# APPLICATION OF PINCH TECHNOLOGY IN AN INTEGRATED PULP AND PAPER MILL

# Gladys M Naylor BscEng(US)

Submitted in the fulfilment of the academic requirements for the degree of

#### **MScEng**

in the Department of Chemical Engineering, University of Natal, Durban

September 2003

## HC 04/00052

PPN 425180

### Abstract

The objective of this investigation was to utilise water pinch analysis as a tool for the optimisation of fresh water use in an integrated pulp and paper mill. The investigation was carried out at Mondi Paper in Merebank, south of Durban.

The pulp and paper manufacturing process is a large consumer of fresh water and minimising the amount of fresh water used in the processes is beneficial from both a cost and environmental point of view. There are examples of mills which have "closed" their water systems to the extent that fresh water make up is minimal and most of the water is recycled and reused in a closed loop. These examples provide guidance on the basis of proven methods for reducing water consumption in the pulp and paper industry and can be used as a reference for mills wishing to reduce water consumption by making use of tried and tested methods. This investigation sought to provide an alternative method to identifying potential savings in fresh water consumption by making use of water pinch analysis.

This was done at Mondi Paper by analysing individual parts of the mill and then a larger section of the mill which included both pulp and paper production. Flowrates of water streams and fibre content in those streams were obtained from plant data, where available, and this data was used to produce a mass balance using the Linnhoff-March software, Water Tracker. The balance produced using Water Tracker provided the missing flow and fibre content data and this data was used as the input for the Linnhoff-March software, Water pinch analysis.

The results achieved when analysing the individual parts of the mill did not demonstrate potential for significant savings in fresh water consumption, however the analysis of the integrated section of the mill identified a potential reduction in fresh water. It was found that the application of a single contaminant analysis to the larger section of the mill identified a possible reduction in the fresh water requirement of 8.1% and a reduction in effluent generated of 5.4%. This is a savings of R1 548 593 per annum based on 2003 costs of fresh water and effluent disposal.

This analysis was conducted using the most simplified representation possible to produce meaningful results in order to evaluate the effectiveness of water pinch analysis in optimising the fresh water consumption in an integrated pulp and paper mill. It is demonstrated that water pinch analysis is potentially a useful tool in determining the minimum fresh water requirement of a site.

T 628. 173 NAY

I would like to express my thanks and appreciation to the following people and organisations who contributed to this dissertation:

Mondi Paper for funding this project Water Research Council Supervisors for advice and guidance

I would also like to thank my husband for his patience and support throughout this investigation.

I, Gladys Naylor, declare that unless indicated, this dissertation is my own work and that it has not been submitted, in whole or part, for a degree at another University or Institution.

Gladys Naylor September 2003

As Gladys Naylor's supervisor I have approved this dissertation for submission

•

.....

Chris Brouckaert September 2003

|      |              |              |                                                | Page  |
|------|--------------|--------------|------------------------------------------------|-------|
| List | of Figures   | 5            |                                                | ix    |
| List | of Tables    |              |                                                | xi    |
| Glos | sary         |              |                                                | xiii  |
| Chap | oter 1 Intro | oduction     |                                                |       |
| 1.1  | Water        | use in Sout  | th Africa                                      | 1-1   |
| 1.2  | Water        | Use in the   | Pulp and Paper Industry                        | 1-2   |
|      | 1.2.1        | Fresh W      | ater Consumption for Different Grades of Paper | 1-4   |
| 1.3  | Water        | Use at Mor   | ndi Paper                                      | 1-5   |
| 1.4  | Enviro       | nmental Pr   | rotection and Cleaner Production               | 1-6   |
|      | 1.4.1        | Drivers f    | for Cleaner Producton                          | 1-6   |
|      |              | 1.4.1.1      | Legislation                                    | 1-6   |
|      |              | 1.4.1.2      | Environmental Management Systems               | 1-7   |
|      |              | 1.4.1.3      | Environmental Labels                           | 1-7   |
|      |              | 1.4.1.4      | Economic Factors                               | 1-8   |
|      | 1.4.2        | Achievin     | ng Cleaner Production                          | 1-8   |
| 1.5  | Water        | Pinch Anal   | lysis                                          | 1-9   |
| 1.6  | Object       | ive of the I | nvestigation                                   | 1-10  |
| Chap | ter 2 Mor    | idi Paper    |                                                |       |
| 2.1  | Pulp n       | uill         |                                                | 2-2   |
|      | 2.1.1        | Woodya       | rd                                             | 2-2   |
|      | 2.1.2        | Thermo-      | mechanical pulping                             | 2-2   |
|      | 2.1.3        | Groundv      | vood pulping                                   | 2-3   |
|      | 2.1.4        | Recycled     | d fibre pulping                                | 2-3   |
|      |              | 2.1.4.1      | Waste Paper Repulping                          | 2-4   |
|      |              | 2.1.4.2      | High Density Cleaning and Screening            | 2-4   |
|      |              | 2.1.4.3      | Flotation                                      | 2-4   |
|      |              | 2.1.4.4      | Cleaning for Removal of Lightweight Rejects    | 2-5   |
|      |              | 2.1.4.5      | Cleaning for Removal of Heavy Rejects          | . 2-5 |

|     |         | 2.1.4.6   | Screening with Pressure Screens | 2-5 |
|-----|---------|-----------|---------------------------------|-----|
|     |         | 2.1.4.7   | Thickening and Washing          | 2-5 |
|     |         | 2.1.4.8   | Dispersion                      | 2-5 |
| 2.2 | Paper n | nill      |                                 | 2-6 |
|     | 2.2.1   | Additives | s plant                         | 2-6 |
|     | 2.2.2   | Stock pre | paration plant                  | 2-6 |
|     | 2.2.3   | Paper ma  | chines                          | 2-7 |

## Chapter 3 Literature Review - Water use in Pulp and Paper Mills

| 3.1 | Water   | use in pulpi                                    | ng                                   | 3-1  |
|-----|---------|-------------------------------------------------|--------------------------------------|------|
|     | 3.1.1   | Debarkin                                        | g                                    | 3-1  |
|     | 3.1.2   | Mechanic                                        | cal Pulping                          | 3-2  |
| 3.2 | Water   | use in pape                                     | rmaking                              | 3-3  |
|     | 3.2.1   | De-inking                                       | g .                                  | 3-3  |
|     | 3.2.2   | Papermal                                        | king                                 | 3-4  |
| 3.3 | Mill cl | osure                                           |                                      | 3-4  |
|     | 3.3.1   | Contamir                                        | nation of process water              | 3-5  |
|     | 3.3.2   | Effect of                                       | contaminants on the paper machine    | 3-7  |
|     |         | 3.3.2.1                                         | Deposition and corrosion             | 3-10 |
|     |         | 3.3.2.2                                         | Retention                            | 3-10 |
|     |         | 3.3.2.3                                         | Microbiological buildup              | 3-10 |
|     |         | 3.3.2.4                                         | Dissolved and suspended solids       | 3-11 |
|     | 3.3.3   | Effect of                                       | contaminants on the paper properties | 3-12 |
|     | 3.3.4   | Detrimental substances from the pulping process |                                      | 3-13 |
|     | 3.3.5   | Charateri                                       | sing a filtrate or effluent stream   | 3-15 |

#### Chapter 4 Literature Review - Water Pinch Analysis

| 4.1 | The D  | The Development of Water Pinch Analysis 4 |      |
|-----|--------|-------------------------------------------|------|
| 4.2 | Data   |                                           | 4-5  |
| 4.3 | Model  | Modelling the Water-Using Network         |      |
|     | 4.3.1  | Characterising the Water-Using Network    | 4-6  |
| 4.4 | Graphi | Graphical Approaches to Pinch Analysis    |      |
|     | 4.4.1  | Regeneration Reuse                        | 4-10 |
|     | 4.4.2  | Regeneration Recycling                    | 4-11 |
|     | 4.4.3  | Two Composite Plots                       | 4-12 |
| 4.5 | Mathe  | matical Programming                       | 4-13 |
|     | 4.5.1  | Mathematical Programming Techniques       | 4-14 |

|        | 4.5.2      | Mathematical Programming Software                     | 4-16 |
|--------|------------|-------------------------------------------------------|------|
| 4.6    | Pinch 7    | Technology Application in the Pulp and Paper Industry | 4-17 |
| 4.7    | Conclu     | isions                                                | 4-19 |
| Chapt  | ter 5 Deve | elopment of a Water Pinch Model for Mondi Paper       |      |
| 5.1    | Water 1    | Pinch Modelling Framework                             | 5-1  |
|        | 5.1.1      | Unit Operations Available in Water Pinch Software     | 5-2  |
| 5.2    | Divisio    | n of the Mill into Sections                           | 5-5  |
| 5.3    | Choice     | of Key Contaminant                                    | 5-6  |
| 5.4 .  | Data       |                                                       | 5-6  |
| 5.5    | Water I    | Balances                                              | 5-7  |
|        | 5.5.1      | Recycled Fibre Plant                                  | 5-8  |
|        | 5.5.2      | Thermo-mechanical Plant                               | 5-11 |
|        | 5.5.3      | Paper Machines                                        | 5-15 |
| 5.6    | Water I    | Pinch Models of the Individual Sections of the Plant  | 5-19 |
|        | 5.6.1      | Recycled Fibre Plant                                  | 5-19 |
|        | 5.6.2      | Thermo-mechanical Pulp Mill                           | 5-22 |
|        | 5.6.3      | Paper Machines                                        | 5-24 |
| 5.7    | Water H    | Pinch Analysis of the Newsprint circuit               | 5-25 |
|        | 5.7.1      | Flow Constraints                                      | 5-30 |
| Chapt  | er 6 Resul | lts                                                   |      |
| 6.1    | Individu   | ual Sections                                          | 6-1  |
|        | 6.1.1      | Recycled Fibre Plant                                  | 6-1  |
|        | 6.1.2      | Thermo-mechanical Pulp Plant                          | 6-1  |
|        | 6.1.3      | Paper Machines                                        | 6-2  |
| 6.2    | Newspr     | rint Circuit                                          | 6-2  |
|        | 6.2.1      | Model Representing Current Situation                  | 6-3  |
|        | 6.2.2      | Model Representing Optimised Situation                | 6-3  |
| Chapt  | er 7 Conc  | clusions and Recommendations                          | 7-1  |
| Refere |            |                                                       | R-1  |

.

References

.

Appendices

Appendix A: Newsprint Circuit Water balance from Water Tracker

Appendix B: Recycled Fibre Plant Water Balance

Appendix C: Thermo-mechanical Pulp Plant Water Balance

Appendix D: Paper Machine Water Balance

Appendix E: Newsprint Circuit Existing Flows and Optimised Flows

Appendix F: Data for Water Pinch Model of Existing Newsprint Circuit

Appendix G: Newsprint Circuit Flowrate Data Specifications in Water Tracker

Appendix H: Newsprint Circuit Fibre Content Data specifications in Water Tracker

Appendix I: Water Pinch Results from the Recycled Fibre Plant

Appendix J: Water Pinch Results from the Thermo-mechanical Pulp Plant

Appendix K: Flow Constraints for Water Pinch Model of Existing Newsprint Circuit

Appendix L: Unit operations in the Newsprint Circuit

# List of Figures

| Figure | Figure Description                                                                 | Page |
|--------|------------------------------------------------------------------------------------|------|
| Number |                                                                                    |      |
| 1.1    | Fresh water use shows substantial regional differences                             | 1-2  |
| 1.2    | Three historical phases of progress in water management                            | 1-3  |
| 1.3    | Specific fresh water consumption, averages for six paper grades                    | 1-4  |
| 1.4    | Specific Water Consumption at Mondi Paper                                          | 1-5  |
| 1.5    | Specific water consumption for the paper grades produced at Mondi Paper            | 1-5  |
| 1.6    | Process engineering tool box for closed water cycles                               | 1-9  |
| 2.1    | Principle of refining                                                              | 2-3  |
| 2.2    | Slushing of baled pulp                                                             | 2-7  |
| 2.3    | Block diagram of a paper machine                                                   | 2-8  |
| 3.1    | Typcial wet debarking process                                                      | 3-2  |
| 3.2    | Simplified mechanical pulping process                                              | 3-3  |
| 3.3    | Main uses of water in the paper process                                            | 3-4  |
| 4.1    | Composite curves in thermal pinch analysis                                         | 4-2  |
| 4.2    | A fixed-mass-load operation                                                        | 4-5  |
| 4.3    | Industrial water use system                                                        | 4-6  |
| 4.4    | The water-using process considered by Wang and Smith                               | 4-8  |
| 4.5    | Composite curves for determining minimum fresh water requirements                  | 4-9  |
| 4.6    | Placement of a water regeneration process in relation to the composite curves      | 4-11 |
| 4.7    | Slope of composite curve below $C_0$ sets the minimum water flow rate              | 4-12 |
| 4.8    | Water supply does not satisfy the problem and an increase in flow rate is required | 4-12 |
|        | implying recycling is necessary                                                    |      |
| 4.9    | Demand and source composite                                                        | 4-13 |
| 4.10   | Superstructure of all possible inter-operational connections                       | 4-14 |
| 4.11   | Two composite plot of water sources and demands in a paper machine                 | 4-17 |
| 5.1    | User Defined Unit operations                                                       | 5-4  |
| 5.2    | Division of the mill into sections                                                 | 5-5  |
| 5.3    | Recycled Fibre Plant functional units                                              | 5-8  |
| 5.4    | Thermo-mechanical Pulp Mill functional units                                       | 5-12 |
| 5.5    | Paper Machine functional units                                                     | 5-16 |
| 5.6    | Representation of the Recycled Fibre Plant for the water pinch analysis            | 5-20 |
| 5.7    | Grouping of equipment together in the Thermo-mechanical pulp mill                  | 5-22 |
| 5.8    | Representation of the Thermo-mechanical Pulp Mill for the water pinch analysis     | 5-22 |
| 5.9    | Representation of a Paper machines for the water pinch analysis                    | 5-24 |

| 5.10 | Newsprint Circuit                                                                      | 5-26 |
|------|----------------------------------------------------------------------------------------|------|
| 5.11 | Simplified Newsprint circuit for the water pinch analysis                              | 5-27 |
| 6.1  | Flow of water streams between sections of the current newsprint circuit                | 6-3  |
| 6.2  | Flow of water streams between sections of the newsprint circuit in the optimised model | 6-5  |
| L.1  | Chip washer                                                                            | L-1  |
| L.2  | Hydrasieves                                                                            | L-1  |
| L.3  | Lines 1 to 4 Deckers                                                                   | L-1  |
| L.4  | Reject System                                                                          | L-1  |
| L.5  | Cooling                                                                                | L-2  |
| L.6  | Sealing water                                                                          | L-2  |
| L.7  | . Recycled Fibre Plant Pulping                                                         | L-2  |
| L.8  | Recycled Fibre Plant High Density Cleaning                                             | L-2  |
| L.9  | Recycled Fibre Plant Coarse Screens                                                    | L-3  |
| L.10 | Recycled Fibre Plant Flotation                                                         | L-3  |
| L.11 | Recycled Fibre Plant Gyrocleaners                                                      | L-3  |
| L.12 | Recycled Fibre Plant Centricleaners                                                    | L-3  |
| L.13 | Recycled Fibre Plant Fine Screens                                                      | L-3  |
| L.14 | Recycled Fibre Plant Disc Filter                                                       | L-4  |
| L.15 | Recycled Fibre Plant Wire Pulp Press                                                   | L-4  |
| L.16 | PM4 Forming section                                                                    | L-4  |
| L.17 | PM4 Press section                                                                      | L-4  |
| L.18 | PM4 Saveall                                                                            | L-4  |
| L.19 | PM5 Forming section                                                                    | L-5  |
| L.20 | PM5 Press section                                                                      | L-5  |
| L.21 | PM5 Saveall                                                                            | L-5  |

# List of Tables

| Table  | Table Description                                                                       | Page        |
|--------|-----------------------------------------------------------------------------------------|-------------|
| Number |                                                                                         |             |
| 1.1    | Specific Fresh Water Consumption                                                        | 1-1         |
| 2.1    | Fibre Composition of paper grades                                                       | 2-8         |
| 3.1    | Vendor specified requirements for shower flows for the same application: filtered white | 3-5         |
|        | water versus fresh water (100 mesh screen, 100ppm) on the paper machine                 |             |
| 3.2    | Consequences of closing water systems on the paper machine                              | 3-9         |
| 3.3    | Examples of the chemical nature and origin of detrimental substances                    | 3-13        |
| 3.4    | Papermaking chemicals which impact on bleaching                                         | 3-14        |
| 4.1    | Practical steam savings identified by pinch technology                                  | 4-18        |
| 5.1    | Function of each process unit in the Recycled Fibre Plant                               | 5-9         |
| 5.2    | Variables which could be used to characterise the streams in the Recycled Fibre Plant   | 5-10        |
| 5.3    | Function of each process unit in the Thermo-mechanical Pulp Mill                        | 5-13        |
| 5.4    | Variables which could be used to characterise the streams in the Thermo-mechanical      | 5-13        |
|        | Pulp Mill                                                                               |             |
| 5.5    | Function of each process unit in the Paper Machine                                      | 5-17        |
| 5.6    | Variables which could be used to characterise the streams in the Paper Machine          | 5-18        |
| 5.7    | Utility source flow rates and fibre content in the Recycled Fibre Plant                 | 5-21        |
| 5.8    | Utility sink flow rates and fibre content in the Recycled Fibre Plant                   | 5-21        |
| 5.9    | Maximum fibre constraints for process sinks in the Recycled Fibre Plant                 | 5-21        |
| 5.10   | Utility source flow rates and fibre content in the Thermo-mechanical pulp mill          | 5-23        |
| 5.11   | Utility sink flow rates and fibre content in the Thermo-mechanical pulp mill            | 5-23        |
| 5.12   | Maximum fibre constraints for process sinks in the Thermo-mechanical pulp mill          | 5-23        |
| 5.13   | Utility source flow rates and fibre content in the Newsprint circuit                    | 5-29        |
| 5.14   | Utility sink flow rates and fibre content in the Newsprint circuit                      | 5-29        |
| 5.15   | Maximum fibre constraints for process sinks in the Newsprint circuit                    | 5-29        |
| A.1    | Newsprint Circuit water balance flowrates from Water Tracker                            | A-1         |
| A.2    | Newsprint Circuit water balance fibre content from Water Tracker                        | A-21        |
| E.1    | Newsprint Circuit existing flows and optimised flows                                    | E-1         |
| F.1    | Newsprint Circuit Source Conditions                                                     | F-1         |
| F.2    | Newsprint Circuit Sink Conditions                                                       | F <b>-2</b> |
| G.1    | Newsprint Circuit flowrate data specifications in Water Tracker                         | G-1         |
| H.1    | Newsprint Circuit fibre content data specifications in Water Tracker                    | H-1         |
| I.1    | Routing of streams from water pinch model of the Recycled Fibre Plant                   | I-1         |
| 1.2    | Source conditions from water pinch model of the Recycled Fibre Plant                    | I-2         |

.

.

| I.3        | Sink conditions from water pinch model of the Recycled Fibre Plant            | I-2 |
|------------|-------------------------------------------------------------------------------|-----|
| J.1        | Routing of streams from water pinch model of the Thermo-mechanical pulp plant | J-1 |
| J.2        | Source conditions from water pinch model of the Thermo-mechanical pulp plant  | J-3 |
| J.3        | Sink conditions from water pinch model of the Thermo-mechanical pulp plant    | J-4 |
| <b>K</b> 1 | Flow Constraints for Water Pinch Model of existing Newsprint Circuit          | K-1 |

### Glossary

Additives Materials added to paper or to the papermaking furnish to modify or improve certain paper properties or to facilitate the papermaking process. This classification encompasses all materials that enter the system except for fibre and water. Common additives are fillers, dyes, biocides, defoamers, and retention aids.

Bleached Kraft Refer to Kraft Pulping

Broke Paper after forming section of paper machine which is not suitable for its end use. When produced, broke can be wet or dry, coated or uncoated, onmachine or off-machine, calender broke, winder broke, coater broke, or trim. Machine trim, while generally identical to the main sheet at that point is continuously produced, is usually referred to as trim if it is continuously produced, to differentiate it from other broke, which is only sporadically produced.

**Cationic Demand** Cationic demand is a quantitative measure of the available anionic charge of furnish components (e.g. fibre carboxyl groups, recycled starches, polyphosphates, anionic sizing materials, residual lignins and miscellaneous anionic contaminants) that can be neutralised by reaction with a cationic polymer. Cationic demand is defined as the amount required to reach zero charge per given amount of stock. It can be expressed in several different ways, such as percent cationic polymer on fibre weight, milliequivalent charge per litre of stock or kg cationic polymer per ton of ovendry stock. There is no standard procedure for determining the cationic demand of a furnish. Variations in the procedure occur in the cationic polymer titrants, pH conditions, polymer:fibre contact times, and endpoint detection method. These can all influence the amount of cationic polymer necessary to adjust the furnish to zero charge. In any form, it is a useful parameter for assessing the cationic requirements of a furnish, and the measurement is widely used in troubleshooting paper machine problems and optimising paper machine performance.

Chemical PulpPulp obtained from wood (or other plant raw material) principally by chemical<br/>means. The two major types of chemical pulp are kraft (sulphate) pulp and

sulphite pulp.

A term used to describe a mill in which the only fresh water added is to make Closed Water System up for losses through evaporation and moisture which leaves in the product. Water which contains a relatively high fibre content compared to clear filtrate. **Cloudy Filtrate** Cloudy filtrate is produced early in the filtration cycle by a disc filter. Cloudy filtrate from a disc filter is generally much leaner than paper machine white water. Drver Fabric The machine clothing that conveys and/or holds the sheet to the dryer cylinder and removes moisture by the evaporative process. It is usually an open mesh structure made from polyester and fibres and filaments that resist hydrolysis. Fines Very short pulp fibres or fibre fragments and ray cells. These may pass through the fabric of a paper machine during sheet formation. **Forming Fabric** An endless belt woven of plastic for use on the forming section of the paper machine. The fineness of the fabric is approximated by the mesh count. The weave configurations of forming fabrics are constantly being expanded to fit the various drainage and sheet requirements in the industry. Freeness The rate at which water drains from a stock suspension through a wire mesh screen or a perforated plate. When measured by the Canadian Standard Freeness (CSF) test, the CSF freeness is reported as the volume (in millilitres) of water flowing through the side orifice of the tester under test method conditions. Furnish The mixture of various materials that are blended in the stock suspension from which paper is made. The chief constituents are the fibrous material (pulp), sizing materials, wet-strength or other additives, fillers and dyes. Groundwood Pulp A mechanical pulp produced by pressing debarked logs sideways against a (GWD) rotating pulpstone in the presence of water and reducing the wood to a mass of relatively short fibres and fines. Integrated Mill A mill which produces both pulp and paper. A non-integrated mill would produce only pulp or only paper. Kraft Pulping The alkaline pulping process that uses a combination of sodium hydroxide and

sodium sulphide. It is derived from the German word meaning "strong", a fitting term since kraft pulp is the strongest chemical pulp. An alternative term is sulphate pulping.

Long Fibre Softwood chemical pulp.

Mill Closure A closed mill would be a mill with no water effluent eminating from it. Degrees of closure in a paper mill are defined by the amount of fresh water used per ton of paper produced.

Neutral SulphiteThis pulping process utilises sodium sulphite cooking liquor which is bufferedSemiChemical (NSSC)with sodium carbonate to neutralise the organic acids liberated from woodPulpingduring cooking.

Paper Machine FabricsPaper machine fabrics refer to dryer fabrics, forming fabrics and press fabrics.Refer to descriptions of individual fabrics.

Pitch In the paper industry, pitch is largely a mixture of fatty and resin acids and unsaponifiable organic substances that can be extracted from the wood, mechanical pulp and chemical pulp by means of organic solvents, such as alcohol and ether. Pitch is associated mainly with ray cells of the wood and under certain conditions it accumulates on the paper machine fabric or on the press felt in the press section and causes trouble in the papermaking operation.

Press Fabric A woven fabric made chiefly from polyester and used in the press section to provide void volume in the nip. The press fabric is run inside, or under the felt, e.g. between the felt and the roll.

 Retention
 The process of retaining soluble and insoluble stock components (chemicals, fillers, cellulose fines) in the forming paper web on the paper machine.

Retention programA combination of chemicals added to retain the soluble and insoluble stockcomponents in the forming paper web on the paper machine

SaveallA device that recovers and thickens fibres and other suspended solids from<br/>low consistency broke, trim or white water, and thickens it to the point that it<br/>can be conveniently reintroduced into the stock preparation system. Many<br/>types of savealls are used commercially, including disc filters, vacuum drum<br/>filters, deckers, dissolved air flotation clarifiers, and sidehill screens.

| Short Circulation              | The white water recirculation loop immediately adjacent to the forming section. This white water is called rich white water due to the high fibre content.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shives                         | Intact fibre bundle or fibrous mass having a contrasting colour to the pulp<br>fibres and having dimensions greater than some arbitrarily set minimum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sizing                         | (1) A property of paper resulting from an alteration of fibre surface<br>characteristics. In internal sizing, the entire furnish is uniformly treated before<br>the paper is formed to increase its resistance to the penetration of polar<br>liquids. The surface sizing relates to treating the finished sheet, on one or<br>both sides, to increase such properties as water resistance, abrasion resistance,<br>abrasiveness, creasability, finish, smoothness, surface bonding strength and<br>printability. (2) The addition of materials to a papermaking furnish or the<br>application of materials to the surface of paper to provide resistance to liquid<br>penetration and, in the case of surface sizing, to effect one or more of the<br>properties listed in (1). |
| Stickies                       | Suspended particulate contaminants, usually of low specific gravity, in the finished pulp. These contaminants originate with the adhesive and coating residues, ink residuals, tars, latexes, and hot melt materials. If not removed during processing, the stickies can cause sheets of paper to stick together.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stock                          | Pulp that has been refined, treated with sizing, colour, filler etc. and which after dilution is ready to be formed into a sheet of paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Supercalendered                | A finish obtained by passing paper between the rolls of a supercalender under<br>pressure. Supercalenders are usually composed of alternate chilled cast iron<br>and fibrous or polymeric rolls. The resulting finish will vary, depending on<br>the raw material used in the paper and the pressure exerted upon it.<br>Supercalendered finish is also know as supercalendering.                                                                                                                                                                                                                                                                                                                                                                                                |
| Tear Index                     | The numerical value found by dividing the value of the tearing resistance in milliNewtons (mN) by the basis weight in grams per square meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tearing Resistance             | In milliNewtons (mN). Obtained by multiplying the mass to tear a single sheet in grams by 9.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Thermomechanical Pulp<br>(TMP) | A mechanical pulp produced from wood chips, where the wood particles are softened by pre-heating in a pressurised vessel at temperatures not exceeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

•

the glass transition point of the lignin, before a pressurised primary refining stage.

White WaterAll waters of a paper mill which have been separated from the stock or pulp<br/>suspension, either on the paper machine or accessory equipment such as<br/>thickeners, washers and savealls, and also from pulp grinders. It carries a<br/>certain amount of fibre and may contain varying amounts of fillers, dyes, etc.

### **Chapter 1**

#### Introduction

This investigation entails the application of water pinch analysis at an integrated pulp and paper mill. The aim of the investigation is to assess the tool of water pinch analysis in identifying and quantifying potential savings in fresh water consumption in an industry which is typically a large user of water. Internationally the pulp and paper industry is under pressure to reduce its impact on the environment and improve the efficiency of production. There are a number of drivers for the pulp and paper industry to adopt cleaner production mechanisms in order to improve the environmental performance and this investigation looks at the application of water pinch technology as one of the tools available to the industry to achieve a reduction in water consumption.

#### 1.1 Water Use in South Africa

Water is a resource for all life on earth and without water the growth and economic development of South Africa is not possible. It is vital that this scarce resource is well managed to meet the needs of a growing population as well as the demands of increased industrialisation. As a developing nation, South Africa is striving to provide a safe and reliable drinking water supply to the growing and increasingly urbanised population and it is becoming more evident that new approaches to the problem of water supply and consumption will be needed (Lesan 1999).

South Africa is a relatively dry country, with irregular rainfall across the country and from year to year. The average annual rainfall is 500mm compared with the global average of 800mm. Water scarcity is further aggravated by the fact that 60% of the river flow arises from only 20% of the land area. In addition, South Africa has limited groundwater supplies (Schreiner 1998).

The total natural runoff in South Africa is estimated at 55 billion m<sup>3</sup> per year, of which only 33 billion m<sup>3</sup> is utilisable (DWAF 2000). It is estimated that water use will increase from a current level of 18 billion m<sup>3</sup> (1996 estimate, DWAF 2000) to 30 billion m<sup>3</sup> per year in 2030. From this is it apparent that an action plan is urgently needed to ensure wise supply and use of water. The first step in such a process should be to ensure more efficient use of the current water supply.

The use of water for agriculture in South Africa accounts for 60% of the total water use in the country. Domestic and general urban use of water constitutes about 11% of the total and approximately 8% is used by mining and larger industries (DWAF 2002).

### **Chapter 1**

#### Introduction

This investigation entails the application of water pinch analysis at an integrated pulp and paper mill. The aim of the investigation is to assess the tool of water pinch analysis in identifying and quantifying potential savings in fresh water consumption in an industry which is typically a large user of water. Internationally the pulp and paper industry is under pressure to reduce its impact on the environment and improve the efficiency of production. There are a number of drivers for the pulp and paper industry to adopt cleaner production mechanisms in order to improve the environmental performance and this investigation looks at the application of water pinch technology as one of the tools available to the industry to achieve a reduction in water consumption.

#### 1.1 Water Use in South Africa

Water is a resource for all life on earth and without water the growth and economic development of South Africa is not possible. It is vital that this scarce resource is well managed to meet the needs of a growing population as well as the demands of increased industrialisation. As a developing nation, South Africa is striving to provide a safe and reliable drinking water supply to the growing and increasingly urbanised population and it is becoming more evident that new approaches to the problem of water supply and consumption will be needed (Lesan 1999).

South Africa is a relatively dry country, with irregular rainfall across the country and from year to year. The average annual rainfall is 500mm compared with the global average of 800mm. Water scarcity is further aggravated by the fact that 60% of the river flow arises from only 20% of the land area. In addition, South Africa has limited groundwater supplies (Schreiner 1998).

The total natural runoff in South Africa is estimated at 55 billion m<sup>3</sup> per year, of which only 33 billion m<sup>3</sup> is utilisable (DWAF 2000). It is estimated that water use will increase from a current level of 18 billion m<sup>3</sup> (1996 estimate, DWAF 2000) to 30 billion m<sup>3</sup> per year in 2030. From this is it apparent that an action plan is urgently needed to ensure wise supply and use of water. The first step in such a process should be to ensure more efficient use of the current water supply.

The use of water for agriculture in South Africa accounts for 60% of the total water use in the country. Domestic and general urban use of water constitutes about 11% of the total and approximately 8% is used by mining and larger industries (DWAF 2002).

the glass transition point of the lignin, before a pressurised primary refining stage.

White WaterAll waters of a paper mill which have been separated from the stock or pulp<br/>suspension, either on the paper machine or accessory equipment such as<br/>thickeners, washers and savealls, and also from pulp grinders. It carries a<br/>certain amount of fibre and may contain varying amounts of fillers, dyes, etc.

| Short Circulation              | The white water recirculation loop immediately adjacent to the forming section. This white water is called rich white water due to the high fibre content.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shives                         | Intact fibre bundle or fibrous mass having a contrasting colour to the pulp fibres and having dimensions greater than some arbitrarily set minimum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sizing                         | (1) A property of paper resulting from an alteration of fibre surface<br>characteristics. In internal sizing, the entire furnish is uniformly treated before<br>the paper is formed to increase its resistance to the penetration of polar<br>liquids. The surface sizing relates to treating the finished sheet, on one or<br>both sides, to increase such properties as water resistance, abrasion resistance,<br>abrasiveness, creasability, finish, smoothness, surface bonding strength and<br>printability. (2) The addition of materials to a papermaking furnish or the<br>application of materials to the surface of paper to provide resistance to liquid<br>penetration and, in the case of surface sizing, to effect one or more of the<br>properties listed in (1). |
| Stickies                       | Suspended particulate contaminants, usually of low specific gravity, in the finished pulp. These contaminants originate with the adhesive and coating residues, ink residuals, tars, latexes, and hot melt materials. If not removed during processing, the stickies can cause sheets of paper to stick together.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stock                          | Pulp that has been refined, treated with sizing, colour, filler etc. and which after dilution is ready to be formed into a sheet of paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Supercalendered                | A finish obtained by passing paper between the rolls of a supercalender under<br>pressure. Supercalenders are usually composed of alternate chilled cast iron<br>and fibrous or polymeric rolls. The resulting finish will vary, depending on<br>the raw material used in the paper and the pressure exerted upon it.<br>Supercalendered finish is also know as supercalendering.                                                                                                                                                                                                                                                                                                                                                                                                |
| Tear Index                     | The numerical value found by dividing the value of the tearing resistance in milliNewtons (mN) by the basis weight in grams per square meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tearing Resistance             | In milliNewtons (mN). Obtained by multiplying the mass to tear a single sheet in grams by 9.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Thermomechanical Pulp<br>(TMP) | A mechanical pulp produced from wood chips, where the wood particles are softened by pre-heating in a pressurised vessel at temperatures not exceeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

•

sodium sulphide. It is derived from the German word meaning "strong", a fitting term since kraft pulp is the strongest chemical pulp. An alternative term is sulphate pulping.

Long Fibre Softwood chemical pulp.

Mill Closure A closed mill would be a mill with no water effluent eminating from it. Degrees of closure in a paper mill are defined by the amount of fresh water used per ton of paper produced.

Neutral SulphiteThis pulping process utilises sodium sulphite cooking liquor which is bufferedSemiChemical (NSSC)with sodium carbonate to neutralise the organic acids liberated from woodPulpingduring cooking.

Paper Machine FabricsPaper machine fabrics refer to dryer fabrics, forming fabrics and press fabrics.Refer to descriptions of individual fabrics.

Pitch In the paper industry, pitch is largely a mixture of fatty and resin acids and unsaponifiable organic substances that can be extracted from the wood, mechanical pulp and chemical pulp by means of organic solvents, such as alcohol and ether. Pitch is associated mainly with ray cells of the wood and under certain conditions it accumulates on the paper machine fabric or on the press felt in the press section and causes trouble in the papermaking operation.

Press Fabric A woven fabric made chiefly from polyester and used in the press section to provide void volume in the nip. The press fabric is run inside, or under the felt, e.g. between the felt and the roll.

 Retention
 The process of retaining soluble and insoluble stock components (chemicals, fillers, cellulose fines) in the forming paper web on the paper machine.

Retention programA combination of chemicals added to retain the soluble and insoluble stockcomponents in the forming paper web on the paper machine

SaveallA device that recovers and thickens fibres and other suspended solids from<br/>low consistency broke, trim or white water, and thickens it to the point that it<br/>can be conveniently reintroduced into the stock preparation system. Many<br/>types of savealls are used commercially, including disc filters, vacuum drum<br/>filters, deckers, dissolved air flotation clarifiers, and sidehill screens.

sulphite pulp.

A term used to describe a mill in which the only fresh water added is to make Closed Water System up for losses through evaporation and moisture which leaves in the product. Water which contains a relatively high fibre content compared to clear filtrate. **Cloudy Filtrate** Cloudy filtrate is produced early in the filtration cycle by a disc filter. Cloudy filtrate from a disc filter is generally much leaner than paper machine white water. Drver Fabric The machine clothing that conveys and/or holds the sheet to the dryer cylinder and removes moisture by the evaporative process. It is usually an open mesh structure made from polyester and fibres and filaments that resist hydrolysis. Fines Very short pulp fibres or fibre fragments and ray cells. These may pass through the fabric of a paper machine during sheet formation. **Forming Fabric** An endless belt woven of plastic for use on the forming section of the paper machine. The fineness of the fabric is approximated by the mesh count. The weave configurations of forming fabrics are constantly being expanded to fit the various drainage and sheet requirements in the industry. Freeness The rate at which water drains from a stock suspension through a wire mesh screen or a perforated plate. When measured by the Canadian Standard Freeness (CSF) test, the CSF freeness is reported as the volume (in millilitres) of water flowing through the side orifice of the tester under test method conditions. Furnish The mixture of various materials that are blended in the stock suspension from which paper is made. The chief constituents are the fibrous material (pulp), sizing materials, wet-strength or other additives, fillers and dyes. Groundwood Pulp A mechanical pulp produced by pressing debarked logs sideways against a (GWD) rotating pulpstone in the presence of water and reducing the wood to a mass of relatively short fibres and fines. Integrated Mill A mill which produces both pulp and paper. A non-integrated mill would produce only pulp or only paper. Kraft Pulping The alkaline pulping process that uses a combination of sodium hydroxide and

### Glossary

Additives Materials added to paper or to the papermaking furnish to modify or improve certain paper properties or to facilitate the papermaking process. This classification encompasses all materials that enter the system except for fibre and water. Common additives are fillers, dyes, biocides, defoamers, and retention aids.

Bleached Kraft Refer to Kraft Pulping

Broke Paper after forming section of paper machine which is not suitable for its end use. When produced, broke can be wet or dry, coated or uncoated, onmachine or off-machine, calender broke, winder broke, coater broke, or trim. Machine trim, while generally identical to the main sheet at that point is continuously produced, is usually referred to as trim if it is continuously produced, to differentiate it from other broke, which is only sporadically produced.

**Cationic Demand** Cationic demand is a quantitative measure of the available anionic charge of furnish components (e.g. fibre carboxyl groups, recycled starches, polyphosphates, anionic sizing materials, residual lignins and miscellaneous anionic contaminants) that can be neutralised by reaction with a cationic polymer. Cationic demand is defined as the amount required to reach zero charge per given amount of stock. It can be expressed in several different ways, such as percent cationic polymer on fibre weight, milliequivalent charge per litre of stock or kg cationic polymer per ton of ovendry stock. There is no standard procedure for determining the cationic demand of a furnish. Variations in the procedure occur in the cationic polymer titrants, pH conditions, polymer:fibre contact times, and endpoint detection method. These can all influence the amount of cationic polymer necessary to adjust the furnish to zero charge. In any form, it is a useful parameter for assessing the cationic requirements of a furnish, and the measurement is widely used in troubleshooting paper machine problems and optimising paper machine performance.

Chemical PulpPulp obtained from wood (or other plant raw material) principally by chemical<br/>means. The two major types of chemical pulp are kraft (sulphate) pulp and

| I.3        | Sink conditions from water pinch model of the Recycled Fibre Plant            | I-2 |
|------------|-------------------------------------------------------------------------------|-----|
| J.1        | Routing of streams from water pinch model of the Thermo-mechanical pulp plant | J-1 |
| J.2        | Source conditions from water pinch model of the Thermo-mechanical pulp plant  | J-3 |
| J.3        | Sink conditions from water pinch model of the Thermo-mechanical pulp plant    | J-4 |
| <b>K</b> 1 | Flow Constraints for Water Pinch Model of existing Newsprint Circuit          | K-1 |

# List of Tables

| Table  | Table Description                                                                       | Page        |
|--------|-----------------------------------------------------------------------------------------|-------------|
| Number |                                                                                         |             |
| 1.1    | Specific Fresh Water Consumption                                                        | 1-1         |
| 2.1    | Fibre Composition of paper grades                                                       | 2-8         |
| 3.1    | Vendor specified requirements for shower flows for the same application: filtered white | 3-5         |
|        | water versus fresh water (100 mesh screen, 100ppm) on the paper machine                 |             |
| 3.2    | Consequences of closing water systems on the paper machine                              | 3-9         |
| 3.3    | Examples of the chemical nature and origin of detrimental substances                    | 3-13        |
| 3.4    | Papermaking chemicals which impact on bleaching                                         | 3-14        |
| 4.1    | Practical steam savings identified by pinch technology                                  | 4-18        |
| 5.1    | Function of each process unit in the Recycled Fibre Plant                               | 5-9         |
| 5.2    | Variables which could be used to characterise the streams in the Recycled Fibre Plant   | 5-10        |
| 5.3    | Function of each process unit in the Thermo-mechanical Pulp Mill                        | 5-13        |
| 5.4    | Variables which could be used to characterise the streams in the Thermo-mechanical      | 5-13        |
|        | Pulp Mill                                                                               |             |
| 5.5    | Function of each process unit in the Paper Machine                                      | 5-17        |
| 5.6    | Variables which could be used to characterise the streams in the Paper Machine          | 5-18        |
| 5.7    | Utility source flow rates and fibre content in the Recycled Fibre Plant                 | 5-21        |
| 5.8    | Utility sink flow rates and fibre content in the Recycled Fibre Plant                   | 5-21        |
| 5.9    | Maximum fibre constraints for process sinks in the Recycled Fibre Plant                 | 5-21        |
| 5.10   | Utility source flow rates and fibre content in the Thermo-mechanical pulp mill          | 5-23        |
| 5.11   | Utility sink flow rates and fibre content in the Thermo-mechanical pulp mill            | 5-23        |
| 5.12   | Maximum fibre constraints for process sinks in the Thermo-mechanical pulp mill          | 5-23        |
| 5.13   | Utility source flow rates and fibre content in the Newsprint circuit                    | 5-29        |
| 5.14   | Utility sink flow rates and fibre content in the Newsprint circuit                      | 5-29        |
| 5.15   | Maximum fibre constraints for process sinks in the Newsprint circuit                    | 5-29        |
| A.1    | Newsprint Circuit water balance flowrates from Water Tracker                            | A-1         |
| A.2    | Newsprint Circuit water balance fibre content from Water Tracker                        | A-21        |
| E.1    | Newsprint Circuit existing flows and optimised flows                                    | E-1         |
| F.1    | Newsprint Circuit Source Conditions                                                     | F-1         |
| F.2    | Newsprint Circuit Sink Conditions                                                       | F <b>-2</b> |
| G.1    | Newsprint Circuit flowrate data specifications in Water Tracker                         | G-1         |
| H.1    | Newsprint Circuit fibre content data specifications in Water Tracker                    | H-1         |
| I.1    | Routing of streams from water pinch model of the Recycled Fibre Plant                   | I-1         |
| 1.2    | Source conditions from water pinch model of the Recycled Fibre Plant                    | I-2         |

.

.

| 5.10 | Newsprint Circuit                                                                      | 5-26 |
|------|----------------------------------------------------------------------------------------|------|
| 5.11 | Simplified Newsprint circuit for the water pinch analysis                              | 5-27 |
| 6.1  | Flow of water streams between sections of the current newsprint circuit                | 6-3  |
| 6.2  | Flow of water streams between sections of the newsprint circuit in the optimised model | 6-5  |
| L.1  | Chip washer                                                                            | L-1  |
| L.2  | Hydrasieves                                                                            | L-1  |
| L.3  | Lines 1 to 4 Deckers                                                                   | L-1  |
| L.4  | Reject System                                                                          | L-1  |
| L.5  | Cooling                                                                                | L-2  |
| L.6  | Sealing water                                                                          | L-2  |
| L.7  | . Recycled Fibre Plant Pulping                                                         | L-2  |
| L.8  | Recycled Fibre Plant High Density Cleaning                                             | L-2  |
| L.9  | Recycled Fibre Plant Coarse Screens                                                    | L-3  |
| L.10 | Recycled Fibre Plant Flotation                                                         | L-3  |
| L.11 | Recycled Fibre Plant Gyrocleaners                                                      | L-3  |
| L.12 | Recycled Fibre Plant Centricleaners                                                    | L-3  |
| L.13 | Recycled Fibre Plant Fine Screens                                                      | L-3  |
| L.14 | Recycled Fibre Plant Disc Filter                                                       | L-4  |
| L.15 | Recycled Fibre Plant Wire Pulp Press                                                   | L-4  |
| L.16 | PM4 Forming section                                                                    | L-4  |
| L.17 | PM4 Press section                                                                      | L-4  |
| L.18 | PM4 Saveall                                                                            | L-4  |
| L.19 | PM5 Forming section                                                                    | L-5  |
| L.20 | PM5 Press section                                                                      | L-5  |
| L.21 | PM5 Saveall                                                                            | L-5  |

# List of Figures

| Figure | Figure Description                                                                 | Page |
|--------|------------------------------------------------------------------------------------|------|
| Number |                                                                                    |      |
| 1.1    | Fresh water use shows substantial regional differences                             | 1-2  |
| 1.2    | Three historical phases of progress in water management                            | 1-3  |
| 1.3    | Specific fresh water consumption, averages for six paper grades                    | 1-4  |
| 1.4    | Specific Water Consumption at Mondi Paper                                          | 1-5  |
| 1.5    | Specific water consumption for the paper grades produced at Mondi Paper            | 1-5  |
| 1.6    | Process engineering tool box for closed water cycles                               | 1-9  |
| 2.1    | Principle of refining                                                              | 2-3  |
| 2.2    | Slushing of baled pulp                                                             | 2-7  |
| 2.3    | Block diagram of a paper machine                                                   | 2-8  |
| 3.1    | Typcial wet debarking process                                                      | 3-2  |
| 3.2    | Simplified mechanical pulping process                                              | 3-3  |
| 3.3    | Main uses of water in the paper process                                            | 3-4  |
| 4.1    | Composite curves in thermal pinch analysis                                         | 4-2  |
| 4.2    | A fixed-mass-load operation                                                        | 4-5  |
| 4.3    | Industrial water use system                                                        | 4-6  |
| 4.4    | The water-using process considered by Wang and Smith                               | 4-8  |
| 4.5    | Composite curves for determining minimum fresh water requirements                  | 4-9  |
| 4.6    | Placement of a water regeneration process in relation to the composite curves      | 4-11 |
| 4.7    | Slope of composite curve below C <sub>0</sub> sets the minimum water flow rate     | 4-12 |
| 4.8    | Water supply does not satisfy the problem and an increase in flow rate is required | 4-12 |
|        | implying recycling is necessary                                                    |      |
| 4.9    | Demand and source composite                                                        | 4-13 |
| 4.10   | Superstructure of all possible inter-operational connections                       | 4-14 |
| 4.11   | Two composite plot of water sources and demands in a paper machine                 | 4-17 |
| 5.1    | User Defined Unit operations                                                       | 5-4  |
| 5.2    | Division of the mill into sections                                                 | 5-5  |
| 5.3    | Recycled Fibre Plant functional units                                              | 5-8  |
| 5.4    | Thermo-mechanical Pulp Mill functional units                                       | 5-12 |
| 5.5    | Paper Machine functional units                                                     | 5-16 |
| 5.6    | Representation of the Recycled Fibre Plant for the water pinch analysis            | 5-20 |
| 5.7    | Grouping of equipment together in the Thermo-mechanical pulp mill                  | 5-22 |
| 5.8    | Representation of the Thermo-mechanical Pulp Mill for the water pinch analysis     | 5-22 |
| 5.9    | Representation of a Paper machines for the water pinch analysis                    | 5-24 |

Appendix B: Recycled Fibre Plant Water Balance

Appendix C: Thermo-mechanical Pulp Plant Water Balance

Appendix D: Paper Machine Water Balance

Appendix E: Newsprint Circuit Existing Flows and Optimised Flows

Appendix F: Data for Water Pinch Model of Existing Newsprint Circuit

Appendix G: Newsprint Circuit Flowrate Data Specifications in Water Tracker

Appendix H: Newsprint Circuit Fibre Content Data specifications in Water Tracker

Appendix I: Water Pinch Results from the Recycled Fibre Plant

Appendix J: Water Pinch Results from the Thermo-mechanical Pulp Plant

Appendix K: Flow Constraints for Water Pinch Model of Existing Newsprint Circuit

Appendix L: Unit operations in the Newsprint Circuit

|       | 4.5.2      | Mathematical Programming Software                     | 4-16 |
|-------|------------|-------------------------------------------------------|------|
| 4.6   | Pinch 7    | Technology Application in the Pulp and Paper Industry | 4-17 |
| 4.7   | Conclu     | 4-19                                                  |      |
| Chapt | er 5 Deve  | elopment of a Water Pinch Model for Mondi Paper       |      |
| 5.1   | Water 1    | Pinch Modelling Framework                             | 5-1  |
|       | 5.1.1      | Unit Operations Available in Water Pinch Software     | 5-2  |
| 5.2   | Divisio    | n of the Mill into Sections                           | 5-5  |
| 5.3   | Choice     | of Key Contaminant                                    | 5-6  |
| 5.4 . | Data       |                                                       | 5-6  |
| 5.5   | Water I    | Balances                                              | 5-7  |
|       | 5.5.1      | Recycled Fibre Plant                                  | 5-8  |
|       | 5.5.2      | Thermo-mechanical Plant                               | 5-11 |
|       | 5.5.3      | Paper Machines                                        | 5-15 |
| 5.6   | Water I    | Pinch Models of the Individual Sections of the Plant  | 5-19 |
|       | 5.6.1      | Recycled Fibre Plant                                  | 5-19 |
|       | 5.6.2      | Thermo-mechanical Pulp Mill                           | 5-22 |
|       | 5.6.3      | Paper Machines                                        | 5-24 |
| 5.7   | Water H    | Pinch Analysis of the Newsprint circuit               | 5-25 |
|       | 5.7.1      | Flow Constraints                                      | 5-30 |
| Chapt | er 6 Resul | lts                                                   |      |
| 6.1   | Individu   | ual Sections                                          | 6-1  |
|       | 6.1.1      | Recycled Fibre Plant                                  | 6-1  |
|       | 6.1.2      | Thermo-mechanical Pulp Plant                          | 6-1  |
|       | 6.1.3      | Paper Machines                                        | 6-2  |
| 6.2   | Newspr     | rint Circuit                                          | 6-2  |
|       | 6.2.1      | Model Representing Current Situation                  | 6-3  |
|       | 6.2.2      | Model Representing Optimised Situation                | 6-3  |
| Chapt | er 7 Conc  | lusions and Recommendations                           | 7-1  |
| Refer |            |                                                       | R-1  |

.

References

.

Appendices

Appendix A: Newsprint Circuit Water balance from Water Tracker

|     |            | 2.1.4.6                 | Screening with Pressure Screens | 2-5 |
|-----|------------|-------------------------|---------------------------------|-----|
|     |            | 2.1.4.7                 | Thickening and Washing          | 2-5 |
|     |            | 2.1.4.8                 | Dispersion                      | 2-5 |
| 2.2 | Paper mill |                         | 2-6                             |     |
|     | 2.2.1      | Additives               | s plant                         | 2-6 |
|     | 2.2.2      | Stock preparation plant |                                 | 2-6 |
|     | 2.2.3      | Paper machines          |                                 | 2-7 |

## Chapter 3 Literature Review - Water use in Pulp and Paper Mills

| 3.1 | Water use in pulping     |                                             |                                             | 3-1  |
|-----|--------------------------|---------------------------------------------|---------------------------------------------|------|
|     | 3.1.1                    | Debarkin                                    | g                                           | 3-1  |
|     | 3.1.2                    | Mechanic                                    | cal Pulping                                 | 3-2  |
| 3.2 | Water use in papermaking |                                             |                                             | 3-3  |
|     | 3.2.1                    | De-inking                                   | g                                           | 3-3  |
|     | 3.2.2                    | Papermal                                    | king                                        | 3-4  |
| 3.3 | Mill closure             |                                             |                                             | 3-4  |
|     | 3.3.1                    | Contamir                                    | 3-5                                         |      |
|     | 3.3.2                    | Effect of                                   | Effect of contaminants on the paper machine |      |
|     |                          | 3.3.2.1                                     | Deposition and corrosion                    | 3-10 |
|     |                          | 3.3.2.2                                     | Retention                                   | 3-10 |
|     |                          | 3.3.2.3                                     | Microbiological buildup                     | 3-10 |
|     |                          | 3.3.2.4                                     | Dissolved and suspended solids              | 3-11 |
|     | 3.3.3                    | Effect of                                   | 3-12                                        |      |
|     | 3.3.4                    | Detrimen                                    | 3-13                                        |      |
|     | 3.3.5                    | Charaterising a filtrate or effluent stream |                                             |      |

#### Chapter 4 Literature Review - Water Pinch Analysis

| 4.1 | The Development of Water Pinch Analysis |                                        |      |  |
|-----|-----------------------------------------|----------------------------------------|------|--|
| 4.2 | Data                                    | Data                                   |      |  |
| 4.3 | Model                                   | Modelling the Water-Using Network      |      |  |
|     | 4.3.1                                   | Characterising the Water-Using Network | 4-6  |  |
| 4.4 | Graphical Approaches to Pinch Analysis  |                                        |      |  |
|     | 4.4.1                                   | Regeneration Reuse                     | 4-10 |  |
|     | 4.4.2                                   | Regeneration Recycling                 | 4-11 |  |
|     | 4.4.3                                   | Two Composite Plots                    | 4-12 |  |
| 4.5 | Mathematical Programming                |                                        |      |  |
|     | 4.5.1                                   | Mathematical Programming Techniques    | 4-14 |  |

|      |                                |             |                                                | Page  |
|------|--------------------------------|-------------|------------------------------------------------|-------|
| List | of Figures                     | 5           |                                                | ix    |
| List | of Tables                      |             |                                                | xi    |
| Glos | sary                           |             |                                                | xiii  |
| Chap | oter 1 Intro                   | oduction    |                                                |       |
| 1.1  | Water                          | use in Sout | th Africa                                      | 1-1   |
| 1.2  | Water                          | Use in the  | Pulp and Paper Industry                        | 1-2   |
|      | 1.2.1                          | Fresh W     | ater Consumption for Different Grades of Paper | 1-4   |
| 1.3  | Water                          | Use at Mor  | ndi Paper                                      | 1-5   |
| 1.4  | Enviro                         | nmental Pr  | rotection and Cleaner Production               | 1-6   |
|      | 1.4.1                          | Drivers f   | for Cleaner Producton                          | 1-6   |
|      |                                | 1.4.1.1     | Legislation                                    | 1-6   |
|      |                                | 1.4.1.2     | Environmental Management Systems               | 1-7   |
|      |                                | 1.4.1.3     | Environmental Labels                           | 1-7   |
|      |                                | 1.4.1.4     | Economic Factors                               | 1-8   |
|      | 1.4.2                          | Achievin    | ng Cleaner Production                          | 1-8   |
| 1.5  | Water                          | Pinch Anal  | lysis                                          | 1-9   |
| 1.6  | Objective of the Investigation |             |                                                |       |
| Chap | ter 2 Mor                      | idi Paper   |                                                |       |
| 2.1  | Pulp n                         | 2-2         |                                                |       |
|      | 2.1.1                          | Woodya      | rd                                             | 2-2   |
|      | 2.1.2                          | Thermo-     | mechanical pulping                             | 2-2   |
|      | 2.1.3                          | Groundv     | vood pulping                                   | 2-3   |
|      | 2.1.4                          | Recycled    | d fibre pulping                                | 2-3   |
|      |                                | 2.1.4.1     | Waste Paper Repulping                          | 2-4   |
|      |                                | 2.1.4.2     | High Density Cleaning and Screening            | 2-4   |
|      |                                | 2.1.4.3     | Flotation                                      | 2-4   |
|      |                                | 2.1.4.4     | Cleaning for Removal of Lightweight Rejects    | 2-5   |
|      |                                | 2.1.4.5     | Cleaning for Removal of Heavy Rejects          | . 2-5 |

I, Gladys Naylor, declare that unless indicated, this dissertation is my own work and that it has not been submitted, in whole or part, for a degree at another University or Institution.

Gladys Naylor September 2003

As Gladys Naylor's supervisor I have approved this dissertation for submission

•

.....

Chris Brouckaert September 2003 I would like to express my thanks and appreciation to the following people and organisations who contributed to this dissertation:

Mondi Paper for funding this project Water Research Council Supervisors for advice and guidance

I would also like to thank my husband for his patience and support throughout this investigation.

## HC 04/00052

PPN 425180

### Abstract

The objective of this investigation was to utilise water pinch analysis as a tool for the optimisation of fresh water use in an integrated pulp and paper mill. The investigation was carried out at Mondi Paper in Merebank, south of Durban.

The pulp and paper manufacturing process is a large consumer of fresh water and minimising the amount of fresh water used in the processes is beneficial from both a cost and environmental point of view. There are examples of mills which have "closed" their water systems to the extent that fresh water make up is minimal and most of the water is recycled and reused in a closed loop. These examples provide guidance on the basis of proven methods for reducing water consumption in the pulp and paper industry and can be used as a reference for mills wishing to reduce water consumption by making use of tried and tested methods. This investigation sought to provide an alternative method to identifying potential savings in fresh water consumption by making use of water pinch analysis.

This was done at Mondi Paper by analysing individual parts of the mill and then a larger section of the mill which included both pulp and paper production. Flowrates of water streams and fibre content in those streams were obtained from plant data, where available, and this data was used to produce a mass balance using the Linnhoff-March software, Water Tracker. The balance produced using Water Tracker provided the missing flow and fibre content data and this data was used as the input for the Linnhoff-March software, Water pinch analysis.

The results achieved when analysing the individual parts of the mill did not demonstrate potential for significant savings in fresh water consumption, however the analysis of the integrated section of the mill identified a potential reduction in fresh water. It was found that the application of a single contaminant analysis to the larger section of the mill identified a possible reduction in the fresh water requirement of 8.1% and a reduction in effluent generated of 5.4%. This is a savings of R1 548 593 per annum based on 2003 costs of fresh water and effluent disposal.

This analysis was conducted using the most simplified representation possible to produce meaningful results in order to evaluate the effectiveness of water pinch analysis in optimising the fresh water consumption in an integrated pulp and paper mill. It is demonstrated that water pinch analysis is potentially a useful tool in determining the minimum fresh water requirement of a site.

T 628. 173 NAY

# APPLICATION OF PINCH TECHNOLOGY IN AN INTEGRATED PULP AND PAPER MILL

# Gladys M Naylor BscEng(US)

Submitted in the fulfilment of the academic requirements for the degree of

#### **MScEng**

in the Department of Chemical Engineering, University of Natal, Durban

September 2003

### 1.2 Water Use in the Pulp and Paper Industry

Pulping and papermaking is undeniably a very water intensive industry with a gross consumption well in excess of 100 m<sup>3</sup> per ton of paper for even the most efficient operation (Webb 1992). Fortunately, the industry has always relied on some degree of water recycling as a means of recovering fibre that has escaped being retained in the paper the first time round. In this way, the consumption of *fresh* water (a better index of environmental impact than gross water consumption) has been progressively reduced by pulp and paper mills. This can be illustrated with trends from various countries.

The benchmark in the field of water consumption in pulp and paper manufacturers is *specific water consumption* which represents the amount of fresh water used to produce a ton of product. In the USA figures from the largest pulp and paper producers indicate that the water use of 53.5 m<sup>3</sup>/ton across the whole industry achieved in the early 1990s represented a 27% reduction since 1975 and a 70% reduction since 1959 (Miner 1991). In Europe there have been comparable reductions in water consumption. The UK paper industry has experienced a rather uneven trend with large reductions up to about 1980, about 80 m<sup>3</sup>/ton in the late 1960s to 60 m<sup>3</sup>/ton in the mid 1970s to 40 m<sup>3</sup>/ton in 1980, but a much smaller reduction since then to about 35 m<sup>3</sup>/ton in the late 1980s (Webb 1988). In the Netherlands the water consumption was similar to the UK in 1970, but declined to a very low 8.5 m<sup>3</sup>/ton across 18 mill by the mid 1980s.

There are still considerable regional differences regarding the progress made in reduction of water consumption. A comparison of the average consumption values in important areas of paper manufacture in 1998, Figure 1.1, shows a relatively low value for central Europe whereas North America still has a fairly high water consumption (Auhorn, 1999).

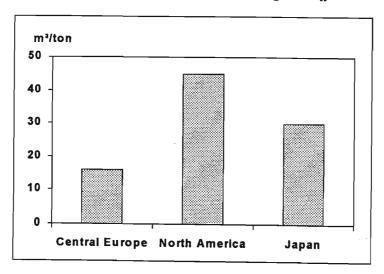



Figure 1.1 Fresh water use shows substantial regional differences

Concepts and developments in the field of water reduction began as long ago as the 1930s and were further developed in the 35 years between 1955 and 1990. Historical progress in water management is divided into three phases by Zippel (1990), Figure 1.2

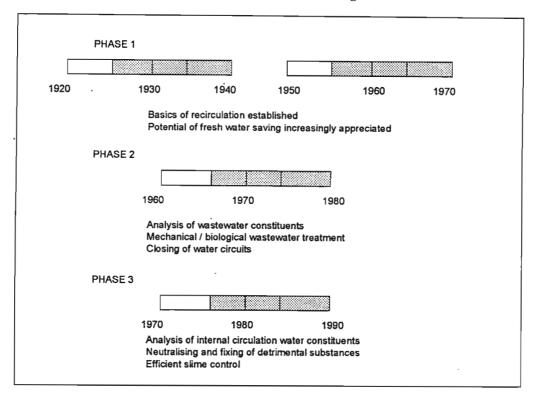



Figure 1.2 Three historical phases of progress in water management

In Phase 1 the more technical possibilities of wastewater recycling and fresh water saving were the main interest of research and practice. The main goals were reduction of fresh water consumption and stock losses. However, the initially dominating economic aspect gave way quite rapidly in the fifties to ecological requirements.

Legal ecological requirements initiated in Phase 2 meant the focus was on the constituents of the process water which polluted the receiving waters, in particular, with the biological and chemical oxygen demands. The paper industry's efforts were to a large extent directed in parallel towards the installation of water treatment plants or towards solving the emission problems by completely closing the water circuit systems. It was in this period that the terms *environment*, *recycling*, *disposal*, *constituents*, *pollutants* probably became part of routine vocabulary in the pulp and papermaking industry.

The restriction of fresh water consumption led to serious problems in the production processes in Phase 3 due to enrichment of organic substances in the recirculation water. The increasing use of recovered paper intensified the difficulties. Thus the third phase was characterised by basic investigation work at research institutions and in the chemical industry with these priorities

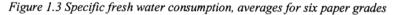
Determination of essential constituents of circuit water

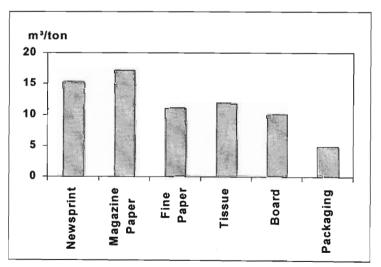
- Reduction of their disturbing effects by chemical aids and circuit optimisation.

### 1.2.1 Fresh Water Consumption for Different Grades of Paper

The earliest data on fresh water consumption of paper machines compiled by Brecht (1933) is shown in Table 1.1 along with data provided by Zippel (2001).

| Paper Grade                                         | Specific Fresh Water Consumption |
|-----------------------------------------------------|----------------------------------|
|                                                     | m³/ton                           |
| Newsprint (including groundwood mill) <sup>1.</sup> | 180-200                          |
| Newsprint (without groundwood mill) <sup>2</sup> .  | 2-130                            |
| Printing and writing medium <sup>2</sup> .          | 45-500                           |
| Writing paper fine and medium <sup>2</sup>          | 60-600                           |
| Fine paper <sup>1.</sup>                            | 200-300                          |
| Wrapping paper (from virgin fibre) <sup>1</sup>     | 100-150                          |
| Various papers <sup>2</sup>                         | 3-330                            |


Table 1.1 Specific Fresh Water Consumption


1. Zippel (2001

2. Brecht (1933)

.

In a later study of paper mills across Germany, Zippel (2001) evaluated the amount of fresh water consumed for the production of different paper grades, Figure 1.3. The overall average of all plants investigated is about 11.3 m<sup>3</sup>/ton representing a significant reduction in fresh water consumption from the figures shown in Table 1.1.





# 1.3 Water Use at Mondi Paper

The consumption of fresh water at Mondi Paper has been reduced over the years to a current level of just over 24 m<sup>3</sup>/ton, Figure 1.4.

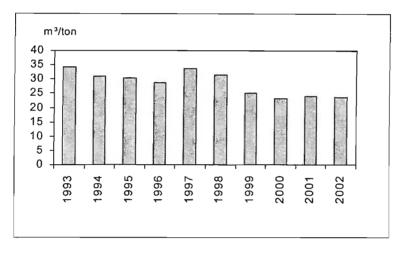
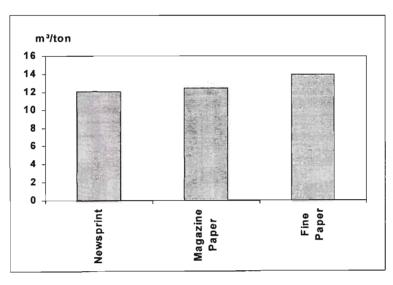




Figure 1.4 Specific Water Consumption at Mondi Paper

The specific water consumption shown in Figure 1.4 is for the integrated mill including the production of pulp. The specific water consumption for each of the paper grades made at the mill is shown in Figure 1.5, this does not include water consumed in the production of pulp.

Figure 1.5 Specific water consumption for the paper grades produced at Mondi Paper



# 1.4 Environmental Protection and Cleaner Production

The Cleaner Production concept embodies a preventative approach to dealing with pollution instead of dealing with the problem at the end-of-the-pipe stage. Cleaner Production is defined by the United Nations Environment Programme (UNEP) as (UNEP, 2002)

The continuous application of an integrated preventative environmental strategy to processes, products and services to increase the overall efficiency, and reduce risks to humans an the environment.

For production processes: Cleaner production results from one or a combination of conserving raw materials, water and energy; eliminating toxic and dangerous raw materials; and reducing the quantity and toxicity of all emissions and wastes at source during the production process.

Over the past decade, environmental protection in the forest industry has become increasingly integrated into general management of the mill (Hynninen, 1998).

Environmental Protection is a much wider concept than nature conservation. The driving forces behind environmental protection has always been the desire to secure man's well-being, which is expressed in the Brundtland definition of sustainable development as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs".

# 1.4.1 Drivers for Cleaner Production (Hynninen, 1998)

There are a wide array of factors that might motivate individual mill's to close up their water system, with environmental factors arguably being the most important.

### 1.4.1.1 Legislation

Certain principles guide South Africa's environmental policy and perhaps the most significant of these is the principle of sustainable development. In addition to this a number of other principles form the basis for environmental legislation:

 Principle of prevention: The principle of prevention refers to environmental hazards whose likelihood of occurrence is known with some degree of probability. This means that requesting certain protective measures in advance can prevent hazards from arising at all. The design of this principle is to help protect the environment at as early a stage as possible and to encourage prevention rather than reacting to hazards after they have occurred.

- Precautionary principle: The precautionary principle requires precautions to be taken to prevent hazards from arising from human activity. It goes further than the principle of preventive action in that it required that action be taken before it can be assumed that some accident or consequence may arise.
- Source principle: If an activity causes damage to the environment, the damage
  must be tackled as quickly as possible at source. This principle is based on the
  belief that it is more expedient to tackle environmental hazards at source than
  the direct activity at the affected area. Combating pollution at source applies
  directly to waste management and cleaner production, which deals with the
  source rather than the end result of a process.
- Polluter pays principle: This principle states that the party whose activity causes the hazard should bear the cost of reducing and preventing environmental hazards. It is based on the concept that no-one has the right to pollute the environment at others' expense.

Internationally there are regulations which are based on similar principles such as the Integrated Pollution Prevention and Control (IPPC) Directive which is aimed at not merely reducing emissions throughout the EU but also promoting the use of cleaner production. The IPPC Directive states that permit conditions applied to industrial manufacturing plants must be based on the use of Best Available Techniques (BAT).

### 1.4.1.2 Environmental Management Systems

Companies introduce environmental management systems such as ISO 14001 on a voluntary basis, however for the company to attain ISO 14001 certification an external accredited verifier must review and validate the company's environmental policy, objectives, programs, performance and audits. Subscribing to the principles of an environmental management system such as ISO 14001 requires a commitment on the part of the company to continuous improvement, which in turn requires the company to integrate cleaner production into its operations.

# 1.4.1.3 Environmental Labels

The purpose of environmental labels is to provide consumers with more information about the environmental impacts of products and to steer product manufacture and consumption towards more environmentally friendly solutions. These labels are awarded only to those products that can be shown to impose smaller loads on the environment than other products intended for the same purpose.

### 1.4.1.4 Economic factors

Improved efficiencies generated by implementing cleaner production have the potential to reduce manufacturing costs. The motivation for investigating potential reductions in raw material consumption and waste generation by employing cleaner production technologies is therefore not only related to the environmental benefits associated with these activities.

# 1.4.2 Achieving Cleaner Production

The pulp and paper industry is under regulatory pressure internationally to reduce the volume and toxicity of its wastewater. Many new mills are installing closed water systems and some existing mills are using pinch analysis in their engineered retrofits, Tripathi (1996). A systematic methodology for analysing the ways to reduce the amount of wastewater and consequently reduce the fresh water usage is called Mass Exchange Integration. Determining which water streams to recycle is the best way to achieve reduction.

Cripps (2000) notes that the manufacture of pulp and paper is both highly energy intensive and a major user of water. A culture of investment in capacity is progressively being replaced by one of investment in efficiency, both in response to regulatory pressure and as the long-term benefits of resource conservation and environmental protection come to be reflected in economics.

On the other hand the industry is privileged to have potentially renewable raw materials and energy supply. It has a vital contribution to make towards sustainable generation of wealth and achieving this depends on using resources efficiently. Technology that enables the industry to do so brings a two-fold benefit:

- Substantial cost savings operating costs and energy/water/effluent infrastructure costs
- Market advantage of demonstrated environmental responsibility

In the pulp and paper industry, the traditional use of the term *integrated plant* implies that pulp and paper-making take place on the same site. This must be distinguished from *process integration* as described in Chapter 4 which refers to a systematic approach resulting in efficient process design with integrated use of energy and water between process operations on the site. E1-Hawagi (1997) defined process integration as a *holistic approach to process design, retrofitting, and operation which emphasises the unity of a process.* Edelmann (1999) presents a process engineering "toolbox" for use in the development of closed water cycles in the pulp and paper manufacturing

process, Figure 1.6, which includes pinch analysis as one of the tools used to achieve cleaner production.

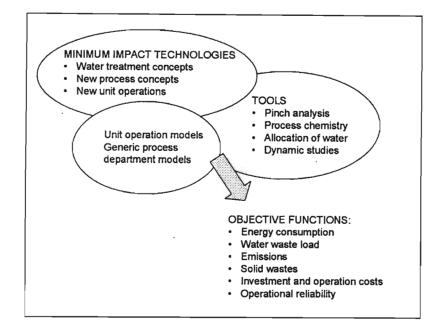



Figure 1.6 Process engineering toolbox for closed water cycles

### 1.5 Water Pinch Analysis

One of the areas falling under Process Integration is Pinch Analysis. Water Pinch Analysis developed from the original Thermal Pinch Analysis concept using the analogies between heat and mass-transfer. The design objectives in water-using networks is to minimise the water consumption by maximising the reuse of water. Further reductions in water can be obtained by introducing processes for partial treatment of the wastewater known as regeneration, allowing further reuse or recycling of water. The approach developed for the design of water systems is based on the work of El-Hawagi and Manousiouthakis (1990) for mass exchange systems, which in turn was based on analogies with the design of heat exchanger networks. Various water using processes are combined to give a composite curve for the entire system, allowing targets to be set for minimum water supply. Extension of the methods of energy integration to water integration is in principle quite straightforward (Smith, 1999). However, this approach runs into problems when dealing with multiple contaminants rather than a single contaminant. The introduction of flow rate constraints, cost optimisation and forbidden matches leads to a problem not easily solved using the graphical approach. However, it is possible to formulate the problem using mathematical programming to obtain an approach that allows for all of the complexities of water system design to be included (Wang and Smith, 1994). Mutliple contaminants, multiple water sources, flowrate constraints, forbidden matches, water costs, effluent treatment costs and piping costs can all be included in the problem.

### 1.6 Objective of the Investigation

The objective of this investigation was to evaluate the potential use of water pinch analysis as a tool to identify potential reduction in water consumption in an integrated pulp and paper mill.

This project is a component of a larger project entitled The Further Application of Pinch Analysis for Water and Effluent Management (WRC Project No. 1158) funded by the Water Research Commission of South Africa (WRC). The objective of this project included the application of Water Pinch Analysis to various industrial sites and an assessment of its applicability to the various situations encountered. The project included investigations in the pulp and paper sector at the Mondi Paper Merebank mill, Sappi Ngodwana Mill as well as the Sappi Mandini mill. Investigations were also conducted at other industries such as the Sasol Polymers chlor-alkali complex at Umbogintwini and at AECI Bioproducts also at Umbogintwini.

# Chapter 2

# Mondi Paper

The plant where this investigation was conducted is an integrated pulp and papermaking mill. The mill consists of three pulp plants, namely a groundwood pulp plant, thermo-mechanical pulp plant and a recycled fibre pulp plant. In addition, there are five paper machines producing supercalendered magazine paper, uncoated woodfree paper, newsprint and telephone directory paper. A coating machine produces carbonless coated paper making use of a lightweight uncoated woodfree paper as the base. The paper produced is wound into reels or cut into sheets before being distributed to customers.

Mondi Paper is an integrated pulp and paper mill, producing three types of pulp, supercalendered magazine paper, uncoated woodfree paper, newsprint, telephone directory and carbonless coated paper. The three types of pulp produced at Mondi Paper are:

- Thermomechanical pulp
- Groundwood pulp
- Recycled fibre pulp

The groundwood and thermomechanical pulps are produced by mechanically separating the fibres from other wood constituents, by means of log grinding in the groundwood process and chip refining in the thermomechanical process.

The fibre sources used in the production of the pulp and paper are:

- Logs and chips Pine
- Recycled paper newspapers and magazines
- Chemical pulp hardwood pulp produced from Eucalyptus wood and softwood pulp produced from Pine

There are five paper machines at Mondi Paper producing the following paper grades:

| Paper Machine 1        | Supercalendered magazine paper    |
|------------------------|-----------------------------------|
| Paper Machines 2 and 3 | Uncoated woodfree paper           |
| Paper Machines 4 and 5 | Newsprint and telephone directory |

Some of the uncoated woodfree paper produced at the mill is coated with microcapsules, on a separate coating machine, to produce carbonless coated paper.

The steam requirements of the mill are supplied by the power plant which comprises two coal fired boilers, two stand-by oil boilers and two stand-by gas boilers. The coal boilers supply the steam required to produce the pulp and dry the paper.

The paper produced is wound into various size reels to meet customers' requirements or cut into sheets and sold as flat sheets.

### 2.1 Pulp Mill

The pulp mill consists of the woodyard as well as the three pulping plants, namely the thermomechanical pulping plant, the groundwood pulping plant and the recycled fibre pulping plant.

### 2.1.1 Woodyard

The wood used in the thermomechanical and groundwood pulping processes arrives at Mondi in the form of logs and chips. The logs are transported to the mill via rail trucks as well as road trucks. The production of pulp requires approximately 1600 tons of logs per day.

The logs are debarked in a dry drum debarker and then fed to the sawdecks to be cut into smaller logs for the groundwood pulping process or fed to the chipper to be chipped for the thermo-mechanical pulping process.

#### 2.1.2 Thermo-mechanical Pulping

Thermo-mechanical pulping produces pulp with high tearing resistance for newsprint and telephone directory paper. The process involves steaming wood chips under pressure for a short period of time prior to and during refining. The steaming, which happens in the digester, softens the chips and the result is a greater percentage of long fibres in the pulp produced and fewer shives. The heating and first stage refining are carried out under pressure, while the second stage refining is carried out at atmospheric pressure.

The refiner consists of two revolving discs driven in opposite directions by two electric motors. The chips are fed in between the discs at the centre of the discs and the centrifugal force forces the chips along the discs and over the edges. Consistency control of the stock is very important as it plays a large part in the retention time of the stock between the plates.

precipitation of calcium salts in the flotation cells. Calcium chloride solution is added to give the required amount of water hardness.

# 2.1.4.4 Cleaning for Removal of Lightweight Rejects

After the flotation cell, the next sections of the plant are designed to remove the smaller contaminants by centrifugal cleaning and fine screening. Stock is first pumped through rotary, horizontal hydrocyclones, which efficiently remove the light weight contaminants, those with specific gravity of less than one.

# 2.1.4.5 Cleaning for Removal of Heavy Rejects

Fine sand, grit and heavy clay particles with specific gravity of greater than one are removed by a four stage, cascade cleaner plant.

# 2.1.4.6 Screening with Pressure Screens

Final cleaning of the stock is achieved by pressure screens. A three stage cascade arrangement is used. These screens have slotted baskets with a slot width of 0.25mm and remove any fibre clumps which are still held together.

# 2.1.4.7 Thickening and Washing

In this section of the plant the chemicals from the deinking process are removed from the stock by thickening it to remove the alkaline, deinking process water. Accepted stock from the fine screens is thickened to about 10% consistency and then diluted to approximately 5% consistency with cleaner water. The stock is then thickened to approximately 30% in a wire pulp press to prevent water from being carried over from the pulp mill to the paper machines. The pH is adjusted to the level used on the paper machines. This is so that extra stickies which precipitate at low pH can be dispersed in the disperser. A displacement washing section of the press uses paper machine water to replace up to 30% of the process water.

### 2.1.4.8 Dispersion

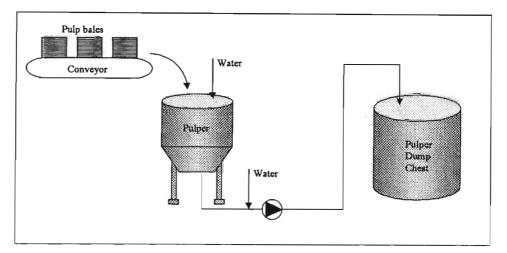
Other chemical contaminants and remaining ink particles are made less troublesome by dispersing them evenly throughout the stock. Stock from the wire pulp press is heated to soften stickies such as hot melt adhesives and other similar contaminants. The disperser also removes any ink particles still attached to the fibres and breaks them up into smaller particles so that they are less noticeable. The dispersing section consists of

a heating screw and a disperser. The stock is pushed through the screw and heated by direct injection of steam. The temperature is normally controlled to about 90°C to melt the stickies and adhesives. After the disperser the stock is diluted to 10-12% consistency using water from the paper machines.

### 2.2 Paper Mill

The paper mill consists of the stock preparation plant, the additives plant and the five paper machines.

### 2.2.1 Additives Plant


"Additives" is the term used to describe a wide range of chemicals and other substances used in the manufacture of paper. The additives plant is where these substances are mixed and stored before they are dosed to the paper machines.

### 2.2.2 Stock Preparation Plant

The chemical pulp purchased primarily for the production of uncoated woodfree grades, as well as for strength properties in the other paper grades, is delivered to Mondi Paper in bales of dry pulp. Water and dry pulp bales are fed into a pulper vat and a rotor disintegrates the bales to form the fibre slurry. The objectives of slushing are to disintegrate:

- the bales into a pumpable slurry by releasing fibre bonds created in the pulp dewatering and drying processes
- the fibre slurry so that there are no visible fibre flakes or bundles
- the fibre slurry so that fibres are separated, wetted, and flexible before entering the refining stage.

The stock preparation plant has nine vertical pulpers, with the rotor located at the bottom of the pulper vats. The pulp bales are fed onto conveyors, which feed the bales into the pulper vats. The operation of the pulpers is batchwise and at 5%-6% consistency. The fibre slurry is diluted to 4%-5% during discharging. Figure 2.2 shows the slushing sequence.

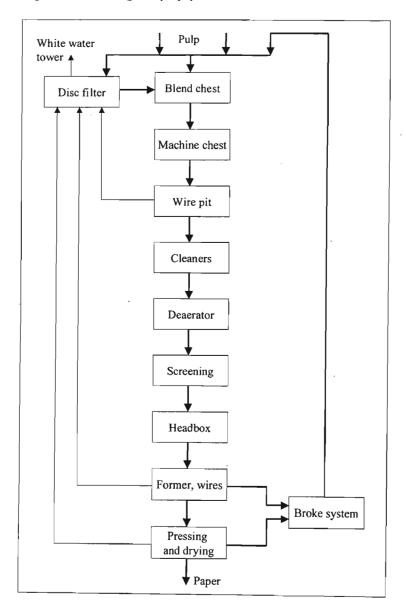


The pulper vat is filled with a given amount of water and a given amount of pulp. The bales are dropped into the pulper, which has been filled with water. Water temperature and pH influence the pulper operation. An increase in the water temperature reduces slushing time and energy requirement. When increasing the temperature from 20°C to 40°C, the effect is remarkable, approximately 50% reduction in the slushing energy, but increasing the temperature from 40°C to 60°C has only a minor influence on the slushing time (Paulapuro 2000). A low pH in the water means more difficult water penetration into the fibres and higher energy requirements in pulping.

# 2.2.3 Paper Machines

The production conditions and parameters on the five paper machines are quite different according to the different paper grades produced. Process conditions have to be stable to ensure the required product quality and a high production efficiency. Variation in any of the following can cause problems on the paper machines:

- Flow rate
- Pressure
- Temperature
- Flow conditions and turbulence
- Consistency
- Furnish composition and inorganic solids content
- Specific surface of fibres, content of fines, freeness
- Charge content, cationic demand, pH
- Content and distribution of chemicals and additives
- Undesired substances and contaminants, including air


The properties of the different paper grades produced on the paper machines are determined by the properties of the stock components used. The stock is a blend of the

different components in order to achieve the desired paper properties in the most economical way. Table 2.1 shows the composition of the paper grades.

Supercalender **Uncoated Woodfree** Newsprint and Telephone Magazine Paper Machine 2 and 3 Directory **Paper Machine 1** Paper Machines 4 and 5 Groundwood pulp Chemical short fibre Thermomechanical pulp 75% 60% 70% Chemical long fibre Chemical long fibre Recycled fibre 25% 15% 25% Chemical long fibre 5% (maximum)

Table 2.1 Fibre Composition of paper grades

Figure 2.3 Block diagram of a paper machine

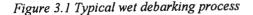


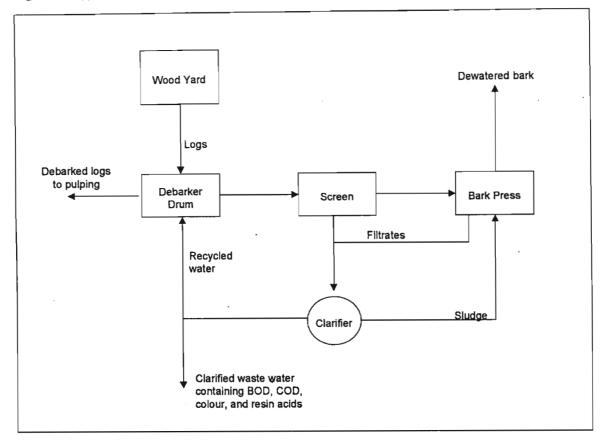
# Chapter 3

# Literature Review - Water use in Pulp and Paper Mills

Water is used as a transport medium in the pulp and papermaking processes. During these processes contaminants build up in the water streams and these contaminants impact on the pulp and papermaking processes and therefore restrict the amount of water that can be recycled and reused without treatment and regeneration. The consequences of reducing the amount of freshwater make up into the a process is examined as well as means of characterising filtrate or effluent streams within a process.

Water is used as transport and processing medium in the pulp and paper industry. Water is essential in developing hydrogen bonds between fibres, which gives paper its strength. Water is also used as dilution for chemicals, coolant in process equipment, sealant in vacuum pumps and as cleaning fluid of equipment surfaces. Fresh water is introduced to the process mainly through paper machine wire and press section showers and is then led counter-currently to various washing and diluting duties in the pulp production plant. The role of the showers on the paper machines is to lubricate and to keep the fabrics used to support the paper web clean. Shower water is heated (50°C) in the paper machine heat recovery system. In modern mills the water consumption is 5-10m<sup>3</sup>/ton paper (Edelmann 1999).


# 3.1 Water use in pulping (Webb, 1992)

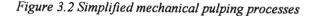

Webb (1992) discusses various uses of water in the pulping process, specifically mechanical pulping, which differs significantly from chemical pulping. In conventional mechanical pulping, dissolved organics extracted from the wood are partitioned between the pulp passing forward to the paper machine and the wastewater streams leaving the pulp mill. Sundholm (2000) reports that when wood is processed into mechanical pulp by conventional grinding or refining, 2-5% of the wood material is dissolved, or dispersed as colloidal particles, into the process water. Most of the material staying with the fibre which is sent from the pulp mill to the paper machine will be released in the paper machine wastewater unless the paper machine water system is very closed. By contrast, at chemical pulping plants with recovery systems for the chemicals, most of the organics dissolved during pulping are retained in the black liquor for incineration.

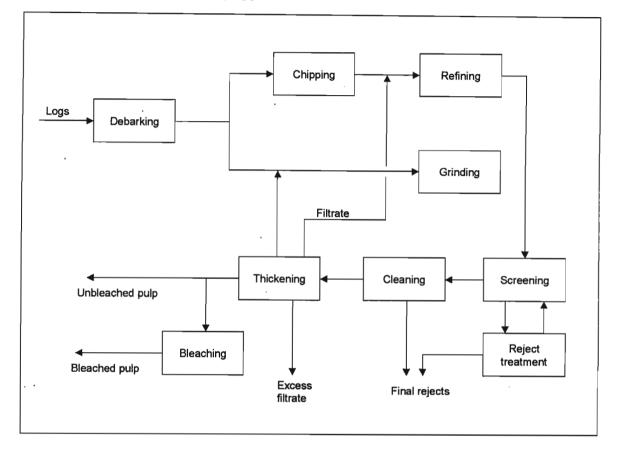
### 3.1.1 Debarking

Debarking has remained unchanged for many years. Debarking drums are operated in either "wet" or "dry" modes with the latter generating much lower wastewater losses than the former. Even in the "wet" process (Figure 3.1), the load of dissolved organics

in the wastewater can be reduced substantially by maximising recirculation of clarified water.







### 3.1.2 Mechanical pulping

Refer to Figure 3.2 for a simplified diagram of mechanical pulping circuits. The circuits are kept fairly closed in order to maintain high process temperatures from the energy dissipated in grinding / refining with excess white water from the paper machine used for make-up. The release of dissolved organics during mechanical pulping depends on a combination of factors (e.g. process temperature and chip steaming time for thermo-mechanical pulping processes) which are controlled to maximise pulp quality rather than to minimise wastewater losses.

The distribution of dissolved organics between the outputs from the mechanical pulping process depend on the amount of fresh water entering the system, the dryness of the dewatered, cleaned pulp and the rejects flow.

The use of genuine washing of mechanical pulps has been proposed as a means of reducing the carry-over of dissolved organics to the paper machine in view of their adverse effect on wet end chemistry and retention. In a thermo-mechanical pulping system, washing is best practiced between the two refining stages as most of the organics are dissolved in the first refiner.

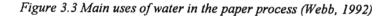


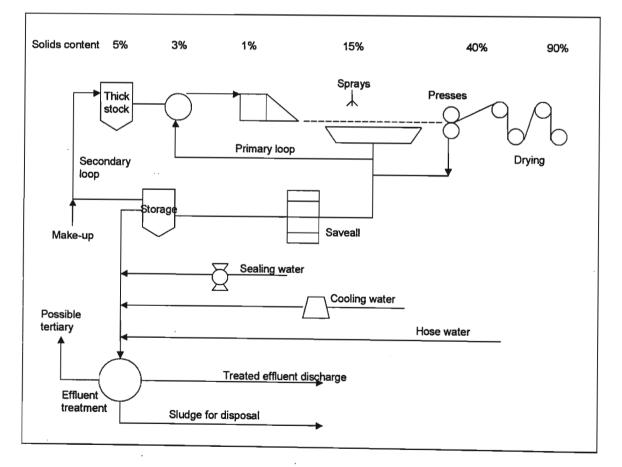


### 3.2 Water use in papermaking

Water forms an essential part of the papermaking process, but it acts as a carrier rather than a significant component of the final product. Webb (1992) explains the important role of water in papermaking in controlling losses for those raw materials which are not well retained in the formation wire e.g. solubles. The cascading of used water from the cleaner paper mill system to the pulp mill is a way of closing up the system and of keeping the paper machine free from the effects of materials building up.

### 3.2.1 Deinking (Webb, 1992)


Deinking is principally a cleaning process, whereas pulping of wood is both a defibering and cleaning / separation process. The particulate contaminants are all removed by mechanical treatment processes such as flotation, dispersion / washing and screening assisted by the addition of chemicals. The soluble components of waste paper (largely starches) are removed fortuitously and the distribution of solubles between the deinked pulp and the wastewater is determined by the amount and the way that water is used.


Water recirculation within deinking systems is usually high, but is sometimes constrained by the different chemistries in different parts of the plant, e.g. the alkaline flotation loop followed by the acid washing loop. The loops are separated by thickening the stock at the end of the flotation system and re-using the alkaline filtrate in that loop. The overall loss from the deinking circuit should be restricted to the reject lines from the various cleaning / screening stages (and should be less than 10m<sup>3</sup>/ton deinked pulp).

# 3.2.2 Papermaking

The use of water in papermaking can be classified into three main areas, largely determined by the quality of the water required and the level of pre-treatment provided: boiler water of very high quality, cooling water of relatively low quality and process water of intermediate quality (Webb, 1992).

The three principal water recirculation loops in papermaking are summarised in Figure 3.3, which illustrates the main uses of water for transportation, cleaning and sealing.





Venter (1986).lists the classes of water used on the paper machine in order of decreasing contamination as follows:

- Tray water
- Suction box and couch water
- Wire pit water
- Wet felt cleaning water
- Vacuum pump sealing water
- Cooling water and gland water

On the paper machine the showers are a significant user of fresh water. Watters (2001) lists vendor specified requirements for shower flows for the same application: filtered white water versus fresh water.

Table 3.1 Vendor specified requirements for shower flows for the same application: filtered white water versus fresh water (100 mesh screen, 100ppm) on the paper machine

| Shower service    | White Water Flow<br>Litres per minute | Fresh Water Flow<br>Litres per minute |
|-------------------|---------------------------------------|---------------------------------------|
| Uhle Box Lube     | 136                                   | 53                                    |
| Uhle Box Lube     | 136                                   | 53                                    |
| Uhle Box Lube     | 136                                   | 53                                    |
| Doctor Lube       | 121                                   | 30                                    |
| Doctor Lube       | 121                                   | 30                                    |
| Doctor Lube       | 121                                   | 30                                    |
| Doctor Lube       | 102                                   | 26                                    |
| Doctor Lube       | 91                                    | 23                                    |
| Doctor Lube       | 91                                    | 60                                    |
| Doctor Lube       | 91                                    | 60                                    |
| Total Shower Flow | 1 146                                 | 418                                   |

### 3.3 Mill Closure

The shortage of water resources in South Africa has been one of the driving forces for industry to make the most effective use of water and to recycle as much water as possible for re-use within the process. Experience has shown that effort expended on water conservation and effluent control must be directed at process changes allowing greater internal recycling and interprocess re-use, rather than at external or end-of-pipe treatment systems. The ultimate goal would be a mill in which the only water leaving the system would be through evaporation and the water contained in the final product.

There are several incentives for process recycling and some of these are given by Venter (1986):

- Improved economy
- Smaller volume of effluent per unit production
- Reduction of external treatment costs
- Reduction of discharge of pollutants to receiving water
- Potential fibre savings
- Energy savings

Regardless of the degree of recycling done, the closing of paper mill water systems is impossible as long as the wood and/or the pulp enters the system with a water content higher than that of the paper entering the dryers. For a non-integrated mill, the raw materials usually enter in an air-dry form and the paper leaves in an air-dry form. The water is used in the process and removed at the paper machine, with approximately 97% removed at the wire, 2% at the press section and 1% at the dryer section (Venter 1986). Edelmann (1999) estimates that losses from the dryer section and machine room ventilation amount to 2m<sup>3</sup>/ton paper.

Targets set by the industry (Edelmann 1999) regarding the reduction of water consumption:

- Paper quality and process operability should not be impaired
- Water treatment concepts should not lead to increased consumption of chemicals
- System closure should lead to a cleaner process and better process management
- Environmental impacts on water, air and soil should be reduced
- Solutions should not impair the competitiveness of the mill

Closing the mill's water systems and reducing water consumption is a process that happens step by step. Large changes are not likely to take place because of the complexity of water chemistry. The role of water in papermaking is a complex one and many conditions must be satisfied before adopting closed water cycle concepts, starting with paper quality and ending in overall environmental effects and competitiveness of the paper industry. The changes made in certain areas of the plant may impact on the whole mill, and, in addition to heat and mass balances, electricity consumption of the processes should also be considered. Several aspects of process engineering have to be taken in to account (Edelmann 1999), like contaminant generation, behaviour of contaminants, separation of contaminants, interaction of papermaking chemicals with process and with contaminants, energy efficiency of the concepts, waste streams, operational reliability and control methods.

Venter (1986) and Berard (2000) list some objections to recycling process water:

- Reduced production;
- Reduced product quality;
- Difficult sizing;

- Difficult production of coloured grades unless cationic dyes are used or the colour is destroyed;
- Increase in ionic concentrations and concentration of dissolved organic substances;
- Difficulties with wire and felt cleaning, causing increased wear, formation of slime, objectionable odour, temperature increases and increased corrosion;
- Scaling from calcium and carbonates (possible sulphate as well);
- Foam from conductivity and dissolved colloidal substances.

A totally closed white water system would cause problems in the areas of sizing, brightness reversion and first pass retention. Adverse effects associated with the build-up of dissolved organic and inorganic substances, e.g. small amounts of dissolved organic material, can decrease the effectiveness of cationic retention aids. These dissolved materials can be hemi-celluloses, fatty and resin acids or lignosulphonic acids. Their presence in the papermaking system causes a higher cationic demand, thereby increasing the amount of cationic retention aid required to achieve optimum flocculation.

### 3.3.1 Contamination of process water (Edelmann, 1999)

Recycling of process water is restricted by water soluble materials released from fibre and other raw materials. In mechanical pulping lignin, lignans, lipophilic extractives, carbohydrates, resin and fatty acids are dissolved or dispersed into process water.

The dissolution of wood components depends on the quality of raw material, temperature, pH, residence time, turbulence of mixing and consistency. For example, at boiling water conditions the amount of material dissolved is three times the amount dissolved at room temperature, measured as COD. In thermomechancial pulp production 20kg/ton pulp is dissolved, measured as total organic carbon (TOC). Approximately 40kg/ton pulp of dissolved and colloidal material is produced in the thermomechanical pulping process. Bleached softwood sulphate cellulose releases much less organic material, 0.6 - 0.9 kg/ton pulp, compared to mechanical pulps.

The concentration of dissolved and colloidal substances in the short circulation of the paper machine depends on their retention on the machine and on the intake of fresh water. The short circulation comprises of the forming section, silo, headbox and the deculator. Introduction of fresh water to the short circulation of the paper machine helps to keep the process clean, however, acceptable printing paper quality and runnability can be achieved at the contamination level of 150 - 300 mg/L (COD), depending on the machine and on the paper grade.

The extent to which the different substances accumulate in circulation waters with increased recycling is not well known. Based on laboratory work, higher concentrations impair paper quality and increase biochemical activity in the process water. As a result, harmful deposits may form and in anaerobic conditions unpleasant smell and acidic corrosive compounds compounds are formed. It is estimated that the reduction of water consumption to one third would increase the COD value by a factor of four. Most of the organic material is released from wood in mechanical pulping and in bleaching. The carrying over of these contaminants to the paper machine is decreased by separating the pulping water from the paper machine water.

In addition to releases from fibre itself, a significant amount of dissolved solids originates from the chemicals used in the process. Furthermore, harmful contaminants enter the water circulation through the broke system. These contaminants can be especially problematic when coated grades are produced

On the paper machines, fillers, pigments and coating chemicals are the dominating chemicals used.

Uses of chemicals and/or additives in the papermaking process:

- To improve opacity and brightness of the paper;
- To improve printing properties of the paper;
- To colour the paper;
- To improve retention of fibres and fillers in dewatering;
- To control pH of pulp;
- To control electrical charge of pulp;
- To complex metal ions;
- To reduce foaming;
- To disperse colloidal material;
- To prevent slime formation or bacterial growth.

Paper mills have been able to increase recycling of process water by adapting saveall filtering techniques in the short circulation. Approximately half of the fresh water needed in the wire section showers can be replaced by clear or superclear filtrates from the saveall. A further increase could be achieved through more efficient solids removal and extraction of dissolved material.

The circulation water of a thermomechanical pulping process, with a capacity of 200 ton/day, may contain 2000 mg/L organic and 1500 mg/L inorganic dissolved material; representing a typical contaminant flow in the range of 330-420 kg/h (oven dry) at the solid content of 0.35-0.4%. In addition to dissolved material, circulation water also

contains fibre, 100-200 mg/L. Recovering this fibre is important, not only for the operation of water treatment equipment but also for economical reasons.

# 3.3.2 Effect of contaminants on the paper machine

Closing up a pulp and paper mill's white water system without attending to the potential consequences may result in reduced production and quality. To date, white water closure has occurred predominantly in uncoated linerboard and corrugated medium grade mills operating with acid to neutral papermaking conditions. The importance of water quality, materials management and deposition control is elevated at printing and writing grade mills since quality and production in these grades are usually more sensitive to deposition and microbiological growth (Gudlauski 1996).

Webb (1992) summarises the consequences of closing water systems on the paper machine.

| Causative factor     | Benefit                  | Drawback                 |
|----------------------|--------------------------|--------------------------|
| Lower fresh water    | Reduced water supply     | Non-compliance with      |
| and effluent flow    | and treatment costs.     | discharge standard.      |
|                      | Reduced size of effluent | Slower equilibrium.      |
|                      | treatment units.         |                          |
| Increased water      | Better drainage          | More slime?              |
| temperature          | Less slime?              | Tackier deposits         |
|                      | Less energy needed in    | Sizing problems          |
|                      | water removal            | Reduced vacuum pump      |
|                      |                          | capacity                 |
| Increased dissolved  | Higher retention of      | Lower retention          |
| solids concentration | solubles                 | Increased corrosion      |
|                      |                          | Increased scaling        |
|                      |                          | Increased slime          |
|                      |                          | Increased foaming        |
|                      |                          | Odour problems           |
| Increased fines      | Reduced sludge disposal  | Lower drainage           |
| concentration        | costs                    | Impaired product quality |
|                      |                          | Felt / shower plugging   |

Table 3.2 Consequences of closing water systems on the paper machine

Whether substances come in with wood, process water, or recovered paper, papermakers should work to eliminate them from the overall paper cycle (Webb 1997). There is a wide range of substances present in papermaking that can cause problems.

These substances are loosely defines by Webb (1997) as "substances that impair the runnability of the papermaking process and/or the quality of the product".

### 3.3.2.1 Deposition and corrosion

The tendency for deposition from most materials is increased on closing up as a result of increased concentrations and temperatures. Certain deposits, e.g. pitch and stickies, also become more mobile due to the effect of temperature on surface characteristics and they may penetrate further down the system, e.g. into the press section (Webb 1992).

### 3.3.2.2 Retention

As paper mills close up, the opportunity to purge the system of fines and contaminants is greatly diminished. Wire retention may deteriorate due to the colloid protection effect from the build up of dissolved organics such as starches. Increased fines concentrations may also lead to worse formation of the sheet. The effectiveness of retention aids may be adversely affected by this build up of fines.

Barnett (1996) lists the total ions that build up in a closed system and interfere with high molecular weight retention aids:

Cationic: Sodium (Na) Aluminium (Al) Calcium (Ca) Magnesium (Mg) Various heavy metals

Anionic: Chloride (Cl) Sulphate (SO<sub>4</sub>) Phosphate (PO<sub>4</sub>)

Other cationic materials such as starch, wet-strength resins, size, and certain dyes can also contribute significantly to polymer interference.

# 3.3.2.3 Microbiological build-up

Increased white water closure changes the environment and growth conditions for micro-organisms in the papermaking process. Changes such as increased temperature, lower dissolved oxygen content, longer residence time and increased total solids, create conditions for increased incubation and for different inoculation points of micro-organisms that result in quality, runnability and safety issues. Microbiological growth can manifest itself as either slime deposition, formation of volatile gases, or spoilage-producing acids that affect the bonding of organic compounds leading to degradation of additives and wood fibre.

The quality of the paper produced is also affected by sheet defects from microbiological deposition and reduction in sheet from fibre spoilage.

Runnability of the paper machine is affected by some of the following: (Gudlauski 1996)

- Breaks due to microbiological deposits
- Downtime to wash up or boil out deposits
- Reduced production capacity due to screen plugging
- Downtime for repairs due to deposit corrosion

Paper breaks and the corresponding downtime are the most common runnability problems. Safety becomes and issue when anaerobic bacteria produce toxic or explosive gases, such as hydrogen sulphide ( $H_2S$ ), hydrogen ( $H_2$ ) and methane ( $CH_4$ ) in stock or water chests. Slime deposition can make catwalks and machine surfaces slippery, causing lost time accidents.

### 3.3.2.4 Dissolved and suspended solids

An increase in dissolved solids will have cumulative effects. It leads to poor shower water quality and eventual plugging of paper machine fabrics. Deposits slough off the machine and shower surfaces and result in defects and breaks. Suspended solids cycle-up will cause an increase in deposition and might cause problems as subtle as a gradual loss of vacuum on the paper machine, or as obvious as filled felts that no longer remove enough water from the sheet (Dexter 1996).

A higher level of solids puts a greater load on the retention program. If fewer fines are retained, they gather at sites on the machine providing initial deposition and eventual microbiological growth. This can lead to underdeposit corrosion. As bacteria metabolise, they secrete exopolysaccharides (slime) and acidic by-products (Gudlauski 1996). These acids attach metal surfaces, resulting in pitting, etching and promotion of stress fracture corrosion. The best known anaerobes are the sulfate reducing bacteria (Dexter 1996). Higher solids also increase the demand for microbiological inhibiting products such as biocides and oxidizers. Treatment costs increase and deposition control is more difficult.

It is generally understood that disproportionate amounts of system additives associate with fines. As such, their build-up in a closed system can lead to problems. As the fines increase, the system can begin to foam more readily due to fines' stabilising effect on foam and the cycle-up of additives. The surface foam increases the potential for entrained air to accumulate. Entrained air in the system can cause pump cavitation and drainage problems, which can impede production. Increased fines can lead to a weaker sheet (Barnett 1996) with related strength and quality production losses. Increased surface foam can also cause deposition.

# 3.3.3 Effect of contaminants on the paper properties

Zhang (2000) examined the separate effects of the dissolved and colloidal fractions in the white water on the paper properties.

A  $0.22\mu m$  membrane filter was used to separate colloidal particles from the dissolved substances in newsprint mill white water.

Analysis of the size of the colloidal particles in this white water indicated that the majority of the particles were in the 250 to 1000nm range with very few particles less than 220nm in size. Thus it was possible to separate the colloidal organics from the dissolved fraction by filtration through a 0.22µm membrane filter.

The colloidal fraction consisted mainly of lignin with smaller amounts of resin and fatty acids and esters.

The presence of the colloidal fraction in the white water had a marked effect on sheet porosity, moisture absorption and brightness. Brightness was not affected by dissolved components. This was likely the result of absorption of light by lignin, which is the main component of the colloidal fraction.

Reductions in paper strength were mainly caused by the dissolved substances. Thus the study showed that colloidal substances were primarily responsible for impairment of paper surface and optical properties, and dissolved substances for impairment of strength properties.

# 3.3.4 Detrimental substances from the pulping process

The term "detrimental substances" has been around for some time, but it begs the question – detrimental to what? All problematic substances interfere with the process or product in some way, but detrimental substances do so through their physicochemical interaction with chemical additives (Webb 1997). This interaction is usually brought about by the charged groups present within the interfering substance. These charges are usually negative and this has led to the common terminology "anionic trash" (Webb 1997). One of the best known effects from the presence of anionic interferences is the consumption of cationic retention aids and the consequent decline in fines retention on the paper machine. Bräuer *et al* (1999a) define anionic trash as "the total amount of anionic oligomers and polymers and nonionic hydrocolloids". Examples of the different organic and inorganic nature of these substances as well as the different origins are shown in Table 3.3.

| Chemical                        | Origin                                          |
|---------------------------------|-------------------------------------------------|
| Sodium silicate                 | Peroxide bleaching, deinking                    |
| Hemicellulose                   |                                                 |
| Fatty acids                     | Wood                                            |
| Resin                           |                                                 |
| Lignin derivatives              | Cooking processes with chemical pulp and chemi- |
|                                 | thermomechanical pulp production                |
| Humic acids                     | Fresh water                                     |
| Polyphosphates                  | Filler dispersion aids                          |
| Polyacrylates                   |                                                 |
| Organic acids                   | Resin dispersion aids                           |
| Carboxyl methyl cellulose (CMC) | Broke dispersion of coated paper                |
| Starch                          | Recycled paper, broke                           |
| Salts                           | pH changes, residual peroxide destruction       |
|                                 | (neutralisation)                                |
| Sulphites                       | Cooking, dithionite bleaching                   |
| Acids                           | PH changes                                      |
| Soaps                           | Deinking                                        |

Table 3.3 Examples of the chemical nature and origin of detrimental substances

These materials are either partially adsorbed or not adsorbed onto the fibres, and they are not necessarily removed from the system with the final product. Instead they accumulate in the water loops to a concentration which depends on their degree of adsorption onto the fibres, fines and fillers in the paper machine furnish. The problem becomes more severe if the water loops in the different process steps are closed to a large extent.

Organic substances, such as lignin derivatives, lignosulfonates or hemicelluloses are dissolved in the refining, grinding and in bleaching stages. Inorganic substances are introduced with bleaching chemicals.

Chemicals added on the paper machine also impact on the bleaching process in the pulp mill. Bräuer *et al* (1999a) give an overview of the papermaking chemicals which impact on bleaching.

| Description                 | Used for                                                |
|-----------------------------|---------------------------------------------------------|
| Alum (anionic)              | Retention agent; pitch control                          |
| Cationic poly-alkyl-amine   | Control of detrimental substances and pitch             |
| Cationic quaternary poly-   | Control of detrimental substances                       |
| hydroxyl-alkylen-polyamine  |                                                         |
| (PAA)                       |                                                         |
| Modified cationic poly-     | Fixation agent; reduction of anionic trash; cleaning of |
| ethylene-imine (PEI)        | filtrates                                               |
| Modified inorganic          | Retention and dewatering agent                          |
| pigment; cationic bentonite |                                                         |
| Cationic polyacrylamide     | Retention and dewatering agent                          |
| (PAM)                       |                                                         |
| Magnesium-aluminum-         | Pitch control; control of hydrophobic substances        |
| silicate (Talcum)           |                                                         |

Table 3.4 Papermaking chemicals which impact on bleaching

Some of the chemicals used in the paper machine recirculate with the paper machine filtrate and enter the pulp mill. There they may interact with the bleaching chemicals used in peroxide bleaching and have either positive or negative effects on the efficiency of the bleaching reaction. In experiments conducted by Bräuer *et al* (1999a) samples of pulp were treated with various paper machine chemicals and showed an average of 0.8% lower ISO brightness than the control sample.

Potential anionic trash is released during peroxide bleaching. Although the silicate has some influence on the cationic demand and may interact with cationic papermaking chemicals, polygalacturonic acids, which are released from the pulp during peroxide bleaching, account for the major part of anionic trash in bleached mechanical pulps. Bräuer *et al* (1999a) show in a laboratory study that about 2.0-10.0 kg/ton of anionic trash are relased during peroxide bleaching. While the bleaching reaction accounts for approximately 80-90% of the detrimental substances in the experimental work by

Bräuer *et al* (1999a), the sodium silicate, which may interact with some cationic polymers at the machine, accounts for the remaining 10-20%.

### 3.3.5 Characterising a filtrate or effluent stream

Numerous measuring methods for detrimental substances are suggested in the literature but the following three methods are the most widely used (Bräuer *et al* 1999b):

- Cationic demand (mg/L of defined titration chemical)
- Chemical oxygen demand (mg O<sub>2</sub>/L)
- Conductivity

Others, like turbidity,  $\zeta$ -potential or streaming-current detection are either too complicated, less accurate or simply cannot be related to the real problems in the mill. According to Brauer *et al* (1999b) to characterise a filtrate or effluent stream, the COD measurement is no longer sufficient. This has led many mills to also measure the cationic demand.

Conductivity characterises the salt content of the pulp suspension and thus can give some information about the degree of closure of a filtrate system. If the conductivity stays below a certain, relatively high limit, its influence on the paper production is surprisingly low. Therefore Bräuer *et al* (1999a) conclude that conductivity alone is not an adequate measure for detrimental substances.

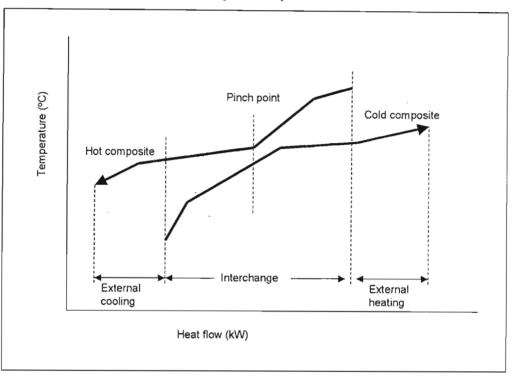
Bräuer *et al* (1999b) conclude that an overall judgement of the filtrate quality in the different loops and on the paper machine is possible by measuring COD, cationic demand, turbidity and dissolved solids. In addition they state that the behaviour of cationic demand and turbidity is similar to COD.

# Chapter 4

# Literature Review - Water Pinch Analysis

Pinch Analysis was initially developed for the optimisation of heat exchanger networks. Water Pinch Analysis has evolved from the simple design of heat exchanger networks into a general methodology for the design of integrated systems and has been applied to many industrial cases. A description of the development of Water Pinch Analysis is given in this chapter. The importance of data in process integration methodologies is reviewed and the sourcing and reconciliation of data is discussed. The conceptual approaches to modelling water using networks are reviewed, including a review of the graphical approaches which illustrate the concept of water pinch analysis. Mathematical programming techniques using algorithms to determine the design of water-using systems at minimum cost of operation both for new designs and retrofit of existing processes are also included in this chapter as well as a description of mathematical programming software available for use in Water Pinch analysis. Finally a section on the application of Water Pinch analysis in the pulp and paper industry is included.

### 4.1 The Development of Water Pinch Analysis (Brouckaert 2000)


In order to implement cleaner production designs as well as improve the eco-efficiency of existing processes a method is required to investigate the implications of various options. Process integration is an approach which emphasises the unity of a process (El-Hawagi, 1997). It provides a basis for analysing and developing a design at an early stage of its development by providing global insights of the process to the designer, coupled with methodical targeting and design procedures. This allows for the design of eco-efficient processes where the pollution is minimised and does not rely on end-of-pipe solutions to minimise the pollution.

This has led to the development of process synthesis which has been defined as the discrete decision making activities of conjecturing which of the many available component parts one should use, and how they should be interconnected to structure the optimal solution to a design (Westerberg 1987).

Process synthesis methodologies systematically guide the designer in the screening of the various process options in order to identify the optimum design. It also allows the assessment of the design possibilities before detailed design is initiated.

The first application of these design techniques involved the conservation of energy through the optimisation of heat exchanger networks. This led to the development of Pinch Analysis as

applied to energy conservation. Linnhoff *et al.* (1994) used a graphical approach in which a heat exchange system is represented by a plot of temperature as a function of enthalpy. A hot composite curve is made up of the streams which require cooling and a cold composite curve is made up of the streams which require heating.





The point at which these curves come in the closest contact is the point at which there is a minimum heat transfer driving force, known as the pinch point. This point is used to determine the minimum process requirement and the optimal network design.

Pinch analysis was initially developed for the optimisation of heat exchanger networks following the methodology proposed by Linnhoff and Flower (1978). In this paper the problem of synthesizing optimal heat exchanger networks was approached in two stages. In the first stage the heat exchange opportunities were assessed within temperature intervals. The problem was divided into several sub networks from which the overall heat exchange network was generated. The second stage involved an approach in which a chosen minimum temperature approach ( $\Delta T_{min}$ ) between the hot and the cold streams based on practical implications. A zero  $\Delta T_{min}$  set an ideal uppermost bound in energy recovery.

The role of  $\Delta T_{min}$  and the effect of the pinch point in the design of energy recovery networks was further demonstrated by Linnhoff, Mason and Wardle (1979) where this methodology was applied to practical problems. This paper describes the optimum use of utilities, the determination of the minimum number of process units, the effect of stream splitting and cyclic networks, practical problem constraints as well as data modification.

Linnhoff and Hindmarsh (1983) described the design method based on the location of the pinch point. This method entails splitting the problem into two regions, above the pinch and below the pinch.

Analogies between heat conservation and wastewater minimisation have been used to extend the pinch concept to wastewater minimisation. Takama *et al.* (1980) developed a superstructure of all possible re-use and regeneration opportunities in a petroleum refinery situation. The superstructure was optimised and the uneconomical features of the design removed. The regeneration of wastewater was also considered in this work.

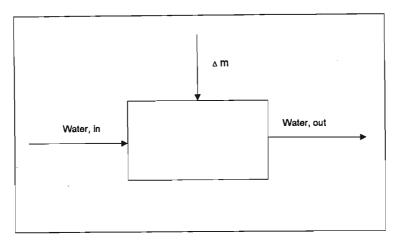
This work addressed both single and multi-contaminant cases as well as the identification of regeneration opportunities. Procedures were presented for the design of networks, which allow the minimum target to be achieved. In their methodology different minimum concentration differences can be allowed throughout the network, together with constraints. A composite curve was constructed similar to the temperature enthalpy curves introduced in thermal pinch analysis. This composite curve was then matched to a composite curve through the origin. This minimum water supply line touches the composite curve at a minimum of two points i.e. the origin and one other. The point other than the origin is known as the pinch point. Two methods were presented to achieve this minimum flow rate design. The first is referred to as the maximum driving force method, which uses concentration differences between the various streams to target the minimum flow rate. The second method is referred to as the minimum number of water sources method and uses load intervals. In each interval only enough water is used to maintain network feasibility, the remainder is bypassed and used later. Wang and Smith (1994) also considered the case where more than one contaminant is present and extended their methodology to deal with this situation. They also considered the implications of regeneration of wastewater.

In a later paper Wang and Smith (1995a) discussed single and multiple operations with fixed flow rate and processes with multiple sources of water of varying quality. Water loss in processes is also taken into account. New design rules allow novel water flow schemes to be developed based on local recycling and splitting of operations.

Kiperstock and Sharratt (1995) showed that the usual method of incorporating environmental constraints into a mathematical model as a fixed set of upper limits to concentration for each discharge is not always the best solution. Better solutions can be obtained by allowing the final discharges to vary in composition, while maintaining a fixed total load.

Dhole et al. (1996) introduced an approach slightly different to that of Wang and Smith. This method, known as the Two Composite Method, was designed to overcome the problem

encountered in real life application of the Wang and Smith methodology. Beuhner and Rossiter (1996) further expanded this methodology. They used *purity* on the vertical axis and water flow on the horizontal axis. The input streams of all the water using processes are plotted in a demand composite curve in order to define the water demand for the entire plant. The output streams are plotted in the same way in order to construct the source composite for the entire plant. The composite curves form a pinch point that represents a bottleneck in the reuse of water. The design of the minimum water network is then achieved by the mixing of wastewater of varying qualities in order to relieve the bottleneck in reuse opportunities that is created by the pinch point.


El-Halwagi and Hamad (1996) introduced the concept of synthesising *waste-interception networks* (WINs) and incorporated them into a mass-integration framework for the global allocation of pollutants. This provides a selective inception and rerouting of undesirable species at the heart of the process instead of dealing with the pollutants in the final waste streams. It also provides a unified framework for simultaneously tackling gaseous and liquid streams. This process involves tracking the pollutant through the process and then determining the optimal interception policies and is done by developing a path diagram as a means of characterising the global flow of the pollutant through the process. The path diagram is then integrated with the interception techniques using mass exchange pinch diagrams. This WIN synthesis strategy is formulated as a mixed integer linear programming problem whose solution yields the optimal interception locations, loads and separating agents.

Olesen and Polley (1997) reviewed the procedures introduced by Wang and Smith concerning single contaminants. They introduced a new network designing procedure in which they classify operations into distinct types, each of which has distinct design implications. This method is based on the use of a load table, which tabulates the distribution of duties in the region of the pinch and the minimum water needs for each operation. They considered the case of simple re-use, water draws and regenerated water re-use.

El-Hawagi (1997) details some new and interesting techniques developed to handle problems encountered in real life situations as well as previously developed ideas such as reacting networks (El-Hawagi, 1992) and the combination of thermal and water pinch technology.

A case study presented by Doyle and Smith (1997) consisted of *fixed-mass-load operations*, this mathematical programming approach can be applied to operations with more complex contaminant loading models.

Figure 4.2 A fixed-mass-load operation



Alva-Argaez *et al.* (1998) extended the work of Doyle and Smith and incorporated effluent treatment plants in the proposed mathematical programming model. The proposed model includes mass balance constraints, demand and capacity constraints, environmental constraints on waste discharge, design equations for pipes and treatment operation performance constraints.

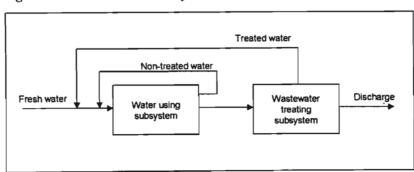
### 4.2 Data

The subject of data extraction and its importance to the final solution achieved by the application of process integration methodologies is dealt with by Linnhoff and Akinradewo (1999). While the context is energy integration based, several aspects are transferable to water-use networks, particularly the consequences of including features of the existing process network as constraints in solving process integration problems. The authors point out that data extraction should be carried out by an engineer with some expert knowledge of a process integration technique to prevent the use of data that has been inappropriately extracted for a process integration study. Koolen *et al.* (1999) weigh up the vulnerability of integrated chemical complexes to chains of events, leading to total stoppages, against the benefits gained from integration and optimisation. Although this paper is written from the perspective of energy integration, the discussion is directly applicable to water-use networks.

Jodicke *et al.* (2000) indicated that in process integration projects, a significant amount of time is required to obtain the desired data such as maximum inlet and outlet concentrations. A mixed integer non-linear programming method was presented for establishing the viability of projects with minimum data requirements. The model uses information that is easily accessible and reduces the effort required to produce optimal solutions.

A hierarchical system for classifying operational sub-units of a processing plant was proposed by Serageldin (1995) in order to effectively track materials. The method is designed to help companies identify sections of their processes that are most problematic in terms of emissions.

In addition to sourcing the data it is essential to ensure that the data is representative for the plant. Meyer *et al.* (1993) described a general method for data reconciliation applied to material balances for steady-state chemical processes. Sets of rules were proposed that facilitated classification of measurements and mass balance equations. The purpose of doing this is to reduce the number of variables that required optimisation. The numerical method proposed determines the best fit of the variables, using redundant equations as constraints. Most data reconciliation techniques rely on a similar technique of fitting data by using a sum of least squares regression method.


The optimal solutions determined when using the minimum amount of available data may prove to be infeasible due to unforeseen circumstances which only become clear once the project has been evaluated.

### 4.3 Modelling the Water-Using Network

Graphical analysis tools have been used to gain insight into the nature of water-using networks. In most of these methods the elements of the overall system are addressed separately. For example Wang and Smith (1994a and b) used a graphical approach to design the water-using subsystem and the treatment network for the wastewater streams is determined as a second step. Kuo and Smith (1998) and Hallale and Fraser (2000a and b) used graphical insights to address the design of the overall system. Graphical methods are however generally limited for use in systems that have multiple contaminants and flow rate constraints which make them difficult to solve. The graphical approach targets the fresh water flow rate and therefore does not allow for incorporation of additional variables such as piping and discharge costs.

### 4.3.1 Characterising the Water-Using Network

Takama (1980) classified water use into four general categories. Fresh water is required by operations that discharge wastewater, which is treated and discharged or regenerated for reuse and recycle.



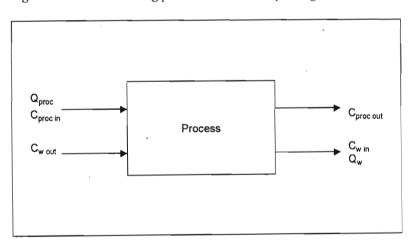
#### Figure 4.3 Industrial water use system

Alva-Argaez et al. (1998) characterised the four basic elements of an industrial waterusing system as follows:

- i) *Freshwater sources*, each with a maximum available flow rate, concentration of key pollutants and cost per unit used.
- Water and wastewater *treatment* plants, each with a maximum flow capacity, and efficiency for the removal of the key pollutants and possible water losses.
- iii) Water-using operations each with a flow demand and quality requirements.
- A wastewater discharge point where some environmental regulations must be met, in terms of maximum concentration of key contaminants, or maximum contaminant loads.

#### 4.4 Graphical Approaches to Pinch Analysis

Analogies between heat and mass transfer have been used to extend the concept of pinch analysis to encompass waste minimisation and pollution prevention. Techniques have been developed in order to design optimal mass exchanger networks (MEN). These minimum flow rate networks minimise the amount of fresh water consumed and wastewater produced.


The method developed for heat exchanger networks by Linnhoff and Hindmarsh (1983) was adapted by El-Halwagi and Manousiouthakis (1989). This work focussed on the mass exchange of a single contaminant between a set of rich process streams and a set of lean process streams. A minimum allowable concentration difference was defined which applied throughout the whole mass exchange network. The concept of a mass exchange network synthesis was introduced whereby the rich and lean streams were matched.

El-Halwagi (1990 a, b) automated this approach and modified it to include regeneration. A procedure was developed which allowed the simultaneous synthesis of primary mass exchanger networks and their associated regenerative networks. The regenerative network was aimed at regenerating any recyclable lean streams. The proposed procedure deals with the problem in two stages. The first stage involves the solving of a mass-integer non-linear programming in order to minimise the cost of mass separating and generating agents. This linear programming problem was formulated using thermodynamic constraints. The solution allows the location of all the pinch points as well as the optimal flow rates of the lean and regenerative streams. The second stage of the procedure allows the number of units in both networks to be minimised by solving a mixed integer linear program. El-Halwagi *et al.* (1992) applied this approach to phenol treatment in petroleum refinery wastewater.

Wang and Smith (1994a) presented an approach in which targets are set that maximise water reuse. They present fours general approaches to waste minimisation:

- i) Process changes: this involves reducing the inherent demand of a process for water.
- ii) Re-use: wastewater can in some cases be reused directly in other operations, provided the level of contamination introduced in the previous operation does not interfere with the process. It may require blending of wastewaters or the blending of wastewater with fresh water.
- iii) Regeneration Reuse: wastewater can be regenerated by partial treatment to remove contaminants which would prevent its reuse, and then reused in other operations. It may not be reused in the operation that generated the waste in the first place, as this recycling will eventually lead to build up within the process. The regenerated water may be blended with other wastewater or with fresh water.
- iv) Regeneration Recycling: wastewater can be regenerated to remove contaminants that have built up, that is then recycled back to the process that generated the waste originally.

The water-using process in which a single contaminant is removed from a process stream using water (Figure 4.4) was initially considered by Wang and Smith.





A contaminant is removed from a process stream by contact with water. In this process the water becomes contaminated. Different water flow rates and contaminant levels can solve the same problem. In order to maximise the possibility of water reuse from other operations Wang and Smith specify water with the highest possible inlet concentration, then by specifying the maximum possible outlet concentration, the minimum water flow is defined. This case is known as the limiting case, any water supply below this (and hence water flow rate above) will satisfy the process requirement. These maximum inlet and outlet concentrations might be fixed by:

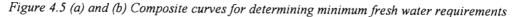
- i) minimum mass transfer driving force;
- ii) maximum solubility;
- iii) corrosion limitations;
- iv) fouling, etc.

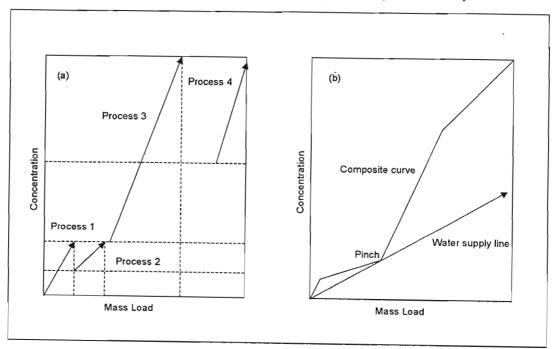
4-8

The limiting water profile is used in the analysis because this approach can be applied to operations very different in nature and use of the limiting case allows all the processes to be treated on a uniform basis.

Wang and Smith produce a table of limiting process water data. This is done by:

i) Specifying the mass load of contaminant (m) to be removed from the process stream.


$$m = Q_{proc} \left( C_{proc \, in} - C_{proc \, out} \right) \tag{4.1}$$


- ii) Specifying the maximum allowable contaminant concentration  $(C_{w in max})$  in the feed water or in the outlet  $(C_{w out max})$  to determine by process or equipment limitations such as precipitation or corrosion potential.
- iii) Calculating the maximum wash water flow for each process.

$$Q_w = m / (C_{w \text{ out max}} - C_{w \text{ in max}})$$

$$(4.2)$$

This is repeated for each process and the results tabulated. The limiting water data are then plotted as *limiting profiles* and these profiles used to construct a *limiting composite curve* (Figure 4.5 (a) and (b)). Combining the operations between concentration intervals generates the composite curve.

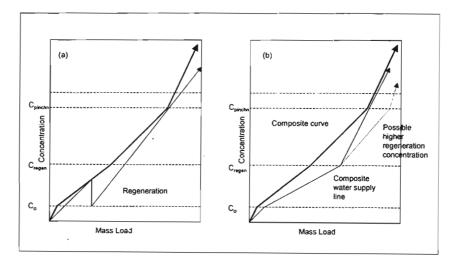




The composite curve shows the critical sections of the plant. The sections at or close to the pinch point require close attention in order to minimise the water flow rate. This composite curve is then matched to a water supply line. The inlet contaminant concentration of the water supply line is assumed to be zero and therefore passes through the origin.

Any line through the origin below the composite curve represents a water supply flow rate that will satisfy the system. The minimum water supply line representing the minimum water flow rate, is the line that just touches the composite curve. Each point where the supply line touches the composite curve represents a pinch in the design. The inverse of the gradient of this water supply line specified the target for the minimum water flow rate.

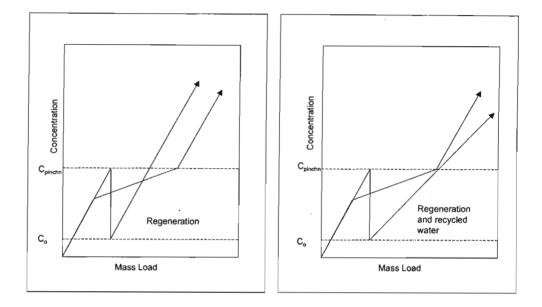
Having specified the minimum water flow rate, Wang and Smith then present two methods for the network design. The first method maximises the concentration driving forces in the resulting design and takes full advantage of the concentration difference between the limiting composite curve and the water supply line. The composite curve is divided into vertical mass load intervals at each point where the gradient changes. Wang and Smith then use the grid diagram for network design, a concept initially developed by Linnhoff and Flower (1998). This method produces a design which meets the minimum water flow rate, however it is more complex than necessary. Independent loops were identified in the design which were then broken to produce a less complex design.


The second method introduced by Wang and Smith ensures the minimum number of water sources are used. This method involves following the concentration intervals instead of the mass load intervals. In each match the minimum amount of water required by the process is used and the unused water is bypassed to be mixed in later. The design procedure then follows that of the first method producing a water-use network and simplifying it by breaking loops. This method produces a design with a single water source that achieves the minimum flow rate target.

#### 4.4.1 Regeneration Reuse

Wang and Smith consider first the placement of regeneration processes for a single contaminant when reuse but not recycling is allowed. Figure 4.6 shows a limiting composite curve with a water supply line matched against it. The water supply line also shows a regeneration process. The limiting composite curve determines  $C_{Regen}$ , the maximum water concentration before the regeneration process. After the regeneration process the level of contaminant is reduced to  $C_o$ . The mass transfer is completed with regenerated water.

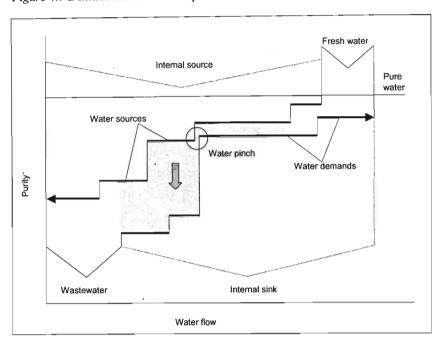
The placement of the regeneration process, Figure 4.6 (a) brings a reduction in flow rate and to determine whether this flow rate is minimised the water supply composite is constructed, Figure 4.6 (b). The composite water supply line in Figure 4.6 (b) just touches the limiting composite curve, which suggests that the water flow rate with regeneration is minimised. However, the dotted line shows what would have happened if the water had been allowed to reach a higher concentration before entering the regeneration process. The gap between the water composite curve and this dotted line indicates that the water flow is not minimised. Using the same limiting composite curve, and allowing the water to reach pinch concentration,  $C_{pinch}$ , produces the minimum water flow rate. Thus, by allowing the water to reach  $C_{pinch}$  before regeneration allows the designer to achieve both the minimum water flow rate and the minimum concentration reduction in the regeneration process.


Figure 4.6 Placement of a water regeneration process in relation to the composite curves.



#### 4.4.2 Regeneration Recycling

If recycling is allowed, it is possible to reduce the supply flow rate below that for reuse only. Figure 4.7 shows the situation where regeneration is not sufficient to satisfy the problem. If the flow rate is allowed to reach Cpinch and regenerated there is insufficient water to satisfy the problem. The flow rates needs to be increased after regeneration by recycling. The slope of the curve in Figure 4.8 shows the total flow rate of regenerated plus recycled water. Figure 4.7 Slope of composite curve below  $C_o$  sets the minimum water flow problem and an increase in flow rate is rate


Figure 4.8 Water supply does not satisfy the required implying recycling is necessary



#### 4.4.3 **Two Composite Plots**

Buehner and Rossiter (1996) present a plot using purity as the vertical axis and water flow rate as the horizontal axis. Each water using process has input and output water streams. There can be several input and output water streams at different purities for a single operation. The input streams of all the water using processes are combined in a demand composite curve in order to define the water demand for the entire plant. The output water streams for all the operations are combined to construct the source composite curve for the entire plant. This is an elaboration of the method suggested by Dhole et al. (1996).

This approach is illustrated in Figure 4.9, the overlap between the source and demand composites, the shaded area, indicates the scope for reuse. The pinch point limits the available overlap. Minimum fresh water demand and wastewater generation without wastewater mixing are also identified in Figure 4.9.



#### Figure 4.9 Demand and source composite

#### 4.5 Mathematical Programming

The graphical approaches outlined so far provide valuable insights to water optimisation problems, however these methods become increasingly difficult to apply when multiple contaminants or special process constraints are involved. The graphical approaches are also unable to deal with optimisation of objective functions which include factors other than water use, in particular economic factors. El-Hawagi and Manousiouthakis (1990) defined a linear programme used to calculate the minimum utility cost and the limiting pinch points. In a second stage they used a mixed-integer linear program (MILP) to optimise the matches of streams on each side of the pinch. Wang and Smith (1994a) published a general algorithm for targeting wastewater for multiple contaminants.

El-Hawagi (1995) introduced mathematical programming techniques using algorithms to determine the design of water-using systems at a minimum cost of operation and installation both for new designs and retrofit of existing processes.

Mathematical programming has been used by Takama *et al.*, (1980) and Rossiter and Nath (1995) for mass-transfer networks. The formulation of these programmes corresponds to the water pinch approach which was set out by Doyle and Smith (1997) and extended by Alva-Argaez *et al.* (1998). The Water Pinch software from Linnhoff-March is also largely based on this approach.

The state of the art mathematical programming, as applied to the automated design integration and operation of chemical processes was reviewed by Grossman *et al* (1999).

#### 4.5.1 Mathematical Programming Techniques

Depending on the nature of the constraints and the types of variables involved in the optimisation problem, different algorithms are required to solve the different optimisation problems which arise. *Linear programming* (LP) problems contain only continuous variables and the constraints and objective function are all linear (Gianadda 2002). Algorithms that contain continuous real variables (e.g. flow rate, pressure, temperature) as well as integer variables (e.g. 0,1,2...) is called a *mixed integer program* (MIP). Depending on the linearity characteristics of the algorithm, MIPs can be further classified into *mixed-integer linear programs* (MILPs) and *mixed-integer non-linear programs* (MINLPs). A useful class of integer variables is the 0/1, or *binary* variables, which are most often used to model logical events and decisions. A 0/1 variable may be designated to assume the value of 1 when an event occurs (e.g. a unit operation is used) and 0 when that event does not occur.

Doyle and Smith (1997) pointed out that non-linear programs suffered from the difficulties finding the global optimum to a problem rather than a local optimum, particularly for problems involving many variables. Linear programs, on the other hand can handle large problems, and global convergence is readily obtained.

Takama *et al.* (1980) used mathematical programming to address the problem of optimal water allocation in a refinery. A *superstructure* of all water-using and treatment operations was set up and an optimisation was carried out to reduce the system structure by removing irrelevant and uneconomical connections. The result is the structure which represents the optimal water allocation strategy.

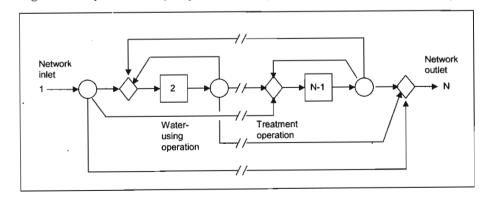



Figure 4.10 Superstructure of all possible inter-operational connections.

The superstructure consists of a total of N nodes, which consist of all the water sources, discharge points as well as the water-using and treatment operations. The problem is stated as a dual optimisation problem. The first requirement is to optimise the allocation of water to the subsystems, i.e. determine the optimal structure. The second stage assumes a fixed structure, determined from the first stage, and optimises the design of the individual subsystems. The process is repeated with a new design parameter for each subsystem. In this paper, the authors only address the structural optimisation. The objective function is defined as a function of return on investment, operating cost of the wastewater treatment system and fresh water costs. Linear mass loading and removal terms are specified for each subsystem. A solution method is presented that uses a penalty function to deal with constraint violations. The penalty function is added to the objective function.

Doyle and Smith (1997) consider that a water-using network is not simply a special case of a mass-exchange network, because operations such as cooling towers, steam systems and hosing operations cannot be considered as mass-exchangers. The basic model used is similar to Wang and Smith's fixed-load model (see Figure 4.2), except that:

- an alternate option is considered, where the mass load is allowed to vary in order to fix the outlet concentration of contaminant;
- water gain or loss is allowed, to model operations such as a cooling tower or evaporator.

The concepts of limiting flows and concentrations and the relationship between them via mass balances, are the same as in Wang and Smith (1994a).

To automate the procedure for finding the optimal set of connections between units, they also used a superstructure for the network, which allowed in principle, all possible connections. The solution procedure specified used a combination of linear and non-linear models to determine the minimum cost of water utilisation. A fixed outlet water stream concentration is assumed, which allows the process mass load to vary. The solution to the linear model is used as the starting estimate for the non-linear model that ensures a fixed mass load. The mass load is fixed by specifying a non-linear constraint. The inter-operational flow rates, flow rates from fresh water sources and outlet concentrations from processes are the variables. The flow rates are constrained by a limiting flow rate which corresponds to the flow demand of processes when the inlet concentration is at its maximum limit. Cost factors are included, allowing for a cost per unit flow used. A non-linear objective function is specified, which may be simplified to a linear function is only the cost of fresh water is taken into account.

Alva-Argaez *et al.* (1998) extended this work by noting that once a set of flow rates have been obtained from the linear programming solution, which assumes that the outlet concentrations are at their limiting values, the corresponding set of concentrations can be calculated to determine where the assumptions are in error. If the calculated concentrations are below the limits, the errors are of no consequence. Where the concentrations exceed the limits, the errors can be added into the objective function to be minimised. Running the linear-programming model again will tend to drive the errors to zero. This provides the basis for a method which uses a series of linear-programming optimisations which converge to the non-linear programming solution, taking advantage of the particular mathematical structure of water pinch problems.

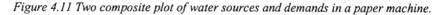
Binary variables were introduced corresponding to each possible connection in the network. A value of 1 indicates that the connection exists. The formulation allows automatic control of features such as the elimination of streams which fall below a specified flow rate or the maximum number of connections allowed in a network. The addition of binary variables move the optimisation into the class of mixed integer programming.

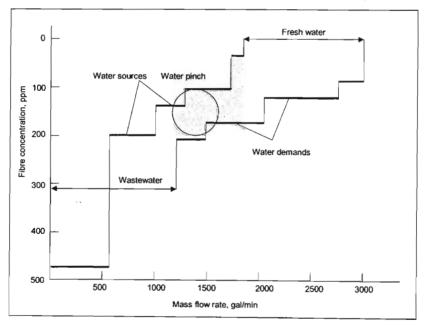
#### 4.5.2 Mathematical Programming Software

Modelling systems such as GAMS (General Algebraic Modelling System) can be used to formulate and solve major types of mathematical programming problems. The model needs to be expressed in algebraic form and GAMS interfaces with cods to solve the various types of problems. This modelling system can be run on most desktop personal computers, making its use and application widely available.

The solution of LP problems relies largely on the simplex algorithm. MILP methods rely on simplex LP-based branch and bound methods that consist of tree enumeration in which LP sub-problems are solved at each node, and eliminated based on bounding properties, Grossman *et al.* (1999).

The solution of NLP problems relies on the reduced gradient method and for convex problem NLP methods can guarantee global optimality. For non-convex problems, global optimality cannot be guaranteed.


Water Target is a suite consisting of two parts. WaterTracker is a tool for performing water and contaminant balances for a site. It shows a graphical presentation of the water network. The second part of the suite, WaterPinch, uses algorithms to identify and optimise the best water reuse, regeneration and effluent treatment opportunities Linnhoff-March (1999). GAMS provides the optimisation algorithms in WaterTracker.


#### 4.6 Pinch Analysis Application in the Pulp and Paper Industry

Noel (1995) did a thermal energy conservation study at the Donohue Clermont newsprint mill using pinch analysis as the tool. A composite curve was developed to determine the minimum heating required by the entire mill. This example illustrates the savings potential when the whole plant is considered and the systematic method for identifying energy savings projects using pinch technology.

Karlsson (1999) uses Total Site Integration (TSI) to calculate the energy usage and balance for a paper mill site and constructs hot and cold composite curves to determine the effect of new drying technologies on paper mill energy consumption.

Tripathi (1996) describes how pinch analysis is used for minimising the wastewater in a pulp and paper mill. The practice of taking effluent from all parts of the plant to a single treatment plant for treating and recycling is demonstrated to be an inefficient process. Internal recycles identified using pinch analysis are identified. In this example the water consumption in a paper machine is considered and the water streams are combined to from a demand-composite curve, Figure 4.11





Total suspended solids were used as the measure of purity in this example and constraints were used to allow for other process requirements which dictated a minimum purity of water, for example showers on the paper machine. The savings achieved in this example had a return on investment of less than two years, based on a reduction in fresh water usage, pumping costs, and reduced heating costs. Pinch analysis has been applied successfully to the pulp and paper industry for improving thermal efficiency (Ashton *et al.*, Calloway *et al.*, Cripps *et al.* 1993, 1996, 1997 and Folkestad *et al.*) and Kuofos and Retsina (2001) present a table summarising steam savings from pinch applications, Table 4.1.

| Mill Type                      | \$/ton |
|--------------------------------|--------|
| Bleached Kraft / NSSC          | 2.61   |
| Bleached Kraft / TMP and Other | 4.5    |
| Bleached Kraft market pulp     | 4.95   |
| Non-integrated Papermaking     | 1.17   |
| Kraft / NSSC / OCC             | 2.61   |
| Sulfite or Semisulfite         | 3.96   |

Table 4.1 Practical steam savings identified by pinch analysis

Koufos and Retsina (2001) describe the steps required in the application of water pinch methodology as follows:

- 1. Flowsheet: Develop a simple flowsheet model of the water system, showing where water is used and where waste water is generated i.e. determine the water *sources* and *sinks*.
- 2. Contaminant Data: Select key contaminants e.g. COD, salts, suspended solids. A key contaminant is defined as any property that prevents the direct reuse of the wastewater stream, this might include temperature and/or acidity. Choose design concentrations which are the maximum allowable for the sinks and the minimum practical for the sources. This is done with input from the process technology experts in the relevant process.
- 3. Software implementation: Create a simulation model of the flowsheet. Perform multidimensional water pinch analysis to determine the optimum matches between the sources and sinks.
- 4. Review Design: Examine the resulting network design and identify the pinches for the selected contaminants. It is usually necessary at this point to assess the design and determine which additional contaminants should be considered; which matches should be forbidden, and which matches should be forced (if any). This procedure may also include process modifications and *regeneration* options that would result in lower targets.

A de-inking plant is used in this example and a 20% reduction in fresh water consumption is identified however the authors note that some "non-logical" connections appear in the solution which requires further refining. The example demonstrates "proof of concept".

# 4.7 Conclusions

This chapter has reviewed the concepts and literature on the field of water pinch analysis. Subsequent chapters will draw on these concepts as water pinch analysis is applied to the specific example of an integrated pulp and paper mill. The approach which is used in this study uses mathematical programming, however the conceptual understanding of water pinch analysis based on the literature review presented in this chapter is important, particularly with reference to water using operations, contaminants and the interpretation of the results of the study.

# Development of a of Water Pinch Model for Mondi Paper

In order to perform a Water Pinch analysis on a site which is as complicated as the Merebank mill, the operation was divided into manageable sections. A flow sheet model of the sections was then developed and a water and contaminant balance, accurate to within 10% of the metered amounts of the larger streams, was developed. Once a sufficiently accurate water and contaminant balance was achieved, the streams which were not variable and therefore did not form part of the water pinch analysis (e.g. product streams) were not considered further. In order to perform a water pinch analysis a relationship between streams into and out of the unit operations which make up the sections was required. In this study the balance produced using the Water Tracker software was used to determine these relationships. Once the streams which did not form part of the water pinch analysis had been removed and the water pinch model of the plant had been developed, this model was tested by "forcing" the streams to represent the actual plant situation as closely as possible by introducing flow constraints into the model. The next step involved removing the feasible bounds and allowing the model to re-route streams in order to achieve a minimum fresh water consumption.

#### 5.1 Water Pinch Modelling Framework

As described in Section 4.6, the application of water pinch methodology requires firstly the development of a flowsheet model of the water system showing where water is used and where wastewater is generated.

The development of a water pinch model, using the Linnhoff-March model framework, that represents the process accurately involves the specification of a water-using system comprising of various *nodes* which represents the water use in the actual plant. The nodes which make up the water-using system are classified as follows:

- i) Sources: inlets to the water using system. Sources that have a fixed flowrate are called *process sources*. Sources that have variable flowrates are called *utility sources*.
- Sinks: outlets from the water-using system. Sinks that have fixed demands are called process sinks. Sinks that have variable demands are called utility sinks.
- Operations: unit operations that use water and affect the mass flow of contaminant. The water-using operations are divided into two types:
  - a. Water-using subsystem: typically operations that have fixed water demands and supplies. Operations within the water-using subsystem typically add contaminant mass to the water stream via mass transfer from a process stream.

b. Wastewater treatment system: typically operations that treat or regenerate wastewater arising from the water-using subsystem. Operations within the wastewater treating system typically remove contaminant mass from the water streams.

Nodes that have both an inlet and an outlet are called unit operations. *Process unit operations* have fixed inlet and outlet flowrates, however a flow balance is not necessarily maintained across a process unit operation. A maximum of five inlets and outlets may be specified for an individual process unit operation. *Utility unit operations* have a variable inlet flow rate, which may be split into a maximum of two dependent outlet flows. The flow balance across a utility unit operation is necessary.

- iv)
- Streams: connections between nodes that represent material flow from one node to another.

Sources and sinks form the boundary of the water-using system. Other water-using operations may exist outside this boundary, but are not considered as part of the analysis.

In the Linnhoff-March Water Pinch software all sources, sinks and unit operations are divided into two categories:

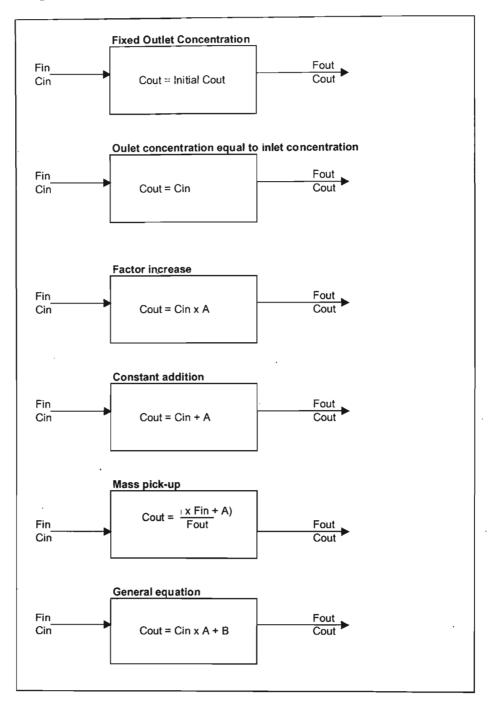
- Utility: A source, sink or unit operation whose water flowrates can be changed during the water pinch analysis. For each utility you can provide minimum and maximum flow limits together with two cost terms; fixed cost and variable cost; for example the supply of city water to a site.
- Process. A source, sink or unit operation whose water flowrates must be fixed during the water pinch analysis; for example the supply of water to showers on a paper machine.

In order to develop a model of the plant or section of the plant which can be optimised using the Water Pinch software, the functional units of the plant need to be represented by models. The models available in the Water Pinch software are described below.

# 5.1.1 Unit Operations Available in the Water Pinch Software

A unit operation in the Water Pinch software represents a piece of equipment or a processing unit that acts both a sink and a source for water. In other words, a unit operation takes water in and sends water out. In addition, a unit operation will normally change the contaminant load of the water flowing through it in some way. There are two types of generic unit operations available in the Water Pinch software namely a process unit operation and a utility unit operation.

The water flows entering and leaving the process unit operation are always fixed at a particular flow. The process unit can have between one and five sinks and between one and five sources. The total flow of water entering the sinks does not have to equal the total flow leaving the sources sink the process unit operation does not represent the water balance of the plant, but merely the water streams which can be varied in the analysis. The contaminant concentrations of the sources can be linked to the sink concentrations mathematically so that the outlet concentrations can be a function of the inlet concentrations.


The water flows entering and leaving a utility unit operation are variable between an upper and lower limit specified by the user. In addition, the total flow of water entering a unit operation is always equal to the flow leaving it. A utility unit operation always has one sink and either one or two sources. The contaminant concentration of the sources can be linked to the sink concentrations mathematically so that the outlet concentrations are a function of the inlet concentrations. The choices available are as follows:

- Fixed outlet concentration the outlet concentration will be fixed at the value specified and will have no relationship to any inlet concentration
- Outlet concentration equal to inlet concentration The outlet concentration will always be the same as the inlet concentration. This type of relationship can be used if a contaminant simply passes through as unit operation.
- Factor increase The outlet concentration will be proportional to the inlet concentration.
- Constant addition The outlet concentration will be equal to the inlet concentration plus a constant
- Mass pick-up A constant mass load of contaminant will be transferred to the water in the unit operation
- General Equation Any of the above relationships can be modelled with this equation

These unit operations are represented in Figure 5.1

.

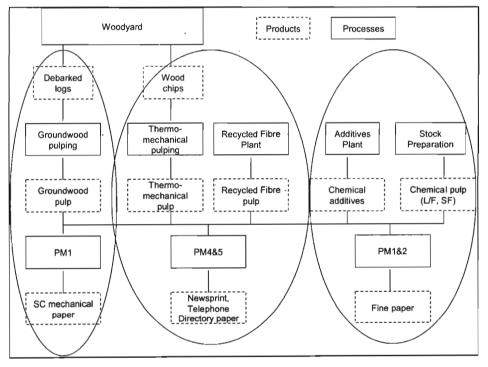


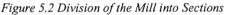


Fin = inlet flow

Cin = inlet concentration

Fout = outlet flow


Cout = outlet concentration


A, B = constant

The WaterTarget software provides a number of standard unit operations to represent some common equipment. The equations and relationships between the inlet and outlet streams are automatically set up in these standard unit operations. These unit operations include the following: generic treater, reverse osmosis, backwash filter, precipitator, dissolved air flotation, air stripper, steam stripper, ion exchange. Alternatively a generic unit operation is availably where the user is able to specify the relationship between the inlet and outlet streams.

# 5.2 Division of the Mill into Sections

The Merebank mill can be divided into three main sections based on the paper grades produced.





The paper machine number one, producing supercalendered magazine paper, along with the groundwood pulp mill forms the first section. The second section of the mill consists of paper machines numbers two and three which produce fine paper, the additives plant and the stock preparation plant. The third section of the mill consists of the two newsprint paper machines, machines numbers four and five, as well as the woodyard, the thermo-mechanical pulp mill and the recycled fibre plant. The utility plants which service the production plant include are the power plant and the waterworks. These utility sections have not been included in this study.

### 5.3 Choice of Key Contaminant

The contaminants in the pulp and papermaking process which limit the recycling and reuse of water within the process are discussed in detail in Chapter 3. In order to perform a pinch analysis at the Merebank mill it was necessary to select key contaminants which would limit the recycling and reuse of water streams. The key contaminants which could be considered are as follows:

- i) Dissolved solids
- ii) Suspended solids
- iii) COD

In order to perform this water pinch analysis with the information available, the assumption was made that in the Merebank mill fibre is the main contaminant in the streams which form part of the analysis. Data on dissolved solids, COD and temperature of all the streams was not readily available. Suspended solids was therefore selected as the key contaminant that would prevent recycling and reuse of streams in this analysis and dissolved solids and COD were not included as contaminants.

There were areas in the process where other contaminants were the limiting factor for example: if suspended solids (fibre) is the only contaminant limiting the use of water in all areas in the plant, clean cold water could be used in the showers in the headbox of the paper machine. In reality this is not the case, since the water used in the headbox needs to be hot water. In this study, flow constraints were used to prevent streams from being used in certain areas where suspended solids was not the only factor limiting the use of water as in the example above.

#### 5.4 Data

The Merebank mill was built in 1969 and consisted of only one paper machine. The mill has grown over the years to its current size, now comprising of five paper machines and three pulp mills. Water consumption has become increasingly important over the years, however when the mill was constructed, water consumption was not a primary concern and as a result there are very few water meters throughout the mill. The availability of water flow rate data is limited. Similarly, contaminant data is limited and in order to evaluate contaminant concentration in the various streams throughout the mill a large number of tests would be required. The approach taken in this study was to use the data readily available to determine a water balance accurate to within 10% of the measured major flow rates.

The fresh water flows which are measured are:

i) Total flow to the Newsprint Circuit

iv) Cold fresh water to Paper Machine No. 4

These streams make up the larger fresh water flows in the Newsprint circuit and a year's data was averaged for use in the water balances.

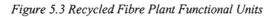
The amount of fibre in the various streams which formed part of the water and fibre balances was based on average operating conditions. The data used in the balances was based on measured consistencies averaged over a period of a year as well as target consistencies in certain streams. An average dryness of the paper produced was used to calculate the evaporation from the paper machine.

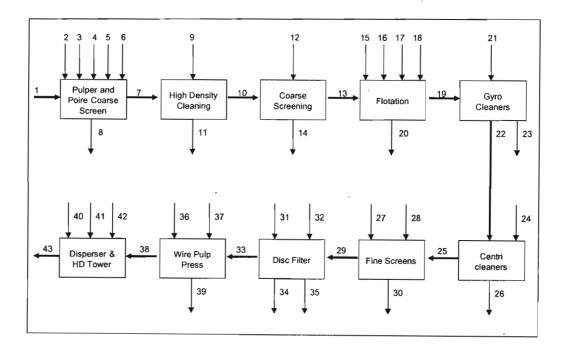
The flow rate of shower water on the paper machines was based on the specification from the nozzle suppliers and the number of showers in use during the study.

The reject rates from cleaners and screens was based on design reject rates.

Chemical additives flow rates were based on one year's consumption data.

Where data was missing information provided by experienced engineers in the plant was used, with appropriate uncertainty factors in the Water Tracker software, for example in the Thermomechanical pulp mill no data is available for the amount of plug wiper water or sealing water used and the estimates of experiences plant engineers was used as approximations in the model. The Water Tracker software allows the user to enter a "trust category" which represents the reliability of the estimate. Where estimated data was used, the trust category was larger, for example a trust category of 25% was used for data that was estimated by plant engineers and data which came from flow measurements taken over the period of one year had a much lower trusts category of 2%. 2% was used for measured flows to allow for accuracy of flow meters.


Another type of data which was used in the mass balances was plant data – for example, pressure readings from pumps were recorded and the corresponding flow rates, from the pump curves, were used to estimate the flows for certain streams. This type of information was used where there were no flow measurements available, however the "trust category" for these streams was also high (25%).


### 5.5 Water Balances

Water balances for each of the sections were performed using the Linnhoff March Water Tracker software. Water Tracker performs the water and contaminant balance simultaneously.

# 5.5.1 Recycled Fibre Plant

The Recycled Fibre Plant was divided into functional units and each unit / block analysed. Figure 5.3 shows the breakdown of this section of the plant.





Note: the bold arrows indicate process streams.

# Description of Streams:

| 1  | Waste Paper         | 2  | Sodium<br>Silicate | 3  | Hydrogen<br>Peroxide | 4  | Caustic Soda                 |
|----|---------------------|----|--------------------|----|----------------------|----|------------------------------|
| 5  | Cloudy Filtrate     | 6  | Steam              | 7  | Pulp                 | 8  | Rejects                      |
| 9  | Cloudy Filtrate     | 10 | Pulp               | 11 | Rejects              | 12 | Cloudy Filtrate              |
| 13 | Pulp                | 14 | Rejects            | 15 | Cloudy Filtrate      | 16 | Soap                         |
| 17 | Calcium<br>Chloride | 18 | Sulphuric Acid     | 19 | Pulp                 | 20 | Ink Sludge                   |
| 21 | Clear Filtrate      | 22 | Pulp               | 23 | Rejects              | 24 | Clear Filtrate               |
| 25 | Pulp                | 26 | Rejects            | 27 | Clear Filtrate       | 28 | Cloudy Filtrate              |
| 29 | Pulp                | 30 | Rejects            | 31 | Clear Filtrate       | 32 | Tempered<br>Water            |
| 33 | Pulp                | 34 | Cloudy Filtrate    | 35 | Clear Filtrate       | 36 | Paper Machine<br>White Water |
| 37 | Sulphuric Acid      | 38 | Pulp               | 39 | Cloudy Filtrate      | 40 | Paper Machine<br>White Water |
| 41 | Steam               | 42 | Hydrosulphite      | 43 | Pulp                 |    |                              |

The function of each of these units is described in Table 5.1.

| Pulper and Poire | Waste paper repulping and coarse screening to remove largest      |
|------------------|-------------------------------------------------------------------|
| Screen           | contaminants                                                      |
| High density     | Removal of high density contaminants from pulp                    |
| cleaning         |                                                                   |
| Coarse screening | Removal of remaining large contaminants                           |
| Flotation        | Removal of ink                                                    |
| Gyro cleaners    | Removal of smaller, lightweight contaminants (specific gravity    |
|                  | <1)                                                               |
| Centri cleaners  | Removal of fine sand, grit and heavy clay particles with specific |
|                  | gravity > 1                                                       |
| Fine screens     | Removal of fibre clumps                                           |
| Disc filter      | Thickening pulp                                                   |
| Wire pulp press  | Pulp is thickened from 5% to 30% consistency to remove            |
|                  | alkaline, deinking process water                                  |
| Disperser and HD | Pulp is heated to soften stickies, hot melt adhesives and other   |
| tower            | similar contaminants. These contaminants are then dispersed       |
|                  | evenly throughout the stock. Any ink particles still attached to  |
|                  | the fibres are broken up into smaller particles so that they are  |
|                  | less noticeable.                                                  |

Table 5.1 Function of each process unit in the Recycled Fibre Plant

A mass and water balance was performed over these functional units. Refer to Appendix B for the detailed balance. The water flow rates were based on design conditions for the recycled fibre plant as well as the total flow rate of fresh water to this plant, which is metered. The fibre content of the streams is based on design conditions and on-line consistency measurements in the plant as described in section 5.4.

The data available was entered into the Linnhoff-March WaterTracker software and an uncertainty range was specified for all the data entered.

The next step in the Water Pinch analysis entails characterising the various streams in the Recycled Fibre Plant. It is necessary to represent the quality of these streams by means of contaminants.

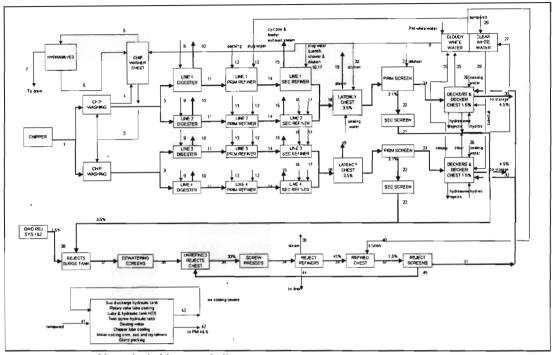
The variables which could be used to characterise the streams in a water pinch analysis are listed in Table 5.2.

.

| Strea | am                           | Contaminants                                |
|-------|------------------------------|---------------------------------------------|
| 1     | Waste paper                  | 90% Fibre                                   |
| 2     | Sodium Silicate              | Na <sub>2</sub> SiO <sub>3</sub> ppm (wt)   |
| 3     | Hydrogen Peroxide            | H <sub>2</sub> O <sub>2</sub> ppm (wt)      |
| 4     | Caustic Soda                 | NaOH ppm (wt)                               |
| 5.    | Cloudy Filtrate              | Fibre – 0.06% fibre                         |
| 6     | Steam                        | Temperature                                 |
| 7     | Pulp                         | Fibre                                       |
| 8     | Rejects from Poire screen    | Particle size (> 6mm)                       |
| 9     | Cloudy Filtrate              | Fibre - 0.06%                               |
| 10    | Pulp                         | Fibre                                       |
| 11    | Rejects from HD cleaners     | Density and size of solids                  |
| 12    | Cloudy Filtrate              | Fibre – 0.06%                               |
| 13    | Pulp                         | Fibre                                       |
| 14    | Rejects from coarse screens  | Fibre, Particles (size >1.6mm)              |
| 15    | Cloudy Filtrate              | Fibre – 0.06%                               |
| 16    | Soap                         | ppm (wt)                                    |
| 17    | Calcium chloride             | CaCl <sub>2</sub> ppm (wt)                  |
| 18    | Sulphuric Acid               | H <sub>2</sub> SO <sub>4</sub> ppm (wt)     |
| 19    | Pulp                         | Fibre                                       |
| 20    | Ink sludge                   | Ink concentration                           |
| 21    | Clear filtrate               | Fibre                                       |
| 22    | Pulp                         | Fibre                                       |
| 23    | Rejects from Gyro cleaners   | Fibre, Particles (Density, specific gravity |
|       |                              | <1 and size of solids)                      |
| 24    | Clear filtrate               | Fibre                                       |
| 25    | Pulp                         | Fibre                                       |
| 26    | Rejects from centri cleaners | Fibre, Particles (Density, specific gravity |
|       |                              | >1 and size of solids)                      |
| 27    | Clear filtrate               | Fibre                                       |
| 28    | Cloudy Filtrate              | Fibre – 0.06%                               |
| 29    | Pulp                         | Fibre                                       |
| 30    | Rejects from Fine screens    | Fibre, Particles (Size of solids            |
|       |                              | <0.25mm)                                    |
| 31    | Clear filtrate               | Fibre                                       |
| 32    | Tempered water               | Fibre – 0%                                  |

Table 5.2 Variables which could be used to characterise the streams in the Recycled Fibre Plant

.


.

| Stream |                 | Contaminants                                           |
|--------|-----------------|--------------------------------------------------------|
| 33     | Pulp            | Fibre                                                  |
| 34     | Cloudy filtrate | Fibre - 0.06%                                          |
| 35     | Clear filtrate  | Fibre                                                  |
| 36     | PM white water  | Fibre                                                  |
| 37     | Sulphuric acid  | $H_2SO_4$ ppm (wt)                                     |
| 38     | Pulp            | Fibre                                                  |
| 39     | Cloudy filtrate | Fibre – 0.06%                                          |
| 40     | PM white water  | Fibre                                                  |
| 41     | Steam           | Fibre (0%), temperature                                |
| 42     | Hydrosulphite   | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> ppm (wt) |
| 43     | Pulp            | Fibre                                                  |

Table 5.2 shows that the main contaminant in the process is fibre. The chemical additives, (streams numbers 2, 3, 4, 16, 17, 18, 37, and 42), steam (streams numbers 6 and 41) and pulp streams (streams numbers 1, 7, 10, 13, 19, 22, 25, 29, 33, 38 and 43), are not included in the water pinch analysis since they are a part of the process and will not be changed.

# 5.5.2 Thermo-mechanical Plant

The thermo-mechanical pulping pulping process is represented in Figure 5.4 below. The diagram shows the functional units of this section of the plant.



# Figure 5.4 Thermo-mechanical Pulp Mill functional units

Note: the bold arrows indicate process streams.

Description of Streams:

| 1  | Chips                   | 2  | Chip wash<br>water | 3  | Pulp              | 4  | Chip wash<br>water |
|----|-------------------------|----|--------------------|----|-------------------|----|--------------------|
| 5  | Chip wash<br>water      | 6  | Chip wash<br>water | 7  | Rejects           | 8  | Cloudy white water |
| 9  | Sodium<br>Hydrosulphite | 10 | Steam              | 11 | Pulp              | 12 | Cloudy white water |
| 13 | Fresh water             | 14 | Pulp               | 15 | Steam             | 16 | Fresh water        |
| 17 | Fresh water             | 18 | Pulp               | 19 | Steam             | 20 | Cloudy white water |
| 21 | Cloudy white water      | 22 | Pulp               | 23 | Pulp              | 24 | Pulp               |
| 25 | Cloudy white water      | 26 | Fresh water        | 27 | Clear white water | 28 | Fresh water        |
| 29 | Clear white<br>water    | 30 | Pulp               | 31 | Pulp              | 32 | Pulp               |
| 33 | Pulp                    | 34 | Pulp               | 35 | Pulp              | 36 | Pulp               |
| 37 | Pulp                    | 38 | Pulp               | 39 | Steam             | 40 | Cloudy white water |
| 41 | Fresh water             | 42 | Cooling water      | 43 | Cooling water     | 44 | Rejects            |

45 Rejects

The function of each of these units is described in Table 5.3.

| Chipper            | Processes logs into chips                                    |
|--------------------|--------------------------------------------------------------|
| Chip washer        | Washes chips to remove dirt (e.g. sand)                      |
| Hydrasieves        | Cleans chip wash water                                       |
| Digesters          | Softening lignin in chips                                    |
| Primary Refiners   | Separating wood fibres                                       |
| Secondary Refiners | Separating wood fibres                                       |
| Latency Chest      | "Unwinding" fibres in hot water                              |
| Primary Screens    | Removing unrefined fibre                                     |
| Secondary Screens  | Removing unrefined fibre                                     |
| Deckers            | Removes water from the fibre before paper machines           |
| Rejects System     | Processes fibre which was rejected from the initial refining |
| (Dewatering        | process                                                      |
| screens, Screw     |                                                              |
| presses, Reject    |                                                              |
| refiners, Reject   |                                                              |
| screens)           |                                                              |

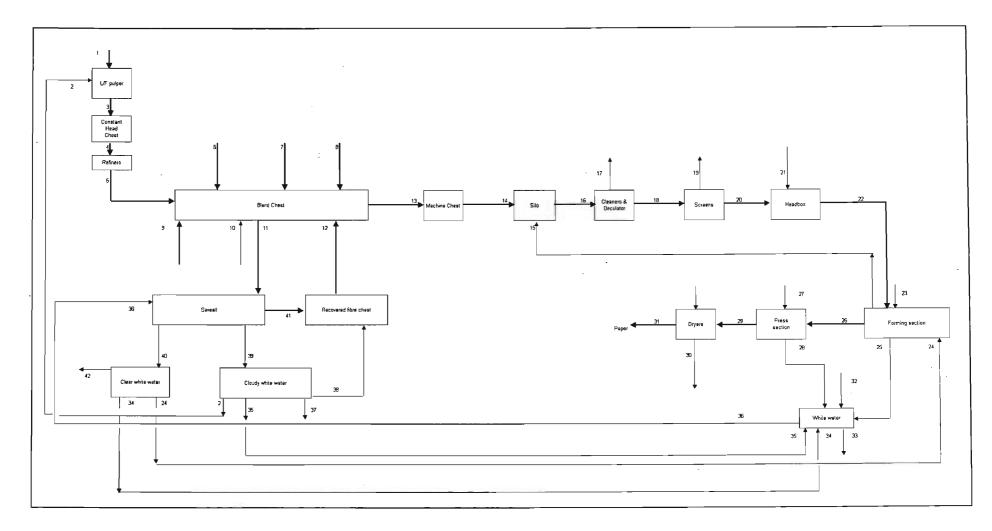
Table 5.3 Function of each process unit in the Thermo-mechanical Pulp Mill

A mass and water balance was then performed over these functional units. Refer to Appendix C for the detailed balance. Once again the balance was based on the design conditions for the plant and the metered flow of fresh water to this section of the plant. The fibre content of the streams was obtained from on-line consistency measurements in the plant as well as the information gathered from experienced mill personnel.

The variables which could be used to characterise the streams in a water pinch analysis of the thermo-mechanical pulp plant are listed in Table 5.4.

Table 5.4 Variables which could be used to characterise the streams in the Thermomechanical Pulp Mill

| Stre | am                 | Contaminants |
|------|--------------------|--------------|
| 1    | Chips              | Fibre        |
| 2    | Chip wash water    | Fibre        |
| 3    | Pulp               | Fibre        |
| 4    | Chip wash water    | Fibre        |
| 5    | Chip wash water    | Fibre        |
| 6    | Chip wash water    | Fibre        |
| 7    | Rejects            | Fibre        |
| 8    | Cloudy white water | Fibre        |


| Strea | am                   | Contaminants                                           |  |  |
|-------|----------------------|--------------------------------------------------------|--|--|
| 9     | Sodium Hydrosulphite | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> ppm (wt) |  |  |
| 10    | Steam                | Fibre (0%), temperature                                |  |  |
| 11    | Pulp                 | Fibre                                                  |  |  |
| 12    | Cloudy white water   | Fibre                                                  |  |  |
| 13    | Fresh water          | Fibre (0%)                                             |  |  |
| 14    | Pulp                 | Fibre                                                  |  |  |
| 15    | Steam                | Fibre (0%)                                             |  |  |
| 16    | Fresh water          | Fibre (0%)                                             |  |  |
| 17    | Fresh water          | Fibre (0%)                                             |  |  |
| 18    | Pulp                 | Fibre                                                  |  |  |
| 19    | Steam                | Fibre (0%), temperature                                |  |  |
| 20    | Cloudy white water   | Fibre                                                  |  |  |
| 21    | Cloudy white water   | Fibre                                                  |  |  |
| 22    | Pulp                 | Fibre                                                  |  |  |
| 23    | Pulp                 | Fibre                                                  |  |  |
| 24    | Pulp                 | Fibre                                                  |  |  |
| 25 ·  | Cloudy white water   | Fibre                                                  |  |  |
| 26    | Fresh water          | Fibre (0%), temperature                                |  |  |
| 27    | Clear white water    | Fibre                                                  |  |  |
| 28    | Fresh water          | Fibre (0%)                                             |  |  |
| 29    | Clear white water    | Fibre                                                  |  |  |
| 30    | Pulp ·               | Fibre                                                  |  |  |
| 31    | Pulp                 | Fibre                                                  |  |  |
| 32    | Pulp                 | Fibre                                                  |  |  |
| 33    | Pulp                 | Fibre                                                  |  |  |
| 34    | Pulp                 | Fibre                                                  |  |  |
| 35    | Pulp                 | Fibre                                                  |  |  |
| 36    | Pulp                 | Fibre                                                  |  |  |
| 37    | Pulp                 | Fibre                                                  |  |  |
| 38    | Pulp                 | Fibre                                                  |  |  |
| 39    | Steam                | Fibre (0%), temperature                                |  |  |
| 40    | Cloudy white water   | Fibre                                                  |  |  |
| 41    | Fresh water          | Fibre (0%)                                             |  |  |
| 42    | Cooling water        | Fibre, temperature                                     |  |  |
| 43    | Cooling water        | Fibre, temperature                                     |  |  |
| 44    | Rejects              | Fibre                                                  |  |  |
| 45    | Rejects              | Fibre                                                  |  |  |

The streams which were not included in the pinch analysis because they need to remain unchanged are the pulp streams (streams numbers 1, 2, 3, 11, 14, 18, 22, 23, 24, 30, 31, 32, 33, 34, 35, 36, 37, and 38), steam (streams numbers 10, 15, 19, and 39) and chemical additives (stream number 9). Once again it can be seen that the main contaminant in the remaining streams which are variable is fibre.

#### 5.5.3 Paper Machines

The functional units of the paper machines are represented in Figure 5.5.

Figure 5.5 Paper Machine functional units



Note: the bold arrows indicate process streams

Description of Streams:

| 1  | Long fibre         | 2  | Cloudy white water     | 3  | Pulp               | 4  | Pulp                          |
|----|--------------------|----|------------------------|----|--------------------|----|-------------------------------|
| 5  | Pulp               | 6  | Recycled fibre<br>pulp | 7  | Groundwood<br>pulp | 8  | Thermo-<br>mechanical<br>pulp |
| 9  | Broke              | 10 | Polymer                | 11 | Pulp               | 12 | Pulp                          |
| 13 | Pulp               | 14 | Pulp                   | 15 | White water        | 16 | Pulp                          |
| 17 | Cleaner<br>rejects | 18 | Pulp                   | 19 | Screen rejects     | 20 | Pulp                          |
| 21 | Polymer            | 22 | Pulp                   | 23 | Fresh water        | 24 | Clear white water             |
| 25 | White water        | 26 | Paper                  | 27 | Fresh water        | 28 | White water                   |
| 29 | Paper              | 3Q | Evaporation            | 31 | Paper              | 32 | Sealing water                 |
| 33 | White water        | 34 | Clear white water      | 35 | Cloudy white water | 36 | White water                   |
| 37 | Cloudy white water | 38 | Cloudy white water     | 39 | Cloudy white water | 40 | Clear white water             |
| 41 | Pulp               | 42 | Pulp                   | 43 | Steam              |    |                               |

The function of the main units is described in Table 5.5.

| Table 5.5 Function of | each process | unit in the Pa | per Machine |
|-----------------------|--------------|----------------|-------------|
|                       |              |                |             |

| Long Fibre Pulper | Disperses the baled chemical long fiber pulp in water to form a slurry                                                              |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| ·                 |                                                                                                                                     |
| Refiners          | "Develop" pulp fibres for the papermaking process                                                                                   |
| Headbox           | Discharges a uniform jet of papermaking stock onto the moving forming section                                                       |
| Forming section   | Forms the fibres into a matted web while the water is drained<br>by suction forces                                                  |
| Press section     | The sheet is pressed between a series of roll presses where additional water is removed                                             |
| Drying section    | Most of the remaining water is evaporated when the sheet<br>comes into contact with steam heated cylinders in the drying<br>section |

A mass and water balance was then performed over these functional units. Refer to Appendix D for the detailed balance.

The variables which could be used to characterise the streams in a water pinch analysis of the paper machine are listed in Table 5.6.

Table 5.6 Variables which could be used to characterise the streams in the Paper Machine

| Strea | am                     | Contaminants |  |
|-------|------------------------|--------------|--|
| 1     | Long fibre             | Fibre        |  |
| 2     | Cloudy white water     | Fibre        |  |
| 3     | Pulp                   | Fibre        |  |
| 4     | Pulp                   | Fibre        |  |
| 5     | Pulp                   | Fibre        |  |
| 6     | Recycled fibre pulp    | Fibre        |  |
| 7     | Groundwood pulp        | Fibre        |  |
| 8     | Thermo-mechanical pulp | Fibre        |  |
| 9     | Broke                  | Fibre        |  |
| 10    | Polymer                | ppm (wt)     |  |
| 11    | Pulp                   | Fibre        |  |
| 12    | Pulp                   | Fibre        |  |
| 13    | Pulp                   | Fibre        |  |
| 14    | Pulp                   | Fibre        |  |
| 15    | White water            | Fibre        |  |
| 16    | Pulp                   | Fibre        |  |
| 17    | Cleaner rejects        | Fibre        |  |
| 18    | Pulp                   | Fibre        |  |
| 19    | Screen rejects         | Fibre        |  |
| 20    | Pulp                   | Fibre        |  |
| 21    | Polymer                | ppm (wt)     |  |
| 22    | Pulp                   | Fibre        |  |
| 23    | Fresh water            | Fibre (0%)   |  |
| 24    | Clear white water      | Fibre        |  |
| 25    | White water            | Fibre        |  |
| 26    | Paper                  | Fibre        |  |
| 27    | Fresh water            | Fibre (0%)   |  |
| 28    | White water            | Fibre        |  |
| 29    | Рарег                  | Fibre        |  |
| 30    | Evaporation            |              |  |
| 31    | Paper                  | Fibre        |  |
| 32    | Sealing water          | Fibre        |  |
| 33    | White water            | Fibre        |  |

| Strea | am                 | Contaminants            |  |
|-------|--------------------|-------------------------|--|
| 34    | Clear white water  | Fibre                   |  |
| 35    | Cloudy white water |                         |  |
| 36    | White water        | Fibre                   |  |
| 37    | Cloudy white water | Fibre                   |  |
| 38    | Cloudy white water | Fibre                   |  |
| 39    | Cloudy white water | Fibre                   |  |
| 40    | Clear white water  | Fibre                   |  |
| 41    | Pulp               | Fibre                   |  |
| 42    | Pulp               | Fibre                   |  |
| 43    | Steam              | Fibre (0%), temperature |  |

The streams which were not included in the pinch analysis because they need to remain unchanged are the pulp and paper streams (streams numbers 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 20, 22, 26, 29, 31, 41 and 42), steam (stream number 43) and chemical additives which have not been shown in Figure 5.4. The polymer stream is included since it is diluted using water the quality of which may vary. Once again it can be seen that the main contaminant in the remaining streams which are variable is fibre.

# 5.6 Water Pinch Models of the Individual Sections of the Plant

The individual sections of the plant as described in sections 5.2.1, 5.2.2 and 5.2.3 were analysed separately to determine the minimum fresh water consumption in each of these sections of the plant. The following sections, section 5.4.1, 5.4.2 and 5.4.3, describe the methodology used to perform the analysis.

### 5.6.1 Recycled Fibre Plant

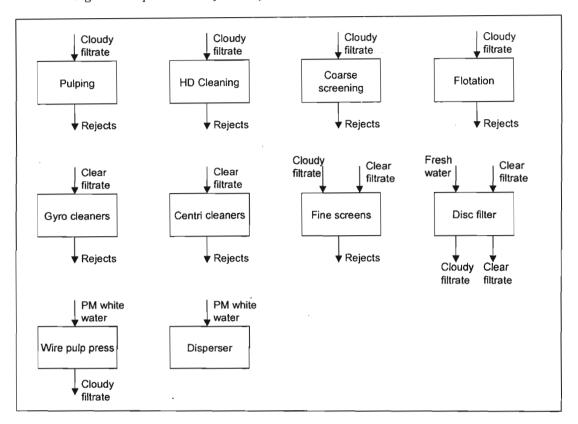



Figure 5.6 Representation of the Recycled Fibre Plant for the water pinch analysis

The utility sources in the recycled fibre plant are defined as follows:

| Cloudy filtrate                   | Clear filtrate        |
|-----------------------------------|-----------------------|
| Paper machine white water         | Fresh water           |
|                                   |                       |
| The utility sinks are defined as: |                       |
| Effluent                          |                       |
|                                   |                       |
| The process unit operations are:  |                       |
| Pulping                           | High density cleaning |
| Coarse screening                  | Flotation             |
| Gyro-cleaning                     | Centri-cleaning       |
| Fine screening                    | Filtering             |
| Pressing                          |                       |
|                                   |                       |

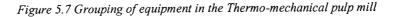
The source flowrates and fibre content of each source is given in Table 5.7

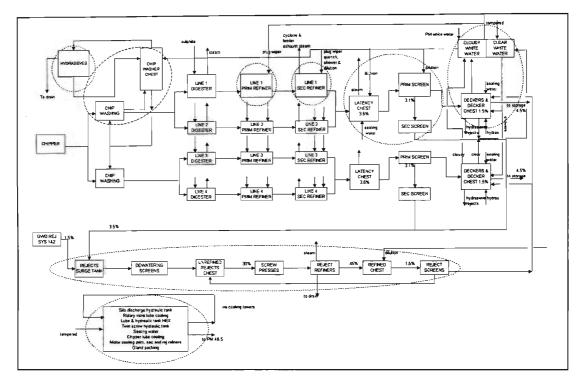
| Source                    | Flowrate | Fibre Content |
|---------------------------|----------|---------------|
|                           | [t/h]    | [ppm]         |
| Cloudy filtrate           | Variable | 1 000         |
| Clear filtrate            | Variable | 600           |
| Paper machine white water | Variable | 100           |
| Fresh water               | Variable | 0             |

Table 5.7 Utility source flowrates and fibre content in the Recycled Fibre Plant

Table 5.8 Utility sink flowrate and fibre content in the Recycled Fibre Plant

| Source   | Flowrate | Fibre Content |  |
|----------|----------|---------------|--|
|          | [t/h]    | [ppm]         |  |
| Effluent | Variable | No maximum    |  |


Table 5.9 Maximum fibre constraints for process sinks in the Recycled Fibre Plant


| Operation                 | Stream              | Flow   | Maximum |
|---------------------------|---------------------|--------|---------|
|                           |                     | [t/h]  | Fibre   |
|                           |                     |        | [ppm]   |
| Recycled FibrePlant       | Cloudy filtrate     | 288    | 1800    |
| Pulping                   |                     |        |         |
| Recycled Fibre Plant High | Cloudy filtrate     | 87     | 1800    |
| Density Cleaning          |                     |        |         |
| Recycled Fibre Plant      | Cloudy filtrate     | 3.7    | 1800    |
| Coarse Screening          |                     |        |         |
| Recycled Fibre Plant      | Cloudy filtrate     | 251.7  | 1800    |
| Flotation                 |                     |        |         |
| Recycled Fibre Plant      | Clear filtrate      | 96.72  | 1000    |
| Gyrocleaners              |                     |        |         |
| Recycled Fibre Plant      | Clear filtrate      | 224.35 | 1000    |
| Centricleaners            |                     |        |         |
| Recycled Fibre Plant Fine | Clear filtrate      | 50.7   | 1000    |
| screens                   | Cloudy filtrate     | 0      | 1800    |
| Recycled Fibre Plant Disc | Clear filtrate      | 103.7  | 1000    |
| filter                    |                     |        |         |
| Recycled Fibre Plant Wire | Paper machine white | 43.2   | 600     |
| pulp press                | water               |        |         |
| Recycled Fibre Plant      | Paper machine white | 125.6  | 600     |
| Disperser                 | water               |        |         |

.

# 5.6.2 Thermo-mechanical Pulp Mill

The thermo-mechanical pulp mill can be broken down into functional units for the pinch analysis as shown in Figure 5.7 below.





The dotted lines indicate the plant equipment that can be grouped together for the water pinch analysis. This results in the simplified model shown in Figure 5.8.

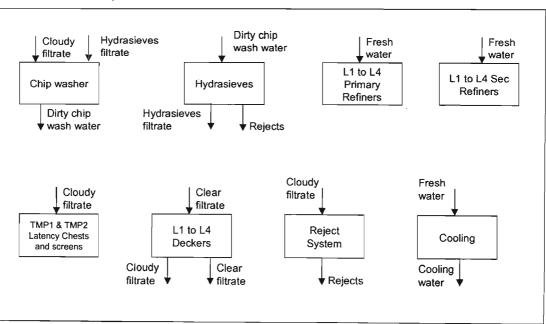



Figure 5.8 Representation of the Thermo-mechanical pulp mill for the water pinch analysis

| The utility sources in the thermo-mechanical pulp mill are: |                |  |
|-------------------------------------------------------------|----------------|--|
| Cloudy filtrate                                             | Clear filtrate |  |
| Paper machine white water                                   | Fresh water    |  |
|                                                             |                |  |
| The utility sink is:                                        |                |  |
| Effluent                                                    |                |  |
|                                                             |                |  |
| The process unit operations are:                            |                |  |
| Chip washer                                                 | Hydrasieves    |  |
| Reject System                                               | Cooling        |  |
| Line 1 to Line 4 Deckers                                    | Sealing water  |  |
|                                                             |                |  |

The process sinks are:

Line 1 to Line 4 Primary refiners Line 1 to Line 4 Secondary refiners TMP1 and TMP2 Latency and screens

Table 5.10 Utility source flowrate and fibre content in the Thermo-mechanical pulp mill

| Source                    | Flowrate | Fibre Content |  |
|---------------------------|----------|---------------|--|
|                           | [t/h]    | [ppm]         |  |
| Cloudy filtrate           | Variable | 1 000         |  |
| Clear filtrate            | Variable | 600           |  |
| Paper machine white water | Variable | 100           |  |
| Fresh water               | Variable | 0             |  |

Table 5.11 Utility sink flowrate and fibre content in the Thermo-mechanical pulp mill

| Source   | Flowrate Fibre Cont |            |
|----------|---------------------|------------|
|          | [t/h]               | [ppm]      |
| Effluent | Variable            | No maximum |

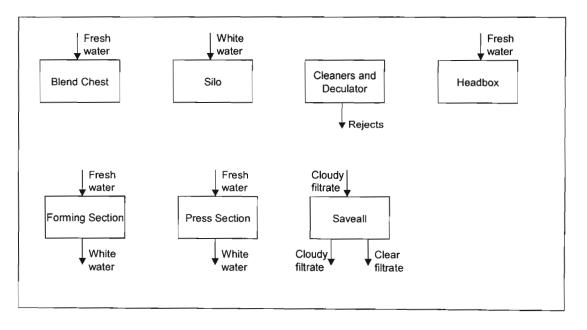
Table 5.12 Maximum fibre constraints for process sinks

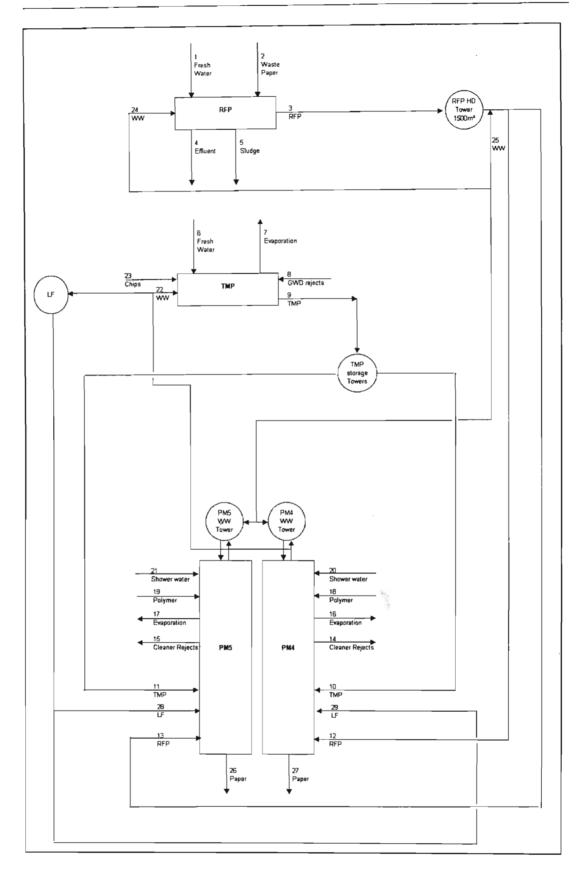
| Operation              | Stream                   | Flow   | Maximum Fibre |
|------------------------|--------------------------|--------|---------------|
|                        |                          | [t/h]  | [ppm]         |
| Chip washer            | Cloudy filtrate          | 22.27  | 3000          |
| Chip washer            | Hydrasieves filtrate     | 376.15 | 3000          |
| Hydrasieves            | Dirty chip wash<br>water | 395.7  | 4000          |
| Line 1 Primary Refiner | Fresh water              | 0.01   | 0 ·           |

|                          |                 |        | 0    |
|--------------------------|-----------------|--------|------|
| Line 2 Primary Refiner   | Fresh water     | 0.01   | 0    |
| Line 3 Primary Refiner   | Fresh water     | 0.01   | 0    |
| Line 4 Primary Refiner   | Fresh water     | 0.01   | 0    |
| Line 1 Secondary Refiner | Fresh water     | 126.35 | 0    |
| Line 2 Secondary Refiner | Fresh water     | 126.35 | 0    |
| Line 3 Secondary Refiner | Fresh water     | 126.35 | 0    |
| Line 4 Secondary Refiner | Fresh water     | 126.35 | 0    |
| TMP1 Latency and screens | Cloudy filtrate | 398.65 | 1000 |
| TMP1 Latency and screens | Cloudy filtrate | 398.65 | 1000 |
| Line 1 Decker            | Clear filtrate  | 120    | 1000 |
| Line 2 Decker            | Clear filtrate  | 120    | 1000 |
| Line 3 Decker            | Clear filtrate  | 120    | 1000 |
| Line 4 Decker            | Clear filtrate  | 120    | 1000 |
| Reject system            | Cloudy filtrate | 277.20 | 2000 |
| Cooling                  | Fresh water     | 20     | 0    |
|                          |                 |        |      |

#### 5.6.3 Paper Machines

The water pinch analysis of the paper machines was not performed due to the limited opportunity for re-routing streams on the paper machines without installing some form of treatment equipment.

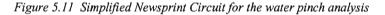


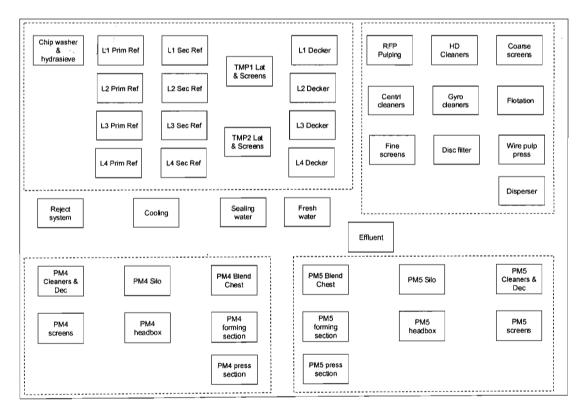


Figure 5.9 Representation of a paper machine for the water pinch analysis

The flows and concentrations of the streams in the paper machine models are included in Tables 5.13, 5.14 and 5.15 in Section 5.6.

## 5.7 Water Pinch analysis of the Newsprint Circuit

The Newsprint circuit, as described earlier, is made up of the recycled fibre plant, the thermomechanical pulp mill and the paper machines.


Figure 5.10 Newsprint Circuit




Description of Streams:

| 1  | Fresh water                | 2  | Waste Paper                | 3  | Recycled Fibre<br>Pulp     | 4  | Effluent               |
|----|----------------------------|----|----------------------------|----|----------------------------|----|------------------------|
| 5  | Sludge                     | 6  | Fresh water                | 7  | Evaporation                | 8  | Groundwood<br>rejects  |
| 9  | Thermo-<br>mechanical pulp | 10 | Thermo-<br>mechanical pulp | 11 | Thermo-<br>mechanical pulp | 12 | Recycled Fibre<br>Pulp |
| 13 | Recycled Fibre<br>Pulp     | 14 | Cleaner rejects            | 15 | Cleaner rejects            | 16 | Evaporation            |
| 17 | Evaporation                | 18 | Polymer                    | 19 | Polymer                    | 20 | Shower water           |
| 21 | Shower water               | 22 | White water                | 23 | Chips                      | 24 | White water            |
| 25 | White water                | 26 | Paper .                    | 27 | Paper                      | 28 | Long Fibre             |
| 29 | Long Fibre                 |    |                            |    |                            |    |                        |

Figure 5.10 above represents the newsprint circuit without showing the details of the individual plants. In order to identify opportunities for re-routing streams and minimising fresh water consumption it is necessary to include the details of each of the sections of the newsprint circuit and the model used for the water pinch analysis is shown in Figure 5.11 with the dotted line indicating the various sections which have been combined to form the newsprint circuit.





The utility sources and sinks for the newsprint circuit are:

Utility source: Fresh water Utility sink: Effluent

The process unit operations are:

| Chip washer               | Hydrasieves          |
|---------------------------|----------------------|
| Reject system             | Cooling              |
| Line 1 Decker             | Line 2 Decker        |
| Line 3 Decker             | Line 4 Decker        |
| Sealing water             | RFP Pulping          |
| RFP High density cleaning | RFP Coarse screening |
| RFP Flotation             | RFP Gyro-cleaning    |
| RFP Centri-cleaning       | RFP Fine screening   |
| RFP Filtering             | RFP Pressing         |
| PM4 blend chest           | PM4 Forming section  |
| PM4 Press section         | PM4 Saveall          |
| PM5 blend chest           | PM5 Forming section  |
| PM5 Press section         | PM5 saveall          |
|                           |                      |

The process sources are:

| PM4 Cleaners and deculator | PM4 Screens |
|----------------------------|-------------|
| PM5 Cleaners and deculator | PM4 Screens |

The process sinks are:

| RFP Disperser                       | TMP I |
|-------------------------------------|-------|
| TMP Lines 1 to 2 Secondary refiners | TMP1  |
| PM4 Silo                            | PM4 H |
| PM5 Silo                            | PM5 H |

TMP Lines 1 to 4 Primary refiners TMP1 and TMP2 Latency and screens PM4 Headbox PM5 Headbox

The relationship between the inlet and the outlet streams in the unit operations was determined using the results from the water balance performed using the Water Tracker software and a mass pickup equation with the constant A determined by the relationship between the inlet and outlet stream in the water balance.

The process unit operations with the relationships between inlet and outlet streams are included in Appendix L.

The source and sink flowrates and fibre content for the newsprint circuit are shown in Tables  $5.13 \ 5.14 \ and \ 5.15$ .

|             | Ū.       | 1             |     |
|-------------|----------|---------------|-----|
| Source      | Flowrate | Fibre Content | ] . |
|             | [t/h]    | [ppm]         |     |
| Fresh water | Variable | 0             | 1   |

Table 5.13 Utility source flowrate and fibre content in the Newsprint circuit

Table 5.14 Utility sink flowrate and fibre content in the Newsprint circuit

| Source   | Flowrate | Fibre Content |
|----------|----------|---------------|
|          | [t/h]    | [ppm]         |
| Effluent | Variable | No maximum    |

| Operation                 | Stream               | Flow   | Maximum Fibre |
|---------------------------|----------------------|--------|---------------|
|                           |                      | [t/h]  | [ppm]         |
| Recycled FibrePlant       | Cloudy filtrate      | 288    | 1800          |
| Pulping                   |                      |        |               |
| Recycled Fibre Plant High | Cloudy filtrate      | 87     | 1800          |
| Density Cleaning          |                      |        |               |
| Recycled Fibre Plant      | Cloudy filtrate      | 3.7    | 1800          |
| Coarse Screening          |                      |        |               |
| Recycled Fibre Plant      | Cloudy filtrate      | 251.7  | 1800          |
| Flotation                 |                      |        |               |
| Recycled Fibre Plant      | Clear filtrate       | 96.72  | 1000          |
| Gyrocleaners              |                      |        |               |
| Recycled Fibre Plant      | Clear filtrate       | 224.35 | 1000          |
| Centricleaners            |                      |        |               |
| Recycled Fibre Plant Fine | Clear filtrate       | 50.7   | 1000          |
| screens                   | Cloudy filtrate      | 0      | 1800          |
| Recycled Fibre Plant Disc | Clear filtrate       | 103.7  | 1000          |
| filter                    |                      |        |               |
| Recycled Fibre Plant Wire | Paper machine white  | 43.2   | 600           |
| pulp press                | water                |        |               |
| Recycled Fibre Plant      | Paper machine white  | 125.6  | 600           |
| Disperser                 | water                |        |               |
| Chin washer               | Cloudy filtrate      | 22.27  | 3000          |
| Chip washer               | Hydrasieves filtrate | 376.15 | 3000          |
|                           | Dirty chip wash      | 395.7  | 4000          |
| Hydrasieves               | water                |        |               |
| Line 1 Primary Refiner    | Fresh water          | 0.01   | 0             |
| Line 2 Primary Refiner    | Fresh water          | 0.01   | 0             |

Table 5.15 Maximum fibre constraints for process sinks

| Operation                | Stream             | Flow   | Maximum Fibre |
|--------------------------|--------------------|--------|---------------|
|                          |                    | [t/h]  | [ppm]         |
| Line 3 Primary Refiner   | Fresh water        | 0.01   | 0             |
| Line 4 Primary Refiner   | Fresh water        | 0.01   | 0             |
| Line 1 Secondary Refiner | Fresh water        | 126.35 | 0             |
| Line 2 Secondary Refiner | Fresh water        | 126.35 | 0             |
| Line 3 Secondary Refiner | Fresh water        | 126.35 | 0             |
| Line 4 Secondary Refiner | Fresh water        | 126.35 | 0             |
| TMP1 Latency and screens | Cloudy filtrate    | 398.65 | 1000          |
| TMP1 Latency and screens | Cloudy filtrate    | 398.65 | 1000          |
| Line 1 Decker            | Clear filtrate     | 120    | 1000          |
| Line 2 Decker            | Clear filtrate     | 120    | 1000          |
| Line 3 Decker            | Clear filtrate     | 120    | 1000          |
| Line 4 Decker            | Clear filtrate     | 120    | 1000          |
| Reject system            | Cloudy filtrate    | 277.20 | 2000          |
| Cooling                  | Fresh water        | 20     | 0             |
| Sealing                  | Fresh water        | 19     | 50            |
| PM4 Blend Chest          | Fresh water        | 4.5    | 0             |
| PM4 Silo                 | Cloudy white water | 2181   | 3600          |
| PM4 Headbox              | Fresh water        | 20     | 0             |
| PM4 Forming section      | Fresh water        | 21     | 0             |
| r M4 Forming section     | Clear white water  | 122    | 300           |
| PM4 Press section        | Fresh water        | 88     | 0             |
| PM4 Saveall              | Cloudy white water | 1428   | 700           |
| PM5 Blend Chest          | Fresh water        | 4.5    | 0             |
| PM5 Silo                 | Cloudy white water | 2179   | 3600          |
| PM5 Headbox              | Fresh water        | 20     | 0             |
| PM5 Forming section      | Fresh water        | 21     | 0             |
| THE FORMING SECTOR       | Clear white water  | 166    | 300           |
| PM5 Press section        | Fresh water        | 88     | 0             |
| PM5 Saveall              | Cloudy white water | 1428   | 700           |

#### 5.7.1 Flow Constraints

Flow constraints have been used to model plant constraints by the following means:

• Water streams are prevented from flowing from the pulp mill to the paper machines to avoid carryover of harmful contaminants, other than fibre, from the pulp mill to the paper machines which may affect paper quality or upset production on the paper machines as discussed in Chapter 3.

• Zero flow rates have been set to prevent certain flows from being directed to nodes where process constraints preclude such connections. For example the fibre content in cooling water would not prevent it from being used in the paper machine showers, however the temperature is not suitable for use in this application. In this case the flow from the cooling water to the paper machine showers is set to zero to prevent the model from making that connection.

# **Chapter 6**

Section 6.1 considers the results from the optimisation of the subsections in isolation from each other. Section 6.2 considers the strategy required for the integration of the subsystems and the results obtained from this integration.

## 6.1 Individual Sections

As described in Chapter 5, the mill was divided into sections and water pinch analysis was performed in each of the sections individually. The results of the analysis on the Recycled Fibre Plant and the Thermo-mechanical Pulp Plant are presented in sections 6.1.1 and 6.1.2 below. Based on the results of the analysis in these two sections, the paper machines were not analysed in isolation, section 6.1.3.

#### 6.1.1 Recycled Fibre Plant

The water pinch analysis of the recycled fibre plant in isolation was unable to identify a significant reduction in fresh water consumption. The minimum fresh water consumption determined by the water pinch analysis was 45t/h while in reality the process consumes 44t/h, based on a production of 150 adt/day. The routing of the streams within the water pinch solution differed from the actual plant configuration, however this is not uncommon since multiple optimal solutions often occur for simple objective functions, known as degenerate solutions. It is possible for the flows to be split in different ways between various units and still give rise to the same optimal objective function value. The difference in the amount of fresh water consumption determined by the water pinch model and the actual plant consumption can be attributed to the accuracy of the data available for producing this model.

The routing of the streams as determined by the water pinch model is shown in Appendix I, Table I.1. The resultant source and sink conditions are shown in Appendix I, Tables I.2 and I.3 respectively.

#### 6.1.2 Thermo-mechanical Pulp Plant

The water pinch analysis of the thermo-mechanical pulp plant in isolation was unable to identify a significant reduction in fresh water consumption. The minimum fresh water consumption determined by the water pinch analysis was 182t/h while in reality the

process consumes 185t/h, based on a production of 150 adt/day per line. As was the case in the water pinch analysis of the recycled fibre plant, the routing of the streams within the water pinch solution differed from the actual plant configuration. This solution is once again an example of a degenerate solution, as was the case in the recycled fibre plant, where difference routings of the streams gave rise to the same objective function value. The difference between the actual consumption of fresh water in the thermo-mechanical pulp mill and the modelled minimum fresh water consumption is simply a reflection of the accuracy of the data used to develop the model and does not represent an opportunity for fresh water saving.

The routing of the streams as determined by the water pinch model is shown in Appendix J, Table J.1. The resultant source and sink conditions are shown in Appendix I, Tables J.2 and J.3 respectively.

#### 6.1.3 Paper Machines

Due to the limited scope for re-using existing water streams on the paper machines without removing fibre content, as well as the limited potential for fresh water savings in the recycled fibre mill and the thermo-mechanical pulp mill when considered in isolation, a water pinch analysis of the paper machines in isolation was not carried out. It was decided to consider the newsprint circuit as a whole, where there is more scope for re-routing existing water streams in order to minimise fresh water consumption.

## 6.2 Newsprint Circuit

The newsprint circuit, which is a combination of the recycled fibre plant, the thermo-mechanical pulp mill and the two newsprint paper machines provides greater opportunity for optimising the amount of fresh water consumed by re-routing existing water streams between the individual sections of the circuit.

The model of the plant developed for optimisation does not replicate the complexity of the existing plant, but is a simplified representation of the actual process. It comprises only those factors which are likely to limit water re-use (Wang and Smith, 1995) which in this case is fibre content in the water streams. The models used to represent the various process options are simplified models which are used to approximate the behaviour of the actual operations in the plant. An example of this is the treatment of tanks in the simplified model. In the plant water streams from a number of different process operations are collected in a tank and then pumped to various other process operations. In the simplified model of the plant these water streams are not collected in a single point and then redistributed, the model simply makes allowance for connections from all the processes which generate water to all the processes where the water is pumped to from the tank in the actual plant. The resulting representation of the plant is verified by ensuring that the fibre content in the stream flowing to a process, which is made up of

#### 6.2.1 Model Representing Current Situation

In order to ensure that the model developed to represent the newsprint circuit is an accurate representation of the plant, the water pinch model was "forced" to represent reality by placing bounds on the model to constrain the connectivity of all the streams to conform to the current situation in the plant. The flows and fibre content of the streams were evaluated to ensure that the model represented the existing situation accurately enough to use it for the optimisation.

Figure 6.1 shows the flow of water streams between the individual sections of the newsprint circuit currently.

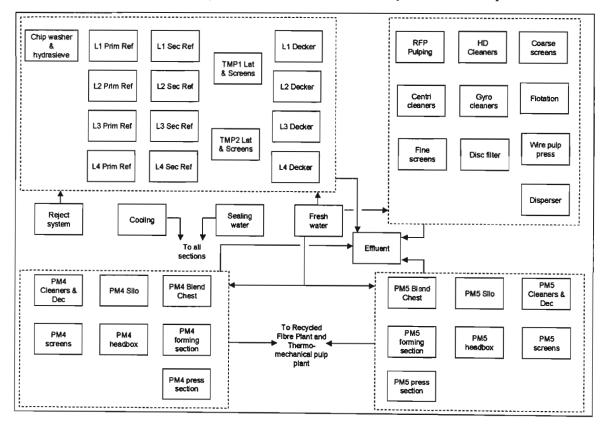



Figure 6.1 Flow of water streams between sections of the current newsprint circuit

The stream flow rates of all the streams in the model representing the existing situation in the plant is set out in Appendix E.

## 6.2.2 Model Representing Optimised Situation

The model representing the current situation was used as the base to develop the optimised model. This was achieved by removing all the constraints which could feasibly be removed and allowing the Water Pinch software to optimise the amount of fresh water consumed. Constraints preventing water streams from being sent from the pulp mill to the paper machine were not removed since the single contaminant of fibre used in this study did not address the issue of dissolved solids build up and carry over

### 6.2.2 Model Representing Optimised Situation

The model representing the current situation was used as the base to develop the optimised model. This was achieved by removing all the constraints which could feasibly be removed and allowing the Water Pinch software to optimise the amount of fresh water consumed. Constraints preventing water streams from being sent from the pulp mill to the paper machine were not removed since the single contaminant of fibre used in this study did not address the issue of dissolved solids build up and carry over of contaminants from the pulp mill to the paper quality. Appendix K shows the flow constraints for the model representing the existing plant and the shaded blocks in Table K1 indicate the constraints which were removed in for the optimisation.

The two most significant groups of constraints which were removed were the clear and cloudy filtrates from the disc filters in the Thermo-mechanical pulp plant and Recycled Fibre Plant. The constraints preventing the flow of these filtrates between these two sections of the newsprint circuit were removed.

The resultant model produced thirty two new connections, however only three of these new connections were responsible for the reduced the fresh water consumption. The fresh water consumption was reduced by 8.1% to 51.54 t/h in the optimised model.

The new connections were as follows:

- Cloudy filtrate from the thermo-mechanical pulp mill to the recycled fibre plant pulping process
- Clear filtrate from the thermo-mechanical pulp mill to the recycled fibre plant high density cleaning process
- Sealing water which currently goes to drain was directed to one of the deckers in the thermo-mechanical pulp mill for use as shower water.

These new connections are indicated in bold lines in Figure 6.2




Figure 6.2 Flow of water streams between sections of the newsprint circuit in the optimised model

The new connections made in the optimised model were evaluated by performing a sensitivity analysis on the model of the existing plant in order to determine the largest sensitivity coefficients for the flow constraints. The was done in the following way:

- $F_{current}$  = Flow rates of streams in representing current situation in the mill
- $F_{opt}$  = Flow rates generated by the optimised model
- $F_{diff}$  = Difference between current flow rate and optimised flow rate
- i) For each stream the current flow rate was subtracted from the flow rate generated by the optimised model.

$$F_{opt} - F_{current} = F_{diff}$$

- The flow rate representing the difference between the optimised flow and the current flow was multiplied with the sensitivity coefficient for the flow constraints.
- iii) The values obtained were ranked to give a priority for the new connections.

The top three new connections identified in this manner corresponded to the three streams which were responsible for fresh water savings in the optimised model.

# Chapter 7

# **Conclusions and Recommendations**

From this investigation of the application of water pinch analysis in an integrated pulp and paper mill, the following can be concluded:

- Scope for optimisation and water savings within individual sections of the mill was insignificant. There are a number of reasons for this namely:
  - Only utility water was considered in this analysis
  - There has been a considerable amount of effort already put into reducing water consumption at the mill over a number of years.
  - Water is already recycled and re-used within the process to some extent
- ii) By application of single contaminant analysis to a larger section of the mill it is possible to reduce the fresh water requirement by 51.54 t/h (8.1%).
- iii) The effluent generated is consequently reduced by the same amount, 51.54 t/h (5.4%).
- iv) These reductions translate into a savings of R1 548 593/annum. The savings was calculated by the objective function which included fresh water costs and effluent costs, but did not include engineering costs or piping costs. In addition, the objective function did not take geographical costs into account, the distance between the sections in the plant was not included in the analysis.
- v) There are operability constraints which prevent these savings from being achieved since they involve the transfer of water from two batch process which are not always in operation at the same time. The thermo-mechanical pulp plant is operated at full capacity during periods when the electricity charges are the lowest which is during the night. The recycled fibre plant is operated according the paper machines' demand for recycled fibre. As a result there are times when the thermo-mechanical plant is in operation and the recycled fibre plant is not in operation or vice versa. The transfer of water between these two sections of the plant is therefore not ideal. In the current plant situation a "take or pay" agreement is in place with a external supplier of water to the mill. The mill uses treated sewage water for all the process requirements and in terms of the agreement with the water supplier the mill pays for a minimum amount of water per day, whether this amount of water is used or not. Currently the mill consumption of water is slightly below the

"take or pay" minimum specification. There is thus currently no commercial incentive to introduce measures to reduce the amount of reclaimed sewage used in the process.

vi) Thirty two new connections were generated in the optimised model, however, only three of these were required to achieve the savings in fresh water consumption. These three streams were also identified using a novel approach to implementing water pinch analysis which involved the evaluation of sensitivity coefficients of the flow constraints in combination with the magnitude of the streams involved. The top three new connections identified in this manner corresponded to the three streams which were responsible for the fresh water savings in the optimised model generated by the water pinch analysis.

The following recommendations can be made:

- Operability issues need to be investigated further, since the use of fibre as the only contaminant does not address the potential build-up of other harmful substances, for example dissolved and colloidal substances.
- This study has not considered the use of treatment options to reduce the fibre content in the existing streams and thereby reduce the fresh water consumption further. Removal of fibre from streams will allow further re-use and recycling within the process and thus a further reduction in the amount of fresh water required.

Concluding remarks on water pinch analysis applied in the pulp and paper industry:

- A significant amount of the water used in the pulping and papermaking process is not utility water, but is integral to the process. The scope for identifying savings in utility water consumption is therefore limited.
- In an integrated pulp and paper mill the water streams are usually already counter current, i.e. water from the paper machines is used in the pulp mills and within the pulp mills and paper machines water is recirculated and reused to a large extent already. The potential for identifying savings in water consumption by re-routing water streams is therefore limited.
- Water pinch analysis does not account for the temperature of the water streams. Temperature is a significant factor in the pulping and papermaking process and needs to be accounted for in the water management on the site.
- Interactions between contaminants, other than fibre, as they build up is difficult to predict and the effect on the product, in this case paper, is also to a large extent unknown for a particular mill.

# References

- 1. Ashton G.J., Cripps H.R., Spriggs H.D. 1987 Application of "pinch" technology to the pulp and paper industry. *TAPPI Journal* August 1987
- Alva-Argaez A., Kokossis A.C., Smith R. 1998 Process Integration for Wastewater Treatment Systems. 1998 AIChE Annual Meeting. Miami Beach, Florida
- Auhorn W.J. 1999 Chemical additives for papermaking High performance at low levels of addition guarantees progress Wochenblatt fur Papierfabrikation 127 S.1551
- 4. Barnett D J 1996 Mill closure forces focus on fines retention, foam control Pulp and Paper 70(4)
- 5. Berard P 2000 Filling in the holes after closing the loop Pulp and Paper International
- 6. Bräuer P, Kappel J, Holler M, Munro S 1999a Anionic Trash in Mechanical Pulping Systems International Mechanical Pulping Conference 1999
- Bräuer P, Kappel J, Pöschl K 1999b High-brightness mechanical pulps reduction of carry-over to paper machines *International Mechanical Pulping Conference* 1999
- 8. Brecht W. 1933 Fresh Water Consumption of Paper Mills Papier-Fabricant 31: 149
- Brouckaert C. J. 2000 The Application of Pinch Analysis as a Strategic Tool in the Rational Management of Water and Effluent in an Industrial Complex Unpublished
- 10. Buehner F.W., Rossiter A.P. 1996 Minimize waste by process design. Chem. Tech, (April) 64-72
- 11. Calloway J., Cripps H.R., Retsina T. 1990 Pinch Technology in Practical Kraft Mill Optimization TAPPI Engineering Conference
- 12. Creighton J.W. 1997 The end of the end of the pipe Pulp and Paper 71(7)
- 13. Cripps H.R. 2000 Process Integration in the pulp and paper industry HRC Consultants Ltd.
- Cripps H.R., Retsina T., Reynders M.A. 1993 The Energy Concept of a Closed Mill AIChE Annual Meeting 1993, St Louis

- Cripps H.R., Cappel R., Retsina T., Melton A. 1996 Pinch Integration Achieves Minimum Energy Evaporation Capacity *TAPPI Engineering Conference* 1996
- Cripps H.R., Retsina T., Whitmire L. 1997 Unpinch Mill Stream Restrictions. CPPA Conference, January 1997
- 17. Department of Water Affairs and Forestry 2000 Water Conservation and Demand Management Strategy for the Forest Sector in South Africa
- 18. Department of Water Affairs and Forestry 2002 National Water Resource Strategy
- Dexter R J 1996 Industry's efforts at effluent closure must focus on competitive innovation *Pulp and Paper* 70(2)
- Dhole V.R., Ramchandani N., Tainsh R.A., Wasilewski M. 1996 Make your water pay for itself. Chemical Engineering (January) 100-103
- Doyle S.J., Smith R. 1997 Targeting Water Reuse with Multiple Contaminants. *Trans IChemE*, 75, Part B, 181-189
- 22. Edelmann K 1999 Closed water circulation and environmental issues in paper production International Conference on Process Integration 7-10 March Copenhagen Denmark
- 23. El-Halwagi M.M., Manousiouthakis V. 1990a Automatic synthesis of mass exchange networks with single component targets. *Chem Eng Sci.*, **9**: 2813-2831
- 24. El-Halwagi M.M., Manousiouthakis V. 1990b Simultaneous synthesis of mass exchange and regenerative networks. *AIChE Jl.*, **36**: 1209-1219
- 25. El-Halwagi M.M. 1992 Synthesis of reverse osmosis networks for waste reduction. *IChE Jl.*, **38**(8): 1185-1198
- 26. El-Halwagi M.M., El-Halwagi A.M., Manousiouthakis V. 1992 Optimal design of dephenolization networks for petroleum-refinery wastes. *Trans. IChemE* Part B, **70**: 131-139.
- El-Halwagi M.M. 1995 Introduction to Numerical Optimization Appraoches to Pollution Prevention In Rossiter A.P. (ed) Waste Minimisation Through Process Design McGraw-Hill New York 199-207
- El-Hawagi M.M., Hamad A.A. 1996 Synthesis of waste interception networks and allocation networks. *AIChE Jl.*, 42: 3087-3101

- 29. El-Hawagi M.M. 1997 Pollution Prevention through Process Integration. Systematic Design Tools Academic Press, San Diego.
- 30. Gianadda P 2002 The Development and Application of Combined Water and Materials Pinch Analysis to a Chlor-Alkali Plant. PhDEng Thesis, Pollution Research Group, School of Chemical Engineering, University of Natal, Durban, South Africa
- Grossman I.E., Caballero J.A., Yeomans H. 1999 Advances in Mathematical Programming for Automated Design, Integration and Operation of Chemical Processes Proceedings of the International Conference on Process Integration (PI'99), Copenhagen, Denmark 1 37-65
- 32. Gudlauski D G 1996 White water system closure means managing microbiological buildup *Pulp and Paper* **70**(3)
- Hallale N., Fraser D.M. 2000a Capital Cost Targets for Mass Exchange Networks Part 1: simple capital cost models. *Comput. Chem. Eng.* 23:1661-1679
- Hallale N., Fraser D.M. 2000b Capital Cost Targets for Mass Exchange Networks Part 2: detailed capital cost models. *Comput. Chem. Eng.* 23:1681-1699
- 35. Hynninen P. 1998 Environmental Control In Gullichsen J., Paulapuro H. (eds) Papermaking Science and Technology Book 19 Fapet Oy, Jyväskylä Finland
- Jodicke G., Fischer U., Hungerbuhler K. 2001 Wastewater Reuse: A new approach to screen for designs with minimal total costs. *Comput. Chem. Eng.* 25: 203-215
- 37. Karlsson M. 1999 Making Paper using less Water and Energy TAPPI Papermakers' Conference
- Kiperstock A., Sharratt P.N. 1995 On the optimisation of mass exchange networks for the removal of pollutants. *Trans IChemE.*, 73: 271-277
- 39. Koolen J.L.A., de Wispelaere G., Dauwe R. 1999 Optimisation of an integrated Chemical Complex and Evaluation of its Vulnerability. 2<sup>nd</sup> Conference on Process Integration, Modeling and Optimisation for Energy Saving and Pollution Reduction. Budapest, Hungary.
- 40. Koufos D., Retsina T. 2001 Practical energy and water management through pinch analysis for the pulp and paper industry. *Water Science and Technology* **43**(2):327-332
- 41. Kouris M. 1996 Dictionary of Paper 5th Edition TAPPI Press, Atlanta, Georgia

- 42. Kuo W.J., Smith R. 1998 Designing for the interactions between Water-use and Effluent Treatment. Trans IChemE, 76 Part A (March):287-301
- Lesan R. 1999 New water technology for a new millennium <u>In</u> ABC Annuals (eds.) New World Water Sterling Publications Limited London 47
- Linhoff B., Flower J.R. 1978 Synthesis of heat exchanger networks, Part 1: Systematic generation of energy optimal networks. Part 2: Evolutionary generation of networks with various criteria of optimality. *AIChE Jl.* 24(4): 633-654
- Linnhoff B., Mason D.R., Wardle I. 1979 Understanding heat exchanger networks. Comput. Chem. Eng. 3, 295-302
- Linhoff B., Hindmarsh E. 1983 The pinch design method of heat exchanger networks. *Chem Eng Sci*, 38(5): 745-763
- Linhoff B., Townsend D.W. 1983 Heat and power networks in process design. Part I: Criteria for the placement of heat engines and heat pumps in process networks. Part II: Design procedure for equipment selection and process matching. *AIChe Jl.* 29(5): 742-771
- Linnhoff B., Townsend D.W., Boland D., Hewitt G.F., Thomas B.E.A., Guy A.R., Marsland R.H.
   1994 User Guide on process integration for the efficient use of energy, IChemE. Rugby, UK
- 49. Linhoff-March 1999 Water Target. Linnhoff March Ltd.
- Linnhoff B., Akinradewo C.G. 1999 Linking Process Simulation and Process Integration. Comput. Chem. Eng.: S945-S953
- Lott L., Ervin F. 1997 Effective Water Treatment Plays Significant Role in Paper Quality Pulp and Paper 71(3)
- Meyer M., Koehret B., Enjalbert M. 1993 Data Reconciliation on Multicomponent Network Processes Comput. Chem. Eng. 17(8)" 807-817
- 53. Miner R., Unwin J. 1991 Progress in reducing water use and wastewater loads in the US paper industry *TAPPI Environmental Conference* 1991 San Antonio USA TAPPI Press 1991 503-1188
- Noel G. 1995 Pinch Technology Study at the Donohue Clermont Newsprint Mill. Pulp and Paper Canada 96(7):38-41

- Olesen S.G., Polley G.T. 1997 A simple methodology for the design of water networks handling single contaminants. *Trans IChemE.*, 75: 420-426
- Paulapuro H 2000 Papermaking Part 1, Stock Preparation and Wet End <u>In:</u> Gullichsen J, Paulapuro J (eds.) Papermaking Science and Technology Book 8 Fapet Oy, Jyväskylä Finland
- Rossiter A.P. 1994 Process integration and pollution prevention AIChE Symposium Series 90 (303) 12-22
- Rossiter A.P., Nath R. 1995 Wastewater Minimisation Using Nonlinear Programming, Chapter 17, In Rossiter A.P. (ed) Waste Minimisation Through Process Design. McGraw-Hill, New York
- Serageldin M.A. 1995 Standarsized Accounting for a Formal Environmental Auditing and Management System <u>In</u> Rossiter A.P.(ed) Waste Minimisation Through Process Design McGraw-Hill New York 289-303
- Smith R. 1999 State of the Art in Process Integration 2<sup>nd</sup> Conference on Process Integration, Modeling and Optimization for Energy Saving and Pollution Reduction, Budapest, Hungary
- 61. Smook G.A. 1997 *Handbook for Pulp and Paper Technologists* Second Edition Angus Wilde Publications Vancouver
- 62. Sundholm J 2000 Mechanical Pulping In: Gullichsen J, Paulapuro J (eds.) Papermaking Science and Technology Book 5 Fapet Oy, Jyväskylä Finland
- 63. Takama N., Kuriyama T., Shiroko K., Umeda T. 1980 Optimal water allocation in a petroleum refinery. *Comput. Chem Eng.*, **4**: 251-258
- 64. Tripathi P. 1996 Pinch Technology Reduces Wastewater Chemical Engineering (November) 87-90
- 65. UNEP 2002 Understanding Cleaner Production United Nations Environmental Programme. Accessed on 27 July 2003 at URL http://www.unepie.org/pc/cp/unerstanding\_cp/home.htm
- 66. Venter J S M 1986 Approaches and principles of water recirculation in papermaking Paper Southern Africa (September/October): 9-27
- 67. Wang Y.P., Smith R. 1994a Wastewater Minimisation. Chem Eng Sci., 49(7): 981-1006
- Wang Y.P., Smith R. 1994b Design of Distributed Effluent Treatment Systems. *Chem Engng Sci.*, 49(18): 3127-3145
- Wang Y.P., Smith R. 1995a Wastewater Minimisation with Flowrate Constraints. Trans IChemE, 73, Part A: 889-904

- Watters A. 2001 Water Conservation Study, Redesign Aims at Limiting Impact While Boosting Production *Pulp and Paper* 75(2)
- Webb : Environmental pressures and UK mill practices Proc Closing up Mill Water Systems Leatherhead UK Pira International November 1988
- Webb L 1992 Environmental Protection through sound water management in the pulp and paper industry – A Literature Review In: Webb L. (ed.) Pira International Surrey UK
- Webb L 1997 Papermaking's problem substances interfere with machine runnability *Pulp and Paper* 71(11):
- Westerberg A. W. 1987 Process synthesis: A morphological view. In Recent Developments in Chemical Process Design. 127-145, Wiley, New York.
- 75. Zhange X 2000 The effects of white water dissolved and colloidal fractions on paper properties and effects of various enzyme treatments on the removal of organic components *Pulp & Paper Canada* 101(3): 59-62
- 76. Zippel F. 2001 Water Management in Paper Mills Druckerei Theilacker GmbH Herbrechtingen-Bolheim

# Appendix A

# Newsprint Circuit Water Balance from Water Tracker

|                |                                                   | Flow IN | Flow OUT |
|----------------|---------------------------------------------------|---------|----------|
| Node Name      | Streams In/Out                                    | [t/h]   | [t/h]    |
| Chip washer    |                                                   |         |          |
|                | Chips -> chip washer                              | 48      |          |
|                | Hydrasieves -> chip washer                        | 376.15  |          |
|                | JNC- cloudy ww to chip washer -> chip washer      | 22.27   |          |
|                | Chip washer -> hydrasieves                        |         | 395.7    |
|                | Chip washer -> chip washer jnc                    |         | 50.72    |
| Hydrasieves    |                                                   |         |          |
|                | Chip washer -> hydrasieves                        | 395.7   |          |
|                | Hydrasieves -> chip washer                        |         | 376.15   |
|                | Hydrasieves -> Hydrasieve rejects                 |         | 19.55    |
| Line 1 Digeste | er                                                |         |          |
|                | Chip washer jnc -> Line 1 Digester                | 12.68   |          |
|                | Feed steam jnc -> Line 1 Digester                 | 2       |          |
|                | Sodium sulphite jnc -> Line 1 Digester            | 0.28    |          |
|                | Line 1 Digester -> rotary valve exhaust steam jnc |         | 0.08     |
|                | Line 1 Digester -> digester vent steam jnc        |         | 0.18     |
|                | Line 1 Digester -> Line 1 Prim Refiner            |         | 14.7     |
| Line 2 Digest  | er                                                |         |          |
|                | Chip washer jnc -> Line 2 Digester                | 12.68   |          |
|                | Feed steam jnc -> Line 2 Digester                 | 2       |          |
|                | Sodium sulphite jnc -> Line 2 Digester            | 0.28    |          |
|                | Line 2 Digester -> rotary valve exhaust steam jnc |         | 0.08     |
|                | Line 2 Digester -> digester vent steam jnc        |         | 0.18     |
|                | Line 2 Digester -> Line 2 Prim Refiner            |         | 14.7     |
| Line 1 Prima   | ry Refiner                                        |         |          |
|                | Line 1 Digester -> Line 1 Prim Refiner            | 14.7    |          |
|                | TMP1 cloudy ww2 -> Line 1 Prim Refiner            | 0.01    |          |
|                | Line 1 Prim Refiner -> Line 1 Sec Refiner         |         | 12.76    |

| Table A.1 Newsprint Circuit water balance flowrates from Water | Tracker |
|----------------------------------------------------------------|---------|
|----------------------------------------------------------------|---------|

|               |                                                     | Flow IN | Flow OUT |
|---------------|-----------------------------------------------------|---------|----------|
| Node Name     | Streams In/Out                                      | [t/h]   | [t/h]    |
|               | Line 1 Prim Refiner -> prim ref back flow steam jnc |         | 1.95     |
| Line 2 Primar | y Refiner                                           |         |          |
|               | Line 2 Digester -> Line 2 Prim Refiner              | 14.7    |          |
|               | TMP1 cloudy ww2 -> Line 2 Prim Refiner              | 0.01    |          |
|               | Line 2 Prim Refiner -> Line 2 Sec Refiner           |         | 12.76    |
|               | Line 2 Prim Refiner -> prim ref back flow steam jnc |         | 1.95     |
| Line 1 Second | lary Refiner                                        |         |          |
|               | Line 1 Prim Refiner -> Line 1 Sec Refiner           | 12.76   |          |
|               | TMP1 cloudy ww2 -> Line 1 Sec Refiner               | 126.35  |          |
|               | Line 1 Sec Refiner -> sec refiner jnc               |         | 129.64   |
|               | Line 1 Sec Refiner -> sec refiner exhaust steam jnc |         | 7.03     |
|               | Line 1 Sec Refiner -> sec refiner losses jnc        |         | 2.44     |
| Line 2 Second | lary Refiner                                        |         |          |
|               | Line 2 Prim Refiner -> Line 2 Sec Refiner           | 12.76   |          |
|               | TMP1 cloudy ww2 -> Line 2 Sec Refiner               | 126.35  |          |
|               | Line 2 Sec Refiner -> sec refiner jnc               |         | 129.64   |
|               | Line 2 Sec Refiner -> sec refiner exhaust steam jnc |         | 7.03     |
|               | Line 2 Sec Refiner -> sec refiner losses jnc        |         | 2.44     |
| TMP1 Latence  | y & screens                                         |         |          |
|               | Secondary refiner jnc -> TMP1 Latency & screens     | 259.28  |          |
|               | TMP1 cloudy ww1 -> TMP1 Latency & screens           | 398.65  |          |
|               | TMP1 Latency & screens -> JNC-TMP1 latency to       |         |          |
|               | deckers                                             |         | 594      |
|               | TMP1 Latency & screens -> JNC-latency steam         |         | 5        |
|               | TMP1 Latency & screens -> JNC-latency to rej sys    |         | 58.93    |
| Line 1 Decker | r                                                   |         |          |
|               | JNC-TMP1 latency to deckers -> Line 1 Decker        | 297     |          |
|               | JNC-Reject system -> Line 1 Decker                  | 93.85   |          |
|               | JNC-TMP1 clear ww to deckers -> Line 1 Decker       | 120     |          |
|               | JNC-Hydros -> Line 1 Decker                         | 0.11    |          |
|               | Line 1 Decker -> JNC-TMP1 pulp to storage           |         | 117.3    |
|               | Line 1 Decker -> JNC-TMP1 cloudy                    |         | 320.66   |
|               | Line 1 Decker -> JNC-TMP1 clear                     |         | 73       |
| Reject System |                                                     |         | <u> </u> |
|               | GWD rejects -> Reject System                        | 26.7    |          |

.

|                |                                                        | Flow IN | Flow OUT |
|----------------|--------------------------------------------------------|---------|----------|
| Node Name      | Streams In/Out                                         | [t/h]   | [t/h]    |
|                | Cloudy ww2 -> Reject System                            | 277.2   |          |
|                | JNC-latency to rej sys -> Reject System                | 117.86  |          |
|                | Reject System -> Rejects from pressure screen          |         | 46.36    |
|                | Reject System -> JNC-Rej sys                           |         | 375.4    |
| Cooling        |                                                        |         |          |
|                | Fresh water jnc -> Cooling                             | 20      |          |
| _              | Cooling tower -> [Blowdown]                            | 540     |          |
|                | [Make-up] -> cooling tower                             |         | 540.54   |
|                | Cooling -> PM ww jnc                                   |         | 19.46    |
| Fresh water jn | c                                                      |         |          |
|                | Fresh water -> fresh water jnc                         | 747.18  | +        |
|                | Fresh water jnc -> Cooling                             |         | 20       |
|                | Fresh water jnc -> JNC-tempered to clear ww            |         | 40       |
|                | Fresh water jnc -> Sealing water                       |         | 19       |
|                | Fresh water jnc -> RFP Temp jnc                        |         | 0        |
|                | Fresh water jnc -> fresh water to PMs jnc              |         | 668.18   |
| Chip washer ji | nc                                                     |         |          |
|                | Chip washer -> chip washer jnc                         | 50.72   |          |
|                | Chip washer jnc -> Line 1 Digester                     |         | 12.68    |
|                | Chip washer jnc -> Line 2 Digester                     |         | 12.68    |
|                | Chip washer jnc -> Line 3 Digester                     |         | 12.68    |
|                | Chip washer jnc -> Line 4 Digester                     |         | 12.68    |
| Rotary valve e | xhaust steam jnc                                       |         |          |
|                | Line 1 Digester -> rotary valve exhaust steam jnc      | 0.08    |          |
|                | Line 2 Digester -> rotary valve exhaust steam jnc      | 0.08    |          |
|                | Line 3 Digester -> rotary valve exhaust steam jnc      | 0.08    |          |
|                | Line 4 Digester -> rotary valve exhaust steam jnc      | 0.08    |          |
|                | Rotary valve exhaust steam jnc -> Rotary valve exhaust | _       |          |
|                | steam                                                  |         | 0.32     |
| Digester vent  | steam jnc                                              |         |          |
|                | Line 1 Digester -> digester vent steam jnc             | 0.18    |          |
|                | Line 2 Digester -> digester vent steam jnc             | 0.18    |          |
|                | Line 3 Digester -> digester vent steam jnc             | 0.18    |          |
|                | Line 4 Digester -> digester vent steam jnc             | 0.18    |          |
|                | Digester vent steam jnc -> Digester vent steam         |         | 0.72     |

|               |                                                     | Flow IN | Flow OUT |
|---------------|-----------------------------------------------------|---------|----------|
| Node Name     | Streams In/Out                                      | [t/h]   | [t/h]    |
| Feed steam jn | c                                                   |         |          |
|               | Steam -> feed steam jnc                             | 15.5    |          |
|               | Feed steam jnc -> Line 1 Digester                   |         | 2        |
|               | Feed steam jnc -> Line 2 Digester                   |         | 2        |
|               | Feed steam jnc -> Line 3 Digester                   |         | 2        |
|               | Feed steam jnc -> Line 4 Digester                   |         | 2        |
|               | Feed steam jnc -> RFP disperser                     |         | 7.5      |
| Sodium sulph  | ite jnc                                             |         |          |
|               | Sodium sulphite -> sodium sulphite jnc              | 1.12    |          |
|               | Sodium sulphite jnc -> Line 1 Digester              |         | 0.28     |
|               | Sodium sulphite inc -> Line 2 Digester              |         | 0.28     |
|               | Sodium sulphite jnc -> Line 4 Digester              |         | 0.28     |
|               | Sodium sulphite jnc -> Line 3 Digester              |         | 0.28     |
| Secondary re  |                                                     |         |          |
|               | Line 1 Sec Refiner -> sec refiner jnc               | 129.64  |          |
|               | Line 2 Sec Refiner -> sec refiner jnc               | 129.64  |          |
|               | Secondary refiner jnc -> TMP1 Latency & screens     |         | 259.28   |
| Primary ref b | ack flow steam jnc                                  |         |          |
|               | Line 2 Prim Refiner -> prim ref back flow steam jnc | 1.95    |          |
|               | Line 1 Prim Refiner -> prim ref back flow steam jnc | 1.95    |          |
|               | Line 3 Prim Refiner -> prim ref back flow steam jnc | 1.95    |          |
|               | Line 4 Prim Refiner -> prim ref back flow steam jnc | 1.95    |          |
|               | Primary ref back flow steam jnc -> back flow steam  |         | 7.8      |
| Secondary re  | finer exhaust steam jnc                             |         |          |
|               | Line 1 Sec Refiner -> sec refiner exhaust steam jnc | 7.03    |          |
|               | Line 2 Sec Refiner -> sec refiner exhaust steam jnc | 7.03    |          |
|               | Line 3 Sec Refiner -> sec refiner exhaust steam jnc | 7.03    |          |
|               | Line 4 Sec Refiner -> sec refiner exhaust steam jnc | 7.03    |          |
|               | Secondary refiner exhaust steam jnc -> Cyclone and  |         |          |
|               | feader exhaust steam                                |         | 28.12    |
| TMP1 cloud    | y ww2                                               |         |          |
|               | TMP1 cloudy ww1 -> TMP1 cloudy ww2                  | 252.72  |          |
|               | TMP1 cloudy ww2 -> Line 1 Sec Refiner               |         | 126.35   |
|               | TMP1 cloudy ww2 -> Line 1 Prim Refiner              |         | 0.01     |
|               | TMP1 cloudy ww2 -> Line 2 Prim Refiner              |         | 0.01     |

|                |                                                     | Flow IN | Flow OU |
|----------------|-----------------------------------------------------|---------|---------|
| Node Name      | Streams In/Out                                      | [t/h]   | [t/h]   |
|                | TMP1 cloudy ww2 -> Line 2 Sec Refiner               |         | 126.35  |
| Secondary refi | iner losses jnc                                     |         |         |
|                | Line 1 Sec Refiner -> sec refiner losses jnc        | 2.44    |         |
|                | Line 2 Sec Refiner -> sec refiner losses jnc        | 2.44    |         |
|                | Line 3 Sec Refiner -> sec refiner losses jnc        | 2.44    |         |
|                | Line 4 Sec Refiner -> sec refiner losses jnc        | 2.44    |         |
|                | Secondary refiner losses jnc -> Losses              |         | 9.76    |
| Line 3 Digeste | er                                                  |         |         |
|                | Sodium sulphite jnc -> Line 3 Digester              | 0.28    |         |
|                | Feed steam jnc -> Line 3 Digester                   | 2       |         |
|                | Chip washer jnc -> Line 3 Digester                  | 12.68   |         |
|                | Line 3 Digester -> Line 3 Prim Refiner              |         | 14.7    |
|                | Line 3 Digester -> rotary valve exhaust steam jnc   |         | 0.08    |
|                | Line 3 Digester -> digester vent steam jnc          |         | 0.18    |
| Line 4 Digeste | r                                                   |         |         |
|                | Sodium sulphite jnc -> Line 4 Digester              | 0.28    |         |
|                | Feed steam jnc -> Line 4 Digester                   | 2       |         |
|                | Chip washer jnc -> Line 4 Digester                  | 12.68   |         |
|                | Line 4 Digester -> Line 4 Prim Refiner              |         | 14.7    |
|                | Line 4 Digester -> rotary valve exhaust steam jnc   |         | 0.08    |
|                | Line 4 Digester -> digester vent steam jnc          |         | 0.18    |
| Line 3 Primar  | y Refiner                                           |         |         |
|                | Line 3 Digester -> Line 3 Prim Refiner              | 14.7    |         |
|                | TMP2 cloudy ww2 -> Line 3 Prim Refiner              | 0.01    |         |
|                | Line 3 Prim Refiner -> Line 3 Sec Refiner           |         | 12.76   |
|                | Line 3 Prim Refiner -> prim ref back flow steam jnc |         | 1.95    |
| Line 4 Primar  | y Refiner                                           |         |         |
|                | Line 4 Digester -> Line 4 Prim Refiner              | 14.7    |         |
|                | TMP2 cloudy ww2 -> Line 4 Prim Refiner              | 0.01    |         |
|                | Line 4 Prim Refiner -> Line 4 Sec Refiner           |         | 12.76   |
|                | Line 4 Prim Refiner -> prim ref back flow steam jnc |         | 1.95    |
| Line 3 Second  | lary Refiner                                        |         |         |
|                | Line 3 Prim Refiner -> Line 3 Sec Refiner           | 12.76   |         |
|                | TMP2 cloudy ww2 -> Line 3 Sec Refiner               | 126.35  |         |
|                | Line 3 Sec Refiner -> JNC-TMP2 sec ref to latency   |         | 129.64  |

|               |                                                     | Flow IN | Flow OUT |
|---------------|-----------------------------------------------------|---------|----------|
| Node Name     | Streams In/Out                                      | [t/h]   | [t/h]    |
|               | Line 3 Sec Refiner -> sec refiner exhaust steam jnc |         | 7.03     |
|               | Line 3 Sec Refiner -> sec refiner losses jnc        |         | 2.44     |
| Line 4 Second | lary Refiner                                        |         |          |
|               | Line 4 Prim Refiner -> Line 4 Sec Refiner           | 12.76   |          |
|               | TMP2 cloudy ww2 -> Line 4 Sec Refiner               | 126.35  |          |
|               | Line 4 Sec Refiner -> JNC-TMP2 sec ref to latency   |         | 129.64   |
|               | Line 4 Sec Refiner -> sec refiner exhaust steam jnc |         | 7.03     |
|               | Line 4 Sec Refiner -> sec refiner losses jnc        |         | 2.44     |
| Line 3 Decker | r                                                   |         |          |
|               | JNC-TMP2 latency to deckers -> Line 3 Decker        | 297     |          |
|               | JNC-Rej sys -> Line 3 Decker                        | 93.85   |          |
|               | JNC-TMP2 clear ww1 -> Line 3 Decker                 | 120     |          |
|               | JNC-Hydros -> Line 3 Decker                         | 0.11    |          |
|               | Line 3 Decker -> JNC-TMP2 pulp to storage           |         | 117.3    |
|               | Line 3 Decker -> JNC-TMP2 cloudy ww3                |         | 320.66   |
|               | Line 3 Decker -> JNC-TMP2 clear ww2                 |         | 73       |
| Line 4 Decke  | r                                                   |         |          |
|               | JNC-TMP2 latency to deckers -> Line 4 Decker        | 297     |          |
|               | JNC-Rej sys -> Line 4 Decker                        | 93.85   |          |
|               | JNC-TMP2 clear ww1 -> Line 4 Decker                 | 120     |          |
|               | JNC-Hydros -> Line 4 Decker                         | 0.11    |          |
|               | Line 4 Decker -> JNC-TMP2 pulp to storage           |         | 117.3    |
|               | Line 4 Decker -> JNC-TMP2 cloudy ww3                |         | 320.66   |
|               | Line 4 Decker -> JNC-TMP2 clear ww2                 |         | 73       |
| INC-pulp to s | storage                                             |         |          |
|               | JNC-TMP2 pulp to storage -> JNC-pulp to storage     | 234.6   |          |
|               | JNC-TMP1 pulp to storage -> JNC-pulp to storage     | 234.6   |          |
|               | JNC-pulp to storage -> pulp jnc                     |         | 469.2    |
| INC-TMP2 p    | ulp to storage                                      |         |          |
|               | Line 4 Decker -> JNC-TMP2 pulp to storage           | 117.3   |          |
|               | Line 3 Decker -> JNC-TMP2 pulp to storage           | 117.3   |          |
|               | JNC-TMP2 pulp to storage -> JNC-pulp to storage     |         | 234.6    |
| JNC-TMP2 la   | atency to deckers                                   |         | <u> </u> |
|               | TMP2 Latency & screens -> JNC-TMP2 latency to       |         | <b>-</b> |
|               | deckers                                             | 594     |          |

|               |                                                     | Flow IN | Flow OUT |
|---------------|-----------------------------------------------------|---------|----------|
| Node Name     | Streams In/Out                                      | [t/h]   | [t/h]    |
|               | JNC-TMP2 latency to deckers -> Line 3 Decker        |         | 297      |
|               | JNC-TMP2 latency to deckers -> Line 4 Decker        |         | 297      |
| INC-TMP2 se   | c ref to latency                                    |         |          |
|               | Line 3 Sec Refiner -> JNC-TMP2 sec ref to latency   | 129.64  |          |
|               | Line 4 Sec Refiner -> JNC-TMP2 sec ref to latency   | 129.64  |          |
|               | JNC-TMP2 sec ref to latency -> TMP2 Latency &       |         |          |
|               | screens                                             |         | 259.28   |
| PM ww to pul  | p mill jnc                                          |         |          |
|               | PM ww jnc -> PM ww to pulp mill jnc                 | 753.54  |          |
|               | PM ww to pulp mill jnc -> PM ww to RFP jnc          |         | 295.47   |
|               | PM ww to pulp mill jnc -> JNC-TMP1 clear ww chest   |         | 236      |
|               | PM ww to pulp mill jnc -> JNC-TMP2 clear ww chest   |         | 222.07   |
| Line 2 Decker |                                                     |         |          |
|               | JNC-TMP1 latency to deckers -> Line 2 Decker        | 297     |          |
|               | JNC-Reject system -> Line 2 Decker                  | 93.85   |          |
|               | JNC-TMP1 clear ww to deckers -> Line 2 Decker       | 120     |          |
|               | JNC-Hydros -> Line 2 Decker                         | 0.11    |          |
|               | Line 2 Decker -> JNC-TMP1 pulp to storage           |         | 117.3    |
|               | Line 2 Decker -> JNC-TMP1 clear                     |         | 73       |
|               | Line 2 Decker -> JNC-TMP1 cloudy                    |         | 320.66   |
| INC-TMP1 pu   | lp to storage                                       |         |          |
|               | Line 1 Decker -> JNC-TMP1 pulp to storage           | 117.3   |          |
|               | Line 2 Decker -> JNC-TMP1 pulp to storage           | 117.3   | <u> </u> |
|               | JNC-TMP1 pulp to storage -> JNC-pulp to storage     |         | 234.6    |
| INC-Rej sys   |                                                     |         |          |
|               | Reject System -> JNC-Rej sys                        | 375.4   |          |
|               | JNC-Rej sys -> JNC-Reject system                    |         | 187.7    |
| - ·           | JNC-Rej sys -> Line 3 Decker                        |         | 93.85    |
|               | JNC-Rej sys -> Line 4 Decker                        |         | 93.85    |
| JNC-tempered  | to clear ww                                         |         |          |
|               | Fresh water jnc -> JNC-tempered to clear ww         | 40      |          |
|               | JNC-tempered to clear ww -> JNC-TMP1 clear ww chest |         | 20       |
|               | JNC-tempered to clear ww -> JNC-TMP2 clear ww chest |         | 20       |
| JNC-TMP1 la   | tency to deckers                                    |         |          |
|               | TMP1 Latency & screens -> JNC-TMP1 latency to       | 594     |          |

|               |                                                 | Flow IN | Flow OU |
|---------------|-------------------------------------------------|---------|---------|
| Node Name     | Streams In/Out                                  | [t/h]   | [t/h]   |
|               | deckers                                         |         |         |
|               | JNC-TMP1 latency to deckers -> Line 1 Decker    |         | 297     |
|               | JNC-TMP1 latency to deckers -> Line 2 Decker    |         | 297     |
| JNC-Reject sy | /stem                                           |         |         |
|               | JNC-Rej sys -> JNC-Reject system                | 187.7   |         |
|               | JNC-Reject system -> Line 1 Decker              |         | 93.85   |
|               | JNC-Reject system -> Line 2 Decker              |         | 93.85   |
| JNC-TMP1 c    | _                                               |         |         |
|               | Line 1 Decker -> JNC-TMP1 cloudy                | 320.66  |         |
|               | Line 2 Decker -> JNC-TMP1 cloudy                | 320.66  |         |
|               | JNC-TMP1 cloudy -> JNC-TMP1 cloudy ww chest     |         | 641.32  |
| JNC-TMP1 c    | lear                                            |         |         |
|               | Line 1 Decker -> JNC-TMP1 clear                 | 73      |         |
|               | Line 2 Decker -> JNC-TMP1 clear                 | 73      |         |
|               | JNC-TMP1 clear -> JNC-TMP1 clear ww chest       |         | 146     |
| JNC-TMP1 c    | lear ww to deckers                              |         |         |
|               | JNC-TMP1 clear ww chest -> JNC-TMP1 clear ww to |         |         |
|               | deckers                                         | 406.75  |         |
|               | JNC-TMP1 clear ww to deckers -> Line 1 Decker   |         | 120     |
|               | JNC-TMP1 clear ww to deckers -> Line 2 Decker   |         | 120     |
|               | JNC-TMP1 clear ww to deckers -> JNC-TMP1 cloudy |         |         |
|               | ww chest                                        |         | 166.75  |
| JNC-TMP2 c    | loudy ww3                                       |         |         |
|               | Line 3 Decker -> JNC-TMP2 cloudy ww3            | 320.66  |         |
|               | Line 4 Decker -> JNC-TMP2 cloudy ww3            | 320.66  |         |
|               | JNC-TMP2 cloudy ww3 -> JNC-TMP2 cloudy ww chest |         | 641.32  |
| JNC-TMP2 c    | lear ww2                                        |         |         |
|               | Line 4 Decker -> JNC-TMP2 clear ww2             | 73      |         |
|               | Line 3 Decker -> JNC-TMP2 clear ww2             | 73      |         |
|               | JNC-TMP2 clear ww2 -> JNC-TMP2 clear ww chest   |         | 146     |
| JNC-TMP2 c    | lear ww1                                        |         |         |
|               | JNC-TMP2 clear ww chest -> JNC-TMP2 clear ww1   | 392.82  |         |
|               | JNC-TMP2 clear ww1 -> Line 3 Decker             |         | 120     |
|               | JNC-TMP2 clear ww1 -> Line 4 Decker             |         | 120     |
|               | JNC-TMP2 clear ww1 -> JNC-TMP2 cloudy ww chest  |         | 152.82  |

|              |                                                                                 | Flow IN | Flow OUT |
|--------------|---------------------------------------------------------------------------------|---------|----------|
| Node Name    | Streams In/Out                                                                  | [t/h]   | [t/h]    |
| Cloudy ww2   |                                                                                 |         |          |
|              | TMP1 cloudy ww1 -> cloudy ww2                                                   | 138.6   |          |
|              | TMP2 cloudy ww1 -> cloudy ww2                                                   | 138.6   |          |
|              | Cloudy ww2 -> Reject System                                                     |         | 277.2    |
| TMP2 cloudy  | ww2                                                                             |         |          |
|              | TMP2 cloudy ww1 -> TMP2 cloudy ww2                                              | 252.72  |          |
|              | TMP2 cloudy ww2 -> Line 4 Prim Refiner                                          |         | 0.01     |
|              | TMP2 cloudy ww2 -> Line 4 Sec Refiner                                           |         | 126.35   |
|              | TMP2 cloudy ww2 -> Line 3 Sec Refiner                                           |         | 126.35   |
|              | TMP2 cloudy ww2 -> Line 3 Prim Refiner                                          |         | 0.01     |
| TMP2 cloudy  | wwl                                                                             |         |          |
|              | JNC-TMP2 cloudy ww chest -> TMP2 cloudy ww1                                     | 794.14  |          |
|              | TMP2 cloudy ww1 -> TMP2 cloudy ww2                                              |         | 252.72   |
|              | TMP2 cloudy ww1 -> TMP2 Latency & screens                                       |         | 398.65   |
|              | TMP2 cloudy ww1 -> cloudy ww1                                                   |         | 4.17     |
|              | TMP2 cloudy ww1 -> cloudy ww2                                                   |         | 138.6    |
| TMP2 Latence | zy & screens                                                                    |         |          |
|              | JNC-TMP2 sec ref to latency -> TMP2 Latency &                                   |         |          |
|              | screens                                                                         | 259.28  |          |
|              | TMP2 cloudy ww1 -> TMP2 Latency & screens                                       | 398.65  |          |
|              | TMP2 Latency & screens -> JNC-TMP2 latency to                                   |         |          |
|              | deckers                                                                         |         | 594      |
|              | TMP2 Latency & screens -> JNC-latency steam                                     |         | 5        |
|              | TMP2 Latency & screens -> JNC-latency to rej sys                                |         | 58.93    |
| JNC-latency  | steam                                                                           |         |          |
|              | TMP1 Latency & screens -> JNC-latency steam                                     | 5       |          |
|              | TMP2 Latency & screens -> JNC-latency steam                                     | 5       |          |
|              | JNC-latency steam -> Latency steam                                              |         | 10       |
| TMP1 cloudy  | / wwl                                                                           |         |          |
|              | JNC-TMP1 cloudy ww chest -> TMP1 cloudy ww1                                     | 808.07  |          |
|              | TMP1 cloudy ww1 -> TMP1 cloudy ww2                                              |         | 252.72   |
|              |                                                                                 |         | 398.65   |
|              | TMP1 cloudy ww1 -> TMP1 Latency & screens                                       |         |          |
|              | TMP1 cloudy ww1 -> TMP1 Latency & screens         TMP1 cloudy ww1 -> cloudy ww2 |         | 138.6    |

|               |                                                    | Flow IN | Flow OUT |
|---------------|----------------------------------------------------|---------|----------|
| Node Name     | Streams In/Out                                     | [t/h]   | [t/h]    |
|               | TMP1 cloudy ww1 -> cloudy ww1                      | 18.1    |          |
|               | TMP2 cloudy ww1 -> cloudy ww1                      | 4.17    |          |
|               | JNC- cloudy ww to chip washer -> chip washer       |         | 22.27    |
| JNC-latency t | o rej sys                                          |         |          |
|               | TMP1 Latency & screens -> JNC-latency to rej sys   | 58.93   |          |
|               | TMP2 Latency & screens -> JNC-latency to rej sys   | 58.93   |          |
|               | JNC-latency to rej sys -> Reject System            |         | 117.86   |
| JNC-Hydros    |                                                    |         |          |
|               | Hydros -> JNC-Hydros                               | 0.44    |          |
|               | JNC-Hydros -> Line 1 Decker                        |         | 0.11     |
|               | JNC-Hydros -> Line 2 Decker                        |         | 0.11     |
|               | JNC-Hydros -> Line 4 Decker                        |         | 0.11     |
|               | JNC-Hydros -> Line 3 Decker                        |         | 0.11     |
| Sealing water |                                                    |         | -        |
|               | Fresh water jnc -> Sealing water                   | 19      |          |
|               | Sealing water -> JNC-sealing water to clear ww     |         | 9.5      |
|               | Sealing water -> sealing water to drain            |         | 9.5      |
| JNC-sealing v | vater to clear ww                                  |         |          |
|               | Sealing water -> JNC-sealing water to clear ww     | 9.5     |          |
|               | JNC-sealing water to clear ww -> JNC-TMP1 clear ww |         |          |
|               | chest                                              |         | 4.75     |
|               | JNC-sealing water to clear ww -> JNC-TMP2 clear ww |         |          |
|               | chest                                              |         | 4.75     |
| Cooling tower | r                                                  |         |          |
|               | [Make-up] -> cooling tower                         | 540.54  |          |
|               | Cooling tower -> [Losses]                          |         | 0.54     |
|               | Cooling tower -> [Evapor.]                         |         | 0        |
|               | Cooling tower -> [Blowdown]                        |         | 540      |
| RFP Pulping   |                                                    |         |          |
|               | RFP waste paper -> RFP Pulping                     | 9.64    |          |
|               | RFP cloudy filtrate jnc2 -> RFP Pulping            | 288     |          |
|               | RFP Pulping -> RFP-HD cleaning                     |         | 160.7    |
|               | RFP Pulping -> RFP rej jnc1                        |         | 136.94   |
| RFP-HD clear  | ning                                               |         |          |
|               | RFP Pulping -> RFP-HD cleaning                     | 160.7   |          |

|                |                                                | Flow IN | Flow OUT |
|----------------|------------------------------------------------|---------|----------|
| Node Name      | Streams In/Out                                 | [t/h]   | [t/h]    |
|                | RFP cloudy filtrate jnc2 -> RFP-HD cleaning    | 87      |          |
|                | RFP-HD cleaning -> RFP coarse screens          |         | 238.4    |
|                | RFP-HD cleaning -> RFP rej jnc1                |         | 9.3      |
| RFP coarse sc  | reens                                          |         |          |
|                | RFP-HD cleaning -> RFP coarse screens          | 238.4   |          |
|                | RFP cloudy filtrate jnc2 -> RFP coarse screens | 3.7     |          |
|                | RFP coarse screens -> RFP flotation            |         | 239.2    |
|                | RFP coarse screens -> RFP rej jnc1             |         | 2.9      |
| RFP flotation  |                                                |         |          |
|                | RFP coarse screens -> RFP flotation            | 239.2   |          |
|                | RFP cloudy filtrate jnc2 -> RFP flotation      | 251.7   |          |
|                | RFP flotation chemicals -> RFP flotation       | 52.21   |          |
|                | RFP flotation -> RFP gyro cleaners             |         | 512.26   |
|                | RFP flotation -> RFP rejects jnc2              |         | 30.85    |
| RFP gyro clea  | ners                                           |         |          |
|                | RFP flotation -> RFP gyro cleaners             | 512.26  |          |
|                | RFP clear ww jnc -> RFP gyro cleaners          | 96.72   |          |
|                | RFP gyro cleaners -> RFP centri cleaners       |         | 603.58   |
|                | RFP gyro cleaners -> RFP rejects jnc2          |         | 5.4      |
| RFP centri cle | aners                                          |         |          |
|                | RFP gyro cleaners -> RFP centri cleaners       | 603.58  |          |
|                | RFP clear ww jnc -> RFP centri cleaners        | 224.35  |          |
|                | RFP centri cleaners -> RFP fine screens        |         | 820      |
|                | RFP centri cleaners -> RFP rejects jnc2        |         | 7.93     |
| RFP fine scree | ens                                            |         |          |
|                | RFP centri cleaners -> RFP fine screens        | 820     |          |
|                | RFP clear ww jnc -> RFP fine screens           | 50.7    |          |
|                | RFP cloudy ww jnc -> RFP fine screens          | 0       |          |
|                | RFP fine screens -> RFP disc filter            |         | 852.8    |
|                | RFP fine screens -> RFP rejects jnc2           |         | 17.9     |
| RFP disc filte | r                                              |         |          |
|                | RFP fine screens -> RFP disc filter            | 852.8   |          |
|                | RFP Temp jnc -> RFP disc filter                | 0       |          |
|                | RFP clear ww jnc -> RFP disc filter            | 103.7   |          |
|                | RFP disc filter -> RFP wire pulp press         |         | 124.4    |

|                |                                          | Flow IN | Flow OUT |
|----------------|------------------------------------------|---------|----------|
| Node Name      | Streams In/Out                           | [t/h]   | [t/h]    |
|                | RFP disc filter -> RFP clear ww jnc      |         | 582.4    |
|                | RFP disc filter -> RFP cloudy ww jnc     |         | 249.7    |
| RFP wire pulp  | o press                                  |         |          |
|                | RFP disc filter -> RFP wire pulp press   | 124.4   |          |
|                | PM ww to RFP jnc -> RFP wire pulp press  | 43.2    |          |
|                | RFP wire pulp press -> RFP disperser     |         | 20.5     |
|                | RFP wire pulp press -> RFP cloudy ww jnc |         | 147.1    |
| RFP disperser  |                                          |         |          |
|                | RFP wire pulp press -> RFP disperser     | 20.5    |          |
|                | PM ww to RFP jnc -> RFP disperser        | 125.6   |          |
|                | feed steam jnc -> RFP disperser          | 7.5     |          |
|                | RFP disperser -> pulp jnc                |         | 153.6    |
| Pulp jnc       | <u></u>                                  |         |          |
|                | RFP disperser -> pulp jnc                | 153.6   |          |
|                | JNC-pulp to storage -> pulp jnc          | 469.2   |          |
|                | Pulp jnc -> PM5 Blend chest              |         | 311.4    |
|                | Pulp jnc -> PM4 Blend chest              |         | 311.4    |
| RFP rej jnc3   |                                          |         |          |
|                | RFP rejects jnc2 -> RFP rej jnc3         | 62.08   |          |
|                | RFP rej jnc1 -> RFP rej jnc3             | 149.14  |          |
|                | RFP rej jnc3 -> RPF rejects              |         | 211.22   |
| RFP rejects jn | lic2                                     |         |          |
|                | RFP fine screens -> RFP rejects jnc2     | 17.9    |          |
|                | RFP centri cleaners -> RFP rejects jnc2  | 7.93    |          |
|                | RFP flotation -> RFP rejects jnc2        | 30.85   |          |
|                | RFP gyro cleaners -> RFP rejects jnc2    | 5.4     |          |
|                | RFP rejects jnc2 -> RFP rej jnc3         |         | 62.08    |
| RFP clear ww   | jnc                                      |         |          |
|                | RFP Temp jnc -> RFP clear ww jnc         | 0       | <u> </u> |
|                | RFP disc filter -> RFP clear ww jnc      | 582.4   | <u> </u> |
|                | RFP clear ww jnc -> RFP fine screens     |         | 50.7     |
|                | RFP clear ww jnc -> RFP centri cleaners  |         | 224.35   |
|                | RFP clear ww jnc -> RFP gyro cleaners    |         | 96.72    |
|                | RFP clear ww jnc -> RFP disc filter      |         | 103.7    |
|                | RFP clear ww jnc -> RFP cloudy ww jnc    |         | 106.93   |

|                |                                                | Flow IN | Flow OUT |
|----------------|------------------------------------------------|---------|----------|
| Node Name      | Streams In/Out                                 | [t/h]   | [t/h]    |
| RFP cloudy w   | /w jnc                                         |         |          |
|                | PM ww to RFP jnc -> RFP cloudy ww jnc          | 126.67  |          |
|                | RFP disc filter -> RFP cloudy ww jnc           | 249.7   |          |
|                | RFP wire pulp press -> RFP cloudy ww jnc       | 147.1   |          |
|                | RFP clear ww jnc -> RFP cloudy ww jnc          | 106.93  |          |
|                | RFP cloudy ww jnc -> RFP fine screens          |         | 0        |
|                | RFP cloudy ww jnc -> RFP cloudy filtrate jnc2  |         | 630.4    |
| RFP Temp jno   |                                                |         |          |
|                | Fresh water jnc -> RFP Temp jnc                | 0       |          |
|                | RFP Temp jnc -> RFP clear ww jnc               |         | 0        |
|                | RFP Temp jnc -> RFP disc filter                |         | 0        |
| PM ww to RF    | P jnc                                          |         |          |
|                | PM ww to pulp mill jnc -> PM ww to RFP jnc     | 295.47  |          |
|                | PM ww to RFP jnc -> RFP cloudy ww jnc          |         | 126.67   |
|                | PM ww to RFP jnc -> RFP wire pulp press        |         | 43.2     |
|                | PM ww to RFP jnc -> RFP disperser              |         | 125.6    |
| RFP cloudy fil | ltrate jnc2                                    |         |          |
|                | RFP cloudy ww jnc -> RFP cloudy filtrate jnc2  | 630.4   |          |
|                | RFP cloudy filtrate jnc2 -> RFP flotation      |         | 251.7    |
|                | RFP cloudy filtrate jnc2 -> RFP coarse screens |         | 3.7      |
|                | RFP cloudy filtrate jnc2 -> RFP-HD cleaning    |         | 87       |
|                | RFP cloudy filtrate jnc2 -> RFP Pulping        |         | 288      |
| RFP rej jnc1   |                                                |         |          |
|                | RFP-HD cleaning -> RFP rej jnc1                | 9.3     |          |
|                | RFP coarse screens -> RFP rej jnc1             | 2.9     |          |
|                | RFP Pulping -> RFP rej jnc1                    | 136.94  |          |
|                | RFP rej jnc1 -> RFP rej jnc3                   |         | 149.14   |
| PM4 Blend cl   | hest                                           |         |          |
|                | Fresh water to PM4 jnc -> PM4 Blend chest      | 4.5     |          |
|                | Pulp jnc -> PM4 Blend chest                    | 311.4   |          |
|                | LF jnc -> PM4 Blend chest                      | 16      |          |
|                | JNC-broke to PM's -> PM4 Blend chest           | 96.01   |          |
|                | PM4 Blend chest -> JNC-PM4 Blend to silo       |         | 243.78   |
|                | PM4 Blend chest -> PM4 saveall                 |         | 184.13   |

|                  |                                                 | Flow IN | Flow OUT |
|------------------|-------------------------------------------------|---------|----------|
| Node Name        | Streams In/Out                                  | [t/h]   | [t/h]    |
|                  | JNC-PM4 Blend to silo -> PM4 silo               | 400.96  |          |
|                  | PM4 forming section -> PM4 silo                 | 2181.15 |          |
|                  | PM4 silo -> PM4 cleaners & deculator            |         | 2582.11  |
| PM4 cleaners     | & deculator                                     |         |          |
|                  | PM4 silo -> PM4 cleaners & deculator            | 2582.11 |          |
|                  | PM4 cleaners & deculator -> PM4 screens         |         | 2453     |
|                  | PM4 cleaners & deculator -> PM4 ww to drain jnc |         | 129.11   |
| PM4 screens      |                                                 |         |          |
|                  | PM4 cleaners & deculator -> PM4 screens         | 2453    |          |
|                  | PM4 screens -> PM4 headbox                      |         | 2330.35  |
|                  | PM4 screens -> PM4 ww to drain jnc              |         | 122.65   |
| PM4 headbox      |                                                 |         |          |
|                  | PM4 screens -> PM4 headbox                      | 2330.35 |          |
|                  | fresh water to PM4 jnc -> PM4 headbox           | 20      |          |
|                  | PM4 headbox -> PM4 forming section              |         | 2350.35  |
| PM4 forming      |                                                 |         |          |
| 1 1014 101111119 | PM4 headbox -> PM4 forming section              | 2350.35 |          |
|                  | fresh water to PM4 jnc -> PM4 forming section   | 2350.55 |          |
|                  | JNC-PM4 clear chest -> PM4 forming section      | 122     |          |
|                  |                                                 | 122     | 62.2     |
|                  | PM4 forming section -> PM4 press section        | _       | 250      |
|                  | PM4 forming section -> PM4 ww jnc2              |         |          |
|                  | PM4 forming section -> PM4 silo                 |         | 2181.15  |
| PM4 press se     |                                                 |         |          |
|                  | PM4 forming section -> PM4 press section        | 62.2    |          |
|                  | fresh water to PM4 jnc -> PM4 press section     | 88      |          |
|                  | PM4 press section -> PM4 dryers                 |         | 31.1     |
|                  | PM4 press section -> PM4 ww jnc2                |         | 119.1    |
| PM4 dryers       | P                                               |         |          |
|                  | PM4 press section -> PM4 dryers                 | 31.1    |          |
|                  | PM4 dryers -> dryer steam evap jnc              |         | 17.6     |
|                  | PM4 dryers -> final paper jnc                   |         | 13.5     |
| Dryer steam      | evap jnc                                        |         |          |
|                  | PM4 dryers -> dryer steam evap jnc              | 17.6    |          |
|                  | PM5 dryers -> dryer steam evap jnc              | 17.6    |          |
|                  | Dryer steam evap jnc -> evaporation             |         | 35.2     |

|                |                                                 | Flow IN | Flow OUT |
|----------------|-------------------------------------------------|---------|----------|
| Node Name      | Streams In/Out                                  | [t/h]   | [t/h]    |
| Final paper jr |                                                 |         |          |
|                | PM4 dryers -> final paper jnc                   | 13.5    |          |
|                | PM5 dryers -> final paper jnc                   | 13.5    |          |
|                | Final paper jnc -> Paper                        |         | 27       |
| PM5 dryers     |                                                 |         |          |
|                | PM5 press section -> PM5 dryers                 | 31.1    |          |
|                | PM5 dryers -> dryer steam evap jnc              |         | 17.6     |
|                | PM5 dryers -> final paper jnc                   |         | 13.5     |
| PM5 press sec  | tion                                            |         |          |
|                | PM5 forming section -> PM5 press section        | 62.2    | <u> </u> |
|                | Fresh water to PM5 jnc -> PM5 press section     | 88      |          |
|                | PM5 press section -> PM5 dryers                 |         | 31.1     |
|                | PM5 press section -> PM5 ww jnc2                |         | 119.1    |
| PM5 forming    | section                                         |         |          |
|                | PM5 headbox -> PM5 forming section              | 2354.49 | <u> </u> |
|                | Fresh water to PM5 jnc -> PM5 forming section   | 21      |          |
|                | JNC-PM5 clear chest -> PM5 forming section      | 166.01  |          |
|                | PM5 forming section -> PM5 press section        |         | 62.2     |
|                | PM5 forming section -> PM5 ww jnc2              |         | 300      |
|                | PM5 forming section -> PM5 silo                 |         | 2179.3   |
| PM5 headbox    |                                                 |         |          |
|                | PM5 screens -> PM5 headbox                      | 2334.49 |          |
|                | Fresh water to PM5 jnc -> PM5 headbox           | 20      | 1        |
|                | PM5 headbox -> PM5 forming section              | -       | 2354.49  |
| PM5 screens    |                                                 |         |          |
|                | PM5 cleaners & deculator -> PM5 screens         | 2457.36 |          |
|                | PM5 screens -> PM5 headbox                      |         | 2334.49  |
|                | PM5 screens -> PM rej to drain jnc              |         | 122.87   |
| PM5 cleaners   | & deculator                                     |         |          |
|                | PM5 silo -> PM5 cleaners & deculator            | 2586.69 |          |
|                | PM5 cleaners & deculator -> PM5 screens         |         | 2457.36  |
|                | PM5 cleaners & deculator -> PM rej to drain jnc |         | 129.33   |
| PM5 silo       |                                                 |         |          |
|                | JNC-PM5 blend chest to silo -> PM5 silo         | 407.39  |          |
|                | PM5 forming section -> PM5 silo                 | 2179.3  | 1        |

|              |                                                | Flow IN | Flow OUT |
|--------------|------------------------------------------------|---------|----------|
| Node Name    | Streams In/Out                                 | [t/h]   | [t/h]    |
|              | PM5 silo -> PM5 cleaners & deculator           |         | 2586.69  |
| PM5 Blend cl | nest                                           |         |          |
|              | Fresh water to PM5 jnc -> PM5 Blend chest      | 4.5     |          |
|              | Pulp jnc -> PM5 Blend chest                    | 311.4   |          |
|              | LF jnc -> PM5 Blend chest                      | 16      |          |
|              | JNC-broke to PM's -> PM5 Blend chest           | 96.01   |          |
|              | PM5 Blend chest -> PM5 saveall                 |         | 180.52   |
|              | PM5 Blend chest -> JNC-PM5 blend chest to silo |         | 247.39   |
| PM ww jnc    |                                                |         |          |
| j            | PM ww incl -> PM ww inc                        | 363.66  | -        |
|              | Cooling -> PM ww jnc                           | 19.46   |          |
|              | Fresh water to PMs jnc -> PM ww jnc            | 401.18  |          |
|              | PM ww jnc -> PM rej to drain jnc               |         | 0        |
|              | PM ww jnc -> PM ww to pulp mill jnc            |         | 753.54   |
|              | PM ww jnc -> LF jnc                            |         | 30.76    |
| PM5 ww jnc2  |                                                |         | +        |
|              | PM5 press section -> PM5 ww jnc2               | 119.1   |          |
|              | PM5 forming section -> PM5 ww jnc2             | 300     |          |
|              | PM5 ww jnc2 -> PM ww jnc1                      |         | 419.1    |
| PM4 ww jnc2  |                                                |         |          |
|              | PM4 forming section -> PM4 ww jnc2             | 250     |          |
|              | PM4 press section -> PM4 ww jnc2               | 119.1   |          |
|              | PM4 ww jnc2 -> PM ww jnc1                      |         | 369.1    |
| PM ww jncl   |                                                |         |          |
|              | Fresh water to PMs jnc -> PM ww jnc1           | 0       |          |
|              | PM5 ww jnc2 -> PM ww jnc1                      | 419.1   |          |
|              | PM4 ww jnc2 -> PM ww jnc1                      | 369.1   |          |
|              | PM ww jnc1 -> PM ww jnc                        |         | 363.66   |
|              | PM ww jnc1 -> PM4 ww jnc1                      |         | 187.05   |
|              | PM ww jnc1 -> PM5 ww jnc1                      |         | 237.49   |
| PM4 ww jnc   | 1                                              |         |          |
|              | JNC-PM4 cloudy chest -> PM4 ww jnc1            | 1140.95 |          |
|              | JNC-PM4 clear chest -> PM4 ww jnc1             | 100     |          |
|              | PM ww jnc1 -> PM4 ww jnc1                      | 187.05  |          |
|              | PM4 ww jnc1 -> PM4 saveall                     |         | 1428     |

|                |                                                  | Flow IN | Flow OUT |
|----------------|--------------------------------------------------|---------|----------|
| Node Name      | Streams In/Out                                   | [t/h]   | [t/h]    |
| PM5 ww jnc1    |                                                  |         |          |
|                | JNC-PM5 clear chest -> PM5 ww jnc1               | 129.99  |          |
|                | JNC-PM5 cloudy chest -> PM5 ww jnc1              | 1060.52 |          |
|                | PM ww jnc1 -> PM5 ww jnc1                        | 237.49  |          |
|                | PM5 ww jncl -> PM5 saveall                       |         | 1428     |
| PM rej to drai | n jnc                                            |         |          |
|                | PM5 cleaners & deculator -> PM rej to drain jnc  | 129.33  |          |
|                | PM5 screens -> PM rej to drain jnc               | 122.87  |          |
|                | PM ww jnc -> PM rej to drain jnc                 | 0       | † —      |
|                | PM4 ww to drain jnc -> PM rej to drain jnc       | 251.76  | -        |
|                | PM rej to drain jnc -> Drain                     |         | 503.96   |
| PM4 ww to dr   | ain jnc                                          |         |          |
|                | PM4 screens -> PM4 ww to drain jnc               | 122.65  |          |
|                | PM4 cleaners & deculator -> PM4 ww to drain jnc  | 129.11  |          |
|                | PM4 ww to drain jnc -> PM rej to drain jnc       |         | 251.76   |
| Fresh water to | PMs jnc                                          |         | +        |
|                | Fresh water jnc -> fresh water to PMs jnc        | 668.18  |          |
|                | Fresh water to PMs jnc -> fresh water to PM4 jnc |         | 133.5    |
|                | Fresh water to PMs jnc -> fresh water to PM5 jnc |         | 133.5    |
|                | Fresh water to PMs jnc -> PM ww jnc1             |         | 0        |
|                | Fresh water to PMs jnc -> PM ww jnc              |         | 401.18   |
| Fresh water to | PM4 jnc                                          |         |          |
|                | Fresh water to PMs jnc -> fresh water to PM4 jnc | 133.5   |          |
|                | Fresh water to PM4 jnc -> PM4 headbox            |         | 20       |
|                | Fresh water to PM4 jnc -> PM4 Blend chest        |         | 4.5      |
|                | Fresh water to PM4 jnc -> PM4 forming section    |         | 21       |
|                | Fresh water to PM4 jnc -> PM4 press section      |         | 88       |
| Fresh water to | PM5 jnc                                          |         |          |
|                | Fresh water to PMs jnc -> fresh water to PM5 jnc | 133.5   |          |
|                | Fresh water to PM5 jnc -> PM5 Blend chest        |         | 4.5      |
|                | Fresh water to PM5 jnc -> PM5 headbox            |         | 20       |
|                | Fresh water to PM5 jnc -> PM5 forming section    |         | 21       |
|                | Fresh water to PM5 jnc -> PM5 press section      |         | 88       |
| LF jnc         |                                                  |         |          |
|                | LF to PMs -> LF jnc                              | 1.24    |          |

|              |                                                      | Flow IN | Flow OUT |
|--------------|------------------------------------------------------|---------|----------|
| Node Name    | Streams In/Out                                       | [t/h]   | [t/h]    |
|              | PM ww jnc -> LF jnc                                  | 30.76   |          |
| - 100        | LF jnc -> PM5 Blend chest                            |         | 16       |
|              | LF jnc -> PM4 Blend chest                            |         | 16       |
| JNC-broke to | PM's                                                 |         |          |
|              | Broke to PM's -> JNC-broke to PM's                   | 8.02    |          |
|              | JNC-PM5 cloudy chest -> JNC-broke to PM's            | 92      |          |
|              | JNC-PM4 cloudy chest -> JNC-broke to PM's            | 92      |          |
|              | JNC-broke to PM's -> PM5 Blend chest                 |         | 96.01    |
|              | JNC-broke to PM's -> PM4 Blend chest                 |         | 96.01    |
| JNC-PM5 rec  | overed fibre chest                                   |         |          |
|              | PM5 saveall -> JNC-PM5 recovered fibre chest         | 128     |          |
|              | JNC-PM5 cloudy chest -> JNC-PM5 recovered fibre      |         |          |
|              | chest                                                | 32      |          |
|              | JNC-PM5 recovered fibre chest -> JNC-PM5 blend chest |         |          |
|              | to silo                                              |         | 160      |
| PM5 saveall  |                                                      |         |          |
|              | PM5 Blend chest -> PM5 saveall                       | 180.52  |          |
|              | PM5 ww jnc1 -> PM5 saveall                           | 1428    | <u> </u> |
|              | PM5 saveall -> JNC-PM5 recovered fibre chest         |         | 128      |
|              | PM5 saveall -> JNC-PM5 cloudy chest                  |         | 1184.52  |
|              | PM5 saveall -> JNC-PM5 clear chest                   |         | 296      |
| JNC-PM5 cle  | ar chest                                             |         |          |
|              | PM5 saveall -> JNC-PM5 clear chest                   | 296     | -        |
|              | JNC-PM5 clear chest -> PM5 forming section           |         | 166.01   |
|              | JNC-PM5 clear chest -> PM5 ww jnc1                   |         | 129.99   |
| JNC-PM5 clo  | udy chest                                            |         |          |
|              | PM5 saveall -> JNC-PM5 cloudy chest                  | 1184.52 |          |
|              | JNC-PM5 cloudy chest -> PM5 ww jnc1                  |         | 1060.52  |
|              | JNC-PM5 cloudy chest -> JNC-PM5 recovered fibre      |         |          |
|              | chest                                                |         | 32       |
|              | JNC-PM5 cloudy chest -> JNC-broke to PM's            |         | 92       |
| JNC-PM5 ble  | nd chest to silo                                     |         |          |
|              | PM5 Blend chest -> JNC-PM5 blend chest to silo       | 247.39  |          |
|              | JNC-PM5 recovered fibre chest -> JNC-PM5 blend chest |         |          |
|              | to silo                                              | 160     |          |
|              | JNC-PM5 blend chest to silo -> PM5 silo              |         | 407.39   |

|               |                                                     | Flow IN | Flow OUT |
|---------------|-----------------------------------------------------|---------|----------|
| Node Name     | Streams In/Out                                      | [t/h]   | [t/h]    |
| JNC-PM4 Blend | t to silo                                           |         |          |
|               | PM4 Blend chest -> JNC-PM4 Blend to silo            | 243.78  |          |
|               | JNC-PM4 recovered fibre chest -> JNC-PM4 Blend to   |         |          |
|               | silo                                                | 157.18  |          |
|               | JNC-PM4 Blend to silo -> PM4 silo                   |         | 400.96   |
| PM4 saveall   |                                                     |         |          |
|               | PM4 Blend chest -> PM4 saveall                      | 184.13  |          |
| ]             | PM4 ww jnc1 -> PM4 saveall                          | 1428    |          |
| ]             | PM4 saveal1 -> JNC-PM4 recovered fibre chest        |         | 128      |
|               | PM4 saveall -> JNC-PM4 cloudy chest                 |         | 1262.13  |
| ]             | PM4 saveal1 -> JNC-PM4 clear chest                  |         | 222      |
| JNC-PM4 recov | ered fibre chest                                    |         |          |
| ]             | PM4 saveall -> JNC-PM4 recovered fibre chest        | 128     |          |
|               | JNC-PM4 cloudy chest -> JNC-PM4 recovered fibre     |         |          |
|               | chest                                               | 29.18   |          |
|               | INC-PM4 recovered fibre chest -> JNC-PM4 Blend to   |         |          |
|               | silo                                                |         | 157.18   |
| JNC-PM4 cloud | y chest                                             |         |          |
| •             | PM4 saveall -> JNC-PM4 cloudy chest                 | 1262.13 |          |
|               | INC-PM4 cloudy chest -> JNC-broke to PM's           |         | 92       |
|               | JNC-PM4 cloudy chest -> PM4 ww jnc1                 |         | 1140.95  |
|               | JNC-PM4 cloudy chest -> JNC-PM4 recovered fibre     |         |          |
|               | chest                                               |         | 29.18    |
| JNC-PM4 clear | chest                                               |         |          |
|               | PM4 saveall -> JNC-PM4 clear chest                  | 222     |          |
|               | JNC-PM4 clear chest -> PM4 forming section          |         | 122      |
|               | JNC-PM4 clear chest -> PM4 ww jnc1                  |         | 100      |
| JNC-TMP1 clou | idy ww chest                                        |         |          |
|               | JNC-TMP1 clear ww to deckers -> JNC-TMP1 cloudy     |         |          |
|               | ww chest                                            | 166.75  |          |
|               | JNC-TMP1 cloudy -> JNC-TMP1 cloudy ww chest         | 641.32  |          |
|               | JNC-TMP1 cloudy ww chest -> TMP1 cloudy ww1         |         | 808.07   |
| JNC-TMP1 clea | ar ww chest                                         |         |          |
|               | JNC-TMP1 clear -> JNC-TMP1 clear ww chest           | 146     |          |
|               | JNC-tempered to clear ww -> JNC-TMP1 clear ww chest | 20      |          |
|               | JNC-sealing water to clear ww -> JNC-TMP1 clear ww  | 4.75    |          |

|             |                                                     | Flow IN | Flow OUT |
|-------------|-----------------------------------------------------|---------|----------|
| Node Name   | Streams In/Out                                      | [t/h]   | [t/h]    |
|             | chest                                               |         |          |
|             | PM ww to pulp mill jnc -> JNC-TMP1 clear ww chest   | 236     |          |
|             | JNC-TMP1 clear ww chest -> JNC-TMP1 clear ww to     |         |          |
|             | deckers                                             |         | 406.75   |
| NC-TMP2 cl  | ear ww chest                                        |         |          |
|             | PM ww to pulp mill jnc -> JNC-TMP2 clear ww chest   | 222.07  | -        |
|             | JNC-sealing water to clear ww -> JNC-TMP2 clear ww  |         |          |
|             | chest                                               | 4.75    |          |
|             | JNC-tempered to clear ww -> JNC-TMP2 clear ww chest | 20      |          |
|             | JNC-TMP2 clear ww2 -> JNC-TMP2 clear ww chest       | 146     |          |
|             | JNC-TMP2 clear ww chest -> JNC-TMP2 clear ww1       |         | 392.82   |
| INC-TMP2 cl | oudy ww chest                                       |         |          |
|             | JNC-TMP2 cloudy ww3 -> JNC-TMP2 cloudy ww chest     | 641.32  |          |
|             | JNC-TMP2 clear ww1 -> JNC-TMP2 cloudy ww chest      | 152.82  |          |
|             | JNC-TMP2 cloudy ww chest -> TMP2 cloudy ww1         |         | 794.14   |

. 🗕 ..

|                    |                                            | Concentration. | Concentration |
|--------------------|--------------------------------------------|----------------|---------------|
|                    |                                            | IN             | OUT           |
| Node Name          | Streams In/Out                             | [ppm]          | [ppm]         |
| Chip washer        |                                            |                |               |
|                    | Chips -> chip washer                       | 398606.21      |               |
|                    | Hydrasieves -> chip washer                 | 1370.07        |               |
|                    | JNC- cloudy ww to chip washer -> chip      |                |               |
|                    | washer                                     | 1526.8         |               |
|                    | Chip washer -> hydrasieves                 |                | 1500          |
|                    | Chip washer -> chip washer jnc             |                | 376327.9      |
| Hydrasieves        |                                            |                |               |
|                    | Chip washer -> hydrasieves                 | 1500           |               |
|                    | Hydrasieves -> chip washer                 |                | 1370.07       |
|                    | Hydrasieves -> Hydrasieve rejects          |                | 4000          |
| Line 1 Digester    |                                            |                |               |
|                    | Chip washer jnc -> Line 1 Digester         | 376327.9       |               |
|                    | Feed steam jnc -> Line 1 Digester          | 0              |               |
|                    | Sodium sulphite jnc -> Line 1 Digester     | 0              |               |
|                    | Line 1 Digester -> rotary valve exhaust    |                |               |
|                    | steam jnc                                  |                | 0             |
|                    | Line 1 Digester -> digester vent steam jnc |                | 1             |
|                    | Line 1 Digester -> Line 1 Prim Refiner     |                | 324641.25     |
| Line 2 Digester    |                                            |                |               |
|                    | Chip washer jnc -> Line 2 Digester         | 376327.9       |               |
|                    | Feed steam jnc -> Line 2 Digester          | 0              |               |
|                    | Sodium sulphite jnc -> Line 2 Digester     | 0              |               |
|                    | Line 2 Digester -> rotary valve exhaust    |                |               |
|                    | steam jnc                                  |                | 0             |
|                    | Line 2 Digester -> digester vent steam jnc |                | 1             |
|                    | Line 2 Digester -> Line 2 Prim Refiner     |                | 324641.25     |
| Line 1 Prim Refine |                                            |                |               |
|                    | Line 1 Digester -> Line 1 Prim Refiner     | 324641.25      |               |
|                    | TMP1 cloudy ww2 -> Line 1 Prim Refiner     | 1567.95        |               |
|                    | Line 1 Prim Refiner -> Line 1 Sec Refiner  |                | 374000.16     |
|                    | Line 1 Prim Refiner -> prim ref back flow  |                |               |
|                    | steam jnc                                  |                | 0             |

Table A.2 Newsprint Circuit water balance fibre content from Water Tracker

-----

\_\_\_\_\_

|                    |                                              | Concentration. | Concentration |
|--------------------|----------------------------------------------|----------------|---------------|
|                    |                                              | IN             | OUT           |
| Node Name          | Streams In/Out                               | [ppm]          | [ppm]         |
| Line 2 Prim Refine | r                                            |                |               |
|                    | Line 2 Digester -> Line 2 Prim Refiner       | 324641.25      |               |
|                    | TMP1 cloudy ww2 -> Line 2 Prim Refiner       | 1567.95        |               |
|                    | Line 2 Prim Refiner -> Line 2 Sec Refiner    |                | 374000.16     |
|                    | Line 2 Prim Refiner -> prim ref back flow    |                |               |
|                    | steam jnc                                    |                | 0             |
| Line 1 Sec Refiner |                                              |                |               |
|                    | Line 1 Prim Refiner -> Line 1 Sec Refiner    | 374000.16      |               |
|                    | TMP1 cloudy ww2 -> Line 1 Sec Refiner        | 1567.95        |               |
|                    | Line 1 Sec Refiner -> sec refiner jnc        |                | 35700         |
|                    | Line 1 Sec Refiner -> sec refiner exhaust    |                |               |
|                    | steam jnc                                    |                | 0             |
|                    | Line 1 Sec Refiner -> sec refiner losses jnc |                | 140247.66     |
| Line 2 Sec Refiner |                                              |                |               |
|                    | Line 2 Prim Refiner -> Line 2 Sec Refiner    | 374000.16      |               |
|                    | TMP1 cloudy ww2 -> Line 2 Sec Refiner        | 1567.95        |               |
|                    | Line 2 Sec Refiner -> sec refiner jnc        |                | 35700         |
|                    | Line 2 Sec Refiner -> sec refiner exhaust    |                |               |
|                    | steam jnc                                    |                | 0             |
|                    | Line 2 Sec Refiner -> sec refiner losses jnc |                | 140247.66     |
| TMP1 Latency & so  | creens                                       |                |               |
|                    | Secondary refiner jnc -> TMP1 Latency &      |                |               |
|                    | screens                                      | 35700          |               |
|                    | TMP1 cloudy ww1 -> TMP1 Latency &            |                |               |
|                    | screens                                      | 1567.95        |               |
|                    | TMP1 Latency & screens -> JNC-TMP1           |                |               |
|                    | latency to deckers                           |                | 12000         |
|                    | TMP1 Latency & screens -> JNC-latency        |                |               |
|                    | steam                                        |                | 0             |
|                    | TMP1 Latency & screens -> JNC-latency to     |                |               |
|                    | rej sys                                      |                | 46722.53      |
| Line 1 Decker      |                                              |                |               |
|                    | JNC-TMP1 latency to deckers -> Line 1        |                |               |
|                    | Decker                                       | 12000          |               |
|                    | JNC-Reject system -> Line 1 Decker           | 17000          |               |

|                 |                                           | Concentration. | Concentration |
|-----------------|-------------------------------------------|----------------|---------------|
|                 |                                           | IN             | OUT           |
| Node Name       | Streams In/Out                            | [ppm]          | [ppm]         |
|                 | JNC-TMP1 clear ww to deckers -> Line 1    |                |               |
|                 | Decker                                    | 563.73         |               |
|                 | JNC-Hydros -> Line 1 Decker               | 0              |               |
|                 | Line 1 Decker -> JNC-TMP1 pulp to         |                |               |
|                 | storage                                   |                | 39200         |
|                 | Line 1 Decker -> JNC-TMP1 cloudy          |                | 1733.73       |
|                 | Line 1 Decker -> JNC-TMP1 clear           |                | 1000          |
| Reject System   |                                           |                |               |
|                 | GWD rejects -> Reject System              | 20000          |               |
|                 | Cloudy ww2 -> Reject System               | 1458.16        |               |
|                 | JNC-latency to rej sys -> Reject System   | 46186.97       |               |
|                 | Reject System -> Rejects from pressure    |                |               |
|                 | screen                                    |                | 0             |
|                 | Reject System -> JNC-Rej sys              |                | 17000         |
| Cooling         |                                           |                |               |
|                 | Fresh water jnc -> Cooling                | 0              |               |
|                 | Cooling tower -> [Blowdown]               | 0              |               |
|                 | [Make-up] -> cooling tower                |                | 0             |
|                 | Cooling -> PM ww jnc                      |                | 0             |
| Fresh water jnc |                                           |                |               |
|                 | Fresh water -> fresh water jnc            | 0              |               |
|                 | Fresh water jnc -> Cooling                |                | 0             |
|                 | Fresh water jnc -> JNC-tempered to clear  |                |               |
|                 | ww                                        |                | 0             |
|                 | Fresh water jnc -> Sealing water          |                | 0             |
|                 | Fresh water jnc -> RFP Temp jnc           |                | 0             |
|                 | Fresh water jnc -> fresh water to PMs jnc |                | 0             |
| Chip washer jnc |                                           |                |               |
|                 | Chip washer -> chip washer jnc            | 376327.9       |               |
|                 | Chip washer jnc -> Line 1 Digester        |                | 376327.9      |
|                 | Chip washer jnc -> Line 2 Digester        |                | 376327.9      |
|                 | Chip washer jnc -> Line 3 Digester        |                | 376327.9      |
|                 | Chip washer jnc -> Line 4 Digester        |                | 376327.9      |
|                 |                                           |                |               |

|                       |                                            | Concentration. | Concentration |
|-----------------------|--------------------------------------------|----------------|---------------|
|                       |                                            | IN             | OUT           |
| Node Name             | Streams In/Out                             | [ppm]          | [ppm]         |
|                       | Line 1 Digester -> rotary valve exhaust    |                |               |
|                       | steam jnc                                  | 0              |               |
|                       | Line 2 Digester -> rotary valve exhaust    |                |               |
|                       | steam jnc                                  | 0              |               |
|                       | Line 3 Digester -> rotary valve exhaust    |                |               |
|                       | steam jnc                                  | 0              |               |
|                       | Line 4 Digester -> rotary valve exhaust    |                |               |
|                       | steam jnc                                  | 0              |               |
|                       | Rotary valve exhaust steam jnc -> Rotary   |                |               |
|                       | valve exhaust steam                        |                | 0             |
| Digester vent steam j | jnc                                        |                |               |
|                       | Line 1 Digester -> digester vent steam jnc | 1              |               |
|                       | Line 2 Digester -> digester vent steam jnc | 1              |               |
|                       | Line 3 Digester -> digester vent steam jnc | 0              |               |
|                       | Line 4 Digester -> digester vent steam jnc | 0              |               |
|                       | Digester vent steam jnc -> Digester vent   |                |               |
|                       | steam                                      |                | 0.5           |
| Feed steam jnc        |                                            |                |               |
|                       | Steam -> feed steam jnc                    | 0              | · · · · ·     |
|                       | Feed steam jnc -> Line 1 Digester          | Ū              | 0             |
|                       |                                            |                | 0             |
|                       | Feed steam jnc -> Line 2 Digester          |                |               |
|                       | Feed steam jnc -> Line 3 Digester          |                | 0             |
|                       | Feed steam jnc -> Line 4 Digester          |                | 0             |
|                       | Feed steam jnc -> RFP disperser            |                | 0             |
| Sodium sulphite jnc   |                                            |                |               |
|                       | Sodium sulphite -> sodium sulphite jnc     | 0              |               |
|                       | Sodium sulphite jnc -> Line 1 Digester     |                | 0             |
|                       | Sodium sulphite jnc -> Line 2 Digester     |                | 0             |
|                       | Sodium sulphite jnc -> Line 4 Digester     |                | 0             |
|                       | Sodium sulphite jnc -> Line 3 Digester     |                | 0             |
| Sec refiner jnc       |                                            |                |               |
|                       | Line 1 Sec Refiner -> sec refiner jnc      | 35700          |               |
|                       | Line 2 Sec Refiner -> sec refiner jnc      | 35700          |               |
|                       | Sec refiner jnc -> TMP1 Latency & screens  |                | 35700         |

|                                       |                                              | Concentration. | Concentratio |
|---------------------------------------|----------------------------------------------|----------------|--------------|
|                                       |                                              | IN             | OUT          |
| Node Name                             | Streams In/Out                               | [ppm]          | [ppm]        |
|                                       | Line 2 Prim Refiner -> prim ref back flow    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Line 1 Prim Refiner -> prim ref back flow    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Line 3 Prim Refiner -> prim ref back flow    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Line 4 Prim Refiner -> prim ref back flow    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Primary ref back flow steam jnc -> back      |                |              |
|                                       | flow steam                                   |                | 0            |
| Secondary refiner e                   | xhaust steam jnc                             |                |              |
|                                       |                                              |                |              |
|                                       | Line 1 Sec Refiner -> sec refiner exhaust    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Line 2 Sec Refiner -> sec refiner exhaust    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Line 3 Sec Refiner -> sec refiner exhaust    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Line 4 Sec Refiner -> sec refiner exhaust    |                |              |
|                                       | steam jnc                                    | 0              |              |
|                                       | Secondary refiner exhaust steam jnc ->       |                |              |
|                                       | Cyclone and feader exhaust steam             |                | 0            |
| TMP1 cloudy ww2                       |                                              |                |              |
|                                       | TMP1 cloudy ww1 -> TMP1 cloudy ww2           | 1567.95        |              |
|                                       | TMP1 cloudy ww2 -> Line 1 Sec Refiner        |                | 1567.95      |
|                                       | TMP1 cloudy ww2 -> Line 1 See Reiner         |                | 1567.95      |
|                                       | TMP1 cloudy ww2 -> Line 2 Prim Refiner       |                | 1567.95      |
|                                       | TMP1 cloudy ww2 -> Line 2 Frint Reiner       |                | 1567.95      |
| · · · · · · · · · · · · · · · · · · · |                                              |                | 1307.93      |
| Secondary refiner lo                  |                                              | 1100 17 ((     |              |
|                                       | Line 1 Sec Refiner -> sec refiner losses jnc | 140247.66      |              |
|                                       | Line 2 Sec Refiner -> sec refiner losses jnc | 140247.66      |              |
|                                       | Line 3 Sec Refiner -> sec refiner losses jnc | 128877.06      |              |
|                                       | Line 4 Sec Refiner -> sec refiner losses jnc | 118873.07      |              |
|                                       | Secondary refiner losses jnc -> Losses       |                | 132061.36    |

|                     |                                              | Concentration. | Concentration |
|---------------------|----------------------------------------------|----------------|---------------|
|                     |                                              | IN             | OUT           |
| Node Name           | Streams In/Out                               | [ppm]          | [ppm]         |
|                     | Sodium sulphite jnc -> Line 3 Digester       | 0              |               |
|                     | Feed steam jnc -> Line 3 Digester            | 0              |               |
|                     | Chip washer jnc -> Line 3 Digester           | 376327.9       |               |
|                     | Line 3 Digester -> Line 3 Prim Refiner       |                | 324641.26     |
|                     | Line 3 Digester -> rotary valve exhaust      |                |               |
|                     | steam jnc                                    |                | 0             |
|                     | Line 3 Digester -> digester vent steam jnc   |                | 0             |
| Line 4 Digester     |                                              |                |               |
|                     | Sodium sulphite jnc -> Line 4 Digester       | 0              |               |
|                     | Feed steam jnc -> Line 4 Digester            | 0              |               |
|                     | Chip washer jnc -> Line 4 Digester           | 376327.9       |               |
|                     | Line 4 Digester -> Line 4 Prim Refiner       |                | 324641.26     |
|                     | Line 4 Digester -> rotary valve exhaust      |                |               |
|                     | steam jnc                                    |                | 0             |
|                     | Line 4 Digester -> digester vent steam jnc   |                | 0             |
| Line 3 Prim Refiner |                                              |                |               |
|                     | Line 3 Digester -> Line 3 Prim Refiner       | 324641.26      |               |
|                     | TMP2 cloudy ww2 -> Line 3 Prim Refiner       | 1348.38        |               |
|                     | Line 3 Prim Refiner -> Line 3 Sec Refiner    |                | 374000        |
|                     | Line 3 Prim Refiner -> prim ref back flow    |                |               |
|                     | steam jnc                                    |                | 0             |
| Line 4 Prim Refiner |                                              |                |               |
|                     | Line 4 Digester -> Line 4 Prim Refiner       | 324641.26      |               |
|                     | TMP2 cloudy ww2 -> Line 4 Prim Refiner       | 1348.38        |               |
|                     | Line 4 Prim Refiner -> Line 4 Sec Refiner    |                | 374000        |
|                     | Line 4 Prim Refiner -> prim ref back flow    |                |               |
|                     | steam jnc                                    |                | 0             |
| Line 3 Sec Refiner  |                                              |                |               |
|                     | Line 3 Prim Refiner -> Line 3 Sec Refiner    | 374000         |               |
|                     | TMP2 cloudy ww2 -> Line 3 Sec Refiner        | 1348.38        |               |
|                     | Line 3 Sec Refiner -> JNC-TMP2 sec ref to    |                |               |
|                     | latency                                      |                | 35700         |
|                     | Line 3 Sec Refiner -> sec refiner exhaust    |                |               |
|                     | steam jnc                                    |                | 0             |
|                     | Line 3 Sec Refiner -> sec refiner losses jnc |                | 128877.06     |

|                    |                                              | Concentration. | Concentration                          |
|--------------------|----------------------------------------------|----------------|----------------------------------------|
|                    |                                              | IN             | OUT                                    |
| Node Name          | Streams In/Out                               | [ppm]          | [ppm]                                  |
| Line 4 Sec Refiner | r                                            |                |                                        |
|                    | Line 4 Prim Refiner -> Line 4 Sec Refiner    | 374000         |                                        |
|                    | TMP2 cloudy ww2 -> Line 4 Sec Refiner        | 1348.38        |                                        |
|                    | Line 4 Sec Refiner -> JNC-TMP2 sec ref to    |                | ······································ |
|                    | latency                                      |                | 35888.29                               |
|                    | Line 4 Sec Refiner -> sec refiner exhaust    |                |                                        |
|                    | steam jnc                                    |                | 0                                      |
|                    | Line 4 Sec Refiner -> sec refiner losses jnc |                | 118873.07                              |
| ine 3 Decker       |                                              |                |                                        |
|                    | JNC-TMP2 latency to deckers -> Line 3        |                |                                        |
|                    | Decker                                       | 12000          |                                        |
|                    | JNC-Rej sys -> Line 3 Decker                 | 17000          |                                        |
|                    | JNC-TMP2 clear ww1 -> Line 3 Decker          | 717.65         |                                        |
|                    | JNC-Hydros -> Line 3 Decker                  | 0              |                                        |
|                    | Line 3 Decker -> JNC-TMP2 pulp to            |                |                                        |
|                    | storage                                      |                | 40000                                  |
|                    | Line 3 Decker -> JNC-TMP2 cloudy ww3         |                | 1498.68                                |
|                    | Line 3 Decker -> JNC-TMP2 clear ww2          |                | 1000                                   |
| Line 4 Decker      |                                              |                |                                        |
|                    | JNC-TMP2 latency to deckers -> Line 4        |                |                                        |
|                    | Decker                                       | 12000          |                                        |
|                    | JNC-Rej sys -> Line 4 Decker                 | 17000          |                                        |
|                    | JNC-TMP2 clear ww1 -> Line 4 Decker          | 717.65         |                                        |
|                    | JNC-Hydros -> Line 4 Decker                  | 0              |                                        |
|                    | Line 4 Decker -> JNC-TMP2 pulp to            |                |                                        |
|                    | storage                                      |                | 40000                                  |
|                    | Line 4 Decker -> JNC-TMP2 cloudy ww3         |                | 1498.68                                |
|                    | Line 4 Decker -> JNC-TMP2 clear ww2          |                | 1000                                   |
| NC-pulp to storag  |                                              |                |                                        |
|                    | JNC-TMP2 pulp to storage -> JNC-pulp to      |                |                                        |
|                    | storage                                      | 40000          |                                        |
|                    | JNC-TMP1 pulp to storage -> JNC-pulp to      |                |                                        |
|                    | storage                                      | 39200          |                                        |
|                    | JNC-pulp to storage -> pulp jnc              |                | 39600                                  |
| INC-TMP2 pulp t    | o storage                                    |                |                                        |

|                  |                                           | Concentration. | Concentration |
|------------------|-------------------------------------------|----------------|---------------|
|                  |                                           | IN             | OUT           |
| Node Name        | Streams In/Out                            | [ppm]          | [ppm]         |
|                  | Line 4 Decker -> JNC-TMP2 pulp to         |                |               |
|                  | storage                                   | 40000          |               |
|                  | Line 3 Decker -> JNC-TMP2 pulp to         |                |               |
|                  | storage                                   | 40000          |               |
|                  | JNC-TMP2 pulp to storage -> JNC-pulp to   |                |               |
|                  | storage                                   |                | 40000         |
| INC-TMP2 latency | y to deckers                              |                |               |
|                  | TMP2 Latency & screens -> JNC-TMP2        |                |               |
|                  | latency to deckers                        | 12000          |               |
|                  | JNC-TMP2 latency to deckers -> Line 3     |                |               |
|                  | Decker                                    |                | 12000         |
|                  | JNC-TMP2 latency to deckers -> Line 4     |                |               |
|                  | Decker                                    |                | 12000         |
| INC-TMP2 sec ref | to latency                                |                |               |
|                  | Line 3 Sec Refiner -> JNC-TMP2 sec ref to |                |               |
|                  | latency                                   | 35700          |               |
| · · · ·          | Line 4 Sec Refiner -> JNC-TMP2 sec ref to |                |               |
|                  | latency                                   | 35888.29       |               |
|                  | JNC-TMP2 sec ref to latency -> TMP2       |                |               |
|                  | Latency & screens                         |                | 35794.14      |
| PM ww to pulp mi | ll jnc                                    |                |               |
|                  | PM ww jnc -> PM ww to pulp mill jnc       | 612            |               |
|                  | PM ww to pulp mill jnc -> PM ww to RFP    |                |               |
|                  | jnc                                       |                | 612           |
|                  | PM ww to pulp mill jnc -> JNC-TMP1 clear  |                |               |
|                  | ww chest                                  |                | 612           |
|                  | PM ww to pulp mill jnc -> JNC-TMP2 clear  |                |               |
|                  | ww chest                                  |                | 612           |
| Line 2 Decker    |                                           |                |               |
|                  | JNC-TMP1 latency to deckers -> Line 2     |                |               |
|                  | Decker                                    | 12000          |               |
|                  | JNC-Reject system -> Line 2 Decker        | 17000          |               |
|                  | JNC-TMP1 clear ww to deckers -> Line 2    |                |               |
|                  | Decker                                    | 563.73         |               |
|                  | JNC-Hydros -> Line 2 Decker               | 0              |               |

| Streams In/Out<br>Line 2 Decker -> JNC-TMP1 pulp to<br>storage<br>Line 2 Decker -> JNC-TMP1 clear | IN<br>[ppm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OUT<br>[ppm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Line 2 Decker -> JNC-TMP1 pulp to storage                                                         | [ppm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [ppm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| storage                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Line 2 Decker -> JNC-TMP1 clear                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 162.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Line 2 Decker -> JNC-TMP1 cloudy                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1924.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| orage                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Line 1 Decker -> JNC-TMP1 pulp to                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| storage                                                                                           | 39200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Line 2 Decker -> JNC-TMP1 pulp to                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| storage                                                                                           | 39200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-TMP1 pulp to storage -> JNC-pulp to                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| storage                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reject System -> JNC-Rej sys                                                                      | 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-Rej sys -> JNC-Reject system                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| JNC-TMP1 latency to deckers -> Line 2                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Decker                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-Rej sys -> JNC-Reject system                                                                  | 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-Reject system -> Line 1 Decker                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| JNC-Reject system -> Line 2 Decker                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                   | Line 1 Decker -> JNC-TMP1 pulp to<br>storage<br>Line 2 Decker -> JNC-TMP1 pulp to<br>storage<br>JNC-TMP1 pulp to storage -> JNC-pulp to<br>storage<br>Reject System -> JNC-Rej sys<br>JNC-Rej sys -> JNC-Reject system<br>JNC-Rej sys -> Line 3 Decker<br>JNC-Rej sys -> Line 4 Decker<br>r ww<br>Fresh water jnc -> JNC-tempered to clear<br>ww<br>JNC-tempered to clear ww -> JNC-TMP1<br>clear ww chest<br>JNC-tempered to clear ww -> JNC-TMP2<br>clear ww chest<br>Deckers<br>TMP1 Latency & screens -> JNC-TMP1<br>latency to deckers<br>JNC-TMP1 latency to deckers -> Line 1<br>Decker<br>JNC-TMP1 latency to deckers -> Line 2<br>Decker | Line 1 Decker -> JNC-TMP1 pulp to<br>storage39200Line 2 Decker -> JNC-TMP1 pulp to<br>storage39200JNC-TMP1 pulp to storage -> JNC-pulp to<br>storage39200JNC-TMP1 pulp to storage -> JNC-pulp to<br>storage17000JNC-Rej sys -> JNC-Reject system17000JNC-Rej sys -> Line 3 DeckerInc-Rej sys -> Line 4 DeckerI ww0Fresh water jnc -> JNC-tempered to clear<br>ww0JNC-tempered to clear ww -> JNC-TMP1<br>clear ww chest0JNC-tempered to clear ww -> JNC-TMP2<br>clear ww chest12000JNC-tempered to clear ww -> JNC-TMP2<br>clear ww chest12000JNC-TMP1 Latency & screens -> JNC-TMP1<br>latency to deckers -> Line 1<br>Decker12000JNC-TMP1 latency to deckers -> Line 2<br>Decker17000JNC-Rej sys -> JNC-Reject system17000JNC-Rej sys -> JNC-Reject system17000 |

|                  |                                        | Concentration. | Concentration |
|------------------|----------------------------------------|----------------|---------------|
|                  |                                        | IN             | OUT           |
| Node Name        | Streams In/Out                         | [ppm]          | [ppm]         |
|                  | Line 1 Decker -> JNC-TMP1 cloudy       | 1733.73        |               |
|                  | Line 2 Decker -> JNC-TMP1 cloudy       | 1924.38        |               |
|                  | JNC-TMP1 cloudy -> JNC-TMP1 cloudy     |                |               |
|                  | ww chest                               |                | 1829.06       |
| JNC-TMP1 clear   |                                        |                |               |
|                  | Line 1 Decker -> JNC-TMP1 clear        | 1000           |               |
|                  | Line 2 Decker -> JNC-TMP1 clear        | 162.55         |               |
|                  | JNC-TMP1 clear -> JNC-TMP1 clear ww    |                |               |
|                  | chest                                  |                | 581.28        |
| JNC-TMP1 clear w | w to deckers                           |                |               |
|                  | JNC-TMP1 clear ww chest -> JNC-TMP1    |                |               |
|                  | clear ww to deckers                    | 563.73         |               |
|                  | JNC-TMP1 clear ww to deckers -> Line 1 |                |               |
|                  | Decker                                 |                | 563.73        |
|                  | JNC-TMP1 clear ww to deckers -> Line 2 |                |               |
| n                | Decker                                 |                | 563.73        |
|                  | JNC-TMP1 clear ww to deckers -> JNC-   |                |               |
|                  | TMP1 cloudy ww chest                   |                | 563.73        |
| JNC-TMP2 cloudy  | ww3                                    |                |               |
|                  | Line 3 Decker -> JNC-TMP2 cloudy ww3   | 1498.68        |               |
|                  | Line 4 Decker -> JNC-TMP2 cloudy ww3   | 1498.68        |               |
|                  | JNC-TMP2 cloudy ww3 -> JNC-TMP2        |                |               |
|                  | cloudy ww chest                        |                | 1498.68       |
| JNC-TMP2 clear w | /w2                                    |                |               |
|                  | Line 4 Decker -> JNC-TMP2 clear ww2    | 1000           |               |
|                  | Line 3 Decker -> JNC-TMP2 clear ww2    | 1000           |               |
|                  | JNC-TMP2 clear ww2 -> JNC-TMP2 clear   |                |               |
|                  | ww chest                               |                | 1000          |
| JNC-TMP2 clear w | /wl                                    |                |               |
|                  | JNC-TMP2 clear ww chest -> JNC-TMP2    |                |               |
|                  | clear ww1                              | 717.65         |               |
|                  | JNC-TMP2 clear ww1 -> Line 3 Decker    |                | 717.65        |
|                  | JNC-TMP2 clear ww1 -> Line 4 Decker    |                | 717.65        |
|                  | JNC-TMP2 clear ww1 -> JNC-TMP2         |                |               |
|                  | cloudy ww chest                        |                | 717.65        |

|                   |                                          | Concentration. | Concentration |
|-------------------|------------------------------------------|----------------|---------------|
|                   |                                          | IN             | OUT           |
| Node Name         | Streams In/Out                           | [ppm]          | [ppm]         |
| Cloudy ww2        |                                          |                |               |
|                   | TMP1 cloudy ww1 -> cloudy ww2            | 1567.95        |               |
|                   | TMP2 cloudy ww1 -> cloudy ww2            | 1348.38        |               |
|                   | Cloudy ww2 -> Reject System              |                | 1458.16       |
| TMP2 cloudy ww2   | 2                                        |                |               |
|                   | TMP2 cloudy ww1 -> TMP2 cloudy ww2       | 1348.38        |               |
|                   | TMP2 cloudy ww2 -> Line 4 Prim Refiner   |                | 1348.38       |
|                   | TMP2 cloudy ww2 -> Line 4 Sec Refiner    |                | 1348.38       |
|                   | TMP2 cloudy ww2 -> Line 3 Sec Refiner    |                | 1348.38       |
|                   | TMP2 cloudy ww2 -> Line 3 Prim Refiner   |                | 1348.38       |
| FMP2 cloudy ww1   |                                          |                |               |
|                   | JNC-TMP2 cloudy ww chest -> TMP2         |                |               |
|                   | cloudy ww1                               | 1348.38        |               |
|                   | TMP2 cloudy ww1 -> TMP2 cloudy ww2       |                | 1348.38       |
|                   | TMP2 cloudy ww1 -> TMP2 Latency &        |                |               |
|                   | screens                                  |                | 1348.38       |
|                   | TMP2 cloudy ww1 -> cloudy ww1            |                | 1348.38       |
|                   | TMP2 cloudy ww1 -> cloudy ww2            |                | 1348.38       |
| TMP2 Latency & s  |                                          |                |               |
|                   | JNC-TMP2 sec ref to latency -> TMP2      |                |               |
|                   | Latency & screens                        | 35794.14       |               |
|                   | TMP2 cloudy ww1 -> TMP2 Latency &        |                |               |
|                   | screens                                  | 1348.38        |               |
|                   | TMP2 Latency & screens -> JNC-TMP2       |                |               |
|                   | latency to deckers                       |                | 12000         |
|                   | TMP2 Latency & screens -> JNC-latency    |                |               |
|                   | steam                                    |                | 0             |
|                   | TMP2 Latency & screens -> JNC-latency to |                |               |
|                   | rej sys                                  |                | 45651.42      |
| INC-latency steam | 1                                        |                |               |
|                   | TMP1 Latency & screens -> JNC-latency    |                |               |
|                   | steam                                    | 0              |               |
|                   | TMP2 Latency & screens -> JNC-latency    |                |               |
|                   | steam                                    | 0              |               |
|                   | JNC-latency steam -> Latency steam       |                | 0             |

|                    |                                             | Concentration. | Concentration |
|--------------------|---------------------------------------------|----------------|---------------|
|                    |                                             | IN             | OUT           |
| Node Name          | Streams In/Out                              | [ppm]          | [ppm]         |
| MP1 cloudy ww1     |                                             |                |               |
|                    | JNC-TMP1 cloudy ww chest -> TMP1            |                |               |
|                    | cloudy ww1                                  | 1567.95        |               |
|                    | TMP1 cloudy ww1 -> TMP1 cloudy ww2          |                | 1567.95       |
|                    | TMP1 cloudy ww1 -> TMP1 Latency &           |                |               |
|                    | screens                                     |                | 1567.95       |
|                    | TMP1 cloudy ww1 -> cloudy ww2               |                | 1567.95       |
|                    | TMP1 cloudy ww1 -> cloudy ww1               |                | 1567.95       |
| NC- cloudy ww to   | o chip washer                               |                |               |
|                    | TMP1 cloudy ww1 -> cloudy ww1               | 1567.95        |               |
|                    | TMP2 cloudy ww1 -> cloudy ww1               | 1348.38        |               |
|                    | JNC- cloudy ww to chip washer -> chip       |                |               |
|                    | washer                                      |                | 1526.8        |
| INC-latency to rej | sys                                         |                |               |
|                    | TMP1 Latency & screens -> JNC-latency to    |                |               |
|                    | rej sys                                     | 46722.53       |               |
|                    | TMP2 Latency & screens -> JNC-latency to    |                |               |
|                    | rej sys                                     | 45651.42       |               |
|                    | JNC-latency to rej sys -> Reject System     |                | 46186.97      |
| JNC-Hydros         |                                             |                |               |
|                    | Hydros -> JNC-Hydros                        | 0              |               |
|                    | JNC-Hydros -> Line 1 Decker                 |                | 0             |
|                    | JNC-Hydros -> Line 2 Decker                 |                | 0             |
|                    | JNC-Hydros -> Line 4 Decker                 |                | 0             |
|                    | JNC-Hydros -> Line 3 Decker                 |                | 0             |
| Sealing water      |                                             |                |               |
|                    | Fresh water jnc -> Sealing water            | 0              |               |
|                    | Sealing water -> JNC-sealing water to clear |                |               |
|                    | ww                                          |                | 0             |
|                    | Sealing water -> sealing water to drain     |                | 0             |
| JNC-sealing wate   | r to clear ww                               |                | <u> </u>      |
|                    | Sealing water -> JNC-sealing water to clear |                |               |
|                    | ww                                          | 0              |               |
|                    | JNC-sealing water to clear ww -> JNC-       |                |               |
|                    | TMP1 clear ww chest                         |                | 0             |

|                                       |                                           | Concentration. | Concentration |
|---------------------------------------|-------------------------------------------|----------------|---------------|
|                                       |                                           | IN             | OUT           |
| Node Name                             | Streams In/Out                            | [ppm]          | [ppm]         |
|                                       | JNC-sealing water to clear ww -> JNC-     |                |               |
|                                       | TMP2 clear ww chest                       |                | 0             |
| Cooling tower                         |                                           |                |               |
|                                       | [Make-up] -> cooling tower                | 0              |               |
|                                       | Cooling tower -> [Losses]                 |                | 0             |
|                                       | Cooling tower -> [Evapor.]                |                | 0             |
|                                       | Cooling tower -> [Blowdown]               |                | 0             |
| RFP Pulping                           |                                           |                |               |
|                                       | RFP waste paper -> RFP Pulping            | 900000         |               |
|                                       | RFP cloudy filtrate jnc2 -> RFP Pulping   | 1010.41        |               |
|                                       | RFP Pulping -> RFP-HD cleaning            |                | 50000         |
|                                       | RFP Pulping -> RFP rej jnc1               |                | 6805.88       |
| RFP-HD cleaning                       |                                           |                |               |
|                                       | RFP Pulping -> RFP-HD cleaning            | 50000          |               |
|                                       | RFP cloudy filtrate jnc2 -> RFP-HD        |                |               |
|                                       | cleaning                                  | 1010.41        |               |
|                                       | RFP-HD cleaning -> RFP coarse screens     |                | 30000         |
|                                       | RFP-HD cleaning -> RFP rej jnc1           |                | 104398.43     |
| RFP coarse screens                    |                                           |                |               |
|                                       | RFP-HD cleaning -> RFP coarse screens     | 30000          |               |
|                                       | RFP cloudy filtrate jnc2 -> RFP coarse    |                |               |
|                                       | screens                                   | 1010.41        |               |
|                                       | RFP coarse screens -> RFP flotation       |                | 28126         |
|                                       | RFP coarse screens -> RFP rej jnc1        |                | 147585.97     |
| RFP flotation                         |                                           |                |               |
|                                       | RFP coarse screens -> RFP flotation       | 28126          |               |
|                                       | RFP cloudy filtrate jnc2 -> RFP flotation | 1010.41        |               |
|                                       | RFP flotation chemicals -> RFP flotation  | 0              |               |
|                                       | RFP flotation -> RFP gyro cleaners        |                | 13133.44      |
|                                       | RFP flotation -> RFP rejects jnc2         |                | 8243.77       |
| RFP gyro cleaners                     |                                           |                |               |
|                                       | RFP flotation -> RFP gyro cleaners        | 13133.44       |               |
|                                       | RFP clear ww jnc -> RFP gyro cleaners     | 0              |               |
| · · · · · · · · · · · · · · · · · · · | RFP gyro cleaners -> RFP centri cleaners  |                | 11000         |
|                                       | RFP gyro cleaners -> RFP rejects jnc2     |                | 16362.63      |

|                     |                                          | Concentration. | Concentration |
|---------------------|------------------------------------------|----------------|---------------|
|                     |                                          | IN             | OUT           |
| Node Name           | Streams In/Out                           | [ppm]          | [ppm]         |
| RFP centri cleaners |                                          |                |               |
|                     | RFP gyro cleaners -> RFP centri cleaners | 11000          |               |
|                     | RFP clear ww jnc -> RFP centri cleaners  | 0              |               |
|                     | RFP centri cleaners -> RFP fine screens  |                | 8000          |
|                     | RFP centri cleaners -> RFP rejects jnc2  |                | 10010.09      |
| RFP fine screens    |                                          |                |               |
|                     | RFP centri cleaners -> RFP fine screens  | 8000           |               |
|                     | RFP clear ww jnc -> RFP fine screens     | 0              |               |
|                     | RFP cloudy ww jnc -> RFP fine screens    | 0              |               |
|                     | RFP fine screens -> RFP disc filter      |                | 7692.31       |
|                     | RFP fine screens -> RFP rejects jnc2     |                | 0             |
| RFP disc filter     |                                          |                |               |
|                     | RFP fine screens -> RFP disc filter      | 7692.31        |               |
|                     | RFP Temp jnc -> RFP disc filter          | 0              |               |
|                     | RFP clear ww jnc -> RFP disc filter      | 0              |               |
|                     | RFP disc filter -> RFP wire pulp press   |                | 50372.61      |
|                     | RFP disc filter -> RFP clear ww jnc      |                | 0             |
|                     | RFP disc filter -> RFP cloudy ww jnc     |                | 1176          |
| RFP wire pulp press |                                          |                |               |
|                     | RFP disc filter -> RFP wire pulp press   | 50372.61       |               |
|                     | PM ww to RFP jnc -> RFP wire pulp press  | 612            |               |
|                     | RFP wire pulp press -> RFP disperser     |                | 294000        |
|                     | RFP wire pulp press -> RFP cloudy ww jnc |                | 1806.87       |
| RFP disperser       |                                          |                |               |
|                     | RFP wire pulp press -> RFP disperser     | 294000         |               |
|                     | PM ww to RFP jnc -> RFP disperser        | 612            |               |
|                     | Feed steam jnc -> RFP disperser          | 0              |               |
|                     | RFP disperser -> pulp jnc                |                | 39738.72      |
| Pulp jnc            |                                          |                |               |
|                     | RFP disperser -> pulp jnc                | 39738.72       |               |
|                     | JNC-pulp to storage -> pulp jnc          | 39600          |               |
|                     | Pulp jnc -> PM5 Blend chest              |                | 39634.21      |
|                     | Pulp jnc -> PM4 Blend chest              |                | 39634.21      |

|                   |                                          | Concentration. | Concentration |
|-------------------|------------------------------------------|----------------|---------------|
|                   |                                          | IN             | OUT           |
| Node Name         | Streams In/Out                           | [ppm]          | [ppm]         |
|                   | RFP rejects jnc2 -> RFP rej jnc3         | 6798.62        |               |
|                   | RFP rej jnc1 -> RFP rej jnc3             | 15628.95       |               |
|                   | RFP rej jnc3 -> RPF rejects              |                | 13033.62      |
| RFP rejects jnc2  |                                          |                |               |
|                   | RFP fine screens -> RFP rejects jnc2     | 0              |               |
|                   | RFP centri cleaners -> RFP rejects jnc2  | 10010.09       |               |
|                   | RFP flotation -> RFP rejects jnc2        | 8243.77        |               |
|                   | RFP gyro cleaners -> RFP rejects jnc2    | 16362.63       |               |
|                   | RFP rejects jnc2 -> RFP rej jnc3         |                | 6798.62       |
| RFP clear ww jnc  |                                          |                |               |
|                   | RFP Temp jnc -> RFP clear ww jnc         | 0              |               |
|                   | RFP disc filter -> RFP clear ww jnc      | 0              |               |
|                   | RFP clear ww jnc -> RFP fine screens     |                | 0             |
|                   | RFP clear ww jnc -> RFP centri cleaners  |                | 0             |
|                   | RFP clear ww jnc -> RFP gyro cleaners    |                | 0             |
|                   | RFP clear ww jnc -> RFP disc filter      |                | 0             |
|                   | RFP clear ww jnc -> RFP cloudy ww jnc    |                | 0             |
| RFP cloudy ww jnc |                                          |                |               |
|                   | PM ww to RFP jnc -> RFP cloudy ww jnc    | 612            |               |
|                   | RFP disc filter -> RFP cloudy ww jnc     | 1176           |               |
|                   | RFP wire pulp press -> RFP cloudy ww jnc | 1806.87        |               |
|                   | RFP clear ww jnc -> RFP cloudy ww jnc    | 0              |               |
|                   | RFP cloudy ww jnc -> RFP fine screens    |                | 0             |
|                   | RFP cloudy ww jnc -> RFP cloudy filtrate |                |               |
|                   | jnc2                                     |                | 1010.41       |
| RFP Temp jnc      |                                          |                |               |
|                   | Fresh water jnc -> RFP Temp jnc          | 0              |               |
|                   | RFP Temp jnc -> RFP clear ww jnc         |                | 0             |
|                   | RFP Temp jnc -> RFP disc filter          |                | 0             |
| PM ww to RFP jnc  |                                          |                |               |
|                   | PM ww to pulp mill jnc -> PM ww to RFP   |                |               |
|                   | jnc                                      | 612            |               |
|                   | PM ww to RFP jnc -> RFP cloudy ww jnc    |                | 612           |
|                   | PM ww to RFP jnc -> RFP wire pulp press  |                | 612           |

|                       |                                           | Concentration. | Concentration |
|-----------------------|-------------------------------------------|----------------|---------------|
|                       |                                           | IN             | OUT           |
| Node Name             | Streams In/Out                            | [ppm]          | [ppm]         |
|                       | PM ww to RFP jnc -> RFP disperser         |                | 612           |
| RFP cloudy filtrate j | nc2                                       |                |               |
|                       | RFP cloudy ww jnc -> RFP cloudy filtrate  |                |               |
|                       | jnc2                                      | 1010.41        |               |
|                       | RFP cloudy filtrate jnc2 -> RFP flotation |                | 1010.41       |
|                       | RFP cloudy filtrate jnc2 -> RFP coarse    |                |               |
|                       | screens                                   |                | 1010.41       |
|                       | RFP cloudy filtrate jnc2 -> RFP-HD        |                |               |
|                       | cleaning                                  |                | 1010.41       |
|                       | RFP cloudy filtrate jnc2 -> RFP Pulping   |                | 1010.41       |
| RFP rej jncl          | I                                         |                |               |
|                       | RFP-HD cleaning -> RFP rej jnc1           | 104398.43      |               |
|                       | RFP coarse screens -> RFP rej jnc1        | 147585.97      |               |
|                       | RFP Pulping -> RFP rej jnc1               | 6805.88        |               |
|                       | RFP rej jnc1 -> RFP rej jnc3              |                | 15628.95      |
| PM4 Blend chest       |                                           |                |               |
|                       | Fresh water to PM4 jnc -> PM4 Blend chest | 0              |               |
|                       | Pulp jnc -> PM4 Blend chest               | 39634.21       |               |
|                       | LF jnc -> PM4 Blend chest                 | 38000          |               |
|                       | JNC-broke to PM's -> PM4 Blend chest      | 39200          |               |
|                       | PM4 Blend chest -> JNC-PM4 Blend to silo  | )              | 40000         |
|                       | PM4 Blend chest -> PM4 saveall            |                | 37812.88      |
| PM4 silo              |                                           |                |               |
|                       | JNC-PM4 Blend to silo -> PM4 silo         | 42071.44       |               |
|                       | PM4 forming section -> PM4 silo           | 3533.89        |               |
|                       | PM4 silo -> PM4 cleaners & deculator      |                | 9518.09       |
| PM4 cleaners & dec    | culator                                   |                |               |
|                       | PM4 silo -> PM4 cleaners & deculator      | 9518.09        |               |
|                       | PM4 cleaners & deculator -> PM4 screens   |                | 9000          |
|                       | PM4 cleaners & deculator -> PM4 ww to     |                |               |
|                       | drain jnc                                 |                | 19361.73      |
| PM4 screens           | 1                                         |                |               |
|                       | PM4 cleaners & deculator -> PM4 screens   | 9000           | <u> </u>      |
|                       | PM4 screens -> PM4 headbox                |                | 8895.7        |
|                       | PM4 screens -> PM4 ww to drain jnc        |                | 10981.76      |

|                     |                                          | Concentration. | Concentration |
|---------------------|------------------------------------------|----------------|---------------|
|                     |                                          | IN             | OUT           |
| Node Name           | Streams In/Out                           | [ppm]          | [ppm]         |
| PM4 headbox         |                                          |                |               |
|                     | PM4 screens -> PM4 headbox               | 8895.7         |               |
|                     | Fresh water to PM4 jnc -> PM4 headbox    | 0              |               |
|                     | PM4 headbox -> PM4 forming section       |                | 8820          |
| PM4 forming section | on                                       |                |               |
|                     | PM4 headbox -> PM4 forming section       | 8820           |               |
|                     | Fresh water to PM4 jnc -> PM4 forming    |                |               |
|                     | section                                  | 0              |               |
|                     | JNC-PM4 clear chest -> PM4 forming       |                |               |
|                     | section                                  | 300            |               |
|                     | PM4 forming section -> PM4 press section |                | 200000        |
|                     | PM4 forming section -> PM4 ww jnc2       |                | 2475          |
|                     | PM4 forming section -> PM4 silo          |                | 3533.89       |
| PM4 press section   |                                          |                |               |
|                     | PM4 forming section -> PM4 press section | 200000         |               |
|                     | Fresh water to PM4 jnc -> PM4 press      |                |               |
|                     | section                                  | 0              |               |
|                     | PM4 press section -> PM4 dryers          |                | 400000        |
|                     | PM4 press section -> PM4 ww jnc2         |                | 0             |
| PM4 dryers          |                                          |                |               |
|                     | PM4 press section -> PM4 dryers          | 400000         |               |
|                     | PM4 dryers -> dryer steam evap jnc       |                | 0             |
|                     | PM4 dryers -> final paper jnc            |                | 921481.48     |
| Dryer steam evap ji |                                          |                |               |
|                     | PM4 dryers -> dryer steam evap jnc       | 0              |               |
|                     | PM5 dryers -> dryer steam evap jnc       | 0              |               |
|                     | Dryer steam evap jnc -> evaporation      |                | 0             |
| Final paper jnc     |                                          |                |               |
|                     | PM4 dryers -> final paper jnc            | 921481.48      |               |
|                     | PM5 dryers -> final paper jnc            | 921481.48      |               |
|                     | Final paper jnc -> Paper                 |                | 921481.48     |
| PM5 dryers          |                                          |                |               |
|                     | PM5 press section -> PM5 dryers          | 400000         |               |
|                     | PM5 dryers -> dryer steam evap jnc       |                | 0             |
|                     | PM5 dryers -> final paper jnc            |                | 921481.48     |

-

|                    |                                           | Concentration. | Concentration |
|--------------------|-------------------------------------------|----------------|---------------|
|                    |                                           | IN             | OUT           |
| Node Name          | Streams In/Out                            | [ppm]          | [ppm]         |
| PM5 press section  |                                           |                |               |
|                    | PM5 forming section -> PM5 press section  | 200000         |               |
|                    | Fresh water to PM5 jnc -> PM5 press       |                |               |
|                    | section                                   | 0              |               |
|                    | PM5 press section -> PM5 dryers           |                | 400000        |
|                    | PM5 press section -> PM5 ww jnc2          |                | 0             |
| PM5 forming sectio | n                                         |                |               |
|                    | PM5 headbox -> PM5 forming section        | 8820           |               |
|                    | Fresh water to PM5 jnc -> PM5 forming     |                |               |
|                    | section                                   | 0              |               |
|                    | JNC-PM5 clear chest -> PM5 forming        |                |               |
|                    | section                                   | 300            |               |
|                    | PM5 forming section -> PM5 press section  |                | 200000        |
|                    | PM5 forming section -> PM5 ww jnc2        |                | 1405.29       |
|                    | PM5 forming section -> PM5 silo           |                | 3650.16       |
| PM5 headbox        |                                           |                |               |
|                    | PM5 screens -> PM5 headbox                | 8895.56        |               |
|                    | Fresh water to PM5 jnc -> PM5 headbox     | 0              |               |
|                    | PM5 headbox -> PM5 forming section        |                | 8820          |
| PM5 screens        |                                           |                |               |
|                    | PM5 cleaners & deculator -> PM5 screens   | 9000           |               |
|                    | PM5 screens -> PM5 headbox                |                | 8895.56       |
|                    | PM5 screens -> PM rej to drain jnc        |                | 10984.31      |
| PM5 cleaners & dec | culator                                   |                |               |
|                    | PM5 silo -> PM5 cleaners & deculator      | 9617.29        |               |
|                    | PM5 cleaners & deculator -> PM5 screens   |                | 9000          |
|                    | PM5 cleaners & deculator -> PM rej to     |                |               |
|                    | drain jnc                                 |                | 21345.77      |
| PM5 silo           | •                                         |                |               |
|                    | JNC-PM5 blend chest to silo -> PM5 silo   | 41537.95       |               |
|                    | PM5 forming section -> PM5 silo           | 3650.16        |               |
|                    | PM5 silo -> PM5 cleaners & deculator      |                | 9617.29       |
| PM5 Blend chest    |                                           |                | <u> </u>      |
|                    | Fresh water to PM5 jnc -> PM5 Blend chest | 0              | <u> </u>      |
|                    | Pulp jnc -> PM5 Blend chest               | 39634.21       | <u> </u>      |

|             |                                        | Concentration. | Concentration |
|-------------|----------------------------------------|----------------|---------------|
|             | 146 1                                  | IN             | OUT           |
| Node Name   | Streams In/Out                         | [ppm]          | [ppm]         |
|             | LF jnc -> PM5 Blend chest              | 38000          |               |
|             | JNC-broke to PM's -> PM5 Blend chest   | 39200          |               |
|             | PM5 Blend chest -> PM5 saveall         |                | 37769.14      |
|             | PM5 Blend chest -> JNC-PM5 blend chest |                |               |
|             | to silo                                |                | 40000         |
| PM ww jnc   |                                        |                |               |
|             | PM ww jnc1 -> PM ww jnc                | 1319.89        |               |
|             | Cooling -> PM ww jnc                   | 0              |               |
|             | Fresh water to PMs jnc -> PM ww jnc    | 0              |               |
|             | PM ww jnc -> PM rej to drain jnc       |                | 0             |
|             | PM ww jnc -> PM ww to pulp mill jnc    |                | 612           |
|             | PM ww jnc -> LF jnc                    |                | 612           |
| PM5 ww jnc2 |                                        |                |               |
|             | PM5 press section -> PM5 ww jnc2       | 0              |               |
|             | PM5 forming section -> PM5 ww jnc2     | 1405.29        |               |
|             | PM5 ww jnc2 -> PM ww jnc1              |                | 1005.93       |
| PM4 ww jnc2 |                                        |                |               |
|             | PM4 forming section -> PM4 ww jnc2     | 2475           |               |
|             | PM4 press section -> PM4 ww jnc2       | 0              |               |
|             | PM4 ww jnc2 -> PM ww jnc1              |                | 1676.37       |
| PM ww incl  |                                        |                |               |
|             | Fresh water to PMs jnc -> PM ww jnc1   | 0              |               |
|             | PM5 ww jnc2 -> PM ww jnc1              | 1005.93        |               |
|             | PM4 ww jnc2 -> PM ww jnc1              | 1676.37        |               |
|             | PM ww jnc1 -> PM ww jnc                |                | 1319.89       |
|             | PM ww jncl -> PM4 ww jncl              |                | 1319.89       |
| ·           | PM ww jnc1 -> PM5 ww jnc1              |                | 1319.89       |
| PM4 ww jncl |                                        |                |               |
|             | JNC-PM4 cloudy chest -> PM4 ww jnc1    | 600            |               |
|             | JNC-PM4 clear chest -> PM4 ww jnc1     | 300            |               |
|             | PM ww jnc1 -> PM4 ww jnc1              | 1319.89        |               |
|             | PM4 ww jnc1 -> PM4 ww jnc1             |                | 673.29        |
| D) (6       |                                        |                |               |
| PM5 ww jnc1 |                                        | 200            |               |
|             | JNC-PM5 clear chest -> PM5 ww jnc1     | 300            |               |

|                     |                                            | Concentration. | Concentration |
|---------------------|--------------------------------------------|----------------|---------------|
|                     |                                            | IN             | OUT           |
| Node Name           | Streams In/Out                             | [ppm]          | [ppm]         |
|                     | JNC-PM5 cloudy chest -> PM5 ww jnc1        | 600            |               |
|                     | PM ww jnc1 -> PM5 ww jnc1                  | 1319.89        |               |
|                     | PM5 ww jnc1 -> PM5 saveall                 |                | 692.42        |
| PM rej to drain jnc |                                            |                |               |
|                     | PM5 cleaners & deculator -> PM rej to      |                |               |
|                     | drain jnc                                  | 21345.77       |               |
|                     | PM5 screens -> PM rej to drain jnc         | 10984.31       |               |
|                     | PM ww jnc -> PM rej to drain jnc           | 0              |               |
|                     | PM4 ww to drain jnc -> PM rej to drain jnc | 15279.18       |               |
|                     | PM rej to drain jnc -> Drain               |                | 15788.98      |
| PM4 ww to drain jr  | nc                                         |                |               |
|                     | PM4 screens -> PM4 ww to drain jnc         | 10981.76       |               |
|                     | PM4 cleaners & deculator -> PM4 ww to      |                | -             |
|                     | drain jnc                                  | 19361.73       |               |
|                     | PM4 ww to drain jnc -> PM rej to drain jnc |                | 15279.18      |
| Fresh water to PMs  | s jnc                                      |                |               |
|                     | Fresh water jnc -> fresh water to PMs jnc  | 0              |               |
|                     | Fresh water to PMs jnc -> fresh water to   |                |               |
|                     | PM4 jnc                                    |                | 0             |
|                     | Fresh water to PMs jnc -> fresh water to   | ,              |               |
| · · · ·             | PM5 jnc                                    |                | 0             |
|                     | Fresh water to PMs jnc -> PM ww jnc1       |                | 0             |
|                     | Fresh water to PMs jnc -> PM ww jnc        |                | 0             |
| Fresh water to PM4  | 4 jnc                                      |                |               |
|                     | Fresh water to PMs jnc -> fresh water to   | )              |               |
|                     | PM4 jnc                                    | 0              |               |
|                     | Fresh water to PM4 jnc -> PM4 headbox      |                | 0             |
|                     | Fresh water to PM4 jnc -> PM4 Blend chest  | L              | 0             |
|                     | Fresh water to PM4 jnc -> PM4 forming      |                |               |
|                     | section                                    |                | 0             |
|                     | Fresh water to PM4 jnc -> PM4 press        |                |               |
|                     | section                                    |                | 0             |
| Fresh water to PM:  | 5 jnc                                      |                |               |
|                     | Fresh water to PMs jnc -> fresh water to   | )              |               |
|                     | PM5 jnc                                    | 0              |               |
|                     |                                            |                |               |

|                     |                                           | Concentration. | Concentration |
|---------------------|-------------------------------------------|----------------|---------------|
|                     |                                           | IŃ             | OUT           |
| Node Name           | Streams In/Out                            | [ppm]          | [ppm]         |
|                     | Fresh water to PM5 jnc -> PM5 Blend chest |                | 0             |
|                     | Fresh water to PM5 jnc -> PM5 headbox     |                | 0             |
|                     | Fresh water to PM5 jnc -> PM5 forming     |                |               |
|                     | section                                   |                | 0             |
|                     | Fresh water to PM5 jnc -> PM5 press       |                |               |
|                     | section                                   |                | 0             |
| LF jnc              |                                           |                |               |
|                     | LF to PMs -> LF jnc                       | 965463.61      |               |
|                     | PM ww jnc -> LF jnc                       | 612            |               |
|                     | LF jnc -> PM5 Blend chest                 |                | 38000         |
|                     | LF jnc -> PM4 Blend chest                 |                | 38000         |
| JNC-broke to PM's   |                                           |                |               |
|                     | Broke to PM's -> JNC-broke to PM's        | 924786.03      |               |
|                     | JNC-PM5 cloudy chest -> JNC-broke to      |                |               |
|                     | PM's                                      | 600            |               |
|                     | JNC-PM4 cloudy chest -> JNC-broke to      |                |               |
|                     | PM's                                      | 600            |               |
|                     | JNC-broke to PM's -> PM5 Blend chest      |                | 39200         |
|                     | JNC-broke to PM's -> PM4 Blend chest      |                | 39200         |
| NC-PM5 recovered f  | ibre chest                                |                |               |
|                     | PM5 saveall -> JNC-PM5 recovered fibre    |                |               |
|                     | chest                                     | 54744.89       |               |
|                     | JNC-PM5 cloudy chest -> JNC-PM5           |                |               |
|                     | recovered fibre chest                     | 600            |               |
|                     | JNC-PM5 recovered fibre chest -> JNC-     |                |               |
|                     | PM5 blend chest to silo                   |                | 43915.91      |
| PM5 saveall         |                                           |                |               |
|                     | PM5 Blend chest -> PM5 saveall            | 37769.14       |               |
|                     | PM5 ww jnc1 -> PM5 saveall                | 692.42         |               |
|                     | PM5 saveall -> JNC-PM5 recovered fibre    |                |               |
|                     | chest                                     |                | 54744.89      |
|                     | PM5 saveall -> JNC-PM5 cloudy chest       |                | 600           |
|                     | PM5 saveall -> JNC-PM5 clear chest        |                | 300           |
| INC-PM5 clear chest |                                           | _              |               |
|                     | PM5 saveall -> JNC-PM5 clear chest        | 300            |               |

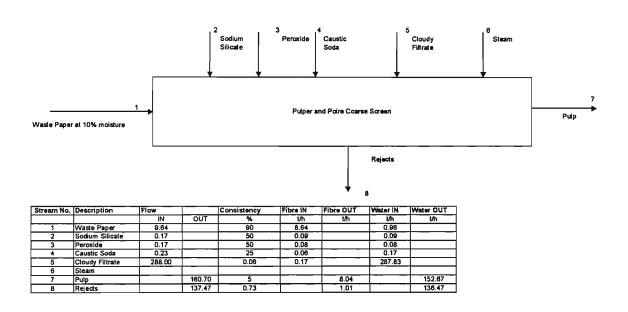
|                                          | Concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Streams In/Out                           | [ppm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ppm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| JNC-PM5 clear chest -> PM5 forming       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| section                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JNC-PM5 clear chest -> PM5 ww jnc1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| hest                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM5 saveall -> JNC-PM5 cloudy chest      | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-PM5 cloudy chest -> PM5 ww jnc1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JNC-PM5 cloudy chest -> JNC-PM5          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| recovered fibre chest                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JNC-PM5 cloudy chest -> JNC-broke to     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM's                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| est to silo                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM5 Blend chest -> JNC-PM5 blend chest   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| to silo                                  | 40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-PM5 recovered fibre chest -> JNC-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM5 blend chest to silo                  | 43915.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-PM5 blend chest to silo -> PM5 silo  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41537.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| silo                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM4 Blend chest -> JNC-PM4 Blend to silo | 40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-PM4 recovered fibre chest -> JNC-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM4 Blend to silo                        | 45284.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JNC-PM4 Blend to silo -> PM4 silo        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42071.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM4 Blend chest -> PM4 saveall           | 37812.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM4 ww incl -> PM4 saveall               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| chest                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55469.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PM4 saveall -> JNC-PM4 cloudy chest      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PM4 saveall -> JNC-PM4 clear chest       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| d fibre chest                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PM4 saveall -> JNC-PM4 recovered fibre   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| chest                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| recovered fibre chest                    | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JINC-                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                          | JNC-PM5 clear chest -> PM5 forming section         JNC-PM5 clear chest -> PM5 ww jnc1         hest         PM5 saveall -> JNC-PM5 cloudy chest         JNC-PM5 cloudy chest -> PM5 ww jnc1         JNC-PM5 cloudy chest -> JNC-PM5 recovered fibre chest         JNC-PM5 cloudy chest -> JNC-PM5 recovered fibre chest         JNC-PM5 cloudy chest -> JNC-broke to PM's         eest to silo         PM5 Blend chest -> JNC-PM5 blend chest to silo         JNC-PM5 recovered fibre chest -> JNC-PM5 blend chest to silo         JNC-PM5 blend chest to silo -> PM5 silo         silo         PM4 Blend chest -> JNC-PM4 Blend to silo         JNC-PM4 Recovered fibre chest -> JNC-PM4 Blend to silo         JNC-PM4 Blend to silo -> PM4 saveall         PM4 Blend chest -> PM4 saveall         PM4 ww jnc1 -> PM4 saveall         PM4 saveall -> JNC-PM4 cloudy chest         PM4 saveall -> JNC-PM4 recovered fibre chest         PM4 saveall -> JNC-PM4 cloudy chest         PM4 saveall -> JNC-PM4 cloudy chest         PM4 saveall -> JNC-PM4 cloudy chest         PM4 saveall -> JNC-PM4 recovered fibre chest         JNC-PM4 cloudy chest -> JNC-PM4 | IN       IN         Streams In/Out       [ppm]         JNC-PM5 clear chest -> PM5 forming section       INC-PM5 clear chest -> PM5 ww jnc1         INC-PM5 clear chest -> PM5 ww jnc1       Interpret the section         PM5 saveall -> JNC-PM5 cloudy chest       600         JNC-PM5 cloudy chest -> PM5 ww jnc1       Interpret the section         JNC-PM5 cloudy chest -> JNC-PM5       recovered fibre chest         JNC-PM5 cloudy chest -> JNC-broke to       PM's         est to silo       40000         JNC-PM5 recovered fibre chest -> JNC-PM5 blend chest to silo       43915.91         JNC-PM5 blend chest to silo -> PM5 silo       silo         Stilo       10000       10000         JNC-PM4 recovered fibre chest -> JNC-PM4 Blend to silo       40000         JNC-PM4 recovered fibre chest -> JNC-PM4 Blend to silo       40000         JNC-PM4 recovered fibre chest -> JNC-PM4 Blend to silo       45284.24         JNC-PM4 Blend to silo -> PM4 silo       45284.24         PM4 Blend chest -> PM4 saveall       37812.88         PM4 Blend chest -> JNC-PM4 recovered fibre chest       673.29         PM4 saveall -> JNC-PM4 cloudy chest       PM4 saveall -> JNC-PM4 cloudy chest         PM4 saveall -> JNC-PM4 recovered fibre chest       55469.34         MC-PM4 cloudy chest -> JNC-PM4 cloudy chest       554 |

Appendix A

-----

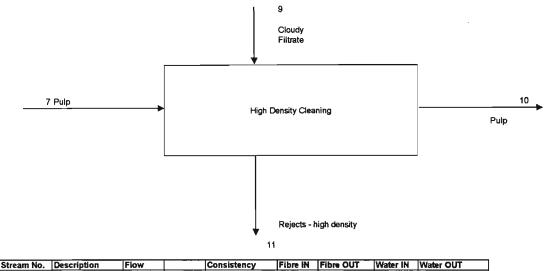
|                   |                                          | Concentration. | Concentration |
|-------------------|------------------------------------------|----------------|---------------|
| -                 |                                          | IN             | OUT           |
| Node Name         | Streams In/Out                           | [ppm]          | [ppm]         |
| INC-PM4 cloudy of | chest                                    |                |               |
|                   | PM4 saveall -> JNC-PM4 cloudy chest      | 600            |               |
|                   | JNC-PM4 cloudy chest -> JNC-broke to     |                |               |
|                   | PM's                                     |                | 600           |
|                   | JNC-PM4 cloudy chest -> PM4 ww jnc1      |                | 600           |
|                   | JNC-PM4 cloudy chest -> JNC-PM4          |                |               |
|                   | recovered fibre chest                    |                | 600           |
| NC-PM4 clear ch   | est                                      |                |               |
|                   | PM4 saveall -> JNC-PM4 clear chest       | 300            |               |
|                   | JNC-PM4 clear chest -> PM4 forming       |                |               |
|                   | section                                  |                | 300           |
|                   | JNC-PM4 clear chest -> PM4 ww jnc1       |                | 300           |
| INC-TMP1 cloudy   | ww chest                                 |                |               |
|                   | JNC-TMP1 clear ww to deckers -> JNC-     |                |               |
|                   | TMP1 cloudy ww chest                     | 563.73         |               |
|                   | JNC-TMP1 cloudy -> JNC-TMP1 cloudy       |                |               |
|                   | ww chest                                 | 1829.06        |               |
|                   | JNC-TMP1 cloudy ww chest -> TMP1         |                |               |
|                   | cloudy ww1                               |                | 1567.95       |
| INC-TMP1 clear v  | vw chest                                 |                |               |
|                   | JNC-TMP1 clear -> JNC-TMP1 clear ww      |                |               |
|                   | chest                                    | 581.28         |               |
|                   | JNC-tempered to clear ww -> JNC-TMP1     |                |               |
|                   | clear ww chest                           | 0              |               |
|                   | JNC-sealing water to clear ww -> JNC-    |                |               |
|                   | TMP1 clear ww chest                      | 0              |               |
|                   | PM ww to pulp mill jnc -> JNC-TMP1 clear |                |               |
|                   | ww chest                                 | 612            |               |
|                   | JNC-TMP1 clear ww chest -> JNC-TMP1      |                |               |
|                   | clear ww to deckers                      |                | 563.73        |
| JNC-TMP2 clear    | ww chest                                 |                |               |
|                   | PM ww to pulp mill jnc -> JNC-TMP2 clear |                |               |
|                   | ww chest                                 | 612            |               |
|                   | JNC-sealing water to clear ww -> JNC-    |                |               |
|                   | TMP2 clear ww chest                      | 0              |               |

A-43

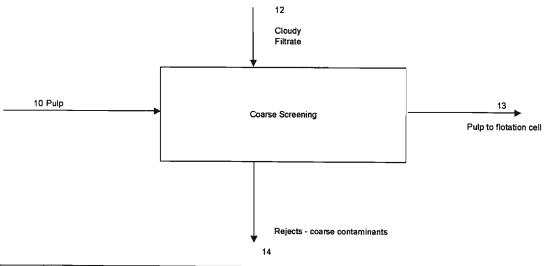

- -

----

· -

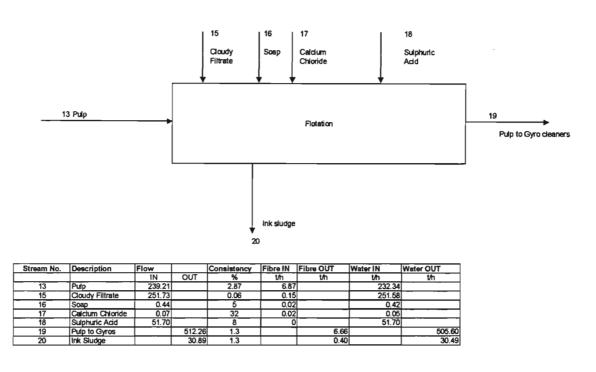

|                 |                                      | Concentration. | Concentration |
|-----------------|--------------------------------------|----------------|---------------|
|                 |                                      | IN             | OUT           |
| Node Name       | Streams In/Out                       | [ppm]          | [ppm]         |
|                 | JNC-tempered to clear ww -> JNC-TMP2 |                |               |
|                 | clear ww chest                       | 0              |               |
|                 | JNC-TMP2 clear ww2 -> JNC-TMP2 clear |                |               |
|                 | ww chest                             | 1000           |               |
|                 | JNC-TMP2 clear ww chest -> JNC-TMP2  |                |               |
|                 | clear wwl                            |                | 717.65        |
| JNC-TMP2 cloudy | ww chest                             |                |               |
| -               | JNC-TMP2 cloudy ww3 -> JNC-TMP2      |                |               |
|                 | cloudy ww chest                      | 1498.68        |               |
|                 | JNC-TMP2 clear ww1 -> JNC-TMP2       |                |               |
|                 | cloudy ww chest                      | 717.65         |               |
|                 | JNC-TMP2 cloudy ww chest -> TMP2     |                |               |
|                 | cloudy wwl                           |                | 1348.38       |

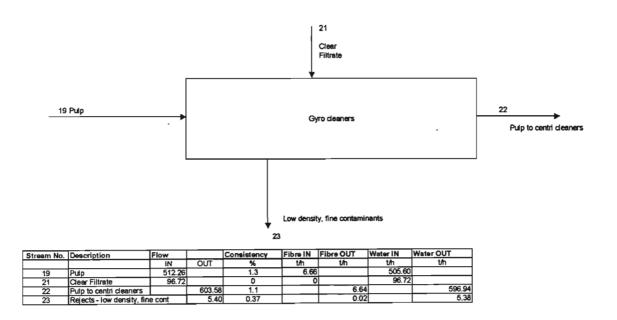
**Recycled Fibre Plant Water Balance** 



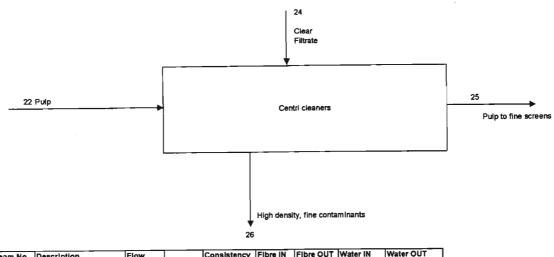

-

Appendix B

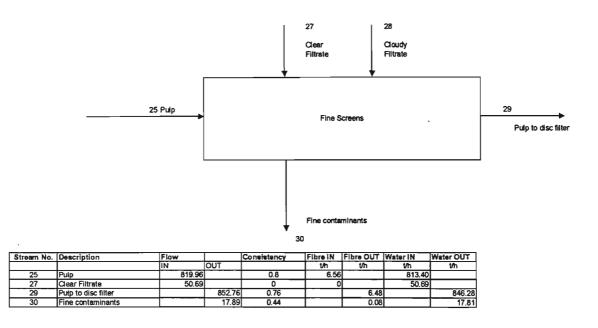




| Sucan no. | Description         | 1 10 10 |        | ounsistericy | h wie na |      | Water III | Travel OVI |
|-----------|---------------------|---------|--------|--------------|----------|------|-----------|------------|
|           |                     | IN      | OUT    | %            | t/h      |      | t/h       |            |
| 7         | Pulp                | 160.70  |        | 5            | 8.04     |      | 152.67    |            |
| 9         | Cloudy Filtrate     | 87.01   |        | 0.06         | 0.05     |      | 86.96     |            |
| 10        | Pulp to coarse scre | ens     | 238.38 | 3            |          | 7.15 |           | 231.23     |
| 11        | Rejects             |         | 9.34   | 10           |          | 0.93 |           | 8.40       |




| Stream No. | Description       | Flow   |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|-------------------|--------|--------|-------------|----------|-----------|----------|-----------|
|            |                   | IN     | OUT    | %           | t/h      |           | t/h      |           |
| 10         | Pulp              | 238.38 |        | 3           | 7.15     |           | 231.23   |           |
| 12         | Cloudy Filtrate   | 3.69   |        | 0.06        | 0        |           | 3.69     |           |
| 13         | Pulp to flotation |        | 239.21 | 2.87        |          | 6.87      |          | 232.34    |
| 14         | Rejects           |        | 2.86   | 10          |          | 0.29      |          | 2.57      |



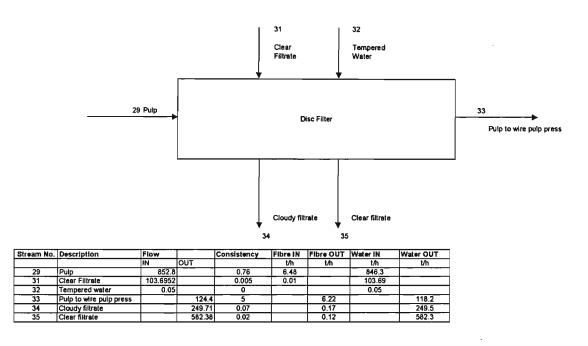


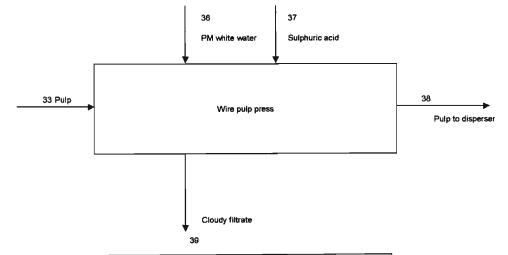



**B-3** 

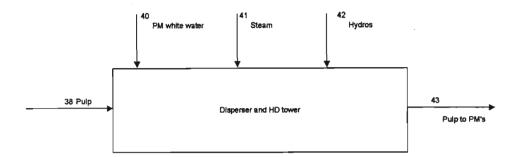


| Description                  | Flow                                           |                                                                          | Consistency                                                                                                                        | FIDRE IN                                                                                                                                                                       | FIDRE OUT                                                                                                                                                                                              | water in                                                                                                                                                                                                                                   | water 001                                                                                                                                                                                                                                                               |
|------------------------------|------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | IN                                             | τυο                                                                      | %                                                                                                                                  | t/h                                                                                                                                                                            | t/h                                                                                                                                                                                                    | t/h                                                                                                                                                                                                                                        | t/h                                                                                                                                                                                                                                                                     |
| Pulp                         | 603.58                                         |                                                                          | 1.1                                                                                                                                | 6.64                                                                                                                                                                           |                                                                                                                                                                                                        | 596.94                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                         |
| Clear Filtrate               | 224.35                                         |                                                                          | 0                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                                                                        | 224.35                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                         |
| Pulp to fine screens         |                                                | 819.96                                                                   | 0.8                                                                                                                                |                                                                                                                                                                                | 6.56                                                                                                                                                                                                   |                                                                                                                                                                                                                                            | 813.40                                                                                                                                                                                                                                                                  |
| Rejects - high density, fine | cont                                           | 7.97                                                                     | 1                                                                                                                                  |                                                                                                                                                                                | 0.08                                                                                                                                                                                                   |                                                                                                                                                                                                                                            | 7.89                                                                                                                                                                                                                                                                    |
|                              | Pulp<br>Clear Filtrate<br>Pulp to fine screens | IN           Pulp         603.58           Clear Filtrate         224.35 | IN         OUT           Pulp         603.58           Clear Filtrate         224.35           Pulp to fine screens         819.96 | IN         OUT         %           Pulp         603.58         1.1           Clear Filtrate         224.35         0           Pulp to fine screens         819.96         0.8 | IN         OUT         %         Vh           Pulp         603.58         1.1         6.64           Clear Filtrate         224.35         0           Pulp to fine screens         819.96         0.8 | IN         OUT         %         t/h         t/h           Pulp         603.58         1.1         6.64           Clear Filtrate         224.35         0         -           Pulp to fine screens         819.96         0.8         6.56 | IN         OUT         %         th         th         th           Pulp         603.58         1.1         6.64         596.94           Clear Filtrate         224.35         0         224.35           Pulp to fine screens         819.96         0.8         6.56 |





ار استان المسجد المحرب مستقل محمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد الم

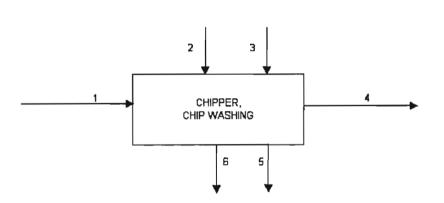
## Appendix **B**


and the second second

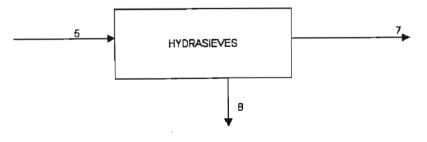




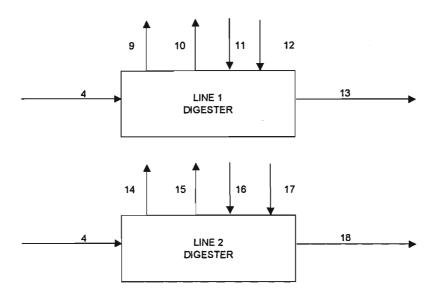



| Stream No. | Description       | Flow  |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|-------------------|-------|--------|-------------|----------|-----------|----------|-----------|
|            |                   | IN    | ουτ    |             | t/h      | t/h       | t/h      | t/h       |
| 33         | Pulp              | 124.4 |        | 5           | 6.22     |           | 118.2    |           |
| 36         | PM white water    | 43.2  |        | 0.01        | 0.0      |           | 43.2     |           |
| 38         | Pulp to disperser |       | 20.5   | 30          |          | 6.16      |          | 14.4      |
|            | Cloudy filtrate   |       | 147.11 | 0.05        |          | 0.07      |          | 147.0     |




| Stream No. | Description    | Total Flow |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|----------------|------------|--------|-------------|----------|-----------|----------|-----------|
|            |                | IN         | OUT    | %           | ťh       | t/h       | t/h      | t/h       |
| 38         | Pulp           | 20.5       |        | 30          | 6.16     |           | 14.4     |           |
| 40         | PM white water | 125.64     |        | 0           |          |           | 125.64   |           |
| 41         | Steam          | 7.5        |        | 0           |          |           | 7.5      |           |
| 42         | Hydros         | 0.35       |        | 10          | 0.04     |           | 0.32     | m ·       |
| 43         | Pulp to PM's   | _          | 153.99 | 4           |          | 6.16      |          | 147.83    |

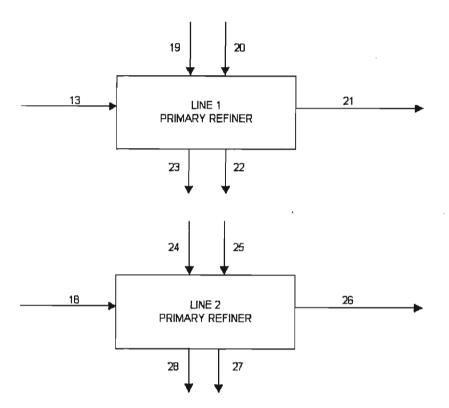
## Appendix C


## Thermo-mechanical Pulp Plant Water Balance



| Stream No. | Description                    | Flow   |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|--------------------------------|--------|--------|-------------|----------|-----------|----------|-----------|
|            |                                | IN     | OUT    | %           | t/h      | t/h       | t/h      | t/h       |
| 1          | Chips                          | 33.06  |        | 40          | 13.23    |           | 19.84    |           |
| 2          | Chip wash water                | 259.06 |        |             |          |           | 259.06   |           |
| 3          | Make up water                  | 16.13  |        |             |          |           | 16.13    |           |
| 4          | Chips                          |        | 35.57  | 37          |          | 13.16     |          | 22.41     |
| 5          | Chip wash water to hydrasieves |        | 272.52 |             |          |           |          | 272.52    |
| 6          | Chip losses                    |        | 0.18   | 37          |          | 0.07      |          | 0.11      |
|            |                                |        |        |             |          |           |          |           |



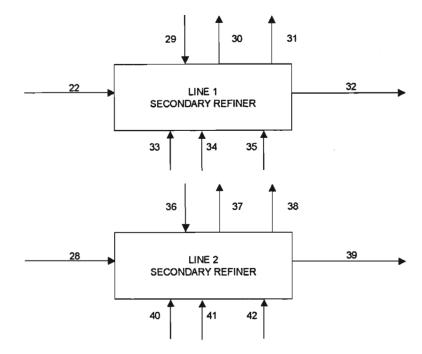

| Stream No. | Description                 | Flow |     | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|-----------------------------|------|-----|-------------|----------|-----------|----------|-----------|
| 54664110   |                             | IN   | OUT | %           | t/h      | t/h       | t∕h      | t/h       |
| 5          | chip wash water             | 273  |     |             |          |           | <u> </u> |           |
| 7          | accepts to chip washer tank |      | 259 |             |          |           | ļ        |           |
| B          | rejects to drain            |      | 13  |             |          |           |          |           |
|            |                             |      |     |             |          |           |          |           |



| Stream No. | Description                | Flow  |       | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|----------------------------|-------|-------|-------------|----------|-----------|----------|-----------|
|            |                            | IN    | OUT   | %           | t/h      | t/h       | t/h      | t/h       |
| 4          | chips                      | 17.78 |       | 37          | 6.58     |           | 11.20    |           |
| 9          | rotary valve exhaust steam |       | 0.11  |             |          |           |          | 0.11      |
| 10         | digester vent steam        |       | 0.24  |             |          |           |          | 0.24      |
| 11         | sodium sulphite            | 0.39  |       | 10          |          |           | 0.39     |           |
| 12         | steam (start-up)           | 2.00  |       |             |          |           | 2.00     |           |
| 13         | chips to refiner           |       | 20.25 | 32.5        |          | 6,58      |          | 13.67     |
|            |                            | 20    | 21    |             |          |           | 14       | 14        |

| Stream No. | Description                | Flow  |       | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|----------------------------|-------|-------|-------------|----------|-----------|----------|-----------|
|            |                            | IN    | OUT   | %           | t/h      | t/h       | t/h      | t/h       |
| 4          | chips                      | 17.78 |       | 37          | 6.58     |           | 11.20    |           |
| 14         | rotary valve exhaust steam |       | 0.11  |             |          |           |          | 0.11      |
| 15         | digester vent steam        |       | 0.24  |             |          |           |          | 0.24      |
| 16         | sodium sulphite            | 0.39  |       | 10          | 1        |           | 0.39     |           |
| 17         | steam (start-up)           | 2.00  |       |             |          |           | 2.00     |           |
| 18         | chips to refiner           |       | 20.25 | 32.5        |          | 6.58      |          | 13.67     |
|            |                            | 20    | 21    |             |          |           | 14       | . 14      |

Appendix C\_\_\_\_\_

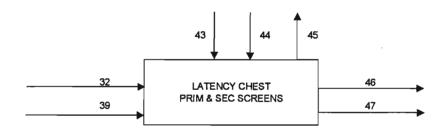



Line 1

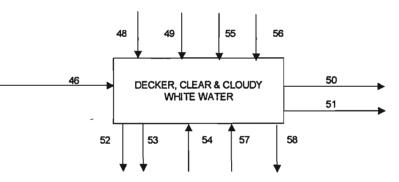
| Stream No. | Description               | Flow  |       | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|---------------------------|-------|-------|-------------|----------|-----------|----------|-----------|
|            |                           | IN    | OUT   | %           | t/h      | t/h       | t/h      | t/h       |
| 13         | chips from digester       | 20    |       | 32.5        | 6.58     |           | 13.67    |           |
| 19         | packing                   | 0.60  |       |             |          |           | 0.60     |           |
| 20         | plug wiper water          |       |       |             |          |           |          |           |
| 21         | pulp to secondary refiner |       | 17.59 | 37.4        |          | 6.58      |          | 11.01     |
| 22         | back flow steam           |       | 2.69  |             |          |           |          | 2.69      |
| 23         | gland water to drain      |       | 0.30  |             |          |           |          | 0.30      |
|            |                           | 20.85 | 20.59 |             | 6.58     | 6.58      | 14.27    | 14.01     |

Line 2

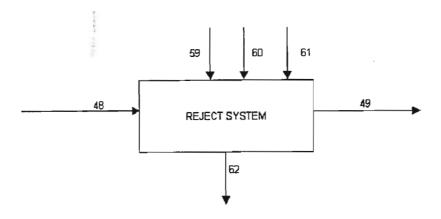
| Stream No. | Description               | Flow         |               | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|---------------------------|--------------|---------------|-------------|----------|-----------|----------|-----------|
|            |                           | IN           | OUT           | %           | t/h      | t/h       | t/h      | t/h       |
| 18         | chips from digester       | 20           |               | 32.5        | 6.58     |           | 13.67    |           |
| 24         | packing                   | D. <b>60</b> |               |             |          |           | D.60     |           |
| 25         | plug wiper water          |              |               |             |          |           |          |           |
| 26         | pulp to secondary refiner |              | 17.59         | 37.4        |          | 6.58      |          | 11.01     |
| 27         | back flow steam           |              | 2.69          |             |          |           |          | 2.69      |
| 28         | gland water to drain      |              | 0.30          |             |          |           |          | 0.30      |
|            |                           | 20.85        | 20. <b>59</b> |             | 6.58     | 6.59      | 14.27    | 14.01     |



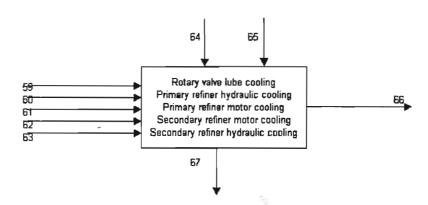

| L | ine | 1 |
|---|-----|---|
|   |     |   |


| Stream No. | Description               | Flow   |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|---------------------------|--------|--------|-------------|----------|-----------|----------|-----------|
|            |                           | IN     | OUT    | %           | t/h      | t/h       | t/h      | t/h       |
| 21         | pulp from primary refiner | 17.6   |        | 37.4        | 6.58     |           | 11.01    |           |
| 29         | quench water              | 8.50   |        |             |          |           | 8.50     |           |
| 30         | cyclone exhaust steam     |        | 9.68   |             |          |           |          | 9.68      |
| 31         | plug wiper water          |        |        |             |          |           | 0.00     |           |
| 32         | shower water              | 28.80  |        |             |          |           | 28.80    |           |
| 33         | sec dilution water        | 136.73 |        |             |          |           | 136.73   |           |
| 34         | pulp to latency chest     |        | 178.57 | 3.5         |          | 6.25      |          | 172.32    |
| 35         | Losses                    |        | 3.36   | 0.10        |          | 0.33      |          | 3.03      |
|            |                           | 191.62 | 191.62 |             | 6.58     | 6.58      | 185.04   | 185.04    |

Line 2


| Stream No. | Description               | Flow   |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|---------------------------|--------|--------|-------------|----------|-----------|----------|-----------|
| _          |                           | IN IN  | OUT    | %           | t/h      | t/h       | t/h      | t/h       |
| 26         | pulp from primary refiner | 17.6   |        | 37.4        | 6.58     |           | 11.01    |           |
| 36         | quench water              | 8.50   |        |             |          |           | 8.50     |           |
| 37         | cyclone exhaust steam     |        | 9.68   |             |          |           |          | 9.68      |
| 38         | plug wiper water          | _      |        |             |          |           | 0.00     |           |
| 39         | shower water              | 28,80  |        |             |          |           | 28.80    | _         |
| 40         | sec dilution water        | 136.73 | _      |             |          |           | 136.73   |           |
| 41         | pulp to latency chest     |        | 178.57 | 3.5         |          | 6.25      |          | 172.32    |
| 42         | Losses                    |        | 3.36   | 0.10        |          | 0.33      |          | 3.03      |
|            |                           | 191.62 | 191.62 |             | 6.58     | 6.58      | 185.04   | 185.04    |

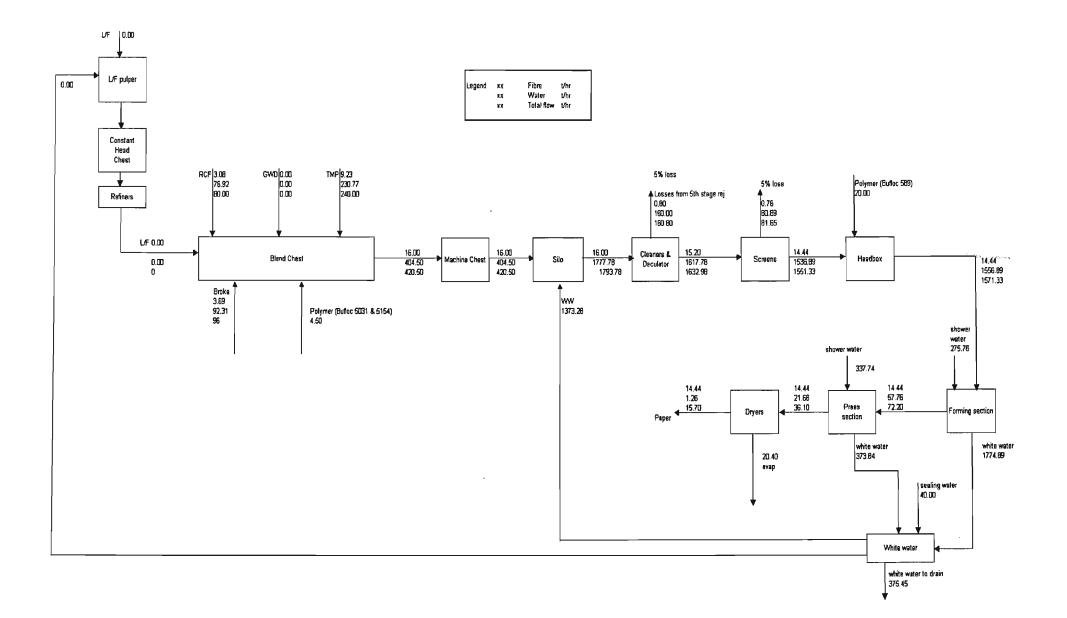



| Stream No. | Description                      | Flow   |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|----------------------------------|--------|--------|-------------|----------|-----------|----------|-----------|
|            |                                  | IN     | OUT    | %           | t/h      | t/h       | t/h      | t/h       |
| 32         | pulp from line 1 sec refiner     | 179    |        | 3.5         | 6.25     |           | 172.32   |           |
| 39         | pulp from line 2 sec refiner     | 179    |        | 3.5         | 6.25     |           | 172.32   |           |
| 43         | polymer                          | 1.00   |        |             |          |           | 1.00     |           |
| 44         | screen dilution                  | 548.25 |        | 0.01        | 0.04     |           | 548.21   |           |
| 45         | steam                            |        | 6.91   |             |          |           |          | 6.91      |
| 46         | pulp to deckers                  |        | 818.32 | 1.2         |          | 9.82      |          | 808.50    |
| 47         | sec screen rejects to rej system |        | 81.16  | 3.35        |          | 2.72      |          | 78.44     |
|            |                                  |        |        |             |          |           |          |           |
|            |                                  |        |        |             |          |           |          |           |
|            |                                  |        |        |             |          |           |          |           |



| Stream No. | Description                       | Flow   |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|-----------------------------------|--------|--------|-------------|----------|-----------|----------|-----------|
|            |                                   | iN     | OUT    | %           | t/h      | t/h       | t/h      | t/h       |
| 46         | pulp from prim screens            | 818    |        | 1.2         | 9.82     |           | 808.50   |           |
| 48         | pulp from rej screens             | 258.58 |        | 1.2         | 3.10     |           | 255.48   |           |
| 49         | shower water                      | 240.00 |        |             |          |           | 240.00   |           |
| 50         | clear ww                          |        | 199.90 |             |          |           |          | 199.9     |
| 51         | cloudy ww                         |        | 799.62 |             |          |           |          | 799.6     |
| 52         | pulp to storage tower             |        | 323.07 | 4.0         |          | 12.92     |          | 310.1     |
| 53         | losses from clear ww screens      |        | 6.00   | 0.2         |          | 0.01      |          | 5.8       |
| 54         | hydros                            | 0.20   |        |             |          |           | 0.20     |           |
| 55         | sealing water to mech seals on pr | 3.96   |        |             |          |           | 3.96     |           |
| 56         | sealing water to pumps            | 6.00   |        |             |          |           | 6.00     |           |
| 57         | sealing water to agitators        | 8.64   |        |             |          |           | 8.64     |           |
| 58         | sealing water to drain            |        | 7.31   |             |          |           |          | 7.3       |




| Stream No. | Description                     | Flow  |        | Consistency | Fibre IN | Fibre OUT | Water IN | Water OUT |
|------------|---------------------------------|-------|--------|-------------|----------|-----------|----------|-----------|
|            |                                 | IN    | OUT    | %           | t/h      | t/h       | t/h      | t/h       |
| 48         | sec screen rejects              | 162   |        | 3.35        | 5.44     |           | 156.88   |           |
| 59         | cloudy ww for ref disc flushing | 0.48  |        |             |          |           | D.48     |           |
| 60         | dilution into refined chest     | 191   |        |             |          |           | 191.28   |           |
| 61         | GWD systems 1&2                 | 36.76 |        | 2           | 0.74     |           | 36.03    |           |
| 49         | pulp to deckers                 |       | 517.16 | 1.2         |          | 6.21      |          | 510.95    |
| 62         | rejects from pressure screen    |       | 25.50  | 0.62        |          | 0.16      |          | 25.34     |
|            |                                 |       |        |             |          |           |          |           |
|            |                                 |       |        |             |          |           |          |           |
|            |                                 |       |        |             |          |           |          |           |



| Stream No. | Description                       | Flow   |     | Consistency | Fibre IN | Fibre OUT   | Water IN | Water OUT |
|------------|-----------------------------------|--------|-----|-------------|----------|-------------|----------|-----------|
|            |                                   | IN     | OUT | %           | t/h      | t/h         | t/h      | t/h       |
| 59         | Rotary valve lube cooling         | 5.76   |     |             |          |             | 5.76     |           |
| 60         | Primary refiner hydraulic cooling | 27.36  |     |             |          | 1           | 27.36    |           |
| 61         | Prim refiner motor cooling        | 172.80 |     |             |          |             | 172.80   |           |
| 62         | Sec refiner motor cooling         | 172.80 |     |             |          |             | 172.80   |           |
|            | Sec refiner hydraulic cooling     | 27.36  |     |             |          |             | 27.36    |           |
| 64         | Chipper lube cooling              |        |     |             |          |             |          |           |
| 65         | Reject refiner motor cooling      | 172.80 |     |             |          | · · · · · · | 172.80   |           |
| 66         | to cooling towers                 |        |     |             |          |             |          |           |
| 67         | to PM4 and PM5                    |        |     |             |          | -           |          |           |
|            |                                   |        |     |             |          | 1 -         |          | -         |

# Appendix D

Paper Machine Water Balance



## Appendix E

|             | Current condition |        |             | Optimised condition |        |
|-------------|-------------------|--------|-------------|---------------------|--------|
| Source      | Sink              | Flow   | Source      | Sink                | Flow   |
| Chip Washer | Chip washer       | 376.15 | Chip Washer | Chip Washer         | 376.15 |
| Chip Washer | Effluent          | 19.55  | Chip Washer | Effluent            | 19.55  |
| Cooling     | Cooling           | 540    | Cooling     | Cooling             | 540    |
| Cooling     | Process Water     | 19.46  | Cooling     | Cooling             | 19.46  |
| Fresh Water | Cooling           | 20     | Fresh Water | Cooling             | 0.54   |
| Fresh Water | Line1 Decker      | 120    | Fresh Water | Line1 Decker        | 37.32  |
|             |                   |        | Fresh Water | Line2 Decker        | 72.79  |
| Fresh Water | Line3 Decker      | 120    | Fresh Water | Line3 Decker        | 18.17  |
| Fresh Water | Line4 Decker      | 120    | Fresh Water | Line4 Decker        | 101.55 |
| Fresh Water | Line1 Secondary   | 13.82  |             |                     |        |
|             | Refiner           |        |             |                     |        |
| Fresh Water | Line3 Secondary   | 10.17  |             |                     |        |
|             | Refiner           |        |             |                     |        |
|             |                   |        | Fresh Water | Line4 Secondary     | 1.23   |
|             |                   |        |             | Refiner             |        |
| Fresh Water | PM4 Blend Chest   | 4.5    | Fresh Water | PM4 Blend Chest     | 4.5    |
| Fresh Water | PM4 Forming       | 21     | Fresh Water | PM4 Forming         | 21     |
|             | Section (1)       |        |             | Section (1)         |        |
| Fresh Water | PM4 Forming       | 2.09   | Fresh Water | PM4 Forming         | 1.28   |
|             | Section (2)       |        |             | Section (2)         |        |
| Fresh Water | PM4 Headbox       | 20     | Fresh Water | PM4 Headbox         | 20     |
| Fresh Water | PM4 Press         | 88     | Fresh Water | PM4 Press           | 88     |
|             | Section           |        |             | Section             |        |
| Fresh Water | PM5 Blend Chest   | 4.5    | Fresh Water | PM5 Blend Chest     | 4.5    |
| Fresh Water | PM5 Forming       | 21     | Fresh Water | PM5 Forming         | 21     |
|             | Section           |        |             | Section             |        |
| Fresh Water | PM5 Headbox       | 20     | Fresh Water | PM5 Headbox         | 20     |
| Fresh Water | PM5 Press         | 88     | Fresh Water | PM5 Press           | 88     |
|             | Section           |        |             | Section             |        |

#### Newsprint Circuit Existing Flows and Optimised Flows

| Fresh Water  | Sealing Water   | 19     | Fresh Water  | Sealing Water   | 19     |
|--------------|-----------------|--------|--------------|-----------------|--------|
|              | to (            | _      | Fresh Water  | Disperser       | 48.62  |
|              |                 |        | Fresh Water  | Wire Pulp Pres  | 17.24  |
| Hydrasieves  | Effluent        | 0.71   | Hydrasieves  | Effluent        | 8.98   |
| (1)          |                 |        | (1)          |                 |        |
| Hydrasieves  | Hydrasieves     | 375.44 | Hydrasieves  | Hydrasieves     | 367.17 |
| (1)          |                 |        | (1)          |                 |        |
| Hydrasieves  | Chip Washer     | 13.76  |              |                 |        |
| (2)          |                 |        |              |                 |        |
| Hydrasieves  | Effluent        | 5.79   | Hydrasieves  | Effluent        | 19.55  |
| (2)          |                 |        | (2)          |                 |        |
| Line1 Decker | Chip Washer     | 8.51   |              |                 |        |
| (1)          |                 |        |              |                 |        |
| Line1 Decker | Line1 Secondary | 35.63  | Line1 Decker | Line1 Secondary | 64.53  |
| (1)          | Refiner         |        | (1)          | Refiner         |        |
| Linel Decker | Line2 Secondary | 122.51 |              |                 |        |
| (1)          | Refiner         |        |              |                 |        |
| Line1 Decker | TMP1 Latency &  | 227    | Line1 Decker | TMP1 Latency &  | 256    |
| (1)          | Screens         |        | (1)          | Screens         |        |
| Line1 Decker | Line1 Secondary | 31.16  | Line1 Decker | Line1 Secondary | 9.05   |
| (2)          | Refiner         |        | (2)          | Refiner         |        |
| Line1 Decker | Line2 Secondary | 41.84  | Linel Decker | Line2 Secondary | 9.32   |
| (2)          | Refiner         |        | (2)          | Refiner         |        |
|              |                 |        | Line1 Decker | TMP1 Latency &  | 54.62  |
|              |                 |        | (2)          | Screens         |        |
|              |                 |        | Line2 Decker | Line1 Secondary | 36.63  |
|              |                 |        | (1)          | Refiner         |        |
| Line2 Decker | Line2 Secondary | 3.84   | Line2 Decker | Line2 Secondary | 36.37  |
| (1)          | Refiner         |        | (1)          | Refiner         |        |
| Line2 Decker | TMP1 Latency &  | 69.15  |              |                 |        |
| (1)          | Screens         |        |              |                 |        |
| Line2 Decker | Line1 Secondary | 76.9   | Line2 Decker | Line1 Secondary | 16.14  |
| (2)          | Refiner         |        | (2)          | Refiner         |        |
|              |                 |        | Line2 Decker | Line2 Secondary | 80.67  |
|              |                 |        | (2)          | Refiner         |        |
| Line2 Decker | Reject System   | 212.9  | Line2 Decker | Reject System   | 181    |
| (2)          |                 |        | (2)          |                 |        |
| Line2 Decker | TMP1 Latency &  | 30.86  |              |                 |        |
| (2)          | Screens         |        |              |                 |        |

|              |                            |           | Line2 Decker        | RFP Coarse                 | 3.7    |
|--------------|----------------------------|-----------|---------------------|----------------------------|--------|
|              |                            |           | (2)                 | Screens                    | 5.7    |
|              |                            |           | Line2 Decker        | RFP High                   | 39.14  |
|              |                            |           | (2)                 | Density Cleaning           | 39.14  |
|              |                            |           | Line3 Decker        | Chip Washer                | 13.1   |
|              |                            |           | (1)                 | Chip Washer                | 15.1   |
| Line3 Decker | Effluent                   | 158.54    | Line3 Decker        | Effluent                   | 18.33  |
| (1)          |                            | 150.54    | (1)                 | Linuon                     | 10.55  |
| Line3 Decker | Line4 Secondary            | 80.67     |                     |                            |        |
| (1)          | Refiner                    | 00.07     |                     |                            |        |
| Line3 Decker | Reject System              | 64.3      |                     |                            |        |
| (1)          | Reject System              | 04.5      |                     |                            |        |
| Line3 Decker | TMP2 Latency &             | 17.14     | Line3 Decker        | TMP2 Latency &             | 96.73  |
| (1)          | Screens                    | A / . A T | (1)                 | Screens                    | 20.15  |
| (*/          |                            |           | Line3 Decker        | Reject System              | 8.51   |
|              |                            |           | (1)                 | Reject Bystelli            | 0.51   |
|              |                            |           | Line3 Decker        | RFP Pulping                | 183.91 |
|              |                            |           | (1)                 | Kri ruping                 | 105,71 |
| Line3 Decker | Line3 Secondary            | 3.75      | (1)                 |                            |        |
| (2)          | Refiner                    | 5.75      |                     |                            |        |
| Line3 Decker |                            | 69.25     | Line3 Decker        | TMP2 Latency &             | 73.00  |
|              | TMP2 Latency & Screens     | 09.25     | (2)                 | Screens                    | 75.00  |
| (2)          |                            | 81.38     | Line4 Decker        | Line3 Secondary            | 80.95  |
| Line4 Decker | Line3 Secondary            | 61.36     |                     | Refiner                    | 60.95  |
| (1)          | Refiner                    |           | (1)                 |                            | 80.73  |
|              |                            |           | Line4 Decker        | Line4 Secondary<br>Refiner | 00.75  |
| <u></u>      | Th (D) I stor or ft        | 120.28    | (1)<br>Line4 Decker | TMP2 Latency &             | 158.97 |
| Line4 Decker | TMP2 Latency &             | 239.28    |                     | Screens                    | 136.97 |
| (1)          | Screens                    | 45.68     | (1)<br>Line4 Decker | Line3 Secondary            | 28.71  |
| Line4 Decker | Line3 Secondary<br>Refiner | 43.00     | (2)                 | Refiner                    | 20.71  |
| (2)          |                            | 27.31     | Line4 Decker        | Line4 Secondary            | 44.29  |
| Line4 Decker | Line4 Secondary            | 27.31     | (2)                 | Refiner                    | 77.27  |
| (2)          | Refiner                    | 129.11    | PM4 Cleaners        | Effluent                   | 129.1  |
| PM4 Cleaners | Effluent                   | 129.11    | & Deculator         | Emuent                     | 127.1  |
| & Deculator  |                            | 00.07     |                     | PM4 Saveall (2)            | 30.32  |
| PM4 Forming  | PM4 Saveall (2)            | 29.27     | PM4 Forming         | Pivit Savcall (2)          | 30.32  |
| Section (1)  |                            |           | Section (1)         | DMA Sile (1)               | 52.57  |
| PM4 Forming  | PM4 Silo (1)               | 20.26     | PM4 Forming         | PM4 Silo (1)               | 52.57  |
| Section (1)  |                            |           | Section (1)         |                            | 00 50  |
|              |                            |           | PM4 Forming         | PM5 Silo (1)               | 28.53  |

|             | e sulla           |         | Section (1) |                 |         |
|-------------|-------------------|---------|-------------|-----------------|---------|
| PM4 Forming | PM5 Saveall (2)   | 16.56   | PM4 Forming | PM5 Saveall (2) | 15.51   |
| Section (1) |                   |         | Section (1) |                 |         |
| PM4 Forming | RFP flotation     | 17.41   |             |                 |         |
| Section (1) |                   |         |             |                 |         |
| PM4 Forming | RFP Coarse        | 0.32    |             |                 |         |
| Section (1) | Screens           |         |             |                 |         |
| PM4 Forming | RFP Pulping       | 157.67  | PM4 Forming | RFP Pulping     | 1.52    |
| Section (1) |                   |         | Section (1) |                 |         |
| PM4 Forming | RFP HD            | 8.51    | PM4 Forming | RFP HD          |         |
| Section (1) | Cleaning          |         | Section (1) | Cleaning        |         |
|             |                   |         | PM4 Forming | Reject System   | 44.33   |
|             |                   |         | Section (1) |                 |         |
|             |                   |         | PM4 Forming | Effluent        | 76.15   |
|             |                   |         | Section (1) |                 |         |
| PM4 Forming | PM4 Silo (1)      | 1979.07 | PM4 Forming | PM4 Silo (1)    | 2128.58 |
| Section (2) |                   |         | Section (2) |                 |         |
| PM4 Forming | PM5 Silo (1)      | 202.08  |             |                 |         |
| Section (2) |                   |         |             |                 |         |
|             |                   |         | PM4 Forming | Chip Washer     | 9.17    |
|             |                   |         | Section (2) |                 |         |
| PM4 Press   | PM5 Saveall (2)   | 10.59   |             |                 |         |
| Section     |                   |         |             |                 |         |
| PM4 Press   | RFP Disc Filter   | 9.35    | T           |                 |         |
| Section     | (2)               |         |             |                 |         |
| PM4 Press   | RFP Disperser (1) | 55.4    |             |                 |         |
| Section     |                   |         |             |                 |         |
| PM4 Press   | RFP Fine Screens  | 3.2     |             |                 |         |
| Section     | (1)               |         |             |                 |         |
| PM4 Press   | FRP Gyro          | 24.43   |             |                 |         |
| Section     | Cleaners          |         |             |                 |         |
| PM4 Press   | RFP Wire Pulp     | 16.12   |             |                 |         |
| Section     | Press             |         |             |                 |         |
|             |                   |         | PM4 Press   | TMP1 Latency &  | 88.03   |
| 1           |                   |         | Section     | Screens         |         |
|             |                   |         | PM4 Press   | TMP2 Latency &  | 31.07   |
|             |                   |         | Section     | Screens         |         |
| PM4 Saveall | PM4 Saveall (2)   | 1219.75 | PM4 Saveall | PM4 Saveall (2) | 1262.13 |
| (1)         |                   |         | (1)         |                 |         |

| PM4 Saveall  | PM5 Saveall (2) | 42.38   |              |                 |         |
|--------------|-----------------|---------|--------------|-----------------|---------|
| (1)          |                 |         |              |                 |         |
| PM4 Saveall  | Line1 Decker    | 55.79   |              |                 |         |
| (2)          |                 |         |              |                 |         |
|              |                 |         | PM4 Saveall  | Line3 Decker    | 101.83  |
|              |                 |         | (2)          |                 |         |
| PM4 Saveall  | PM4 Forming     | 119.91  | PM4 Saveall  | PM4 Forming     | 120.16  |
| (2)          | Sec (2)         |         | (2)          | Sec (2)         |         |
| PM4 Saveall  | TMP1 Latency &  | 46.30   |              |                 |         |
| (2)          | Screens         |         |              |                 |         |
| PM4 Screens  | Effluent        | 122.65  | PM4 Screens  | Effluent        | 122.65  |
| (1)          |                 |         | (1)          |                 |         |
| PM5 Cleaners | Effluent        | 129.33  | PM5 Cleaners | Effluent        | 129.33  |
| & Deculator  |                 |         | & Deculator  |                 |         |
| (1)          |                 |         | (1)          |                 |         |
| PM5 Forming  | PM4 Saveall (2) | 126.05  | PM5 Forming  | PM4 Saveall (2) | 100.23  |
| Section (1)  |                 |         | Section (1)  |                 |         |
| PM5 Forming  | PM5 Saveall (2) | 173.95  | PM5 Forming  | PM5 Saveall (2) | 199.77  |
| Section (1)  |                 |         | Section (1)  |                 |         |
| PM5 Forming  | Hydrasieves     | 20.26   | PM5 Forming  | Hydrasieves     | 28.53   |
| Section (2)  |                 |         | Section (2)  |                 |         |
| PM5 Forming  | PM5 Silo (1)    | 1977.22 | PM5 Forming  | PM5 Silo (1)    | 2150.77 |
| Section (2)  |                 |         | Section (2)  |                 |         |
| PM5 Forming  | PM4 Silo (1)    | 181.82  |              |                 |         |
| Section (2)  |                 |         |              |                 |         |
|              |                 |         | PM5 Press    | Line3 Secondary | 16.69   |
|              |                 |         | Section      | Refiner (1)     |         |
| PM5 Press    | PM4 Saveall (2) | 52.93   | PM5 Press    | PM4 Saveall (2) | 20.07   |
| Section      |                 |         | Section      |                 |         |
|              |                 |         | PM5 Press    | PM5 Saveall (2) | 43.45   |
|              |                 |         | Section      |                 |         |
| PM5 Press    | RFP Wire Pulp   | 2.47    |              |                 |         |
| Section      | Press           |         |              |                 |         |
| PM5 Press    | TMP1 Latency &  | 9.6     |              |                 |         |
| Section      | Screens         |         |              |                 |         |
| PM5 Press    | TMP2 Latency &  | 53.52   | PM5 Press    | TMP2 Latency &  | 38.89   |
| Section      | Screens         |         | Section      | Screens         |         |
|              |                 |         | PM5 Saveall  | PM4 Saveall (2) | 15.25   |
|              |                 |         | (1)          |                 |         |

| PM5 Saveall   | PM5 Saveall (2)  | 1184.52 | PM5 Saveall   | PM5 Saveall (2)  | 1169.27 |
|---------------|------------------|---------|---------------|------------------|---------|
| (1)           |                  |         | (1)           |                  |         |
|               |                  |         | PM5 Saveall   | Line1 Decker     | 82.68   |
|               |                  |         | (2)           |                  |         |
| PM5 Saveall   | Line2 Decker     | 120     | PM5 Saveall   | Line2 Decker     | 47.21   |
| (2)           |                  |         | (2)           |                  |         |
| PM5 Saveall   | PM5 Forming      | 166.01  | PM5 Saveall   | PM5 Forming      | 166.01  |
| (2)           | Secondary (2)    |         | (2)           | Secondary (2)    |         |
| PM5 Saveall   | TMP1 Latency &   | 9.99    |               |                  |         |
| (2)           | Screens          |         |               |                  |         |
| PM5 Screens   | Effluent         | 122.87  | PM5 Screens   | Effluent         | 122.87  |
| (1)           |                  |         | (1)           |                  |         |
| Reject System | Effluent         | 46.36   | Reject System | Effluent         | 46.36   |
| RFP Centri    | Effluent         | 7.93    | RFP Centri    | Effluent         | 7.93    |
| Cleaners      |                  |         | Cleaners      |                  |         |
| RFP Coarse    | Effluent         | 2.90    | RFP Coarse    | Effluent         | 2.90    |
| Screens       |                  |         | Screens       |                  |         |
| RFP Disc      | RFP Centri       | 224.35  | RFP Disc      | RFP Centri       | 224.34  |
| Filter (1)    | Cleaners         |         | Filter (1)    | Cleaners         |         |
| RFP Disc      | RFP Disc Filter  | 81.64   | RFP Disc      | RFP Disc Filter  | 103.70  |
| Filter (1)    | (2)              |         | Filter (1)    | (2)              |         |
| RFP Disc      | RFP Disperser    | 65.25   | RFP Disc      | RFP Disperser    | 76.98   |
| Filter (1)    |                  |         | Filter (1)    |                  |         |
| RFP Disc      | RFP Fine Screens | 43.62   | RFP Disc      | RFP Fine Screens | 50.56   |
| Filter (1)    |                  |         | Filter (1)    |                  |         |
|               |                  |         | RFP Disc      | RFP Flotation    | 4.17    |
|               |                  |         | Filter (1)    |                  |         |
| RFP Disc      | RFP Gyro         | 41.65   | RFP Disc      | RFP Gyro         | 96.61   |
| Filter (1)    | Cleaners         |         | Filter (1)    | Cleaners         |         |
| RFP Disc      | RFP Pulping      | 101.29  | <u> </u>      |                  |         |
| Filter (1)    |                  |         |               |                  |         |
| RFP Disc      | RFP Flotation    | 114.61  | RFP Disc      | RFP Flotation    | 147.13  |
| Filter (2)    |                  |         | Filter (2)    |                  |         |
| RFP Disc      | RFP Pulping      | 11.28   | RFP Disc      | RFP Pulping      | 102.57  |
| Filter (2)    |                  |         | Filter (2)    | · ·              |         |
| RFP Disc      | RFP Coarse       | 3.23    |               |                  |         |
| Filter (2)    | Screens          |         |               |                  |         |
| RFP Disc      | RFP Disc Filter  | 12.71   | +             |                  |         |
| Filter (2)    | (2)              |         |               |                  |         |

| RFP Disc      | RFP Gyro         | 29.38  |               | [                |        |
|---------------|------------------|--------|---------------|------------------|--------|
| Filter (2)    | Cleaners         |        |               |                  |        |
| RFP Disc      | RFP High         | 78.49  |               | · · · ·          |        |
| Filter (2)    | Density Cleaning |        |               |                  |        |
| RFP Fines     | Effluent         | 17.9   | RFP Fines     | Effluent         | 17.9   |
| Screens       |                  |        | Screens       |                  |        |
| RFP Flotation | Effluent         | 30.85  | RFP Flotation | Effluent         | 30.85  |
| RFP Gyro      | Effluent         | 5.4    | RFP Gyro      | Effluent         | 5.4    |
| Cleaners      |                  |        | Cleaners      |                  |        |
| RFP Pulping   | Effluent         | 136.94 | RFP Pulping   | Effluent         | 136.94 |
| RFP Wire      | RFP Disperser    | 4.94   |               |                  |        |
| Pulp Press    |                  |        |               |                  |        |
| RFP Wire      | RFP Fine Screens | 3.88   |               |                  |        |
| Pulp Press    |                  |        |               |                  |        |
| RFP Wire      | RFP Flotation    | 119.68 | RFP Wire      | RFP Flotation    | 100.39 |
| Pulp Press    |                  |        | Pulp Press    |                  |        |
| RFP Wire      | RFP Gyro         | 1.27   |               |                  |        |
| Pulp Press    | Cleaners         |        |               |                  |        |
| RFP Wire      | RFP Pulping      | 17.17  |               |                  |        |
| Pulp Press    |                  |        |               |                  |        |
|               |                  |        | RFP Wire      | RFP High         | 46.71  |
|               |                  |        | Pulp Press    | Density Cleaning |        |
| RFP High      | Effluent         | 9.3    | RFP High      | Effluent         | 9.3    |
| Density       |                  |        | Density       |                  |        |
| Cleaning      |                  |        | Cleaning      |                  |        |
| Sealing Water | Effluent         | 9.5    |               |                  |        |
|               |                  |        | Sealing Water | Line4 Decker     | 8.95   |
|               |                  |        | Sealing Water | PM4 Forming      | 0.55   |
|               |                  |        |               | Section          |        |
|               |                  |        | Sealing Water | Line4 Decker     | 9.5    |
| Sealing Water | Line3 Secondary  | 3.75   |               |                  |        |
|               | Refiner          |        |               |                  |        |
| Sealing Water | TMP1 Latency &   | 5.75   |               |                  |        |
|               | Screens          |        |               |                  |        |

#### Data for Water Pinch Model of Existing Newsprint Circuit

|                                | Flow   | Fibre content |
|--------------------------------|--------|---------------|
| Name                           | [t/h]  | [ppm]         |
| Chip washer out                | 395.7  | 1587          |
| Hydrasieves out 1              | 376.15 | 2946          |
| Hydrasieves out 2              | 19.55  | 4000          |
| Line 1 Decker out 1            | 320.66 | 1524          |
| Line 1 Decker out 2            | 73     | 900           |
| Reject System out              | 46.36  | 3355          |
| Cooling out 1                  | 540    | 0             |
| Cooling out 2                  | 19.46  | 0             |
| Line 3 Decker out 1            | 320.66 | 1524          |
| Line 3 Decker out 2            | 73     | 900           |
| Line 4 Decker out 1            | 320.66 | 1524          |
| Line 4 Decker out 2            | _ 73   | 900           |
| Line 2 Decker out 1            | 73     | 900           |
| Line 2 Decker out 2            | 320.66 | 1524          |
| Sealing water out 1            | 9.5    | 0             |
| Sealing water out 2            | 9.5    | 0             |
| RFP Pulping out                | 136.94 | 8490          |
| RFP-HD cleaning out            | 9.3    | 111882        |
| RFP coarse screens out         | 2.9    | 148607        |
| RFP flotation out              | 30.85  | 14761         |
| RFP gyro cleaners out          | 5.4    | 3967          |
| RFP centri cleaners out        | 7.93   | 10044         |
| RFP fine screens out           | 17.9   | 4000          |
| RFP disc filter out 1          | 582.4  | 942           |
| RFP disc filter out 2          | 249.7  | 1568          |
| RFP wire pulp press out        | 147.1  | 1801          |
| PM4 cleaners & deculator out 1 | 129.11 | 19362         |
| PM4 screens out 1              | 122.65 | 10982         |
| PM4 forming section out 1      | 250    | 2329          |

Table F.1 Newsprint Circuit Source Conditions

|                                | Flow    | Fibre content |
|--------------------------------|---------|---------------|
| Name                           | [t/h]   | [ppm]         |
| PM4 forming section out 2      | 2181.15 | 3517          |
| PM4 press section out          | 119.1   | 50            |
| PM5 press section out          | 119.1   | 50            |
| PM5 forming section out 1      | 300     | 1239          |
| PM5 forming section out 2      | 2179.3  | 3627          |
| PM5 screens out 1              | 122.87  | 10984         |
| PM5 cleaners & deculator out 1 | 129.33  | 21346         |
| PM5 saveall out 1              | 1184.52 | 525           |
| PM5 saveall out 2              | 296     | 312           |
| PM4 saveall out 1              | 1262.13 | 547           |
| PM4 saveall out 2              | 222     | 307           |
| Fresh water                    | 619.48  | 0             |

Table F.2 Newsprint Circuit Sink Conditions

|                             | Flow   | Fibre content |
|-----------------------------|--------|---------------|
| Name                        | [t/h]  | [ppm]         |
| Chip washer in 1            | 376.15 | 15861         |
| Chip washer in 2            | 22.27  | 3000          |
| Hydrasieves in              | 395.7  | 3000          |
| Line 1 Prim Refiner in 1    | 0.01   | 1000          |
| Line 2 Prim Refiner in 1    | 0.01   | 1000          |
| Line 1 Sec Refiner in 1     | 126.35 | 1000          |
| Line 2 Sec Refiner in 1     | 126.35 | 1000          |
| TMP1 Latency & screens in 1 | 398.65 | 1000          |
| Line 1 Decker in            | 120    | 0             |
| Reject System in            | 277.2  | 1524          |
| Cooling in 1                | 20     | 0             |
| Cooling in 2                | 540    | 0             |
| Line 3 Prim Refiner in 1    | 0.01   | 1000          |
| Line 4 Prim Refiner in 1    | 0.01   | 1000          |
| Line 3 Sec Refiner in 1     | 126.35 | 1000          |
| Line 4 Sec Refiner in 1     | 126.35 | 1000          |
| Line 3 Decker in            | 120    | 0             |
| Line 4 Decker in            | 120    | 0             |
| Line 2 Decker in            | 120    | 0             |
| TMP2 Latency & screens in 1 | 398.65 | 1000          |

F-2

|                          | Flow    | Fibre content |
|--------------------------|---------|---------------|
| Name                     | [t/h]   | [ppm]         |
| Sealing water in         | 19      | 0             |
| RFP Pulping in           | 288     | 1800          |
| RFP-HD cleaning in       | 87      | 1800          |
| RFP coarse screens in    | 3.7     | 1800          |
| RFP flotation in         | 251.7   | 1800          |
| RFP gyro cleaners in     | 96.72   | 1000          |
| RFP centri cleaners in   | 224.35  | 1000          |
| RFP fine screens in 1    | 50.7    | 1000          |
| RFP fine screens in 2    | 0       | 0             |
| RFP disc filter in 1     | 0       | 0             |
| RFP disc filter in 2     | 103.7   | 679           |
| RFP wire pulp press in   | 43.2    | 600           |
| RFP disperser in 1       | 125.6   | 612           |
| PM4 Blend chest in       | 4.5     | 0             |
| PM4 silo in 1            | 2181.15 | 3517          |
| PM4 headbox in 1         | 20      | 0             |
| PM4 forming section in 1 | 21      | 0             |
| PM4 forming section in 2 | 122     | 0             |
| PM4 press section in     | 88      | 0             |
| PM5 press section in     | 88      | 0             |
| PM5 forming section in 1 | 21      | 0             |
| PM5 forming section in 2 | 166.01  | 0             |
| PM5 headbox in 1         | 20      | 0             |
| PM5 silo in 1            | 2179.3  | 3624          |
| PM5 Blend chest in       | 4.5     | 0             |
| PM5 saveall in 1         | 0       | 0             |
| PM5 saveall in 2         | 1428    | 629           |
| PM4 saveall in 1         | 0       | 0             |
| PM4 saveall in 2         | 1428    | 626           |
| Effluent                 | 938.82  | 12405         |

### Appendix G

# Newsprint Circuit Flowrate Data Specifications in Water Tracker

|    | From                           | То                             | Calc.'d | Flow rate |
|----|--------------------------------|--------------------------------|---------|-----------|
| 1  | Fresh water                    | fresh water jnc                | 747.18  | 865       |
| 2  | Fresh water jnc                | Cooling                        | 20      | 20        |
| 3  | Chips                          | chip washer                    | 48      | 48        |
| 4  | Chip washer                    | hydrasieves                    | 395.7   | 395.7     |
| 5  | Hydrasieves                    | chip washer                    | 376.15  | 376.15    |
| 6  | Chip washer                    | chip washer jnc                | 50.72   | 57.86     |
| 7  | Chip washer jnc                | Line 1 Digester                | 12.68   | 11.52     |
| 8  | Chip washer jnc                | Line 2 Digester                | 12.68   | 11.52     |
| 9  | Hydrasieves                    | Hydrasieve rejects             | 19.55   | 0         |
| 10 | Line 1 Digester                | rotary valve exhaust steam jnc | 0.08    | 0.08      |
| 11 | Line 2 Digester                | rotary valve exhaust steam jnc | 0.08    | 0.08      |
| 12 | Rotary valve exhaust steam jnc | Rotary valve exhaust steam     | 0.32    | 0         |
| 13 | Line 1 Digester                | digester vent steam jnc        | 0.18    | 0.18      |
| 14 | Line 2 Digester                | digester vent steam jnc        | 0.18    | 0.18      |
| 15 | Digester vent steam jnc        | Digester vent steam            | 0.72    | 0         |
| 16 | Steam                          | feed steam jnc                 | 15.5    | 0         |
| 17 | Feed steam jnc                 | Line 1 Digester                | 2       | 0         |
| 18 | Feed steam jnc                 | Line 2 Digester                | 2       | 2         |
| 19 | Sodium sulphite                | sodium sulphite jnc            | 1.12    | 0         |
| 20 | Sodium sulphite jnc            | Line 1 Digester                | 0.28    | 0.28      |
| 21 | Sodium sulphite jnc            | Line 2 Digester                | 0.28    | 0.28      |
| 22 | Line 2 Digester                | Line 2 Prim Refiner            | 14.7    | 14.7      |
| 23 | Line 1 Digester                | Line 1 Prim Refiner            | 14.7    | 14.7      |
| 24 | Line 1 Prim Refiner            | Line 1 Sec Refiner             | 12.76   | 12.76     |
| 25 | Line 2 Prim Refiner            | Line 2 Sec Refiner             | 12.76   | 12.76     |
| 26 | Line 1 Sec Refiner             | sec refiner jnc                | 129.64  | 129.64    |
| 27 | Line 2 Sec Refiner             | sec refiner jnc                | 129.64  | 129.64    |
| 28 | Sec refiner jnc                | TMP1 Latency & screens         | 259.28  | 0         |
| 29 | Line 2 Prim Refiner            | prim ref back flow steam jnc   | 1.95    | 1.95      |

Table G.1 (a) Newsprint Circuit flowrate specifications in Water Tracker

|    | From                          | То                               | Calc.'d | Flow rate |
|----|-------------------------------|----------------------------------|---------|-----------|
| 30 | Line 1 Prim Refiner           | prim ref back flow steam jnc     | 1.95    | 1.95      |
| 31 | Prim ref back flow steam jnc  | back flow steam                  | 7.8     | 0         |
| 32 | Line 1 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 33 | Line 2 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 34 | Sec refiner exhaust steam jnc | Cyclone and feader exhaust steam | 28.12   | 0         |
| 35 | TMP1 cloudy ww2               | Line 1 Sec Refiner               | 126.35  | 126.35    |
| 36 | TMP1 cloudy ww2               | Line 1 Prim Refiner              | 0.01    | 10.44     |
| 37 | GWD rejects                   | Reject System                    | 26.7    | 26.7      |
| 38 | Reject System                 | Rejects from pressure screen     | 46.36   | 25.5      |
| 39 | Line 1 Sec Refiner            | sec refiner losses jnc           | 2.44    | 0         |
| 40 | Line 2 Sec Refiner            | sec refiner losses jnc           | 2.44    | 0         |
| 41 | Sec refiner losses jnc        | Losses                           | 9.76    | 0         |
| 42 | Line 3 Digester               | Line 3 Prim Refiner              | 14.7    | 14.7      |
| 43 | Line 3 Prim Refiner           | Line 3 Sec Refiner               | 12.76   | 12.76     |
| 44 | Line 4 Decker                 | JNC-TMP2 pulp to storage         | 117.3   | 117.3     |
| 45 | JNC-TMP2 pulp to storage      | JNC-pulp to storage              | 234.6   | 0         |
| 46 | Line 3 Decker                 | JNC-TMP2 pulp to storage         | 117.3   | 117.3     |
| 47 | Line 3 Sec Refiner            | JNC-TMP2 sec ref to latency      | 129.64  | 129.64    |
| 48 | Line 4 Sec Refiner            | JNC-TMP2 sec ref to latency      | 129.64  | 129.64    |
| 49 | JNC-TMP2 latency to deckers   | Line 3 Decker                    | 297     | 297       |
| 50 | JNC-TMP2 latency to deckers   | Line 4 Decker                    | 297     | 369.17    |
| 51 | Line 4 Digester               | Line 4 Prim Refiner              | 14.7    | 14.7      |
| 52 | Line 4 Prim Refiner           | Line 4 Sec Refiner               | 12.76   | 12.76     |
| 53 | Line 3 Digester               | rotary valve exhaust steam jnc   | 0.08    | 0.08      |
| 54 | Line 4 Digester               | rotary valve exhaust steam jnc   | 0.08    | 0.08      |
| 55 | Sodium sulphite jnc           | Line 4 Digester                  | 0.28    | 0.28      |
| 56 | Sodium sulphite jnc           | Line 3 Digester                  | 0.28    | 0.28      |
| 57 | Line 3 Digester               | digester vent steam jnc          | 0.18    | 0.18      |
| 58 | Line 4 Digester               | digester vent steam jnc          | 0.18    | 0.18      |
| 59 | Feed steam jnc                | Line 3 Digester                  | 2       | 0         |
| 60 | Feed steam jnc                | Line 4 Digester                  | 2       | 0         |
| 61 | Line 3 Prim Refiner           | prim ref back flow steam jnc     | 1.95    | 1.95      |
| 62 | Line 4 Prim Refiner           | prim ref back flow steam jnc     | 1.95    | 1.95      |
| 63 | Line 3 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 64 | Line 4 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 65 | Line 3 Sec Refiner            | sec refiner losses jnc           | 2.44    | 0         |

|           | From                         | То                          | Calc.'d | Flow rate |
|-----------|------------------------------|-----------------------------|---------|-----------|
| 66        | Line 4 Sec Refiner           | sec refiner losses jnc      | 2.44    | 0         |
| 67        | Line 1 Decker                | JNC-TMP1 pulp to storage    | 117.3   | 117.3     |
| 68        | Line 2 Decker                | JNC-TMP1 pulp to storage    | 117.3   | 117.3     |
| <u>59</u> | Fresh water jnc              | JNC-tempered to clear ww    | 40      | 0         |
| 70        | JNC-TMP1 pulp to storage     | JNC-pulp to storage         | 234.6   | 0         |
| 71        | TMP1 Latency & screens       | JNC-TMP1 latency to deckers | 594     | 594       |
| 72        | JNC-TMP1 latency to deckers  | Line 1 Decker               | 297     | 409.16    |
| 73        | JNC-TMP1 latency to deckers  | Line 2 Decker               | 297     | 409.16    |
| 74        | JNC-Rej sys                  | JNC-Reject system           | 187.7   | 187.7     |
| 75        | JNC-Reject system            | Line 1 Decker               | 93,85   | 93.9      |
| 76        | JNC-Reject system            | Line 2 Decker               | 93.85   | 129.29    |
| 77        | JNC-Rej sys                  | Line 3 Decker               | 93.85   | 93.9      |
| 78        | JNC-Rej sys                  | Line 4 Decker               | 93.85   | 0         |
| 79        | Line 1 Decker                | JNC-TMP1 cloudy             | 320.66  | 0         |
| 80        | Line 1 Decker                | JNC-TMP1 clear              | 73      | 73        |
| 81        | Line 2 Decker                | Decker JNC-TMP1 clear       |         | 73        |
| 82        | Line 2 Decker                | JNC-TMP1 cloudy             | 320.66  | 65        |
| 83        | JNC-TMP1 clear ww to deckers | Line 1 Decker               | 120     | 120       |
| 84        | JNC-TMP1 clear ww to deckers | Line 2 Decker               | 120     | 120       |
| 85        | Line 3 Decker                | JNC-TMP2 cloudy ww3         | 320.66  | 0         |
| 86        | Line 4 Decker                | JNC-TMP2 cloudy ww3         | 320.66  | 0         |
| 87        | Line 4 Decker                | JNC-TMP2 clear ww2          | 73      | 73        |
| 88        | Line 3 Decker                | JNC-TMP2 clear ww2          | 73      | 73        |
| 89        | JNC-TMP2 clear ww1           | Line 3 Decker               | 120     | 120       |
| 90        | JNC-TMP2 clear ww1           | Line 4 Decker               | 120     | 120       |
| 91        | Cloudy ww2                   | Reject System               | 277.2   | 191.5     |
| 92        | TMP2 cloudy ww2              | Line 4 Prim Refiner         | 0.01    | 0         |
| 93        | TMP2 cloudy ww2              | Line 4 Sec Refiner          | 126.35  | 126.35    |
| 94        | TMP2 cloudy ww2              | Line 3 Sec Refiner          | 126.35  | 126.35    |
| 95        | TMP2 cloudy ww2              | Line 3 Prim Refiner         | 0.01    | 0         |
| 96        | TMP2 cloudy ww1              | TMP2 cloudy ww2             | 252.72  | 0         |
| 97        | JNC-TMP2 sec ref to latency  | TMP2 Latency & screens      | 259.28  | 0         |
| 98        | TMP2 Latency & screens       | JNC-TMP2 latency to deckers | 594     | 594       |
| 99        | TMP2 cloudy ww1              | TMP2 Latency & screens      | 398.65  | 398       |
| 100       | TMP1 Latency & screens       | JNC-latency steam           | 5       | 5         |
| 101       | TMP2 Latency & screens       | JNC-latency steam           | 5       | 5         |

|     | From                          | То                            | Calc.'d | Flow rate |
|-----|-------------------------------|-------------------------------|---------|-----------|
| 102 | JNC-latency steam             | Latency steam                 | 10      | 0         |
| 103 | TMP1 cloudy ww1               | TMP1 cloudy ww2               | 252.72  | 0         |
| 104 | TMP1 cloudy ww1               | TMP1 Latency & screens        | 398.65  | 398       |
| 105 | TMP1 cloudy ww2               | Line 2 Prim Refiner           | 0.01    | 10.44     |
| 106 | TMP1 cloudy ww2               | Line 2 Sec Refiner            | 126.35  | 126.35    |
| 107 | TMP1 cloudy ww1               | cloudy ww2                    | 138.6   | 138.6     |
| 108 | TMP1 cloudy ww1               | JNC- cloudy ww to chip washer | 18.1    | 18.1      |
| 109 | JNC- cloudy ww to chip washer | chip washer                   | 22.27   | 32.26     |
| 110 | TMP2 cloudy ww1               | JNC- cloudy ww to chip washer | 4.17    | 0         |
| 111 | TMP2 cloudy ww1               | cloudy ww2                    | 138.6   | 138.6     |
| 112 | Chip washer jnc               | Line 3 Digester               | 12.68   | 11.52     |
| 113 | Chip washer jnc               | Line 4 Digester               | 12.68   | 11.52     |
| 114 | TMP1 Latency & screens        | JNC-latency to rej sys        | 58.93   | 58.93     |
| 115 | JNC-latency to rej sys        | Reject System                 | 117.86  | 162       |
| 116 | Reject System                 | JNC-Rej sys                   | 375.4   | 375       |
| 117 | TMP2 Latency & screens        | JNC-latency to rej sys        | 58.93   | 58.93     |
| 118 | JNC-Hydros                    | Line 1 Decker                 | 0.11    | 0.11      |
| 119 | JNC-Hydros                    | Line 2 Decker                 | 0.11    | 0.1       |
| 120 | JNC-Hydros                    | Line 4 Decker                 | 0.11    | 0.11      |
| 121 | JNC-Hydros                    | Line 3 Decker                 | 0.11    | 0.11      |
| 122 | Hydros                        | JNC-Hydros                    | 0.44    | 0.44      |
| 123 | Fresh water jnc               | Sealing water                 | 19      | 18.6      |
| 124 | Sealing water                 | JNC-sealing water to clear ww | 9.5     | 0         |
| 125 | Sealing water                 | sealing water to drain        | 9.5     | 7.31      |
| 126 | Cooling tower                 | [Losses]                      | 0.54    | 0         |
| 127 | Cooling tower                 | [Evapor.]                     | 0       | 0         |
| 128 | Cooling                       | cooling tower                 | 540.54  | 0         |
| 129 | Cooling tower                 | Cooling                       | 540     | 540       |
| 130 | RFP waste paper               | RFP Pulping                   | 9.64    | 9.64      |
| 131 | RFP Pulping                   | RFP-HD cleaning               | 160.7   | 160.7     |
| 132 | RFP-HD cleaning               | RFP coarse screens            | 238.4   | 238.4     |
| 133 | RFP coarse screens            | RFP flotation                 | 239.2   | 239.2     |
| 134 | RFP flotation                 | RFP gyro cleaners             | 512.26  | 512.26    |
| 135 | RFP gyro cleaners             | RFP centri cleaners           | 603.58  | 603.58    |
| 136 | RFP centri cleaners           | RFP fine screens              | 820     | 820       |
| 137 | RFP fine screens              | RFP disc filter               | 852.8   | 852.76    |

|     | From                     | То                       | Calc.'d | Flow rate |
|-----|--------------------------|--------------------------|---------|-----------|
| 138 | RFP disc filter          | RFP wire pulp press      | 124.4   | 124.4     |
| 139 | RFP wire pulp press      | RFP disperser            | 20.5    | 24        |
| 140 | RFP disperser            | pulp jnc                 | 153.6   | 154       |
| 141 | RFP fine screens         | RFP rejects jnc2         | 17.9    | 17.9      |
| 142 | RFP rejects jnc2         | RFP rej jnc3             | 62.08   | 0         |
| 143 | RFP rej jnc3             | RPF rejects              | 211.22  | 0         |
| 144 | RFP centri cleaners      | RFP rejects jnc2         | 7.93    | 8         |
| 145 | RFP flotation            | RFP rejects jnc2         | 30.85   | 30.89     |
| 146 | Fresh water jnc          | RFP Temp jnc             | 0       | 0         |
| 147 | RFP Temp jnc             | RFP clear ww jnc         | 0       | 0         |
| 148 | RFP clear ww jnc         | RFP fine screens         | 50.7    | 50.7      |
| 149 | RFP clear ww jnc         | RFP centri cleaners      | 224.35  | 224.35    |
| 150 | RFP clear ww jnc         | RFP gyro cleaners        | 96.72   | 96.72     |
| 151 | RFP disc filter          | RFP clear ww jnc         | 582.4   | 582.4     |
| 152 | PM ww to RFP jnc         | RFP cloudy ww jnc        | 126.67  | 231       |
| 153 | PM ww to RFP jnc         | RFP wire pulp press      | 43.2    | 43.2      |
| 154 | PM ww to RFP jnc         | RFP disperser            | 125.6   | 125.6     |
| 155 | PM ww to pulp mill jnc   | PM ww to RFP jnc         | 295.47  | 412       |
| 156 | RFP disc filter          | RFP cloudy ww jnc        | 249.7   | 249.7     |
| 157 | RFP cloudy ww jnc        | RFP fine screens         | 0       | 0         |
| 158 | RFP cloudy ww jnc        | RFP cloudy filtrate jnc2 | 630.4   | 726       |
| 159 | RFP cloudy filtrate jnc2 | RFP flotation            | 251.7   | 251.7     |
| 160 | RFP cloudy filtrate jnc2 | RFP coarse screens       | 3.7     | 4.26      |
| 161 | RFP cloudy filtrate jnc2 | RFP-HD cleaning          | 87      | 87        |
| 162 | RFP cloudy filtrate jnc2 | RFP Pulping              | 288     | 288       |
| 163 | RFP-HD cleaning          | RFP rej jncl             | 9.3     | 10.7      |
| 164 | RFP coarse screens       | RFP rej jncl             | 2.9     | 2.9       |
| 165 | RFP Pulping              | RFP rej jncl             | 136.94  | 158.29    |
| 166 | RFP rej jncl             | RFP rej jnc3             | 149.14  | 0         |
| 167 | RFP gyro cleaners        | RFP rejects jnc2         | 5.4     | 5.4       |
| 168 | RFP Temp jnc             | RFP disc filter          | 0       | 0.05      |
| 169 | PM4 dryers               | dryer steam evap jnc     | 17.6    | 20.4      |
| 170 | Dryer steam evap jnc     | evaporation              | 35.2    | 0         |
| 171 | PM4 dryers               | final paper jnc          | 13.5    | 13.5      |
| 172 | Final paper jnc          | Paper                    | 27      | 0         |
| 173 | PM5 dryers               | dryer steam evap jnc     | 17.6    | 20.4      |

|     | From                     | То                       | Calc.'d | Flow rate |
|-----|--------------------------|--------------------------|---------|-----------|
| 174 | PM5 dryers               | final paper jnc          | 13.5    | 13.5      |
| 175 | PM4 silo                 | PM4 cleaners & deculator | 2582.11 | 2694      |
| 176 | PM4 cleaners & deculator | PM4 screens              | 2453    | 2453      |
| 177 | PM4 screens              | PM4 headbox              | 2330.35 | 2330.2    |
| 178 | PM4 headbox              | PM4 forming section      | 2350.35 | 2350.2    |
| 179 | PM4 forming section      | PM4 press section        | 62.2    | 62.2      |
| 180 | PM4 press section        | PM4 dryers               | 31.1    | 31.1      |
| 181 | PM5 silo                 | PM5 cleaners & deculator | 2586.69 | 2694.4    |
| 182 | PM5 cleaners & deculator | PM5 screens              | 2457.36 | 2430      |
| 183 | PM5 screens              | PM5 headbox              | 2334.49 | 2308.5    |
| 184 | PM5 headbox              | PM5 forming section      | 2354.49 | 2350.2    |
| 185 | PM5 forming section      | PM5 press section        | 62.2    | 62.2      |
| 186 | PM5 press section        | PM5 dryers               | 31.1    | 31.1      |
| 187 | PM5 press section        | PM5 ww jnc2              | 119.1   | 78        |
| 188 | PM5 forming section      | PM5 ww jnc2              | 300     | 0         |
| 189 | PM4 forming section      | PM4 ww jnc2              | 250     | 0         |
| 190 | PM4 press section        | PM4 ww jnc2              | 119.1   | 78        |
| 191 | PM5 cleaners & deculator | PM rej to drain jnc      | 129.33  | 241.5     |
| 192 | PM5 screens              | PM rej to drain jnc      | 122.87  | 0         |
| 193 | PM ww jnc                | PM rej to drain jnc      | . 0     | 0         |
| 194 | PM rej to drain jnc      | Drain                    | 503.96  | 0         |
| 195 | PM4 screens              | PM4 ww to drain jnc      | 122.65  | 0         |
| 196 | PM4 cleaners & deculator | PM4 ww to drain jnc      | 129.11  | 241.5     |
| 197 | PM4 ww to drain jnc      | PM rej to drain jnc      | 251.76  | 242.45    |
| 198 | Fresh water jnc          | fresh water to PMs jnc   | 668.18  | 0         |
| 199 | Fresh water to PMs jnc   | fresh water to PM4 jnc   | 133.5   | 184.5     |
| 200 | Fresh water to PM4 jnc   | PM4 headbox              | 20      | 20        |
| 201 | Fresh water to PM4 jnc   | PM4 Blend chest          | 4.5     | 4.5       |
| 202 | Fresh water to PMs jnc   | fresh water to PM5 jnc   | 133.5   | 160       |
| 203 | Fresh water to PM5 jnc   | PM5 Blend chest          | 4.5     | 4.5       |
| 204 | Fresh water to PM5 jnc   | PM5 headbox              | 20      | 20        |
| 205 | PM ww jnc1               | PM ww jnc                | 363.66  | 0         |
| 206 | JNC-pulp to storage      | pulp jnc                 | 469.2   | 0         |
| 207 | PM ww jnc                | PM ww to pulp mill jnc   | 753.54  | 1500      |
| 208 | Pulp jnc                 | PM5 Blend chest          | 311.4   | 0         |
| 209 | Pulp jnc                 | PM4 Blend chest          | 311.4   | 0         |

.

|     | From                          | То                            | Calc.'d | Flow rate |
|-----|-------------------------------|-------------------------------|---------|-----------|
| 210 | LF jnc                        | PM5 Blend chest               | 16      | 16        |
| 211 | LF jnc                        | PM4 Blend chest               | 16      | 16        |
| 212 | LF to PMs                     | LF jnc                        | 1.24    | 1.24      |
| 213 | Cooling                       | PM ww jnc                     | 19.46   | 20        |
| 214 | Fresh water to PM5 jnc        | PM5 forming section           | 21      | 21        |
| 215 | Fresh water to PM5 jnc        | PM5 press section             | 88      | 88        |
| 216 | Fresh water to PM4 jnc        | PM4 forming section           | 21      | 21        |
| 217 | Fresh water to PM4 jnc        | PM4 press section             | 88      | 88        |
| 218 | Feed steam jnc                | RFP disperser                 | 7.5     | 7.5       |
| 219 | RFP flotation chemicals       | RFP flotation                 | 52.21   | 52.21     |
| 220 | RFP clear ww jnc              | RFP disc filter               | 103.7   | 103.7     |
| 221 | RFP wire pulp press           | RFP cloudy ww jnc             | 147.1   | 147.1     |
| 222 | PM ww jnc                     | LF jnc                        | 30.76   | 32.8      |
| 223 | Broke to PM's                 | JNC-broke to PM's             | 8.02    | 8.02      |
| 224 | JNC-broke to PM's             | PM5 Blend chest               | 96.01   | 96        |
| 225 | JNC-broke to PM's             | PM4 Blend chest               | 96.01   | 0         |
| 226 | PM5 Blend chest               | PM5 saveall                   | 180.52  | 180.52    |
| 227 | PM5 saveall                   | JNC-PM5 recovered fibre chest | 128     | 128       |
| 228 | PM5 Blend chest               | JNC-PM5 blend chest to silo   | 247.39  | 240       |
| 229 | JNC-PM5 recovered fibre chest | JNC-PM5 blend chest to silo   | 160     | 160       |
| 230 | JNC-PM5 blend chest to silo   | PM5 silo                      | 407.39  | 400       |
| 231 | PM5 saveall                   | JNC-PM5 cloudy chest          | 1184.52 | 1184      |
| 232 | PM5 saveall                   | JNC-PM5 clear chest           | 296     | 296       |
| 233 | PM5 ww jnc1                   | PM5 saveall                   | 1428    | 1428      |
| 234 | JNC-PM5 clear chest           | PM5 forming section           | 166.01  | 205       |
| 235 | JNC-PM5 clear chest           | PM5 ww jnc1                   | 129.99  | 0         |
| 236 | JNC-PM5 cloudy chest          | PM5 ww jnc1                   | 1060.52 | 0         |
| 237 | JNC-PM5 cloudy chest          | JNC-PM5 recovered fibre chest | 32      | 0         |
| 238 | JNC-PM5 cloudy chest          | JNC-broke to PM's             | 92      | 92        |
| 239 | PM4 Blend chest               | JNC-PM4 Blend to silo         | 243.78  | 240       |
| 240 | JNC-PM4 Blend to silo         | PM4 silo                      | 400.96  | 400       |
| 241 | PM4 saveall                   | JNC-PM4 recovered fibre chest | 128     | 128       |
| 242 | JNC-PM4 recovered fibre chest | JNC-PM4 Blend to silo         | 157.18  | 160       |
| 243 | PM4 saveall                   | JNC-PM4 cloudy chest          | 1262.13 | 1184      |
| 244 | JNC-PM4 cloudy chest          | JNC-broke to PM's             | 92      | 92        |
| 245 | JNC-PM4 cloudy chest          | PM4 ww jncl                   | 1140.95 | 0         |

|     | From                          | То                            | Calc.'d | Flow rate |
|-----|-------------------------------|-------------------------------|---------|-----------|
| 246 | PM4 saveall                   | JNC-PM4 clear chest           | 222     | 296       |
| 247 | JNC-PM4 clear chest           | PM4 forming section           | 122     | 205.2     |
| 248 | JNC-PM4 clear chest           | PM4 ww jncl                   | 100     | 0         |
| 249 | PM4 Blend chest               | PM4 saveall                   | 184.13  | 180.52    |
| 250 | PM4 forming section           | PM4 silo                      | 2181.15 | 2294      |
| 251 | PM5 forming section           | PM5 silo                      | 2179.3  | 2294      |
| 252 | PM4 ww jnc1                   | PM4 saveall                   | 1428    | 1428      |
| 253 | Fresh water to PMs jnc        | PM ww jncl                    | 0       | 0         |
| 254 | Fresh water to PMs jnc        | PM ww jnc                     | 401.18  | 0         |
| 255 | RFP clear ww jnc              | RFP cloudy ww jnc             | 106.93  | 0         |
| 256 | JNC-PM4 cloudy chest          | JNC-PM4 recovered fibre chest | 29.18   | 0         |
| 257 | JNC-TMP1 cloudy ww chest      | TMP1 cloudy ww1               | 808.07  | 0         |
| 258 | JNC-TMP1 clear ww to deckers  | JNC-TMP1 cloudy ww chest      | 166.75  | 0         |
| 259 | JNC-TMP1 cloudy               | JNC-TMP1 cloudy ww chest      | 641.32  | 0         |
| 260 | JNC-TMP1 clear                | JNC-TMP1 clear ww chest       | 146     | 0         |
| 261 | JNC-TMP1 clear ww chest       | JNC-TMP1 clear ww to deckers  | 406.75  | 0         |
| 262 | JNC-tempered to clear ww      | JNC-TMP1 clear ww chest       | 20      | 0         |
| 263 | JNC-sealing water to clear ww | JNC-TMP1 clear ww chest       | 4.75    | 0         |
| 264 | PM ww to pulp mill jnc        | JNC-TMP1 clear ww chest       | 236     | 300       |
| 265 | JNC-TMP2 cloudy ww3           | JNC-TMP2 cloudy ww chest      | 641.32  | 0         |
| 266 | JNC-TMP2 cloudy ww chest      | TMP2 cloudy ww1               | 794.14  | 0         |
| 267 | JNC-TMP2 clear ww1            | JNC-TMP2 cloudy ww chest      | 152.82  | 0         |
| 268 | PM ww to pulp mill jnc        | JNC-TMP2 clear ww chest       | 222.07  | 300       |
| 269 | JNC-sealing water to clear ww | JNC-TMP2 clear ww chest       | 4.75    | 0         |
| 270 | JNC-tempered to clear ww      | JNC-TMP2 clear ww chest       | 20      | 0         |
| 271 | JNC-TMP2 clear ww2            | JNC-TMP2 clear ww chest       | 146     | 0         |
| 272 | JNC-TMP2 clear ww chest       | JNC-TMP2 clear ww1            | 392.82  | 0         |
| 273 | PM ww jnc1                    | PM4 ww jnc1                   | 187.05  | 0         |
| 274 | PM ww jnc1                    | PM5 ww jnc1                   | 237.49  | 0         |
| 275 | PM5 ww jnc2                   | PM ww jnc1                    | 419.1   | 0         |
| 276 | PM4 ww jnc2                   | PM ww jnc1                    | 369.1   | 0         |

|    | Use? | Trust    | Minimum | Maximum | Linked To                  | Use? |
|----|------|----------|---------|---------|----------------------------|------|
| 1  |      |          |         |         |                            |      |
| 2  | Yes  | +/- 5.0% | 19      | 21      |                            |      |
| 3  | Yes  | +/- 2.0% | 47.04   | 48.96   |                            |      |
| 4  | Yes  | +/- 2.0% | 387.79  | 403.61  | None                       |      |
| 5  | Yes  | +/- 2.0% | 368.63  | 383.67  | chip washer -> hydrasieves |      |
| 6  | Yes  | +/- 5.0% | 54.97   | 60.75   | None                       |      |
| 7  |      |          |         |         |                            |      |
| 8  |      |          |         |         |                            |      |
| 9  |      |          |         |         | None                       |      |
| 10 | Yes  | +/- 2.0% | 0.08    | 0.08    | None                       |      |
| 11 | Yes  | +/- 2.0% | 0.08    | 0.08    | None                       |      |
| 12 |      |          |         |         |                            |      |
| 13 | Yes  | +/- 2.0% | 0.18    | 0.18    | None                       |      |
| 14 | Yes  | +/- 2.0% | 0.18    | 0.18    | None                       |      |
| 15 |      |          |         |         |                            |      |
| 16 |      |          |         |         |                            |      |
| 17 |      |          |         |         |                            |      |
| 18 |      |          |         |         |                            |      |
| 19 |      |          |         |         |                            |      |
| 20 | Yes  | +/- 2.0% | 0.27    | 0.29    |                            |      |
| 21 | Yes  | +/- 2.0% | 0.27    | 0.29    |                            |      |
| 22 | Yes  | +/- 2.0% | 14.41   | 14.99   | None                       |      |
| 23 | Yes  | +/- 2.0% | 14.41   | 14.99   | None                       |      |
| 24 | Yes  | +/- 5.0% | 12.12   | 13.4    | None                       |      |
| 25 | Yes  | +/- 5.0% | 12.12   | 13.4    | None                       |      |
| 26 | Yes  | +/- 2.0% | 127.05  | 132.23  | None                       |      |
| 27 | Yes  | +/- 2.0% | 127.05  | 132.23  | None                       |      |
| 28 |      |          |         |         |                            |      |
| 29 | Yes  | +/- 2.0% | 1.91    | 1.99    | None                       |      |
| 30 | Yes  | +/- 2.0% | 1.91    | 1.99    | None                       |      |
| 31 |      |          |         |         |                            |      |
| 32 | Yes  | +/- 2.0% | 6.89    | 7.17    | None                       |      |
| 33 | Yes  | +/- 2.0% | 6.89    | 7.17    | None                       |      |
| 34 |      |          |         |         |                            |      |
| 35 | Yes  | +/- 5.0% | 120.03  | 132.67  |                            |      |

Table G.1 (b) Newsprint Circuit flowrate specifications in Water Tracker

|    | Use? | Trust    | Minimum | Maximum | Linked To | Use? |
|----|------|----------|---------|---------|-----------|------|
| 36 |      |          |         |         |           |      |
| 37 | Yes  | +/- 2.0% | 26.17   | 27.23   |           |      |
| 38 |      |          |         |         | None      |      |
| 39 |      |          |         |         | None      |      |
| 40 |      |          |         |         | None      |      |
| 41 |      |          |         |         |           |      |
| 42 | Yes  | +/- 2.0% | 14.41   | 14.99   | None      |      |
| 43 | Yes  | +/- 2.0% | 12.5    | 13.02   | None      |      |
| 44 | Yes  | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 45 |      | -        |         |         |           |      |
| 46 | Yes  | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 47 | Yes  | +/- 2.0% | 127.05  | 132.23  | None      |      |
| 48 | Yes  | +/- 2.0% | 127.05  | 132.23  | None      |      |
| 49 | Yes  | +/- 2.0% | 291.06  | 302.94  |           |      |
| 50 |      |          |         |         |           |      |
| 51 | Yes  | +/- 2.0% | 14.41   | 14.99   | None      |      |
| 52 | Yes  | +/- 2.0% | 12.5    | 13.02   | None      |      |
| 53 | Yes  | +/- 2.0% | 0.08    | 0.08    | None      |      |
| 54 | Yes  | +/- 2.0% | 0.08    | 0.08    | None      |      |
| 55 | Yes  | +/- 2.0% | 0.27    | 0.29    |           |      |
| 56 | Yes  | +/- 2.0% | 0.27    | 0.29    |           |      |
| 57 | Yes  | +/- 2.0% | 0.18    | 0.18    | None      |      |
| 58 | Yes  | +/- 2.0% | 0.18    | 0.18    | None      |      |
| 59 |      |          |         |         |           |      |
| 60 |      |          |         |         |           |      |
| 61 | Yes  | +/- 2.0% | 1.91    | 1.99    | None      |      |
| 62 | Yes  | +/- 2.0% | 1.91    | 1.99    | None      |      |
| 63 | Yes  | +/- 2.0% | 6.89    | 7.17    | None      |      |
| 64 | Yes  | +/- 2.0% | 6.89    | 7.17    | None      |      |
| 65 |      |          |         |         | None      |      |
| 66 |      |          |         |         | None      |      |
| 67 | Yes  | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 68 | Yes  | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 69 |      |          | · -     |         |           |      |
| 70 |      |          |         |         |           |      |
| 71 | Yes  | +/- 2.0% | 582.12  | 605.88  | None      |      |

|     | Use? | Trust     | Minimum | Maximum | Linked To | Use? |
|-----|------|-----------|---------|---------|-----------|------|
| 72  |      |           |         |         |           |      |
| 73  |      |           |         |         |           |      |
| 74  | Yes  | +/- 2.0%  | 183.95  | 191.45  |           |      |
| 75  | Yes  | +/- 2.0%  | 92.02   | 95.78   |           |      |
| 76  |      |           |         |         |           |      |
| 77  | Yes  | +/- 2.0%  | 92.02   | 95.78   |           |      |
| 78  |      |           |         |         |           |      |
| 79  |      |           |         |         | None      |      |
| 80  | Yes  | +/- 5.0%  | 69.35   | 76.65   | None      |      |
| 81  | Yes  | +/- 2.0%  | 71.54   | 74.46   | None      |      |
| 82  |      |           |         |         | None      |      |
| 83  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 84  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 85  |      |           |         |         | None      |      |
| 86  |      |           |         |         | None      |      |
| 87  | Yes  | +/- 2.0%  | 71.54   | 74.46   | None      |      |
| 88  | Yes  | +/- 2.0%  | 71.54   | 74.46   | None      |      |
| 89  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 90  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 91  |      |           |         |         |           |      |
| 92  |      |           |         |         |           |      |
| 93  | Yes  | +/- 2.0%  | 123.82  | 128.88  |           |      |
| 94  | Yes  | +/- 2.0%  | 123.82  | 128.88  |           |      |
| 95  |      |           |         |         |           |      |
| 96  |      |           |         |         |           |      |
| 97  |      |           |         |         |           |      |
| 98  | Yes  | +/- 2.0%  | 582.12  | 605.88  | None      |      |
| 99  | Yes  | +/- 2.0%  | 390.04  | 405.96  |           |      |
| 100 | Yes  | +/- 2.0%  | 4.9     | 5.1     | None      |      |
| 101 | Yes  | +/- 2.0%  | 4.9     | 5.1     | None      |      |
| 102 |      |           |         |         |           |      |
| 103 |      |           |         |         |           |      |
| 104 | Yes  | +/- 5.0%  | 378.1   | 417.9   |           |      |
| 105 |      |           |         |         |           |      |
| 106 | Yes  | +/- 5.0%  | 120.03  | 132.67  |           |      |
| 107 | Yes  | +/- 2.0%  | 135.83  | 141.37  |           |      |

|     | Use? | Trust     | Minimum | Maximum | Linked To                  | Use? |
|-----|------|-----------|---------|---------|----------------------------|------|
| 108 | Yes  | +/- 2.0%  | 17.74   | 18.46   |                            | _    |
| 109 |      |           |         |         |                            |      |
| 110 |      |           |         |         |                            |      |
| 111 | Yes  | +/- 2.0%  | 135.83  | 141.37  |                            |      |
| 112 |      |           |         |         |                            |      |
| 113 |      |           |         |         |                            |      |
| 114 | Yes  | +/- 2.0%  | 57.75   | 60.11   | None                       |      |
| 115 |      |           |         |         |                            |      |
| 116 | Yes  | +/- 2.0%  | 367.5   | 382.5   | None                       |      |
| 117 | Yes  | +/- 2.0%  | 57.75   | 60.11   | None                       |      |
| 118 | Yes  | +/- 2.0%  | 0.11    | 0.11    |                            |      |
| 119 |      |           |         |         |                            |      |
| 120 | Yes  | +/- 2.0%  | 0.11    | 0.11    |                            |      |
| 121 | Yes  | +/- 2.0%  | 0.11    | 0.11    |                            |      |
| 122 | Yes  | +/- 2.0%  | 0.43    | 0.45    |                            |      |
| 123 | Yes  | +/- 5.0%  | 17.67   | 19.53   |                            |      |
| 124 |      |           |         |         | None                       |      |
|     |      |           |         |         | fresh water jnc -> Sealing |      |
| 125 |      |           |         |         | water                      | Yes  |
| 126 |      |           |         |         |                            |      |
| 127 |      |           |         |         |                            |      |
| 128 |      |           |         |         | None                       |      |
| 129 | Yes  | +/- 25.0% | 405     | 675     |                            |      |
| 130 | Yes  | +/- 2.0%  | 9.45    | 9.83    |                            |      |
| 131 | Yes  | +/- 2.0%  | 157.49  | 163.91  | None                       |      |
| 132 | Yes  | +/- 2.0%  | 233.63  | 243.17  | None                       |      |
| 133 | Yes  | +/- 2.0%  | 234.42  | 243.98  | None                       |      |
| 134 | Yes  | +/- 2.0%  | 502.01  | 522.51  | None                       |      |
| 135 | Yes  | +/- 2.0%  | 591.51  | 615.65  | None                       |      |
| 136 | Yes  | +/- 2.0%  | 803.6   | 836.4   | None                       |      |
| 137 | Yes  | +/- 2.0%  | 835.7   | 869.82  | None                       |      |
| 138 | Yes  | +/- 2.0%  | 121.91  | 126.89  | None                       |      |
| 139 |      |           |         |         | None                       |      |
| 140 | Yes  | +/- 2.0%  | 150.92  | 157.08  | None                       |      |
| 141 | Yes  | +/- 2.0%  | 17.54   | 18.26   | None                       |      |
| 142 |      |           |         |         |                            |      |

|     | Use? | Trust    | Minimum | Maximum | Linked To | Use? |
|-----|------|----------|---------|---------|-----------|------|
| 143 |      |          |         |         |           |      |
| 144 |      |          |         |         | None      |      |
| 145 |      |          |         |         | None      |      |
| 146 |      |          |         |         |           |      |
| 147 |      |          |         |         |           |      |
| 148 | Yes  | +/- 2.0% | 49.69   | 51.71   |           |      |
| 149 | Yes  | +/- 2.0% | 219.86  | 228.84  |           |      |
| 150 | Yes  | +/- 2.0% | 94.79   | 98.65   |           |      |
| 151 | Yes  | +/- 2.0% | 570.75  | 594.05  | None      |      |
| 152 |      |          |         |         |           |      |
| 153 | Yes  | +/- 2.0% | 42.34   | 44.06   |           |      |
| 154 | Yes  | +/- 2.0% | 123.09  | 128.11  |           |      |
| 155 |      |          |         |         |           |      |
| 156 | Yes  | +/- 5.0% | 237.22  | 262.19  | None      |      |
| 157 |      |          |         |         |           |      |
| 158 |      |          |         |         |           |      |
| 159 | Yes  | +/- 2.0% | 246.67  | 256.73  |           |      |
| 160 |      |          |         |         |           |      |
| 161 | Yes  | +/- 2.0% | 85.26   | 88.74   |           |      |
| 162 | Yes  | +/- 2.0% | 282.24  | 293.76  |           |      |
| 163 |      |          |         |         | None      |      |
| 164 | Yes  | +/- 2.0% | 2.84    | 2.96    | None      |      |
| 165 |      |          |         |         | None      |      |
| 166 |      |          |         |         |           |      |
| 167 |      |          |         |         | None      |      |
| 168 |      |          |         |         |           |      |
| 169 |      |          |         |         | None      |      |
| 170 |      |          |         |         |           |      |
| 171 | Yes  | +/- 2.0% | 13.23   | 13.77   | None      |      |
| 172 |      |          |         |         |           |      |
| 173 |      |          |         | -       | None      |      |
| 174 | Yes  | +/- 2.0% | 13.23   | 13.77   | None      |      |
| 175 |      |          | T       |         | None      |      |
| 176 | Yes  | +/- 2.0% | 2403.94 | 2502.06 | None      |      |
| 177 | Yes  | +/- 2.0% | 2283.6  | 2376.8  | None      |      |
| 178 |      |          |         |         | None      |      |

|     | Use? | Trust    | Minimum | Maximum | Linked To                  | Use?     |
|-----|------|----------|---------|---------|----------------------------|----------|
| 179 | Yes  | +/- 2.0% | 60.96   | 63.44   | None                       |          |
| 180 | Yes  | +/- 2.0% | 30.48   | 31.72   | None                       |          |
| 181 |      |          |         |         | None                       |          |
| 182 | Yes  | +/- 2.0% | 2381.4  | 2478.6  | None                       |          |
| 183 | Yes  | +/- 2.0% | 2262.33 | 2354.67 | None                       |          |
| 184 |      |          |         |         | None                       |          |
| 185 | Yes  | +/- 2.0% | 60.96   | 63.44   | None                       |          |
| 186 | Yes  | +/- 2.0% | 30.48   | 31.72   | None                       |          |
| 187 |      |          |         |         | None                       |          |
| 188 |      |          |         |         | None                       |          |
| 189 |      |          |         |         | None                       |          |
| 190 |      |          |         |         | None                       |          |
|     |      |          |         |         | PM5 silo -> PM5 cleaners & |          |
| 191 |      |          |         |         | deculator                  | Yes      |
| -   |      |          |         |         | PM5 cleaners & deculator - |          |
| 192 |      |          |         |         | > PM5 screens              | Yes      |
| 193 |      |          |         |         |                            |          |
| 194 |      |          |         |         |                            |          |
|     |      |          |         |         | PM4 cleaners & deculator - |          |
| 195 |      |          |         |         | > PM4 screens              | Yes      |
|     |      |          |         |         | PM4 silo -> PM4 cleaners & |          |
| 196 |      |          |         |         | deculator                  | Yes      |
| 197 |      |          |         |         |                            |          |
| 198 |      |          |         |         |                            |          |
| 199 |      |          |         |         |                            |          |
| 200 | Yes  | +/- 2.0% | 19.6    | 20.4    |                            |          |
| 201 | Yes  | +/- 2.0% | 4.41    | 4.59    |                            |          |
| 202 |      |          |         |         |                            |          |
| 203 | Yes  | +/- 2.0% | 4.41    | 4.59    |                            |          |
| 204 | Yes  | +/- 2.0% | 19.6    | 20.4    |                            |          |
| 205 |      |          |         |         |                            |          |
| 206 |      |          |         |         |                            |          |
| 207 |      |          |         |         |                            |          |
| 208 |      |          |         |         |                            |          |
| 209 |      |          |         |         |                            |          |
| 210 | Yes  | +/- 2.0% | 15.68   | 16.32   |                            | <u> </u> |

|     | _    | ·         |         |         |                            |      |
|-----|------|-----------|---------|---------|----------------------------|------|
|     | Use? | Trust     | Minimum | Maximum | Linked To                  | Use? |
| 211 | Yes  | +/- 2.0%  | 15.68   | 16.32   |                            |      |
| 212 | Yes  | +/- 2.0%  | 1.22    | 1.26    |                            |      |
| 213 | Yes  | +/- 25.0% | 15      | 25      | fresh water jnc -> Cooling |      |
| 214 | Yes  | +/- 5.0%  | 19.95   | 22.05   |                            |      |
| 215 | Yes  | +/- 5.0%  | 83.6    | 92.4    |                            |      |
| 216 | Yes  | +/- 5.0%  | 19.95   | 22.05   |                            |      |
| 217 | Yes  | +/- 5.0%  | 83.6    | 92.4    |                            |      |
| 218 | Yes  | +/- 2.0%  | 7.35    | 7.65    |                            |      |
| 219 | Yes  | +/- 2.0%  | 51.17   | 53.25   |                            | +    |
| 220 | Yes  | +/- 2.0%  | 101.63  | 105.77  |                            |      |
| 221 | Yes  | +/- 2.0%  | 144.16  | 150.04  | None                       |      |
| 222 |      |           |         |         |                            |      |
| 223 | Yes  | +/- 2.0%  | 7.86    | 8.18    |                            |      |
| 224 | Yes  | +/- 2.0%  | 94.08   | 97.92   |                            |      |
| 225 |      |           |         |         |                            |      |
| 226 | Yes  | +/- 2.0%  | 176.91  | 184.13  | None                       |      |
| 227 | Yes  | +/- 2.0%  | 125.44  | 130.56  | None                       |      |
| 228 |      |           |         |         | None                       |      |
| 229 | Yes  | +/- 2.0%  | 156.8   | 163.2   |                            |      |
| 230 | Yes  | +/- 2.0%  | 392     | 408     |                            |      |
| 231 |      |           |         |         | None                       |      |
| 232 | Yes  | +/- 25.0% | 222     | 370     | None                       |      |
| 233 | Yes  | +/- 5.0%  | 1356.6  | 1499.4  |                            |      |
| 234 | Yes  | +/- 25.0% | 153.75  | 256.25  |                            |      |
| 235 |      |           |         |         |                            |      |
| 236 |      |           |         |         |                            |      |
| 237 |      |           |         |         |                            |      |
| 238 | Yes  | +/- 2.0%  | 90.16   | 93.84   |                            |      |
| 239 |      |           |         |         | None                       |      |
| 240 | Yes  | +/- 2.0%  | 392     | 408     |                            |      |
| 241 | Yes  | +/- 2.0%  | 125.44  | 130.56  | None                       |      |
| 242 | Yes  | +/- 2.0%  | 156.8   | 163.2   |                            |      |
| 243 |      |           |         |         | None                       |      |
| 244 | Yes  | +/- 2.0%  | 90.16   | 93.84   |                            |      |
| 245 |      |           | 1       |         |                            |      |
| 246 | Yes  | +/- 25.0% | 222     | 370     | None                       |      |

|     | Use? | Trust    | Minimum | Maximum | Linked To | Use? |
|-----|------|----------|---------|---------|-----------|------|
| 247 |      |          |         |         |           |      |
| 248 |      |          |         |         |           |      |
| 249 | Yes  | +/- 2.0% | 176.91  | 184.13  | None      |      |
| 250 | Yes  | +/- 5.0% | 2179.3  | 2408.7  | None      |      |
| 251 | Yes  | +/- 5.0% | 2179.3  | 2408.7  | None      |      |
| 252 | Yes  | +/- 5.0% | 1356.6  | 1499.4  |           |      |

Table G.1 (c) Newsprint Circuit flowrate specifications in Water Tracker

| <b></b> | X7-1 - | Catle Day   | Diana D C | TT 0 |
|---------|--------|-------------|-----------|------|
|         | Value  | Split Frac. | Phys.Max. | Use? |
| 1       |        |             | 600       |      |
| 2       |        |             | +inf      |      |
| 3       |        |             | 50        | Yes  |
| 4       | 0      |             | +inf      |      |
| 5       | 0.95   |             | 550       |      |
| 6       | 0      |             | 72.6      |      |
| 7       |        | 0.25        | +inf      |      |
| 8       |        | 0.25        | +inf      |      |
| 9       | 0      |             | 14        |      |
| 10      | 0      |             | +inf      |      |
| 11      | 0      |             | +inf      |      |
| 12      |        |             | 0.5       | Yes  |
| 13      | 0      |             | +inf      |      |
| 14      | 0      |             | +inf      |      |
| 15      |        |             | 1         | Yes  |
| 16      |        |             | 16        | Yes  |
| 17      |        | 0.129       | +inf      |      |
| 18      |        | 0.129       | +inf      |      |
| 19      |        |             | 2         | Yes  |
| 20      |        | 0.25        | +inf      |      |
| 21      |        | 0.25        | +inf      |      |
| 22      | 0      |             | +inf      |      |
| 23      | 0      |             | +inf      |      |
| 24      | 0      |             | 13.5      | Yes  |
| 25      | 0      |             | 13.5      | Yes  |
| 26      | 0      |             | 133       | Yes  |

|    | Value | Split Frac. | Phys.Max. | Use? |
|----|-------|-------------|-----------|------|
| 27 | 0     |             | 133       | Yes  |
| 28 |       |             | +inf      |      |
| 29 | 0     |             | +inf      |      |
| 30 | 0     |             | +inf      |      |
| 31 |       |             | 12        | Yes  |
| 32 | 0     |             | +inf      |      |
| 33 | 0     |             | +inf      |      |
| 34 |       |             | 48        | Yes  |
| 35 |       |             | 133       | Yes  |
| 36 |       |             | +inf      |      |
| 37 |       |             | 40        | Yes  |
| 38 | 0     |             | 32        |      |
| 39 | 0     |             | +inf      |      |
| 40 | 0     |             | +inf      |      |
| 41 |       |             | 12        |      |
| 42 | 0     |             | +inf      |      |
| 43 | 0     |             | +inf      |      |
| 44 | 0     |             | +inf      |      |
| 45 |       |             | +inf      |      |
| 46 | 0     |             | +inf -    |      |
| 47 | 0     |             | +inf      |      |
| 48 | 0     |             | +inf      |      |
| 49 |       | 0.5         | +inf      |      |
| 50 |       |             | +inf      |      |
| 51 | 0     |             | +inf      |      |
| 52 | 0     |             | +inf      |      |
| 53 | 0     |             | +inf      |      |
| 54 | 0     |             | +inf      |      |
| 55 |       | 0.25        | +inf      |      |
| 56 |       |             | +inf      |      |
| 57 | 0     |             | +inf      |      |
| 58 | 0     |             | +inf      |      |
| 59 |       | 0.129       | +inf      |      |
| 60 |       | 0.129       | +inf      |      |
| 61 | 0     |             | +inf      |      |
| 62 | 0     |             | +inf      |      |

|    | Value    | Split Frac. | Phys.Max. | Use? |
|----|----------|-------------|-----------|------|
| 63 | 0        |             | +inf      |      |
| 64 | 0        |             | +inf      |      |
| 65 | 0        |             | +inf      |      |
| 66 | 0        |             | +inf      |      |
| 67 | 0        |             | +inf      |      |
| 68 | 0        |             | +inf      |      |
| 69 |          |             | 40        | Yes  |
| 70 |          |             | +inf      |      |
| 71 | 0        |             | 900       |      |
| 72 |          | 0.5         | +inf      |      |
| 73 |          |             | +inf      |      |
| 74 |          | 0.5         | +inf      |      |
| 75 |          | 0.5         | +inf      |      |
| 76 |          |             | +inf      |      |
| 77 |          | 0.25        | +inf      |      |
| 78 |          |             | +inf      |      |
| 79 | 0        |             | 1000      | Yes  |
| 80 | 0        |             | 77        | Yes  |
| 81 | 0        |             | 300       |      |
| 82 | 0        |             | 1000 -    | Yes  |
| 83 |          | _           | 170       | Yes  |
| 84 |          |             | +inf      |      |
| 85 | 0        |             | 1000      | Yes  |
| 86 | 0        |             | 1000      | Yes  |
| 87 | 0        |             | 300       |      |
| 88 | 0        |             | 300       |      |
| 89 |          |             | +inf      |      |
| 90 | <u>.</u> |             | +inf      |      |
| 91 |          |             | +inf      |      |
| 92 |          |             | +inf      |      |
| 93 |          |             | 130       | Yes  |
| 94 |          |             | +inf      |      |
| 95 |          |             | +inf      |      |
| 96 |          |             | +inf      |      |
| 97 |          |             | +inf      |      |
| 98 | 0        |             | +inf      |      |

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 99  |       |             | +inf      |      |
| 100 | 0     |             | +inf      |      |
| 101 | 0     |             | +inf      |      |
| 102 |       |             | 15        | Yes  |
| 103 |       |             | +inf      |      |
| 104 |       |             | +inf      |      |
| 105 |       |             | +inf      |      |
| 106 |       |             | +inf      |      |
| 107 |       |             | 142       | Yes  |
| 108 |       |             | +inf      |      |
| 109 |       |             | 35        | Yes  |
| 110 |       |             | +inf      |      |
| 111 |       |             | +inf      |      |
| 112 |       | 0.25        | +inf      |      |
| 113 |       |             | +inf      |      |
| 114 | 0     |             | +inf      |      |
| 115 |       |             | +inf      |      |
| 116 | 0     |             | +inf      |      |
| 117 | 0     |             | +inf      |      |
| 118 |       | 0.25        | +inf      |      |
| 119 |       |             | +inf      |      |
| 120 |       | 0.25        | +inf      |      |
| 121 |       | 0.25        | +inf      |      |
| 122 |       |             | +inf      |      |
| 123 |       |             | 20        | Yes  |
| 124 | 0     |             | +inf      |      |
| 125 | 0.5   |             | 10        | Yes  |
| 126 |       | 0.001       | +inf      |      |
| 127 |       | 0           | +inf      |      |
| 128 | 0     |             | 560       | Yes  |
| 129 |       |             | +inf      |      |
| 130 |       |             | +inf      |      |
| 131 | 0     |             | +inf      |      |
| 132 | 0     |             | +inf      |      |
| 133 | 0     |             | +inf      |      |
| 134 | 0     |             | +inf      |      |

.

.

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 135 | 0     |             | +inf      |      |
| 136 | 0     |             | 840       | Yes  |
| 137 | 0     |             | +inf      |      |
| 138 | 0     |             | 127       | Yes  |
| 139 | 0     |             | 28        | Yes  |
| 140 | 0     |             | +inf      |      |
| 141 | 0     |             | 20        | Yes  |
| 142 |       |             | +inf      |      |
| 143 |       |             | +inf      |      |
| 144 | 0     |             | 8         | Yes  |
| 145 | 0     |             | 32        | Yes  |
| 146 |       |             | +inf      |      |
| 147 |       |             | +inf      |      |
| 148 |       |             | 60        | Yes  |
| 149 |       |             | 230       | Yes  |
| 150 |       |             | +inf      |      |
| 151 | 0     |             | 255       |      |
| 152 |       |             | +inf      |      |
| 153 |       |             | +inf      |      |
| 154 |       |             | +inf      |      |
| 155 |       |             | +inf      |      |
| 156 | 0     |             | 265       | Yes  |
| 157 |       |             | 10        | Yes  |
| 158 |       |             | +inf      |      |
| 159 |       |             | 260       | Yes  |
| 160 |       |             | +inf      |      |
| 161 |       |             | +inf      |      |
| 162 |       |             | 340       | Yes  |
| 163 | 0     |             | 11        | Yes  |
| 164 | 0     |             | +inf      |      |
| 165 | 0     |             | 150       | Yes  |
| 166 |       |             | +inf      |      |
| 167 | 0     |             | 5.6       | Yes  |
| 168 |       |             | 1         | Yes  |
| 169 | 0     |             | +inf      |      |
| 170 |       |             | +inf      |      |

| 171         172         173         174         175         176         177         178         179         180         181         182         183         184         185         186         187         188         189         190         191         192 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | <pre>+inf +inf +inf +inf +inf +inf +inf +inf</pre>           |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----|
| 173         174         175         176         177         178         179         180         181         182         183         184         185         186         187         188         189         190         191                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf |     |
| 174         175         176         177         178         179         180         181         182         183         184         185         186         187         188         189         190         191                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf |     |
| 175         176         177         178         179         180         181         182         183         184         185         186         187         188         189         190         191                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf |     |
| 176         177         178         179         180         181         182         183         184         185         186         187         188         189         190         191                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf |     |
| 177         178         179         180         181         182         183         184         185         186         187         188         189         190         191                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf |     |
| 178         179         180         181         182         183         184         185         186         187         188         189         190         191                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf |     |
| 179         180         181         182         183         184         185         186         187         188         189         190         191                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf |     |
| 180         181         182         183         184         185         186         187         188         189         190         191                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | +inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf<br>+inf         |     |
| 181         182         183         184         185         186         187         188         189         190         191                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | +inf<br>+inf<br>+inf<br>+inf<br>+inf                         |     |
| 182       183       184       185       186       187       188       189       190       191                                                                                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0                                                                  | +inf<br>+inf<br>+inf<br>+inf                                 |     |
| 183         184         185         186         187         188         189         190         191                                                                                                                                                             | 0<br>0<br>0<br>0<br>0                                                                       | +inf<br>+inf<br>+inf                                         |     |
| 184       185       186       187       188       189       190       191                                                                                                                                                                                       | 0<br>0<br>0<br>0                                                                            | +inf<br>+inf                                                 |     |
| 185           186           187           188           189           190           191                                                                                                                                                                         | 0<br>0<br>0                                                                                 | +inf                                                         |     |
| 186           187           188           189           190           191                                                                                                                                                                                       | 0 0                                                                                         |                                                              |     |
| 187           188           189           190           191                                                                                                                                                                                                     | 0                                                                                           | +inf                                                         |     |
| 188           189           190           191                                                                                                                                                                                                                   |                                                                                             |                                                              |     |
| 189<br>190<br>191                                                                                                                                                                                                                                               | 0                                                                                           | +inf                                                         |     |
| 190<br>191                                                                                                                                                                                                                                                      | 0                                                                                           | 300                                                          | Yes |
| 191                                                                                                                                                                                                                                                             | 0                                                                                           | 250                                                          | Yes |
|                                                                                                                                                                                                                                                                 | 0                                                                                           | 150                                                          | Yes |
| 192                                                                                                                                                                                                                                                             | 0.05                                                                                        | +inf                                                         |     |
| 1 I                                                                                                                                                                                                                                                             | 0.05                                                                                        | +inf                                                         |     |
| 193                                                                                                                                                                                                                                                             |                                                                                             | +inf                                                         |     |
| 194                                                                                                                                                                                                                                                             |                                                                                             | +inf                                                         |     |
| 195                                                                                                                                                                                                                                                             | 0.05                                                                                        | +inf                                                         |     |
| 196                                                                                                                                                                                                                                                             | 0.05                                                                                        | +inf                                                         |     |
| 197                                                                                                                                                                                                                                                             |                                                                                             | +inf                                                         |     |
| 198                                                                                                                                                                                                                                                             | _                                                                                           | +inf                                                         |     |
| 199                                                                                                                                                                                                                                                             |                                                                                             | +inf                                                         |     |
| 200                                                                                                                                                                                                                                                             |                                                                                             | +inf                                                         |     |
| 201                                                                                                                                                                                                                                                             |                                                                                             | <br>+inf                                                     |     |
| 202                                                                                                                                                                                                                                                             |                                                                                             | <br>+inf                                                     |     |
| 203                                                                                                                                                                                                                                                             |                                                                                             | +inf                                                         |     |
| 204                                                                                                                                                                                                                                                             |                                                                                             | <br>22                                                       | Yes |
| 205                                                                                                                                                                                                                                                             |                                                                                             | +inf                                                         |     |
| 206                                                                                                                                                                                                                                                             |                                                                                             | <br>800                                                      | Yes |

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 207 |       |             | 400       |      |
| 208 |       | 0.5         | +inf      |      |
| 209 |       |             | +inf      |      |
| 210 |       | 0.5         | 6.6       |      |
| 211 |       |             | 6.6       |      |
| 212 |       |             | 1.4       | Yes  |
| 213 | 1     |             | 40        | Yes  |
| 214 |       |             | 80        | Yes  |
| 215 |       |             | 95        | Yes  |
| 216 |       |             | +inf      |      |
| 217 |       |             | 93        |      |
| 218 |       |             | +inf      |      |
| 219 |       |             | 55        |      |
| 220 |       |             | +inf      |      |
| 221 | 0     |             | +inf      |      |
| 222 |       |             | +inf      |      |
| 223 |       |             | 12        |      |
| 224 |       | 0.5         | +inf      |      |
| 225 |       |             | +inf      |      |
| 226 | 0     |             | +inf      |      |
| 227 | 0     |             | +inf      |      |
| 228 | 0     |             | +inf      |      |
| 229 |       |             | +inf      |      |
| 230 |       |             | +inf      |      |
| 231 | 0     |             | +inf      |      |
| 232 | 0     |             | +inf      |      |
| 233 |       |             | +inf      |      |
| 234 |       |             | 220       |      |
| 235 |       |             | +inf      |      |
| 236 |       |             | +inf      |      |
| 237 |       |             | +inf      |      |
| 238 |       |             | +inf      |      |
| 239 | 0     |             | +inf      |      |
| 240 |       |             | +inf      |      |
| 241 | 0     |             | +inf      |      |
| 242 |       |             | +inf      |      |

.

|     | Value     | Split Frac. | Phys.Max. | Use? |
|-----|-----------|-------------|-----------|------|
| 243 | 0         |             | +inf      |      |
| 244 |           | -           | +inf      |      |
| 245 |           |             | +inf      |      |
| 246 | 0         |             | +inf      |      |
| 247 |           |             | 250       | Yes  |
| 248 |           |             | 100       | Yes  |
| 249 | 0         |             | +inf      |      |
| 250 | 0         |             | 2500      | Yes  |
| 251 | 0         |             | 2500      | Yes  |
| 252 |           |             | +inf      |      |
| 253 |           |             | 10        |      |
| 254 |           |             | 70        |      |
| 255 |           |             | +inf      |      |
| 256 |           |             | +inf      |      |
| 257 |           |             | +inf      |      |
| 258 |           |             | 500       |      |
| 259 |           |             | +inf      |      |
| 260 |           |             | +inf      |      |
| 261 |           |             | +inf      |      |
| 262 |           |             | +inf      |      |
| 263 |           |             | +inf      |      |
| 264 |           |             | +inf      |      |
| 265 |           |             | +inf      |      |
| 266 |           |             | +inf      |      |
| 267 |           |             | 500       |      |
| 268 |           |             | 315       |      |
| 269 |           | 0.5         | +inf      |      |
| 270 | _         | 0.5         | 47        | Yes  |
| 271 |           |             | +inf      |      |
| 272 |           |             | +inf      |      |
| 273 | - Alterna |             | +inf      |      |
| 274 |           |             | +inf      |      |
| 275 |           |             | +inf      |      |
| 276 |           |             | +inf      |      |

### Appendix H

# Newsprint Circuit Fibre Content Data Specifications in Water Tracker

|    | From                           | То                             | Calc.'d | Flow rate |
|----|--------------------------------|--------------------------------|---------|-----------|
| 1  | Fresh water                    | fresh water jnc                | 747.18  | 865       |
| 2  | Fresh water jnc                | Cooling                        | 20      | 20        |
| 3  | Chips                          | chip washer                    | 48      | 48        |
| 4  | Chip washer                    | hydrasieves                    | 395.7   | 395.7     |
| 5  | Hydrasieves                    | chip washer                    | 376.15  | 376.15    |
| 6  | Chip washer                    | chip washer jnc                | 50.72   | 57.86     |
| 7  | Chip washer jnc                | Line 1 Digester                | 12.68   | 11.52     |
| 8  | Chip washer jnc                | Line 2 Digester                | 12.68   | 11.52     |
| 9  | Hydrasieves                    | Hydrasieve rejects             | 19.55   | 0         |
| 10 | Line 1 Digester                | rotary valve exhaust steam jnc | 0.08    | 0.08      |
| 11 | Line 2 Digester                | rotary valve exhaust steam jnc | 0.08    | 0.08      |
| 12 | Rotary valve exhaust steam jnc | Rotary valve exhaust steam     | 0.32    | 0         |
| 13 | Line 1 Digester                | digester vent steam jnc        | 0.18    | 0.18      |
| 14 | Line 2 Digester                | digester vent steam jnc        | 0.18    | 0.18      |
| 15 | Digester vent steam jnc        | Digester vent steam            | 0.72    | 0         |
| 16 | Steam                          | feed steam jnc                 | 15.5    | 0         |
| 17 | Feed steam jnc                 | Line 1 Digester                | 2       | 0         |
| 18 | Feed steam jnc                 | Line 2 Digester                | 2       | 2         |
| 19 | Sodium sulphite                | sodium sulphite jnc            | 1.12    | 0         |
| 20 | Sodium sulphite jnc            | Line 1 Digester                | 0.28    | 0.28      |
| 21 | Sodium sulphite jnc            | Line 2 Digester                | 0.28    | 0.28      |
| 22 | Line 2 Digester                | Line 2 Prim Refiner            | 14.7    | 14.7      |
| 23 | Line 1 Digester                | Line 1 Prim Refiner            | 14.7    | 14.7      |
| 24 | Line 1 Prim Refiner            | Line 1 Sec Refiner             | 12.76   | 12.76     |
| 25 | Line 2 Prim Refiner            | Line 2 Sec Refiner             | 12.76   | 12.76     |
| 26 | Line 1 Sec Refiner             | sec refiner jnc                | 129.64  | 129.64    |
| 27 | Line 2 Sec Refiner             | sec refiner jnc                | 129.64  | 129.64    |
| 28 | Sec refiner jnc                | TMP1 Latency & screens         | 259.28  | 0         |
| 29 | Line 2 Prim Refiner            | prim ref back flow steam jnc   | 1.95    | 1.95      |

Table H.1 (a) Newsprint Circuit fibre content data specifications in Water Tracker

|    | From                          | То                               | Calc.'d | Flow rate |
|----|-------------------------------|----------------------------------|---------|-----------|
| 30 | Line 1 Prim Refiner           | prim ref back flow steam jnc     | 1.95    | 1.95      |
| 31 | Prim ref back flow steam jnc  | back flow steam                  | 7.8     | 0         |
| 32 | Line 1 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 33 | Line 2 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 34 | Sec refiner exhaust steam jnc | Cyclone and feader exhaust steam | 28.12   | 0         |
| 35 | TMP1 cloudy ww2               | Line 1 Sec Refiner               | 126.35  | 126.35    |
| 36 | TMP1 cloudy ww2               | Line 1 Prim Refiner              | 0.01    | 10.44     |
| 37 | GWD rejects                   | Reject System                    | 26.7    | 26.7      |
| 38 | Reject System                 | Rejects from pressure screen     | 46.36   | 25.5      |
| 39 | Line 1 Sec Refiner            | sec refiner losses jnc           | 2.44    | 0         |
| 40 | Line 2 Sec Refiner            | sec refiner losses jnc           | 2.44    | 0         |
| 41 | Sec refiner losses jnc        | Losses                           | 9.76    | 0         |
| 42 | Line 3 Digester               | Line 3 Prim Refiner              | 14.7    | 14.7      |
| 43 | Line 3 Prim Refiner           | Line 3 Sec Refiner               | 12.76   | 12.76     |
| 44 | Line 4 Decker                 | JNC-TMP2 pulp to storage         | 117.3   | 117.3     |
| 45 | JNC-TMP2 pulp to storage      | JNC-pulp to storage              | 234.6   | 0         |
| 46 | Line 3 Decker                 | JNC-TMP2 pulp to storage         | 117.3   | 117.3     |
| 47 | Line 3 Sec Refiner            | JNC-TMP2 sec ref to latency      | 129.64  | 129.64    |
| 48 | Line 4 Sec Refiner            | JNC-TMP2 sec ref to latency      | 129.64  | 129.64    |
| 49 | JNC-TMP2 latency to deckers   | Line 3 Decker                    | 297     | 297       |
| 50 | JNC-TMP2 latency to deckers   | Line 4 Decker                    | 297     | 369.17    |
| 51 | Line 4 Digester               | Line 4 Prim Refiner              | 14.7    | 14.7      |
| 52 | Line 4 Prim Refiner           | Line 4 Sec Refiner               | 12.76   | 12.76     |
| 53 | Line 3 Digester               | rotary valve exhaust steam jnc   | 0.08    | 0.08      |
| 54 | Line 4 Digester               | rotary valve exhaust steam jnc   | 0.08    | 0.08      |
| 55 | Sodium sulphite jnc           | Line 4 Digester                  | 0.28    | 0.28      |
| 56 | Sodium sulphite jnc           | Line 3 Digester                  | 0.28    | 0.28      |
| 57 | Line 3 Digester               | digester vent steam jnc          | 0.18    | 0.18      |
| 58 | Line 4 Digester               | digester vent steam jnc          | 0.18    | 0.18      |
| 59 | Feed steam jnc                | Line 3 Digester                  | 2       | 0         |
| 60 | Feed steam jnc                | Line 4 Digester                  | 2       | 0         |
| 61 | Line 3 Prim Refiner           | prim ref back flow steam jnc     | 1.95    | 1.95      |
| 62 | Line 4 Prim Refiner           | prim ref back flow steam jnc     | 1.95    | 1.95      |
| 63 | Line 3 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 64 | Line 4 Sec Refiner            | sec refiner exhaust steam jnc    | 7.03    | 7.03      |
| 65 | Line 3 Sec Refiner            | sec refiner losses jnc           | 2.44    | 0         |

|     | From                         | То                          | Calc.'d | Flow rate |
|-----|------------------------------|-----------------------------|---------|-----------|
| 66  | Line 4 Sec Refiner           | sec refiner losses jnc      | 2.44    | 0         |
| 67  | Line 1 Decker                | JNC-TMP1 pulp to storage    | 117.3   | 117.3     |
| 68  | Line 2 Decker                | JNC-TMP1 pulp to storage    | 117.3   | 117.3     |
| 69  | Fresh water jnc              | JNC-tempered to clear ww    | 40      | 0         |
| 70  | JNC-TMP1 pulp to storage     | JNC-pulp to storage         | 234.6   | 0         |
| 71  | TMP1 Latency & screens       | JNC-TMP1 latency to deckers | 594     | 594       |
| 72  | JNC-TMP1 latency to deckers  | Line 1 Decker               | 297     | 409.16    |
| 73  | JNC-TMP1 latency to deckers  | Line 2 Decker               | 297     | 409.16    |
| 74  | JNC-Rej sys                  | JNC-Reject system           | 187.7   | 187.7     |
| 75  | JNC-Reject system            | Line 1 Decker               | 93.85   | 93.9      |
| 76  | JNC-Reject system            | Line 2 Decker               | 93.85   | 129.29    |
| 77  | JNC-Rej sys                  | Line 3 Decker               | 93.85   | 93.9      |
| 78  | JNC-Rej sys                  | Line 4 Decker               | 93.85   | 0         |
| 79  | Line 1 Decker                | JNC-TMP1 cloudy             | 320.66  | 0         |
| 80  | Line 1 Decker                | JNC-TMP1 clear              | 73      | 73        |
| 81  | Line 2 Decker                | JNC-TMP1 clear              | 73      | 73        |
| 82  | Line 2 Decker                | JNC-TMP1 cloudy             | 320.66  | 65        |
| 83  | JNC-TMP1 clear ww to deckers | Line 1 Decker               | 120     | 120       |
| 84  | JNC-TMP1 clear ww to deckers | Line 2 Decker               | 120     | 120       |
| 85  | Line 3 Decker                | JNC-TMP2 cloudy ww3         | 320.66  | 0         |
| 86  | Line 4 Decker                | JNC-TMP2 cloudy ww3         | 320.66  | 0         |
| 87  | Line 4 Decker                | JNC-TMP2 clear ww2          | 73      | 73        |
| 88  | Line 3 Decker                | JNC-TMP2 clear ww2          | 73      | 73        |
| 89  | JNC-TMP2 clear ww1           | Line 3 Decker               | 120     | 120       |
| 90  | JNC-TMP2 clear ww1           | Line 4 Decker               | 120     | 120       |
| 91  | Cloudy ww2                   | Reject System               | 277.2   | 191.5     |
| 92  | TMP2 cloudy ww2              | Line 4 Prim Refiner         | 0.01    | 0         |
| 93  | TMP2 cloudy ww2              | Line 4 Sec Refiner          | 126.35  | 126.35    |
| 94  | TMP2 cloudy ww2              | Line 3 Sec Refiner          | 126.35  | 126.35    |
| 95  | TMP2 cloudy ww2              | Line 3 Prim Refiner         | 0.01    | 0         |
| 96  | TMP2 cloudy ww1              | TMP2 cloudy ww2             | 252.72  | 0         |
| 97  | JNC-TMP2 sec ref to latency  | TMP2 Latency & screens      | 259.28  | 0         |
| 98  | TMP2 Latency & screens       | JNC-TMP2 latency to deckers | 594     | 594       |
| 99  | TMP2 cloudy ww1              | TMP2 Latency & screens      | 398.65  | 398       |
| 100 | TMP1 Latency & screens       | JNC-latency steam           | 5       | 5         |
| 101 | TMP2 Latency & screens       | JNC-latency steam           | 5       | 5         |

|     | From                          | То                            | Calc.'d | Flow rate |
|-----|-------------------------------|-------------------------------|---------|-----------|
| 102 | JNC-latency steam             | Latency steam                 | 10      | 0         |
| 103 | TMP1 cloudy ww1               | TMP1 cloudy ww2               | 252.72  | 0         |
| 104 | TMP1 cloudy ww1               | TMP1 Latency & screens        | 398.65  | 398       |
| 105 | TMP1 cloudy ww2               | Line 2 Prim Refiner           | 0.01    | 10.44     |
| 106 | TMP1 cloudy ww2               | Line 2 Sec Refiner            | 126.35  | 126.35    |
| 107 | TMP1 cloudy ww1               | cloudy ww2                    | 138.6   | 138.6     |
| 108 | TMP1 cloudy ww1               | JNC- cloudy ww to chip washer | 18.1    | 18.1      |
| 109 | JNC- cloudy ww to chip washer | chip washer                   | 22.27   | 32.26     |
| 110 | TMP2 cloudy ww1               | JNC- cloudy ww to chip washer | 4.17    | 0         |
| 111 | TMP2 cloudy ww1               | cloudy ww2                    | 138.6   | 138.6     |
| 112 | Chip washer jnc               | Line 3 Digester               | 12.68   | 11.52     |
| 113 | Chip washer jnc               | Line 4 Digester               | 12.68   | 11.52     |
| 114 | TMP1 Latency & screens        | JNC-latency to rej sys        | 58.93   | 58.93     |
| 115 | JNC-latency to rej sys        | Reject System                 | 117.86  | 162       |
| 116 | Reject System                 | JNC-Rej sys                   | 375.4   | 375       |
| 117 | TMP2 Latency & screens        | JNC-latency to rej sys        | 58.93   | 58.93     |
| 118 | JNC-Hydros                    | Line 1 Decker                 | 0.11    | 0.11      |
| 119 | JNC-Hydros                    | Line 2 Decker                 | 0.11    | 0.1       |
| 120 | JNC-Hydros                    | Line 4 Decker                 | 0.11    | 0.11      |
| 121 | JNC-Hydros                    | - Line 3 Decker               | 0.11    | 0.11      |
| 122 | Hydros                        | JNC-Hydros                    | 0.44    | 0.44      |
| 123 | Fresh water jnc               | Sealing water                 | 19      | 18.6      |
| 124 | Sealing water                 | JNC-sealing water to clear ww | 9.5     | 0         |
| 125 | Sealing water                 | sealing water to drain        | 9.5     | 7.31      |
| 126 | Cooling tower                 | [Losses]                      | 0.54    | 0         |
| 127 | Cooling tower                 | [Evapor.]                     | 0       | 0         |
| 128 | Cooling                       | cooling tower                 | 540.54  | 0         |
| 129 | Cooling tower                 | Cooling                       | 540     | 540       |
| 130 | RFP waste paper               | RFP Pulping                   | 9.64    | 9.64      |
| 131 | RFP Pulping                   | RFP-HD cleaning               | 160.7   | 160.7     |
| 132 | RFP-HD cleaning               | RFP coarse screens            | 238.4   | 238.4     |
| 133 | RFP coarse screens            | RFP flotation                 | 239.2   | 239.2     |
| 134 | RFP flotation                 | RFP gyro cleaners             | 512.26  | 512.26    |
| 135 | RFP gyro cleaners             | RFP centri cleaners           | 603.58  | 603.58    |
| 136 | RFP centri cleaners           | RFP fine screens              | 820     | 820       |
| 137 | RFP fine screens              | RFP disc filter               | 852.8   | 852.76    |

|     | From                     | То                       | Calc.'d | Flow rate |
|-----|--------------------------|--------------------------|---------|-----------|
| 138 | RFP disc filter          | RFP wire pulp press      | 124.4   | 124.4     |
| 139 | RFP wire pulp press      | RFP disperser            | 20.5    | 24        |
| 140 | RFP disperser            | pulp jnc                 | 153.6   | 154       |
| 141 | RFP fine screens         | RFP rejects jnc2         | 17.9    | 17.9      |
| 142 | RFP rejects jnc2         | RFP rej jnc3             | 62.08   | 0         |
| 143 | RFP rej jnc3             | RPF rejects              | 211.22  | 0         |
| 144 | RFP centri cleaners      | RFP rejects jnc2         | 7.93    | 8         |
| 145 | RFP flotation            | RFP rejects jnc2         | 30.85   | 30.89     |
| 146 | Fresh water jnc          | RFP Temp jnc             | 0       | 0         |
| 147 | RFP Temp jnc             | RFP clear ww jnc         | 0       | 0         |
| 148 | RFP clear ww jnc         | RFP fine screens         | 50.7    | 50.7      |
| 149 | RFP clear ww jnc         | RFP centri cleaners      | 224.35  | 224.35    |
| 150 | RFP clear ww jnc         | RFP gyro cleaners        | 96.72   | 96.72     |
| 151 | RFP disc filter          | RFP clear ww jnc         | 582.4   | 582.4     |
| 152 | PM ww to RFP jnc         | RFP cloudy ww jnc        | 126.67  | 231       |
| 153 | PM ww to RFP jnc         | RFP wire pulp press      | 43.2    | 43.2      |
| 154 | PM ww to RFP jnc         | RFP disperser            | 125.6   | 125.6     |
| 155 | PM ww to pulp mill jnc   | PM ww to RFP jnc         | 295.47  | 412       |
| 156 | RFP disc filter          | RFP cloudy ww jnc        | 249.7   | 249.7     |
| 157 | RFP cloudy ww jnc        | RFP fine screens         | 0       | 0         |
| 158 | RFP cloudy ww jnc        | RFP cloudy filtrate jnc2 | 630.4   | 726       |
| 159 | RFP cloudy filtrate jnc2 | RFP flotation            | 251.7   | 251.7     |
| 160 | RFP cloudy filtrate jnc2 | RFP coarse screens       | 3.7     | 4.26      |
| 161 | RFP cloudy filtrate jnc2 | RFP-HD cleaning          | 87      | 87        |
| 162 | RFP cloudy filtrate jnc2 | RFP Pulping              | 288     | 288       |
| 163 | RFP-HD cleaning          | RFP rej jnc1             | 9.3     | 10.7      |
| 164 | RFP coarse screens       | RFP rej jnc1             | 2.9     | 2.9       |
| 165 | RFP Pulping              | RFP rej jnc1             | 136.94  | 158.29    |
| 166 | RFP rej jnc1             | RFP rej jnc3             | 149.14  | 0         |
| 167 | RFP gyro cleaners        | RFP rejects jnc2         | 5.4     | 5.4       |
| 168 | RFP Temp jnc             | RFP disc filter          | 0       | 0.05      |
| 169 | PM4 dryers               | dryer steam evap jnc     | 17.6    | 20.4      |
| 170 | Dryer steam evap jnc     | evaporation              | 35.2    | 0         |
| 171 | PM4 dryers               | final paper jnc          | 13.5    | 13.5      |
| 172 | Final paper jnc          | Paper                    | 27      | 0         |
| 173 | PM5 dryers               | dryer steam evap jnc     | 17.6    | 20.4      |

|     | From                     | То                       | Calc.'d | Flow rate |
|-----|--------------------------|--------------------------|---------|-----------|
| 174 | PM5 dryers               | final paper jnc          | 13.5    | 13.5      |
| 175 | PM4 silo                 | PM4 cleaners & deculator | 2582.11 | 2694      |
| 176 | PM4 cleaners & deculator | PM4 screens              | 2453    | 2453      |
| 177 | PM4 screens              | PM4 headbox              | 2330.35 | 2330.2    |
| 178 | PM4 headbox              | PM4 forming section      | 2350.35 | 2350.2    |
| 179 | PM4 forming section      | PM4 press section        | 62.2    | 62.2      |
| 180 | PM4 press section        | PM4 dryers               | 31.1    | 31.1      |
| 181 | PM5 silo                 | PM5 cleaners & deculator | 2586.69 | 2694.4    |
| 182 | PM5 cleaners & deculator | PM5 screens              | 2457.36 | 2430      |
| 183 | PM5 screens              | PM5 headbox              | 2334.49 | 2308.5    |
| 184 | PM5 headbox              | PM5 forming section      | 2354.49 | 2350.2    |
| 185 | PM5 forming section      | PM5 press section        | 62.2    | 62.2      |
| 186 | PM5 press section        | PM5 dryers               | 31.1    | 31.1      |
| 187 | PM5 press section        | PM5 ww jnc2              | 119.1   | 78        |
| 188 | PM5 forming section      | PM5 ww jnc2              | 300     | 0         |
| 189 | PM4 forming section      | PM4 ww jnc2              | 250     | 0         |
| 190 | PM4 press section        | PM4 ww jnc2              | 119.1   | 78        |
| 191 | PM5 cleaners & deculator | PM rej to drain jnc      | 129.33  | 241.5     |
| 192 | PM5 screens              | PM rej to drain jnc      | 122.87  | 0         |
| 193 | PM ww jnc                | PM rej to drain jnc      | 0       | 0         |
| 194 | PM rej to drain jnc      | Drain                    | 503.96  | 0         |
| 195 | PM4 screens              | PM4 ww to drain jnc      | 122.65  | 0         |
| 196 | PM4 cleaners & deculator | PM4 ww to drain jnc      | 129.11  | 241.5     |
| 197 | PM4 ww to drain jnc      | PM rej to drain jnc      | 251.76  | 242.45    |
| 198 | Fresh water jnc          | fresh water to PMs jnc   | 668.18  | 0         |
| 199 | Fresh water to PMs jnc   | fresh water to PM4 jnc   | 133.5   | 184.5     |
| 200 | Fresh water to PM4 jnc   | PM4 headbox              | 20      | 20        |
| 201 | Fresh water to PM4 jnc   | PM4 Blend chest          | 4.5     | 4.5       |
| 202 | Fresh water to PMs jnc   | fresh water to PM5 jnc   | 133.5   | 160       |
| 203 | Fresh water to PM5 jnc   | PM5 Blend chest          | 4.5     | 4.5       |
| 204 | Fresh water to PM5 jnc   | PM5 headbox              | 20      | 20        |
| 205 | PM ww jncl               | PM ww jnc                | 363.66  | 0         |
| 206 | JNC-pulp to storage      | pulp jnc                 | 469.2   | 0         |
| 207 | PM ww jnc                | PM ww to pulp mill jnc   | 753.54  | 1500      |
| 208 | Pulp jnc                 | PM5 Blend chest          | 311.4   | 0         |
| 209 | Pulp jnc                 | PM4 Blend chest          | 311.4   | 0         |

|     | From                          | То                            | Calc.'d | Flow rate |
|-----|-------------------------------|-------------------------------|---------|-----------|
| 210 | LF jnc                        | PM5 Blend chest               | 16      | 16        |
| 211 | LF jnc                        | PM4 Blend chest               | 16      | 16        |
| 212 | LF to PMs                     | LF jnc                        | 1.24    | 1.24      |
| 213 | Cooling                       | PM ww jnc                     | 19.46   | 20        |
| 214 | Fresh water to PM5 jnc        | PM5 forming section           | 21      | 21        |
| 215 | Fresh water to PM5 jnc        | PM5 press section             | 88      | 88        |
| 216 | Fresh water to PM4 jnc        | PM4 forming section           | 21      | 21        |
| 217 | Fresh water to PM4 jnc        | PM4 press section             | 88      | 88        |
| 218 | Feed steam jnc                | RFP disperser                 | 7.5     | 7.5       |
| 219 | RFP flotation chemicals       | RFP flotation                 | 52.21   | 52.21     |
| 220 | RFP clear ww jnc              | RFP disc filter               | 103.7   | 103.7     |
| 221 | RFP wire pulp press           | RFP cloudy ww jnc             | 147.1   | 147.1     |
| 222 | PM ww jnc                     | LF jnc                        | 30.76   | 32.8      |
| 223 | Broke to PM's                 | JNC-broke to PM's             | 8.02    | 8.02      |
| 224 | JNC-broke to PM's             | PM5 Blend chest               | 96.01   | 96        |
| 225 | JNC-broke to PM's             | PM4 Blend chest               | 96.01   | 0         |
| 226 | PM5 Blend chest               | PM5 saveall                   | 180.52  | 180.52    |
| 227 | PM5 saveall                   | JNC-PM5 recovered fibre chest | 128     | 128       |
| 228 | PM5 Blend chest               | JNC-PM5 blend chest to silo   | 247.39  | 240       |
| 229 | JNC-PM5 recovered fibre chest | JNC-PM5 blend chest to silo   | 160     | 160       |
| 230 | JNC-PM5 blend chest to silo   | PM5 silo                      | 407.39  | 400       |
| 231 | PM5 saveall                   | JNC-PM5 cloudy chest          | 1184.52 | 1184      |
| 232 | PM5 saveall                   | JNC-PM5 clear chest           | 296     | 296       |
| 233 | PM5 ww jncl                   | PM5 saveall                   | 1428    | 1428      |
| 234 | JNC-PM5 clear chest           | PM5 forming section           | 166.01  | 205       |
| 235 | JNC-PM5 clear chest           | PM5 ww jncl                   | 129.99  | 0         |
| 236 | JNC-PM5 cloudy chest          | PM5 ww jncl                   | 1060.52 | 0         |
| 237 | JNC-PM5 cloudy chest          | JNC-PM5 recovered fibre chest | 32      | 0         |
| 238 | JNC-PM5 cloudy chest          | JNC-broke to PM's             | 92      | 92        |
| 239 | PM4 Blend chest               | JNC-PM4 Blend to silo         | 243.78  | 240       |
| 240 | JNC-PM4 Blend to silo         | PM4 silo                      | 400.96  | 400       |
| 241 | PM4 saveall                   | JNC-PM4 recovered fibre chest | 128     | 128       |
| 242 | JNC-PM4 recovered fibre chest | JNC-PM4 Blend to silo         | 157.18  | 160       |
| 243 | PM4 saveall                   | JNC-PM4 cloudy chest          | 1262.13 | 1184      |
| 244 | JNC-PM4 cloudy chest          | JNC-broke to PM's             | 92      | 92        |
| 245 | JNC-PM4 cloudy chest          | PM4 ww jnc1                   | 1140.95 | 0         |

|     | From                          | То                            | Calc.'d | Flow rate |
|-----|-------------------------------|-------------------------------|---------|-----------|
| 246 | PM4 saveall                   | JNC-PM4 clear chest           | 222     | 296       |
| 247 | JNC-PM4 clear chest           | PM4 forming section           | 122     | 205.2     |
| 248 | JNC-PM4 clear chest           | PM4 ww jnc1                   | 100     | 0         |
| 249 | PM4 Blend chest               | PM4 saveall                   | 184.13  | 180.52    |
| 250 | PM4 forming section           | PM4 silo                      | 2181.15 | 2294      |
| 251 | PM5 forming section           | PM5 silo                      | 2179.3  | 2294      |
| 252 | PM4 ww jnc1                   | PM4 saveall                   | 1428    | 1428      |
| 253 | Fresh water to PMs jnc        | PM ww jnc1                    | 0       | 0         |
| 254 | Fresh water to PMs jnc        | PM ww jnc                     | 401.18  | 0         |
| 255 | RFP clear ww jnc              | RFP cloudy ww jnc             | 106.93  | 0         |
| 256 | JNC-PM4 cloudy chest          | JNC-PM4 recovered fibre chest | 29.18   | 0         |
| 257 | JNC-TMP1 cloudy ww chest      | TMP1 cloudy ww1               | 808.07  | 0         |
| 258 | JNC-TMP1 clear ww to deckers  | JNC-TMP1 cloudy ww chest      | 166.75  | 0         |
| 259 | JNC-TMP1 cloudy               | JNC-TMP1 cloudy ww chest      | 641.32  | 0         |
| 260 | JNC-TMP1 clear                | JNC-TMP1 clear ww chest       | 146     | 0         |
| 261 | JNC-TMP1 clear ww chest       | JNC-TMP1 clear ww to deckers  | 406.75  | 0         |
| 262 | JNC-tempered to clear ww      | JNC-TMP1 clear ww chest       | 20      | 0         |
| 263 | JNC-sealing water to clear ww | JNC-TMP1 clear ww chest       | 4.75    | 0         |
| 264 | PM ww to pulp mill jnc        | JNC-TMP1 clear ww chest       | 236     | 300       |
| 265 | JNC-TMP2 cloudy ww3           | JNC-TMP2 cloudy ww chest      | 641.32  | 0         |
| 266 | JNC-TMP2 cloudy ww chest      | TMP2 cloudy ww1               | 794.14  | 0         |
| 267 | JNC-TMP2 clear ww1            | JNC-TMP2 cloudy ww chest      | 152.82  | 0         |
| 268 | PM ww to pulp mill jnc        | JNC-TMP2 clear ww chest       | 222.07  | 300       |
| 269 | JNC-sealing water to clear ww | JNC-TMP2 clear ww chest       | 4.75    | 0         |
| 270 | JNC-tempered to clear ww      | JNC-TMP2 clear ww chest       | 20      | 0         |
| 271 | JNC-TMP2 clear ww2            | JNC-TMP2 clear ww chest       | 146     | 0         |
| 272 | JNC-TMP2 clear ww chest       | JNC-TMP2 clear ww1            | 392.82  | 0         |
| 273 | PM ww jnc1                    | PM4 ww jncl                   | 187.05  | 0         |
| 274 | PM ww jnc1                    | PM5 ww jncl                   | 237.49  | 0         |
| 275 | PM5 ww jnc2                   | PM ww jncl                    | 419.1   | 0         |
| 276 | PM4 ww jnc2                   | PM ww jncl                    | 369.1   | 0         |

|    | Use? | Trust    | Minimum | Maximum | Linked To                  | Use?     |
|----|------|----------|---------|---------|----------------------------|----------|
| 1  |      |          |         |         |                            |          |
| 2  | Yes  | +/- 5.0% | 19      | 21      |                            | <u> </u> |
| 3  | Yes  | +/- 2.0% | 47.04   | 48.96   |                            | <u> </u> |
| 4  | Yes  | +/- 2.0% | 387.79  | 403.61  | None                       | 1        |
| 5  | Yes  | +/- 2.0% | 368.63  | 383.67  | chip washer -> hydrasieves |          |
| 6  | Yes  | +/- 5.0% | 54.97   | 60.75   | None                       | <u> </u> |
| 7  |      |          |         |         |                            |          |
| 8  |      |          |         |         |                            | <u> </u> |
| 9  |      |          |         |         | None                       |          |
| 10 | Yes  | +/- 2.0% | 0.08    | 0.08    | None                       | <u>+</u> |
| 11 | Yes  | +/- 2.0% | 0.08    | 0.08    | None                       | <u> </u> |
| 12 |      |          |         |         |                            |          |
| 13 | Yes  | +/- 2.0% | 0.18    | 0.18    | None                       |          |
| 14 | Yes  | +/- 2.0% | 0.18    | 0.18    | None                       |          |
| 15 |      |          |         |         |                            | 1        |
| 16 |      |          |         |         |                            |          |
| 17 |      |          |         |         |                            |          |
| 18 |      |          |         |         |                            |          |
| 19 |      |          |         |         |                            |          |
| 20 | Yes  | +/- 2.0% | 0.27    | 0.29    |                            | <u> </u> |
| 21 | Yes  | +/- 2.0% | 0.27    | 0.29    |                            | <u> </u> |
| 22 | Yes  | +/- 2.0% | 14.41   | 14.99   | None                       |          |
| 23 | Yes  | +/- 2.0% | 14.41   | 14.99   | None                       |          |
| 24 | Yes  | +/- 5.0% | 12.12   | 13.4    | None                       |          |
| 25 | Yes  | +/- 5.0% | 12.12   | 13.4    | None                       |          |
| 26 | Yes  | +/- 2.0% | 127.05  | 132.23  | None                       |          |
| 27 | Yes  | +/- 2.0% | 127.05  | 132.23  | None                       |          |
| 28 |      |          |         |         |                            |          |
| 29 | Yes  | +/- 2.0% | 1.91    | 1.99    | None                       |          |
| 30 | Yes  | +/- 2.0% | 1.91    | 1.99    | None                       |          |
| 31 |      |          |         |         |                            |          |
| 32 | Yes  | +/- 2.0% | 6.89    | 7.17    | None                       |          |
| 33 | Yes  | +/- 2.0% | 6.89    | 7.17    | None                       |          |
| 34 |      |          |         |         |                            |          |
| 35 | Yes  | +/- 5.0% | 120.03  | 132.67  |                            |          |

Table H.1 (b) Newsprint Circuit fibre content data specifications in Water Tracker

|    | Use?     | Trust    | Minimum | Maximum | Linked To | Use? |
|----|----------|----------|---------|---------|-----------|------|
| 36 |          |          |         |         |           |      |
| 37 | Yes      | +/- 2.0% | 26.17   | 27.23   |           |      |
| 38 |          |          |         |         | None      |      |
| 39 |          |          |         |         | None      |      |
| 40 |          |          |         |         | None      |      |
| 41 |          |          |         |         |           |      |
| 42 | Yes      | +/- 2.0% | 14.41   | 14.99   | None      |      |
| 43 | Yes      | +/- 2.0% | 12.5    | 13.02   | None      |      |
| 44 | Yes      | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 45 |          |          |         |         |           |      |
| 46 | Yes      | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 47 | Yes      | +/- 2.0% | 127.05  | 132.23  | None      |      |
| 48 | Yes      | +/- 2.0% | 127.05  | 132.23  | None      |      |
| 49 | Yes      | +/- 2.0% | 291.06  | 302.94  |           |      |
| 50 |          |          |         |         |           |      |
| 51 | Yes      | +/- 2.0% | 14.41   | 14.99   | None      |      |
| 52 | Yes      | +/- 2.0% | 12.5    | 13.02   | None      |      |
| 53 | Yes      | +/- 2.0% | 0.08    | 0.08    | None      |      |
| 54 | Yes      | +/- 2.0% | 0.08    | 0.08    | None      |      |
| 55 | Yes      | +/- 2.0% | 0.27    | 0.29    |           |      |
| 56 | Yes      | +/- 2.0% | 0.27    | 0.29    |           |      |
| 57 | Yes      | +/- 2.0% | 0.18    | 0.18    | None      |      |
| 58 | Yes      | +/- 2.0% | 0.18    | 0.18    | None      |      |
| 59 |          |          |         |         |           |      |
| 60 |          |          |         |         |           |      |
| 61 | Yes      | +/- 2.0% | 1.91    | 1.99    | None      |      |
| 62 | Yes      | +/- 2.0% | 1.91    | 1.99    | None      |      |
| 63 | Yes      | +/- 2.0% | 6.89    | 7.17    | None      |      |
| 64 | Yes      | +/- 2.0% | 6.89    | 7.17    | None      |      |
| 65 |          |          |         |         | None      |      |
| 66 |          |          |         |         | None      |      |
| 67 | Yes      | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 68 | Yes      | +/- 2.0% | 114.95  | 119.65  | None      |      |
| 69 |          |          |         |         |           |      |
| 70 | <u> </u> |          | -       |         |           |      |
| 71 | Yes      | +/- 2.0% | 582.12  | 605.88  | None      |      |

|     | Use? | Trust     | Minimum | Maximum | Linked To | Use? |
|-----|------|-----------|---------|---------|-----------|------|
| 72  |      |           |         |         |           |      |
| 73  |      |           |         |         |           |      |
| 74  | Yes  | +/- 2.0%  | 183.95  | 191.45  |           |      |
| 75  | Yes  | +/- 2.0%  | 92.02   | 95.78   |           |      |
| 76  |      |           |         |         |           |      |
| 77  | Yes  | +/- 2.0%  | 92.02   | 95.78   |           |      |
| 78  |      |           |         |         |           |      |
| 79  |      |           |         |         | None      |      |
| 80  | Yes  | +/- 5.0%  | 69.35   | 76.65   | None      |      |
| 81  | Yes  | +/- 2.0%  | 71.54   | 74.46   | None      |      |
| 82  |      |           |         |         | None      |      |
| 83  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 84  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 85  |      |           |         |         | None      |      |
| 86  |      |           |         |         | None      |      |
| 87  | Yes  | +/- 2.0%  | 71.54   | 74.46   | None      |      |
| 88  | Yes  | +/- 2.0%  | 71.54   | 74.46   | None      |      |
| 89  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 90  | Yes  | +/- 25.0% | 90      | 150     |           |      |
| 91  |      |           |         |         |           |      |
| 92  |      |           |         |         |           |      |
| 93  | Yes  | +/- 2.0%  | 123.82  | 128.88  |           |      |
| 94  | Yes  | +/- 2.0%  | 123.82  | 128.88  |           |      |
| 95  |      |           |         |         |           |      |
| 96  |      |           |         |         |           |      |
| 97  |      |           |         |         |           |      |
| 98  | Yes  | +/- 2.0%  | 582.12  | 605.88  | None      |      |
| 99  | Yes  | +/- 2.0%  | 390.04  | 405.96  |           |      |
| 100 | Yes  | +/- 2.0%  | 4.9     | 5.1     | None      |      |
| 101 | Yes  | +/- 2.0%  | 4.9     | 5.1     | None      |      |
| 102 |      |           |         |         |           |      |
| 103 |      |           |         |         |           |      |
| 104 | Yes  | +/- 5.0%  | 378.1   | 417.9   |           |      |
| 105 |      |           |         |         |           |      |
| 106 | Yes  | +/- 5.0%  | 120.03  | 132.67  |           | ———  |
| 107 | Yes  | +/- 2.0%  | 135.83  | 141.37  | <u> </u>  |      |

|     | Use? | Trust     | Minimum | Maximum | Linked To                  | Use? |
|-----|------|-----------|---------|---------|----------------------------|------|
| 108 | Yes  | +/- 2.0%  | 17.74   | 18.46   |                            |      |
| 109 |      |           |         |         |                            |      |
| 110 |      |           |         |         |                            |      |
| 111 | Yes  | +/- 2.0%  | 135.83  | 141.37  |                            |      |
| 112 |      |           |         |         |                            |      |
| 113 |      |           |         |         |                            |      |
| 114 | Yes  | +/- 2.0%  | 57.75   | 60.11   | None                       |      |
| 115 |      |           |         |         |                            |      |
| 116 | Yes  | +/- 2.0%  | 367.5   | 382.5   | None                       |      |
| 117 | Yes  | +/- 2.0%  | 57.75   | 60.11   | None                       |      |
| 118 | Yes  | +/- 2.0%  | 0.11    | 0.11    |                            |      |
| 119 |      |           |         |         |                            |      |
| 120 | Yes  | +/- 2.0%  | 0.11    | 0.11    |                            |      |
| 121 | Yes  | +/- 2.0%  | 0.11    | 0.11    |                            |      |
| 122 | Yes  | +/- 2.0%  | 0.43    | 0.45    |                            |      |
| 123 | Yes  | +/- 5.0%  | 17.67   | 19.53   |                            |      |
| 124 |      |           |         |         | None                       |      |
|     |      |           |         |         | fresh water jnc -> Sealing |      |
| 125 |      |           |         |         | water                      | Yes  |
| 126 |      |           |         |         |                            |      |
| 127 |      |           |         |         |                            |      |
| 128 |      |           |         |         | None                       |      |
| 129 | Yes  | +/- 25.0% | 405     | 675     |                            |      |
| 130 | Yes  | +/- 2.0%  | 9.45    | 9.83    |                            |      |
| 131 | Yes  | +/- 2.0%  | 157.49  | 163.91  | None                       |      |
| 132 | Yes  | +/- 2.0%  | 233.63  | 243.17  | None                       |      |
| 133 | Yes  | +/- 2.0%  | 234.42  | 243.98  | None                       |      |
| 134 | Yes  | +/- 2.0%  | 502.01  | 522.51  | None                       |      |
| 135 | Yes  | +/- 2.0%  | 591.51  | 615.65  | None                       |      |
| 136 | Yes  | +/- 2.0%  | 803.6   | 836.4   | None                       |      |
| 137 | Yes  | +/- 2.0%  | 835.7   | 869.82  | None                       |      |
| 138 | Yes  | +/- 2.0%  | 121.91  | 126.89  | None                       | _    |
| 139 |      |           |         |         | None                       |      |
| 140 | Yes  | +/- 2.0%  | 150.92  | 157.08  | None                       |      |
| 141 | Yes  | +/- 2.0%  | 17.54   | 18.26   | None                       |      |
| 142 |      |           |         |         |                            |      |

|     | Use? | Trust    | Minimum | Maximum | Linked To | Use? |
|-----|------|----------|---------|---------|-----------|------|
| 143 |      |          |         |         |           |      |
| 144 |      |          |         |         | None      |      |
| 145 |      |          |         |         | None      |      |
| 146 |      |          |         |         |           |      |
| 147 |      |          |         |         |           |      |
| 148 | Yes  | +/- 2.0% | 49.69   | 51.71   |           |      |
| 149 | Yes  | +/- 2.0% | 219.86  | 228.84  |           |      |
| 150 | Yes  | +/- 2.0% | 94.79   | 98.65   |           |      |
| 151 | Yes  | +/- 2.0% | 570.75  | 594.05  | None      |      |
| 152 |      |          |         |         |           |      |
| 153 | Yes  | +/- 2.0% | 42.34   | 44.06   |           |      |
| 154 | Yes  | +/- 2.0% | 123.09  | 128.11  |           |      |
| 155 |      |          |         |         |           |      |
| 156 | Yes  | +/- 5.0% | 237.22  | 262.19  | None      |      |
| 157 |      |          |         |         |           |      |
| 158 |      |          |         |         |           |      |
| 159 | Yes  | +/- 2.0% | 246.67  | 256.73  |           |      |
| 160 |      |          |         |         |           |      |
| 161 | Yes  | +/- 2.0% | 85.26   | 88.74   |           |      |
| 162 | Yes  | +/- 2.0% | 282.24  | 293.76  |           |      |
| 163 |      |          |         |         | None      |      |
| 164 | Yes  | +/- 2.0% | 2.84    | 2.96    | None      |      |
| 165 |      |          |         |         | None      |      |
| 166 |      |          |         |         |           |      |
| 167 |      |          |         |         | None      |      |
| 168 |      |          |         |         |           |      |
| 169 |      |          |         |         | None      |      |
| 170 |      |          |         |         |           |      |
| 171 | Yes  | +/- 2.0% | 13.23   | 13.77   | None      |      |
| 172 |      |          |         |         |           |      |
| 173 |      |          |         |         | None      |      |
| 174 | Yes  | +/- 2.0% | 13.23   | 13.77   | None      |      |
| 175 |      |          |         |         | None      |      |
| 176 | Yes  | +/- 2.0% | 2403.94 | 2502.06 | None      |      |
| 177 | Yes  | +/- 2.0% | 2283.6  | 2376.8  | None      |      |
| 178 |      |          |         |         | None      |      |
|     |      |          |         |         |           |      |

|     | Use? | Trust    | Minimum | Maximum | Linked To                   | Use? |
|-----|------|----------|---------|---------|-----------------------------|------|
| 179 | Yes  | +/- 2.0% | 60.96   | 63.44   | None                        |      |
| 180 | Yes  | +/- 2.0% | 30.48   | 31.72   | None                        |      |
| 181 |      |          |         |         | None                        |      |
| 182 | Yes  | +/- 2.0% | 2381.4  | 2478.6  | None                        |      |
| 183 | Yes  | +/- 2.0% | 2262.33 | 2354.67 | None                        |      |
| 184 |      |          |         |         | None                        |      |
| 185 | Yes  | +/- 2.0% | 60.96   | 63.44   | None                        |      |
| 186 | Yes  | +/- 2.0% | 30.48   | 31.72   | None                        |      |
| 187 |      |          |         |         | None                        |      |
| 188 |      |          |         |         | None                        |      |
| 189 |      |          |         |         | None                        |      |
| 190 |      |          |         |         | None                        |      |
|     |      |          |         |         | PM5 silo -> PM5 cleaners &  |      |
| 191 |      |          |         |         | deculator                   | Yes  |
|     |      |          |         |         | PM5 cleaners & deculator -> |      |
| 192 |      |          |         |         | PM5 screens                 | Yes  |
| 193 |      |          |         |         |                             |      |
| 194 |      |          |         |         |                             |      |
|     |      |          |         |         | PM4 cleaners & deculator -> |      |
| 195 |      |          |         |         | PM4 screens                 | Yes  |
|     |      | -        |         |         | PM4 silo -> PM4 cleaners &  |      |
| 196 |      |          |         |         | deculator                   | Yes  |
| 197 |      |          |         |         |                             |      |
| 198 |      |          |         |         |                             |      |
| 199 |      |          |         |         |                             |      |
| 200 | Yes  | +/- 2.0% | 19.6    | 20.4    |                             |      |
| 201 | Yes  | +/- 2.0% | 4.41    | 4.59    |                             |      |
| 202 |      |          |         |         |                             |      |
| 203 | Yes  | +/- 2.0% | 4.41    | 4.59    |                             |      |
| 204 | Yes  | +/- 2.0% | 19.6    | 20.4    |                             |      |
| 205 |      |          |         |         |                             |      |
| 206 |      |          |         |         |                             |      |
| 207 |      |          |         |         |                             |      |
| 208 |      |          |         |         |                             |      |
| 209 |      |          |         |         |                             |      |
| 210 | Yes  | +/- 2.0% | 15.68   | 16.32   |                             |      |

.

|     | Use? | Trust     | Minimum | Maximum | Linked To                  | Use?     |
|-----|------|-----------|---------|---------|----------------------------|----------|
| 211 | Yes  | +/- 2.0%  | 15.68   | 16.32   |                            |          |
| 212 | Yes  | +/- 2.0%  | 1.22    | 1.26    |                            |          |
| 213 | Yes  | +/- 25.0% | 15      | 25      | fresh water jnc -> Cooling |          |
| 214 | Yes  | +/- 5.0%  | 19.95   | 22.05   |                            |          |
| 215 | Yes  | +/- 5.0%  | 83.6    | 92.4    |                            |          |
| 216 | Yes  | +/- 5.0%  | 19.95   | 22.05   |                            |          |
| 217 | Yes  | +/- 5.0%  | 83.6    | 92.4    |                            |          |
| 218 | Yes  | +/- 2.0%  | 7.35    | 7.65    |                            |          |
| 219 | Yes  | +/- 2.0%  | 51.17   | 53.25   |                            |          |
| 220 | Yes  | +/- 2.0%  | 101.63  | 105.77  |                            |          |
| 221 | Yes  | +/- 2.0%  | 144.16  | 150.04  | None                       |          |
| 222 |      |           |         |         |                            |          |
| 223 | Yes  | +/- 2.0%  | 7.86    | 8.18    |                            |          |
| 224 | Yes  | +/- 2.0%  | 94.08   | 97.92   |                            |          |
| 225 |      |           |         | L       |                            |          |
| 226 | Yes  | +/- 2.0%  | 176.91  | 184.13  | None                       |          |
| 227 | Yes  | +/- 2.0%  | 125.44  | 130.56  | None                       |          |
| 228 |      |           |         |         | None                       |          |
| 229 | Yes  | +/- 2.0%  | 156.8   | 163.2   |                            |          |
| 230 | Yes  | +/- 2.0%  | 392     | 408     |                            |          |
| 231 |      |           |         |         | None                       |          |
| 232 | Yes  | +/- 25.0% | 222     | 370     | None                       |          |
| 233 | Yes  | +/- 5.0%  | 1356.6  | 1499.4  |                            |          |
| 234 | Yes  | +/- 25.0% | 153.75  | 256.25  |                            |          |
| 235 |      |           |         |         |                            |          |
| 236 |      |           |         |         |                            |          |
| 237 |      |           |         |         |                            |          |
| 238 | Yes  | +/- 2.0%  | 90.16   | 93.84   |                            |          |
| 239 |      |           |         |         | None                       |          |
| 240 | Yes  | +/- 2.0%  | 392     | 408     |                            |          |
| 241 | Yes  | +/- 2.0%  | 125.44  | 130.56  | None                       |          |
| 242 | Yes  | +/- 2.0%  | 156.8   | 163.2   |                            |          |
| 243 |      |           |         |         | None                       |          |
| 244 | Yes  | +/- 2.0%  | 90.16   | 93.84   |                            | ┨───┤    |
| 245 |      |           |         |         |                            | +        |
| 246 | Yes  | +/- 25.0% | 222     | 370     | None                       | <u> </u> |

|     | Use? | Trust    | Minimum | Maximum | Linked To | Use? |
|-----|------|----------|---------|---------|-----------|------|
| 247 |      |          |         |         |           |      |
| 248 |      |          |         |         |           |      |
| 249 | Yes  | +/- 2.0% | 176.91  | 184.13  | None      |      |
| 250 | Yes  | +/- 5.0% | 2179.3  | 2408.7  | None      |      |
| 251 | Yes  | +/- 5.0% | 2179.3  | 2408.7  | None      |      |
| 252 | Yes  | +/- 5.0% | 1356.6  | 1499.4  |           |      |

Table H.1 (c) Newsprint Circuit fibre content data specifications in Water Tracker

|    | Value | Split Frac. | Phys.Max. | Use? |
|----|-------|-------------|-----------|------|
| 1  |       |             | 600       |      |
| 2  |       |             | +inf      |      |
| 3  |       |             | 50        | Yes  |
| 4  | 0     |             | +inf      |      |
| 5  | 0.95  |             | 550       |      |
| 6  | 0     |             | 72.6      |      |
| 7  |       | 0.25        | +inf      |      |
| 8  |       | 0.25        | +inf      |      |
| 9  | 0     |             | 14        |      |
| 10 | 0     |             | +inf      |      |
| 11 | 0     |             | +inf      |      |
| 12 |       |             | 0.5       | Yes  |
| 13 | 0     | -**         | +inf      |      |
| 14 | 0     |             | +inf      |      |
| 15 |       |             | 1         | Yes  |
| 16 |       |             | 16        | Yes  |
| 17 |       | 0.129       | +inf      |      |
| 18 |       | 0.129       | +inf      |      |
| 19 |       |             | 2         | Yes  |
| 20 |       | 0.25        | +inf      |      |
| 21 |       | 0.25        | +inf      |      |
| 22 | 0     |             | +inf      |      |
| 23 | 0     | +           | +inf      |      |
| 24 | 0     | <u> </u>    | 13.5      | Yes  |
| 25 | 0     |             | 13.5      | Yes  |
| 26 | 0     |             | 133       | Yes  |

|    | Value | Split Frac. | Phys.Max. | Use? |
|----|-------|-------------|-----------|------|
| 27 | 0     |             | 133       | Yes  |
| 28 |       |             | +inf      |      |
| 29 | 0     |             | +inf      |      |
| 30 | 0     |             | +inf      |      |
| 31 |       |             | 12        | Yes  |
| 32 | 0     |             | +inf      |      |
| 33 | 0     |             | +inf      |      |
| 34 |       |             | 48        | Yes  |
| 35 |       |             | 133       | Yes  |
| 36 |       |             | +inf      |      |
| 37 |       |             | 40        | Yes  |
| 38 | 0     |             | 32        |      |
| 39 | 0     |             | +inf      |      |
| 40 | 0     |             | +inf      |      |
| 41 |       |             | 12        |      |
| 42 | 0     |             | +inf      |      |
| 43 | 0     |             | +inf      |      |
| 44 | 0     |             | +inf      |      |
| 45 |       |             | +inf      |      |
| 46 | 0     |             | +inf      |      |
| 47 | 0     |             | +inf      |      |
| 48 | 0     |             | +inf      |      |
| 49 |       | 0.5         | +inf      |      |
| 50 |       |             | +inf      |      |
| 51 | 0     |             | +inf      |      |
| 52 | 0     |             | +inf      |      |
| 53 | 0     |             | +inf      |      |
| 54 | 0     |             | +inf      |      |
| 55 |       | 0.25        | +inf      | _    |
| 56 |       |             | +inf      |      |
| 57 | 0     |             | +inf      |      |
| 58 | 0     |             | +inf      | -    |
| 59 |       | 0.129       | +inf      |      |
| 60 |       | 0.129       | +inf      |      |
| 61 | 0     |             | +inf      |      |
| 62 | 0     |             | +inf      |      |

.

|    | Value | Split Frac. | Phys.Max. | Use? |
|----|-------|-------------|-----------|------|
| 63 | 0     |             | +inf      |      |
| 64 | 0     |             | +inf      |      |
| 65 | 0     |             | +inf      |      |
| 66 | 0     |             | +inf      |      |
| 67 | 0     |             | +inf      |      |
| 68 | 0     |             | +inf      |      |
| 69 |       |             | 40        | Yes  |
| 70 |       |             | +inf      |      |
| 71 | 0     |             | 900       |      |
| 72 |       | 0.5         | +inf      |      |
| 73 |       |             | +inf      |      |
| 74 |       | 0.5         | +inf      |      |
| 75 |       | 0.5         | +inf      |      |
| 76 |       |             | +inf      |      |
| 77 |       | 0.25        | +inf      |      |
| 78 |       |             | +inf      |      |
| 79 | 0     |             | 1000      | Yes  |
| 80 | 0     |             | 77        | Yes  |
| 81 | 0     |             | 300       |      |
| 82 | 0     |             | 1000      | Yes  |
| 83 |       |             | 170       | Yes  |
| 84 |       |             | +inf      |      |
| 85 | 0     |             | 1000      | Yes  |
| 86 | 0     |             | 1000      | Yes  |
| 87 | 0     |             | 300       |      |
| 88 | 0     |             | 300       |      |
| 89 |       |             | +inf      |      |
| 90 |       |             | +inf      |      |
| 91 |       |             | +inf      |      |
| 92 |       |             | +inf      |      |
| 93 |       |             | 130       | Yes  |
| 94 |       |             | +inf      |      |
| 95 |       |             | +inf      | 1    |
| 96 |       |             | +inf      |      |
| 97 |       |             | +inf      |      |
| 98 | 0     |             | +inf      |      |

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 99  |       |             | +inf      |      |
| 100 | 0     |             | +inf      |      |
| 101 | 0     |             | +inf      |      |
| 102 |       |             | 15        | Yes  |
| 103 |       |             | +inf      |      |
| 104 |       |             | +inf      |      |
| 105 |       |             | +inf      |      |
| 106 |       |             | +inf      |      |
| 107 |       |             | 142       | Yes  |
| 108 |       |             | +inf      |      |
| 109 |       |             | 35        | Yes  |
| 110 |       |             | +inf      |      |
| 111 |       |             | +inf      |      |
| 112 |       | 0.25        | +inf      |      |
| 113 |       |             | +inf      |      |
| 114 | 0     |             | +inf      |      |
| 115 |       |             | +inf      |      |
| 116 | 0     |             | +inf      |      |
| 117 | 0     |             | +inf      |      |
| 118 |       | 0.25        | +inf      |      |
| 119 |       |             | +inf      |      |
| 120 |       | 0.25        | +inf      |      |
| 121 |       | 0.25        | +inf      |      |
| 122 |       |             | +inf      |      |
| 123 |       |             | 20        | Yes  |
| 124 | 0     |             | +inf      |      |
| 125 | 0.5   |             | 10        | Yes  |
| 126 |       | 0.001       | +inf      |      |
| 127 |       | 0           | +inf      |      |
| 128 | 0     |             | 560       | Yes  |
| 129 |       |             | +inf      |      |
| 130 |       |             | +inf      |      |
| 131 | 0     | <u> </u>    | +inf      |      |
| 132 | 0     |             | +inf      |      |
| 133 | 0     |             | +inf      |      |
| 134 | 0     |             | +inf      |      |

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 135 | 0     |             | +inf      |      |
| 136 | 0     |             | 840       | Yes  |
| 137 | 0     |             | +inf      |      |
| 138 | 0     |             | 127       | Yes  |
| 139 | 0     |             | 28        | Yes  |
| 140 | 0     |             | +inf      |      |
| 141 | 0     |             | 20        | Yes  |
| 142 |       |             | +inf      | _    |
| 143 |       |             | +inf      |      |
| 144 | 0     |             | 8         | Yes  |
| 145 | 0     |             | 32        | Yes  |
| 146 |       |             | +inf      |      |
| 147 |       |             | +inf      |      |
| 148 |       |             | 60        | Yes  |
| 149 |       |             | 230       | Yes  |
| 150 |       | ·           | +inf      |      |
| 151 | 0     |             | 255       |      |
| 152 |       |             | +inf      |      |
| 153 |       |             | +inf      |      |
| 154 |       |             | +inf      |      |
| 155 |       |             | +inf      |      |
| 156 | 0     |             | 265       | Yes  |
| 157 |       |             | 10        | Yes  |
| 158 |       |             | +inf      |      |
| 159 |       |             | 260       | Yes  |
| 160 |       |             | +inf      |      |
| 161 |       |             | +inf      |      |
| 162 |       |             | 340       | Yes  |
| 163 | 0     |             | 11        | Yes  |
| 164 | 0     |             | +inf      |      |
| 165 | 0     |             | 150       | Yes  |
| 166 |       |             | +inf      |      |
| 167 | 0     |             | 5.6       | Yes  |
| 168 |       |             | 1         | Yes  |
| 169 | 0     |             | +inf      |      |
| 170 |       |             | +inf      |      |

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 171 | 0     |             | +inf      |      |
| 172 |       |             | +inf      |      |
| 173 | 0     |             | +inf      |      |
| 174 | 0     |             | +inf      |      |
| 175 | 0     |             | +inf      |      |
| 176 | 0     |             | +inf      |      |
| 177 | 0     |             | +inf      |      |
| 178 | 0     |             | +inf      |      |
| 179 | 0     |             | +inf      |      |
| 180 | 0     |             | +inf      |      |
| 181 | 0     |             | +inf      |      |
| 182 | 0     |             | +inf      |      |
| 183 | 0     |             | +inf      |      |
| 184 | 0     |             | +inf      |      |
| 185 | 0     |             | +inf      |      |
| 186 | 0     |             | +inf      |      |
| 187 | 0     |             | +inf      |      |
| 188 | 0     |             | 300       | Yes  |
| 189 | 0     | _           | 250       | Yes  |
| 190 | 0     |             | 150       | Yes  |
| 191 | 0.05  |             | +inf      |      |
| 192 | 0.05  |             | +inf      |      |
| 193 |       |             | +inf      |      |
| 194 |       |             | +inf      |      |
| 195 | 0.05  |             | +inf      |      |
| 196 | 0.05  |             | +inf      |      |
| 197 |       |             | +inf      |      |
| 198 |       |             | +inf      |      |
| 199 |       |             | +inf      |      |
| 200 |       |             | +inf      |      |
| 201 |       |             | +inf      |      |
| 202 |       |             | +inf      |      |
| 203 |       |             | +inf      |      |
| 204 |       |             | 22        | Yes  |
| 205 |       |             | +inf      |      |
| 206 |       |             | 800       | Yes  |

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 207 |       |             | 400       |      |
| 208 |       | 0.5         | +inf      |      |
| 209 |       | · · · · ·   | +inf      |      |
| 210 |       | 0.5         | 6.6       |      |
| 211 |       |             | 6.6       |      |
| 212 |       |             | 1.4       | Yes  |
| 213 | 1     |             | 40        | Yes  |
| 214 |       |             | 80        | Yes  |
| 215 |       |             | 95        | Yes  |
| 216 |       |             | +inf      |      |
| 217 |       |             | 93        |      |
| 218 |       |             | +inf      |      |
| 219 |       |             | 55        |      |
| 220 |       |             | +inf      |      |
| 221 | 0     |             | +inf      |      |
| 222 |       |             | +inf      |      |
| 223 |       |             | 12        |      |
| 224 |       | 0.5         | +inf      |      |
| 225 |       |             | +inf      |      |
| 226 | 0     |             | +inf -    |      |
| 227 | 0     |             | +inf      |      |
| 228 | 0     |             | +inf      |      |
| 229 |       |             | +inf      |      |
| 230 |       |             | +inf      |      |
| 231 | 0     |             | +inf      |      |
| 232 | 0     |             | +inf      |      |
| 233 |       |             | +inf      |      |
| 234 |       |             | 220       |      |
| 235 |       |             | +inf      |      |
| 236 |       |             | +inf      |      |
| 237 |       |             | +inf      |      |
| 238 |       |             | +inf      |      |
| 239 | 0     |             | +inf      |      |
| 240 |       |             | +inf      |      |
| 241 | 0     |             | +inf      |      |
| 242 |       |             | +inf      |      |

14

|     | Value | Split Frac. | Phys.Max. | Use? |
|-----|-------|-------------|-----------|------|
| 243 | 0     |             | +inf      |      |
| 244 |       |             | +inf      |      |
| 245 |       |             | +inf      |      |
| 246 | 0     |             | +inf      |      |
| 247 |       |             | 250       | Yes  |
| 248 |       |             | 100       | Yes  |
| 249 | 0     |             | +inf      |      |
| 250 | 0     |             | 2500      | Yes  |
| 251 | 0     |             | 2500      | Yes  |
| 252 |       |             | +inf      |      |
| 253 |       |             | 10        |      |
| 254 |       |             | 70        |      |
| 255 | _     |             | +inf      |      |
| 256 |       |             | +inf      |      |
| 257 |       |             | +inf      |      |
| 258 |       |             | 500       |      |
| 259 |       |             | +inf      |      |
| 260 |       |             | +inf      |      |
| 261 |       |             | +inf      |      |
| 262 |       |             | +inf -    |      |
| 263 |       |             | +inf      |      |
| 264 |       |             | +inf      |      |
| 265 |       |             | +inf      |      |
| 266 |       |             | +inf      |      |
| 267 |       |             | 500       |      |
| 268 |       |             | 315       |      |
| 269 |       | 0.5         | +inf      |      |
| 270 |       | 0.5         | 47        | Yes  |
| 271 |       |             | +inf      |      |
| 272 |       |             | +inf      |      |
| 273 |       |             | +inf      |      |
| 274 |       |             | +inf      |      |
| 275 |       |             | +inf      |      |
| 276 |       |             | +inf      |      |

## Appendix I

## Water Pinch Results from the Recycled Fibre Plant

Table I.1 Routing of streams from Water Pinch Model of the Recycled Fibre Plant

|                      |                    | Flow   |
|----------------------|--------------------|--------|
| From                 | to                 | [t/h]  |
| From Process         | to Process         |        |
| Disc filter out 1    | Flotation in       | 290.2  |
| Disc filter out 1    | Centri-clean in    | 258.6  |
| From Utility         | to Process         |        |
| Cloudy out 1         | disc filter in 1   | 119.5  |
| Clear out 1          | HD Cleaning in     | 55.35  |
| Clear out 1          | Gyroclean in       | 111.5  |
| Clear out 1          | fine screens in 1  | 58.43  |
| Fresh water          | HD Cleaning in     | 44.89  |
| PM white water out 1 | Pulping in         | 333.58 |
| PM white water out 1 | Coarse Scr in      | 4.26   |
| PM white water out 1 | wire pulp press in | 43.2   |
| PM white water out 1 | Disperser in 1     | 145.98 |
| From Process         | to Utility         |        |
| Pulping out          | Rej-1 in 1         | 158.29 |
| HD Cleaning out      | Rej-1 in 1         | 10.69  |
| Coarse Scr out       | Rej-1 in 1         | 3.3    |
| Flotation out        | cloudy-disc in 1   | 35.61  |
| Gyroclean out        | Rej-1 in 1         | 6.22   |
| Centri-clean out     | Rej-1 in 1         | 9.18   |
| Fine screens out     | Rej-1 in 1         | 20.62  |
| Disc filter out 1    | clear-disc in 1    | 122.55 |
| Disc filter out 2    | Rej-1 in 1         | 22.33  |
| Disc filter out 2    | cloudy-disc in 1   | 265.57 |
| Wire pulp press out  | cloudy-disc in 1   | 162.98 |
| From Utility         | to Utility         |        |
| PM white water out 1 | cloudy-disc in 1   | 284.54 |

| 2                    | ·      | -       |
|----------------------|--------|---------|
|                      | Flow   | Fibre   |
| Name                 | [t/h]  | [ppm]   |
| Process              |        |         |
| Pulping out          | 158.29 | 7300    |
| HD Cleaning out      | 10.69  | 100000  |
| Coarse Screens out   | 3.3    | 100000  |
| Flotation out        | 35.61  | 4889.64 |
| Gyroclean out        | 6.22   | 3786    |
| Centri-clean out     | 9.18   | 10000   |
| Fine screens out     | 20.62  | 4400    |
| Disc filter out 1    | 671.35 | 200     |
| Disc filter out 2    | 287.9  | 700     |
| Wire pulp press out  | 162.98 | 500     |
| Utility              |        |         |
| Cloudy out 1         | 119.5  | 600     |
| Clear out 1          | 225.31 | 1086.55 |
| Fresh water          | 44.94  | 0       |
| PM white water out 1 | 811.59 | 100     |

Table I.2 Source conditions from Water Pinch Model of the Recycled Fibre Plant

Table I.3 Sink conditions from Water Pinch Model of the Recycled Fibre Plant

|                    | Flow   | Fibre    |
|--------------------|--------|----------|
| Name               | [t/h]  | [ppm]    |
| Process            |        |          |
| Pulping in         | 333.58 | 100      |
| HD Cleaning in     | 100.24 | 600      |
| Coarse Screens in  | 4.26   | 100      |
| Flotation in       | 290.2  | 200      |
| Gyroclean in       | 111.5  | 1086.55  |
| Centri-clean in    | 258.6  | 200      |
| Fine screens in 1  | 58.43  | 1086.55  |
| Fine screens in 2  | 0.06   | 600      |
| Disc filter in 1   | 119.5  | 600      |
| Disc filter in 2   | 0.05   | 0        |
| Wire pulp press in | 43.2   | 100      |
| Disperser in 1     | 145.98 | 100      |
| Utility            |        |          |
| Rej-1 in 1         | 230.63 | 11935.41 |

#### Appendix I

|                  | Flow   | Fibre  |
|------------------|--------|--------|
| Name             | [t/h]  | [ppm]  |
| Cloudy-disc in 1 | 748.7  | 627.71 |
| Clear-disc in 1  | 122.55 | 200    |

# Appendix J

|                     |                             | Flow   |
|---------------------|-----------------------------|--------|
| From                | to                          | [t/hr] |
| From Process        | to Process                  |        |
| Chip washer out     | chip washer in 1            | 464.06 |
| Chip washer out     | TMP1 cloudy ww chest in 1   | 70.71  |
| Chip washer out     | TMP1 cloudy ww chest in 2   | 5.44   |
| Chip washer out     | TMP2 Latency & screens in 1 | 4.83   |
| Hydrasieves out 1   | Reject System in            | 165.27 |
| Hydrasieves out 1   | TMP1 cloudy ww chest in 1   | 352.52 |
| Hydrasieves out 2   | chip washer in 1            | 27.19  |
| Line 1 Decker out 1 | chip washer in 1            | 26.54  |
| Line 1 Decker out 1 | chip washer in 2            | 32.25  |
| Line 1 Decker out 1 | Line 1 Sec Refiner in 1     | 98.25  |
| Line 1 Decker out 1 | Line 2 Sec Refiner in 1     | 116.31 |
| Line 1 Decker out 2 | Reject System in            | 38.17  |
| Line 1 Decker out 2 | TMP1 cloudy ww chest in 2   | 148.22 |
| Reject System out   | Cooling in 2                | 25.5   |
| Cooling out 1       | Line 3 Decker in            | 20     |
| Cooling out 2       | Cooling in 1                | 40     |
| Cooling out 2       | Cooling in 2                | 41     |
| Cooling out 2       | Line 4 Decker in            | 64.63  |
| Cooling out 2       | TMP2 clear ww chest in 4    | 3.96   |
| Cooling out 2       | Line 2 Decker in            | 2.79   |
| Cooling out 2       | TMP1 clear ww chest in 1    | 14.75  |
| Cooling out 2       | cooling tower in            | 392.87 |
| Line 3 Decker out 1 | TMP1 cloudy ww chest in 2   | 273.38 |
| Line 3 Decker out 2 | Line 1 Decker in            | 72.96  |
| Line 3 Decker out 2 | TMP1 clear ww chest in 2    | 113.43 |
| Line 4 Decker out 1 | Reject System in            | 179.46 |
| Line 4 Decker out 1 | TMP1 cloudy ww chest in 2   | 93.91  |

\_\_\_\_\_

Water Pinch Results from the Thermo-mechanical Pulp Plant

|                          |                             | Flow   |
|--------------------------|-----------------------------|--------|
| From                     | to                          | [t/hr] |
| Line 4 Decker out 2      | hydrasieves in              | 101    |
| Line 4 Decker out 2      | TMP2 clear ww chest in 2    | 58.81  |
| Line 4 Decker out 2      | TMP1 clear ww chest in 2    | 13.39  |
| Line 4 Decker out 2      | TMP1 clear ww chest in 4    | 4.75   |
| Line 4 Decker out 2      | TMP2 Latency & screens in 1 | 8.44   |
| TMP2 clear ww chest out  | TMP2 clear ww chest in 1    | 289.13 |
| TMP2 clear ww chest out  | TMP2 clear ww chest in 2    | 262.84 |
| TMP2 clear ww chest out  | TMP1 clear ww chest in 2    | 171.77 |
| TMP2 cloudy ww chest out | TMP2 cloudy ww chest in 2   | 558.22 |
| TMP2 cloudy ww chest out | TMP1 clear ww chest in 2    | 11.33  |
| TMP2 cloudy ww chest out | TMP2 Latency & screens in 1 | 535.42 |
| Line 2 Decker out 1      | TMP1 cloudy ww chest in 1   | 123.52 |
| Line 2 Decker out 1      | TMP1 clear ww chest in 2    | 62.87  |
| Line 2 Decker out 2      | TMP1 Latency & screens in 1 | 182.04 |
| Line 2 Decker out 2      | Line 3 Sec Refiner in 1     | 91.33  |
| TMP1 cloudy ww chest out | hydrasieves in              | 444.04 |
| TMP1 cloudy ww chest out | Line 4 Sec Refiner in 1     | 174.03 |
| TMP1 cloudy ww chest out | TMP2 cloudy ww chest in 1   | 449.6  |
| TMP1 clear ww chest out  | Line 1 Sec Refiner in 1     | 76.79  |
| TMP1 clear ww chest out  | Line 2 Sec Refiner in 1     | 18.53  |
| TMP1 clear ww chest out  | TMP1 Latency & screens in 1 | 327.97 |
| TMP1 clear ww chest out  | Line 1 Decker in            | 9.79   |
| TMP1 clear ww chest out  | Line 3 Sec Refiner in 1     | 82.7   |
| TMP1 clear ww chest out  | TMP2 cloudy ww chest in 1   | 97.15  |
| TMP1 clear ww chest out  | TMP1 clear ww chest in 3    | 73.55  |
| Sealing water out 1      | Line 3 Decker in            | 9.5    |
| Sealing water out 2      | Line 3 Decker in            | 9.5    |
| Cooling tower out        | Cooling in 2                | 473.5  |
| Cooling tower out        | Line 3 Decker in            | 37.7   |
| Cooling tower out        | TMP2 clear ww chest in 2    | 9.8    |
| Cooling tower out        | Sealing water in            | 19     |
| From Utility             | to Process                  |        |
| Fresh water              | TMP2 clear ww chest in 3    | 14.75  |
| Fresh water              | cooling tower in            | 167.13 |
| PM white water out 1     | Line 2 Sec Refiner in 1     | 40.2   |

|                      |                          | Flow   |
|----------------------|--------------------------|--------|
| From                 | to                       | [t/hr] |
| PM white water out 1 | Line 3 Decker in         | 6.06   |
| PM white water out 1 | Line 4 Decker in         | 18.13  |
| PM white water out 1 | TMP2 clear ww chest in 1 | 83.65  |
| PM white water out 1 | Line 2 Decker in         | 79.97  |
| PM white water out 1 | TMP1 clear ww chest in 3 | 220.64 |

Table J.2 Source conditions from Water Pinch Model of the Thermo-mechanical Pulp Plant

|                          | Flow    | Fibre   |
|--------------------------|---------|---------|
| Name                     | [t/h]   | [ppm]   |
| Process                  |         |         |
| Chip washer out          | 545.04  | 3000    |
| Hydrasieves out 1        | 517.79  | 1325.25 |
| Hydrasieves out 2        | 27.25   | 3140.09 |
| Line 1 Decker out 1      | 273.38  | 1890.76 |
| Line 1 Decker out 2      | 186.39  | 953.02  |
| Reject System out        | 25.5    | 2000    |
| Cooling out 1            | 20      | 0       |
| Cooling out 2            | 560     | 0       |
| Line 3 Decker out 1      | 273.38  | 1691.77 |
| Line 3 Decker out 2      | 186.39  | 661.17  |
| Line 4 Decker out 1      | 273.38  | 1718.26 |
| Line 4 Decker out 2      | 186.39  | 700.01  |
| TMP2 clear ww chest out  | 723.74  | 600     |
| TMP2 cloudy ww chest out | 1104.97 | 1500    |
| Line 2 Decker out 1      | 186.39  | 899.07  |
| Line 2 Decker out 2      | 273.38  | 1952.74 |
| TMP1 cloudy ww chest out | 1067.7  | 1500    |
| TMP1 clear ww chest out  | 686.46  | 1000    |
| Sealing water out 1      | 9.5     | 0       |
| Sealing water out 2      | 9.5     | 0       |
| Coling tower out         | 540     | 0       |
| Utility                  |         |         |
| Fresh water              | 181.88  | 0       |
| PM white water out 1     | 450     | 600     |

|                             | Flow   | Fibre   |  |
|-----------------------------|--------|---------|--|
| Name                        | [t/h]  | [ppm]   |  |
| Process                     |        |         |  |
| chip washer in 1            | 517.79 | 2950.5  |  |
| chip washer in 2            | 32.25  | 1890.76 |  |
| hydrasieves in              | 545.04 | 1351.75 |  |
| Line 1 Prim Refiner in 1    | 0      | 1500    |  |
| Line 2 Prim Refiner in 1    | 0      | 1500    |  |
| Line 1 Sec Refiner in 1     | 175.04 | 1500    |  |
| Line 2 Sec Refiner in 1     | 175.04 | 1500    |  |
| TMP1 Latency & screens in 1 | 510.01 | 1340.07 |  |
| Line 1 Decker in            | 82.76  | 701.26  |  |
| Reject System in            | 382.96 | 1472.63 |  |
| Cooling in 1                | 40     | 0       |  |
| Cooling in 2                | 540    | 0       |  |
| Line 3 Prim Refiner in 1    | 0.03   | 1500    |  |
| Line 4 Prim Refiner in 1    | 0.03   | 1500    |  |
| Line 3 Sec Refiner in 1     | 174.03 | 1500    |  |
| Line 4 Sec Refiner in 1     | 174.03 | 1500    |  |
| Line 3 Decker in            | 82.76  | 905.21  |  |
| Line 4 Decker in            | 82.76  | 921.14  |  |
| TMP2 clear ww chest in 1    | 372.78 | 600     |  |
| TMP2 clear ww chest in 2    | 331.45 | 600     |  |
| TMP2 clear ww chest in 3    | 14.75  | 100     |  |
| TMP2 clear ww chest in 4    | 4.75   | 100     |  |
| TMP2 cloudy ww chest in 1   | 546.75 | 1411.16 |  |
| TMP2 cloudy ww chest in 2   | 558.22 | 1500    |  |
| Line 2 Decker in            | 82.76  | 579.75  |  |
| TMP1 cloudy ww chest in 1   | 546.75 | 1445.56 |  |
| TMP1 cloudy ww chest in 2   | 520.95 | 1500    |  |
| TMP1 clear ww chest in 1    | 14.75  | 100     |  |
| TMP1 clear ww chest in 2    | 372.78 | 700     |  |
| TMP1 clear ww chest in 3    | 294.18 | 700     |  |
| TMP1 clear ww chest in 4    | 4.75   | 700     |  |
| TMP2 Latency & screens in 1 | 549.25 | 1500    |  |
| Sealing water in            | 19     | 0       |  |

Table J.3 Sink conditions from Water Pinch Model of the Thermo-mechanical Pulp Plant

#### Appendix J

|                  | Flow  | Fibre |
|------------------|-------|-------|
| Name             | [t/h] | [ppm] |
| Cooling tower in | 560   | 0     |

## Appendix K

| Table K.1(a) Flow Constraints for Water Pinch Model of Newsprint Circuit |                |             |                       |                       |              |  |
|--------------------------------------------------------------------------|----------------|-------------|-----------------------|-----------------------|--------------|--|
|                                                                          | P1 chip        | P2 chip     | P3                    | P4 Line 1             | P5 Line 2    |  |
|                                                                          | washer in 1    | washer in 2 | hydrasieves           | Prim                  | Prim         |  |
|                                                                          |                |             | in                    | Refiner in 1          | Refiner in 1 |  |
| P1 chip washer out                                                       |                | flow = 0    |                       | flow = 0              | flow = 0     |  |
| P2 hydrasieves out 1                                                     | flow = 0       | flow = 0    |                       | $flow = \overline{0}$ | flow = 0     |  |
| P3 hydrasieves out 2                                                     | flow = 0       |             | flow = 0              | flow = 0              | flow = 0     |  |
| P4 Line 1 Decker out 1                                                   | flow = $0$     |             | flow $= 0$            |                       |              |  |
| P5 Line 1 Decker out 2                                                   | flow $= 0$     | flow $= 0$  | flow = $0$            |                       |              |  |
| P6 Reject System out                                                     | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P7 Cooling out 1                                                         | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P8 Cooling out 2                                                         |                |             |                       |                       |              |  |
| P9 Line 3 Decker out 1                                                   | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = $0$   |  |
| P10 Line 3 Decker out 2                                                  | flow = 0       | flow = $0$  | flow = 0              | flow = 0              | flow = 0     |  |
| P11 Line 4 Decker out 1                                                  | flow = 0       | f]ow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P12 Line 4 Decker out 2 -                                                | flow = 0       | flow = $0$  | flow = 0              | flow = 0              | flow = 0     |  |
| P13 Line 2 Decker out 1                                                  | flow = 0       | flow = 0    | flow = 0              |                       |              |  |
| P14 Line 2 Decker out 2                                                  | flow = 0       | flow = $0$  | flow = $\overline{0}$ |                       |              |  |
| P15 Sealing water out 1                                                  | flow = 0       | flow = $9$  | flow = 0              | flow = 0              | flow = $0$   |  |
| P16 Sealing water out 2                                                  |                |             |                       |                       |              |  |
| P17 RFP Pulping out                                                      | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P18 RFP-HD cleaning out                                                  | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P19 RFP coarse screens out                                               | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P20 RFP flotation out                                                    | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P21 RFP gyro cleaners out                                                | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P22 RFP centri cleaners out                                              | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P23 RFP fine screens out                                                 | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P24 RFP disc filter out 1                                                | $f_{10XV} = 0$ | flow = 0    | flow == 0             | flow = 0              | flow = 0     |  |
| P25 RFP disc filter out 2                                                | flow = 0       | flow = 0    | flow $= 0$            | flow = 0              | flow = 0     |  |
| P26 RFP wire pulp press out                                              | flow = 0       | flow = 0    | flow = 0              | flow = 0              | flow = 0     |  |
| P27 PM4 Blend chest out                                                  |                |             |                       |                       |              |  |
| P28 PM4 cleaners & deculator out                                         | flow = 0       | flow = 0    | flow = $\overline{0}$ | flow = 0              | flow = 0     |  |

Table K.1(a) Flow Constraints for Water Pinch Model of Newsprint Circuit

Flow Constraints for Water Pinch Model of Newsprint Circuit

|                                  | P1 chip     | P2 chip     | P3          | P4 Line 1    | P5 Line 2    |
|----------------------------------|-------------|-------------|-------------|--------------|--------------|
|                                  | washer in 1 | washer in 2 | hydrasieves | Prim         | Prim         |
|                                  |             |             | in          | Refiner in 1 | Refiner in 1 |
| 1                                |             |             |             |              |              |
| P29 PM4 screens out 1            | flow = 0    | flow = 0    | flow = 0    | flow = 0     | flow = 0     |
| P30 PM4 forming section out 1    |             |             |             |              |              |
| P31 PM4 forming section out 2    |             |             |             |              |              |
| P32 PM4 press section out        |             |             |             |              |              |
| P33 PM5 press section out        |             |             |             |              |              |
| P34 PM5 forming section out 1    |             |             |             |              |              |
| P35 PM5 forming section out 2    |             |             |             |              |              |
| P36 PM5 screens out 1            | flow = 0    | flow = 0    | flow = 0    | flow = 0     | flow = 0     |
| P37 PM5 cleaners & deculator out | flow = 0    | flow = 0    | flow = 0    | flow = 0     | flow = 0     |
| 1                                |             |             |             |              |              |
| P38 PM5 Blend chest out          |             |             |             |              |              |
| P39 PM5 saveall out 1            |             |             |             |              |              |
| P40 PM5 saveall out 2            |             | flow = 0    |             |              |              |
| P41 PM4 saveall out 1            |             |             |             |              |              |
| P42 PM4 saveall out 2            |             |             |             |              |              |
| U1 Fresh water                   |             |             |             |              |              |

Ç.

| Table K.1(b) Flow Constraints for     | Water Pinch Model of existing Newsprint Circuit |
|---------------------------------------|-------------------------------------------------|
| · · · · · · · · · · · · · · · · · · · |                                                 |

| and the second sec | P6 Line 1   | P7 Line 2   | P8 TMP1      | P9 Line 1 | P10 Reject |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|-----------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sec Refiner | Sec Refiner | Latency &    | Decker in | System in  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in 1        | in 1        | screens in 1 |           |            |
| P1 chip washer out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | flow = 0    | flow = 0    | flow = 0     | flow = 0  | flow = 0   |
| P2 hydrasieves out 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flow = 0    | flow = 0    | flow = 0     | flow = 0  | flow = 0   |
| P3 hydrasieves out 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flow = 0    | flow = 0    | flow = 0     | flow = 0  | flow = 0   |
| P4 Line 1 Decker out 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             |              | flow = 0  |            |
| P5 Line 1 Decker out 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             |              |           |            |
| P6 Reject System out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flow = 0    | flow = 0    | flow = 0     | flow = 0  | flow = 0   |
| P7 Cooling out 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | flow = 0    | flow = 0    | flow = 0     | flow = 0  | flow = 0   |
| P8 Cooling out 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |              |           |            |
| P9 Line 3 Decker out 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | flow = 0    | flow = 0    | flow = 0     | flow = 0  |            |
| P10 Line 3 Decker out 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0    | flow = 0    | flow = 0     | flow = 0  |            |
| P11 Line 4 Decker out 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0    | flow = 0    | flow = 0     | flow = 0  |            |
| P12 Line 4 Decker out 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0    | flow = 0    | flow = 0     | flow = 0  |            |

|                                  | P6 Line 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P7 Line 2                        | P8 TMP1      | P9 Line 1  | P10 Reject          |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|------------|---------------------|
|                                  | Sec Refiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sec Refiner                      | Latency &    | Decker in  | System in           |
|                                  | in 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in 1                             | screens in 1 |            |                     |
| P13 Line 2 Decker out 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P14 Line 2 Decker out 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              | flow = 0   |                     |
| P15 Sealing water out 1          | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = $0$                       | flow = $0$   | flow = 0   | flow = $0$          |
| P16 Sealing water out 2          | THE OWNER AND A PARTY OF A PARTY | PO CALIFICATION AND TAKEN (2017) | n na na Ari  |            | parter de Meyode de |
| P17 RFP Pulping out              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P18 RFP-HD cleaning out          | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P19 RFP coarse screens out       | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P20 RFP flotation out            | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P21 RFP gyro cleaners out        | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P22 RFP centri cleaners out      | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P23 RFP fine screens out         | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P24 RFP disc filter out 1        | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P25 RFP disc filter out 2        | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P26 RFP wire pulp press out      | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P27 PM4 Blend chest out          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P28 PM4 cleaners & deculator out | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | ĺ            |            |                     |
| P29 PM4 screens out 1            | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = $0$ | flow = 0            |
| P30 PM4 forming section out 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P31 PM4 forming section out 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P32 PM4 press section out        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P33 PM5 press section out        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P34 PM5 forming section out 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                |              |            |                     |
| P35 PM5 forming section out 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P36 PM5 screens out 1            | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| P37 PM5 cleaners & deculator out | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow = 0                         | flow = 0     | flow = 0   | flow = 0            |
| 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P38 PM5 Blend chest out          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P39 PM5 saveall out 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P40 PM5 saveall out 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P41 PM4 saveall out 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| P42 PM4 saveall out 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |              |            |                     |
| U1 Fresh water                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | flow = 0     |            |                     |

|                                  | P11 Cooling P12 Cooling P13 Line 3 P14 Line 4 P15 Lin |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
|----------------------------------|-------------------------------------------------------|------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
|                                  | in 1                                                  | in 2       | Prim                  | Prim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sec Refiner |  |  |  |
|                                  |                                                       |            | Refiner in 1          | Refiner in 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in 1        |  |  |  |
| P1 chip washer out               | flow = 0                                              | flow = 0   | $flow = \overline{0}$ | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P2 hydrasieves out 1             | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P3 hydrasieves out 2             | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P4 Line 1 Decker out 1           | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P5 Line 1 Decker out 2           | flow = 0                                              | flow = 0   | $flow = \overline{0}$ | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P6 Reject System out             | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P7 Cooling out 1                 | flow = 0                                              |            | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P8 Cooling out 2                 |                                                       |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P9 Line 3 Decker out 1           | flow = 0                                              | flow $= 0$ |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | flow = 0    |  |  |  |
| P10 Line 3 Decker out 2          | flow = 0                                              | flow = 0   |                       | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |
| P11 Line 4 Decker out 1          | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P12 Line 4 Decker out 2          | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P13 Line 2 Decker out 1          | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P14 Line 2 Decker out 2          | flow = $0$                                            | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P15 Sealing water out 1          | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = $0$  |  |  |  |
| P16 Sealing water out 2          |                                                       |            |                       | A CONTRACTOR OF A CONTRACTOR A |             |  |  |  |
| P17 RFP Pulping out              | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P18 RFP-HD cleaning out          | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P19 RFP coarse screens out       | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P20 RFP flotation out            | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P21 RFP gyro cleaners out        | flow $\approx 0$                                      | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P22 RFP centri cleaners out      | flow = 0                                              | flow = 0   | flow $= 0$            | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P23 RFP fine screens out         | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P24 RFP disc filter out 1        | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P25 RFP disc filter out 2        | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P26 RFP wire pulp press out      | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P27 PM4 Blend chest out          | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P28 PM4 cleaners & deculator out | flow = 0                                              | flow = 0   | flow = 0              | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| 1                                |                                                       |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P29 PM4 screens out 1            | flow = 0                                              | flow = 0   | flow $= 0$            | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flow = 0    |  |  |  |
| P30 PM4 forming section out 1    | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P31 PM4 forming section out 2    | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P32 PM4 press section out        | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P33 PM5 press section out        | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |
| P34 PM5 forming section out 1    | flow = 0                                              | flow = 0   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |

Table K.1(c) Flow Constraints for Water Pinch Model of existing Newsprint Circuit

|                                  | P11 Cooling | P12 Cooling | P13 Line 3            | P14 Line 4   | P15 Line 3  |
|----------------------------------|-------------|-------------|-----------------------|--------------|-------------|
|                                  | in 1        | in 2        | Prim                  | Prim         | Sec Refiner |
|                                  |             |             | Refiner in 1          | Refiner in 1 | in 1        |
| P35 PM5 forming section out 2    | flow = 0    | flow = 0    |                       |              |             |
| P36 PM5 screens out 1            | flow = 0    | flow = 0    | flow = 0              | flow = 0     | flow = 0    |
| P37 PM5 cleaners & deculator out | flow = 0    | flow = 0    | flow = $\overline{0}$ | flow = 0     | flow = 0    |
| 1                                |             |             |                       |              |             |
| P38 PM5 Blend chest out          | flow = 0    | flow = 0    |                       |              |             |
| P39 PM5 saveall out 1            | flow = 0    | flow = 0    |                       |              |             |
| P40 PM5 saveall out 2            | flow = 0    | flow = 0    |                       |              |             |
| P41 PM4 saveall out 1            | flow = 0    | flow = 0    |                       |              |             |
| P42 PM4 saveall out 2            | flow = 0    | flow = 0    |                       |              |             |
| U1 Fresh water                   |             |             |                       |              |             |

|                            | P16 Line 4  | P17 Line 3 | P18 Line 4 | P19 Line 2 | P20 TMP2     |
|----------------------------|-------------|------------|------------|------------|--------------|
|                            | Sec Refiner | Decker in  | Decker in  | Decker in  | Latency &    |
|                            | in 1        |            |            |            | screens in 1 |
| P1 chip washer out         | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P2 hydrasieves out 1       | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P3 hydrasieves out 2       | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P4 Line 1 Decker out 1     | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P5 Line 1 Decker out 2     | flow = 0    | flow = 0   | flow = 0   |            | flow = 0     |
| P6 Reject System out       | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P7 Cooling out 1           | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P8 Cooling out 2           |             |            |            |            |              |
| P9 Line 3 Decker out 1     |             |            |            | flow = 0   |              |
| P10 Line 3 Decker out 2    |             |            |            |            |              |
| P11 Line 4 Decker out 1    |             |            |            | flow = 0   |              |
| P12 Line 4 Decker out 2    |             |            |            |            | flow = 0     |
| P13 Line 2 Decker out 1    | flow = 0    | flow = 0   | flow = 0   |            | flow = 0     |
| P14 Line 2 Decker out 2    | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P15 Sealing water out 1    | flow = 0    | flow = 0   | flow = 0   | flow $= 0$ | flow = 0     |
| P16 Sealing water out 2    |             |            |            |            |              |
| P17 RFP Pulping out        | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P18 RFP-HD cleaning out    | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |
| P19 RFP coarse screens out | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0     |

Table K.1(d) Flow Constraints for Water Pinch Model of existing Newsprint Circuit

|                                  | P16 Line 4  | P17 Line 3 | P18 Line 4 | P19 Line 2 | P20 TMP2              |
|----------------------------------|-------------|------------|------------|------------|-----------------------|
| ,                                | Sec Refiner | Decker in  | Decker in  | Decker in  | Latency &             |
|                                  | in 1        |            |            |            | screens in 1          |
| P20 RFP flotation out            | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| P21 RFP gyro cleaners out        | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| P22 RFP centri cleaners out      | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = $\overline{0}$ |
| P23 RFP fine screens out         | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| P24 RFP disc filter out 1        | flow = 0    | flow = 0   | flow = 0   | flow = 0   | $flow = \overline{0}$ |
| P25 RFP disc filter out 2        | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| P26 RFP wire pulp press out      | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| P27 PM4 Blend chest out          |             |            |            |            |                       |
| P28 PM4 cleaners & deculator out | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| 1                                |             |            |            |            |                       |
| P29 PM4 screens out 1            | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| P30 PM4 forming section out 1    |             |            |            |            |                       |
| P31 PM4 forming section out 2    |             |            |            |            |                       |
| P32 PM4 press section out        |             |            |            |            |                       |
| P33 PM5 press section out        |             |            |            |            |                       |
| P34 PM5 forming section out 1    |             |            |            |            |                       |
| P35 PM5 forming section out 2    |             |            |            |            |                       |
| P36 PM5 screens out 1            | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| P37 PM5 cleaners & deculator out | flow = 0    | flow = 0   | flow = 0   | flow = 0   | flow = 0              |
| 1                                |             |            |            |            |                       |
| P38 PM5 Blend chest out          |             |            |            |            |                       |
| P39 PM5 saveall out 1            |             |            |            |            |                       |
| P40 PM5 saveall out 2            |             |            |            |            |                       |
| P41 PM4 saveall out 1            |             |            |            |            |                       |
| P42 PM4 saveall out 2            |             |            |            |            |                       |
| U1 Fresh water                   |             |            |            |            | flow = 0              |

Table K.1(e) Flow Constraints for Water Pinch Model of existing Newsprint Circuit

|                      | P21 Sealing | P22 RFP    | P23 RFP-                         | P24 RFP               | P25 RFP      |
|----------------------|-------------|------------|----------------------------------|-----------------------|--------------|
|                      | water in    | Pulping in | HD cleaning                      | coarse                | flotation in |
|                      |             |            | in                               | screens in            |              |
| P1 chip washer out   | flow = 0    | flow = 0   | flow = 0                         | flow = $\overline{0}$ | flow = 0     |
| P2 hydrasieves out 1 | flow = 0    | flow = 0   | $\overline{flow} = 0$            | flow = 0              | flow = 0     |
| P3 hydrasieves out 2 | flow = 0    | flow = 0   | $\overline{flow} = \overline{0}$ | flow = 0              | flow = 0     |

|                                  | P21 Sealing | P22 RFP                  | P23 RFP-    | P24 RFP    | P25 RFP      |
|----------------------------------|-------------|--------------------------|-------------|------------|--------------|
|                                  | water in    | Pulping in               | HD cleaning | coarse     | flotation in |
|                                  |             |                          | in          | screens in |              |
| P4 Line 1 Decker out 1           | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P5 Line 1 Decker out 2           | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P6 Reject System out             | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P7 Cooling out 1                 | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P8 Cooling out 2                 | flow = 0    |                          |             |            |              |
| P9 Line 3 Decker out 1           | flow = 0    | flow $= 0$               | flow = 0    | flow = 0   | flow = 0     |
| P10 Line 3 Decker out 2          | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P11 Line 4 Decker out 1          | flow = 0    | flow $= 0$               | flow = 0    | flow = 0   | flow = $0$   |
| P12 Line 4 Decker out 2          | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P13 Line 2 Decker out 1          | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P14 Line 2 Decker out 2          | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P15 Sealing water out 1          | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P16 Sealing water out 2          | flow = 0    | An all the little of the |             |            |              |
| P17 RFP Pulping out              | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P18 RFP-HD cleaning out          | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P19 RFP coarse screens out       | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P20 RFP flotation out            | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P21 RFP gyro cleaners out        | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P22 RFP centri cleaners out      | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P23 RFP fine screens out         | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P24 RFP disc filter out 1        | flow = 0    |                          |             | -          |              |
| P25 RFF disc filter out 2        | flow = 0    |                          |             |            |              |
| P26 RFP wire pulp press out      | flow = 0    |                          |             |            |              |
| P27 PM4 Blend chest out          |             |                          |             |            |              |
| P28 PM4 cleaners & deculator out | flow $= 0$  | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| 1                                |             |                          |             |            |              |
| P29 PM4 screens out 1            | flow = 0    | flow = 0                 | flow = 0    | flow = 0   | flow = 0     |
| P30 PM4 forming section out 1    | flow = 0    |                          |             |            |              |
| P31 PM4 forming section out 2    | flow = 0    |                          |             |            |              |
| P32 PM4 press section out        | flow = 0    |                          |             |            |              |
| P33 PM5 press section out        | flow = 0    |                          |             | _          |              |
| P34 PM5 forming section out 1    | flow = 0    |                          |             |            |              |
| P35 PM5 forming section out 2    | flow = 0    |                          |             | flow = 0   |              |
| P36 PM5 screens out 1            | flow = 0    | flow = 0                 | flow = 0    | flow = $0$ | flow = 0     |
| P37 PM5 cleaners & deculator out | flow = 0    | $flow = \overline{0}$    | flow = 0    | flow = 0   | flow = 0     |
| 1                                |             |                          |             |            |              |

## Appendix K

|                         | P21 Sealing | P22 RFP    | P23 RFP-    | P24 RFP    | P25 RFP      |
|-------------------------|-------------|------------|-------------|------------|--------------|
|                         | water in    | Pulping in | HD cleaning | coarse     | flotation in |
|                         |             |            | in          | screens in |              |
| P38 PM5 Blend chest out | flow = 0    |            |             |            |              |
| P39 PM5 saveall out 1   | flow = 0    |            |             |            |              |
| P40 PM5 saveall out 2   | flow = 0    |            |             |            |              |
| P41 PM4 saveall out 1   | flow = 0    |            |             |            |              |
| P42 PM4 saveall out 2   | flow = 0    |            |             |            |              |
| U1 Fresh water          |             |            |             |            |              |

|                             | P26 RFP     | P27 RFP     | P28 RFP      | P29 RFP      | P30 RFP        |
|-----------------------------|-------------|-------------|--------------|--------------|----------------|
|                             | дуго        | centri      | fine screens | fine screens | disc filter in |
|                             | cleaners in | cleaners in | in 1         | in 2         | 1              |
| P1 chip washer out          | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P2 hydrasieves out 1        | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P3 hydrasieves out 2        | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P4 Line 1 Decker out 1      | flow = 0    | flow = $0$  | flow = $0$   | flow = $0$   | flow = $0$     |
| P5 Line 1 Decker out 2      | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P6 Reject System out        | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P7 Cooling out 1            | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P8 Cooling out 2            |             |             |              |              |                |
| P9 Line 3 Decker out 1      | flow = 0    | flow = $0$  | flow = 0     | flow = $0$   | flow = $0$     |
| P10 Line 3 Decker out 2     | flow = 0    | flow = 0    | flow = 0     | flow $= 0$   | flow = 0       |
| P11 Line 4 Decker out 1     | flow = 0    | flow = 0    | flow = 0     | flow = $0$   | flow = $0$     |
| P12 Line 4 Decker out 2     | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P13 Line 2 Decker out 1     | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P14 Line 2 Decker out 2     | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P15 Sealing water out 1     | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = $0$     |
| P16 Sealing water out 2     |             |             |              |              |                |
| P17 RFP Pulping out         | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P18 RFP-HD cleaning out     | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P19 RFP coarse screens out  | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P20 RFP flotation out       | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P21 RFP gyro cleaners out   | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P22 RFP centri cleaners out | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P23 RFP fine screens out    | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |

Table K.1(f) Flow Constraints for Water Pinch Model of existing Newsprint Circuit

|                                  | P26 RFP     | P27 RFP     | P28 RFP      | P29 RFP      | P30 RFP        |
|----------------------------------|-------------|-------------|--------------|--------------|----------------|
|                                  | gyro        | centri      | fine screens | fine screens | disc filter in |
|                                  | cleaners in | cleaners in |              |              |                |
|                                  | cleaners in | cleaners in | in 1         | in 2         | 1              |
| P24 RFP disc filter out 1        |             |             |              |              |                |
| P25 RFP disc filter out 2        |             |             | flow = 0     |              |                |
| P26 RFP wire pulp press out      |             |             |              |              |                |
| P27 PM4 Blend chest out          |             |             |              |              |                |
| P28 PM4 cleaners & deculator out | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| 1                                |             |             |              |              |                |
| P29 PM4 screens out 1            | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P30 PM4 forming section out 1    |             |             |              |              |                |
| P31 PM4 forming section out 2    |             |             |              |              |                |
| P32 PM4 press section out        |             |             |              |              |                |
| P33 PM5 press section out        |             |             |              |              |                |
| P34 PM5 forming section out 1    |             |             |              |              |                |
| P35 PM5 forming section out 2    |             |             |              |              |                |
| P36 PM5 screens out 1            | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| P37 PM5 cleaners & deculator out | flow = 0    | flow = 0    | flow = 0     | flow = 0     | flow = 0       |
| 1                                |             |             |              |              |                |
| P38 PM5 Blend chest out          |             |             |              |              |                |
| P39 PM5 saveall out 1            |             |             |              |              |                |
| P40 PM5 saveall out 2            |             |             |              |              |                |
| P41 PM4 saveall out 1            | _           |             |              |              |                |
| P42 PM4 saveall out 2            |             |             |              |              |                |
| U1 Fresh water                   |             |             |              |              |                |

|                        | P31 RFP        | P32 RFP    | P33 RFP      | P34 PM4     | P35 PM4    |
|------------------------|----------------|------------|--------------|-------------|------------|
|                        | disc filter in | wire pulp  | disperser in | Blend chest | silo in 1  |
|                        | 2              | press in   | 1            | in          |            |
| P1 chip washer out     | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0   |
| P2 hydrasieves out 1   | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0   |
| P3 hydrasieves out 2   | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0   |
| P4 Line 1 Decker out 1 | flow = 0       | flow = $0$ | flow-=0      | flow = 0    | flow = $0$ |
| P5 Line 1 Decker out 2 | flow=0         | flow = 0   | flow = 0     | flow = 0    | filow = 0  |
| P6 Reject System out   | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0   |
| P7 Cooling out 1       | flow = 0       | flow = 0   | flow = 0     | flow = $0$  | flow = 0   |

|                                  | P31 RFP        | P32 RFP    | P33 RFP      | P34 PM4     | P35 PM4               |
|----------------------------------|----------------|------------|--------------|-------------|-----------------------|
|                                  | disc filter in | wire pulp  | disperser in | Blend chest | silo in 1             |
|                                  | 2              | press in   | 1            | in          |                       |
| P8 Cooling out 2                 |                |            |              |             |                       |
| P9 Line 3 Decker out 1           | flow = 0       | flow = 0   | flow = $0$   | flow = 0    | flow = 0              |
| P10 Line 3 Decker out 2          | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P11 Line 4 Decker out 1          | flow = 0       | flow = $0$ | flow = 0     | flow = 0    | flow = 0              |
| P12 Line 4 Decker out 2          | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P13 Line 2 Decker out 1          | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P14 Line 2 Decker out 2          | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P15 Sealing water out 1          | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P16 Sealing water out 2          | an an a an a   |            |              |             | and the second second |
| P17 RFP Pulping out              | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P18 RFP-HD cleaning out          | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P19 RFP coarse screens out       | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P20 RFP flotation out            | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P21 RFP gyro cleaners out        | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P22 RFP centri cleaners out      | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P23 RFP fine screens out         | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P24 RFP disc filter out 1        |                |            |              | flow = 0    | flow = 0              |
| P25 RFP disc filter out 2        |                |            |              | flow = 0    | flow = 0              |
| P26 RFP wire pulp press out      |                |            |              | flow = 0    | flow = 0              |
| P27 PM4 Blend chest out          |                |            |              |             |                       |
| P28 PM4 cleaners & deculator out | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| 1                                |                |            |              |             |                       |
| P29 PM4 screens out 1            | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P30 PM4 forming section out 1    |                |            |              |             |                       |
| P31 PM4 forming section out 2    |                |            |              |             |                       |
| P32 PM4 press section out        |                |            |              |             |                       |
| P33 PM5 press section out        |                |            |              |             |                       |
| P34 PM5 forming section out 1    |                |            |              |             |                       |
| P35 PM5 forming section out 2    |                |            |              |             |                       |
| P36 PM5 screens out 1            | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| P37 PM5 cleaners & deculator out | flow = 0       | flow = 0   | flow = 0     | flow = 0    | flow = 0              |
| 1                                |                |            |              |             |                       |
| P38 PM5 Blend chest out          |                |            |              |             |                       |
| P39 PM5 saveall out 1            |                |            |              |             |                       |
| P40 PM5 saveall out 2            |                |            |              |             |                       |
| P41 PM4 saveall out 1            |                |            |              |             |                       |

|                       | P31 RFP        | P32 RFP   | P33 RFP      | P34 PM4     | P35 PM4   |
|-----------------------|----------------|-----------|--------------|-------------|-----------|
|                       | disc filter in | wire pulp | disperser in | Blend chest | silo in 1 |
|                       | 2              | press in  | 1            | in          |           |
| P42 PM4 saveall out 2 |                |           |              |             |           |
| U1 Fresh water        |                |           |              |             |           |

|                             | P36 PM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P37 PM4      | P38 PM4       | P39 PM4    | P40 PM5                |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------|------------------------|
|                             | headbox in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | forming      | forming       | press      | press                  |
|                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | section in 1 | section in 2  | section in | section in             |
| P1 chip washer out          | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P2 hydrasieves out 1        | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P3 hydrasieves out 2        | flow = $\overline{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P4 Line 1 Decker out 1      | flow = $\overline{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P5 Line 1 Decker out 2      | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P6 Reject System out        | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P7 Cooling out 1            | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P8 Cooling out 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | flow = 0     |               |            |                        |
| P9 Line 3 Decker out 1      | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P10 Line 3 Decker out 2     | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P11 Line 4 Decker out 1     | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P12 Line 4 Decker out 2     | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P13 Line 2 Decker out 1     | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P14 Line 2 Decker out 2     | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P15 Sealing water out 1     | flow = $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | flow = 0     | $fio_v v = 0$ | flow = 0   | fio <sub>i</sub> v = 0 |
| P16 Sealing water out 2     | and the second se |              | flow = 0      |            |                        |
| P17 RFP Pulping out         | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P18 RFP-HD cleaning out     | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P19 RFP coarse screens out  | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P20 RFP flotation out       | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P21 RFP gyro cleaners out   | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P22 RFP centri cleaners out | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P23 RFP fine screens out    | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P24 RFP disc filter out 1   | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | $flow = \overline{0}$  |
| P25 RFP disc filter out 2   | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P26 RFP wire pulp press out | flow = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow = 0     | flow = 0      | flow = 0   | flow = 0               |
| P27 PM4 Blend chest out     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |            |                        |

Table K.1(h) Flow Constraints for Water Pinch Model of existing Newsprint Circuit

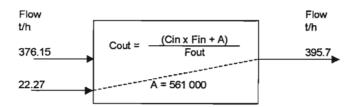
|                                  | P36 PM4    | P37 PM4      | P38 PM4      | P39 PM4    | P40 PM5                               |
|----------------------------------|------------|--------------|--------------|------------|---------------------------------------|
|                                  | headbox in | forming      | forming      | press      | press                                 |
|                                  | 1          | section in 1 | section in 2 | section in | section in                            |
| P28 PM4 cleaners & deculator out | flow = 0   | flow = 0     | flow = 0     | flow = 0   | flow = 0                              |
| 1                                |            |              |              |            |                                       |
| P29 PM4 screens out 1            | flow = 0   | flow = 0     | flow = 0     | flow = 0   | flow = 0                              |
| P30 PM4 forming section out 1    | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P31 PM4 forming section out 2    | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P32 PM4 press section out        | flow $= 0$ | flow = 0     | flow = 0     |            |                                       |
| P33 PM5 press section out        | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P34 PM5 forming section out 1    | flow = 0   | flow = 0     | flow = 0     |            | · · · · · · · · · · · · · · · · · · · |
| P35 PM5 forming section out 2    | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P36 PM5 screens out 1            | flow = 0   | flow = 0     | flow = 0     | flow = 0   | flow = 0                              |
| P37 PM5 cleaners & deculator out | flow = 0   | flow = 0     | flow = 0     | flow = 0   | flow = 0                              |
| 1                                |            |              |              |            |                                       |
| P38 PM5 Blend chest out          | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P39 PM5 saveall out 1            | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P40 PM5 saveall out 2            | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P41 PM4 saveall out 1            | flow = 0   | flow = 0     | flow = 0     |            |                                       |
| P42 PM4 saveall out 2            | flow = 0   | flow = 0     |              |            |                                       |
| U1 Fresh water                   |            |              |              |            |                                       |

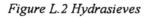
|                         | P41 PM5      | P42 PM5               | P43 PM5    | P44 PM5    | P45 PM5     |
|-------------------------|--------------|-----------------------|------------|------------|-------------|
|                         | forming      | forming               | headbox in | silo in 1  | Blend chest |
|                         | section in 1 | section in 2          | 1          |            | in          |
| P1 chip washer out      | flow = 0     | $\overline{flow} = 0$ | flow = 0   | flow = 0   | flow = 0    |
| P2 hydrasieves out 1    | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |
| P3 hydrasieves out 2    | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |
| P4 Line 1 Decker out 1  | flow = 0     | $\overline{flow} = 0$ | flow = 0   | flow = $0$ | flow = 0    |
| P5 Line 1 Decker out 2  | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |
| P6 Reject System out    | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |
| P7 Cooling out 1        | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |
| P8 Cooling out 2        | flow = 0     |                       |            |            | flow = 0    |
| P9 Line 3 Decker out 1  | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |
| P10 Line 3 Decker out 2 | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |
| P11 Line 4 Decker out 1 | flow = 0     | flow = 0              | flow = 0   | flow = 0   | flow = 0    |

|                                  | P41 PM5                    | P42 PM5      | P43 PM5               | P44 PM5   | P45 PM5     |
|----------------------------------|----------------------------|--------------|-----------------------|-----------|-------------|
|                                  | forming                    | forming      | headbox in            | silo in 1 | Blend chest |
|                                  | section in 1               | section in 2 | 1                     |           | in          |
| P12 Line 4 Decker out 2          | flow = 0                   | flow = 0     | $flow = \overline{0}$ | flow = 0  | flow = 0    |
| P13 Line 2 Decker out 1          | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P14 Line 2 Decker out 2          | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P15 Sealing water out 1          | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = $0$  |
| P16 Sealing water out 2          | National Contract Contract |              |                       |           |             |
| P17 RFP Pulping out              | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P18 RFP-HD cleaning out          | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P19 RFP coarse screens out       | flow = $\overline{0}$      | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P20 RFP flotation out            | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P21 RFP gyro cleaners out        | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P22 RFP centri cleaners out      | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P23 RFP fine screens out         | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P24 RFP disc filter out 1        | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P25 RFP disc filter out 2        | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P26 RFP wire pulp press out      | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P27 PM4 Blend chest out          |                            |              |                       |           |             |
| P28 PM4 cleaners & deculator out | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| 1                                |                            |              |                       |           |             |
| P29 PM4 screens out 1            | flow = 0                   | flow = 0     | flow = 0              | flow = 0  | flow = 0    |
| P30 PM4 forming section out 1    | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P31 PM4 forming section out 2    | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P32 PM4 press section out        | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P33 PM5 press section out        | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P34 PM5 forming section out 1    | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P35 PM5 forming section out 2    | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P36 PM5 screens out 1            | flow = 0                   | flow $= 0$   | flow = 0              | flow = 0  | flow = 0    |
| P37 PM5 cleaners & deculator out | flow = 0                   | flow = $0$   | flow = 0              | flow = 0  | flow = 0    |
| 1                                |                            |              |                       |           |             |
| P38 PM5 Blend chest out          | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P39 PM5 saveall out 1            | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P40 PM5 saveall out 2            | flow = 0                   |              | flow = 0              |           |             |
| P41 PM4 saveall out 1            | flow = 0                   | flow = 0     | flow = 0              |           |             |
| P42 PM4 saveall out 2            | flow = 0                   | flow = 0     | flow = 0              |           |             |
| U1 Fresh water                   |                            |              |                       |           |             |

|                                  | P46 PM5      | P47 PM5      | P48 PM4         | P49 PM4      | U1 Effluent |
|----------------------------------|--------------|--------------|-----------------|--------------|-------------|
|                                  | saveall in 1 | saveall in 2 | saveall in 1    | saveall in 2 |             |
| P1 chip washer out               | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P2 hydrasieves out 1             | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P3 hydrasieves out 2             | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P4 Line 1 Decker out 1           | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P5 Line 1 Decker out 2           | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P6 Reject System out             | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P7 Cooling out 1                 | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P8 Cooling out 2                 |              |              |                 |              |             |
| P9 Line 3 Decker out 1           | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P10 Line 3 Decker out 2          | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P11 Line 4 Decker out 1          | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P12 Line 4 Decker out 2          | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P13 Line 2 Decker out 1          | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P14 Line 2 Decker out 2          | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P15 Sealing water out 1          | flow = 0     | flow = 0     | flow = $\Theta$ | flow = 0     |             |
| P16 Sealing water out 2          |              |              |                 |              |             |
| P17 RFP Pulping out              | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P18 RFP-HD cleaning out          | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P19 RFP coarse screens out       | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P20 RFP flotation out            | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P21 RFP gyro cleaners out        | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P22 RFP centri cleaners out      | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P23 RFP fine screens out         | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P24 RFP disc filter out 1        | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P25 RFP disc filter out 2        | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P26 RFP wire pulp press out      | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P27 PM4 Blend chest out          |              |              |                 |              |             |
| P28 PM4 cleaners & deculator out | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| L                                |              |              |                 |              |             |
| P29 PM4 screens out 1            | flow = 0     | flow = 0     | flow = 0        | flow = 0     |             |
| P30 PM4 forming section out 1    |              |              |                 |              |             |
| P31 PM4 forming section out 2    |              |              |                 |              |             |
| P32 PM4 press section out        |              |              |                 |              |             |
| P33 PM5 press section out        |              |              |                 |              |             |
| P34 PM5 forming section out 1    |              |              |                 |              |             |
| P35 PM5 forming section out 2    |              |              |                 |              |             |

Table K.1(j) Flow Constraints for Water Pinch Model of existing Newsprint Circuit


|                                  | P46 PM5      | P47 PM5      | P48 PM4               | P49 PM4      | UI Effluent |
|----------------------------------|--------------|--------------|-----------------------|--------------|-------------|
|                                  | saveall in 1 | saveall in 2 | saveall in 1          | saveall in 2 |             |
| P36 PM5 screens out 1            | flow = 0     | flow = 0     | flow = 0              | flow = 0     |             |
| P37 PM5 cleaners & deculator out | flow = 0     | flow = 0     | $flow = \overline{0}$ | flow = 0     |             |
| 1                                |              |              |                       |              |             |
| P38 PM5 Blend chest out          |              |              |                       |              |             |
| P39 PM5 saveall out 1            |              |              |                       | •            |             |
| P40 PM5 saveall out 2            |              |              |                       |              |             |
| P41 PM4 saveall out 1            |              |              |                       |              |             |
| P42 PM4 saveall out 2            |              |              |                       |              |             |
| U1 Fresh water                   |              |              |                       |              |             |


.

## Appendix L

## Unit Operations in the Newsprint Circuit

## Figure L.1 Chip washer





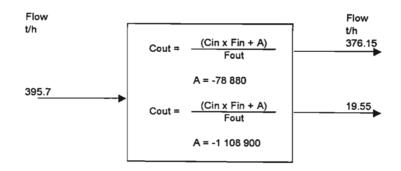



Figure L.3 Lines 1 to 4 Deckers

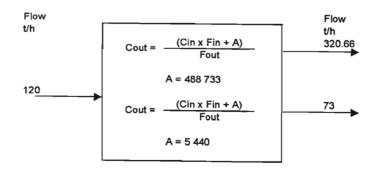



Figure L.4 Reject system

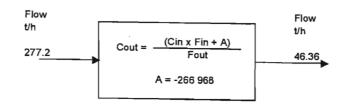



Figure L.5 Cooling

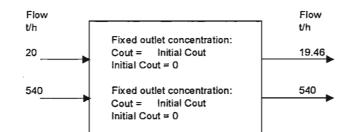



Figure L.6 Sealing water

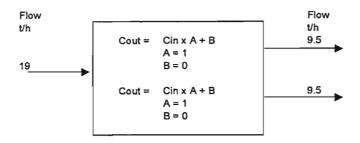



Figure L.7 Recycled Fibre Plant Pulping

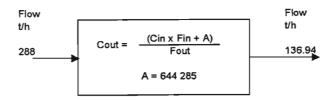



Figure L.8 Recycled Fibre Plant High Density Cleaning

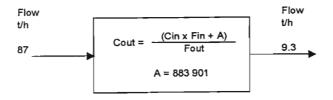



Figure L.9 Recycled Fibre Plant Coarse screens

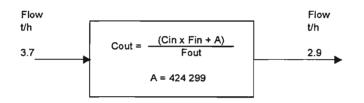



Figure L.10 Recycled Fibre Plant Flotation

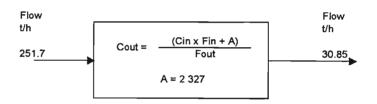



Figure L.11 Recycled Fibre Plant Gyrocleaners

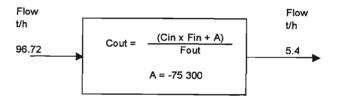



Figure L.12 Recycled Fibre Plant Centricleaners

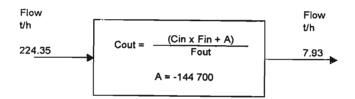



Figure L.13 Recycled Fibre Plant Fine screens

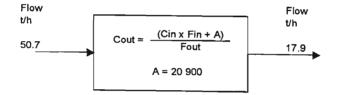



Figure L.14 Recycled Fibre Plant Disc Filter

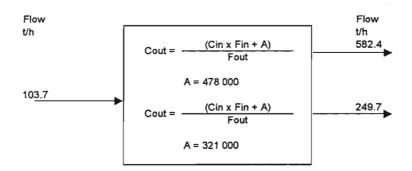



Figure L.15 Recycled Fibre Plant Wire pulp press

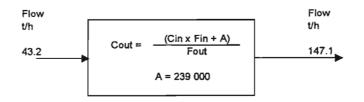



Figure L.16 PM4 Forming Section

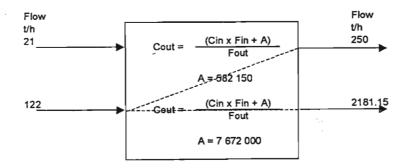
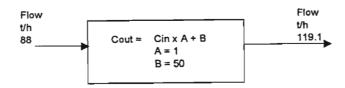
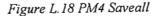





Figure L.17 PM4 Press Section





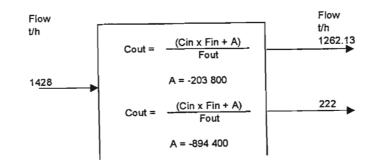



Figure L.19 PM5 Forming Section

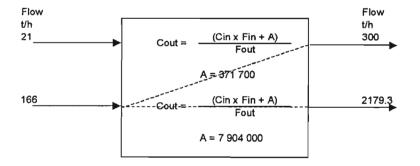



Figure L.20 PM5 Press Section

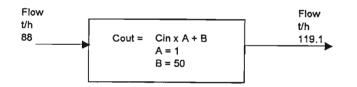
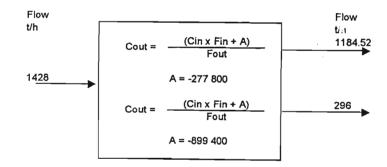




Figure L.21 PM5 Saveall

