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FREQUENTLY USED ABBREVIATIONS 

AFE = age at first egg 

ASM = age at sexual maturity (≈ 50% egg production) 

FSH = Follicle Stimulating Hormone 

LH = Luteinizing Hormone 

MOT = mean oviposition time 

PIP = photoinducible phase 

SD = standard deviation 

SEM = standard error of the mean 

UV-A = ultraviolet radiation between 320 and 400 nm 

 

SYNONYMS 

Dawn, sunrise, start of photoperiod, dark-light interface 

Dusk, sunset, end of photoperiod, light-dark interface 

Intermittent lighting, interrupted lighting 

Light intensity, illuminance 

Long day, stimulatory photoperiod 

Photoperiod, period of light, daylength, day 

Scotoperiod, period of darkness, night 

Short day, non-stimulatory photoperiod 

 

LIGHTING REGIMEN DESCRIPTIONS 

D = dark period 

L = light period 

Conventional regimen: e.g., 8L:16D = 8 h light, 16 h darkness 

Symmetrical interrupted regimen: e.g., 4(3.5L:2.5D) = repeating cycles of 3.5 h light and 

2.5 h darkness 

Asymmetrical interrupted regimen: e.g., 8L:4D:2L:10D = 8 h light, 4 h darkness, 2 h light, 

10 h darkness 
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A1. Poultry lighting research pre-1983 

 

There has been an awareness for at least four centuries that lighting can influence avian 

reproductive physiology; Dutch bird-netters in the seventeenth century kept captive wild 

birds on short days during spring and summer months to delay vernal bird song, and then 

transferred them to long days at the end of summer so that they could be used as decoys to 

facilitate the netting of autumn migrants (Hoos, 1937). However, the first demonstration of 

the effects of artificial lighting on the reproductive performance of domestic fowl was 

almost certainly a series of three experiments conducted between 1889 and 1893 in 

America (Waldorf, 1920). Dr Waldorf, a general practitioner in Buffalo, New York State, 

observed improvements in egg production, fertility, and hatchability in domestic hens that 

had been given constant a 16.5-h photoperiod from gas-burning lanterns during the short 

days of winter. The use of artificial lighting during winter to improve egg production 

appears to have been used practically from very early in the 20th century. In 1907, Prof. 

Halpin of the Wisconsin College of Agriculture related that a farmer in Michigan had been 

using the technique for several years. The farmer had discovered the benefits by accident 

when he noticed that the hens in the pen next to his horses, which were fed daily at 5.00 

am, laid more eggs than hens in the other pens (Curtis, 1920). The first formal research 

into lighting for laying hens was conducted by George Shoup at the Washington State 

College of Agriculture, Puyallup between 1912 and 1917 (Shoup, 1920). Subsequently, 

many American agricultural experiment stations contributed to our knowledge of 

supplemental lighting (e.g., Ogle and Lamoreux, 1942; Callenbach et al., 1943; Byerly and 

Knox, 1946; Dobie et al., 1946). 

Photoperiod: Observations of seasonal variation in sexual maturation and egg 

production (Whetham, 1933; Hutchinson and Taylor, 1957; Morris and Fox, 1958a; Kinder 

and Funk, 1960) prompted studies of the effects of changing photoperiod, and the findings 
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still form the basis of most of the commercial lighting programmes in use today (e.g., 

Sykes, 1956; Marr et al., 1962; Hutchinson and Taylor, 1957; Morris and Fox, 1958b, 

1960, 1961, King, 1959, 1961; Bowman, 1960; Bowman and Jones, 1961, 1963, 1964, 

1966; Smith and Noles, 1963; Morris, 1962, 1967a; Morris et al., 1964; Lillie and Denton, 

1965). Much of this work was conducted by Trevor Morris and co-workers at the 

University of Reading. 

Illuminance: The first studies of the effect of light intensity on reproductive 

performance were conducted in America (Nicholas et al., 1944; Dobie et al., 1946; 

Ostrander et al., 1960), but the general response of growing pullets and laying hens to 

illuminance was subsequently defined at the University of Reading by Morris and Owen 

(1966) and Morris (1967b).  

Ultraviolet radiation: There have been several reports of the effect of UV-A radiation 

on the prevention of vitamin D3 deficiency (e.g., Mussehl and Ackerson, 1931), ocular 

integrity (Barnett and Laursen-Jones, 1976), egg production (e.g., Titus and Nestler, 1935), 

and shell quality (e.g., Hart et al., 1925) in domestic fowl, but there was none for the effect 

of UV-A on the photosexual response.  

Interrupted lighting: Originally, the asymmetrical form of interrupted lighting 

(regimens that have more than one period of light and darkness each 24 h) was used by 

physiologists to investigate various aspects of the avian photoperiodic response; for 

example, the minimum amount of illumination required to support satisfactory levels of 

egg production (e.g., Dobie et al., 1946; Wilson and Abplanalp, 1956) and the photo-

inducible phase (van Tienhoven and Ostrander, 1973). Subsequently, rising energy and 

feed prices triggered a renewal of interest in both asymmetrical and symmetrical regimens 

for their economic benefits to commercial egg production (e.g., Snetsinger et al., 1979; 

Nys and Mongin, 1981; Sauveur and Mongin, 1983; Lewis and Perry, 1990a,b; Morris et 

al., 1988, 1990; Morris and Butler, 1995). 
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A2. Poultry lighting research conducted by Peter Lewis since 1983 

 

 

The commentary describes the principle findings from studies of the involvement of light 

in the photosexual responses of egg-type and broiler breeder female domestic fowl 

conducted at the Universities of Bristol (UK), Guelph (Canada), Natal, and KwaZulu-Natal 

(South Africa) since 1983. I conducted the early research as a Ph.D. student, but since 

1987 my involvement with research has been as an Honorary Research Fellow (Bristol 

1993-1995, Natal 2001-2003, KwaZulu-Natal 2003 to present), Honorary Senior Research 

Fellow (Reading 1996-2002), Visiting Fellow of Medicine (Bristol 2000-2003), and 

Adjunct Professor (Guelph 2003-2006). 

The initial investigations, conducted within the School of Veterinary Science in the 

Faculty of Medicine at the University of Bristol, were of the responses of egg-laying hens 

to interrupted lighting regimens, and these led to the award of a Ph.D. degree by the 

University of Bristol in 1987. Subsequently, the focus of research at Bristol changed from 

interrupted lighting to the photic control of sexual maturation in egg-type pullets, 

culminating in the creation of predictive models for age at first egg in pullets maintained 

on constant photoperiods, and those given a single change or two opposing changes in 

photoperiod. Whilst at Bristol, studies were also made of the interacting role of dietary 

iodine in the ovulatory cycle (Lewis, 2004; Perry et al., 1989, 1990), correlations of water 

and fat contents in poultry carcasses and the creation of a model to predict fat content from 

dry matter (Lewis and Perry, 1987a, 1991a), infertility in laying hens (Long and Lewis, 

1990; Lewis and Long, 1992), performance and sensory attributes of broiler and ‘Label 

Rouge’ genotypes and their production systems (Lewis et al., 1997a; Farmer et al., 1991, 

1992, 1997), the role of lighting and UV-A radiation in the performance and behaviour of 

intact male turkeys (Lewis et al., 1998b,c, 2000c, Moinard et al., 2001, Sherwin et al., 
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1999a,b) and laying hens (Lewis et al., 2000a), and the replacement of light with noise 

(Lewis and Perry, VIII European Poultry Conference, 1990); comments on these studies 

have not been included in this commentary. 

The research in the Animal and Poultry Science Department at the University of Guelph 

centred on the role of photoperiod, illuminance, and light colour during the rearing period 

in the timing of sexual maturation and subsequent egg production in brown-egg and white-

egg strains of laying hen. 

Current work in the Discipline of Animal and Poultry Science at the University of 

KwaZulu-Natal, formerly University of Natal, has established that broiler breeders exhibit 

photorefractoriness and demonstrated the necessity for lighting regimens to be designed 

specifically for broiler breeders. The work has also shown the significant modifying effect 

of growth rate on the broiler breeder’s photosexual response, and led to the creation of a 

model to predict age at sexual maturity from both lighting and body weight inputs. 

Studies of some of the mechanisms involved in the photosexual response have also been 

conducted at the University of KwaZulu-Natal. These included a possible role for 

melatonin as a transmitter of photoperiodic information to the hypothalamus, responses of 

egg-type hybrids to temporary transfers to long days, and the potential to make short days 

mildly stimulatory by supplementing them with radio noise.  

 

Key publications 

• Conclusions that the effect of a constant photoperiod on age at first egg in egg-type 

pullets is better described by a hinge than by a curvilinear model, and that 10 h and not 

16 to 17 h induces the earliest maturity (Lewis et al., 1998a). 

• Creation of a model to predict age at first in egg-type pullets given a single change in 

photoperiod (Lewis et al., 2002). 
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• An hypothesis that an initial change in photoperiod alters a pullet’s physiological age so 

it responds to a subsequent opposing change in photoperiod, in terms of rate of sexual 

maturation, as if the change had been made at the bird’s ‘physiological age’ and not at 

its chronological age (Lewis et al., 2003b). This hypothesis is currently being modified 

to explain the response of pullets to two opposing changes in photoperiod given within 

30 d of each other (pp. 16-18). 

• The finding that sexual maturity is not advanced in egg-type pullets following transfer 

to a stimulatory photoperiod at a young age, despite an elevation in plasma LH 

concentration, because there is no photoinduced increase in FSH secretion (Lewis et al., 

1998d), and that this is in some way a consequence of low circulating concentrations of 

oestradiol (Lewis et al., 2001a). 

• A definition of the effect of illuminance on age at first egg in egg-type pullets (Lewis et 

al., 1999a). 

• The demonstration that melatonin release only increases in the scotoperiod that is 

interpreted as the bird’s night and not in darkness per se (Lewis et al., 1989). 

• The conclusion that broiler breeders exhibit photorefractoriness (Lewis et al., 2003a). 

• The demonstration that the response of broiler breeders to a photoperiod between 10 and 

13 h is markedly different from egg-type hybrids (Lewis et al., 2004a), and the creation 

of a model to predict age at first egg in broiler breeders maintained on a constant 

photoperiod (Lewis, 2006).  

• Creation of a model to predict sexual maturity in broiler breeders given a single change 

in photoperiod (Lewis et al., 2007g). 

• The demonstration that broiler breeders do not respond positively to increments from a 

mildly to a fully stimulatory photoperiod during the laying cycle (Lewis et al., 2007f). 

 



 x

Manuscript under review 

• Description of photoperiodic response curves for LH release and age at first egg in 

broiler breeders (pp. 6-7). 
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1. PHOTOSEXUAL MECHANISMS 

 

1.1 Acquisition of photosensitivity 
 
In an earlier investigation of the response of domestic fowl to photostimulation at very 

young ages, changes in plasma LH concentration and ovarian and oviducal growth, but not 

age at sexual maturation, were measured in typically grown dwarf broiler breeders (Dunn 

et al., 1990). A significant increase in plasma LH was noted 4 d after a transfer from 8 to 

20 h at 3 weeks, but photostimulation failed to induce significant oviducal growth before 

11 weeks and ovarian development before 15 weeks, indicating that the hypothalamo-

pituitary axis was only partly functional at 3 weeks.  

It was subsequently shown that, despite inducing significant rises in plasma LH 

concentration within 7 d of a transfer to long days, increments in photoperiod given to egg-

type pullets at 5 or 6 weeks of age did not significantly advance AFE, and complete 

photoresponsiveness within a group of birds was not achieved until about 9 weeks (Lewis 

et al., 1994b, 1997b, 1998d, 2001a, 2002). In contrast, photoperiodically induced sexual 

maturation in typically managed broiler breeders was still minimal at 10 weeks, even 

though significant rises in plasma LH had been detected within 2 d of photostimulation, 

and acceleration of sexual maturity was not uniformly achieved in a flock of broiler 

breeders until 17 or 18 weeks (Lewis et al., 2003a, 2005c) (Figure 1.1). 

In the period between the first and last bird becoming photoresponsive (between 6 and  

9 weeks in egg-type and between 10 and 18 weeks in broiler breeders), a flock comprises 

two types of bird (Lewis et al., 2002, 2007g); one has its sexual development accelerated 

by a transfer to long days (responders) and the other matures as if held on long days (non 

responders). The mean AFE of a flock therefore depends on the proportion of birds within 

each category. 
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Figure 1.1 Effect of age at transfer from 8 to 16 h on mean change in age at sexual 
maturity in modern egg-type pullets (broken line) and female broiler breeders grown to a   
2 kg body weight at 20 weeks (solid line) relative to constant 8-h controls (horizontal 
dotted line). Data from Lewis et al. (2002 and 2007g). 
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Figure 1.2 A hinge analysis to determine the mean age (+) for the acquisition of 
photosensitivity in broiler breeder females grown to a 2.0 kg body weight at 20 weeks 
when the first bird in a group matures at A and the last bird in a group matures at B (Lewis 
et al., 2007g). 
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Lewis and Morris (2004) and Lewis et al. (2002, 2007g) assumed that the age at which 

different individuals in a flock acquire photosensitivity forms a normal distribution, with 

the proportion of responders at a given age determined by a mean and SD. Examples of the 

calculations for egg-type and broiler breeder pullets were given in Lewis et al. (2002) and 

Lewis et al. (2007g) respectively, and an example of the hinge analysis used to determine 

the mean for broiler breeders is shown in Figure 1.2.  

 

1.2 Photorefractoriness 

The difference in the ages at which egg- and meat-type fowl acquire photosensitivity is, in 

part, a consequence of a disparity in the degree to which each genotype exhibits 

photorefractoriness; a condition in which an animal is unable to respond positively to an 

otherwise stimulatory photoperiod. Intense genetic selection for egg production has 

virtually eliminated the condition from modern egg-laying pullets (Morris et al., 1995), but 

it is still manifest in broiler breeders (Lewis et al., 2003a). Although modern strains of 

egg-laying domestic fowl minimally exhibit photorefractoriness, they still need about        

5 weeks to become photoresponsive; which probably reflects the time required for the 

hypothalamo-pituitary-ovarian to reach maturation (Lewis et al., 2001a). Whilst juvenile 

photorefractoriness can be dissipated in exotic avian species and domestic turkeys by a     

2-month exposure to short days (Follett, 1991; broiler breeders, in contrast, are not fed ad 

libitum, and the consequential curb on growth is associated with a much slower acquisition 

of photosensitivity and a 2-d delay in mean AFE for each 100-g reduction in body weight 

at 20 weeks of age (Lewis, 2006; Lewis and Gous, 2006a,b; Lewis et al., 2005a,b, 

2007c,g). Support for the view that the disparity between the rates at which turkeys and 

broiler breeders dissipate photorefractoriness is due to the difference in their feeding 

systems (turkeys full-fed, broiler breeders restrict-fed), and not to any genetic difference 

between the species for the time required to become photosensitive, was provided by 
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Lewis et al. (2007c). In a study, in which the degree of feed-restriction was markedly 

relaxed to allow the birds to reach a mean body weight of 2.0 kg for photostimulation at  

75 d of age, mean AFE was advanced by 82 d relative to constant short-day controls. 

However, AFE was only advanced by 34 d when the birds were fed ad libitum and 

transferred to long days at 45 d, suggesting that broiler breeders, like other species, may 

also require about 2 months of short days to dissipate photorefractoriness when fed          

ad libitum. 

A further factor affecting the age at which a broiler breeder achieves photosensitivity is 

the photoperiod to which it is exposed during the rearing phase. Farner and Follett (1966) 

suggested that there was a direct correlation between the rate of dissipation of photo-

refractoriness and the rearing daylength; however, Lewis et al. (2004a) concluded that, 

rather than the relationship being linear, it was inversely proportional to the stimulatory 

competence of the photoperiod. Thus, broiler breeders maintained on very long days 

mature before birds held on shorter though more stimulatory photoperiods (Figure 2.3). 

 

1.3 Maturation of the hypothalamo-pituitary-ovarian axis 

The significant increase in LH release observed in pullets following photostimulation at 

various ages between 3 and 6 weeks, be they egg- or meat-type genotypes, but minimal 

effect on the timing of sexual maturation, indicated that the neuroendocrine mechanisms 

which control gonadotrophin release and ovarian follicular development are not fully 

functional at these young ages (Dunn et al., 1990; Lewis et al. 1994b, 1997b, 1998d). It 

was then demonstrated that photoperiodic increments given to modern egg-type pullets at  

8 or 9 weeks induce significant increases in both LH and Follicle Stimulating Hormone 

(FSH) secretion and advance gonadal development; but that photostimulation at 5 or          

6 weeks fails to have any effect on FSH release or sexual maturation (Lewis et al., 1998d, 

1999b) (Figure 1.3).  It therefore appeared that stimulation of FSH release was essential for 
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Figure 1.3 Changes in plasma LH (○) and FSH (●) concentrations in egg-type pullets 
transferred from an 8 to a 14-h photoperiod at 35 or 56 d of age (from Lewis et al., 1998d). 
 

a successful photoperiodic response. Dunn (1997) questioned whether oestrogen was a 

required for maturation of photoinduced gonadotrophin responses. Subsequently, Lewis et 

al. (2001a) demonstrated that increasing plasma oestrogen levels in egg-type pullets, by 

injecting oestradiol benzoate on alternate days from 6 d before to 6 d after a transfer from  

8 to 16 h at 34 d, significantly raised plasma LH concentration and tended (P=0.15) to 

accelerate gonadal maturation. In a second study, exogenous oestradiol increased 

circulating concentrations of both LH and FSH but depressed pituitary LH and FSH 

contents in pullets stimulated at 34 d (Dunn et al., 2003). Surprisingly, exogenous 

oestradiol in the first study had no effect on plasma gonadotrophin concentrations when 

photostimulation occurred at 44 or 54 d, and significantly delayed AFE relative to birds 

photostimulated but injected with vehicle (arachis oil) only when given at 54 d. In the 

second study, oestradiol blocked photoinduced LH and FSH release at 54 d but did not 

block the stimulatory effect of photostimulation on pituitary FSH content. 
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1.4 Photoperiodic response 

Photosensitive domestic fowl respond to a transfer from a non-stimulatory short day to a 

stimulatory long day by increasing their secretion of gonadotrophins and then, in response 

to elevated plasma FSH and to a lesser extent increased LH release, initiate rapid gonadal 

development. Although the effect of a transfer from short to long days on gonadotrophin 

release has been studied in egg-type and meat-type genotypes of fowl (e.g., Wilson and 

Cunningham, 1980; Dunn and Sharp, 1990), the studies have not been in depth nor has 

photostimulation been at ages typically employed by the commercial poultry industry. 

Rates of gonadal growth have been measured in male quail (e.g., Follett and Maung, 1978; 

Follett, 1981; Urbanski and Follett, 1982); but there have been no studies of the effect of 

transfers at commercially typical ages to different final photoperiods on sexual maturation 

in female fowl, and the relationship between the response curves for LH release and AFE 

has not been established.  

Unpublished data from a study conducted by the author at the University of KwaZulu-

Natal were used to produce photoperiodic response curves for changes in plasma LH 

concentration 4 d after photostimulation (Figure 1.4) and mean AFE (Figure 1.5) in broiler 

breeder females photostimulated at 20 weeks. It was concluded that the responses were 

similar, that the point at which the responses began to rise steeply (critical daylength) was 

9.5 h, and that the asymptote (saturation daylength) was 13.h in each curve. Functionally, 

however, the minimum final photoperiod to achieve a significant increase in LH secretion 

and an advance in AFE was between 11 and 11.5; hence, the minimum daylength to which 

commercial broiler breeders should be transferred when they are photostimulated. 
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Figure 1.4 Regression of mean change (±SEM) in plasma LH concentration between 3 d 
before and 4 d after photostimulation on final photoperiod for broiler breeders grown to a 
mean body weight of 2.1 kg at 140 d and transferred from an 8-h photoperiod at 144 d (●), 
and for restrict-fed normal size broiler breeders in a preliminary study (○), and from Dunn 
and Sharp (1990) for ad-libitum fed (□) and restrict-fed (∆) dwarf broiler breeders 
photostimulated at 56 d. 
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Figure 1.5 Regression of advance in mean age at first egg (±SEM) (●) and Lewis and 
Gous (2006b) (○) on final photoperiod for broiler breeders grown to a mean body weight 
of about 2.1 kg at 140 d and transferred from an 8-h photoperiod at 140 or 144 d. 
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1.5 Hormonal changes as predicators of sexual maturation 

In previous sections we have seen that photostimulation at very young ages induces a 

significant increase in plasma LH concentration but has minimal influence on sexual 

maturation; yet photostimulation at older ages, when a bird is photosensitive, significantly 

advances AFE but, due to the negative feed back of rising gonadal steroid concentrations, 

has a markedly reduced effect on LH secretion. Classically, changes in plasma LH 

concentration have been used to measure a bird’s response to photostimulation, but, 

because of these contradictory responses, photoinduced changes in plasma LH have been 

poor predictors of AFE in both egg- and meat-type genotypes (Lewis et al., 1994b, 1998d, 

2005c). Notwithstanding the unquestionable poor correlation of change in plasma LH with 

change in mean AFE when groups of birds have been transferred to a stimulatory 

photoperiod at different ages, the unpublished findings of the study of the photoresponse 

curves for plasma LH concentration and AFE in photosensitive broiler breeders transferred 

to various final photoperiod at 20 weeks (discussed above and Figures 1.3 and 1.4) showed 

that there was a significant regression (P=0.015) of change in plasma 4 d after 

photostimulation and advance in mean AFE. 

No sensitive and specific radioimmunoassay for chicken FSH was available at the time 

of the initial study  of the photoresponse in egg-type pullets conducted by the author 

(Lewis et al., 1994b), but its subsequent availability (Krishnan et al., 1993) permitted 

measurements of FSH in plasma samples retained from earlier experiments. The findings 

of these assays showed that changes in plasma FSH concentration during the 14 d after 

egg-laying strains of pullets had been transferred to a stimulatory photoperiod were 

significantly correlated with (P<0.001), and much more accurate predictors of, mean AFE 

than previously reported changes in LH (P=0.068) (Lewis et al., 1998d, 1999b). However, 

changes in plasma FSH within 2 d of broiler breeder pullets being transferred from 8 to   

16 h at 7 or 18 weeks were poorly correlated (P=0.94) with differences in mean AFE 
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(Lewis et al., 2005c). Notwithstanding that significant change in plasma LH had been 

detected within 2 d of photostimulation, the second sampling may simply have been taken 

too soon for rising FSH secretion to be detected (layer strains were sampled after 14 d), 

especially as they must have risen eventually in the birds given a photoperiodic increment 

at 18 weeks to have advanced mean AFE by 5 weeks (Lewis et al., 2003a). This may also 

have been the reason, in a separate study, for the absence of a significant correlation 

between change in mean AFE in two strains of egg-laying hybrid and change in plasma 

FSH induced by a change in illuminance at 9 or 16 weeks (Lewis et al., 2005d). 

 

1.6 Melatonin and its involvement in photoperiodism 

Melatonin is a hormone synthesized in the pineal gland and retina of birds during the hours 

of darkness in response to the activity of serotonin-N-acetyltransferease (Binkley et al., 

1973). During the day, the light-induced production of dopamine within the retina 

suppresses the production of serotonin in the photoreceptors and, as a consequence, 

suppresses the biosynthesis of melatonin. The switch between day and night mode, which 

takes place over a remarkably narrow illuminance range of 0.1 to 4 lux (Morgan et al., 

1995), and the existence of melatonin receptors in the hypothalamus and anterior pituitary 

(Murayama et al., 1997, 1998) makes the circadian cycle of melatonin release a potential 

provider of photoperiodic time measurement to the hypothalamo-pituitary axis. 

Lewis et al. (2006) tested the hypothesis that modulations of the melatonin diurnal 

cycle, without a change in the lighting regimen, could effect changes in the rate of sexual 

maturation in egg-type pullets. Exogenous melatonin was incorporated in an experimental 

diet and access to it or a normal diet restricted to the final 7 h of a 14-h photoperiod to raise 

circulating melatonin concentration in experimental birds and hopefully, despite the 

illumination, dupe them into believing that this phase of the light-dark cycle formed part of 

their night; thus inducing it to respond as if to a 7L:17D regimen rather than the actual 
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14L:10D. The birds were switched between supplemented and normal diets at different 

times to mimic increases and decreases in photoperiod at various ages. Data from literature 

for short-term studies had indicated that a dose of 25 mg/kg of diet would achieve normal 

nocturnal physiological concentrations of circulating melatonin. However, the prolonged 

feeding of the experimental diet in this study led to atypically high levels of plasma 

melatonin during the first 7 h of illumination; a period when the birds were without feed 

and when circulating melatonin should have been minimal. It was postulated that the 

abnormally high concentrations of melatonin at a time when light-induced dopamine 

would normally have suppressed its biosynthesis were caused by a combination of 

endogenous and exogenous melatonin accumulating to such a level that the liver was 

unable to remove it before the experimental diet again became available; and so the 

constant elevation of melatonin would have prevented any interpretation of a change in 

photoperiod when experimental and normal diets were switched. Although the study failed 

to unequivocally demonstrate that melatonin provides photoperiodic information to the 

hypothalamus, the 6 to 11-d significantly later maturity of all groups given exogenous 

melatonin, relative to controls given 14 h illumination and normal diets throughout the 

trial, indicated that melatonin does exert some influence over hypothalamic activity and 

gonadal development. 

Studies of the diurnal rhythm of melatonin release have invariably involved the use of 

conventional light-dark cycles, and so the effects of day and night on its synthesis were 

synonymous with the effects of light and darkness. This conundrum was elucidated by 

Lewis et al. (1989) in a study of melatonin release in laying hens exposed to either a 

conventional 14L:10D or an asymmetrical interrupted 8L:4D:2L:10D regimen. Blood 

samples were taken 6, 11, 13 h after the start of the main photoperiod and 3 h after the start 

of the 10-h scotoperiod and, at each sampling time, there was no significant difference in 

plasma melatonin concentration between the solidly and intermittently illuminated groups 
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Figure 1.6 Plasma melatonin concentrations at 6, 11, and 13 h after the start of the main 
photoperiod and 3 h after the start of the 10-h scotoperiod in hens subjected to a 14L:10D 
(●) or an 8L:4D:2L:10D (○) lighting regimen (Lewis et al., 2001b). 
 

(Figure 1.6). In particular, the similarity of plasma melatonin concentrations 11 h after 

dawn, when the intermittently illuminated birds were in darkness and the conventional 

birds were in light, demonstrated that melatonin synthesis is only elevated during 

scotoperiods that are interpreted as night and not during darkness per se, and that the 

diurnal rhythm of synthesis is in response to the bird’s subjective day and night. 

The addition of an 8-h period of very dim light (0.1 lux) to a normal 7-lux photoperiod 

advanced the melatonin rhythm of 24-week old domestic pullets by 5 h when it preceded 

the main photoperiod, and retarded the rhythm by 5 h when it followed the photoperiod 

(Lewis et al., 2001b). In contrast, a 2.4-h earlier mean oviposition time for birds given the 

dim light before the main photoperiod, but no difference relative to un-supplemented 

controls when given after the main 8 h, showed that the biological clocks controlling 

melatonin synthesis and the ovulatory cycle are differentially affected by changes in 

lighting conditions. 
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1.7 Carryover effect 

Carryover effect and flywheel effect are terms for a phenomenon that allows photoinduced 

activity of the hypothalamo-pituitary-gonadal axis to continue after a period of stimulatory 

illumination has ended (Farner et al., 1953). The phenomenon was successfully 

demonstrated in white-crowned sparrows (Follett et al., 1967) and quail (Follett et al., 

1981) by mixing short and long days. In the quail, ovarian and oviducal weights were only 

slightly lower in experimental birds given alternating long and short days, or one long day 

followed by three short days, than in long-day controls. In another study, testicular mass in 

house sparrows previously exposed to a stimulatory photoperiod was unchanged   4 weeks 

after they had been transferred to complete darkness (Farner et al., 1977). 

Lewis (1987) concluded from his studies of asymmetrical interrupted lighting regimens 

that the carryover effect explained why laying hens were as responsive to such 

programmes as they were to the fully illuminated equivalents. For example, locomotor 

rhythms, diurnal feeding activity, melatonin release, rates of lay, phase setting of the 

ovulatory cycle, and oviposition timing for birds given an 8L:4D:2L:10D regimen were 

similar to those for birds given a conventional 14L:10D cycle. 

Lewis et al. (1997c) studied the phenomenon in egg-type growing pullets using a 

continuously repeating ‘saw-tooth’ cycle of twelve 30-min increments in photoperiod 

between 8 and 14 h and a single abrupt decrease back to 8 h; controls were maintained on 

8, 11 (mean daily illumination for 8 to 14 h birds) or 14 h. Mean AFE for the experimental 

birds was similar to constant 14-h controls, 7 d later than birds held on 11 h, but 12 d 

earlier than those maintained on 8 h. The findings showed that the birds neither responded 

to the experimental regimen as one of continuously increasing photoperiods nor as a 

constant photoperiod equivalent to the mean daily illumination. Instead they showed that 

once a bird has received a maximum of 14 h (repeated every 14 d), it does not need to be 

maintained on it for gonadal development to proceed as if it had been.  
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1.8 Photoinducible phase 

Birds are only sexually responsive to light for a limited period of the light-dark cycle 

termed the photoinducible phase (PIP); a period within the internal biological cycle when 

the hypothalamus can be excited by light (Pittendrigh, 1966). The first evidence of the 

involvement of circadian rhythms in avian photosensitivity came from resonance 

experiments conducted by Hamner (1963) in male house finches. Subsequently, Follett & 

Sharp (1969) demonstrated a PIP of about 4-h duration lying 12-16 h after the beginning of 

a main 6-h photoperiod in quail given a 15-min light pulse at various locations during their 

18-h night. The amount of illumination required during PIP to induce maximum testicular 

growth in quail has been reported to vary between 1 h (Follett & Milette, 1982) and 4 h 

(Siopes and Wilson, 1980). Follett & Milette (1982) also concluded that the amount of 

illumination required for the maintenance of testicular mass in mature quail was 

significantly less than that required to initiate growth in immature birds.  

Lewis and Perry (1988) postulated that if the response of domestic fowl to PIP was 

similar to quail, savings in energy usage (feed and electricity) could be made, without 

compromising reproductive performance, by reducing the total amount of daily 

illumination. In an empirical study, sexually mature laying hens were subjected to various 

interrupted lighting programmes which involved a mixture of long and short days 

(potentially using the carryover effect). During short days, the 8-h photoperiod was 

removed from an 8L:4D:2L:10D regimen to leave only 2 h of illumination located within 

PIP; it was assumed that PIP was located between hours 10 and 14 of a conventional 

14L:10D regimen and that 50% illumination of PIP would be sufficient to sustain 

reproductive performance. The birds had previously received 31 weeks of exposure to the 

8L:4D:2L:10D asymmetrical regimen, which would they would have interpreted as a 14-h 

‘day’ and 10-h ‘night’ (Lewis, 1987), and were introduced to the experimental treatments 

at 49 weeks of age. The protocol involved withdrawal of the 8-h photoperiod for one cycle 
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(thus 2L:22D) followed by 6 cycles of  8L:4D:2L:10D in one group, and two cycles of 

2L:22D followed by 5 normal cycles in another. The ratio of long to short days was 

progressively narrowed to 1 long:1 short, and finally to 10 consecutive short days in the 

first group, and to a repeating 1 long:4 short in the second. At no stage of the study did rate 

of lay, egg weight, or mean time of oviposition for the experimental groups differ from that 

of controls maintained on 8L:4D:2L:10D. However, ad libitum feed intake progressively 

reduced to 99 g/d (controls 122 g/d) and the conversion of feed into egg mass improved by 

23% in the first group, and feed intake decreased to 111 g/d and feed conversion improved 

to 1.11 of controls in the second group. 

The findings of another empirical study, reported at the VIIIth European Poultry 

Conference (Lewis and Perry, 1990), showed that radio noise could be used to replace the 

first 8 h of a 12-h conventional photoperiod, leaving 4 h of light to fully illuminate PIP. 

The hypothesis was that, for satisfactory reproductive performance, light need only be 

provided during PIP and that other environmental cues, such as noise, could be used to 

encourage the birds to continue to respond to the regimen as if to a long day. Egg output 

was similar for experimental and 12L:12D control birds during the 12-week study; but 

with a significant reduction in feed intake and a consequential improvement in feed 

conversion efficiency. However, a 4-h advance in mean oviposition time for the 

experimental group suggested that the ovulatory cycle was phase-set by the period of 

illumination and did not involve PIP; a similar affect, discussed on p. 11, was observed 

when laying hens were given a main 8-h photoperiod followed by 8 h of supplementary 

dim light (Lewis et al., 2001b). Evidence to support the hypothesis that the noise acted as a 

zeitgeber to maintain a long-day response was the drop in egg production that occurred 

when the noise was withdrawn, presumably because PIP had phase-shifted backwards into 

the scotoperiod and was therefore no longer illuminated, leaving the birds to respond only 

to the non-stimulatory 4-h photoperiod.  
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Whilst the findings demonstrated that non-photic cues can be used successfully to 

anchor PIP and encourage a feed intake sufficiently large to support maximum egg 

production, development and use of these energy-efficient programmes by commercial 

poultry industries has been prohibited in areas of the world where animal welfare 

regulations stipulate that laying hens must be given at least 8 h of daily illumination. 

In contrast to the attempted anchoring of PIP in sexually mature pullets by the 

replacement of existing light with radio noise, as described above, Lewis et al. (2005e) 

played radio noise for 7 h in the period of darkness immediately preceding a non-

stimulatory 7-h photoperiod from 10 weeks of age to assess whether this would create a 

stimulatory daylength for sexually immature pullets. The treatment resulted in a 13-d 

advance in mean AFE relative to birds maintained on a 7-h photoperiod but not given radio 

noise. Plasma melatonin concentrations in blood samples taken during darkness in the 

middle of the noise period from experimental birds were not significantly different from 

‘no-noise’ controls, and so it seems that the experimental birds had not combined 7 h of 

noise with 7 h of light to make a 14-h subjective day; Lewis et al. (1989) had previously 

reported that melatonin synthesis is not suppressed in darkness that forms part of a 

subjective day (p. 11). It was therefore postulated that the noise had phase-advanced PIP, 

located in the night for birds on short days, to a point where it had become partially 

illuminated by the end of the hitherto non-stimulatory 7-h photoperiod, thus making it 

mildly photoinductive. The 7-h short day had not been interpreted as a fully stimulatory 

14-h day, because data from other studies had shown that a transfer to long days at           

10 weeks of age is likely to advance mean AFE by at least 5 weeks (e.g., Lewis et al., 

1996b, 2001b). 
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1.9 Temporary transfer to long days 

The provision of a single long day or light pulse during the PIP of a short day to immature 

birds has been reported to induce a significant rise in gonadotrophin (LH) release within  

24 h (e.g., intact quail, Follett et al., 1977), and a permanent transfer to a stimulatory 

daylength to produce a 2 to 3-fold in plasma LH in egg-type pullets within 1 to 3 d 

(Wilson, 1982). However, most of these earlier studies were terminated after changes in 

LH concentration had been determined and did not continue through to sexual maturation; 

indeed some used gonadectomised birds. Nevertheless, the knowledge that one long day 

was sufficient to induce a photosexual response has been the reason why the world’s 

poultry industries ensure that sexually immature pullets are neither intentionally nor 

accidentally exposed to a long day prior to the planned age for photostimulation. 

Lewis and Gous (2004) demonstrated that transfers from 8 h to 10, 12 or 14 h for 1 or   

2 d at 11, 13 or 15 weeks of age had no effect on the timing of sexual development in egg-

type pullets, and had no detrimental effect on their response to a subsequent permanent 

transfer to long days. In a follow-up study, Lewis and Gous (2006e) showed that pullets 

could be given up to 6 d of temporary exposure to 14-h photoperiods without any apparent 

effect on sexual maturation (Figure 1.7). An extrapolation of data for birds given ≥ 6 long 

days suggested that at least 20 long days may be required to maximally advance AFE. 

Lewis et al. (2003b) had concluded that when a bird is given two opposing changes in 

photoperiod, the first change alters the bird’s physiology so that it responds to the second 

as if it were applied at the bird’s ‘physiological age’ rather than its chronological age; thus, 

when the initial change is an increase, the physiological age of the bird will be advanced 

(potentially closer to maturity) so making it more sensitive to a subsequent decrease in 

photoperiod than would be expected by reference to its chronological age. However, the 

data published by Lewis and Gous (2006e) were very poorly correlated with predictions of 
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Figure 1.7 Individual ages at first egg (○) and treatment means (●) for egg-type hybrids 
temporarily transferred from an 8- to a 14-h photoperiod for 2, 4, 6, 8, 10 or 12 d from, or 
permanently transferred to 14 h at (∆), 80 d of age (Lewis and Gous, 2006e). An 
extrapolation of the regression of mean data for groups given 6, 8, 10 or 12 long days 
suggested that 30 long days were required to maximise the photosexual response. The 
dotted line is the predicted response using expected changes in plasma FSH during the 30 d 
immediately following a permanent transfer from 8 to 14 h.  
 
 
Table 1.1 Actual (Lewis and Gous, 2006e) and predicted mean AFE in egg-type pullets 
temporally transferred from 8 to 14 h at 80 d for 2, 4, 6, 8, 10 or 12 d, or given a single 
change from 8 to 14 h using models that (a) included or (b) did not include an adjustment 
for ‘physiological age’, and (c) used anticipated changes in plasma FSH concentration. 
 

Temporary 
period on 14 h 

(d) 

Actual 
mean AFE 

(d) 

Prediction with a 
change in 

physiological age 
(d) 

Prediction with 
no change in 

physiological age 
(d) 

Prediction 
using amended 

model (d) 

0 
2 
4 
6 
8 

10 
12 

∞ (8 to 14 h) 

151.3 
152.3 
151.4 
155.3 
142.0 
152.3 
143.3 
120.0 

- 
137.8 
134.1 
130.8 
127.9 
125.6 
123.8 

- 

- 
156.0 
156.9 
157.8 
158.7 
159.5 
160.4 

- 

151.3 
151.3 
151.2 
150.8 
149.8 
147.6 
143.8 
119.8 

 



 18 

mean AFE using the Lewis et al. (2003b) model and could not be explained by simply 

combining responses to the two photoperiodic changes without adjustment for 

‘physiological age’ (Table 1.1). This dilemma prompted the hypothesis that ovarian and 

oviducal development in egg-type pullets given two opposing changes in photoperiod, but 

with only a small interval between them, is in response to the change in circulating FSH 

concentration induced by the increase in photoperiod, and that a return to short days will 

only minimally affect sexual maturation because the effect of a decrease in photoperiod on 

FSH release is negligible at this time (Lewis et al., 1998d). Photoinduced increases in FSH 

secretion following a transfer to long days are initially small, but then rise rapidly between 

7 and 21 d, and eventually peak after about 28 d. As a consequence, AFE for the birds 

given ≤ 6 long days in the Lewis and Gous study was little different from birds held on 

short days, but then progressively advanced as longer periods of rising plasma FSH 

concentration were experienced. A re-analysis of the suggestion of Lewis and Gous 

(2006e) that 20 long days were required to maximise the response to a transfer from 8 to 

14 h, using an extrapolation of means rather than data for the first and last maturing birds, 

indicated that 30 d was a more likely figure (Figure 1.7); a period that more closely 

matches that required for FSH release to reach its apex. It is suggested, therefore, that the 

model of Lewis et al. (2003b) for the response to two opposing changes in photoperiod is 

only applicable when an interval between opposing changes in photoperiod is greater than 

30 d, by which time elevations in plasma FSH induced by the initial increment are 

naturally starting to subside (Lewis et al., 1998d). 

 

Practical application 

These findings have very important practical commercial implications because they 

indicate that temporary extensions of a photoperiod may be safely given during the rearing 

period without triggering an undesirable advance to the start of egg production or increased 
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risk of precocity. Such interruptions of a pre-planned lighting programme are often 

necessary to conduct emergency repairs to, or maintenance of, equipment, or to give 

extended feeding and drinking time when birds have endured protracted periods of 

transportation between the rearing and laying farms. 

 

1.10 Ovulation and oviposition times  

Constant photoperiods 

Pre-ovulatory surges of LH are restricted to a centrally located 8- to 10-h period in the 

bird’s night called the ‘open period’ (Wilson and Cunningham, 1984), and can be phase-

shifted by changes in dawn and, more particularly, dusk (Bhatti and Morris, 1978). 

Oviducal transit times vary marginally between consecutive eggs with a sequence, and so 

changes in oviposition time are overt indicators of temporal changes in the open period and 

ovulation. There had been many reports of the effect of photoperiod on oviposition time in 

laying hens (e.g., Lanson and Sturkie, 1958; Mongin et al., 1978), but most had used only 

one breed; invariably White Leghorn (WL) or a WL cross. 

Lewis (1987) reported oviposition times for four genotypes of modern brown-egg 

hybrids and noted that, whereas there was little variation among breeds, mean oviposition 

time (MOT) for a given photoperiod was about 1.5 h earlier than previously recorded in 

WL hens. Lewis et al., (1995) studied oviposition times in modern brown- and white-egg 

hybrids exposed to 8, 10, 13 or 18-h photoperiods and noted that white-egg hens laid eggs 

1.2 to 1.4 h later than the brown-egg hens given the same lighting regimen; this was 

attributed to genetic differences in the phase setting of the ‘open period’. In each breed, 

MOT was delayed by about 0.5 h for each 1-h extension of the photoperiod. The brown-

egg hybrid commenced egg production more abruptly and had a more concentrated period 

of egg laying when exposed to 18 h of light than when given an 8, 10 or 13-h daylength, or 

the white-egg strain under any photoperiod. This abrupt start to egg laying was 
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subsequently demonstrated to be a consequence of low concentrations of plasma melatonin 

towards the end of the antecedent photoperiod preventing a pre-ovulatory surge of LH and, 

in turn, an ovulation (Nøddegaard, 1996). 

Lewis et al. (2004b) investigated the effect of various photoperiods on time of egg 

laying in broiler breeder hens and observed that for a given lighting regimen, MOT 

occurred 1 h later than for a white-egg hybrid and 2.5 h later than for a brown-egg hybrid. 

However, the 0.49-h delay in MOT for a 1-h extension of the photoperiod compared 

remarkably well with changes in MOT seen in other studies, indicating that the mechanism 

for phase setting of the open period is probably common to all genotypes of domestic hen.  

A meta-analysis of the many sources of data for MOT, with differences from the brown-

egg hybrid studied by Lewis et al. (1995) removed by least squares, showed that MOT was 

curvilinearly related to photoperiod between 1 and 23 h (Figure 1.8), but that a linear 

regression, with its slope described by the equation MOT = -4.36 +0.51p (p = photoperiod 

(h)), could be satisfactorily fitted over the more practical range of 6 to 18 h (p. 30 in 

Poultry Lighting the theory and practice by Lewis and Morris, 2006). 

 

Changing photoperiods 

Morris (1973) stated that oviposition time was completely reset to the new lighting 

schedule within 4 d of hens being given a 6-h advance in the timing of a 14-h photoperiod, 

indicating that simply moving the complete photoperiod forward so that the lights come on 

before the birds currently commence egg laying does not result in them permanently laying 

later relative to dawn. However, the response to lengthening a photoperiod by turning 

lights on earlier in the day without changing the time of lights-out (dusk being more potent 

than dawn for phase setting of the ovulatory cycle) had not been reported. 

Lewis et al. (2007d) conducted three studies of the effect on MOT of (a) adding 4 h of 

light immediately before or after an 8-h photoperiod, to create a 12-h day, before the birds 
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Figure 1.8 Mean oviposition time relative to dawn for brown-egg and white-egg laying 
hens exposed to various photoperiods between 1 and 23 h. The dotted curvilinear 
regression is for all data and the solid linear regression line for photoperiods between 6 and 
18 h (Lewis and Morris, 2006 - book). 

 

had become sexually mature, (b) using the same methods to further increase daylength to 

16 h after the birds had commenced egg production, and (c), moving a complete 12- or   

16-h photoperiod forwards or backwards by simultaneously advancing or delaying dawn 

and dusk. The findings showed that an advance of dawn produced a similar size shift in 

MOT to a delay in dusk, and an increase in photoperiod, irrespective of method, delayed 

egg laying by about 0.5 h for each 1-h extension. Moving the complete photoperiod 

forward or backward by simultaneously moving dawn and dusk only shifted actual MOT; 

its location relative to the new dawn was unchanged. 
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1.11 Body weight changes immediately prior to first egg 

Typically, ad libitum-fed brown-egg hybrids increase their body weight by about 10-12 g/d 

during the second half of the rearing period. However, in the two weeks immediately 

preceding the laying of first egg, a pullet undergoes the final rapid stages in the 

development of its reproductive organs, and almost doubles its daily weight gain (an ovary 

and oviduct frequently weigh in excess of 100 g at first egg). Lewis and Perry (1995b) 

concluded that the daily body weight gain in an individual pullet during the final 20 d of 

sexual maturation was independent of its age or body weight at first egg, and could be 

described by the following equation: 

y = 9.24 -4.66x +0.452x² -0.111x³ 

where y = daily weight gain (g), and x = days prior to first egg. As soon as the first egg has 

been laid, fat-free somatic body weight plateaus, or, in some cases, transitorily falls during 

the days immediately following first egg. 

The variation in individual ages at first egg within a flock is not the same at all 

maturities, and, in the breed regularly used during the authors’ studies at the University of 

Bristol (ISA Brown), the SD of individual AFE was described by the equation:  

y = 63.3 -0.900A +0.0036A² 

where y = SD (d), and A = mean AFE (d). On the assumption that the individual AFE 

within a group of birds form a normal distribution, an estimate of the proportion of birds 

maturing at the same time was produced, and this enabled predictions to be made for the 

development of mean body weight for a group of birds with a given mean AFE. The 

computations showed that the mean body weight of an early maturing group of pullets 

initially exceeds that of a later maturing group, due to its earlier rapid gonadal 

development, but that the later-maturing group eventually has a heavier body weight 

because it continues to grow and undergo rapid gonadal development at a time when 

somatic growth has virtually ceased in the early-maturing group. 
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1.12 Direct and indirect photoperiodic effects of a transfer to long days on 

gonadal development 

In addition to stimulating the release of gonadotrophins, an increment in photoperiod 

encourages feed intake and accelerates body weight gain in ad libitum-fed photosensitive 

egg-type pullets (Lewis and Perry, 1989b; Lewis et al., 1996d). However, the study by 

Lewis et al. (1996b) demonstrated that light was the principal factor involved in photo-

induced advances in sexual development and that the associated increases in feed intake 

played only a subsidiary role: whereas AFE in ad libitum-fed pullets was advanced by     

33 d, those which had had their feed intake restricted to that of un-photostimulated controls 

reached sexual maturity within 4 d of the full-fed birds. 

The enhanced nutrient intake stimulated by an increase in daylength also increases the 

rate of lipid deposition so that, despite an advance in sexual maturation, abdominal fat pads 

and total carcass lipid at first egg in photostimulated egg-type pullets are similar to those of 

later maturing, non-stimulated birds (Lewis and Perry, 1989b). The similarity of carcass fat 

content at first egg in the study, irrespective of AFE, and the well documented reduction in 

rate of fat deposition and delay in sexual maturation associated with restricted feeding 

(e.g., Lee, 1971) suggested a threshold of fat deposition for successful ovarian maturation. 

However, an investigation by Lewis and Perry (1992) confirmed, in modern hybrids, the 

findings of an earlier study (Morris, 1985) that accelerating fat deposition by feeding high 

energy diets does not advance maturity; it simply results in pullets having bigger fat 

deposits at puberty. This demonstrated that whereas nutritionally restricting growth and fat 

deposition during the rearing phase in egg-laying strains reduces the rate of sexual 

maturation (1 d per 1% reduction in body weight or 0.5 d per 1% feed restriction – Lee, 

1971), nutritionally enhancing the processes does not accelerate it.  

The nutritional control of growth has also been shown to strongly influence ovarian 

development in meat-type strains of pullets. Indeed, in the extreme, limiting the mean body 
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weight of dwarf broiler breeders to 1.0 kg completely prevented sexual maturation in both 

photostimulated and constant-photoperiod birds (Dunn and Sharp, 1992). Whilst the lack 

of photosexual response was probably due, in part, to an enforcement of 

photorefractoriness by the severity of the feed restriction, one of the principle reasons 

would most likely have been the suboptimal deposition of lipid. In most studies and in 

commercial practice, varying the degree of feed restriction only modifies gonadal 

development; it does not prevent it (Lewis et al., 2005a,c; Lewis and Gous, 2006a,b). 

Lewis (2006) concluded that mean ASM changes by about 2 d for each 100-g variation in 

mean body weight at 20 weeks (heavier birds maturing earlier). However, as observed in 

egg-type pullets, there appears to be an upper limit beyond which accelerated growth (and 

presumably faster rates of fat deposition and speedier dissipation of juvenile 

photorefractoriness) has no further interaction with the photosexual response; Lewis et al. 

(2007c) considered that allowing broiler breeders to have a mean body weight greater than 

2.5 kg at photostimulation was unlikely to achieve any further advance in ASM. 
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2. CONSTANT PHOTOPERIODS  

 
 
2.1 Constant photoperiods and sexual maturation in egg-type pullets 

Original models 

The effect of constant photoperiods on age at sexual maturity in ad libitum-fed egg-type 

pullets was originally reviewed by Morris (1967a) using data from 12 experiments 

(Ringrose, 1951, 1952; King, 1961, 1962; Siegel et al., 1961; McCluskey and Parker, 

1963; Morris, 1966, 1967a, and unpublished from Reading University) that included 

treatments ranging from continuous darkness through to continuous illumination. A meta-

analysis showed that the response could be described by a cubic regression, with the 

earliest maturity being achieved by giving pullets a constant photoperiod of between        

16 and 17 h. The regression was described by the equation: 

y = 170.2 -1.610p +0.00061p² +0.001918p³ 

where y = age at sexual maturity (d) and p = photoperiod (h). 

The data were subsequently re-analysed by Lewis and Perry (pp. 362-363 in World 

Animal Science: Poultry Production, 1995), with the addition of four sets of data from 

trials conducted by the authors at Bristol University, to produce a new cubic regression. 

Differences among the data sets were removed by least squares; and the regression was 

described by the equation: 

y = 154 -3.44p +0.206p² -0.00376p³ 

This equation predicted that the earliest maturity would be achieved by rearing on 13 h. 

New models 

Subsequently, Lewis et al. (1998a) noted that, in trials where there had been a 10-h 

treatment (King, 1961; Morris, 1967a; Lewis et al., 1996d), birds maintained on this 

photoperiod consistently matured earlier than any other photoperiod; thus questioning the 

appropriateness of the cubic regressions fitted by Morris (1967a) and Lewis and Perry 
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(1995). Whilst this observation suggested the use of two regressions, there was a problem 

in simultaneously removing differences among data sets with such analysis. The dilemma 

was resolved by the development of a new meta-analysis, termed a hinge analysis, by 

Curnow and Collins at the Department of Applied Statistics, University of Reading (details 

were presented in Lewis et al., 1998a). The new procedure was used to re-analyse the 

earlier data, together with additional data from Lewis et al. (1996d); and this showed that 

two opposing linear regressions were a significantly better fit (P<0.001) than a cubic 

regression, and identified a hinge point at 10 h (Figure 2.1). The regression equations were: 

 P ≤ 10 h y = 175.8 -1.731p (SE= 0.226) 

 P ≥ 10 h y = 155.5 +0.304p (SE= 0.347) 

where y = mean age at first egg (d), p = constant photoperiod (h). However, the exactness 

of a 10-h photoperiod was probably a reflection of the data assembled, rather than any 

narrowly proscribed biological value, because there were 5 data points at 10 h and only one  
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Figure 2.1 Regressions of age at first egg on constant photoperiod in early and modern 
genotypes of egg-type pullet (○ data from 12 data sets regressed by Morris (1967a), ● 
Lewis et al. (1996d and unpublished). The dotted cubic regression and solid red line 
hinged regression are from Lewis et al. (1998a). 
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point each at 9 h and 11 h, and so had 9.5 h been used in these trials instead of 10 h, the 

hinge point could well have been 9.5 h.  

The significantly better fit of two regression lines over a cubic regression suggested that 

the photoperiodic influence on sexual development was not continuous but bimodal, with 

one component operating below the hinge and another above it. However, the non-

significance deviation from zero of the rate of delay in maturation under photoperiods 

longer than 10 h reported by Lewis et al. (1998a) may suggest that photoperiod has only 

one effect; but one that operates only below the 10-h hinge. Although it has been shown 

that the feed intake of ad libitum-fed pullets during the prepubertal period is directly 

related to photoperiod (King, 1961; Morris, 1967a; Lewis et al., 2007b), and maturity is 

generally delayed by about 1 d for each 2% reduction in feed intake (Lee, 1971), Gous and 

Morris (2001) considered that the delay in sexual maturation which results from exposure 

to photoperiods shorter than 10 h is not a consequence of a reduction in feed intake but a 

response to photoperiod per se – an issue for further investigation 

Subsequent to the publication of the model by Lewis et al. (1998a), it was apparent that 

the rates of delay in age at first egg for a 1-h reduction in photoperiod below 10 h in trials 

conducted since 1993 (Lewis et al., 1997c, 1998a, 2002 and unpublished; Gous and 

Morris, 2001) were markedly larger than for those conducted before 1967 and used by 

Morris (1967a) to produce the original model; and so data from the early trials were 

analysed separately from those of recent studies. These analyses showed that whereas there 

was no significant difference between modern and early hybrids in the hinge point or in the 

rate of response to daylengths longer than 10 h, modern hybrids had a significantly steeper 

response slope than early genotypes to photoperiods shorter than 10 h (Lewis and Morris, 

2005). Indeed, despite modern hybrids maturing about 4 weeks sooner than early 

genotypes when reared on 10-h photoperiods, due principally to the intense genetic 

selection for egg numbers, the two types were predicted to have similar rates of maturation  
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Figure 2.2 Regressions of age at first egg on constant photoperiod in early genotypes of 
egg-type pullet (○, broken line - published before 1967) and modern genotypes (●, solid -
published after 1993 with dummy value of 173 d inserted at 0 h) from Lewis and Morris 
(2005). 
 
when reared in complete darkness (Figure 2.2).  Regressions for the two types of hybrid to 

photoperiods below and above the 10-h hinge were described by the following equations: 

Early genotypes (12 data-sets, n = 40) Modern genotypes (9 data-sets, n = 25) 

≤ 10 h  y = 175.7 -1.707p 
≥ 10 h  y = 155.6 +0.294p 
(P< 0.001, residual SD = 4.53) 

≤ 10 h  y = 175.5 -4.222p 
≥ 10 h  y = 130.4 +0.285p 
(P< 0.001, residual SD = 4.56) 

where y = mean age at first egg (d), and p = constant photoperiod (h). 
 

2.2 Constant photoperiods and sexual maturation in broiler breeders 
 
There were no reports in the literature for the comparative effects of constant daylengths 

on sexual maturation in female broiler breeders. A meta-analysis of data from Lewis et al. 

(2003a, 2004a, 2007c) and from Renden et al. (1991) for initial semen production in males 

showed both similarities and differences between broiler breeder and egg-type strains 

(Figure 2.3). Figure 2.2 showed that the responses of egg-laying birds to < 10-h days had 

changed in response to the intense selection for egg numbers, and so, because selection for 
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Figure 2.3 A comparison of the effect of constant photoperiod on sexual maturation in 
broiler breeders (solid line) and early strains of egg-type pullet (broken line) (Lewis, 
2006). 
 
 
egg numbers has been minimal in broiler breeders, their response was compared with early 

strains of egg-laying hybrid. The progressive advance in sexual maturity, as photoperiod 

increases to 10 h, and the inducement of the earliest AFE by a 10-h photoperiod are similar 

for the two types of stock. However, for photoperiods between 10 and 24 h, the response of 

broiler breeders is very different from egg-laying hybrids. Whereas photoperiods > 10 h 

result in a slight, but progressive delay in AFE in egg-type strains; there is a significant 

delay of 3 to 4 weeks between 10 and 13 h in broiler breeders, but a gradual advance in 

maturation beyond 14 h. The marked disparity in rate of sexual development between      

10 and 13 h is most probably a reflection of the differences in stimulatory competence 

among these photoperiods and in the degree to which they facilitate the dissipation of 

photorefractoriness. Indeed, the significantly later maturity of pullets reared on long days 

compared with short days provided important evidence for the conclusion that broiler 

breeders exhibit photorefractoriness (Lewis et al., 2003a). 
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Figure 2.4 Age at 50% rate of lay in broiler breeders grown to reach 2.1 kg body weight at 
17 weeks (○) or 21 weeks of age (●) and maintained on 10-, 11-, 12-, 13-, 14- or 16-h 
photoperiods (Lewis et al., 2004a). 
 
 

Although growth rate exerts a large influence on the rate of sexual maturation in meat-

type pullets (± 2 d for each 100-g change in 20-week body weight - Lewis, 2006), it only 

alters the amplitude and not the relative response of broiler breeders reared on a constant 

photoperiod (Lewis et al., 2004a) (Figure 2.4).  

 

2.3 Constant photoperiods and laying performance in egg-laying hens 

Commercial laying hens are rarely given constant photoperiods, and so the following 

responses are of biological interest only. Data presented by the author to the XXth World 

Poultry Congress in 1996 indicated that when laying hens, be they white- or brown-egg 

hybrids, are kept on a constant photoperiod, egg production to 72 weeks of age increases 

by about 4 eggs per 1 h of photoperiod up to about 10 h, but that the response appears to be 

genotype-dependent beyond 10 h. Data from McCluskey and Parker (1963), Morris (1979), 
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Figure 2.5 Effect of constant or laying-phase photoperiod on egg numbers to 72 weeks in 
white-egg (○, broken line > 10 h) and brown-egg (●, solid line) hybrids (Lewis, 1996). 
 
 
and trials conducted by the author at the University of Bristol suggested that egg 

production plateaus, and may even decline, when white-egg hybrids are given a daylength 

longer than 10 h, whilst other Bristol data and reports from Morris et al. (1995) indicated 

that mean rate of lay in brown-egg hybrids continues to increase with extensions of 

photoperiod up to about 13 or 14 h (Figure 2.5).  

Mean egg weight (MEW) to 72 weeks of age increases by 0.1-0.2 g per 1 h of 

photoperiod, though the rate of increase is greater in white-egg than in brown-egg hybrids; 

probably an artefact of the plateauing of rate of lay by white-egg genotypes beyond 10 h 

(XXth World Poultry Congress: Lewis, 1996). 

 

2.4 Constant photoperiods and laying performance in broiler breeder hens 
 
Commercially, broiler breeders are unlikely to experience constant photoperiods unless 

they are kept in open-sided, non-illuminated housing close to the equator. Thus the 
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following descriptions of their biological responses to photoperiod are, in the main, of 

academic interest only. 

    The number of eggs laid to 60 weeks (normal depletion age for broiler breeders) is 

strongly influenced by ASM and, because ASM is not linearly related to photoperiod, the 

relationship of egg production with photoperiod is also non-linear. The earliest sexual 

development occurs in birds exposed to 10-h photoperiods (Figure 2.3), and so birds 

maintained on 10 h also lay most eggs. Egg production falls by about 8 eggs for each 1-h 

shorter photoperiod below the 10-h hinge and by 3-4 eggs for each 1-h increase above the 

hinge (Lewis et al., 2005a). Reproduction terminates in most seasonal-breeding avian 

species after prolonged exposure to stimulatory daylengths because of the onset of adult 

photorefractoriness. The same phenomenon occurs to a lesser extent in broiler breeders and 

is one of the causes of the more rapid decline in rate of lay after peak production in broiler 

breeders compared with egg-laying hybrids (Lewis et al., 2003a). 

Mean egg weight in broiler breeders is correlated with age and body weight at first egg 

(Lewis et al., 2005a), but, as in egg-laying hybrids (Lewis et al., 1994c), a multiple 

regression of MEW on ASM, body weight at sexual maturity (BWSM), and photoperiod 

(p) shows that MEW still varies with photoperiod even when the effects of ASM and 

BWSM are removed: 

MEW = 53.8 +2.30BWSM +0.04ASM +0.10p 

Although this revealed a significant linear effect of photoperiod, further analysis of the 

data following adjustment to a 202-d ASM and 3.50-kg BWSM suggested that a bent-stick 

model would be a better fit. Such a model indicated that MEW increased by about 1 g per 

1 h of photoperiod up to a constant daylength of about 13 h, but levelled out thereafter 

(Figure 2.6). This contrasts with the continued photoperiodic effect on MEW reported for 

egg-laying hybrids (XXth World Poultry Congress: Lewis, 1996). However, egg-type 

hybrids are fed ad libitum, which allows them to continue to increase feed intake on longer 
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Figure 2.6 Mean egg weight to 60 weeks of age for broiler breeders maintained on various 
constant photoperiods from 2 d of age (▲ Lewis et al., 2003a; ● Lewis et al., 2005a). Data 
adjusted to a mean ASM of 202 d and mean body weight at sexual maturity of 3.5 kg with 
differences between trials removed by least squares analysis. 
 

photoperiods and to use the extra nutrients to increase MEW; an option not available to 

broiler breeders given fixed daily allocations of feed. 

Lighting history does not appear to interact with the effect that prevailing daylength has 

on shell thickness and shell weight in domestic hens, and so the data reported by 

Backhouse et al. (2005) for broiler breeders maintained on constant photoperiods from 

soon after hatch will be equally applicable to birds given a conventional step-up lighting 

regimen. Shell weight and thickness index (mg/cm²) are both negatively correlated with 

photoperiod, with weight decreasing by 30 mg and thickness index by 0.57 mg/cm² for 

each 1-h extension of the photoperiod; these are similar deterioration rates to those 

reported for egg-laying hybrids (Lewis et al., 1994d). 
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3. CHANGING PHOTOPERIODS 

 

3.1 Changing photoperiods and sexual maturation in egg-type pullets 

Original models 

It has long been known that changes in photoperiod have a greater effect on sexual 

maturation than photoperiod per se (e.g., Whetham, 1933). Morris and Fox (1958a) 

observed that increases in daylength advance maturity and decreases retard it, and 

concluded that sexual maturity in naturally illuminated pullets could be predicted by the 

net change in daylength experienced during the rearing period according to the equation: 

y = m ± 1.64 ∆D 

where y = age at first egg (d), m = mean age at first egg for a given genotype when reared 

on a constant photoperiod (d), and ∆D is the net change in photoperiod (h). However, 

Morris (1962) considered that the model made several incorrect assumptions: equal 

amounts of increase and decrease in daylength would cancel each other, pullets were 

equally photosensitive at all ages, the actual initial and final photoperiods were 

unimportant, and the 1.64 coefficient was applicable to all genotypes. Morris used data 

from studies conducted at Reading University and from Bowman and Jones (1963) to 

suggest that a pullet gradually became more sensitive to a change in photoperiod with age, 

at least up to 15 weeks. However, the treatments invariably involved only decreases, rarely 

increases, in photoperiod, and so the conclusion was not a general age-related response to 

change in photoperiod. Morris (1962) demonstrated that the initial and final photoperiod 

was more important than the actual change in photoperiod, and suggested that the 

maximum influence on maturity was achieved by making changes close to 12 h, but there 

were insufficient data available to construct a satisfactory response curve. Morris also 

concluded that, despite having a satisfactory general explanation for the effects of constant 
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and changing photoperiod on sexual maturation, any prediction equations would be too 

complicated and unreliable to be of practical value. 

New model 

Reports in the literature for the influence of age at photostimulation on AFE in egg-type 

pullets published prior to the model of Lewis et al. (2002) included neither treatments 

young enough to produce other than linear regressions (Figure 3.1) nor transfers from 

photoperiods other than 8 h. And so a series of studies were conducted to determine the 

responses to photoperiodic increments given before 14 weeks and from different initial 

photoperiods (Lewis et al., 1996b,d, 1997b, 1999b, 2002). Findings from these trials 

enabled the construction of a model to predict mean AFE in pullets given a single increase 

in photoperiod; this involved five distinct phases (Lewis et al., 2002) (Figure 3.1):  

• A period of about 5 weeks in which the hypothalamo-pituitary-gonadal axis is maturing, 

and in which no birds are responsive to an increase in photoperiod. 

• A period between 5 and 9 weeks when there is a bimodal distribution of birds: some 

photosensitive and able to respond to the increment by accelerating their gonadal 

development; and others still not photoresponsive and maturing as if maintained on the 

initial photoperiod. Mean AFE in this phase depends on the proportion of birds within 

each category. 

• A period from about 9 weeks of age in which the response to the increment is linear, but 

progressively reducing until the first bird spontaneously starts rapid ovarian 

development in response to the initial photoperiod. 

•  A phase in which some birds mature spontaneously before the photoperiod is increased, 

whilst others continue to have their gonadal development accelerated by the increment. 

• A final phase in which all birds commence rapid gonadal development before the 

increment is given and therefore non-responsive when the increase occurs. 
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Figure 3.1 Model for the effect on mean age at first egg of age at transfer from 8 to 16 h in 
ISA Brown hybrids, with data (●) from Lewis et al. (2002). Unadjusted data with linear 
regressions for other genotypes: (○) Leeson et al. (1988), (□, ∆) Gous et al. (2000).  
 
 

There had been many studies of the age-related influence of a decrease in photoperiod 

on sexual maturation in pullets (e.g., Bowman et al., 1964; Morris, 1966), and all had 

demonstrated the retarding effect on sexual development. However, most used transfers 

between very long and very short photoperiods (e.g., 18 or 22 h to 6 h), and Morris (1962) 

had already suggested that the maximum influence on maturity would be achieved by 

making changes close to 12 h. Accordingly, more trials were conducted to measure the 

effect of changes to and from more stimulatory photoperiods (Lewis et al., 1996d, 1998d, 

2002), and to determine the effect of initial and final photoperiod (Lewis et al., 1996d). 

The findings of these and earlier studies allowed the construction of a model to predict 

mean AFE in pullets given a single decrease in photoperiod (Figure 3.2). Responses to a 

decrease in photoperiod are less complex than to an increase because pullets are responsive  
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Figure 3.2 Model for the effect on mean age at first egg of age at transfer from 16 to 8 h 
in ISA Brown hybrids, (●, solid line) mean of all birds, (∆, broken line) mean of 
responding birds, (□) mean of birds maturing spontaneously in response exposure to a 
constant 16-h photoperiod, and (horizontal dotted line) constant 16-h (Lewis et al., 
2002). 
 

from day old and do not require a period in which to acquire sensitivity. This means that 

there are only three phases in the response to a decrease in daylength: 

• A period between hatch and the first bird spontaneously starts rapid ovarian 

development in response to the initial photoperiod, and in which birds become 

progressively more sensitive to a decrease. 

• A phase in which some birds mature spontaneously before the photoperiod is reduced, 

whilst others continue to have their gonadal development retarded by a decrease. 

• A final phase in which all birds commence rapid ovarian and oviducal development 

before the photoperiod is decreased, and are therefore no longer responsive to a change 

in photoperiod. 
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Figure 3.3 Effect of age at transfer from 8 to 16 h (left side of graph) or from 16 to 8 h 
(right side of graph) on sexual maturation in (●) ISA Brown hybrids and (○) Shaver 288 
hybrids (Lewis et al., 2002). 
 

An amalgamation of the responses to changes from 8 to 16 h with those for changes 

from 16 to 8 h for brown-egg (ISA Brown) and white-egg (Shaver 288) hybrids (Lewis et 

al., 2002) indicated that the rate of change in mean AFE (b value) for a given change in 

age at which changes were given were similar (Figure 3.3). These and earlier data were 

used to produce an equation that predicts the rate of response by ISA Brown pullets to a 

change between any pair of photoperiods (Figure 3.4). The linear regressions for the two 

genotypes in Figure 3.3, though having different slopes, suggested that provided there is 

information for a given change (increase or decrease) in daylength applied at two or more 

ages, a response, relative to ISA Brown, can be predicted for any genotype by calculating 

an adjustment factor (k). The original equation was subsequently amended to give a better 

estimate of b for extreme changes in photoperiod by Lewis and Morris (2004): 

 b = ki(0.1338 +0.1496C -0.01884C² +0.0009683C³ -0.00001941C
4 -0.22396M 

+0.05028M² -0.00365M³ +0.00008216M
4 

where C = change in photoperiod (h) and M = mean photoperiod (h). 
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Figure 3.4 Effect of initial and final photoperiod on rate of change in mean AFE for a 
delay in change in photoperiod (b value) for ISA Brown hybrids (Lewis and Morris, 2004). 
 
 

Effect of genetic selection on age at sexual maturity 

Eleven studies of responses to an increase in photoperiod given at about 9 weeks (when a 

pullet is most photosensitive) or 17 weeks of age (when it is approaching spontaneous 

rapid gonadal development) were conducted at the University of Bristol by the author 

between 1987 and 1999. Analyses of these data (Figure 3.5) showed that the modern egg-

laying hybrid, as typified by the ISA Brown, had become less responsive to an increment 

given late in the rearing period due, most likely, to the genetic advance in sexual maturity 

(Lewis et al. 2000b). The slopes of regressions of mean AFE for birds maintained on 8 h 

on the year in which their originating grandparent flock had been hatched (-0.87 d/year) 

and for those transferred to a stimulatory photoperiod at about 17 weeks (-0.68 d/year) 

were not significantly different. In comparison, the slope of the regression for pullets 

photostimulated at 17 weeks was, at -1.49 d/year, significantly steeper. The difference in 

slope between birds transferred to a stimulatory photoperiod at 9 and 17 weeks indicated 
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Figure 3.5 Regressions of mean age at first egg on grandparent hatch date for the same 
strain of brown-egg hybrid maintained on 8-h photoperiods (○), or transferred to a 
stimulatory photoperiod at 9 (▲) or 17 (■) weeks of age (Lewis et al., 2000b). 
 

that pullets became less responsive to a photoperiodic increment given late in the rearing 

period and more responsive to one given close to peak photosensitivity as the rate of sexual 

maturation increased (undoubtedly, a consequence of the intense genetic selection for egg 

numbers). Notwithstanding that all three regressions were significantly linear, 

physiological limits to rapid gonadal development dictate that the rate of advance in AFE 

cannot continue indefinitely at these rates. 

 
 
3.2 Changing photoperiods and sexual maturation in broiler breeders  
 
Previous studies of the effect of age at photostimulation on AFE in broiler breeders, e.g., 

Robinson et al. (1996) and Joseph et al. (2002), had the same limitations as the early 

photoperiodic studies in egg-type birds, where transfers to long days were made too late to 

demonstrate responses prior to the acquisition of photosensitivity and too early to detect 

when the last bird commenced sexual development in response to the initial photoperiod. 
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Figure 3.6 Mean age at sexual maturity for broiler breeders weighing about 2.1-kg body 
weight at 20 weeks of age and transferred at various ages from 8- to 16-h photoperiods: 
Lewis et al., 2003a (■), Lewis et al., 2007c (●), Ciacciariello and Gous, 2005 (♦,▲), 
Robinson et al., 1996 (□), Joseph et al., 2002 (∆). 
 

Prior to the research at the University of KwaZulu-Natal, there were insufficient data for 

the influence of initial and final photoperiods, the interacting effect of growth with 

lighting, or the involvement of photorefractoriness in broiler breeder photoperiodism to 

construct a model similar to that produced by Lewis et al. (2002) for egg-laying strains. A 

series of trials was therefore conducted to fill these gaps in our knowledge (Ciacciariello 

and Gous, 2005; Lewis and Gous, 2006b,c,d, 2007b; Lewis et al., 2003a, 2005b, 2007c). 

Figure 3.6 shows that although the general profile of the broiler-breeder response to an 

increase in photoperiod is similar to that for egg-type genotypes (Figure 3.1), there are 

fundamental differences in the ages at which the five phases of the model occur and in the 

relative influences of initial and final photoperiod on sexual maturation. Findings from 

trials in which the same lighting treatments were applied to birds with different growth 

profiles (Ciacciariello and Gous, 2005; Lewis and Gous, 2006a,b; Lewis et al., 2005b, 

2007c) indicated that body weight can have a large influence on the rate at which a broiler 
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Figure 3.7 Mean age at 50% egg production for broiler breeders transferred from 8 h to a 
stimulatory photoperiod (11, 12, 14 or 16 h) at various ages but at approximately 2.1 kg 
body weight (● Leeson and Summers, 1983; ○ Ciacciariello and Gous, 2005; ■, □ Lewis et 

al., 2007c). Differences among trials were removed by least squares analysis. 
 

breeder dissipates photorefractoriness and in the subsequent response to an increment in 

photoperiod. Lewis (2006) concluded that the effect of body weight for birds given a 

change in photoperiod was, at ± 2 d for each 100-g change in 20-week body weight, 

similar to that for birds given constant daylengths (Figure 2.4). However, photostimulating 

birds at different ages when they have been grown to different growth profiles generally 

means that they have been transferred to long days at different body weights, thus 

confounding body weight and age. Lewis (2006) separated the two factors by performing a 

meta-analysis of data from studies in which normal broiler breeders had been 

photostimulated at different ages but at the same mean body weight (2.1 kg) (Leeson and 

Summers, 1983; Ciacciariello and Gous, 2005; Lewis et al., 2007c). Data in Figure 3.7 

show that, for birds weighing 2.1 kg and aged between 75 and 161 d of age, sexual 

maturity advances by about 4 d for each 10-d younger age at which they are 
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photostimulated. The markedly later maturity of birds fed ad libitum and weighing 2.1 kg 

at 45 d indicates that, even when body weight is not limiting, more than 45 short days are 

required to dissipate juvenile photorefractoriness.  

An increment in photoperiod given at about 20 weeks of age to broiler breeders reared 

on 8-h photoperiods and weighing about 2.1 kg accelerates gonadal development, but the 

size of the advance in ASM depends on the photoperiod to which the birds are transferred. 

Prior to the availability of the findings shown in Figure 1.5, a meta-analysis of data from 

three studies conducted at the University of KwaZulu-Natal in which birds were reared on 

8-h day showed a curvilinear relationship between mean ASM and final photoperiod, with 

the earliest maturity being induced by a transfer to between 14 and 16 h (Lewis, 2006). The 

relationship between final photoperiod (p, h) and ASM (d) was described by the equation:  

ASM = 288.2 -13.54p +0.463p² 
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Figure 3.8 Mean age at 50% lay for broiler breeders weighing 2.1 kg and transferred at 
140 d from 8 h to various final photoperiods (▲ Lewis et al., 2003a; ∆ Ciacciariello and 
Gous, 2005; ●,○ Lewis and Gous, 2006b). The broken line shows the predicted response of 
egg-laying pullets photostimulated at the same physiological age (70 d) (Lewis et al., 
2002; Lewis and Morris, 2004). 
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Predicted mean ASM for ad libitum-fed egg-type hybrids photostimulated at 10 weeks 

(equivalent to ‘physiological age’ of a 20-week control-fed broiler breeder) using the 

models of Lewis et al. (2002) and Lewis and Morris (2004) show that egg-laying pullets 

and broiler breeders respond similarly to final photoperiod when reared on 8-h days 

(Figure 3.8). 

There had been no earlier studies of the effect of photoperiod during the rearing phase 

on ASM in broiler breeders prior to that of Lewis and Gous (2006c). However, there was 

only one transfer-age (140 d) and only one final photoperiod (16 h) used in this study, and 

so it provided insufficient data to construct a contour chart of b values similar to that 

published by Lewis and Morris (2004) for egg-type strains (Figure 3.4). Nevertheless, 

because of the similarity of the responses of the two types of stock to final photoperiod 

(Figure 3.8), Lewis et al. (2007g) suggested that the egg-type pullet equation (p. 38) could 

be used for broiler breeders with a suitable k value. The k values were calculated by 

dividing the b values for broiler breeders (estimated by using the equation on p. 43) by the 

b values for egg-type pullets. However, it was apparent that a common k value could not be 

used for all photoperiods, and subsequent analysis showed that k could be estimated from 

the final photoperiod (p, h) using: 

k = -0.449 + 0.155p – 0.00547p² 

Lewis and Gous (2006c) concluded that ASM in birds reared from soon after hatch on 6-, 

8-, or 10-h photoperiods and transferred to 16 h at 140 d were not significantly different. 

The similarity was a consequence of the slightly slower sexual development of the birds 

reared on an 6- or 8-h photoperiod, relative to a 10-h (Figure 2.3), being countered by the 

larger, more stimulatory increment in photoperiod given to them at 140 d. This does not 

mean that daylength during the rearing period is unimportant, but that 6-, 8- and 10-h 

daylengths are short days and so all groups will have been photosensitive when they were 

transferred to 16 h at 140 d. The situation is very different when broiler breeders are reared 
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on longer daylengths because the acquisition of photosensitivity is delayed and the birds 

have a reduced or no opportunity to be photostimulated (Gous and Cherry, 2004; Lewis 

and Gous, 2006c).  

The model to estimate ASM in broiler breeders given a single increment in daylength 

(Lewis et al., 2007g) contains the same five components as the model produced by Lewis 

et al. (2002) for egg-laying genotypes, but with appropriate adjustments for differences in 

20-week body weight (Figure 3.9). 

 

Practical application of the broiler breeder model 

In commercial practice, broiler breeders are usually given a series of increments and not a 

single change in photoperiod, but there is no significant difference between the two 

regimens in either sexual maturity or subsequent laying performance (Lewis and Gous, 

2006d), and so use of the model is perfectly appropriate for predicting ASM in most flocks 

of broiler breeders. 

 

3.3 Late increments in photoperiod for broiler breeders 

It had previously been suggested that the ideal way to light broiler breeders was to initially 

transfer them to a photoperiod somewhere between the critical and saturation photoperiods 

for LH release, and not to give further increments until they were required to balance the 

progressive decline in LH release associated with the development of adult 

photorefractoriness (Sharp, 1993). However, two studies conducted at the University of 

KwaZulu-Natal showed that broiler breeders do not respond positively to photoperiodic 

increments given during the laying phase. Indeed, irrespective of the size and timing of the 

increments, extending the daylength to 16 h after an initial increase to 11 h at 140 d of age 

only serves to accelerate the decline in rate of lay, most likely through an advance in the 

onset of adult photorefractoriness (Lewis et al., 2007f). 
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Figure 3.9 Models for the effect of age at photostimulation on mean ASM for broiler 
breeders grown to a mean 20-week body weight of 1.85 kg (thin solid line), 2.1 kg (thick 
solid line), 2.5 kg (dotted line), or 2.8 kg (broken line). Raw data (●) are presented for 
birds with a 20-week body weight of ≥ 3.13 kg (Lewis et al., 2007g). 
 
 
Influence of growth on the response of broiler breeders to an increase in 
photoperiod 
 
Although providing a constant photoperiod to groups of broiler breeders with different 

mean body weights alters the amplitude but not the shape of the response to photoperiod 

(Figure 2.4), the response to a transfer from short to long days is extensively affected by 

both age and body weight at photostimulation (Figure 3.9). This is because the rate at 

which a bird dissipates juvenile photorefractoriness is strongly influenced by its rate of 

growth, and this will have an immense effect on its response to a change in photoperiod. 

For example, broiler breeders grown to a 20-week body weight of 2.8kg matured 12 d 

earlier than birds weighing 2.1 kg when transferred from 8 to 16 h at 125 d, but 41, 24, 11, 

64 and 25 d earlier when the transfer to long days was made at 69, 76, 83, 97 and 111 d 

respectively (Lewis et al., 2007c). 
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3.4 Relevance of research findings to the broiler breeder industry 

There was a dearth of information on the broiler breeder’s response to lighting prior to the 

research conducted at the University of KwaZulu-Natal, with most lighting programmes 

being based on our knowledge of lighting ad libitum-fed egg-laying breeds. However the 

subsequent demonstration of photorefractoriness in broiler breeders showed that some 

aspects of their lighting strategy, such as that to rear spring-hatched birds on a photoperiod 

equal to the anticipated longest natural daylength when they are reared in non-lightproof 

facilities, have been incorrect. Whereas the aim of the long-day rearing strategy in egg-

type pullets was to minimise precocity, the incidence of prolapse, and the production of 

small eggs, this policy was misplaced in broiler breeders because their sexual maturation is 

largely under controlled by the feeding programme, and the consequences of not rearing 

on a short daylength is a delay in the acquisition of photosensitivity, a significant delay in 

gonadal development, and a reduction in egg numbers (Lewis and Gous, 2006c, 2007b; 

Lewis et al., 2005b). 

 

3.5 Comparisons of domestic fowl ‘b’ values with other avian species 

A comparative analysis by Lewis and Morris (1998b) of data from literature and studies 

conducted by the author at the University of Bristol for the effect of age at transfer to a 

stimulatory photoperiod on AFE in photosensitive birds showed that the rates of response 

by turkey, partridge and quail were similar, with delays of 0.80, 0.82, and 0.88 d in AFE 

respectively for each 1 d delay in photostimulation, but that they contrasted with the more 

shallow responses (≈ 0.41) of domestic fowl (Figure 3.10). The data for broiler breeders 

has been added since the original analysis by Lewis and Morris (1998b). It was suggested 

in that publication that the difference in rate of response between domestic pullets and 

other avian species indicated a difference between birds that did and those that did not 

…… 
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Figure 3.10 Regressions of age at sexual maturity on age at transfer to a stimulatory 
photoperiod for egg-type pullets (●), broiler breeders weighing 2.1 kg at 20 weeks (▲), 
turkeys (○), partridge (□), and quail (∆), from Lewis and Morris (1998b). 
 
 
exhibit photorefractoriness, however, the subsequent conclusion by Lewis et al., (2003a) 

that broiler breeders exhibit photorefractoriness has discredited this hypothesis. 

 

3.6 Lighting and performance in egg-type laying hens 
 
Prepubertal lighting and photoinduced sexual maturity 

Egg numbers, egg weight, and shell quality are all positively correlated with rearing 

photoperiod, but the correlations are more correctly with the age and/or body weight at 

sexual maturity induced by the lighting regimen rather than with photoperiod per se 

(Lewis et al., 1994c, 2007b). The effect of ASM on various egg production traits was 

described by Shanawany (1983), however, the review was only for data produced between 

1950 and 1975. Since that time, the genetic potential of egg-laying hybrids has changed 

markedly, with significant increases in egg numbers, advances in ASM, and improvements 
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in egg weight and feed conversion efficiency (Shalev, 1995); the increase in egg weight is 

rather remarkable because, genetically, the trait is negatively correlated with egg numbers.  

Lewis et al. (1997b) calculated that a 10-d delay in AFE would result in a decrease of 

about 7 eggs per bird to 72 weeks of age, but with an increase of 1.3 g in mean egg weight. 

Shell quality and the incidence of mortality were not significantly affected by AFE, but 

feed intake was negatively, and feed conversion efficiency positively, correlated with 

AFE. Egg weight was strongly influenced by yolk weight, which was in turn closely 

associated with AFE. Lewis et al. (1998e) concluded that the yolk weight in single-yolked 

eggs increased by 0.92 g, and the combined weight of yolk in double-yolked eggs by    

2.16 g, for each 10-d delay in AFE. Overall, it was concluded that the effects of ASM on 

laying performance in modern hybrids were little different from those identified by 

Shanawany (1983) for early strains of laying hens.  

 

Photoperiod in the laying phase 

The response to photoperiod in the laying phase appears to be independent of previous 

lighting history, with similar effects for birds maintained on a photoperiod from soon after 

hatch and those transferred to it at the end of the rearing period. The effects on egg 

numbers and egg weight are described in the section on constant photoperiods on pp. 30-

33. 

A meta-analysis of data from trials conducted by the author and others at the University 

of Bristol showed that both shell weight and shell thickness index (mg/cm²) were 

negatively correlated with photoperiod in lay (Figure 3.11). However, Lewis and Morris 

(2006, book) considered that the response was more correctly linked to the length of the 

dark period, because the consequential positive correlation provided a logical explanation 

for why hens given longer dark periods lay eggs with better shells; the two hormones 

involved in the mobilisation of calcium from the skeleton for shelling processes, calcitonin 
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Figure 3.11 Regressions of shell weight and shell thickness index for egg-laying hybrids 
on photoperiod in the laying period (Lewis and Morris, 2006 - book) 
 
 
and parathyroid hormone, each have peak releases at night, and so longer scotoperiods 

permit extended activity of these hormones. 

Lewis et al. (1996a) reviewed data from trials conducted at the University of Bristol 

and from literature for the incidence of mortality in caged laying hens during a 52-week 

laying cycle and concluded that it was positively correlated with the amount of 

illumination, irrespective of whether the light was given in one or more than one period 

within a 24-h cycle.  Lewis et al. (1994a) calculated that laying hens consume 1.2% more 

energy and increase their heat production per unit of metabolic weight by 1.4% for each 

extra 1-h illumination per 24 h, and so, despite there being only a trend for hens given 

longer periods of illumination to have higher body weights and larger carcass fat contents 

at end of lay, the positive correlation of mortality and light may still be a consequence, if 

only in part, of this photoperiodically stimulated energy intake. 
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Effect of a change in photoperiod during the laying cycle 

Changes in photoperiod made during the laying year, especially reductions in daylength, 

invariably result in a change in rate of lay. It was not clear whether these changes were 

direct responses to the change in photoperiod itself, to photoperiodically induced changes 

in feed intake, or to a combination of each. Lewis et al. (1996c) studied the responses of 

white-egg and brown-egg hybrids to various changes in daylength and feeding opportunity 

at 32 weeks of age. The findings clearly showed that daily feed intake in ad libitum-fed 

hens was linearly related to the change in photoperiod (± 2.5 g per ± 1-h change in 

photoperiod), but that the neuroendocrine influence on rate of lay was dependent on the 

initial and final photoperiods rather than on any given change in photoperiod. The effects 

of the photoinduced changes in hormonal release were invariably larger than the effect of 

the changes in feed intake. The effects of changes in light and feeding opportunity on egg 

weight were complex, but the generalised conclusion was that egg mass output is linearly 
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Figure 3.12 Regression of mean egg output of egg-laying hybrids on mean feed intake 
subsequent to a change in photoperiod at 32 weeks of age (Lewis et al. 1996c). 
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related to feeding opportunity and curvilinearly related to light, thus the relative 

importance of each influencing factor varies with the size and direction of the photoperiod 

change. The unquestionable involvement of feeding opportunity as well as light in the 

response of hens to changes in photoperiod, which was demonstrated by a typical 

nutritional response curve for egg output on feed intake (Figure 3.12), contradicted the 

earlier conclusion of Morris et al. (1964) that changes in feeding opportunity played no 

part in the determination of the response to changes in daylength. 

 

3.7 Lighting and performance in broiler breeder hens 
 
A regression of egg numbers to 60 weeks on ASM showed a highly significant negative 

correlation, with similar slopes for birds given either constant or changing photoperiods 

(Figure 3.13). A common regression for both types of lighting indicated that egg numbers 

are reduced by 3.8 eggs for each 10-d delay in ASM. It is surprising, therefore, that birds 

that have been transferred to 16 h and had their maturity advanced should consistently lay 

fewer eggs during the laying period than birds transferred to only 11 or 12 h (Lewis, 2006). 

The poorer production is most likely due to a combination of an earlier onset of adult 

photorefractoriness (Lewis et al., 2003a) and higher daily energy expenditure by the 16-h 

birds (MacLeod et al., 1988). Broiler breeders are given fixed daily allocations of feed, and 

so any reduction in maintenance afforded by 4 to 5 h less illumination (1 h less light ≈ 1% 

lower energy expenditure) potentially releases energy for productive purposes. In four 

studies at the University of KwaZulu-Natal, sexual maturity for birds transferred to 16 h 

was only 2.8 d earlier than for birds moved to 11 or 12 h, and this advance, on its own, 

would only be expected to result in one more egg to 60 weeks of age. 

When broiler breeders are initially transferred to an 11- or 12-h final photoperiod at    

20 weeks of age, before being given further increases to 16 h, egg production will be 

superior to that of birds transferred abruptly to 16 h (Lewis et al., 2007f).  These findings  
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Figure 3.13 Regressions of egg numbers to 60 weeks on age at 50% lay for broiler 
breeders maintained on a constant photoperiod (○ and broken line) or transferred to a 
longer photoperiod at various ages (● and solid line) using 18 sets of data from studies 
conducted at the University of KwaZulu-Natal. 
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Figure 3.14 Regressions of mean egg weight to 60 weeks, adjusted to a 2.1-kg body 
weight at 20 weeks, on age at 50% lay for broiler breeders maintained on a constant 
photoperiod (○ and broken line) or transferred to a longer photoperiod at various ages      
(● and solid line), using 18 sets of data from studies conducted by the author at the 
University of KwaZulu-Natal. 
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supported the hypothesis of Dawson (2001) that the initial increase in daylength triggers 

the mechanisms for initiating both sexual maturation and the onset of adult photo-

refractoriness, and that the processes continue to completion at a slower rate if the initial 

transfer is to a less stimulatory photoperiod. 

An analysis of mean egg weight to 60 weeks of age indicated that both ASM and body 

weight at 20 weeks have highly significantly influences upon it, but that photoperiod in the 

laying phase per se has minimal effect. However, this is not to say that lighting is 

irrelevant, because it has an indirect effect through its influence on ASM. When 

photoperiod was dropped from the regression, mean egg weight was described by the 

equation: 

MEW = 43.5 +0.0969A + 1.974BW 

where MEW = mean egg weight to 60 weeks (g), A = age at 50% lay (d), and BW = body 

weight at 20 weeks (kg). The effect of ASM on egg weight, adjusted to a 20-week body 

weight of 2.1 kg, is clearly demonstrated in Figure 3.14. The regressions also show, as for 

egg numbers, that it is immaterial whether the bird matures in response to a constant or to 

an increment in photoperiod. 
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4. ILLUMINANCE 

 

4.1 Illuminance and sexual maturation in egg-type pullets 

Morris (1967b) concluded, from two unreported trials conducted at the University of 

Reading, that light intensity during the growing period was unimportant because pullets 

could be successfully reared with either very high or very low light intensities. 

Lewis et al. (1999a) reported the findings of a study that involved a larger number of 

treatments and a wider spread of illuminance (means varying from 0.05 to 10.8 lux) than 

the Reading studies (0.2 to 5.0). Brown-egg hybrids that had been illuminated from 1 d of 

age with an 8-h photoperiod at a mean intensity of 8.7 lux (5.5 to 10.8 lux) had the 

photoperiod augmented at 70 d (when ad libitum-fed egg-type pullets are most responsive 

to an increase in photoperiod) by two 3-h periods of dim light, one immediately before and 

the other after the main photoperiod. The rationale of this protocol was to detect the lowest 

illuminance at which the pullets interpreted the regimen at a 14-h day. A meta-analysis of 

the data for mean AFE, together with data from Reading University, indicated that whereas 
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Figure 4.1 Regression of mean age at first egg on illuminance at the feed trough (●) Lewis 
et al., 1999a, and (○) unpublished data from University of Reading. 
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birds given supplementary light at ≥ 1.7 lux matured 30 d earlier than birds maintained on 

8 h of normal intensity light, AFE in birds given supplementary light at ≤ 0.75 lux was still 

advanced by 10 d (Figure 4.1). 

A change in photoperiod had been shown to exert a more potent influence on sexual 

maturation than the photoperiod itself (e.g., Whetham, 1933; Morris and Fox, 1958b; 

Lewis et al., 1996d), and light intensity per se had been demonstrated to modify the rate of 

sexual development (Figure 4.1), but there had been no reports for the effect of a change in 

illuminance on sexual maturation. Accordingly, Lewis et al. (2004c) studied the effects of 

an increase from 3 to 25 lux and a decrease from 25 to 3 lux at 63 or 112 d on age at sexual 

maturity in white-egg and brown-egg strains of egg-laying hybrid maintained on a constant 

10-h photoperiod to 140 d. The 3-lux intensity was chosen because it exceeded the 

threshold for full photostimulation of sexual development (Lewis et al., 1999a), and the  

25 lux because a similar contrast in illuminance (10:1) had been observed to stimulate the 

resumption of egg production in photorefractory partridges maintained on long-days 

(Siopes and Wilson, 1978). The ages at which the light intensities were changed were 

chosen because ad libitum-fed egg-laying pullets are most responsive to an increment in 

photoperiod at about 63 d and to a decrease in photoperiod at about 105 d (Lewis et al., 

2002). 

Unexpectedly, the increases in illuminance given at 63 and 112 d retarded sexual 

development whilst the reductions at 112 d advanced it; and white-egg hybrids had 

stronger responses than brown-egg birds. In contrast, increases in intensity at 63 d induced 

an increase in plasma LH within 4 d, but not at 112 d, whilst decreases in illuminance 

depressed circulating LH at both 63 and 112 d; responses similar to those expected for 

increases and decreases in photoperiod, and further demonstrations of the poor correlation 

of change in LH release with rate of sexual maturation. It was suggested that the 
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contrasting effects on gonadal development of changes in illuminance, compared with 

those expected in response to a change in photoperiod, were consequences of a phase-shift 

in the circadian rhythm of photoinducibility and/or a modification of the responsiveness of 

phototransduction pathways; the avian photosexual response has been shown, in partridge, 

to be more robust at low illuminance (when there is total reliance on the trans-cranial light 

pathway) than at brighter light intensities (when photoreception is both ocular and extra-

retinal) (Siopes and Wilson, 1978). 

 

4.2 Illuminance and sexual maturation in broiler breeders 

There had been few prior studies of the effect of illuminance on the performance of broiler 

breeders (e.g., Proudfoot et al., 1984; Brake and Baughman, 1989; Renema et al., 2002). In 

two of the studies it had been concluded that at no stage of the broiler breeder’s life did 

light intensity significantly affect reproductive performance, and, in the third, all birds had 

been reared at the same illuminance (10 lux) and transferred to 1, 5, 50 or 500 lux at        

22 weeks. Whilst the more brightly illuminated groups matured significantly earlier than 

the lower-intensity groups, differences could have been due to the divergent changes in 

illuminance that occurred at  22 weeks and not to the prevailing light intensity. The wide 

spread of intensities also precluded the identification of an optimum illuminance. 

Lewis et al. (2007e) reported that birds reared on 8-h days at 10 lux, prior to a transfer 

to open-sided housing, reached 50% egg production 2 d significantly later than birds reared 

at 40 or 100 lux, and, more importantly, had lower peak rates of lay which resulted in the 

production of 9 fewer eggs to 60 weeks. In a further, unreported study, birds reared at      

44 lux reached 50% egg production 4 d significantly earlier than birds reared at 13 or 21 

lux, suggesting that the optimum illuminance to achieve the earliest ASM might be about       

40 lux. 
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4.3 Illuminance and laying performance in egg-type hens 

The laying hen’s response to illuminance was initially investigated at the University of 

Reading (Morris and Owen, 1966; Morris, 1967b). The universally quoted 0.4 lux 

minimum illuminance required to effect a rate of egg production greater than that achieved 

in complete darkness, and therefore the maximum permitted extraneous light in controlled 

environment houses, was concluded by Morris (1967b). Morris (1981) then suggested that 

5 lux was the optimum illuminance for maximising the reproductive and economic 

performance of laying hens, though Hill et al. (1988), Morris et al. (1988) and Tucker and 

Charles (1993) later suggested that the figure for modern egg-laying hybrids was probably 

much lower. Although an analysis of the findings of the latter three studies showed that the 

fall away in egg production when illuminance dropped below the optimum was much less 

severe than observed in the earlier studies, the general conclusion of a 5-lux optimum 

intensity at the feed trough did not require amendment (Lewis and Morris, 1999). 

The review by Lewis and Morris (1999) indicated that mean egg weight during the 

laying year decreases by 0.13 g for each 10 lux increase in feed-trough illuminance, and so 

has minimal commercial importance because intensively housed laying hens are unlikely 

to be kept at an illuminance much brighter than 10 lux. One possible explanation for the 

negative effect of illuminance on egg weight is the 0.2 g reduction in voluntary feed intake 

that occurs for each 10 lux increase in light intensity. 
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5. ULTRAVIOLET RADIATION 

 

In common with other avian species, but in contrast to humans, domestic fowl posses a 

fourth retinal cone that has a peak sensitivity at about 415 nm (Govardovskii and Zueva, 

1977) and oil droplets that permit the transmission of wavelengths within the UV-A range 

of electromagnetic radiation (Bowmaker et al., 1997).  

In the first of two studies of the mature laying hen’s response to ultraviolet radiation, 

brown-egg hybrids were sequentially exposed to between 9 and 12 d of 8 h of white light 

only, 8 h of white light (7 lux) immediately followed by (a) 8 h of dim (0.4 lux) violet 

light, then (b) 8 h of dim violet light plus UV-A at 1.1 x 10-1 W/m², and finally a transfer to 

16 h of white light only (Lewis et al., 2000a). Only the transfer to 16 h of white light 

effected a phase-shift in oviposition time. In the second trial, laying hens were given 

continuous illumination for 14 d to allow them to hormonally ‘free run’ before being given 

12 h of supplementary of UV-A radiation starting at either midday or midnight within the 

LL conditions. During the free-running period, eggs were laid randomly throughout the   

24 h, which continued during the period of supplemental UV-A, irrespective of its 

temporal location. However, feeding activity, which was random across the 24 h for white-

light-only controls, was depressed during the periods of supplemental UV-A provision in 

the experimental birds.  

The lack of a phase shift in the ovulatory cycle when hens were given supplemental 

UV-A radiation immediately following a normal photoperiod and the lack of entrainment 

to a 12-h period of UV-A radiation in continuously illuminated hens demonstrated, in fowl 

what had previously been found in Mallard drakes, that UV-A radiation has a minimal 

effect on avian photosexual mechanisms (Benoit, 1964). It was presumed that this failure 

to affect photosexual responses was a consequence of the UV-A being either too short a 

wavelength or of too low an intensity to penetrate to the hypothalamus. However, the 
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depression of feeding activity during UV-A exposure was in agreement with the 

observation that circadian activity in the canary could be entrained by periods of UV-A 

(Pohl, 1992) and supports the hypothesis that UV-A acts primarily at the retinal level to 

stimulate avian behavioural responses only (Bennett and Cuthill, 1994). 
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6. INTERRUPTED LIGHTING REGIMENS 

 

The interrupted lighting studies summarised below were conducted at the University of 

Bristol and their findings formed the basis of a thesis submitted for the award of a Ph.D. 

degree (Lewis, 1987). 

6.1 Reproductive performance, body weight and composition 

It was concluded that egg production and mean egg weight for brown-egg hybrids given an 

asymmetrical lighting regimen were similar to those of birds given an equivalent solidly 

illuminated regimen, but that feed intake was consistently lower than conventionally 

lighted hens. Though not statistically significant, the differences were of the magnitude 

reported in the literature and similar to those observed under commercial egg production 

conditions. Shell quality, unlike that of birds given symmetrical interrupted lighting, was 

no different from that of hens given a conventional light-dark cycle (Lewis and Perry, 

1987b, 1990a). Body weights and fat contents at the end of the annual laying cycle, and the 
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Figure 6.1 Effect of daily amount of illumination on the incidence of mortality in groups 
of laying hens given an intermittent (○) or conventional (●) lighting regimen (Lewis et al., 
1996a) 
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incidence of mortality caused by ruptured fatty livers were lower for intermittently 

illuminated hens than for conventionally illuminated controls (Lewis and Perry, 1989a). 

An analysis of the incidence of mortality in the Bristol experiments and studies of 

various types of intermittent lighting regimen from the literature showed that, in general, 

intermittent lighting improved liveability compared with conventional lighting (Lewis et 

al., 1992). However, Lewis et al. (1996a) subsequently concluded that it was not 

intermittent lighting per se that improved liveability but the decreased amount of daily 

illumination; intermittent lighting regimens that did not involve a reduction in illumination 

were not associated with a reduced incidence of mortality (Figure 6.1). 

 

6.2 Physiological influences 

Patterns of diurnal noise output (Lewis et al., 1987) and feeding activity (Lewis and Perry, 

1986), sleep and locomotor activity (March et al., 1990), and daily rhythms of melatonin 

release (Lewis et al., 1989) clearly showed that laying hens interpret the longest 

scotoperiod in an asymmetrical interrupted regimen as night and the remainder of the 24-h 

cycle as day, whether the lights are on or off. Mean oviposition times, distributions of egg 

laying within the day, and the proportion of eggs laid in the modal 8 h were similar to birds 

given the equivalent solidly illuminated regimen (2L:4D:8L:14D ≡ 14L:10D), thus 

confirming that both groups used the same dark/light and light/dark interfaces as dawn and 

dusk respectively (Lewis and Perry, 1990b). 

Although the reduction in daily feed intake for hens given asymmetrical interrupted 

lighting was not significantly different from normally lighted hens, the intermittent birds 

performed 25% less total daily feeding activity, consumed 20% of the daily intake during 

the scotoperiod(s) that formed part of the subjective day, and performed no feeding during 

the dark period that was interpreted as night (Lewis and Perry, 1986). Intermittent lighting 
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had no effect on crop weight or on the rate at which it was emptied (Lewis and Perry, 

1990b). 

Exposure of laying hens to an asymmetrical interrupted lighting regimen for a 52-week 

cycle did not result in the development of any ocular abnormalities (Lewis and Perry, 

1990b). 

 

6.3 Symmetrical intermittent lighting and red mite 

A fortuitous observation following a study of the symmetrical intermittent lighting 

programme designed by Morris and Butler (1995) at the University of Reading 

(continuously repeating 15 min light and 45 min darkness) indicated that infestations of red 

mite (Dermanyssus gallinae) in houses given the experimental regimen were markedly 

lower than in those in which the hens had been given a 14L:10D regimen. It was suggested 

that this could have been a consequence of either the red mite’s feeding opportunity being 

reduced by the very short scotoperiods (red mite only crawl on to hens at night to suck 

blood) to such an extent that they failed to ingest sufficient blood to sustain egg laying or 

that the mite’s normal breeding cycle was disrupted by its inability to interpret a 24-h 

cycle; when all photoperiods and all scotoperiods are the same size in a lighting regimen, 

the hen cannot interpret a day and night, which results in many circadian oscillators, 

including the ovulatory cycle, ‘free running’ with 25.3-h rather than 24-h rhythmicity 

(Kadono et al., 1981). 

In an experiment conducted at the University of Bristol to investigate the mode of 

action for the suppression of red mite breeding under intermittent lighting, laying hens 

were given a very short night within a conventional regimen (20L:4D), the original 

symmetrical intermittent regimen (24(15minL:45minD)), a more commonly used 

4(3.5L:2.5D) symmetrical intermittent regimen, or a normal 14L:10D programme (Stafford 

et al., 2006). Data showed that whilst the short night of the 20L:4D regimen significantly 
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reduced red mite numbers, the principal factor to curtail red mite breeding was the 

intermittent nature of the lighting regimen; red mite were virtually eliminated from the two 

rooms in which the birds were intermittently illuminated (Figure 6.2). 
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Figure 6.2 Cumulative numbers of trapped red mite in rooms of 25 hens exposed to 
14L:10D (●), 20L:4D (○), 24(15minL:45minD) (▲) or 4(3.5L:2.5D) (∆) for 12 weeks 
(data from Stafford et al., 2006). 
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