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ABSTRACT 
 

Modifications were undertaken to a static high pressure vapour-liquid equilibrium (VLE) 

apparatus described by Naidoo [2004]. The alterations were made to improve the sample 

analysis technique. These modifications included the incorporation of the ROLSITM sampling 

device into the equilibrium cell, a re-design of the air bath which improved the temperature 

profile and further alterations described in the text.   

 

The equipment has an operating temperature range of 278.15 K to 473.15 K and pressure range 

of absolute vacuum to 150 bars. The apparatus consisted of an agitated cell in an air-bath. The 

uncertainties in the temperature and pressure measurements were ±0.02 K and ±4 kPa 

respectively. A Shimadzu Gas Chromatograph, Model 2010 was used for sample analysis. 

 

An initial test of the apparatus was carried out to measure the pure component vapour pressure 

data for propane and ethane in the temperature range of 279.24 – 360.18K and the results 

concurred with literature data (absolute relative deviation <0.153%) 

 

The experimental procedure used in this study was developed from the technique used by 

Ramjugernath [2000], with some minor changes implemented only to achieve some 

requirements for problems encountered during the project. 

 

Isothermal binary measurements for the hexafluoroethane (R116) + propane system were used 

as test system to investigate the accuracy and reliability of the equipment. Three binary 

isotherms were measured at 291.22 K, 296.23 K and 308.21 K. The measured data compared 

well with literature data. 

  

Particular attention was placed on the fluorinated hydrocarbons. Specific properties of 

fluorinated hydrocarbons give them many applications in industry, such as solvents, 

refrigerants, propellants, anaesthetics, etc. Hence, a phase equilibria study of a fluorinated 

hydrocarbons system was carried out in this project.  

 

The commissioning of the equipment was successfully undertaken and the equipment was 

found to be efficient and reliable. As a consequence measurements were made on the 

hexafluoropropylene oxide (HFPO) + ethane system. No data has been previously published in 

literature for this system. Measurements were undertaken at five different temperatures, 283.15 
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K, 290.15 K, 298.15 K, 308.15 K and 318.15 K. The isotherms were chosen in order to have 

measurements below and above the critical temperature of ethane, in order to see the transition 

at the critical temperature.   

 

The experimental data were modelled via the direct (phi-phi) method. The Peng-Robinson 

equation of state was applied, including the Mathias-Copeman alpha correlation with the Wong-

Sandler mixing rules incorporating the NRTL activity coefficient model. Good agreement was 

found between the correlated and the measured data. 
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CHAPTER 1: INTRODUCTION 

 
Separations, including enrichment, concentration, purification, refining, and isolation, are 

important to chemical engineers (Seader and Henley, 1998). Separation processes account for a 

significant percentage of the average chemical plant; they account for more than 50% of total 

capital costs and 90% of total energy usage.  Purposes for which separation techniques are used 

include extraction of metals from ores and perfumes from flowers, the evaporation of seawater 

to obtain salt, the distillation of liquors and many others.  Separation equipment is designed 

mainly on the basis of thermodynamic equilibrium. As a result the measurement and modelling 

of vapour liquid equilibrium plays a considerable role in chemical process design. 

 

The Thermodynamic Research Unit in the School of Chemical Engineering at the University of 

KwaZulu-Natal has a reputation as a productive centre for phase equilibria studies, and is 

known as one of the best in Africa and in the Southern Hemisphere.  The unit has been 

producing VLE data for more than twenty-five years, data which has assisted many local 

companies to improve their separation processes. 

 

 A piece of static high pressure vapour-liquid equilibrium (HPVLE) apparatus was designed in 

the unit for the measurement of HPVLE data. Recommendations from other researchers who 

had used the apparatus were taken into consideration to improve the efficiency of the apparatus. 

Some of those recommendations dealt with the complexity of the sampling method and the 

length of time taken to reach equilibrium.  

 

Fluorinated hydrocarbons have recently gained importance in industry. The relatively low 

reactivity, low critical temperature, low surface tension, excellent dielectric properties and high 

polarity that result from the carbon-fluorine bond give them their particular characteristics. As a 

result of these characteristics, they have found applications in various fields, some of which are 

described below. 

 

Since the Montreal Protocol in 1987, refrigeration processes have been required to use new 

refrigerant fluids to replace the ozone-destroying components. An alternative was found in 

fluorinated hydrocarbons, such as difluoromethane, trifluoromethane, tetrafluoromethane, 

hexafluoroethane, etc. 
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Two tasks were assigned in this work. Firstly modifying the existing static HPVLE apparatus in 

order to resolve the problem cited previously, and so improve the efficiency and functionality of 

the equipment.  

 

The second aim was to perform vapour-liquid equilibrium (VLE) measurements of a few 

systems containing fluorinated hydrocarbons. This was in order to determine their phase 

equilibrium behaviour while mixed with different components for developing further 

applications in industry. 

 

Hexafluoropropylene oxide (HFPO) is a multipurpose fluorocarbon. Its uses include the 

synthesis of various fluoromonomers and fluoropolymers. It also can be used in the 

refrigeration industry and in many other applications. Hence VLE measurements were 

performed specifically on the HFPO + Ethane system to determine its behaviour in mixture 

with hydrocarbons.  Measurements undertaken in this work are part of a project on refrigerant 

conducted by the Thermodynamic Research Unit and the Mines Paris Tech in Fontainebleau 

(France). 

 

In addition the measured data will help in the development of group contribution methods, 

which are methods for the prediction of thermodynamic properties from molecular structures. 

HFPO has two functional groups, the fluoro and the epoxide functions, which have not yet been 

described by contribution methods.  

 

South Africa has one of the largest fluorspar reserves in the world, but there is a limit 

beneficiation of the ore. The Department of Science and Technology (DST) through the South 

African Research Chair of Fluorine Process Engineering and Separation Technology has 

initiated numerous projects to maximise the revenue of the country from the fluorochemicals 

market by beneficiation of the fluorspar. This work is one of the projects initiated for this 

purpose. 

 

In this project, HPVLE were measured at moderate temperatures for a binary system with data 

available in literature as well as for a system with previously unpublished data. Measured 

binary VLE data, already available in literature were used to check the efficiency of the 

modified equipment and the experimental technique.  

 

 

 



3 

 

CHAPTER 2: FLUORINATED HYDROCARBONS 

 

2.1 Introduction 

 

Fluorinated hydrocarbon refers to any organic compound containing carbon and fluorine 

combined in strong carbon-fluorine bonds.  They have a unique position among fluorinated 

compounds because of their special properties. The nomenclature of fluorinated hydrocarbons is 

presented in Appendix A. 

 

Regular studies of fluorinated hydrocarbons started in 1937 with Simons and Block, when they 

discovered a way to carry out the reaction between fluorine and carbon by impregnating the 

carbon with mercury salt. From 1940 forward, the fluorinated hydrocarbons industry has 

experienced significant development as a result of the implementation of different synthesis 

methods (Emeleus, 1969).   

 

2.2 Properties of Fluorinated Hydrocarbons 

 

Fluorinated hydrocarbons are dissimilar in certain ways to other halocarbons; this is due to three 

main factors as described by Kirk-Othmer [1966]. These factors are the high electronegativity 

of fluorine (3.98 on the Pauling scale), the relatively small size of fluorine (1.35 Å) which gives 

it the capacity to replace even hydrogen atoms in a compound without excessive steric strain, 

and the last which pertains to the presence of unpaired electrons.  

 

 2.2.1 Physical properties 

A huge discrepancy was found between the physical properties of fluorinated hydrocarbons and 

the corresponding hydrocarbons. The physical properties are also greatly affected by the 

number of carbon atoms in the molecule. The higher the number of carbon atoms in the 

molecule, the higher the density, critical properties, boiling point, viscosity, surface tension and 

vapour-pressure.  

 

Liquid fluorinated hydrocarbons have similar viscosities to those of other hydrocarbons, but 

these viscosities appear low when compared to liquids of similar boiling points. This is due to 

the relatively weak intermolecular forces. They are colourless and have high densities, generally 

twice that of water due to the high molecular weight. Fluorocarbons have a low toxicity, low 

surface tension and good dielectric properties.  
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For a liquid to wet a solid, the surface tension of the liquid must be lower than that of the solid. 

Solid fluorinated hydrocarbons are the best non-wettable and non-adhesive surfaces known as a 

result of their low surface tension. Among fluorinated hydrocarbons perfluoromethyl (-CF3) is 

the best non-adhesive substance.   

 

Fluorinated hydrocarbons compounds are very stable, especially those with a single bond. 

O‟Hagan [2008] explained this stability by the strength and the nature of the carbon-fluorine 

bond. This bond is rated the strongest bond in organic chemistry. Lemal [2004] established that 

the presence of multiple carbon-fluorine bonds increases the stability of the entire molecule. 

Consequently fluorinated hydrocarbons compounds are thermally stable.  

 

2.2.2 Chemical properties 

Fluorinated hydrocarbons have significant chemical stability. They do not react easily even at 

high temperature and are not attacked by acids and oxidizing agents. The greater the number of 

carbon atoms in the molecule, the less chemically stable the molecule is.  

 

As stated previously. The presence of the carbon-fluorine bond gives stability to the 

fluorocarbon compound, and this is not only thermally but also chemically stable. However 

fluoroalkenes and fluoroalkynes are less stable than saturated fluorocarbons. Kiplinger et al. 

[1994] reported reactions through nucleophiles and hydrolysis in solution.  

  

2.3 Fluorinated Hydrocarbons and the environmental aspect 

 
2.3.1 Ozone Depletion Potential (ODP)  

The ODP is the ability that a compound has to contribute to the degradation of the stratospheric 

ozone layer. The ODP can be estimated from the structure of the substance. Table 2-1 gives 

examples of ODPs for some chemicals.  

 

Table 2-1: ODPs values for some chemicals extracted from Scientific Assessment of Ozone-

Depletion (SAOD) (2006) 

CHEMICAL ODP TIME HORIZON 

(Years) 

Trichlorofluoromethane (R11) 1.0 45 

Brominated substances From 5 to 15 65 
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CHEMICAL ODP TIME HORIZON 

(Years) 

Hydrochlorofluorocarbons From 0.005 to 0.2 - 

Fluorinated hydrocarbons 0 - 

 

 

The fluorine atom does not react with ozone. 

 

The Montreal Protocol was signed on the 16th September 1987, with the aim of protecting the 

ozone layer by limiting the use of certain substances thought to cause ozone depletion. Since its 

inception the protocol has been adopted all over the world. Due to the Montreal Protocol some 

of the designated chemicals, especially refrigerants have been banned, and attention is shifting 

to the ozone friendly substances, such as fluorinated hydrocarbons. 

 

2.3.2 Global Warming Potential (GWP) 

The GWP is the measure of the ability that a greenhouse gas has to contribute to global 

warming, compared to the ability of carbon dioxide. The GWP is determined by the 

atmospheric lifetime and the radiation characteristics of the gas. The following table represents 

the GWP values of some fluorinated hydrocarbons. 

 

Table 2-2: The GWP values and the lifetime of some fluorinated hydrocarbons. The first value 

in the second and third columns is from Scientific Assessment of Ozone-Depletion (SAOD) 

(2002); and the second and third values are from the Intergovernmental Panel on Climate 

Change (IPCC) (2001). 

CHEMICAL LIFETIME / years GWP 

CO2 (R744) All time periods 1 

CHF 3 (R23) 270  
264  
260 

12240  
11700  
12000 

 

CH 2F 2 (R32) 

 

4.9  
5.6  
5.0 

 

543  
650  
550 
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CHEMICAL LIFETIME / years  GWP 

 

CH 3F (R41) 

 

2.4  
3.7  
2.6 

 
90  
150  
97 

 

C 2F 6 (R116) 

 

10000  
10000  
10000 

 
12010  
9200  

11900 

 

C 3F 8 (R218) 

 

2600  
2600  
2600 

 
8690  
7000  
8600 

 

C 4F 10 (R610) 

 

2600  
2600  
2600 

 
8710  
7000  
8600 

 

 

It is evident that fluorocarbons have a higher greenhouse potential compared to carbon dioxide. 

 

2.4 Uses 
 

Fluorinated hydrocarbons have recently gained importance in industry. The relative low 

reactivity, low critical temperature and high polarity resulting from the carbon-fluorine bond 

give them particular characteristics. The need for new fluids as refrigerants to replace the 

ozone-destroying component, since the Montreal Protocol, made them more important in 

industry. Some uses of fluorinated hydrocarbons are provided below.  

 

2.4.1 Refrigerant 

Refrigeration has applications ranging from cooling food in supermarkets to cooling buildings 

with air-conditioners to promoting industrial safety and efficiency through coolant reactors in 

chemical plants and many others. Refrigeration technology has evolved over time from the 
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simple use of ice to cool food through the use of various substances that absorb head though 

expansion and/or vapourisation. 

 

2.4.1.1 Evolution of Refrigerants 

Calm [2008] traced the evolution of refrigerants in four generations.   

 

First Generation: The first generation used any chemicals that could work and were available. 

Most of these refrigerants were toxic, flammable or both. Accidents were frequent. Refrigerants 

such as propane, ammonia and carbon dioxide were very popular. 

 

Second Generation: The second generation moved to fluorochemicals, which were durable and 

in most of the cases safe. Chlorofluorocarbons dominated the second generation. Midgley 

[1937] detailed eight elements that constitute the refrigerants of the second generation; these are 

carbon, nitrogen, oxygen, sulphur, hydrogen, fluorine, chlorine, and bromine. The refrigerants 

of the second generation remained flammable and toxic. 

 

Third Generation: The third generation shifted to components friendly to the ozone layer. 

Fluorochemicals kept the main place. Some natural refrigerants such as ammonia, carbon 

dioxide, hydrocarbons were investigated. 

 

Fourth Generation: The fourth generation refrigeration technology combines concerns about 

the ozone depletion and the global warming characteristics of refrigerants. Therefore, for a 

component to be used as a refrigerant, aside being able to produce cold and being durable, it 

must not have a destructive effect on the ozone layer and must not be a greenhouse gas. 

 

Ananthanarayanan [1992] establishes some desirable properties for a refrigerant, such as high 

critical temperature and pressure, low freezing point, low boiling point, stability, non-toxic, 

non-explosive, non-flammable, chemical inertness and non-ozone depleting. 

 

Most of fluorinated hydrocarbons, especially those with relatively high numbers of carbon 

atoms meet most of the required properties for refrigeration. Thus fluorinated hydrocarbons see 

significant use in the refrigeration industry.  

 

2.4.2 Solvents 

Many fluorocarbons are used as solvents in industry, due to their possessing properties such as 

stability, excellent dielectric properties, low surface tension and viscosity, low toxicity, low 
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boiling point. It is well known that solvents play a major role in modern industrial society. Most 

reactions are carried in the liquid phase. The following are some details about properties that 

give fluorocarbons the ability to be used as organic solvents: 

 

 Excellent dielectric properties: Polar solvents dissolve polar compounds and non-polar 

solvents dissolve non-polar compounds. Tinoco [2008] stated that the solvent with a 

small dielectric constant will be non-polar, thus good for non-polar reactants. 

Fluorocarbons have dielectric constants around 6.4, which is relatively low and make 

them adequate for dissolving non-polar reactants. 

 

 Low surface tension: surface tension is a property of a liquid that determines the surface 

portion of a liquid to be attracted by another surface. According to Durkee [2002] a 

high surface tension is resistant to the attraction; on the contrary a liquid with a low 

surface tension will have a good attraction with another liquid. Fluorocarbons have 

relatively low surface tension; therefore they manifest a good attraction on contact with 

another surface.  

 

 Viscosity: Lewandowski [2006] classified fluorocarbon components as low viscosity 

fluids; this explains their ability to dissolve so many organic reagents. 

 

 Low Toxicity: As quoted previously most fluorocarbons are not toxic; this enables them 

to be used safely.  

 

2.4. 3 Semiconductor 

Organic materials play a major role in electronic industry; semiconductors are mostly made 

with organic compounds and silicon, because of their potential in switches and modulators.  1, 

1-dichloro-1-fluoroethane is widely needed in the manufacture of electronics. Unfortunately, it 

has a destructive action on the ozone layer (ODP=0.11) and its use has therefore been restricted. 

Fluorinated hydrocarbons can be used as substitute solvents. 

 

The McClean Report [2009] stated that the worldwide semiconductor market has encountered a 

major boom since 2000 and has reached US$ 318 billion/annum. The same report predicts that 

the market will reach $ US 400 billion in the few coming years. This will imply great revenue 

for the fluorocarbon market, as they constitute one of the major components in the manufacture 

of semiconductors. 
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2.4.4 Propellant 

A propellant is any material which by its reaction creates movement of an object. A propellant 

can be a solid, liquid, gas or plasma. According to a study led by NASA in 1958 

[www.history.nasa.gov/conghand/propelnt.html], an efficient propellant must have a high heat 

of combustion, a high density, light combustion products and be safely practical.   

 

Although fluorinated hydrocarbons do not have high heats of combustion, they have high 

density as stated by Lemal [2004], and are non-toxic and non-flammable, and they release very 

simple molecules after combustion. It is for these reasons they are frequently use as propellants. 

 

The list of the uses for fluorinated hydrocarbons is not exhaustive; many of their applications 

are not mentioned in the text, only those which have been considered important were described. 

Fluorinated hydrocarbons are also used as anaesthetics, storage agents for biological specimens, 

surfactants, cleansing and protecting agent in cosmetics, blowing agent for foams, and in many 

other industries.  
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CHAPTER 3: REVIEW OF HIGH PRESSURE VAPOUR-LIQUID 

EQUILIBRIUM EQUIPMENT 
 

3.1 Classification of experimental methods   

                                                                                                                                                                                                                                                                                          
Deiters and Schneider [1986] classified systems of high-pressure phase equilibrium 

experimental methods and established the synthetic and the analytic methods. The analytic 

method is characterized by the analysis of one or both phases, liquid or/and vapour; while the 

synthetic method is one in which a sample of known composition is charged into the 

equilibrium cell and its behaviour is observed according to the pressure and the temperature of 

the system. 
 

A detailed and clear classification has been compiled by Raal and Mühlbauer [1998]. The 

classification depends on the circulation or lack of circulation of the phases. When the phases 

are in circulation the method is called dynamic and when none of the phases is in circulation the 

method is static. Sometimes, both methods are combined, and then the method is called 

dynamic-static.  

Below is the diagram showing these classifications: 
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Figure 3-1: Classification of high-pressure vapour-liquid equilibrium methods (from Raal and 

Mühlbauer, 1998). 

 

3.2 Principal features of HPVLE experimental equipment 
 

                         The principal features of any experimental HPVLE apparatus are listed below from the work of 

Raal and Mühlbauer [1998]: 

 

 An equilibrium cell in which the vapour and liquid phases are in equilibrium with each 

other. 
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 An environment for the control of the temperature of the equilibrium cell. The 

equilibrium cell is located in this environment which, in most cases, is a bath filled with 

a fluid in circulation (air, nitrogen, water, alcohol, etc). 

 

 A mechanism of agitation to increase the rate of equilibration. The static method uses 

an internal stirrer whilst in the dynamic method the circulation of the phases provides 

sufficient agitation. 

 

 The analytical method requires a method of analyzing both liquid and vapour phases. 

This can be satisfied by an external device such as a Gas Chromatograph (GC).  It also 

requires removing a representative sample. Sometimes analyses are performed in-situ 

by means of an optical device. 

 

 The synthetic method requires a means of adjusting the equilibrium cell pressure and 

temperature. It is usually achieved by adjustment of the cell volume, to bring about 

phase separation. 

 

 Devices for measurement of pressure and temperature.  

 

 Insulation is necessary when working at temperatures different from ambient. 

 

3.3 Challenges encountered during HPVLE experimentation 
 

This section below is based on the work of Raal and Mühlbauer [1998]. 

Difficulties expected in attaining accurate measurement of HPVLE include the following: 

 Degassing of liquid components before entering into equilibrium cell. 

 Attaining of true isothermal equilibrium conditions. 

 Establishing that equilibrium has been reached. 

 Measuring of accurate temperature and pressure of the equilibrium cell. 

 Sampling of the liquid and vapour phase without disturbing the equilibrium condition. 

 Preparation of truly representative sample for analysis. 

 Accurately analyzing the withdrawn samples. 
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3.3.1 Degassing of liquid components at the start of experimentation  

It is necessary to remove all dissolved gases from the liquid component, since the presence of 

the gas in the liquid can affect the adsorption of the volatile component into the liquid 

component. It also introduces error into the values of pure component vapour-pressures. 

Degassing becomes more important in systems dealing with two components slightly soluble in 

one another. The liquid component can be degassed in-situ in the equilibrium cell or before 

introducing it in the cell by the use of appropriate equipment. 

 

3.3.2 Obtaining true isothermal equilibrium conditions 

The temperature gradients in the equilibrium cell must be as small as possible in order to get the 

true equilibrium conditions at the set temperature. Inducing isothermal conditions in the 

equilibrium cell is difficult when it comes to volatile/non-volatile component systems. Care 

should be taken with these systems to avoid certain problems when sampling. Therefore any 

heat conduction via conductive lines linked to the cell and any direct radiation energy exchange 

between the cell and the bath heaters should be avoided. More than one sensor should be 

installed in the walls of the cell to check that temperature is constant; according to Raal and 

Mühlbauer [1998] the acceptable temperature gradient is 0.5 K or less. 

 

3.3.3 Establishing the Attainment of equilibrium 

Thermodynamic equilibrium involves no change in the properties and quantity of material 

occuring over time. In other words, thermodynamic equilibrium implies a balance of all 

potentials that lead to change. High stirring increases the contact between different phases, 

hence it decreases the time needed to reach equilibrium. The rate of change decreases while 

approaching equilibrium. A true state of equilibrium is impossible due to continual 

transformation in the system. As a result, equilibrium is assumed when changes are no longer 

detected by the measuring devices. Some properties such as temperature, pressure, vapour and 

liquid composition are determinant factors in establishing the equilibrium. Various authors give 

values in some variables at which they assume equilibrium; Fredenslund et al. [1973] set a 

change in the pressure of less than 0.05% within half an hour to assume the equilibrium. 

 

3.3.4 Temperature and pressure measurement 

Various instruments can be used for temperature measurement. Thermocouples are preferable 

for temperatures above 423.15 K. Platinum resistance thermometers seem to be the preferred 

devices for experimentation between 0 and 373.15 K. 

For pressure measurement, bourdon pressure gauges and electronic pressure transducers are 

used. 
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3.3.5 Avoiding disturbance of equilibrium during sampling 

During the sampling process, a quantity of material is withdrawn from the system. The larger 

the volume removed, the greater the disturbance of equilibrium. This change in volume is 

evaluated based on pressure change. Pressure fluctuations of 10 and 1 kPa have been reported 

by Besser and Robinson [1971] and Wagner and Wichterle [1987], respectively. The withdrawn 

sample volume is influenced by two factors; the volume of the sample and the sampling 

method. The size of the sample taken from the cell is fixed mainly by the analytical device 

whereas the method of sampling must lead to the lowest possible volume change in the cell. As 

stated by Sagara et al. [1972], Klink et al. [1975], Aschroft et al. [1983], Reiff et al. [1987] and 

Mühlbauer [1990], to overcome the volume change problem, one should use a large equilibrium 

cell volume. However this method has the disadvantage of increasing the quantity of chemicals 

required for the measurements. 

To minimize the risk of disturbing the equilibrium during sampling, the task is to implement an 

appropriate sampling method with characteristics as reported below: 

 

 A rapid sampling method in order to shorten the time for risk of equilibrium changes as 

stated by Figuiere et al. [1980]. 

 

 A sampling method where the volume change is only caused by the withdrawn sample. 

 

 A sampling method where volume change can be balanced by pressure adjustment, 

Nakayama et al., [1987]. 

 

 Using optical methods if possible, for in-situ analysis of the equilibrium cell contents 

without removing any samples. 

 

3.3.6 Preparation of withdrawn sample for analysis 

Karla et al. [1978] noted that there is a tendency for the volatile component to flash 

preferentially when sampling the liquid phase of a volatile/non-volatile system. The challenge 

will be to implement a method of taking homogenized samples, hence avoiding flashing of the 

volatile component and condensation of the non-volatile component. One of the difficult tasks 

is to homogenize the vapour mixture without re-condensation of one of the components. Below 

are some actions recommended to re-homogenize and prevent partial condensation of the liquid 

samples: 

 

 Wagner and Wichterle [1987] used a stirred homogenization vessel in the sample line. 
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 Kobayashi and Katz [1953], Rogers and Prausnitz [1970], Simnick et al. [1977], and 

Inomata et al. [1986] analyzed the volatile component and non-volatile component 

separately. The method in this case consists of separating the volatile from the non-

volatile component in a sample using an evacuated vessel. The condensed non-volatile 

components were flushed out of the vessel with an organic solvent. The calibration 

standard was added and the final mixture analyzed using the gas chromatograph. 

 

 Kalra et al. [1978], Ng and Robinson [1978], and Nakayama et al. [1987] set the 

sampling lines at the equilibrium temperature and used the circulation system to 

rehomogenize the sample before sending it to the gas chromatograph. 

 

 Heating of all the lines carrying samples to the gas chromatograph to a temperature 

higher than the equilibrium temperature and keeping the pressure in the lines low to 

avoid condensation. The temperatures recommended are 50 to100 K higher than the 

equilibrium temperature. 

 

 Ejection of the liquid sample in the jet mixer at a temperature 50 K higher than the 

equilibrium temperature. The jet mixer leads to the vaporization of the sample and the 

vapour produced is homogenized by the use of a swirling recirculation motion within 

the mixer. 

 

3.3.7 Accurate analysis of the vapour and liquid phases 

Two primary methods are used for the analysis of vapour and liquid phase samples, viz. gas 

chromatography and spectroscopy for external analysis and in-situ analysis respectively. 

Besserer and Robinson [1971] and Kalra et al. [1978] have, however, also reported the 

combination of refractive index measurements with gas chromatography. 

 

Gas chromatography:  This instrument uses a thermal conductivity detector (TCD), which is 

used to detect hydrocarbons and non-hydrocarbons or a flame ionization detector (FID), which 

detects organic components only. Below are some disadvantages of the gas chromatograph: 

 

 While working at high-pressure or/and high temperature, the state of the sample 

entering the GC is different from the equilibrium state. 
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 Producing accurate calibration of the detector while working with gas mixtures is 

difficult. For most cases the response-factor ratio changes with the concentration. 

 

Spectroscopic method: This method was proposed to overcome difficulties associated with the 

preparation of the sample for the GC. A spectroscopic method is performed in-situ. Use of 

infrared spectra to determine a phase concentration has been reported by Swaid [1984], where 

the absorption bands are often well separated. Below are some disadvantages of the infrared, 

visual, and ultraviolet spectroscopy or Raman scattering methods: 

 

 Only aromatic or coloured compounds can be analyzed using the ultraviolet or visual 

spectroscopy. 

 

 Extensive calibration procedures are required compared with those required for gas 

chromatography. 

 

 There is a risk of overlapping absorption bands of different components with infrared 

spectroscopy. 
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Table 3-1: Review of HPVLE static equipments 

 

Authors 

Equilibrium cell 
Temp range 

[K] 

Press range 

[MPa] 

Measurement device Sampling device 

Material of 

construction 
Volume [cm3] Temp Pressure Liquid Vapour 

Rogers and 
Prausnitz 

[1970] 
Stainless steel 150 

223.15 – 

423.15 
100 TC 

Floating 
piston 

gauge + 
strain gauge 

Set of 
moving 
piston 

Set of 
moving 
piston 

Besserer and 
Robinson 

[1971] 
Stainless Steel 

From 10 to 
175 

223.15 – 
423.15 100 TC 

Pressure 
transducer 

Sampling 
valve 

Sampling 
valve 

Kalra and 
Robinson 

[1975] 
316 Stainless steel 250 

173.15 – 
339.15 

35 TC 
Pressure 

transducer 
Needle valve Needle valve 

Ng and 
Robinson 

[1978] 

316 Stainless steel 
+ Pyrex glass 

window 
150 310.85 – 

588.15 
17.2 TC Pressure 

gauge 
Sampling 

rod 
Needle valve 

Figuiere et al. 
[1980] Stainless steel 50 

423.15 – 
673.15 40 TC 

Pressure 
transducer 

Valves that 
were opened 
by a hammer 

Valves that 
were opened 
by a hammer 
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Table 3-1 (Continued): Review of HPVLE static equipments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors 

Equilibrium cell 
Temp range 

[K] 

Press range 

[MPa] 

Measurement device Sampling device 

Material of 

construction 

Volume 

[cm3] 
Temp Pressure Liquid Vapour 

Bae et al. 
[1981] 

304 stainless steel 
+ glass window 

300 
223.15 - 

323.15 
10 PRT Pressure 

transducer 
Sampling 

rod 
Sample 

expansion 

Ashcroft et al 
[1983] 

Manganese steel + 
glass window 

885 298.15 – 
330 

69 Thermistor 
Pressure 

transducer 
Sampling 

rod 
Capillary 
sampling 

Guillevic et al. 
[1983] 

316 Stainless steel 50 558 7 TC 
Pressure 

transducer 
Capillary 

microvalve 
Capillary 

microvalve 

Laugier & 
Richon [1983] 

316 stainless steel 50 423 10 TC 
Pressure 

transducer 
Capillary Capillary 

Wagner and 
Wichterle 

[1987] 

Stainless steel + 
two pyrex glass 

windows 
65 303-323 10 QT 

Bourdon 
gauge 

Capillary + 
a six-way 

valve 
Capillary 
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Table 3-1 (Continued): Review of HPVLE static equipments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRT: Pressure resistance thermometer; QT: Quartz thermometer; TC: Thermocouple

Authors 

Equilibrium cell 
Temp 

range [K] 

Press range 

[MPa] 

Measurement device Sampling device 

Material of 

construction 

Volume 

[cm3] 
Temp Pressure Liquid Vapour 

Mühlbauer  
[1990] 

316 Stainless steel 350 453 20 PRT Pressure 
transducer 

Sampling 
rod 

Sampling 
capillary 

Zabaloy et al. 
[1993] 

Brass + glass disks 50 298.15 – 
370 

4.1 Thermistor 
Pressure 

transducer 
Sampling 

valves 
Sampling 

valves 

Kang & Lee 
[1996] 316 Stainless steel 545 323 0.7 TC 

Pressure 
gauge 

No Liquid 
analysis - 

Baba-Ahmed 
et al. [1999] 

Hastelloy C276 43 <70 40 PRT Pressure 
transducer 

Pneumatic 
capillary 

Pneumatic 
capillary 

Valtz et al. 
[2002] 

316 Stainless steel 
+ sapphire window 

30 223.15 - 
473.15 

10 Pt-100 Pressure 
transducer 

ROLSITM 
sampler 

ROLSITM  
sampler 
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A more detailed review of HPVLE static equipment is presented in the work of R. Dohrn and 

G. Brunner [1995]. In this chapter, equipment was selected with the intention of showing the 

evolution of sampling technique, as this is the main modification of the equipment used in this 

project. The sampling technique evolved from a complex set of moving piston to a simple 

capillary activated electrically. All along the development of the HPVLE static apparatus, 

difficulties were encountered with various sampling techniques used. Below, some of these 

difficulties are detailed, which difficulties were the cause of moving from one technique to 

another. 

 

 Set of moving piston: This technique was used in the apparatus of Rogers and 

Prausnitz [1970], the sample technique consisted of removing sample from the 

equilibrium cell by the means of two set of moving pistons attached to the cell. The set 

of pistons is comprised with two pistons separated by a variable volume cavity. At the 

sampling time this volume moved until the sample ports are reached. The sample is 

then withdrawn from the cell. This technique presented the risk of pressure change. It 

required the use of special O-ring seals and heavy duty Teflon material. There was also 

a risk of mixing the vapour and the liquid phase. 

 

 Sampling valve: The apparatus of Besserer and Robinson [1971] and of Zabaloy et al. 

[1993] used this sample technique. The method was simple and consisted of using 

micrometering valves, which, allowed the removal of sample from the cell by flushing. 

The average size of withdrawn sample was given by Besserer and Robinson [1971] as 

10-3 g-mol, 0.2% depletion in terms of the overall cell volume. This is not negligible 

considering if one must take at least four samples to ensure reliably replicated data.  

 

 Needle valve: The needle valves were used in the apparatus of Kalra and Robinson 

[1975] and Ng and Robinson [1978]. The needle valves were incorporated to the wall 

of the cell. The needle valve was connected to a manifold, which received the sample 

and sent it to the analysis instrument. A flow of helium gas supplied externally helped 

to carry the sample. The method failed to give representative sample of volatile/non-

volatile system, as the lighter component tended to flush preferentially with respect to 

heavier component. 

 

 Sampling rod: This technique was used in the apparatus of Ng and Robinson [1978], 

Bae et al. [1981], Ashcroft et al [1983] and Mühlbauer [1990]. The sampling tool was 



21 

 

a 5 mm diameter rod immersed in the liquid phase. The rod was drilled with a hole of 

approximately 3.5 µl. This hole was filled with liquid sample, and by the means of a 

piston moved from the liquid phase out of the cell. Helium gas was used to carry the 

sample from the rod to the analysis instrument. The method was able to produce good 

results, unless the time taken for sampling was unsatisfactory.   

 

 Valves that were opened by a hammer: The apparatus of Figuiere et al. [1980] used 

sampling valves that were opened by hammer activated by an electromagnet. The 

problem with this method is that it was reliant on the opening time of the valves. This 

technique was found heavy and insufficiently trustworthy. 

 

 Pneumatic capillary: The apparatus of Baba-Ahmed et al. [1999] used this technique. 

The method consisted of a capillary one end of which was immersed in the cell, with 

the other end in a chamber receiving the carrier gas going to the GC. The capillary was 

blocked off by a point activated by pressurized air. The opening and closing of the 

capillary was achieved by the pneumatic point. Samples of 1 to 5 micro litres were 

taken. The method was practical and led to good results. 

 

 Rapid Online Sampler Injector (ROLSITM): Valtz et al. [2002] used this method. 

This technique was similar to that of the pneumatic capillary, the only difference was 

that the ROLSITM was activated electronically, which rendered its use easier and more 

precise. More details about the ROLSITM are provided in chapter V. 
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CHAPTER 4: THEORETICAL ASPECTS OF HIGH-PRESSURE 

PHASE EQUILIBRIUM 

 
There are many possible liquid and vapour mixtures and it is almost impossible to produce VLE 

data for all such systems. Moreover, the process of obtaining good experimental data is difficult 

and expensive; it requires good experimental skill, knowledge, patience and experience. Thus 

the need to make some predictions of the experimental data based on correlations with similar 

systems arises, in order to determine the system behaviour at various conditions. 

 

Thermodynamic theory provides the framework for data correlation or prediction. This theory is 

commonly applied at low pressure, however when applied to mixtures at high pressures, the 

task become more difficult. This is due to the introduction of non-ideality in the system for the 

high pressure. However, with the application of powerful software, the task is less complicated. 

Generally, there are two categories of theoretical methods for data correlation: 

 

1. The direct method, known commonly as phi-phi method and 

2. The combined method, known commonly as gamma-phi method 

 

For the direct method, the fugacity coefficients of both liquid and vapour phases are computed 

via an Equation of State (EOS). For the combined method, the liquid phase activity coefficient 

is computed via a liquid phase activity coefficient model and the vapour phase fugacity 

coefficient via an EOS. 

 

4.1 Criterion for phase equilibria 

 

According to Van Ness et al. [2005] phase equilibrium is a static condition in which no changes 

occur in the macroscopic properties of a system over time. Equilibrium is also defined as the 

state when all potentials susceptible to change are equal for different phases. The criterion of 

thermodynamic equilibrium in binary vapour-liquid equilibrium is defined by the state at the 

same temperature, pressure and chemical potential or fugacity in both phases.  

  

),,(ˆ),,(ˆ
ii

V
ii

L yPTfxPTf 
     (4.1) 
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:if


 is the fugacity of the component i  in solution. 

V and L : are the vapour and liquid phases respectively. 

          

Prausnitz et al. [1980] proposed an expression for the fugacity that is produced from the first 

principle based on to the three most commonly measured variables, temperature, pressure and 

composition.  
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The right-hand-side terms of the equation are very complex, this makes the equation unusable. 

So, it requires relating the fugacity to measurable variables, such as temperature, pressure and 

phase compositions through the use of secondary functions such as the activity coefficient γ and 

the fugacity coefficient . 

 

4.2 The direct method 

 

As quoted previously, the direct method describes the fugacity coefficients of both the liquid 

and vapour phases by the use of an equation of state. 

 

                              
Pxf L

ii
L

i ̂ˆ 
                                                       (4.3)                                                                                

         
Pyf V

ii
V

i ̂ˆ                                                         (4.4) 

 

ix  and iy are respectively the mole fractions of component in the liquid and vapour phases, and

L
î , V

î  are the fugacity coefficients of component 𝑖  in the liquid and vapour phases, 

respectively, according to the equilibrium condition. These equations may be written as: 

 

                                                               
V
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L
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The two fugacity coefficients are calculated using an appropriate EOS and an exact 

thermodynamic relationship. 

 

For the vapour phase:  
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For the liquid phase: 
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As stated by Raal and Mühlbauer [1998] the use of the direct method at high pressure becomes 

complicated as:  

 

 Vapour phase non-idealities become prominent. 

 The total pressure differential term in the isothermal Gibbs-Duhem equations 

becomes important. 

 

4.2.1 Problems related to the application of the direct method 

Raal and Mühlbauer [1998] noted some difficulties encountered in application of the direct 

method: 

 

 The selection of the most suitable EOS to describe both liquid and vapour phase non-

idealities is a challenge as there are in literature, hundreds of EOS. The main criterion in 

this selection is that the EOS must be flexible enough to fully describe a pure 

substance 𝑃,𝑉 and 𝑇 behaviour for both phases in the temperature and pressure range 

under study. 
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 Selecting the appropriate mixing rules. The mixing rules extend the pure component 

form of the EOS to mixtures. Most mixing rules are empirical and tend to be specific to 

the system. 

 The problem of locating the suitable liquid and vapour molar densities when higher than 

cubic equations of state are used. 

 

The block diagram (Figure 4.1) represents the computational scheme for the calculation of   

𝑥𝑖and 𝑦𝑖  from the experimental data 𝑃  and  𝑇 in direct method.  

 

 

Figure 4-1: Block diagram for the flash calculation from isothermal vapour-liquid equilibrium 

used in ThermopackTM Software. 

Initialisation: 𝑇 , 𝑃, 𝑥𝑖 , 𝑦𝑖 ,  
𝛺 

Calculation of equilibrium 
ratio: 𝐾    

Type equation here. 

Calculation of 𝛺 
First loop 

Calculation of 𝐾  

Thermodynamic 
equilibrium resolved? 

Results: 𝑇 , 𝑃, 𝑥𝑖 , 𝑦𝑖 ,  𝛺 

Iteration on 𝑥𝑖 , 𝑦𝑖  second 
loop 

Iteration on  𝛺 

Yes 

No 
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Where  𝛺 is the rate of vaporisation, which is defined by the following expression:    

     

                                                                  
V

L V
 

                                                        (4.8) 

 

With V and L representing the mass of vapour and liquid respectively.   

And the equilibration ratio is obtained by this formula: 

 

                                                               

i

i

yK
x


                                                  (4.9)                

 

4.3 The combined method 
 

The basis of this method is the use of separate secondary functions to describe the non-ideality 

of both phases. 

 

For the vapour phase: 
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ii
V
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                                                 (4.10) 

 

For the liquid phase: 

 

                                                                   ˆ L OL
i i i if x f

                                                (4.11) 

 

Therefore at equilibrium 
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i i i i iy P x f T P 
                                        (4.12) 

 

As in the direct method the vapour phase is calculated using a suitable EOS through the exact 

thermodynamic relationship: 
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The liquid phase activity coefficient is determined from the Gibbs-Duhem equation: 

 

                 
  







 








 









 dP

RT
VdT

RT
H

RT
Gdxdx i

E

iii 2ln 
        (4.14)

 

 

The activity coefficient i gives the correspondence between the liquid fugacity L
if̂  at 

condition 𝑇, 𝑃 and 𝑥 to some other define conditions. The other condition is referred to as the 

standard state and it represents the known thermodynamic condition of a component at which 

its activity coefficient is unity. 

 

4.3.1 Activity coefficients  

For isothermal conditions, the variable pressure activity coefficients are given by: 

 

                                                  







 dP

RT
Vdx ii ln (Constant 𝑇)                         (4.15) 

 

So the use of constant pressure is an advantage, hence the equation is: 

 

                                                   0ln iidx   (Constant 𝑇 and 𝑃)                            (4.16) 

 

The well known semi-empirical mixture models e.g. Van Laar, Margules, NRTL, UNIQUAC, 

etc. are particular mathematical solutions of equations (4.13) and (4.14). This equation can be 

applied to both symmetric and unsymmetric conventions of activity coefficients.   

At low to moderate pressure the dependency of the liquid-phase activity coefficients can be 

neglected, thus i  can be considered as a function of temperature only.  

At constant temperature and composition, the constant pressure activity coefficient can be 

calculated by the following relation: 
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Where     i
Pr )(   : is the activity coefficient at an arbitrary reference pressure ( rP ). 

iV : Partial molar volume of pure component i. 

 

4.3.2 Models for the excess Gibbs energy 

4.3.2.1 Margules equation 

Margules [1895] proposed the first Gibbs energy model. This is the oldest and the simplest 

activity coefficient model. The Margules equations are applicable to binary systems only and 

they do not deal with temperature dependence. The Margules expression is given by the 

equation below: 

                                                    

The Margules model was found very simple and limited in its ability to describe complex 

behaviour. It is giving a symmetric function of xi and GE, while most systems have an 

asymmetric relationship in their properties.  

 

The Margules equations are adequate for systems with a linear dependence of 21/ xRTxGE
 

on 1x . The Margules model is suitable to mixtures with components of similar molar volumes. 

However it has been applied with satisfaction to various mixtures.  

 

4.3.2.2 Van Laar equation 

These equations were developed by Van Laar [1910, 1913]. The main purpose of the Van Laar 

model was to consider the size differences of the molecules.  

 

The Van Laar expression works best with non-polar liquids. The Van Laar expression is 

flexible and simple, that is the reason why it is widely used. Some weaknesses of the Van Laar 

model are that: firstly it does not consider molecular interactions, and as a result, it is still poor 

in the characterization of highly non ideal systems, secondly, the Margules and Van Laar 

expression are based on an empirical foundation hence they do not give a clear understanding of 
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the temperature dependence and thirdly, Prausnitz et al. [1986] stated that the Van Laar model 

does not represent maxima or minima in coefficient activity ( i ). 

According to Malanowski and Anderko [1985] systems that give good results with the Van Laar 

model work badly with the two-parameter Margules model.  

 

4.3.2.3 Wilson equation 

The model proposed by Wilson [1964] is based on the local composition instead of the entire 

liquid composition, which is defined as the differences between a liquid solution and the total 

mixture composition at local composition. Contrary to the previous models the Wilson model 

take in account the molecular interactions.  

 

The Wilson equations represent the temperature dependence well. It is generally good for 

highly non-ideal systems, however it cannot describe partial liquid miscibility or systems for 

which i  has an extremum. It is good for polar compounds. Therefore, it is superior to the 

Margules and Van Laar models. The Wilson model shows disadvantages can not however 

predict miscibility regions for a certain number of systems, and it cannot make predictions for 

LLE. 

 

4.3.2.5 NRTL model 

The Non-Random, Two-Liquid (NRTL) model was proposed by Renon and Prausnitz [1968] 

and it is used for both miscible and partially miscible systems. Equation 4.35 is the expression 

of this model: 
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𝛼𝑖𝑗  is the non-randomness parameter 

𝑔𝑗𝑖 is the energy parameter describing the interaction between components 𝑗 and 𝑖 

The adjustable parameters are ∆𝑔12, ∆𝑔21and 𝛼𝑖𝑗  

 

The expressions for the activity coefficients are: 
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                   (4.22) 

 

The use of the NRTL model is a bit demanding, because of the three adjustable parameters. 

According to Malanowski and Anderko [1992] the NRTL model has an advantage in the 

description of VLE and heats of mixing. Moreover the NRTL model gives a good description 

for the non-ideal mixtures Vetere, [2000]. Sandler [1997] proposed the value of 0.3 for the αij, 

in VLE and 0.2 in LLE 

 

4.3.2.6 Uniquac model 

The Universal Quasi-Chemical (UNIQUAC) model was developed by Abrams and Prausnitz 

[1975]. This model described the excess energy in two parts, a combinatorial term, which refers 

to molecular size and shape differences and a residual term, related to intermolecular forces. 

The UNIQUAC model was developed to maintain the advantages of the Wilson model, while 

also being able to account the partial miscibility of systems in which activity coefficients reach 

their extrema.  

 

The UNIQUAC model has a wide applicability; it is suitable for nonideal mixtures. It provides 

explicit temperature dependence. 

The UNIQUAC model has the advantages of having: applicability to multicomponent mixtures, 

good characterization for molecules with very large differences in molecular size, applicability 

to LLE. 

Its main disadvantage is its complex algebraic foundation and the availability of the 𝑟and 𝑞 

parameters.  
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4.4 Equations Of State (EOS) 
 

Equations of state (EOS) are the expressions which associate the pressure, temperature and 

volume of substances. There are hundreds of EOS‟s in the literature. The mathematical 

expression for an EOS is given by: 

 

                                                             ( , , ) 0f P V T                                                   (4.23) 

 

The EOS is useful in describing many properties of pure substances as well as of mixtures, such 

as vapour pressures, densities, critical proprieties, etc.  

 

As presented above, on the equation 4.48, an equation of state is a function containing the 

pressure, volume and temperature as parameters.  

 

4.4.1 Brief development of EOS 

The concept of EOS started in 1662, with Boyle, who proposed an expression, stating that the 

volume of gas is inversely proportional to its pressure at a given temperature. 

 

In 1802, Charles and Gay-Lussac calculated the effect of temperature. In 1834, Clapeyron used 

these results and establish the first ideal gas law: 

 

                                                    )267(  TRPV                                                   (4.24) 

The temperature was given in oC 
 

Further it was developed as: 

 

                                                                  RTPV                                                         (4.25) 

 

The temperature was given in Kelvin 

𝑅 is defined as the gas constant. 

The ideal gas law was not able to describe real gas correctly, due to the effect of size, shape and 

structure, as there are some forces between the molecules which cause them to attract or to repel 

each other. These attractions and repulsions influence the PVT behaviour. For polar molecules 
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for example, these attractive and repulsive forces are very prominent with the result that the 

ideal gas law was inadequate for polar molecules.    

 

4.4.2 Virial EOS 

In 1927, Ursell developed the Virial EOS from statistical mechanical description of the 

molecular interaction in real gases. It is given by: 
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                            (4.26) 

 

 

The third virial coefficient has not been extensively measured and little data is known; that is 

why the equation is usually truncated at the second term. As a consequence the virial equation 

becomes unsuitable to provide accurate enough descriptions of real gas behaviour for use in 

VLE calculations. The other problem that restricts the use of the virial equation is that the virial 

coefficients are scarcely known. Some of these coefficients have been published by Dymond 

and Smith [1980].  

 

4.4.4 Cubic EOS 

The cubic equations are the most useful due by the fact that they are simple, and can describe 

properly the vapour phase as well as the liquid phase. They are also adequate for mixtures. 

 

Development of the cubic EOS family 

The general form of cubic equation is: 

 

                                                    
 )(Vg

a
bV

RTP 




                                                   (4.27) 

 

bV
RT


 is represented as the repulsion pressure between molecules. b is the van der Waals 

volume or the excluded volume and is associated to the size of the molecules. )(Vg
a

 is the 
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attraction pressure. a  is the value of the intermolecular attraction force. And the expression

)(Vg  depends on the molar volume. 

 

Van der Waals (VdW) 

Van der Waals [1873] was the first to propose a cubic EOS. 

 

Sandler et al. [1994] stated that the van der Waals equation failed to predict vapour pressures. 

The van der Waals equation gives a critical compressibility factor of 0.375 for all fluids, while 

it should vary from 0.24 to 0.29 for hydrocarbons and the range is wider for non hydrocarbons.  

 

Redlich-Kwong (RK) 

Redlich and Kong [1949] modified the van der Waals equations and introduced the temperature 

dependence in the attraction term.                        

 

The RK equation gives a critical compressibility factor of 0.333, which is better compared to 

that of Van der Waals. The RK equation is good for approximately ideal systems as stated by 

Gess et al. [1991]. However the RK equation gives inaccurate values for vapour pressures 

prediction and liquid density. 

 

Soave (SRK) 

Soave [1972] modified the RK EOS and gave the SRK EOS. He introduced the temperature 

dependency into the attraction parameter: 

                                                                                                 

The modification of Soave improved the prediction of vapour pressures for hydrocarbons with 

small number of carbons. The SRK has been widely used in the prediction of VLE at moderate 

and high pressures for non-polar fluids. 

Raal and Mühlbauer [1998] establish that the RK and SRK EOS usually generate satisfactory 

vapour densities but fail to generate satisfactory liquid densities, for example the SRK EOS 

predicts specific liquid volumes greater than the literature values. To improve the interpretation 

of polar fluids Soave [1979] incorporated two empirical parameters into the expression for 𝛼 

function of the original SRK.  

 

Peng and Robinson (PR)                                                                                                          

Peng and Robinson [1976] developed the Peng-Robinson (PR) EOS. The RK and SRK EOS 
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were unable to accurately predict a liquid molar volume, which leads to the introduction of the 

PR EOS. The PR equation introduced the volume dependence: 

 

                                          )()(
),(

bVbbVV
Ta

bV
RTP








                              (4.28) 

 

Where: 
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The modifications of the PR improved the critical compressibility factor, which became 0.307. 

The improvement was seen also in the prediction of vapour pressures for hydrocarbons from C6 

to C10. The SRK and the PR give good phase equilibrium predictions for hydrocarbon systems. 

They are easy to operate as they need few input data. However, they are inaccurate in liquid 

densities predictions and fail in phase equilibrium prediction for long chain molecules, and they 

show inaccurate vapour-pressure values in the critical region.  

Schmidt and Wenzel [1980] introduced some modifications to the PR equation, by using the 

acentric factor directly as a third parameter. In the meantime Harmens and Knapp [1980] 

proposed the introduction of more parameters in the attractive parameter. These improvements 

enable the equation to predict the liquid molar volume and saturation pressure well.   

 

Peng-Robinson-Stryjek-Vera (PRSV) 

Stryjek and Vera [1986] modified the PR EOS in order to facilitate the use of cubic EOS at 

reduced temperatures and for better representation of some properties of polar and associating 
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compounds. Their EOS remains the same as the PR EOS, but there an adjustable parameter is 

introduced. 

 

Alpha function 

Some components (polar component) do not satisfy the conditions for the general functions that 

define α parameters.  To compensate to this, Different expressions of α functions have been 

proposed, e.g. Redlich and kwong [1949], Soave [1972], Peng and Robinson [1976], Mathias 

and Copeman [1983], Stryjek and Vera [1986] to name a few. Except the Mathias and Copeman 

all these expressions have been given previously. 

 

 Mathias and Copeman [1983] proposed an α function with adjustable parameters. Below is 

given an expression of the Mathias Copeman with three adjustable parameters: 
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4.4.5 Mixing rules 

Most of the uses of the equations of state are on mixtures instead of the pure components. This 

requires the mixing rules to extend the application of equations of state to mixtures.  Raal and 

Mühlbauer [1998] classified the mixing rules in five main categories: 

 

1. Classical (CMR) 

2. Density-dependent (DDMR) 

3. Composition-dependent (CDMR) 

4. Density-independent (DIMR) 

5. Local composition (LCMR)        
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The incorporation of the local composition theory into some of these mixing rules, leads to 

these additional categories: 

 

6. Composition-dependent local composition (CDLCMR) 

7. Density-dependent local composition (DDLCMR) 

8. Density-independent local composition (DILCMR) 

9. Density and composition dependent (DCDMR) 

 

4.4.5.1 Classical mixing rules 

The classical mixing rules were developed for the van der Waals EOS. Soave made some 

modifications to the classical mixing rules for use with the SRK EOS.
 

Shibata and Sandler [1989] have found some limitations with the use of the CMR: 

 The CMR fails in the prediction of liquid densities for pure fluids or mixtures with an 

error of 5 %. Xu and Sandler [1987a, 1987b] suggested a solution to overcome this 

challenge; the method is explained in their works. 

 The CMR does not give a good agreement between correlated and experimental data 

for mixtures comprising molecules with large difference in size and/or in chemical 

nature. 

 

4.4.5.2 Local composition mixing rules 

For the first time the Local Composition Mixing Rule (LCMR) was introduced by Huron and 

Vidal [1979], and was developed further relating to the excess Gibbs free energy )( EG  to the 

pure component )( i  and mixture )ˆ( i fugacity coefficient. 

 

In 1986, Danner and Gupte [1986] modified the Huron and Vidal expression and proposed a 

new equation, which link the 𝑎𝑚  and 𝑏𝑚  parameters of the EOS to the 𝐺𝐸 at infinite pressure:  

 

The Danner and Gupte equation has the ability to link the fugacity coefficient to the activity 

coefficient model via the Gibbs excess model. Tsonopoulos and Heidman [1986], stated that the 
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computation time is related to the cube of the number of constituents of the mixture as opposed 

to the square for the classical mixing rules, which is a disadvantage for the use of this mixing 

rule. Wong and Sandler [1992] showed another disadvantage with the use of the Huron-Vidal 

mixing rule, as in the low-density, the second mixture virial coefficient is not a quadratic 

function of composition.  

 

Michelson, Dahl and al [1991] modified the Huron and Vidal equation to adapt it for use with 

the UNIFAC model. This enables the prediction of VLE data from low to high pressures. 

  

The modified Huron-Vidal mixing rule gives good predictions of the GE at high densities, but 

still not provides, in the low densities, the second mixture virial coefficient in a quadratic 

function of composition. Raal and Mühlbauer [1998] pointed out that the predictions of the 

modified Huron-Vidal mixing rule deviates significantly as the temperature and pressure range 

becomes very large.  

 

4.4.5.3 Density dependent mixing rules 

Mollerup [1992] proposed the introduction of density dependence into the mixing rule. This 

development may have helped to the problem of nonquadratic composition dependence of the 

second virial coefficient in the low density limit. However, Wong and Sandler [1992] stated that 

this development does not conserve the cubic nature of EOS when applied to mixtures. 

 

4.4.5.4 Composition dependent mixing rules 

Panagiotopoulos and Reid [1986] incorporated the influence of composition into the mixing 

rule. This mixing rule has the advantage of presenting a simple mathematical expression. 

However Wong and Sandler [1992] stated that the above mixing rule showed with some other 

mixing rules the problem of not having the second virial coefficient as a quadratic function of 

composition.
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4.4.5.5 Density independent mixing rules 

Wong and Sandler [1992] established the DIMR and its formulation; this mixing rule presents 

an advantage, in preserving the cubic nature of a cubic EOS. Instead of using the excess Gibbs 

free energy, the choice was made on the Helmholtz free energy. 
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 C is a constant related to the equation of state. 

EA    represents the Helmholtz free energy 

ijk     represents the binary interaction parameter 

 

The Wong-Sandler mixing rule also presents the advantage of giving good predictions in both 

low and high density regions.  

 

4.5 Thermodynamic consistency testing 
Data produced experimentally cannot be assumed to be absolutely accurate. In fact, Vapour 

Liquid measurement, especially at high pressure can be complex and source of many errors. 

Therefore for such judgment, the experimental data must satisfy a certain fundamental 

thermodynamic relationship; this process is called the thermodynamic consistency test. 

Liebermann [1972] stated that consistency tests verify global consistency of the experimental, 
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and sometimes they also assess the influence of the partial molar property of one constituent of 

a binary mixture from that of the other. 

 

4.5.1 Gibb’s Duhem equation 

A more useful thermodynamic relationship for thermodynamic consistency testing is the Gibb‟s 

Duhem equation, which was developed in various ways. 

 

Raal and Mühlbauer [1998] enumerated some problems encountered in extrapolating the low-

pressure thermodynamic consistency tests to high-pressure. Firstly, the more volatile 

component is usually supercritical, which demands particular observation of the standard-state 

definitions. Secondly, vapour-phase nonidealities must be considered with an appropriate 

equation of state. Finally, the term related to liquid molar volume or excess molar volume must 

be evaluated. 

 

A particular test, derived from the Gibb‟s Duhem equation, is the Chueh et al. [1965] Area Test; 

the equation below describes this test. 
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Further development will lead to the following equation: 
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 The thermodynamic consistency test is a necessary condition but not a sufficient condition.  
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4.5.2 Van Ness-Byer-Gibbs test 

Van Ness et al. [1973] proposed a simple and efficient thermodynamic consistency test which 

consisted of plotting the residual vapour mole fraction (calculated vapour mole fraction minus 

experimental vapour mole fraction) against the experimental liquid mole fraction. If there is a 

good scatter of the points along the zero x-axis the experimental data satisfies the 

thermodynamic consistency test. Jackson [1995] applied successfully this method and stated 

that it‟s the most definitive thermodynamic consistency test currently available; by the way, He 

recommended that the average magnitude of the y-residual must be less than 0.010. 

 
4.6 Conclusion 

 

Mühlbauer and Raal [1995] and Ramjugernath and Raal [1999] stated many difficulties with the 

application of the combined method to HPVLE, and it was found that the direct method 

correlate well the HPVLE. The correlation becomes even better with the application of the 

modern direct method as stated by Mühlbauer and Raal [1998]. The modern direct method 

incorporates into the vapour and liquid phase fugacity coefficients, the activity coefficients by 

the use of mixing rules, thus combining the EOS and the activity coefficient model.   

 

According to previous works on refrigerant systems, such as those of Coquelet et al. [2003], 

Madani et al. [2008a], Madani et al. [2008b]; the best model for these systems at high pressure 

is the combination of the Peng-Robinson EOS incorporating the Mathias Copeman alpha 

function, using the Wong Sandler mixing rule with the NRTL activity coefficient.  
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CHAPTER 5: EXPERIMENTAL EQUIPMENT 
 

The apparatus used in this study incorporated the static analytic measurement method, similar to 

that described by Naidoo [2004] and Naidoo et al. [2008]. It is presented in Figure 5-1. The 

main sections of the experimental apparatus are: 

 The equilibrium cell 

 An agitation mechanism for the equilibrium cell contents 

 Liquid and vapour sampling methods 

 The air bath 

 Devices for temperature, pressure and composition measurement. 

 

As stated in chapter I, one of the aims of this work was the modification of the apparatus.  

These modifications were based mainly on the sampling technique. Naidoo [2004], suggested 

that the sampling technique be modified. It was observed that the sampling analysis of both 

vapour and liquid phases took longer than desired. The Rapid Online Sampler Injector 

(ROLSITM) was introduced in the apparatus to replace the previous sampling method, which 

comprised a couple of valves and the jet-mixers. More details about the modifications are 

described in this chapter.  

 

5.1 Equilibrium Cell 

 

The equilibrium cell was made from a solid 316 stainless billet of diameter 60 mm and height 

100mm. The 316 stainless steel was used because of its magnetic properties and inertness to 

organic materials. To eliminate any differential expansion or corrosion problems that may occur 

due to the use of different materials of construction, only 316 stainless steel was used 

throughout the whole apparatus, unless when other material was required to fulfil a specific 

function which required a specific materials property. A cylindrical cavity of 30 mm diameter 

and length of 85 mm was drilled in the billet, and provided an internal volume of approximately 

60 cm3. 

 

Two viewing windows were placed on the sides of the equilibrium cell; they allowed the visual 

observation of the cell contents. In this way, one could be able to control the adjustment of the 

capillary of the ROLSITM into the liquid or the vapour phase; it also helped to control the 
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amount of component introduced in the cell and the liquid level in the equilibrium cell.  The 

windows were manufactured from synthetic sapphire, which could withstand a pressure up to 

20 MPa. These windows were 15 mm thick and 33 mm in diameter. The viton “O” rings 

ensured sealing between the sapphire windows housing and the equilibrium cell body.  
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  Figure 5-1: Schematic diagram of the static analytic apparatus. vi: valve
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The windows were surrounded by gasket material and tightly fixed and sealed into stainless-

steel housing by means of viton „O‟ rings. Sealing between the gasket material and the rest of 

the apparatus was also ensured by the viton „O‟ rings. Five 8 mild steel bolts secured each 

sapphire window to the equilibrium cell. 

 

Three holes of 3 mm diameter were drilled in the equilibrium cell chamber, the first hole was 

used for filling and evacuation of the cell contents; it was positioned on the top of the cell. The 

second hole was positioned at the bottom of the cell to drain any remaining liquid in the cell and 

the third linked to the pressure transducer; it was also located at the top of the cell. The 

diameters of these lines were made as small as possible to minimize the dead-volume in the 

equilibrium cell. 

The drain valve and the fill and evacuate valve for the cell were Whitey valves while the rest of 

the valves used on the apparatus were Swagelok. The fill and evacuate valve was tri-directional 

whereas the drain valve was bi-directional and both were able to handle a temperature and 

pressure combination of 423 K and 17 MPa respectively. The tri-directional valve was 

connected to the gas bottle (or the compression device), and to the equilibrium cell, while the 

third end linked to the fume cupboard. 

 The capillary of the sampling apparatus (ROLSITM) was inserted into the equilibrium cell from 

the top and was adjusted with a fitting in the centre. The sampling apparatus was connected to a 

screw for guidance. Thus the operator could adjust it such that the capillary could sample either 

from the vapour phase (top) or the liquid phase (bottom).   
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   Figure 5-2: Equilibrium cell
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Photograph 5-1: The equilibrium cell of the static VLE equipment connected to the         

ROLSITM. 

 

5.2 Agitation of cell contents 

 

Unlike the dynamic method where the vapour and liquid phase are in permanent contact, the 

static method requires significant time to reach equilibrium. The phases are motionless and do 

not mix with each other. Agitation was therefore introduced to accelerate the process. The cell 
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contents are agitated by the means of an impeller. The impeller has embedded rare earth 

magnets. The role of the impeller was to achieve good mixing of the liquid phase and hence 

decrease the equilibration period.  

The agitation allowed entrainment of the vapour into the liquid phase; as a consequence 

increasing of the rate of mass transfer. The impeller was manufactured from type 316 stainless 

steel and was mounted on a stainless steel pin. The rotation was produced by direct magnetic 

coupling to a horse-shoe magnet mounted on a Maxon motor in a well beneath the equilibrium 

cell body, which was also acting as a support for the cell body. The Maxon motor ran at a 

maximum voltage of 12 V DC, the current was supplied by the means of a 500 mA adaptor. 

 

5.3 Liquid and vapour sampling method 

 

This section outlines the main modifications undertaking in this project. Previously, complex 

sampling techniques were used. The sample was taken by the use of a six or eight port two 

position GC sampling valve. In the sampling position of the valve, the fluid filled the sampling 

loop, and in the flushing position the fluid was transported to the GC by the carrier gas. To 

overcome the problems of the tendency of the more volatile component to flash preferentially, 

(encountered in the static method), a jet mixer was added in the process. This sampling 

technique was difficult, time-consuming and a source of errors. One could expect to spend not 

less than four hours for analysis of a single equilibrated vapour or liquid data point.  

This led to the introduction of a new method, which seemed more accurate and easier to 

operate. The new method of sampling incorporated the use of the Rapid Online Sampling 

Injector (ROLSITM), this technique was described by Guilbot et al. [1998]. 

Sampling was controlled entirely electronically. Moreover the ROLSITM had the ability to work 

at various temperatures. The mass of withdrawn samples depends on the pressure of the 

equilibrium cell content but also on the opening time of the ROLSITM, which was between 10 

milliseconds and 100 seconds. The ROLSITM was specially developed for sampling at high 

pressures and the analysis of samples by gas chromatograph. It was directly connected to the 

equilibrium cell, hence to allow the in situ removal of repeated representative samples from the 

medium to be analyzed without any contamination of it. It had an incorporated heating system 

and, it allowed the instant vaporization of the liquid sample. Its maintenance proved to be easy 

and inexpensive.   

Main specifications of the ROLSITM are: 
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- No dead volume 

- Practical and highly automated.  

- Gives representative samples.  

- The method is rapid, 30 min was sufficient to have an analysis of a pair of points. 

- Variable sample volume between 0.1 mg and few mg. 

- Ability to have an instant vaporization of liquid samplings  

- Very large range of operating temperature: from cryogenics to 553 K (for continuous 

operation) and to 583.15 K (for time ranges less than 30 minutes). 

- Very large range of operating pressures:  from atmospheric pressure to 60 MPa. 

- Body made of 316 stainless steel. 

- Dimensions of the capillary : length 11 cm, external diameter 1 mm and internal 

diameter 0.1-0.15 mm 

       

The ROLSITM sampler injector had a capillary with one end connected to the site which needs 

to be sampled and received a continual flow of helium gas from the cylinder via the gas 

chromatograph. The seal of the capillary (the end connected to the body of the sampler) was 

secured by a moving part and the other end consisted of a soft iron core pushed in the direction 

of the capillary by a helical spring. 

The ROLSITM used in this project was a movable ROLSITM, with the advantage to take both 

vapour and liquid samples, by the means of its ability to move into both phases. Special fittings 

were required on the equilibrium cell to allow movement of the ROLSITM. A nut, from which 

the capillary of the ROLSITM penetrated into the cell, was mounted on the flange of the cell. 

Viton „O‟ rings were used to ensure sealing between the capillary of the ROLSITM and the nut.  

Sampling was initiated by signalling the electromagnet, which attracted the moving part, 

moving it away from the capillary and breaking the seal between the fixed capillary and the 

moving point. The size of the samples taken, under the given pressure and temperature 

conditions, was directly proportional to the seal-break time (opening time). This time was 

controllable, as well as the delay between taking two samples by means of a timer coupled with 

the electromagnet‟s power supply. The ROLSITM was connected to an adjustable screw, in order 

to facilitate the adjustment of the capillary into the liquid or the vapour phase according to the 

need. 
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  Photograph 5-2: The ROLSITM 

 

5.4 Air bath 
 

To create an isothermal environment, the equilibrium cell was immersed in an air bath, thus 

minimizing the temperature gradient inside the cell. This state was attained by the circulation of 

air in the bath through the heating apparatus by means of fan and the temperature of the air was 

controlled. 

The bath was a rectangular box 0.35 m in length, 0.23 m in width and 0.29 m height. The box 

was manufactured using 4 mm thick mild steel plates which had been joined. To ensure total 

insulation, the bath lid was sealed with fibrefrax.   

The dimensions of the air bath were modified in this project. The previous air bath was 1 m 

length, 0.75 m width and 0.5 m height. This bath was constructed to contain the cell and all the 

sampling devices, which comprised the lines, valves and jet-mixer. As the sampling technique 

was modified with all the previous devices (lines, valves, jet-mixer) being replaced by a single 

ROLSITM which was attached to the cell, this freed a lot of space in the bath. The bigger the 
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bath, the bigger the temperature gradient inside the cell therefore the bath was modified to 

smaller dimensions, ameliorating the temperature profile.  

The fan was rotated by a single phase electrical motor of 230 V, 2.65 A, 50 Hz, 0.37 kW and 

2820 rpm (as maximum speed). The fan blew in air, which circulated throughout the 

compartment which contained the heaters and cooling coils. This compartment was situated on 

the left of the air bath. The air circulated from that compartment to the bath. The heaters were 

not placed directly in the bath to avoid an irradiation effect on the cell, this phenomena was 

reported by Bradshaw [1985]. 

As soon as the required temperature was attained, it was controlled to maintain a stable 

environment in the air bath. The air bath allowed a rapid attainment of thermal equilibrium 

which took approximately 45 minutes, as opposed to the previous larger air bath which took on 

average 12 hours (overnight) to equilibrate.   

 

5.5 Heating and cooling devices 

 

For temperatures different from the ambient temperature (low temperature or high temperature), 

cooling and heating devices were used on different parts of the equipment as needed.  

 
5.5.1 Cooling device  

The refrigeration apparatus incorporated a condenser, an evaporator; a compressor and a 

throttling valve (refer to Figure 4-3). 

The condenser and the compressor were incorporated in a single unit, manufactured by L‟Unité 

Hermétique from France. The condenser worked at a maximum outlet pressure of 1.8 MPa. The 

condenser was cooled by a fan.  

The construction of the evaporator was similar to the condenser. The compressor/ condenser 

unit was external the bath while the evaporator coils were located in a steel box which was 

adjacent to the air-bath.  

.  
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Figure 5-3: The Refrigeration Unit 

 

5.5.2 Heating device 

5.5.2.1 Heaters 

For high temperatures in the air bath, two heaters of 300 W and 220 V each were used. They 

were activated by a temperature controller via a relay. The relay was used to switch the heaters 

on and off. The relay received the signal from the bottom sensor (from the cell). The load side 

of the relay was powered by a 220 V plug. The coil side of the relay was powered by the 

controller 220 V AC. The parameters of the controller were set by auto tune. 

 

5.5.2.2 Heater Cartridges  

 Two heater cartridges of 6 cm length, 3 mm diameter, 230 V and 80 W each were 

housed in the block which kept the pressure transducer at a fixed temperature. The 

pressure transducer is very sensitive to temperature despite precautions set by the 

manufacturer. Fluctuation of the ambient temperature influences the sensitivity of the 

pressure transducer, and leads to erroneous pressure measurements. For one to get an 

accurate and precise reading of pressure, the transducer was kept in a box which was 

heated and maintained at 313.15 K. 

 Two heater cartridges of 6 cm length, 3 mm diameter, 20 V and 50 W each were used 

for the blocks which heated the 6 ports valve. To avoid condensation of the sample in 

the 6 ports valve, the 6 ports valve was heated and maintained at 353.15 K. 
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 One heater cartridge of 230 V and 100 W was used to heat the ROLSITM for instant 

vaporization of the liquid sample. It was an L shape heater cartridge with a 3 mm 

diameter.  

  

5.5.2.3 Nichrome wires  

All the lines used to carry the sample to the GC and the line connecting the pressure transducer 

to the equilibrium cell were kept heated using nichrome wires supplying electricity by variacs 

of 220 V AC input and 0 to 250 V AC output. The reason for heating the lines was to avoid 

condensation of the sample while it was sent to the GC for analysis. 

 

5.6 Devices for measurement 
 

5.6.1 Pressure 

The pressure measurements were recorded on electronic displays connected to the pressure 

transducer. A Sensotec Model TJE transducer with a range of 0-15 MPa was used for pressure 

measurement. This transducer was certified as having 0.25% accuracy of the entire scale 

pressure of the instrument. The transducer was connected to an Agilent data acquisition unit 

(34970A), and this unit was connected to a computer via a RS-232 interface. Hence one was 

able to obtain not only the pressure value, but also, the real time reading and save different 

pressures and temperatures measurements throughout the experiments. The transducer was 

calibrated before any measurements; the stated uncertainty was of + 4 kPa in the range of 0.1 to 

6 MPa. 

 

5.6.2 Temperature 

Temperature measurements were made using platinum resistance thermometers (Pt-100). For 

the equilibrium cell, two Pt-100s were used. They were supplied by WIKA, with an accuracy of 

+ 0.15 K in the range of 73.15 K to 1073.15 K. These probes were fixed separately in the wall 

of the equilibrium cell body, one at the top of the cell and the other at the bottom. These 

locations corresponded to the vapour and liquid phase respectively. The probes were L shaped; 

the short part went into the wall of the cell while the long part remained outside. The short and 

the long part were about 0.05 and 0.15 m long respectively. Two class A Pt-100s were chosen 

in order to perform accurate temperature measurements in the cell and to check for thermal 

gradients. Both Pt-100s were connected to the same Agilent data acquisition as the pressure 

Sensotec readout.  
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The ROLSITM temperature was monitored by a small glass Pt-100 placed inside its body. The 

ROLSITM device provided for a hole for the temperature device. The ROLSITM was heated and 

maintained at 353.15 K. 

Temperature measurement at different points that required a control of temperature (pressure 

transducer block, sampling lines, compression device, etc.) was performed by means of class B 

Pt-100s as high accuracy was not required.  

For the control of all the temperatures quoted previously, ACS Shinko 08KF00974 temperature 

controllers were used. These controllers were supplied with 100-240V AC 50/60 HZ, with an 

output of 12V DC. They are PID controllers with the auto-tuning and adaptive tuning abilities. 

 

5.6.3 Composition  

The liquid and vapour sample compositions were determined by gas chromatography. The 

sample passed through the 6 port valve before entering the GC. This avoided overloading of the 

GC. Figure 4-4a and 4-4b show the configurations of the 6-port valve. This could be used in 

two positions: position 1, the sampling position, and position 2, the flushing position.  

In the sampling position, a sample charged the loop while the helium gas entered the valve by 

port 2 and exited the valve through port 1 to the GC hence ensuring the cleaning of the loop. 

 

                          

 

 

 

 

 

 

         Figure 5.4a: 6 port-valve in the sampling position 
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In flushing position, helium gas flushed the sample out of the sample loop to the GC, while 

the remaining sample was vented by the use of the vacuum pump. 

 

 

                                                     

 

 

 

 

 

 

 

 

 

 

 

                      Figure 5.4b: 6 port-valve in the flushing position. 

 
The 6-port valve was manufactured by VALCO and it is specified for high pressures (17.5 

MPa) and high temperatures (473.15 K). 

 

All composition analysis were performed using a Shimadzu, Model 2010 GC equipped with a 

Thermal Conductivity Detector. The components were separated using a Porapak Q column 

which had a length of 2 m, inner diameter 2.20 mm, 80/100 mesh and film thickness 100 µm. 

All the settings for the injector, the column as well as the detector are provided in Chapter 6.  

 

5.7 Auxiliary device 

 

5.7.1 Compression device 

For any gas with a low vapour pressure at ambient temperature, a compression device was used 

to obtain pressures higher than the bottle pressure. The compression device was designed by 

Ramjugernath [2000] and consisted of two compartments. One of the compartments was filled 

with the gas that need to be pressurized and was constructed with type 316 stainless-steel billet. 
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The other compartment received nitrogen from a high pressure cylinder (the nitrogen pressure 

was approximately 25 MPa). 

The two compartments were joined by the use of 12 high tensile, 8 mm steel cap head screws, 

aligned by a spigot. A piston with double head converted the pressure of the nitrogen 

compartment to the gas in the other compartment. Two sets of Viton “O” rings were used to 

ensure a firm seal between the piston and the compartments.  

The compartment which received the low vapour pressure gas was heated by the means of three 

heater cartridges of 150W and 250V. The three heater cartridges were placed at the same 

distance all along the circumference in the wall of the compartment. A variac voltage alimented 

the heater cartridges. A Pt-100 was placed in the wall of the compartment to measure the 

temperature. The heating procedure facilitated the attainment of relatively high pressures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Photograph 5-3: The Compression device. Compartment A: received gas to be compressed; 

Compartment B: received nitrogen at high pressure. 
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CHAPTER 6: EXPERIMENTAL PROCEDURE 
 

The accuracy of HPVLE data is directly related to the effectiveness of the experimental 

procedure hence one should carefully design and enact the experimental procedure and avoid all 

sources of error during the experimental process.  

Things that generally affect results in HPVLE are the temperature, pressure and composition 

calibration. This is crucial for accurate results. Methods and some recommendations during 

these calibrations are presented in this chapter. 

The method used by Ramjugernath [2000] served as basis for the current experimental 

procedure; however some modifications were added as required to deal with to difficulties 

encountered along this project. 

 

6.1 Preparation of experimental equipment 

 

6.1.1 Preparation of the equilibrium cell 

The measurement of pressure is an important task in VLE studies so it is mandatory to ensure 

that there are no leaks in the equilibrium cell, especially when it comes to high pressure 

measurement. One should also avoid leaks in the lines that convey the sample to the GC. 

 

Before any experimentation, leak testing was undertaken and as follows: the equilibrium cell 

and all the auxiliaries lines are pressurized up to a certain value, for instance 14 MPa.  After 

twenty four hours, if the drop of pressure can be attributed to only the drop of the ambient 

temperature, then the apparatus is ready for experimentation. If not, this means that the vessel or 

lines cannot hold the pressure and they are leaking. With the use of Snoop®, leaks are located 

and fixed. Generally leaks were found on the threaded fittings of screws etc and lock tight or 

thread tape was used to improve sealing.  

 

To avoid any contamination of the investigated system, the cell was cleaned before every run. 

The cell and all the auxiliary lines were heated to 328.15 K (this value depends upon the type of 

component used) and placed under vacuum for a minimum of 10 hours. After this process all 

the valves were kept closed, hence the cell remained under vacuum until the component was 

filled. 

The sampling lines were cleaned by flushing with the carrier gas. 
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6.1.2 GC calibration 

For the determination of both vapour and liquid compositions, the GC2010 Gas Chromatograph 

was used. In order to analyse for compositions the detector had to be calibrated. There are two 

methods of calibrating a TCD GC; the direct injection method and the internal standardization 

method. For this work, the direct injection calibration method was chosen. A brief description 

of the method is given below. 

 

By injecting, with a syringe, different known volumes of a pure component, one is able to 

generate a curve of GC peak area (A) versus number of moles (n). 

 

                                                       
2

1 2 3i i i i i in C A C A C                                             (6.1) 

                           

1iC  , 2iC , 3iC
 are the response factors of component i . 

 

Since only gas components were used for this project, a presentation of a GC calibration 

method for gases is presented below. 

 

6.1.2.1 Gas component calibration 

The gas sample was withdrawn from the cylinder via a tube connection with a septum fixed at 

its end. Thus the gas syringe could easily penetrate the tube through the septum. Known 

volumes of gas samples were withdrawn from the bottle and injected into the GC with the 

appropriate syringe (gas syringe). Withdrawal of gas and injecting into the GC had to be done 

quickly as the longer one takes the more gas is lost from the syringe, which introduces errors 

into the calculations.  The injections were repeated for verification. Attention was required 

while using the syringe to reproduce the exact volumes. The equation of peak area versus the 

number of moles was generated. All the calibrations done in this project were performed with 

an absolute deviation of the peak area from the calibration equation as a function of number of 

moles not exceeding 3%.  

 

The number of mole of component was calculated using the ideal gas law:  
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PVn
RT

                                                            (6.2) 

 

 V  is the volume of the sample injected in m3 

T  is the temperature of the injected gas (ambient temperature in K) 

R  is the Universal gas constant 

P  is the Pressure of the injected gas (atmospheric pressure in Pa) 

 

6.1.2.2 Precautions taken during calibration  

As the composition analysis required a high degree of accuracy, the GC calibration procedure 

demanded as well the highest level of accuracy, much attention and precision are required from 

the person who is doing it. 

 

One had to make sure that the same volume of gas was taken in the syringe to obtain 

reproducibility of peaks. The syringes used had to be of a good quality which means the piston 

plunger seal was tight in the body of the syringe and the needle was not blocked. 

 

Before injecting any sample, the syringe was flushed with the component used approximately 

two or three times to avoid contamination. 

 

After each 100 injections, the GC injector septum had to be replaced to avoid entrainment of air 

in the GC column. 

 

6.1.3 Temperature calibration 

The platinum probes used to measure the temperature in the equilibrium cell were initially 

calibrated. Both Pt-100 were calibrated against the standard CTH 6500 probe manufactured by 

WIKA. This standard had a stated accuracy of + 0.05 K in the range of 73.15 to 473.15 K. The 

CTB 100 Micro calibration bath was used to set the temperature. The operation was repeated 

three times, necessary to ensure accuracy. The uncertainty of the calibration for both probes was 

+ 0.02 K. 

 



59 

 

6.1.4 Pressure calibration 

The pressure transducer used for pressure measurement in this project was calibrated against a 

standard CPH 6000 process calibrator, manufactured by WIKA. The standard transducer had a 

stated accuracy of 0.025% in the range of 0 to 25 MPa. A manual test pump was used to 

generate pressure. Anatmospheric pressure reading was required as the apparatus read the 

relative pressure. A barometer was used for the atmospheric pressure reading.  The test was 

done three times for a good accuracy. The calibration was done with an uncertainty of + 4 KPa 

in the range of 0.1 to 6 MPa, which 4 to 0.07% increasing the pressure. 

 

6.2 Start-up procedure 
 

As the cell was cleaned under vacuum to avoid contamination, all the valves were closed to 

maintain the vacuum within all the lines and the cell.   

 

The equilibrium cell was charged initially with the least volatile component and thereafter 

successive amounts of the more volatile component were added.  

 

The first component was filled until one obtained a liquid phase of it in the cell. The second 

component was filled from its cylinder according to the required pressure. When the required 

pressure was higher than the pressure in the gas cylinder, the compression device was used to 

obtain the desired pressure. While the system temperature was set on the temperature controller 

and the air-bath was heated or cooled according to the set temperature, the stirrer was fixed at 

the maximum speed to provide vigorous stirring for almost 30 min, then the speed was 

decreased to the normal setting (moderate rate).  

 

The system was left to equilibrate. When the pressure stayed stable for about 30 min, this was a 

sign of equilibrium and the system was ready for sampling. 

 

6.2.1 Positioning of the liquid-level 

While adjusting the pressure of the cell, the liquid-level can rise considerably and can also fill 

the cell entirely. Consequently droplets of liquid phase can be found in the vapour sampling 

line; one cannot then distinguish the liquid phase from the vapour phase during the sampling 

procedure. 
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However, if the liquid-level is too low the quantity of the liquid may be insufficient for 

sampling and this leads to an incorrect composition analysis. 

 

It was necessary to keep the liquid-level at a suitable level which is half way up the sapphire 

window. When the liquid level goes too high, the operator can reduce it by opening the drain 

valve of the equilibrium cell and adjust the liquid level at the appropriate position. 

 

6.3 Sampling procedure 
 

The sampling process was by means of the ROLSITM. The ROLSITM was connected to a timer 

control, and two times were set. The first time set represented the time between samples Since 

many samples were required to be taken, a certain period of time was necessary to separate 

different samples in order to avoid overlapping of the corresponding peaks area on the GC. The 

second time setting, called the opening time, was for the removal of the sample. This time was 

set according to the pressure inside the cell and range of the corresponding GC calibration. This 

means the response of the TCD should be comprised in the range of the calibration.  

 

As mentioned before, both vapour and liquid sample were withdrawn using the ROLSITM. The 

capillary was adjusted in the vapour or liquid phase when the vapour or liquid phase 

respectively was to be analysed.  

 

An adjustable screw sets the position of the ROLSITM either in the vapour or liquid phase. Many 

samples were removed from the cell until having a good repeatability (less than 1%). The stirrer 

was set to its lowest speed while samples were withdrawn to avoid unexpected flushing or 

splashing of liquid into the vapour phase or entrainment of vapour bubbles in the liquid phase.  
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CHAPTER 7: RESULTS AND DISCUSSIONS 
 

In this chapter different aspects of the research will be presented, such the accuracy of the 

measured variables, the GC calibrations, pure experimental data, and experimental VLE data 

with comparisons to values from the literature, experimental VLE data for the unknown system 

with the thermodynamic modelling. 

  

7.1. Purity of materials 
 

7.1.1 Propane 

The propane was supplied by Afrox and the purity was stated to be 99.92%. The main 

impurities were air, ethane and water. Propane was used in the experimental measurements for 

the test system. 

 

7.1.2 Hexafluoroethane (R116) 

The R116 was supplied by Air Products with a stated purity of 99.95%. The main impurities 

were ethane, n-butane, isobutane, ethylene, oxygen and argon.  

 

7.1.3 Hexafluoropropylene oxide (HFPO) 

The HFPO was supplied by NECSA with a stated purity of 99.99%. The main impurities were 

Hexafluoropropene (HFP) and Hexafluoroacetene (HFA). 

 

7.1.4 Ethane 

The ethane was supplied by Air Products with a stated purity of 99.00%. The main impurities 

were air, methane and water. 

 

7.1.5 Helium 

The helium was supplied by Afrox with a stated purity of 99.99%. Helium was used as a carrier 

gas for the gas chromatograph. 

 

7.2 GC calibration 

 

Fixed amounts of pure gases were injected into the GC at different volumes from 0.05 ml to  



62 

 

1 ml. By knowing the injected volume, the ambient temperature and pressure, one determines 

the number of moles of standard injected. The equation related the peak areas and the number 

of moles was determined, and it was a polynomial equation of second order (equation 6.1) 

 

The details of calculations about the calibration equations and the relative deviation are given in 

Appendix B. The coefficients C1, C2 and C3 for the components used in this study are provided 

in Table 6-1 and the plots of the relative deviation versus the number of moles are shown in 

Figures 7-1 to 7-4. 

 

Table 7-1: Coefficients obtained for the GC calibration equations 

Component i C1i C2i C3i 

Propane -1.0828*10-28 -2.7694*10-12 -1.6710*10-07 

R116 -5.4100*10-22 2.7694*10-12 -1.6710*10-07 

Ethane -9.3221*10-21 1.9654*10-12 2.2966*10-07 

HFPO -6.6425*10-21 1.1890*10-12 7.7836*10-07 

 

 

 

Figure 7-1: Relative deviation of propane vs. the number of moles 
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Fig 7-2: Relative deviation for R116 vs. the number of moles 

 

 

Fig 7-3: Relative deviation for ethane vs.  the number of moles. 
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Fig 7-4: Relative deviation for the HFPO vs.  the number of moles 

 

7.3 GC operating conditions for VLE measurements 

 

Operating conditions of the GC differ for each system investigated. The operating conditions of 

both the R116 + Propane and Ethane + HFPO systems are presented in Table 7-2.  

 

Table 7-2: GC operating conditions 

OPERATING CONDITION R116 + PROPANE ETHANE + HFPO 

Injector temperature 160oC 110oC 

Flow control mode Pressure Pressure 

Injection mode Split Split 

Pressure 150 kPa 150 kPa 

Total flow 220 ml/min 220 ml/min 

Column flow 10 ml/min 10 ml/min 

Purge flow 0.5 ml/min 0.5 ml/min 

Linear velocity 100 cm/sec 100 cm/sec 

Split ratio 0.0 0.0 

Column temperature 130oC 90oC 
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OPERATING CONDITION R116 + PROPANE ETHANE + HFPO 

Equilibration time 1 min 1 min 

TCD injector temperature 170oC 150oC 

Stop time 50 min 50 min 

Current 90 mA 90 mA 

 

 

Table 7-3: Column specifications 

Column Poropak Q 

Serial number 1643 

Column max temperature 250oC 

Length 2 m 

Inner diameter 2.20 mm 

Film thickness 100 µm 

Mesh 80/100 

 

 

7.4 Experimental results 

 

7.4.1 Vapour pressure measurements 

Vapour-pressure measurements were performed for two different pure components, propane 

and ethane. The experimental data were compared to the literature. The Korea Data Bank 

(KDB) correlation (www.infosys.korea.ac.kr/kdb/index.html) was used for literature data.  

Following is the KDB correlation equation:  

 

                                         

2ln( ) * ln( ) *BPvp A T C D T
T

                      (7.1)     

                                                              
Where: 
 

Pvp   Vapour pressure. The parameters A , B , C , D  are specific of the pure component. 
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Table 7-4 provides the constants for ethane and propane as well as the relative deviations. 

 

Table 7-4: Vapour pressure constants from the KDB correlation for ethane and propane and the 

deviations of the measured vapour-pressure data from the correlation.  

 Propane Ethane 

A -5.395526 -5.381564 

B -3.383994*1003 
-2.626728*1003 

C 4.814260*1001 
4.639131*1001 

D 9.132115*10-06 
1.601858*10-05 

T range (K) 279.24 to 360.17 283.86 to 307.27 

% RD 0.21 0.09 

RD – Relative deviation 

 

The Relative Deviation was calculated using the equation below: 

 

                                            

exp 100cor

cor

P P
RD

P
 

  
                                             (7.2)

 

 

Where: 

RD  : Relative Deviation 

corP  : Correlated Pressure 

expP  : Experimental Pressure 

 

Table 7-5: Comparison between experimental and correlated vapour-pressure for propane 

Temperature 
(K) 

Pressure Experimental 
(MPa) 

Pressure 
Correlated 

(MPa) 

ΔP Deviation  
% 

279.24 0.5706 0.5713 0.0007 -0.10 
283.23 0.6407 0.6409 0.0001 -0.02 
288.24 0.7355 0.7361 0.0006 -0.09 
293.21 0.8410 0.8413 0.0003 -0.04 
298.22 0.9572 0.9577 0.0005 -0.05 
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Temperature 
(K) 

Pressure Experimental 
(MPa) 

Pressure 
Correlated 

(MPa) 

ΔP Deviation  
% 

303.20 1.0843 1.0846 0.0003 -0.03 
311.21 1.2820 1.2843 0.0023 -0.20 
320.12 1.6038 1.6070 0.0032 -0.20 
330.23 1.9924 1.9943 0.0019 -0.10 
340.12 2.4301 2.4339 0.0038 -0.20 
350.18 2.9530 2.9492 -0.0038 0.10 
360.17 3.5400 3.5346 -0.0054 0.20 

 

Table 7-6: Comparison between experimental and correlated vapour-pressure for ethane 

Temperature 
(K) 

Pressure Experimental 
(MPa) 

Pressure 
Correlated 

(MPa) 

ΔP Deviation 
% 

283.86 3.0867 3.0884 0.0017 0.06 
288.80 3.4325 3.4355 0.0030 0.09 
293.39 3.7826 3.7803 -0.0023 -0.06 
298.61 4.1989 4.1991 0.0002 0.01 
303.47 4.6152 4.6150 -0.0002 -0.01 

 

Vapour-pressure measurements were used as preliminary test on the equipment.  Only few 

points were measured for ethane, due to its relative low critical temperature, which is 305.40 K. 

As detailed above, measured data were compared to literature data (correlated data). Good 

agreement was observed between data measured in this project and data produced by the KDB 

correlation, especially for the ethane vapour-pressure, for which the deviation was less than 

0.09 %, with a conclusion that the test was successful.  The equipment was found suitable to 

produce accurate vapour-pressure data for pure component. 

 

7.4.2 Vapour-liquid equilibrium measurements 

The measured data were regressed on the basis of minimizing the objective function, using the 

direct method, with the Peng Robinson EOS including the Mathias Copeman alpha function, 

with the Wong Sandler Mixing Rule incorporating the NRTL activity coefficient model, PR-

MC-WS (NRTL). 

The experimental data were regressed for the NRTL parameters τji and the binary interaction 

parameter for the WS mixing rule kij. The αji parameter for the NRTL is recommended to be set 

at 0.3 for VLE as stated by Sandler [1997].  
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The computation was made with the help of THERMOPACKTM software supplied by the Mines 

Paris Tech. The computational time was of few seconds (around 3 to 5 seconds).  

The objective function was calculated from a flash adjustment calculation, below is the 

equation: 
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7.4.2.1 Test system: R116 + Propane  

The R116 (1) + propane (2) system was used to investigate the accuracy and the reliability of 

the equipment. The reason for the choice of this system was that accurate and duplicated data 

could be found in literature. Three isotherms were measured and compared to the literature data 

with an uncertainty of ± 3%.  These isotherms were chosen as one below and two above the 

critical temperature of the least volatile component of the system, which is R116. 

 

The experimental data were correlated with the PR-MC-WS (NRTL). The measured data and 

the deviation of the correlation are presented in the table below. 
 

Table 7-7: P-x-y data for the R116 (1) + Propane (2) Test system  

Pressure / MPa x1 / Exp y1 / Exp Δx1 Δy1 
T = 291.22 K 

0.793 0.000 0.000 0.000 0.000 
0.924 0.015 0.121 0.001 -0.009 
1.069 0.033 0.222 0.000 -0.017 
1.338 0.076 0.376 0.002 -0.009 
1.572 0.122 0.468 0.000 -0.006 
1.767 0.171 0.530 -0.003 -0.005 
1.891 0.212 0.565 -0.004 -0.003 
2.053 0.291 0.613 0.009 0.005 
2.194 0.343 0.640 -0.012 -0.003 
2.271 0.418 0.672 0.017 0.011 
2.386 0.491 0.702 0.012 0.013 
2.513 0.567 0.732 -0.012 0.007 
3.001 1.000 1.000 0.000 0.000 

T = 296.23 K 
0.905 0.000 0.000 0.000 0.000 
1.053 0.016 0.123 0.000 -0.004 
1.131 0.024 0.167 -0.001 -0.015 
1.324 0.051 0.284 0.000 -0.006 
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With: 

1 exp corx x x  

and 

 

1 exp cory y y  
 

 

 

Figure 7-5: Plot of the P-x-y data for the R116 (1) + propane (2) system: , 291.22 K; , 

296.23 K; , 308.21 K;        , PR-MC-WS (NRTL) model 
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Pressure / MPa x1 / Exp y1 / Exp Δx1 Δy1 

1.502 0.080 0.362 0.001 -0.007 
1.804 0.140 0.460 0.001 -0.009 
2.036 0.196 0.521 -0.005 -0.009 
2.187 0.254 0.564 0.000 0.000 
2.751 0.551 0.703 -0.002 0.011 
2.857 0.602 0.725 -0.022 0.002 

T = 308.21 K 
1.225 0.000 0.000 0.000 0.000 
1.482 0.022 0.122 -0.002 -0.029 
1.864 0.076 0.294 0.007 -0.007 
2.379 0.161 0.419 -0.001 -0.014 
2.650 0.234 0.486 0.000 0.000 
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As observed on the figure 7-5, the correlation fitted well with the measured data for all three 

isotherms. There is an excellent agreement between the model and the experimental data. 

The regressed model parameters and the objective function for the three isotherms are presented 

in the following table: 

Table 7-8: Regressed model parameters for the R116 (1) + Propane (2) system using the PR-

MC-WS (NTRL) model ( = 0.3) 

Parameter Temperature / K   
 291.22 296.23 308.21 

 /J.mol-1 -1456 -724 -829 

 /J.mol-1 5433 4731 5661 

kij 0.37 0.31 0.26 

Fobj 4.2 3.6 8.0 
 
Above the critical temperature, the interaction parameters tend to decrease with temperature. 

The same tendency has been observed with the literature data (Ramjugernath et al. [2009]).  

The experimental data for the three isotherms were compared to the data published by 

Ramjugernath et al. [2009] to evaluate the reproducibility and the reliability of the equipment. 

The comparison is presented on the following graph.  

 

 

Figure 7-6: Plot of the P-x-y data for the R116 (1) + propane (2) system; , 291.22 K; , 

296.23 K; , 308.21 K;         Ramjugernath et al. (2009). 
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The graph shows a good agreement between the literature data (Ramjugernath et al. [2009]) and 

the experimental data for all three isotherms. The experimental data represented by points are 

well aligned on the literature data represented by the lines.  

 

Another way of comparing data is by plotting their composition against relative volatility (α), 

which was calculated via the following equation: 

 

                                                           

1

1

2

2

y
x

y
x

 

                                                   (7.4)                      

 

 

 This method appears more accurate than the previous since it deals directly with the 

composition. The comparison is presented on the following graphs for each isotherm. 

 

 

Figure 7-7: Plot of the relative volatility-x1 data for the R116 (1) + Propane (2) system at 

291.22 K: , our work;           , Ramjugernath et al. (2009). 
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Figure 7-8: Plot of the relative volatility-x1 data for the R116 (1) + Propane (2) system at 

296.23 K: , our work;            , Ramjugernath et al. (2009). 

 

 

Figure 7-9: Plot of the relative volatility-x1 data for the R116 (1) + Propane (2) at 308.21 K: , 

our work;            , Ramjugernath et al. (2009). 

The numerical deviation between the experimental and literature relative volatility is presented 

in the following table. The deviation was calculated using the Average Absolute Deviation 

(equation 7.5). 
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Table 7-9: Deviations between the experimental and literature Relative deviation 

 

Temperature / K AAD α 
291.22 5.43 
296.23 2.52 
308.21 2.41 

 

 

Good agreement has been observed between the data produced in this work and those of 

Ramjugernath (2009) both graphically and numerically. The relative volatility comparison of 

both sets of data (this work and Ramjugernath [2009]) was satisfactory, except for the first 

isotherm (at 291.22 K), where slight discrepancies have been observed, but not enough to 

discredit the experimental data.  From these comparisons, one can say that the test system was 

well conducted. 

 

In summary, after producing reliable vapour-pressure data and now reliable vapour-liquid 

equilibrium data, the equipment was considered accurate and suitable for further measurements. 

 

Thermodynamic consistency test 

The thermodynamic consistency test was applied to the experimental data to verify the 

accuracy. The Van Ness-Byer-Gibbs test was used. The method consisted of vapour molar 

fraction. If the average magnitude of the y-residual is less than 0.010, the data are considered 

thermodynamically consistent (Jackson, 1995).  The results of the thermodynamic consistency 

test for all the isotherms of the R116 (1) + Propane (2) system are presented on the following 

graph 
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Figure 7-10: Thermodynamic consistency test for the R116 (1) + Propane (2) system 

The points are well distributed along the x-axis, the scattering is limited at 0.015 on the y-axis. 

This can be interpreted that the experimental data are thermodynamically consistent. 

7.4.2.2 New system: Ethane + HFPO    

The P-x-y data for the Ethane (1) + HFPO (2) system at the various isotherms are presented in 

Table 7-10 and on Figure 7-10. Five isotherms were measured; three below and two above the 

critical temperature of ethane, in order to observe the transition of the system at the critical 

point. The data were measured with an uncertainty on the composition of ± 3 %.  

 

Table 7-10: P-x-y data for the Ethane (1) + HFPO (2) System   

Pressure / MPa x1 y1 Pressure / MPa x1 y1 
T = 283.39 K T = 290.32 K 

0.458 0.000 0.000 0.547 0.000 0.000 
0.673 0.044 0.313 1.009 0.104 0.449 
0.875 0.110 0.477 1.317 0.191 0.572 
1.188 0.210 0.605 1.611 0.290 0.652 
1.398 0.275 0.659 1.823 0.349 0.691 
1.653 0.361 0.716 2.087 0.436 0.735 
1.877 0.433 0.755 2.341 0.515 0.768 
2.056 0.493 0.782 2.512 0.573 0.793 
2.267 0.574 0.814 2.771 0.670 0.831 
2.511 0.678 0.851 2.974 0.739 0.860 
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Pressure / MPa x1 y1 Pressure / MPa x1 y1 
 
 T = 283.39 K   T = 290.32 K  

2.705 0.749 0.878 3.119 0.792 0.882 
2.833 0.830 0.916 3.333 0.879 0.933 
2.894 0.870 0.935 3.535 1.000 1.000 
3.086 1.000 1.000    

T = 298.67 K T = 308.42 K 

 
0.707 0.000 0.000 0.922 0.000 0.000 
1.145 0.092 0.385 1.455 0.097 0.336 
1.603 0.210 0.549 1.847 0.187 0.467 
1.855 0.276 0.608 2.089 0.241 0.522 
2.103 0.338 0.653 2.340 0.304 0.573 
2.407 0.422 0.704 2.619 0.372 0.618 
2.634 0.493 0.739 2.885 0.432 0.652 
2.872 0.560 0.767 3.103 0.481 0.680 
3.097 0.629 0.795 3.306 0.529 0.702 
3.326 0.696 0.824 3.517 0.577 0.726 
3.601 0.792 0.871 3.813 0.652 0.762 
3.754 0.836 0.892 4.100 0.720 0.791 
4.161 1.000 1.000 4.389 0.795 0.825 

T= 318.45 K    
1.177 0.000 0.000    
1.833 0.126 0.331    
2.117 0.183 0.418    
2.405 0.244 0.478    
2.671 0.294 0.521    
2.969 0.350 0.563    
3.239 0.397 0.594    
3.570 0.463 0.628    
3.881 0.530 0.653    
4.144 0.587 0.672    

 

The two last isotherms are incomplete. They were limited by the critical point. At the critical 

point there was formation of a black substance in the cell. The viewer could not distinguish the 

vapour from the liquid phase. 

 

The P-x-y data for the Ethane (1) + HFPO (2) system are presented graphically on the Figure 7-

7, following below:  
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Figure 7-11: Experimental P-x-y data for the Ethane (1) + HFPO (2) system;    , 283.39 K;     , 

290.32 K;     , 298.67 K;      ,308.42 K;      ,318.45 K;              , smoothed line      

 

7.4.2.3 Reduction of the experimental data  

As said previously, the reduction of the VLE data incorporated the flash calculations based on 

the direct method. The thermodynamic model involved the PR-MC-WS (NTRL) model. The 

reduction was done on the basis of minimizing the objective function.  

 

 The results of the fitting are graphically presented on the Figure 7-11 and on the Figure 7-12.  
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Figure 7-12: Experimental P-x-y data for the Ethane (1) + HFPO (2) system;    , 283.39 K;   , 

290.32 K;       , 298.67 K;      , 308.42 K;       , 318.45 K;               , PR-MC-WS (NRTL) model  

 

 

  

Figure 7-13: Plot of the relative volatility-x1 data for the Ethane (1) + HFPO (2):      , 283.39 K;       

, 290.32 K;          , 298.67 K; , 308.42 K;      , 318.45 K;              , PR-MC-WS (NRTL) model. 
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the model represented by the line matched the experimental data points closely. Secondly, the 

data of the relative volatility was plotted against the liquid molar fraction; this representation 

has the advantage of comparing only the compositions, since the flash calculation was used as 

objective function.   The regression matched the experimental data, except some discrepancies 

could be observed for the first isotherm (283.39 K).  An explanation of this could be found in 

the fact that the equipment was difficult to stabilize while working at low temperature. At 

283.39 K, some fluctuations of the temperature were observed on the equipment. The 

performance of the refrigeration unit was suspected to be the cause of this problem. 

Table 7-10 shows the binary interaction parameters and the NRTL parameters for the five 

isotherms obtained after fitting the measured data on the basis of minimizing the objective 

function of equation.   

 

Table 7-11: Regressed model parameters and objective function for the Ethane (1) + HFPO (2) 

system using the PR-MC-WS (NTRL) model ( = 0.3) 

Parameters Temperature / K 
  283.39 290.32 298.67 308.42 318.45 

τ12 / J.mol-1 8000 6672 5186 5671 10436 

τ21 / J.mol-1 -280 -625 -664 -538 -1689 
kij 0.13 0.16 0.26 0.19 0.18 

Fobj 8.09 4.14 2.65 4.81 2.01 
 

 

The influence of temperature on the NRTL parameters is presented graphically on the Figure 

7-13. 

 



79 

 

 

Figure 7-14: Plot of the NRTL temperature dependant parameters;        τ21,        τ12.                               

              

The influence of temperature on the binary interaction parameter is shown on the following 

figure: 

 

 

Figure 7-15: Plot of the binary-interaction mixing rule parameter (kij) dependency with 

temperature. 
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The study of the influence of temperature on the NRTL parameter and the binary interaction 

parameter revealed a discontinuity on the critical temperature of ethane. The tendency of both 

NRTL and binary interaction parameters changes at the critical point. τ12 value decreases below 

the critical temperature of ethane and increases above that. While τ21 value increases below as 

well as above the critical temperature of ethane, but a discontinuity was observed in the trend at 

the critical temperature. 

 

For the binary interaction parameter (kij), the trend increases below the critical temperature of 

ethane and decreases above that; which is in agreement with the trends of other works on 

refrigerants system, such as Ramjugernath et al. [2009] on the R116 + propane system, Madani 

et al. [2008] on the R116 + R134a. 

 

The deviation observed in fitting the experimental data was calculated by the means of the 

AADU and the BIASU 

 

                                  expexp /)()/100( UUUNAADU cal
                         (7.5) 

                                
 exp exp(100 / ) /calBIASU N U U U 

                          (7.6) 

 

Table 7-12: Deviations between the experimental data and the model data for the Ethane (1) + 

HFPO (2) system 

Temperature / K AAD x % BIAS x % AAD y % BIAS y % 
283.39 4.4 -1.6 0.8 -0.3 
290.32 2.0 0.1 0.5 0.2 
298.67 1.4 -0.1 0.7 0.2 
308.42 2.9 0.3 1.1 -0.5 
318.45 1.3 0.6 0.8 -0.5 

 
For both AADU and BIASU the deviations are less than 4.5%. The highest value of deviation is 

detected on the first isotherm (283.39 K). As cited previously, minor errors are suspected on the 

first isotherm, since the equipment had some challenges to stabilize at low temperature. This 

indicates a good agreement between the experimental data and the correlation. 
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7.4.2.4 Thermodynamic consistency test 

The results of the thermodynamic consistency test for all the isotherms of the Ethane + HFPO 

system are presented. 

 

 

Figure 7-16: Thermodynamic consistency test for the Ethane (1) + HFPO (2) system 

 

From the previous figures, one can see that the points are scattered along the x-axis. The 

scattering does not exceed 0.015 on the y axis. This implies that the experimental data are 

thermodynamically consistent. 
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CHAPTER 8: CONCLUSION 
 

The work undertaken in this study had two aims: (1) the modification of the static HPVLE 

equipment and (2) the measurement of vapour liquid equilibrium data of fluorinated 

hydrocarbons. 

 

Concerning the modification, the apparatus designed and constructed by Ramjugernath [2000] 

and described by Naidoo [2004] was improved. The main modification concerned the sampling 

method. The previous method was lengthy and had numerous sources of error; this was 

replaced by the ROLSITM. The new sampling method was found to be simple and rapid in 

operation.  

 

The air-bath was redesigned; the actual air-bath was made smaller than the previous, reducing 

the equilibration time.  

 

A VLE test measurement was performed to verify the accuracy and reliability of the equipment. 

The R116 + propane system was used as a test system.  Three isotherms were measured. The 

experimental data were found to be in good agreement with those of Ramjugernath et al. 

[2009]. This led to the conclusion that the equipment was accurate and reliable for further 

measurements. 

 

High-pressure VLE data of HFPO + ethane were measured. The experimental data were 

measured at five different temperatures; 283.39 K, 290.32 K, 298.67 K, 308.32 K and 318.45 K.  

The data were correlated using the direct method, with the Peng-Robinson EOS incorporating 

the Mathias-Copeman alpha function, with the Wong-Sandler mixing rules and the NRTL 

activity coefficient model. All the correlations were made with the help of THERMOPACKTM 

software supplied by the Ecole de Mines, Paris-Tech. The correlation was satisfactory; the 

deviations between the experimental and the model were in the acceptable range. 

 

The thermodynamic consistency test was done on the experimental data, using the Van-Ness 

Byer-Gibbs test. The test indicated that the data were consistent. 

 

Hence it is stated that the apparatus described by Naidoo [2004] was improved and the modified 

apparatus was suitable for HVLE measurements in reasonable time. Accurate HPVLE data 
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were measured for the system ethane + HFPO, as required for understanding the behaviour of 

the fluorinated components for multiple purposes. 
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RECOMMENDATIONS 

 
I.  Refrigeration unit 

 
The refrigeration unit included first by Kissun [2001] in this HPVLE apparatus was claimed to  

help the equipment to perform measurements at temperatures down to 250 K, but it was 

observed during our work that the lowest temperature that could be reached was approximately 

277.15 K and that while going down to temperatures lower than 288.15 K, the temperature 

fluctuated slightly. This seriously limited the ability of the apparatus; isotherms at low 

temperature were not measured because of this problem. It is recommended that the 

refrigeration shall be replaced to return the equipment to its original ability. 

 

II.  Future work 

 
Vapour-pressure measurements were performed only for two of the four components 

comprising the two systems. Vapour-pressure data for HFPO and R116 were not measured as 

suitable data to which the measured data could be compared, could not be found in literature. 

We therefore suggest vapour-pressure measurements of these components should be performed 

in the future.  . 

 

Binary VLE measurements for the C2F4 + C2F6 and the C3F6 + C3F8, however a supplier 

could not be found to provide chemicals in the reasonably period of time. It is suggested 

that for further work these systems be investigated. 
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APPENDIX A 

 

Nomenclature of Fluorinated Hydrocarbons 

 

Generally fluorinated hydrocarbons are classified in four principal nomenclature systems. These 

four systems are the International Union of Pure and Applied Chemistry (IUPAC), the 

Chemical Abstract System (CAS), the “Per” system and the “H” system. 

 

The IUPAC and the CAS systems are the same and preferred by many scientists for long time; 

this system uses a conventional Latin or Greek numeral root to indicate the number of fluorine 

atoms in the organic compound.  

 

The “per” system denotes substitution of all hydrogen bonded to the carbon by the fluorine 

atoms. 

 

 The “H” system related to polyfluorinated compounds comprising hydrogen atoms less than 

four. And the hydrogen/fluorine ratio is less than 1:3. The name comprised the number of 

fluorine atoms and the position of hydrogen in the molecule.  

 

The following table gives examples of different nomenclature systems. 

 

Table A.1: Comparison of Acceptable Nomenclature Systems for Fluorine Compounds (Kirk-

Othmer, 1966). 

Compound IUPAC CAS Per H 

CF3CF2CF2 Octafluoro 
propane 

Octafluoro 
propane 

Perfluoro 
propane 

 

CF3CH2CF3 
1,1,1,3,3,3-

hexa-
fluoropropane 

1,1,1,3,3,3-hexa-
fluoropropane 

 2H,2H-hexa-
fluoro 

propane 

CF3COOH Trifluoethanoic 
acid 

Trifluoroacetic 
acid 

Perfluoacetic 
acid 
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Compound IUPAC CAS Per H 

     

CF3CH2COOH 3,3,3-trifluoro 
propanoic acid 

2,2,2-trifluoro-
propionic acid  

2H,2H-
trifluoro-
propionic 

acid 

CF3CF2CF2OCF2CF2CF3 

Heptafluoro 
propoxy-

heptafluoroprop
ane 

Bis(heptafluoro-
propyl) ether 

Perfluoro-propyl 
ether  

 

The chemical names of fluorinated hydrocarbons were judged weighty in the refrigerant field. A 

simple system was developed by DuPont concerning fluorinated hydrocarbons used as 

refrigerants. The system consisted on indentifying different element by the numbers. The 

numbering system rules are presenting like this: 

  

Moving from the right: 

 

1. The first digit is the number of fluorine (F) atoms. 

2. The second digit is the number of hydrogen (H) atoms plus one. 

3. The third digit is the number of carbon (C) atoms minus one. When this digit is zero it is 

omitted from the number. 

4. The fourth digit is the number of unsaturated carbon-carbon bonds. When this digit is zero it 

is omitted from the number. 

 

Example:  

                  R116 

 

Where:   

 

R: means refrigerant 

1: means there are 1+1= 2 carbon atoms 

1: means there is 1-1= 0 hydrogen atom 

6: means there are 6 fluorine atoms 
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APPENDIX B 

 

GC Calibrations 

 

The calibration of TCD for all four components comprised in the two systems involved in this 

work was performed by the direct injection method.  Samples were injected to the GC by the 

means of gas syringe. Known volumes of the component were injected repeatedly. This led to 

relation number of moles peak areas.  

 

B.1 Propane calibration 

 

Known volumes of propane were injected into the GC with the means of gas syringe. The 

injections were in the range of 50 µl to 1 ml. Attention was paid to take an accurate volume. 

The number of moles of gas injected was calculated from the ideal gas equation. 

 

 

                                                                 𝑛 =
𝑃𝑉

𝑅𝑇
                                                               (B.1) 

 

The sample was taken at atmospheric pressure, 𝑃 was measured using a barometer. 𝑇 is the 

temperature of the withdrawn sample (the room temperature) measured by the means of a 

thermometer. 𝑅 is the gas constant. 𝑉 is the withdrawn volume. 

 

𝑃 = 100340 Pa 

𝑇 = 296.15 K 

𝑅 = 8.314 m3 Pa mol-1 K-1 

 

The different calculations needed in the calibration are presented in the following table. 
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Table B.1: Propane GC Calibration results (n is the number of moles obtained from the ideal 

gas equation, calculated n is the number of moles obtained using the calibration equation, 

deviation is the relative deviation between the number of moles). 

 

 

VOLUME 
INJECTED / µl 

PEAK 
AREA 

PEAK AREA 
SQUARE n  

CALCULATED 
n DEVIATION 

1000 15862102 2.51606E+14 4.07523E-05 4.10377E-05 0.700160593 
1000 15930073 2.53767E+14 4.07523E-05 4.12025E-05 1.104661908 
1000 15414101 2.37595E+14 4.07523E-05 3.99487E-05 -1.972067924 
1000 15616914 2.43888E+14 4.07523E-05 4.04422E-05 -0.761009671 
1000 15742183 2.47816E+14 4.07523E-05 4.07466E-05 -0.014083143 
800 12831787 1.64655E+14 3.26019E-05 3.35869E-05 3.021357177 
800 12312600 1.516E+14 3.26019E-05 3.22904E-05 -0.95541649 
800 12266412 1.50465E+14 3.26019E-05 3.21747E-05 -1.310071126 
800 12815333 1.64233E+14 3.26019E-05 3.35459E-05 2.895603502 
800 12315634 1.51675E+14 3.26019E-05 3.2298E-05 -0.932129784 
600 9045008 8.18122E+13 2.44514E-05 2.39966E-05 -1.85987455 
600 9034986 8.1631E+13 2.44514E-05 2.39708E-05 -1.965357505 
600 9144172 8.36159E+13 2.44514E-05 2.42517E-05 -0.816587988 
600 9211311 8.48483E+13 2.44514E-05 2.44243E-05 -0.110723351 
600 9147541 8.36775E+13 2.44514E-05 2.42604E-05 -0.781154402 
400 6170311 3.80727E+13 1.63009E-05 1.65089E-05 1.276034376 
400 6136953 3.76622E+13 1.63009E-05 1.6421E-05 0.736573743 
400 6149403 3.78152E+13 1.63009E-05 1.64538E-05 0.93792371 
400 6176117 3.81444E+13 1.63009E-05 1.65242E-05 1.369915224 
400 6111089 3.73454E+13 1.63009E-05 1.63528E-05 0.318192628 
200 3082739 9.50328E+12 8.15046E-06 8.26744E-06 1.435162605 
200 3083315 9.50683E+12 8.15046E-06 8.26899E-06 1.454269254 
200 3084148 9.51197E+12 8.15046E-06 8.27124E-06 1.481884539 
200 3081180 9.49367E+12 8.15046E-06 8.26322E-06 1.383486006 
200 3084148 9.51197E+12 8.15046E-06 8.27124E-06 1.481884539 
100 1529373 2.33898E+12 4.07523E-06 4.04306E-06 -0.789475107 
100 1542288 2.37866E+12 4.07523E-06 4.0784E-06 0.077699935 
100 1542814 2.38028E+12 4.07523E-06 4.07984E-06 0.112974295 
100 1526343 2.32972E+12 4.07523E-06 4.03477E-06 -0.992927225 
100 1510288 2.28097E+12 4.07523E-06 3.99083E-06 -2.070995987 
50 772937 5.97432E+11 2.03762E-06 1.96701E-06 -3.464967238 
50 772323 5.96483E+11 2.03762E-06 1.96532E-06 -3.547901738 
50 774281 5.99512E+11 2.03762E-06 1.97071E-06 -3.283401658 
50 776343 6.02709E+11 2.03762E-06 1.97639E-06 -3.004842723 
50 771288 5.94887E+11 2.03762E-06 1.96248E-06 -3.687657881 
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The deviation was obtained using the following equation: 

 

                                                   
100caln nD

n
 

  
                                            (B.2)

 

 

Where: 

D   : Deviation 

caln  : calculated number of moles 

n : number of moles 

A second order polynomial equation was produced combining the peak 

area and the number of moles. The Linest function of Microsoft Excel 2007 was used to 

produce the equation. Following is the equation: 

 

            
28 2 12 011.0828*10 2.7694*10 1.671*10n A A                 (B.3)

 
 

The same procedure was applied for all components and polynomial equations were provided in 

the Chapter VI. 
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APPENDIX C 

 

Properties of compounds considered in this work 
 
C.1 Introduction 

This work involved the following components, propane, R116, HFPO, ethane. Some of the 

properties of these compounds are presented below: 

 

C.2 Physical and thermodynamic properties  

 

Table C.2: Physical and thermodynamics properties from DDB. HFPO properties were 

obtained from DuPont   

Component 
M 

g/mol 
Tf / K Tb / K Tc / K 

Pc / 

bar 

Vc  

cm3/mol 
Zc ω 

Propane 44.09 85.45 231.02 369.95 42.46 203.0 0.2802 0.1520 

R116 138.01 172.40 194.88 293.03 30.42 221.9 0.2771 0.2290 

HFPO* 166.00 129.15 246.15 358.93 31.36 - 0.2723 0.3529 

Ethane 30.07 89.85 184.48 305.40 48.83 148.0 0.2847 0.0980 

 
 

C.3 Mathias Copeman Coefficients using the PR EOS 

 

Table C.3: Mathias Copeman coefficients obtained from THERMOPACKTM software. 

COEFFICIENTS Propane R116 HFPO* Ethane 

c1 0.6001 0.7963 1.1122 0.5313 

c2 -0.0063 -0.5512 -2.3146 -0.0618 

c3 0.1739 0.1032 3.1430 0.2142 

* Values obtained from fitting of experimental vapour pressure data. 

 

 

 

 


