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Abstract

Chapter 0

In this introductory chapter, certain notational and terminological conven­
tions are established and a summary given of background results that are
needed in subsequent chapters.

Chapter 1

In this chapter, the notion of a "weak conguence formula" [Tay72], [BB75] is
introduced and used to characterize both subdirectly irreducible algebras and
essential extensions. Special attention is paid to the role they play in varieties
with definable principal congruences.

The chapter focuses on residually small varieties; several of its results take
their motivation from the so-called "Quackenbush Problem" and the "RS Con­
jecture". One of the main results presented gives nine equivalent characteriza­
tions of a residually small variety; it is largely due to W. Taylor. It is followed
by several illustrative examples of residually small varieties.

The connections between residual smallness and several other (mostly cate­
gorical) properties are also considered, e.g., absolute retracts, injectivity, con­
gruence extensibility, transferability of injections and the existence of injective
hulls. A result of Taylor that establishes a bound on the size of an injective
hull is included.

Chapter 2

Beginning with a proof of A. Day's Mal'cev-style characterization of congru­
ence modular varieties [Day69] (incorporating H.-P. Gumm's "Shifting Lem­
ma"), this chapter is a self-contained development of commutator theory in
such varieties. We adopt the purely algebraic approach of R. Freese and R.
McKenzie [FM87] but show that, in modular varieties, their notion of the com­
mutator [a,,8] of two congruences a and ,8 of an algebra coincides with that
introduced earlier by J. Hagemann and C. Herrmann [HH79] as well as with
the geometric approach proposed by Gumm [Gum80a],JGum83].
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Basic properties of the commutator are established, such as that it behaves
very well with respect to homomo~phisms and sufficiently well in products
and subalgebras. Various characterizations of the condition "(x, y) E [a,,8),,
are proved. These results will be applied in the following chapters. We show
how the theory manifests itself in groups (where it gives the familiar group
theoretic commutator), rings, modules and congruence distributive varieties.

Chapter 3

We define Abelian congruences, and Abelian and affine algebras. Abelian
algebras are algebras A in which [A2,A2] = idA (where A2 and idA are the
greatest and least congruences of A). We show that an affine algebra is polyno­
mially equivalent to a module over a ring (and is Abelian). We give a proof that
an Abelian algebra in a modular variety is affine; this is Herrmann's Funda­
-mental Theorem of Abelian Algebras [Her79]. Herrmann and Gumm [Gum78],
[Gum80a] established that any modular variety has a so-called ternary "differ­
ence term" (a key ingredient of the Fundamental Theorem's proof). We derive
some properties of such a term, the most significant being that its existence
characterizes modular varieties.

Chapter 4

An important result in this chapter (which is due to several authors) is the
description of subdirectly irreducible algebras in a congruence modular variety.
In the case of congruence distributive· varieties, this theorem specializes to
J6nsson's Theorem. .

We consider some properties of a commutator identity (Cl) which is a nec­
essary condition for a modular variety to be residually small. In the main
result of the chapter we see that for a finite algebra A in a modular variety,
the variety V(A) is residually small if and only if the subalgebras of A satisfy
(Cl). This theorem of Freese arid McKenzie also proves that a finitely gener­
ated congruence modular residually small variety has a finite residual bound,
and it describes such a bound. Thus, within modular varieties, it proves the
RS Conjecture.

Conclusion

The conclusion is a brief survey of further important results about residually
small varieties, and includes mention of the recently disproved (general) RS
Conjecture.
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Introduction

G. Birkhoff showed in 1944 that every algebra in a variety V is a subdirect
product of subdirectly irreducible algebras in V. Therefore, many properties
of a variety can be established merely by establishing the same properties
of the subdirectly irreducible algebras in the variety. For example, identities
and quasi-identities that are true in the subdirectly irreducible algebras are
true throughout the variety since subdirect products preserve identities and
quasi-identities.

The fewer subdirectly irreducible algebras there are in V, the easier it is to
describe the variety. This makes residually small (RS) varieties desirable since
in such varieties V, the subdirectly irreducible algebras form a set; equivalently,
there is an upper bound on the sizes. of the subdirectly irreducible algebras
in V. When this upper bound can be chosen finite, we say the variety has a
finite residual bound. In this case if V also has only finitely many operations,
then V must be finitely generated, Le., generated as a variety by a single finite
algebra. This thesis is a self-contained exposition on residually small varieties.
The strength of the main result to be discussed is that it establishes a sufficient
condition (with wide application) for the existence of a finite bound on the size
of the subdirectly irreducible algebras in a residually small finitely generated
variety.

The first part of the thesis is a discussion of various general properties of
residually small varieties, based mainly 011 work done by W. Taylor, J. Bald­
win, J. Berman, D. Higgs, B. Banaschewski and E. Nelson (c.1970). The thesis
includes several results that are partial answers to the "Quackenbush Conjec­
ture", formulated by RW. Quackenbush [Qua71]. This conjecture claims that
if a variety V(A) generated by a finite algebra A (with finitely many opera­
tions) has arbitrarily large finite subdirectly irreducible algebras, then it must
have an infinite subdirectly irreducible algebra.

In the mid-1980's, it was proposed in the so-called "RS Conjecture", that a
residually small variety generated by a finite algebra should always have a finite
residual bound. (This is a stronger claim than Quackenbush's Conjecture.) In
1996 R. McKenzie showed that, contrary to expectation, the RS Conjecture
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is false. He also proved a number of important results concerning the size of
residual bounds.

This work contrasts with an important earlier result ofR. Freese and McKen­
zie, namely that the RS Conjecture is true for congruence modular varieties
(1981). This result is the aforementioned main theorem of the thesis. Thus, a
finitely generated residually small and congruence modular variety has a finite
residual bound, and the theorem includes a description of the bound.

This result was obtained via the development of a general "commutator"
theory which includes elements of ring theory. The second part of this the­
sis examines aspects of this commutator theory that are prerequisite to the
main result. The theory of commutators was introduced in the context of
congruence permutable varieties by J.D.H. Smith (1976). It was developed for
congruence modular varieties by J .. Hagemann, C. Herrmann, H.-P. Gumm,
Freese, McKenzie and others.

In this thesis we follow Freese and McKenzie's purely algebraic approach
to the commutator as expounded in [FM87]. According to this approach,
the commutator is a binary operation on the congruences of an algebra. It
is a generalization of the commutator of a group and possesses all the cor­
responding abstract properties of the commutator of normal subgroups. It
entails the notion of an "Abelian" algebra and a strong representation theo­
rem (due to Herrmann) linking such algebras to modules over rings (1979).
The main result of this thesis is an important application of the commutator
theory: it depends on a further result of Freese and McKenzie showing that if
a congruence modular variety V is residually small, it must satisfy a certain
"commutator identity". Moreover, provided that V is finitely generated, the
converse is also true. We present a proof of the main result and conclude the
thesis with a summary of further recent advances in the theory of residually
small varieties.
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Chapter 0

Preliminaries

In this chapter we fix certain notational and terminological conventions and
state the background results that will be needed in the chapters that follow.
Occasionally, where a result is especially important to the sequel or where
it is not easily located in the literature, we include a proof. For the most
part, however, we omit proofs from this chapter, giving references instead to
standard texts, particularly [BS81] and [Gdi79]. We stress that these standard
references are not usually the original sources of the results, but they contain
directions to original sources.

0.1 Set Theoretic Prerequisites. We assume a basic knowledge ofax­
iomatic set theory (see, e.g., [Men87]) such as the use of Zorn's Lemma and.
transfinite induction and recursion, as well as rudimentary ordinal and cardinal
arithmetic.

We always denote set inclusion by ~ and proper set inclusion by c. If A
and B are sets then P(A) denotes the power set (i.e., the set of all subsets) of
A, IAI is the cardinality of A, A \ B = {a EA: a tj B} and BA is the set of
all functions from A to B. If f : X -+ Y is a function and Z ~ X and W ~ Y
then the image of Z and the inverse image of Ware f[Z] := {f(x) : x E Z}
and f- 1[W] := {x EX: f(x) E W}. Recall that a family of sets, denoted
{Xi: i E I} is really a function g whose domain isa set I such that Xi = g(i)
is a set for each i E I. This family is called finite if the set I is finite.

By ordinals we mean Von Neumann ordinals, i.e., each ordinal is identified
with its set of predecessors. The least infinite ordinal is denoted w; its elements
are called the natural numbers. The elementhood relation E between ordinals
is also denoted <. The relation:::; obtained from < in the usual way therefore
coincides with set inclusion ~ in every ordinal.

The symbols rn, n, k, ... denote cardinals but we revert to rn, n, k, ... if they
are known to be finite. We replace w by ~o when considering it as a cardinal.
We use + for both ordinal and cardinal addition,· relying on the context to
distinguish meaning. Ordinal multiplication and exponentiation never arise in
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this thesis, so the standard m.n (or mn) and mn denote cardinal multiplication
and exponentiation. The cardinal s~ccessor of m is denoted by m+.

If a sequence of objects is denoted by al,··. ,an (n E w) or by (aa : a <
13) ((3 an ordinal), we often abbreviate this sequence by a.

Let rv be a (binary) relation on a set A (i.e., rv E P(A x A)). For a, bE A,
we frequently write a rv b for (a, b) E rv. We sometimes write a rv b as a rv b.
Recall that on A, rv is called

reflexive if for all a E A, we have a rv a;
symmetric if whenever a, b E A, and a rv b then b rv a;
anti-symmetric if whenever a, b E A, and a rv band b rv a then a = b;
transitive if whenever a, b, c E A, and a rv band b rv c then a rv c;
connected if whenever a, b E A, then a rv b or b rv a;
an equivalence relation if it is reflexive, symmetric and transitive;
a partial order if it is reflexive, anti-symmetric and transitive;
a linear order if it is a connected partial order.

If B ~ A, the restriction rv n(B x B) of rv to B is denoted by rv IB or
rvB. If::; is a partial [respectively linear] order on A, we call the pair (A; ::;)
a partially ordered set [respectively a linearly ordered set] or, briefly, a poset
[respectively a chain]. We then call A the universe of the poset A = (A; ::;).
Unless we indicate otherwise, the universe of a poset is understood to be a set
A if the poset is denoted by A.

0.2 Lattices. Let P = (P;::;) be a poset and A ~ P. An element t E P
is called an upper bound of A (in P) if a ::; t for every a E A. We call A
an upward directed subset of P if for any b, c E A, there exists a E A such
that a is an upper bound (in P) of {b, c}. An element t E P is called a least
upper bound or supremum of A if t is an upper bound of A and t ::; q for every
upper bound q E P of A. We write t = Vp A in this case and we will omit
the subscript unless confusion could arise. Lower bounds of A and the greatest
lower bound or infimum of A are defined dually, and we will use /\p A or just
/\ A for the infimum. We abbreviate V{a, b} and /\{a, b} by a V b and a 1\ b,
respectively.

If a, b E P we use a < b or b > a to indicate that a ::; b but a =1= b. We say
that b covers a, written a -< b or b >- a, if a < b and there is no C E P with
a < c < b. In this case b is called a cover for a.

If aVb exists for all a, b E P, we call P an upper semilattice, and if al\b exists
for all a, b E P, we call P a lower semilattice. P is called a lattice when it is both
an upper and a lower semilattice. In an upper semilattice, the binary operation
V ("join") is associative so we may abbreviate V{aI, ... ,an} as al V ... V an
without parentheses; similarly for 1\ ("meet") in a lower semilattice.
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Let L = (L; :::;) be a lattice and let L' be a nonempty s~bset of £,. If fo~ every
a, bEL', both VL {a, b} and I\L{a, q} are elements of L , then L = (L ; :::;L')
is called a sublattice of L.

Two lattices L1 and L2 are said to be isomorphic if there is a one-to-one,
onto function a : L 1 ---+ L 2 such that, for all a, b E L 1 ,

a(a V b) = a(a) V a(b) and a(a /\ b) = a(a) /\ a(b).

In this case we write L1 rv L2 or a : L1 rv L2 and we call a a lattice isomor­
phism.

Let PI and P 2 be posets and a : PI ---+ P2 a function. We say that a is
order-preserving if for any a, bE PI, a:::; b implies a(a) :::; a(b).

Theorem 0.1. [BS81, Theorem 2.3, p8]

Two lattices L 1 and L 2 are isomorphic if and only if there is a bijection
a : L 1 ---+ L 2 such that a and a-I are both order-preserving.

A lattice L is distributive if for all x, y E L it satisfies either (equivalently,
both) of the distributive laws:

x/\(yVz)

x V (y /\ z)

Every lattice satisfies:

x /\ (y V z) .2: (x /\ y) V (x /\ z)

x V (y /\ z) :::; (x V y) /\ (x V z).

Also, every lattice satisfies the condition x :::; y implies x V (y /\ z) :::; Y /\ (x V z).

A lattice L is said to be modular if the following law, called the Modular
Law holds in it :

x :::; y implies x V (y /\ z) = Y /\ (x V z).

Theorem 0.2. [BS81, Theorem 3.4, pH]

Every distributive lattice is a modular lattice.

For any poset P = (P;:::;) and x, y E P, we define the interval int(x, y) as
the set of all c E P such that x :::; c :::; y. If in addition, P is a lattice and
x :::; y then int(x, y) is the universe of a sublattice int(x, y) of P.

Consider int(x, y) and int(v, w) (where x :::; y and v :::; w) in a lattice L.
We say that int(x, y) transposes down onto int(v, w) and write int(x, y) ~
int(v, w) if x /\ w = v and x V w = y. This relationship can also be described
by saying int(v, w) transposes up onto int(x, y), and is written int(v, w) /'
int(x, y). .
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Theorem 0.3. Let L be a lattice and let a, b, c, dEL with a :S band c :S d
such that int(a, b) /' int(c, d). If L _is modular, then the map x H x V c (x E
int(a, b)) is a lattice isomorphism from int(a, b) onto int(c, d) whose inverse
isomorphism is given by y H Y/\ b (y E int(c, d)).

(This theorem can fail if L is nonmodular.)

A poset P is called a complete lattice if for every subset A of P, both Vp A
and I\p A exist (in P). Thus, a complete lattice has a greatest and a least
element (setting A = 0). A nonempty subset L of P is then said to be (the
universe of) a complete sublattice L of P if Vp A, I\p A E L whenever A ~ L.

Theorem 0.4. [BS81, Theorem 4.2, p14]

Let P be a poset such that 1\ A exists for every subset A of P, or such that
VA exists for every subset of P. Then P is a complete lattice.

For any set A, the poset P = (P(A); ~) is a complete lattice; if X ~ P(A)
then I\p X = nX and VpX = uX.

An element y of a lattice L is called completely meet irreducible if, for any
y ~ L, y = 1\ Y implies y E Y.

Let L be a lattice and let a E L. We say that a is compact (in L) if the
following condition holds: for every subset A of L such that a :S VL A E L,
there exists a finite subset A' of A such that a :S VL A' E L. L is said to
be compactly generated if every element of L is the supremum of some set of·
compact elements of L. If a lattice is complete and compactly generated, it is

. said to be algebraic.

Given a complete lattice L = (L; :S), a subset X of L is called a closure
system in L if for every Y ~ X, I\L Y E X. (This forces X to contain
the greatest element of L, viz. I\L 0; in particular, X i= 0 and (X;:S) is a
complete lattice in its own right.) If in addition, we have VL Y E X for every
nonempty upward directed subset Y of (X; :S), then X is called an algebraic
closure system in L. With a closure system X in a complete lattice (L; :S), we
associate a mapping u = ux ~ L --+ L defined by u(x) = .t\L{Z E X: x :S z}.
This map has the following properties:

(i) x :S u(x) = u(u(x));

(ii) x :Sy implies u(x) :S u(y)

for all x, y E L. The range u[L] of this map is just X. If X is an algebraic
closure system then we also have

(iii) u(x) = V{u(y): y :S x and y is compact in L} (x EL).
L
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Mappings u : L· --+ L satisfying (i) and (ii) are called closure operators on
(L; :s;). For such a map u, we alway~ have

Vu[L] u[Y] = U(VL Y) for any Y ~ L (where u[L] = (u[L];:S;) = (X;:S;))

[BS81, Theorem 5.2, p18]. A closure operator u on (L; :s;) is called an algebraic
closure operator on (L;:S;) if it satisfies (iii) (for all x EL). The elements of
the form u(x) (for some x E L) are called closed (with respect to u). Every
(algebraic) closure operator u on (L; :s;) has the form Ux for some (algebraic)
closure system X in (L; :S;), viz., for X = u[L], and the correspondence X H

Ux is one-to-one. Also, every (algebraic) closure system X in (L;:S;) is the
range u[L] of a suitable (algebraic) closure operator u on (L; :S;), viz. u = Ux,
and the correspondence u H u[L] is one-to-one.. The aforementioned two
correspondences are mutually inverse bijections between the set of (algebraic)
closure systems on (L;:S;) and the set of (algebraic) closure operators on (L; :s;).
The following results are to be found in most introductory lattice theory texts
or, e.g., [Gdi,79, Theorem 5 and Lemma 5, p25].

Proposition 0.5. The following conditions on a lattice L = (L;:S;) are equiv­
alent:

(i) L is an algebraic lattice;

(ii) there exists a set S and an algebraic closure system X in the complete
lattice (P(S);~) of all subsets of S (ordered by inclusion) such that L
is isomorphic to the lattice (X ; ~).

Proposition 0.6. Let L = (L;:S;) be an algebraic lattice and u an algebraic
closure operator on L. Then y E L is a compact element of (u[L];:S;) if and
only if y = u(x) for some compact element x of (L; :s;).

Corollary 0.7. Let S be a set and X ~ P(S). Then (X;~) is an algebraic
lattice if and only if X is closed under arbitrary intersections and UY E X
for any nonempty upward directed subset Y of (X; ~). In this case, the map
Z --+ u(Z) = n{A EX: A ;:;2 Z} (Z E P(S)) is the algebraic closure operator
on (P(S);~) corresponding to X and the compact elements of (X;~) are just
the elements of the form u(Z), where Z is any finite subset of S.

If Band cp are relations on a set A,· we define the relational product B0 cp by:

Bocp = Ha, b)E A x A: there exists c E A such that (a, c) E Band (c, b) E cpl.

The operation 0 is associative so brackets are unnecessary in expressions like
B0 cp 0 'TJ.

We define Eq(A) to be the set of all equivalence relations on a set A. For
any set A, Eq(A) is an algebraic closure system in (P(A x A); ~), hence
Eq(A) := (Eq(A); ~), the equivalence lattice of A, is an algebraic lattice.
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Its least element is the identity relation, idA = {(a, a) : a E A} and its
greatest is the total relation, A x A. For r ~ Eq(A), /\ r= nr and Vr =
n{a E Eq(A) : ur ~ a} Thus, for 8, <p E Eq(A), 8 1\ <p = 8 n <p and
8 V <p = n{a: 8 u <p ~ a E Eq(A)}.

Theorem 0.8. [BS81~ Theorem 4.7, p16]

Let {8i : i E I} be a nonempty set of equivalence relations on a set A. Then

in Eq(A),

ViEI 8i = u{Oil 0 Oi2 0 ... 0 8in : 0 < nEw and i 1 , ... ,in E I},

i.e., a(ViEI 8i )b if and only if there exist i 1,.· . ,in E I such that a(8il 08i2 0
... o8i Jb. In particular, when I = {l, 2}, then in Eq(A),

81 V 82 = 81 U (81 0 ( 2) U (81 082 0 ( 1) U (81 082 081 0 ( 2 ) u ....

Equivalently, (a, b) E 81 V 82 if and only if there is a sequence of elements
Cl, C2, ... ,Cn from A (with n ~. 2) such that (Ci, Ci+l) E (J1 or (Ci, Ci+l) E 82 for
i = 1, . . . ,n - 1, and a = Cl; and b = en·

From this theorem and the definition of the relational product, it is clear that
for any set A and for 8, <p E Eq(A), 00 <p ~ 8 V <po

0.3 Universal AIgebras. Let A be a nonempty set and nEw. If n > 0, we
identify An with {(a1,'" ,an) : a1, ... ,an EA} = I1f=l A; note that AD = {0}.

For any nEw, by an n- ary operation on A we mean any function f : An -t

A; n is called the arity of f, written ar(j) = n. In this case f is a finitary
operation on A. In particular, f is a nullary (or constant), unary, binary, or
ternary operation on A if it is a O-ary, I-ary, 2-ary or 3-ary operation on A,
respectively.

A type or language I is an ordered pair (F, ar) where F is a set whose
elements are called operation symbols and ar is a function from F to w, called
the arity function. The type I is called finite iflFI is finite. A universal algebra
of type I (or a I-algebra) is an ordered pair A = (A; F) where A is a nonempty
set called the universe of A and F = {fA: f E F} where for each f E F with
ar(j) = n, fA is an n-ary operation on A. (If ar(j) = 0, we may identify fA
with an element of A.) The fA's are called the fundamental operations of A.
If F is finite, say F = {f1, ... ,fk}, we often write (A; h, ... ,fk) for (A;F),
usually listing the fi's in descending order of arity, and say that A has type
(ar(h), ... , ar(jk))'

Unless we specify otherwise, it is understood that the universe of an algebra
A is always a set denoted by A.

An algebra A is said to be finite if IAI is finite; trivial if IAI = 1.
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0.3.1Subalgebras. A subset X of A is a subuniverse of a T-algebra A = (A; F)
if and only if X is closed under each of the operations fA (j E F), i.e., for
every f EF and any Xl, ... ,Xn E ·X, we have fA(XI"" , Xn) E X (where
n = ar(j)). We will denote the set of all subuniverses of A by Sub(A). If X
is a nonempty subuniverse of A then the T-algebra (X; {fAlxar(f) : f E F}) is
called a subalgebra of A.

The subuniverse of A generated by X ~ A, denoted by SgA(X), is defined
as n{Y E Sub(A) : X ~ Y}. Then (SgA(X); {fAlsg(x)ar(f) : f E F}) is
a subalgebra of A, denoted by SgA(X). We say X generates A (or A is
generated by X or X is a set of generators of A) if SgA(X) = A. If X is a
finite subset of A [respectively IXI ~ m, a cardinal], we call SgA(X) a finitely
generated [respectively m-generated] subuniverse of A, andSgA(X) a finitely
generated [respectively m-generated] subalgebra of A.

We write A ~ B to denote that A is a subalgebra of an algebra B; A < B
will denote that A is a proper subalgebra of B, i.e., that A ~ B and A i= B. In
these respective cases we also say that B is an extension, or a proper extension
of A.

Theorem 0.9. [BS81, Corollary 3.3, p31]

If A is an algebra, then Sub (A) is an algebraic closure system in (P(A); ~),

hence (Sub(A);~) is an algebraic lattice. The corresponding algebraic closure
operator on (P(A);~) is SgA.

Note that an upper [respectively lower] semilattice A = (A;~) gives rise to
an algebra (A; v) [respectively (A; 1\)] of type (2) and a lattice A = (A; ~) to
an algebra A = (A; V, 1\) of type (2,2). In the latter case, the sublattices of
A are just the subalgebras of (A; v, 1\). In all cases, ~ is recoverable from the
algebraic language because for a, bE A, we have a ~ b if and only if b = a V b,
if and only if a = al\ b.

Let L = (L; F) be a lattice with least and greatest elements °and 1. An
element a E L is called complemented if there exists a' E L such that a1\ a' = °
and a V a' = 1. In this case a' is called a complement of a: If L is distributive
and a E L is complemented then a has a unique complement in L.

A complemented distributive lattice is called a Boolean lattice; in this case
the associated algebra (L; V, 1\,' ,0,1) of type (2,2,1,0,0) is called a Boolean
algebra.

For any set 1, the lattice (P(I); ~) is Boolean;the associated Booleanalge­
bra is (P(1); u, n,' ,0,1), where X' = 1 \ X for all X ~ 1.

Let A = (A; F) and B = (B; F*) be a T-algebra and a T*-algebra, where
T = (F,ar) and T* = (F*,ar*). If B = A and F ~ F* and fA = fB for all
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f E F then we call A a reduct (or the F-reduct or the F-reduct or the T-reduct)
ofB.

Henceforth all algebras considered are assumed to be of type T = (F, ar)
unless we say otherwise.

A nonempty set C of T-algebras is called a chain of T-algebras if for any
A, B E C, we have A ~ B or B ~ A. In this case, since C is a set, there is
an ordinal 13 and a sequence (Aa: a < 13) of T-algebras with Aa E C for all
a < 13 such that Ua<.BAa = UAECA and Aa ~ A'Y whenever a < '"'I < 13. Then
there is aT-algebra D called the union of C, such that the universe of D is
D = UAE~A and for any f E F with ar(j) = n, the fundamental operation
fD may be defined (unambiguously) as follows:

(i) if n = 0 then fD = fAo E Ao ~ D;

(ii) if n > 0 and aI, ... ,an E D then there exist '"'11, ... ,'"'In < f3 such that
ai E A'Yi for each i E {I, ... ,n}; choose '"'I < 13 such that '"'11, ... ,'"'In < I and
define fD(al"" ,an) =jA-r(al"" ,an).

We write D = UAECA. Note that A ~ D for all A E C.

0.3.2 Congruence Relations. Let A = (A; F) be an algebra of type T= (F, ar)
and let () be a relation on A. Let f be an n-ary operation on A. We say () is
compatible with f iffor all aI, ... ,an, bl , ... ,bn E A, if ai()bi for i = 1,2, ... ,n,
then f(al"" ,an)() f(b l , ... ,bn). We call () a congruence relation oh (or just
a congruence of) A if() is an equivalence relation on A and is compatible with
all the fundamental operations of A.

Let () be a congruence on a T-algebra A = (A; F). If a E A, we denote
the equivalence class of a under e by ale, i.e., a/() = {x EA: (x, a) E e}.
We define A/() = {ale : a E A}. For each f E F (with ar(j) = n, say), an
operation fA/(} on A/e is (well-)defined by

We may therefore define aT-algebra A/e = (A/e; F/e) where F/e = {fA/(} :
f E F}. Ale is called the quotient algebra (or factor algebra) of A (modulo
e) .

The set of congruence relations of an algebra A is denoted by Con(A).

Theorem 0.10. [BS81, Theorem 5.5, p37].

For any algebra A, Con(A) is an algebraic closure system in (P(A x A); ~),

hence Con(A) := (Con(A);~) is an algebraic lattice. Moreover, Con(A) is
a complete sublattice of Eq(A).
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We call Con(A) the congruence lattice of A. Thus, in Con(A), meets and
joins are calculated in the same way as when working with equivalence rela­
tions. The least and greatest elements of Con(A) are the identity congruence,
idA, and the total congruence, A2, respectively. The algebraic closure operator
on (P(A x A);~) corresponding to Con(A) is denoted by eA. In other words,
for X ~ A2

,

eA(X) = n{p E Con(A) : X ~ p};

this is called the congruence on A generated by X. By Proposition 0.6,
the compact elements of Con(A) are just all eA(X), where X is a finite
subset of A2. We call these the finitely generated congruences of A. If
X = Ha, b)} ~ A2 , eA(X) is called a principalcongruence and will be abbre­
viated by eA(a, b).

We say that an algebra A is congruence distributive [respectively congruence
modular] if the lattice Con(A) is distributive [respectively modular]. A is
congruence permutable if for every pair ()I, ()2 E Con(A), ()L 0 ()2 = ()2 0 ()I i.e.,
()I and ()2 permute.

Theorem 0.11. (BirkhojJ) [BS81, Theorem 5.10, p41]

If an algebra A is congruence permutable, then A is congruence modular.

If B is a subalgebra of A and () E Con(A), then ()IB = () n (B x B) is a
congruence of B. We will therefore use ()IB to denote ()n (B x B).

A reflexive, symmetric and compatible relation 'T/ on an algebra A is called
a tolerance relation on A. Let 'T/[n] be defined as follows: 'T/[I] = 'T/ and 'T/[k+l] =
'T/[k] 0'T/ for k > 1. The transitive closure of 'T/ is U~=l 'T/[n]; it is the least transitive
relation on A containing 'T/.

Theorem 0.12. Let'T/ be a tolerance relation on A. Then U~=l'T/[n] = eA('T/).

0.3.3 Homomorphisms. Let A, B and Cbe T-algebras and a : A -4 B a
function. We call a a homomorphism from A to B if for any nEw and any
n-ary fundamental operation fA on A, and for any al, ... ,an E A, we have
a(fA(al" .. ,an)) = fB(a(al)"" ,a(an)). (Interpret this as a(jA) = fB
when ar(f) = 0). A homomorphism from A to A is called an endomorphism
of A.

If a : A -+ Band (3 : B -+ Care homomorphisms then the composition
f3 0 a isa homomorphism from A to C. l We will use Hom(A, B) to denote
the set of all homomorphisms from A to B.

I We have to tolerate notational ambiguity here. This composite function is unfortunately
equal to the relational product a 0 fJ.
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Theorem 0.13. [BS81, Theorem 6.3, p43]

Let a : A ~ B be a homomorphism. Then the image of a subuniverse X of
A under a is a subuniverse of B, and the inverse image of a subuniverse Y
of B is a subuniverse of A.

We denote the corresponding algebras by a[X] and a-1[y].

A surjective (i.e., an onto) homomorphism is also called an epimorphism,
while an injective (i.e., a one-to-one) homomorphism is called a monomorphism
or an embedding. We say the algebras A and B are isomorphic (written A '"
B) if there is a bijective homomorphism a from A to B. We write a : A '" B

et

(or A I"V B) in this case and call a an isomorphism.

If a E Hom(A,B), then the kernel of a, denoted ker(a), is {(a,b) E A2 :
a(a) = a(b)} and is an element of Con(A). The homomorphism a is an
embedding if and only if ker(a) = idA . For 0 E Con(A), the natural map A
from A to A/O is defined by A(a) = a/O (a E A); it is an epimorphism and
ker(A) = O.

Theorem 0.14. Let h : A ~ B be an epimorphism and cp E Con(A). Then
h(cp) := ((h(a) , h(a')) : (a, a') Ecp} is a tolerance relation on B, so 8 B (h(cp))
is the transitive closure of h(cp). Ifker(h) ~ cp then h(cp) E Con(B). Also
if rJ E Con(B) then h-1(rJ) E Con(A), where h-1(rJ):= {(a, a') E A2 :
(h(a), h(a')) E rJ}.

By the above theorem, if 0, cp E Con(A) with 0 ~ cp, then there is a con­
gruence relation cp/O on A/O defined by:

cp/O = {(a/O, b/O) E (A/O)2 : (a, b) E cp}.

We will make frequent use of the following well-known theorems.

Theorem 0.15. (Homomorphism Theorem) [BS81, Theorem 6.12, p46]

Suppose a : A ~ B is a homomorphism onto B. Then there is an isomor­
phism (3 from A/ker(a) onto B such that a = (30 A, where A is the natural
homomorphism from A to A/ker(a).

Theorem 0.16. (Second Isomorphism Theorem) [BS81, Theorem 6.15 , p47]

If cp, 0 E Con(A) and 0 ~ cp, then the map a : (A/O)/(cp/O) ~ A/cp defined
by a((a/O)/(cp/O)) = a/cp is an isomorphism from (A/O)/(cp/O) onto A/cp.

For 0, "( E Con(A), recall that int(O, "() = {p E Con(A) : 0 ~ p ~ "(} and
that this is the universe of a sublattice of Con(A), denoted by int(O, "().
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Theorem 0.17. (Correspondence Theorem) [BS81, Theorem 6.20, p49]

Let A be an algebra and let () E Con(A). Then the mapping a defined
on int((), A2) by a(<p) = <pj() is a lattice isomorphism from int((), A2) onto
Con(Aj()) with inverse isomorphism given by p H a-l(p) (p E Con(Aj())).

0.3.4 Products. Let Ai = (Ai; Fi), i E 1, be a family of T-algebras. Recall·
that the Cartesian product of the family {Ai : i E I} is defined as the set of
all functions g :1 --+ UiEIAi such that g(i) E Ai for each i E 1. If 111 = nEw,
we will identify the elements of I1iEI Ai with n-tuples,as usual. Note that if
1 = 0, then I1iEI Ai = {0}. For each j E 1, the jth projection is the surjection
7rj : I1iEI Ai --+ A j defined by 7rj(x) = x(j) (x E I1iEI Ai)' Then there is a T­
algebra D, with universe D = I1iEI Ai, called the direct product of {Ai: i E I},
whose fundamental operations are defined as follows:

If f E F, with ar(f) = n and aI, ... ,an E D and j E 1, then

7rj(fD(al"" ,an)) = fAj(al(j), ... ,an(j)).

(If f is nullary, fD = c E D where c(i) is fA; E Ai for each i El.) We write
D = I1iEI Ai'

We need the following consequences of the above definitions:

(i) For each j E 1, the lh projection map 7rj : I1iE I Ai --+ A j is a homomor­
phism.

(ii) If A is a T-algebra and for each i E 1, hi : A --+ Ai is a function, we
define h: A --+ I1iEI Ai by 7ri(h(a)) = hi(a) for all i·E 1. Iff6r each i,hi is a
homomorphism from A to Ai, then h is a homomorphism from A to I1iEI Ai'

If {Ai: i E 1} is a finite family ofT-algebras with 1 = {l, ... ,n}, the direct
product I1iEI Ai is denoted by I1~1 Ai = Al X A 2 X ... x An. Notice that the
subuniverses of A 2 = A x A are just the relations on A that are compatible
with all the fundamental operations of A.

A T-algebra A is said to be a subdirect product of a family {Ai : i E I} of
T-algebras if

(i) A is a subalgebra of I1iEI Ai, and

(ii) 7rj[A] = A j for each projection 7r) : I1iEI Ai --+ A j .

Let B be a T-algebra. A homomorphism a : B--+I1iEI Ai is called a
subdirect embedding if a is one-to-one and a[B) is a subdirect product of {Ai:
i E I}.

Given a family {Yi : i E 1} of sets, a set Y and functions ai : Y --+ Yi (for
each i E 1), the family {ai : i E 1} is said to separate points of Y if for any
Yb Y2 E Y with YI =I- Y2, there is an i E 1 such that ai(YI) =I- ai(Y2).
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Lemma 0.18. [BS81, Lemma 7.14, p55]

For an indexed family of homomorphisms ai : A -+ Ai, i E I) the following
are equivalent:

(i) The homomorphisms ai separate points of A.

(ii) The natural homomorphism a : A -+ DiEI Ai (induced by the maps ai)
is injective.

(iii) niEIker(ai) = idA ·

Theorem 0.19. Let A be an algebra and let a, b E A, a =1= b. The following
are equivalent:

(i) Whenever f is a homomorphism defined on A and f is not one-to-one)
then f(a) = f(b).

(ii) Every nonidentity congruence relation on A identifies a and b.

Definition 0.20. We define an algebra A to be (a, b) -irreducible if a, b E A
and a =1= b and the conditions of the above theorem hold.

Theorem 0.21. The following are equivalent for an algebra A:

(i) For every subdirect embedding a : A -+ niEI Ai there is an i E I such
that the map 1fi 0 a : A -+ Ai is an isomorphism.

(ii) Any family of homomorphisms defined on A which separates points of A
contains a homomorphism which is one-to-one.

(iii) In Con(A), idA is completely meet irreducible.

(iv) Either A is trivial or there exist a, b E A such that A is (a, b) -irreducible.

Definition 0.22. We define an algebra A to be subdirectly irreducible if it is
nontrivial and the conditions of the above theorem hold. (Otherwise A is said
to be subdirectly reducible.)

The above theorem gives a useful characterization of subdirectly irreducible
algebras, namely, an algebra A is subdirectly irreducible if and only if Con(A) \
{idA } has a least element. This least element is called the monolith of A. It
is clearly a principal congruence and equal to n(Con(A) \ {idA }). In this case
Con(A) looks like this:

n(Con(A)\{id A })
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The following result is clue to G. Birkhoff. We will refer to itas Birkhoff's
Subdirect Decomposition Theorem. _ As a consequence of this theorem, the
study of classes of algebras closed under the taking of homomorphic images is
reduced to the study of the subdirectly irreducible algebras in the class.

Theorem 0.23. (Birkhoff) [Bir44]

Every T-algebra A is isomorphic to a subdirect product of subdirectly irre­
ducible T-algebras (which are homomorphic images of A).

Corollary 0.24. [BS81, Corollary 8.7, p59]

Every finite algebra is isomorphic to a subdirect product of a finite family of
subdirectly irreducible finite algebras.

0.4 Varieties. If 0 is a "class operator" mapping classes of T-algebras to
other classes of T-algebras, we say a class K of T-algebras is closed under 0 if
O(K) ~ K. The composition of two class operators, 0 1 and O2 (mapping any
K to O2 (0 1 (K) )) is written 0 20 1 , A class operator is said to be idempotent
if 0 2 = 00 = O.

We use the letters I, H, 5, P and Ps to denote the class operators used
to obtain from a class K of T-algebras the class of all isomorphic images,
homomorphic images, subalgebras, direct products and subdirect products, re­
spectively, of members of K. A class of T-algebras is called a T-variety (or
just a variety) if it is closed under the class operators H,5 and P. If K is a
class of similar algebras (i.e., algebras of the same type), V(K) will denote the
variety V generated by K, i.e., the intersection of all the varieties containing
K.

Theorem 0.25. (Tarski) [BS81, Theorem 9.5, p61].

Let K be a class of algebras of the same type T. Then V(K) = HSP(K).

If K has only one member A, we write V (A) for V (K). A variety V is said
to be finitely generated if V = V(K) for some finite set K of finite algebras
(equivalently, V = V(A) for some finite algebra A). For any class K of T­
algebras, we denote the class of all subdirectly irreducible algebras in V by
Vs I ·

The following version of Birkhoff's Subdirect Decomposition Theorem (above)
reinforces the comment made previously about the importance of subdirectly
irreducible algebras in classes of algebras. It shows that in a variety, these
algebras are "building blocks" for all the other algebras.

Theorem 0.26. [BS81, Theorem 9.6, p62]

For any variety V, we have V = IPs(VsI ).
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A variety V is called congruence distributive if for all A E V, Con(A) is
distributive; congruence modular iffor all A E V, Con(A) is modular and
congruence permutable if for all A E V, Con(A) is permutable. Thus a con­
gruence distributive or congruence permutable variety is congruence modular.

Definition 0.27. The class K of T-algebras has the congruence extension
property (CEP) if whenever A ::; B E K and () is a congruence on A there is
a congruence (}1 on B with (}l1A = ().

We say K has the principal congruence extension property (PCEP) if when­
ever A, B E K with A ::; B and a, bE A then 8 A (a, b) = A2 n 8 B (a; b).

Theorem 0.28. [Day?l]

For a variety V, the following are equivalent:

(i) V has the CEP.
(ii) V has the PCEP.

Corollary 0.29. [Day71]

A variety V satisfies the CEP if and only if for all A E V and all a, b, c, d E
A, the following is true: (c, d) E 8 A (a, b) if and only if (c, d) E 8 S (a, b) where
S = SgA ({a, b, c, d} ). '

If a class K has the CEP then HS(A) ~ SH(A) for all A E K.

0.4.1 Examples of Varieties. In each case listed below, the class of all algebras
named' is a variety (of the indicated type).

(1) Semigroups, i.e., algebras (S;·) of type (2), where· is associative on S.

(2) Groups, considered as algebras (G; +, -,0) (sometimes written (G; ,,-1, e))
of type (2,1,0). Occasionally we take the liberty of referring to the (+, -)­
reduct of a group as a group.

(3) Abelian groups.

(4) Lattices, considered as algebras (L; V, 1\) of type (2,2).

(5) Distributive lattices.

(6) Modular lattices.

(7) Booleanalgebras, considered as algebras (B; V, 1\,' ,0,1) oftype (2,2,1; 0, 0).

(8) Rings, considered as algebras (R; +, " -,0) of type (2,2,1,0).

(9) Rings with identity, considered as algebras (R; +,', -,0,1), oftype (2,2,1,0,0),
where we do not insist that °=1= 1.2

2The class of rings with identity R =' (R; +,', -,0,1) such that °¥- 1 is not a variety; it
is obviously not closed under homomorphic images.
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(10) Left R-modules M, (where R is a fixed ring), considered as algebras
(M; {+, -, O} U {f : r ER}), where for each r E R, the operations +, -,0, f
have respective arities 2,1,0,1. For each m E M and r E R, f(m) is the
"scalar multiple" usually denoted by module theorists as rm.

(11) Unitary left R-modules M, (where R is a fixed ring with identity, 1); these
are as in (10) but, for all m E M, must satisfy i(m) = m.

It is well-known that all of the above varieties, except for the variety of
semigroups, are congruence modular. 3 The variety of lattices is congruence
distributive [FN42] (hence the same for distributive or modular lattices and for
Boolean algebras). The variety of groups is congruence permutable; it follows
that the same is true for Abelian groups, for rings and for modules (of all kinds
described above); but none of these varieties is congruence distributive. The
variety of Boolean algebras is also congruence permutable.

In this thesis we assume a rudimentary knowledge of the algebras mentioned
above; where more sophisticated facts (e.g., about modules) are required, we
give detailed references. Axioms for all of the above varieties may be found in
[BS81, pp24 -25].

0.4.2 Ultrafilters and Ultraproducts. Let S = (S;:=:;) be a lower semilattice. A
nonempty subset 9 of S is called a filter of S if and only if for any a, b E S we
have

(i) a, bEg implies a /\ bEg and

(ii) a E 9 and b 2: a implies bE g.

If B = (B; V, /\,' ,0,1) is the Boolean algebra arising from a Boolean lattice
(B; :=:;), by a filter of B, we simply mean a filter of (B; :=:;). For any set I, a
filter over I shall mean a filter of the Boolean lattice (P(I); ~).

Lemma 0.30. Let B = (B; V,/\,' ,0,1) be a Boolean algebra and 9 a filter of
B. Then 1 E g. Also 9 is proper (i. e., 9 i= B) if and only if 0 ~ g.

An ultrafilter of a Boolean algebra B is a proper filter of B that is maximal,
with respect to ~, among all proper filters of B. The next result is a routine
application of Zorn's Lemma.

Theorem 0.31. Let B = (B; V, /\,' ,0,1) be a Boolean algebra. If:F is a
proper filter of B then there exists an ultrafilter U of B such that :F ~ U.

Let {Ai : i E I} be a family of algebras of the same type and let a, b E

TIiEI Ai' The equalizer [[a = b]] of a and b is defined to be {i El: a(i) = b(i) }.
Let 9 be a filter over the index set I. We define a binary relation ()g on ITiEI A

3A slick proof of this appears in Examples 2.4 and 2.5.
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as follows: for a, b E TIiEI Ai,

(a, b) E (}g if and only if [[a = b)] E Q.

Then (}g is a congruence relation on TIiEI Ai; the quotient algebra (IliEI Ai) / (}g

is called a reduced product and denoted by TIiEI AdQ. If Q is an ultrafilter over
I, we call TIiEI AdQ an ultraproduct of the family {Ai : i E I}. If a E IliEI Ai,
we write a/Q for a/(}g.

Lemma 0.32. Let {Bi : i E I} be a family of algebras of the same type and
let U be an ultrafilter over I. Let C = TIiEI Bi and let D be the ultraproduct
C / (}u = IliEI BdU, where

(}u = {(Cl,C2) E C 2 : [[Cl = C2]] E U} (E Con(C)).

Let ai E Con(B i ) for each i E I and define

IT ai := {(Cl, C2) E C2 : (cl(i), C2(i)) E ai for all i E I}
iEI

and
'f} = {(Cl,C2) E C 2

: {i E I: (cl(i),C2(i)) E ai} E U}.

Then 'f), fliEI ai E Con(C) and'f} = (}u V (IliEI ai) in Con(C).

Proof.

The verification that 'f), IliEI ai E Con(C) is straightforward and clearly
(}u U (TIiElai) ~ 'f). Let (}u U (TIiElai) ~ (J" E Con(C). Let (Cl,C2) E 'f). Then

J:= {i E I: (cl(i),C2(i)) E ai} E U.

Define a E C by :
. {C2 (i) if i E J

a('/,) = . cl(i) if i E 1\ J.

Then (Cl, a) E IliEI ai and Ca, C2) E (}u, so (Cl, a), (a, C2) E (J", hence (Cl, C2) E (J".

Thus 'f) ~ (J". It follows that 'f) = (}u V (fliEI ai)'

o
We shall use the following results about ultraproducts:

Lemma 0.33. [BS81, Lemma 6.5, p146]

If {Ai: i E I} is a finite set of finite algebras, say {B l , ... , B k } (where I
is not assumed to be finite), and U is an ultrafilter over I then IliEI AdU is
isomorphic to one of the algebras B l , ... ,Bk , namely to that B j such that

{i E I: Ai = B j } E U.

We shall use the symbol Pu to denote the class operator used to obtain
ultraproducts.
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Theorem 0.34. (J6nsson's Theorem) [J6n67]

Let K be a class of algebras of the ·same type such that V (K) is a congruence
distributive variety. If A is a subdirectly irreducible algebra in V (K), then

A E HSPu(K);

hence
V(K) = IPsHSPu(K).

Theorem 0.35. [BS81, Theorem 2.14, p213]

Every algebra A can be embedded into an ultraproduct of finitely generated
subalgebras of A.

0.5 Terms and Polynomials. Let T = (F, ar) be a fixed type (i.e., language)
of algebras and A = (A; F) a T-algebra with An F = 0. Let AI = {a

l

: a EA}
be a "copy" of A disjoint from A U F. (By this we imply that a t-+ a

l
(a E A)

is one-to-one.) We define F[A] = F U AI and a function ar' : F[A] -t w by
ar' = ar U {(a', 0) : a E A}. Let T[A] be the type (F[A]' ar'). A is the
F-reduct of a T[A]-algebra AI where (al)A' = a for all a E A. For simplicity
of notation, however, we usually denote each a' by a, unless there is a danger
of confusion.

Let X be a set whose elements will be called variables.4 The set T(X) of
all T- terms over X is defined to be the smallest set such that

(i) X <;;;; T(X);

(ii) if tI, ... ,tn E T(X) and f E F with ar(J) = n then the formal expression
f(tl' ... ,tn ) is an element of T(X). (We take this to imply that c E T(X) for
every nullary operation symbol c E F.)

For t E T(X) and Xl, ... ,Xn E. X, if we write t as t(XI, ... ,xn ) we mean
that the variables occurring in t are among Xl, ... ,Xn- We call t an n-ary .
term if the number of (distinct) variables that occur in t is at most n.

Let t(XI' ... ,xn ) E T(X) and let B be a T-algebra. We define a map
tB

: En -t E, called the term function of t on B, recursively as follows: for
bl , ... ,bn E E,

(i) if t is a variable, Xi (where 1 :::; i :::; n), then tB(bl , ... ,bn ) = bi;

. (ii) if t has the form f(tl(xI, ... ,xn ), ... ,tk(XI, ... ,xn )), where f E F and
ar(J) = k and t~, ,t~ : En -t E have been defined then

tB(bl , ,bn) = fB(t~(bl"" ,bn), ... ,t~(bl"" ,bn)).

4We can always arrange that X is disjoint from F U A U A' U F for any single algebra A
under discussion, so we shall assume that this is the case.
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We take this to imply that if t is a constant symbol c of T then tB = cB.

Replacing T by T[A] in the above-definition, for each nEw, the n-ary terms
t (over X) of the language T[A] are now also defined. Their corresponding
term functions on the algebra A' shall be called the n-ary polynomials (or
n-ary polynomial functions) of A.

The following theorem establishes that term functions behave like funda­
mental operations with respect to congruences and homomorphisms and that
they can be employed in a useful description of the algebra generated by a
given set. Theorem 0.37 then shows that polynomial functions are similarly
useful when it comes to describing principal congruence generation.

Theorem 0.36. [BS81, Theorem 10.3, p63]

(i) If p is an n-ary T -term (over X) and () E Con(A) and
al, . .. ,an, a~, . .. ,a~ E A with (ai, a:) E () for i = 1, ... ,n then

(pA(al"" ,an),pA(a~,... ,a~)) E ().

(ii) If p is as in (i) and a : A -+ B is a homomorphism then

a(pA(al"" ,an)) = pB(a(al)"" ,a(an)) for all ab'" ,an EA.

(iii) If Y <;; A then SgA(y) = {pA(al' ... ,an) : p is an n-ary T-term for
some nEw and some al, ... ,an E Y}.

In particular, if B is a subalgebra of A, p is an n-ary T-term and bl , ... ,bn E
B then pA(bl , . .. ,bn) = pB(bl , ... ,bn).

Theorem 0.37. (Mal'cev's Lemma) [Ma154] [Dud83b] (See also [BS81, Lemma
3.1, p221]) .

For an algebra A and a, b, c, d E A, the following conditions are equivalent:

(i) (c, d) E eA(a, b).
(ii) There exist nE w (n >0) and binary polynomials h, ... ,fn of A such

that

c h(a, b),
fi+l (a, b) for all i E {I, ... ,n - I},
d.

(iii) There ·exist nEw (n > 0) and unary polynomials gl, ... ,gn of A and
pairs (uI,vd, ... , (un, vn) such that {Ui, vd = {a, b} for all i E
{I, ... ,n} and



c gl(U1),

gi+1 (Ui+l) for all iE {l, ... ,n - l},

d.
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Let A be an algebra. A binary relation 'fJ on A is called a semicongruence of
A if it is reflexive and compatible. In this case, for any n-ary polynomial p of
A, if (ai, bi) E 'fJ for all i E {l, ... ,n} then (p(a1"" ,an ),p(b1, ... ,bn )) E 'fJ. .

The set SetA) of all semicongruences of A is an algebraic closure system
in (P(A x A); ~), hence it is the universe of an algebraic lattice SetA). For
X ~ A2 , the leastsemicongruence of A containing X (i.e., the intersection of
all semicongruences of A containing X) is denoted by aA(X). We abbreviate
aA(Ha, b)}) by aA(a, b).

The following refinement of Mal'cev's Lemma will be labour-saving later.

Lemma 0.38. [Dud83a]

Let A be an algebra and a, b E A. Let Y = {(c, d) E A2 : there exists a unary
polynomial q of A such that q(a) = e and q(b) = d}. Then aA(a, b) = Y.

0.6 Model Theoretic Algebra. We continue to consider a fixed type T =
(F, ar), a given T-algebra A = (A; F) and a set X (of variables). The set of
(first order) formulas of type T (or T-formulas) over X is the smallest set S
of expressions (i.e., finite strings of symbols) that use only symbols from

F U X u H,)} U {I\, V, -',.-t, f-t, 'v', 3,~} U {,} 5

such that (i) all T-equations p ~ q (p, q E T(X)) over X are elements of S .
and (ii) whenever cl>, cl>1, cl>2 E S and x E X then S also contains each of:

(cl>d 1\ (cl>2), (<1>1) V (<1>2), ,..,(<1»,
(<1>1) .-t (<1>2)' (cl>l) f-t (<1>2),
'v'X ( <1> ), 3x (cl> ).

We adopt standard bracket-omission conventions. We usually abbreviate
-,(p ~ q) as p '*' q. Formulas of the form p ~ q and p '*' q are called atomic
and negated atomic formulas, respectively. Let cl>l and cl> be T-formulas over
X and x EX. We call <1>1 a subformula of <1> if it is a consecutive string of
symbols occurring in <1>. An occurrence of x in cl> is called free if it is not an
occurrence of x in any subformula <1> of the form 'v'x('lJ) or 3x('lJ); otherwise it
is called a bound occurrence of x. A free variable of cl> means a variable y E X
that has a free occurrence in cl>. A (first order) T-sentenee is a T-formula with
no free variables. If Xl, ... ,Xn EX, we sometimes write <1> as cl> (Xl, ... ,Xn )

5This union is assumed disjoint, and disjoint from A U A' U F.
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to indicate that the free variables of <P are all among Xl, ... ,Xn. We call <P
quantifier-free if the symbols V and :3 do not occur in <P.

Let <P(XI, ... ,xn ) be a T-formula. If t l , .. , ,tn are T-terms then
<I>[tl , ... ,tn ] denotes the T-formula resulting from replacing, simultaneously,
each free occurrence of Xi in <P by t i for all i E {I,... ,n}. In particular, if
aI, ... ,an E A then <I>[al" .. ,an] is a T[A]-sentence. The atomic sentences
of. T[A] all have the form p[al' ... ,an] ~ q[al' ... ,an] for some p, q E T(X)
and aI, ,an E A. We define A F p[al' ... ,an] ~ q[al' ... ,an] to mean that
pA(al' ,an) = qA(al' ... ,an)' For other (i.e., non-atomic) sentences <P of
T[A], we define A F <P (to be read as A satisfies <P or as <P is true in A or as
<I> holds in A) in the obvious recursive way and we use ~ to mean "does not
satisfy". For example, for sentences <P, <Pr, <P2 of T[A],

A F <PI -of <I>2 denotes that A ~ <PI or A F <P2 while

A F Vx <I> (x) denotes that for every a E A, A F <p[a].

The diagram D(A) of A is defined as the set of all atomic or negated atomic
T[A]-sentences <P such that A F <P.

For a formula (not necessarily a sentence) <P of T[A] whose free variables, in
order of their first occurrence in <P, read from left to right, are Xl, X2, ... ,Xn,
the (universal) closure'~ of <P is the T[A]-sentence VXIVX2 ... VXn<P; we define
A F <P to mean A F ~ in this case. For a class K of T-algebras and a set ~
of T[A]-formulas, we define A F ~ to mean that A F <P for all <P E ~, while
K F ~ means that B F ~ for all B E K, and K F <P abbreviates K F {<p}.
If A F ~ we call A a model of ~.

For a set ~ U {<p} of T-sentences over X, we define ~ f-Th(T) <P (or, briefly,
~ f- <P if T is understood) to mean that for every T-algebra B, if B F ~ then
B F <P.6

We abbreviate 0 f-Th(T) <P as f-Th(T) <P (or f- <p) and call <P a T~ theorem if
this is the case. If we wish to give Th(T) a concrete meaning we can define
it as the set of all T-theorems; we will call this set the first order theory with
equality over the language T.

For a set ~ of T-sentences and for T-formulas <PI, <P2' we say that <PI and <P2
are logically equivalent modulo ~ if ~ f-Th(T) <PI ~ <P2' If, in addition, ~ - 0,
we say that <PI and <P2 are logically equivalent. 7

6By the Validity and Completeness Theorems of first order logic, E f-Th(T) <I> may be
characterized syntactically by the existence of a first order "proof" of <I> "from" E (see, e.g.
[Men87]) but such a syntactic perspective will not be required in this thesis.

7To avoid ambiguity, if E contains T-formulas that are not sentences, we leave the ex-
pression E f- <I> undefined; we never use such expressions in this thesis. .
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AT-formula <P (over X) is said to be in prenex form if it is of the form
QlXlQ2X2 . .. QnxnW where nEw .and Ql, Q2,'" ,Qn E {V,:J} and W is a
quantifier-free formula. 8

A formula <P in prenex form is called universal [respectively, existentia~ if
the symbol :J [respectively V] does not occur in it; it is called positive if no
symbol from {/\, V," -+, B} other than /\ and V occurs in it.

A formula <P is a V:J- fomula if it is in prenex form and all (if any) occurrences
of V in 9? precede all (if any) occurrences of :J in <P.

We abbreviate formulas of the forms <Pl/\ <P2/\' .. /\ <Pn and <PI V<P2 V... <Pn by
A?=l <Pi and V?=l <Pi, respectively. A T-quasi-equation (over X) is a formula of
the form (A?=l <Pi) -+ W, where each of <PI, <P2,'" ,<Pn , Wis aT-equation p ~
q (p, q E T(X)). The universal closure 1> of a T-quasi-equation [respectively a
T-equation] <P is called a T-quasi-identity [respectively, a T-identity].9

A class K of T-algebras is said to be axiomatized by a set E of T-formulas
if K is the class of all T-algebras B such that B 1= E.

A class K of T-algebras is called a T- (quasi-)equational class if it is axiom­
atized by a set of T-(quasi-)identities. We often drop the prefix T- when the
type is understood.

Theorem 0.39. (Mal'cev) [BS81, Theorem 2.23, p218]

The following are equivalent for a class K of T -algebras:

(i) K is a quasi-equational class.

(ii) K is closed under the class operators I, S,P and Pu .

(iii) K = ISPPu(K') for some class K' ofT-algebras.

A quasi-equational class is also called a quasivariety. It follows from the
above that, for any class K of T-algebras, ISP Pu(K) is the smallest T-quasi­
variety containing K. We therefore write Q(K) = ISPPu(K) and call this
the quasivarietygenerated by K.

Theorem DAD. (Birkhoff's Theorem) [BS81, Theorem 11.9, p75]

Let K be a class of T-algebras. Then K is an equational class if and only
if K is a variety.

Let <P be a T-formula over X with free variables Xl, ... ,Xn E X and let E
be a set of T-sentences over X. We say that <P persists (modulo E) under

(i) extensions (ii) subalgebras (iii) homomorphisms (iv) unions of chains

8The case n = 0 is allowed, so every quantifier-free T-formula is in prenex form.
9From the point of view of satisfaction, however, it is harmless to blur the distinction

between "identity" and "equation".
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(respectively) provided that for any T-algebras A, B such that A, B F ~ and
for any aI, ... ,an E A, the following (respective) conditions are met: .

(i) if A :::; B and A F <I>[al" .. ,an] then B F <I>[al" .. ,an];

(ii) if A :::; Band B F <I>[al' ... ,an] then A F <I>[al, ... ,an];

(iii) if J : A ~ B is a homomorphism and A F <I>[al"" ,an] then B F
<I>[j(al), ... ,J(an)];

(iv) if B = Ua<,BAa is the union of a chain (Aa : a < {J) of T-algebras
satisfying ~ and A = Aa and Aa. F <I>[al" .. ,an] for all a < {J then B F
<I>[al" .. ,an]'

Of course if ~ ~ Th(n (e.g. if ~ =: 0) then all the above references to ~

may be omitted. Parts (i) and (ii) of the next result are consequences of the
Los-Tarski Theorem (see [Hod97, Theorem 5.4.4, Corollary 5.4.5]), (iii) is a
specialization of Lyndon's Theorem (see [Hod97, Corollary 8.3.5]) while (iv) is
called the Chang-Los-Suszko Theorem (see [Hod97, Theorem 5.4.9]).

Theorem 0.41. Let <I> be a T-formula and ~ be a set of T-sentences (over
X). Then <I> persists (modulo ~) under

(i) extensions (ii) subalgebras (iii) homomorphisms (iv) union of chains

(respectively) if and only if <I> is logically equivalent (modulo ~) to a

(i) existential (ii) universal (iii) positive (iv) \lg

T-formula (respectively).

A property P that T-algebras either do or do not possess is said to be
(first order) definable (modulo a set ~ of T-sentences) if there is aT-formula
(equivalently, aT-sentence) <I> such that the T-algebras satisfying ~ that have
property P are just the T-algebras satisfying ~ U {<I>}.

If 0 < k < w then the property of having at least k elements is definable by
a formula <I>k; e.g., we may take <I>3 to be

3xgygz((x ~ y) /\ (x ~ z) /\ (y ~ z)).

If Wk is <I>k /\ (...,<I>k+l) then Wk defines having exactly k elements. Having at
. most k elements is definable by 'IF I V W2 V ... V Wk.

The following theorem accounts for the importance of ultraproducts.

Theorem 0.42. (los' Theorem) [BS81, Theorem 2.9, p210]

. Given T-algebras Ai, i E I, an ultrafilter U over I, any (first order) T-
formula <I>(Xl, ... ,xn) and any aI, ... ,an E lliEI Ai, we have

IT AdU F <I>[aI/U, ... ,an/U] iff {i El: Ai F <I>[al (i), ... ,an(i)]} E U.
iEI .
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Thus, if a first order formula holds in all members of a class K of T-algebras
then it holds in any ultraproduct of members of K. In particular:

(i) First order definable properties are preserved by ultraproducts.

(ii) If IAil < k E w for all i E I then IDiEl Ai/UI < k, regardless of III and
of IFI (where T = (F, ar)). Similarly for :S, =, >, ~ k.

A set ~ of T-formulas over X is said to be satisfiable if there is a T- algebra
B and a function f : X --t B such that for any 1> = 1>(Xl,'" ,xn ) E~, we
have B F1>[J(Xl)".' ,f(xn )]. (In this case we also say that ~ is satisfiable
in B.) The following strong form of the Compactness Theorem of first order
logic will be needed. Since most texts on logic state less general forms of the
theorem, we sketch the proof here.

Theorem 0.43. Let f be any set ofT-formulas over X such that every finite
subset of f is satisfiable. Then f is satisfiable.

Proof.

Let Pw(r) be the set of all finite subsets of f. For each ~ E Pw(r), choose
a T-algebra At:>. and a function f t:>. : X --t At:>. such that whenever 1> E ~

has free variables Xl,··· ,Xn, then At:>. F 1>[ft:>.(xl), .. ' ,ft:>.(xn)] and define
Jt:>. = {~I E Pw(f) : ~' ;2~}.

Let :F = {J ~ Pw(f) : J ;2 Jt:>. for some ~ E Pw(f)}. Then:F is a
proper filter over Pw(r) and is contained in an ultrafilter U over Pw(r) (by
Theorem 0.31).

Let C = Dt:>.E1'",(r) At:>. and let C/U be the corresponding ultraproduct.
Define f : X --t C and 9 : X --t CjU by

(f(x))(~) = ft:>.(x) and g(x) = f(x)/U (x E X and ~ E Pw(f)).

For each 1> E f with free variables Xl, ... ,Xn , say,

{~ E Pw(f) : At:>. F 1>[(f(xd)(~),···, (f(xn))(~)]} ;2 J{qi} E :F ~ U

so by Los' Theorem, C/U F 1>[g(Xl)' ... ,g(xn)].

o
The Compactness Theorem is usually stated with the added assumption

that f consists of T-sentences, in which case the function f in the definition
of "satisfiability" plays no role and the notion· of satisfiability reduces to that
of possessing a model. From this one derives the next corollary easily; it is
also known as the Compactness Theorem.
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Corollary 0.44. [BS81, Corollary 2.13, p212]

Let 'E U {<p} be a set of T -senten-ces (over X) such that 'E f-Th(T) <P. Then
there exists a finite subset 'E' of 'E such that 'E' f-Th(T) <P.

Theorem 0.45. (Downward Lowenheim-Skolem Theorem) [Hod97, Corollary
3.1.4]

Let B be a T-algebra (recall that T = (F, ar)) and Y ~ B and let m be an
infinite cardinal such that IF\ +IY\ ~ m ~ IBI. Then there is a subalgebra C
of B with Y ~ C and ICI = m such that C and B satisfy exactly the same
(first order) T -sentences.

0.7 Free AIgebras. We continue to assume that all algebras have type T =
(F, ar); for each nEw, let Fn = {f E F : ar(j) = n}. We also continue to
assume that a fixed set (of variables) X is given.

Recall that T(X) is the set of all T-terms over X. If T(X) =1= 0 then
we define the term algebra of type T over X to be the T-algebra T(X) =
(T(X); G), with G = {fT(X) : f E F}, where, if f E Fn , the n-ary operation
fT(X) : (T(x))n -+ T(X) is defined by

fT(X) (PI, ... ,Pn) = f(PI,'" ,Pn) (PI,'" ,Pn E T(X)).

If f E Fo, interpret this as fT(X) = f·

Note that T(X) exists if and only if T(X) =1= 0 if and only if X =1= 0 or
Fo =1= 0. Note also that T(X) is generated by X ..

Let K be a class of T-algebras and U = (U; G) a T-algebra. Let Y ~

U be a generating set for U. We say that U has the universal mapping
property (UM.P.) for K over Y if the following condition holds: for every A =
(A; GA) E K and every function a : Y -+ A, there exists a homomorphism
j3 : U -+ A which extends a, i.e., j3(y) = a(y) for all y E Y. In this case the
homomorphism j3 is unique, Y is called a set of free generators of U and U is
said to be freely generated by Y (with respect to K).

Theorem 0.46. [BS81, Theorem 10.8, p66]

If X =1= 0 or Fo =1= 0, the term algebra T(X) has the universal mapping
property for the class of all T -algebras over X.

Let K be a class of T-algebras and suppose T(X) exists. Define OK(X) =
n{<p E Con(T(X)) : T(X)j<pE IS(K)} E Con(T(X)); For each x E X,
define x = xjOK(X) and X = {x : x E X}, which we write as XjOK(X) .

. We define the K-free T-algebra over X (denoted FK(X)) to be the T-algebra
T(X)jOK(X), IfK contains a nontrivial algebra then the map from x H X
defines a bijection from X onto X.
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Note that FK(X) exists if and only if T(X) exists. If p = P(XI, . .. ,xn ) E

T(X), we write p for pFK(X)(XI, ... ,xn ) where pFK(X) is the n-ary term func­
tion on FK(X) associated with p. If FK(X) exists, then it is generated by X
since T(X) is generated by X. IfX is finite, say X = {Xl,," ,xn }, we often
write FK(XI, ... ,xn ) for FK(X) and call this the K-free T-algebra on n free
generators.

Theorem 0.47. (Birkhoff) [BS81, Theorem 10.10, p67]

Suppose T(X) exists, and let K be a class of T-algebras. Then FK(X) has
the UM.P. for K over X. IfU E V(K) is a T-algebra having the UM.P. for
K over a set Y and there is a bijection a : Y -+ X then there is a (unique)
isomorphism f3 : U rv FK(X) such that f3ly = a.

Corollary 0.48. [BS81, Corollary 10.11, p68]

If K is a class of T-algebras and A E K then for sufficiently large X, A E
H(FK(X)). More precisely, if A is n-generated (where n is any cardinal) and
IXI = n then A E H(FK(X)).

In general, FK(X) is not a member of K. The following theorem asserts,
however, that FK(X) is embeddable into a direct product of elements of K.

Theorem 0.49. (Birkhoff) [BS81, Theorem 10.12, p68]

Suppose T(X) exists, and let K be a class of T-algebras. Then FK(X) E
ISP(K). Thus, if K is closed under I, Sand P, in particular if K is a variety
or quasivariety, then FK(X) E K.

Theorem 0.50. [BS81, Theorem 11.4,p73]

Let K be a class of T-algebras and let p, q E T(X). Then the following
conditions are equivalent:.

(i) K F p ~ q.

(ii) FK(X) F p ~ q.
(iii) P= if in FK(X).
(iv) (p, q) E (}K(X).

An algebra. is said to be locally finite if every finitely generated subalgebra
of A is finite (i.e., has a finite universe). A class K of algebras is said to be
locally finite if every member of K is locally finite.

Lemma 0.51. Let A be an algebra, let K = V(A) = HSP(A), and let F =
FK(XI, ... ,in)' Then IFI ~ IAI(IAln). Thus, ifB E K is generated by at most
n elements of B then IBI ~ IA/(IAln).
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Proof.

Define p: F ---t A(An) by p(f) = tA -. (Recall that t abbreviates tF(Xl"" ,Xn)
E F for any t(XI, ... ,xn) E T(X).) Let t(XI, ... ,xn),s(XI, ... ,xn) E T(X).
If t = 8 then V F t(Xl, ... ,xn) ~ S(Xl, ... ,xn) by Theorem 0.50 and A E V
so for all aI, ... ,an E A, tA(al"" ,an) = sA(al' ... ,an), i.e., t A = sA, so p
is well-defined.

If tA = SA then A F t(Xl' ... ,xn) ~ S(Xl' ... ,xn) so V(A) F t(Xl' ... ,xn)
~ s(XI, ... ,xn) so f = 8. Thus p is one-to-one. Therefore IFI :::; IA(An)1 =
IAllAnl = IAI(/Aln). If B E K is n-generated, then by Corollary 0.48, B E

H(F), so IEI :::; IFI. 0

If IAI is finite in the above lemma then for every nEw and every n-generated
B E K, IEI is finite. Thus we have:

Corollary 0.52. [BS81, Theorem 10.16, p70]

A finitely generated variety is locally finite.

Results esablishing so-called "Mal'cev conditions" for classes of varieties
(as exemplified by Theorem 0.54 for congruence permutable varieties) usually
make crucial use of properties of free algebras. In particular, the following
strong variant of Theorem 0.50 will be needed in Chapter 2, where we treat
congruence modularity.

Theorem 0.53. [BS81, Theorem 12.1, p77]

Let V be a variety, andr,s,ri,si (i = 1, ... ,n E w). Let F = Fv(X). The
following conditions are equivalent:

(i) (1',8) E eF ({(1'i ,8i): 1:::; i:::; n});
(ii) V F (/\~l ri ~ Si) ---t r ~ s.

Theorem 0.54. (Mal'cev) [BS81, Theorem 12.2, p78]

A T-variety is congruence permutable if and only if there zs aT-term
p(x, y, z) such that

V F p(x, x, y) ~ y and V F p(x, y, y) ~ x.

A term p as described in the above theorem is called a Mal'cev term.

Theorem 0.55. [BS81, Theorem 12.3, p79]

Let V be a T-variety for which there is a ternary T-term m(x, y, z) such
that

V F m(x,x,y) ~ m(x,y,x) ~ m(y,x,x) ~ x.

Then Vis congruence distributive.
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A term m as described in the above theorem is known as a majority term.

We have mentioned that the variety· of groups is congruence permutable.
One can verify this by setting p(x, y, z) = x - y + z in Theorem 0.54. Simi­
larly, the congruence distributivity of the variety of lattices follows from The­
orem 0.55 using the term m(x, y, z) = (x V y) 1\ (x V z) 1\ (y V z). A detailed
proof of an analogue of Theorem 0.54 will be given in Chapter 2 for congruence
modular varieties.
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Chapter 1

Residually Small Varieties:
Categorical Properties

By Birkhoff's Subdirect Decomposition Theorem, the difficulty in analyzing
a variety V can be expected to be proportional to its "residual size", by which,
roughly speaking, we mean the sizes of the subdirectly irreducible algebras in
V and the number of such algebras. The condition "V is residually small" (De­
finition 1.20) below will amount to the requirement that, up to isomorphism, .
these algebras form a set (rather than a proper class).

The main result of this thesis is a theorem due to R. Freese and R. McKenzie
[FM81] which we present in Chapter 4. It establishes a sufficient condition for
the existence of a finite bound on the size of subdirectly irreducible algebras
in residually small finitely generated varieties and describes such a bound.

Our main aim in. this first chapter is to become familiar with residually
small varieties. We largely follow the approach ofW. Taylor in [Tay72] and
J. Baldwin and J. Berman in [BB75]. We first consider Taylor's characteriza­
tion of subdirectly irreducible algebras in terms of the existence of first order

. formulas (called "weak congruence formulas") with specific properties. Such
formulas are used in Baldwin and Berman's discussion of varieties with de­
finable principal congruences. We show that a residually small variety with
definable principal congruences has a finite residual bound and that a variety
of finite type with definable principal congruences has subdirectly irreducible
algebras of every infinite cardinality if it has infinitely many nonisomorphic
finite subdirectly irreducible algebras. These two theorems may be regarded
as responses to Quackenbush's Theorem [Qua71], which states that a locally
finite variety with only finitely many finite subdirectly irreducible algebras has
no infinite subdirectly irreducible algebra, and to the so-called "Quackenbush
Problem" and the related "RS Conjecture" to be discussed later.

This chapter includes a theorem that gives nine equivalent conditions for
residual smallness of a variety as well as a number of examples of residually
small varieties.
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Taylor's weak congruence formulas also provide a characterization of essen- .
tial extensions of an algebra. In the. first part of this chapter we consider this
characterization as well as other results involving essential extensions. These
results are used in the final section of this chapter which deals with transferable
injections and injective hulls of algebras.

In what follows, we continue to deal with a fixed type (i.e. language) T =.
(F, ar), unless we specify otherwise. Recall that Th(T) is the first order theory
with equality whose set of operation symbols is F and whose models are just
all T-algebras and that, given any T-algebra A = (A; F) we may consider the
extended type T[A] and the exteilded theory Th(T[A]) in which new constant
symbols are available corresponding to the elements of A. (See Sections 0.5
and 0.6 for details)

1.1 Essential Extensions. The first two theorems extend Mal'cev's Lemma
by showing that principal congruences on A and (a, b)-irreducibility can be
characterized by the existence of T-formulas with specific properties.

Proposition 1.1. [Tay72, Proposition 0.3]

Let A be a T-algebra, a, b, c, dE A and let () = 8 A (c, d). The following are
equivalent:

(1) (a, b) E () = 8 A (c, d).
(2) There exists aT-formula <P with four free variables, say <p(xo, Xl, X2, X3),

such that the following are true:

(i) <P is positive.

(ii) f-Th(n VyVz[(~x<p(x, x, y, z)) -+ y ~ z].
(iii) A 1= <p[c, d, a, b] .

Proof.

.. (1):::::}(2): Let (a, b) E 8 A (c, d). Then by Mal'cev's Lemma (Lemma 0.37),
there are T-terms ti(Xo, Xl, Y2,· .. ,Ym), 0 :::; i :::; n and elements a, b, e2, ... ,em
of A such that

a

tt(d, c, e2, ... , em)

t~(d, c, e2,· .. , em)

t~(c, d, e2,· .. , em)

ttt-l (c, d, e2, ... ,em) (0 :::; i < n)

b.

Define cI>(XO,XI,X2,X3) as

~zO::JZn~Y2 ... ~Ym[zo ~ X2/\ Zn ~ X3 /\ (zo ~ to(xo, XI, Y2, ... ,Ym)/\

to(XI, Xo, Y2,··· ,Ym) ~ tl(Xo, Xl, Y2,'" , Ym)/\

tl(XI, XO, Y2,··· , Ym) ~ t2(XO, Xl, Y2,··· ,Ym) /\ ...
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... 1\ tn(XI' XO, Y2, ... ,Ym) ~ zn)]'-

Note that <P is positive (and existential) and A 1= <p[c, d, a, b].

Let 'li be VyVz[(3x <p(x, x, Y, z)) -t Y ~ z]. Note that W is logically equiva­
lent to VyVzVx[<p(x, x, y, z) -t Y ~ z]. Choose an arbitrary T-algebra B. We
show Wis true in B. This will show that f-Th(T) W.

Let a', b' , c' E B and suppose <p[c' , c', a', b'] is true in B. Then there exist
e2, ... ,em E B such that

I B I I B I I I

a = to (c ,c ,e2, ... ,em) = ... = tn (c ,c ,e2, ... ,em) = b ,

so B 1= 'li.

(2)~(1): Suppose there is a first order formula <p that satisfies (i) - (iii).
Observe that in A/e we have c/e = d/e. By (ii), since A/e is aT-algebra,
VyVz[(3x <p(x, x, y, z)) -t Y ~ z] is true in A/e. Thus,

(3x <p(x, x, a/e, b/e)) -t a/e ~ b/e is true in A/e ; (*)

Now by (iii) , <p[c, d, a, b] is true in A and the onto map A : A -t A/e defined
by u H u/e ,is a homomorphism so by Theorem 0.41, since <p is positive,
A/e 1= <p[c/e, d/e, a/e, b/e]. Since c/e is d/e, 3x <p(x, x, a/e, b/e) is true in
A/e. By (*), a/e ~ b/e is true in A/e, i.e., (a, b) E e. n

Note that in (2)(i) above we could require <p to be existential, without
affecting the proof. This motivates the following definitions.

Definition 1.2. A congruence formula is aT-formula w(xo, Xl, X2, X3) of the
form

3zo... 3zn([zo ~ X2 1\ Zn ~ X3] 1\ 1\~~l3x2'" 3Xm(Zi ~ ti 1\ Zi+1 ~ ti(a)))

where each ti is aT-term ti(XO, Xl, X2, ... ,xm) and ti(a) abbreviates
ti(XI, Xo, X2, ... ,xm}.

Note that any congruence formula '1J is logically equivalent to an existential
T-formula and satisfies the first two conditions of Proposition 1.1, namely

(i) W is positive and

(ii) rTh(T) VyVz[(3x 'li(x, X, y, z)) -t Y ~ z].

Definition 1.3. A positive existential formula W with four free variables is a
weak congruence formula if it satisfies condition (ii) above.

Thus, any conjunction or disjunction of congruence formulas is logically
equivalent to a weak congruence formula.
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In summary: Given a T-algebra A and a, b, c, d E A, Mal'cev's Lemma
says that (a, b) E 8 A (c, d) if and only if A F <I>[c, d, a, b] for some congruence
(T-)formula <I> , while Proposition 1.1 says that "congruence formula" can be
replaced by "weak congruence formula" in this statement.

Corollary 1.4. [Tay72 , Corollary 0.4]

A T-algebra A with distinct elements a, b is (a, b)-irreducible if and only if
for all c, d E A with c =1= dJ there exists a weak congruence T -formula <I> such
that A F <I>[c, d, a, b].

Proof.

This follows directly from Theorem 0.19 (ii) and Proposition 1.1. 0

Lemma 1.5. [Tay72]

The following are equivalent for T -algebras B and A with A :::; B:

(i) For any T-algebra C J every homomorphism h : B -+ C whose
restriction hl A to A is a monomorphismJ is itself a monomorphism.

(ii) For any () E Con(B) with () =1= idBJ we have (}IA =1= idA ·

Proof.

(i)==>(ii): Assume (i). Let 'l/J E Con(B) such that 'l/JIA = idA . The nat­
ural map A : B -+ B/'l/J is a homomorphism with ker(A) = 'l/J. Therefore
ker(A)IA = 'l/JIA = idA , so AlA is one-to-one and by the assumption, A is one­
to-one. Thus, ker(A) = idB, i.e., 'l/J is idB'

(ii)==>(i): Assume (ii). Let f be any homomorphism from B to aT-algebra
C such that flA is one-to-one. Then ker(j) lA is idA , so by the assumption,
ker(j) is idB, i.e., f is itself one-to-one.

o

Definition 1.6. Suppose A is. a subalgebra of an algebra B. We call B an
essential extension of A if the conditions of the above lemma hold.

Evidently, if C is an essential extension of Band B is an essential extension
of A, then C is an essential extension of A.

In this section the weak congruence formulas described in Proposition 1.1
are used to establish the existence of essential extensions of an algebra A and
some of their properties, that are to be applied later in the chapter.



34

Lemma 1.7. [Tay72]

If B· is an (a, b) -irreducible algebra then B is an essential extension of A =
SgB({a, b}) :S B (hence B is an essential extension of C whenever a, b E C
and C :S B).

Proof.

Let B be (a, b)-irreducible (where a, b E B, a i= b). Take any () E Con(B)
with () i=- idB. Then there exist c, d E B such that (c, d) E () and c i= d, so
eB(c, d) =I- idB' Therefore (a, b) E eB(c, d), by (a, b)-irreducibility of B.

Now if A = SgB({a,b}) then (a,b) E BIA so ()!A =I- idA . Therefore B is an
essential extension of A. 0

Lemma 1.8. [Tay72]

If A :S B, A is (a, b)-irreducible and B is an essential extension of A, then
B is (a, b) -irreducible.

Proof.

Let idB i= B E Con(B). Since B is an essential extension of A, idA =I­
()IA E Con(A). Since A is (a, b)-irreducible, (a, b) E ()IA ~ (). Thus, B is
(a, b)-irreducible. 0

Corollary 1.9. [Tay72, Corollary 0.5]

An algebra B is an essential extension of an algebra A if and only if A :S B
and for each c, d E B with c i= d there exist a, b E A with a =I- b and a weak
congruence T -formula <P such that B ~ <P [c, d, a, b] .

Proof.

(=}) Suppose B is an essential extension of A. Then for any (c, d) E B x B
with c =I- d, idB =I- eB(c, d) E Con(B). Since B is an essential extension of A,
there exist (a, b) E eB (c, d) lA such that a =I- b. Since (a, b) E eB (c, d) there is
a weak congruence formula <P such that B ~ <p[c, d, a, b].

(~) Suppose A :S B and for each c, d E B with c =I- d there exist a, b E A
with a =I- b and a weak congruence formula <P such that B ~ <p[c, d, a, b].

Take any () E Con(B) with () i= idB' Then there exist c, d E B such that
(c, d) E () and c i= d. By the assumption, there exist a, b E A with a =I- band
a formula <P as in Proposition 1.1. Then (a, b) E eB (c, d) by Proposition 1.1.
Now eB(c, d) ~ B, so (a, b) E () but (a, b) E A x A and a =I- b, therefore
()!A =I- idA · Thus B is an essential extension of A.

o
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The following result, called the Erdos-Rado Theorem [ER56], will be needed
in subsequent theorems. It is stated without proof since the techniques re­
quired to prove it are combinatoriaf and beyond the scope of this thesis. For
any set A, let A(2) denote the set of pairs {a, b} ~ A such that a -# b.

Theorem 1.10. (Erdos-Rado Theorem) [ER56]

For an infinite cardinal rn, if A is a set such that IAI > 2m and A(2) = UV
where V is a set of sets such that IVI ::; rn, then there exist D E V and B ~ A
with IBI > rn such that B(2) ~ D.

. Recall that T = (F, ar). For T-algebras A and B, let Id(B) be the set
of T-identities holding in B and recall that D(A) is the set of atomic T[A]­
sentences and negations of atomic T[A]-sentences which hold in A.

Corollary 1.11. [Tay72, Corollary 0.7]

LetB be an essential extension of A, with IBI > 2m
, where m = No+IAI+IFI.

Then there exist a, bE A, a -# b, and a weak congruence T-formula <I> such that

D(A) U Id(B) U {<I>(Xi' Xj, a, b) : i < j < w}

is satisfiable.

Proof.

Let A be the set ofall ,\ = (<I>, a, b) where <I> is a weak congruence formula,
a, b E A and a -# b. Let =5. be a linear order of B (then for every a, bE B, a -< b
or a >- b or a = b).

For each ,\ = (<I>, a, b) E A we define

CA = {{c, d} E B(2) : c -< d and B F <I>[c, d, a, b]}.

We show B(2) = U{CA : ,\ EA}.

For every {e, f} E B(2), e -# f and since B is an essential extension of A,
by Corollary 1.9, there exist a, b E A with a -# b and a weak congruence
formula <I> with B F <I>[e, f, a, b]. Since e -# f we have e -< f, say. (If
f -< e, define 'It(x,y,z,w) to be <p(y,x,z,w) and use 'It instead of <1». Thus,
{e,f} E CA' where'\ ~ (<1>, a, b), therefore {e,f} E U{CA :,\ E A}, therefore
B(2) ~ u{CA : ,\ EA}. Clearly, equality follows.

Since IAI = rn, I{CA :'\ E A}I ::; m so since IBI > 2m and B(2) = U{CA :,\ E

A}, by Theorem 1.10, there exists ,\ E A and C ~ B with ICI > rn such that
C(2) ~ CA for this'\ = (<1>,a,b) EA. Since ICI > rn,C is infinite.

We show D(A) U I d(B) U {<1>(Xi' Xj, a, b) : i < j < w} is satisfiable. Since·
C is infinite, C has a denumerable subset, say {co, Cl, C2, ... } with Co -< Cl -<
C2 -< .... Let X be the set of variables {xQ : a < w}. We must show
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there is a function f : X -+ B such that for each W E D(A) U Id(B) U
{ep(xi,xj,a,b) : i < j < w} withfree variables xall xa2 ' ... 'xan ' we have
B F w[f(xa1 ), f(x a2 ),··· ,f(xaJ].

Define f : X -+ B by f(Xi) = Ci (i E w). Since A U C ~ B, a, b, Co, Cl, .. · E
B.

(i) Sentences from D (A) have no free or bound variables and hold in A (hence
in B) regardless of the above substitutions.

(ii) Sentences in I d(B) have no free variables and hold in B, by definition of
Id(B).

(iii) For any i < j < w, for our fixed a, b and for>.. = (ep, a, b) we have
{Ci,Cj} E C(2) ~ CA so B F ep[Ci,Cj,a,bJ, i.e., B F'lT[f(Xi),f(Xj),a,b].

o
Definition 1.12. An algebra A is an absolute retract in a variety V if A E V
and whenever A :S T E V, there exists a homomorphism f retracting T onto
A, i.e., f : T -+ A and the restriction of f to A is the identity map on A.

Lemma 1.13. [Tay72, Lemma 0.8]

Let V be a variety, A, B E V and let B be an essential extension of A.
Then B is an absolute retract in V if and only if no proper extension of B in
V is an essential extension of A.

Proof.

(=}) Let B be an absolute retract in V. Let T be any proper extension of
B in V, i.e., B < T. We show T is not an essential extension of A, i.e., we
show for some OT E Gon(T) with OT =1= idT we have (OT)IA = idA .

Since B is an absolute retract in V, there exists an onto homomorphism
f : T -+ B such that fiB is the identity map on B. Define Of = ker(f), so
Of E Con(T). We show Of =1= idT . Now B < T so for any C E T \ B, let
b = f(c) E E, so C =1= b. Then f(c) = f(b) = b so (c, b) E Of but C =1= b, so
Of =1= i~.

Now 0/IB = idB so 0IIA = (OfIB)IA . idA ·

(~) Assume no proper extension of B in V is an essential extension of A.
Pick T E V such that B :S T. If T = B then the identity map from T(= B)
to B fulfils the required conditions. Suppose T is a proper extension of B.
Then T is not an essential extension of A (by the assumption) so there exists
OT E Con(T), OT =1= idT , such that (OT)IA = idA .

Let S = {O E Con(T) : 0=1= i~ and 0IA = idA }. S is nonempty since
OT E S and ~ partially orders S. Let (C;~) be a chain in S, i.e., C ~ Sand
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~ linearly orders C. We claim that C has an upper bound in S. (We can
assume C =1= 0, since any element of. S is an upper bound of 0 in S).

(i) uC E Con(T) since Con(T) is an algebraic lattice and C is a chain (see
Theorem 0.10) ..

(ii) For each {} E C, {} =1= idT . Moreover, C =1= 0 so we can choose such a {}.
Since {} ~ UC, we have uC =I=- idT .

(iii) For each (a, b) E UCIA' (a, b) E {} for some {} E C and (a, b) E A x A so
(a, b) E {}!A = idA, and so UCIA = idA.

From (i), (ii) and (iii) , uC E S, so uC is an upper bound of C in S. By
Zorn's Lemma, S has a maximal element, say {}m, i.e., {}m is maximal such that
(}m E Con(T), {}m =1= idT and {}mlA = idA· Note that T/{}m E V, since V is a
variety.

By the Correspondence Theorem (Theorem 0.17), any congruence relation
<P on T/{}m is of the form 'TJ/{}m where (}m ~ 'TJ E Con(T). For any 'TJ E Con(T)
such that {}m C'TJ, 'TJ/{}m =1= idTjOm and 'TJIA =1= idA (by the maximality of (}m)'

Define 9 : B --t T /(}m by g(b) = b/{}m for all b E B. Then 9 is a ho­
momorphism. Also, since {}mlA = idA and B is an essential extension of
A, {}mlB = idB , so 9 is one-to-one. Therefore B '"" g[B] ::; T/{}m (and
A '"" g[A] ::; T /(}m).

We show T /(}m is an essential extension of g[A]('"" A). Let <p E Con(T/(}m) ,
<P =1= idTjOm' Then <P = 'TJ/{}m where 'TJ E Con(T), {}m C 'TJ and

<Plg[A] = {(a/{}m, b/{}m): (a, b) E 'TJ and a/{}m, b/{}m E g[A]}

= {(a/{}m, b/{}m) : (a, b) E'TJIA}'

Further, since 'TJIA =1= idA , there exists (x, y) E 'TJIA such that x =1= Y and
x/{}m =1= Y/{}m, since {}mlA = idA· Now (x/{}m, Y/{}m) E <P19[AJ, so <P19[A] =1= idg[A]'

Thus T /{}m is an essential extension of g[A] and g[B] ::; T /{}m but no proper
extension of g[B] in V is an essential extension of g[A] (because g[B] :: B) so

. g[B] = T /{}m, i.e., 9 is onto, so 9 is an isomorphism.

Let A be the natural homomorphism A : T --t T / (}m defined by A(t) =
t/{}m, tE T. Then g-1 0 A is ahomomorphism from T to B and for every
b E B,(g-1 0 A)(b) = g-1(b/{}m) = b, so (g-1 0 A)/B = idB'

o

Corollary 1.14. [Tay72, Corollary 0.9]

Let V be avariety such that each A E V has, up to isomorphism, only a set
of essential extensions that are in V. Then for each A E V, some essential
extension of A is an absolute retract in V.
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Proof.

For each D E V, let BD be a subset of V consisting of essential extensions
of D, such that every essential extension E of D in V is isomorphic to just
one algebra in BD; call this algebra BD(E). Let A E V.

Claim 1: If C is a nonempty chain (ordered by subalgebrahood) of essential
extensions of A in V and U is the union of C, as defined in Section 0.3 then
U is an essential extension of A in V.

Since V is a variety it is axiomatizable by identities. Now identities are
\13 'sentences, so U E V, by Theorem 0.41, and A is a subalgebra of U. Let
idu =I- °E Con(U) and choose (x, y) E °with x =1= y. Since x, y E U there
exist B l , B 2 E C such that x E B l , Y E B2 and, without loss of generality,
B l ~ Bz (since C is a chain), so x, y E Bz, and (x, y) E 0IB2' Thus, idB2 =I­
0IB2 E Con(Bz) so idA =1= (0IB2)IA = OIA' since B z is an essential extension of
A. This shows that U is an essential extension of A, and Claim 1 is proved.

For each D E V, since BD is a set, there exists a cardinal m(D) such that
for every essential extension E of D in V, IEI ~ m(D) (*)

Define, by transfinite recursion, a sequence (Aa: a E On) (where On is the
class of all ordinals) as follows: .

Ao=A;

for a E On, let Aa+! = BAa (D), where D is a proper essential extension of
Aa in V, if such a D exists; otherwise,set Aa+l = Aa;

for a limit ordinal a, let Aa be the union of the chain of algebras (Ay: 'Y < a).

Note that Aa is a subalgebra of AfJ and an essential extension of A in V,
whenever a < (3 E On, by Claim 1.

Claim 2: For some (3 E On, we have AfJ = A"{ whenever (3 < 'Y E On.

Suppose not. Then the function F : a H Aa (a E On) is one-to-one and
A"{ is a proper subalgebra of Aa whenever 'Y < a E On.

Let m = meA) and let T be the set of all successor ordinals less than m+,
so ITI = m+. Using the Axiom of Choice, we can pick, for each a < m+, an
element g(a + 1) E Aa+! \ Aa. Then the function 9 : T -+ Am+ is one-to-one,
so IAm+ I 2: ITI = m+ > m, contradicting (*), so the claim is true.

Let (3 be the least ordinal as in Claim (2). Then by our construction, AfJ
has no proper essential extension in V and is therefore an absolute retract in
V (by Lemma 1.13).10

lOIn [Tay72] this result is proved by applying Zom's Lemma to the class of essential
extensions of A in V. This class is a proper class; its isomorpism classes form a set, but
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o

1.2 Definable Principal Congruences. We now specialize the characteriza­
tion of principal congruences by (weak) congruence formulas (Proposition 1.1)
to the notion of varieties with definable principal congruences. Conditions
under which varieties have definable principal congruences as well as some
properties of such varieties are explored. We continue to consider varieties V
of T-algebras, T = (F, ar). For any algebra A E V, and a, bE A, let

cl?[a, b, X2, xa](A) denote {(a2' aa) E A2 : A 1= cl?[a, b, a2, aa]}.

Definition 1.15. A variety V has definable principal congruences if there is
a (first order) T-formula cl?(xo, XI, X2, xa) such that for each A E V, and each
a, b E A, cl?[a, b, X2, xa](A) = eA(a, b). In this case we say that cl? defines the
principal congruences of V.

Theorem 1.16. [BB75, Theorem 1]

(i) A variety V of type T has definable principal congruences if there are
only finitely many congruence formulas which are pairwise inequivalent
and satisfiable in V.

(ii) If V has definable principal congruences the defining formula \lI is
equivalent in V to a weak congruence formula and persists under
extensions.

Proof.

(i) Let ~' be a set of T-equations that axiomatizes V. Let ~ be the set
of-sentences that are the (universal) closures of the equations in ~'. Suppose
that up to logical equivalence modulo ~, cl? 1 , ... ,cl?n are the only congruence
formulas satisfiable in V.

Take any A E V and any a, b, c, d E A. Now (c, d) E eA(a, b) if and only
if there is a congruence formula \lI'such that A F \lI[a, b, c, d] (by Mal'cev's
Lemma (Lemma 0.37)); if and only if A 1= V~l cl?i[a, b, c, d] (because cl?1, ... ,cl?n
are the only congruence formulas satisfiable in V); if and only if (c, d) E
(Vi=l cl?da,b,X2,Xa])(A). .

Since c,d E A were arbitrary, eA(a,b) = (Vi=l cl?da,b,X2,Xa])(A) so V has
definable principal congruences.

that set is not generally partially ordered by the embeddability relation (since anti-symmetry
may fail). Even if it is so ordered, Zorn's Lemma yields an essential extension of A that
may have proper essential extensions (isomorphic to it), which makes Lemma 1.13 difficult
to apply. For these reasons, the above (different) proof has been given.
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(ii) If 'lJ defines principal congruences in V but 'lJ is not a congruence for­
mula, let (cI>i : i E (3) be a well-orderi.ng ofthe inequivalent congruence formulas
in V that are satisfiable in V (where (3 is an ordinal).

First, if there are only finitely many such formulas, say n of them, then by
(i), cI> = Vi=l cI>i is a defining formula and is a weak congruence formula since
it is a disjunction of congruence formulas.

For any A E V and a, bE A, by definition of'lJ and by (i), 'lJ[a, b, X2, x3](A) =
8 A (a,b) = (Vi=l cI>i[a,b,x2,X3])(A), so for all c,d E A, A 1= 'lJ[a,b,c,d]
if and only if A 1= Vi=l cI>da, b, c, d]. Since a, b, c, d were arbitrary, A 1=
'lJ(XO,XI,X2,X3) f-+ (Vi=l cI>i(XO,XI,X2,X3)).

Thus, V 1= 'lJ(Xo, Xl, X2, X3) f-+ (Vi=l cI>i(XO, Xl, X2, X3)) (because A was arbi­
trary in V), i.e., ~ r-Th(T)' 'lJ f-+ (Vi=l cI>i)'

Secondly, suppose there are infinitely many cI>i' Add distinct new constant
symbols a, b, Cl, C2 to T; let T' be the resulting type. Let

r = ~ U {'lJ[CI' C2, a, b]} U {-,cI>dCI, C2, a, b] : i E (3}.

Note that r is a set of T' -sentences.

Suppose that every finite subset of r has a model. Then by the Compactness
Theorem (see the remarks following Theorem 0.43), r has a model. Let A' be
a model of r and A the T-reduct of A', so A E V (since ~ axiomatizes V).
We write a, b, Cl, c2 for the elements of A that interpret the symbols a, b, Cl, C2
in A', respectively.

Since A 1= 'lJ[CI, C2, a, b], we have (a, b) E 8 A(CI' C2), while for all i < (3, A 1=
-,cI>dCI, C2, a, b], contradicting Mal'cev's Lemma. Thus there is a finite subset
r ' of r such that r' has no model. We may assume without loss of generality
that

r' = ~" U {'lJ[CI, C2, a, b]} U {-,cI>dCI, C2, a, b] : j E {I, ... ,n}}

fOf some finite ~" ~ ~, some positive nEw and some i l , ... ,in E (3.

Thus, there is no A E V, and a, b, Cl, C2 E A such that 'lJ[CI, C2, a, b] and all
-,cI>dcI,c2,a,b],i E {I, ... ,n} are true in A. It follows that

n

V 1= 'lJ(Xo, Xl, X2, X3) -+ VcI>ij (XO' Xl, X2, X3).
j=l

On the other hand, by Mal'cev's Lemma and the definition of 'lJ,
V 1= (Vj=l cI>i)XO' Xl, X2, X3)) -+ 'lJ(Xo, Xl, X2, X3).

Thus, ~ f-Th(T) (Vj=l cI>ij (Xo, Xl, X2, X3)) f-+ 'lJ(Xo, Xl, X2, X3).

Since Vt,,=l cI>ij (xo, Xl, X2, X3) is logically equivalent to an existential formula,
'lJ persists under extensions, by Theorem 0.41.
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o

Theorem 1.17. [BB75, Theorem 2]

Let the variety V have definable principal congruences with defining for­
mula cl>(Xo, Xl, X2, X3). Then cl> persists in subalgebras if and only if V has the
congruence extension property.

Proof.

By Theorem 0.28, V has the congruence extension property if and only if V
has the principal congruence extension property; if and only if for any A ::; B E

V and ao, al E A, we have 8 B (ao, al)IA = 8 A(ao, al) (i.e., cl>[ao, aI, X2, x3](B)n
A2 ~ cl>[ao, all X2, x3](A)); if and only if for any A::; B E V and ao, al,a2, a3 E
A, A F cl>[ao, aI, a2, a3] whenever B F cl>[ao, aI, a2, a3] (Le., cl> persists under
subalgebras in V). 0

According to [BB75], the conditions of the above theorem hold exactly when
there is a quantifier free formula 'l1(xo, Xl, X2, X3) such that V F 'l1 B cl>.

Theorem 1.18. [BB75, Theorem 3]

If a variety V is locally finite and has the congruence extension property,
then V has definable principal congruence relations.

Proof.

For each hEW, let m(h) IFI, where F is the V-free algebra on h free
generators. Note that m(h) E w, because V is locally finite. Also, every h­
generated algebra C E V is a homomorphic image of F by Corollary 0.48, so
ICI ::; m(h).

Let T = T(x, y, z, u, V; w) and F = Fv(x, y, z, u, v, w) be the term algebra
and the V-free algebra on six free generators (respectively), so IFI = m(6) E w.
Since F = T /0 where, for s, t E T, sOt if and only if V F s ~ t, if and only
if s = sF(X, y, z, u, v, w) = tF(x, y, z, u, v, w) = E, there exists a finite sequence
t l ,··· ,tm(6) of distinct terms ti = ti(x, y, Z, u, V, w) E T such that for every
t E T, there is an i E {l, ... ,m(6)} with

V F t(x, y, z, u, V, w) ~ ti(x, y, Z, u, V, w)

(hence F = {tl, ... ,Em (6)})'

Let B = SgB(b2 , b3 , b4 , bs) be a 4-generated algebra in V. For any binary
polynomial f : B2 ----+ B of B, there exists a term p(xo, ... ,xm) and e =
e2, ... ,em E B such that for all bo, bl E B, f(bo, bl ) = pB(bo, bl , e). But each ei
is rf3(b2, b3, b4 , bs) for some term ri(z, u, v, w) in four variables,by Theorem 0.36
(iii) .

Therefore, for all bo, bl E B,
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f(bo, bl ) = pB(bo, bI, r~(bz, . .. , bs), ... , r~(bz, , bs)) = qB(bo, bl , bz, b3 , b4 , bs)

where q(x, y, Z, u, v, w) := p(x, y, rz(z, u, v, w), ,rm(z, u, v, w)) E T. Thus,
for some j E {l, ... , m(6)}, V ~ q ~ tj' Since B E V, we have f(bo, bd =
tf(bo,bl , bz, b3, b4 , bs), for all bo,bl E B.

Now for any a, b, e, d E B, by Mal'cev's Lemma, and the above fact about
binary polynomials, (e, d) E eB(a, b) if and only if there exists n ::; IBI ::;
m(4) E wand there exist distinct go, .. · ,gn E B and a finite n-sequence
a = So, . . . ,Sn-l of terms from {tl , . . . ,tm(6)} such that go = e, gn = d and for
all i E {O, ... , n - I}, .

Now there are only finitely many finite sequences of length::; m(4) that can
be chosen from {t l , ... ,tm(6)}' Let these be ao, ... ,aM, where MEw. Let
I; = {ao, ... ,aM}' For each a = So,·.· ,Sn-l E I;, let Wu = Wu(XO,XI,XZ,X3)
be the following first order formula, where x abbreviates Xo, XI, Xz, X3:

3z03zn[zo ~ Xz /\ Zn ~ X3/\

Zo ~ SO(Xo, Xl, x) /\ So (XI, XO, x) ~ SI(XO, Xl, x) /\ SI(XI, XO, x) ~ S2(XO, Xl, x)

/\ ... /\ Sn-Z(XI, XO, x) ~ Sn-I(XO, XI, x) /\ Sn-I(XI, XO, x) ~ zn]

and let W be the first order formula WUo V ... V WUM'

We have shown that for any 4-generated B E V and a, b, e, d E B, (e, d) E
eB(a, b) if and only if for some a E I;, B ~ Wu[a, b, c, d] if and only if B ~
w[a, b, e, d]. Let A E V and a, b, e, d E A and S = SgA(a, b, e, d). Then by
Corollary 0.29, (e, d) E eA(a, b) if and only if (c, d) E eS(a, b) (since V has
the congruence extension property), if and only if S ~ w[a, b, e, d], in which
case A 1= W[a, b, c, d].

Conversely, if A ~ W[a, b, e, d] then for some a E I;, A ~ Wu[a, b, e, d] so by
Mal'cev's Lemma, (e, d) E eA(a, b).

Thus (e, d) E eA(a, b) if and only if A ~ W[a, b, e, d]. Since A E V and·
a, b, e, d E A were arbitrary and W is independent of them, V has definable
principal congruences.·

o
The following definition will be needed in the next section.

Definition 1.19. For fixed elements a, b of an algebra A and a weak congru­
ence formula <I>, let

Cif? = Cif? (A, a, b) := He,d} E A(Z): A ~ <I>[e,d,a,b,J V <I>[d,e,a,b]}.
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If <I>(XO, Xl, X2, X3) is any conjunction or disjunction of congruence formu­
las, then A ~ V'XOV'XIV'X2V'X3[<I>(XO,Xr,X2,X3) ++ <I>(Xr,XO,X2,X3)], so C~ =
{{c, d} E A (2) : A ~ <I>[c, d, a, b]}.

1.3 Residually Small Varieties.

Definition 1.20. A variety V is residually small if there is some cardinal m
strictly greater than the cardinalities of all the subdirectly irreducible algebras
in the variety. In this case, the smallest cardinal m for which this is true will
be called the residual bound of V. We say a variety is residually < m if every
subdirectly irreducible algebra in the variety has cardinality < m. We call V
residually countable if it is residually < NI, residually finite if it is residually
< No and residually finitely bounded if it is residually < n for some nEw
(i.e., if it has a finite residual bound). We call V residually large if it is riot
residually small.

Lemma 1.21. Let V be a variety and m a cardinal. V has, up to isomor­
phism, only a set of m-generated algebras, i.e., there exists a set T of m­
generated algebras in V such that every m-generated algebra in V is isomorphic
to an algebra in T.

Proof.

Let F be the V-free algebra on m free generators (i.e. F Fv(X) where
IXI = m). Define T = {F/0 : 0 E Con(F)}. T is a set (because F and
Con(F) are sets). Now if A E V is m-generated then there is a surjective
homomorphism h : F ---+ A (Corollary 0.48) so A rv F /ker(h) E T. 0

The following theorem is an adaptation of [Tay72, Theorem 1.2, p37] and
[BB75, Theorem 5, p385] and states nine equivalent characterizations of resid­
ual smallness. The proof proceeds via (i)=>(ii)=>(iii)=Hiv)=>(v)=>
(vi)=> (vii)=>(i) then (ii)=>(viii)=>(ix)=>(vii).

Theorem 1.22. ° [Tay72, Theorem 1.2]

Let V be a variety of algebras of the type T = (F, ar) defined by a set E'
of equations, let E be the set of sentences that are the universal closures of
the equations in L;', and let n = No + IFI. Then the following conditions are
equivalent:

(i) There exists a cardinal m such that every subdirectly irreducible algebra
in V has cardinality ~ m (i. e., V is residually small).

(ii) For every weak congruence T-formula <I>, there exists a finite number
n = n( <I» such that

E f-'Th(T) V'YV'Z[(3XI ... 3xn 1\ <I>(Xi, Xj, y, z)) ---+ y ~ z].
l~i<j~n
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(iii)

(iv)

(v)
(vi)

(vii)

(viii)

(ix)

For each weak congruence I-formula <I> there is an integer n = n(<I»
such that whenever A is an (a, b) -irreducible algebra in V then there
is no set X ~ A with X(2) ~ Cif? and IXI > n.

If A is an (a, b) -irreducible algebra in V then for each congruence
I -formula <I> , there is an integer n such that the conclusion of (iii)
holds.

.. Every subdirectly irreducible algebra in V has cardinality :::; 2".

There are:::; 2(2") nonisomorphic subdirectly irreducible algebras in V.

There exists a set K such that V ~ ISP (K) .

If B E V is an essential extension of A then IBI :::; 2"+IAI.

Each A E V has, up to isomorphism, only a set of essential extensions
in V.

Moreover, if the above conditions hold then every A E V is a subalgebra of an
absolute retract in V. 11

Proof.

(i):::}(ii): Suppose (ii) fails and that m is as in (i). Let U be a set of variables
such that IU\ = m+ (the cardinal successor of m) with y (j. U and z (j. U and
let ::S be a linear order on U. The failure of (ii) implies that there is a positive
I-formula <I>(., ',', .) such that

I-Th(T) \fy\fx[(:Jx <I>(x,x,y,z)) -t y ~ z], but for any finite n,

~ IfTh(T) \fy\fZ[C3Xl'" :Jxn !\l'5:.i<j'5:.n <I> (Xi , Xj, y, Z)) -t Y ~ z], i.e., there is an
algebra in V in which
\fy\fZ[(:JXl ... :Jxn V1'5:.i<j'5:.n <I> (Xi , Xj, y, z)) -t Y ~ z] is not true. This means
that for any finite n, the set of I-formulas ~ U {<I> (Xi, Xj, y, z) : 1 :::; i < j :::;
n} U {y '*' z} is satisfiable.

Let r = ~ U {<I>(u,v,y,z) : u,v E U,u -< v} U {y '*' z}. Take any finite
subset f1. of r. Then f1. = ,,£" U {<I>(ui ,Vi, y, z) : i = 1, ... ,r} Un where ,,£" is
a finite subset of "£, l' E w, ui ,vi E U with ui -< vi for i = 1, ... ,1' and n is
either (/) or {y '*' z}. Rename ul,vl,u2,V2, ... ,ur,vr as Xr,X2,X3,X4,.·· ,X2r'

Now f1. ~ ~ U {<I>(Xi' Xj, y, z) : 1 :::; i < j :::; 2r} U {y '*' z} which is satisfiable.
Thus f1. is satisfiable. Since Li was an arbitrary finite subset of r, it follows
from the Compactness Theorem (Theorem 0.43) that r is satisfiable. Thus
there exists an algebra A E V and an assignment f : U U {y, z} -t A under
which the formulas of r are true in A.

llThe converse is also true [Tay72), but its (nontrivial) proof requires an excursion into
the theory of equationally compact algebras and will not be needed in this thesis.
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Let B E Con(A) be maximal in {p E Con(A) : (f(y), f(z)) (j. p}. Such
a B exists by a routine application _of Zorn's Lemma. We show that A/B is
subdirectly irreducible.

For any 'TJ E Con(A), if B c 'TJ then (f(y), f(z)) E 'TJ (by maximality of
B). Using the Correspondence Theorem, we may rephrase this as follows:

. any nonidentity congruence of A/B contains (f(y)/B, f(z)/B). Thus, idA / O =I
eA/°(f(x)/B, f(y)/B) = n(Con(A/B) \ {idA/ O}), and so A/B is subdirectly
irreducible (with eA/°(f(x)/B, f(y)/B) as its monolith).
By (i), IA/BI ~ rn. . (1)

Now let u, v E U, withu -< v. The natural map A : A -t A/B de­
fined by a H a/B is a surjective homomorphism, <I> is positive and A ~

<I>[f(u) , f(v), f(y), f(z)], so since homomorphisms preserve positive sentences
(by Theorem 0.41), A/B ~ <I>[J(u)/B, f(v)/B, f(y)/B, f(z)/B].

Now f(y)/B =I f(z)/B so it follows that f(u)/B =I f(v)/B (since r-Th(T)

VyVz[(:Jx <I> (x, x, y, z)) -t Y ~ z]). Thus, the map u H f(u)/B from Uta A/B
is one-to-one, so IA/BI 2: IUI = m+ > rn, which contradicts (1).

(ii)=>(iii): Assume (ii). Let <I> be weak congruence formula and n(<I» as in
(ii). Let A be an (a, b)-irreducible algebra in V (so a =I b). Suppose there
exists X ~ A such that X(2) ~ Cip and such that IXI > n(<I». Let aI,a2,'"

. be a sequence of distinct elements of X of length greater than n(<I». By (ii),
'E r-Th(T) VyVZ[(:JXl" .:Jxn 1\1~i<j~n(;P) <I> (Xi ,Xj, y, z)) -+ y ~ z].

Whenever 1 .~ i < j ~ n(<I» , we have {ai, aj} E X(2) ~ Cip, so A ~

<I>[ai, aj, a, b]. Then by (ii), we must have a = b, a contradiction.

(iii)=>(iv): Every congruence formula is a weak congruence formula.

(iv)=>(v): Let A E V be subdirectly irreducible. Then A is (a, b)-irreducible
for some a, b E Awith a =I b. Suppose IAI > 2". For any congruence formula
<I> and for fixed e, j E A, recall that Cip = {{c, d} E A (2) : A~ <I>[c, d,e, jn.
Let {c, d} E A(2). Then c =I d so eA(c, d) =I idA , so (a, b) E eA(c, d)
(since A is (a, b)-irreducible), so A ~ <I>[c, d, a; b] for some congruence for­
mula <I> of V, by Mal'cev's Lemma, so {c,d} E Cip. Thus, A(2) .~ U{C;p :
<I> is a congruence formula}, whence U{Cip : <I> is a congruence formula} =
A(2). . .

Now ther.e are at most n congruence formulas, so I{Cip : <I> is a congruence
formula} I ~ n so by Theorem-1.l0, there exist a congruence formula 'lJ and·
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a set X ~ A with IXI > n such that X(2) ~ Cw, contradicting (iv). Conse­
quently, IAI ~ 2":

(v)::::} (vi): Let C be a set such that ICI = 2". Let S be the class of all
T-algebras D, such that D ~ C and D is subdirectly irreducible.

We first show that S is a set. Suppose f E F with ar(J) = r E w. For each
DES, ID is a function from Dr to D, therefore fD ~ Dr x D ~ Cr x C ~

UrEw(cr X C), i.e., fD E P(UrEw(cr x C)) (a set). Now define G: S -t
. P(C) x TIjEF P(UrEw(cr x C)) as follows: if DES, let G(D) = (D; (fD)fEF).
G is one-to-one so S is equivalent to a subclass of a set, so S is a set.

Now let T be the class of all subdirectly irreducible algebras A in V. Let '"
be the equivalence relation on T defined by A '" B if and only if A '" B. By
(v), each equivalence class has a representativeD E S, and of course, distinct
classes have distinct representatives. It is therefore enough to show that ISI·~

2(2"). For this it suffices to show IP(C) x TIjEF P(UrEw (CT x C)) I~ 2(2").

Since ~o, IFI ~ n < 2", IP(C) x TIjEF P(UrEw(cr x C))I =

2 1C1 TI 2<E Ew ICl
r

·ICI) - 2(2") TI 2(2") - 2(2") 2(2") - 2(2"). .. jEF r -. jEF - . - .

(vi)::::}(vii): Recall that VSI denotes the class of subdirectly irreducible mem­
bers of V. By (vi) there exists a set K ~ VSI (with IKI ~ 2(2")) such that
every subdirectly irreduciblealgebra.in V is isomorphic to an algebra in K. By
Birkhoff's Subdirect Decomposition Theorem (Theorem 0.26), every algebra
in V is in IPs(VsI ), hence in IPs(K) ~ ISP(K). Thus, V ~ ISP(K).

(vii)::::}(i): Let K be a set with V ~ ISP(K). Then L = {IAI : A E K} is
a set of cardinals, so there exists a cardinal m with d ~ m for all dEL.

Now take B E VSI ' Then B E ISP(K), say B is isomorphic to a subalgebra
C of TIiE/Ai where Ai E K for all i E 1. Now C is a subdirect product of
the algebras 7ri[C] (i E 1), where-each 7rj : TIiEI Ai -t A j is the lh projection
homomorphism.Since each 7ri[C] is a subalgebra of Ai E K, B is isomorphic
to a memberofPsS(K). But B is subdirectly irreducible so B is isomorphic
to a member of S(K).

Now there exists A E K with B isomorphic to a subalgebra of A. Thus
IBI :::; IAI ~·m. Since B E VSI was arbitrary, the result follows.

(ii)::::} (viii) : Let B E V be an essential extension of A. Let X = {xa : a < w}
be a set of variables with y, z ~ X. Let m = n+ IAI = ~o + IFI + IAI. We
show that IBI ~ 2"+IAI = 2m. .
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Suppose IBI > 2m. Then by Corollary 1.11, there exist a,b E A with a =1= b,
and a weak congruence formula ll>L·",,) and an algebra C of type I[A] and
an assignment f : X -t C such that (1) C satisfies all atomic or negated
atomic I[A]-sentences that hold in A (hence, we may assume harmlessly that
A :::; C); and (2) for every I-identity s ~ t such that B F s~ t,we have
that C F S ~ t;· in particular, this is true for each s ~ t E ~/, since B E V, so
C F ~; and (3) whenever i < j < w, C F ll>[J(Xi) , f(xj), a, b].

Since ll> is a weak congruence formula, it follows from (ii) that there exists
nEw such that ~ t-Th(T) VyVZ[(:3Xl'" :3xn !'\1~i<j~n ll>(Xi, Xj, y, z)) -t Y ~ z].

Using the assignment j' : X U {y, z} -t C defined by j' = f U { (y, a), (z, b) },
we deduce from (2) and (3) that a = b, a contradiction. Therefore IBI:::; 2m.

(viii)=:;.(ix): Let A E V. Let C be a set such that A ~ C and ICI = 2"+IAI
(for example, we could take C = Au (2"+IAI x {u}), where u is a set that is not
in the range of A). Let 5 be the class of all I-algebras D such that D ~ C
and A :::; D and D is an essential extension of A in V. Exactly as in the proof .
of (v) =:;. (vi) , it follows that 5 is a set.

Now let T be the class of all essential extensions of A in V. Let f'.J be the
equivalence relation on T defined by B 1 f'.J B 2 if and only if there exists an
isomorphism .'l/J : B 1 ~ B 2 with 'l/JIA = idA . We shall show that for each
equivalence class X of f'.J there exists a D E 5 such that X = D/ f'.J. Then it
will follow that the collection of equivalence classes of f'.J may be identified with
a subclass of 5, hence with a set (under the one-to-one assignment X H D).

Let X be an equivalence class of f'.J. Then there exists BET with X =
BJ f'.J. By (viii), IAI :::; IBI :::; 2"+IAI = ICI. We claim that there exists a
bijection a : B -+ D for some D such that A ~ D ~ C, with the property
that alA . idA . Now

IAI + IC \ AI= ICI . 2"+IAI ~ max{2IA1 , 2No } (because n ~ No)

> max{IAI, No} (by Cantor's Theorem)

~ IAI,No.

This implies IC \ AI ~ No and also implies IC \ AI = 2"+IAI, otherwise
IAI, IC\AI < 2"+IAI thereforelAI + IC\AI = max{IAI, IC\AI} < 2"+IAI = ICI,
a contradiction. Now IB \ AI :::; IBI :::; ICI = IC \ AI, so there exist a subset E
of C; \ A and a bijection 1 : B \ A -t E.· Now idA U 1 isa bijection from Bto
A U E and A ~ A U E ~ C. This establishes the claim. .

Let a and D be as in the claim. Define a I-algebra D with universe D as
follows: For each f E F with ar(J) = r E w, say, let

fD(d1, ... ,dr } = a[JB(a-1(dd, ... , a-1(dr ))]



48

for any d1 , . . . ,dr E D.

Now DES and a : B -+ D is an isomorphism, so D rv B, i.e., X = Dj rv.

(ix),*(vii): We give an argument that is due to D. Higgs [Hig71], whIch is
more direct than that of [Tay72].

Assume (ix), so for each C E V there is a set T(C) of essential extensions
of C in V such that every essential extension of C in V is isomorphic to an
algebra in T(C). Also, by Lemma 1.21, there exists a set T of 2-generated
algebras in V such that every 2-generated algebra in V is isomorphic to an
algebra in T. Let T' = UAET(T(A)). Note that T' is a set (because T and
each T(A), A E T, are sets). .

Now let B E Vs I . Then there exist a, b E B (with a i= b) such that B
is ( a, b)-irreducible. Let S = SgB ({a, b}). Then S is 2-generated so there
exists S' E T with S rv S'. Also, B is an essential extension of S (by (a, b)­
irreducibility), so B IS isomorphic to some essential extension of S'. Now there
exists B' such that B rv B' E T(S') ~ T'.

Let K = T~I (i.e. K is the class of all subdirectly irreducible algebras in
T'). Then K ~ T', so K is a set, and every subdirectly irreducible algebra in
V is isomorphic to an element of K. (Thus, V has, up to isomorphism, only a
set of subdirectly irreducible members).

By Birkhoff's Subdirect DecompositionTheorem (Theorem 0.26), every al­
gebra in V is in IPs(VsI ), hence in IPs(K) ~ ISP(K). Therefore V C
ISP(K).

The last assertion of the theorem follows from (ix) and Corollary 1.14 .

o
Consider the condition:

(ii)': For each congr~ence T-formula <l>, the conclusion of (ii) holds.

Obviously (ii) ,*(ii)', while (ii) , '* (iv) follows as a special case of the proof
of (ii) '* (iii). Thus, (ii)' is a further characterization of a residually small
variety. .

Quackenbush's Problem [Qua71] is the following conjecture: if a finitely gen~

erated variety V of finite type has arbitrarily large finite subdirectly irreducible
members then it must have an infinite one. In other words, no finitely gen­
enited variety of finite type has ~o as its residual bound. In the mid-1980's
a stronger conjecture, called· the RS Conjecture·emerged: if a finitely gener­
ated variety is residually small then it has a finite residual bounq. (The RS
Conjecture does not impose the requirement of finite type.) These problems
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profoundly influenced research on residually small varieties. (See the Conclu­
sion for details of their present stat\ls.)

We now consider residual smallness in relation to varieties with definable·
principal congruences, locally finite varieties and, as a special case, congru­
ence distributive varieties. Corollary 1.24 below provides a partial answer to
Quackenbush's question. It shows .that varieties of finite type with definable
principal congruences and infinitely many finite subdirectly irreducible alge­
bras will have infinite subdirectly irreducible algebras.

Theorem 1.23. [BB75, Theorem 4]

If a variety V has definable principal congruences and is residually small, .
then V has a finite residual bound..

Proof.

We need to show there exists a finite cardinal n such that each subdirectly
irreducible algebra in V has at most n elements. Suppose the principal con­
gruences in the variety V are defined by the formula w. By the proof of
Theorem 1.16 (ii), W is equivalent to a weak congruence formula (in fact,
to a disjunction of congruence formulas). By Theorem 1.22 (iii) there is
an integer n(w) such that whenever A is an (a, b)-irreducible algebra in V
then there is no set X ~ A with X(2) ~ Cw and IXI > n(w). (Recall that
Cw = {{c, d} E A(2) : A F wlc, d, a, b]}.)

.Let A be any subdirectly irteducible algebra in V: Then for some a, b E A,
witha =1= b,A is (a, b)-irreducible (by Theorem 0.21). Let {c,d} E A(2). Then
c =1= d so 8 A (c, d) =1= idA , so (a, b) E 8 A (c, d) by (a, b)-irreducibility. Now
A F w[c, d, a, b] so {c,d} E Cw. Therefore A(2) ~ Cw, so IAI :S n(w) (which
is independent of A). Thus n(w) is the n we seek. .

o
Corollary 1.24. [BB75]

Let V be a variety of finite type with definable principal congruences. If V
has infinitely many nonisomorphic finite subdirectly irreducible algebras, V has
subdirectly irreducible algebras of every infinite cardinality.

Proof.

Let the type of V be T = ({m}, ,mk}, ar) and let 0 < nEw. Let A be
an n~element set. For each i E {I, ,k}, there are IAI'Amil = n(nmi) different
mi-ary operations on A. .

Therefore there are at most n(nmq ... n(nmk ) = n(Ef=lnmi
) = c(n) E w dif­

ferent ways of making A an algebra of type ({ml,'" ,mk}, ar), so there are
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:::; c(n) nonisomorphic T-algebras of size n. Thus the number of nonisomorphic
algebras in V of size n is finite.

Now given that V has infinitely many nonisomorphic finite subdirectly ir­
reducible algebras, it· follows that V is not residually < n for any nEw
(otherwise it would have at most ~~::ic(r) E w such algebras). By Theo­
rem 1.23, V is not residually small. Let m be an infinite cardinal, so there is
a subdirectly irreducible algebra B E V with IBI > m. Choose X ~ B with
IXI = rn, so I{ml,. 0 0 ,mk}1 + IXI = rn < IBI·

By the Downward Lowenheim-Skolem Theorem (Theorem 0.45), there exists
a subalgebra C of B with X ~ C and ICI = rn such that Band C satisfy
exactly the same first order T-sentences. Let <I>(xo, Xll X2, X3) be a first order
T-formula defining the principal congruences of algebras in V, i.e., whenever
DE V anda,b,c,d E D we have

(c, d) E eD(a, b) if and only if D F <I>[a, b, c, d].

Let 'li be the first order T-sentence

:Jx:J y((x ';j:, y) 1\ VzVw ((z ';j:, w) -+ <I>[z, w, x, y])).

Notice that an algebra in V satisfies 'li if and only if it is "(x, y)-irreducible .
for some x, y", i.e., subdirectly irreducible. Thus, VSI = {E E V : E F w}.
Now B E VSI , so B F 'li, therefore C 1= 'li. Also, C E V (since C :::; B), so
C E VSI . Since ICI = rn, this completes the proof.

o

Proposition 1.25. [BB75]

If the variety V is congruence distributive and is generated by a set Ko of
algebras all with cardinality less than n, where nE· w, then V is residually
<no

Proof

Let V =V(Ko) where for each B E Ko, IBI < no By J6nsson's Theorem
(Theorem 0.34), if A E VSI , then A E HSPu(Ko). By Los's Theorem (Theo­
rem 0.42), algebrasin Pu(Ko) have fewer than n elements since having fewer
than n elements is a first order property (because n is finite). .

Thus for each A E VSI , IAI < n since homomorphic images of subalgebras
of algebras C E Pu(Ko) will have cardinality :::; ICI. Thus, V is residually
< n.

o
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We include here a result known as Quackenbush's Theorem, because it con­
trasts interestingly with Corollary 1,24 and because it will be needed in Chap­
ter 4.

Proposition 1.26. (Quackenbush's Theorem) [Qua71]

If V is a locally finite variety with, up to isomorphism, only finitely many
finite subdirectly irreducible algebras, then V has no infinite subdirectly irre­
ducible member, hence V is residually < n, for some nEw.

Proof.

Let V* be the class of all finite subdirectly irreducible members of V. If
A E V, let K be the set of all finitely generated subalgebras of A. By Theo­
rem 0.35, A E ISPu(K), and since V is a locally finite variety, K consists of
finite algebras. It follows from Birkhoff's Subdirect Representation Theorem
(Theorem 0.26) that K ~ IPs(V*) ~ ISP(V*), hence A E ISPuSP(V*).

Thus A belongs to the quasivariety ISPPu(V*) generated by V* (see Theo­
rem 0.39). But an ultraproduct of finitely many finite algebras is isomorphic to
one ofthose algebras, by Lemma 0.33, so A E ISP(V*). Thus A is isomorphic

. to. a subalgebra B of a product IliEI C i .of algebras C i E V*.

If 0:' : A -+ B is this isomorphism and 1fj : IliEI C i -+ C j is the lh projection
homomorphism for each j E I, then (1fj 0 0:') [A] is a subalgebra of Cj, for each
j, and A is isomorphic to a subdirect product of the algebras (1fi 00:') [A], i E I.
Thus, A E IPsS(V*). .

Now suppose A is subdirectly irreducible. Then AE S(V*) so A is finite.
Hence V has no infinite subdireCtly irreducible algebras.

D

In [Tay72] Taylor poses the question: For which residually small varieties
will there be a uniform nEw such that for this n , and for all weak congruence
formulas <P, the conclusion of Theorem L22 (ii) holds? The following theorem
shows that in the varieties that qualify, we may choose n to be just the residual
bound of V.

Theorem 1.27. [BB75, Theorem 6]

Let V be a variety of type T defined by a set~' of equations and let ~ be
the set of sentences that are the universal closures of the equations in ~'. For
every positive integer n the following are equivalent:

(i) V is residually < n ..

(ii) For every weak congruence T-formula <P,

~ ~Th(T) \fy\fZ[{:3X l '" 3xn 1\ <P(Xi,Xj, y, z)) -+ y ~ z].
l:Si<j:Sn
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(iii) If A E V is (a, b)-irreducible and X(2) ~ Cip for some weak congruence

formula <l> then IXI :S n.

Proof.

Let 0 < nEw.

(i)=>(ii): Suppose (ii) fails for some weak congruence formula <l>. Then there
is an algebra AE V such that A 1= 3y3z3xl ... 3Xn(;'\1~i<j~n<l>(Xi, Xj, Y, z) 1\

Y '*' z). Choose a, b, Cb' .. ,en E A such that A 1= /\l~i<j~n <l>[Ci, Cj,a, b] and
a =1= b.

By a routine application of Zorn's Lemma there is a maximal congruence
on A that separates a and b, i.e., the set S = {'1 E Con(A) : (a, b) (j. '1} has a
~-maximal element, say ().

By the maximality of () in S and the Correspondence Theorem, A/(} is
(a/(), b/(})-irreducible and so A/(} is subdirectly irreducible by Proposition 0.21.

Let h be the natural homomorphism from A to A/(} and let 1 :S i < j :S n.
Since <l> is positive, A/(} 1= <l>[h(Ci) , h(cj), h(a), h(b)], since A 1= <l>[Ci, Cj, a, b].
<l> is a weak congruence formula so AI= VyVz[(3x <l>(x, x, y, z)) --t Y ~ z] but
h(a) i- h(b) so we must have h(Ci) =1= h(cj), so cd(} =1= Cj/(}' Thus, IA/(}I 2: n,
contradicting (i).

(ii)=>(iii): Assume (ii). Then by the proof of Theorem 1.22 ((ii)=>(iii)),with
n( <l» = n, (iii) follows.

(iii)=>(i): Let A be any subdirectly irreducible algebra in V. Then A is
(a, b)-irreducible for some a, bE A with a =1= b, by Proposition 0.21 (i). Suppose
IAI 2:n. Then we can choose Y = {Yb' .. ,Yn}, a set of n distinct elements of
A. Since the elements of Y are distinct, for each i, j with i =1= j, eA CYi, Yj) i-
idA so (a, b) E eA(Yi' Yj). .

Now by Mal'cev's Lemma, for each i, j with i =1= j there is a congruence
formula <l>ij such that A 1= <l>ij[Yi, Yj, a, b). Let W = V19<j~n <l>ij. Then W is a
weak congruence formula so by (iii), if X ~ Cw, then IXI :S n.

For each {Yi,Yj}E y(2), we have A 1= <l>ij[Yi,Yj,a,bj so {Yi,Yj} E Cw,
therefore y(2) ~ Cw. HoweverlYI > n, contradicting (iii) , so we must have
IAI < n. Since A was an arbitrary subdirectly irreducible algebra in V, (i)
holds. 0

1.3.1 Illustrative Examples. We give some examples of residually small varieties
and, following [Tay72], show that the upper bounds stated in Theorem 1.22
are the best possible.
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Example 1.28.

(i) We shall show in Section 1.4.2 that the class of subdirectly irreducible
Abelian groups is (up to isomorphism) the set {Zpn : P prime, n E Nu {oo}}
,(with cardinality ~o), so the variety of Abelian groups is residually small by
Theorem 1.22 (vi). Indeed, since IZpool = ~o, this variety is residually < ~I

(and ~I is its residual bound).

More generally, we shall show that the variety of (unital) modules over any
ring with identity is residually small.

(ii) For a finite set of finite algebras K and for a congruence distributive
variety V such that V = V(K), V will be residually small,by Proposition 1.25.

Since lattices and Boolean algebras are congruence distributive [FN42], the
variety generated by a finite set of finite lattices [respectively Boolean alge­
bras] is residually small. In fact the 2-element distributive lattice [respectively
Boolean algebra] is the only subdirectly irreducible distributive lattice [respec­
tively Boolean algebra] and therefore generates the variety DL [respectively
BA] of all distributive lattices [respectively Boolean algebras]. These varieties
are therefore residually small, with residual bound 3.

An algebra A (on a variety V) of type T = (F, ar) is called unary if ar(j) :::; 1
for all fE F.

Theorem 1.29. [Hig71]

Any variety V of unary algebras is residually small.

Proof.

Let V be a variety of unaryalgebras of type T = (F,ar). If A E V and
f : A --t A is a nonconstant unary polynomial function of A then, since A is­
unary, there exists a unary T-term t such that for all a E A, f(a) = tA(a).
Let TI be the set of all unary terms (in the variable x, say), of V.

Let AE V be subdirectly irreducible, so there exist distinct a, b E A such
that A is (a, b)-irreducible. Then for any c, d E A with c =f. d, we have
(a, b) E eA(c, d). By Mal'cev's Lemma, there exist unary polynomial functions
PI,··· ,Pn: A --t A of A and pairs (Ullvd, ... , (un,vn) E {(c,d),(d,c)} such
that . .

a PI(ud .

Pi (Vi) PHI (Ui) for 1 :::; i < n

Pn(vn) b,

. and such that the ab~ve scheme involves as few equations as possible. For
each i, Pi(Ui) =1= Pi(Vi) (hence each Pi is a nonconstant function), otherwise
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two of the above equations could be replaced by a single equation. Thus, we
can assume, without loss of generality, that each Pi is a unary term function
pt, where Pi E Tl · -

It follows that the function A -+ P (Td defined by e H {p E Tl : pA (e) = a}
is one-to-one. Thus, IAI ::; IP(Tl ) I= 21T11 (which is independent of A).

o
In fact, the above proof shows that the residual bound of a unary variety

is at most (2")+, where n is the cardinality of the V -free algebra on one free
generator.

Example 1.30. [Tay72]

Recall that T = (F, ar) and let n = ~o + IFI. We show that the u:pper bound
2" in Theorem 1.22 (v) is the best possible.

Let A be the Cantor set 2W of countable sequences of o's and 1's and let A
be the unary algebra (A; f, g) where

f( (ao, al, a2, ... )) = (al' a2, as, ... ) and g( (ao, al, a2, ... )) = (ao, aa, ao,· .. ).

Of course, IAI = 2l-lo. Let V be the variety of all algebras with just two
unary (and no other) operations, so for V, the value ofn in Theorem 1.22
is ~o + 2 = ~o; also, A E V. We show that A is subdirectly irreducible, so
the residual bound of V is (2l-lo)+ = (2")+, and Theorem 1.22 (v) can't be
improved.

Let a = (1,1, ... ) (constant sequence of l's), and b = (0,0, ... ) (constant
sequence of O's).

Consider 8 A (a, b) E Con(A). Suppose idA =1= 'I/J E Con(A). The-n there
exist C = (eo, Cl, C2, ... ) and d = (do, dl , d2, ... ) such that C =1= d and c'l/Jd.
Since C =1= d, they must differ in at least one entry, say Ci =1= di .

Now f(f(.·· (f(c)) ... )) (i applications) = (Ci' Ci+l,"')'

. f(f( ... (f(d)) ... )) (i applications) = (di, di+l"") and Ci =1= di , say Ci =°and
di = 1.

Since 7jJ is a congruence relation,

(Ci' Ci+l, ... )'I/J(di, di+l, ) andg( (Ci' Ci+l, . " ) ) 7jJg ((di, di+l , ... )),

i.e., (0,0,0, ... )7jJ(1, 1, 1, ), i.e., a7jJb.

Since 7jJ was arbitrary, (a, b) E 7jJ whenever idA =1= 7jJ E Con(A). Thus,
8 A (a, b) is the monolith of A. Therefore A is subdirectly irreducible, as
required.

From Theorem 1.22 ((i):::}(v)), we deduce:
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Corollary 1.31. [Tay72]

Let V be aT-variety, where T =" (F, ar) and n = ~o + IFI· If V contains a
subdirectly irreducible algebra of cardinality greater than 2" (i.e., 2: (2")+) then
V is residually large, i. e., it contains arbitrarily large subdirectly irreducible
algebras. 12

Example 1.32. [Tay72]

Again, let n = ~o + IFI where T = (F, ar). By Theorem 1.22 ((i)=*(vi)), if
V is residually small there are::; 2(2") nonisomorphic subdirectly irreducible
algebras in V. We show this upper bound is the best possible.

Let 5 be any subset of the Cantor set 2W (as in Example 1.30). Define the
unary algebra As = (A; f, g, 0, hs ) where A, f, 9 are as in Example 1.30 (note
A = 2W

) and

O(a)

hs(a)

(0,0,0, ... ),

{
(I, 1, 1, )
(0,0,0, )

if a E 5
otherwise.

Exactly as in Example 1.30, As is subdirectly irreducible for each 5 ~ 2W
•

We show that distiIict subsets 5yield nonisomorphic algebras As. Take
arbitrary 51, 52 ~ 2w

, and suppose there exists an isomorphism k : A Sl ~ A s2 .

We claim that k must be the identity map on A. For suppose there exists y E
. A.:..- 2W such that k(y) =1= y, i.e., k(y) and ydiffer in at least one co-ordinate, say

(k(y))(i) = 0, y(i) = 1. Then k(g(Ji(y))) = k(g(ji((aO,a1"" ,1'00')))) =
k(g((l, ... ))) = k((l, 1, ... ))

and g(Ji(k(y))) = g(ji((bo, bI, ... ,0, ... ))) = g((O, ... )) = (0,0, ... ).

Since k is a homomorphism we must have k(g(ji(y))) = g(Ji(k(y))), i.e.,
k((l,l, )) - (0,0, ) (*)

But, for all (ao, a1"") E A, (0,0, ) = OS2(k( (ao, a1,"')))

= k(OS2( (ao, al,a2,"')))

= k( (0,0, 00 .)) so by (*), k( (1,1, ... )) = k( (0,0, ... )) but k is one-to-one,
therefore (1,1, ... ) = (0,0, ... ), a contradiction. Therefore k must be the
identity map on A. .

Suppose c E 51 but et/. 52. Then k(hs1(c)) = k((l, 1, ... )) = (1,1, ... ) and
hS2 (k(e)) = hs2 (e) = (0,0, ... ). Thus k(hs1 (e)) =1= hs2 (k(e)), contradicting the
fact that k is a homomorphism. Th,is shows that 51 ~ 52.

12This is sometimes expressed as follows: (2")+ is the Hanf number for subdirect irre­
ducibility in varieties of type (F, ar) with n = No + IFI.
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By symmetry, S2 ~ SI, hence SI = S2, as required. Therefore distinct
subsets of 2W must give rise to distinct algebras As = (A;!, g, 0, hs ).

Now n = ~o+4 = ~o and the number of subsets of 2W is 2(2
N

O) therefore there
are 2(2") nonisomorphic subdirectly irreducible algebras As in the variety of
all unary algebras (A;!, 9,0, hs ) (which is residually small, by Theorem 1.29).

Example 1.33. [Tay72]

Following [Tay72] we show that when n = ~o, the upper bound 2n+IA1 of
Theorem 1.22 (viii) is the best possible.

By Example 1.28 (ii), the variety V of Boolean algebras (C;V, A,' ,0,1) is
residually small, with n = ~o + 5 = ~o·

Assume X is an infinite set with IXI = m. Let B be the Boolean algebra of
all subsets of Xso IEI = IP(X)I = 21x1 = 2m

. Let A be the Boolean algebra
of finite and cofinite subsets of X. Recall that the number of finite· subsets
of X is m. There is a one-to-one correspondence between the finite and the
cofinite subsets of X, so IAI = m + m = m.

We show B is an essential extension of A. Let eE Con(B) with e=I idB , so
there exists (c, d) E esuch that c =Id, say c g d. Now there exists x E X such
that x E c, x (j. d. e is a congruence relation so we have ({x} n c)()({x} n d),
i.e., ({x},0) E e. But {x},0 E A, and {x} =I 0 so el A =I idA , as required.

Now IEI = 2m and n + IAI = ~o + m = m (since m ~ ~o) in this example, so
IEI = 2n+IA1 .

1.4 Categorical Properties: Injectivity. We now consider the connections
between (a, b)-irreducible algebras, essential extensions and absolute retracts
in a variety V. The next few results are largely folklore,the main references
being [Ban70], [GL71], [Bac72], [BN72] and [Tay72].

We define V-maximal irreducible algebras and give some properties and
examples of these. The results will be applied when we consider the notion of
the injective hull of an algebra. In the last theorem of this chapter, we describe
a bound on the size of the injective hull of an algebra.

Proposition 1.34. [Tay72]

An (a, b)-irreducible algebra B E V is an absolute retract in a variety V if
and only if B is :::::: -maximal among (a, b) -irreducible algebras in V.

Proof.

Let B E V be (a, b)-irreducible and an absolute retract in V . By Lemma 1.7,
if there exists some T E V such that B < T and T is (a, b)-irreducible, then
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both Band T are essential extensions of A = SgA ({a, b}), but this contradicts
. Lemma 1.13. Thus B is maximal arp.ong (a, b)-irreducible algebras in V.

Conversely, let B be maximal among (a, b)-irreducible algebras in V. By
Lemma 1.7, since B is (a, b)-irreducible, B is an essential extension of A =

A - (*)Sg ({a, b}) .

For any T E V such that B < T, T is not (a, b)-irreducible since B is
maximal with respect to the property of being (a, b)-irreducible. Therefore by
Lemma 1.8, T is not an essential extension of B, so no proper extension of
B E V is an essential extension ofB. By Lemma 1.13, B is an absolute retract
~V. D

Definition i.35. Let A be an algebra in a variety V. We call A a V -maximal
irreducible algebra if for some a, b E A with a =1= b, A is (a, b)-irreducible and
A is not a proper subalgebra of any (a, b)-irreducible algebra in V.

,Proposition 1.36. [Tay72]

If V is a residually small variety! every subdirectly irreducible algebra in V
has a V -maximal irreducible extension.

Proof.

Let A E V be subdirectly irreducible algebra and choose CL, b E A such that
A is (a, b)-irreducible. Since V is residually small, A has (up to isomorphism)
only a set of essential extensions in V (by Theorem 1.22 (ix)) and by Corol­
lary 1.14, some essential extension B of A is an absolute retract in V. By
Lemma 1.8 this B is {a, b)-irreducible. .

By Proposition 1.34, since B is (a, b)-irreducible and B is an absolute retract,
B is maximal among (a, b)-irreducible algebras in V, i.e~, B is V-maximal
irreducible. D

Remark 1.37. [Tay72]

(i) By Example 1.28 (ii), the two-element Boolean algebra [respectively dis­
tributive lattice] is, up to isomorphism, the only V-maximal irreducible alge­
bra where V is the variety of all Boolean algebras [respectively distributive
lattices].

(ii) We shall see in Section 1.4.2 that if V is the variety of all Abelian
. groups then the V-maximal irreducible algebrasare, up to isomorphism, just
the groups Zpoo, where p is prime.

Lemma 1.38. [Tay72, Lemma 1.20]

Suppose that B is a subalgebra of a product of algebras each of cardinality .
.~ m and that B is an essential extension of an algebra A. Then IEI ~ m(IAI

2
).
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Proof.

There exist algebras Ci, i E.1 such that B ::; IliE! Ci, where IGil ::; m for
each i E I. We show that B is isomorphic to a subalgebra of IliEJ C i , for some
J ~ I such that IJI ::; IAI 2 . ThenlBI ::; IIliEJ Gil ::; m(IAI

2
).

Now A ::; IliE! C i · For any a, b E A such that a i= b, there exists j E I
such that a(j) i= b(j). Select (by the Axiom of Choice) such a j for each
pair (a, b) E A x A such that a i= b; let J be the set of these indices j, so
IJI ::; IAI 2 . Define 9 : B ---+ IliEJ C i by (g(b))(i) = b(i) for each i E J. Then 9
is a homomorphism.

By construction, glA is one-to-one. Since B is an essential extension of A, 9
is one-to-one.

o
1.4.1Injectivity. For a variety V, we define V-injective algebras and the notion
oftransferable injections in V and establish when injections are transferable in
V. We present a characterization ofresidually small varieties with transferable
injections in terms of V -injective algebras. This leads to the concept of the
injective hull of an algebra and finally to a result showing that the size of the.
injective hull of an algebra A is bounded by the cardinal 2n+IA1 mentioned in
Theorem 1.22 (viii) (even if V is not residually small).

Definition 1.39. An algebra A in a variety V is called V -injective if whenever .
B ::; T E V and h: B ---+ A is a homomorphism, there exists a homomorphism
f : T ---+ A extending h. We say the variety V has enough injectives if every
algebra in V can be embedded in some V -injective algebra.

Definition 1.40. We say that injections are transferable in a variety V if for
any A, B, C E V, for any homomorphism f·: A ---+ C and any embedding
u : A ---+ B, there exist D E V, a homomorphism 9 : B ---+ D and an
embedding v : C ---+ D such that v 0 f·= 9 0 u (as in the diagram) ..

fA---------. C

u v

B--'--------. D
9

. Proposition 1.41. [Tay72, Proposition 2.1]

If injections are transferable· in the variety V then V has the congruence
extension property.
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Proof.

Suppose injections are transferable in V. Let A :S B E V, therefore A E V,
and let () E Con(A). Consider the natural homomorphism A : A -+ A/() and
the inclusion map i : A -+ B. Because injections are transferable in V, there
exist D E V, a homomorphism 9 and an embedding 1/ such that 1/ 0 A = 9 0 i
(as in the diagram).

A-~----=-'/,------.B

9

A/()--------· D
1/

Consider ()g = ker(g) E Con(B). We show () = ()gIA.

For any ab az, since 1/ is one-to-one, we have: (ab az) E () if and only
if ab azE A and X(al) = A(aZ); if and only if (ab az) E A2 and 1/(A(ad) =
1/(A(a2)); if and only if (ab az) E A2 and g(ad = g(i(al)) = g(i(a2)) = g(a2); if
and only if (aI, a2) E ()gIA' as required. This shows that V has the congruence
extension property.

o

Lemma 1.42. [Tay72]

Every V -injective algebra B· in a variety V is an absolute retract. in V.

Proof.

Choose T E V such that B :S T. Then the identity map i : B -+ B is
a homomorphism and since B is V -injective, there exists a homomorphism
f : T -+ B extending i, i.e., fiB = i so B is an absolute retract in V. 0

Lemma 1.43. [Tay72, Lemma 2.2]

Let V be a variety in which injections are transferable. Then A E V is
V'-injective if and only if A is an absolute retract in V.

Proof.

(~).follows from the previous lemma..

(~) Let A be an absolute retract in V. Suppose B :S E E V and h : B -+ A
is a homomorphism. The inclusion map i : B -+ E is an embedding, so
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since injections are transferable in V, there exist D E V, a homomorphism
9 : E -+ D and an embedding j :. A -+ D such that 9 0 i = j 0 h (as in
diagram).

B -C:-'/,------+-. E

h 9

A----------+-. D
J

Now A rv j[A] ::; D and j[A] is an absolute retract in V, since A is, so
there exists a homomorphism k : D -+ j[A] such that klj[A) = idj[AJ, Le.,
j-l 0 k 0 j =idA. Now f= j-l 0 k 0 9 is a homomorphism from E to A. We
show fiB = h.

For eachb E E, f(b) = (j-l okog)(b) = (j-lokogoi)(b) = (j~lokojoh)(b) =
(idA 0 h)(b) = h(b), as required. This shows that A is V-injective.

o

Theorem 1.44. [Tay72, Theorem 2.3]

For any variety V, the following conditions are equivalent:

(i) V has enough injectives.

(ii) V is residually small and injections are transferable inV.

Proof.

(i):::}(ii): Suppose V has enoughinjectives and let A E V. By assumption,
there is a V-injective algebra E E V such that A ::; E. Let B E V be an
essential extension of A. Since E is V-injective and the inclusion map i : A -+
E is a homomorphism and B E V, there is a homomorphism h : B -+ E such
that hlA = i. Since i is one-to-one and A is essential in B, it follows that
h is one-to-one (by Lemma 1.5). ThusB rv h[B] ::; E. Up to isomorphism,
therefore, the class of all essential extensions of A in V is a set, because it is

. a subclass of the set of all subalgebras of E. Since A E V was arbitrary, it
follows from Theorem 1.22 ((ix):::}(i)) that V is residually small.

Let B, C, T E V and h a homomorphism from B to C and j an embedding
from B to T. C E V so, since V has enough injectives, there exists a V­
injective algebra A E V.and an embedding k : C -+ A.
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Now (kohoj-1) : j[B] ~ A is a homomorphism and since A is V-injective,
and j[B}:S T, there exists a homo~orphism f : T ~ A extending k 0 h 0 j-1,
i.e., flj[B] = k 0 h 0 j-1.

Now fo j = f Ij[B] 0 j= k 0 h 0 j -1 0 j = k 0 h, so

h

B J
'-1

J

j[B] :S T

f

c---------· A
k

injections are transferable in V.

(ii)=?(i): Suppose V is residually small and injections are transferable in V.
By Theorem 1.22, every algebra in V is a subalgebra of some absolute retract
in V. By Lemma 1.43, every absolute retract in V is V-injective, so every
algebra in V is a subalgebra of some V-injective algebra in V.

o
The condition in (ii) that injections are transferable in V cannot be dropped:

see the last example of this chapter.

Definition 1.45. Let V be a variety and A :S B E V. We call B a V -injective
hullof A if B is both V-injective and an essential extension of A.

Note that if A E V hasaV-injective hull B E V then B is unique in the
sense that whenever C E V is an injective hull of A, there is an isomorphism
k : B ~ C such that kl A = idA . Indeed, by the V-injectivity of C, the·
inclusion map i : A ~ C may be extended to a homomorphism k : B ~ C,
which must be one-to-one, because B is an essential extension in A and kl A = i
is one-to-one.

Theorem 1.46. Let V be a variety that has enough injectives. Let A :S B E
V. The following conditions are equivalent:

(i) B isa V -injective hull of A.

(ii) B is an essential extension of A and no proper extension of B in V is
an essential extension of A.

(iii) B is.V -injectiveand no proper subalgebra of Bis both V -injective and
an extension of A.
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Proof.

(i):::}(ii): Since B is V-injective, it is an absolute retract in V (by Lemma 1.42).
Since B is an essential extension of A, (ii) follows from Lemma 1.13.

(ii):::}(iii): By Lemma 1.13, B is an absolute retract in V. Since injections·
are transferable in V (by Theorem 1.44), B is V-injective (by Lemma 1.43)
and V has the congruence extension property (by Proposition 1.41). Sup-.
pose A ~ C ~ Band C is V-injective. If idc =I- () E Con(C) then there
exists <P E Con(B) such that () = <plc, so <P =I- idB' Since A is essential in
B, idA =I- <pIA ~ (<pldIA = (}IA, so C is an essential extension of A. Then by
Lemma 1.13, C = B ..

(iii):::}(i): By Theorem 1.44, V is residually small, so by Theorem 1.22
(ix), A has, up to isomorphism, only a set of essential extensions in V. By
Corollary 1.14, some essential extension D E V of A is an absolute retract in
V. By Lemma 1.43, D is V-injective. Since B is V-injective, the in~lusion

map i : A -+ B may be extended to a homomorphism f : D -+ B. Now f
is one-to-one, because A is essential in D and flA = i is one-to-one. Thus
A = J[A] ::; f[D] ::; Band D "-J J[D], so J[D] is V-injective. By assumption,
therefore, B = f[D], which is .an essential extension of J[A] = A.

o

Theorem 1.47. Let V be a variety that has enough injectives. Then every
algebra in V has an injective hull in V.

Proof.

Let A E V. Exactly as in the proof of (iii):::}(i) above, some essential.
extension D of A in V is V-injective, i.e., D is a V-injective hull of A. 0

Corollary 1.48; Let A ~ B E V, where V is a variety and A is subdirectly
irreducible. If B is a V -injective hull of A then B is a V -maximal irreducible
algebra. IfV has enough injectives, and a, b· E A and B is maximal among the
(a, b)-irreducible algebras in V then B is an injective hull of A.

Proof.

There exist distinct a, b E A such that A is (a, b)-irreducible. If B is an
injective hull of A then A is essential in B, so B is also (a, b)-irreducible, by
Lemma 1.8, and B is an absolute retract in V (since it is V-injective). By
Proposition 1.34, B is a V-maximal irreducible algebra.

Now suppose that V has enough injectives and that B is maximal among
(a, b)-irreducible algebras in V, where a, bE A Let E E V bea V-injective hull
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of B. Then E is (a, b)-irreducible (by Lemma 1.8), so B = E, by assumption,
and B is an essential extension of A, by Lemma 1.7.

o

Theorem 1.49. [Tay72, Theorem 2.10]

Let V be a variety of algebras of type T = (F, ar). If B is the V -injective
hull of A E V, then IBI ~ 2n+IA1 where n = No + IFI·

Proof.

Suppose IBI > 2n+IA1 . Since B is an essential extension of A, it follows
from Corollary 1.11 that there exist distinct a, b E A and a positive formula
<I>(.,',',') such that I-Th(T) \fy\fz[(3x<I>(x,x, y, z)) -+ y ~ z] , (t)

and D(A) UId(B) U{<I>(xi,xi,a, b) : i < j <: w} is satisfiable, where D(A) and
I d(B) are as for Corollary 1.11.

Therefore every finite subset of D(A) U Id(B) U {<I> (xo: , x,B, a,b) : Cl( < (3 <
IBI+} is satisfiable. By the Compactness Theorem (Theorem 0.43),
D(A) U Id(B) U {<I>.(XCtl x{J, a, b) : Cl( < (3 < IBI+} is satisfiable.

Let C be a T-algebra in which D(A) U I d(B) U {<I>(xa, x,B, a, b) : Cl( < (3 <
IBI+} is satisfiable. Then A is embeddable in C (because D(A) includes the·
definition of fA (aI, ... ,aar(f») for all operation symbols f ofthe language and
all al, . .. ,aar(f) E A). We assume without loss of generality that A ~ C.
In addition there is a set {ca: Cl( < IBI+} of elements of C such that C F=
<I>[ca, cr" a, b] for all Cl(, (3 < IBI+ with a < (3.

By Zorn's Lemma there exists a congruence 0 on C that is ~-maximal such
that elA = idA .

Consider the map >':.A -+ Cle defined by a t--+ ale. Since>. is a homomor- .
phism, and ker(>.) = elA = idA , >. is one-to-one. Therefore>. is an embedding
of A into cle. We show CIO is an essential extension of >.[A] (the range of
>.). Let idc /8 =lTJ E con(Cle). We showTJIA[A] =I idA[A].

Suppose TJIA[A] = idA[A]. TJ has the form <plO where e c <p, <pE Con(C).
Clearly, <pIA = idA , contradicting the maximality of e, so TJIA[A] =I idA[AJo

Since each <I> [ca , c,B, a, b]is a positive sentence, CI0F= <I>[cale, c,Ble, alO, bIO].
Since alO #= ble it follows from (t) that cale =I c,Ble for all a < (3. Thus
I{cale: a < IBI+}I = IBI+, so IClel > IBI. .

Since B is injective, the inclusion map i : A -+ Bextends to some ho­
. momorphism 'Ij; : cle -+ B. (See the following diagram.) Since CIO is an
essential extension of A, and 'lj;IA = i is one-to-one, 'Ij; is one-to-one. Then
IClel ~ IBI, a contradiction. Thus, IBI ~ 2n+IA1 .
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A
A--------· C/f)

B

o
Note that in the above result, V is not assumed to be residually small. (For

residually smail V, the result follows from Theorem 1.22 ((i)=}(viii)).)

1.4.2 Classical Examples We conclude by interpreting the above results in a
classical setting. Recall that an algebra A is called simple if IGon(A)1 = 2.

R-modules.

Let R be a ring with identity and Vthe variety of all unital right R-modules.
By a well-known construction of module theory, every M E V has an injec­
tive hull E(M) ([Lam66, Propositions 9, 10, pp91-92]). By Theorem 1.44 and
Proposition 1.41, V has the CEP (which is also easy to verify directly).

By Theorem 1.22, V is also residually small. Here is a more direct ex­
planation of this fact. The map f) t-+ O/f) from Con(M) to the subalge­
bra (i.e., submodule) lattice of M is a lattice isomorphism, whose inverse is
N t-+ {(ml' m2)·E M x M : ml - m2 EN}, for any M E V. Consequently
a module M E V is subdirectly irreducible if and only if it has a smallest
nonzero submodule K. In this case, by the CEP, K is itself a simple module,
so K = xR for some x E K and K ~ R/A where A = {x E R :xr = O}
is a maximal rIght ideal of R. Now M is an essential exterision of K, so M
embeds into E(K). Since R has only a set of (maximal) right ideals A and
for each such A, E(R/A) has only a set of submodules, it follows that, up to
isomorphism, there is only a set, namely, {N : R/A :'S N :'S E(R/A) for some
maximal right ideal Aof R} of su.bdirectly irreducible R-modules M, i.e. V
is residually small. In fact, by Theorem 1.49, V is residually < (2k)+ where
k= max{No, IRI}.
Abelian Groups.

It is well known that an Abeliangroup G is simple if and only if G "J Zp
for some prime p. (Indeed, such a G must be cyclic, and the group Z is not
simple and neither is Zm, unless m is prime.)

An Abelian group is essentially the same thing as (more precisely, it is
"termwise equivalent" to) a Z-module. By the preceding discussion, therefore,
the variety· of Abelian groups is. residually small and an Abelian group is
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subdirectly irreducible if and only if it has a smallest nonzero subgroup, which
shows that the groups Zpn, p prime! n E Nu { oo} are subdirectly irreducible:
in each of these cases, the smallest nonzero subgroup is isomorphic to Zp.

It is also well known that a Z-module A is injective exactly when it is
divisible (by [Lam66, Proposition3, p89]), i.e., for each a E A and each n E Z,
there exists x E A such that nx = a. This makes it easier to see that Zpoo
is injective, for any prime p. It is also an essential extension of its smallest
subgroup K = {a, l/p, 2/p, ... ,p - l/p}(f'V Zp). Therefore Zpoo f'V E(K) and
any nonzero Z-submodule (i.e., subgroup) of Zpoo is isomorphic to Zpn for some
nEN.

Thus, by the discussion on modules above, the subdirectly irreducible Abelian
groups are, up to isomorphism, just the groups Zpn, where p is prime and
n E Nu {oo}, so the variety of Abelian groups is residually small, in fact,
residually < ~1'

.'

Example 1.50.

We show that a residually small (in fact, a residually finitely bounded)
variety need not have enough injectives, so the condition that injections be
transferable cannot be dropped from Theorem 1.44. The example is due to .
Banaschewski [Ban70]. .

Recall first that a finite field must have justpn elements for some p, n E N
with p prime, and that, up to isomorphism, there is exactly one such field,
GF(pn), for each prime p and n E N. Recall also that if F is a finitefield then
F* = (F \ {a}; ,,-1,1) is a cyclic group.

Let V be the variety of all the commutative rings with identity R =
(R; +, -",0, 1) satisfying X

22 ~ x. Every ring REV is "strongly regular"
(i.e., for each x E R, there exists y E R with x2y = x) so, by a classical result
of ring theory ([Lam66, Corollary 1, p30). and [Lam66, Proposition 4, p33]) R
is a subdirect product of fields, i.e., the subdirectly irreducible algebras in V
are exactly the fields in V.

Let F E V be a field. Since every element of F is a zero of the polynomial .
X

22
- x E F[x], IFI :s 22 and F* F X

21 ~ 1. Since F* is cyclic, the order of
any generator a of F* divides 21 (by Lagrange's Theorem), i.e., a has order 1
or 3 or 7. Thus, Fis isomorphic to GF(2) orGF(4) or GF(8), so these three
fields are, up to isomorphism, the subdirectly irreducible members of V, and
so V is residually small, indeed, its residual bound is 9. Recall that GF(2)
is a subfield both of GF(4) and of GF(8) but that GF(8) has no subfield F
of order 4 (otherwise F* is a subgroup of GF(8)*, but their respective orders
are 3 and 7, contradicting Lagrange's theorem). In particular, there is no ring
embedding of GF(4) into GF(8).
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Now GF(8) is a V-maximal irreducible algebra; it is an absolute retract
in V by Proposition 1.34. If injections were transferable in V, it would fol­
low from Lemma 1.43 that GF(8) -is V-injective. In this caSe the inclusion
map GF(2) ~ GF(8) would extend to a ring homomorphism from GF(4)
to GF(8), which is one-ta-one because, as a ring, GF(4) has no nontrivial
congruence relations. From this contradiction, we infer that injections are not
transferable in V and, byTheorem 1.44, V does not have enough injectives.
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Chapter 2

Commutator. Theory
Modular Varieties

•In

The general commutator theory was first developed for congruence per­
mutable varieties by J.D.H. Smith [Smi76]. It was fully developed for con­
gruence modular varieties by J. Hagemann and C. Herrmann [HH79] and was
extended by several authors, including H.-P. Gumm, R. Freese, R. McKenzie
and W. Taylor [Tay82]. In this chapter we trace aspects of the development
of the commutator theory (as expounded by Freese and McKenzie in [FM87])
that are relevant to the main result of the thesis, Theorem 4.11. This theorem,
which is due to Freese and McKenzie [FM81] says that if a finitely generated
congruence modular variety is· residually small, then it has a finite residual
bound. The first section of this chapter includes a definition and some im­
portant properties of the commutatorP The first results discussed say that a
congruence modular variety is characterized by the existence of "Day terms",
i.e., terms (discovered by A. Day [Day69]) satisfying the conditions of Theo­
rem 2.1, and by the conditions of the "Shifting Lemma" of Gumm [Gum80a].
The proofs of these results are combined in the proof of Theorem 2.3. These
results will be applied when we consider the properties of the commutator in
congruence modular varieties. In the rest of the thesis, we will abbreviate
congruence modular to modular.

13Regarding references: the book [FM87] grew out of a set of notes by Freese and McKen­
zie called "The commutator:. an overview" , which was widely circulated by 1982 but is no
longer an accessible source. Usually, where results are attributed here to [FM87], it should
be understood that they were proved considerably earlier in the given form, by Freese and
McKenzie. Other forms of several of these results, proceeding from different definitions,
would have been known to many of the aforementioned other researchers also but, since the
equivalence of definitions is not obvious, we have usually accredited [FM87] in this situa­
tion. We have stuck largely to the approach of Freese and McKenzie here because it is more
purely algebraic than any of the others.
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·2.1 Congruence Modular Varieties.

Theorem 2.1. [Day69]

A variety V is modular if and only if for some nEw there are terms (called
"Day terms"), mo(x, y, z, u), . . , ,mn(x, y, z, u) such that V satisfies:

(i) mo(x, y, z, u) ~ x, mn(x, y, z, u) ~ u;

(ii) mi(x, y, y, x) ~ x, i ~ n;
(iii) mi(x, x, y, y) ~ miH(x, x, y, y) for all even i < n;

(iv) mi(x, y, y, z) ~. mi+l(x, y, y, z) for all odd i < n.

Lemma 2.2. (The Shifting Lemma). [Gum80a]

Let V be a modular variety and let A E V and <P,{}o, Ol E Con(A). Suppose
that a, b, c, d E A, (a, b), (c, d) E 00 , (a, c), (b, d) E Ol and 00 n Ol ~ <po Then
(b,d) E <p implies (a, c) E <po Diagramatically,

a b

<p implies 01

a b

d
o--~-----o-.-'

e e
./

d

Note that the diagram above is interpreted in the following manner: when­
ever the line (or curve) joining the elements a and e (for example) is parallel to
the line (or curve) joining the elements band·d, and one of the lines is labelled
<p (in this case), then (a, c), (b, d) E <po

Theorem 2.3. For a variety V the following are equivalent:

(i) V is modular.
(ii) V has Day terms satisfying (i) to (iv) of Theorem 2.1.

(iii) V has terms mi(x, y, z, u), i = 0, ... ,n, satisfying mi(x,y, y, x) ~ x
(i :::; n), such that if A E V, 'Y E Con(A), a, b, e, dE A with (b, d) E 'Y,
then (a, c) E'Y if and only if for all i ~ n, mi(a, a, e, ehmi(a, b, d, c) ..

(iv) V satisfies the conditions of the Shifting Lemma, i. e., if AE V,
a, b, e, dE A, and <p, 00 , Ol E Con(A) with 00 n Ol ~ <p, (a, b), (e, d) E 00 ,

(a,e), (b,d) E 01 then (b,d) E <p implies (a, c) E <po

Proof.
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First, we replace (iv) with (iv)', a statement identical to (iv), except that in
(iv)', 00 is merely a semicongruence,. Le., a reflexive, compatible relation. The
proof proceeds as follows:

(i) =} (ii) =} (iii) =} (iv)' =} (i).

Clearly, (iv)' implies (iv) since congruences are semicongruences. We end
the proof by showing that (iv) implies modularity, and is therefore equivalent
to the ,other conditions.

(i)=}(ii): Assume V is modular. Let F = FvUr; y, z, u) be the V -free algebra
on four free generators. Define:

a eF(x, u) veF(f}, z),
/3 eF(x,y)veF(z,u),
, eF(y,z).

We show, firstly, that (x, u) E an (/3 V "().

(x, u) E eF(x, u) so (x, u) E eF(x, u) V eF(f}, z) =a. (y, z) E , and
(z, u) E j3 so (y, u) E j3 0 "( .~ j3 V ,. Also (x, y) E j3 so (x, y) E j3 V "( so
we have (x, y), (y, u) E j3 V " therefore (x, u) E j3 V " by transitivity, so
(x,u) E an (j3 v "().

Since V is a variety, F E V so F is modular and , ~ a so (x, u) E ,V (anj3)
by the Modular Law. This means for some nEw there are elements x =
WO, Wl,'" ,wn . u of Fv(x, y, z, u) such that (Wi' Wi+l) E an j3 if i is even
and (Wi,Wi+l) E ,ifi is odd, i::; n. By Theorem 0.8, this implies (WO,Wl) E a,
and (Wl, W2) E , ~ a so (wo, W2) E a by transitivity. Continuing in this way
we have (wo, wi)Ea for each i ::; n (1)

Consider x = m6(x, y, z, u), mf(x, y, Z, u), ,m~(x, y, Z, u) = u,.where
mo, ml, ... , m n are terms in the term algebra T(x, y, z, u) representing
wo, Wl,'" ,wn · Then by Theorem 0.50 ((iii)=9-(i)), we have V f: mo(x, y, z, u) ~
x and V f: mn(x, y, z, u) ~ u .By (1), (m6(x, y, z, u), mnx, y, Z, u)) E a =

.eF(x, u)veF(y, z) for i :::; n, so V 1= x ~ mi(x, y, y, x) by Theorem 0.53 (since
a identifies x with u and y with z) ..

We show V satisfies mi(x,x,y,y) ~ mi+l(x,x,y,y) for all even i < nand
mi(x, y, y, z) ~ mi+l(x, y, y, z) for all odd i < n.

Now (Wi,Wi+l) E an j3 if i is even, i.e., (mnx,y,z,u),mf+l(x,y,z,u)) E
(eF(x, u) V eF(y, z)) n (eF(x, y) V eF(z, u)). Therefore V f: mi(x, x, y, y) ~
mi+l(x, x,y, y) for all even i < n by Theorem 0.53 (sinceanj3 identifies x with
y andz and u). Also (Wi' Wi+l) E ,ifi is odd, i.e., (mfex, y, Z, u), mf+l(x, y, z,u))
E eF(y, z) so by Theorem 0.53, V f: mi(x"y, Y, z) ~ mi+l(x, y, y, z) for all odd



70

i < n (since I identifies iJ and z and we can rename u) ..

(ii)=;.(iii): Suppose V has Day terms mo(x, y, z, u), ... ,mn(x, y, z, u) as in
Theorem 2.1 and let A E V, lE Con(A) and a,b, c, dE A with bid.

Assume a,c. Then (a, a), (c, a) E I so mf(a, a, c, chmf(a, a, a,a) = a for
all i ::; n and (a, a), (b, b), (d, b), (c, a) E I so mf(a, b, d, chmf(a,b, b, a) = a
for all i ::; n. Thus, by symmetry and transitivity mf(a, a, c, chmf(a, b, d, c)
for all i ::; n.

Conversely, assume mf(a, a, c, ch mf(a, b, d, c) for all i ::; n. We show a,c.
. Let Ui = mf(a,b,d,c),Vi = mf(a,a,c,c), so UnVi for all i::; n (2)

Now mf(a, b, d, chmf(a, a, c, c) = m~1 (a, a, c, c) for all even i < n by The­
orem 2.1 (iii). Alsom~l(a,b,d,chm~l(a,a,c,c) for all i ::; n, by (2), so

. mf(a, b, d, chm~1 (a, b, d, c) for all even i < n by transitivity, i.e., UnUi+l for
all even i < n. . ~ (3)

We have (a, a), (b, b), (d, b), (c, c) E I so mf(a, b, d, chmf(a, b, b, c) for all
i ::; n (4)

a~d mf(a, b, b, c) = m~1 (a, b, b, c) for all odd i < n, by Theorem 2.1 (iv). Also
m~l(a, b,b, chm~1 (a, b, d, c) for all i < n by (4) so mf(a, b, d, Chmf+l (a, b, d, c)
for all odd i < n, by transitivity, i.e., un Ui+l for all odd i < n (5)

From (3) and (5), UnUi+l for all i < n so, by transitivity, UO,Un , i.e.,
mt(a, b, d, chm~(a, b, d, c) but mt(a, b, d, c) = a and m~(a, b, d, c) = c by
Theorem 2.1 (i), so a,c.

(iii)=}(iv)': Assume V is a variety satisfying (iii) and that the conditions
implied by the left hand side diagram of Lemma 2.2 hold in an algebra A E V .
where 01 and rp are congruences on A and 00 is a semicongruence, and oon01 ~

rp. We show (a, c) E rp.

We have (a, a), (a, b),(c, d), (c, c) E 00 and so mf(a, a, c, c) 00 mf(a, b, d, c)
for any i ::; n, by reflexivity and compatibility of 00.. (6)

We have (a, c) E 01 so (a, a), (c, a) E 01 so mt(a, a, c, C)OI mt(a, a, a, a) = a
for alli ::; n by Theorem 2.1 (ii) (7)

Also (b, d) E 01so (a, a), (b, b), (b, d), (a, c) E 01so a = mt(a, b, b, a)OI mf(a, b; d, c)
for all i ::; n. . ~ (8)

By (7), (8) and transitivity, mf(a, a, c, c)Olmf(a, b, d, c) for all i ::; n. . .. (9)

From (6) and (9), mf(a, a, c,c)(Oo n Odmf(a,b,d,c) for all i ::; n. Now
00 n 01 ~ rp so mf(a, a, c, c)rpmf(a, b, d, c) for all i ::; nand (b, d) E rp so
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(a, c) E cp, by (iii) (with I = cp).

(iv)' ~ (i): Suppose V satisfies (iv)' and that A E V and a, /3, I E Con(A)
with I ~ a. We need to show that an (/3 VI) = I V (a n /3).

We first show an (/3 VI) ~ Un<w(a n Rn) where Ro =/3, Rk+l = R k 0 I 0 /3
for k E w. Note that each Rk is a semicongruence. Let (a, b)E an (/3 V I)'
Then (a, b) E a and there exist Cl,' .. ,Cm with Cl = a, Cm = band Ci/3ci+l

. or CiICi+1 for all i < m. For some k large enough, (a, b) E Rk+l' therefore·
(a, b) E an Rk+l' so (a, b) E Un<w(a n Rn).

We show (by induction) that Un<w(a n Rn) ~ I V (a n /3), since then an
(/3 VI) ~ I V(a n /3), and equality will follow since I ~a implies I V(a n /3) ~
an (/3 V I) (in every lattice, therefore in Con(A)).

Now an Ro = (a n /3) ~ I V (a n /3), so the statement is true for n= O.
Assume anRk ~ IV(an/3), where k E w. Let (a, b) E anRk+l =an(Rkol o/3).
Then (a, b) E a and (a, b) E Rk 0 1 0 /3 which means there exist c, dE A with
(a; c) E Rk , (c, d) E I and (d, b) E /3. Therefore (b, d) E /3 but /3 ~ Rk and so
(b, d) E Rk and (c, d) E I V (a n /3) since I ~ I V (a n /3).

Diagramatically:

a

b

C

d

IV (a n /3)

By (iv)' with Bo = R k, BI = a and cp = I V(a n /3), since an R k ~ I V(a n /3)
(by the induction hypothesis) we have (a, b) E I V (a n /3), as required.

Finally, we show (iv) implies modularity. Assume (iv) holds in the variety
V. Let Fv(x, y, z, u) be the free V...;algebra on four generators and let

a eF(x,u) v9F (y,z),
f3 = eF(x, y) V eF(z, u),
I = eF(y,z).

Now (x, u) E an({3VI ) as in theproof of (i)~(ii). We also have xau, yaz, x/3y,
z/3u and Y1z so (y, z) E 'Y V (an /3) and thediagram below holds:
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iJ

By (iv), with a = Bo, {3 = rh, cp = , v (a n {3) (and, V (a n,B) 2 (a n {3)), we
have (x,u) E ,V(an{3). Therefore an({3V,) ~ ,V(an{3). We have, ~ a,·
so the reverse inclusion holds (for any lattice). Thus V is modular.

o

Example 2.4.

The variety V of all groups G = (G; +, -,0) is congruence permutable,
hence congruence modular. (Recall that a variety V is congruence permutable
if and only if there is a "Malcev" term t(x, y, z) such that V F t(x, y, y) ~ x ~ .
t(y, y, x) (Theorem 0.54); for groups, we may take t(x, y, z) = (x - y) + z.) For
any congruence permutable variety V with Mal'cev term t, the following are
Day terms for V (and therefore corroborate the modularity of V):

mo(x, y, z, u) x

ml(x, y, z, u) t(y, z, u) (= (y - z) + u for groups)

m2(x, y,z, u) u.

Example 2.5.

The variety V of all lattices is congruence distributive (hence modular), and
also has a majority term, viz. a term t(x, y, z) such that .

V F t(x, x, y) ~ t(x, y, x) ~ t(y, x, x) ~ X. 14

For lattices, taking t(x, y, z) := (x V y) 1\ (x V z) I\(y V z) works. For any
variety V with a majority term t, the following are Day terms for V:

mo(x, y, z, u)
ml(x,y,z,u)
m2(x, y, z, u)

m3(x, y, z, u)

x

t(x, y, u) (= (x Vy) 1\ (x Vu) 1\ (y Vu) for lattices)

t(x, z, u) (= (x Vz) 1\ (x Vu) 1\ (z Vu) for lattices)

u.

14Any variety with a majority term is congruence distributive: see Theorem 0.55.
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2.2 The Commutator. For any variety V, A E V and a, (3 E Con(A) ,
following [FM87], we define a set of matrices, M(a, (3), of which each element
satisfies a row and a column demand. We show that M(a, (3) is a subalgebra
of A 4

. The commutator of the congruence relations a and (3, namely [a, (3], is
defined as the smallest congruence relation on A that satisfies both the row .
and the column demands. This definition of the commutator depends on A
but is independent of V ..

We prove certain facts about M(a, (3) as well as [a, (3] and other related
congruences featuring in the definition. Later in the chapter we will extend
these properties for modular varieties. Until further notice, let V be any
variety of type T = (F, ar).

Definition 2.6. [FM87, Definition 3.2]

Let a, (3, 8 be in Con(A), A E V.

(i) M(a, (3) is the set of all matrices

[
tA(al, b l ) tA(al , b2) ]
tA (a2 , b l ) tA (a2 , b 2)

where a i = ai, ... ,a~, i = 1,2, is any sequence ofn elements of A, b i =
bi, ... ,b~, i = 1,2, is any sequence of m elements of A (m, n > 0), satisfying
alaci~ and b}(3b; for k :::; nand j :::; m, and t is any (n +m)-ary T-term. Note
that if .

[~ ~] E M(a, (3),

then (a, c), (b, d) E a and (a, b), (c, d) E (3 but the converse need not hold.

(ii) We say a centralizes (3 modulo 8, and write C(a, (3; 8), if for every

[
. Un U12] E M(a, (3),
U2I U22

u n 8 UI2 implies U 2I8U22.

(iii) C(a, (3) is the smallest 8 E Con(A) for which C(a, (3; 8) holds.

(iv) [a, (3] isthe smallest 8 E Con(A) for which both C(a, (3; 8) and C((3, a; 8)
hold. We call [a, (3] the commutator of a and (3.

Remark 2.7.

C(a, (3; an(3) holds (see the proof of Proposition 2.9 (i)) and ifC(a, (3; 8i ), 8i E
Con(A)(i E 1) holds, C(a, (3; AiEl 8i ) holds. Thus, the definitions (iii) and (iv)
make'sense.
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This definition of the commutator is motivated by the following consequence
that it has for groups (proved at the.end of the chapter): for normal subgroups

. M, N of a group G, [M, N] is the least normal subgroup of G such that
inG/[M,N] every element of M/[M, N] commutes with every element of
N/[M, N].l5

Proposition 2.8. [FM87, Proposition 3.3]

Let a, [3 E Con(A) ,A E V.

(i) M(a, (3) is the subalgebra of A 4 generated by all the matrices of the forms

[a a] [bb' ] I I·a1 a' and b b' where (a, a) E a and (b,b ) E [3.

(ii)

[~ ~] E M(a, (3) if and onlyif [~ ~] E M([3, a).

Proof.

(i) Ifwe represent

[
Uu U12 ] E M(a, (3)
U2I U22

as (Ull, U12, U21, U22) then M(a, (3) ~ A4
•

Let Y = {(a, a, ai, a
l
) : (a, a

l
) E a} U {(b, bl, b, bl) : (b, b') E [3}. Let v =

(vu, V12, V21, V22). By Theorem 0.36 (iii), v E SgA
4 (Y) if and only if there exist

n, m Ew, an (n + m)-ary term t and for each i :::; n and each j ::; rn, tuples
at = (aI, aI, a; ,an and bi = (bI, b; , bI, bn with (aI, an E a and (b}, bJ) E {J
such that .. .

. - t A4
( * * b* b* )v - aI, .... , an, I"'" m.

= (tA(al , hI), tA(al, h2), tA (a2 , hI), tA (a2 , h2)),

where a k = (at,· .. ,a~) and b k = (bt, ... ,b~) for kE {I, 2}. In other words,
v E SgA

4
(Y) if and only if v E M (a, (3), so M (a, (3) = S gA

4 (Y) .

(ii) Let

[
ab] . .

. c d E M(a,f3) ..

15Here we are identifying the congruences () of groups (G; +, -,0) with the normal sub-
groups 0/(), as usual. .
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Then

[
ab] _ [ tA.(al , b l ) tA(a

l
, b

2
) ]

C d- tA (a2, b l ) t A (a2,b2)

where t, ai, b i , i = 1,2, are as in Definition 2.6 (i) ..

We have alaai for k ::; n (column condition) and b}/3bJ for j ::; rn (row
condition) so

[a c]. _ [ sA(bI, a l
) sA(bI, a2

) ]
b d - sA(b2 ,al ) sA(b2 ,a2 )

where we define s(x, y) = t(y, x). Thus,

[~ ~] E M (/3, a) .

[
a c] _ [ tA(aI, b l )tA(a2

, b l
) ]

b d - tA(al , b2) tA(a2,b2)

where b}f3bJ for j ::; rn (column condition) andalaai for k ::; n (row condition),
so

The reverse implication is similar.

o

Proposition 2.9. For a, /3 E Con(A), A E V,

(i) C(a, /3) ~ [a, /3] = [/3, a] ~ an /3,'
(ii)· C and [,] are order-preserving.

Proof.

(i) Let a, /3 E Con(A), A E V. [a, /3] is the smallest congruence 6 for
which both C(a, /3; 6) and C(/3, a; 6) hold, so it will contain the smallest f>' for
which C(a, /3; (1

) holds so C(a, /3) ~ [a,/3]. By the symmetry of its definition,
[~, j3] = [/3, a].

We show [/3, aJ ~ an /3. Firstly we show C(a,/3; a n /3) holds. Let

[ Un U12] E M(a, /3)
U2I U22

with un(a n /3)UI2' Then

[
Un U12] = [ tA(aI, b l

) tA(al
, b2

)]

U2I U22 tA (a2, b l) t A (a2, b2)

where t, ai, b i (i= 1,2) are as in Definition 2.6 (i) .

. Since alaai for k::; nand b;ab; for j S; rn, i E {1,2} , we have U2IaUn
and U12aU22. By assumption,ullaul2 so by transitivity U21au22. We also
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have al,8al for k :S n, i E {1,2} and b},8bJ for j :S m so un,8U12 ~nd U2I,8U22.
Therefore, Un (a n ,8)UI2 implies U21.(a n ,8)U22, so C(a,,8; a n,8) holds.

By symmetry, C(,8, a; an,8) holds also. Since C(a,,8; an,8) and C(,8, aj an
,8) hold, an,8 must contain the smallest congruence 6 such that C(a,,8j 6) and
C(,8, a; 6) hold, i.e., [a,,8] = [,8, a] ~ an ,8.

(ii) Let 0,(/, cp, cp' E Con(A) with 0 ~ 0' and cp ~ cp'. We show C(O, cp) ~
C(0' ,cp').

Let

[
Un U12] E M(O, cp).
U2I U22·

Then

[
Un U.12] _ [ tA (aI, hI) t

A
(al, h

2
) ]

. U2I U22 - t A (a2 , hI) t A (a2
, h 2

)

where t,ai,hi (i = 1,2) are as in Definition 2.6 (i) but with alf)a~ for k:S n
and b}cpbJ for j :S m.

. .

Since 0 ~ 0' and cp ~ cp' we have al0' a~ for k :S nand b} cp' bJ for j :S m so

[
Un U12] E M(O',cp').
U2I U22

If 6' is any congruence relation for which C(0' , cp' ;6') holds and if Un6'UI2
then U2I c5' U22' Thus, c5' is a congruence relation for which C(O, CPj c5') holds, so
it will contain C(O, cp). In particular, C(O, cp) ~ C(O', cp').

Similarly, C(cp, 0) ~ C(cp', 0') and [0', cp'] ;;2 [0, cp].

o
2.3 The Commutator in Modular Varieties. In this section we will focus
on a modular variety V with Day terms (described in Theorem 2.1). For
A E V, with a, (3E Con(A), M(a, (3), C(a, (3) and [a,,8] have been defined in
the preceding section. We define a set of ordered pairs X(a,,B) ~ A2 using
Day terms, and in Proposition 2.11, we examine the relationship between
M (a, ,B) ,C (a, ,B), [a,,8] and X (a, ,8). In the second part of this theorem we
see that [a,,8] is generated by X(a, ,8). .

Definition 2.10.

Let A E V, where V is modular and has Day terms mo(x, y, z, u), ... , .
mn(x, y, z, u). For a,,8 E Con(A), let X(a,,8) be the set of ordered pairs
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"

(mt(a, b, d, C), mt(a, a, c, c)) where

[~ ~] E M(a, j3)and i ::; n.

Note that X(a, (3) is a reflexive relation on A, because mt(a, a, a, a) = a
and

[a a] E M(a, (3)
a a ..

for all a E·A and all i ::; n.

Proposition 2.11. [FM87, Proposition 4.2]

Let a, (3, bE Con(A), A E V, where V is modular and has Day terms
mo(x, y, z, u), ... ,mn(x, y, z, u).

(1) The following are equivalent:·

(i). X(a,{3) ~ b.

(ii) X({3,a) ~ b.
(iii) C (a, (3; b) holds.

(iv) C({3, a;b) holds.

(v) [a, (3] ~ 6.
(2) C(a,{3) - [a,{3] = eA(X(a, (3)). (Thus, e A(X(a,{3)) does not depend on

the particular choice of Day terms for V.)

Proof.

(1) We show (iii) '* (i) '* (iv), i.e., we show C(a, (3; b) implies X(a, (3)<; b
which in turn implies CC{3, a; fJ). Then by interchanging a and (3 we have
C({3, a; b) implies X({3, a) ~ b which in turn implies C(a, (3; b), i.e., (iv) '* (ii)
'* (iii). Finally, [a, {3] is the smallest congruence relation for which C(a, (3; b)
and C({3, a; b) hold so (v) is equivalent to the conjunction of (iii) and (iv) ,
hence to all the other conditions.

(iii)=?-(i): Let t be a (n+k)-ary term, with a i E An, b i E Ak, i = 1,2; (at, a 2
) E

a, (b!, b 2
) E {3 (co-ordinatewise, as in Definition 2.6 (i)).

[
ab] [ tA(a!, b l ) tA(al , b2) ]

For c d .. tA(a2, bl) tA(a2, b2). E M(a, j3), .

and for each i ::; n, we show ubv where u = intra, a, c, c) and v = mt(a, b, d, c).

We do this by showing that
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is the right hand column of a matrix of the form

[: ~ J E M({3, a). "Then [~ ~ J E M(a, (3)

and because C(a,{3;6), and (w,w) E 6, we have (u,v) E 6, i.e., for each
i :S n, (mt(a, a, c, c), mt(a, b, d, c)) E 6. Then X(a, (3) ~ 6, proving (i).

For j E {I, 2}, let xi = xi, ... ,x~ and for 1= 1, . . . ,6 let yl = yi, ... ,y~. De­
fine s(xl, x2, yl, y2 ,y3, y4, y5, y6) = mi(t(yI, y2), t(xl, y3), t(y4, y5), t(x2,y6)).

Then N =

since (aI, a2) E a, (hI, h 2) E (3. Now

sA(a2 a I a I hI hI a2 hI hI) = m!'-(tA(aI hI) tA(a2 h I) tA(a2 hI) tA(aI bI)), , , , , , , z " " " ,

and sA(a2 a I a I hI h 2 a2 b2 hI) = m!'-(tA(aI hI) tA(a2 b2) tA(a2 h2)· tA(aI hI)). ' , , , , " z "." " , •

This gives

_ [ tA(al, hI) mt(tA(aI, hI), tA(aI, hI), tA(a2, h I);tA(a2,.bI)) J_ [w u J
N - . tA(aI,hI) mt(tA(aI,hI),tA(aI, h2),tA(a2, h 2),tA (a2, hI)) - w v

where w = tA(a1, hI), U -:-- mt(tA(al, hI), tA(al, hI), tA(a2, hI), tA(a2, hI)),
and v = mt(tA(aI, hI), tA(al, h2), tA(a2, h 2), tA(a2, hI)) so

[: ~ J E M ({3, a).

(i)*(iv): We show if X(a, (3).~ 6, then for any

[~. ~ ]EM({3, a),

if (b, d) E 6, then (a, c) E 6. First,

[
UnUI2 J E M(a, (3) if and only if [Ul2 Un JE M(a, (3)
U2I U22 U22 U2I

by the symmetry of hI and b 2 in the definition of M(a, (3).

Now for

[~. ~ J E M«(J, a), we have [~ ~ J E M(a,.(J)
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by Proposition 2.8 (ii) and by the above,

[
ab -]c d E M(a, (3).

Suppose (b,d) EO. Since X(a, (3) ~ owe have (mt(a,b,d,c),mt(a,a,c,c)) E
o for all i < n. V is modular and has Day terms mi, so by Theorem 2.3
((ii)::::}(iii)),-since (b, d) E 0, we have (a, c) E O. Thus X(a, (3) ~ 0 implies
C((3, a; 0).

(2) C(a, (3) = I is the smallest congruence relation on A for which C(a, (3; '}')
holds. By (1), (iii) is equivalent to (v), so [a, (3] ~ f. Also since [a, (3] is
a congruence relation for which C(a, (3; [a, (3)) holds, I ~ [a, (3]. Therefore
C(a,(3) . [a, (3].

X(a,(3) ~. e A(X(a,(3)), so [a,(3] ~ e A(X(a,(3)) by (1) ((i) <=> (v)). Let
[a, (3] = 0'. Certainly, C(a, (3; 0') and C((3, a; 0') hold so X(a, (3) ~ 0' by
(1) ((iii) (or (iv)) <=> (i)). Thus, eA(X(a, (3)) ~ 0' = [a, (3], and so [a, (3] =
eA(X(a, (3)).

o
The next results describe some general properties of the commutato'r [a, (3]

. (a, (3 E Con(A), A E V). Proposition 2.9 showed that the commutator
is symmetric and "sub-multiplicative', i.e., [a,(3] = [(3,a] and [a,(3] ~ an
(3. Proposition2.12 shows that it is also join-distributive ("additive"), i.e.,
[a, ViEI li] = ViEI[a, li], provided that V is modular. .

We shall see how the commutator behaves with respect tohomomorphisms,
subalgebras (Proposition 2.14) and direct products (Proposition 2.17). In the
last section of this chapter we see that this behaviour generalizes properties in
groups and rings.

Proposition 2.12. [HH79]

Let V be a modular variety and let (), 'l/J, li (i E 1) be congruences on A E V.
Then we have [(), ViElli] = ViEI[()"i].

Proof.

For each i E I, li~ ViEIli so for each i E I, [(), li] ~[(), ViEI li] since by .
Proposition 2.9 (ii), [,] is order-preserving. Thus ViEI[()"i] ~ [(), ViE! li]' Let
a .. ViEI[(), li]' For each i E I, [(), liJ ~ VjEI[()"j] = a. By the equivalence of
(v) and (iii) in Proposition 2.11, for each i E I, C((), li; a) holds (*)

Now let
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where I = ViEIli, and let (u,r) Ea.

Then

[
tA(al , bL b~, ... , b~) tA (al, b~, b~, ... ,b~) ]

= A( 2 bl bl bl) tA ( 2 b2 b2 b2 )t a, 1'2"'" m a, l' 2"'" m

where ai = (aL ... ,a~) E An, hi = (bL ... ,b~) E Am, i = 1,2; t is a
(n + m)-ary term with afear for l S n and b~,b~ for ps m, i.e., b~(ViEI li) b~
for p S m. Thus, for p S m, by Theorem 0.8, there are i l , ... , i k E I such that
b~(,ilO,i2 0 ... O'ik)b;, so there are Ypo, Yp1l ... , Ypk such that b~ = Ypo, b~ = Ypk
and YpO(,il) Ypl(,i2) Yp2'" Yp(k-l) (,ik) Ypk'

For

p=1

p=2

p=m

bi (,il) Yu (,i2) Y12 ; .. Yl(k-l) (,ik) b~

. b~(,il) Y2l(,i2) Y22· .. Y2(k-1) (,ik) b~

We then get

[
tA(al, bL b~, . .. , b~) t

A
(al, Yl1l Y2l,· ., , Yml) ] _ [xo Xl] E M(Ll .)

A ( 2 bl bl bl) tA ( 2 . ) - u, Itl ,ta, l' 2"" , m a , Yu, Y2l, ... , Yml Zo Zl

say, since a 1
() a 2 (co-ordinatewise) and b~(lil) Ypl for all p S m and

[
tA(al , Yu, Y2l, ... ,Yml) tA(al , Y12, Y22, ... , Ym2) ] _ [Xl X2] M(Ll .)
t A ( 2 ) tA ( 2 ) - E u, It2 ,a , Yu, Y21,· .. ,Yml a , Y12, Y22, ... , Ym2 Zl Z2

say, since Ypl (,i2) Yp2 for all p S m.

Continuing thus, we have finite sequences Xo, Xl,· .. , Xk, Zo, Zl,' .. , Zk such
that

[
Xj X.j+l] _ [ tA(al , YIj, Y2j, ,Ymj) tA(al

, Yl(j+l), Y2(j+l) , ... ,Ym(j+l)) ]
Zj Zj+l - tA (a2,Ylj,Y2j, ,Ymj) tA (a2,Yl(j+l),Y2(j+l),'" ,Ym(j+l))

E M((), li(j+l)) for 1 S j < k since a l
() a 2 (co-ordinatewise), Ypj(,i(j+l)) Yp(j+l)

for p ::; m and for j < k and such that

[
Xo Xk] = [u v].
Zo Zk r s

For each i E I, we have C(e, li; a) (by (*)), so by Proposition 2.11 (1) ((iii)
{:} (iv)), C(,i, e; a).
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Consider

By Proposition 2.8 (ii),

[ Xl X2] E M((), l'i2) so [Xl Zl] E M('ri2, (})
Zl Z2· X2 Z2

by Proposition 2.8 (ii) and since C('ri2, (); a) holds and (Xl, Zl) E a, we have.
(X2' Z2) E a. Continuing in this way we get (Xj, Zj) E a for all j ~ k so
(Xk, Zk) E a, i.e., (v, s) Ea.

We have shown that C(ViEI l'i, (); a) holds, so C((}, ViEI l'i; a) holds by Propo­
sition 2.11 (1) ((iii){::}(iv)). Thus, wehave [O,ViEI l'i] ~ ViEI[(}, l'J

Since (u, r) = (xo, zo)E a and since C('ril,{J; a) holds, we have (Xl, Zl) E a.

Now

o

Lemma 2.13. Let f : A ~ B be a surjective homomorphism of algebras and
Y ~ A2 such thatker(J) ~ Y. Then f(GA(y)) = GB(J(Y)).

Proof.

f(Y) ~ GB(J(Y)), so Y ~ f-I(8 B(J(Y))) E Con(A), so
GA(y) ~ j-I(8B(J(Y))), i.e., f(GA(y)),~ GB(J(Y)). Also f(Y) ~ f(GA(y))
and f(GA(y)) E Con(B) (because ker(J) ~Y ~ 8 A(y) and GA(y) E
Con(A)) so GB(J(Y)) ~ f(GA(y)).

o

Proposition 2.14. [FM87, Proposition 4.4]

. Let A, B E V, where V is a modular· variety with Day terms ml, ... ,mn .

(i) If f E H om(A, B) is surjective, with kernel ?T, and (), r..p E C on(A), then

[(), cp] V?T = f-l([j((} V ?T), f(cp V ?T)]).

(ii) If B is a subalgebra of A and (},cp E Con(A), then the restrictions to B
satisfy

Proof.

(i) Let A, B E V. Let f E H om(A, B) (the set of homomorphisms from
A toB) be surjective, with kernel ?T, and let (), cp E Con(A). We first show
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[B, ep] V 7r ~ [B v 7r, ep V 7r] V 7r. By Proposition 2.12, [B V 7r, ep V 7r] = [B V 7r, ep] V
[B V 7r, 7r]= [B, ep] V [7r, ep] V [B, 7r] V [7r, 7r]. Now [7r, 7r] ~ 7r and [B, 7r]~ Bn 7r and
[7r, ep] ~ 7r n ep by Proposition 2.9 (if Since Bn 7r ~ 7r and 7r n ep ~ 7r we have
[B V 7r, ep V 7r] ~ [B, ep] V 7r, therefore [B V 7r, ep V 7r] V 11" ~ [B, ep] V 7r.

Conversely, [B, ep] V 7r ~ [B V 7r, ep V 7r] V 7r by Proposition 2.9 (ii) because
B~ BV7r and ep ~ epV7r. It follows that [B,ep]V7r = [BV7r, epV7r]V7r, so without
loss of generality, we may assume 7r ~ B, 7r ~ ep and so j(B), j(ep) E Con(B)
(by Theorem 0.14).

Since [B, ep] = eA(X(B, ep)) by Proposition 2.11 (2),

[B, ep] V 7r = eA(X(B, ep) U7r) ".. , (1)

By Proposition 2.11 (2), (f(B), j(ep)] = eB(X(j(B), Jeep))) ; .. (2)

We show first that j(X(B, ep)U7r) ~ X(J(B), j(ep)). Let (x, y) E j(X{B, ep)U
7r). Then there exists (Xl, yd E X(B, ep) U 7r with (J(XI), j(YI)) = (x, y).

If (XI,YI) E 7r then j(XI) =j(yd so (x,y) = (x,x) E X(j(B),j(ep)), by
reflexiveness of X(j(B), Jeep)). Otherwise, (Xl, Yl) E X(B, ep), so (Xl, YI) =
(mt(a, b, d, c), mt(a, a, e, c)) for some i ~ n, where 0" b, e, dE A and

for some a i = (ai, ... ,ak) E Ak and hi = (bi, . .. ,bl ) E Al (i = 1,2) and some
(k + l)-ary term t, where a l Ba2 and h l eph2 (co-ordinatewise). "

Since j is a homomorphism,

where ci j(aD, ... ,j(aD and di = f(bD, ... , j(bO (i - 1,2), hence
Cl j(B)c2 and d l j(ep)d2 (co-ordinatewise).

Thus,

[j~~j J~~~] E M(J(B),j(ep)), so ' "

(x, y) = (I(XI), j(YI)) = (m~(J(a), j(b), j(d), j(e)), m~(J(a), j(a), j(e),j(e))) E
X(j(B), Jeep)).

" Now, we show that"X(J(B), j(ep)) ~ j(X(B, ep)U7r). Let (x, y) E X (j(B) , j(ep)).
We show (x, y) E j(X(B, ep)). "
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Now (x, y) = (mt(a, b, d, c), mt(a, a, c, c)) for some i ~ n and some a, b, c, dE
B such that

[
ab] [ tB(al , hI) tB(a\ h 2) ] "
c d =' tB (a2 , hI) t B (a2 , h 2) E M(J(B), f(cp))

for some term t where a l f(B)a2 and hI f(cp)h2 (co-ordinatewise). Thus there
exist c j ,dj (j = 1,2) such that cIBc2 and d Icpd2 (co-ordinatewise) and (aL a~) =
(J (cl) , f(c~)) and (bf, bn = (J(dt), f(4)) for each k, l.

Let

Then

[
ab] _ [f(un) f(UI2)]'

, c d - f(U2d f(U22)

so (x,y) = (J(mt(un, U12, U22, U21)), f(mt(un, Un, U21, U21))) E f(X(B,cp)),
as required.

We therefore have X(J(B), f(cp)) = f(X(B, cp)) = f(X(B, cp) U 7r) (3)

Since ker(J) = 7r ~ X(B, cp) U 7r, it follows from Lemma 2.13 that

f(8 A (X(B, cp) U 7r)) = 8 B (J(X(B, cp) U 7r)) ; (4)

Now f([B, cp] V 7r) = f(8 A (X(B, cp) U 7r)) (by (1))

= 8 B (J(X(B, cp) U7r)) (by (4))

= 8 B (X(J(B), f(cp))) '(by (3))

-- = [J(B), f(<p)] (by (2)).

Since ker(J) ~ [B, <p] V 7r E Con(A), it follows from the Correspondence
Theorem (Theorem 0.17), that [B,cp] V 7r = f-I([J(B), f(cp)]) , f-I([J(B V
7r), f(<p V 7r)]). "

(ii) Let Bbe a subalgebraof A and B, cp E Con(A).We show BIB centralizes
<PIB modulo [B, cp]IB, i.e., C(BIB, cplB; [B, CP]IB), since then by Proposition 2.11
((iii) ~ (v)) we will have [BIB, cplB] ~ [B, cp]IB.

[ Un U12] (I I)'Let, ' EM () B, cp B wIth (un, U12) E [B, cp]/B.U2I U22

We must show that (U2b U22) E [B, CP]IB. Here [B, cp]IB is the restriction to
B X B of [B, cp], i.e., of the smallest 0 E Con(A) for which C(B, cp; 0) and
C(cp, B; 0) hold. '
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Now

[
-Un U12] E M(B, rp).

U2I U22
Therefore M(BIB' rplB) ~ M(B, rp). Since (Un, Ul2) E [B, rp]IB' we have (un, U12) E
[8, rp]. Then since Bcentralizes rp modulo [B, rp], we have (U2I' U22) E [8, rp]. We
also have (U2I' U22) E B x B so (U2I' U22) E [8, rp]IB' as required.

[
Un U12] [ tA(a

1
, b I

) tA(a
I
, b

2
) ]

U2I U22 has the form tA (a2 , b I ) tA (a2 , b 2 )

where ai E An, hi E Am, i = 1,2, with alBIB a~ for l :S n and b~rplB b;
for p :S rn, and t is an (n + m)-ary term. Now aL b~ E B for all i, l, p so
Un, U12, U2b U22 E B.

Since BIB ~ Band rplB- ~ rp, we have alB ar for l :S n and b~rp b; for p :S m
so

o

Remark 2.15.

Let A E V, where A is a modular variety. Let f : A --+ B be a surjec­
tive homomorphism and let ker(J) =7r. Then A/7r f"V B by the Homomor­

-phism Theorem so Con(A/7r) f"V Con(B). By the Correspondence Theorem,
int(7r,A2 ) f"V Con(A/7r) (where int(7r,A2) = {1 E Con(A):7r ~ 1 ~ A2}) so

1 ~
we have int(7r, A2) f"V Con(B) where f : int(7r, A2

) --+ Con(B) is defined by
B r-t f(8) for all 8E int(7r, A2).

For 8, rp E int(7r, A2), since 7r ~ B, rp, [f(8), ](rp)] - [](B V 7r), ](rp V 7r)] =­
[J(B V 7r), f(rp V 7r)) in Con(B) by definition of j. By Proposition 2.14 (i),
f-I([J(8),f(rp))) = [8, <p] V 7r E Con (A) (which means that for all a, bE
A, (J(a), f(b)) E [J(B), f(rp)] if and only if (a, b)E [B, rp]V 7r).

As a result, if f : A --+ B is a surjective homomorphism with ker(J) = 7r
then we can calculate [J(8), f(rp)] by calculating [B, rp] V 7r in Con(A); then
{(J(a), f(b)) : (a, b) E [B, rp] V7r} gives us [f(8), f(rp)]· The operation [B, rp] V7r,
denoted by [B, rp]1I"' is called the relative commutator.

This result gives us a description of the commutator of congruences of a quo­
tient algebra A/1, where 1 E Con(A), for if-j is the natural homomorphism,
we will have [B /1, rp/1] = {(a/1, b/1) : (a, b) E [8, rp] V 1} = ([8, rp] V1)/1·

Remark 2.16.

Let V be a modular variety. Let A E V with a, 13, 0, 1 E Con(A). Let
int(j3, a) /' int(o, 1). -Since Con(A) is modular, we have a lattice isomorphism
f : int(j3, a) f"V int(o, 1) de.fined by j : B r-t Bvo (8 E int(j3, a)) (Theorem 0.3).
We show that f and its inverse h preserve the relative commutator.
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Now int({3, a) /" int(6, ,) implies int(6, ,) ~ int({3, a), so an6 = {3 and aV
6 = ,. Recall that h = f- l : <pi H <pi n a (<p' E int(6, ,)). Let 0, <P E Con(A).
We show that f([O, <p],B) = [J(O), f(<p)]o, Le., that [0, <p],B V6 = [0 V6, <P V6]0.

[0 V6, <P V6]0 = [0 V6, <P V6] V6 = [0, <p] V[6, <p] V[0, 6] V[6, 6] V6 by additivity
(Proposition 2.12). Now [6, 6] ~ 6n6 = 6 by Proposition 2.9 (i) so [6, 6]V6 = 6,
therefore [0 V 6, <P V6]0 is [0, <p]V [6, <p] V [0,6] V6.

By (Proposition 2.9) (i), [6, <p] V [0, 6] ~ (<p V 0) n 6 ~ an 6 = {3, and so
[J(O), f(<p)]o ~ [0, <p] V{3 V 6 = [0, <p],B V 6 = f([O, <p] V{3). But f([O, <p] V{3) =
[0, <p]v {3V6 = [0, <p]V6 since {3 ~ 6. By order-preservation, [0, <p] ~ [OV6, <pV6]
so f([O, <p] V{3) ~ [0 V6, <p V6] V6 = [0 V6, <p V6]0 = [J(O), f(<p)]o.

Let 0', <pi E Con(A). Since f is a lattice isomorphism and h = f- l , it follows
that h([O', <p']o) = [h(O'), h(<p')],B, i.e., that [0', <p']o n a = [0' n a, <pi n a],B.

Proposition 2.17. [FM87, Proposition 4.5]

Let V be a modular variety. Suppose Ai E V, let A = I1iEI Ai and Oi E
Con(A), i E I. Then

(i) the map (Oi)iEI H Ha, b) E A x A : (ai, bi) E Oi for all i E I and ai = bi
for all but finitely many i E I}

is a lattice isomorphism from I1iEI Con(Ai) into Con(A). Furthermore, this
isomorphism preserves the commutator operation. In particular, if A = Ao x
Ab and Oi, <Pi E Con(Ai), i = 0,1, then

[00 x 01, <Po x <PI] = [00 , <Po] X [01, <PI]'

Moreover if lliEI Oi = Ha, b) E A x A : (ai, bi) E Oi for all i E I}, then

(ii) [I1iEI Oi, I1iEI <Pi] ~ I1iEI[Oi, <Pi]'

Proof.

Let g be the map defined in (i) above. Clearly, g is order-preserving. It
follows that g((Oi)iEI) V g((<Pi)iEI) ~ g((Oi)iEI V (<Pi)iEI) = g((Oi V <Pi)iEI) , for
any (<Pi)iEI E lliEI Con(Ai).

We show g is a lattice homomorphism.

Clearly, for (Oi)iEI, (<Pi)iEI E lliElCon(Ai), g((Oi)iEII\ (<Pi)iEI) = g((Oi n
<Pi)iEI) = g((Oi)iEI) n g((<Pi)iEI). We show for (Oi)iE], (<Pi)iEI E I1iEI Con(Ai),
g((Oi V <Pi)iEI) = g((Oi)iEI) V g((<Pi)iEI). For this it suffices (by the above) to
show g((OiV<Pi)iEI) ~ g((Oi)iEI)Vg((<Pi)iEI). Let (x,y) E g((OiV<Pi)iEI). Then
(x(i), y(i)) E Oi V <Pi for all i E I, and x(i) = -y(i) for all but finitely many
i E I.

Let i l ,.·. ,in E I be such that x(i) = y(i) if i rf. {i l , ... ,in}. Then for
all i rf. {i l , ... ,in}, (x(i),y(i)) E Oi,<Pi' For all i E {iI, ... ,in}, (x(i),y(i)) E
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()i V <Pi SO for each (x(ij),y(ij)),j E {1, ... ,n} there exist Cj,O,Cj,l,'" ,Cj,kj
such that Cj,O = x(ij), Cj,k = y(ij ) and for odd rn, (Cj,m-1' Cj,m) E ()ij; for even
rn, (Cj,m-1' Cj,m) E <Pij' rn E {O, 1, ... ,kj }.

Let rn' = max{kl,'" ,kn} and for all j E {1, ... , n}, define Cj,l = Cj,kj
whenever kj < l ::; rn'. For l = 0,1, ... , rn', define dl E A by

d ( .) _ {Cj'l for j E {i1 , ... ,in}
I J - (.) C • d {' . }

X J lor J 'F- Zl,"" Zn .

Then for odd l E {1, ... ,rn'}, (dl - 1(i), dl(i)) E ()i for all i E I, while for
i rt. {i1 , ... ,in}, dl- 1(i) = dl(i). For even l E {I, ... ,rn'}, (dl- 1(i), dl(i)) E
<Pi for all i E I, while for all i rt. {i1, ... ,in},dl - 1(i) = dl(i). Now do =
X, dm, = y and for odd l E {I, ... , rn'}, (dl- 1,dl) E g((()i)iEI) and for even l E

{1, ... ,rn'}, (dl- 1,dl) E g((<Pi)iEI). Therefore (x,y) E g((()i)iEl) V g((<Pi)iEl).
We now have g((()i V <Pi)iEl) ~ g((()i)iEl) V g((<Pi)iEl), so equality follows.

We show 9 is one-ta-one.

Suppose (()i)iEl i= (<Pi)iEl. Then there exists some j E J such that ()j i= <Pj,
say there exists some (aj, bj ) E ()j such that (aj, bj ) rt. <pj' Define a, b E A by

a(i) aj for all i E I,

b(i) = {a j for ~ i= ~
bj for Z - J.

Then (a, b) E g( (()i)iEl) but (a, b) rt. g( (<Pi)iEl) , since (aj, bj ) rt. <Pj so g( (()i)iEl) i=
g((<Pi)iEl). The map 9 is therefore a lattice isomorphism from I1iElCon(Ai)
into Con(A). .

Let ,\ = {(a, b) E A x A : a(i) = b(i) for all but finitely many i E I}. Let Pi
be the i th projection homomorphism from A = fliEl Ai to Ai and let 1]i be its
kernel. (Therefore for all i E I, if ()i E Con(Ai) then p:;l(()i) E Con(A).)

For ()i E Con(Ai) let Oi = p:;l(()i) = {(a, b) E A x A : (Pi(a),Pi(b)) E
()i}. 9 (as defined in (i)) sends (()i)iEl to Ha, b) E A x A : (a(i), b(i)) E
()i for all i E I and ai = bi for all but finitely many i E I}, i.e., 9 sends (()i)iEl

-1 -
to ,\ n (niEIPi (()i)) =,\ n (niEl()i).

We show [g((()diEl),g((<Pi)iEl)] = g(([()i,<Pi])iEl).

Let a = [g((()i)iEl), g((<Pi)iEl)] = [,\ n (niElOi),'\ n (niEl<Pi)] by the above ar­
gument. Let f3 = g(([()i, <Pi])iEl) = ,\ n (niEl [()i, <Pi])' Clearly Pi (p:;l (()i)) = ()i,
since Pi is onto. Now for all i E I, 1]i = ker(pi) ~ p:;l(()i)' (1)

By Proposition 2.14 (i), [Oi, <Pi] V'fJi = p:;l ([Pi (Oi V 'fJi),Pi(<Pi V 'fJi)])

= .p:;1 ([Pi (p:;l (()i) V 'fJi), Pi (p:;l (<Pi) V 1]i)])
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= pi1([vi(pi1(Oi)),Pi(pi1(CPi))]) (by (1))

= pi1([Oi, cpd)

= [Oi, CPi] so {3 = An (niEI([Oi, c,Oi] V17i))'

We show a ~ (3.

a = [An(niEIOi), An(niEI'Pi)] ~ (An(niEIOi))n(An(niEI'Pi)) by Proposition 2.9
(i), so a ~ A. Now niEIOi ~ Oi for each i E I so An (niEIOi) ~ Oi for all i E I.
Similarly, An(niEI'Pi) ~ 'Pi for all i E I. By order-preser~ation (Proposition 2.9
(ii)), a ~ [Oi' 'Pi] for all i E I, therefore a ~ An (niEI([Oi, 'Pi] V17i)) = {3.

We show {3 ~ a.

For each i E I, let 17~ = {(a, b) E A x A : a(j) = b(j) for all j =I- i}. We first
show An (niEIOi) = ViEI(Oi n 17~)· Clearly, ViEI(Oi n 17~) ~ An (niEIOi)'

Let (a, b) E An (niEIOi)' Since (a, b) E A, there are distinct i1, ... , in El
such that a(i) = b(i) ifi f/. {i1, ... ,in }. Define aO,a1, ... ,an E A by

a,

{
a(i) if i =I- i1 }
b(i) if i = i1 '

{
al(i) if i =I- i 2 }

b(i) if i = i2 ' ... ,

{
aC~-2) (i) ~f ~ =I- ~n-l },

b(z) If z = Zn-l

{
acn-1)(i) ifi=l-in} n_
b(i) if i = in . Then a-b.

For j = 1,2, ... ,n, by the above definition, (aj-1(i j ), aj(ij)) = (a(i j ), b(ij )) E
Oij since (a(i), b(i)) E Oi for all i E I, therefore (aj- 1, aj) E Oij' Also Pi (aj- 1) =
Pi(aj) for all i =I- ij , therefore (aj-\ aj ) E 17~ ..

J

We now have (a, b) E (Oil n17~J o ... 0 (Oin n17~J ~ (Oil n17~J V... V(Oinn17~J.

Thus An (niEIOi) ~ ViEI(Oi n 17~). Since An (niEIOi) = ViEl(Oi n 17~), for any
(Oi)iEI, it follows that (3 = An(niEI[Oi, cpd) = ViE1([Oi, cpdn17~) = ViEI(([Oi, c,OdV
17i)n17J Now because 17i ~ Oi we have (Oin17~)V17i = Oin(17~V17i) by modularity.
Let (c, d) E Oi. Then (c(i), d(i)) E Oi.

Define a E A as follows: a(j) = d(j) for all j =I- i and a(i) = c(i). Then
(c, a) E 17i and (a, d) E 17~ so (c, d) E 17i V 17;' Therefore Oi ~ 17i V 17; and
Oi n (17i V 17;) = Oi, so Oi = (Oi n 17;) V 17i. This means

[Oi' 'Pi] V 17i = [(Oi n 17~) V17i, ('Pi n 17;) V17i] V17i
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= rei n TJ~, CfJi n TJ~] V [TJi, CfJi n TJ~] V [Oi n TJ~, TJi] V [TJi, TJi] VTJi (2)

by additivity (Proposition 2.12).

Now [TJ~, TJi] ~ TJ~ n TJi = idA so [TJ~, TJi] = idA · [Oi n TJ~, TJi] ~ ei n TJ~ n TJi = ei n
idA = idA so rei n r ,'., TJi] = idA . Similarly, [TJi, CfJinTJ~] = idA · By Proposition 2.9'It _ I I

(i), [TJi' TJi] ~ TJinTJi = TJi so the right hand side of (2) becomes [OinTJi' CfJinTJi]VTJi.
We therefore have j3 = ViEI( ([Oi, CfJi] VTJi) nTJ~) = ViEI(([ei nTJ~, CfJi nTJ~] VTJi) nTJ~)'
By Proposition 2.9 (i), rei n TJ~, CfJi n TJ~] ~ ei nTJ~ n <Pi n TJ~ = ei n CfJi n TJ~ ~ TJ~'

We show ([ei n TJ~, CfJi n TJ~] VTJi) n TJ~ = rei n TJ~, <Pi n TJ~]'
([ei n TJ~, CfJi n TJ~] VTJi) n TJ~ = rei n TJ~, CfJi n TJ~] V (1Ji n TJ~) by modularity since
rei n TJ~, CfJi n TJ~] ~ TJ~, so ([ei n TJ~, CfJi n TJ~] V TJi) n TJ~ = rei n TJ~, CfJi n TJ~] since
(TJi n TJ~) = idA , and so j3 = ViEI[Oi n TJ~, CfJi n TJ~]'

We have previously noted for all i E I, ei n TJ~ ,~ A n (niE1ei) so for all
i E I, rei n TJ~, CfJi n TJ~] ~'[A n (niE1ei), A n (niEI<Pi)] by order-preservation.
Therefore ViEI[einTJ~,CfJinTJ~] ~ [An (niE1ei),An (niElCfJi)], i.e., j3 ~ a, whence
f3 = a.

Now suppose A = Ao X Al' Let Oi, <Pi E Con(Ai ), i = 0,1. As a special
case ofthe above (with 1= {O, 1}), we get g(([Oi' <Pi])iE{O,l}) = [00 , <Po] X[01 , <PI]'

(ii) Let Ai E V, let A = TIiEI Ai and Oi E Con(A), i E I.

Now TIiEIOi = {(a, b) E A2
: (a(i), b(i)) E Oi for all i E I} = niE1ei and

by Proposition 2.14 (i), [Oi, <Pi] = pil[Oi' <Pi] = rei, CfJi] V TJi· TIiEI[Oi, <Pi] =

niEl[Oi, <Pi] = niEI([Oi, CfJi] V TJi) and [TIiEI Oi, TIiEI<Pi] = [niElei, niEICfJi]' For
each i E I, niE1ei ~ ei and niEICfJi ~CfJi so [niElei, niEICfJd ~ rei, CfJJ By
order-preservation [niE1ei, niElCfJi] ~ niEI([Oi, CfJi] VTJi)'

o
2.4 Equivalence of Commutator Definitions. In the next section, for an
algebra A in a modular variety V and for fixed 0, <P E Con(A), we regard 0
and <P as subalgebras of A 2 and denote"them by A(O) and A(<p) respectively.
We denote elements (x, y) E A(O) as

i.e., as column vectors, while the elements of A(<p) are considered to be row
vectors.

We shall define congruence relations f:1(),cp and f:1()'cp. We show f:1(),cp to be
the least transitive relation containing M (0, <p) (as defined in the previous sec­
tion) and that, in a suitable sense, f:1(),cp = f:1(),cp. Using these congruences, we
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show, following [FM87], that [B, cp] (as defined here) coincides with the com­
mutator originally defined by Hagemann and Herrmann [HH79] for modular
varieties. (Condition (iv) of Theorem 2.25 defines the Hagemann - Herrmann
commutator.)

Definition 2.18.

(i) Let A be an algebra and let B, cp E Con(A). A(B, cp) is the subalgebra
of A 4 whose universe is

{(a, b, c, d) = [~ ~] E A4
: [ ~ ], [ ~ ] E B, (a,b), (c,d) E cp},

i.e., its elements are those of A4 whose columns are in B and whose rows are
III cp.

(ii) D..(J,cp is the congruence relation on A(B) generated by the set

(iii) D.. (J,cp is the congruence relation on A (cp) generated by

{((x, x), (y, y)) : [~ ~] E A(B, cpH.

From this definition we see that A(B, cp) can be regarded as a subalgebra of
A(B) x A(B), a set of pairs of columns, or of A(cp) x A(cp), a set of pairs of
rows. We use

[~ :] E t>,.• to abbreviate ([ ~ J, [: ]) E t>,.•.

We also use

[~ :] E D..(J,cp to abbreviate ((x, r), (y, s)) ED..(J,'P.

Remark 2.19.

Consider M(B, cp) as a relation on A(B), i.e.,
M(B,cp) = {((tA(al,bl),tA(a2,bl)),(tA(al,b2),tA(a2,b2))): ai,i = 1,2, is
a sequence of n elements of A, bi, i = 1,2, is a sequence of m elements of
A, m, n > 0, where alBa~ and b}cpbJ for k ~ nand j ~ m, and t is a
(n + m)-ary term}.

This means M(B, cp) ~ Bx B= A(B) x A(B), which is a subuniverse of A 4. By
Proposition 2.8 (i), M(B, cp) is a subuniverse of A4, so it is also a subuniverse
of A(B) x A(B). Clearly, M(B, cp) is also a reflexive and symmetric relation
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on A(O), so, as a set of pairs of columns, M(O, r.p) is a tolerance on A(O).
Similarly, when considered as a set of pairs of rows, M (0, r.p) is a tolerance on
A(r.p).

Lemma 2.20. Let 0, rp be congruence relations on A E V where V is a modu­
lar variety. Then !).o,cp (regarded as a set of pairs of rows) is the least transitive
relation on A (rp) containing M (0, rp) .

Proof.

Consider M(O, rp) as a relation on A(rp), Le.,
M(O,rp) = {((tA(al,bl),tA(al,b2)),(tA(a2,bl),tA(a2,b2))) : ai,i = 1,2, is
a sequence of n elements of A, bi, i = 1,2 is a sequence of m elements of
A, m, n > 0, where alOa~ and b}rpbJ for k :S nand j :S m, and t is a (n + m)­
ary term}. Then M (0, rp) ~ rp x rp = A(rp) x A(rp). Since M (0, rp) is a tolerance
on A(rp) its transitive closure is eA(cp) (M(O, rp)) by Theorem 0.12.

Let a be an element of the form

((x, x), (y, y)) = [~ ~] with (x, y) EO.

[~ ~] = ((x, x), (y, y)) E M(O, rp)

by Proposition 2.8 (i) so M(O, r.p) contains a generating set of !).o,cp therefore
eA(cp) (M(0, rp)) contains a generating set of !).o,cp, therefore !).o,cp ~ eA(cp) (M(0, rp)).

((
') I [b b

/
]. IIf x = b, b ,(b, b )) = b b' WIth (b, b ) E rp

or
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Lemma 2.21. [FM87, Lemma 4.8]

Let 0, rp be congruence relations on A E V where V is a modular variety.
Then f!..8,'P (regarded as a set of pairs of columns) is the least transitive relation
on A(O) containing M(O, rp).

The proof of this lemma will not be included as it is the dual of the proof
of the previous lemma.

Proposition 2.22. [FM87, Exercise 4.3]

Let V be a modular variety and let B, rp be congruence relations on A E V. If
f!.. is either f!..8,'P or f!..8,'P then

(i)

[
Xx y]Y E f!.. if and only if (x, y) E rp,

(ii)

[~ ~] E f!.. if and only if(x,u) EO,

(iii)

[~ ~] E t, implies [~ t], [~ ~], [: ~], [~ ~] E t,

Proof.

(i) Let

[
X y] f!..
x Y E 8,'P

which is the transitive closure of M(O, rp), (regarded as a set of pairs of
columns), in A(B) by Lemma 2.21. Then there are (zo, wo), ... , (zm' wm) E 0
such that

[ ~ ] = [ ~: ] M('._) [ ~~ ] M('._) ... M('._) [ ~: ] = [ t ]
so x = ZO'PZl'P .. · rpZm = Y so (x, y) E 'P by transitivity of rp.

Conversely, (x, y) E rp implies

[~ t] E M (0, 'P) r;; f!..e ,'P .
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means ((x, y), (x, y)) E ~(J,cp ~ <p x <p which implies (x, y) E <po

Conversely, (x, y) E <p implies ((x, y), (x, y)) E R for any reflexive relation
R on A(<p) so ((x, y), (x, y)) E ~(J,cp, i.e.,

[~ ~] E ~ (J ,cp •

(ii) is proved similarly; reverse the roles played by rows and columns in (i).

(iii) Let

[
X y] ~u v E (J,cp,

which is the transitive closure of M(O, <p) (a set of pairs of columns), in A(O)
by Lemma 2.21, so as above, (x, y) E <po Then by (i),

[~ ~] E ~(J,cp.

Since ~(J,cp ~ 0 x 0, we also have (x, u) E 0 so by (ii),

[~ ~] E ~(J,cp.

Now ~(J,cp is symmetric, so

[~ ~] E "'D" implies [~ ~] E "'D"

Now

[
X y] ~u v E (J,cp

implies that there are (zo, wo), .. ; ,(zm, wm) E 0 such that

[ ~ ] = [ ~: ] MCD,,) [ ~~ ] MCD,,) ... MCD,,) [ :;: ] = [ ~ ]

i.e.,

[
Zi Zi+l] M(O ) .. . E ,<p , '/, = 0,1, ... ,m - 1. Therefore
W~ W~+l

[ wz~ W
i+1

] E M(O, <p), i = 0, 1, ... ,m - 1 by definition of M(O <p)
~ Zi+l '



so

so

[ : ] = [ ': ] MC',_) [ ~: ] MC',_) ... M(',_l [ ";:: ] = [ : ]

([~],[~])
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is an element of the transitive closure of M(O, <p), i.e.,

[~ ~] E Llo,~.

The corresponding claims for Llo,~ are proved in a dual manner. 0

Lemma 2.23. [FM87, Exercise 4.4]

Let 0, <p be congruence relations on A E V, where V is a modular variety.

If [~ ~] E Llo,~ and [ ~ ] E 0, then [~ ~] E Llo,~.

Proof.

Let

[~ ~] E Llo,~ and [ ~ ] E O.

We have (a, c), (a, d), (a, b) E 0 so, by symmetry of 0, (b, a), (a, c) E 0 and
(b, a), (a, d) E 0 and so (b, c), (b, d) E 0 by transitivity.

Let TJo, TJI E Con(A(O)) be the kernels of the first and second projections
Po, PI from A(O) onto A. Then TJo n TJI = idA(o) ~ Llo,~ and we have the
following diagram:

TJI

TJo

[~ ]
By the Shifting Lemma (Lemma 2.2),

U:] E ~,,-

LlO,~
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o

Theorem 2.24. [FM87, Exercise 4:5]

Let e, rp E Con(A), A E V, where V is a modular variety. Then

(i) The relation

TJ = {((x, y), (u, v)) : [~ ~] E ~9,<p}

is transitive. We express this by saying that ~9,<p is a transitive relation
on A(rp).

(ii) The relation TJ defined in (i) is equal to ~9,<p. We express this as ~9,<p =
~9,<p.

Proof.

Let ((x, y), (u, v)), ((u, v), (r, s)) E TJ, i.e.,

[
X y] [u v] ~u v ' r s E 9,<p'

Then (x, u), (u, r) E 0 so (x, r) E 0; (y, v), (v, s) E e so (y, s) E e and we can
show (x, y), (u, v), (r, s) E rp (by Lemma 2.21 as in Proposition 2.22 (i)).

Let a = [ : ] ,b = [ ~ ] ,c = [ ~ ] ,d = [ ~ ] ,let ~ = ~9,<p.

Now

by assumption and since

and

[~]~[~]

[~]~[~]
(by Definition 2.18). Let ml,'" ,mn be Day terms for V as described in
Theorem 2.1. By compatibility,

mt' ([ ~ ],[~ ],[~ ],[~ ]) ~mt' ([ ~ ] ,[ ~ ] , [ ~ ] ,[ ~ ])
so

[
m~(u,u,v,v) ] ~ [u]
mi (r,u,v,s) r
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by Theorem 2.1 (ii).

Since

([ ~], [~]), ([ ~], [~]), ([ ~], [~]), ([ ~], [~]) E~,
we have

mt' ([ ~ ],[~ ],[~ ],[~ ]) ~mt' ([ ~ ],[~ ],[~ ],[~ ]).
Therefore

[
m~(u,u,v,V)] ~ [u]
m i (r,r,s,s) r

(Theorem 2.1 (ii)) and so by transitivity

[
m~(u,u,v,v) ] ~ [m~(u,u,v,v) ].
mi (r, u, v, s) mi (r, r, s, s)

Now since (u, x), (v, y) E () we have mt(u, u, v, v)(}mt(x, x, y, y), therefore
by Lemma 2.23,

[
m~(x, x, y, y) ] ~ [ m~(x, x, y, y) ] ,
m i (r,u,v,s) m i (r,r,s,s)

l.e.,

mf ([ ~ ] ,[ ~] ,[ ; ] ,[ ~ ]) ~mt
2

([ ~ ] , [ ~ ] , [ ~ ] , [ ~ ]) ,

i.e., mt(a, b, d, c)~mt(a, a, c, c). By Theorem 2.3 ((ii)=} (iii)), a~c, i.e.,

[~ ~] E~,
i.e., ((x, y), (r, s)) E'TJ.

Thus, we may regard ~o,'P as a transitive relation on A(rp) and as such, it
contains M((}, rp) (considered as a set of pairs ofrows). Hence, by Lemma 2.20,
~o,'P ~ ~o,'P (by which we really mean 'TJ ~ ~o,,p).

In a similar sense, by symmetry, ~ 'P,O ~ ~'P,o, It follows directly from
Definition 2.18 that ~o,'P = ~ 'P,O and ~'P,o = ~o,'P. We have ~o,'P = ~ 'P,O ~

~'P,o = ~o,'P therefore, ~o,'P = ~o,'P.

o
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The next theorem shows that the definitions of the commutator given origi­
nally by Hagemann and Herrmann [H:H79] and subsequently by Gumm [Gum80a]
and by Freese and McKenzie [FM87] are equivalent in any modular variety.

Theorem 2.25. [FM87, Theorem 4.9]

Let V be a modular variety. Let A E V and x, YEA. The following are
equivalent:

(i)

(ii)

(iii)

(iv)

(x, y) E [0, cpL

For some a, [~ ~] E D.(),cp.

For some b, [~ ~] E D.(),cp.

Proof.

(ii)=?(iii): Let a = y in (iii).

(iii)=?(ii): By Lemma 2.21, since

[
X a] D.y a E (),cp,

there exist (Zi' z;) E 0, i = 0,1, ... ,n such that (zo, z~) (x, y), (zn, z~)
(a, a) and for i E {I, ... ,n},

[
Z~-l Z~] E M(O, cp).
Zi~l Zi

~ow we have (Z~_l' z~) E cp for i E {I, ... ,n}, so by transitivity (z~, z~) E cp,
l.e., (y, a) E cp, so (a, y) E cp, so

[
a y] D.ayE (),cp,

by Definition 2.18 (ii).

Now
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(ii)~(iv): Let b = y in (ii).

[~ 1] E ~8,~.
Then (x, b), (y, b) E (), hence (x, y) E () by transitivity.

Let Po : A(()) -+ A and PI : A(()) -+ A be the first and second projection
homomorphisms from A(()) onto A. Let T/o = ker(po), so ((x, y), (x, b)) and
((y, y), (y, b)) E T/o, and let T/I = ker(PI), so ((x, y), (y, y)) and ((x, b), (y, b)) E

T/I·

We have the following diagram:

[:] T/o

[t ]

~8,~

Now T/o n T/I = idA (8) ~ ~8,~, so by the Shifting Lemma (Lemma 2.2), since
V is modular,

[ ~ ] ~8,~ [ 1] implies [ ~ ] ~8,~ [ ~ ] , i.e., [~ ~] E ~8,~.

Thus, (ii), (iii) and (iv) are all equivalent.

(ii)~(i): We first show that [(), <p] is the least congruence relation on A
which is a union of ~8,~-classes. Suppose

Since ~8,~ is the transitive closure of M((), <p) (by Lemma 2.21) there exist

[:: ],[:: j,. ,[:: ]such that [ :: ] = [ ~ ] , [ :: ] = [ ~ ]
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and for i E {I, ... ,n},

[
Xi-l Xi] E M((}, <p)" so [ Xi-l
Yi-l Yi Xi

Yi-l] E M(<p,(}).
Yi

For any i E {I, ... ,n}, if (Xi-I, Yi-l) E [<p, ()] = [(), <p] (Proposition 2.9 (i))
then (Xi, Yi) E [(), <p] since [(), <p] is the smallest congruence relation <5 for which
both C ((), <Pi <5) and C (<p, (); <5) hold.
Thus, if in the first matrix

[~~ ~~]
we have (xo, Yo) = (u, b) E [(), <p] then (XI, Yl) E [(), <p], and so, repeating this
argument, (xn,Yn) = (c, d) E [(), <p]. Therefore (u, b)/~e,cp ~ [(), <p] whenever
(u, b) E [(), <p]. Thus, [(), <p] contains the union of the ~e,CP-classes of all its
elements.

Conversely, if (u,v) E [(},<p] ~ (}n <p then (u,v) E (), so (u,v) E (u,v)/~e,cp,

so [(), <p] is a union of ~e,cp-classes. Now let <5 be a congruence relation on A
which is a union of some ~e,cp-classes. Let

[~ :] E M(<p,(})

so (x, y), (r, s) E <p and (x, r), (y, s) E (). Suppose (x, r) E <5. We show (Y, s) E
<5. We have

[~ ~] E M((}, <p) ~ ~e,cp so [ ~ ] E [ ~ ] / ~e,cp ~ <5

(because [ ~ ] E <5 and <5 is a union of ~e,cp-classes),

so (y,s) E <5. Thus, C(<p,(};<5) holds.

By Proposition 2.11 (1), [(), <p] ~ <5 (since V is modular). Therefore [(), <p] is
the least congruence relation on A that is a union of ~e,cp-classes.

Now suppose

[~ ~] Ell"., Le, [~] Ll". [ ~ ] .

Since [ ~ ] E [ ~ ] / Ll". and [ ~ ] E [0,1"), we have [ ~ ] E [0,1"),

because [(), <p] is the union of the ~e,cp-classesof its elements.
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(i):::} (ii): Let

<> = {[ ~ ] EA' : [~ ~] E ~".}
We show a is a congruence relation on A. Clearly, a is reflexive (by definition
of ~e,'P)'

Symmetry:

Let [ ~ ] Ea. Then [~ ~] E~e,'P so [~ ~]E ~e,'P
by symmetry of ~e,'P' Therefore, since (iv) :::} (ii),

[ ~. : ] E ~".' ie., [~ ] E <>.

Tra nsitivity:

Let

[ ~ ] , [ ; ] E a. Then [ ~ ] E a

by symmetry of a, so

[~ ~] E ~" •. Therefore [~ ~], [~ ~] E ~".'
by symmetry of ~e,'P' By transitivity of ~e,'P'

[~ ~] E ~e,'P'
Since (iv) :::} (ii),

[~ ;] E ~".' i.e., [ ~ ] E <>

Compatibility:

Let f be an n-ary fundamental operation symbol of V. Suppose (Xi, Yi) E a
for i E {I, 2, ... ,n}.

Then

[
Xi Yi] i\ r . {I } .Yi Yi E ue,'P lor '/, E , ... ,n , l.e.,

so by compatibility of ~o,'P'

jA2 ((Xl, YI), ... ,(Xn, Yn))(~e''P)jA2 ((YI' YI), ... , (Yn, Yn)),

i.e., (JA(XI"" ,xn), jA(YI"" ,Yn))(~e,'P)(jA(YI"" ,Yn), jA(YI"" ,Yn)),
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[
fA(Xl" .. ,Xn) JA(Yl"'" Yn) ] E ~
fA(Yl" .. ,Yn) fA(yt, ... ,Yn) (J,'P'

SO (jA(Xt, ... ,Xn), f~(Yl"" ,Yn)) E a.

We show a is the union of all ~(J,'P-classes of the form

[ ~ ] / ~(J,'P
such that (p, q) E a. Let H be this union. Let (x, y) E a. Then

(x,y) E [ ~] /~(J,'P ~ H.

Suppose (x, y) E a and

[~ :] E ~(J,'P'
Then (as in (iii) => (ii), using Lemma 2.21) we can show (Y, s) E cp. Thus,

[~ ~] E ~(J,'P and [ ~. ~ ] E ~(J,'P
(because (x, y) E a). By transitivity and symmetry of ~(J,'P'

[~ :] E ~(J,'P' i.e., [: ~] E ~(J,'P'

Now from

[
s x] [x r] ~s Y , Y s E (J,'P'

we deduce

[: :] E /';0", hence [: :] E /';0", and so (T, s) E a

Therefore

[ ~ ] / !:l(J,'P ~ a, for all [ ~ ] E a,

i.e., H ~. a so H = a.

It was shown in (ii) => (i) that for any congruence 6 on A that is a union of
!:l(J,'P-classes we have [0, cp] ~ 6, so [0, cp] ~ a. Therefore if (x, y) E [0, cp], then
(x, y) E a, i.e.,
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Thus, (i) ~ (ii).

o
2.5 The Commutator in Familiar Varieties.

2.5.1 Groups. Recall that the variety of groups is congruence modular (Ex­
ample 2.4). Let G = (G; ,,-1, e) be a group and let Nor(G) be its lat­
tice of normal subgroups. Recall that the map Con(G) -t Nor(G) de­
fined by 0 M e/O is a lattice isomorphism, with inverse isomorphism given
by N H {(x,y) E G2 : xy-1 EN}.

Recall that when M, N E Nor(G), the subgroup [M, N] of G generated
by {m- 1n-1mn : m E M and n E N} is normal in G and is called the
commutator (subgroup) of M and N in G. We aim to show that if 0, cp E

Con(G) with M = e/O and N = e/cp then [M, N] = e/[O, cp], i.e., for groups,
the commutator defined earlier in this chapter coincides with the usual group­
theoretic commutator (under the above lattice isomorphism).

Let M, N E Nor(G) and let p : G -t G' be a surjective homomorphism.
(Then G' is a group, since groups form a variety.) We shall need the following
properties:

(1) [M,N] ~ MnN.

(2) [p[M], p[N]] = p[[M, N]].

(3) The operation [M, N] defined above is the largest binary operation
defined on Nor(G) for every group G such that (1) and (2) are true.

We also have:

(4) [M, N] = [N, M].

(5) [M, N] is the least normal subgroup of G such that in G/[M, N], every
element of M/[M, N] commutes with every element of N/[M, N] (hence
(M n N)/[M, N] is an Abelian group).

Note that (1) follows from the normality of M and N in G, and (4) from
the fact that [M, N] is closed under inverses. Also, (5) follows readily from
the definitions and elementary group theory.

In (2), note that p[M], p[N] E Nor(G') since, e.g., p[M] = p[MK] (where
K = e/ker(p) = p[M V K]), where V denotes the join operation of Nor(G).
From the definitions and the fact that p is a surjective homomorphism, we
may verify (2) effortlessly.
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We need to prove (3). Define

{(X,y) E G x G: x-ly EM},

{(x , e) : x E M} = M x {e},
{(x,e): x E [M,N]} = [M,N] x {e},
{(x, y) EN x G : x-ly E [M, N]}.

Note that G(M) = () (where () E Con(G) with e/() = M), so G(M) is the
universe of a subalgebra (i.e., subgroup) G(M) of G x G. Also Ml E Nor(G x
G) because M, {e} E Nor(G x G); also M l ~ G(M), so M l E Nor(G(M)).
By the same argument, B E Nor(G x G) and B E Nor(G(M)) and B E

N or(M l ), because [M, N] ~ M.

We show that /:1 E Nor(G(M)). Note that (e, e) E /:1 ~ G(M). Let
(Xl, Yl), (X2, Y2) E /:1. Then XIlYl' X2" l Y2 E [M, N]. Consider (Xl, Yl)(X2, Y2)-1 =
(XlX2l ,YlY2"1). Now Xt,Xz E N so XIX2"l EN.

We show XlX2"l(YIY2"l)-l E [M, N], i.e., that XlX2"l Y2Yl l E [M, N]. We have
-1 -1 [M N] L t -1 -1 th -1 -1Xl YI, Xz Y2 E , . e Xl YI = Cl, X2 Y2 = C2, en Xl = CIYl so Xl =

YlCl l . Then XlX2" l Y2Yl l = YlCI l C2Yl l
E [M, N] since Cl, Cz E [M, N], Yl E G

and [M, N] E Nor(G). Thus, /:1 is a subgroup of G(M).

Let (Xl, Yl) E /:1 and (x, y) E G(M). Consider (x, Y)(Xl, Yl)(X, y)-l =
(XXlX-1,YYly- l ). Now XXIX- l EN, since X E G and Xl EN E Nor(G). We
show (XXIX-I) -lYYly- l E [M, N], Le., that XXIlX-IYYly- l E [M, N). Since
xy- l = m for some m E M, we have y-l = x-lm and Y = m-Ix. Also,
XIlYl = Cl for some Cl E [M, N] so Yl = XICl'

Now XXIlX-lYYly- l = XXllx-lm-lxxlclx-lm
= (m-lxx-lm)xxllx-lm-Ixxlclx-Im. We have x-lmx E M and xII E N
so if C2 = (x-lmx)xll(x-lm-lx)xl then Cz E [M, N]. Then XXIlX-lYYly- l =
m-lxc2clx-lm = m-Ixc2cI(m-lx)-1 E [M,N], since m-Ix E G and C2Cl E
[M, N]. Thus, /:1 E Nor(G(M)).

Let n be the first projection homomorphism from G x G onto G. Then
n[/:1] = N, n[B] = [M, N] and n[MI ] = M. Let C be another binary operation
on Nor(G) satisfying (1) and (2) above. By (1) C(M l , /:1) ~ M l n .6. ~ B.
From (2) C(M, N) = C(n[Mtl, n[/:1]) = n[C(Ml , .6.)] ~ n[B]. But n[B] =
[M, N], so C(M, N) ~ [M, N]. This proves (3).

Now the operation on Nor(G) defined by C(e/(), e/cp) = e/[(), cp], ((), cp) E
Con(G), satisfies (1), (2), so by (3), e/[(), cp] ~ [M, N] whenever e/() = M and
e/cp = N.
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Conversely, if m E M = e/() and n E N = e/<p, let t(x, y) = x-1y-1xy.
Then

[
e e ] = [ tG(e, n) tG(e, e) ] E M(() )

m-1n-1mn e tG(m, n) tG(m, e) ,<p

and C((), <Pi [(), <p]) and (e, e) E [(), <p], so (m-1n-1mn, e) E [(), <p]. Thus
{m-1n-1mn : m E M and nE N} ~ e/[(), <p] E Nor(G), so [M, N] ~ e/[(), <p].
Consequently, [M, N] = e/[(), <p], as claimed.

Note that, by (5), the elements of M commute with those of N if and only if
[M,N] = {e} (ifandonlyif[(),<p] = ida). In particular, [M/[M,N],N/[M,N]] =
{e/[M, N]} in G/[M, N]. Of course, G is an Abelian group if and only if
[G, G] = {e} (i.e., [G2

, G2
] = ida).

2.5.2 Rings. Let R = (R; +, ., -,0), be a ring (not assumed to have identity).
Since R = (R; +, -,0) is a group, R is congruence modular, so the variety of
all rings is congruence modular. Let Id(R) be the ideal lattice of R. Recall
that the map Con(R) ---+ Id(R) defined by () H O/() is a lattice isomorphism,
with inverse isomorphism given by I H {(x, y) E R 2

: x - y E I}. For
J, K E Id(R), recall that JK, J + K E Id(R), where

n

J K .- {L aibi : nEw and ai E J, and bi E K for all i ::; n}
i=O

J + K .- {j + k: j E J and k E K}.

Indeed, J K is the least ideal of R containing {jk : j E J and k E K} and
J + K is the least ideal of R containing J U K. Thus, if F( J, K) := J K + K J
then
F(J, K) = {E?=O(aibi + b~a~) : nEw and ai, a~ E J, and bi , b~ E K for all i <
n} = F(K, J)

and F(J, K) is the least ideal of R containing {jk : j E J and k E K} U {kj :
j E J and k E K}.

Let J, K E I d(R) and let p : R ---+ R' be a surjective homomorphism, where
R' is a ring. Then p[J], p[K] E I d(R), and we have:

(1) JK +KJ ~ JnK.
(2) p[J]p[K] + p[K]p[J] = p[JK + KJ].
(3) The operation F (J, K) = J K + K J is the largest binary operation

defined on Id(R) for every ring R such that (1) and (2) are true.

(1) is obvious and the proof of (2) is straightforward. The proof of (3) is
a routine modification of the corresponding proof for normal subgroups of
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groups. More precisely, if we define

R(J) {(x, y) E R x R: x E R, and x - yE J},

J1 {(x,O) : x E J},
B {(x, 0) : x E JK + KJ},
t1 {(x, y) E K x R : x - y E JK + K J}

then R(J) is the universe of a subring R(J) of R x Rand J1 , B, t1 are ideals
(hence subuniverses) of RV) and if 1r is the first projection homomorphism
from R x R onto R then 1r[B] = JK + K J, 1r[J1] = J, 1r[t1] = K and
J1 n t1 ~ B.

Now if C is another binary operation on 1d(R) satisfying (1), (2) then,
exactly as in the argument for groups, C(J, K) ~ JK + K J.

Since the operation on 1d(R) defined by C(O/B,O/<p) = O/[B, <p] (B, <p E
Con(R)) satisfies (1), (2), we have O/[B, <p] ~ JK + K J whenever J = O/B
and K = O/<p, i.e., [B, <p] = {(x, y) ER x R: x - yE JK + K J} E 'fJ, say.

Conversely, if j E J = O/B and k E K = O/B (B, <p E Con(R)), let s(x, y) =
xy and t(x, y) = yx. Then

[
0 0] [ sR(0, k) SR(0, 0) ]
jk 0 = sR(j, k) sR(j,O)· E M(B, <p)

and (0,0) E [B, <p], so (jk,O) E [B, <p], i.e., jk E O/[B, <p]. Similarly, using t in
place of s, we have kj E O/[B, <p] E 1d(R), so JK +K J ~ O/[B, <p]. This shows
that JK + K J = O/[B, <p], Le., that [B, <p] = 'fJ.

In particular [B,<p] = idR if and only if 1J = J1 = {O} (where 1 = O/B and
J = O/<p). Thus [R2

, R2
] = idR if and only if R has "zero multiplication", i.e.,

ab = 0 for all a, b E R.

2.5.3 Modules. Let R be a ring, V the variety of all left R-modules. Let
A E V and let (A; +, -,0) be the Abelian group reduct of A. Note that A is
congruence modular (because (A; +, -,0) is), so V is a congruence modular
variety. Let Sub(A) denote the submodule (Le., subalgebra) lattice of A.
Recall that the map Con(A) -+ Sub(A) defined by B H O/B is a lattice
isomorphism, with inverse isomorphism given by N H {(x, y) E A2 : x - y E
N}.

We are going to show that [B, <p] = idA for all B, <p E Con(A).

Suppose D is a binary operation defined on Sub(A) for all A E V such that
whenever p : A -+ A' is a surjective homomorphism in V and M, NE Sub(A),
then

(1) D(M,N) ~ MnN and
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(2) p[D(M, N)] = D(p[M], p[N)).

We claim that D(M, N) = {O} for all M, N E Sub(A) and all A E V.

To see this, let A E V and let p : A x A -+ A be the surjective ho­
momorphism defined by p((a, b)) = a + b (a, b E A). Let (), cp E Con(A)
with M = O/() and N = O/cp. Define NI = N x {O} and M1 = {O} x M, so
NI, M1 E Sub(AxA). Then p[M1]= M and p[N1]= Nand M1nN1 = HO, on
so, by (1), D(M1 , NI) = HO, on·

By (2), D(M,N) = D(p[M1],p[N1)) = p[D(M1, NI)] = p[{(O, On] = {O}.

Now the operation D(M, N) = O/[(), cp] (where M = O/() and N = O/cp) and
(), cp E Con(A) (A E V) satisfies (1), (2), so O/[(), cp] = {O}, i.e., [(), cp] = idA

for all (), cp E Con(A) and all A E V.

2.5.4 Congruence distributive varieties.

Theorem 2.26. [HH79] [Gum83, Theorem 6.3]

Let V be a modular variety and A E V.

(i) If p no = [p,o] for all p, 0 E Con(A) then A is congruence distributive.

(ii) If every subalgebra ofAx A is congruence distributive then
an (3 = [a, (3l for any a, (3 E Con(A).

Proof.

(i) Let [p,o] = p n 0 for all P,o E Con(A). Then for any a, (3" E
Con(A) , an ((3 V,) = [a, (3 V ,] = [a, (3] V [a, ,] (byadditivity)

= (a n (3) V (a n ,). Thus Con(A) is a distributive lattice.

(ii) Let a, (3 E Con(A). By Proposition 2.9 (i), [a, (3] ~ an (3, so we need
to show that an (3 ~ [a, (3]. Let (x, y) E an (3.
Since (x, y) E (3, we infer that ((x, x), (y, y)) E D..0I ,{3' (1)

Let Po and PI be the first and second projection homomorphisms from A(a)
onto A (where A(a) is a, considered as a subalgebra ofAx A), with kernels
'TJo and 'TJI, respectively. Then 'TJo, 'TJI E Con(A(a)) and 'TJo n'TJI = idA (OI)'

Now ((x, y), (x, x)) E'TJo (2)

By (1) and (2), ((x, y), (y, y)) E D..0I ,{3 0 'TJo ~ D..0I ,{3 V'TJo (3)

Also ((x, y), (y, y)) E'TJI (4)

By (3) and (4), ((x, y), (y, y)) E (D.. 0I ,{3 V 'TJo) n'TJI

= (D.. 0I ,{3 n 'TJI) V ('TJo n'TJI) (because A(a) is congruence distributive)

= (D.. 0I ,{3 n 'TJd V idA (OI)
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= ~a,f3 n T}l ~ ~a,f3'

From ((x, y), (y, y)) E ~a,f3 and by the equivalence of (i) and (ii) in Theo­
rem 2.25, we infer that (x, y) E [a,,8], so an,8 ~ [a,,8] and hence an,8 = [a, ,8].

o

Corollary 2.27. A congruence modular variety V is congruence distributive
if and only if for every A E V and every a,,8 E Con(A), [a,,8] = an,8.

Proof.

(~) follows directly from (i) of the previous theorem.

(:::::}) Let A E V where V is congruence distributive. Then A x A and all its
subalgebras are in V and are therefore congruence distributive so the result
follows from (ii) of the previous theorem.

o
In particular, if a,,8 E Con(A), where A is a lattice or a Boolean algebra

then [a,,8] = an ,8, since the varieties of lattices and of Boolean algebras are
congruence distributive.



107

Chapter 3

Abelian Congruences and
Abelian Algebras

In this chapter, we define and study Abelian algebras and affine algebras.
An algebra A is Abelian if [A2 , A 2] = idA . (Thus, a group is Abelian if and
only if it is Abelian in the traditional sense. Also, all modules are Abelian
algebras.) Affine algebras have a more complex definition but, roughly speak­
ing (or, more precisely, "up to polynomial equivalence"), they are the same
things as modules over rings. In particular, affine algebras are Abelian (and
congruence modular, in fact permutable). The main theorem of the chapter,
which is Herrmann's Fundamental Theorem of Abelian Algebras [Her79] estab­
lishes that, in a congruence modular variety V, the converse is also true: every
Abelian algebra in V is affine. Since, for all A E V, the algebra A/[A2, A2] is
Abelian (and in V), this result advances our understanding of modular vari­
eties substantially.

A key tool in the proof is the existence, in any modular variety V, of
a ternary "difference" term d, with certain useful properties (established in
[Her79] and [Gum80a)). It is shown that for any A E V, and /3 E Con(A)
with [/3, /3] = idA, the congruence class u/ /3 of any u E A is closed under dA .

The algebra (u/ /3; dA
) is called a "ternary group" because, using d, we may

give u//3 the structure of an Abelian group in a natural way. Moreover, locally,
term functions of A may be regarded as group homomorphisms.

We begin by describing the centre, TA, of an algebra A. (The definition
generalizes that of the centre of a group.) In the first theorem, for modular
varieties, a commutator-theoretic description of the centre is given, allowing
us to deduce that, just as for groups, an algebra is Abelian if and only if its
centre is as large as it can be.

3.1 Abelian and Affine AIgebras. Recall that T = (F, ar) denotes a fixed
but arbitrary type.
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Definition 3.1. The centre of any T-algebra A is the binary relation TA ~ A2
defined by (x, y) E TA if and only if for any n < w, and any (n+ l)-ary T-term
t, and any u, v E An, the following is true:

tA(u, x) = tA(v, x) if and only if tA(u, y) = tA(v, y).

Lemma 3.2. [FM87, Lemma 5.2]

The centre TA of a T-algebra A is a congruence relation on A. If A belongs
to a modular variety, then TA is the largest congruence 8 on A such that
[8, A2] = idA .

Proof.

Let t be any {n + 1)-ary T-term and let u, v E An. We first show TA is a
congruence relation on A. Obviously, TA is an equivalence relation.

Now let f be an n-ary fundamental operation symbol of T and for all i E
{I, ,n}, let (Xi, Yi) ETA (1)

Given an (m + 1)-ary term t = t(z, w), define a new term s = St by
s(z, Xl, ... , Xn) = t(Z, f(XI"" , xn)). Suppose for all u, v E Am,
tA(u, fA(XI"" , Xn)) = tA(v, fA(XI"" , xn)), i.e., sA(u, Xl, , Xn) =
SA(v, Xl, ... , xn). Then sA(u, Yt, X2, ... , xn) = sA(v, YI, X2 , xn ), by (1),
and so SA(U, Yt, Y2, X3, ... , xn) = SA(v, YI, Y2, X3, . .. , xn), by (1).

Continuing in this way, we get sA(u, YI, ... , Yn) = sA(v, YI, ... , Yn), i.e.,
tA(u, f(YI,'" ,Yn)) = tA(v, f(yt,.·· ,Yn)). The converse follows by symme- .
try, so TA E Con(A).

Now assume that V is a modular variety, with A E V. We show that
[TA, A2] = idA . Let

where ai, i = 1,2, is a sequence of n elements of A, hi, i = 1,2, is a sequence of
m elements of A, m, n 2: 0, satisfying alTAa~ for k < n, and t is a (n +m)-ary
T-term.

Suppose tA(ai, .. . , a~, hI) = tA(ai, .. . , a~, h 2). Then by repeated use of
the definition of TA, tA(a~, ... , a;, hI) = tA(a~, ... ,a;, h 2) since (al, a~) ETA

for all k E {I, ... ,n}, so C(TA, A2; idA ) holds. V is modular, so by Proposi­
tion 2.11, [TA, A2]~ idA , so [TA, A2] = idA .

Let 0:' be any congruence relation on A such that [0:', A2] = idA. Then both
C(O:', A2;idA) and C(A2, 0:'; idA) hold (2)
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We show a ~ TA. Let (x, y) Ea. Then

[
tA(x, u) tA(x, v) ]
tA(y, u) tA(y, v)

is an element of M(a, A2) for any u, v E An and any (n + l)-ary I-term t.
From (2), if tA(x, u) = tA(x, v), then tA(y, u) = tA(y, v). Since (y, x) E a,
the converse follows by symmetry. Consequently, a ~ TA·

Thus TA is the largest congruence relation 8 on A such that [8, A2
] = idA •

o

Definition 3.3. For any algebra A, a congruence e E Con(A) is called
Abelian if [e, e] = idA . A is Abelian if [A2, A2] = idA or, equivalently, TA =
A2.16 A variety is Abelian if all its members are.

. Proposition 3.4. Let V be a modular variety and A E V and e E Con(A).
Then e/[e,e] is an Abelian congruence of A/[e,e]. In particular) A/[A2,A2]
is an Abelian algebra.

Proof.

Let f : A --t A/[e, e] = B be the natural epimorphism, so ker(J) = [e, e] =
1r, say. We must show that [e/1r,e/1r] = idB' Since 1r ~ e,

f- 1([e/1r, e/1r]) = f-1([J(e V 1r), f(e V 1r)])

= [e, e] V 1r (by Proposition 2.14 (i))

= 1r = f-1(idB).

Since, by the Correspondence Theorem, TJ H f-1(TJ) is a lattice isomorphism
from Con(B) onto int(1r, A2), it follows that [e /1r, e/1r] = idB' In particular
A2 /[A2, A2] is an Abelian congruence of A/[A2, A2]. 0

Using Propositions 2.14 and 2.17 it is easy to verify that the class Vab of all
Abelian algebras in a modular variety V is a subvariety of V, so every modular
variety V has a largest Abelian subvariety Vab . Of course if V is the variety of
all groups then Vab is the variety of Abelian groups.

Definition 3.5.

Consider a I-algebra A. If there is an Abelian group 17 (A; +, -) = A.
having the same universe as A and a ternary I-term, t(x, y, z) such that

(i) tA(a, b, c) = a - b+ c for all a, b, c E A

16Note that these two definitions of an Abelian algebra A are equivalent even if A does
not belong to any modular variety. Thus an Abelian variety is not assumed to be modular.

17For convenience here we treat groups as algebras of type (2,1) rather than (2,1,0).
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then t is called a difference operation for A, and the algebra (A; t A
) is called

a ternary group. If in addition,

(ii) fA(a - b + c) = fA(a) - fA(b) + fA(C) for any n < wand any n-ary
T-term f and a, b, c E An,

we say that A is t-affine.

Proposition 3.6. Any affine algebra is Abelian, and generates a congruence
permutable (hence congruence modular) variety.

Proof.

Let A be an affine T-algebra and let t and A be as in Definition 3.5. Let
n, mEw, let s be any (n + m)-ary T-term, let a i E An and b i E Am for
i = 1,2, and suppose sA(al, b l ) = sA(al , b2). Then

sA(a2, b l ) = sA(a2, b l ) - sA(al , b 2) + sA(a\ b2) (since A is a group)

= sA(a2,bl ) - sA(al, b l ) + sA(al , b2) (by assumption)

= sA(a2 - a l + a l , b l - b l + b2) (by t-affinity)

.= sA(a2, b 2).

This shows that if

[
Un U12 ] E M(A2 , A2 )
U2l U22

and (Un,U12) E idA then (U2l,U22) E idA , so C(A2,A2;idA ), hence [A2,A2] =
idA ·

Since t is a term of V(A) and A (hence V(A)) satisfies t(x, x, y) ~ y ~
t(y, x, x), it follows from Theorem 0.54 that V(A) is congruence permutable.

o
The next lemma is stated without proof in [FM87].

Lemma 3.7. For a T-algebra A = (Ai ... ) and an Abelian group A = (Ai +,-)
(with the same universe A), the following are equivalent:

(i) For any n < wand any n-ary T-term f and any a, b, c E An,
fA(a - b + c) = fA(a) - fA(b) + fA(c).

(ii) For any n < wand any fundamental n-ary operation symbol F of T
there exist endomorphisms al, ... , an of A and a E A such that,
for any a = (al' ... ,an) E An, FA(a) = (L:?=l ai(ai)) + a.

(iii) s:= Ha, b, c, d) E A 4
: a+ b = c + d} is a subuniverse of A 4.

Therefore (ii) and (iii) hold whenever A is affine.
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Proof.

Let A = (A; ... ) be a T-algebra and assume that for some binary operation
+ and some unary operation - on A, the algebra A = (A; +, -) is an Abelian
group.

(i):=;.(ii): Assume (i). Let °be the identity element of A and for n < w let
F be any fundamental n-ary operation symbol of T. For i = 1, . . . ,n define
O!i : A -t A by

O!i(ai) = FA(O, ,0, ai, 0, ,0) - FA(O), where 0 := (0, ... ,0) E An and
ai E A and in (0, ,0, ai, 0, ,0), ai occurs in the i th co-ordinate.

We show each O!i is an endomorphism of A, i.e., that O!i(ai+bi) = O!i(ai)+O!i(bi)
for any ai, bi E A.

O!i(ai + bi) = FA(O, ,0, ai + bi, 0, ,0) - FA(O)

= FA((O, ,0, ai, 0, ,0) - (0, ,0) + (0, ... ,0, bi, 0, ... ,0)) - FA(O)

= FA(O, ,0, ai, 0, ,0) - FA(O) +FA(O, ... ,0, bi, 0, ... ,0) - FA(O) (by (i))

= O!i(ai) + O!i(bi).

It follows that for any ai E A, O!i( -ai) = -O!i(ai) and Qi(O) = 0, by a general
property of group homomorphisms.

Let e = -FA(O). For any a, bEAn,

FA(a + b) = FA(a - 0 + b) = FA(a) - FA(O) + FA(b) (by (i)),

= FA(a) + FA(b) + (-FA(O)) (because A is Abelian)

= FA(a) + FA(b) + e (1)

Let a = (ab ,an) E An. Then

FA(a) = FA(aI' ,an)

= FA([(aI' 0, ,0) + (0, a2, 0, ,0) +... + (0, ... ,0, an-I,D)] + (0, ... ,0, an))

= FA((aI' 0, ,0) + + (0, ,0, an-I,D)) + FA(O, ... , 0, an) + c (by (1))

= FA((aI' 0, ,0) + + (0, ,an-2, 0, 0)) +FA(O, . . , ,0, an-I, 0) + c+
FA(O, ... ,0, an) + e (by (1))

= FA((aI' 0, ... ,0) + ... + (0, ... ,an-2, 0, 0)) + FA(O, .. . ,0, an-I, 0)+
FA(O, ... ,O,an) + 2e = ...

= FA(aI' 0, ... ,0) + FA(O, a2, ... ,0) + ... + FA(O, ... ,0, an-I, 0)+
FA(O, ... ,0, an) + ne

= QI(aI) + Q2(a2) + ... + Qn-I(an-r) + Qn(an)
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(ii)::::}(iii): Assume (ii). Let F be any fundamental n-ary operation symbol
of T with (ai, bi, ci, di) E S for i E {l, ... ,n}.
We show F A4 ((ab bl , Cl, dl ), ... ,(an, bn , Cn, dn)) E S.

F A4 ((al' bl , Cl, dl ), ... ,(an' bn, en, dn))

= (FA(al" .. ,an), FA(bl , ... ,bn), FA(CI, ... ,en), FA(dl , ... ,dn))

SO we show

FA(al"" , an) + FA(bl , ... , bn) = FA(CI, ... ,en) + FA(dl , , dn).

For each i E {l, ,n}, we have ai + bi = Ci + di (2)

Now FA(ab'" ,an) + FA(bl , ... ,bn) = Ef=l ai(ai) + a + Ef=l ai(bi) + a

= E~l ai(ai + bi) + 2a (since A is Abelian and each ai is an endomorphism)

= E?=l ai(ci + di) + 2a (by (2))

= Ef=l ai(ci) + a + Ef=l ai(di) + a (because A is Abelian and each ai is an
endomorphism)

= FA(CI"" , en) + FA(dl , ... , dn ).

(iii)::::}(i): Assume (iii). Let f be any n-ary T-term and let a = (al"" ,an),
b = (bl , . .. , bn ), C = (Cl, . . . ,en) E An. For all i E {l, . . . , n} ,
(ai - bi + Ci, bi, ai, Ci) E S, because A is Abelian.

It is enough to show (JA(a - b + c), fA(b), fA(a), fA(c)) E S, since then
fA(a - b + c) + fA(b) = fA(a) + fA(c), therefore fA(a - b + c) = fA(a) ­
fA(b) + fA(c), because A is Abelian.

From (iii), fA4 ((al - bl + Cb bl , aI, Cl),' .. ,(an - bn + Cn , bn , an, en)) E. S,

i.e., (jA((al - bl + Cl)"" ,(an - bn + Cn)), fA(b), fA(a), fA(c)) E S,

i.e., (jA(a - b + c), fA(b), fA(a), fA(C)) E S.

o
Affine algebras appear to have originated in [0866]. Their significance lies

in the fact that they are "almost" modules. We shall now make this statement
more precise. For any algebra A and any nEw, define

Poln(A) = {f : f is an n-ary polynomial function of A}

and Pol(A) = UnEwPoln(A).
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Definition 3.8. Two algebras Al = (AI; FI) and A z = (Az;Fz) (of possi­
bly different types) are said to be. polynomially equivalent if Al = Az and
Pol(A I ) = Pol(Az).

If R = (R; +,', -, OR, 1) is a ring with identity and M = (M; {+, -, OM} U
{r: : r E R}) is a left unital module over R (where r:M (m) = rm for all r E R
and m E M), it is easy to see that M is an affine algebra. Conversely:

Theorem 3.9. [Gum79]

Let A be an affine T-algebra. Then there exists a ring with identity, R, and
a unital left R-module M such that A and M are polynomially equivalent.

Proof.

. Let A = (A; +, -) and (A; tA ) be an Abelian group and ternary group
associated with A, as in Definition 3.5, and let 0 E A be the identity element
of A.

The endomorphism ring E = (E; EB, 0, -,0, idA ) of Ais the ring of all group
homomorphisms from (A; +, -,0) to itself, where, for I, gEE and a E A,

(J EB g)(a) = I(a) + g(a) and (J 0 g)(a) = I(g(a)) and O(a) = O.

Recall that (A; {+, -, O} U {e : e E E}) is a unital left E-module, where
ea := e(a) for all e E E and a E A.

Let R = {e E Poh (A) : e(O) = O}. If e E R then there exist k E w, a k-ary
T-term q and u = UI, ... ,Uk E A such that e(a) = qA(a, u) for all a E A.
Then, for all a, b, c E A,

e(tA(a, b, c)) = qA(tA(a, b, c), u)

qA (tA (a, b, c), tA(UI' UI, UI),'" ,tA(Uk' Uk, Uk)) (by Definition 3.5(i))

= tA(qA(a, u), qA(b, u), qA(c, u)) (by Definition 3.5(ii))

= tA(e(a), e(b), e(c)),

so e preserves t A and 0, and therefore also + (since a + b = tA(a, 0, b)).
Consequently, e E E, so R ~ E. Also,O, idA E R. Evidently, if e, 1 E R then,
since e(O) = 0 = 1(0) and I(a) + g(a) = tA(J(a), 0, g(a)) and -I = 0 EB (- I),
we have e EB I, -I, eo 1 E R. This makes R the universe of a subring (with
identity) R ofE, so M = (A; {+, -, O}U{r:: r ER}) is a unitalleft R-module.

Since +, - are definable in terms of t A and 0 and since R ~ Poh(A), we
have Pol(M) ~ Pol(A). Conversely, if n, mEw and s is an (n + m)-ary
T-term and b = bl , ... ,bm E A, consider the n-ary polynomial 1 of A defined
by

I(a) = sA(a, b) (a = al, ... ,an EA).
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By the proof of Lemma 3.7 ((i)=}(ii)), there exist homomorphisms ab'" ,

a n+m of A such that
n m

f(a) = sA(a, b) = :E ai(ai) + :E an+j(bj ) (a = al,··· ,an EA).
i=l j=l

Moreover, for each i E {I, ... ,n + m}, we can choose ai so that if 0 :=
(0, ... ,0) E An+m then

ai(c) = sA(O, . .. ,0, c, 0, ... ,0) - sA(O) for all c E A

(the second occurrence of c above being in the ith co-ordinate), whence ai(O) =
0, i.e., ai E R. Thus, in the language of the module M, setting v = LT=1 an+j(bj )
E A), we have

n

f(a) = :E ai(ai) + v for all a = aI, ... ,an E A,
i=l

so f E Poln(A). Thus, Pol(A) = Pol(M). 0

3.2 Abelian AIgebras in Modular Varieties. A ternary term that satisfies
(i) and (ii) of the following theorem is called a difference term. In the next two
results, the existence of a difference term in any modular variety is established
(a result due to Herrmann and Gumm), its properties are described and it is
used to characterize modular varieties.

Theorem 3.10. [Her79] [Gum78] [Gum80a]

For each modular variety V of type T there is a ternary T-term d, called a
difference term, satisfying the following:

(i) d(x,x,y) ~ Y is an identity ofV.

(ii) If (a, b) E 0 E Con(A), where A E V, then dA(a, b, b)[O, O]a.

(iii) If a, 13, "f E Con(A), where A E V, and x, y, z, u, u' E A and an 13 ~ "f,
then

x 13 z

implies

x

y

13

u

z

with d = dA(u, u', y).
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Proof.

Let V be a modular T-variety. Then there are T-terms mo(x, y, z, u), ... ,
mn(x, y, z, u) such that V satisfies the identities of Theorem 2.1. Define
qi(X, y, z), i = 0,1, ... ,n, inductively by

qo(x, y, z) z

( ) _ {mi+l(qi(X, y, z), y, x, qi(X, y, z)) (i odd)
qi+l x,y,z - mi+l(qi(X,y,Z),x,y,qi(X,y,Z)) (i even)

and set d(x,y,z) = qn(x,y,z).18

(i) We show by induction on i that V 1= qi(X, x, y) ~ y for i = 1, ... ,n.
This is clearly true for i = O. Suppose it is true for some i ~ O. Then

V 1= qi+l(X,X,y) ~ mi+l(qi(X,x,y),X,X, qi(X, x,y))

~ qi(X,x,y) (by Theorem 2.1 (ii))

~ y (by the induction hypothesis),

as required. Now, setting i = n, we have V 1= d(x, x, y) ~ y .

(ii) Let () E Con(A), where A E V. Let (a, b) E (). We prove by induction
on i that

qt(a, b, b)[(), ()]mt(b, b, b, a) for all odd i ~ n, and qt(a, b, b)[(), ()]mt(b, b, a, a)
for all even i ~ n (1)

Since, by Theorem 2.1 (i), mn(x, y, z, u) ~ u, we shall then have dA(a, b, b) =
q~(a, b, b)[(), ()]a (for n even or odd), as required.

By Theorem 2.1 (i) (qt(a, b, b), mt(b, b, b, a)) = (b, b) E idA ~ [(), ()].

Suppose i is odd and that (1) holds for i. Then q!+l (a, b, b)
= mt+l (qf(a, b, b), b, a, qt(a, b, b)) [(), ()] mt+l (mf(b, b, b, a), b, a, mf(b, b, b, a)).

Now by Theorem 2.1 (ii) ,

mt+l (mt(b, b, b, a), b, b, mt-(b, b, b, a)) = mt-(b, b, b, a)

= mtt-l(b, b, b, a) (by Theorem 2.1 (iv))

= mt+l(mf(b,b,b,b),b,b,mf(a,a,a,a)) (by Theorem 2.1 (ii)) (2)

Whenever ai()bi, i = 1, ... ,n - 1, then for any n-ary term t,

[
tA(a, all' .. ,an-d tA(a, bl , ,bn- l )] M(() ())
tA(b, aI, ... ,an-I) tA(b, bl , ,bn- l ) E ,

18This term was constructed by C. Herrmann [Her79]. The proof of this theorem given
in [Gum80a] is different.
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so if tA(a, al,' .. ,an-d = tA(a, bl, .,. ,bn- l ) then

(tA(b, al, ... ,an-i), tA(b, bl , ... ,bn- l )) E [0,0],

since C(O, 0; [0,0]) holds. Ifwe apply this term condition to the sixth argument
of equation (2), we get

mtrl (m{'-(b, b, b, a), b, a, m{'-(b, b, b, a))[O, Olmtrl (m{'-(b, b, b, b), b, a, m{'-(a, a, a, a))

so mt"t-l (mi(b, b, b, a), b, a, m{'-(b, b, b, a))[O, O]mtrl (b, b, a, a), by Theorem 2.1 (ii),
and by transitivity, q!+l (a, b, b)[O, O]mtrl (b, b, a, a).

Now suppose i is even and that (1) holds for i. Then q!+l (a, b, b)
= mt"t-l (qt(a, b, b), a, b, qt(a, b, b))[O, Olmt"t-l (m{'-(b, b, a, a), a, b, m{'-(b, b, a, a)).

Now by Theorem 2.1 (ii),

mi+l(m{'-(b, b, a, a), a, a, m{'-(b, b, a, a)) = m{'-(b, b, a, a)

= mtrl (b, b, a, a) by Theorem 2.1 (iii)

= mt"t-l (mt(b, b, b, b), b, a, m{'-(a, a, a, a)) by Theorem 2.1 (ii). . (3)

By an argument similar to the odd case, applied to the sixth argument of
equation (3),

mtrl (m{'-(b, b, a, a), a, b, m{'-(b, b, a, a))[O, Olmt"t-l (mt(b, b, b, b), b, b, m{'-(a, a, a, a))

so mt"t-l (m{'-(b, b, a, a), a, b, m{'-(b, b, a, a))[O, O]mtrl (b, b, b, a), by Theorem 2.1
(ii), and by transitivity, qt"t-l(a,b,b)[O,Olmt"t-l(b,b,b,a) so the result follows 19 .

(iii) Let 0'., /3, "( E Con(A), where A E V, and let x, y, z, u, u' E A and
0'. n /3 ~ "(. We show that any T-term d(x, y, z) which satisfies (i) and (ii) will
satisfy (iii). Suppose d(x, y, z) is a T-term which which satisfies (i) and (ii)
and that

x z

where 0'. n /3 ~ "(.
We have (u,y), (u',y) E /3 so, by (i), dA (u,u',y)/3dA (y,y,y) = y.

19According to [FM87], this proof of (ii) is due to W. Taylor [Tay82]. The proof of (iii) is
really a proof that, for a ternary term d, (i) and (ii) imply (iii) and is due to Udi Hrushovskii
(according to [FM87]).
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Also (u, z) E ry so dA(u, u', y)rydA(z, u', y) (4)

Also (u', z), (y, x) E a so, by (i), dA(z, u', y)a dA(z, z, x) = x (5)

Also (z,x), (u',y) E [3 so dA(z,u',y)[3dA(x,y,y) (6)

We have (z,x) E [3, and (z,u) E ry and (u,y) E [3 so (x,y) E [3oryo[3 ~ [3 V ry,
therefore (x, y) E an ([3 V ry).

By (ii), dA(x, y, yHa n ([3 V ry), an ([3 V ry)]x (7)

By Propositions 2.9 and 2.12, [a n ([3 V ry), an ([3 V ry)] ~ [a, [3 V ry] =
[a, [3] V [a, ry] ~ (a n [3) V (a n ry) = an ry, (since an [3 ~ ry).

By (7) therefore, dA(x, y, y)(a n ry)x and by (6), dA(x, y, y)[3 dA(z, u', y) so
dA(z, u', y)([3V(anry))x. By (5), dA(z, u', y)ax so dA(z, u', y)(an([3v(anry)))x.
Now

. an ([3 V (a n ry))= (a n ry) V (a n [3) (by modularity, since an ry ~ a)

= an ry so d(z, u', y)(a n ry)x.

By (4) dA(u,u',y)rydA(z,u',y) so dA(u,u',y)(ryV (anry))x, therefore
dA(u,u',y)ryx. 0

Corollary 3.11. [Gum80a]

Let V be a I-variety and d(x, y, z) a I-term satisfying Theorem 3.10 (iii).
Then V is modular and Theorem 3.10 (i) and (ii) hold for this d.

Proof.

We first show Theorem 3.10 (i) holds for d. Let a, b E A, where A E V.
Consider the diagram:

Since idA , A2 E Con(A) and idA n A2 ~ idA , Theorem 3.10 (iii) implies
(dA(a, a, b), b) E idA . This holds for any a, b E A, and for any A E V,
therefore d(x, x, y) ~ Y is an identity of V.

We show V is modular. Let a, [3, ry E Con(A) with an [3 ~ ry. Suppose the
situation depicted in the following diagram obtains.

By Theorem 3.10 (iii) we have (x,dA(u,u',y)) E ry.
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d

x

y

{3

u

z

Taking u = u', we have (z, u) E 'Y and dA(u, u', y) = dA(u, U, y) = y (by (i)).
Thus, condition (iv) of Theorem 2.3 is satisfied. Therefore, by the equivalence
of Theorem 2.3 (i) and (iv), V is modular.

We show Theorem 3.10 (ii) holds. Recall that A(O) denotes 0, considered
as a subalgebra of A 2 . Let

[ ~ ] E A(O).

Then ((b, b), (b, b)), ((a, b), (a, b)) E 'TJo and ((b, b), (a, b)) E 'TJI where 'TJo, 'TJI are
the kernels of the first and second projection homomorphisms Po, PI (from A(0)
onto A) respectively.

Let ~(J (J and be as in Definition 2.18. Now,

[~ ~] E ~(J,(J
since (a, b) E O. By Theorem 3.10 (i), since (a, b) EO, we have (a, dA(a, b, b)) =
(dA(a,a,a),dA(a,b,b)) EO and

We also have 'TJo n 'TJI = idA ~ ~(J,(J so we have the following diagram:
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Thus by Theorem 3.10 (iii) we have

[ b] A([a] [a] [a-]) [dA(a,a,a)] [ a ]b D.(),() d a' b 'b = dA(a, b, b) = dA(a, b, b)

(by (i)) so

[ dA(a~ b, b) ~] E D.(),().

By Theorem 2.25 ((iii)=> (i)) we have a[O, O]dA(a, b, b).
o

If 8 is a set then a ternary operation f : 8 3 -+ 8 is said to commute with
itself if, whenever ai, bi, Ci E 8 for all i E {1, 2, 3}, then

t(t(al' bl , Cl), t(a2' b2,C2), t(a3, b3, C3)) = t(t(al' a2, a3), t(bl , b2,b3), t(Cl' C2, C3))'

Lemma 3.12. [FM87, Lemma 5.6]

Let t(x, y, z) be a ternary operation on a set 8 such that t commutes with
itself and 8 satisfies the Mal'cev equation t(x, x, y) ~ y ~ t(y, x, x). For any
fixed a E 8 the operation x + y = t(x, a, y) defines an Abelian group on 8 with
a as identity element and with - x = t (a, x, a). Moreover, t (x, y, z) = x - y+z.

Proof.

We know that (8; t) satisfies t(x, x, y) ~ y ~ t(y, x, x) (*)

Let x, y, z E 8.

(1) a is the identity element for the above operation +:
x + a = t(x, a, a) = a = t(a, a, x) = a + x.

(2) Associativity of +:
x + (y + z) = t(x, a, t(y, a, z))

= t(t(x, a, a), t(a, a, a), t(y, a, z)) (by (*))

= t(t(x, a, y), t(a, a, a), t(a, a, z)) (by commutativity of t with itself)

=t(t(x,a,y),a,z) (by (*))

= (x+y) +z.

(3) Commutativity of +:
x+y=t(x,a,y)

= t(t(a, a, x), t(a, a, a), t(y, a, a)) (by (*))

= t(t(a, a, y), t(a, a, a), t(x, a, a)) (by commutativity of t with itself)

= t(y, a, x) (by (*))
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=y+x.

(4) Let -x = t(a,x,a). Then

x + (-x) = t(x, a, t(a, x, a))

= t(t(a, a, x), t(a, x, x), t(a, x, a)) (by (*))

= t(t(a, a, a), t(a, x, x), t(x, x, a)) (by commutativity of t with itself)

= t(a, a, a) (by (*))

= a. By (3), (-x) + x = a.

(5) We show x - y + z = t(x, y, z). We first show x - y = t(x, y, a):

x - y = x + (-y) = t(x, a, t(a, y, a)) (by (4))

= t(t(x, a, a), t(a, a, a), t(a, y, a)) (by (*))

= t(t(x, a, a), t(a, a, y), t(a, a, a)) (by commutativity of t with itself)

= t(x, y, a) (by (*)).

Now x - y + z = (x - y) + z = t(t(x, y, a), a, z)

= t(t(x, y, a), t(a, a, a), t(a, a, z)) (by (*))

= t(t(x, a, a), t(y, a, a), t(a, a, z)) (by commutativity of t with itself)

= t(x, y, z) (by (*)). 0

It is easy to show that a difference operation t of a ternary group (A; t)
commutes with itself (on A) (see Definition 3.5) . Recall that if V is a modular
variety and d is a ternary term for which (i) and (ii) (and hence (iii)) of
Theorem 3.10 are true then d is called a difference term for V.

Proposition 3.13. [Gum80a]

Let V be a modular variety and d any difference term for V. Let a,f3 E
Con(A), where A E V and a 2 {3. Then [a, {3] = idA if and only if for any nE
wand any n-ary fundamental operation (and hence any n-ary term operation)
SA and elements a = (al' ... ,an), b = (bl, . .. ,bn), C = (Cl, ... ,cn) E An such
that ai{3biaci (i = 1, . . . ,n), we have

dA(sA(a), sA(b), sA(c)) = sA(dA(al' bl, Cl),'" ,dA(an,bn, cn))

and (b, c) E 13 implies dA(b, c, c) = dA(c, C, b) = b.

Proof.

(::::}) Suppose [a,f3] = idA . Let sA be an n-ary fundamental operation of
A and let a = (al'" . ,an), b = (bl,' .. ,bn), C = (Cl, ... ,en) E An such that
ai{3biaci for all i E {l, ... ,n}. Then sA(a)f3sA(b)asA(c).
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Let TJo, TJI be the kernels of the first and second projection homomorphisms
from the algebra A(a) onto A and let 6.. = 6..0.,/3 (as defined in Definition 2.18).
Now TJo n TJI = idA ~ 6..0.,/3' Let a, b, c E A such that af3bO'.c. Then we have the
diagram:

(c, b)

TJo

(c, a) (a, a) (b, a)

By Theorem 3.10 (i),(iii),
(dA(a, b, c), a) = (dA(a, b, c), dA(a, a, a)) = dA2 ((a, a), (b, a), (c, a))6..(c, b).

In particular, (dA(sA(a), sA(b), sA(C)), sA(a))6..(sA(c), sA(b)) (1)

and for i E {I, .. : ,n}, (dA(ai' bi, Ci), ai)6.. (Ci ,bi), so by compatibility

sA\(dA(aI, bl , Cl)' al), ... ,(dA(an,bn,en), an))6.. SA\(CI, bl ), ... ,(en, bn)),

i.e., (sA(dA(al' bl , Cl),'" ,dA(an , bn , cn )), SA (a)) 6.. (sA(c), sA(b)) (2)

From (1) and (2) by transitivity we have

(dA(sA(a), sA(b), sA(C)), sA(a))6.. (sA(dA(al' bl , cd, ... ,dA(an , bn , en)), sA(a)),

. [ dA(sA(a), sA(b), SA(C)) SA (dA(aI, bI, Cl)"" ,dA(an, bn,Cn))] A

l.e., sA(a) sA(a) E U.

By the equivalence of (i) and (iv) in Theorem 2.25 (ii), we have

(dA(sA(a), sA(b), sA(c)), sA(dA(aI, bl , Cl)'''' ,dA(an , bn , en))) E [a, f3] = idA
so dA(sA(a), sA(b), SA(C)) = sA(dA(al' bl , Cl),'" ,dA(an , bn , en)).

Now suppose (b, c) E f3. By Theorem 3.10 (i), (ii), dA(c, c, b) = band
dA(b, c, c)[f3, f3]b. But f3 ~ a and therefore [f3, f3] ~ [a, f3] = idA by order­
preservation, so dA(b, c, c) = b.

(~) Suppose the conditions on operations hold. We show [a, f3] = idA .

We first show that the congruence relation 6../3,0. on A(f3) is characterized by
(a, b)6..{3,0.(c, v) if and only if af3bac and v = dA(b, a, c). Let.6..' be the relation
on A2 defined as follows:

6..' = {((a, b), (c, v)) : af3bac and v = dA(b, a, cn.
First note that 6..' ~ f3 x f3 since if ((a, b), (c, v)) E 6..' then
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Reflexivity:

For (a, b) E A([3), we have a[3b[3a but [3 ~ a so a[3baa. Also dA(b, a, a) = b,
since (b, a) E [3, so ((a, b), (a, b)) E /::,.'.

Symmetry:

Let ((a, b), (c, v)) E /::,.'. Then a[3bac and v = dA(b, a, c) (3)

We show ((c,v), (a,b)) E /::,.', Le., c[3vaa and b = dA(v,c, a).

Since /::,.' ~ [3 x [3, (c, v), (a, b) E [3 ~ a and (b, c) E a by (3). Therefore
(a, v) E a by transitivity of a, so c[3vaa. We also have

dA(v, C, a) = dA(dA(b, a, c), dA(a, a, c), dA(a, a, a)) (by (3) and Theorem 3.10
(i) )

= dA(dA(b, a, a), dA(a, a, a), dA(c, c, a)) (by assumption since b[3a and caa)

= dA(b, a, a) = b (by Theorem 3.10 (i) and since (b, a) E [3).

Tra nsitivity:

Let ((a, b), (c, v)), ((c, v), (r, s)) E /::,.'.

We show ((a, b), (r, s)) E /::,.', i.e., a[3bar and S = dA(b, a, r). We have a[3bac,
c[3var, v = dA(b, a, c) and S = dA(v, c, r) so (b, c) E a and (c, v) E [3 ~ a so
(b, c), (c, v), (v, r) E a. Therefore (b, r) E a, by transitivity of a, so a[3bar. By
our assumptions and Theorem 3.10 (i) and since (a, b) E [3 and (c, r) Ea,

dA(b, a, r) = dA(dA(b, b, b), dA(a, b, b), dA(c, c, r))

= dA(dA(b, a, c), dA(b, b, c), dA(b, b, r))

= dA(v, c, r) = s.

Compatibility:

Let f be an n-ary fundamental operation symbol of A's type. Suppose
((ai,bi), (Ci,Vi)) E /::,.' for i E {0,1, ... ,n}. Then for each i we have ai[3biaCi
and Vi = dA(bi, ai, Ci)'

We show fA(f3) ((aI, bl ), , (an' bn))/::,.' fA(f3) ((Cl, VI)' ... , (cn, vn)), i.e., we show

fA(al" .. ,an)[3fA(bl , ,bn)afA(cI"" ,en) and

fA(Vl'" . ,vn) = dA(jA(bI, ... ,bn), fA(al"" ,an), fA(CI"" ,cn)).

For each i E {I, ... ,n} we have fA(aI, ... ,an)[3fA(bI, ... ,bn ) and
fA(b1 , ... ,bn)afA(cI"" ,en) by compatibility of [3, a E Con(A).

Now fA(Vl" .. ,vn) = fA (dA(bI, aI, cd, ... ,dA(bn, an, cn))

. = dA(jA(bI, ... ,bn), fA(al"" ,an), fA(CI"" ,en)), by our assumptions.
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Thus 6,,' is a congruence relation on A(f3).

~(3,o. is the congruence relation on·A(f3) generated by {((x, x), (u, u)) : xau}
by Definition 2.18. Now if a, c E A and aac then af3aac and c = dA(a, a, c) by
Theorem 3.10 (i), so ((a,a), (c,c)) E ~'. Thus,~' contains a set of generators
of ~{J,o., therefore ~{J,o. ~ ~' .

Suppose (a, b)~' (c, v). Then af3bac so (a, b) E a and v = dA(b, a, c). By our
assumptions and Theorem 3.10 (i)

[
a c] _ [ dA(a, b, b) dA(b, b, c) ] E M(f3 a) C ~
b v - dA(a, a, b) dA(b, a, c) ,- {J,o.

(using t(Xl' Yl, Y2) := d(yl, xl, Y2) in the definition of M(f3, a)). Thus, 6,,' C
A A' A 20tJ.{J,o. so tJ. = tJ.{J,o.·

Finally, we show [a,f3J = idA . Let (a, b) E [a,f3J = [13, aJ. Then

[~ ~] E ~{J,o.

by the equivalence of (i) and (ii) in Theorem 2.25. Now (b, b)~(3,o.(a, b) by sym­
metry, therefore (b, b)~' (a, b). Consequently, dA(b, b, a) = b but dA(b, b, a) = a,
by Theorem 3.10 (i). Therefore b = a, so [a,f3] = idA . 0

Suppose V is a modular variety with difference term d and A E V and u E A
and 13 E Con(A). Then the congruence class u/f3 = {a EA: (a, u) E f3} is
closed under dA, because if a,b,c E u/f3 then dA(a,b,c)f3dA(u,u,u) = u (by
Theorem 3.10 (i)). In this case, the algebra (u/f3;dA) is denoted by
M(f3, U)21.

Setting a = 13 in the previous proposition, we get:

Corollary 3.14. [Her79J

Let V be a modular T-variety with difference term d and let A E V. A
congruence relation 13 on A is Abelian if and only if for each u E A, M(f3, u) is
a ternary group and whenever sA(Ul, ... ,un) = u where s is an n-ary T-term,
then SA restricts to a homomorphism M(f3, Ul) x ... x M(f3, un) -+ M(f3, u)
(of ternary groups). We express this last property by saying that s is affine
between the congruence classes of 13. 22

2°In fact, our proof shows that A' = M((3,a), so M(a,(3) E Con(A((3)) under the
assumptions of this proposition.

21 In Freese and McKenzie's notation M((3, u), the M is intended to suggest "module".
The reader is entreated not to confuse M((3, u) with the M((3, a) of Definition 2.6.

22In view of the proof and the previous proposition, this corollary clearly remains true if
we replace "term" by "fundamental operation symbol" .
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Proof.

Let (3 E ConA.

(=?-) Suppose [(3, (3] = idA . Let nEw and u, UI, ... ,Un E A and let s be an
n-ary T-term with sA(UI, ... ,un) = u. In what follows, a = (al,'" ,an), b =
(bl , ... ,bn) and c = (Cl,'" ,en) denote elements of An.

For i = 1, ... ,n if ai, bi, Ci E ud(3 then ai(3bi(3ci. If this is true for all i then
sA(a)(3sA(b)(3sA(c)(3u, so by Proposition 3.13,

SA (dAn (a, b, c)) = sA(dA(al' bl , Cl), ,dA(an,bn,Cn))

= dA(sA(a), sA(b), SA(C)), (1)

whence sA restricts a homomorphism from I1~=1 M((3, Ui) into M((3, u). Also,
for any v, w E u/(3, since (v, w) E (3, we have dA(v, v, w) = w = dA(w, V, v).
Moreover, setting n = 3 and s = d and UI = U2 = Us = U in (1), we conclude
that the restriction to u/(3 of dA commutes with itself (on u/(3). Thus, by
Lemma 3.12, M((3, u) is a ternary group (and is d-affine).

(~) Assume that the conditions of the corollary hold. If (b, c) E (3 then,
since M((3, b) = M((3, c) is a ternary group, dA(b, c, c) = b = dA(c, C, b). Let
n, s, a, b, c be as in Proposition 3.13, with Cl( = (3. Then M((3, ai) = M((3, bi) =
M((3, Ci) and M((3, sA(a)) = M((3, sA(b)) = M((3, sA(C)) are ternary groups
for each i E {I, ... ,n} and, by assumption, sA restricts to a homomorphism
from I1~1 M((3, ai) into M((3, sA(a)), which means just that (1) holds (with
U = sA(a)). Thus, by Proposition 3.13, [(3, (3] = idA .

o
We are now in a position to derive:

Corollary 3.15. (The Fundamental Theorem of Abelian Algebras) (C. Her­
rmann [Her79])

In a modular variety every Abelian algebra is affine, and conversely.

Proof.

Let V be a modular variety. Let d be a difference term for V. Suppose
A E V is an Abelian algebra, i.e. A2 is an Abelian congruence on A. By
Corollary 3.14, for any U E A, M(A2

, u) = (U/A2; dA ) = (A; dA ) is a ternary
group and A is d-affine.

The converse follows from Proposition 3.6. 0

3.3 More on Abelian Congruences. The remaining results of this chapter
will be needed in Chapter 4. In particular, the following lemma is used in the
proof of Theorem 4.11 where it replaces a complicated argument from [FM81].
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Recall that if A is an algebra and X ~ A2 then aA(X) is the least semicon­
gruence (i.e. reflexive compatible relation) on A containing X.

Lemma 3.16. Let V be a modular variety and let A E V and let (3 be an
Abelian congruence of A. Let rJ be a semicongruence of A with rJ ~ (3. Then
rJ E Con(A). Thus) if X ~ (3 then aA(X) = eA(X).

Proof.

Let d be a difference term for V. Thus V F d(x,x,y) ~ Y and if (u,v) E (3
then dA(u, v, v) = u, by Proposition 3.13 (or Theorem 3.10, using [(3, (3] = idA ).

We need to show that rJ is symmetric and transitive. Let a, b, c E A with
(a, b), (b, c) E rJ. We need to show that (b, a), (a, c) E rJ. Now

b = dA(a, a, b)rJ dA(a, b, b) = a (because (a, b) E rJ ~ (3).

Also b = dA(b, b, a)rJ dA(c, b, b) = c (because (b, c) E rJ ~ (3), as required. 0

Definition 3.17.

Let A E V, where V is a modular T-variety, let z, z' E A and let (3 be
an Abelian congruence on A. Let Hom((3, z, z') denote the set of functions
9 : M((3, z) --t M((3, z') of the form g(x) = fA(x, z, z', co, ,Ck-l) (i)

where k E w, Co, ... ,Ck-l E A and f is a (k + 3)-ary T-term, such that V
satisfies f(v,v,v',yo, ,Yk-l) ~ v' (ii)

Note that (i) and (ii) alone ensure that g[M((3, a)] ~ M((3, z'). Also note
that any 9 E Hom((3,z,z') is a homomorphism of ternary groups, by Corol­
lary 3.14. Indeed, if x = (XI,X2,Xa) E (z/(3)a and w abbreviates (w,w,w)
whenever w E {z, z', co, ... ,Ck-l} and c = (Co, ... ,Ck-l) then

g(dA(x)) . fA(dA(x), dA(z), dA(z'), dA(co), ... ,dA(Ck_l))

= dA(JA(Xl' Z, z', c), fA(X2, Z, z', c), fA(xa, z, z', c)) = dA(g(Xl)' g(X2), g(xa)).

Since g(z) = z', it follows that 9 is also a homomorphism between the Abelian
groups (z/(3;ffi,-,z) (where xffiy = dA(x,z,y)) and (z'/(3;ffi,-,z') (where
x ffi y = dA(x, Z' ,y)).
Lemma 3.18. [FM87, Lemma 9.1]

Let V be a modular T-variety with difference term d. Let A E V and
z, z' E A and let (3 be an Abelian congruence of A. Then Hom(fJ, z, z') is the·
set of restrictions to z/ fJ of unary polynomials on A which map z to z'.

Proof.

(::::}) Let 9 E Hom(fJ,z,z'), say g(x) = fA(x,z,z',Co, ... ,Ck-l) for all
x E z/fJ where k E wand Co, ... ,Ck-l E A and f is a (k + 3)-ary T­
term. Thus, 9 is the restriction to z/fJ of a unary polynomial 1 : A -+ A
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defined by l(x) = fA(x, Z, Z', Co, ... ,Ck-l) for all x E A. By (ii) above,
( ) _ A( I ) _ I9 z - f z, z, z ,Co, ... ,Ck-l - Z .

(~) Let h be a (k + 1)-ary I-term, where k E w, and let Co,· .. ,Ck-l EA
such that hA(z, Co, ... ,Ck-r) = Z'. Let 9 : A -+ A be defined by g(x) =
hA(x, c), where c = Co, ... ,Ck-l, for all x E A. Then 9 is a unary polynomial
of A which maps z to Z'. Define a I-term f by:

f(u, v, v', y) = d(h(u, y), h(v, y), v') where y = Yo,··· ,Yk-l.

f is a (k + 3)-ary I-term and V ~ f(v, V, v', y) ~ d(h(v, y), h(v, y), v') ~ v'
by Theorem 3.10 (i). Now for all x E M({3, z),

fA(x, Z, Z', c) = dA(hA(x, c), hA(z, c), Z')

= dA(hA(x, c), Z', Zl) by definition of h (1)

If x E zl(3, then hA(x, c){3hA(z, c) = Z', Le., hA(x, c) E z' I (3. By Theo­
rem 3.10(ii), dA(hA(x, c), Z', Z')[{3, (3]hA(x, c), Le., dA(hA(x, c), Z', Zl) = hA(x, c)
(since (3 is Abelian).

We therefore have gb/,B)(x) = hA(x, c) = fA(x, Z, Z', Co, ... ,Ck-l) (by (1))
for all x E M({3,z), so gICz/,B) E Hom({3,z,z'). 0

Corollary 3.19. Let V be a modular I-variety with difference term d, let A E
V and let {3 be an Abelian congruence of A such that AI{3 is finite, say AI{3 =
{zr!{3, ... ;znl{3} where n = IAI{31 E w. For each i,j E {I, ... ,n} and each
9 E Hom({3, Zi, Zj), there exists an (n + 1)-ary I-term tg = tg(xo, xI, ... ,xn)
such that for all x E zd(3,

g(x) = t~(x, Zl, ... ,zn).

In particular, if A is finite, say IAI = mEw, then

IHom({3 z· z·)1 < m CmnH
) < m Cmm+

1
)., z, J - _

Proof.

Let i, j E {I, ... ,n} and 9 E H om({3, Zi, Zj). By Lemma 3.18, there exist
k E wand a (k + 3)-ary I-term f and c = Co, ... , Ck-l E A such that for any
x E zd{3,

g(x) = fA(x, Zi, Zj, c) and V ~ f(v, V, v', y) ~ v'.

For each r E {O, ... ,k -I}, let Cr E zqCr)l{3 (so a(r) E {I, ... ,n}) and
let Zq = Zq(O) , ... ,Zq(k-l)' Let x E zd{3. Then by Corollary 3.14 and Theo­
rem 3.10,

g(x) = fA(x, Zi, Zj, c)
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= jA(dA(x, Zi, Zi), dA(Zi' Zi, Zi), dA(zj, Zj, Zj), dA(Z(T(o) , Z(T(O) , eo),
... ,dA(Z(T(k_I)' Z(T(k-l) , Ck-l))

= dA(jA(X, Zi, Zj, Z(T), jA(Zi' Zi, Zj, Z(T)' jA(Zi' Zi, Zj, C))

= dA(jA(X, Zi, Zj, Z(T)' Zj, Zj)

= jA(x,Zi,Zj,Z(T) (because jA(X,Zi,Zj,Z(T){3jA(Zi,Zi' Zj, Z(T) = Zj)

= t~(x, ZI, ... ,zn)

if we define tg(xo, Xl, ... ,Xn ) = j(Xo, Xi, Xj, X(T(O) , ... ,X(T(k-l))'

Now suppose IAI = mEw so n ::; m. Define t.p : Hom({3, Zi, Zj) -7 F =
FV(A) (xo, ... ,xn ) by 9 H tr

If g,h E Hom({3,zi,Zj) andt~ = t~ then, by Theorem 0.50, V(A) (hence
A) satisfies
tg(xo, Xl, ... ,Xn ) ~ th(XO, XI, ... ,xn ), so g(x') = h(x') for all x' E zd(3,

whence 9 = h. Thus, t.p is one-to-one and so

IHom({3, Zi, zj)1 < IFv(A)(XO'''' ,xn)1
< IAI(IAln+l) (by Lemma 0.51)

(mn+l) < (mm+l)m _m .

o
In this chapter we have presented those results about Abelian congruences

in modular varieties that will be needed in Chapter 4, particularly for the
main result, Theorem 4.11. The connection between. modular varieties and
the modules over rings goes much deeper, however. In particular, for every
Abelian modular variety V there is a single ring R with identity such that
V is equivalent, in a strong sense, to a variety of unital R-modules. (This
strengthens the Fundamental Theorem of Abelian Algebras.) The interested
reader should consult Chapter 9 of [FM87], as well as [DK87].
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Chapter 4

Residual Size in Modular
Varieties

We have seen how the commutator in modular varieties plays a role in,
amongst other things, the description of Abelian algebras and Abelian con­
gruences. In this chapter we shall see that it can also be used to describe
residually small modular varieties. We consider the commutator identity
x 1\ [y, y] ~ [x 1\ y, y] where (x, y) is a pair of variables ranging over the congru­
ence relations of any algebra in a variety V. This identity is referred to as (Cl).
In Theorems 4.1 and 4.2 some of its properties are described. We also include
a result that illustrates the link between (Cl) and Abelian congruences.

There are a number of other commutator identities that distinguish signif­
icant classes of varieties (see [FM87, Chapter 8]). (Cl) is singled out in this
chapter because of its link with residually small varieties: we infer from The­
orem 4.10 that a residually small variety must satisfy (Cl). This result is due
to Freese and McKenzie [FM81].

The main result of this chapter (and this thesis) is found in Theorem 4.11
and is also due to Freese and McKenzie [FM81]. It provides a partial posi­
tive answer to the RS Conjecture which asks: if a finite algebra generates a
residually small variety, must that variety have a finite residual bound? The­
orem 4.11 proves that the conjecture is true for the case of finite algebras in
a modular variety. McKenzie in [McK96a] has shown the RS Conjecture to be
false in general, however.

4.1 A Congruence Identity. Consider the "congruence identity"23

(Cl) x 1\ [y, y] ~ [x 1\ y, y]

in the language of lattices augmented by the binary operation symbol [,]. We
say that an algebra A satisfies (Cl) if (Con(A); n, V, [, J) P= (Cl). We say
A satisfies (Cl) hereditarily if (Con(B);n, V,[,J) P= (Cl) for all subalgebras

23We follow the literature in calling (Cl) an "identity"; strictly speaking it is an equation.
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B of A. For the sake of notational brevity we denote (Con(A); n, V, [,]) by
Con(A).

Theorem 4.1. [FM81)
Let V be a variety and A E V. In Con(A), the identity (Cl) is equivalent

to the quasi-identity x ~ [y, y) -+ x ~ [x, y).

Proof·

Suppose Con(A) 1= x :::; [y, y) -+ x ~ [x, y] (where ~ interprets :::;). Clearly
Con(A) 1= x 1\ [y, y) :::; [y, y], so by the quasi-identity,

Con(A) 1= x 1\ [y, y) ~ [x 1\ [y, y], y)

~ [x 1\ y, y) (by order-preservation since Con(A) 1= [y, y) ~ Y 1\ Y ~ y)

~ x 1\ [y, y) (since Con(A) 1= [x 1\ y, y) ~ x 1\ Y :::; x and [x 1\ y, y) ~ [y, y)).

Thus, Con(A) 1= x 1\ [y, y) ~ [x 1\ y, y], i.e., A satisfies (Cl).

Conversely, suppose A satisfies (Cl). Then, over Con(A),

x ~ [y, y) -+ x ~ x 1\ [y, y) ~ [x 1\ y, y) (by (Cl))

~ [x, y).

Also Con(A) 1= [x, y) ~ x (by Proposition 2.9 (i)). Thus, Con(A) 1=
x ~ [y, y) -+ x ~ [x, y). 0

Theorem 4.2. [FM81)

Let V be a modular variety of type T = (F, ar). Then the class of algebras
in V which satisfy (Cl) hereditarily is closed under the formation of quotient
algebras, subalgebras and finite direct products.

Proof.

Let A E V and suppose that A satisfies (Cl) hereditarily.

If B is any subalgebra of A and C any subalgebra of B then since C is a
subalgebra of A, (Cl) will be satisfied by Con(C). Thus, B satisfies (Cl)
hereditarily.

Let C ~ AIB for some B E Con(A). Then C = BI, where B = {x EA:
xlB E C} and, = Bn (B x B). Let Xl, ... ,Xn E B. Then xI/B, ... ,xnlB E
C, so jC(xI/B, ... , xnlB) E C, whenever j E F with ar(j) = n, that is
jA(XI,"" xn)IB E C, so jA(XI, ... , xn) E B, so B is a subuniverse of A and
the algebra B satisfies (Cl).

Suppose (Cl) fails for C = B/,. Let j be the isomorphism from int(r, B2)

to Con(B/,) defined by j(B) = BI,. There exist f.t,1/ E int(r, B 2 ) such that
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f(v) ~ [j(J.L) , f(J.L)] (in Con(B/,)) and f(v) i= [j(v), f(J.L)] by the previous
theorem, and the Correspondence Theorem.

Now v ~ f-I([j(J.L)' f(J.L)]) and v i= f-l([f(v), f(J.L)]) so by Remark 2.15,

v ~ [J.L, J.L] V, = [J.L, J.L]'Y in Con(B) and v i= [v, J.L]'Y' (1)

Now v ~ [J.L, J.L]'Y ~ (J.L n J.L) V, = J.L V, = J.L. Also [v, J.L]'Y ~ (v n J.L) V, =
v n J.L = v (since , ~ J.L n v and v ~ J.L). But by (1) we must have
[v,J.L]'Y C v , (2)

Suppose [v, J.L] ;2 [J.L, J.L] nv. Then we would have [v, J.L] V, ;2 ([J.L, J.L] nv) V, =
(, V [J.L, J.LD n v (by modularity, since , ~ v)

= [J.L, J.L]'Y n v = v since v ~ [J.L, J.L]'Y' However, [v, J.L]'Y 2 v contradicts (2), so we
must have [v, J.L] ~ [J.L, J.L] n v.

Since v ~ J.L, [J.L n v, J.L] = [v, J.L] ~ [J.L, J.L] n v, i.e., (Cl) fails in Con(B), a
contradiction. Thus, C satisfies (Cl).

Finally, consider an algebra C = A x B where A and B satisfy (Cl) hered­
itarily and suppose D is a subalgebra of C. Let Po and PI be the projection
homomorphisms from D to A and B respectively, and let TJo and TJI be their
respective kernels. Now Po[D] ~ A and PI[D] ~ B so Po[D] and pdD] satisfy
(Cl) hereditarily, because A and B do, so the roles of A and B in the proof
can be taken by Po[D] and ptlD] respectively, i.e., we may assume without loss
of generality that Po and Pi are onto.

Suppose 5, J.L E C on(D). Let v = 5 n [J.L, J.L] . Since v ~ [J.L, J.L]' we have
v V TJo ~ [J.L V TJo, J.L V TJo] V TJo (in Con(D)). Recall that Po(v V TJo) E Con(A)
because v V TJo ;2 TJo = ker(po), so in Con(A),

Po(v V TJo) ~ Po([J.L V TJo, J.L V TJo] V TJo)

= Po (Po I [Po (J.L V TJo),Po(J.L V TJo)]) (by Proposition 2.14 (i))

~ [Po(J.L V TJo),Po(J.L V TJo)] (in Con(A)).

A satisfies (Cl) hereditarily so by the equivalent quasi-identity, Po(vVTJo) =
[Po (vVTJo), Po (J.LVTJo)]. Now vVTJo ~ Pol [Po(vVTJo), Po (J.LVTJo) ] = [v VTJo , J.LVTJo]VTJo
by Proposition 2.14 (i).

Conversely, [v V TJo, J.L V TJo] V TJo ~ v V TJo V TJo = v V TJo so

v V TJo = [v V TJo, J.L V TJo] V TJo (3)

= [v, J.L] V [TJo, J.L] V [v, TJo] V [TJo, TJo] V TJo (by Proposition 2.9 (i))

= [v, J.L] V TJo·

We therefore have v V TJo = [v, J.L] V TJo (4)
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Thus v = v n (v V 'T}O) = v n ([v, j1.] V 'T}o) (by (4)) and [v, j1.] ~ v so by the
Modular Law, v = [v, j1.] V (v n'T}o). Similarly, v = [v, j1.] V (v n'T}I) (5)

Now the only special property of v that was used above is v ~ [j1., j1.]. Since
'T}l n v ~ [j1., j1.], exactly the same argument will work if we replace v throughout
by 'T}l n v. We then get in place of (3) above,

('T}l n v) V'T}o = [('T}l n v) V 'T}o, j1. V 'T}o] V'T}o

and in place of (4) above we get

('T}l n v) V'T}o = ['T}l n v, j1.] V'T}o,

the left hand side of which contains 'T}l n v, so 'T}l n v ~ ['T}l n v, j1.] V 'T}o.

We therefore have 'T}l n v = 'T}l n v n (['T}l n v, J.L] V'T}o)

= ['T}l n v, J.L] V ('T}l n v n'T}o) (by the Modular Law because 'T}l n v 2 ['T}l n v, J.L])

= ['T}l n v, J.L] V idD = ['T}l n v, j1.], so we have 'T}l n v = ['T}l n v, J.L]. . (6)

Now v = [v, J.L] V (v n 'T}I) (by (5))

= [v, J.LJ V [v n 'T}l, j1.] (by (6))

= [v, J.L] because v n 'T}l ~ v. Therefore v = [v, J.L]. 0

Corollary 4.3. [FM87, Exercise 8.5J

Let V be a modular variety and A E V, let a, {3 be Abelian congruences of
A and suppose A satisfies (Cl). Then a V {3 is Abelian. Moreover, A has a
largest Abelian congruence.

Proof.

We need to show [a V {3, a V {3] = idA , Le. (by Proposition 2.12) we must
show [a,aJV[a,{3]V[{3,{3]V[{3,a]=idA .

Now [a, {3] = [{3,a] and, since a and {3 are Abelian, [a, a] = [{3, {3] = idA .

Hence we need only show [a, {3] = idA . Now [a, {3] ~ [a V {3, a V (3] by order­
preservation.

Since Con(A) F (Cl), by Theorem 4.1, we have [a, {3J = [[a, {3J, a V {3] =
[[a, {3J, aJ V [[a, {3],{3] ~ [a, a] V ({3, {3] = idA , so a V {3 is Abelian.

Now let X = {p E Con(A) : P is an Abelian congruence} = {Pi: i E I},
say. By the above argument, [Pi, Pj] = idA for all i, j E I. Let i = ViEI Pi.
We show ViEI Pi is Abelian, i.e., that [" i] = idA . Now by Proposition 2.12,
["~ i] = [ViEI Pi, VjEI PjJ = ViEI VjEI[Pi, PjJ = idA , so i is the .largest Abelian
congruence of A. 0

4.2 Subdirectly Irreducible AIgebras in Modular Varieties. Let K
be a class of algebras of the same type. Recall that K SI denotes the class
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of all subdirectly irreducible algebras in K and that I, H, S, P, Ps, Pu denote
closures under isomorphic and homomorphic images, subalgebras, direct and
subdirect products, and ultraproducts, respectively. By theorems of Birkhoff
and Tarski (Theorems 0.23, 0.25, 0.26 and 0.40),

V(K) = HSP(K) = IPs(V(K)SI)

(where as usual, V(K) is the smallest variety containing K).

Recall that when V(K) is congruence distributive, J6nsson's Theorem (The­
orem 0.34) improves the above description of V(K): it says that V(K)SI ~

HSPu(K),24 whence

V(K) = IPsHSPu(K).

Since every congruence distributive variety is congruence modular, one might
ask whether J6nsson's Theorem remains true under the weaker assumption
that V(K) is modular. Example 4.12 shows that this is not the case. Neverthe­
less, Theorem 4.6 below will provide a description of V(K)SI (hence of V(K))
when V(K) is modular and the specialization of this result to distributive va­
rieties V(K) turns out to be just J6nsson's Theorem. Theorem 4.6 is jointly
due to Hagemann, Herrmann, Freese, McKenzie and U. Hrushovskii ([HH79],
[Her79], [FM81], [FM87]). Our approach largely follows [FM87], which at­
tributes the next lemma to J.B. Nation. (No assumption about modularity is
made in this lemma.)

Lemma 4.4. Let B be a subdirectly irreducible 7 -algebra. Then B is iso­
morphic to a subalgebra of an ultraproduct of a family B i , i E I, of finitely
generated, subdirectly irreducible algebras from H S (B) .

Moreover, if JJ.i is the monolith of each B i then there is an ultrafilter U over
I and an embedding h : B ~ B' = TIiEI BdOu such that JJ.lh[Bj i= idh[Bj, where
JJ. := (Ou V TIiEI JJ.i)/OU E Con(B').

Proof.

We can assume B is infinite, otherwise, setting each B i = B, the result is
trivial (see Lemma 0.33). Let 8 B (a, b) be the monolith of Bwhere a, b E B
and a =1= b.

Let cp be the set of all finite subsets of B which contain a and b. For each
SE cp, let 'If;s E Con(SgB(S)) be maximal among congruences of SgB(S) that
do not contain (a, b) .

24 At first glance, ultraproducts appear to complicate the description but, by Los' The­
orem, they are "nicer" than they look. Recall also that when K is a finite set of finite
algebras then Pu(K) ~ I(K) (Lemma 0.33).
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We show that if S E <p then such a'l/Js exists. Let A = {-y E Con(SgB(S)) :
(a, b) rt /'}. A is not empty (since idsgB(s) E A) and A is partially ordered by
C.

Let (C;~) be a chain in A. We show that C has a ~-upper bound in A.
We can assume C is nonempty otherwise any element of A is an upper bound
of (/) in A. uC E Con(SgB(S)) because Con(SgB(S)) is an algebraic lattice.
Suppose (a, b) E uC. Then there exists some /' E C such that (a, b) E /" a
contradiction. Thus (a, b) rt uC, therefore uC E A and uC is an upper bound
in A for C.

By Zorn's Lemma, A has a maximal element 'l/Js, i.e., 'l/Js is maximal among
congruences 'TJ of SgB(S) such that (a, b) rt'TJ.

For each S E <p, G := SgB(S)/'l/Js is subdirectly irreducible, since
eG(a/'l/Js, b/'l/Js) is clearly its monolith. Let F be the set of all subsets T of <p
such that there is an So E <p with {S E <p: S 2 So} ~ T. We show that F is
a filter over <p, i.e., a filter of the Boolean algebra whose universe is P(<p) (the
set of all subsets of <p).

Now <p E F, because <p 2 {S E <p: {a, b} ~ S}.

Let T1,T2 E F. Then there exist SI, S2 E <p such that {S E <p: S 2 SI} ~ T1
and {S E <p: S 2 S2} ~ T2so {S E <p: S 2 SlUS2} ~ T1nT2 and SlUS2 E <p
because (a, b) E SI U S2 and SI U S2 is finite. Therefore T1n T2 E F.

Let T1 ~ T' ~ <po Then {S E <p : S 2 Sd ~ T1 ~ T' so T' E F. Thus, F is a
filter over <p.

For all So E <p, {S E <p : S 2 So} g 0 so (/) rt F, therefore F is a proper
filter. There exists an ultrafilter U over <p with F ~ U (by Theorem 0.31). Let
<p = {Si: i E I}. For each i, let B i = SgB(Si)/'l/JS;' and let Ui be an arbitrary
element of Si'

Let g' : B -+ niEI SgB(Si) be defined by :

(g' (x))(i) = x if x E SgB(Si); (g' (x))(i) = Ui otherwise.

Let D be IliEl B i = IliEI(SgB(Si)/~sJ. Let 9 : B -+ D be given by
(g(x))(i) = (g' (x))(i)/'l/Js;. Let D/()u (denoted D/U) be the ultraproduct
of the SgB(Si)/~Si corresponding to U so ()u is defined as follows:
For any x, y E niEI(SgB(Si)/~S;), (x, y) E ()u if and only if [[x = y]] := {Si:
i E I and x(i) = y(i)} E U. (Note that ()u E Con(niEI(SgB(Si)/~sJ).)

Consider the natural homomorphism ). : D -+ D /U. Let fJ = ). 0 g. Then
fJ : B -+ D/U is defined by fJ(x) = g(x)/U for all x E E.

We show fJ is a homomorphism, i.e., for any n-ary operation symbol f of T
and any Xl, ... ,Xn E E, we show fJ(fB(X1' ... ,xn )) = fD/U (fJ(X1), ... ,fJ(xn )).
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fD/U(g(Xl),'" ,g(xn)) = fD/U(g(xd/U, ... ,g(xn)/U)

= (JD(g(Xl)"'" g(xn)))/Ou and g(JB(Xl"'" xn)) = (g(JB(Xl"'" xn)))/Ou.

Now (JD(g(XI)"" ,g(xn)))/Ou -(g(JB(XI"" ,xn)))/Ou

if and only if (JD(g(Xl)"" ,g(xn)), g(JB(Xl"" ,xn))) E Ou

if and only if Y := [[jD(g(Xl)"" ,g(xn)) . g(JB(XI, ... ,xn))]] E U . Note:

that Y = {Si: i E I and (JD(g(Xl)"" ,g(xn)))(i) = (g(JB(XI'''' ,xn)))(i)}.

Let T = {S E cp : S 2 {Xl, ... ,xn }}. Then T E :F, so T E U. Let
T = {Sj : j E J}, where J ~ I. Then for all j E J,

(JD(g(XI)"" ,g(xn)))(j) =fB;(xd'l/Jsjl'" ,xn/'l/Js;)

= fB(XI, ... , xn)/'l/Js; = (g(JB(Xl, ... ,xn)))(j), since for each j E J, {Xl,"" xn }

E Sj, hence fB(Xl"" ,xn) E SgB(Sj)' Thus, Y 2 T E U and so Y E U be­
cause U is closed under supersets.

We show 9 is one-to-one~ Let c, d E B with c =1= d. We must show that
g(c) =1= g(d), i.e., that g(c)/U =1= g(d)/U, Le., that Z := {Si: i E I and
(g(c))(i)/'l/JSi = (g(d))(i)/'l/JsJ rt u (1)

Note that Z = {Si: i E I and ((g(c))(i), (g(d))(i)) E'l/JsJ.

Now as c =1= d, 8 B (c, d) =1= idB so 8 B(a, b) ~ 8 B (c, d) because 8 B(a, b)
is the monolith of B. Therefore (a, b) E 8 B (c, d). By Mal'cev's Lemma
(Theorem 0.37), there are terms Pi(XO, Xl, Yl,'" ,Yk) (1 :::; i :::; mEw) and
elements el, . . . ,ek E B such that

a p~(c, d, e) (where e = el,' .. ,ek)

p~(d, c, e) - p~(c, d, e)

p~(d, c, e) = b.

Let So = {a,b,c,d,e}, so So E cp. Let U = {S E cp : S 2 So} = {S E cp :
a,b,c,d,e E S}. Then U E:F ~ U so U E U.

Let E = SgB(S). Let S E U. Since c, d, e E S, for 1 ::::; i :::; m,
pP(d, c, e),pp(c, d, e) E SgB(S) = E. Thus we have a, b, c, d, el, ... ,ek E S
and

a - p~(c, d, e)

p~(d, c, e) - p~(c, d, e)

p~Jd,c,e) - b.
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By Mal'cev's Lemma, (a, b) E eE(c, d).
Now suppose (c, d) E 'l/Js. Then -eE(c, d) ~ 'l/Js, so (a, b) E 'l/Js, but this

contradicts the definition of'l/Js. Thus, for any S E U, (c, d) rt'l/Js·

Let S = Si E U, where i E I. Then c, dES, so by definition of g,
(g(c))(i)/'l/Js = c/'l/Js =I d/'l/Js = (g(d)) (i)/'l/Js. Let W = {Si: i E I and
((g(c))(i), (g(d))(i)) rt'l/JsJ. Then W 2 U so W E U. Consider Wc = {S E
<p : S rt W}. Wc rt U, otherwise 0 = W n WC E U, contradicting the propriety
of U. But Wc = Z so (1) is proved.

Therefore 9 is an embedding and so B is isomorphic to a subalgebra of
(I1iEI Bi)/U, so B E ISPu(K) where K = {Bi : i E I} and each B i =
SgB(Si)/'l/JSi E HS(B).

For each i, let J-l,i be the monolith of B i , i.e., of SgB(Si)/'l/JSi' Then J-l,i =
eI((a/'l/Jsi' b/'l/JsJ, by maximality of'l/Jsi' Let J-l, be the ultraproduct congruence

-determined by the J-l,i, i.e., J-l, = ((}u V DiEI J-l,i)/(}U E Con(I1iEI BdU). Now
((a/'l/JsJiEI' (b/'l/JSJiEI) E TIiEI J-l,i·

For U as above, [[g(a) = (a/'l/JsJiEI]], [[g(b) = (b/'l/JSJiEI]] 2 U E U, so
(g(a), g(b)) = ((a/'l/JsJiEdU, (b/'l/JsJiEdU) E J-t and g(a) =I g(b) (since 9 is an
embedding and a =I b), so J-l,lg[B] =I idg[BJ. 0

Let V be a modular variety and A E V and (3,6 E Con(A). Let S = {, E

Con(A) : [r,,8] ~ 6}. Then S =I 0; indeed int(idA,6) ~ S. Let a = VS. By
Proposition 2.12, [a,,8] = V/,ES[r,,8] ~ 6, so a E S. Thus, a is the largest
element of S. This justifies the following definition.

Definition 4.5. Let V be a modular variety and A E V and (3,6 E Con(A).
Then (6 : ,8) shall denote the largest a E Con(A) such that [a,,8] ~ 6. We
call (idA : (3) the centralizer of,8. Thus (idA : (3) is the largest a E Con(A)
such that [a,,8] = idA.

For example, if V is modular and A E V then the centre TA of A is the
centralizer (idA : A2) of A2 in A, by Lemma 3.2, and a congruence ,8 of A is
Abelian if and only if {3 ~ (idB : ,8).

Theorem 4.6. [FM87, Theorem 10.1]

Suppose K is a class of algebras of the same type such that V (K) is modular.
Let B E V(K) be subdirectly irreducible and let a be the centralizer of the
monolith J-t ofB. Then B/a E HSPu(K). Moreover, ifV(K) is locally finite,
then B/r E ISPuHS(K) for some, ~ a.

Proof.

Since V(K) = HSP(K) (TheoremO.25) , B is a homomorphic image of a
subalgebra of a direct product of elements of K, so by the Homomorphism
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Theorem, we can assume B = CIB for some C ~ I1iE I Ai, where Ai E K for
all i E I, and some B E Con(C).

For any J ~ I, let AJ : C -+ I1iEJ Ai be the homomorphism defined by
(AJ(a))(j) = a(j) for all a E C and j E J. Let 1]J = ker(AJ)' Then for any
J, E ~ I, 1]J n 1]E = 1]JUE. Thus, if J ~ E ~ I then 1]J 21]E·

Let f be the natural homomorphism from C onto CIB = B, so ker(f) = B.
By the Correspondence Theorem there is a lattice isomorphism 9 : Con(B) -+
int(O, C2) := {1] : B ~ 1] E Con(C)} defined by "I I-t f-l(ry) := {(Cl, C2) E
C2 : (f(Cl), f(C2)) E "I}. Since B is subdirectly irreducible, B in Con(C)
(which corresponds to idB in Con(B)), is uniquely covered in Con(C) by a
congruence 1/J (which corresponds to the monolith p, of B), so g(p,) = 1/J, i.e.,
p, = 1/JIB.

Let cp = (B : 1/J) and let a = (idB : p,).

Note that for all p E Con(B), [p" p] ~ idB if and only if p ~ a (1)

Note too that for all "I E int(B, C2
), ["I, 1/J] ~ B if and only if "I ~ cp (2)

We claim g(a) = cp.

For any "I E int(B,C2
), we have "lIB E Con(B) and b,1/J] = f-l(['YIB,p,]),

by Proposition 2.14 (i), so b, 1/J] ~ Bif and only if biB, p,] ~ f(B) = idB ; if and
only if "lIB ~ a (by (1)); if and only if "I ~ f-l(a) = g(a). By (2), therefore,
g(a) = cp, as claimed. It follows that 0 ~ cp and a = cplO.

Con(C)

C'

Con(B)

B'

Con(C/(1)

By the Second Isomorphism theorem, Bla = (CIB)/(cpIB) rv Clcp. Let
{3, "I E Con(C). We show that if {3 n "I ~ B then either {3 ~ B or "I ~ Bor both
{3 ~ cp and "I ~ cp. . (3)

Suppose {3 n "I ~ Band {3 <J:. B and "I <J:. B. Now B~ {3 VB but 1/J is the unique
cover of 0 so {3 VB2 1/J and so ["I, 1/J] ~ b, {3 VB] by order-preservation. Now

b,{3V 0] = ['Y,{3] V ["I, B) (by Proposition 2.12 (additivity))

~ ("I n {3) V B (by Proposition 2.9 (i))
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= () (since, n {3 ~ ()).

Thus [r, 1P] ~ (), therefore , ~ I{J (by definition of I{J). Similarly, {3 ~ I{J.

Let S = {.1' ~ P(I) :.1' is a filter over I and for all J, if J E .1' then
'fJJ ~ ()}.

Choose .1' = {I}. Then .1' is a filter over I. Since AI : C -+ fliEI Ai is the
inclusion map, 'fJI = idc ~ () so .1' E S, so S =I- (/J. S is partially ordered by
~. Let (c;~) be a chain in S. We claim that C has an upper bound in S.
Assume C is nonempty otherwise any element of S is an upper bound of (/J in
S.

Clearly, uC is a filter over I. If J E uC then J E .1' for some .1' E C so
'fJJ ~ O. From the above, uC E S, and uC is an upper bound for C in S.
By Zorn's Lemma, S has a maximal element .1'm , i.e., .1'm is maximal among
filters .1' over I such that J E .1' implies 'fJJ ~ O.

Now A0(C) = (/J for all c E C so 'fJ0 = C2 Cl: 0 (since B, being subdirectly
irreducible, is nontrivial), so (/J et .1'm , i.e., .1'm is a proper filter. Consequently,
there is an ultrafilter U over I extending .1'm (by Theorem 0.31).

We claim that J E U implies 'fJJ ~ I{J.

(i) If J E .1'm , clearly 'fJJ ~ 0 ~ I{J by definition of .1'm .

(ii) Assume J E U \ .1'm . We show 'fJJ ~ I{J.

Consider .1'1 = (.1'mU {J}) (i.e. the intersection of all filters over I containing
.1'm U { J}) and .1'2 = (.1'm U { J' }) where J' := I \ J = {i El: i et J}. Clearly,
.1'1 = {E E P (1) : E ~ K n J for some K E .1'm}.

By maximality of .1'm , there exists E E .1'1 such that 'fJE Cl: (). Now E ~

K 1nJ for some K 1 E .1'm and 'fJE ~ 'fJKlnJ, so 'fJKlnJ Cl: (). Similarly, there exists
Kz E .1'm , such that 'fJK2nJ' Cl: O. Now M := K 1n K2 E .1'm and 'fJMnJ ~ 'fJKjnh

therefore 'fJMnJ Cl: 0; similarly, 'fJJ' nM Cl: (). Now

'fJJnM n 'fJJ' nM = 'fJ(JnM)U(J' nM)

= 'fJMn(JuJ')

= 'fJMnI = 'fJM ~ () (by definition of .1'm ).

Hence by (3), 'fJJnM ~ <po But since J n M ~ J, we have 'fJJ ~ 'fJJnM ~ I{J,

which proves the claim.

Let ()u be the congruence on fliEI Ai defined by (a, b) E Ou if and only
if [[a = b]] E U. Let ( = Oulc E Con(C). Then C/( is a subalgebra of
fliEI Ai/Ou. Let (c, d) E (. Then c, d E C and there exists J E U such that
J ~ {i El: c(i) = d(in, therefore 'fJJ ~ I{J, by the previous claim, and
(c, d) E 'fJJ. Thus, ( ~ 'fJJ so ( ~ I{J.
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We have shown B/a rv C/cp. We show C/cp E HSPu(K).

C/( is a subalgebra of I1iEI Ai!()u, so C/( E SPu(K). Now (, cp E Con(C)
and ( ~ cp so cp/( E Con(C/() and by the Second Isomorphism Theo­
rem, (C/()/(cp/() rv C/cp, so C/cp is a homomorphic image of C/(. Now
C/cp E HSPu(K) and so B/a E HSPu(K).

Suppose V (K) is locally finite. We show B / I E S PuH S (K) for some I ~ a.

By Lemma 4.4, there is a family {Bi : i E I} of finitely generated subdirectly
irreducible algebras such that BE ISPu({Bi : i E I}) and for all i E I,Bi E

HS(B) ~ V(K). Since each B i is finitely generated and in V(K), each B i

is finite. Fix i E I. Now B i is a homomorphic image of a finitely generated
V(K)-free algebra F (Corollary 0.48). Since F E V(K), F is finite. It follows
that, up to isomorphism, F has only finitely many homomorphic images, each
of which is finite.

By Theorem 0.49, F E ISP(K), so there is a family {Ej : j E J} (with E j E

K for all j E J) and an embedding h : F -+ I1jEJ E j . Let 'Irk : I1jEJ E j -+ Ek

be the kth projection homomorphism, for each k E J. Then A j := (7rj 0 h)[F]
is a subalgebra of E j for each j E J (because 'Ir 0 h is a homomorphism). Thus
A j E S(K) for each j E J.

We now have that h: F -+ I1jEJ Aj is a subdirect embedding (by definition
of A j ). Thus F E IPs({A j : j E J}). Now for each j E J, A j is a homo­
morphic image of F, so A j is finite and {Aj : j E J} partitions into a finite
number of isomorphic classes, say {Aj : j E J 1}, ... , {Aj : j E Jr }.

For each s E {1, ... ,r}, choose one representative, say G s E {Aj : j E Js }.

Then define K I = {G I , ... , G r }, so K 1 is a finite subset of S(K), and all
elements of K 1 are finite algebras.

We can construct a subdirect embedding h' : F -+ I1 jEJ Lj where for each
j E J, Lj = G s for the unique s E {I, ... ,r} such that j E Js' (If hjs : A j ~

Gs, define, for all J E F, (h' (J))(j) = hjs((h(J))(j)), j E J.) It follows that
FE IPS({G I , ... ,Gr }) = IPs(Kr).

Now B i E H(F), so B i E HIPs(Kr) = HPs(K1) ~ V(K1). Note that
V(Kr) ~ V(S(K)) ~ V(K), so V(Kr) is modular and locally finite. Since B i
is subdirectly irreducible and in V(K1), the first part of this theorem shows
that Bdai E HSPu(K1), where ai = (idB ; : J1i) is the centralizer of J1i, the
monolith of B i . But K 1 is a finite set of finite algebras, so PU(K1) ~ I(K1)

(by Lemma 0.33). Thus, Bdai E HSI(K1) = HS(K1) ~ HS(S(K)), so
Bdai E HS(K).
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Recall that B is a subalgebra of an ultraproduct (IliEI Bi)/Ou of {Bi :
i E I}, where U is an ultrafilter oyer I. Let a = ((IliEI G:i) V Ou)/Ou and
P = ((IliEI P,i) VOu)/Ou, so a, pE Con((IliEI Bi)/U).

By Proposition 2.17 (ii), in IliEI B i, [IliEI ai, IliEI p,il ~ IllEI[ai, P,i] = IliEI idBi
= idcIl Bo)'iEI •

Let hI be the natural homomorphism from IliEI Bi onto (IliEI Bi)/Ou (so
Ou = ker(h1 )). By Proposition 2.14 (i) and the above,

[a, p] = (h11[a, p])/Ou

= ([TIiEI ai, IliEI P,i] VOu)/Ou

= Ou /Ou = id<IliEI B i)/8u'

Recall that p, is the monolith of B and that a = (idB : p,). Let ry = alB and
(3 = plB in Con(B). By Lemma 4.4 (3 =1= idB , so P, ~ (3. By Proposition 2.14
(ii), [ry, p,] ~ [ry, (3] ~ [a, P]IB = idB so ry ~ a.

We have ry = alB and B ::::; IliEI Bi/OU so B/ry can be embedded in
((IliEI Bi)/Ou)/a. We claim ((IliEI Bi)/Ou)/a rv (IliEI(Bi/ai))/<PU where
<Pu = {(b1,b2)E (IliEI(Bi/ai))2 : {i E I: bl(i) = b2(i)} E U}. Then
B/ry E ISPu(HS(K)) since we have proved Bi/ai E HS(K) for all i E I.

By Lemma 0.32, OUV(IliEI ai) = {(bI, b2) E (IliEI B i)2 : {i El: (b1(i), b2(i))
E ad E U}. Therefore the map 'I/J : IliEI(Bi/ai) -+ ((IliEI Bi)/Ou)/a given by

'I/J((bi/ai)iEI) = (((bi)iEI)/OU)/a (= (b/Ou)/a where b = (bi\EI)

o is well-defined and it is straightforward to verify that 'ljJ is a surjective homo­
morphism with ker('ljJ) = <Pu. Then ((IliE1Bi)/Ou)/a rv (IliEI(Bi/ai))/<PU by
the Homomorphism Theorem.

o

Corollary 4.7. Let K be a class of algebras of the same type such that V(K) is
congruence modular, and let B E V (K) be subdirectly irreducible with monolith
p,. Let a be the centralizer of p,. 0

(i) p, is an Abelian congruence if and only if a =1= idB.
(ii) p, is an Abelian congruence or B E HSPu(K).

Proof.

(i) If p, is Abelian, i.e., [p" p,] = idB, then a ;2 p" so a =1= idB' Conversely, if
a =1= idB then p, ~ a, whence [p" p,] ~ [p" a] = idB, so P, is Abelian.

(ii) If p, is not Abelian, a = idB (by (i)). Then by Theorem 4.6, B = B/a E
HSPu(K). 0
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Remark 4.8.

Suppose V(K) is a congruence distributive variety, and B E V(K) is subdi­
rectly irreducible with monolith 1-". Let a be the centralizer of 1-". If a 2 I-" then,
by Corollary 2.27, [1-", a] 2 [1-",1-"] = I-" n I-" = I-" :J idB = [a,l-"], a contradiction,
so a R. 1-", hence a = idB' By the previous corollary, a is non-Abelian and .so
B E HSPu(K). Thus, Jonsson's Theorem is a special case of Theorem 4.6.
Moreover, when V(K) is also locally finite, we get a stronger form of Jonsson's
Theorem, viz. B E ISPuHS(K).

4.3 Residually Small Modular Varieties. From Proposition 2.9 (i), for
an algebra A and (3, ry E Con(A), [(3, ry] ~ (3 n ry ~ (3. If A is a member of
a modular variety V and if (3 ~ [ry, ry] and [(3, ry] C (3, Theorem 4.10 (below)
states that V will not be residually small. Hence a modular variety V is
residually small only if Con(A) F (Cl) for all A E V, since the congruence
quasi-identity x :::; [V, y] -+ [x, y] ~ x is equivalent to (Cl) by Theorem 4.1.

As stated previously, Theorem 4.11 (below) contains a crucial result on the
size of subdirectly irreducible algebras in residually small modular varieties.
In addition, this theorem states that if an algebra A is finite and V(A) is
modular, then V(A) has a finite residual bound if and only if the subalgebras
of A satisfy (Cl).

Lemma 4.9. [FM87, Theorem 10.14]

Let V be a modular variety containing an algebra A with congruences (3 and
ry satisfying (3 ~ [ry' ry] and [(3, ry] C (3. Then there exist a subdirectly irreducible
algebra A' E V and congruences (3', ry' E Con(A) such that (3' is the monolith
of A' and (3' ~ [ry', ry'] and [(3', ry'] = idA,.

Proof.

We claim that there is a () E Con(A) such that () is completely meet irre­
ducible, [(3, ry] ~ () and (3 ~ ().

By Birkhoff's Subdirect Decomposition Theorem, A/[(3, ry] is a subdirect
product of subdirectly irreducible homomorphic images of itself. These may
be assumed to be of the form (A/[(3, ry])/(()i/[(3, ry]), i E I, where [(3, ry] ~

()i E Con (A) for each i E I, by the Homomorphism Theorem and the Cor­
respondence Theorem. It follows that (niE/()i)/[(3, ry] = idA /[{1,'Y) , i.e., that
niE/()i = [(3, ry]. Since A/()i rv (A/[,B, ry])/(()i/[,B, ry]) is subdirectly irreducible,
each ()i is completely meet irreducible in Con(A) by Theorem 0.21.

There exists i E I such that (3 ~ ()i' For, otherwise (3 ~ niE/()i = [(3, ry], a
contradiction. Choose i E I such that (3 ~ ()i. We have [(3, ry] ~ ()i, so we may
take () = ()i in the above claim. Since AI() is subdirectly irreducible, () must
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have a unique cover in Con(A). Let ()* be this unique cover of () (so ()* I() is
the monolith of A/(}).

We show ()* ~ [() V" () V,] V() (1)

Certainly, () ~ [() V ,,() V ,] V (). Suppose () = [() V ,,() V ,] V (). Then
() 2 [() V ,,() V ,] 2 IT, ,] by order-preservation, but f3 ~ IT, ,] so () 2 f3, a
contradiction. We therefore have () C [() V ,,() V,] V (), but ()* is the unique
cover for (), so [() V " () V ,] V () 2 ()*.

We show [()*, () V,] ~ (). . (2)

Now () ~ () V f3, but f3 Cl () so () C () V f3. Since ()* is the unique cover for
(), ()* ~ () V f3. Therefore

[()*, () V ,] ~ [() V f3, () V ,] (by order-preservation)

= [(), ()] V [(), f3] V [(), ,] V [f3, ,] (by additivity)

~ B (by Proposition 2.9 and since [f3, ,] ~ ()).
Thus, [()*, () V ,] C ()*.

Define AI := A/B, and ,I := (B V ,)/() E Con(A'). Then A' E VS1 (since V
is closed under H). Let f31 be the monolith ()*I () of A'. Then

[f31 , ,I] = [()* / (), (() V ,)I ()]
= ([(}*,(}V,] V ())/() (by Proposition 2.14 (i))

= idA
, (by (2)).

Also f31 = ()* /() ~ ([B V" () V ,] V (})/() (by (1))

= [(() V ,)/(), (() V ,)/(}] (by Proposition 2.14 (i))

= [TI, ,I] as required. 0

Theorem 4.10. [FM87, Theorem 10.14]

Let V be a modular variety containing an algebra A with congruences f3 and
, satisfying f3 ~ IT, ,] and [f3, ,] C f3. Then V is not residually small.

Proof.

By the previous lemma we may assume without loss of generality that A
is subdirectly irreducible with monolith f3 and that IT, f3] = idA . Recall that
A(,) is , regarded as a subalgebra ofAx A. Let fi, = A'Y,!3' i.e., fi, is the
congruence on A(,) generated by the set of all pairs of the form

((u, u), (v, v)) = [~ ~] E M(" f3).

(See Definition 2.18.)
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Let "la, "11 E Con(A(-y)) be the respective kernels of the first and second
projection homomorphisms PO,Pl from A x A onto A. We show /'i, n "la =
/'i, n "11 = idA ("() .

If a E /'i, n "la, then a has the form ((u, x), (u, y)) where u,x and u,y, and

a = [~ ~] E ll(" /3), therefore [~ ~] E ll(-y, /3)

(by Proposition 2.22). By Theorem 2.25, we have (x, y) E [" /3], i.e., x = Y .
Therefore /'i, n "la = idA ("().

Similarly, Theorem 2.25 (alone) yields /'i, n "11 = idA("().

We show /'i,V'TJo = /30 and /'i,V'TJl = /31 where /30 denotes pr;1(/3) and /31 denotes
Pl l (/3). Clearly, /'i, V 'TJi ~ /3i for i = 1,2.

Let ((Xl, YI), (X2, Y2)) E /30, Then (Xl, Yl), (X2, Y2) E , and (Xl, X2) E /3. Also
((Xl, Yl), (Xl, Xl)) E "la, ((X2, X2), (X2' Y2)) E "la and

((Xl, Xl), (X2, X2)) = [Xl X2] E /'i,
Xl x2

(since (Xl, X2) E /3) so there exist Cl, C2, Ca, C4 E A(-y), namely Cl = (Xl, Yd, C4 =
(X2' Y2), C2 = (Xl, Xl), Ca = (X2' X2) such that (Cl, C2) E "la, (C2' Ca) E /'i" (Ca, C4) E
"la so ((Xl, YI), (X2, Y2)) = (Cl, C4) E /'i, V "la (Theorem 0.8). Thus /30 ~ /'i, V "la.

Similarly, "11 V /'i, = /31,

'a =,1

"la "11

Let N be an arbitrary cardinal and let

B = {(aO)O<N E AN : anaf for all ordinals 0, E < N}.

By the compatibility of 'Y, B is the universe of a subalgebra B of AN and so
B E V. For any 'ljJ E Con(A) and any E < N, define 'ljJf E Con(B) by
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(ao)o<N'l/JE(bo)O<N if and only if aE'l/JbE. . (1)

By transitivity of '"'I, '"'10 = '"'lE for any.6, E < N. We write "I = '"'10 (for any 6 < N).
For convenience, we write (ap) for (ap)p<N'

For all E < N, define 'T}E ~ ker(PE) where PE : B ~ A is the projection
homomorphism given by PE((ap)) = aE, so 'T}E E Con(B). Now'T}E - (idB)E as
defined in (1).

Also, define 'T}~ = nO:j:E<N'T}E E Con(B) (0 < N). Let 0 < N. We show
'T}~ V 'T}o = "I. Clearly, 'T}~ V 'T}o ~ ry.

Let ((ap), (bp)) E "I. Then since '"'10 = ry, anbo and since (ap), (bp) E B, for
all P, (J" < N, we have ap'"'lau , and bp'"'lbu . Let Cl = (ap), Cs = (bp) and let C2 be
defined by

i.e., Cl = (ao, ,aE,··· ,ao,··.)

C2 = (ao, ,aE,· .. , bo, )

Cs = (bo, ,bE"" ,bo, ).

We have shown that for all p < N, ap'"'lao so for all p < N, ap'"'lbo. Hence
C2(Ahc2(P) for all p, A < N, by transitivity, therefore C2 E B. Now (Cl, C2) E 'T}~,

and (C2' cs) E 'T}o so ((ap), (bp)) = (Cl, Cs) E 'T}~ V'T}o· Thus, ry ~ 'T}~ V 'T}o, hence
ry = 'T}~ V 'T}O· It follows that "I = 'T}o V'T}E whenever 0 =1= E < N.

For all 0 < N we define

Since £::.'Y,{3 E Con(A(ry)), it is straightforward to verify that Ko E Con(B).

For all 0 < N, we define

Bo := {((aE), (bE)) E B 2 : aofJbo and aE= bE' for all E E N\ {on E Con(B).

Suppose 0 < 0 < N. We show Bo ~ 'T}~ V Ko.

Let ((aE), (bE)) E Bo where (aE), (bE) E B. Then (ao, bo) E fJ and aE= bEl
whenever E =1= o. . (2)
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Let (a€) = (ao, ... ,a8, aHI, ... ) = Cl and let C2 = (ao, ... ,ao, aHI, ... ), Le.,

C (E) = {- a€ for E=I- 0
2 ao for E = O.

Whenever 0 =I- E < ~, then CI(E) = C2(E) so (CI,C2) E 'T/€, therefore (CI,C2) E
I

no:;<:€<N'T/€ = 'T/o'
Let C3 = (bo, ... ,bD, bo+l ,. ; .), Le.,

( ) _ {b€ for € =I- 8
C3 E - b ~ £. ° lor E = u. [

aD bO ]Then b E ~'Y (J.
aD ° '

By (2), (c2(D), c2(8))~'Y,{J(C3(D), C3(0)) and C2(E) = C3(E), for E (j. {D,8} so
(C2' C3) E K,8· Also C2, C3 E B, since (a€), (b€) E B.

Let C4 = (b€) = (bo, ... ,b8, ... ). Then (C3' C4) E 'T/~. Therefore ((a€), (b€)) E

'T/~ 0 K,o 0 'T/~ ~ 'T/~ V K,o, so OD ~ 'T/~ V K,o·

We claim that OD ~ K,8 V 08.

By Lemma 2.21, K,o ~ f30 and clearly OD ~ f38. Also, by the definitions,
'T/~ n f30 = 00, By modularity, since K,8 ~ f38' we have OD = 0o n f38 ~

f30 n ('T/~ V K,8) = K,8 V ('T/~ n (38) = K,8 V 08, as claimed. By a similar argu­
ment, 08 ~ OD V K,8.

Let 0 :~ Vo<N 08 E Con(B) and let K, := VO<8<N K,8 E Con(B). For 0 <
0, E < ~, we have 0o ~ K,o V 08 and 00 ~ K,8 V OD so

K, V 00 = K, V K,o V K,€ V 00 (because K,o V K,€ ~ K,)

= K, V [(K,8 V ( 0) V 0o]V K,€ (because K,8 V 00 2 OD)

= K, V 00 V 0o V K,€ (because K,8 ~ K,)

= K, V 08V [(OD V K,€) V O€] (because K,€ V OD 20€)

= K, V 08V OD V O€ (because K,€ ~ K,).

Therefore K, V 00 2 O€ V 0o. Thus, K, V 08 2 (V€:;<:O,8 O€) V OD, therefore K, V 00 2
(V€¥-o,oO€) V OD V 00 = O.

Also, for D < 0 < ~, K, V 0o 2 08 V 0o, so K, V OD 2 O. Thus, for all
oE ~, K, V 00 2 O. We shall show that equality holds.

For D< 8 < ~, we claim that K,8 ~ O.

Let ((a€), (b€)) E K,8· Then (aD, a8)~'Y,{J(bo, b8) and a€ = b€ for E E ~ \ {D,8}.
We write (b€) as (bD, aI, a2, ... ,b8, ao+l, ... ). By Lemma 2.21, (ao, bo) E f3 and
(a8' b8) E f3.
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i.e., do = (ao, aI, ,ao, ao+l, ... )

dl = (bo, aI, ,ao, ao-+l,· .. )

d2 = (bo, aI, ,bo,ao+l, ... ).

Clearly, d l E B.

Now (do, dl ) E Bo and (dl ,d2) E Bo so ((aE), (bE)) = (do, d2) E Bo V Bo ~ B.
Therefore /'i,o ~ B, as claimed, and so /'i, ~ B.

Obviously, Bo~ B, so we infer that BoV /'i, ~ B, hence

Bo V /'i, = B for all 8 <~. . (3)

By similar arguments, /'i,E ~ Bo V BE for any C < ~. Therefore

/'i,q V V /'i,E
T
~ Bo V BEl V V BET for all Cl,.·. ,cr <~ (4)

Let 8 < ~. We show that Bo >- idB in Con(B).

By the Correspondence Theorem, since the 8th projection homomorphism
Po : B ---7 A is surjective and ker(po-) = 'TJo-, the map e t--+ pil(e) is a lattice
isomorphism from Con(A) onto int('TJo, B 2 ), so in Con(B), 'TJo-< pil ({3) = {3o
(because in Con(A), idA -< {3). Since {3 ~ 1, we have {3o ~ -y. Recall that
'TJo V 'TJ~ = -y and clearly, 'TJo n 'TJ~ = idB' Thus, Con(B) is a modular lattice in
which

int('TJo, -y) ~ int(idB, 'TJ~),

so the map a t--+ an'TJ~ is a lattice isomorphism from int ('TJo, -y) onto int(idB, 'TJ~)

(by Theorem 0.3). Consequently, in Con(B), idB -< {3o n 'TJ~ = Bo.

Con(B) Con(A)
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Choosing any ((a€), (b€)) E (h \ idB, we have idB =I- eB((a€), (b€)) ~ Bo but
since Bo >- idB , eB((a€), (b€)) = Bo. Thus Bo is a principal (hence compact)
congruence (see Theorem 0.10). Since Bo is compact, if Bo ~ K" then Bo ~

K,€l V ... V K,€n for some El, ... ,En'

We show that if J is a finite subset of N then VoEJ Bo = {((ao), (bo)) E B 2
:

aoj3bo for all 0 E J and ao = bo for all 0 E N\ J} (5)

If p = {((ao), (bo)) E B 2
: aoj3bo for all 0 E J and ao = bo for all 0 E N \ J}

then clearly Bo ~ pE Con(B) for all 0 E J, so VoEJ Bo ~ p.

Conversely, if ((a€), (b€)) E p, and J = {O1, ... ,om}, say, then we can con­
struct (c~), (c;), ... , (c~+l) as follows: let each (c~) differ from (c~+l) only in the
co-ordinate Oi, where C~i = aOi and C~-:-l = bo;. Then (a€) = (c~), (b€) = (C~+l)

and (C~)BOi (C~+l) for i = 1, ... , m so (a€, b€) E BOl 0 B02 0 ... 0 BOrn ~ VoEJ Bo, as
required.

It follows from (5) that if I and J are finite subsets of N with In J = 0 then
(VoEl Bo) n (VoEJ Bo) = idB' (6)

We claim that for any positive integer m, if I is an m-element subset of N,
then Ba g V€EI K,€. The claim is proved by induction on m.

Suppose m = 1:

We first show that for any nonzero E < N, Ba n K,€ = idB' Let ((ao), (bo)) E

Ba n K,€. Then aaj3ba and ao = bo, for all 0 =I- 0 and (ao, a€)ll')',/3(bo, b€). Now

((ao, a€), (ba, b€)) = [aa bba ] = [ao ba ] (since E =I- 0)
a€ € a€ a€

so by Theorem 2.25, (aa, ba) E ["1,13] = idB' This means ao = ba, therefore
(ao) = (bo) and so Bon K,€ = idB , whence Bo g K,€, as required.

Now assume that 1 < m < wand that whenever 1 :S l < m and I is an
l- element subset of N, then Bo g V€EI K,€.

Let I = {El,'" ,Em} be an m-element subset of N (so Ei =I- Ej for i =I- j).
Suppose that Ba ~ V€EI K,€.

Then Bo = Bon (V€EI K,€)

= Bon (Bo V B€I) n (K,€l V (V~2 K,€J) (because Bo ~ Ba V B€J

= Bon [K,€l V ((610 VB€I) n (V~2 K,€J )] (by modularity as K,€I ~ BoVB€l' by (4))

= Bon [K,€I V ((Ba VB€l) n (Ba V(V~2 B€J) n (V~2 K,€J)] (by (4))

We assume, without loss of generality, that 0 rf. {E2,'" ,Em}, SO

(Bo VB€I ) n (Ba V (V~2 B€J)

= BoV [(Bo VB€J n (V~2 B€J] (by modularity because BD ~ BD VB€l)
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= 00 V idB (by (6), since 0 ~ {E2' ... ,Em})

= 00 .

Thus OD = OD n [I);El V (00 n (V~2 I);EJ)]. .. (7)

By the induction hypothesis, OD Cl:. V~2 I);Ei so idB ~ 00 n (V:2 I);EJ c OD, but
OD >- idB so OD n (V:2 I);EJ = idB' Now (7) reads 00 = OD n I);q = idB (see the.
case m = 1), a contradiction. Thus OD Cl:. VEEl I);E' By induction, if I is a finite
subset of N then OD Cl:. V EEl I);E' (8)

We claim OD Cl:. 1);. If 00 ~ I); = Vo<N 1);0 then, since OD is compact in Con(B)
there exists a finite subset I = {El, ... ,En} of N such that OD ~ VEEl I);E' This
contradicts (8), so the claim is true.

We claim that for all t5 E N, 00 Cl:. 1);. We consider t5 =f:. 0 and show that
I); V 00 = I); V OD. Indeed, I); V OD = I); V 1);0 V OD ~ I); V 00 (since I); V OD ~ ( 0), and
I); V 00 = I); V 1);0 vOo ~ I); V OD (since I); V 00 ~ OD),

Now I); V 00 = I); V 00 = 0 (by (3)) for all t5 < N. If t5 < N then 00 Cl:. I); because
OD Cl:. 1);. We have I); ~ I); V 00 = 0 for all t5 < N. By the last claim, 0 Cl:. I);
(otherwise we would have 00 ~ 1);, a contradiction). Thus I); cO.

Exactly as at the start of the proof of Lemma 4.9, there is a completely meet
irreducible .\ E Gon(B) such that 0 Cl:. .\ and I); ~ .\. Thus, B/.\ is subdirectly
irreducible and in V.

For each t5 < N, we must have .\ n 'T/~ = idB' For otherwise, .\ n 'T/~ 2 00 since
Oli is the unique atom of int(idB , 'T/~); but then .\ 2 Oli V I); = 0, a contradiction.

If for some t5 < N, .\ V 'T/Ii 2 i', then

[i', i'] = ['T/Ii V 'T/~, i'] ~ ['T/o V 'T/~, 'T/o V .\]

= ['T/Ii, 'T/o] V ['T/o, 'T/~] V ['T/o,.\] V ['T/~,.\] (byadditivity)

~ 'T/o V ('T/o n 'T/~) V ('T/Ii n .\) V ('T/~ n.\) (by Proposition 2.9 (i))

= 'T/Ii (since 'T/~ n.\ = idB = 'T/Ii n 'T/~).

Thus, by Proposition 2.14 (i), b,')'] = [Po(i'),Po(i')] = [Po(i' V 'T/o),Po(i' V 'T/o)] =
PIi([i', i'] V 'T/Ii) = Po('T/Ii) = idA , contradicting f3 ~ [" ,]. Thus for each t5 <
N, .\ V 'T/Ii R. i'. .

By the Correspondence Theorem, int(.\, B2) rv Con(B/.\). For each t5 < N,
we have .\ V 'T/Ii E int(.\, B 2

). We show that the .\ V'T/o are pairwise distinct.
Suppose t5, E < Nand t5 =f:. E and.\ V'T/o = .\ V'T/E' Then .\ Vi' = .\ V'T/OV'T/E = '\V'T/E'
Now i' ~ .\ Vi' = .\ V'T/E' a contradiction. Thus, the .\ V 'T/o are pairwise distinct.

Let G = {.\ V 'T/o : t5 < N}. Then IGI= N (because the .\ V 'T/o are pairwise
distinct). It follows that lint(.\, B 2 )1 ~ N, so IGon(B/ .\)1 ~ N.
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If V were residually small there would exist a cardinal, say rn, such that
for any subdirectly irreducible algebra A in V, IAI < rn. Since Con(A) ~

P(A x A), this would imply ICon(A)I ::; 21AxAI = 2(IAI
2

) ::; 2(m
2
), so the sizes of

the congruence lattices of all the subdirectly irreducible algebras of V would
be bounded by 2(m

2
).

We have shown, however, that for an arbitrary cardinal ~, there is a subdi­
rectly irreducible algebra (viz. B / >.. above) in V whose congruence lattice has
cardinality at least ~. This is a contradiction, since we can choose ~ > 2(m

2
).

Thus, V is not residually small. 0

We are finally in a position to derive a major result of Freese and McKenzie,
which shows that a finitely generated congruence modular residually small
variety has a finite residual bound.

Theorem 4.11. [FM81]

Let A be an algebra in a modular variety and let IAI = mEw. Then the
following conditions are equivalent:

(i) V(A) is residually small.

(ii) V(A) is residually < 1 + ((l + l)!m) where l = m(mm+l).

(iii) For any J-L, v E Con(C) where C ::; A, v ~ [J-L, J-L] implies v = [v, J-L].

Proof.

(ii)=}(i) is clear.

(i)=;.(iii): If C is a subalgebra of A then C E V(A). Now the result follows
directly from Theorem 4.10.

(iii)=;.(ii): Assume (iii). Note that V(A) is locally finite by Theorem 0.52,
since it is finitely generated. Suppose V(A) contains an infinite subdirectly ir­
reducible algebra B. Then by Quackenbush's Theorem (Theorem 1.26), V(A)
contains arbitrarily large finite subdirectly irreducible algebras, i.e., for each
k E w there exists C E V(A)SI and such that k < ICI < ~o.

We therefore need only show that every finite subdirectly irreducible algebra
in V(A) has cardinality bounded as in (ii) , since then V(A) will not have
arbitrarily large subdirectly irreducible algebras and so V(A) will not contain
an infinite subdirectly irreducible algebra (completing the proof of (ii)).

We first show that every finite algebra in V(A) satisfies (Cl) of Theorem 4.1.

Let D E V(A) with IDI = q E w. Then D E H(F) where
F = FV(A) (Xl, ... ,Xq ) (Corollary 0.48). In addition, by Theorem 0.49, F E
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V(A) and F is finitely generated, therefore F is finite (since V(A) is locally
finite). Let IFI = u E w.

Now there exists 9 E Hom(F, IljEJ A) (J possibly infinite) such that 9 is
one-to-one (because F E ISP(A)). For each) E J, let 7rj be the lh projection
homomorphism from IliEJ A onto A. Then 7rj 0 9 : F ~ A. Since F and A
are both finite, there are only finitely many functions from F to A (at most
mU = IAIIFI) so {7rj 0 9 : ) E J} is a finite set and there exist pEw, with
p:::; mU and )1, ... ,Jp E J such that {7rj 0 g:) E J} = {7rh 0 g, ... ,7fjp 0 g}.

Define g' : F ~ Ilf=l A by g' (f) = ((7rjl 0 g)(f), ... ,(7rjp 0 g)(f») where t E F.
Then, g' is a subdirect embedding, so we have F E IS(Ilf=l A).

By (iii) , and Theorem 4.1 A satisfies (Cl) hereditarily. By Theorem 4.2,
since p is finite, Ilf=l A and F and therefore D E H(F) all satisfy (Cl) hered­
itarily. Thus, every finite algebra in V(A) satisfies (Cl) hereditarily.

Now let B E V(A) be a finite subdirectly irreducible algebra with monolith
/3. If {3 is not Abelian, then by Corollary 4.7, B E HSPu(A). Since A is
finite, Pu(A) ~ I(A) by Lemma 0.33 so B E HS(A), hence IBI :::; IAI =
m :::; (l + l)!m, so B is bounded as in (ii). We may therefore assume that
/3 is Abelian. Let "1 = (idB : (3), the centralizer of /3. By Theorem 4.6,
B/'Y E HSPu(A) so B/'Y E HS(A) (as above).

By Corollary 4.7, "1 =I idB · In Con(B) if b, "1] =I idB , then b, "1] ;2 /3, the
monolith of B. Since "1 is the centralizer of {3, [/3, "1] = idB =I /3.

Now B is a finite algebra in V(A) that fails to satisfy (Cl), a contradiction.
Thus in Con(B), ["1, "1] = idB so "1 is an Abelian congruence with, say, q
congruence classes, where 1 :::; q :::; m. Now (idB : "1) is the largest congruence
a in Con(B) such that b, a] ~ idB' Now ["1, "1] = idB so "1 ~ a = (idB : "1).

We have q = IB/'YI and since B/'Y E HS(A), IB/'YI:::; IAI, Le., q :::; m. Let
B/'Y = {zd'Y,··· ,Zq/'Y}. Let d be a difference term for V(A).

For any (b, e) E /3/idB , we have idB =I 8 B (b, e) ~ /3, so /3 = 8 B (b, e). Since
/3 ~ "1, band e belong to the same congruence class of "1, say b, e E Zj/'Y, where
j E {1, ... ,q}. Let a = dB(b, e, Zj). Then a E Zj/'Y also.

By Corollary 3.14, since "1 is Abelian, (Zj/'Y; d) = Mh, Zj) is a ternary
group. Let Gj = (Zj/'Y; +, -, Zj) be its associated Abelian group with Zj as its
identity element, so dB(u, V, w) = u - v + w for all u, v, wE Zj/'Y.

Since b =I e, we have Zj =I b - e = b - e + Zj = dB(b,e,zj) = a, but since
(b, e) E /3, we also have a{3dB(e, e, Zj) = Zj, so idB =I 8 B(zj, a) ~ /3, whence
/3 = 8 B (zil a).



150

We are going to show that Izd"Yl ::; (l + I)! for i = 1, ... , q. It will then
follow that IEI ::; (l + l)!q ::; (l + l)!m, as required.

To this end, let Zi =J C E Zi/"Y where i E {I, ... ,q}. Since V(A) is modular
and 'Y is Abelian and {(Zi, cn ~ 'Y, it follows from Lemma 3.16 that eB(Zi, a) =
aB (Zi, c) (the semicongruence of B generated by {(Zi, c) }).

Now f3 ~ eB(Zi, c) (since Zi =J c), i.e., (Zj, a) E aB(zi' c). By Lemma 0.38,
there is a unary polynomial 9 of B such that g(Zi) = Zj and g(c) = a. Thus,
h := glzih E Hom(")', Zi, Zj), by Lemma 3.18. Then by the remarks preced­
ing Lemma 3.18, h is a homomorphism between the Abelian groups G i and
G j , and h(c) = a. Let k = IHom(")',zi,Zj)l. Then k ::; mCmmH

) = l, by
Corollary 0.51.

To summarize: G i = (zd'Y; +, -, Zi) and G j = (Zj/"Y; +, -, Zj) are finite
Abelian groups and Zj =J a E Gj and there is a set 8 of homomorpisms from
G i to Gj with 0 < 181 = k ::; l such that whenever Zi =J cE Gi, there exists
h E 8 with h(c) = a. It remains only to show that IGil ::; (l + I)!. This will
be true if IGil ::; (k + I)!. It therefore suffices to prove the following group
theoretic result:

Claim: Let 0 < k E w. If K and L are finite Abelian groups and 0 =J a E L
and there are k homomorphisms TI, ... , Tk E Hom(K, L) such that for each
nonzero c E K there exists i E {I, ... , k} with Ti(C) = a, then IKI ::; (k + I)!.

We prove the claim by induction on k.

Let k = 1 and assume the hypotheses of the claim. Then there is one
homomorphism, TI E Hom(K, L), such that for each nonzero c E K, TI (c) = a.
Suppose IKI > 2. Then K contains at least 2 nonzero elements. Let Cl, C2 E K
such that Cl, C2 =J 0, and Cl =J C2. Then TI(Cl) = a = TI(C2).

Now Cl - C2 =J 0 so TI(CI - C2) = a, Le., TI(CI) - TI(C2) = a (because TI is
a homomorphism) but TI(Cr) - TI(C2) = 0, implying a = 0, a contradiction.
Thus IKI ::; 2 = 2! and the claim is true for k = 1.

Assume that the claim is true for k - 1 (where k ~ 2). We show it is true
for k. Again, assume the hypotheses of the claim. For each i E {I, ... , k}, let
Xi = {c E K : c =1= 0 and Ti(C) = a}. By assumption, K \ {O} = Uf=IXi , Let
t = max{IXil : i E {I, ... ,k}} and choose i E {I, , k} such that IXil = t,
say Xi ={Cl, ... , cd. Then IXjl ::; t for i =J j E {I, ,k} so IK \ {O}I ::; k.t,
therefore jKI ::; 1 + k.t. . (1)

Let K I = OjkeT(Tr) = {d E K : TI(d) = O}. For j E {I, ,t}, we have
rl(cr) = a = TI(Cj), so TI(CI - Cj) = 0, therefore Cl - Cj E K I . Therefore
IKII ~ t and so (1) gives IKI ::; 1 + k.IKII.
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Now rl maps the elements of K 1 to 0 =/:. a So for each nonzero c in K 1 there
is an i E {2, ... , k} such that ri(c) . a.

Now K 1 is the universe of a subgroup K 1 of K. By the induction hypothesis,
applied to K 1 , L, a and r2, ... , rk, we deduce that IK1 1 :::; kL Thus IKI :::;
1 + k.k! :::; k! + k.k! = (k + l).k! = (k + I)!, as required. 0

Example 4.12.

Theorem 4.11 (or Theorem 4.10) can be used to explain why the variety
V(D 4 ) generated by the dihedral group D 4 is not residually small.

Recall that D 4 = (D4 ; ,,-1 , e) is the 8-element 2-generated (non-Abelian)
group with D4 = {e,a,a2 ,a3 ,b,ab,a2b,a3b} = SgD4({a,b}), a4 = b2 = e and
ba = a-1b(= a3b). By Example 2.4, V(D4 ) is modular. The centre e/TD4 of
D 4 is M = {e, a2

}. The normal subgroup lattice of D 4 is

M

{e}

where

NI SgD4({a}) = {e,a,a2 ,a3 }

N 2 SgD4({a2 ,b}) = {e,a2 ,b,a2b}

N 3 S gD4 ({a2
, ab}) = {e, a2

, ab, a3b}.

Recall (Lemma 3.2) that [TD4,D~] = idD4 , i.e., [M,D4 ] = {e}. Recall also
(see 2.5.1 (5)) that [D4 , D 4] is the smallest normal subgroup N of D 4 such
that D 4 / N is Abelian. Since ID4/MI = 4, D 4 / M is an Abelian group (in fact
D 4 /M rv Z2 x Z2), while D4 /{e} rv D 4 is not Abelian (e.g., ba = a3b =/:. ab).
Thus, [D4 , D 4 ] = M. Now we have

M ~ [D4 , D4] but M ::> [M, D4 ]

so Con(D4 ) ~ (Cl). Since D 4 is finite, it follows from Theorem 4.11 ((i)::::>(iii))
(or from Theorem 4.10) that V(D 4 ) is not residually small.

This shows that J6nsson's Theorem can fail for modular varieties: by the
above, V(D4 )SI has infinite members, but by Lemma 0.33, HSPu(D4 )

HS(D4) contains only finite groups, so V(D4 )SI ~ HSPu(D4 ).
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Theorem 4.11 shows that in modular varieties, the RS Conjecture is true.
Subsequent progress on the RS Conjecture (for nonmodular varieties) is dis­
cussed in the conclusion.

For a finite algebra A of finite type such that V(A) is modular, it is obvi­
ously possible to check mechanically, in finite time, whether condition (iii) of
Theorem 4.11 is true of A. Thus, there is an algorithm to decide, given such an
A, whether V(A) is residually small. (See the conclusion for the nonmodular
case.)

For 2 :S mEw, let f (m) be the least nEw such that for any algebra
A with 2 :S IAI :S m, if V(A) is modular and residually small then V(A) is
residually < n. Theorem 4.11 shows that f(m) :S 1 + ((m(mm+l) + l)!m). No
"best possible" upper bound for f(m) is known but, according to [Kis97], it
is known that such a bound must be an at-least-exponential function of m.
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Conclusion

Let A be a finite algebra of type T = (F, ar) such that V(A) is residually
small. The residual spectrum RSp(A) of A is the set {IBI : B E V(A)SI};
recall that the residual bound ~(A) of A (or of V(A)) is the smallest cardinal
strictly greater than all elements of RSp(A).

By Theorem 1.22 (v), ~(A) ~ (2")+ where n = ~o + IFI. Since IAI is finite,
however, it can have only countably many truly different operations so we may
assume here that IFI ~ ~o, hence ~(A) ~ (2No )+. Since trivial algebras are
subdirectly reducible, ~(A) 2 3. More strongly, it has been known for a long
time that

~(A) E {3, 4, ... ,~o, ~1l (2NO )+}
(see [MS74]). R. Quackenbush's Theorem (Proposition 1.26) implies that
~(A) < ~o whenever the finite cardinals in RSp(A) have a finite upper bound.
Quackenbush's Conjecture [Qua71] is the claim that ~(A) =1= ~o (i.e. if V(A)SI
includes arbitrarily large finite algebras then it includes an infinite algebra).
In its original form this conjecture assumed not only that IAI is finite but that
it also has finite type, i.e. that IFI < ~o. In this form, the problem remains
open. The RS Conjecture is the stronger claim that ~(A) < ~o (assuming still
that IAI is finite and V(A) is residually small but not that A has finite type).

The final theorem presented in this thesis (Theorem 4.11) shows that the
RS Conjecture is true whenever V(A) is congruence modular. Most naturally
occurring varieties are modular, so this result of R. Freese and R. McKenzie
[FM81] is widely applicable. The conjecture is also true if A is a semigroup
(in which case V(A) need not be modular) [McK81] [GS82]. D. Hobby and
McKenzie invented "tame congruence theory" (see [HM88]) largely with a
view to resolving the RS Conjecture in general and proved the conjecture
in the case where the members of V(A) "omit types 1 and 5". We shall
not define this condition here, but the result implies that the conjecture is
true whenever there is a nontrivial lattice identity s ~ t (i.e. an identity
s ~ t in the language {I\, V} that fails in at least one lattice) such that the
congruence lattices of all algebras in V(A) satisfy s ~ t. However, the proof
strategy consists of showing that every locally finite residually small variety
with this property is congruence modular, and then invoking Theorem 4.11.
Rather than eclipsing Theorem 4.11, therefore, this result demonstrates the
breadth of its application. A summary of further positive results that use this
strategy appears in [WiI97, 1.4]. Going strictly beyond the modular case, the
RS Conjecture has recently been proved in the case where all algebras in V(A)
are Abelian [KKV99].
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By the early 1990's this body of positive results had led to a belief among
researchers that the RS Conjecture,. in its most general form, should be true.

. In [McK], McKenzie wrote that "a counterexample, if it exists, must be a
ridiculously unorthodox algebra". By the mid-1990s, however, he had con­
structed just such an algebra [McK96a] and had, in the process, developed
new techniques that enabled him to resolve two further longstanding problems
[McK96b], [McK96c]. These three papers constitute a major advance for the
general theory of algebras. The featured joint review of them by J. Berman
[Ber97] is a helpful guide to the material.

In [McK96a], McKenzie showed that for each cardinal rn E {3, 4, ... ,~o, ~b

(2No)+} there is a 4-element algebra Am with K(Am) = rn. For the finite
cardinals rn, Am has finite type, but this is not true for the last three (infinite)
values of m. This already (and unexpectedly) refuted the RS Conjecture. In
the same paper, McKenzie also showed that there is an 8-element algebra
A of finite type such that K(A) = ~1' According to [McK96a], C. Latting
(unpublished) showed that (2No )+ is also the residual bound of a finite algebra
of finite type. It remains an open question, however, whether ~o is the residual
bound of a finite algebra of finite type: this was the original Quackenbush
problem. McKenzie also proved that there is no algorithm which decides,
given a finite algebra A of finite type, whether V(A) has a finite residual
bound, and that the same is true if we replace "has a finite residual bound"
by "is residually finite" [McK96b]. He subsequently proved the same result for
the property "residually small"; in the meantime, Latting had dealt likewise
with "residually countable" i.e. with "K(A) ::S ~1'" (Here we are quoting from
[Ber97] and [McK96b)).)

The RS Conjecture aside, in the last two decades a number of other impor­
tantresults concerning residually small varieties have been proved for which
space has not been found in the body of the thesis.

McKenzie [McK82] showed that a variety V of rings (or of linear associative
algebras over a commutative ring) is residually small exactly when the con­
gruence lattices of its algebras satisfy (Cl); the assumption that V be finitely
generated is not required in this case.

It is known that injections are transferable in a variety V if and only if V has
the congruence extension property (CEP) and the "amalgamation property"
(AP): see [Bac72], [Tay72]. We proved part of this in Proposition 1.41 but did
not discuss the AP. A variety has the AP if and only if for any embeddings

A -4 B E V and A ~ C E V there exist D E V and embeddings B ~ D
and C ~ D such that h 0 f = k 0 g. Using commutator theory and extending
earlier results of E. Kiss [Kis85] and of C. Bergman and McKenzie [BM88],
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K. Kearnes [Kea89] proved that any residually small modular variety with the
AP also has the CEP; it therefore has enough injectives (by Theorem 1.44).

S. Burris and McKenzie [BM81a], [BM81b] used the commutator theory to
obtain structural characterizations of locally finite modular varieties with a
decidable first order theory. Using tame congruence theory, McKenzie and M.
Valeriote [MV89] extended this work to the nonmodular case.

McKenzie proved [McK87] that every finitely generated residually small
modular variety V is finitely axiomatized by identities. One cannot drop from
this result the assumption that V be residually small, in view of an example
of S. Polin [Po176] (in which V consists of nonassociative rings). Recall that
finitely generated congruence distributive varieties always have finite resid­
ual bounds, by J6nsson's Theorem. The fact that these varieties are finitely
axiomatized was discovered (before 1970) by K. Baker [Bak77]. In contrast,
[McK96c] shows that there is no algorithm to decide, given an arbitrary finite
algebra A of finite type, whether V(A) is finitely axiomatized.

Kearnes and McKenzie [KM92] extended commutator theory from varieties
to the class of "relatively modular" quasivarieties. The varieties in this class
are modular and the definitions specialize in them to the ones discussed in this
thesis. Certain varietal results (e.g. C. Herrmann's Fundamental Theorem of
Abelian Algebras) fail to generalize to this framework, however, and others
are open problems. The building blocks (in terms of subdirect decomposition)
of a quasivariety K are its "relatively subdirectly irreducible" algebras; if K
is finitely generated, i.e., if K = ISP(A) for some finite algebra A, then the
sizes of these building blocks are always bounded above by IAI. Thus the
analogue of the RS Conjecture does not arise for quasivarieties. It is an open
problem, however, whether a finitely generated relatively modular quasivariety
is necessarily finitely axiomatized by quasi-identities. (This becomes true if
we strengthen "relatively modular" to "relatively distributive" [Pi88].) For
some quasivarieties, this question is connected, in a currently mysterious way,
to the theory of residually small varieties: for a finite group or (associative)
ring A, the quasivariety ISP(A) generated by A is finitely axiomatized if and
only if the variety V (A) is residually small (see [01's74] for groups and [Be178]
for rings). In this case V(A), being modular, has a finite residual bound, by
Theorem 4.11. For a finite group A, V(A) is residually small if and only if all
Sylow subgroups of A are Abelian [01's69] (also see [FM81]). At a universal
algebraic level, no general argument exists at present that would explain these
phenomena.
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