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Abstract 

In this thesis we study classes of static spherically symmetric spacetimes admitting a perfect 

fluid source, electromagnetic fields and anisotropic pressures. Our intention is to gener­

ate exact solutions that model the interior of dense, relativistic stars. We find a sufficient 

condition for the existence of series solutions to the condition of pressure isotropy for neu­

tral isolated spheres. The existence of a series solution is demonstrated by the method of 

Frobenius. With the help of MATHEMATICA (Wolfram 1991) we recovered the Tolman 

VII model for a quadratic gravitational potential, but failed to obtain other known classes 

of solution. This establishes the weakness, in certain instances, of symbolic manipulation 

software to extract series solutions from differential equations. For a cubic potential, we 

obtained a new series solution to the Einstein field equations describing neutral stars. The 

gravitational and thermodynamic variables are non-singular and continuous. This model also 

satisfies the important barotropic equation of state p = p(p). Two new exact solutions to 

the Einstein-Maxwell system, that generalise previous results for uncharged stars, were also 

found. The first of these generalises the solution of Maharaj and Mkhwanazi (1996), and has 

well-behaved matter and curvature variables. The second solution reduces to the Durgapal 

and Bannerji (1983) model in the uncharged limit; this new result may only serve as a toy 

model for quark stars because of negative energy densities. In both examples we observe that 

the solutions may be expressed in terms of hypergeometric and elementary functions; this 

indicates the possibility of unifying isolated solutions under the hypergeometric equation. 

We also briefly study compact stars with spheroidal geometry, that may be charged or admit 

anisotropic pressure distributions. The adapted forms of the pressure isotropy condition can 

be written as a harmonic oscillator equation. Two simple examples are presented. 
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Chapter 1 

Introd uction 

General relativity is the modern theory of gravity as proposed by Einstein in 1915. What 

distinguishes general relativity from other physical theories is the idea that spacetime is no 

longer a passive stage upon which nature performs. Indeed the curvature of spacetime is cou­

pled to its matter and energy content via the Einstein field equations in a highly non-linear 

manner. The theory makes predictions that differ from the classical Newtonian paradigm. 

Four important predictions, viz. perihelion advance, the bending of light, time delay of radar 

signals and the geodesic effect, have been shown to be consistent with observations (Foster 

and Nightingale 1998, Narlikar 1979). These tests were important in the acceptance of gen­

eral relativity and have since been expanded to include other observations and experiments 

(Davies 1989, Will 1981). The Newtonian theory remains successful when ~21t « 1, and 

is, indeed, preferrable in this regime due to its greater simplicity. In the limit of strong 

gravitational fields however, we must employ the Einstein field equations for an accurate 

description of the gravitational field. 

Soon after its inception, the general theory was applied to problems in cosmology. In­

deed the standard models of cosmology are relativistic theories. In contrast, astrophysics 

remained largely Newtonian until the 1960s. At this stage the discovery of quasars prompted 

the development of far-ranging hypotheses. The more conventional of these recognised the 

1 



importance of general relativity (Zel'dovich and Novikov 1971). Furthermore, even stars 

with low densities corresponding to M rv 100 solar masses, will eventually exhaust their nu­

clear fuel and become compact. At this stage of stellar evolution, relativistic effects become 

significant. 

One of the themes of this thesis is to work towards models of compact stellar objects. 

Since :2~ rv 1, we do not utilise the parametrised post-Newtonian approximation (Narlikar 

1979) or other other approximation techniques. Approximate solutions tend to lead to very 

simplified models and important relativistic features are often absent or masked. Also, since 

our long-term goal is to understand the physics of such bodies, we do not attempt to em­

ploy numerical techniques . The approach adopted is thus to explicitly solve the Einstein 

field equations. We are faced with the formidable task of obtaining exact solutions to the 

Einstein field equations - a system of coupled, non-linear partial differential equations. For­

tunately the physics of our problem enables us to simplify our model substantially. As a 

simplifying approximation we assume that spacetime is static and spherically symmetric. 

Such an assumption is consistent with isolated stars that are compact and not radiating. 

We only consider objects void of shear or heat flow. Accordingly we model the relativistic 

star as a perfect fluid. However we do allow for the possibility of charged stars. For charged 

stars the Einstein field equations have to be adapted to include electromagnetic fields; the 

resultant system is the Einstein-Maxwell system of non-linear equations. 

A number of important exact solutions have been discovered with applications in rela­

tivistic astrophysics: 

(?-) The Schwarzschild exterior solution. This describes the gravitational field outside a 

static spherically symmetric body. Historically this is the first exact solution of the 

field equations (Schwarzschild 1916a). 

(b) The Schwarzschild interior solution. This describes the gravitational field inside a static 

spherically symmetric body. This solution (Schwarzschild 1916b) matches smoothly to 
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the exterior Schwarzschild line element, and is a good model of small stars, where the 

pressures are not too large. 

(c) The Reissner-Nordstrom solution. This models spacetime outside a charged, static 

spherically symmetric body. In the limit of vanishing electric fields, we recover the 

Schwarzschild exterior solution. 

It is important to note that other exterior solutions, describing important astrophysical 

phenomena, exist. The most important of these are the Vaidya solution, which describes 

radiating bodies, and the Kerr solution, which describes rotating bodies. Any new interior 

solution describing static spherically symmetric bodies should match the appropriate exterior 

solution. 

We attempt, through this thesis, to obtain new exact solutions that model the interior 

of charged and neutral stars. We thus have to solve the Einstein-Maxwell and Einstein field 

equations for these respective cases. Under high pressures stars may possess a non-zero 

charge during the early stages of their evolution (Stephani 1990). Stars may also acquire a 

net charge through accretion (Shvartsman 1971). The presence of an electric field can also 

counter the onset of gravitational collapse, as a net charge distribution produces a repulsive 

Coulomb force. This affects the formation of singularities (Treves and Turolla 1999). The 

occurence of charge does have consequences for the cosmic censorship hypothesis (Joshi and 

Dwivedi 1992a, 1992b, 1992c, Joshi 1993). This conjecture states that any singularity formed 

by gravitational collapse will always remain hidden behind an event horizon. The presence of 

charge may be crucial to the presence of naked singularities in cosmic censorship, and exact 

solutions are helpful in investigations of this hypothesis. An extensive literature of exact 

solutions to the Einstein field equations has been generated over the years; recent reviews 

are given by Delgaty and Lake (1998), Kramer et al and Krasinski (1997). Many solutions 

of the Einstein-Maxwell system have also been found but these have yet to be categorised 

systematically. (We suggest in chapter 4 the possibility of utilising the hypergeometric 

function to bring together some classes of charged solutions.) Particular exact solutions of 
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the Einstein-Maxwell system, with physically realistic features have been found by Hansraj 

(1996), Herrera and Ponce de Leon (1985), Maartens and Maharaj (1990) and Tikekar (1984). 

The Einstein and Einstein-Maxwell systems describing stellar objects are under-determined. 

There are different approaches to integrating this system. One approach is to assume that 

the spacetime admits a particular symmetry (Castejon-Amanedo and Coley 1992, Maharaj 

et al 1991). Another approach, which this thesis adopts, is directly to integrate the system 

by specifying forms for one or more of the variables on physical grounds. 

We now briefly review the work conducted here. 

In chapter 2 we introduce those aspects of differential geometry and general relativity 

relevant to this thesis. We then introduce the field equations for charged and neutral per­

fect fluids in static spherically symmetric spacetimes. We transform these equations to a 

more tractable form. The notion of spheroidal geometry is introduced, and the relevant sys­

tems of field equations are produced. We conclude with a review of conditions for physical 

admissability of interior solutions. 

In chapter 3 we establish a sufficient condition for the existence of neutral static solutions. 

Bearing this condition in mind we specified forms for one of the gravitational potentials, Z, 

and attempted to find new solutions. We demonstrated the merits of software packages, and 

recovered the Tolman VII model for a quadratic form of Z . Using the method of Frobenius 

we obtained a series solution, for a cubic form of Z, which we believe has not been previously 

documented. 

In chapter 4 we attempted to solve a form of the Einstein-Maxwell system by specifying 

the potential Z and the electric field intensity E. We obtained an electrostatic generalisation 

of a class of neutral solutions due to Maharaj and Mkhwanazi (1996) . These solutions 

are expressed in terms of hypergeometric functions. For special cases we regained some 

documented uncharged solutions. We then demonstrated, what we believe to be, two new 

charged solutions, which we were able to express in terms of elementary functions. 

In chapter 5 we briefly examined some problems with spheroidal geometry. We utilised 
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a general transformation to rewrite the condition of pressure isotropy in a simpler form for 

charged stars. We also derived an analogous expression for anisotropic pressure distributions. 

Particular exact solutions are presented for specified forms of the electric field intensity E 

and pressure anisotropy factor t::.. 

There were four broad aims of this thesis. Firstly to obtain new exact solutions to the 

Einstein and Einstein-Maxwell systems. Secondly to identify classes of solutions that could 

lead to physically viable models of stars. Thirdly to demonstrate the possibility of unifying 

many seemingly disparate exact solutions of the Einstein-Maxwell system. And fourthly, to 

review the methodology of the field. 

The results obtained in this thesis, are summarised in the concluding chapter, wherein 

suggestions for future work are outlined. 

5 



Chapter 2 

Static Relativistic Stars: an 

introduction 

2.1 Introduction 

One of the fundamental aims in this thesis is to work towards a realistic description of com­

pact stellar objects. For this purpose it is necessary to use the complete non-linear form 

of the Einstein field equations of general relativity. To this end we develop those aspects 

of differential geometry and general relativity crucial to our arguments. In §2.2 we define 

the concepts of the line element, the metric tensor field, the metric connection and the co­

variant derivative of an arbitrary tensor field. These definitions are not unique to general 

relativity, but form part of the wider subject of differential geometry. What is peculiar to 

general relativity is the idea that the gravitational field is a manifestation of the curvature 

of spacetime. The concept of curvature is clearly defined, and our conventions are specified 

. with the introduction of the Riemann tensor, Ricci tensor, Ricci scalar and Einstein tensor. 

In §2.3 we describe a covariant formulation of Maxwell 's laws, and introduce the idea of a 

relativistic fluid. We also introduce the notion of perfect fluids. The electromagnetic field 

and matter are then coupled to the gravitational field by means of the Einstein-Maxwell field 
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equations. We restrict spacetime to be static and spherically symmetric. The geometry of 

this specific spacetime is determined by explicitly evaluating the Einstein tensor. We also 

considered the effect of this geometry on the energy-momentum tensor, and evaluate the 

relevant expressions for neutral and charged perfect fluids. In the latter case we assume a 

simple form for the electromagnetic field, consistent with static charged bodies. In §2.5 we 

derive the Einstein field equations for charged and neutral perfect fluids in static spherically 

symmetric spacetimes. We utilise a change of coordinates, due to Durgapal and Bannerji 

(1983), that simplifies the task of finding new exact solutions. We also transform the field 

equations to a form that allows comparison with the predictions of non-relativistic astro­

physics. The Newtonian equation of hydrostatic equilibrium is derived, as a special case,' 

from the field equations, and demonstrates the successful incorporation of classical results 

into the non-linear theory. We introduce the concept of spheroidal geometries in §2.6. Many 

physically reasonable models of dense stars have been obtained for spheroidal stars (Ma­

haraj and Leach 1996, Tikekar 1990 and Vaidya and Tikekar 1982). We derive the relevant 

field equations for neutral and perfect fluids, and also explicitly state the conditions of pres­

sure isotropy for both cases. Finally, in §2.7, we list two exterior spacetimes, that are of 

crucial importance in relativistic astrophysics viz. the exterior Schwarzschild line element 

(Schwarzschild 1916a) and the Reissner-Nordstrom line element (Reissner 1916, Nordstrom 

1918). In addition we state the relevant features that realistic stellar models should exhibit. 

Any new exact solution purporting to describe relativistic stars should be assessed against 

these criteria. 

2.2 Differential Geometry 

We assume that spacetime is a four-dimensional differentiable manifold endowed with a 

metric tensor field g. Locally the manifold has the structure of Euclidean space in that it 

may be covered by coordinate patches. In the case of general relativity the metric tensor 
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field is indefinite and the manifold is referred to as pseudo-Riemannian. The tensor field g 

is symmetric and non-singular with signature (- + + + ). We label points in spacetime with 

real coordinates (xa ) = (xO,xl,x2,X3), where xO = ct (c being the speed of light in vacuum) 

is the temporal coordinate and Xl, x2
, x3 are spatial coordinates. Throughout this thesis we 

have used the convention that the speed of light assumes the value l. It is not our intention 

to give a detailed exposition of differential geometry, and the interested reader is referred 

to the standard texts on the subject, such as de Felice and Clark (1990), Hawking and Ellis 

(1973) and Misner et al (1973). 

The invariant distance between neighbouring points on a manifold is defined by the line 

element 

(2.1) 

where 9ab are the covariant components of g. The Minkowski line element of special relativity, 

in Cartesian coordinates, has the form 

which is a special case of (2.1). The inner product of the two contravariant vector fields A 

and J.L is defined by 

We require that the inner product remains constant along a curve in the manifold; this 

implies the condition 

r a 1 ad( ) 
be = 29 ged,b + 9db,e - 9be,d (2.2) 

where r is the metric connection. This is the fundamental theorem of Riemannian geometry 

which implies the existence of a unique, symmetric connection r which preserves inner 

products under parallel transport. The importance of tensor calculus lies in the invariance 

of quantities under coordinate transformations. Such objects are referred to as tensorial. 

The directional derivative of a tensor field is not a tensorial quantity in general. It is, 
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however, possible to introduce tensorial derivatives on the manifold. Let vala2···arhb2 ... bs be 

an arbitrary (r, s) tensor field. The covariant derivative of V is defined by 

(2.3) 

where semi-colons and commas denote covariant and partial differentiation respectively. 

From (2.3) we observe that the covariant derivative is a generalisation of the partial deriva­

tive and, when operating on an (r,s) tensor field, produces an (r,s + 1) tensor field. In 

particular for a (0,1) vector field Va, (2.3) reduces to 

The curvature of spacetime is quantified by the Riemann (or curvature or Riemann-Christoffel) 

tensor R. By considering the second covariant derivative of the (0,1) tensor field V, we gen­

erate the result 

where we have defined 

(2.4) 

Here Rabcd are the components of the (1,3) tensor field R. The Riemann tensor provides 

a measure of curvature of a manifold, i.e. the deviation from the flatness characteristic of 
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Minkowski spacetime. The components of R have the following useful properties 

Rabcd = - R bacd 

Rabcd = - Rabdc 

Rabcd = Rcdab 

Rabcd·e + Rabde·c + Rab~c'd = 0 . . . 
which can be easily verified from the definition (2.4) . Of particular importance is the sym-

metric Ricci tensor 

(2.5) 

obtained from a contraction of (2.4). Contraction of the Ricci tensor (2.5) yields 

abR = 9 ab (2.6) 

which is the Ricci, or curvature, scalar. We are now in a position to define, utilising (2.5) 

and (2.6), the Einstein tensor 

(2.7) 

which is necessarily symmetric. The Einstein tensor has vanishing divergence, so that 

(2.8) 

which is the contracted Bianchi identity. 
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2.3 Fluids and electromagnetic fields 

The energy-momentum tensor M for a neutral fluid is 

(2.9) 

where p is the isotropic (kinetic) pressure, p is the energy density, qa is the heat flux vector 

(qaua = 0) and nab is the anisotropic pressure, or stress, tensor (nabua = 0 = n~). All 

these quantities are measured relative to a comoving fluid four-velocity u which is unit and 

timelike (uaua = -1). For a perfect fluid (nab = 0 = qa), (2.9) reduces to 

(2.10) 

It is often required that the matter distribution satisfies a barotropic equation of state 

p = p(p). Particular equations of state with the perfect fluid energy-momentum tensor (2.10) 

are often considered in applications in cosmology and astrophysics. The linear relation 

p = ",(p, O:S "'( :S 1 

is known as the ",(-law equation of state. The restriction 0 :S "'( :S 1 is required to preserve 

causality. Also widely used is the polytropic equation of state 

where k and n are constants. 

!!.±l 
P = kp n 

In terms of the four-potential A, we define the Faraday tensor F as 

which is skew-symmetric. The Faraday tensor can be interpreted in terms of the electric 

field, E = (El, E2, E3), and the magnetic field, B = (Bl, B2, B3), by means of the matrix 
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representation 

The electromagnetic stress tensor E is given by 

Del F F cd 
Eab = Facrb - 4gab cd . (2.11) 

In order to consider the effect of E on the gravitational field we require a covariant formu­

lation of Maxwell's laws. The governing equations are given by 

Fab·c + Fbc-a + F ca·b = 0 , , , (2.12a) 

F ab - Ja jb - . (2.12b) 

In the above J is the four-current density defined by 

where (J is the proper charge density. For further information on Maxwell's field equations 

(2.12), see Misner et al (1973) and Narlikar (1979). 

The total energy-momentum tensor T is the sum of M and E: 

explicitly given by (2.9) and (2.11) respectively. We are now in a position to introduce the 

effect of gravitational interactions on matter and electromagnetic fields. This is given by the 

Einstein-Maxwell system of equations 

Gab = Tab 
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(2.13a) 

Fab'c + Fbc-a + F Ca 'b = 0 , , , (2.13b) 

F
ab - Ja ;b - . (2.13c) 

This is a highly non-linear system of coupled, partial differential equations governing the 

behaviour of a gravitating system in the presence of an electromagnetic field. Note that we 

utilise units in which the coupling constant in the Einstein equations (2.13a) is unity. From 

(2.8) and (2.13a) we obtain 

which are the conservation equations. 

'T ab - 0 ;b -

2.4 Static spherically symmetric spacetimes 

(2.14) 

We shall deal with a form of (2.13) applicable to problems in relativistic astrophysics. Since 

our intention is to study stable, stellar objects it seems reasonable, on physical grounds, to 

assume that spacetime is static and spherically symmetric. This is clearly consistent with 

models utilised to study physical processes in compact objects as undertaken by Shapiro and 

Teukolsky (1983) amongst others. 

The generic line element for static, spherically symmetric spacetimes is given by 

(2.15) 

where we have used spherical polar coordinates (x a
) = (t, r, B, ¢). The quantities v(r) and 

).(r) are related to the gravitational potentials. The connection coefficients, associated with 

the metric (2.15), are easily determined from (2.2); the non-vanishing components are given 

by 
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1/' 1. 
r 

1/' e2(V-A) - sin e cos e 

1. 
r 

cote 

where primes denote differentiation with respect to r . The connection coefficients r abc may 

also be obtained via a variational approach if one specifies the scalar L = ~gab(Xc)xaxb as a 

Lagrangian. 

From (2.5) we write down the Ricci tensor components 

( 21/') Roo = e2(V-A) 1/" + 1/'2 - 1/')..' + 7 (2.16a) 

(
" '2 " 2>.') Rll = - 1/ + 1/ - 1/.A - 7 (2.16b) 

(2.16c) 

(2.16d) 

Rab = 0, a -I b. 

We can now evaluate the Ricci scalar 

(2.17) 
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from (2.6). The components of the Einstein tensor 

GOo = e- 21J ~[r(l - e-2A)]' 
r2 

Gab = 0, a =I- b 

follow from (2.7), (2.16) and (2.17). 

(2.18a) 

(2.18b) 

(2.18c) 

(2.18d) 

We investigate various forms of the energy-momentum tensors Mab and Eab (note that 

Tab = Mab + Eab) with the comoving four-velocity ua = e- 1J 6g for the line element (2.15). 

For neutral (Eab = 0) perfect fluids (2.10) we obtain the non-vanishing components 

(2.19a) 

(2.19b) 

(2.19c) 

(2.19d) 

For charged perfect fluids we make the choice 

Aa = (</>(r),O,O,O) (2.20) 
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which is a simple form consistent with spherical symmetry. The only non-zero components 

of the Faraday tensor Fab are 

FOl = -q/(r) 

and its skew-symmetric partner FlO' The associated contravariant component has the form 

where we have defined 

E(r) = e-(/J+A)¢/(r). 

The quantity E may be interpreted as the electric field intensity in the manner prescribed 

by Herrera and Ponce de Leon (1985) . The proper charge density takes the form 

1 
a = '2e->-(r2 E)'. 

r 
(2.21) 

Then the components of E may be found using (2.11), and the total energy-momentum 

tensor has the non-zero components 

TOO = e- 2 /J (p + ~E2) (2.22a) 

(2.22b) 

(2.22c) 

T 33 = 1 (p + ! E2) 
r 2sin26J 2 (2.22d) 

for spherically symmetric spacetimes (2.15). 

2.5 The field equations 

We now generate the field equations, in various coordinate systems, for the case of perfect 

fluids in static spherically symmetric spacetimes. We consider both charged and neutral 
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perfect fluids in the Einstein-Maxwell system (2.13). 

2.5.1 Neutral fluids 

On equating (2.18) and (2.19) we obtain 

(

VI X) e-2
.\ v" + V '2 + -:;: - V')..' - -:;: = p. 

As a consequence of (2.14) we have the conservation equation 

dp dv 
- = -(p+p)­
dr dr 

(2.23a) 

(2.23b) 

(2.23c) 

(2.24) 

which may be used in place of any of the field equations. The system of equations (2.23) 

governs the gravitational behaviour of a neutral perfect fluid. 

An equivalent form of the field equations is obtained if we use the transformation, 

(2.25a) 

Z(x) = e-2.\(r) (2.25b) 

(2.25c) 

due to Durgapal and Bannerji (1983), where C and A are arbitrary constants. Under the 

transformation (2.25), the system (2.23) becomes 
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1- Z . P 
---2Z= -

x C (2.26a) 



iJ Z-1 p 
4Z-+--= -

Y x C 
(2.26b) 

(2.26c) 

where the overdot denotes differentiation with respect to the variable x. Note that (2.26) 

is a system of three equations in the four unknowns, p,p, y and Z. The advantage of this 

system lies in the fact that a solution can, upon a suitable specification of Z(x), be readily 

obtained by integrating (2.26c) which is second order and linear in y. 

We now consider a different form of the field equations which eases comparison with the 

Newtonian equations. Equation (2.23a) implies that 

where k is a constant. This suggests that if we define a "mass" function m(r) by 

we then obtain 
1 

m(r) = -r(1 - e- 2A
) 

2 

where we have set k = 0 to ensure the metric function e-2A remains finite at the origin. The 

"mass" function m( r) is proportional to the mass enclosed by a sphere of coordinate radius 

T. The true radius R is given by 

The field equations (2.23) now assume the form 
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dm 1 2 
-=-r p 
dr 2 

(2.27a) 



dv 
dr 

II ,2 r - (rm)', rm' - m 
v +V + V-----

r(r - 2m) r 2(r - 2m) 

On substituting (2.27b) into (2.24) we have 

dp (p+p)(m+ ~pr3) 

dr r(r - 2m) 

~pr3 + m 

r(r - 2m) 

pr 

2-m 

which is often termed the Oppenheimer-Volkoff equation. In the limit 

p «: p, m «: r 

the previous expression approaches the limiting equation 

dp 

dr 

pm 
r2 

(2.27b) 

(2.27c) 

(2.28) 

(2.29) 

which is the equation of hydrostatic equilibrium for Newtonian stars. By comparing the 

relativistic result (2.28) with equation (2.29) we see that the effect of relativistic corrections 

is to steepen the pressure gradient predicted by Newtonian astrophysics. 

2.5.2 Charged fluids 

The results of this section depend on the choice for the four-potential, Aa = (¢(r), 0, 0, 0), 

made earlier. On equating (2.18) and (2.22), and taking into consideration (2.21), we obtain 

(2.30a) 

(2.30b) 

(2.30c) 

(2.30d) 

19 



The system of equations (2.30) governs the behaviour of the gravitational field for a charged 

perfect fluid. Observe that the system reduces to (2.23) when E = O. Note that as a 

consequence of (2.14), we have 

(2.31) 

which is sometimes used as a starting point to solve the system (2.30). 

An equivalent form of (2.30) is generated if we utilise the transformation (2.25), due 

to Durgapal and Bannerji (1983). With this transformation, the Einstein-Maxwell system 

becomes 

1- Z . P E2 
---2Z=-+-

x C 2C 

iJ Z - 1 P E2 
4Z-+--= ---

Y x C 2C 

. 2 ( . E2X) 4Zx2y + 2Zx iJ + Zx - Z + 1 - C y = 0 

(J2 4Z· 2 - = -(xE+E) C x 

where, as before, overdots indicate differentiation with respect to the variable x. 

2.6 Spheroidal Geometry 

(2.32a) 

(2.32b) 

(2.32c) 

(2.32d) 

To obtain an exact solution of (2.23) we need to specify one of the unknowns p, p, IJ or A. Here 

we adopt the procedure of choosing the gravitational potential A(r) . The advantage of this 

approach is that we can then characterise the geometry of the hypersurfaces {t = constant}. 

We make the choice 

e-2>'(r) = 1 - K r2 j R2 

1 - r 2 j R2 
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where K is a constant. The form (2.33) was first utilised by Vaidya and Tikekar (1982) 

in their analysis of compact objects. This has the interesting geometrical interpretation 

that the hypersurfaces described by {t = constant} are 3-spheroids. The quantity K is the 

spheroidal parameter. Substituting (2.33) into (2.23) yields 

1 - K 3 - K r2 j R2 
P = R2 (1- Kr2jR2)2 

On eliminating p from (2.34b) and (2.34c) we obtain 

0= (1- Kr2jR2)(1- r2/R2) (VII + V,2 - ~) -

(2.34a) 

(2.34b) 

(2.34c) 

(2.35) 

which is the condition of pressure isotropy. For K = 0 we obtain the interior Schwarzschild 

solution (Schwarzschild 1916b), and for K = 1 the hypersurfaces {t = constant} are flat. 

The general solution of (2.34), for integral values of K, was discovered by Maharaj and Leach 

(1996). 

The choice of the metric function (2 .33) can also be used to study the behaviour of 

charged stars. In this case we obtain the equations 

(2.36a) 

(2.36b) 
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(2.36c) 

a2 = ~ (1- Kr2/R2) (r2E')2 
r4 1 - r2 / R2 

(2.36d) 

from the Einstein-Maxwell system (2.30). On eliminating p from (2.36b) and (2.36c) we 

obtain 

r (, 1) 1 - K ( 2/ 2) - (1 - K) R2 V + -:;: + R2 1 - K r R (2.37) 

which is the condition of pressure isotropy extended to the electromagnetic field. In this 

thesis we seek solutions for various classes of the systems (2.34) and (2.36). 

2.7 Criteria for physically viable stellar models 

A number of solutions to the Einstein and Einstein-Maxwell equations exist that may be 

utilised to model the exterior spacetime of compact objects in relativistic astrophysics. Any 

new solution applicable to the interior of the body should be matched smoothly to the 

appropriate exterior solution subject to physical criteria. We state two exterior solutions 

used in this thesis. 

The spacetime surrounding a static, spherically symmetric body of mass M is given by 

( 2M) (2M)-1 ds 2 = - 1 - ---:;:- dt2 + 1 - -r- dr2 + r2(de2 + sin2 e dqi) (2.38) 

which is the exterior Schwarzschild line element (Schwarzschild 1916a). The gravitational 

field outside a static, charged spherically symmetric body has the form 

(2.39) 
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for a body of mass M. Here Q is a constant related to the total charge of the sphere. The 

line element (2.39) is the exterior Reissner-Nordstrom solution. When Q = 0, (2.39) reduces 

to the exterior Schwarzschild line element (2.38). 

We can obtain solutions to the Einstein and Einstein-Maxwell systems which may not be 

physically reasonable. We need to isolate those solutions which are physically reasonable, and 

consequently may be utilised to model astrophysical phenomena. To this end we stipulate a 

number of criteria for physical acceptability that have been used in previous investigations. 

We briefly outline a number of conditions which realistic stellar models should satisfy: 

(a) The pressure and energy density should be positive and finite throughout the interior 

of the star: 

(b) The pressure and energy density should be monotonically decreasing functions of r. The 

pressure must vanish at the stellar boundary r = R: 

dp < 0 
dr -

dp < 0 
dr -

p(R) = 0 

( c) The metric functions should be continuous at the boundary r = R. The interior line el­

ements should smoothly match to the exterior Schwarzschild and Reissner-Nordstrom 

solutions for the case of neutral and charged spherically symmetric solutions respec­

tively: 

neutral stars: - e2v(R) = e-2A(R) 
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2M 
=1-­

R 

charged stars: - e2v(R) = e-2'>"(R) 

2M Q2 
=1--+­

R R2 

(d) In the case of charged solutions, the electric field intensity E(r) must be continuous at 

r = R. 

(e) The metric functions, e2'>" and e2v , and the electric field intensity E should be positive 

and non-singular throughout the star's interior. 

(f) The speed of sound must remain subluminal throughout the star's interior. In our units 

this means 

o < dp < l. 
- dp-

This condition is necessary to preserve causality. 

(g) The solution should be stable with respect to radial perturbations. 

Not all models satisfy the above conditions. However these are useful as they provide 

qualitative features which represent many physical stars. Most solutions do not satisfy all 

the conditions (a)-(g). For example it is not clear from observational evidence whether 

dp < 0 and 
dr -

dp < 0 
dr -

throughout the star's interior; many researchers believe that this condition is too stringent 

and is not true for many compact objects. However it is important to compare the physical 

characteristics of individual stellar models with the conditions listed above. A comprehen­

sive analysis of perfect fluid solutions to the Einstein field equations for static spherically 
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symmetric models was compiled by Delgaty and Lake (1998). A proper and complete anal­

ysis of the physical features, including stability with respect to radial perturbations, is not 

trivial and can only be done for exact solutions with simple analytic representations. Such 

analyses in comoving and non-commoving coordinates, for classes of spherically symmetric 

perfect fluid distributions, have been conducted by Knutsen (1984, 1992, 1995, 2000). 
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Chapter 3 

Computational aids and Series 

Solutions 

3.1 Introduction 

In this chapter we establish a sufficient condition for the existence of solutions to the field 

equation for pressure isotropy (2.26c) . Given a general analytic form for the gravitational 

potential Z(x), (2.26c) will possess a series solution, and the Einstein field equations (2.26) 

are thus integrable. The existence of regular and regular singular points is established in 

§3.2. We choose a quadratic form for Z in §3.3 that has the advantage of being continuous 

and non-singular in the stellar interior. To find an exact solution for y(x) we exploited 

the symbolic manipulation capabilities of MATHEMATICA (Wolfram 1991). For various 

parameter values our attempts were unsuccessful at extracting the solutions about regular 

singular points of the equations. MATHEMATICA did however obtain the solution at the 

regular point. This exercise highlights the analytic limitations of computer software, and 

suggests that the algorithm employed has greater difficulty recovering series solutions near 

regular singular points than at regular points of differential equations. (A more thorough 

investigation of this point would be of invaluable service to applied mathematicians and 
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theoretical physicists.) The quadratic solution found reduces to the Tolman VII stellar 

model. In §3.4 we specify a physically well-behaved cubic form for Z, which we believe 

had not been previously examined. We found no documented solutions to the equation in 

standard references (Kamke 1983, Zwillinger 1989), and MATHEMATICA returned a result 

in terms of hypergeometric functions with complex arguments. Since that form was not 

suitable to a physical analysis we attempted to find the series solution directly. This yields 

a third order recurrence relation, which we manage to solve from first principles. It is then 

possible to exhibit a new exact solution to the Einstein field equations. The curvature and 

thermodynamical variables appear to be well-behaved. We also demonstrate the possibility 

of an explicit barotropic equation of state p = p(p). Most exact solutions fail to achieve 

this, and some exponents, e.g. Krasinski (1997), believe that all realistic models in general 

relativity should satisfy such an equation of state. We believe that a detailed physical analysis 

of our solution is likely to lead to a more realistic model for compact objects. 

3.2 An existence theorem 

The Einstein field equations, in the form (2.26), are under-determined. The standard ap­

proach is to specify the gravitational potential Z(x) and attempt to solve (2.26c) for the 

potential y. In principle we can always choose Z(x) such that the system is integrable. We 

establish below, the result that (2.26c) possesses a series solution for every analytic Z(x). 

Consider the general second-order, linear homogenous differential equation 

d2y dy 
ao(x) dx2 + al(x) dx + a2(x)y = 0 

where ao, al and a2 are functions of x. If the limits 

1
. al 
Im-

x-+O ao 

1
. a2 
Im­

x -+O ao 
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are finite, then (3.1) is said to possess a regular point at x = O. By the method of Frobenius, 

equation (3 .1) thus possesses two linearly independent solutions of the form 

00 

about x = O. The differential equation (3.1) may possess regular points at other values of x . 

The existence of these of these points is easily established by appropriately translating the 

independent variable and evaluating the above limits. The equation (3.1) may still admit 

series solutions if the limits (3.2) do not exist. This scenario arises when (3.1) has a regular 

singular point at the origin. A necessary and sufficient condition for this to occur is the 

existence of the finite limits 

1
. (x - O)al 
1m 
x~o ao 

(3.3a) 

(3.3b) 

In this case the form of the series solutions is more complicated (Powers 1987); the crucial 

point being that we are assured of the existence of such solutions when (3.1) possesses regular 

singular points. In practice one determines the coefficients Cn by substituting the solution 

into (3.1), and obtaining a recurrence relation for Cn - the solution of which per se is a 

non-trivial matter, and often presents the greatest obstacle in this approach. 

Let Z(x) be analytic about some neighbourhood of x = O. This is equivalent to Z having 

a power series representation 

(3.4) 

in the interval Ix - 01 < is , where CXi and is are real constants. It is easy to show that 

00 

Z = L iCXiXi-l. 

i=l 
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The quantities ao and a1 follow on comparing (2.26c) and (3.1) since Z and Z are known. 

We now evaluate the limits (3.2) in the hope of establishing a regular point at the origin of 

our coordinate system 

. a1 . 2ZX2 
hm-=hm-­
x-+O ao x-+O 4Z x2 

1
. a2 1· Z x - Z + 1 1m - = 1m -----

x-+o ao x-+o 4Z x 2 

If we let (Yo = 1 we find 

If (Yo #- 1, then 
. Zx - Z + 1 

hm 2 -+ ±oo. 
x-+O 4Zx 

Thus the limits (3.2) are finite if (Yo = 1. 
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We now determine whether x = 0 is a regular singular point of (2.26c), when aD =11, by 

evaluating the limits (3.3): 

1
. (x - 0)a1 1. 2Zx3 
1m = 1m--
x~o aD x~04Zx2 

=0 

1
. (x - 0)2a2 1. X2(ZX - Z + 1) 
1m = 1m --'-----:-----'-
x~o aD x~o 4Zx2 

1
. a2x2 + 2a3x3 + 3a4x4 + ... + 1 - aD = 1m---------------
x~o 4(ao + a1x + a2x2 + ... ) 

The limits (3.3) are thus finite if ao =I o. 

We can now state our result in terms of the following theorem: 

Theorem: The differential equation 

admits two linearly independent series solutions for the choice 

00 

Z = L aixi (aD =I 0). 
i=O 
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The point x = 0 is a regular point of the equation when aD = 1. The point x = 0 is a regular 

singular point when aD =1= 1. 

3.3 The Tolman VII solution 

We choose Z(x) to be the general quadratic function 

Z(x)=c+ax+bx2 

where a, band c are constants. Substituting (3.5) into (2.26c) yields 

(3.5) 

(3.6) 

Clearly (3 .5) satisfies the criteria of the above theorem, provided c =1= O. Therefore (3.6) pos­

sesses a series solution. Having established the existence of a solution, we attempted to solve 

(3.6) analytically, using the computer algebra capabilities of MATHEMATICA (Wolfram 

1991). The relevant input material is 

DSolve[( 1 - c + b X2) y[x] + 2 x2 (a + 2 bx) y'[x] + 4 x2 (c + ax + bx2) y"[x] == 0, y[x], x]. 

As expected no solution was obtained for c = O. Our attempt was unsuccessful for other 

specified values of the parameter c, viz. -1, ±2. MATHEMATICA failed to solve equation 

(3.6) for these cases - which clearly contradicts the result established in §3.2. The existence 

of solutions for these cases is guaranteed by our theorem. We hope that this exercise serves as 

a warning of the limits of the analytic equation solving capabilities of symbolic manipulation 

software. 

We observe that (3.6) simplifies substantially if we assign the particular value to the 

parameter c: 

c=l 

In this special case, (3.6) reduces to 

4(bx2 + ax + l)ii + (4bx + 2a)iJ + by = 0 
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which, again, in term of our earlier theorem, must possess two linearly independent solutions 

of the form 
00 

n=O 

We again used MATHEMATICA (Wolfram 1991) in an attempt to find this solution. In this 

instance our efforts were successful, and we obtained the result which we rewrite as 

~= 
2 (a + 2bx) + 4 V'-1-+-a-x-+--::-bx---=-2 

yfb . 

where B1 and B2 are integration constants. For suitable choices of B1, B 2, a and b we recover 

the Tolman VII interior solution, which has the line element 

ds2 = -B2s1'n2 ln V - R2 + Ji4 + }f2 - 4R2 dt2 + 1- ~ + 4~ d 2 + 
./1 r2 4r4 2r2 1A2 ( 2 4)-1 

C W ~ r 

(3.8) 

as listed by Kramer et al (1980). 

We have demonstrated the advantage of symbolic manipulation software, in this instance 

MATHEMATICA which quickly generated a solution to (3 .7) when c = 1. Our solution 

(3.8) was shown to coincide with a well-known stellar solution, viz. Tolman VII, and the 

use of MATHEMATICA was certainly instrumental in preventing the rediscovery of a pub­

lished result. Due to the proliferation of exact solutions discovered, it becomes increasingly 

difficult for exponents of the field to have knowledge of the vast literature produced. What 

has proven to be quite invaluable is the review by Kramer et al (1980) - a new edition 

of which is anticipated, at the time of writing. In addition, a number of databases of ex­

act solutions to the Einstein field equations have been compiled in recent years, and these 

should prove similarly invaluable to researchers in the field. An excellent example of such 
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a database is the "On-Line Invariant Classification Database" by Jim Skea (1997). These 

resources, in conjunction with computer algebra systems are also useful in determining the 

physical properties of these solutions. One important review on the physical acceptability of 

isolated, static, spherically symmetric, perfect fluid solutions that exemplifies this approach 

was compiled by Delgaty and Lake (1998). 

3.4 A new series solution via the method of Frobenius 

A large number of exact solutions are known for the system of equations (2.26) that model 

a relativistic star with no charge. Many of these are listed by Kramer et al (1980) and 

Krasinski (1997). A comprehensive list of static solutions, that satisfy stringent conditions 

for spherically symmetric perfect fluids, was compiled by Delgaty and Lake (1998). In an 

attempt to obtain a new solution to the system (2.26) we make the choice 

Z = ax3 + 1 (3.9) 

where a is a constant. As far as we are aware the solution of the Einstein equations (2.26), 

with the gravitational potential Z given in (3.9), has not been previously published. The 

cubic form of (3.9) is consistent with our analysis for series solutions in §3.2. We suspect 

that the cubic form (3.9) has not been considered before because the resulting differential 

equation in the dependent variable y is difficult to solve; quadratic forms for Z are listed by 

Delgaty and Lake (1998). The quadratic form of Z is simpler to handle and contains the 

familiar Tolman models. The choice (3.9) ensures that the potential Z is continuous and 

well-behaved in the interior of the star; Z has a finite value at the centre. 

Substituting (3.9) into (2.26c) yields 

2(ax3 + l)jj + 3ax2y + axy = O. (3.10) 

The linear second order differential equation (3.10) is difficult to solve when a =1= O. We 

have not found a solution for a =1= 0 in standard references such as Kamke (1983). Software 
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packages are sometimes helpful in solving linear equations. We utilised MATHEMATICA 

(Wolfram 1991) in an attempt to integrate (3.10). The relevant input material is 

DSolve[2(ax3 + l)yl/[x] + 3ax2y'[x] + axy[x] == 0, y[x], x]. 

This produced the output 

1 i (;; 1 i (;; 2 ( 3) 
{{y(x) -+ C(l) Hypergeometric2F1(12 - 12 v7, 12 + 12 v7, 3' - ax ) 

5 i 5 i 4 
+x C(2) Hypergeometric2F1( 12 - 12 V7, 12 + 12 V7, 3' - (a X3)))}. 

This form of solution is not particularly useful as it is given in terms of ahypergeometric 

function with complex arguments. We require a real solution to describe a realistic star with 

a barotropic matter distribution. Consequently it is necessary to utilise other methods of 

solution for (3.10). 

We attempt to find a series solution to (3.10) using the method of Frobenius. As the 

point x = 0 is a regular point of (3 .10), there exists two linearly independent solutions of 

the form of a power series with center x = O. We therefore can write 

00 

y(x) = L cnxn (3.11) 
n=O 

where the Cn are the coefficients of the series. For a legitimate solution we need to determine 

the coefficients en explicitly. Substituting (3.11) into (3.10) yields 

00 00 00 

2(ax3 + 1) L n(n - 1)cnxn- 2 + 3ax2 L ncnxn- 1 + ax L cnxn = O. 
n=2 n=l n=O 

This equation is equivalent to 

00 00 

a L {2n2 + n + 1 }cnxn+l + 2 L n(n - 1)cnxn- 2 = O. 
n=2 n=5 
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The second series in the above equation can be written as 
00 

2 I: (n + 3)(n + 2)Cn+3 Xn+l 
n=2 

on replacing the dummy variable. Finally we obtain the simplified equation 

00 

I: {a[2n2 + n + l]en + 2(n + 3)(n + 2)Cn+3} X
n
+l = O. 

n=2 

For this equation to hold true for all x we require 

(3.12a) 

12c3 + aco = 0 (3.12b) 

(3.12c) 

a[2n2 + n + l]cn + 2(n + 3)(n + 2)Cn+3 = 0, n ~ 2. (3 .12d) 

It remains to obtain the coefficients Cn from the system (3.12). 

Equation (3.12d) is a difference equation, or recurrence relation, which has to be solved. 

This particular equation is a linear recurrence relation with variable, rational coefficients of 

order three. General techniques of solution for difference equations are limited to the simplest 

cases (Durrell and Robson 1958). The equation (3.12d) does not fall into the known classes. 

We were, however, able to obtain a solution to (3.12d) from first principles. 

Rewriting (3.12d) as 
a 2n2 + n + 1 

Cn+3 = -"2 (n + 3) (n + 2) Cn , n ~ 2 (3.13) 

we obtain the following results. Equations (3.12a) and (3.13) imply 

C2 = C5 = Cs = ... = o. (3.14) 

35 



From (3.12b) and (3.13) we generate the expressions 

a 
C3 = --co 

12 

a 1 
= ---co 

2 3.2 

a 2.32 + 3 + 1 
C6 = -- C3 

2 6.5 

a2 2.32 + 3 + 1 1 
-co 

22 6.5 3.2 

a2 2.32 + 3 + 1 1 
-co 

22 6.3 5.2 

a 2.62 + 6 + 1 
Cg=-- C6 

2 9.8 

a3 2.62 + 6 + 1 2.32 + 3 + 1 1 
23 9.8 6.5 3.2 

a3 2.62 + 6 + 1 2.32 + 3 + 1 
3 co · 2 9.6.3 8.5.2 

Co 

It is clear that the coefficients C3 , C6, Cg, ... can all be written in terms of the coefficient co· 

These coefficients generate the following pattern 

(
a)n+l 

c3n+3 = (-It+
1 "2 x 

[2(3n)2 + 3n + 1] · ·· [2(3 .1)2 + 3.1 + 1][2(3.0)2 + 3.0 + 1] 
{(3n + 3)··· (3.1 + 3)(3.0 + 1)}{(3n + 2) ·· · (3 .1 + 2)(3.0 + 2)} Co· (3.15) 

We can rewrite (3.15) in the form 

(3.16) 
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where we have utilised the conventional symbol IT to denote multiplication. 

We can obtain a similar formula for the coefficients C4, C7 , CIO,' .. From (3.12c) and (3.13) 

we have 

a2.12 +1+1 
-- CI 

2 4.3 

a 2.42 + 4 + 1 
C7 = -- C4 

2 7.6 

a2 2.42 + 4 + 12.12 + 1 + 1 
22 7.6 4.3 CI 

a2 2.42 + 4 + 12.12 + 1 + 1 
22 7.4 6.3 CI 

a 2.72 + 7 + 1 
CIO = -- C7 

2 10.9 

a3 2.72 + 7 + 1 2.42 + 4 + 12.12 + 1 + 1 
23 10.9 7.6 4.3 CI 

a3 2.72 + 7 + 1 2.42 + 4 + 1 2.12 + 1 + 1 

9 
~. 

23 10.7.4 .6.3 1 

The coefficients C4, C7, CIO, ... can all be written in terms of the coefficient CI' These coeffi­

cients generate a pattern which is clearly of the form 

C3nH = (-It+l (~)n+l [2(3 .0 + 1)2 + (3.0 + 1) + 1][2(3.1 + 1)2 + (3.1 + 1) + IJ x 
2 {(3n + 4) ... (3.1 + 4)(3.0 + 4)} 

[2(3.2)2 + (3.2 + 2) + 1J . . . [2(3n + 1)2 + (3n + 1) + 1] 
{(3n + 3) · ·· (3.1 + 3)(3.0 + 3)} CI 

(3.17) 
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As for (3.15), we note that (3.17) can be expressed in the form 

_ (_ )n+l (~)n+l TIn 2(3k + I? + (3k + 1) + 1 C 

C3n+4 - 1 2 k=O (3k + 4)(3k + 3) 1 
(3.18) 

where, again IT denotes multiplication. 

From (3.14) we observe that the coefficients C2, C5, Ca, . .. all vanish. The coefficients 

C3, C6, Cg, ... are generated from (3.16). The coefficients C4, C7, ClO,··· are generated from 

(3.18). Hence the difference equation (3.12d) has been solved and all non-zero coefficients 

are expressible in terms of the leading coefficients Co and Cl. From (3.11), (3.14), (3.16) and 

(3.18) we establish 

a3 2.62 + 6 + 1 2.32 + 3 + 1 9 ) 

23 9.6.3 8.5.2 x + ... + 

C (x_~2.12+1+1x4 a2 2.42 +4+12.12+1+1 7 _ 

1 2 4.3 + 22 7.4 6.3 x 

a3 2.72 + 7 + 12.42 + 4 + 1 2.12 + 1 + 1 10 ) 

23 10.9 7.6 4.3 x + .. . 

= Co (1 + E C3n+3
x3n

+
3

) + Cl (x + E C3n+4
x3n

+4) (3.19) 

where Co and Cl are arbitrary constants. Equation (3.19) can be rewritten as 

y(x) = Co (1 + f( -It+l (~)n+l IT 2(3k)2 + 3k + 1 X 3n+3) + 
n=O 2 k=O (3k + 3) (3k + 2) 

Cl (x + f( -It+1 (~)n+l IT 2(3k + I? + (3k + 1) + 1 x3n+4) (3.20) 
n=O 2 k=O (3k + 4)(3k + 3) 
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where we have utilised (3.16) and (3.18). Clearly (3.20) is of the form 

(3.21) 

where 

( 

00 (a)n+l n 2(3k)2 + 3k + 1 ) 
Yl(X)= 1+];(-lt +

1 
2" [IO(3k+3)(3k+2)X

3n
+

3 (3.22a) 

( ) = ( ~ (_ t+1 (~)n+l rrn 2(3k + 1)2 + (3k + 1) + 1 3n+4) 
Y2 X X + f:o 1 2 k=O (3k + 4)(3k + 3) x 

(3.22b) 

are linearly independent solutions of (3.10). Therefore we have found the general solution to 

the differential equation (3.10) for the particular gravitational potential Z given in (3.9). The 

advantage of the solutions in (3.20) - (3.22) is that they are expressed in terms of a series 

with real arguments unlike the complex arguments given by MATHEMATICA (Wolfram 

1991). 

From (3.21) and the Einstein field equations (2.26) we generate the solution 

2>' 1 e =---
ax3 + 1 

!!... = -7ax2 
C 

(3 .23a) 

(3.23b) 

(3.23c) 

(3.23d) 

where A and C are constants. The quantity Y is given by (3.22) and a is a constant. Note that 

in order to obtain non-negative energy densities p we require a < O. The matter variables 

p and p are both bounded and continuous. The gravitational potentials ZJ and ), are well­

behaved and have simple forms. Our solution has the interesting feature of admitting an 
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explicit barotropic equation of state. We observe from (3.23c) that 

x = J _ :aC' a < 0 

and the variable x can be written in terms of p only. The function y in (3.22) can be expressed 

in terms of p and the variable x is eliminated. Consequently the pressure p in (3.23d) is 

expressible in terms of p only, and we can write 

p = p(p). 

Thus the solution in (3.23) obeys a barotropic equation of state. This highly desirable feature 

is unusual for most exact solutions as pointed out by Kramer et al (1980). This feature of 

the solution leads us to believe that it will lead to a realistic model of neutral stars. We 

point out that graphical plots of v, A, p and p are easy to generate using computer software 

packages even though the solution is given in terms of an infinite series. The approach used 

in this chapter can also be extended to the problem of charged stars, for relevant choices of 

the electric field intensity E, and such an area of investigation should be pursued in future. 
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Chapter 4 

A generalisation of Maharaj and 

Mkhwanazi 

4.1 Introduction 

In this chapter we attempt to obtain new exact astrophysical solutions to the Einstein­

Maxwell system (2.32). We adopt the approach of specifying the gravitational potential Z 

and the electric field intensity E, in order to integrate (2.32c) . In §4.2 we choose a form 

of Z used by Maharaj and Mkhwanazi (1996). This choice includes the case of Durgapal 

and Bannerji (1983) that produces physically reasonable models for neutral matter which 

are consistent with neutron star observations. Upon transforming our equation, and making 

a physically reasonable choice for E, we obtain a hypergeometric equation. Our prescribed 

form of E appears to approximate an inverse square law, when viewed by an observer from in­

finity. In §4.3 we list some crucial features of the hypergeometric equation and its eponymous 

special function solution. These solutions can, in certain cases, reduce to more familiar ele­

mentary functions which greatly simplifies the analysis of their physical properties . Software 

packages, e.g. MATHEMATICA (Wolfram 1991), are particularly adept at demonstrating 

the equivalence, when they exist, between elementary functions and special cases of the hy-
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pergeometric function. In §4.4 we present two examples of known neutral exact solutions, 

which were originally given in terms of elementary functions; we demonstrate that they can 

also be written in terms of hypergeometric functions. In §4.5 we obtain two members of a 

new class of solutions to (2.32c), which we express in terms of both hypergeometric functions 

and elementary functions. We demonstrate that, in the limit of vanishing electric fields, the 

first example incorporates the solution of Maharaj and Mkhwanazi (1996) . The matter and 

curvature variables are well behaved for the electrostatic generalisation; we believe that our 

solution forms a realistic model for charged stars. As a second example we find a charged 

generalisation of the Durgapal-Bannerji solution (1983). However the energy density p is 

negative, and violates the strong and weak energy conditions (Hawking and Ellis 1973) for 

barotropic matter. The approach outlined in this chapter may be used to obtain charged 

analogues of other static solutions. The hypergeometric function provides a vehicle to clas­

sify and categorise exact solutions obtained under different assumptions. Whilst we were 

able to unify a large class of neutral and charged static solutions under the hypergeometric 

equation, we should point out that were unable to recover some well-known models which 

are physically reasonable; a prime example being the solution of Finch and Skea (1989). 

The change of variables used in our treatment prohibits the limit required to obtain this 

particular solution, and thus excludes it from our transformed solution space. 

4.2 Specifying Z and E 

We examine a particular form of the Einstein-Maxwell field equations by making explicit 

choices for the gravitational potential Z(x) and the electric field intensity E(x). The system 

(2.32) comprises four equations in six unknowns, Z, y, p,p, E and CJ. By specifying the 

gravitational potential Z(x) and the electric field intensity E(x), we are in a position to 

integrate (2.32c). The solution of the system then follows. We make the particular choice 

Z(x) = 1 + kx 
l+x 
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where k is a real constant. In (4.1) we take k =I 1. If k = 1 then the metric function e2
)" = 1 

and the energy density is 
E2 

p=--2 . 

To avoid negative energy densities, which are unphysical for barotropic stars, we conse­

quently take k =I 1. The choice (4.1) was also made by Maharaj and Mkhwanazi (1996) and 

Mkhwanazi (1994) in their analyses of uncharged relativistic stars. Our objective is to con­

firm that this type of potential is also consistent with non-vanishing electromagnetic fields. 

Note that the choice (4.1) contains, as a special case, the Durgapal and Bannerji (1983) 

solution - which is widely utilised as a realistic model for neutron stars. Other physically 

reasonable choices of the gravitational potential Z are possible; we have chosen the form 

(4.1) as it produces a charged solution that necessarily reduces to a well-known model in the 

appropriate uncharged limit. 

Upon substituting (4.1) into (2.32c) we obtain 

4(1 + kx)(1 + xlii + 2(k - 111i + (1 _ k _ E'(~: x)') y = 0 

When E = 0, (4.2) reduces to 

4(1 + kx)(l + x)jj + 2(k - 1)1' + (1 - k) y = 0 

(4.2) 

for uncharged stars. It is convenient at this point to introduce a new independent variable 

X. This helps to simplify the second order equation (4.2). The relevant transformation is 

given by 

1 +x = KX 

k-1 
K=-­

k 

Y(X) = y(x). 
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With the help of the transformation (4.3), equation (4.2) can be written as 

d2y 1 dY (K K2(1 - K)E2X 2) 
X(l - X) dX2 - "2 dX + 4 + C(K X-I) Y = 0 (4.4) 

in terms of the new dependent and independent variables, Y and X respectively. Clearly 

(4.4) is integrable once E is specified. A variety of choices for E is possible: only a few are 

physically reasonable and generate solutions in closed form. 

We observe that (4.4) is simplified if we make the choice 

E2 = ~ C KX -1 
4 K2(1- K) X2 

(4.5) 

where a is a constant. The electric field intensity E in (4.5) vanishes at the centre of the 

star, and remains continuous 3:nd bounded in the interior of the star for a wide range of 
'\ 

values of the parameter K. Thus this choice for E is physically reasonable and is a useful 

form to study the gravitational behaviour of charged stars. Equation (4.4) now assumes the 

simpler form 
, d2y 1 dY (K a) 
X(l - X) dX2 - "2 dX + 4 + 4" Y = 0 (4.6) 

for the choice (4.5). When a = 0, (4.6) becomes 

d2y 1 dY K 
X(l- X) dX2 - "2 dX + 4 Y = 0 (4.7) 

and there is no charge. Equation (4.7) was investigated in detail by Maharaj and Mkhwanazi 

(1996) and Mkhwanazi (1994). Their analyses of (4.7) produced physically viable models 

of uncharged relativistic stars; we expect that our investigation of (4.7) will produce useful 

models of charged relativistic stars. Note that equations (4.6) and (4.7) are special cases of 

the hypergeometric differential equation. 

4.3 The hypergeometric equation 

The general hypergeometric differential equation is given by 

d2y dY 
X(l ,- X) dX2 - [(a + b + l)X - c] dX - abY = 0 (4.8) 
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where a, band c are real constants (Abramowitz and Stegun 1972). The solutions to (4.8) 

are given in terms of the hypergeometric function F(a, b; c; X) and are categorised by the 

three regular singular points 

X = 0,1,00 

of the equation (4.8). The general theory of differential equations distinguishes between the 

following six cases 

(i) None of the numbers c, c - a - b, a - b is an integer. 

(ii) One of the numbers a, b, c - a, c - b is an integer. 

(iii) c - a - b is an integer, but c is not an integer. 

(iv) c = 1. 

(v) c = m + 1, where m is a natural number. 

(vi) c = 1 - m, where m is a natural number. 

The general properties of the solutions for each of the six cases given above are discussed by 

Abramowitz and Stegun (1972). We can relate (4.6) and (4.8) by setting 

a = -(b + 1) 

1 
c= --

2 

We note that the solution will be real provided -1 ~ K + a, which is equivalent to 

(2 + a)k ~ 1, or 

(2 + a)k ~ 1. 
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Real solutions of (4.8) exist for a wide range of values for a and K. 

The first solution of (4.8) is given as a hypergeometric series 

ab 
Y1 = 1 + -X + 

c 

a(a + l)b(b + 1) X 2 a(a + 1)(a + 2)b(b + 1)(b + 2) X3 
---'-----'---'--:~--'--- + + . . . 

c(c+l) 2! c(c+l)(c+2) 3! 

= F(a, b; c; X) 

The second solution is given by 

l-C[ (a-c+l)(b-c+l)X 
Y2 = X 1 + ( -c + 2) + 

+ (a - c + 1) (a - c + 2) (b - c + 1) (b - c + 2) X 2 + ... J 
( -c + 2)( -c + 3) 2! 

= X1-CF(a - c + 1, b - c + 1; 2 - c; X). 

(4.9) 

(4.10) 

The hypergeometric series solutions (4.9) and (4.10) have been obtained from the treatment 

of Kreyzig (1972). The general solution to (4.8) is given by the sum 

Y = c1F(a, b; c; X) + C2X1-C F(a - c + 1, b - c + 1; 2 - c; X) (4.11) 

where Cl and C2 are constants. 

As (4.6) is a special case of (4.8), its solutions will necessarily be of the form (4.11) 

in general. Thus we have determined that gravitational potentials Z of the form (4.1) 

produce Einstein-Maxwell stars whose gravitational behaviour is governed by hypergeometric 

functions. 
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4.4 Previous cases regained 

A variety of new solutions, in terms of elementary and special functions, are obtainable from 

(4 .11) for particular values of a and b (or equivalently a and K ) with c = -~ . Some values 

of K may reduce (4.6) to solutions that have already been documented. Here we consider 

two such cases of known solutions obtainable from our general class. These correspond to 

neutral stars with no electromagnetic field (a = 0). As a first example we take a = 0 and 

K = -1 (¢:} k = ~). Then (4.6) becomes 

d2y 1 dY 1 
X(l - X) dX2 - 2 dX - 4Y = o. 

This differential equation admits the two, linearly independent solutions 

Y;l = F (-~ -~. -~. X) 
2' 2' 2' , 

y; = X 3
/

2 F (1 1·~ · X) 2 , ' 2 ' 

which are hypergeometric functions. It is possible to express these solutions in terms of 

elementary functions 

in terms of the variables y and x, used earlier. This solution was also found previously by 

Maharaj and Mkhwanazi (1996). 

As a second example we take a = 0 and K = 3 (¢:} k = -~) so 

d2y 1 dY 3 
X(l - X) dX2 - 2 dX + 4Y = o. 

This equation has the two linearly independent solutions 

Y;l = F (~ -~. -~. X) 
2' 2' 2' 
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y; - X3
/
2p (2 O'~' X) 2 - , '2' . 

These hypergeometric functions are equivalent to the elementary functions 

in terms of the variables y and x . This solution was also found by Maharaj and Mkhwanazi 

(1996) and contains the neutron star model of Durgapal and Bannerji (1983). For complete­

ness we list the solution of the Einstein system (2.26) in this case: 

p 3(3 + Cr2) 
C 2(1 + Cr2 )2 

P 9Cl (1 + Cr2)1/2(1 - Cr2) - c2(2 - Cr2)1/2(10Cr2 + 13) 
C - 2Cl (1 + Cr2)5/2 + 2C2(2 - Cr2)1/2(1 + Cr2)(2Cr2 + 5) 

2,\ 2(1 + Cr2) 
e = 2 _ Cr2 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 

where Cl and C2 are constants. The solution (4.12) is widely used to describe dense stars 

(Delgaty and Lake 1998) . 

Note that in the above examples we have verified the equivalence between the hyper­

geometric functions and the elementary functions with MATHEMATICA (Wolfram 1991). 

Clearly it is possible to generate other examples where the hypergeometric function can be 

written in terms of elementary functions . We have restricted ourselves to examples that 

are simple and have physical significance. Our analysis in this section may be extended to 

other known solutions of the Einstein system (2.26). This approach provides a mechanism to 
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collate and categorise different solutions in terms of the hypergeometric function in a simple 

fashion. This indicates that it is possible to bring together seemingly disparate solutions in 

a unified treatment. 

4.5 New charged solutions 

The particular solutions presented in §4.4 correspond to the system of equations (2 .26) for a 

neutral relativistic star. It is possible, upon integrating the hypergeometric equation (4.6), to 

generate new solutions to the system (2.32) corresponding to a charged star. In this section 

we present simple solutions where the hypergeometric functions can be written in terms of 

elementary functions. We have chosen our parameter values so that we obtain the same 

hypergeometric equations as in §4.4. However these correspond to the Einstein-Maxwell 

system (2.32) and will generate different exact solutions as we will demonstrate. 

We choose the particular parameter values 

a=l. 

Then (4.6) becomes 
d2y 1 dY 1 

X(l- X) dX2 - 2: dX - 4Y = O. ( 4.13) 

The general solution to equation (4.13) is given by 

( 1 1 1) - 3/2 ( 5 ) Y = clF - - - -' - -' X + C2X F 1 l' -' X 
2' 2' 2' , '2' (4.14) 

where F( -~, -~; -~; X) and X-3/2 F(l, 1; ~; X) are linearly independent hypergeometric 

functions, and Cl and C2 are constants. In terms of the variables x and y, we can rewrite the 

solution as 

(4.15) 
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The equivalence between the hypergeometric functions in (4.14) and the elementary functions 

in (4.15) has been verified with MATHEMATICA (Wolfram 1991) . 

It is now possible to generate an exact solution to the Einstein-Maxwell system (2.32). 

This is given by 

e2'\ _ 1 + x (4.16a) 
- 1 + ~x 

p 28 + 15x 
C 24(1 + X)2 

(4.16c) 

p -(15x + 16) 1 
-= + x 
C 24(1 + X)2 2V2+X 

( 4.16d) 

E2 1 x 
-
C 12 (1 + X)2 

(4.16e) 

a2 C(3 + X)3 

C 36(1 + X)5· 
(4.16f) 

The form (4.16) is a new exact solution to the Einstein-Maxwell system of equations (2.32). 

The gravitational potentials 1/ and A are well-behaved and continuous in the interior of the 

star. This is also true for the energy density p, the pressure p, the electric field intensity E 

and the charge density a. These quantities remain finite and non-singular. The simple form 

of this solution makes a detailed analysis of the physical features of the model feasible. 

As a second example we choose the parameter values 
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Then (4.6) assumes the form 

5 
a-­- 2' 

d2y 1 dY 3 
X(l - X)- - -- + -Y = O. 

dX2 2 dX 4 
( 4.17) 

This equation possesses a general solution in terms of the two linearly independent hyper­

geometric functions 

( 1 3 1) 3/2 ( 5 ) Y = Cl F - - - ' - -' X + C2X F 2 O' -' X . 
2' 2' 2 ' , '2' (4.18) 

As with the previous example, these special functions can be written in terms of elementary 

functions. Using MATHEMATICA (Wolfram 1991) we were able to express the solution 

(4.18) as 

in terms of the variables y and x. 

The solution to the Einstein-Maxwell system (2 .32) is given by 

2,A 1 + x e =--
1 + 2x 

p 

C (1 + x)2 

p 5x 1 
-= +--+ 
C 8(1 + x)2 1 + x 

(1 + X)[-2Cl( -2 + x )(5 + 2x ) + 2c2(1 + x))2 + x - X2] 

51 

( 4.19) 

(4.20a) 

(4.20c) 
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E2 5 x 

C 4 (1 + X)2 
(4.20e) 

a2 5C(3 + x)2(1 + 2x) 
C 4(1+x)5 

( 4.20f) 

The form (4.20) is a new exact solution to the Einstein-Maxwell system (2.32). The quantities 

). v p E and a are well-behaved and non-singular in the interior of the star. In particular , , , , 
the quantities associated with the electromagnetic field viz. E and a are bounded and 

have a simple, attractive form suggestive of classical results. However the energy density pis 

negative. Consequently this solution is not very useful for matter that has to satisfy the weak 

and strong energy conditions (Hawking and Ellis 1973). Even though the model admits this 

undesirable feature, the solution (4.20) may be utilised as a toy model to obtain qualitative 

features that may be useful to describe more realistic matter. In addition the solution may 

be used to describe quark stars and models that admit unconventional matter (Sharma et al 

2001, Witten 1984). Note that negative values for p arise because of the particular choices 

of Z in (4.1) and E in (4.5). We need to consider other forms of Z and E such that p is 

positive. This example illustrates the difficulty of finding Einstein-Maxwell solutions that 

satisfy all the conditions for physical acceptability listed in §2.7. 

The exact solutions (4.16) and (4.20) are new solutions to the Einstein-Maxwell system 

(2.32). As in §4.4 these solutions arise as special cases of the hypergeometric function which 

reduce to simple functions. The advantage of these solutions is that they are given in terms 

of elementary functions which greatly simplifies the analysis of the physical properties of the 

model. We do not pursue the physical analysis as it is outside the scope of this thesis. We 

expect that the charged solution (4.16) is well-behaved and satisfies the criteria for physical 

acceptability given in §2.7. The charged solution (4.20) has to be adapted to admit positive 

energy densities. These are areas for future investigation. We expect that other published 

charged solutions of the Einstein-Maxwell system are special cases of the hypergeometric 
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equation. It may be a worthwhile exercise to identify these cases and unify such solutions 

under the hypergeometric function. This will help in preventing the duplication of solutions, 

and will assist in indicating under which conditions new solutions may exist. 
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Chapter 5 

Spheroidal Geometry 

5.1 Introduction 

We now consider stellar problems exhibiting spheroidal geometry. The choice of the gravita­

tional function (2 .33), due to Vaidya and Tikekar (1982) and Tikekar (1990), implies that the 

hypersurfaces characterised by {t = constant } are 3-spheroids. The results of Tikekar were 

incorporated in more general models of superdense stars subsequently proposed by Maharaj 

and Leach (1996) and Mukherjee et al (1997). Spheroidal geometries exhibit the impor­

tant physical feature of being stable with respect to radial pulsations (Knutsen 1988) which 

suggests that spheroidal models describe realistic stars. Indeed the model of Tikekar was 

found to be physically viable and applicable to the latter stages of stellar evolution. Charged, 

static objects in the context of spheroidal geometry have been studied extensively (Patel and 

Koppar 1987, Patel et al 1997, Tikekar and Singh 1998 and Sharma et al 2001). In §5.2 we 

investigate charged, spheroidal bodies by utilising a transformation that linearises (2.37), the 

governing differential equation. We specify a form for the electric field intensity E, depen­

dent on an arbitrary function f. For certain choices of f, (2.37) possesses solutions in terms 

of Legendre and gamma functions . It is possible to transform (2.37) to a form resembling 

the equation of simple harmonic motion. The advantage of this form of the equation is that 
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its solutions are well-documented for a wide range of f . We demonstrate a simple case of 

such a solution. In §5.3 we briefly consider the phenomenon of anisotropy in stellar models. 

Deviations from pressure isotropy are believed to be an important feature in stellar models 

at very high densities . A detailed microscopic formulation of the origin of these anisotropies 

has yet to be discovered (Dev and Gleiser 2000). The presence of anisotropy does influence 

the critical mass for stability and affects values for the surface redshift. In §5.3 we utilise the 

linearising transformation of §5.2 on a modified form of the Einstein field equations. The 

resulting equation depends on an arbitrary function f - proportional to the anisotropy fac­

tor. We make a simple choice for f and obtain an exact solution. We conclude this chapter 

with an observation that, due to the mathematical similarities between the governing field 

equation, the techniques used in §5.2 are equally applicable in §5.3. 

5.2 Charged, isotropic Tikekar stars 

We utilise a form for the metric function ). which was first used by Vaidya and Tikekar 

(1982) and Tikekar (1990). This form of ). ensures that the hypersurfaces generated by 

{t = constant} are spheroidal. Upon specifying the four-potential (2.20) and the metric 

function (2.33), the Einstein-Maxwell field equations for a charged, perfect fluid in a static, 

spherically symmetric spacetime reduce to (2.36). In addition, note that the condition of 

pressure isotropy (2.37) must hold for isotropic relativistic stars. We invoke the change of 

variables 

(5.1a) 

(5.1b) 

The transformation (5.1) enables us to write (2.37) as 

(1- K + Kx
2

) ~x~ - Kx ~'!: + C1
- K;, ~X?R'E' + K(K - 1») 1/J = 0 (5.2) 
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which is linear in 'ljJ. It is convenient at this stage to introduce the change of independent 

variable 

u 2 = K x2 (5.3) 
K-1 

in the hope of simplifying (5.2). The variable (5.3) was also utilised by Patel (1999) in 

a comprehensive analysis of relativistic stars in a variety of higher dimensional theories of 

gravity. Equation (5.2) becomes 

2 d2'ljJ d'ljJ ((K - 1)2 R2(u2 - 1)2E2 )_ 
(u - 1) du2 - u du + (K _ 1)u2 _ K + K - 1 'ljJ - 0 

in terms of the new variable (5 .3) . We write the electric field intensity as 

2 _ (K - 1)u2 
- K 

E - (K -1)2(u2 _ 1)2R2 f (u) 

where f(u) is an arbitrary function. Equation (5.4) can now be written as 

(u2 -1)~:~ - u~~ + {f(u) + K -1}'ljJ = 0 

which is clearly simpler than (5.2). 

(5.4) 

(5 .5) 

For specific choices ofthe function f( u), equation (5.5) admits solutions in terms of special 

functions. These special functions are products of Legendre and gamma functions and are 

listed by Abramowitz and Stegun (1972 , p 781). It is also possible to further transform 

(5 .5) in the hope of obtaining elementary function solutions. This has the advantage of 

simplifying a detailed physical analysis. We observe that (5.5) can be transformed into a 

form reminiscent of the harmonic oscillator equation, ij + ](t)q = 0 by the transformation 

w(?3) = 'ljJ(u) (5.6a) 

{) r exp (~i' 2 U dU) dr. iuo ii'o u - 1 
(5.6b) 

We explicitly determine the relation between the old independent variable u and the new 

one {) by evaluating (5.6b): 

/.

u (11i' 2u ) {) = exp -2 _ 2 du dr 
Uo TO U - 1 

56 



= ~ v U 2 - 1 - ~ In (u + V U 2 - 1) + C 
2 2 

where C is a constant. Utilising (5.6) we transform (5.5) into 

d2w 
d<82 - [J(u(<8)) + K - l]w = 0 

(5 .7) 

(5.8) 

where f is now a function of the new independent variable <8. The new variable <8 is related 

to u by equation (5.7) . A cursory glance at any of the standard reference texts on differen­

tial equations (Zwillinger 1989, Abramowitz and Stegun 1972) reveals that (5.8) admits a 

plethora of solutions for various choices of f. We demonstrate one such simple choice. If we 

let 

f(u(<8)) = _n2 + 1 - K 

then (5.8) reduces to the simple harmonic oscillator equation 

d2w 
d<8 2 + n2

w = 0 

which possesses the general solution 

w(<8) = A cos (n<8) + Bsin(n<8) 

where A and B are constants. The equation (5.7) relates <8 and u. Note that we have 

made our problem more tractable, at the expense of working in a less familiar coordinate 

system. It is often difficult, or impossible, to invert such transformations, and the advantage 

of increased integrability of the Einstein system has to be measured against this prospect. 

Also the Einstein field equations are non-linear, and each invoked transformation restricts its 

solution space in a non-trivial manner. This too is an important point for consideration when 

seeking exact solutions to the equations of general relativity. We expect that other choices of 

f (u( <8)) may lead to interesting classes of solutions. We do not pursue this investigation here; 

our objective was to indicate that the condition of pressure isotropy (5.2) can be transformed 

to the simple harmonic form (5.8) which may lead to solutions of a simple form. This is 

clearly an area for further investigation. 
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5.3 Anisotropic Tikekar stars 

We now briefly comment on extending the results of §5.2 to anisotropic stars which are 

uncharged, and possess the spheroidal geometry. As the pressure is anisotropic it is necessary 

to adapt the system (2.34). The Einstein field equations (2.13a) with anisotropic pressures 

become 

1 - K 3 - K r2 j R2 
P = R2 (1- Kr2jR2)2 

(5 .9a) 

(5.9b) 

(5.9c) 

where Pr is the radial component of the pressure, and P-.l is the tangential component. Stars 

with anisotropic pressure distributions (Herrera and Ponce de Leon 1985) are characterised 

by a non-zero anisotropy factor 6, which implies 

6 - P-.l- Pr 

of O. 

Spherical symmetry forces all the pressure components to be strictly functions of the radial 

coordinate r. 

The investigations of Ruderman (1972) and Canuto (1974) indicate that stellar models 

may be anisotropic over certain density ranges. Anisotropy in the pressure could be intro­

duced by the existence of a solid core, presence of superfluidity or other physical processes 

(Glendenning 1997, Heiselberg and Jensen 2000) in the core regions which are not as yet 

completely understood. Bowers and Liang (1974) and Maharaj and Maartens (1989) have 

found particular anisotropic models that exhibit higher surface redshifts, that are consistent 
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with observation, than those predicted by isotropic models. Gokhroo and Mehra (1994) point 

out the following interesting physical consequence of anisotropy. Pressure anisotropy leads 

to an extra term, proportional to (P.l - Pr) / r in the conservation equation (2.14). This term 

represents a force due to the anisotropic nature of the fluid; and is directed outwards when 

Pr < P.l and inwards when Pr > P.l· The former case implies the possibility of more compact 

stellar objects when considering anisotropic fluids as the extra force acts in opposition to 

gravitational collapse. 

Taking the difference between (5.9b) and (5.9c) yields 

(1- Kr'/R')'(p, - p~) = (I - Kr'/R') (I - r'/R') (v" + v" - ~) -

(5.10) 

Note the similarity between equations (2.37) and (5.10). Under the change of coordinates 

(5.1), equation (5.10) becomes 

(1 - K + KX2)2 d2 d 
1 _ x2 R2(Pr - P.l)1jJ ~ (1 - K + Kx2) dx2 1jJ - Kx dx 1jJ + K(K - 1)1jJ. (5.11) 

Without loss of generality we define the difference in radial and tangential pressures to be 

(1 - x)2 1 
Pr - P.l = 1 _ K + K x2 R2 f (x) (5.12) 

where we introduced the function f(x). Equation (5.11) can now be written as 

2 d21jJ d1jJ 
(1 - K + Kx ) dx2 - Kx dx + [K(K - 1) - f(x)]1jJ = 0 (5.13) 

which simplifies for various choices of f(x). Observe that (5.13) can be transformed to a 

form similar to (5.5) using the transformation (5.3). Consequently the results of §5.2 can be 

easily adapted to this section. As the results obtained are very similar we do not list them. 

In particular it is possible to regain the equivalent of the simple harmonic equation (5.8). 

We exhibit a simple solution to (5.13) in terms of elementary functions. For the choice 

f(x) = K(K - 1) 
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the field equation (5.13) simplifies to 

2 d2'ljJ d'ljJ 
(l-K+Kx)--Kx-=O 

dx2 dx 
(5.14) 

Equation (5.14) is separable and can be integrated in closed form. It has the general solution 

1 J 1 - K 1 - K ( J 1 - K) 
'ljJ = 2C x

2 + K + 2C K In x + x
2 + K + C' (5.15) 

where C and C' are constants of integration. The gravitational potential v now follows from 

(5.1b) and (5.15). The radial pressure Pr and the tangential pressure Pl. are derivable from 

(5.9b) and (5.9c) respectively. The Einstein system (5.9) has been solved as the remaining 

thermodynamic and gravitational functions are expressible in terms of 'ljJ. 

Other choices of f(x) in (5.13) are possible. We do not pursue this possibility because it 

is outside the scope of our investigations. Our objective was to indicate that it is possible 

to generate solutions to the Einstein field equations for anisotropic models. We believe 

that we have achieved this with our simple solution (5.15). We have also shown that the 

methodology of §5.2 may be applied to this section. New exact solutions may be obtained 

for other choices of the function f (x). A class of solutions that generated physically realistic 

models for neutron stars has been discovered using anisotropic fluids (Mak and Harko 2001). 

We believe that this is an area of research worthy of future pursuit. We hope that we have 

demonstrated the possibility of obtaining astrophysical models for spheroidal stars with 

anisotropic pressures. 
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Chapter 6 

Conclusion 

Our aim in this thesis was to attempt to find new exact solutions to the Einstein and Einstein­

Maxwell systems. We sought solutions that could be used to form a description of realistic 

stars. Consequently we assumed that spacetime was static and spherically symmetric. We 

also attempted to demonstrate the possibility of unifying seemingly unrelated solutions of the 

Einstein-Maxwell system under special functions. We hope that some of the techniques and 

methods utilised in this thesis will be helpful to other practitioners. We generated a number 

of new solutions to the Einstein and Einstein-Maxwell systems which may be physically 

reasonable. We have found no references to these solutions, which can be expressed in 

terms of elementary functions, in the literature. We believe that a physical analysis of these 

solutions could lead to realistic models for dense, static stars. 

We summarise our results below: 

• We derived the Einstein and Einstein-Maxwell field equations for perfect fluids in static 

spherically symmetric spacetimes. We utilised a transformation due to Durgapal and 

Bannerji (1983) to cast these equations in a more tractable form . As a special case, 

we derived the field equations for charged and neutral perfect fluids in spacetimes 

exhibiting spheroidal geometry. The above forms of the field equations have led to 

physically acceptable models of dense stars which motivated our choice. A number of 
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criteria for acceptable relativistic stellar models were stated. We also listed the two 

exterior solutions, viz. the Schwarzschild and Reissner-Nordstrom line elements, that 

any interior solution obtained in this thesis should be matched to . 

• We established an existence theorem in §3.2 for neutral stars. Given the analytic form 

for the gravitational potential Z (x): 

00 

Z(x) = I: aixi (aD =I- 0) 
i==O 

equation (2.26c), the condition of pressure isotropy, will always possess a series solution 

about x = 0; the point x = 0 being a regular point or regular singular point of this 

equation. With this result, we attempted to solve the pressure isotropy equation by 

specifying quadratic and cubic forms for Z. The quadratic form was shown, with the 

aid of MATHEMATICA, to reduce to the familiar Tolman VII solution. For the cubic 

form 

Z = 1 + ax3 

where a is a constant, MATHEMATICA returned a solution in terms of hypergeometric 

functions with complex arguments. Since this was clearly unphysical, we attempted to 

extract the series solution directly. This method depended on the solution of a differ­

ence equation, which we managed to solve from first principles. Our solution was thus 

expressed in terms of a power series, whose coefficients were explicitly determined. This 

solution possessed the interesting feature of admitting an explicit barotropic equation 

of state. We suspect that a detailed physical analysis will confirm the physical validity 

of our model. We believe that the exact solution corresponding to cubic Z is new. The 

limits of computational software were demonstrated by the inability of MATHEMAT­

ICA to recover solutions whose existence had been assured by the theorem given in 

§3.2 . 

• We attempted to find a charged analogue of the class of solutions discovered by Maharaj 
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and Mkhwanazi (1996). To this end we made the choices 

Z = 1 + kx 
l+x 

where k is a constant, and 

2 a C KX -1 
E ="4 K2(1 - K) X2 

where a, C and K are constants, and X is the new independent variable. We obtained 

a hypergeometric equation, whose properties were analysed. The solution of this equa­

tion depended on the parameters K and a. We illustrated two charged solutions, that 

we believe to be previously unpublished, in terms of elementary functions . We also 

regained the static solutions of Maharaj and Mkhwanazi (1996) and Durgapal and 

Bannerji (1983) in the limit of vanishing charge. All these solutions were special cases 

of the hypergeometric function. The special function solutions were shown to reduce to 

elementary functions for the examples considered. We believe that we have successfully 

demonstrated the feasibility of unifying various exact solutions under a single class of 

equations, and as such have addressed one of the aims of this thesis. One of the new 

solutions, obeying the barotropic equation of state p = p(p), appears to satisfy the cri­

teria for physical admissability, mentioned in §2. 7. The other admits negative energy 

densities and may serve as a toy model for more exotic stellar material. A physical 

analysis of members of the class of charged solutions should be possible when they can 

be expressed in terms of elementary functions. 

• We examined various forms of the field equations consistent with the spheroidal model 

of Vaidya and Tikekar (1982). We studied cases exhibiting charge, as well as those 

featuring pressure anisotropy. We demonstrated that the condition of pressure isotropy 

(adapted to include the electric field intensity E for charged stars) can be written as 

the harmonic oscillator equation 

d2w 
diP - {f(u(19)) + K - l}w = 0 
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where f is an arbitrary function. A similar equation is obtainable for anisotropic 

pressure distributions. We obtained solutions for particular choices of f (u( 'IJ)). Other 

choices are possible. Note that it is not always possible to invert the coordinate trans­

formation to regain the solution in terms of the original variables; this is a drawback 

to the method used in chapter 5. 

A number of possibilities for the extension of this work exist. Firstly we can investigate 

other forms of the gravitational potential Z that satisfy the existence theorem in §3.2. The 

relevant equations may be solved using symbolic software, transforming to a standard form, 

or attempting to obtain the series solution directly. It may also be possible to obtain a 

similar result for the charged equation (2.32c) for particular choices of the electric field 

intensity E. The use of symbolic software, whilst shown to be of limited reliability, is 

certainly advantageous in those situations where it is applicable. Our investigations hinted 

at a difficulty in extracting series solutions centred about regular singular points. This is an 

area that needs to be investigated. Our investigations into spheroidal geometry indicated that 

it is possible to generate solutions, via the harmonic oscillator transformations, for charged 

and anisotropic distributions. It is important, in future work, to determine the various classes 

of solution that are permitted under the relevant transformations. We successfully managed 

to unify various charged and neutral static solutions under the hypergeometric equation. We 

need to identify and classify seemingly disparate solutions, which have already been found, in 

terms of the hypergeometric equation. It may be possible to find a coordinate transformation 

that unifies other classes of exact solutions under some type of special function. Note, 

however that, we were unable to recover the Finch and Skea solution (1989), due to the 

change of coordinates needed to affect the unification. This hints at some of the difficulties 

in this important task. Spacetimes exhibiting spheroidal geometry have been shown to lead 

to physically reasonable models of compact stars. Other choices of the anisotropy factor 

than that pursued here, could be used to obtain new solutions. 

All solutions should be subjected to a stringent physical analysis. This would greatly 
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assist in reducing the class of exact solutions to those of astrophysical significance. 
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