
 

 

 

AN INVESTIGATION INTO THE DETECTION OF SUGARCANE AFRICAN 

STALK BORER (ELDANA SACCHARINA WALKER (LEPIDOPTERA: 

PYRALIDAE)) USING HYPERSPECTRAL DATA (SPECTRORADIOMETRY) 

 

 

BY 

 

 

THOLANG ALFRED MOKHELE 

 

 

SUPERVISED BY PROF FETHI AHMED 

 

 

 

 

 

 

Submitted in fulfilment of the academic requirements for the degree of Master of Science in 

the School of Environmental Sciences, University of KwaZulu-Natal, Durban 

 

 

 

2009 

 

 

 

 

 

 



 ii

ABSTRACT 

 

The South African Sugarcane production is one of the world’s leading sugarcane (Saccharum 

spp. Hybrid) producers. However, in recent years Eldana saccharina Walker has been the 

most destructive pest in South African sugarcane production, causing great crop loses per 

annum and is the most important factor limiting sugarcane productivity. The pest has been 

monitored using a traditional visual approach whereby a representative sample of stalks is 

taken from a field and split longitudinally to assess damage and count the number of E. 

saccharina larvae and pupae. However, this approach is time-consuming, labour intensive and 

sometimes biased as only easily accessible areas are often surveyed. In order to investigate a 

more economical but equally effective survey methodology, this study aimed to determine the 

potential of using hyperspectral remote sensing (spectroradiometry) for identifying sugarcane 

attacked by E. saccharina. A hand-held spectroradiometer ASD Field Spec® 3 was used to 

collect leaf spectral measurements of sugarcane plants from a potted-plant trial taking place 

under shade house conditions at the South African Sugarcane Research Institute (SASRI). In 

this trial, nitrogen (N) and silicon (Si) fertilizers were applied at known levels to sugarcane 

varieties. Varieties were either resistant or intermediate resistant or susceptible to E. 

saccharina attack. In addition, watering regimes and artificial infestation of E. saccharina 

were carefully controlled. Results illustrated that severe E. saccharina infestation increased 

spectral reflectance throughout the whole spectrum range (400 – 2500 nm) and caused a red-

edge shift to the shorter wavelength. Eldana saccharina stalk damage was also linearly 

related to modified normalized difference vegetation index (mNDVI) using R2025 and R2200 (R2 

= 0.69). It was concluded that hyperspectral data has a potential for use in monitoring E. 

saccharina in sugarcane rapidly and non-destructively under controlled conditions. A follow-

up study is recommended in field conditions and using airborne and/or spaceborne 

hyperspectral sensors. 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Background 

 

Sugarcane (Saccharum spp. Hybrids) is a tall-growing perennial crop grown in tropical and 

subtropical regions (Muchovej et al., 2005; Abdel-Rahman and Ahmed, 2008). Sugarcane 

crop is an extremely water intensive and yet an important cash crop. It is an important 

component of the economy in most countries and apart from being the major source of 

world’s sugar used in human diet, several by-products have been produced from its milling. 

Recently, there has been an increased interest in biofuel production from its by-products 

(Masoood and Javed, 2004; Inman-Bamber and Smith, 2005; Inman-Bamber et al., 2005; 

Abdel-Rahman and Ahmed, 2008). 

 

South African sugarcane production comprises the agricultural activities of sugarcane 

cultivation with industrial factory production of raw and refined sugar, specialized sugars as 

well as syrup, including a range of by-products (SASRI, 2007). The South African sugarcane 

production is known for its major contribution to the national economic growth through sugar 

production, foreign exchange earnings, job provision, social and sustainable development as 

well as Black Economic Empowerment (BEE) (Anon, 2007). For example, its annual 

production is approximately 2,5 million tons of which 50% is exported to other African 

countries and other continents including North America. Through these export markets, the 

production generates an average income of R6 billion a year and also contributes 

approximately R2 billion to the country’s foreign exchange earnings (SASRI, 2007).  

 

However, there are major factors which limit the productivity of sugarcane in South Africa. 

These include drought especially in rainfed areas, high climatic variability, poor soils as well 

as pests (E. saccharina) and diseases. The subtropical conditions in the South African 

sugarcane production areas also limit the growth potential of South African sugarcane as it is 

essentially a tropical crop (Coetzee, 2003). Some of these factors influence others, for 

example, lack of rainfall and soils susceptible to moisture stress cause moisture stressed 

sugarcane, which is very susceptible to attack and population build up of pests such as E. 

saccharina (Atkinson et al., 1981; Atkinson and Nuss, 1989; SASRI, 2005). Among these 
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factors, E. saccharina (an insect indigenous to Africa) is a major pest in South Africa and the 

most important factor limiting sugarcane productivity, causing great crop losses per annum 

(Redshaw and Donaldson, 2002; Meyer and Keeping, 2005a).  

 

The detection of E. saccharina in South African sugarcane is very important. It is worth 

highlighting to indicate factors influencing this pest in South African sugarcane. These 

include plant nitrogen (N) and silicon (Si), sugarcane age, water stress and resistance or 

susceptibility of sugarcane varieties. Meyer and Keeping (2005a) indicated that N and Si play 

important roles in the susceptibility and resistance of a range of crops to stalk borer (E. 

saccharina) damage. For instance, high Si contents interfere with the feeding of E. saccharina 

larvae by damaging their mandibles (Savant et al., 1999; Kvedaras et al., 2007; Kvedaras and 

Keeping, 2007). High N levels on the other hand are linked with high E. saccharina 

infestations because of shortened development time of the insect (Atkinson and Nuss, 1989; 

SASRI, 2005). However, plant stress causes a redistribution of N from the leaves and growing 

shoots to the stalk where E. saccharina larvae feed (Atkinson and Nuss, 1989), therefore there 

might be a reduction in foliar N concentration. In addition, recent studies show that N/Si ratio 

is correlated with E. saccharina damage and hence sugarcane with foliar N/Si ratio greater 

than 2 is associated with increasing risk of E. saccharina borer damage (Meyer and Keeping, 

2005a; SASRI, 2005). 

 

Sugarcane age is another factor influencing E. saccharina incidence as there is a strong 

positive correlation between cane age and E. saccharina larval population as well as between 

cane age and E. saccharina damage (Atkinson and Nuss, 1989; SASRI, 2005; Goebel and 

Way, 2007; Way and Goebel, 2007). This is further confirmed by Atachi et al. (2005) that 

post-tasseling stages are more attractive to E. saccharina than pre-tasseling ones for all host 

plants. However, severely stressed sugarcane plants might be infested very early, at 2 – 3 

months age due to the presence of dead leaf material (Atkinson and Nuss, 1989). 

 

Water stress is one of the factors influencing E. saccharina. Lack of rainfall causes moisture 

stressed sugarcane, which is very susceptible to attack and population build up of E. 

saccharina (Atkinson and Nuss, 1989; Atkinson et al.,, 1989). Atkinson and Nuss (1989) 

further showed that the infestations of E. saccharina are worse in water stressed plants in 

South Africa. Female moths lay eggs on dry or dead leaves of the host plant, stressed cane 
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(Atkinson, 1979; SASRI, 2006). These dead and dry leaves can be detected by remote 

sensing. 

 

Resistance or susceptibility of sugarcane varieties to infestation by E. saccharina have been 

reported (Webster et al., 2005), with varieties ranging from being resistant, intermediately-

susceptible and susceptible to infestation by E. saccharina. Therefore it is normally 

recommended that resistant varieties be planted in problem areas such as sandy soils as well 

as near natural host plants such as sedges (Webster et al., 2005). 

 

1.2 Assessment, Monitoring and Detection of E. saccharina 

 

Assessment, monitoring and detection of E. saccharina in sugarcane are very important for 

management decisions as well as prompt decision making. This has been done through 

traditional or visual approach (Way and Goebel, 2007). The approach involves destructive 

sampling of cane stalks from the field and then longitudinally splitting them for assessing 

stalk damage as well as internodes damage by E. saccharina and for counting the number of 

E. saccharina larvae and pupae found in the stalks. However, this approach is inefficient as it 

is time-consuming, labour intensive and sometimes biased as only easily accessible areas are 

surveyed (Apan et al., 2005). According to Apan et al. (2005), remotely sensed data, 

especially hyperspectral data, can be used to supplement traditional or visual approaches for 

assessment, monitoring and detection of disease and pest symptoms, and such techniques 

have advantages over traditional approaches as they can be used to repeatedly collect sample 

measurements both non-destructively and non-invasively.  

 

Remote sensing techniques have been used as potentially important tools for the identification 

of nutrient content, chlorophyll content, detection of pests and diseases, water stress, 

mapping, precision farming, hail damage, crop inventory as well as yield estimation in 

agricultural crops, for example (Schmidt et al., 2001; Kumar et al., 2003; Gers, 2004; Datt et 

al., 2006). Most of the above studies use hyperspectral data. Hyperspectral remote sensing 

make use of the simultaneous acquisition of data in many relatively narrow and contiguous 

spectral bands throughout the ultraviolet, visible and infrared portions of the electromagnetic 

spectrum (Jensen, 2005). However, hyperspectral remote sensing has been used 

interchangeably with the following terms: imaging spectroscopy, imaging spectrometry and 

imaging spectroradiometry (van der Meer and de Jong, 2003).  
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Remote sensing of plants records the plant leaves’ spectral responses as influenced by both 

abiotic and biotic factors. For instance, pests and diseases can induce differences in spectral 

responses of plant leaves as they (pests and diseases) change the physiological responses to 

nutrient and environmental stress, biochemistry, and biophysical properties of leaves (Apan et 

al., 2005). Reflectance-based remote sensing techniques for pest identification capitalize on 

the fact that most pests affect the outwards appearance of a plant in a particular manner either 

within the visible or outside the visible spectrum (Abdullah and Umer, undated). However, E. 

saccharina effects on sugarcane leaf physiology are not known. This study proposes to test 

whether there are physiological changes in sugarcane leaves induced by E. saccharina, which 

result in spectral reflectance differences that can be detected by spectroradiometry.   

 

1.3 Motivation for the Study 

 

Very few remote sensing studies have been undertaken in South Africa on sugarcane 

agriculture using multispectral sensors (broadband sensors) except recent works by Abdel-

Rahman et al. (2008a; b) where hyperspectral data were used. Multispectral sensors have 

fewer channels but these have broadband (~100 µm) which make them average the 

reflectance over a wide range of wavelength. Due to this averaging characteristic, much data 

about narrow spectral features are lost or masked by stronger features surrounding those 

(Kumar et al., 2003). Presumably, there are changes in narrow spectral absorption features of 

sugarcane leaves induced by E. saccharina which may go undetected by these multispectral 

sensors. In contrast, hyperspectral sensors with over 100 contiguous and narrow sensitive 

bands (~10 nm) can detect these changes in narrow absorption features (Lillesand et al., 

2004).  

 

This high sensitivity of hyperspectral data makes it more sensitive and capable in determining 

reflectance changes induced by E. saccharina on sugarcane leaves at leaf-level using 

spectroradiometry. The results from field or leaf-level application may lead to the use of air- 

or space-borne hyperspectral imaging, in assessment and detection of E. saccharina in 

sugarcane. 
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1.4 Aim and Objectives 

 

The aim of this study was to determine the potential use of hyperspectral data 

(spectroradiometry) for identifying sugarcane plants that are attacked by E. saccharina.  

 

The specific objectives of the study were: 

(a) To determine if leaf-level spectral reflectance of sugarcane can be used to detect 

      infestation by E. saccharina, 

(b) To determine if leaf-level spectral reflectance of different sugarcane varieties can be used 

     to detect various levels of E. saccharina damage and water stress, 

(c) To determine the best hyperspectral narrow-wave bands for sugarcane E. saccharina 

     detection and N/Si ratio estimation, 

(d) To estimate leaf biochemical concentrations of N and Si in relation to E.  saccharina  

      incidence and water stress levels. 

 

1.5 Dissertation Outline 

 

Chapter one describes background of sugarcane crop and its production in South Africa. This 

chapter further highlights the motivation and the aim of the study. Chapter two presents a 

brief biology, history and economic impact of E. saccharina. It further provides a brief 

description of remote sensing and its theory in agriculture, with some detailed information on 

general leaf spectral optical properties. This chapter also presents the application of 

hyperspectral remote sensing in agriculture. Chapter three describes the materials and 

methods used in this study. In chapter four, the results and findings of this study are presented 

and discussed. Finally, chapter five presents the conclusions of the study as well as the 

recommendations made. 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Introduction 

This chapter presents the biology, history, distribution and economic importance of E. 

saccharina. It further provides an insight of remote sensing in agriculture, with some detailed 

description on general leaf spectral properties, with some focus on sugarcane leaf spectral 

properties. The chapter also discusses the applications of hyperspectral data in agriculture, 

presenting both imaging spectroradiometry and non-imaging spectroradiometry applications.  

2.2 Biology, History, Distribution and Economic Impact of E. saccharina 

2.2.1 Biology of E. saccharina 

 

Eldana saccharina is an insect that is indigenous to Africa. It is a very active and tough insect 

with yellow-brown colour and rather leathery larval borer which wriggles vigorously when 

disturbed (Carnegie, 1974; SASRI, 2006). Its larva bores into lower cane stalk where most 

sucrose is stored. Its presence is known by the frass which it pushes out of the host plant stalk 

through the holes that it has already bored. It may also change the cane stalk into red colour. 

At low infestations these holes can be the only indication of E. saccharina’s presence while in 

severe infestations, the entire crop can be destroyed (Carnegie, 1974; SASRI, 2006).  

 

The life cycle of E. saccharina consists of four stages which include, egg, larva, pupa and 

moth stages. The duration of the life cycle is extremely variable as it depends on many factors 

such as the quality of food supply and the ambient temperature (Atkinson and Carnegie, 

1989). For example, the development of eggs takes 12 days under a mean temperature of 17 

°C and 5 days under mean temperature of 26 °C (Croix, 1992). This means that the hotter the 

weather, the shorter the life cycle will be, but all in all the life cycle lasts for 1 – 2 months 

(SASRI, 2005). 

 

The female moth, which is light brown in colour, is estimated to live for about one week. It 

flies looking for a mate and lays most of its eggs within 2 – 3 days of mating. Eggs are laid on 

dry or dead leaves of the host plant (Atkinson, 1979; SASRI, 2006). These dead and dry 

leaves can be detected by remote sensing. Croix (1992) stated that each female moth lays 
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about 100 – 200 eggs. The laid eggs take about a week and then the minute first stage larvae 

(hatching larvae) emerge. The eggs are white, but if fertile they turn pink and finally become 

brownish or blackish on the day before hatching. Infertile eggs normally turn yellow instead 

of pink and shrivel. Generally, the largest specimens produce female moths while the smallest 

yield male (Dick, 1945). The first stage larvae (hatching larvae) feed as scavengers on the 

exterior side of the host plant stalk (Carnegie, 1974; SASRI, 2006), and on the decaying leaf 

matter on the leaf surface (Croix, 1992). Then bore into the stalk where they spend the entire 

larval period (Dick, 1945; Carnegie, 1974; SASRI, 2006). The duration of the larvae is 

approximately 50 days. The mature larva, the most damaging stage as they feed on the 

internal soft tissue of the plant stalk, spins a protective cocoon and pupates within it 

(Carnegie, 1974). 

 

The pupa would then harden and change from yellow-brown colour to red-brown colour a day 

after its emergence. Atkinson and Carnegie (1989) stated that at the prevailing temperatures in 

spring the duration of the pupal stage would be about 10 days, in order for the onset of 

pupation to be soon followed by eclosion, which is the emergence of an insect from its pupal 

case or egg. Then the moths (adults) will start emerging from the pupae at sunset till about 9 

pm. Thus, during the day, the moths are inactive hence mating, oviposition and locomotion 

take place between sunset and sunsrise (Dick, 1945). Even though the breeding process is 

continuous, SASRI (2006) showed that there are two moth peaks around April and 

November. Conlong and Kasl (2000) stated that all life stages of E. saccharina are very 

cryptic which makes it difficult to control this insect by conventional pest management 

strategies. 

 

2.2.2 History of E.  saccharina 

 

The first record on E. saccharina in Africa was in Siera Leone, in 1865 (Dick, 1945; 

Carnegie, 1974; Conlong, 1994; Horton et al., 2002). It was found attacking maize, sugarcane 

and sorghum. During the early 1900s, the E. saccharina moth was found in Tanzania and 

Beira in Mozambique (Dick, 1945; Carnegie, 1974; Atkinson et al., 1981; Croix, 1992). Croix 

(1992) also mentioned that in 1925 E. saccharina was found attacking maize in French West 

Africa and in 1928 the insect was found in South Africa, at the Nyalazi river near Mtubatuba, 

though the infestations were very low.  
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In 1939, the first outbreak of E. saccharina took place, it was when this pest became known 

as a pest of importance in South African sugarcane restricted to Umfolozi River Flats in the 

northern KwaZulu-Natal (Atkinson, 1979; Atkinson et al., 1981; Croix, 1992; SASRI, 2006). 

However this outbreak was not for long for unknown reasons (Coetzee, 2003). In 1944, 

Girling 1972 in Croix (1992) reported that E. saccharina was found on cassava in Zaire 

though he was a little confused about its identification.  

 

In the 1970s, the second outbreak was discovered in South Africa, this time it was permanent 

and ongoing spreading from Umfolozi area to the rest of the coastal areas where sugarcane 

was grown, this was as far as Malelane and Port Shepstone as well as Hluhluwe extending 

even into Swaziland (Carnegie, 1974; Atkinson et al., 1981; Croix, 1992; Coetzee, 2003; 

SASRI, 2006). In 1977, the spread of E. saccharina infestations further got into the south 

coastal areas on KwaZulu-Natal as far as Port Shepstone (Atkinson et al., 1981; Croix, 1992). 

In the 1980s, much of the spread of sugarcane E. saccharina has been associated with years of 

low rainfall and extremely dry conditions, especially in 1983 and 1985 (Atkinson and 

Carnegie, 1989). SASRI (2006) postulated that the most recent area that has been invaded is 

the highlands of KwaZulu-Natal due to drought in 1992 – 1994, though the incidences were 

reduced by cold winters of these highlands.  

 

2.2.3 Distribution of E. saccharina 

 

Eldana saccharina is widely distributed in Africa (Kfir et al., 2002). In Siera Leone, where 

the pest was first described, the crop hosts were sugarcane, maize and sorghum (Dick, 1945; 

Horton et al., 2002). Horton et al. (2002) further postulated that the shifting of E. saccharina 

from its natural or indigenous hosts to the crop hosts was due to the fact that the crop plants 

were cultivated in swampy areas, replacing the indigenous sedges and grasses, containing E.  

saccharina. Although there are similarities in terms of its behavior throughout Africa, there 

are also some differences.  In West and East Africa, E. saccharina borer mainly infests the 

upper parts of the stalks while in southern Africa it infests the lower parts of the stalks where 

most sucrose is stored (Kfir et al., 2002; Coetzee, 2003). In addition, E. saccharina is known 

to attack mainly maize, rice and sugarcane in West Africa while it is a major pest for 

sugarcane in southern Africa and rarely causes damage to maize (Kfir et al., 2002). 
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E. saccharina has a tropical and subtropical distribution from sub-saharan West Africa, across 

East Africa and down the African east coast to coastal KwaZulu-Natal (Atkinson and 

Carnegie, 1989; Conlong and Kasl, 2000). SASRI (2005) indicated that this insect occurs 

more commonly in a number of indigenous grasses and sedges (Cyperus papyrus and Cyperus 

dives), especially those found in wetlands and along the coast as well as along river banks and 

in rain-fed areas. Conlong and Kasl (2000) stated that larvae and pupae feed on the rhizomes 

in sedges while they feed on stalk in sugarcane and generally on the lower half. 

 

Eldana saccharina has been found in number of crops such as maize, millet, sorghum and 

rice. However, it has not been regarded as a serious pest as it attacks these crops at older 

stage, hence does not cause significant loss in yield production (Coetzee, 2003). In some 

countries such as Malawi and Zimbabwe E. saccharina affects natural host plants but sugar 

cane is not affected (Atkinson and Nuss, 1989; Atkinson and Carnegie, 1989). In Uganda, E. 

saccharina was restricted to wild hosts but later expanded its host range to maize, sorghum 

and sugarcane plants (Overholt et al., 1996). In Nigeria, E. saccharina has been found as a 

dominant stem borer on millet, sorghum and rice crops (Harries 1962 in Croix, 1992). 

 

In South Africa, where sugarcane is the major host plant as in Swaziland, the distribution of 

E. saccharina is limited by the winter temperature in the centre and south of the cane belt 

(Atkinson, 1979). Atkinson and Nuss (1989) showed that the infestations of E. saccharina are 

higher in intensively grown sugarcane than in peasant grown sugarcane due to different levels 

of technologies applied and are worse in water stressed plants in South Africa. “In one 

particular area of the South African sugarcane belt, the Zululand region, infestation is so 

serious that it not only causes frequent marked losses in sucrose yields but it has, at times, 

caused consignments to be rejected at the mill or ratoon failure after harvest. Elsewhere in the 

sugarcane belt, the pest has in recent years invaded sugarcane further south and at higher 

altitudes than where it used to be found” (Atkinson and Carnegie,1989: 61). 

 

2.2.4 Economic Negative Impacts of E. saccharina on South African Sugarcane Production 

 

In some areas such as Zululand sugarcane belt, E. saccharina infestation was so serious that it 

even resulted in consignments being rejected at the mill or ratoon failures after harvest 

(Atkinson and Carnegie, 1989). Economic losses are also encountered when growers are 

forced to harvest cane annually, at its younger age, due to infestations of E. saccharina as 
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more sucrose accumulates preferentially in mature cane. These losses are further increased as 

there will be more expenses for frequent cultivation, maintenance as well as harvesting if cane 

cycle is 12 months (Coetzee, 2003). 

 

The economic negative impact of E. saccharina on sugarcane is highly significant as it causes 

losses of about R250 million per annum in South Africa (Horton et al., 2002; Hurly and 

Buchanan, 2006). According to recent studies, it had caused losses of about R153 million in 

the 2003/2004 milling season, thus approximately 143 000 tonnes Recoverable Value (RV) 

(Goebel and Way, 2007). It is even estimated that the E. saccharina larval feeding causes 0.1 

% sucrose loss for every 1 % of sugarcane stalks damaged (Horton et al., 2002). SASRI 

(2005) postulated that it has been estimated that for every 1 E. saccharina per 100 sugarcane 

stalks, there is a loss of 0.5 ton cane per hectare. This pest has a great impact on sucrose yield 

as compared to cane weight with a decrease of 21.4 – 20 % in highly infested plots (Goebel 

and Way, 2007). 

 

In an attempt to reduce these significant economic losses caused by E. saccharina, various 

control methods have been applied, even though control of this pest has proved problematic in 

South Africa (Horton et al., 2002). In the past the main control method has been to harvest 

earlier if the infestation was becoming severe and the mill would reject cane only if it was 

severely damaged (Horton et al., 2002; Webster et al., 2002). SASRI (2006) stated that there 

is no single measure that can provide an answer to the E. saccharina problem, hence only 

Integrated Pest Management (IPM), which is a combination of selective control measures that 

can work at appropriate times in the cane crop or pest cycle. Recent IPM practices in South 

African sugarcane production are stipulated and discussed in Webster et al. (2002). Even 

though these IPM practices are done, E. saccharina pest persists as a major constraint to 

South African sugarcane production, hence definitive control strategies remain to be 

developed (Goebel and Way, 2007). 

 

2.3 Remote Sensing 

 

Remote Sensing is defined as the science of obtaining information about an object through the 

analysis of data acquired by a device that is not in direct contact with the object (Lillesand and 

Kiefer, 2000; ASD, 2006). The quantity that is mostly measured in day-to-day remote sensing 

systems is electromagnetic energy emanating from objects of interest (Campbell, 2002). This 
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electromagnetic energy is commonly recorded according to its wavelength location within the 

electromagnetic spectrum. The spectrum ranges from Cosmic rays, Gamma rays, X rays, 

Ultraviolet (UV), Visible, Infrared (IR), Microwave up-to Radio waves (Legg, 1992; 

Lillesand and Kiefer, 2000).  

 

2.3.1 Hyperspectral and Multispectral Sensors 

 

Multispectral data collect spectral data in a few broad spectral bands, non contiguous ranges 

of the electromagnetic spectrum, which means a single band represents the average of a 

relatively large portion of the spectrum. Hyperspectral remote sensors provide spectral data in 

many relatively narrow and contiguous spectral bands throughout the ultraviolet, visible and 

infrared portions of the electromagnetic spectrum (Oskin and Roberts, 2004; Jensen, 2005). 

This study focuses on hyperspectral data. Hyperspectral remote sensing has been used 

interchangeably with the following terms: imaging spectroscopy, imaging spectrometry and 

spectroradiometry (van der Meer and de Jong, 2003; Oskin and Roberts, 2004). Imaging 

spectroscopy is defined as the branch of physics which deals with the production, 

transmission, measurement and interpretation of electromagnetic spectra while spectrometry 

or spectroradiometry, which is derived from spectro-photometry, is defined as the measure of 

photons as a function of wavelength (Kumar et al., 2003). The only difference between 

spectrometry and spectroradiometry is that, in spectroradiometry also spectral measurements 

of radiance and irradiance are available (ASD, 2006).  

 

Hyperspectral data have some strengths and limitations over multispectral data in agricultural 

applications. In relation to strengths, for instance, hyperspectral sensors with 200 or more 

contiguous and narrow sensitive bands can detect changes in narrow absorption features that 

are lost within the relatively coarse bandwidths of various bands of multispectral sensors. 

Multispectral sensors average the reflectance over a wide range and hence narrow spectral 

features are lost or masked by other stronger features surrounding them (Kumar et al., 2003; 

Lillesand et al., 2004; Govender et al., 2007). “For this reason hyperspectral remote sensing is 

a strong alternative for significant advancement in the understanding of the earth and 

environment” (Kumar et al., 2003: 111 – 112).  

 

However, the main limitation encountered in hyperspectral remote sensing is that, 

hyperspectral data contain large amounts of redundant information for any given application. 
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This will require determining the optimum number of wavebands, waveband centres, and 

waveband widths required to maximize information. The effort should lead to identifying 

wavebands that are most critical to a particular application, and in eliminating the need to 

gather and transmit data from a huge number of hyperspectral wavebands by designing a 

sensor with optimum number of wavebands (Thenkabail et al., 2004). Another limitation of 

hyperspectral data is that, data acquired by very fine spatial resolution sensors are used for 

localized small study areas in contrary to multispectral with their coarser bands which cover a 

larger study areas (Lucas et al., 2008). 

 

2.4 Remote Sensing in Agriculture  

 

2.4.1 Brief Overview 

 

The use of remote sensing in agriculture is one of the main application fields of remote 

sensing techniques (Clevers, 1999; Clevers and Jongschaap, 2001). Remote sensing 

technology can be used to provide both quantitative and timely information on agricultural 

crops during their growing season (Yang et al., 2008). Remote sensing techniques have been 

used as potentially important tools for the estimation of nutrient content, chlorophyll content, 

detection of pests and diseases, water stress, mapping, precision farming, hail damage, crop 

inventory as well as yield estimation in agricultural crops over wide areas with the ability to 

evaluate information in an unbiased way (Schmidt et al., 2001; Kumar et al., 2003; Gers, 

2004; Datt et al., 2006).  

2.4.2 Spectral Signatures, Spectral Reflectance and Leaf Optical Properties  

When light interacts with any earth’s surface, including the leaf, its solar energy gets absorbed 

or transmitted or reflected back to the sensor. The images of reflected solar energy are called 

spectral signatures. The property that is used to quantify these spectral signatures is known as 

spectral reflectance (Lillisand and Kiefer, 2000; Govender et al., 2007). The leaf spectral 

reflectance, which is the radiance reflected from the leaf expressed as a percentage of  

incident radiance through a range of spectrum wavelengths, highlights the change in spectral 

energy distribution of the reflected in relation to incident radiation (Carter, 1991). The results 

are given in a form of a graph of spectral reflectance of an object as a function of wavelength 

named spectral reflectance or response curve (Lillisand and Kiefer, 2000).  



 13

The spectral reflectance of a plant is governed by leaf structures, both external and internal 

structures, and its biochemical concentrations as well as its biological and biochemical 

reactions such as photosynthesis and transpiration taking place in the leaf (Xu et al., 2007). 

However, plant anatomy also influences leaf optical properties as leaves from xeric 

environments can have higher reflectance in the shorter wavelengths due to higher contents of 

silicates in their leaves (Alvarez-Añorve et al., 2008). 

Although leaf structure varies from plant to plant, the following description provides a general 

outline of the main elements common to most plants with regard to remote sensing in 

vegetation or agricultural studies. With regard to external structure of the leaf, the cuticle and 

the upper epidermis are both transparent to the energy radiation hence very little radiation is 

reflected from the outer portion of the leaf (Campbell, 2002). This is illustrated in Figure 2.1.  

 

Fig. 2.1 Schematic representation of the interaction of irradiance (incoming radiation) with leaf tissues (Guyot, 

1990,  pp 21). 

Below the upper epidermis, the leaf consists of palisade parenchyma or tissue characterized 

by vertically elongated cells arranged in parallel manner. These cells contain the largest 

number of chloroplasts, which are specialized lens-shaped structures containing chlorophyll. 

Chlorophyll, a green pigment fundamental to the light reaction to photosynthesis, appears in 

many forms in the leaf but most common in almost all plants are chlorophyll a and b, but all 

in all about ten forms were identified each with its unique absorption spectrum (Campbell, 

2002; Kumar et al., 2003).  
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On the lower side of the leaf is lower epidermis which contains stomata, the main 

characteristic that makes it different from the upper epidermis. The stomata have guard cells 

which can open and close to allow or prevent movement of air, that is, carbon dioxide (CO2) 

for photosynthesis, respiration and maintaining thermal balance, into the leaf. When the 

stomata are opened, moisture loss is minimized and maximum light transmission through the 

upper epidermis is experienced (Campbell, 2002). The whole electromagnetic spectrum range 

in relation to reflectance of healthy green leaf is illustrated in Figure 2.2.  

 

Fig. 2.2 Reflectance spectrum for healthy green leaf using handheld GER 3700 spectrometer (Cho, 2007, pp 4). 

The visible portion (400 – 700 nm) of the electromagnetic spectrum is characterized by low 

leaf reflectance, (less than 15 percent of the energy incident) as well as low transmittance due 

to strong absorption by photosynthetic and accessory plant pigments such as chlorophyll, 

xanthophylls, carotenoids and anthocyanins (Figure 2.2) (Guyot, 1990; Kumar et al., 2003; 

Pinter et al., 2003; Xu, 2007; Asner, 2008; Lucas et al., 2008). Among these pigments, 

chlorophyll is the most crucial pigment. Chlorophylls (both chlorophyll a and b) absorb more 

energy radiation in the wavebands centered at about 450 nm (in the blue) and 670 nm (in the 

red) for photosynthesis, hence these wavebands are known as chlorophyll absorption bands 

(Guyot, 1990; Lillesand and Kiefer, 2000; Campbell, 2002; Cho, 2007; Tilling et al., 2007; 

Asner, 2008; Lucas et al., 2008).  
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From visible to Near Infrared (NIR) region of the reflectance spectrum, the spectral 

reflectance signature for healthy vegetation increases dramatically at around 700 nm, this is 

highlighted by dotted lines forming a circle around the spectral curve in Figure 2.2. This slope 

is known as the red-edge (Lillesand and Kiefer, 2000; Pinter et al., 2003; Govender et al., 

2007). The red-edge is known by the low red chlorophyll reflectance to the high reflectance 

around 800 nm (known as red-edge shoulder) associated with leaf internal structure and water 

content (Dawson and Curran, 1998; Kumar et al., 2003). The spectral shift of the red-edge 

(670 - 780 nm) slope, which is the most studied portion of the spectral reflectance curve, is 

associated with leaf chlorophyll content, phenological state as well as plant stress (Kumar et 

al., 2003; Cho, 2007). As this slope is a fairly wide feature, the concentration is on the 

wavelength of maximum slope of the red-edge termed red-edge inflection point or red-edge 

position (REP) (Clevers and Jongschaap, 2001; Kumar et al., 2003; Imanishi et al., 2004; 

Cho, 2007). If there are low chlorophyll concentrations in the leaf, these will cause the red-

edge slope and REP towards the shorter wavelengths, hence the “blue shift”, while high 

chlorophyll concentrations will cause shifts of the red-edge slope and REP towards longer 

wavelengths, resulting in the “red shift” (Clevers and Jongschaap, 2001; Imanishi et al., 2004; 

Cho, 2007; Ismail et al., 2008; Lucas et al., 2008).  

The NIR portion (700 – 1300 nm) of the spectrum is characterized by highest reflectance, 

ranging from 40 to 50 percent of the energy incident upon the target, while about 5 percent is 

absorbed and the rest is transmitted (Leblon, undated; Lillesand and Kiefer, 2000; Govender 

et al., 2007). The leaf does not contain substances that absorb incoming radiation strongly in 

this portion of the electromagnetic spectrum (Carter, 1991; Xu et al., 2007).  The leaf optical 

properties are governed by leaf internal structures, thus scattering in the spongy mesophyll 

cells (Figure 2.2) (Lillesand and Kiefer, 2000; Campbell, 2002; Pinter et al., 2003; Asner, 

2008). Beyond the NIR, that is in the SWIR (from 1300 – 2500 nm), reflectance curve starts 

to go down with some absorption peaks caused by water absorptions at wavebands centered 

around 1400, 1900 and 2500 nm. These wavebands are often called atmospheric water 

absorption bands (Guyot, 1990; Lillesand and Kiefer, 2000; Kumar et al., 2003; ASD; 2006; 

Cho, 2007).  
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2.4.3 Remote Sensing of Sugarcane Crop  

Even though some work have been undertaken on remote sensing of sugarcane worldwide 

(Hadsarang and Sukmuang, 2000; Schmidt et al., 2000; 2001; Gers and Schmidt, 2001; Bapel 

et al., 2003; Gers, 2003a; b; 2004; 2005; Apan et al., 2004a; b; Galvão et al., 2005; Fortes and 

Dematte, 2006; Xavier et al., 2006; Lebourgeois et al., 2007; Abdel-Rahman et al., 2008a; b), 

none of this has strictly focused on the sugarcane optical properties. 

Sugarcane (Saccharum spp. Hybrids) is a tall-growing perennial crop grown in tropical and 

subtropical regions (Muchovej et al., 2005; Abdel-Rahman and Ahmed, 2008). Sugarcane 

crop is an extremely water intensive and is characterized by leaves, major contributors of light 

reflection from the crop, which consist of lamina and sheath. The lamina is an expanded part 

of a leaf (blade) and it hangs free from the main stalk of the crop to absorb sunlight, transpire 

water, and exchange Oxygen (O2) and CO2. The lamina is characterized by the lager vein in 

the center, known as midrib, and parallel veins interconnected by small lateral veins. The 

midrib contains larger conducting tissue hence it supports the lamina in the space around the 

cane plant. On the other hand the sheath wraps tightly around the main stalk of the crop and 

supports the lamina by a flexible collar known as dewlap (Muchovej et al., 2005).  

 

There is a general outline of the main elements common to most plants with regard to remote 

sensing in vegetation or agricultural studies. That is, the review of the whole electromagnetic 

spectrum range (350 – 2500 nm) in relation to reflectance of healthy green leaf. Sugarcane is 

also under that umbrella. Generally, the spectral reflectance of sugarcane plants is based on 

four factors, namely canopy architecture, foliar chemistry, agronomic parameters such as LAI, 

geometry of data acquisition and atmospheric conditions (Fortes and Dematte, 2006; Abdel-

Rahman and Ahmed, 2008). Abdel-Rahman and Ahmed (2008) further stated that among 

these factors, canopy geometry seems to be the most important factor affecting spectral 

reflectance properties of sugarcane. 

 

Spectral reflectance properties of sugarcane also depend on sugarcane phenological stages 

such as pre-emergence, emergence, tiller emergence and flowering. Among these stages, tiller 

emergence is of prime concern in remote sensing applications that rely on measurements of 

light energy reflected from sugarcane canopy. Flowering in sugarcane depends on 

temperature, sunlight and day length conditions and it does not occur regularly (Gers, 2003b). 
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However, there is a rising need for detailed studies of spectral optical properties of sugarcane 

leaves as this will make the applications of remote sensing in sugarcane agriculture quite 

understandable.  

2.4.4 Spectral Vegetation Indices  

Spectral vegetation indices (VIs) have been developed to reduce huge data to a single number 

to assess certain characteristics (Nilsson, 1995). These can be calculated from multispectral 

and hyperspectral data. In most studies in application of remote sensing in agriculture, VIs 

have served as the basis because they are well correlated with vegetation parameters such as 

green biomass, LAI, leaf gap fraction, N, and chlorophyll as well as plant stress (Nilsson, 

1995; Casanova et al., 1998; Hansen and Schjoerring, 2003; Pinter et al., 2003; Cho, 2007). 

Spectral VIs are defined as mathematical transformations of vegetation reflectance into 

dimensionless measures which function as predictors of vegetation parameters (Elvidge and 

Chen, 1995; Cho, 2007). 

Spectral VIs are formed from combinations of several values that are added or divided or 

subtracted, or multiplied in a way that they yield single values that indicate the vigor of 

vegetation within a pixel (Campbell, 2002). Researchers tend to use different spectral band 

combinations and names to distinguish between quantities or conditions. Spectral VIs include 

Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), 

Photochemical Reflectance Index (PRI), Nitrogen Reflectance Index (NRI), Normalized 

Pigment Chlorophyll Index (NPCI),  Red Edge Index (REI), Normalized Difference Red Edge 

Index (NDRE), Water Band Index (WBI), Water Band Ratio (WBR), Crop Water Stress 

Index (CWSI), Normalized Difference Index (NDI) and Carter Index (CI) (Leblon, undated; 

Jordan, 1969; Huete, 1988; Cater, 1994; Elvidge and Chen, 1995; Nilsson, 1995; Barnes et 

al., 2000; Clevers and Jongschaap, 2001; van der Meer et al., 2001; Campbell, 2002; Hansen 

and Schjoerring, 2003; Pinter et al., 2003; Ferwerda et al., 2005; Cho and Skidmore, 2006; 

Ray et al., 2006;  Tilling et al., 2007; Cho, 2007; Meyer and Neto, 2008). Some of these VIs 

and their applications in agriculture are described in the next section.  
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2.5 Hyperspectral Remote Sensing in Agriculture  

2.5.1 Imaging Spectroradiometry and Non-imaging Spectroradiometry 

Interest in the application of hyperspectral data in agriculture is growing rapidly even though 

crop growth is dynamic and its monitoring is challenging (Bappel et al., 2003). Hyperspectral 

remote sensing has been used interchangeably with spectroradiometry. The spectroradiometry 

is categorized into two types, namely; imaging and non-imaging spectroradiometry. Imaging 

spectroradiometetry involves use of spectroradiometers attached to remote sensing platforms 

such as airborne and spaceborne platforms. These provide images like multispectral sensors 

but with much higher spectral resolution. This high resolution feature makes it realistic for 

these systems to identify species and detect minor leaf biological and physiological changes 

that cannot be detected by multispectral scanners from air or space (Kumar et al., 2003). 

These include Moderate Resolution Imaging Spectroradiometer (MODIS), Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS), Hyperspectral Mapper (HYMAP), High 

Resolution Imaging Spectrometer (HIRIS), Multiangle Imaging Spectroradiometer (MISR), 

Medium Resolution Imaging Spectrometer (MERIS), and Hyperion (Johnson et al., 1994; 

LaCapra et al., 1996; Green et al., 1998; Clevers, 1999; van der Meer et al., 2001; 2003; 

Kumar et al., 2003; Huang,  et al., 2004; Galvão et al., 2005; Xavier et al., 2006). 

 

The forthcoming development of operational spaceborne imaging spectrometer missions, such 

as Hyperspectral Environment and Resource Observer (HERO) and Environmental Mapping 

and Analysis Program (EnMAP), as well as Sumbandila (ZASat-002, South African first  

satellite), will facilitate the development of a greater opportunity of practical applications of 

remote sensing. Simultaneously, there is a growing interest on the development in field-based 

sensors for application in precision agriculture (Scholes and Annamalai, 2006; Blackburn, 

2007). 

 

Non-imaging spectroradiometry on the other hand uses similar spectroradiometers with high 

spectral resolution except that they do not provide images and they are used on ground-based 

platforms. Non-imaging spectroradiometers provide most accurate data as they collect 

detailed spectral measurements from known features, and hence they are mainly used as 

reference or ground truth data for both airborne and spaceborne sensors (Aronoff, 2005). For 

this reason, a large number of ground-based studies have been undertaken for investigation of 
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the feasibility of utilizing hyperspectral data for vegetation studies. These include 

spectrometers and analytical spectral devices (ASD) spectroradiometers (Kumar et al., 2003; 

ASD, 2006). 

 

This study focuses on the application of non-imaging spectroradiometer, a hand-held ASD 

spectroradiometer at leaf-level hence a thorough description of ASD spectroradiometer is of 

great importance. The hand-held ASD Field Spec® 3 spectroradiometer is a specialized kind 

of spectrometer that measures spectral reflectance, spectral transmittance, spectral radiance, 

spectral irradiance and spectral absorbance using visible near-infrared (VNIR) and short-wave 

infrared (SWIR) spectra. However, all the above mentioned measurements can be done with 

the help of various set-ups and built-in processing of the radiance signal. The spectrum 

wavelength ranges from 350 – 2500 nm with spectral sampling interval of 1.4 nm for the 

region 350 – 1000 nm and spectral sampling interval of 2 nm for the region 1000 – 2500 nm 

(ASD, 2006). Its main features and advantages over other spectrometers are that accuracy and 

precision due to its high signal-to-noise ratio, transportability due to resistant to changes in 

temperatures as well as speed as 10 spectra per second can be measured for the entire 

spectrum range. 

 

There is a fragile fibre optic cable bundle which brings light from the target object into the 

instrument and then the instrument will pass the information to the computer notebook where 

the spectral curves will be captured and saved for interpretation and further analysis. There is 

also a spectralon panel which is used for measuring a “white reference” reading which must 

reflect nearly 100 % of the light before any spectral measurements can be taken. This 

calibration or optimization process is done regularly, after every 10 – 15 minutes. The next 

sections will present a brief overview of applications of both imaging and non-imaging 

spectroradiometers on agriculture. 

 

2.5.1.1 Air and Space-borne Level Application 

 

Hyperspectral imaging or imaging spectroradiometry is a powerful as well as versatile tool for 

continuous sampling and selecting narrow wavebands that are sensitive to specific crop 

variables, such as plant diseases, pests, nutrients and environmental stresses (Nilsson, 1995; 

Hansen and Schjoerring, 2003). However, sometimes satellites pass over a target region too 

early in the morning for capturing an image hence measurements are made over canopy that 
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still has dew on its leaves and other times after the dewfall has dried, this makes it difficult to 

compare data accurately as dew has a profound influence on spectral reflectance. Airborne 

spectroradiometers have an advantage over these satellites as suitable time for measurements, 

height for measurements, calibrations, spectral/spatial resolutions and acceptable weather 

conditions can be selected (Cetin, undated; Nilsson, 1995).  

 

The Airborne Visible/Infrared Imaging Spectrometer has been used significantly in 

agricultural crops in recent years and it was the first hyperspectral sensor to measure the solar 

energy reflected spectrum from 400 nm to 2500 nm at 10 nm intervals (Green et al., 1998). 

Most applications of AVIRIS in agricultural crops have been focused on foliar chemistry 

(Johnson et al., 1994; LaCapra et al., 1996; Clevers, 1999). For instance, LaCapra et al. 

(1996) used multiple linear regression (MLR) to develop calibration equations for N and 

lignin concentrations based on AVIRIS reflectance of rice from five fields in California. 

LaCapra et al. (1996) found that calibration equations from MLR of AVIRIS can be used to 

predict N concentration in rice even though it was not easy to develop general equation as the 

MLR calibration equations were based on a different set of wavelengths for each subset of 

data.  

 

Jago et al. (1999), Bappel et al. (2003) and Zarco-Tejada et al. (2004) tested the utility of 

Compact Airborne Spectrographic Imager (CASI) in monitoring agricultural crops condition, 

winter wheat and rice. Jago et al. (1999) used both field based (Geophysical Environmental 

Research (GER) IRIS Mark IV, a dual field-of-view spectroradiometer) and airborne based 

(CASI) data from a winter wheat field site under different levels of N fertilization in the 

United Kingdom (UK) to derive a relationship between REP and canopy chlorophyll 

concentration. The results showed strong correlation between REP and chlorophyll 

concentrations in both field and airborne data, hence it was concluded that REP can be used to 

estimate chlorophyll concentration which indicates that remote sensing techniques can be 

used for inferring grain yield. Bappel et al. (2003) studied spectral indices, Photochemical 

Reflectance Index (PRI) from CASI data over sugarcane sites of Reunion Island as bio-

indicators of crop condition. Bappel et al. (2003) found out that hyperspectral data can 

estimate bio-indicators of sugarcane crop conditions as biomass and N correlated highly with 

CASI reflectance (R2 = 0.78 and 0.65, respectively). Bappel et al. (2003) indicated that the 

establishment of N – sugar concentration – leaf water content for the same data was on the 

way. 
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van der Meer et al. (2001) studied the performance of MERIS relative to the scale of 

observation using simulated datasets on different forests and bare agricultural field in France. 

Even though they used many VIs such as NDVI, Perpendicular Vegetation Index (PVI) and 

Soil-adjusted Vegetation Index (SAVI), the results demonstrated that correlation between 

biomass and NDVI for MERIS simulated datasets was better, however it was modest. 

 

Apan et al. (2004a) and Galvão et al. (2005) discriminated sugarcane varieties using 

discriminant analyses and spectral indices from EO-1 Hyperion hyperspectral data, the first 

orbital spaceborne hyperspectral sensor, in Australia and Brazil, respectively. From Apan et 

al. (2004a), the results indicated high discrimination between sugarcane varieties, with 

accuracy of above 74% from discriminant analysis, and for the spectral indices, best results 

were from those indices related to leaf pigments and the leaf internal structure. However, for 

the classification of the entire Hyperion image, the accuracy was low which could be due to 

non-image information such as crop calendar, soil background and leaf geometry. Therefore 

Apan et al. (2004a) suggested that this non-image information should be considered for 

improved classification accuracy. Galvão et al. (2005) also found that best spectral indices for 

discrimination between varieties were those indices related to leaf pigments, such as 

chlorophyll content and the leaf internal structure as well as water content. In addition, the 

comparison of ground truth reference data with classified image derived from discriminant 

analysis confirmed best performance of the discriminatory model. However, it was suggested 

that further research on other areas should be carried out to validate the results. 

 

Xavier et al. (2006) performed sugarcane crop classification with MODIS using multi-

temporal Enhanced Vegetation Index (EVI) in São Paulo State, Brazil. Xavier et al. (2006) 

discovered that the use of cluster analysis in an unsupervised classification can be used to 

distinguish sugarcane from natural vegetation, urban areas, annual crops, water bodies as well 

as some patterns. On the other hand, pasture which seemed to have similar temporal EVI with 

sugarcane became problematic. However, the confusion from pasture could be solved using 

images from higher spatial resolution sensors accompanied by sugarcane classification 

procedure. Supervised classification was difficult due to both large planting and large 

harvesting periods hence it should be pursued for the whole State. 
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2.5.1.2 Canopy Level Application 

 

Vegetation canopies are composed of many leaves which may differ in terms of size, 

orientation, shape, structure as well as coverage of the ground surface (Campbell, 2002). 

Canopy reflectance spectra are affected by many factors in addition to the ones mentioned 

above, these include internal factors such as soil color, canopy geometry, row orientation, and 

optical properties of other plant parts such as flowers and fruits, and external factors such as 

solar elevation, orientation and inclination of the view axis, and atmospheric conditions such 

as wind speed (Guyot, 1990; Nilsson, 1995; Abdel-Rahman and Ahmed, 2008; Asner, 2008). 

 

The upper leaves shadow the lower leaves hence reflectance from the lower leaves is affected 

by that shadow (Campbell, 2002). As canopy reflectance is a combination of reflectance 

spectra of the plants and underlying soil, it is governed by some vegetation parameters such as 

LAI. Thus, as LAI increases, the contribution of the soil or background to the resulting 

reflectance decreases and the multiple scattering of light caused by plant cells increases 

(Guyot, 1990; Yoder and Pettigre-Crosby, 1995; Asner, 1998; Ray et al., 2007). In addition, 

the impact of these effects varies with wavelengths (Yoder and Pettigre-Crosby, 1995). The 

NIR reflectance increases proportionally to the number of layers of leaves in a canopy 

reaching maximum reflection at about eight layers of leaves as a result of reflectance increase 

from the spongy mesophyll (Lillesand and Kiefer, 2000; Alvarez-Añorve et al., 2008). Then 

afterwards, subsequent addition of canopy leaves reduces NIR reflectance, given that 

shadowing traps incoming light energy (Alvarez-Añorve et al., 2008). This further reduces 

reflectance in the SWIR due to increase in canopy moisture content caused by shadowing 

(Alvarez-Añorve et al., 2008). For applications of spectroradiometers at canopy level, fore 

optic pistol grips are normally mounted on either ground-based platforms such as tripods, 

ladders and trucks, thus over 1 m above crop canopy (Nilsson, 1995; ASD, 1999; Tilling et 

al., 2007). However, airborne and spaceborne levels are also regarded as canopy level by 

most scientists as their reflectance spectra are affected by similar factors as canopy reflectance 

spectra.  

 

Mutanga et al. (2003) investigated the potential of high-resolution reflectance using GER 

3700 spectroradiometer to discriminate differences in N concentration of Cenchrus cliaris 

grass in the greenhouse under different fertilization treatment at canopy level in the 

Netherlands. The findings showed that there were statistically significant differences in 
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canopy spectral reflectance between treatments within certain wavebands. Continuum-

removal in the visible region between 550 and 750 nm was further used to detect the effect of 

varying N supply. Results illustrated that high N treatment had deeper and wider absorption 

pits than both low N treatment and the control (no N). Overall, the results indicated that 

hyperspectral remote sensing can be used for classification and mapping of pasture quality, 

hence grasslands with different levels of nutrients. 

 

Xue et al. (2004) assessed the potential of canopy level reflectance to determining N status in 

rice (Oryza sativa L.) in USA. A portable ground MSR16 radiometer (CROPSCAN, 

Rochester, MN) was used for acquiring canopy spectral reflectance over the wavelength range 

of 447 to 1752 nm. The results indicated that the ratio index of NIR to green (R810/R560) was 

linearly correlated with total leaf N accumulation, independent of N level and growth stage.  

Therefore, the conclusion was that this ratio index should be used for nondestructive 

monitoring of N status in rice. 

 

2.5.1.3 Leaf Level Application 

 

Unlike canopy level, for leaf level, the effect of other factors, such as other plant parts, is 

reduced or controlled as the fibre optic probe is pointed exactly on the target leaf. Hence the 

percentage reflectance of a single leaf is higher than that of canopy. Leaf level applications 

provide most accurate data as they collect detailed spectral measurements from known 

features, and hence they are mainly used as reference or ground truth data for both airborne 

and spaceborne level applications (Aronoff, 2005). Applications of hyperspectral remote 

sensing at leaf level or scale are discussed in the next sections. The focus will be mainly on 

nutrient detection and pest/disease identification. 

 

2.5.2 Hyperspectral Remote Sensing of Foliar Chemistry 

 

The dynamics of plant pigments have strong relation with the physiological status of plants, 

hence information concerning temporal and spatial variations of pigments can be a valuable 

indicator of a range of key properties and processes in agricultural crops (Blackburn, 2007). 

Foliar chemical composition is very important as it can provide information about nutrient 

cycling and plant stress and can also provide information about the ecosystem’s processes, as 
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well as input to ecosystem simulation models (Mthembu, 2006). Therefore, remote sensing of 

foliar chemistry can help with providing such information at different scales. 

 

2.5.2.1 Estimation of N, Si and Other Nutrients 

 

The potential to estimate the nutrient status in important agricultural crops such as maize and 

sugarcane is of significant interest (Ferwerda and Skidmore, 2007). Estimates of the chemical 

concentrations, such as chlorophyll, lignin, N, water content, of agricultural and forestry 

canopies can be made using hyperspectral remote sensing (Koklay and Clark, 1999; Curran, 

2000; Ahmed, 2006). In general, the measurement of plant biochemical concentrations by 

remote sensing is a complex problem (Koklay and Clark, 1999). The use of high spectral 

resolution data creates the chance to select the optimal wavebands for prediction of plant 

chemical properties such as chlorophyll and N (Ferwerda et al., 2005). Nitrogen is one of the 

most important and or crucial elements which determine quality and health in plants (Johnson, 

2001; Mutanga et al., 2003). However, chlorophylls contain large amounts of total leaf N 

hence chlorophyll concentration can provide an accurate indirect assessment of plant N status, 

and chlorophyll is highly correlated to leaf N (Yoder and Pettigrew-Crosby, 1995; Mutanga et 

al., 2003; Blackburn and Ferwerda, 2008; Asner, 2008; Lucas et al., 2008).   

 

Hyperspectral remote sensing with its narrow and sensitive wavebands has the potential to 

estimate this ratio, thus leaf N and Si concentrations in sugarcane. However, none of studies 

have examined the opportunities for quantifying leaf Si concentration from reflectance 

spectra. Some of studies examining the opportunities for quantifying leaf N concentrations 

using hyperspectral remote sensing are presented below. 

 

Ayala-Silva and Beyl (2005) investigated the effects of nutrient deficiencies, N, Phosphorus 

(P), K, Calcium (Ca) and Magnesium (Mg) on spectral reflectance properties of wheat leaves 

under growth chamber and greenhouse in USA. The spectral measurements were collected 

using a Spectronic 601 spectrophotometer. Results showed that all macronutrient deficiencies 

tested affected chlorophyll content by reducing it and increased reflectance in the visible and 

IR ranges and also caused a shift in the position of the red-edge towards shorter or longer 

wavelengths depending on the element. Results illustrated that N and Mg deficiencies had the 

most pronounced effect on chlorophyll height and leaf reflectance. A conclusion was that 

spectral measurements are useful for detecting early nutrient deficiencies in wheat if the 
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specific element deficiency is known. However, distinguishing among individual nutrients 

could be problematic.  

 

Zhao et al. (2005) studied the effects of N deficiency on sorghum growth, physiology and its 

leaf reflectance properties in Mississippi, USA using a hand-held ASD Field Spec Pro FR 

Spectroradiometer. The results indicated that N deficiency significantly reduced leaf 

chlorophyll content and photosynthetic rate (Pn), resulting in lower biomass production. Its 

effect on reflectance was that it increased leaf reflectance at 555 and 715 nm and caused a 

red-edge shift to the shorter wavelength. Leaf N and chlorophyll were also linearly related to 

ratios of R405/R715 (R2 = 0.68) and R1075/R735 (R2 = 0.64), respectively, as well as the first 

derivative of the reflectance (dR/dג) in the red-edge around 730 or 740 nm (R2 = 0.73 – 0.82). 

It was therefore concluded that the specific reflectance ratios or the first derivative offer 

opportunity of hyperspectral remote sensing to estimate leaf chlorophyll and N status in 

sorghum rapidly and non-destructively. 

 

Abdel-Rahman et al. (2008a) investigated the potential of hyperspectral remote sensing using 

a hand-held ASD Field Spec® 3 spectroradiometer with the spectrum range of 350 – 2500 nm 

in estimation of sugarcane leaf N concentration in South Africa. The spectral measurements 

were taken on leaf samples from variety N19 of two age groups (4 – 5 and 6 – 7 months) 

under controlled conditions. Abdel-Rahman et al. (2008a) used correlation and regression to 

determine the relationship between N concentration and first-order reflectance throughout the 

spectrum range and wavebands which showed strongest relationship were used to develop 

spectral indices. Results highlight that for the 4 – 5 months cane, the R744/R2142 index was 

used to estimate N concentration (R2 = 0.74) while the modified NDVI ((R2200 - R2025)/ (R2200 

+ R2025)) was linearly related to N concentration (R2 = 0.87) on 6 – 7 months cane. 

 

2.5.2.2 Water Stress and Status 

 

In agricultural crops it is important to be in the position to detect the onset of water stress as 

early as possible so that some preventive measures like irrigation can be considered (Kumar et 

al., 2003). Water availability is a critical factor in plant survival and development and water 

stress is one of the most common limitations of primary productivity (Kumar et al., 2003). In 

some crops, drought conditions can lead to increase of some pest and disease infestations. For 

instance, in sugarcane it is well known that water stressed plants are very susceptible to attack 
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and population build up of E. saccharina as dry or dead leaves are habitat for laid E. 

saccharina eggs (Atkinson and Nuss, 1989; Atkinson et al.,, 1989; Gers, 2004). This can be 

regarded as one of the secondary effects of water stress. The spectral quality of light energy 

reflected from plant leaves has long been depended upon as an indicator of plant stress (Carter 

and Knapp, 2001).  Hence remote sensing is the best technology for monitoring of crop 

growth at a large scale. Generally, early detection of plant stress by remote sensing depends 

largely on identifying the spectral portions in which plant reflectance is most responsive to 

unfavorable growth conditions (Carter and Miller, 1994). 

 

Carter (1991) investigated primary (from radiative properties of water) and secondary (could 

not be explained by radiative properties of water, such as leaf pigments) effects of water 

content on leaf spectral reflectance in Mississippi, USA, across six plant species, including 

cane-grass. The study used a scanning radiometer (IRIS, GER, Milbrook, NY) for spectral 

measurements. Results illustrated that decreased water content of the leaf generally increase 

reflectance throughout the whole spectrum range (400 – 2500 nm). However, the sensitivity 

of reflectance to water content was greatest in the water absorption bands around 1450, 1940, 

and 2500 nm. Secondary effects resulted from pigments as the sensitivity maxima also 

occurred between 400 and 720 nm.  

 

Ray et al. (2006) evaluated various hyperspectral indices from ASD Field Spec Pro 2000 

hand-held spectroradiometer data for estimation of LAI and potato crop discrimination under 

various water irrigation treatments in India. Results indicated that hyperspectral indices were 

better than LAI in the detection of the differences among crops under various water irrigation 

treatments. A set of five most optimum bands for discrimination of the potato crops under 

three irrigation treatments was produced from the discriminant analysis. 

 

2.5.3 Hyperspectral Remote Sensing of Crop Pests and Diseases 

 

Plant pests and diseases cause serious economic losses in yield and quality of commercial 

crops, hence the detection, monitoring and assessment of their symptoms is essential (Apan et 

al., 2005; Datt et al., 2006). Pathogens and pests can induce physiological stresses and 

physical changes in plants which can directly or indirectly affect reflectance properties of 

plants. Therefore, this makes it realistic to use remote sensing techniques to assess pest and 

disease stresses as they are not biased and time consuming like traditional or visual 
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assessment and they can be used repeatedly as they collect measurements non-destructively 

(Nilsson, 1995; Apan et al., 2005; Datt et al., 2006; Mirik et al., 2006a). Several studies have 

been undertaken on the use of hyperspectral remote sensing in the detection and monitoring of 

pests and diseases in agricultural crops, some of these studies are described below. 

 

Apan et al. (2004b) used discriminant analyses and spectral indices from EO-1 Hyperion 

hyperspectral data to discriminate sugarcane areas affected by ‘orange rust’ (Puccinia 

kuehnii) disease in Australia. Forty spectral indices related to leaf pigments, the leaf internal 

structure as well as water content were generated. The results indicated that the discriminant 

function allowed ranking of each spectral index based on their ability to distinguish rust-

affected from non rust-affected sugarcane. The results indicated that the combination of VNIR 

and moisture sensitive band (1660 nm) yielded maximum discrimination of rust affected 

sugarcane areas. Results further indicated the key role played by SWIR wavebands (1660 – 

2200 nm) in discrimination of healthy and orange rust diseased cane crops. Therefore it was 

recommended that a follow-on study on detection of rust disease at various levels of severity 

using Hyperion would yield more information on the application of hyperspectral remote 

sensing in crop protection. 

 

Mirik et al. (2006a) investigated the ability of digital image (camera) and reflectance (Ocean 

Optics S2000 hyperspectral hand-held spectrometer) data in quantification of greenbugs on 

winter wheat in USA. Mirik et al. (2006b) further used the same hyperspectral hand-held 

spectrometer and a Cropscan multispectral field radiometer to quantify aphid density 

(greenbug and bird cherry-oat aphid) in winter wheat. Results from both studies demonstrated 

that remotely sensed data recorded by hyperspectral spectrometer appeared functional in 

monitoring aphid population in winter wheat production under field conditions.  

 

Apan et al. (2005) tested the potential of using hyperspectral remote sensing in the detection 

of the incidence of pests and diseases in vegetable crops, tomato and eggplants using a hand-

held ASD Field Spec Pro FR Spectroradiometer in Australia. Spectral measurements of 

diseased/infested and healthy leaves were collected separately from both crops, tomato 

affected by fungal early blight disease (Alternaria solani) while eggplants had leaf holes 

caused by the 28-spotted ladybird (Epilachna vigintioctopunctata). Results demonstrated that 

hyperspectral measurements can be used to detect effects of pests and diseases in vegetable 

crops. The significant spectral bands for tomato disease estimation showed good relation with 
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the red-edge and visible as well as small portion of NIR wavelengths. The NIR region was 

found to be as equally significant as red-edge in prediction of eggplant’s insect infestation 

using the regression model.  

 

Datt et al. (2005) used the same hand-held spectrometer as above, to investigate the feasibility 

of imaging spectroscopy for early detection of pests and diseases in selected vegetable crops. 

Leaf and canopy spectral measurements were performed for both healthy and 

diseased/infested selected crops. The results showed clear separation between healthy and 

diseased crops but they went further to use first derivative reflectance to improve their results. 

The derived indices from these derivatives based on bands sensitive to pest/disease infestation 

and these indices provide a simple method for quantification of the level of disease activity 

within the range from healthy to severely infested crops. Both studies found that the use of 

hand-held field spectrometers provide a means of rapid observation and digital recording of 

many plant samples within a short time scouting through the fields, and hence this, in 

conjunction with Global Positioning Systems (GPS), can be used for field map creations by 

spatial interpolation among the sampling points. 

 

Abdel-Rahman et al. (2008b) tested the ability of hyperspectral data in identifying and 

monitoring of damage caused by sugarcane thrips Fulmekiola serrata (Kobus) (Thysanoptera: 

Thripidae) in South Africa. A hand-held ASD Field Spec® 3 spectroradiometer with the 

spectrum range of 350 – 2500 nm was used to capture spectral measurements on healthy and 

thrips-damaged cane from two varieties (N19 and N12) at leaf-level. Abdel-Rahman et al. 

(2008b) found out that there were significant differences in leaf reflectance with increasing 

thrips damage levels, with the red-edge region giving the highest statistically significant 

differences. It was then assumed that thrips induced chlorophyll and N deficiencies hence the 

highest significant difference was in the red-edge region. 

 

Although many studies have been conducted on remote sensing of crop protection, none have 

been focused on the detection of E. Saccharina pest. Pests and pathogens can induce 

differences in spectral responses of plant leaves as they change the physiological responses to 

nutrient and environmental stress, biochemistry, and biophysical properties of leaves (Apan et 

al., 2005). Reflectance based remote sensing techniques for pest identification capitalizes on 

the fact that most pests affect the outwards appearance of a plant in a particular manner either 

within the visible or outside the visible spectrum (Abdullah and Umer, undated). Eldana 
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Saccharina pest is not an exception, though its symptoms or effects are known to occur on 

cane stalks not on leaves. Therefore this study focused on investigating the potential of 

hyperspectral remote sensing in detection of sugarcane prone to attack or already attacked by 

E Saccharina. 

 

2.6 Summary 

 

This chapter focused on the review of E. saccharina pest as well as its economic negative 

impact in South African sugarcane production. It was noticed that E. saccharina causes losses 

of about R250 million per annum, and measures used to reduce the incidence of this pest were 

also highlighted. However, it was stated that there is no single measure that can provide an 

answer to the E. saccharina problem, hence only IPM, which is a combination of selective 

control measures that can work at appropriate times in the cane crop or pest cycle.  

 

It was revealed in this chapter that remote sensing technology can be used to provide both 

quantitative and timely information on agricultural crops during their growing season. Remote 

sensing techniques have been used as potentially important tools for the identification of 

nutrient content, chlorophyll content, detection of pests and diseases, water stress, mapping, 

precision farming, hail damage, crop inventory as well as yield estimation in agricultural 

crops over wide areas with the ability to evaluate information in an unbiased way.  

 

There are many factors affecting leaf optical properties such foliar chemistry, water content, 

leaf structure, thus both external and internal structure. Although leaf structure varies from 

plant to plant, the general outline of the main elements common to most plants with regard to 

remote sensing in vegetation or agricultural studies was presented. For foliar chemistry, 

photosynthetic and accessory plant pigments such as chlorophyll, xanthophylls, carotenoids 

and anthocyanins were discussed. Among these pigments, chlorophyll is the most crucial 

pigment. Chlorophylls contain large amounts of total leaf N hence chlorophyll concentration 

can provide an accurate indirect assessment of plant N status. The spectral shift of the red-

edge (670 - 780 nm) slope is the most studied portion of the spectral reflectance curve, it is 

associated with leaf chlorophyll content, phenological state as well as plant stress. 

A brief description of sugarcane crop and its spectral properties were also highlighted. 

Sugarcane crop is an extremely water intensive and is characterized by leaves, major 
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contributors of light reflection from the crop, which consist of lamina and sheath. Generally, 

the spectral reflectance of sugarcane plants is based on four factors, namely canopy 

architecture, foliar chemistry, agronomic parameters such as LAI, geometry of data 

acquisition and atmospheric conditions. Spectral reflectance properties of sugarcane also 

depend on sugarcane phenological stages such as pre-emergence, emergence, tiller emergence 

and flowering. 

Both imaging spectroradiometry and non-imaging spectroradiometry applications showed the 

potential of hyperspectral remote sensing in providing information rapidly and non-

destructively for monitoring of agricultural crops which will enhance the overall productivity. 

However, these studies focused mostly on the quantification of chlorophyll and N 

concentration of plant leaves from reflectance data. The studies presented in this chapter 

highlighted that hyperspectral can be used to monitor and detect pests and diseases in 

agricultural crops. For instance, pests and diseases can induce differences in spectral 

responses of plant leaves as they change the physiological responses to nutrient and 

environmental stress, biochemistry, and biophysical properties of leaves.  
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CHAPTER THREE: MATERIALS AND METHODS 

 

3.1 Introduction 

 

The main aim of this study was to determine the potential use of hyperspectral data 

(spectroradiometry) for identifying sugarcane that is infested by E. saccharina. This chapter 

describes how this main aim has been achieved through laboratory chemical analyses, in situ 

spectral measurements and statistical analyses. 

 

3.2 Experiment, Events and Measurements 

  

3.2.1 Design 

 

An on-going N x Si x variety trial taking place under shade house at SASRI was designed to 

study the combined influence of N and Si nutrients on E. saccharina infestation in different 

varieties (designed by Nikki Sewpersad (SASRI-Biometrician)). Seedcane materials of five 

normally grown varieties in South African sugarcane region that are resistant (N17and N21), 

intermediately-susceptible (N25 and N37) and susceptible (N14) to E. saccharina were 

collected and prepared for pre-germination. However, this study only focused on 

intermediately-susceptible and susceptible varieties (N14, N25 and N37) to E. saccharina (see 

Appendix A).  

 

The major reason for choosing specifically N and Si is by stating that N and Si play important 

roles in the resistance and susceptibility of a range of crops to stalk borer (E. saccharina) 

damage (Meyer and Keeping, 2005a; b). For instance, high Si contents interfere in the feeding 

of E. saccharina larvae by damaging their mandibles (Savant et al., 1999; Kvedaras et al. 

2007). High N levels on the other hand are linked with high E. saccharina infestations 

because of shortened development time of the insect (Atkinson and Nuss, 1989). On the other 

hand, stress causes a redistribution of N from the leaves and growing shoot to the stalk where 

E. saccharina larvae feed (Atkinson and Nuss, 1989), therefore there might be reduction in 

leaf N concentration. In addition, recent studies show that N/Si ratio is correlated with E. 

saccharina damage and hence sugarcane with N/Si ratio greater than 2 are associated with 
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increasing risk of E. saccharina borer damage (Meyer and Keeping, 2005a), but this can be 

utilized mostly for modeling of E. saccharina potential outbreaks.  

 

Pots containing clean, sieved and thoroughly leached river sand allowing precise control of 

nutrient supply were established in an outdoor sugarcane trial. The pots were arranged in a 

randomized split plot design with N*Si treatment as a whole plot treatment and variety as a 

split plot treatment. There were two replications; these resulted in 54 pots for the whole trial. 

Three N treatment levels were applied as ammonium sulphate (N1 = 30 ppm, N2 = 60 ppm 

and N3 = 90 ppm) via nutriculture (hydroponic) solutions added to different pots, while three 

Si treatment levels were applied and incorporated thoroughly into the sand of each pot as 

calcium silicate (Calmasil) according to the treatment plan (Si0 = 0 ppm, Si1 = 100 ppm and 

Si2 = 200 ppm) (see Appendix A). Germinated seedcane materials were transplanted into the 

pots as per treatment plan (see Appendix A). Fresh irrigation water containing 2 litres of 

nutrient stock solution and ammonium sulphate were applied after every 7 days (every Friday) 

using Hygrotech Seedling Mix., except in rainy days. 

 

3.2.2 Spectral Measurements 

 

Spectral measurements were undertaken using hand-held ASD Field Spec® 3 

spectroradiometer (ASD, 2006). 

 

3.2.2.1 Foliar Chemistry 

 

At the age of 3 months, the first leaf spectral measurements were undertaken by pointing the 

ASD fibre optic with bare fibre (23°) field of view (FOV) at the distance of 10 cm to the 3rd 

leaf (as this leaf contains most of the plant nutrients, N and Si) of the main plant in each 

targeted pot throughout the whole experiment on sunny days. The purpose of these 

measurements was to determine leaf reflectance variations as influenced by variety, N and Si 

treatments. The dark current and white reference were taken every 10 minutes, as well as less 

than 10 minutes where necessary, to account for unstable atmospheric conditions and sun 

angle with time of day (Datt et al., 2006) and also to account for a variation in spectral 

response of plants with time (Mutanga et al., 2003). Notes were made to record anything of 

concern such as weather conditions and mistakes on spectral measurements.  
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When cane was 7 months old, the second leaf spectral measurements were undertaken at the 

3rd leaf of the main plant in each targeted pot with similar purpose of determining if leaf 

reflectance variations were influenced by variety, N and Si treatments. The scanned 3rd leaf 

and two more 3rd leaves from each pot were taken for chemical (N and Si) analyses. The 

midribs were removed from the leaves and the leaves were oven dried at 70 oC for 24 hours. 

Removal of the midrib from the leaf blade is a standard practice for sugarcane foliar analysis 

(Ezenzwa et al., 2005). The oven dried leaves were ground and 0.5 g were weighed for Si 

determination while 0.25 g were kept for N determination per sample or pot. Actual Si 

concentrations were determined by the dry ashing method while actual N concentrations were 

determined using manual Kjeldahl method (Horneck and Miller, 1998). 

 

3.2.2.2 Water Stress and Status 

 

At the age of 9 months, the sugarcane trial (using same design) was transferred to a shade 

house with transparent polycarbonate roofing and walls of green 40% shade cloth in 

preparation for subjecting the plants to water stress and inoculation with E. saccharina eggs. 

Once the plants were in the shade house, the N supply was terminated, and excess 

stalks/tillers (<1 m) were removed, keeping maximum of 5 stalks per pot. The process of 

inducing water stress was also initiated. The irrigation schedule to induce water stress was as 

follows: 1st week = 1 litre (10 minutes) per pot per day; 2nd week = 0.7 litres (7minutes) per 

pot per day; 3rd week = 0.5 litres (5 minutes) per pot per day and; 4th week = 0.3 litres (3 

minutes) per pot per day till harvest. The third spectral measurements were made three weeks 

after the plants have been subjected to water stress (when cane was 10 months old) and a few 

hours before E. saccharina inoculation. The two more 3rd leaves from each pot were taken for 

chemical (N and Si) analyses. The scanned 3rd leaves from each pot were cut and weighed 

immediately to obtain fresh leaf weight. Then they were taken to the laboratory where they 

were oven dried at 105 oC overnight. Oven dried leaves were weighed individually to obtain 

dry leaf weight. The scanned 3rd leaves were combined with the other two 3rd leaves taken 

from each pot for chemical (N and Si) analyses after removal of midribs. Then Absolute 

Water Content (AWC) for each leaf was calculated as follows: 

 

%AWC = [(Fresh Leaf Weight – Dry Leaf Weight)/ Fresh Leaf Weight] * 100     [Eq 3.1] 
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Then the plants were inoculated with E. sachharina eggs (placed on tissue paper in a batch of 

100 eggs) on the lower base of one stalk. Since the number of stalks varied per pot, pots with 

3 or less stalks were inoculated with 100 eggs (1 batch) while those with more than 3 stalks 

were inoculated with 200 eggs (2 batches) per pot. The infestation was allowed to progress for 

2 months.  

 

3.2.2.3 E. saccharina Detection 

 

At harvest (12 months cane age), the last spectral measurements were taken. The same 

procedures as on the third spectral measurements, water content determination and chemical 

analyses were followed. In addition, stalks were collected from the targeted pots and split 

longitudinally for recording the number of stalks damaged by E.  saccharina and for counting 

the number of E.  saccharina larvae and E.  saccharina pupae in each pot. Borer damage was 

measured as percentage of stalks bored or damaged by E.  saccharina larvae (% Stalk 

Damage or % Damage) (see Equation 3.2) while borer performance was measured by taking 

the total number of larvae and pupae found in the stalks (Number of E.  saccharina) (see 

Equation 3.3) (Mutambara-Mabveni, 2007; Way and Goebel, 2007).  

 

% Stalk Damage or % Damage = [(Total number of stalks bored by Eldana)/ (Total number 

                                                     of stalks per pot)] * 100                                     [Eq 3.2] 

                                                                             

Number of E.  saccharina = Total number of larvae + Total number of pupae     [Eq 3.3]  

 

3.3 Spectral Data Pre-processing 

 

ViewSpec software (ASD, 2006) was used for viewing graphic reflectance results as well as 

reflectance data pre-processing such as averaging spectra to reduce within leaf variability and 

to increase statistical power, performing first derivatives and exporting spectra into American 

Standard Code for Information Interchange (ASCII) text files which were easily imported into 

a statistical package. The first derivative spectra were performed mainly to reduce effects of 

multiple scattering of radiation due to sample geometry and surface roughness, and to locate 

the positions of absorption features and inflection points on the spectra (Datt et al., 2006). 

Noisy wavebands due to water absorption features and sun-angle effects, e.g. around 1400 
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nm, 1900 nm and 2500 nm, were identified and thus excluded from the analysis except for 

estimation of water content or stress. 

 

3.4 Statistical Data Analysis 

 

3.4.1 Laboratory Samples 

 

Factorial ANOVA was performed to determine if there were significant differences in 

dependent variables (N concentration, Si concentration, N/Si ratio, E. saccharina damage, and 

water content) caused by different factors (N treatment, Si treatment, and variety) as well as 

their interactions with regard to cane age. A correlation matrix was also performed to 

determine the relationship between all the above mentioned variables, with major concern on 

N/Si ratio, water content and E. saccharina damage as the first two (N/Si ratio and water 

stress) are the major factors affecting E. saccharina infestation or damage. 

 

3.4.2 Leaf Reflectance  

 

One-way ANOVA was performed to determine whether there were significant differences in 

the reflectance spectra caused by different factors (N treatment, Si treatment, and variety) at 

each wavelength at different cane ages.  

 

The damage induced by E. saccharina on sugarcane stalks ranged from 0 – 100% stalk 

damage (see Equation 3.2). Therefore, in order to discriminate between healthy and E. 

saccharina damaged cane using leaf reflectance, 3 spectra of the third leaf of the main stalk 

from each pot were taken, using same distance and FOV indicated in section 3.2.2.1. The 

three spectra were then averaged to give a single representative spectrum per pot. This 

averaging was done to reduce within leaf variability (ASD, 2006). Then the damage range (0 

– 100%) was categorized into 2 levels: healthy (0% stalk damaged), and damaged cane (1 – 

100% stalk damaged). The numbers of pots in each damage level were as follows, 6 pots for 

healthy and 48 pots for damaged cane. Then ANOVA was conducted to determine if leaf 

reflectance can significantly discriminate healthy cane from E. saccharina damaged cane. 

Incidentally, this ANOVA is equivalent to T Test. 
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The damage range (0 – 100%) was further categorized into four levels: healthy (0% stalk 

damaged), low damage (1 – 39% stalk damaged), medium damage (40 – 69% stalk damaged) 

and severe damage (70 – 100% stalk damaged), to distinguish between various damage levels. 

The numbers of pots in each damage level were as follows, 6 for healthy, 11 for low damage, 

22 for medium damage, and 15 for severe damage. For each pot, one leaf (from main stalk) 

was selected. Three spectral measurements were made on the leaf using same distance and 

FOV indicated in section 3.2.2.1 and were averaged to arrive at a single representative 

spectrum per pot. This averaging was done with purpose of reducing within leaf variability 

(ASD, 2006). Then an ANOVA was performed to detect if there were significant differences 

in the leaf reflectance spectra caused by different E. saccharina stalk damage levels. This was 

done for all varieties as well as for N37 on its own which was the most damaged variety. 

 

To determine best hyperspectral wavebands, correlation matrices using Pearson’s moment 

Product as well as linear regressions were performed to check the relationships between leaf 

reflectance as well as first derivative and all dependent variables (N, Si, N/Si ratio, water 

content, E. saccharina damage and number of E. saccharina) at different ages.  

 

3.5 Spectral Data Analysis 

 

3.5.1 Red-edge Region 

 

The red-edge (670 – 780 nm) region of the electromagnetic spectrum was assessed to monitor 

changes in the red-edge slope and red-edge maximum inflection point or REP for variables 

(E. saccharina damage levels, water status, cane variety and cane age). The first derivatives 

from this region were used to determine the maximum red-edge inflexion point or REP. The 

movements of the REP slopes and the red-edge maxima were used to monitor Chlorophyll 

and N concentration as well as plant stress either caused by nutrient deficiency or E. 

saccharina damage or water content reduction. Normally under plant stress conditions, the 

REP slope and maximum red-edge inflexion point shift to the shorter wavelengths, due to low 

chlorophyll or N contents. This is called “blue-shift”. But if there are high chlorophylls or N 

contents, they both shift to the longer wavelengths, resulting in the process called “red-shift”. 
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3.5.2 Spectral Vegetation Indices 

 

Spectral vegetation indices were considered to show how spectral slopes are sensitive to 

changes caused by E. saccharina in leaf biochemical properties (N and Si concentrations, 

N/Si) as well as water content of sugarcane crops. Therefore previously used narrow 

waveband spectral indices that are sensitive to leaf nutrients and pigments such as N and 

chlorophyll as well as those sensitive to water status were tested in this study (see Table 3.1). 

A correlation matrix was conducted between these spectral indices and all biochemical 

concentrations (N concentration, Si concentration, N/Si ratio, and water content) as well as E. 

saccharina stalk damage to determine which spectral indices can be used for estimation of 

these variables. Spectral indices which gave highest significant correlations were further used 

to develop regression models for estimation of these variables. The overall project as well as 

analyses undertaken is summarized in Figure 3.1. 

 

Table 3.1 Spectral vegetation indices used in this study 
 
Vegetation Index Formula Reference 
Ratio Vegetation Index RVI = (R810/R560) Xue et al., 2004 
Photochemical Reflectance Index PRI = (R531-R570)/(R531+R570) Sims & Gamon, 2002 
Plant Senescence Reflectance 
Index PSRI = (R680-R500)/R750 Sims & Gamon, 2002 
Modified Spectral Ratio mSR = (R750-R445)/(R705-R445) Sims & Gamon, 2002 
Red-Edge Index REI = R740/R720 Vogelmann et al., 1993 
Carter Index CI = R760/R695 Cater, 1994 
Noramalized Pigment Chlorophyll 
Index NPCI = (R680-R430)/(R680+R430) Penuelas et al., 1994 

Gitelson & Merzylak Index GMI = R750/R700 
Gitelson & Merzlyak, 
1997;Ferri et al., 2004 

Normalized Difference ND = (R1075-R730)/(R1075+R730) Zhao et al., 2005 
Normalized Difference Nitrogen 
Reflectance Index NDNRI = (R1770-R693)/(R1770+R693) Ferwerda et al., 2005 
Normalized Difference Vegetation 
Index NDVI = (R750-R560)/(R750+R560) 

Ferri et al., 2004; Xue et al., 
2004 

Modified NDVI mNDVI = (R2200-R2025)/(R2200+2025) Abdel-Rahman et al., 2008a 
Spectral Ratio (Derivatives) SR = D744/D2142 Abdel-Rahman et al., 2008a 
Water Band Index WBI = R970/R900 Ray et al., 2006 
Water Band Ratio WBR = R960/R930 Ray et al., 2006 

First derivatives at 730, 740, 744 D730, D740, D744 
Zhao et al., 2005; Abdel-
Rahman et al., 2008a 
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Fig. 3.1 Flow diagram illustrating the overall project des
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CHAPTER FOUR: RESULTS AND DISCUSSIONS 

 
4.1 Introduction   

 

This chapter presents the results and findings of this study as well as their analyses and 

interpretation. It further goes into discussions of these results and relates them with past 

studies as indicated in the literature review. 

 

4.2 Research Findings 

 

4.2.1 Treatments and Variety Effects on Foliar Biochemical Concentrations and E. saccharina 

Stalk Damage 

 

A Factorial ANOVA was performed to determine if different factors (N treatments, Si 

treatments and variety) and their interactions had significant effects on foliar biochemical 

concentrations (N concentration, Si concentration, N/Si ratio as well as water content) 

throughout different cane ages (7, 10 and 12 months old cane) as well as on E. saccharina 

stalk damage on 12 months old cane.  

 

For 7 months old cane, a Factorial ANOVA (see Appendix B) was performed with the 

purpose of determining whether there were significant differences caused by the three factors 

(variety, N treatment and Si treatment) as well as their interactions on the foliar biochemical 

concentrations (N concentration, Si concentration,  and N/Si ratio). The results indicate that N 

treatment and variety are the two factors that had significant effects on foliar N concentration 

with p < 0.05 and p < 0.001, respectively. Silicon concentration on the other hand was 

significantly influenced by Si treatment and the interaction effect between N and Si treatments 

(N*Si treatments) with p < 0.001 and p < 0.05, respectively. N/Si ratio was significantly 

affected by Si treatment only, p < 0.05. All the interactions did not seem to influence the 

dependent variables except for N*Si treatment which significantly influenced Si 

concentration. 

 

A Factorial ANOVA was also performed on 10 months old cane to determine whether there 

were significant effects brought by all factors (variety, N treatment and Si treatment) as well 
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as their interactions on the foliar biochemical concentrations (N concentration, Si 

concentration, N/Si ratio and water content) (see Appendix C). The results show that only N 

treatment had significant influence on foliar N concentration (p < 0.01) while Si treatment and 

variety statistically affected foliar Si concentration with p < 0.01 and p < 0.05, respectively.  

None of the independent variables had statistical effects on both N/Si ratio and water content.  

 

A Factorial ANOVA was also performed for 12 months old cane to investigate significant 

effects of the factors (variety, N treatment and Si treatment) as well as their interactions on the 

dependent variables (N concentration, Si concentration, N/Si ratio, water content, and E. 

saccharina stalk damage). This is shown in Appendix D. The results demonstrate that foliar N 

concentration was statistically influenced by N treatment and variety, p < 0.01 for both factors 

while Si was highly significantly affected by Si treatment and variety with p < 0.01 as well. 

Both N and Si treatments had significant impacts on N/Si ratio (p < 0.001). Water content was 

significantly affected by variety, N treatment, and N*Si treatment, p < 0.001, p < 0.05 and p < 

0.01, respectively. Stalk damage by E. saccharina borer was significantly influenced by 

variety and Si treatment with p < 0.01 for both factors. Generally, variety had highly 

significant effect on all dependent variables (p < 0.01) except on N/Si ratio where p = 0.07. 

Therefore, varietals consideration for further statistical analyses worth highlighting. 

 

All the above results of Factorial ANOVAs made it realistic to try to look into the trend on the 

effects of N and Si treatments on foliar biochemical concentrations within different cane ages 

(Figure 4.1). Figure 4.1a highlights that foliar N concentration is increasing with increase in N 

treatment at all ages. However, there was a non-significant decrease in foliar N concentrations 

for almost all N treatments from 10 months to 12 months age. There are two possible reasons 

for this decrease, that is N application was stopped and water stress began  at 9 months age 

and also the trial was artificially inoculated with E. saccharina eggs immediately after leaf 

samples for 10 months cane had been taken.  

 

There was also increasing trend in foliar Si concentration with Si treatments in all ages 

(Figure 4.1b). There was a sharp decrease in foliar Si concentration for all Si treatments from 

7 months cane to 10 months cane, ideally the sharp decrease was at least expected on N 

concentration as it was after termination of N application. The reasons for the sharp decrease 

in foliar Si concentration might be that irrigation water which could be potential source of Si 

was reduced, and also the trial was transferred to shade house therefore the contribution of 
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rain water which has Si ceased, even though rain Si is not of agronomic importance (Savant et 

al., 1999). This is supported by the fact that sugarcane is a Si accumulator crop hence it 

responds vigorously to Si supply (Savant et al., 1999). After 10 months the cane started to 

recover in leaf Si accumulation as there was a slight increase in foliar Si concentration for 12 

months old cane. 
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Fig. 4.1 Relationships between foliar concentrations ((a) N, (b) Si) and N & Si treatments at different ages (7 
months, 10 months  and 12 months).  For N treatments, low N (30 ppm), medium N (60 ppm) and high N (90 
ppm) while for Si treatments, no Si (0 ppm), medium Si (100 ppm) and high Si (200 ppm). Error bars are 
Standard Errors (SE). 
 

Figure 4.2 shows accumulation of biochemical concentrations (N concentration, Si 

concentration and N/Si ratio) within each variety as affected by age. The results show slightly 
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decreasing trend in foliar N concentration with increasing age in N25 and N37, with N14 

being exceptional (Figure 4.2a). This was expected as leaf chemical analysis for 10 months 

old cane was done a month after N application was stopped. For 12 months cane, there are 

two possible reasons for reduction in N concentration, the first being stopping N application 

at 9 months.  The second being the effect of stress (caused by water stress and E. saccharina 

damage) as plant chlorophyll and N concentrations tend to decrease more rapidly under stress 

conditions or during senescence (Sims and Gamon, 2002).   
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Fig. 4.2 Foliar concentrations ((a) N, (b) Si & (c) N/Si Ratio) in three varieties (N14, N25 &N37) at different 
cane ages (7 months, 10 months & 12 months). Error bars are SE. 
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Figure 4.2a also highlights that N37, which is intermediate-susceptible to E. saccharina, had 

lowest N concentrations in all three ages compared to the other two varieties. This implies 

that E. saccharina damage on the stalk reduces leaf N concentration, however this is still open 

for a follow-on study for validation. Silicon concentration was significantly higher for 7 

months old cane in all varieties, then dropped for 10 months old cane and increased slightly 

for 12 months old cane (Figure 4.2b). This indicates a similar pattern with Figure 4.1b. N37 

also had the lowest Si concentration on 12 months old cane, hence it was the most damaged 

variety by E. saccharina pest. N/Si ratio was lowest in 7 months old cane due to high Si 

concentrations in this cane age (Figure 4.2c). For N14, susceptible to E. saccharina, there are 

higher foliar Si concentrations than on the other two (N37 and N25) varieties on 12 months 

old cane (Figure 4.2b).  

 

4.2.1.1 The Effects of N and Si Treatments on Reaction of Sugarcane Varieties to E. 

saccharina Stalk Damage 

  
As it was stated earlier that stalk damage by E. saccharina borer was significantly influenced 

by variety, p < 0.01 (Appendix D), a further step was taken to investigate if N and Si 

treatments had significant effects on reaction of sugarcane varieties to E. saccharina stalk 

damage by performing a Factorial ANOVA (Table 4.1). See also Figure 4.3. 

 
Table 4.1 Results of Factorial ANOVA illustrating significant differences caused by N and Si treatments as well 
as their interaction on stalk damage by E. saccharina within varieties.  
 

Variety Source 
Type III Sum of 

Squares df 
Mean 

Square F Sig. 
N14 Corrected Model 6519.444(a) 8 814.931 0.855 0.582 

Intercept 37355.556 1 37355.556 39.207 0.00001 
N treatment 86.111 2 43.056 0.045 0.956 
Si treatment 5619.444 2 2809.722 2.949 0.104 
N treatment * Si treatment 813.889 4 203.472 0.214 0.924 

N25 Corrected Model 9412.778(b) 8 1176.597 3.778 0.032 
Intercept 22190.222 1 22190.222 71.249 0.00001 
N treatment 2403.444 2 1201.722 3.859 0.062 
Si treatment 6350.111 2 3175.056 10.195 0.005 
N treatment * Si treatment 659.222 4 164.806 0.529 0.718 

N37 Corrected Model 6177.778(c) 8 772.222 1.979 0.165 
Intercept 84734.722 1 84734.722 217.114 0.00001 
N treatment 1969.444 2 984.722 2.523 0.135 
Si treatment 1002.778 2 501.389 1.285 0.323 
N treatment * Si treatment 3205.556 4 801.389 2.053 0.17 
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Table 4.1 indicates that N treatment does not have an influence on E. saccharina stalk damage 

for any variety (also see Figure 4.3a). Figure 4.3b shows that Si treatment increased resistance 

to damage by E. saccharina in N14 and N25. However, the only significant effect of Si 

treatment on E. saccharina stalk damage was on N25 (p < 0.01, Table 4.1), hence N25 was 

the least damaged variety by E. saccharina. It is worth to highlight that N37, which is 

intermediate-susceptible to E. saccharina, was the most damaged compared to the other two 

varieties (N14, most susceptible and N25, intermediate-susceptible) under different N and Si 

treatments (Figure 4.3). Although N14 was the most susceptible variety, it was not the most 

damaged by E. saccharina due to its strong uptake of Si nutrient which resulted in high its 

higher foliar Si concentration on 12 months old cane (Figure 4.2b). 
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Fig. 4.3 Percentage stalk damage at age 12 months in three varieties (N14, N25 & N37) under different 
treatments. (a) N treamnets and (b) Si treatments. Error bars are SE. 
 
 

4.2.1.2 Correlation Between E. saccharina Stalk Damage and All Variables 

 

Pearson’s correlation was performed with the aim of determining the relationship between E. 

saccharina stalk damage against all variables (both independent and dependent) on 12 months 

old cane (see Table 4.2). The highest significant correlation coefficient was from the 

relationship of E. saccharina stalk damage and number of E. saccharina larvae and pupae 

recovered from cane stalks (r = 0.78; p < 0.05) (see Table 4.2). 
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Table 4.2 Pearson’s correlation matrix of all variables (both independent and dependent) for 12 months old cane 
for all varieties combined. 
 

  
N Conc. 

(%) 
Si Conc. 

(%) 
N/Si 
Ratio 

AWC 
(%) 

Number 
of Eldana  

Stalk 
Damage 

(%) 
N 

Treatment 
Si 

Treatment 
N Conc. (%) 

1 0.007 .421(**) .380(**) -0.01 -0.071 .427(**) -0.032 
Si Conc.  (%) 

0.007 1 -.779(**) 0.143 -0.2 -.456(**) -0.261 .488(**) 
N/Si Ratio 

.421(**) -.779(**) 1 0.097 0.161 .314(*) .493(**) -.429(**) 
AWC (%) .380(**) 0.143 0.097 1 -0.228 -0.164 0.149 0.154 
Number of Eldana 

-0.01 -0.2 0.161 -0.228 1 .784(**) 0.136 -.297(*) 
Stalk Damage (%) 

-0.071 -.456(**) .314(*) -0.164 .784(**) 1 0.06 -.475(**) 
N Treatment 

.427(**) -0.261 .493(**) 0.149 0.136 0.06 1 0 
Si Treatment 

-0.032 .488(**) -.429(**) 0.154 -.297(*) -.475(**) 0 1 
            **  Correlation is significant at the 0.01 level (2-tailed). 
              *  Correlation is significant at the 0.05 level (2-tailed). 
                   Number of Eldana = Total Number of Larvae and Pupae  
 

Table 4.2 also illustrates that both Si treatment and leaf Si concentration were significantly 

correlated E. saccharina stalk damage (r = -0.48; p < 0.01; and r = -0.46; p < 0.01, 

respectively). Negative correlation coefficients indicate that Si treatment and leaf Si 

concentration were inversely proportional to E. saccharina stalk damage. This confirms the 

finding by other studies, indicated in the literature review (Savant et al., 1999; Kvedaras et 

al., 2007), as negative correlations proved that Si aids in the resistance of cane plants to 

infestation by E. saccharina, which later reduces the degree of sugarcane stalk damage caused 

by E. saccharina. N/Si ratio was slightly correlated to E. saccharina stalk damage (r = 0.31; p 

< 0.05) while variety also had a highly significant relationship with E. saccharina stalk 

damage (r = 0.32; p < 0.05).  

 

This makes it worthwhile to perform the same Pearson’s correlation matrix at different 

varieties (N14, N25 and N37). This is highlighted in Table 4.3.  The results from Table 4.3 

indicate that the relationship between E. saccharina stalk damage and Si (Si treatment (r = -

0.60; p < 0.01) and Si concentration (r = -0.44; p > 0.05)) increased slightly for N14 while a 

high increase was observed for N25, that is E. saccharina stalk damage and Si (Si treatment 

and Si concentration) with r = -0.71; p < 0.01 and r = -0.49; p < 0.05, respectively. This 

further supports the earlier statement that Si treatment increased resistance to damage by E. 

saccharina, by impeding larval penetration into stalks (Kvedaras and Keeping, 2007), in all 

varieties but more especially in N14 and N25 (Figure 4.3b). For N37, there was poor non-

significant relationship between E. saccharina stalk damage and Si (Si treatment and Si 
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concentration, r = -0.28; p > 0.05 and r = -0.23; p > 0.05, respectively) (Table 4.3). This 

indicates that Si content did not help in E. saccharina stalk damage reduction in this variety 

hence N37 was the most damaged by E. saccharina. 

 

N/Si ratio was only significantly related to E. saccharina damage on N25 (r = 0.52; p < 0.05). 

Surprisingly, water was not related to E. saccharina damage at any variety even though r = 

0.33; p > 0.05 on N25 which is higher than when varieties combined together (r = -0.16; p > 

0.05) (Table 4.3). 

 

Table 4.3 Correlations matrix of all cane variables (both dependent and independent) within varieties. 
 

Variety   

N Conc. 

(%) 

Si Conc. 

(%) 

N/Si 

Ratio AWC (%) 

Number 

of Eldana 

Stalk 

Damage 

(%) 

N 

Treatment 

Si 

Treatment 

N14 N Concentration (%) 1 -0.248 .652(**) 0.114 0.144 0.132 .516(*) -0.161 

Si Concentration (%) -0.248 1 -.841(**) -0.07 -0.061 -0.439 -0.132 .549(*) 

N/Si Ratio .652(**) -.841(**) 1 0.234 0.052 0.354 0.412 -0.468 

AWC (%) 0.114 -0.07 0.234 1 -0.063 0.111 0.201 0.107 

Number of Eldana 0.144 -0.061 0.052 -0.063 1 .755(**) 0.196 -0.458 

Stalk Damage (%) 0.132 -0.439 0.354 0.111 .755(**) 1 -0.012 -.599(**) 

N Treatment .516(*) -0.132 0.412 0.201 0.196 -0.012 1 0 

Si Treatment -0.161 .549(*) -0.468 0.107 -0.458 -.599(**) 0 1 

N25 N Concentration (%) 1 -0.197 .522(*) 0.404 .546(*) 0.416 0.289 -0.101 

Si Concentration (%) -0.197 1 -.784(**) -0.095 -0.313 -.485(*) -0.33 0.467 

N/Si Ratio .522(*) -.784(**) 1 0.282 .570(*) .521(*) .512(*) -0.355 

AWC (%) 0.404 -0.095 0.282 1 0.325 0.329 0.248 -0.068 

Number of Eldana .546(*) -0.313 .570(*) 0.325 1 .756(**) 0.328 -0.417 

Stalk Damage (%) 0.416 -.485(*) .521(*) 0.329 .756(**) 1 0.259 -.708(**) 

N Treatment 0.289 -0.33 .512(*) 0.248 0.328 0.259 1 0 

Si Treatment -0.101 0.467 -0.355 -0.068 -0.417 -.708(**) 0 1 

N37 N Concentration (%) 1 -0.141 0.451 0.264 0.079 -0.043 .731(**) 0.254 

Si Concentration (%) -0.141 1 -.854(**) 0.453 -0.204 -0.231 -0.438 .678(**) 

N/Si Ratio 0.451 -.854(**) 1 -0.352 0.228 0.239 .623(**) -.574(*) 

AWC (%) 0.264 0.453 -0.352 1 -0.103 -0.116 0.092 .496(*) 

Number of Eldana 0.079 -0.204 0.228 -0.103 1 .826(**) 0.029 -0.172 

Stalk Damage (%) -0.043 -0.231 0.239 -0.116 .826(**) 1 -0.044 -0.279 

N Treatment .731(**) -0.438 .623(**) 0.092 0.029 -0.044 1 0 

Si Treatment 0.254 .678(**) -.574(*) .496(*) -0.172 -0.279 0 1 

**  Correlation is significant at the 0.01 level (2-tailed). 

*  Correlation is significant at the 0.05 level (2-tailed 

    Number of Eldana = Total Number of Larvae and Pupae 
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4.2.2 Leaf Reflectance  

 

4.2.2.1 Differences Between Leaf Reflectance under Different N and Si Treatments at All 

Varieties Combined  

 

One-way ANOVA was conducted to investigate which wavebands of the visible-NIR portion 

spectrum ranges (400 – 1300 nm) can significantly distinguish N and Si treatments on 

different cane ages for all combined varieties (Figure 4.4 and 4.5, respectively).  Figure 4.4a 

highlights that spectral reflectance of cane plants treated with three levels of N differed at 510 

– 640 nm and 690 – 740 nm bands on 7 months cane. These bands have been previously 

found to be sensitive to chlorophyll and N contents (Kumar et al., 2003; Zhao et al., 2005). 

Nitrogen treatment also had statistical influence on reflectance at 400 – 740 nm bands (p < 

0.05) on 10 months cane (Figure 4.4b). However, none of the wavebands were able to 

significantly distinguish different N treatments on 12 months cane (Figure 4.4c). This is due 

to the effects of stopping N application and beginning of water stress at age of 9 months, as 

well as effects of E. saccharina stalk damage as the plants were artificially inoculated with E. 

saccharina eggs a month after the beginning of water stress. 

 
Figure 4.5a indicates that there were highly significant differences from 400 - 740 nm, thus 

wavebands within the visible and part of the red-edge, the shorter wavelengths, are the most 

bands that can pick the significant differences between Si treatments (p < 0.01) on 7 months 

cane. This confirms that higher leaf reflectance in the shorter wavelengths are due to higher 

contents of silicates in the leaves (Alvarez-Añorve et al., 2008). In contrary, for 10 months 

cane, the longer wavelengths (NIR region), from 740 - 930 nm and 960 - 1060 nm, were the 

ones which were able to statistically distinguish between different Si treatments with p < 0.05 

(Figure 4.5b). This is related to the sharp decrease in Si concentration on the 10 months old 

cane as explained earlier (Figures 4.1b and 4.2b). For 12 months cane, Si treatments did not 

have significant effects on reflectance at any wavebands (Figure 4.5c). This might be due to 

the effects of water stress as plants were subjected to water stress from the age of 9 months 

and effects of E. saccharina stalk damage as plants were artificially inoculated with E. 

saccharina eggs a month after the beginning of water stress. 
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Fig. 4.4 Results of one-way ANOVA illustrating wavebands of the visible-NIR portion spectrum ranges (400 – 
1300 nm) that can significantly distinguish N treatments on different cane ages. (a) 7 months, (b) 10 months and 
(c) 12 months. Thinner and thicker horizontal lines indicate 0.01 and 0.05 significance levels (99 % and 95 % 
confidence limits), respectively. 
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Fig. 4.5 Results of one-way ANOVA illustrating wavebands of the visible-NIR portion spectrum ranges (400 – 
1300 nm) that can significantly distinguish Si treatments on different cane ages. (a) 7 months, (b) 10 months and 
(c) 12 months. Thinner and thicker horizontal lines indicate 0.01 and 0.05 significance levels (99 % and 95 % 
confidence limits), respectively. 
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4.2.2.2 Discrimination Between Healthy and E. saccharina-infected Cane using Leaf 

Reflectance at All Varieties Combined 

 

In order to discriminate between healthy and E. saccharina damaged cane using leaf 

reflectance, an ANOVA was performed as described in section 3.4.2 (Figure 4.6). Figure 4.6a 

indicates that there were highly significant differences in leaf reflectance from healthy and E. 

saccharina damaged cane throughout the spectrum (P < 0.001) (Table 4.4).  
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Fig 4.6 Mean leaf spectral reflectance curves highlighting healthy and E. saccharina damaged cane. (a) 
spectrum without noisy wavebands, (b) only visible-NIR portion of spectrum range (400 – 1300 nm), (c) and (d) 
Red-edge region. 
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Table 4.4 Results of ANOVA illustrating if wavebands from the whole spectrum as well as different portions of 
the spectrum can significantly discriminate between healthy and E. saccharina damaged cane. 
 

Portion of Spectrum Range F Sig. 

Whole spectrum range 14.454 .00001 

VNIR portion of spectrum range  10.064 .002 

Red-edge (670 – 780 nm) 1.094 .297 

 

The red-edge region was further assessed to investigate the effects of E. saccharina damage 

on leaf pigments and nutrients such as chlorophyll and N. Figure 4.6c shows that there was a 

shift of the red-edge slope towards shorter wavelengths for E. saccharina damaged cane. This 

is known as blue shift. This indicates that E. saccharina stalk damage caused a decrease in 

leaf chlorophyll and N concentrations as this shift is the result of low chlorophyll 

concentrations. However, this shift was not significant as p > 0.05, p = 0.297 (Table 4.4). 

Figure 4.6d highlights that both healthy and E. saccharina damaged cane had their maximum 

red-edge peaks around 720 nm with E. saccharina damaged cane having higher peaks.  

 

4.2.2.3 Differences in Leaf Reflectance as influenced by E. saccharina Damage Levels for All 

Varieties Combined 

 

In order to distinguish between various damage levels, the damage range (0 – 100%) was 

further categorized into four levels and then ANOVA was performed. The methodology or 

procedure was elaborated in detail in section 3.4.2. Figure 4.7 shows that there was a slight 

difference or variation in leaf reflectance at different wavebands as influenced by stalk 

damage levels throughout the spectrum.  

 

Severely damaged sugarcane gave the highest reflectance, followed by medium damaged and 

then low damage and healthy plants were overlapping (Figure 4.7a). This further validates 

that stress (biotic or abiotic stress) increases reflectance from 1300 to 2500 nm as well as in 

the range of 400 to 1300 nm (Carter, 1991; 1993). An ANOVA was performed to test whether 

these damage levels showed significant differences on leaf reflectance spectra. The 

differences were highly significant throughout the spectrum range (P < 0.001) (Table 4.5).  

 

Figure 4.7b clearly indicates that severely E. saccharina-damaged cane had the highest leaf 

reflectance followed by medium E. saccharina-damaged cane in the NIR region. This implies 

that E. saccharina damage on the cane stalks did not break down cell structures in the cane 



 52

leaves as a decrease in leaf reflectance in the NIR region is associated with breakdown of leaf 

cell structures (Datt et al., 2006). 

 

Figure 4.7c shows that there was slight (not significant, p = 0.41, see Table 4.5) effect of 

different E. saccharina stalk damage levels at the red-edge region of the spectrum, that is red-

edge slopes of both severe and medium E. saccharina damage  moved towards the shorter 

wavelengths indicating reduction in chlorophyll and N concentrations. These slight 

differences (Figure 4.7), are due to the effects of variety as different varieties have different 

spectral reflectance signatures (Apan et al., 2004a; Galvão et al., 2005). Therefore this made 

it worthwhile to consider E. saccharina stalk damage at each variety as it was indicated 

earlier that stalk damage was also different for different varieties (N37 more damaged than 

both N14 and N25). This is illustrated in Figures 4.8, 4.9, and 4.10.  

 

Figures 4.7e-f show highly significant differences (p < 0.0001, Table 4.5) in leaf reflectance 

as influenced by various E. saccharina stalk damage levels in the SWIR (1500 – 1800 nm and 

2000 – 2350 nm, respectively). Figure 4.7e shows that highest significant reflectance peaks 

for all damage levels were centred on 1660 nm, with severe damage having the highest 

reflectance. Figure 4.7f on the other side highlights that highest reflectance peaks were around 

2200 nm, still with severe damage level having the highest reflectance, however there was no 

clear distinction between healthy and medium damage levels in this region. 
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Fig 4.7 Leaf spectral reflectance curve showing different E. saccharina damage levels on 12 months cane. 
(Healthy – 0% stalk damaged, Low damage= 1 – 39% stalk damaged, Medium  damage = 40 – 69% stalk 
damaged and Severe damage = 70 – 100% stalk damaged). (a) spectrum without noisy wavebands, (b) only 
visible-NIR portion of spectrum range (400 – 1300 nm), (c) and (d) Red-edge region,  (e) 1500 - 1800 nm range 
and (f) 2000 – 2350 nm range.   
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Table 4.5 Results of ANOVA illustrating if wavebands from the whole spectrum as well as from different 
portions of the spectrum can statistically distinguish between various E. saccharina damage levels. 
 
Portion of Spectrum Range F Sig. 

Whole spectrum range 11.056 .0001 

Red-edge (670 – 780 nm) .967 .408 

(1500 – 1800 nm) 40.716 .0001 

(2000 – 2350 nm) 45.379 .0001 

 

4.2.2.4 Effects of E. saccharina Stalk Damage Levels on Leaf Reflectance for Different 

Varieties (N14, N25 and N37) 

 

Figure 4.8 shows that there was difference in leaf reflectance of N14 caused by various 

damage levels by E. saccharina pest (p = 0.019 for whole spectrum and p = 0.522 for the red-

edge region) however, severe damage level by E. saccharina reflected higher throughout the 

spectrum (Figures 4.8a, b and d; Table 4.6).  

 

Figure 4.9 shows that, even though severely damaged cane had highest reflectance and 

healthy damage cane had the lowest reflectance throughout the spectrum, there was no 

significant difference in leaf reflectance on N25 as influenced by various damage levels by E. 

saccharina pest (p = 0.071 for whole spectrum and p = 0.755 for the red-edge region) (Table 

4.7).  
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Fig 4.8 Leaf spectral reflectance curve showing different E. saccharina damage levels on 12 months N14 cane 
variety. (a) spectrum without noisy wavebands, (b) and (c) Red-edge region. 
 

Table 4.6 Results of ANOVA highlighting whether leaf reflectance from the whole spectrum as well as from 
red-edge can statistically distinguish between various E. saccharina damage levels on N14. 
 

Portion of Spectrum Range F Sig. 

Whole spectrum range 3.330 .019 

Red-edge (670 – 780 nm) .752 .522 
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Fig. 4.9 Leaf spectral reflectance curve showing different E. saccharina damage levels on 12 months N25 cane 
variety (a) spectrum without noisy wavebands, (b) and (c) Red-edge region. 
 
 
Table 4.7 Results of ANOVA illustrating if reflectance from the whole spectrum as well as from different 
portions of the spectrum can differentiate between various E. saccharina damage levels on N25. 
 

Portion of Spectrum Range F Sig. 

Whole spectrum range 2.347 .071 

Red-edge (670 – 780 nm) .398 .755 
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Figure 4.10 shows that various E. saccharina damage levels had highly significant impacts on 

leaf spectral signature (p < 0.0001) of N37 cane variety (Table 4.8). Even though there was 

significant difference between all damage levels, it is interesting to note that there was no 

level for healthy cane in this variety, this indicates that all cane stalks from this cane variety 

were damaged by E. saccharina pest. It is also important to note the difference between 

severe damage level and medium damage level was small especially in the VNIR region 

(Figure 4.10a, b, and c). Figure 4.10b clearly illustrates that both severe and medium damage 

levels increased reflectance in the visible region which confirms that there was reduction in 

leaf pigments caused by E. saccharina damage on cane plant as this region is characterized by 

leaf pigment and nutrient absorption peaks (carotenoids, chlorophylls and N). This confirms 

that any physiological stress, pest and disease or reduced amount of photosynthesis increases 

red and blue reflectance (Nilsson, 1995). 

 

In addition, both severe and medium damage levels red-edge slopes and REP significantly (p 

≤ 0.01, Table 4.8) shifted towards the shorter wavelengths indicating that E. saccharina 

damage highly induced both chlorophyll and N concentrations, causing the blue shift (Figure 

4.10c and 4.10d). Figure 4.10d also highlights that both severe damage and low damage levels 

had REP maxima near 720 nm while medium damage had REP maximum at around 700 nm.  

 

This implies that red-edge reflectance as well as its first derivative reflectance can be used to 

successfully assess and monitor various damage levels caused by E. saccharina in N37 cane 

variety. This is the only case whereby red-edge region had a significant difference (p = 0.012, 

Table 4.8) since the red-edge was assessed for different E. saccharina damage levels as well 

as when discriminating between healthy and E. saccharina damaged cane. Therefore, further 

an ANOVA was performed on N37 to look into which wavebands could be best used to 

discriminate different damage levels (Figure 4.11). 
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Fig. 4.10 Leaf spectral reflectance curve showing different E. saccharina damage levels on 12 months N37 cane 
variety (a) spectrum without noisy wavebands, (b) and (c) Red-edge region. 
 

 

Table 4.8 Results of ANOVA indicating if leaf reflectance from the whole spectrum as well as from different 
portions of the spectrum can significantly distinguish between various E. saccharina damage levels of N37. 
 

Portion of Spectrum Range F Sig. 

Whole spectrum range 29.713 .000 

Red-edge (670 – 780 nm) 4.526 .012 
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Figure 4.11a shows that wavebands 410 – 430 nm and 2010 – 2340 nm could significantly 

distinguish between the E. saccharina damage levels (p ≤ 0.05). The significance of bands 

2010 – 2340 nm further validates the higher correlations between leaf reflectance and E. 

saccharina stalk damage which ranged from r = 0.5 – 0.6 in bands 2000 – 2350 nm (Figure 

4.14).   
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Fig. 4.11 Results of one-way ANOVA illustrating wavebands of (a) the spectrum range and (b) red-edge region 
using first derivative, that can significantly distinguish various damage levels on N37 at age 12 months. Dotted 
and solid horizontal lines indicate 0.01 and 0.05 significance levels (99 % and 95 % confidence limits), 
respectively. 
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The significant differences in leaf reflectance in the visible region (410 – 430 nm) are due to 

differences in leaf pigments such as chlorophyll and N concentrations while differences in 

leaf reflectance in the SWIR (2010 – 2340 nm) are due to water absorption effects as well as 

some nutrients such as N. These bands are almost same as those discovered by Datt et al. 

(2006) who showed that an increase in reflectance with increasing severity of leaf spot disease 

and bacteria soft rot (1100 – 2300 nm) was caused by reduction of tissue moisture and drying 

of dead leaves.  

 

A better understanding about specific regions of the electromagnetic spectrum that provide 

maximum content when utilized for distinguishing various E. saccharina damage levels has 

been gathered or gained. This was further proven by the significance of these bands in 

discriminating between various damage levels. Therefore, this understanding makes it 

realistic to investigate the same bands on field level and canopy level, which will later lead to 

utility of these bands on airborne and spaceborne levels. Figure 4.11b highlights that first 

order derivatives in wavebands around 715 nm were able to differentiate between various E. 

saccharina damage levels (p < 0.05). 

 

4.2.2.5 Differences in Mean Leaf Reflectance as induced by Different Water Content Levels 

 

Figure 4.12 illustrates the water stress levels of different sugarcane varieties. However, it was 

difficult to quantify water stress levels as watering regimes were uniform throughout the 

whole trial.  
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(a)  (b)  

(c)  

Fig. 4.12 Differences in mean leaf reflectance as induced by different water levels (Low water content = < 69%, 
Medium water content = 70 – 74% and High water content = > 75%) at different varieties.  (a) N14, (b) N25 
and (c) N37.  
 

Figures 4.12a and b show that for N14 and N25, leaf reflectance could not clearly distinguish 

between different water levels. Among the three varieties, the N37 leaf reflectance 

distinguished between low water content and high water content successfully. Although, high 

water content reflected higher than low water content in most portion of the spectrum, the low 

water content had higher reflectance in the known water absorption bands centred on 1900 nm 

and 2500 nm (Figure 4.12c).  
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4.2.2.6 Correlations Between Leaf Reflectance and E. saccharina Stalk Damage as well as 

Number of E. saccharina 

 

A Pearson’s correlation was also performed to determine the relationship between E. 

saccharina stalk damage and reflectance as well as the number of E. saccharina and 

reflectance at each waveband at 12 months cane age at all varieties combined (Figure 4.13). 

Waveband 760 nm (r = 0.37) showed the strongest linear relationship between E. saccharina 

stalk damage and leaf reflectance compared to any bands throughout the spectrum (Figure 

4.13a). Figure 4.13b indicates that wavebands 448 and 683 nm highlighted highest correlation 

between the number of E. saccharina and reflectance, r = 0.42 and r = 0.40, respectively.  

 

These low correlations might be due to varietal influence as these correlations were 

undertaken for all varieties combined. As there have been low correlations between leaf 

reflectance and all biochemical concentrations as well as E. saccharina damage throughout all 

cane ages, an initiative was taken to perform these correlations at one cane variety (N37, as it 

was the most damaged by E. saccharina pest) at age 12 months (Figure 4.14). 

 

Figure 4.14a validates that variety had a big influence on low correlations between reflectance 

and all biochemical concentrations as well as E. saccharina damage and number of E. 

saccharina larvae and pupae recovered from the stalks. This is shown by the fact that all 

variables had higher correlation coefficients (r ≥ 0.55 and r ≤ -0.55) with leaf reflectance at 

significant wavebands. Si concentration was an exception as it had r = 0.46, at 731 nm. 

Around the same region, N concentration and N/Si ratio had higher negative correlations, r = -

0.52 at 704 nm and r = -0.56 at 713 nm, respectively. This further confirms that N absorption 

bands can be used to estimate N/Si ratio as well. 
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Fig. 4.13 Correlation between mean leaf reflectance and (a) Stalk damage by E. saccharina and (b) Number of 
E. saccharina larvae and pupae, indicated are wavelengths of peaks with high correlations on 12 months cane 
age at all varieties combined. 
 
 

Eldana saccharina damage and number of E. saccharina larvae and pupae recovered from the 

stalks also had similar pattern, with highest positive correlations. This is expected as E. 

saccharina damage and number of E. saccharina larvae and pupae recovered from the stalks 

are highly correlated because E. saccharina larvae are the ones which bored the stalks (r = 

0.78, p < 0.01, Table 4.2). These highest positive correlations in the visible region such 

around 430 and 683 nm and as well as in the SWIR (2000 – 2350 nm), that is at 2025 nm, 

indicates that increase E. saccharina stalk damage caused increase in leaf reflectance at these 

regions. 
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Water content was treated separately from other cane variables because noisy wavebands had 

to be included on the analysis while they were removed for other variables (Figure 4.14b). 

Reflectance from wavebands 2475 nm, 2493 nm, 1883 nm, and 1387 nm showed the highest 

correlation coefficients with leaf absolute water content (r = 0.66, r = -0.50, r = -0.50, r = -

0.34 and r = -0.30, respectively) (Figure 4.14b). These results were encouraging as these 

wavebands were centered on the known water absorption bands, 1400 nm, 1900 nm and 2500 

nm (Guyot, 1990; Lillesand and Kiefer, 2000; Kumar et al., 2003; ASD; 2006; Cho, 2007). 
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Fig. 4.14 Correlation between mean leaf reflectance and (a) N, Si Concentration, N/Si ratio, Stalk damage by E. 
saccharina and Number of E. saccharina and (b) water content,  indicated are wavelengths of peaks with high 
correlations on N37 at age 12 months (n = 18). 
 
 
4.2.2.7 Correlations Between Leaf Reflectance and Foliar Biochemical Concentrations 
 

Correlations between reflectance and foliar biochemical concentrations were performed to 

investigate which wavebands can be used to estimate different biochemical concentrations (N 

concentration, Si concentration and N/Si ratio) at different cane ages (Figure 4.15, 4.16 and 
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4.17, respectively). Generally, positive correlation coefficients (r) indicate positive 

relationship between reflectance and biochemical concentration, that is when reflectance 

increases, biochemical concentration also increases, while negative correlation coefficients (r) 

show negative relationship, thus when reflectance decreases, biochemical concentration 

increases.  

 

This simply means that high positive correlations show that there has been reflection peak 

because of the concerned biochemical concentration while the higher negative correlations 

simply show that there has been absorption peak due to the concerned biochemical 

concentration and these peaks are noted in Figures 4.15, 4.16 and 4.17 below. Figure 4.15a 

demonstrates that there were some correlation peaks in the shorter wavelengths (562 and 715 

nm), however wavebands 1505 and 2059 nm gave the highest negative correlations for 7 

months cane. These are around the known N absorption features centred on 1510 and 2060 

nm, respectively (Kumar et al., 2003).  

 
Figure 4.16 results show similar trend with Figure 4.1b whereby there were highest 

correlations for Si, at 562 nm; r = 0.27 and 715 nm; r = 0.28 on 7 months cane, then there was 

a reduction on correlation at 446 nm; 0.17 and this increased a bit for 12 months cane (445 

nm; r = 0.23). Figure 4.16c shows that in SWIR, bands 1506 nm; r = 0.33 and 2016 nm; r = 

0.35, indicated that there were high correlations for foliar Si concentration. 

 

Generally, throughout all cane ages, N/Si ratio had highest negative correlations at similar 

wavebands with N concentration in the shorter wavelengths (VNIR) (Figures 4.15, 4.16 and 

4.17). For instance, both N and N/Si ratio had highest negative correlations at exactly the 

same wavebands 562 and 715 nm at age 7 months. At age 10 months, N had highest negative 

correlation at 669 nm and N/Si ratio at 647 nm. And lastly, at age 12 months, N showed 

highest negative correlation at 594 and 709 nm while N/Si ratio at 597 and 713 nm (Figures 

4.15 and 4.17). This implies that same N absorption bands can be used to estimate N/Si ratio.  
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Fig. 4.15 Correlations between mean leaf reflectance and foliar N concentration, indicated are wavelengths of 
peaks with high correlations at different cane ages. (a) 7 months  cane, (b) 10 months cane and (c) 12 months 
cane (n = 54). 
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Fig. 4.16 Correlation between mean leaf reflectance and foliar Si concentration, indicated are wavelengths of 
peaks with high correlations at different cane ages (n = 54). (a) 7 months cane, (b) 10 months cane and (c) 12 
months cane. 
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Fig. 4.17 Correlation between mean leaf reflectance and foliar N/Si Ratio, indicated are wavelengths of peaks 
with high correlations at different cane ages. (a) 7 months cane, (b) 10 months cane and (c) 12 months cane. 
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In contrast, Si concentration had highest positive correlations with reflectance in the same 

shorter wavelengths of VNIR region throughout all cane ages (Figure 4.16). This implies that 

Si concentrations had reflection peaks in the shorter wavelengths of VNIR region. This 

further supports that higher leaf reflectance in the shorter wavelengths are due to higher 

contents of silicates in the leaves (Alvarez-Añorve et al., 2008). Although the relationship 

between leaf reflectance spectra and foliar biochemical concentrations was found to be weak 

throughout the electromagnetic spectrum, there are wavebands such as 562 and 715 nm which 

gave better correlations in all three foliar biochemical concentrations (N, Si and N/Si ratio) on 

7 months cane (Figures 4.15, 4.16 and 4.17). That is negative correlations for N concentration 

and N/Si ratio and positive correlations for Si concentration. 

 

Overall correlations between leaf reflectance and biochemical concentrations were found to 

be weak for all cane ages. There are two possible reasons for this, the first one might be the 

varietal influence as the correlations were performed on combined varieties. The second 

reason might be the fact that spectral measurement was taken on only one leaf while three 

leaves including the scanned one, were taken for chemical analysis. 

 
4.2.2.8 Spectral Indices for Estimation of Foliar Biochemical Concentrations (N, Si and N/Si 

ratio) and E. saccharina Stalk Damage 

 

Previously used narrow waveband spectral indices that are sensitive to leaf pigments such as 

N and chlorophyll as well as those sensitive to water status were tested in this study. A 

Pearson’s correlation was performed to see relationship between N spectral indices and 

sugarcane dependent variables (N, Si concentration, N/Si ratio, and E. saccharina stalk 

damage) on variety N37 at age 12 months (Table 4.9). Table 4.9 demonstrates that all N 

spectral indices and first order derivatives had a highly significant correlation (with P < 0.01 

in almost all of them) against leaf nitrogen concentration. However, NPCI and modified 

NDVI (R2200 and R2025) were exceptional as they were not statistically correlated to N 

concentration (p > 0.05). The modified NDVI of bands 2200 and 2025, instead showed 

highest significant negative correlation (r = -0.62, p < 0.01) when compared with E. 

saccharina stalk damage. 
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Table 4.9 Correlation of N spectral indices and sugarcane dependent variables (N, Si concentration, N/Si ratio, 
and E. saccharina stalk damage) on variety N37 at age 12 months. 
 

N Indices 
N 

Concentration 
Si 

Concentration N/Si Ratio 
Eldana Stalk 

Damage 
R810/R560 .716(**) -0.25 0.45 -0.056 
(R810-R560)/(R810+R560) .718(**) -0.266 .475(*) -0.012 
(R1075-R730)/(R1075+R730) .726(**) -0.355 .562(*) 0.134 
D744 .738(**) -0.115 0.34 0.205 
D740 .807(**) -0.146 0.388 0.195 
D730 .774(**) -0.096 0.333 0.236 
mSR705 .696(**) -0.236 0.428 0.113 
(R750-R560/R750+R560) .728(**) -0.27 .478(*) -0.009 
R750/R700 .754(**) -0.242 0.447 -0.111 
PRI .500(*) -0.376 0.449 0.32 
R740/R720 .762(**) -0.299 .503(*) 0.005 
(R1770-695/1770+695) .685(**) -0.171 0.382 0.084 
(R2200-R2025)/(R2200+R2025) -0.236 -0.098 -0.055 -.618(**) 
D744/D2142 .658(**) -0.281 0.394 -0.01 
PSRI .622(**) -0.316 .497(*) 0.252 
NPCI -0.396 -0.119 -0.094 -0.058 

     **  Correlation is significant at the 0.01 level (2-tailed). 
       *  Correlation is significant at the 0.05 level (2-tailed). 
 

It is important to note this index was developed by Abdel-Rahman et al. (2008a) for 

estimation of sugarcane N concentration on 6 -7 months N19 cane and was linearly related to 

N concentration (R2 = 0.87). This further implies that E. sachharina damage on the stalk had 

some effects on leaf N concentrations. It is of great importance to highlight that both bands 

used in this index were found to be related to E. saccharina stalk damage in this study. 

Therefore, this implies E. saccharina damage on the cane stalk have an influence on N 

concentration. Table 4.9 also indicates that indices developed from the red-edge region as 

well as first derivatives showed poor correlations with E. saccharina stalk damage. 

 

For foliar Si concentration, none of these N indices were significance on this variety as p was 

> 0.05 for all of them. This indicates that Si absorption bands are not related to N and 

chlorophyll absorption bands at this variety. Most N indices were significantly correlated to 

N/Si concentration. This further confirms that absorption bands for N concentration alone are 

same as N/Si ratio in the VNIR region (Figures 4.15, 4.16and 4.17, 4.14a). The results from 

the Table 4.9 made it realistic to try to test the regression models of spectral indices against 

biochemical concentrations and E. saccharina damage. Spectral N indices which showed 

highest significant correlations with N concentrations, N/Si ratio and E. saccharina stalk 

damage were further used to perform the following regression models (Figure 4.18). 
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Figure 4.18a shows that Red-edge Index (R740/R720) was linearly related to N concentration 

(R2 = 0.81; RMSE = 0.10263). Modified NDVI (R1075-R730)/(R1075+R730) was linearly related 

to N/Si ratio (R2 = 0.67; RMSE = 1.508) (Figure 4.18b). Figure 4.18c indicates that E. 

saccharina stalk damage is linearly and negatively related to modified NDVI (R2200-

R2025)/(R2200+R2025) (R2 = 0.69; RMSE = 19.351). This further proves that differences in leaf 

reflectance in the SWIR (2010 – 2340 nm) are due to N concentrations (Figure 4.16a). This 

implies that E. sachharina damage on the stalk had effects on leaf N concentrations.  

 

However, there were higher errors (RMSE) in these regression models (Figure 4.18), 

especially for E. saccharina stalk damage estimation (R2 = 0.69; RMSE = 19.351), these 

might be due to the fact the bands used in the index are from SWIR (2000 – 2350 nm) which 

is characterized by water absorptions, lignin, N, starch and cellulose (Kumar et al., 2003). 

Therefore it is assumed that water stress could have some carry-over effects on these N 

absorption bands. The other possible reason for the high error is that spectral measurement 

was done only on one leaf from main per pot while stalk damage was done using all five 

plants in a pot. 

 

The key finding is that, E. saccharina stalk damage may be more accurately predicted by 

vegetation indices from narrow wavelengths located in the SWIR (2010 – 2300 nm) than 

bands located in visible, red-edge and NIR regions of the spectrum. Therefore, this result 

allowed the extension of controlled experiments to field level as well as airborne/ spaceborne 

for estimation of E. saccharina stalk damage through entire area of sugarcane fields. This 

means that prediction of E. saccharina stalk damage can be done reliably using hand held 

field spectroradiometry, hence regression model(s) built from this can be applied on 

reflectance spectra acquired at the same resolution from airborne or spaceborne hyperspectral 

sensors. 

 

Among the tested VIs, including water indices, none of them was significantly correlated to 

water content for all three varieties. For Si concentration, significant correlation was only 

encountered on N25, hence an index showing highest significant correlation was used to 

develop a regression or relation model between Si concentration and leaf reflectance, that is 

(R750-R560)/(R750+R560) (R2 = 0.53, RMSE = 0.11817) (Figure 4.19).  
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Fig. 4.18 Linear regression models of spectral indices against biochemical concentrations and E. saccharina 
stalk damage on N37 at age 12 months (n = 18). (a) N Concentration, (b) N/Si ratio and (c) E. saccharina stalk 
damage.  
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Fig 4.19 Linear regression model of spectral index against Si concentration on N25 at age 12 months (n = 18).  
 

The higher error (RMSE) indicates that N could have some influence on this regression as it 

used N index. However, further studies are required to validate this and quantify Si 

concentration using spectral reflectance data from sugarcane leaves in general.  

 

4.2.2.9 Varietal Discrimination by Leaf Reflectance at Different Ages as well as at All Ages 
Combined  
 
One way ANOVA was performed to confirm that different varieties (N14, N25 and N37) had 

significant influence on leaf reflectance (VNIR region) at different cane ages (3, 7, 10 and 12 

months) as well as at combined ages (Table 4.8). Figure 4.20 illustrates that different varieties 

had statistically significant effects on VNIR reflectance at ages 3, 7 and 12 months (p = 0.002, 

p = 0.019 and p = 0.006, respectively) (see Table 4.10). In all these ages, N14 reflected higher 

followed by N37 and lastly N25 in the NIR region (Figure 4.20a, b and d).  

 

An exceptional case was found at age 10 months where there was no significance difference 

between the three cane varieties (p = 0.676) (see Table 4.10 and Figure 4.20c). This might be 

due to the that spectral measurements for 10 months cane were taken immediately after the 

cane plants had been subjected to water stress and also after N application termination on the 

cane trial. Figure 4.20 further confirms that the three varieties were statistically and 

significantly different (p = 0.014, Table 4.11) in VNIR reflectance at combined ages still with 
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N14 having highest NIR reflectance, then N37 and N25 with the lowest reflectance. 

Generally, these findings validate that reflectance from hyperspectral data can be used to 

discriminate sugarcane varieties (Apan et al., 2004a; Galvão et al., 2005). 
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Fig.4.20 Relationship between mean leaf reflectance and different cane varieties (N14, N25 and N37) in visible-
NIR portion of spectrum range (400 – 1300 nm) at different ages. (a) 3 months cane, (b) 7 months cane, (c) 10 
months cane and (d) 12 months cane. 
 

Table 4.10 Results of ANOVA showing if VNIR reflectance is affected by different cane varieties (N14, N25 
and N37) at different cane ages.  
 

Sugarcane Age F Sig. 

3 months old cane 6.125 .002 

7 months old cane 3.944 .019 

10 months old cane .392 .676 

12 months old cane 5.137 .006 
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Fig. 4.21 Mean leaf spectral reflectance curve, whole spectrum without noisy wavebands, showing different 
varieties (N14, N25 and N37) at all ages combined. 
 

Table 4.11 Results of ANOVA showing if whole spectrum as well as VNIR reflectance is influenced by 
different cane varieties (N14, N25 and N37) at all ages combined.  
 

Portion of Spectrum Range F Sig. 

Whole spectrum range 4.279 .014 

 
 
4.2.2.10 Relationship Between Mean Leaf Reflectance and Sugarcane Age 

 

An initiative was taken to investigate whether the cane age can influence leaf spectral 

reflectance by running an ANOVA. Figures 4.22a, b and c illustrates that there were highly 

significant difference on leaf reflectance brought by different cane ages (p < 0.0001) (Table 

4.12). There was significant increasing trend in leaf reflectance with increasing cane age, and 

also more pronounced in red-edge maximum inflection points from first derivative 

reflectance, thus 12 months cane had the highest reflectance throughout the spectrum range 

followed by 10 months cane (Figures 4.22a and c). However, there was an overlapping 

reflectance behavior between 3 and 7 months cane throughout the spectrum (Figures 4.22a 

and c).  

 

Figure 4.22c shows that maximum red-edge peaks (REPs) for 3 months and 7 months cane 

were around 725 nm while for 10 and 12 months cane were near 720 nm. This indicates that 

REPs for 10 and 12 months cane as well as their red-edge slopes shifted towards shorter 
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wavelengths, resulting in the blue shift while those for 3 and 7 months moved towards longer 

wavelengths giving rise to the red shift (Figures 4.22b and c). These shifts were highly 

significant with p < 0.0001 (Table 4.12). This simply means that younger cane leaves have 

higher chlorophylls (and or N) and water content than older cane plants. 
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Fig. 4.22 Relationship between mean leaf reflectance and different sugarcane ages (3 months, 7 months, 10 
months and 12 months). (a) whole spectrum without noisy wavebands, (b) and (c) Red-edge region. 
 
Table 4.12 Results of ANOVA showing if leaf reflectance from the whole spectrum as well as from different 
portion of the spectrum is influenced by different cane ages. 
  

Portion of Spectrum Range F Sig. 

Whole spectrum range 70.760 .000 

Red-edge (670 – 780 nm) 6.769 .000 
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4.3 General 

 

As recent studies showed that hyperspectral remote sensing can offer an opportunity to 

monitor pests and diseases rapidly and non-destructively in agricultural crops, for example 

(Apan et al., 2004; 2005; Mirik et al., 2006a; b; Datt et al., 2006; Abdel-Rahman et al., 

2008b), the findings from this study further confirm that hyperspectral data with its narrow 

sensitive wavebands successfully discriminated between healthy and various E. saccharina 

damaged cane under controlled conditions. 

 

Although hyperspectral data could distinguish between healthy and various E. saccharina 

stalk damage levels at combined varieties, it important to indicate that the best results were 

obtained when focusing on each variety as different varieties had different spectral reflectance 

(Apan et al., 2004a; Galvão et al., 2005), this was also confirmed in this study. In addition, 

different varieties had different E. saccharina susceptibility and different uptake of nutrients 

especially Si which increased resistance of varieties to E. saccharina stalk damage. This was 

illustrated by the fact that the most E. saccharina stalk damaged cane variety (N37) showed 

best significant results throughout the whole spectrum when distinguishing between healthy 

and various E. saccharina stalk damage levels. The successful estimation of E. saccharina 

stalk damage from hyperspectral data was also from this variety as indicated earlier. 

The strongest positive relationship between E. saccharina stalk damage and leaf reflectance 

on N37 cane variety was found in the visible region, that is at 430 nm (blue); r = 0.65 and at 

683 nm (red); r = 0.66 (Figure 4.14a). These positive correlations indicate that increase in E. 

saccharina infestations, increased leaf reflectance at these regions. This validates statement 

by Nilsson (1995) that any physiological stress, pest/disease, or reduced photosynthetic rate 

(Pn), results in increase in reflectance in the red and blue regions. The reflectance from green 

portion of the visible region was not related to E. saccharina stalk damage as r = 0.18 (Figure 

4.14a). These findings are related to those of Apan et al. (2004b) and Datt et al. (2006), where 

there was higher significant reflectance on orange rust diseased cane than on healthy cane and 

higher reflectance on sunburnt lettuce than on healthy lettuce, respectively, at the red region 

(680 nm). However, in contrary to one of the findings by Datt et al. (2006) which indicated 

that reflectance from visible region showed that the largest differences between healthy and 

silverleaf affected pumpkin leaves, this study demonstrated that visible region had the least 

reflectance differences between healthy and various E. saccharina infested cane. 
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The fact that N is highly related to chlorophyll (Mutanga et al., 2003; Zhao et al., 2005), the 

significant movements of the red-edge slope and REP caused by various E. saccharina stalk 

damage levels are believed to affect N concentrations. For instance, severe E. saccharina 

stalk damage level caused the red-edge slope and the REP to significantly shift to the shorter 

wavelengths (blue shift), which indicated that there was reduction in chlorophyll 

concentrations hence N concentration. These results are encouraging as they are related to 

previous findings (Apan et al.,  2005; Datt et al., 2006; Abdel-Rahman et al., 2008b) dealing 

with effects of different pests and diseases under different plants at the red-edge.  

 

In general, NIR showed the highest separability between healthy and various E. saccharina 

stalk damage levels at combined varieties as well as at each variety, especially N37 which 

was the most damaged variety. The results highlighted that in the NIR region severely E. 

saccharina damaged cane had the highest leaf reflectance followed by medium E. saccharina 

damaged cane. This implies that E. saccharina damage on the cane stalks did not break down 

cell structures in the cane leaves as this could have been noticed by a decrease in leaf 

reflectance in the NIR region which is associated with breakdown of leaf cell structures (Apan 

et al., 2004b; 2005). 

 

In the SWIR (2000 – 2350 nm) particularly band 2025 nm, had highest positive correlation 

which indicated that increase in E. saccharina stalk damage caused increase in leaf 

reflectance at this region. There was also highly significant differences (p < 0.0001, Table 4.5 

and Figure 4.7) in leaf reflectance as influenced by various E. saccharina stalk damage levels 

in the SWIR (1500 – 1800 nm), with highest significant reflectance peaks for all E. 

saccharina damage levels centered on 1660 nm. Severe E. saccharina stalk damage had the 

highest reflectance peak. This was similar to findings by Apan et al. (2005)  where the same 

band (1660 nm) from the range of 1590 – 1766 nm showed significant reflectance peak when 

discriminating healthy eggplant from damaged eggplant leaves by 28-spotted ladybird 

(Epilachna vigintioctopunctata). Also, Apan et al. (2004b) indicated the key role played by 

SWIR wavebands (1660 – 2200 nm) in discrimination of healthy and orange rust diseased 

cane crops and further used band 1660 combined with other bands to indices which 

successfully discriminated healthy and orange rust diseased cane crops than any other indices. 

Results further show that wavebands 2010 – 2340 nm could significantly distinguish between 

the E. saccharina damage levels (p ≤ 0.05) (Figure 4.11a). The significance of bands 2010 – 

2340 nm further validates the higher correlations between leaf reflectance and E. saccharina 
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stalk damage which ranged from r = 0.5 – 0.6 in bands 2000 – 2350 nm (Figure 4.14).  The 

significant differences in leaf reflectance in the SWIR (2010 – 2340 nm) are due to water 

absorption effects as well as some pigments such as N. These bands are almost same as those 

discovered by Datt et al. (2006) who showed that an increase in reflectance with increasing 

severity of leaf spot disease and bacteria soft rot (1100 – 2300 nm) was caused by reduction 

of tissue moisture and drying of dead leaves. 

 

Overall, the spectral reflectance of severe E. saccharina stalk damage level was higher 

throughout the spectrum, thus from Visible-NIR-SWIR regions. This further validates that 

stress (biotic or abiotic stress) increases reflectance from 1300 to 2500 nm as well as in the 

range of 400 to 1300 nm (Carter, 1991; 1993). However, this is in contrary to some previous 

findings (Apan et al., 2004b; 2005; Xu et al., 2007; Yang et al., 2008); where NIR reflected 

lower for infested or diseased plants than healthy plants due to breaking of cell saps in the 

leaves.  

 

Reflectance based remote sensing techniques for pest identification capitalizes on the fact that 

most pests affect the outwards appearance of a plant in a particular manner either within the 

visible or outside the visible spectrum (Abdullah and Umer, undated). In addition, pathogens 

and pests can induce physiological stresses and physical changes in plants which can directly 

or indirectly affect reflectance properties of plants (Nilsson, 1995; Apan et al., 2005; Datt et 

al., 2006; Mirik et al., 2006a). These were confirmed in this study as effects of E. saccharina 

damage on sugarcane leaves were not known but were picked up by leaf reflectance. 

 

One of the N indices tested in this study, modified NDVI (R2200-R2025)/(R2200+R2025), showed 

highest significant correlation with E. saccharina stalk damage on N37 (Table 4.9). This 

modified NDVI successfully estimated E. saccharina stalk damage on N37 from 

hyperspectral data with determination coefficient (R2 = 0.69; RMSE = 19.351) (see Figure 

4.18c). The higher RMSE was assumed to be the effects of water absorptions, lignin, starch 

and cellulose, more especially water stress which could have some carry-over effects, as 

bands used on this index were from SWIR (2000 – 2350 nm) which is characterized by water 

absorptions, lignin, N, starch and cellulose (Kumar et al., 2003). As E. saccharina infestations 

is related to water stress, it is assumed that formulation and development of E. saccharina-

Water Stress Indices can be the best for estimation and detection of E. saccharina, possibly 

with low errors (RMSE). The other possible reason for the high error is that spectral 
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measurement was done only on one leaf from main per pot while stalk damage was done 

using all five plants in a pot. 

 

This index (R2200-R2025)/(R2200+R2025), was developed by Abdel-Rahman et al. (2008a) for 

estimation of sugarcane N concentration on 6 -7 months N19 cane and was linearly related to 

N concentration (R2 = 0.87). This further implies that E. sachharina damage on the stalk had 

some effects on leaf N concentrations. It is of great importance to highlight that both bands 

used in this index were found to be related to E. saccharina stalk damage in this study. For 

instance, band 2025 nm showed one of the highest correlations between E. saccharina stalk 

damage and leaf reflectance on N37 (r = 0.6) (Figure 4.14a). On the other side, one of the 

highest reflectance peaks for all E. saccharina damage levels in the SWIR region were 

centred on 2200 nm (Figure 4.7f) on combined varieties. More importantly, both bands (2025 

and 2200 nm) were within the range of 2010 – 2340 nm which significantly distinguished 

between the E. saccharina damage levels (p ≤ 0.05) on N37.  However, indices developed 

from the red-edge region as well as first derivatives such as Red-edge index, D740 and D730, 

showed poor correlations with E. saccharina stalk damage and water content. These confirm 

findings by Apan et al. (2004b) and Imanish et al. (2004), respectively. 

 

The key finding is that, E. saccharina stalk damage may be more accurately predicted by 

vegetation indices from narrow wavelengths located in the SWIR (2010 – 2300 nm) than 

bands located in visible, red-edge and NIR regions of the spectrum. Therefore, this result 

allowed the extension of controlled experiments to field level as well as airborne/ spaceborne 

for estimation of E. saccharina stalk damage through entire area of sugarcane fields. This 

means that prediction of E. saccharina stalk damage can be done reliably using hand held 

field spectroradiometry, hence regression model(s) built from this can be applied on 

reflectance spectra acquired at the same resolution from airborne or spaceborne hyperspectral 

sensors. 

 

Correlations between leaf reflectance and biochemical concentrations were found to be weak 

for all cane ages. There are two possible reasons for this, the first one might be the varietal 

influence as the correlations were performed on combined varieties. The second reason might 

be the fact that spectral measurements were taken on only one leaf while three leaves 

including the scanned one, were taken for chemical analysis. The second reason is similar to 

what was encountered by Ferwerda (2005) where spectral measurement was taken on one leaf 
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while chemical analysis was done on leaves from the whole canopy. The first reason was 

successfully validated by performing a varietal discrimination using leaf reflectance (Figure 

4.20). 

 

Although results showed that Si concentration had more contribution than N concentration in 

N/Si ratio, N/Si ratio had highest negative correlations at similar wavebands with N 

concentration in the shorter wavelengths (VNIR), where Si concentration had positive 

correlations (Figures 4.15, 4.16 and 4.17). This implies that same N absorption bands can be 

used to estimate N/Si ratio. Similar findings were obtained by Ferwerda (2005) where foliar N 

concentration showed regions of highest correlations similar to those of N/P ratio. This was 

further confirmed by successful estimation of N/Si ratio using N indices. One of the tested N 

indices, Modified NDVI (R1075-R730)/(R1075+R730) (Zhao et al., 2005), showed the highest 

significant correlation with N/Si ratio and was linearly related to N/Si ratio (R2 = 0.67; RMSE 

= 1.508) (Figure 4.18b). Since, N/Si ratio has been found to be important for monitoring of E. 

saccharina in sugarcane fields (Keeping and Meyer, 2005a), showing that sugarcane with 

N/Si ratio greater than are 2 associated with increasing risk of E. saccharina borer damage, 

this index can be used for early detection of E. saccharina damage or for identifying 

sugarcane that is prone to attack by E. saccharina in the South African sugarcane industry.  

 

All the tested N indices showed high significant correlation coefficients (r > 0.5, p < 0.01 at 

most) when compared to actual leaf N concentrations. Even previously used first derivatives 

730, 740 and 744 nm (Zhao et al., 2005; Abdel-Rahman et al., 2008a) had the highest 

correlations with N concentration. However, the Red-edge Index (R740/R720) which showed 

the highest correlation coefficient and was linearly related to N concentration (R2 = 0.81; 

RMSE = 0.10263) (Figure 4.18a) could be used for estimation of N concentration in relation 

E. saccharina incidence without destructing the leaves from sugarcane plants. 

 

Even though this study revealed that there were some wavebands from blue region which 

were sensitive to foliar N concentration, these bands are normally not considered for 

development of N spectral indices due to the overlapping of chlorophylls and carotenoids 

absorption peaks in this blue region of the spectrum (Ray et al., 2006). 

 

Correlations between Si concentration and leaf reflectance showed highest positive 

correlation coefficients in the shorter wavelengths of VNIR region throughout all cane ages 
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(Figure 4.16). This implies that Si concentrations had reflection peaks in the shorter 

wavelengths of VNIR region. This confirms that higher leaf reflectance in the shorter 

wavelengths are due to higher contents of silicates in the leaves (Alvarez-Añorve et al., 2008).  

However, significant correlation between Si concentration and N indices was only 

encountered on N25, hence an index showing highest significant correlation was used to 

develop a regression or relation model between Si concentration and leaf reflectance, that is 

(R750-R560)/(R750+R560) (R2 = 0.53, RMSE = 0.11817) (Figure 4.19). The higher error (RMSE) 

indicates that N could have some influence on this regression as it used N index. However, 

further studies are required to validate this and quantify Si concentration using spectral 

reflectance data from sugarcane leaves in general as this was the first attempt.  

 

The proposed method, (assessment, monitoring and detection of E. saccharina using remote 

sensing), is advantageous over the traditional (visual) method, recently done by Way and 

Goebel (2007), as it does not involve destructive sampling of cane stalks from the field and 

then longitudinally splitting them to allow assessing stalk damage as well as internodes 

damage by E. saccharina and counting the number of larvae and pupae found in the stalks 

which is labour intensive and time consuming. Therefore, this proposed method offers an 

opportunity to monitor E. saccharina pest rapidly and non-destructively throughout the whole 

growing season.   

 

In addition, as the effects of E. saccharina damage on cane leaves are not yet and the ones 

that are known on the stalks show up after damage, this method could serve as an early 

detection of E. saccharina from foliar remote sensing before visual signs of damage on the 

stalks come out. Therefore this will lead to prompt decision making on time or before great 

losses of sucrose content are encountered.  

 

This proposed method can overcome the issue of bias as only easily accessible areas will be 

surveyed on traditional method and sometimes after heavy rains water stays in the fields 

which prevents monitors and surveyors from getting into the fields hence this lead to late 

monitoring and detection of pests, of which it might be after great crop loss (Abdullah and 

Umer, undated; Apan et al., 2005). However, the proposed method, remote sensing in E. 

saccharina detection and assessment, is not meant to take over traditional method, instead it 

can be used to supplement traditional or visual approaches for assessment, monitoring and 
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detection of disease and pest (E. saccharina) symptoms (Abdullah and Umer, undated; Apan 

et al., 2005).  

 

Limitations of this proposed method are based on the fact that hyperspectral remote sensing 

data needs to be captured during clear sunny days on the field. In addition, hyperspectral 

images and spectroradiometers are very expensive hence it is important to know which bands 

can estimate or detect certain pests and diseases, for example E. saccharina, to avoid 

processing the whole spectrum which increases costs and to buy spectroradiometers with only 

appropriate bands, e.g. VNIR spectroradiometer if leaf reflectance differences caused the 

effects of the pest is highly separable from this region. 
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

The results from this study highlight that hyperspectral remote sensing using hand-held 

spectroradiometers can provide a means of rapid assessment and monitoring of E. saccharina 

of many sugarcane samples, non-destructively, within a short time. However, this needs 

further investigation in the field as it was done under controlled conditions. 

 

Was leaf-level spectral reflectance of sugarcane able to detect infestation by E. saccharina?  

 

In order to determine if leaf-level spectral reflectance of sugarcane can be used to detect 

infestation by E. saccharina, all the leaf spectral reflectance from cane that did not have any 

stalk damage by E. saccharina were averaged to yield healthy cane while all those from 

damaged cane stalks were averaged to give E. saccharina damaged cane.  Results show that 

there were highly significant differences in leaf reflectance from healthy and E. saccharina 

damaged cane throughout the spectrum (P < 0.001). The E. saccharina stalk damaged cane 

reflected higher than healthy cane throughout the spectrum, with more separability in the NIR 

region. 

 

The red-edge slope and REP of the region E. saccharina damaged cane shifted towards 

shorter wavelengths. This is known as blue shift. This indicates that E. saccharina stalk 

damage caused decrease in leaf chlorophyll and N concentrations as this shift is the result of 

low chlorophyll concentrations.  

      

Did leaf-level spectral reflectance of different sugarcane varieties successfully distinguish 

between various levels of E. saccharina damage and water stress? 

 

Although hyperspectral data could distinguish between healthy and various E. saccharina 

stalk damage levels for all varieties combined, it important to indicate that the best results 

were obtained when focusing on each variety as different varieties had different spectral 

reflectance (Apan et al., 2004a; Galvão et al., 2005), this was also confirmed in this study. 
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Therefore the most damaged variety N37 demonstrated clearly significant leaf reflectance 

differences between various E. saccharina severity levels.  

 

In general, NIR showed the highest separability between healthy and various E. saccharina 

stalk damage levels at combined varieties as well as at each variety, especially N37 which 

was the most damaged variety. The results highlighted that in the NIR region severely E. 

saccharina damaged cane had the highest leaf reflectance followed by medium E. saccharina 

damaged cane. This implies that E. saccharina damage on the cane stalks did not break down 

cell structures in the cane leaves as this could have been noticed by a decrease in leaf 

reflectance in the NIR region which is associated with breakdown of leaf cell structures. 

 

Overall, the results illustrated that severe E. saccharina infestation increased reflectance 

throughout the whole spectrum range (400 – 2500 nm) and caused a red-edge slope and REP 

to shift towards the shorter wavelength (blue shift) indicating reduction in leaf chlorophyll 

and N concentrations. In terms of water stress, it was difficult to detect water stress using 

remote sensing in this study as watering regimes were uniform throughout the trial. It would 

have been better if there were different water stress levels such as non-stressed (control) and 

various stress levels. However, N37, which was the most infested variety, showed that leaf 

reflectance could distinguish between different water stress levels. 

 

Which hyperspectral narrow-wave bands did successfully detect sugarcane E. saccharina 

and estimate N/Si ratio? 

 

One of the N indices tested in this study, modified NDVI (R2200-R2025)/(R2200+R2025), showed 

highest significant correlation with E. saccharina stalk damage and successfully estimated E. 

saccharina stalk damage on N37 from hyperspectral data with determination coefficient (R2 = 

0.69; RMSE = 19.351). Although this index successfully detected E. saccharina, many 

indices, not necessarily N indices, using different wavebands combinations can still be 

developed to estimate and monitor this pest. More importantly, as E. saccharina infestations 

are related to water stress, it is suggested that E. saccharina-Water Stress Indices are 

developed which can estimate E. saccharina, possibly with low errors (RMSE). 

 

On the other hand, one of the tested N indices, Modified NDVI (R1075-R730)/(R1075+R730) 

(Zhao et al., 2005), showed the highest significant correlation with N/Si ratio and was linearly 
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related to N/Si ratio (R2 = 0.67; RMSE = 1.508) (Figure 4.21b). Since, sugarcane with N/Si 

ratio greater than are 2 associated with increasing risk of E. saccharina borer damage this 

index can be used for early detection of E. saccharina damage or for identifying sugarcane 

that is prone to attack by E. saccharina in the South African sugarcane industry. However, 

several field based and canopy level studies are needed for quantification and validation of 

this as well as other indices which can estimate N/Si ratio in relation to E. saccharina and 

water stress incidence. 

 

Was estimation of leaf biochemical concentrations of N and Si in relation to E. saccharina 

and water stress incidence using hyperspectral data successful? 

 

The Red-edge Index (R740/R720) had the highest correlation coefficient and was linearly 

related to N concentration (R2 = 0.81; RMSE = 0.10263) hence this index could successfully 

estimate N concentration in relation to E. saccharina incidence and water stress incidence. 

However, no significant correlation between foliar Si concentration and N indices was found 

the most damaged variety N37, instead it significant correlation was found in the least 

damaged variety N25. The index (R750-R560)/(R750+R560) was linearly related to Si 

concentration (R2 = 0.53, RMSE = 0.11817) hence can be used to estimate Si concentration in 

relation to E. saccharina and water stress, but not on most damaged cane. 

 

Generally, the results from this study encourage an investigation into the potential of both 

field and airborne/spaceborne level hyperspectral data for detecting and discriminating E. 

saccharina infestations throughout the entire South African sugarcane production as this 

study was performed under controlled conditions such as soil nutrients, watering, and 

artificial infestation of E. saccharina.  

 

5.2 Recommendations  

 

As results from this feasibility study highlight that hyperspectral remote sensing using hand-

held spectroradiometers can provide a means of rapid assessment and monitoring of E. 

saccharina under controlled conditions, it is highly recommended that further research studies 

using the same ASD spectroradiometer are conducted at field and canopy levels in the whole 

South African sugarcane production. It is also recommended that these hand-held 

spectroradiometers are used in conjunction with GPS to map E. saccharina infestations in 
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sugarcane fields, without destructing the cane plants throughout the South African sugarcane 

production especially where E. saccharina infestations are a problem. 

 

Results also showed that modified NDVI (R2200-R2025)/(R2200+R2025) can successfully estimate 

and monitor E. saccharina in South African sugarcane. However, it is recommended that E. 

saccharina-Water Stress Indices are developed which can estimate E. saccharina, possibly 

with low errors (RMSE). Since sugarcane with N/Si ratio greater than 2 are associated with 

increasing risk of E. saccharina borer damage this index can be used for early detection of E. 

saccharina damage or for identifying sugarcane that is prone to attack by E. saccharina in the 

South African sugarcane production. It is highly recommended that, several wavebands and 

indices that can estimate N/Si ratio in relation to water stress incidence are developed in South 

African sugar production as this will provide a proper and rapid means of identifying 

sugarcane that is prone to attack by E. saccharina hence necessary steps such IPM measures 

can be undertaken on time.  

 

It also recommended that Imaging spectroscopy (airborne or satellite borne) with same 

narrow sensitive wavebands as this ASD spectroradiometer such as Hyperion are tested in 

South African sugarcane production which for assessment and monitoring of E. saccharina 

pest unbiased, non-destructively, cost-effectively, without time-consuming and repeatedly 

throughout the whole season in the industry. This will then enable identifying and mapping of 

E. saccharina infestations in the South African sugarcane production which will, in 

conjunction with biophysical parameters such soil characteristics and weather conditions, aid 

in modelling and prediction of potential E. saccharina infestation sites. 

 

It is recommended that airborne/spaceborne hyperpesctral imageries should be acquired in 

conjunction field based data captured using hand-held spectroradiometers as these are known 

to be reference or ground truth data for airborne/spaceborne imageries. That is, indices 

developed from non-imaging (spectroradiometry) data can be used to analyse images from 

these airborne/spaceborne sensors, hence monitoring of E. saccharina as well as other pests 

and diseases can be done in all fields throughout the entire South African sugarcane 

production. 

 

Finally, it is recommended that more studies regarding hyperspectral data in sugarcane health, 

such as E. saccharina detection, are investigated so that when the forthcoming South African 
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spaceborne imaging spectrometer, Sumbandila Sat (ZASat-002, South African first satellite 

(Scholes and Annamalai, 2006)) comes specific wavebands for different sugarcane 

applications will be known. Development of spectral library for sugarcane plants with regard 

to cane health will be of great importance throughout the entire South African sugarcane 

production.  
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Appendix A

Glasshouse trial
Nitrogen By Silicon By Variety 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
9 9 9 5 5 5 1 1 1 2 2 2 4 4 4 6 6 6 8 8 8 7 7 7 3 3 3

Rep1 V1 V3 V2 V1 V3 V2 V3 V1 V2 V2 V3 V1 V1 V3 V2 V1 V2 V3 V1 V2 V3 V3 V2 V1 V3 V1 V2
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
2 2 2 1 1 1 8 8 8 4 4 4 6 6 6 3 3 3 9 9 9 7 7 7 5 5 5

Rep2 V2 V1 V3 V1 V3 V2 V1 V2 V3 V3 V1 V2 V2 V1 V3 V2 V3 V1 V3 V2 V1 V1 V3 V2 V3 V2 V1

Design : Split Plot with N*S as whole plot treats and Variety as split plot treat

Whole plot treatments: Variety Nitrogen Silicon
1 N1S0
2 N1S1 V1 N 14 N1 30ppm S0 0 calcium silicate per pot 0ppm
3 N1S2 V2 N 25 N2 60ppm S1 53g calcium silicate per pot 100ppm 225 t/ha
4 N2S0 V3 N 37 N3 90ppm S2 106gcalcium silicate per pot 200ppm 450 t/ha
5 N2S1
6 N2S2
7 N3S0
8 N3S1
9 N3S2
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Appendix B 
 

Results of Factorial ANOVA showing significant differences in the foliar biochemical concentrations (N 
concentration, Si concentration and N/Si ratio) for 7 months old cane as influenced by independent variables (N 
treatment, Si treatment and variety) as well as their interactions.  

Dependent Variable: N           

Source 
Type III Sum of  
Squares df 

Mean 
Square F Sig. 

N Treatment 0.185348 2 0.092674 3.762707 0.036186 
Si Treatment 0.012193 2 0.006096 0.247519 0.782488 
Variety 0.523748 2 0.261874 10.63248 0.000393 
N Treatment * Si Treatment 0.071763 4 0.017941 0.728421 0.580373 
N Treatment * Variety 0.064474 4 0.016119 0.654436 0.628833 
Si Treatment * Variety 0.08563 4 0.021407 0.869173 0.495092 
N Treatment * Si Treatment * Variety 0.052948 8 0.006619 0.268722 0.970788 
        
Dependent Variable: Si       

Source 
Type III Sum of 

Squares df 
Mean 

Square F Sig. 
N Treatment 0.112 2 0.056 1.795 0.185 
Si Treatment 1.018 2 0.509 16.26 0.000001 
Variety 0.006 2 0.003 0.095 0.91 
N Treatment * Si Treatment 0.379 4 0.095 3.027 0.035 
N Treatment * Variety 0.031 4 0.008 0.247 0.909 

Si Treatment * Variety 0.114 4 0.029 0.915 0.47 
N Treatment * Si Treatment * Variety 0.361 8 0.045 1.442 0.225 
        
Dependent Variable: N/Si Ratio       

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 12.32281 2 6.161403 1.028097 0.371269 
Si Treatment 64.85393 2 32.42696 5.410789 0.010566 
Variety 18.7041 2 9.352049 1.56049 0.22839 
N Treatment * Si Treatment 36.26988 4 9.067471 1.513005 0.226365 

N Treatment * Variety 5.95297 4 1.488242 0.248329 0.908145 
Si Treatment * Variety 32.85576 4 8.213941 1.370585 0.270302 
N Treatment * Si Treatment * Variety 48.17437 8 6.021796 1.004802 0.455301 
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Appendix C 
 
Results of Factorial ANOVA showing significant differences in the foliar biochemical concentrations (N 
concentration, Si concentration, N/Si ratio and water content) on 10 months old cane as influenced by factors (N 
treatment, Si treatment and variety) as well as their interactions. 

Dependent Variable: N           

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 0.734708 2 0.367354 7.176002 0.003167 
Si Treatment 0.25878 2 0.12939 2.527547 0.098583 
Variety 0.181338 2 0.090669 1.771154 0.189337 
N Treatment * Si Treatment 0.166525 4 0.041631 0.813237 0.52783 
N Treatment * Variety 0.131369 4 0.032842 0.641552 0.637496 
Si Treatment * Variety 0.11188 4 0.02797 0.546372 0.703155 
N Treatment * Si Treatment * 
Variety 0.200654 8 0.025082 0.489954 0.852519 
        
Dependent Variable: Si       

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 0.005393 2 0.002696 0.622222 0.544271 
Si Treatment 0.104604 2 0.052302 12.06966 0.00018 
Variety 0.042804 2 0.021402 4.938889 0.014862 
N Treatment * Si Treatment 0.017919 4 0.00448 1.033761 0.407947 
N Treatment * Variety 0.012519 4 0.00313 0.722222 0.584344 
Si Treatment * Variety 0.008341 4 0.002085 0.481197 0.749273 
N Treatment * Si Treatment * 
Variety 0.02677 8 0.003346 0.772222 0.630045 
        
Dependent Variable: N/Si Ratio       

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 29.99677 2 14.99838 2.432276 0.106845 
Si Treatment 40.20004 2 20.10002 3.259604 0.053944 
Variety 11.30346 2 5.651728 0.916536 0.411987 
N Treatment * Si Treatment 23.90063 4 5.975157 0.968986 0.440602 
N Treatment * Variety 14.66313 4 3.665783 0.594477 0.669637 
Si Treatment * Variety 13.51957 4 3.379894 0.548115 0.701931 
N Treatment * Si Treatment * 
Variety 26.065 8 3.258125 0.528368 0.824647 
        
Dependent Variable: Water Content       

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 1.814815 2 0.907407 0.024987 0.975345 
Si Treatment 72.48148 2 36.24074 0.99796 0.381824 
Variety 95.81481 2 47.90741 1.319225 0.284028 
N Treatment * Si Treatment 79.2963 4 19.82407 0.545895 0.70349 
N Treatment * Variety 145.6296 4 36.40741 1.00255 0.423417 
Si Treatment * Variety 235.6296 4 58.90741 1.622132 0.197471 
N Treatment * Si Treatment * 
Variety 36.25926 8 4.532407 0.124809 0.997644 
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Appendix D 
 

Results of Factorial ANOVA showing significant differences in the foliar biochemical concentrations (N 
concentration, Si concentration, N/Si ratio, water content) and E. saccharina damage on 12 months cane age as 
influenced by independent variables (N treatment, Si treatment and variety) as well as their interactions. 
Dependent Variable: N           

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 0.52323 2 0.261615 5.622184 0.009094 
Si Treatment 0.006925 2 0.003462 0.074409 0.928481 
Variety 0.646844 2 0.323422 6.950433 0.003673 
N Treatment * Si Treatment 0.051556 4 0.012889 0.276989 0.890255 
N Treatment * Variety 0.048797 4 0.012199 0.262165 0.899611 
Si Treatment * Variety 0.064955 4 0.016239 0.348977 0.8424 
N Treatment * Si Treatment * Variety 0.263282 8 0.03291 0.707252 0.68273 
        
Dependent Variable: Si       

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 0.050948 2 0.025474 2.858687 0.0748 
Si Treatment 0.183715 2 0.091857 10.30819 0.000472 
Variety 0.127215 2 0.063607 7.137988 0.003247 
N Treatment * Si Treatment 0.046663 4 0.011666 1.309123 0.29168 
N Treatment * Variety 0.029163 4 0.007291 0.818163 0.524885 
Si Treatment * Variety 0.004363 4 0.001091 0.122402 0.973223 
N Treatment * Si Treatment * Variety 0.051393 8 0.006424 0.720906 0.67161 
        
Dependent Variable: N/Si Ratio       

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 50.86255 2 25.43128 11.59103 0.000232 
Si Treatment 46.798 2 23.399 10.66476 0.000386 
Variety 12.93092 2 6.465459 2.946816 0.069567 
N Treatment * Si Treatment 12.70438 4 3.176096 1.447596 0.245615 
N Treatment * Variety 9.11895 4 2.279737 1.039055 0.405371 
Si Treatment * Variety 5.224169 4 1.306042 0.595266 0.669093 
N Treatment * Si Treatment * Variety 11.40264 8 1.42533 0.649635 0.729601 
        
Dependent Variable: Water Content       

Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 84.48148 2 42.24074 3.482443 0.045134 
Si Treatment 28.48148 2 14.24074 1.174046 0.324401 
Variety 330.037 2 165.0185 13.60458 8.19E-05 
N Treatment * Si Treatment 228.0741 4 57.01852 4.700763 0.005213 
N Treatment * Variety 21.18519 4 5.296296 0.436641 0.780954 
Si Treatment * Variety 54.51852 4 13.62963 1.123664 0.366081 
N Treatment * Si Treatment * Variety 129.5926 8 16.19907 1.335496 0.268813 
        
Dependent Variable: E. saccharina 
damage       
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Source 
Type III Sum of 
Squares df 

Mean 
Square F Sig. 

N Treatment 181.1481 2 90.57407 0.164232 0.849386 
Si Treatment 10785.59 2 5392.796 9.778416 0.000639 
Variety 10577.37 2 5288.685 9.589638 0.000713 
N Treatment * Si Treatment 1771.963 4 442.9907 0.803247 0.53384 
N Treatment * Variety 4277.852 4 1069.463 1.939189 0.132688 
Si Treatment * Variety 2186.741 4 546.6852 0.99127 0.429129 
N Treatment * Si Treatment * Variety 2906.704 8 363.338 0.658818 0.722157 
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