0.89 1.46 1.67 3.68 
Odonus niger 1.21 1.26 0.69 1.35 1.3 4.98 
Caesio xanthonota 1.41 0.63 0.69 1.23 1.29 6.27 
Lutjanus bohar 1.52 0.22 0.67 2.26 1.26 7.53 
Parapriacanthus ransonneti 0.47 1.12 0.66 0.61 1.25 8.77 
Pomacanthus rhomboides 1.26 0.13 0.6 1.57 1.13 9.9 
Chromis weberi 1.88 2.07 0.57 1.31 1.07 10.97 
Ptereleotris evides 0.26 1.13 0.55 1.23 1.03 12 
Aprion virescens 1.15 0.1 0.54 1.88 1.02 13.02 
Dascyllus trimaculatus 0.68 1.21 0.54 1.37 1.02 14.04 
Thalassoma amblycephalum 1.15 0.45 0.53 1.25 1 15.04 
Chromis dimidiata 3.12 2.63 0.52 1.23 0.98 16.02 
Epinephelus tukula 1.01 0 0.51 2.21 0.96 16.98 
Cirrhilabrus exquisitus 0.54 1.14 0.51 1.21 0.96 17.93 
Pomacentrus caeruleus 0.62 1.26 0.51 1.37 0.95 18.89 
Naso hexacanthus 0.63 0.83 0.5 1 0.95 19.84 
Caranx melampygus 1.13 0.26 0.5 1.54 0.94 20.78 
Naso brevirostris 0.09 0.97 0.48 1.14 0.9 21.67 
Lethrinus crocineus 0.94 0 0.48 1.47 0.9 22.57 
Acanthurus thompsoni 1 0.38 0.47 1.17 0.89 23.46 
Oplegnathus robinsoni 0.96 0.13 0.46 1.66 0.86 24.32 
Lutjanus gibbus 0.91 0.1 0.45 0.97 0.84 25.16 
Plectroglyphidodon dickii 0.9 0.32 0.42 1.18 0.8 25.95 
Centropyge acanthops 0.89 0.67 0.41 1.17 0.77 26.72 
Bodianus bilunulatus 1.08 0.4 0.4 1.42 0.75 27.48 
Pervagor  janthinosoma 0.33 1.02 0.4 1.55 0.75 28.23 
Hemitaurichthys zoster 0.7 0.58 0.4 1.08 0.75 28.98 
Sphyraena jello 0.23 0.63 0.39 0.6 0.73 29.7 
Parupeneus macronema 1.03 1.71 0.39 1.16 0.73 30.43 
Plagiotremus tapeinosoma 0.56 0.91 0.38 1.28 0.72 31.15 
Amphiprion allardi 0.71 1.06 0.38 1.22 0.72 31.87 
Acanthurus leucosternon 1.11 0.8 0.38 1.25 0.71 32.59 
Forcipiger flavissimus 1.07 0.65 0.38 1.21 0.71 33.3 

    Average dissimilarity = 53.18 
 
 
 Protected Sanctuary                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
Contribution 

Cumulative 
percent 

Odonus niger 1.29 1.21 0.67 1.21 1.36 1.36 
Caesio xanthonota 0.93 1.41 0.67 1.18 1.36 2.72 
Chromis weberi 2.61 1.88 0.63 1.29 1.29 4.01 
Pseudanthias squamipinnis 3.16 2.46 0.56 1.34 1.15 5.16 
Thalassoma amblycephalum 1.54 1.15 0.51 1.26 1.05 6.21 
Nemanthias carberryi 1.11 0 0.5 0.76 1.02 7.23 
Chromis dimidiata 2.63 3.12 0.47 1.4 0.96 8.19 
Aprion virescens 0.22 1.15 0.47 1.67 0.95 9.14 
Lutjanus kasmira 0.82 0.43 0.47 0.85 0.95 10.1 
Dascyllus trimaculatus 1.09 0.68 0.45 1.41 0.92 11.02 
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Mulloides vanicolensis 0.93 0.18 0.45 0.82 0.91 11.93 
Acanthurus thompsoni 0.69 1 0.44 1.21 0.9 12.82 
Ctenochaetus truncatus 0.79 1.26 0.43 1.24 0.88 13.7 
Lutjanus gibbus 0.54 0.91 0.43 1.04 0.87 14.57 
Lethrinus crocineus 0.1 0.94 0.43 1.4 0.87 15.44 
Plectroglyphidodon dickii 0.43 0.9 0.42 1.19 0.85 16.29 
Lutjanus bohar 0.75 1.52 0.41 1.34 0.85 17.14 
Chromis nigrura 2.29 2.7 0.41 1.14 0.84 17.97 
Hemitaurichthys zoster 0.75 0.7 0.4 1.16 0.83 18.8 
Myripristis murdjan 0.95 0.57 0.4 1.21 0.83 19.63 
Caranx melampygus 0.71 1.13 0.4 1.3 0.82 20.45 
Pomacanthus rhomboides 0.88 1.26 0.39 1.32 0.79 21.24 
Pomacentrus caeruleus 0.64 0.62 0.38 1.05 0.78 22.02 
Centropyge acanthops 0.59 0.89 0.37 1.22 0.76 22.78 
Amphiprion allardi 1.07 0.71 0.37 1.17 0.76 23.55 
Paracaesio sordidus 0.69 0.29 0.37 1 0.76 24.31 
Priacanthus hamrur 0.78 0.15 0.37 1 0.75 25.05 
Abudefduf natalensis 0.7 0.3 0.36 0.84 0.74 25.8 
Epinephelus tukula 0.38 1.01 0.36 1.38 0.74 26.54 
Cirrhilabrus exquisitus 0.59 0.54 0.35 1.07 0.71 27.25 
Acanthurus tennenti 1.13 1.65 0.34 1.22 0.69 27.94 
Naso unicornis 0.35 0.7 0.34 1.04 0.69 28.62 
Zebrasoma scopas 0.47 0.77 0.33 1.17 0.68 29.31 
Variola louti 0.64 1.32 0.33 1.18 0.68 29.99 
Coris caudimacula 0.72 0.76 0.33 1.15 0.68 30.67 
Acanthurus dussumieri 0.5 0.78 0.33 1.15 0.68 31.35 
Acanthurus leucosternon 1.3 1.11 0.33 1.18 0.67 32.02 
Caesio caerulaureus 0.45 0.34 0.32 0.55 0.66 32.68 
Carangoides fulvoguttatus 0.44 0.36 0.32 0.7 0.66 33.34 

    Average dissimilarity = 48.91 
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Appendix 4  

Results of SIMPER analysis on the abundance of Fish-index species for Sanctuary, Diving, Diving 
& Fishing and Open zones.  
 

 Diving 
Diving -
Fishing                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution  

Cumulative 
percent 

Odonus niger 2.01 4.11 3.6 1.18 8.16 8.16 

Caranx melampygus 3.34 3.18 3.21 1.14 7.26 15.43 

Variola louti 3.09 2.74 3.05 1.14 6.92 22.34 

Pomacanthus imperator 4.03 2.55 3.05 1.17 6.91 29.25 

Oplegnathus robinsoni 2.92 2.3 2.79 1.08 6.32 35.57 

Epinephelus tukula 0.72 2.85 2.75 0.74 6.23 41.8 

Lutjanus bohar 1.92 2.66 2.75 1.09 6.23 48.03 

Balistoides conspicillum 0.65 2.44 2.26 1.1 5.12 53.15 

Bodianus diana 2.56 2.08 2.09 1.28 4.74 57.89 

Chaetodon meyeri 2.33 1.39 1.97 1.19 4.47 62.36 

Amphiprion allardi 0.22 2.2 1.94 1.58 4.39 66.75 

Acanthurus leucosternon 4.07 4.35 1.87 1.26 4.24 70.99 

Forcipiger flavissimus 1.49 2.1 1.71 1.28 3.88 74.87 

Aprion virescens 1.58 0.61 1.66 0.74 3.76 78.63 

Siganus sutor 0.95 1.13 1.49 0.65 3.37 82 

Chaetodon madagaskariensis 2.81 2.92 1.41 1.06 3.19 85.19 

Zebrasoma desjardini 1.05 0.48 1.37 0.6 3.11 88.3 

Labroides dimidiatus 2.34 2.92 1.05 1.07 2.37 90.68 

    Average dissimilarity = 44.13 
 

 Diving Sanctuary                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Epinephelus tukula 0.72 6.41 4.64 1.4 10.32 10.32 
Lutjanus bohar 1.92 7.08 4.43 1.71 9.84 20.16 
Aprion virescens 1.58 5.82 3.77 1.53 8.37 28.53 
Variola louti 3.09 6.04 3.24 1.25 7.19 35.72 
Caranx melampygus 3.34 5.52 3.14 1.25 6.97 42.69 
Oplegnathus robinsoni 2.92 4.45 2.84 1.21 6.31 49.01 
Odonus niger 2.01 2.83 2.65 0.94 5.88 54.89 
Pomacanthus imperator 4.03 3.26 2.45 1.06 5.44 60.33 
Acanthurus leucosternon 4.07 3.41 1.96 1.07 4.34 64.67 
Bodianus diana 2.56 2.81 1.68 1.22 3.74 68.41 
Balistoides conspicillum 0.65 1.94 1.65 0.81 3.67 72.08 
Chaetodon meyeri 2.33 3.72 1.64 1.2 3.65 75.73 
Forcipiger flavissimus 1.49 2.27 1.55 1.25 3.44 79.17 
Scarus rubroviolaceus m 7.68 6.41 1.47 0.67 3.26 82.44 
Siganus sutor 0.95 0.89 1.16 0.62 2.57 85.01 
Chaetodon madagaskariensis 2.81 2.65 1.14 1.05 2.54 87.54 
Zebrasoma gemmatum 1.05 0.31 1.09 0.55 2.42 89.96 
Chaetodon trifascialis 1.11 0.4 0.96 0.76 2.12 92.09 

    Average dissimilarity = 45.01 
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 Diving Open                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Odonus niger 2.01 4.24 4.02 1.16 8.39 8.39 
Pomacanthus imperator 4.03 1.14 3.73 1.26 7.77 16.16 
Caranx melampygus 3.34 1.19 3.47 1.01 7.23 23.39 
Variola louti 3.09 2.51 3.46 1.01 7.22 30.61 
Oplegnathus robinsoni 2.92 0.69 3.02 1.05 6.29 36.9 
Acanthurus leucosternon 4.07 2.39 2.7 1.25 5.63 42.53 
Chaetodon meyeri 2.33 2.29 2.38 1.21 4.97 47.49 
Lutjanus bohar 1.92 1.36 2.36 0.87 4.92 52.42 
Scarus rubroviolaceus m 7.68 6.27 2.17 0.63 4.53 56.95 
Siganus sutor 0.95 1.77 2.15 0.75 4.48 61.43 
Bodianus diana 2.56 2.28 2.14 1.22 4.46 65.89 
Forcipiger flavissimus 1.49 1.75 1.94 1.14 4.04 69.92 
Chaetodon trifascialis 1.11 1.56 1.81 0.94 3.77 73.7 
Balistoides conspicillum 0.65 1.24 1.68 0.62 3.51 77.21 
Aprion virescens 1.58 0 1.64 0.64 3.43 80.64 
Chaetodon madagaskariensis 2.81 2.99 1.6 0.97 3.34 83.98 
Amphiprion allardi 0.22 1.47 1.38 1.01 2.87 86.85 
Zebrasoma gemmatum 1.05 0 1.36 0.48 2.84 89.69 
Labroides dimidiatus 2.34 2.63 1.12 1 2.34 92.03 
    Average dissimilarity = 47.95 
 
 

 
Diving & 
fishing 

Sanctuary 
                               

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Aprion virescens 0.61 5.82 4.16 1.78 9.42 9.42 
Epinephelus tukula 2.85 6.41 4.05 1.21 9.18 18.61 
Lutjanus bohar 2.66 7.08 3.82 1.64 8.65 27.26 
Odonus niger 4.11 2.83 3.13 1.16 7.1 34.36 
Variola louti 2.74 6.04 3.07 1.36 6.96 41.32 
Caranx melampygus 3.18 5.52 3.04 1.2 6.9 48.22 
Oplegnathus robinsoni 2.3 4.45 2.92 1.19 6.63 54.85 
Pomacanthus imperator 2.55 3.26 2.4 1.06 5.45 60.3 
Balistoides conspicillum 2.44 1.94 2.08 1.13 4.71 65.01 
Chaetodon meyeri 1.39 3.72 2.04 1.54 4.61 69.62 
Acanthurus leucosternon 4.35 3.41 1.9 1.05 4.31 73.93 
Bodianus diana 2.08 2.81 1.76 1.22 3.99 77.92 
Amphiprion allardi 2.2 0.79 1.45 1.4 3.28 81.21 
Forcipiger flavissimus 2.1 2.27 1.43 1.16 3.25 84.46 
Scarus rubroviolaceus  7.72 6.41 1.37 0.66 3.12 87.57 
Siganus sutor 1.13 0.89 1.22 0.68 2.77 90.34 

    Average dissimilarity = 44.11 
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Diving - 
Fishing 

Open 
                               

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Odonus niger 4.11 4.24 3.97 1.15 8.64 8.64 
Caranx melampygus 3.18 1.19 3.16 0.99 6.87 15.5 
Variola louti 2.74 2.51 3.11 1.08 6.76 22.27 
Epinephelus tukula 2.85 0 2.78 0.68 6.05 28.31 
Lutjanus bohar 2.66 1.36 2.76 1.05 5.99 34.31 
Acanthurus leucosternon 4.35 2.39 2.74 1.42 5.97 40.28 
Balistoides conspicillum 2.44 1.24 2.72 1.1 5.91 46.19 
Pomacanthus imperator 2.55 1.14 2.71 0.89 5.91 52.1 
Oplegnathus robinsoni 2.3 0.69 2.5 0.79 5.45 57.55 
Chaetodon meyeri 1.39 2.29 2.25 1.17 4.89 62.44 
Bodianus diana 2.08 2.28 2.19 1.19 4.77 67.21 
Siganus sutor 1.13 1.77 2.15 0.79 4.68 71.89 
Scarus rubroviolaceus  7.72 6.27 2 0.62 4.35 76.25 
Forcipiger flavissimus 2.1 1.75 1.94 1.15 4.21 80.46 
Amphiprion allardi 2.2 1.47 1.82 1.26 3.96 84.42 
Chaetodon 
madagaskariensis 

2.92 2.99 1.41 0.93 3.07 87.49 

Chaetodon trifascialis 0 1.56 1.39 0.8 3.01 90.51 

    Average dissimilarity = 45.96 
 
 
 Sanctuary Open                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Epinephelus tukula 6.41 0 5.17 1.45 9.85 9.85 
Lutjanus bohar 7.08 1.36 5.03 1.96 9.58 19.43 
Aprion virescens 5.82 0 4.99 1.81 9.51 28.94 
Caranx melampygus 5.52 1.19 4.06 1.47 7.73 36.67 
Variola louti 6.04 2.51 3.77 1.31 7.18 43.85 
Oplegnathus robinsoni 4.45 0.69 3.51 1.25 6.68 50.53 
Odonus niger 2.83 4.24 3.44 1.08 6.55 57.08 
Pomacanthus imperator 3.26 1.14 2.59 1.06 4.94 62.02 
Acanthurus leucosternon 3.41 2.39 2.13 1.37 4.06 66.08 
Balistoides conspicillum 1.94 1.24 2.03 0.82 3.86 69.94 
Chaetodon meyeri 3.72 2.29 1.98 1.3 3.77 73.72 
Scarus rubroviolaceus  6.41 6.27 1.91 0.69 3.63 77.35 
Bodianus diana 2.81 2.28 1.76 1.17 3.35 80.7 
Siganus sutor 0.89 1.77 1.75 0.78 3.34 84.03 
Forcipiger flavissimus 2.27 1.75 1.71 1.12 3.25 87.29 
Chaetodon trifascialis 0.4 1.56 1.3 0.92 2.47 89.76 
Amphiprion allardi 0.79 1.47 1.24 1.11 2.36 92.12 

    Average dissimilarity = 52.49 
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Appendix 5  

Results of SIMPER analysis on the biomass of Fish-index species for Sanctuary, Diving, Diving & 
Fishing and Open zones.  

 
 Diving Sanctuary                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Epinephelus tukula 0.72 6.41 4.64 1.4 10.32 10.32 
Lutjanus bohar 1.92 7.08 4.43 1.71 9.84 20.16 
Aprion virescens 1.58 5.82 3.77 1.53 8.37 28.53 
Variola louti 3.09 6.04 3.24 1.25 7.19 35.72 
Caranx melampygus 3.34 5.52 3.14 1.25 6.97 42.69 
Oplegnathus robinsoni 2.92 4.45 2.84 1.21 6.31 49.01 
Odonus niger 2.01 2.83 2.65 0.94 5.88 54.89 
Pomacanthus imperator 4.03 3.26 2.45 1.06 5.44 60.33 
Acanthurus leucosternon 4.07 3.41 1.96 1.07 4.34 64.67 
Bodianus diana 2.56 2.81 1.68 1.22 3.74 68.41 
Balistoides conspicillum 0.65 1.94 1.65 0.81 3.67 72.08 
Chaetodon meyeri 2.33 3.72 1.64 1.2 3.65 75.73 
Forcipiger flavissimus 1.49 2.27 1.55 1.25 3.44 79.17 
Scarus rubroviolaceus m 7.68 6.41 1.47 0.67 3.26 82.44 
Siganus sutor 0.95 0.89 1.16 0.62 2.57 85.01 
Chaetodon madagaskariensis 2.81 2.65 1.14 1.05 2.54 87.54 
Zebrasoma desjardini 1.05 0.31 1.09 0.55 2.42 89.96 
Chaetodon trifascialis 1.11 0.4 0.96 0.76 2.12 92.09 

    Average dissimilarity = 45.01 
 
 

 Diving 
Diving & 
fishing                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Odonus niger 2.01 4.11 3.6 1.18 8.16 8.16 
Caranx melampygus 3.34 3.18 3.21 1.14 7.26 15.43 
Variola louti 3.09 2.74 3.05 1.14 6.92 22.34 
Pomacanthus imperator 4.03 2.55 3.05 1.17 6.91 29.25 
Oplegnathus robinsoni 2.92 2.3 2.79 1.08 6.32 35.57 
Epinephelus tukula 0.72 2.85 2.75 0.74 6.23 41.8 
Lutjanus bohar 1.92 2.66 2.75 1.09 6.23 48.03 
Balistoides conspicillum 0.65 2.44 2.26 1.1 5.12 53.15 
Bodianus diana 2.56 2.08 2.09 1.28 4.74 57.89 
Chaetodon meyeri 2.33 1.39 1.97 1.19 4.47 62.36 
Amphiprion allardi 0.22 2.2 1.94 1.58 4.39 66.75 
Acanthurus leucosternon 4.07 4.35 1.87 1.26 4.24 70.99 
Forcipiger flavissimus 1.49 2.1 1.71 1.28 3.88 74.87 
Aprion virescens 1.58 0.61 1.66 0.74 3.76 78.63 
Siganus sutor 0.95 1.13 1.49 0.65 3.37 82 
Chaetodon madagaskariensis 2.81 2.92 1.41 1.06 3.19 85.19 
Zebrasoma gemmatum 1.05 0.48 1.37 0.6 3.11 88.3 
Labroides dimidiatus 2.34 2.92 1.05 1.07 2.37 90.68 

    Average dissimilarity = 44.13 
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Diving & 
fishing Sanctuary                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Aprion virescens 0.61 5.82 4.16 1.78 9.42 9.42 
Epinephelus tukula 2.85 6.41 4.05 1.21 9.18 18.61 
Lutjanus bohar 2.66 7.08 3.82 1.64 8.65 27.26 
Odonus niger 4.11 2.83 3.13 1.16 7.1 34.36 
Variola louti 2.74 6.04 3.07 1.36 6.96 41.32 
Caranx melampygus 3.18 5.52 3.04 1.2 6.9 48.22 
Oplegnathus robinsoni 2.3 4.45 2.92 1.19 6.63 54.85 
Pomacanthus imperator 2.55 3.26 2.4 1.06 5.45 60.3 
Balistoides conspicillum 2.44 1.94 2.08 1.13 4.71 65.01 
Chaetodon meyeri 1.39 3.72 2.04 1.54 4.61 69.62 
Acanthurus leucosternon 4.35 3.41 1.9 1.05 4.31 73.93 
Bodianus diana 2.08 2.81 1.76 1.22 3.99 77.92 
Amphiprion allardi 2.2 0.79 1.45 1.4 3.28 81.21 
Forcipiger flavissimus 2.1 2.27 1.43 1.16 3.25 84.46 
Scarus rubroviolaceus m 7.72 6.41 1.37 0.66 3.12 87.57 
Siganus sutor 1.13 0.89 1.22 0.68 2.77 90.34 

    Average dissimilarity = 44.11 
 
 

 Diving Open                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Odonus niger 2.01 4.24 4.02 1.16 8.39 8.39 
Pomacanthus imperator 4.03 1.14 3.73 1.26 7.77 16.16 
Caranx melampygus 3.34 1.19 3.47 1.01 7.23 23.39 
Variola louti 3.09 2.51 3.46 1.01 7.22 30.61 
Oplegnathus robinsoni 2.92 0.69 3.02 1.05 6.29 36.9 
Acanthurus leucosternon 4.07 2.39 2.7 1.25 5.63 42.53 
Chaetodon meyeri 2.33 2.29 2.38 1.21 4.97 47.49 
Lutjanus bohar 1.92 1.36 2.36 0.87 4.92 52.42 
Scarus rubroviolaceus m 7.68 6.27 2.17 0.63 4.53 56.95 
Siganus sutor 0.95 1.77 2.15 0.75 4.48 61.43 
Bodianus diana 2.56 2.28 2.14 1.22 4.46 65.89 
Forcipiger flavissimus 1.49 1.75 1.94 1.14 4.04 69.92 
Chaetodon trifascialis 1.11 1.56 1.81 0.94 3.77 73.7 
Balistoides conspicillum 0.65 1.24 1.68 0.62 3.51 77.21 
Aprion virescens 1.58 0 1.64 0.64 3.43 80.64 
Chaetodon 
madagaskariensis 

2.81 2.99 1.6 0.97 3.34 83.98 

Amphiprion allardi 0.22 1.47 1.38 1.01 2.87 86.85 
Zebrasoma desjardini 1.05 0 1.36 0.48 2.84 89.69 
Labroides dimidiatus 2.34 2.63 1.12 1 2.34 92.03 

    Average dissimilarity = 47.95 
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Diving & 
fishing 

Open 
                               

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Odonus niger 4.11 4.24 3.97 1.15 8.64 8.64 
Caranx melampygus 3.18 1.19 3.16 0.99 6.87 15.5 
Variola louti 2.74 2.51 3.11 1.08 6.76 22.27 
Epinephelus tukula 2.85 0 2.78 0.68 6.05 28.31 
Lutjanus bohar 2.66 1.36 2.76 1.05 5.99 34.31 
Acanthurus leucosternon 4.35 2.39 2.74 1.42 5.97 40.28 
Balistoides conspicillum 2.44 1.24 2.72 1.1 5.91 46.19 
Pomacanthus imperator 2.55 1.14 2.71 0.89 5.91 52.1 
Oplegnathus robinsoni 2.3 0.69 2.5 0.79 5.45 57.55 
Chaetodon meyeri 1.39 2.29 2.25 1.17 4.89 62.44 
Bodianus diana 2.08 2.28 2.19 1.19 4.77 67.21 
Siganus sutor 1.13 1.77 2.15 0.79 4.68 71.89 
Scarus rubroviolaceus  7.72 6.27 2 0.62 4.35 76.25 
Forcipiger flavissimus 2.1 1.75 1.94 1.15 4.21 80.46 
Amphiprion allardi 2.2 1.47 1.82 1.26 3.96 84.42 
Chaetodon madagaskariensis 2.92 2.99 1.41 0.93 3.07 87.49 
Chaetodon trifascialis 0 1.56 1.39 0.8 3.01 90.51 

    Average dissimilarity = 45.96 
 

 Sanctuary Open                                

Species 
Average 

abundance 
Average 

abundance 
Average 

dissimilarity 
Diss/SD 

Percent 
contribution 

Cumulative 
percent 

Epinephelus tukula 6.41 0 5.17 1.45 9.85 9.85 
Lutjanus bohar 7.08 1.36 5.03 1.96 9.58 19.43 
Aprion virescens 5.82 0 4.99 1.81 9.51 28.94 
Caranx melampygus 5.52 1.19 4.06 1.47 7.73 36.67 
Variola louti 6.04 2.51 3.77 1.31 7.18 43.85 
Oplegnathus robinsoni 4.45 0.69 3.51 1.25 6.68 50.53 
Odonus niger 2.83 4.24 3.44 1.08 6.55 57.08 
Pomacanthus imperator 3.26 1.14 2.59 1.06 4.94 62.02 
Acanthurus leucosternon 3.41 2.39 2.13 1.37 4.06 66.08 
Balistoides conspicillum 1.94 1.24 2.03 0.82 3.86 69.94 
Chaetodon meyeri 3.72 2.29 1.98 1.3 3.77 73.72 
Scarus rubroviolaceus m 6.41 6.27 1.91 0.69 3.63 77.35 
Bodianus diana 2.81 2.28 1.76 1.17 3.35 80.7 
Siganus sutor 0.89 1.77 1.75 0.78 3.34 84.03 
Forcipiger flavissimus 2.27 1.75 1.71 1.12 3.25 87.29 
Chaetodon trifascialis 0.4 1.56 1.3 0.92 2.47 89.76 
Amphiprion allardi 0.79 1.47 1.24 1.11 2.36 92.12 
    Average dissimilarity = 52.49 
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Appendix 6  

An indicator-based manual for assessing fish communities on 
coral reefs 
 

6.1. Introduction 

This manual has been developed as a practical guide for scientists and coral reef managers to assess 

and document changes in coral reef fish communities over time. A rigorous process preceded the 

development of this manual and involved numerous layers of research that included comprehensive 

data collection, manipulation and interpretation. Baseline fish community data were collected and 

synthesised to generate fish indicator species. Further scrutiny of these fish indicator species lead to 

the development of a Fish-Index that consists of 25 indicator species. This Fish-Index was applied 

to assess the fish communities on southern African coral reefs subjected differing human resource 

use. Significant relationships emerged between key indicator species and human activities, which 

facilitated the development of a monitoring protocol with the Fish-Index as its central tool. 

Although this manual is the product of various strata of intensive research, it has been designed and 

packaged into a user-friendly guide that is both relevant to and practical for coral reef scientists, 

managers and conservationists.  

 

This protocol highlights the importance of long-term monitoring, which represents the repeated 

surveying of organisms or environmental parameters over time (Rogers et al. 1994). Monitoring 

may imply data collection alone; however, for the purposes of this manual, it refers to data 

collection, analysis and validation. Coral reef fish are highly variable in abundance and movement, 

both temporally and spatially. Consequently, to gain an insight into reef processes such as 

predation, reproduction, recruitment and competition it is necessary to conduct long-term rather 

than short-term monitoring programmes. Furthermore, long-term assessment provides valuable 

information on ecosystem function. This manual focuses on coral reef fish communities alone. In 

order to identify and comprehend coral reef processes from an ecosystem perspective, it is 

recommended that fish community monitoring is complemented by a benthic monitoring 

programme such as that initiated by the Oceanographic Research Institute (Schleyer & Celliers 

2003). Benthic monitoring conducted in the same area as the fish community monitoring will 

provide valuable information on the relationships between the mobile and sessile biological 

communities in the coral reef ecosystem. 

 

Long-term monitoring is essential for adaptive management of coral reefs (Wells & Mangubhai 

2004). For coral reefs that are situated in marine protected areas (MPA), long-term monitoring 
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allows continual updates on the status of coral reef fish communities and facilitates performance 

evaluation on the effectiveness of their protective management. Most MPAs are implemented for 

the protection of biodiversity and sustainable resource utilization (Wilkinson et al. 2003, Pomeroy 

et al. 2004). Thus, monitoring of changes in selected biological components such as coral reef fish 

communities can provide an insight as to whether an MPA is achieving its goals.  

 

Obtaining reliable estimates of fish assemblages may be limited by financial and logistical 

constraints. In addition, extensive and ongoing training is often required because field teams are not 

static. To mitigate the need for highly skilled personal, the use of selected indicators can reduce the 

number of fish species that field surveyors need to recognise, increase the accuracy of data 

collection and reveal links between the breakdown in community processes and the causative 

agents. Underwater visual censuses are the most common techniques employed to assess fish 

communities (Bohnsack & Bannerot 1986, Samoilys 1997) and counting fewer species enables 

greater accuracy in assessing abundance and estimating fish length. However, reducing the number 

of species may raise concern as to how representative the selected species are of the fish community 

(Kulbicki et al. 2007). The Fish-Index used here includes species from each of the main functional 

trophic groups, and has been demonstrated to be representative of the functional diversity on 

southern African coral reef fish communities. Nevertheless, a survey that includes as many fish 

species as possible has many advantages, particularly when monitoring species diversity. In such 

instances it may be practical to contract experts to carry out the surveys because the recognition of 

over 300 species of fish may be required. However, such surveys need only be conducted once 

every 2-3 years.  

 

This manual does not present a stand-alone method for the assessment of the health of a coral reef 

ecosystem or the effectiveness of MPA management. It is a practical guide that has been 

scientifically tested and summarised into a management support tool. Its aim is to provide a greater 

understanding of the human impacts on one biological component of a complex ecosystem and, 

consequently, aid reef managers in their conservation decisions. Although the fish indicator species 

were developed for southern African coral reefs, the concepts are applicable to reefs in other 

regions. 
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6.2 Objective of monitoring protocol: 

To assess the nature of fish communities on coral reefs subjected to different human extractive and 

non-extractive resource use. 

 

6.3 Logistics 

Personnel 

To minimise time spent in the field and to maximise the number of surveys carried out per field 

excursion, the fish survey team should consist of four people; two surveyors (fish counters) and two 

buddy divers; one of which should also be a skipper. Only two divers will be in the water at one 

time; a fish counter and a buddy diver. Thus, use of time at sea will be maximised as one dive pair 

will conduct fish counts while the other pair has a prescribed surface interval.  

 

Monitoring equipment 

The fish surveys should be conducted using SCUBA from a semi-inflatable boat, with two outboard 

motors and the necessary safety equipment. To record the data, pencils and several A4 perspex 

slates are required. The best practice for attaching the pencil is with a wrist lanyard made from 

rubber tubing. The pencil is cut in half and inserted into the end of the rubber tube. Thin speargun 

rubber tubing is suitable because it is flexible and does not perish in salt water. The rubber tube 

must be fitted loosely around the fish counter’s wrist and fastened with a cable tie. Pencils often 

break and it is important to have a second pencil as a backup on every dive. The slates must be 

prepared prior to the dive following the data sheet layout in Figure 6.5. The necessary equipment to 

record fish data is illustrated in Figure 6.1. All divers must wear a dive computer to record dive 

time, depth and to log the details of each dive. A weighted 10 m rope is needed to delineate the 

survey site on the substratum. 

 

Training of the dive team 

Before the fish survey team can begin monitoring fish communities, training in fish identification 

and fish-length estimation is necessary. Each fish counter needs to be proficient in identifying the 

25 Fish-Index species. Identification photographs of each species are presented in Appendix 6.1.1 

Fish identification books such as ‘Reef fishes and Corals’ (King 1996) and ‘Two Oceans’ (Branch 

et al. 1994) may be useful to improve and test fish identification skills. Fish-length estimation 

training is of great importance because such measurements will be used to investigate size 

frequency distributions of the Fish-Index species. In addition, length estimates will be used to 

generate biomass data, which are important both ecologically and from a fisheries perspective. 
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Consequently, consistency and accuracy in fish-length estimates is of great importance for data 

analyses.  

 

Training in fish-length estimation should be conducted using fish models that range in size. Models 

should mimic actual body shapes of various indicator fish species such as surgeonfish, kingfish, 

butterflyfish and rockcods. Examples of model fish and their sizes are presented in Appendix 6.1.3. 

Fish-lengths are estimated in 5 cm increments using forklength measurements from the tip of the 

upper jaw to the end of the caudal rays (Fig 6.2). Training must be conducted initially on land and 

then underwater. Training underwater is most important because many factors such as visibility and 

distance from the fish can influence fish-length estimation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1 Equipment needed to conduct fish surveys; a 10 m weighted rope, two small pencils 
secured in rubber tubing and several perspex slates, pre-prepared with a list of the indicator species. 
 
Training in fish-length estimation 

Creating representative fish models is central to the fish-length estimation training. Sheets of any 

material that is waterproof such as plastic or marine-ply can be used for cut-out models of the 

representative fish species. However, the material should not be so thin that it looses its shape 

underwater and not so thick that it is too cumbersome to manoeuvre. Material that sinks is easiest to 

handle underwater. However, floating material is recommended because it can be weighted down 

with dive weights and simulate fish swimming in the water column. Cut-outs should resemble the 

shapes of the various fish species as closely as possible. The fish shapes in Appendix 6.1.3 may be 

enlarged and used as templates to create various sizes. Once each cut-out is prepared, the actual size 
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should be written on the back of the model. Each model should float in the water when attached by 

string to a weight so that it will float appropriately in the water above the substratum during training 

sessions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Lateral view of a green jobfish illustrating its forklength. 

 
Perspex slates and pencils are needed to record fish lengths during the training sessions. Numerous 

fish-length estimation training methods include detailed analysis of the training records to monitor 

the progress of the fish counters (Samoilys 1997, Brown et al. 2004, Mous 2006). However, few 

field teams have the time or finances to dedicate entire fieldtrips to training or to conduct post-

training analysis of the data. Thus, to maximise training in fish-length estimation and to take into 

account long periods of time that often elapse between field excursions, it is recommended that fish 

length training should be conducted on the first day of each field trip. In their manual for assessing 

fish stocks, Samoilys and Carlos (1992) stated that fish-length training involved approximately six 

trials before fish counters achieved acceptable accuracy. Consequently, it is recommended that each 

fish counter should commit two full dives to fish-length training, completing three trials per dive.  

 

For the practical training, each fish counter and buddy diver will work as a team. Fish estimates 

begin on land with the buddy diver randomly selecting 20 different fish models of different shapes 

and sizes to spread in a circle on the ground. The fish counter then starts by estimating the fish 

length of a model and systematically estimating the forklength of each consecutive fish model until 

Forklength measurement 
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all 20 models have been assessed. Each size is written on a slate. Once the lengths of all the fish 

models have been estimated the fish models are turned over to reveal their actual sizes. An estimate 

is considered acceptable if it falls within 5 cm of the actual size. The fish counter is given a score 

out of 20. The practice trials should continue until the fish counter achieves at least 18 correct size 

estimates per trial. The next stage is to conduct the same trials underwater. This should take place 

on a sandy area away from the reef to prevent any unnecessary contact with coral. On the boat, the 

buddy should randomly select 20 fish models that will be weighted and arranged on the sand in a 

circle around the fish counter. Once the fish counters are confident in fish-length estimation in their 

trial-runs, the monitoring can begin. 

 

6.4 Sampling design 

A well-designed sampling approach will ensure that the data collected are comprehensive and 

accurate. The sampling design for a long-term monitoring study requires careful consideration 

because it determines the type of data that are collected and the statistical analyses that can be 

preformed. Sampling design is also determined by the questions that are being asked (See 6.7 for 

possible questions). The present monitoring protocol aims to assess the long-term trends in fish 

communities on reefs subjected to different resource use. Thus, it is important to select sites in each 

different resource use zone and to ensure sufficient replication of the sampling. The use of 

replicates is required to minimise variability and increase the confidence level of the results so that 

they reflect actual conditions (Pomeroy et al. 2004). Sampling should be conducted at least once a 

year, at similar times each day and preferably in the same month or at least the same season. 

According to tests conducted on South African coral reefs, the minimum number of samples needed 

to detect variation in fish communities is 10 replicates per reef. However, to increase statistical 

power it is recommended that at least 18 replicates are conducted per reef (Table 6.1). Due to the 

constraints of collecting data using SCUBA, the maximum number of replicates possible per dive is 

six. Thus, a total of 3 dives per reef will yield 18 replicates. Each replicate should be approximately 

50 m apart. Figure 6.3 provides an example of a survey layout on a representative South African 

reef.  

 

Table 6.1 Recommended sampling strategy for the long-term Fish-Index assessment.  

Complex Reef 
Minimum number  

of sites 
Number of replicates  

at each site 
Northern Rabbit Rock Reef 3 6 
Central Nine-mile Reef 3 6 
 Seven-mile Reef 3 6 
 Two-mile Reef 3 6 
Southern Red Sands Reef 3 6 
 Leadsman Shoal 3 6 
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Figure 6.3 Typical sample site and replicate layout on a reef. Six replicate point counts are 
conducted at each sampling site.  
 

6.5 Site selection 

Due to the long-term nature of this monitoring protocol, site selection is of great importance and it 

is suggested that permanent monitoring sites are established on each reef. It is necessary to conduct 

the fish surveys in areas of similar topography, depth and benthic community composition to 

eliminate confounding variables. It is important that reconnaissance surveys are conducted to 

confirm whether the habitat is suitable for comparisons within and between the reefs. Once a 

suitable site has been located, the exact position should be recorded using a GPS and a fixed marker 

should be located on the reef for future surveys; a stainless steel rod may be suitable for this. The 

sites on a particular reef must be separated by a minimum of 100 m. A separate fieldtrip to establish 

the fixed sites may be necessary because of the difficulties in fixing permanent markers on the reef.   

 

Sample  site 

One point count = 
one replicate 
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 6.6 Methods 

The Fish-index species 

The 25 Fish-Index species consist of Indo-Pacific coral reef fish species and one southern African 

endemic species (Table 6.2). The species were chosen according to numerous criteria. The most 

important was a rigorous scientific process that identified core indicator species that manifested 

correlations with human activities. Following that, species were chosen according to their key 

functional role in trophic groups such as large herbivores or predators on the reefs. Ease of 

identification was a criterion for all potential indicator species. From an ecosystem perspective it 

was critical to have a Fish-Index that was representative of the fish community structure on 

southern African coral reefs.  

 

Table 6.2 Common and scientific names, as well as family and trophic level of the 25 Fish-index 
species. Fish are ordered alphabetically according to their common names.  
 

Common name Species Family Trophic level 
Bluefin kingfish Caranx melampygus Carangidae Medium-level predator 
Bohar snapper Lutjanus bohar Lutjanidae Medium-level predator 
Clown triggerfish Balistoides conspicillum Balistidae Invertivore 
Cleaner wrasse Labroides dimidiatus Labridae Invertivore 
Diana’s hogfish Bodianus diana Labridae Invertivore 
Ember parrotfish Scarus rubroviolaceus Scaridae Herbivore 
Emperor angelfish Pomacanthus imperator Pomacanthidae Benthivore 
Goldbar wrasse Thalassoma hebraicum Labridae Invertivore 
Green jobfish Aprion virescens Lutjanidae Medium-level predator 
Natal knifejaw Oplegnathus robinsoni Oplegnathidae Benthivore 
Longnose butterflyfish Forcipiger flavissimus Chaetodontidae Invertivore 
Lyretail rockcod Variola louti Serranidae Medium-level predator 
Maypole butterflyfish Chaetodon meyeri Chaetodontidae Corallivore 
Pearly butterfly Chaetodon madagaskariensis Chaetodontidae Omnivore 
Powderblue surgeon  Acanthurus leucosternon Acanthuridae Herbivore 
Potato bass Epinephelus tukula Serranidae Top-level predator 
Purple butterflyfish Chaetodon trifasciatus Chaetodontidae Corallivore 
Redfang trigger Odonus niger Balistidae Planktivore 
Regal angelfish Pygoplites diacanthus Pomacanthidae Benthivore 
Rightangle butterflyfish Chaetodon trifascialis Chaetodontidae Corallivore 
Sailfin tang Zebrasoma desjardinii Acanthuridae Herbivore 
Twobar clownfish Amphiprion allardi Pomacentridae Omnivore 
Widebar damselfish Plectroglyphidodon johnstonianus Pomacentridae Corallivore 
Whitespotted rabbitfish Siganus sutor Siganidae Herbivore 
Zebra Diplodus cervinus hottentotus Sparidae Invertivore 
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The fish survey technique 

The point count method adapted from Samoilys and Carlos (2000) is recommended as the most 

appropriate technique to survey fish communities because it is quick, requires simple equipment 

and is suitable for variable topography. The point count technique consists of a five minute timed 

count within a restricted point count area of 78 m2 (the area of a circle with a diameter of 10 m). 

Each indicator fish species entering the area is counted and the forklength is estimated. It is 

suggested that common names are used for the fish counts as they are easier to remember. One 

point count represents one replicate on a reef and there are thus six point counts per site. 

 

Recording fish data  

Two divers enter the water together to record the fish counts; a fish counter and a buddy diver. The 

purpose of the buddy diver is to hold the buoy line and for safety. The diver pair descends onto the 

site as quickly as possible to reduce disturbance of the fish. The fish counter lays the 10 m rope 

along the substratum (Fig 6.4). The point count area is an imaginary circle that encompasses the 10 

m rope as its diameter. Once the rope is laid onto the substratum, the fish counter takes up position 

in the middle of the point count circle and waits for 2-3 minutes before beginning the count. During 

this time, habitat characteristics (coral cover, topography and depth) are recorded. During the point 

count, the fish counter spins slowly within the circle, trying to remain in its centre but at all times 

avoiding contact with the substratum. All the selected indicator species that enter the designated 

area are counted but avoiding enumeration of the same fish twice. The duration of each point count 

is five minutes, regardless of whether fish are still being counted or whether no new fish have 

entered the designated area. When large schools are present, the number of fish may be estimated in 

multiple of 10s. Fish on or near the substratum as well as in the water column must be included in 

the count. Depth of the substratum is measured using a dive computer. 

 

Figure 6.5 provides an example of how the perspex slates should be prepared prior to each dive. 

The fish indicator species are written on the left hand side and prompts on the physical parameters 

such as topography, depth and coral cover as well as date, site and reef are listed at the top of each 

replicate point count. Due to limited space, only three point counts can be completed per side on an 

A4 slate. The other side must be prepared in the identical manner. 
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Figure 6.4 The point count fish census method illustrating: A –  an in situ example of a point count 
on a representative South African reef, and B -  theoretical positioning of fish counter and layout of 
the point count. 
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Figure 6.5 Recommended layout of the point count perspex slate and data sheet, including typical 
data. Common names are used for the fish and are ordered alphabetically.  

Date        16/5/2010 Coral cover   L Coral cover Coral cover 

Reef       TMR  Depth  12.5 Depth Depth 

Site         coral gardens Topography M  Topography Topography 

    

Bluefin kingfish 1x50   

Bohar snapper    

Cleaner wrasse    

Clown triggerfish    

Diana’s hogfish 1x50   

Ember parrotfish    

Emperor angelfish    

Goldbar wrasse    

Green jobfish    

Maypole butterflyfish    

Longnose butterflyfish    

Lyretail rockcod    

Natal knifejaw    

Pearly butterfly 2x15   

Powder blue    

Potato bass 1x45   

Purple butterflyfish    

Redfang trigger 1x35   

Regal angelfish    

Rightangle butterflyfish    

Sailfin tang    

Twobar clownfish    

Widebar damselfish 1x10   

Whitespotted rabbitfish    

Zebra    
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Estimation of coral cover 

The amount of coral cover is estimated using a rapid assessment technique adapted from English et 

al. (1997). Due to the time constraints of conducting point counts with SCUBA, coral cover is 

estimated using a simplified scale of three categories; low, medium and high. Coral cover includes 

soft and hard coral species. Low coral cover has less than 30% of the point count area covered in 

coral. Medium coral cover has between 30-50% coral covering the point count area. High coral 

cover has more than 50% of the point count area covered by coral. Examples of each category are 

illustrated in Figure 6.6. It is recommended that two replicates are conducted in each coral cover 

category.  

 

Estimation of topography  

The reef topography is estimated using a rapid assessment technique into three categories; low, 

medium and high. High topography includes pinnacles, spurs, grooves, gullies and over hangs. 

These features should be elevated more than 1.5 m. Medium topography includes spurs, grooves 

and gullies. These features should be elevated than 1.5 m. Low topography may consist of very low 

spurs and shallow grooves, but not gullies or pinnacles; the reef is generally flat. Examples of each 

category are illustrated in Figure 6.7. Again, it is recommended that two replicates are conducted in 

each topography category on each reef.    
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Figure 6.6. Representative examples of the three different coral cover categories: A – high coral 
cover, B – medium coral cover, and C – low coral cover. Photos are taken from representative 
southern African coral reefs.

A. High coral cover  

B. Medium coral cover  

C. Low coral cover  



178 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7 Representative examples illustrating the three topography categories:  
A – high topography, B – medium topography, and C – low topography. Photos are taken from 
representative southern African coral reefs. 

A. High topogaphy.  

A. Medium topography  

C. Low topography  

<1.5 m 

>1.5 m 
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6.7 Data manipulation and evaluation 

Data capture 

At the end of each dive, data are entered on data sheets that are identical in layout to the perspex 

slates. It is efficient to have a data reader and a scribe complete the transcription from slate to paper. 

Slates can be cleaned using an eraser or by scrubbing with a scouring sponge. However, slates must 

not be cleaned until each data sheet has been checked twice, by the fish counter and by the buddy 

diver. Once a hard copy of the data is on file, it is necessary to transfer the data onto a computer 

spreadsheet for analysis. Excel is a user-friendly spreadsheet and it has a range of basic statistical 

analyses that are suitable to investigate and describe the fish count data. The spreadsheet must be 

prepared in a similar fashion to the example in Figure 6.8 in which point counts from three different 

reefs are illustrated with representative data. Each row represents one fish species, so, if 20 bluefin 

kingfish are observed in the point count area, each fish must be entered in a separate row. In 

addition, each point count should be allocated an identification (ID) number. This can be recorded 

as the date of the count plus a letter to separate between the different point count replicates 

completed in a dive. Categories ‘a’ and ‘b’ are the length-weight parameters required to generate 

the biomass for each fish species. The relationship between total length (L) and total weight (W) for 

nearly all species of fish is expressed by the equation: 

      W = aLb 

The length-weight parameters for each Fish-index species are presented in Appendix 6.1.1.  

 

In addition to the data sheets, it is recommended that a detailed log of each dive is recorded. 

Supplementary information, such as unusual species sightings, water temperature, visibility and 

surge may be recorded for use at a later stage.  

 

Data extraction and analysis 

Excel has an efficient function called ‘pivot table’ that creates a table according to the extraction 

requirement and allows rapid summation of data. Pivot tables are located in the pull-down menu 

under the data tab on the top toolbar. The process of creating a pivot table using the pivot table 

wizard is provided in Figure 6.9. Once data are extracted, they can be manipulated accordingly. 

Chapter 4 presents a detailed explanation of the statistical analyses that may be applied to the Fish-

Index data. Figure 6.10 provides examples of univariate statistical analyses that may be used to 

explore trends in different abundance and biomass parameters. Once the data have been described 

and trends become evident, multivariate software such as PRIMER E may be used to conduct more 

complex manipulations. Sigma Plot is also recommended as a user-friend statistical software 

package that offers more sophisticated analyses than Excel.  
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Figure 6.8. Excel spreadsheet template with representative data illustrating the layout needed to capture the Fish-Index point count data.  
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Figure 6.9. Creating a pivot table using the pivot table wizard in Excel.   



182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Flow chart illustrating the univariate analyses and graphs used to explore trends and 
compare the Fish-index results.  
 
 

Regression graphs –  
habitat vs biotic variables 

Length frequency 
graphs 

Abundance and biomass data  

Variation in abundance, biomass 
and trophic levels over time 

� Total abundance and biomass 
� Trophic level abundance and biomass 

Shapiro-Wilks normality test  

One- way ANOVA  Kruskal-Wallis One-way ANOVA 

Post-hoc comparisons: 
Dunn’s method and Holm-Salk test 

 

Normal distribution  Non - normal distribution  

Univariate analyses Graphical representations 

Trophic comparisons 
 

Total abundance  

Total biomass 
 

Testing for significant differences between reefs and usage zones  
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Possible questions to assess fish community status 

1. What trends are evident in total abundance and biomass between the different usage zones? 

See Chapter 4 Figure 4.5. 

2. Are the functional (trophic) groups present in equal abundance and biomass between the 

different usage zones? See Chapter 4 Figure 4.7. 

3. Are there significant differences between individual key species such as target species or 

top-level (apex) predators? See Chapter 4 Figure 4.8. 
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Appendix 6.1.1 Identification photographs of the Fish-index species. Notes on the significance of 
each species have been included. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bohar snapper 
Lutjanus bodar 
 
Key reef predator.  
Low numbers may high fishing 
intensity or disturbance in reef 
functioning 
_____________________ 

Clown triggerfish 
Balistoides conspicillum 
 
Low abundances may be 
indicative of high diving 
intensity  
 

Bluefin kingfish 
Caranx melampygus 
 
Target species: low numbers 
may indicate overfishing 

Ember parrotfish - Female 
Scarus rubroviolaceus 
 
Key herbivore  
 

Dennis Polack 

Diana’s hogfish 
Bodianus Diana 
 
Prey species.  
Can be used to analyse predator-
prey relationships 
 

Dennis Polack 

Goldbar wrasse 
Thalassoma hebraicum 
 
Prey species.  
May be used to assess predator-
prey ratios.  
 

Dennis Polack 

Emperor angelfish 
Pomacanthus imperator 
 
Specialist feeder of 
sponges and tunicates.  
 

Dennis Polack 

Ember parrotfish – Male 
Scarus rubroviolaceus 
 
Key herbivore.  
 
 

Dennis Polack 

Cleaner wrasse 
Labroides dimidiatus 
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Pearly butterflyfish 
Chaetodon madagaskariensis 
 
Prey species. May be used to 
assess predator-prey ratios 

Natal knifejaw 
Oglegnathus robinsoni  
 
Benthivore. Important for 
trophic comparisons 
 

Powderblue surgeonfish 
Acanthurus leucosternon  
 
Key herbivore species. 
Important for trophic 
comparisons 
 

Maypole butterflyfish 
Chaetodon meyeri  
 
Specialist feeder – Corallivore. 
High abundances may indicate 
high coral cover. 

Longnose butterflyfish 
Forcipiger flavissimus 
 
Prey species.  
 

Purple buterflyfish 
Chaetodon trifasciatus 
 
Specialist feeder – Corallivore. 
High abundances may indicate high 
coral cover. 
 

Dennis Polack 

Lyretail rockcod 
Variola louti 
 
Key reef predator. Important for 
trophic comparisons 
 
 

Dennis Polack 

Green jobfish 
Aprion virescens 
 
Key reef predator. Target 
species. Sensitive to overfishing.  
 
 

Dennis Polack 

Potato bass 
Epinephelus tukula 
 
Top reef predator. May be 
sensitive to high diving intensity  
 

Dennis Polack 

Jade Maggs 

Jade Maggs 
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Redfang trigger 
Odonus niger  
 
Key planktivore species. 
Important for trophic 
comparisons  

Dennis Polack 

Regal angelfish 
Pygoplites diacanthus 
 
Specialist feeder – sponges 
Uncommon species. May be 
sensitive to high diving 
intensity 

Twobar clownfish 
Amphiprion allardi 
 
Low numbers may indicate 
removal by hobbyists. 

Whitespotted rabbitfish 
Siganus sutor 
 
Key herbivore species 
 

Zebra 
Diplodus cervinus hottentotus 
 
Endemic species 

Sailfin tang 
Zebrasoma desjardinii  
 
Herbivorous species 

Dennis Polack 

Widebar damselfish 
Plectroglyphidodon johnstonianus 
 
Specialist feeder – Corallivore.  
High abundances may indicate the 
presence of high branching coral 
cover. 

Sally Polack 

Rightangle butterflyfish 
Chaetodon trifascialis  
 
Specialist feeder – 
Corallivore. High abundances 
may indicate high coral cover. 
 
 

Dennis Polack Dennis Polack 
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Appendix 6.1.2 Length-weight parameters, maximum sizes (forklength in cm) and trophic level 
(TL) of the 25 Fish-Index species extracted from www.fishbase.com.  
 

 

 

 

 

 

 

common names 
a b 

maximum 

size 

Trophic 

level 

Bluefin kingfish 0.0237 2.941 100 4.28 

Bohar snapper 0.0156 3.0587 90 4.11 

Cleaner wrasse 0.0059 3.17 10 3.49 

Clown triggerfish 0.0244 3.018 50 3.31 

Diana’s hogfish 0.0201 2.992 25 3.5 

Ember parrotfish 0.0136 3.109 60 2 

Emperor angelfish 0.0276 3 40 2.7 

Goldbar wrasse 0.0271 3 25 3.5 

Green jobfish 0.0294 2.76 110 3.98 

Longnose butterflyfish 0.0167 3 20 3.38 

Lyretail rockcod 0.0122 3.079 80 4 

Maypole butterflyfish 0.0296 2.895 20 3.34 

Natal knifejaw 0.0232 3 60 3.17 

Pearly butterflyfish 0.0311 2.976 15 2.76 

Potato bass 0.106 2.56 200 4.4 

Powderblue surgeonfish 0.0286 2.921 25 2 

Purple butterflyfish 0.0311 2.976 15 3.34 

Redfang triggerfish 0.0242 3 50 3.22 

Regal angelfish 0.0163 3 25 2.69 

Rightangle butterflyfish 0.0258 2.969 18 3.34 

Sailfin tang 0.0285 2.992 22 2 

Twobar clownfish 0.0239 2.982 15 2.69 

Whitespotted rabbitfish 0.0597 2.754 45 2 

Widebar damselfish 0.0612 2.635 10 3.31 

Zebra 0.0116 3.14 50 3.64 
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Appendix 6.1.3 Examples body shapes of selected fish indicator species that can be enlarged to 

different sizes and in different lengths to create fish models for fish-length estimate training. 

 

 
 
 
 
 
 
 
 
 
 

Powder blue surgeonfish 
10 cm, 15 cm, 25 cm 

Purple butterflyfish 
5 cm, 10 cm, 15 cm 

Potato bass 
90 cm, 110 cm, 140 cm, 150 cm, 170 cm 

Bluefin kingfish 
35 cm, 40 cm, 55 cm, 60 cm, 70 cm 

Emperor angelfish 
30 cm, 35 cm, 45 cm, 50 cm 

Ember parrotfish 
20 cm, 35 cm, 40 cm, 55 cm, 60 cm 


