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Abstract 

 

Wetland vegetation is of fundamental ecological importance and is used as one of the 

vital bio-indicators for early signs of physical or chemical degradation in wetland 

systems. Wetland vegetation is being threatened by expansion of extensive lowland areas of 

agriculture, natural resource exploitation, etc. These threats are increasing the demand 

for detailed information on vegetation status, up-to-date maps as well as accurate 

information for mitigation and adaptive management to preserve wetland vegetation. 

All these requirements are difficult to produce at species or community level, due to the 

fact that some parts of the wetlands are inaccessible. Remote sensing offers non-

destructive and real time information for sustainable and effective management of 

wetland vegetation. The application of remote sensing in wetland mapping has been 

done extensively, but unfortunately the uses of narrowband hyperspectral data remain 

unexplored at an advanced level. The aim of this study is to explore the potential of 

hyperspectral remote sensing for wetland vegetation discrimination at species level. In 

particular, the study concentrates on enhancing or improving class separability among 

wetland vegetation species. Therefore, the study relies on the following two factors; a) 

the use of narrowband hyperspectral remote sensing, and b) the integration of vegetation 

properties and vegetation indices to improve accuracy. The potential of vegetation 

indices and red edge position were evaluated for vegetation species discrimination. One-

way ANOVA and Canonical variate analysis were used to statistically test if the species 

were significantly different and to discriminate among them. The canonical structure 

matrix revealed that hyperspectral data transforms can discriminate vegetation species 

with an overall accuracy around 87%. The addition of biomass and water content 

variables improved the accuracy to 95.5%. Overall, the study demonstrated that 

hyperspectral data and vegetation properties improve wetland vegetation separability at 

species level. 
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Chapter One:  

Introduction 

1.1 Background 

 
Wetlands in an African savanna are alluring, dynamic, and complex unique natural 

systems that provide substantive hydrological systems, biological and ecological 

diversity (Kotze and Breen, 1994; UNESCO, 2008). A ‘wetland’ is defined as a land 

where the water table is usually at or near the surface or which is saturated for long 

enough period to promote features such as water tolerant vegetation that can survive in 

wet-altered soils (Cowardin et al., 1979). There are many types of wetlands including 

springs, mires, bogs, floodplains, coral reefs, long sand beaches, vleis, seeps, extensive 

reed and papyrus swamps, coastal lakes, estuaries, and mangrove swamps (Collins, 

2001; Schmidt and Skidmore, 2003; UNESCO, 2008). These wetlands are hard-working 

ecosystems that provide a critical habitat for fauna and flora including vegetation 

species and wildlife animals (Collins, 2001).  

 

There are approximately 120 000 wetlands in South Africa that cover approximately 7% 

of South Africa’s surface area (Wetlands South Africa, 2009). From those 120 000 

wetlands mapped by the National Wetland Inventory in South Africa, only 12 sites have 

been recognised by the Ramsar Convention (Ramsar, 1971), including the iSimangaliso 

Wetland Park in KwaZulu-Natal, Langebaan on the west coast in the Western Cape, 

Barberspan in North West Province, Blesbokspruit in Gauteng, and De Hoop vlei in the 

Cape (Wetlands South Africa, 2009). Wetlands are essential in an arid, water-scarce 

country such as South Africa, yet an estimated 30% to 60% of South Africa’s wetlands 

have been destroyed by housing, roads, infrastructure, and agricultural development 

(Kotze and Breen, 1994; Begg, 1989; Working for wetlands in SANPARKS, 2004). 

Due to the limited availability of valuable information in South Africa on the 

distribution and state of wetlands, it is a serious impediment for the adequate 

identification, monitoring, protection, and management of wetland resource. 
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Mapping and assessment of wetlands require a greater understanding of the following 

three variables: wetland (hydrophytic) vegetation, hydric soil, and wetland hydrology 

(Mitsch and Gosselink, 1993; Collins, 2001). In the case of iSimangaliso Wetland Park, 

the problem of extensive lowland areas for agriculture and natural resource exploitation 

is affecting the hydrology and salinity of the wetland system (Kotze and Breen, 1994). 

Also the land use changes within certain parts of the park are related to the closure of 

the iSimangaliso Wetland Park estuary mouth by sedimentation, and the reduction in the 

supply of critical resources (Collins, 2001).  

 

 The effects of the above mentioned problems can only be noticed through ecological 

changes. Hydrophytic vegetation is of fundamental ecological importance and is used as 

one of the vital bio-indicators for early signs of any physical or chemical degradation in 

wetland systems (Demuro and Chisholm, 2003; Belluco et al., 2006; Adam and 

Mutanga, 2009). Therefore, acquiring accurate information for identification and 

monitoring of vegetation species distribution and quantity is an important technical task 

for sustainable management of wetlands (Schmidt and Skidmore, 2003). As a result, the 

spectral response of floristic characteristics of wetlands play a vital role in monitoring 

water quality, environment stress management, natural resource inventory and 

managing human impacts on wetlands (Mitsch and Gosselink, 1993; Van Aardt and 

Waynne, 2001; Adam and Mutanga, 2009). 

 

Schmidt and Skidmore (2003), Vaiphasa et al. (2005), and Adam and Mutanga (2009) 

suggest that protection and restoration programmes of wetland vegetation require up-to-

date spatial and taxonomic information. Previously, researchers and scientists had been 

using optical interpretation and prior knowledge of vegetation to provide qualitative 

assessments of vegetation characteristics (Clark et al., 2005). In addition, these 

researchers used traditional floristic mapping methods which are labour-intensive, time-

consuming and expensive. Also, some places are inaccessible since most wetlands are 

waterlogged and swampy, which allows only a small area to be covered for study (Lee 

and Lunetta, 1996; Schmidt and Skidmore, 2003; Adam and Mutanga, 2009).  

 
One of the most important tools that are being used to monitor changes in wetland 

vegetation is remote sensing (Kotze et al., 1995; Lee and Lunetta, 1996; Schmidt and 
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Skidmore, 2003; Xie et al., 2008). The introduction of remote sensing in vegetation 

studies has brought the uses of a non-destructive and direct method of assessing and 

monitoring vegetation species from local to global scales (Datt, 1999). Adam and 

Mutanga (2009) recognised that remote sensing offers a practical and cost-effective 

means to quantify and discriminate the vegetation parameters of the vegetation species 

as well as making field sampling more focused and efficient. Satellite or airborne 

imagery provides permanent records useful for monitoring the extent, type, and location 

of environmental changes in wetland communities (Datt, 1999). Since the early 1980s, 

remotely sensed imagery has become commonly used to improve identification of 

vegetation species (Howland, 1980; Begg, 1989; Kotze et al., 1995; Green et al., 1998; 

Asner et al., 2000; Curran et al., 2001; Hirano et al., 2003; Mutanga et al., 2003; 

Schmidt and Skidmore, 2003; Xie et al., 2008; Adam and Mutanga, 2009). 

 

Multispectral remote sensing has been widely used to monitor vegetation status, but 

unfortunately this system has limited capability for accurate identification of vegetation 

species. Due to its coarse spectral resolution it creates ambiguous differentiation among 

vegetation species (Schmidt and Skidmore, 2003). Multispectral sensors cannot 

effectively determine either the fine scale spatial heterogeneousness or narrow ecotones 

common in most wetlands (Siciliano et al., 2008). Multispectral data provide a wider 

view and lower cost needed for its application in different vegetation studies, but have 

shown ineffectiveness when distinguishing vegetation species (Ndzeidze, 2008).  

 

However, over the past few decades, advances in sensor technology have improved 

remote sensing and discrimination of wetland vegetation at species level, with the 

development of hyperspectral sensors. In contrast to data from multispectral remote 

sensing, hyperspectral data are of high spectral resolution of narrow channels less than 

10 nm and the data consist of a large number of very narrow contiguous bands between 

350 nm and 2500 nm in the electromagnetic spectrum (Kokaly and Clark, 1999; Van 

Aardt and Waynne, 2001; Kokaly, 2001). With the help of hyperspectral remote 

sensing, vegetation parameters such as biomass (Tucker, 1979; Sun et al., 1991; Moreau 

and Toan, 2003; Mutanga and Skidmore, 2004) and water content (Cochrane, 2000; 

Mutanga et al., 2003) have been accurately measured and quantified. These narrow 
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spectral bands also allow the detection of fine details of vegetation species, which could 

otherwise be masked by broadband sensors (Schmidt and Skidmore, 2003; Mutanga et 

al., 2003).  

 

 Since wetlands are waterlogged and swampy, the spectral reflectance will be affected 

by atmospheric interference, soil background, and segmental water, which eventually 

lead to spectral noise. To overcome this problem, this study concentrated on the red 

edge region (680nm to 750 nm) which is insensitive to soil background and atmospheric 

interferences (Guyot et al., 1992; Clevers, 1999; Mutanga and Skidmore, 2007; Cho, 

2007). Red edge is defined as the wavelength of the inflection point of reflectance slope 

that is located between the red trough and near infrared (NIR) plateau (Collins, 1978; 

Curran et al., 2001; Mutanga, 2004). The second method was the application of 

vegetation properties to enhance the spectral separability among the vegetation species 

that ultimately increases the accuracy. 

 

Biophysical and biochemical parameters have an impact on discriminating wetland 

species since they vary as a function of plant species and hydrologic regime (Mutanga 

and Skidmore, 2004; Curran et al., 2001; Pu et al., 2003). This was supported by 

Schmidt and Skidmore (2003), who point out that all vegetation contains similar 

biochemical constituents, but these vary in their proportions (in terms of absorption and 

reflectance). The variation in those proportions is what is used to discriminate different 

plants even if they receive the same amount of water as in the case of a wetland.  

 

However, to date, there are no studies to the best of our knowledge that have been 

undertaken to establish what the effects of these vegetation properties are on spectral 

reflectance of wetland vegetation. Most previous studies have concentrated on mapping 

and discriminating wetland vegetation species rather than investigating the effects of 

vegetation properties on reflectance spectra (Asner and Martin, 2008). In the present 

research, because of time constraints, only biomass and water content variables were 

investigated. 
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Most of the wetlands in iSimangaliso Wetland Park receive varying amounts of rainfall 

throughout the year that means all the plant absorbs different amount of water per given 

area. Since the most abundant chemical in leaves is water that may constitute up to 70% 

(Kokaly et al., 2009; Ustin et al., 2004; Vaiphasa et al., 2005; Asner and Martin, 2008), 

quantification of canopy water content can be very useful. Every vegetation species 

absorbs and stores water differently; hence the variation in plant water content can be 

used as a means to discriminate wetland plants using hyperspectral remote sensing 

(Collins, 1978; Jago and Curran, 1995). Asner and Vitousek (2005) managed to detect 

and distinguish two invasive nitrogen fixer and understory herb species, Morella faya 

and Hedychium gardnerianum, using quantification of foliar nitrogen and plant water 

content. 

 

However, most of the previous researchers’ conclusions on the aboveground biomass 

and water content quantification are not directly applicable to wetland vegetation 

discrimination at species level. Also, when discriminating vegetation species, raw data 

(bands) might not be effective because of overlap and noise that is associated with other 

parts of the electromagnetic spectrum. Moreover, when detecting spectral reflectance of 

submerged aquatic vegetation at any scale, variation in biophysical and biochemical 

properties must be considered.  

 

It is critical to note that hyperspectral remote sensing has focussed on the estimation of 

both biochemical properties and biophysical properties of vegetation or species 

discrimination independently, without a clear cut attempt to integrate the products in 

improving species mapping. Several maps, algorithms and models have now been 

developed to predict biomass and other structural properties of vegetation at reasonable 

accuracies. The question is, can the integration of this available ancillary information 

with hyperspectral data improve species discrimination? 

 

The main aim of this study was to investigate the potential of hyperspectral remote 

sensing (using field spectrometry) for vegetation species discrimination at field level. In 

particular, leaf spectral reflectance at canopy level of four wetland vegetation species 

was measured for spectral separability. To test the utility of ancillary vegetation 
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structural information, this study quantified vegetation properties (plant water content 

and aboveground biomass) and combined them with hyperspectral data in 

discriminating vegetation species. The study sets itself to the following aim and 

objectives. 

1.2 Aim and objectives 

Based on the issues articulated above, the research will focus on the potential of the red 

edge position to identify and map different wetland vegetation at species level using 

hyperspectral data. The main objectives are: 

• to evaluate the ability of hyperspectral remote sensing data in discriminating 

wetland vegetation at species level using the red edge position,  

• to test and compare the performance of the red edge position against other 

vegetation indices, 

• to test different red edge extraction techniques to distinguish hydrophytic 

vegetation, and 

• to investigate if there is an improvement in species discrimination by combining 

vegetation structural and biochemical characteristics with hyperspectral data. 

1.3 Research questions 

i. How useful are red edge parameters to wetland vegetation discrimination at 

species level as compared to other vegetation indices? 

ii.  Which hyperspectral vegetation indices can be used to discriminate wetland 

vegetation species calculated from wavelengths in the red edge region? 

iii.  How important are quantified biochemical and biophysical properties of 

vegetation on vegetation discrimination at species level? 

1.4 Study area 

Lake St Lucia was declared South Africa's first Natural World Heritage Site by 

UNESCO on 1 December 1999, and its name was changed to Greater St Lucia Wetland 

Park which was then renamed on 1 November 2007 to iSimangaliso Wetland Park. This 

was done in an effort to give the wetland a unique African identity. The wetland site is 

registered under one of the Ramsar sites. This large wetland area has 280km² of near 
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pristine terrestrial, wetland, estuarine, coastal, and marine environments,  and it covers 

about 328 000 hectares which is why it is regarded as the largest estuarine area on the 

African continent. The iSimangaliso Wetland Park is located between Maphelana in the 

south and Kosi Bay near the border of Mozambique in the north, and it is between 

longitudes 32º21′ and 32º 34′ E latitudes 27 º 34′S and 28 º 24′ S as shown in Figure 1.1. 

It has a mean annual temperature of about 21 °C. Around the iSimangaliso Wetland 

Park, rainfall is not available throughout the year and it is spatially highly variable in the 

Park. Depending on the location in the park, rainfall ranges from 1200mm to 1300 mm 

per annum with approximately 60 % of the rainfall in summer (UNESCO, 2008).  

 

The park supports extraordinary ecological and biological diversity due to its location 

that is between tropical and subtropical biota (Collins, 2001). In the iSimangaliso 

Wetland Park, there are many different wetland vegetation species including those in 

salt marshes (e.g. Juncus krausii, Salicornia spp., and Ruppia maritima); Saline reed 

swamps (Phragmites mauritianus); Sedge Swamp (Eleocharis limosa) and Echinochloa 

floodplain grassland (Echinochloa pyramidalis, Eriochloa spp., and Cyperus spp.), but 

the most dominant species are found in freshwater reed and papyrus swamps 

(Phragmites australis and Cyperus papyrus). In total, four species were identified as 

being the most common species that generally grow at the same place. These were 

Cyperus papyrus, Phragmites australis, Echinochloa pyramidalis, and Thelypteris 

interrupta. Cyperus papyrus and Phragmites australis cover approximately 7 000ha in 

the Park. 
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Figure 1.1 The location of the study area iSimangaliso Wetland Park in KwaZulu-Natal 

Province, South Africa. 

1.5 Thesis outline 

In Chapter 1 background is provided of wetlands’ vegetation and the importance of 

remote sensing, especially the availability of narrow bands (data). In Chapter 2, the 

review of literature regarding application of remote sensing in wetland vegetation is 

summarised and the potential of hyperspectral technology for discriminating wetland 

vegetation at the species level is demonstrated. The possibility of using vegetation 

properties (biochemical and biophysical properties) in vegetation species discrimination 

is also discussed.  

 

In Chapter 3 the methods used to carry out the research are discussed. An explanation is 

given of how the field spectral measurements, aboveground biomass, plant water 

content, vegetation indices, and red edge position were calculated. All the statistical 

analysis methods used to check if there were significant differences between wetland 
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vegetation species are outlined. The use of discriminant analysis techniques in 

differentiating vegetation species is also investigated.   

 

In Chapter 4 the results of the relationship between spectral reflectance, vegetation 

indices, and the red edge position are summarized. A comparison between vegetation 

indices and the red edge derivatives in discriminating wetland vegetation at species 

level is also done in this chapter.  In Chapter 5 the results of discriminating wetland 

vegetation at species level using vegetation indices and vegetation properties is 

provided. These two chapters are in the form of articles for publication. 

 

In Chapter 6 the research is summarized and the aim and objectives of the thesis are 

synthesized.  
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Chapter Two: 

 Literature Review 

2.1 Introduction 

The wetlands of the iSimangaliso Wetland Park are important as productive natural 

ecosystem remnants offering wildlife habitat, tourist destinations, and water quality at a 

given time or over a continuous period. Wetland vegetation has compositional and 

structural characteristics that provide specialized habitats for a range of important 

wetland-dependent species. Wetland vegetation may also provide a range of locally 

important goods for local communities such as reeds for weaving, grazing areas for 

domestic stock, and services to downstream users such as flood attenuation and nutrient 

retention (Kotze and Breen, 1994; Schmidt and Skidmore, 2003; Working for Wetlands 

in SANPARKS, 2004).  

 

However, in the iSimangaliso Wetland Park, problems such as drainage of extensive 

lowland areas for agriculture and the exploitation of natural resources are affecting the 

hydrology and salinity of the wetland system. The other problems that affect the 

iSimangaliso Wetland Park ecology is the land use changes within certain parts of the 

park related to the closure of the estuary mouth by sedimentation, and the reduction in 

the supply of critical resources. The threat arose from the transformation of the upper 

portion of the Mfolozi Swamps by agriculture (Collins, 2001; UNEP, 2001). Schmidt 

and Skidmore (2003) suggest that there are long-term threats to wetlands that require an 

investigation into vegetation species that are available right now and these threats 

include pollution, sea level rise, climatic change, and ground subsidence from gas 

extraction. 

 

Wetland vegetation has undergone considerable changes and most wetlands are              

rapidly being lost or degraded because of human activities, which bring the need to 

protect and preserve them (Dini et al., 1998). A thorough understanding of relationships 

between vegetation species distribution and accurate knowledge is vital for the 

development, implementation, and monitoring of wetland vegetation (Dini et al., 1998; 

Schmidt and Skidmore, 2003). When working with wetland vegetation for management 
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of sustainability and integrated wetland conservation strategies, the most important 

thing is the acquisition of accurate knowledge about the natural relationships of plants 

because it makes the interpretation of structure, development, and distribution of 

ecological plant communities in the landscape much easier based on the study of plant 

groups (Schmidt and Skidmore, 2003). This led to the introduction of remote sensing 

which has been used for a long time to monitor vegetation status.   

2.2 Remote sensing and spectral characteristics of wetland vegetation 

Specifically, remote sensing data is acquired using hand held spectrometers, aerial 

photography, and airborne or satellite sensors based on the detection of electromagnetic 

radiation (Provoost et al., 2005; Curran et al., 1990). Currently, there are two main 

techniques used to acquire remote sensing data, namely, active sensors and passive 

sensors. Active sensors (LIDAR and RADAR) are systems that emit energy that is 

directed at a target and later measure the return signal after the target reflects energy 

back to the sensor. Passive sensors measure solar energy that is naturally available. 

Passive sensors are the most common sensors used for the acquisition of detailed data 

on vegetation species.  

 

The electromagnetic waves emitted by the sun are partially absorbed, partially 

transmitted, and partially reflected by the different materials on the earth’s surface 

(Provoost et al., 2005; Lillesand and Kiefer, 1994). Remote sensing data offer the 

opportunity to detect these signals that are also affected by atmospheric conditions and 

the earth’s surface in general and vegetation in great detail. The reflected radiance 

measured by the sensor is converted to reflectance values that are defined as the ratio of 

the intensity of the reflected light to the intensity of the incoming light as a function of 

the wavelength. Features on the earth’s surface have different spectral signatures due to 

differences in chemical and physical properties (Provoost et al., 2005) which are 

eventually detected by spectroradiometers devices such as an Analytical Spectral 

Device (ASD). The ASD measures continuous spectral bands between 350nm and 

2500nm throughout the visible (350nm to 700nm), NIR (700nm to 1300nm), Mid-

Infrared (MIR), and Thermal Infrared (TIR) (1300nm to 2500nm) regions of the 

electromagnetic spectrum (Kumar et al., 2001; Lillesand and Kiefer, 2000). The 
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interaction of electromagnetic radiation with the leaves is dependent upon many factors 

including cuticular composition and structure, cellular organization, intercellular air 

spaces, biomass, Leaf Area Index (LAI), cytoplasmic inclusions, pigments, water 

content, emissivity characteristics, and temperature (Kumar et al., 2001; Lillesand and 

Kiefer, 2000; Provoost et al., 2005; Siciliano et al., 2008; Schmidt and Skidmore, 

2003).  

 

Provoost et al. (2005) and Curran et al. (1990) found that absorption is strong in the 

violet (< 400nm), blue and red (from 400nm to 700nm) part of the spectrum that is 

caused by the composition and concentration of chlorophyll and pigments (e.g. 

anthocyanin, lutein, ß and ά carotenoids, and xanthophyll), which result in lower 

reflectance. The characteristics of the upper epidermis and the refractive index of the 

cuticular wax determine the reflectance from the leaf surface, but the anatomical 

structure of the leaf also contributes significantly to NIR reflectance (Provoost et al., 

2005). As shown in Figure 2.1, from 495nm to 570nm which is the green part of the 

solar spectrum indicate an increase in energy reflectance causing plants to show a green 

colour. This results in low reflectance in the visible wavelengths and strong increased 

reflectance of the near infrared that appears around 690nm (Curran et al., 1990). Green 

plants hardly absorb NIR because the energy content of the shortwave infrared part of 

the solar spectrum is insufficient to trigger photochemical reactions, and this part of the 

energy spectrum is not absorbed by chlorophyll a, chlorophyll b, or carotene (Kumar et 

al., 2001; Adam and Mutanga, 2009).  

 

The contrast between red absorption and NIR reflection, known as the ‘red edge’, is the 

evident spectral characteristic with more information content for vegetation spectra 

(Dawson and Curran, 1998; Mutanga, 2004; Cho and Skidmore, 2006). ‘Red edge’ is 

defined as being the wavelength of the inflection point of reflectance slope that is 

located between two of the most widely used wavelength regions used for narrow band 

vegetation studies, the red trough and NIR plateau in the 680nm to 750nm regions of 

vegetation spectra (Collins, 1978; Curran et al., 2001; Mutanga, 2004). The absorption 

of the red part of the spectrum is due to the combined effects of polymer forms of strong 

chlorophyll, and the high multiple scattering of radiation in the leaf mesophyll causes 
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high reflectance in the NIR part of the spectrum (Liang, 2003; Cho and Skidmore, 

2006). A significant advantage of the use of the red edge position is that it is relatively 

insensitive to variations in illumination conditions and to the reflectance of the soil 

background but it is highly correlated to vegetation greenness parameters (Mutanga and 

Skidmore, 2007). The position of the red edge has been successfully used in vegetation 

studies as an indicator of physiological changes in vegetation studies (Collins, 1978; 

Jago and Curran, 1995). From Figure 2.1 it can be noted that between wavelengths 

700nm and 1300nm (Visible and Near Infra-Red (VNIR) and lower Shortwave Infrared 

(SWIR)) there is high reflectance of energy. This high reflectance is caused scattering of 

electromagnetic radiation due to the arrangement of cellular and discontinuities in the 

refractive index within the leaf. Finally, SWIR region (1300nm to 2600nm) is 

characterized by strong water absorption bands and minor absorption of biochemical 

content dominating the gradually decreasing reflectance of green vegetation (Kumar et 

al., 2001). 

 

 

Figure 2.1 Reflectance curves of different types of wetland vegetation species in the 

iSimangaliso Wetland Park (December 2009, ASD measurements). 
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Spectral properties of wetland vegetation are related to biochemical and biophysical 

properties rather than species and its spectral reflectance is influenced by soil 

background and hydrologic regime (Guyot, 1990). This interference causes low spectral 

reflectance in vegetation spectrum especially in the NIR region where water is highly 

absorbed (Cochrane, 2000). Within a single species, plants show a variety of 

phenological, morphological, and physiological conditions, complicating the spectral 

separability of vegetation types based on species composition (Schmidt and Skidmore, 

2003; Asner, 1998). Estimating biophysical and biochemical constituents of vegetation 

with imaging spectrometry is a difficult task, since several overlapping absorption 

features influence plant reflectance (Curran et al., 1992; Curran et al., 2001; Siciliano et 

al., 2008).  

 

The spectral response at either leaf or canopy level can be affected by leaf internal 

structure, leaf age, phenological stages, angle of view, atmospheric properties, spectral 

mixture, moisture content, illumination angle, biochemical and biophysical properties 

(nitrogen, biomass, plant water content, LAI, phosphorus, chlorophyll content, 

anthocyanin, lutein, ß and ά carotenoids, and xanthophylls) (Cochrane, 2000). Accurate 

knowledge of different spectral response is very important for discrimination of wetland 

vegetation at species level since there is no uniqueness in spectral signatures (Kumar et 

al., 2001; Kamaruzaman and Kasawani, 2007). Biomass and chlorophyll content of 

wetland vegetation species are thought to vary greatly as a function of the plant species 

and hydrologic regime (Anderson, 1995; Adam and Mutanga, 2009). Plant water 

content, cellulose and other plant properties are recorded as being an influence in the 

spectral reflectance of vegetation that determines the strong absorption in mid-infrared 

and an increase in near infrared leaf reflectance (Kumar et al., 2001).   

2.3. Application of remote sensing in wetland vegetation mapping 

Previously, some studies have been investigating the possibility of providing well-timed 

data for identifying and monitoring wetland vegetation and this has been categorized as 

an important part of wetlands vegetation restoration (Govender et al., 2007; Schmidt 

and Skidmore, 2003). Therefore, the detection, mapping, and monitoring of changes in 
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these natural ecosystems becomes very important. Monitoring wetland vegetation 

requires quantitative, accurate, and regular collection of information that has made the 

use of remote sensing a most important tool (Schmidt and Skidmore, 2003). Over the 

past few decades, imagery has been acquired from a wide range of sensors, some with 

high spatial resolution and low spectral resolution, and some with coarse spatial 

resolution and high spectral resolution. The first remote sensing method used to map 

wetland vegetation was aerial photography with low spatial resolution (Howland, 1980; 

Jensen et al., 1986; Kamaruzaman and Kasawani, 2007; Adam and Mutanga, 2009). 

The drawback of aerial photography, as noted in these studies, is that it has coarse 

spatial resolution and low spectral resolution, thereby affecting the actual vegetation 

mapping (Jensen et al., 1986; Klemas and Dobson, 1993; Smith et al., 2004; Adam and 

Mutanga, 2009). Considering the increased use of remote sensing data, aerial 

photography has been less frequently used since it is not practically possible to map and 

monitor wetland vegetation on a regional scale. Nowadays, multispectral and 

hyperspectral remote sensing is used to monitor wetland vegetation on a regular basis, 

which requires high temporal resolution and regular collection of data (Klemas and 

Dobson, 1993).  

 

Multispectral remote sensing was introduced in the mapping and monitoring of 

vegetation with different spatial resolutions ranging from sub-metre to kilometres and 

with different temporal resolutions ranging from 30 minutes to weeks or months (Key et 

al., 2000). Using traditional multispectral data, the most common classification 

techniques used by some previous researchers to classify wetlands vegetation were  

supervised classification (Parallelepiped classification, Minimum Distance 

Classification, Mahalanobis Distance Classification, Nearest Neighbour Classification, 

and Maximum Likelihood Classification) and the unsupervised classification (K means 

and Clustering). Multispectral remote sensing proved to be a very useful tool and some 

previous researchers have been successful in discriminating broad vegetation 

communities (Smith et al., 2004) and in mapping salt marsh vegetation (Belluco et al., 

2006). Ndzeidze (2008) reviewed the utility of Landsat imagery from 1973 to 2007 for 

change detection and established whether wetlands and related land cover classes in the 

drainage basin could be classified for the Upper Noun Basin, Cameroon. From his 
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research, it was found that the study failed to detect significant changes in the Upper 

Noun drainage basin from 1973 to 2007 using multispectral and temporal Landsat 

satellite images. Eventually, Ndzeidze had to rely on his knowledge of the study area 

and information from past fieldwork to identify and distinguish wetland and related land 

use and land cover. 

 

Bellluco et al. (2006) used multispectral data from ROSIS (Reflective Optics System 

Imaging Spectrometer), CASI (Compact Airborne Spectrographic Imager), MIVIS 

(Multispectral Infrared and Visible Imaging Spectrometer), IKONOS and Quickbird in 

The San Felice salt marsh in the northern part of the Venice Lagoon, Italy. To 

distinguish among five dominant vegetation species which were Juncus, Spartina, 

Limonium, Sarcocornia, and Salicirnia. The authors obtained an overwhelming overall 

accuracy and Kappa coefficient for all the species ranging from 74.6 % to 99.2 % and 

from 0.59 to 0.99 respectively. The authors performed a simple band averaging which 

resulted in reduction of noise, but by doing this the authors were reducing spectral 

resolution that significantly reduced the number of reference pixels and gives 

misleading information calculated from confusion matrix statistics.  

 

Shahraini et al. (2003) also used multispectral data for mapping the spatial extent of 

lakes and coastal wetlands in Hirmand, Puzak and Sabury lakes, Iran, using imagery 

from Landsat TM, Advanced Very High Resolution Radiometer (AVHRR)-LAC and 

AVHRR-GAC. The authors showed the potential of Landsat TM, AVHRR-LAC and 

AVHRR-GAC data for mapping of lakes, coastal wetlands, coastal mixed pixels 

between water and land, and the transitional regions of wetlands using training data and 

different supervised classification methods (Maximum likelihood, Mahalanobis 

distance, Minimum distance, and Parallelepiped classification).  

 

However, there is a need for more research to investigate the possibility of using 

biochemical and biophysical parameters to discriminate wetland vegetation at species 

level. Discrimination of wetland vegetation species by using multispectral remote 

sensing was found to be unsatisfactory since it has few bands that cannot describe 

vegetation spectra in detail (Schmidt and Skidmore, 2003).  Also, multispectral remote 
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sensing data cannot utilize the red edge region that is insensitive to atmospheric 

interference and soil background (Smith et al., 2004; Adam and Mutanga, 2009). Due to 

its coarse spectral and spatial resolutions, multispectral remote sensing has been found 

to be ineffective to either discriminate vegetation since some vegetation species has 

almost the same spectral signatures or detect any spectral changes associated with 

chemical or physiological changes in plants (Sun et al., 2008). Due to the fact that 

wetland vegetation is densely populated, the use of broadband remote sensing with its 

coarse spectral resolution might not produce the required results.  

2.4 Hyperspectral remote sensing and improvement in discrimination 

of wetland vegetation at species level using spectral reflectance 

Hyperspectral remote sensing, also known as ‘imaging spectrometery’, ‘imaging 

spectroscopy’, ‘ultraspectral imaging’, ‘hyperspectral spectroscopy’ and ‘narrow-band 

imaging’, is a relatively new technology that is currently being used for vegetation 

studies  (Govender et al., 2007, Adam and Mutanga, 2009). These names for 

hyperspectral remote sensing are often used interchangeably with each other, but the 

only way to differentiate them depends on the aim of the scientist or researchers’ 

intended application. Imaging spectrometry usually refers to the use of particular 

spectral absorption features in the scene to uniquely identify materials (Kerekes, 2006), 

while imaging spectroscopy involves measuring the spectral distribution of photon 

energies (as wavelengths or frequencies) associated with radiation that may be 

transmitted, reflected, emitted, or absorbed upon passing from one medium to another 

(Kerekes, 2006; Adam and Mutanga, 2009).  

 

Hyperspectral remote sensing involves acquisition of the digital images in hundreds of 

narrow continuous spectral bands between 350nm and 2500nm throughout the visible 

(350nm to 700nm), NIR (700nm to 1300nm), MIR and TIR (1300nm to 2500nm) 

regions of the electromagnetic spectrum (Govender et al., 2007) as shown in Figure 2.1. 

Hyperspectral remote sensing acquires images with high spectral resolution of 

individual bands less than 10nm over a continuous spectrum. Since hyperspectral 

remote sensing has so many narrow bands, it can detect detailed vegetation features that 

might otherwise be masked within broader bands of multispectral sensors (Schmidt and 
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Skidmore, 2003; Mutanga et al., 2003). High spectral resolution sensors provide 

sensitive fine-scale data on biochemical and biophysical parameters that can be used to 

discriminate, classify, monitor, and assess wetland vegetation species (Li et al., 2005). 

This is done with the intention of up-scaling the measurements to airborne or satellite 

sensors (Rosso et al., 2005; Vaiphasa et al., 2005).  

 

Over the past few decades many problems were recorded when discriminating wetland 

vegetation at species level using multispectral remotely sensed data. This has 

necessitated the possibility of separating different vegetation species based on foliar 

spectral reflectance using greater detailed hyperspectral remotely sensed data.  

 

In Madeira Bay, Florida, USA, Hirano et al. (2003) classified ten vegetation classes 

using data they acquired from AVIRIS and the detailed Everglades Vegetation 

Database. The following vegetation classes including buttonwood forest, red mangrove 

forest, white mangrove forest, white mangrove scrub, herbaceous prairie, saw grass, 

spike rush and lather leaf exotics were classified using ENVI spectral angle mapper 

(SAM) with producer’s accuracy ranging from 41.9% for buttonwood forest to 100% 

for spike rush and an overall accuracy of 65.7%. 

 

Spectral discrimination of salt marsh was also done by Artigas and Yang (2005) in the 

New Jersey Meadowlands, USA. In this research, four common wetland species were 

selected for discrimination namely, Phragmites australis, Spartina alternifolia, Spartina 

patens and Distichlis spicata. Leaf spectral reflectance was ascertained using Analytical 

Spectral Devices, FieldSpec ® Full Range spectroradiometer. Findings from this 

research showed that it was possible to classify salt marshes using the red edge region 

between 600 nm and 680nm, usually under fall conditions. The red edge first derivative 

showed the highest potentially useful information to discriminate among wetland 

vegetation species.  

 

At Lake Onkivesi, Finland, Valta-Hulkkonen et al. (2003) classified seven aquatic 

vegetation categories including Phragmites australis, Equisetum fluviatile, 

Schoenoplectus lacustris, Stratiotes aloides, and Sagittaria sagittifolia using a Leica 
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RC30 camera equipped with a 153 mm focal length lens and UAGS 13260 lens, and a 

Kodak 1443 colour infrared film. The authors used visual and digital classification 

(maximum likelihood classifier) of hydrophytic vegetation and achieved an overall 

accuracy of 81% and 83% respectively. Schmidt and Skidmore (2003) used a GER 3700 

spectrometer to test the spectral separability of salt marshes on the island of 

Schiermonnikoog, Netherlands. They measured about twenty-seven salt marsh species 

including Spartina townsendii, Salicornia europaea, Atriplex portulacoides, Juncus 

gerardi, Artemisia maritime, Elymus athericus, Phragmites australis and Scirpus 

maritime. For spectral discrimination, the Jeffries–Matusita distance and the 

Bhattacharyya distance were applied and resulted in an overall accuracy of 91%. 

 

In 2004, van Til et al. investigated the use of the GER 2600 field spectrometer for 

discriminating coastal dune vegetation. The leaf spectral reflectance measurements were 

taken in May and June 2001 for ten herbaceous vegetation types. Multivariate analysis 

and Redundancy analysis were calculated to determine the percentage of explained 

variance of coastal dune vegetation. The better discrimination was achieved in the bands 

between 370nm and 690nm for end of May and between 370nm and 460nm for end of 

June. This research noted that the bands between 730nm and 930nm were not able to 

discriminate salt marsh vegetation. The overall percentages of explained variance for 

raw data for both May and June were 82 % and 75 % respectively, after the data were 

transformed. 

 

Vaiphasa et al. (2005) used hypespectral remotely sensed data for spectral separability 

of sixteen tropical mangrove species using laboratory data that avoids the difficulties of 

field conditions. They conducted their research in Chumporn, Thailand using laboratory 

data with the intention of reducing costs and up-scaling their research in the future 

application of airborne hyperspectral sensors. The leaf spectral measurements were 

conducted using ASD. Using a wrapper feature selection tool they selected only bands 

that were the best combination for species discrimination. They applied one-way 

Analysis of Variance (ANOVA) and Jeffries–Matusita distance measure using those 

four bands to determine if species were spectrally separable. They produced an overall 

accuracy of 80%, but 5 out of 10 of the Rhizophoraceae family were spectrally similar. 
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From this study it was noted that tropical mangrove species did not have sufficient 

spectral information due to their similarity in pigment substances. 

 

Pengra et al. (2007) used Hyperion data to classify monodominant Phragmites australis 

in the coastal wetlands of the west coast of Green Bay, Northen America Great Lakes. 

The authors used minimum noise fraction to reduce systematic sensor noise that has an 

influence on the image analysis. Spectral correlation mapper was applied to determine 

the spectral similarity among different reflectance spectra by calculating the spectral 

angles, such that positive and negative correlations between samples could be 

distinguished. Phragmites australis was discriminated from nine other land cover 

classes such as cat tail, mixed emergent vegetation, scrub and shallow water. They 

concluded that 3.4 % of the study area was covered by Phragmites australis which was 

supported by an overall accuracy of 81.4%.  

 

Andrew and Ustin (2008) focused on the role of environmental characteristics in the 

spectral separability of Lepidium latifolium from other species. They used minimum 

noise fraction, mixture tuned matched filtering, and Jeffries–Matusita distances for 

discrimination of species in three different locations: the Rush Ranch Open Space 

Preserve, the Greater Jepson Prairie Ecosystem, and the Cosumnes River Preserve, in 

California, USA. The discriminant techniques were applied to reduce noise, 

dimensionality of hyperspectral data, and to detect objects that differ subtly from the 

ground (Green et al., 1998; Andrew and Ustin, 2008). The authors managed to get 

distinct differences of species using high spectral resolution sensors Hymap for Rush 

Ranch imagery and then HyVista Corporation for Jepson Prairie and Cosumnes 

imagery. These fine spectral resolution sensors sample wavelengths of 450nm to 

2500nm with 150 to 200 contiguous bands of 5nm to 10nm bandwidths. In Rush Ranch, 

Lepidium was distinguished from Salicornia, Distichlis, Centaurea solstitialis, water, 

and litter with an overall accuracy of 90%. In Jepson Prairie, Lepidium was 

differentiated from typha, agriculture, soil, Centaurea calcitrapa, water, and litter with 

an overall accuracy of 88%. Finally, in the Cosumnes River Preserve, the authors 

managed to discriminate lepidium from agriculture, trees, litter and soil where a 93.6% 

overall accuracy was achieved. 
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Sun et al. (2008), in the Arboretum of the Institute of Botany, Chinese Academy of 

Science in Beijing, showed the potential of hyperspectral data for wetland vegetation 

species discrimination using their spectral reflectance characters. The authors chose 

eleven wetland vegetation species for discrimination which were Cyperus alternifolius, 

Cyperus papyrus, Pontederia cordata, Nymphaea tetragona, Hydrocleys nymphoides, 

Nymphoides peltatum, Pistia stratiotes, Azolla imbircata, Vallisneria asiatica, 

Potamogeton malaianus, Hydrilla verticillata. The spectral reflectances of these eleven 

species were acquired using an SVC GER 1500 hand held spectrometer. The first 

derivative reflectance, second derivative reflectance, continuum removal, and 

Mahalanobis distance were used for selecting bands that could be used for wetland 

vegetation discrimination at species level. All these methods showed all the bands that 

had a greater possibility of species discrimination through their results. The bands that 

were selected for species discrimination are located between 410nm and 999nm i.e. in 

the chlorophyll and water absorption region (red edge). 

  

Although all these techniques were able to successfully discriminate wetland vegetation 

at species level successfully, there is a growing interest by researchers for more 

investigation into what exactly cause spectral reflectance difference. There are many 

factors which causes spectral reflectance differences including atmospheric properties, 

spectral mixture, soil moisture content, illumination angle, biochemical and biophysical 

properties (nitrogen, biomass, plant water content, LAI, phosphorus, and chlorophyll 

content, anthocyanin, lutein, ß and ά carotenoids, and xanthophylls).  The question that 

arises from all these previous studies is: Is it possible to use quantified measures of 

biochemical and biophysical properties for vegetation species discrimination? And can 

they also improve or enhance the overall accuracy and to what extent can we apply 

them. 

2.5 Application of quantified biochemical and biophysical properties 

for discrimination of wetland vegetation at species level 

For the past few decades, hyperspectral remote sensing has been proven to be useful for 

wetland vegetation species discrimination at leaf and canopy level (Artigas and Yang, 

2005; Hirano et al., 2003; Schmidt and Skidmore, 2003; Vaiphasa et al., 2005; Cho, 
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2007; Kamaruzaman and Kasawani, 2007; Sun et al., 2008; Adam and Mutanga, 2009). 

These wetland vegetation species have biochemical and biophysical properties that 

influence spectral reflectance and there is a need for researchers to develop a method 

that will use these vegetation parameters to distinguish them. Quantifying and 

estimating biochemical and biophysical properties of wetland vegetation species has 

been playing a vital role in monitoring the changes of ecological systems such as 

vegetation quality, vegetation stress, and vegetation nutrient cycles at local, regional, 

and global scales (Asner, 1998; Kokaly et al., 2009).  

 

Various biophysical and biochemical attributes that influence vegetation spectral 

reflectance were recognised as being plant water content (Wessman et al., 1988; 

Anderson, 1995; Asner, 1998; Ustin et al., 1998), pigment composition and content 

(Lichtenthaler et al., 1996), chlorophyll content, and biomass (Asner, 1998; Mutanga, 

2004; Adam and Mutanga, 2009). This was also supported by Kokaly et al. (2009) who 

suggested that water is the most abundant chemical in leaves and can constitute up to 

70% of chemical. Remote sensing offers the opportunity to explore the possibility of 

using these vegetation properties for species discrimination since it has never been done 

in any wetland vegetation discrimination at species level to our knowledge. Traditional 

methods have been found to be time-consuming and not cost-effective and some of the 

wetland areas are inaccessible because they are swampy and waterlogged. Since plants’ 

water content and biomass were found to be important in the ecological studies 

reviewed, this study focuses only on those two vegetation attributes due to the fact that 

they require spatial assessment repetitively and objectively. 

 

To date there have been few studies done on the estimation and quantification of 

biomass and plant water content for wetland vegetation discrimination at species level. 

The quantification of aboveground biomass and water content of wetland vegetation 

will develop sufficient information for understanding, mapping, identifying, managing, 

and modelling vegetation species physical composition, roles, and dynamics in wetland 

vegetation systems (Phinn et al., 2008; Adam and Mutanga, 2009). Previous studies 

have shown that there is a relationship between plant water content and biomass that can 

be exploited in the discrimination of wetland vegetation (Moreau and Le Toan, 2003; 
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Phinn et al., 2008). The first attempt to discriminate vegetation species using 

biochemical properties was done by Wessman et al. (1988), where lignin and nitrogen 

content in the foliage was used. 

2.6 The uses of red edge hyperspectral indices in wetland vegetation 

discrimination at species level 

Vegetation indices (VIs) have been used in remote sensing for a long time and have 

been shown to be useful in discriminating between different vegetation types. VIs are 

ratios of reflectance values at different wavelengths or formulations using simple 

operations between reflectances at given wavelengths (Mutanga and Skidmore, 2004; 

Wamunyima, 2005).  

 

For the past few decades, vegetation indices based on spectral reflectance measurements 

have been used as a reliable non-destructive method for measuring biophysical and 

biochemical parameters of plants (Datt, 1999; Aparicio et al., 2000). Mutanga (2004) 

and Jensen (2000) suggested that vegetation indices are usually used because they 

remove the variability caused by canopy geometry, and soil background and they act as 

radiometric measures that function as an indicator of relative abundance and activity of 

green vegetation.  The logic behind the use of vegetation indices is that they contrast 

reflectances in the red and near infrared regions of the electromagnetic spectrum and, as 

a result, scientists are able to use that difference for vegetation analysis (Todd et al., 

1998; Mutanga and Skidmore, 2004; Aparicio et al., 2000). Many studies have been 

conducted which examine the correlation between VI and diverse measures of canopy 

structure and plant composition, such as chlorophyll content, Nitrogen concentration of 

leaves, green and dry biomass, phosphorus content, water content and LAI (Mutanga 

and Skidmore, 2004; Wamunyima, 2005). 

 

The most widely used vegetation indices are the Simple Ratio (Jordan, 1969) and the 

NDVI (Rouse et al., 1973; Tucker, 1979). Other vegetation indices were developed to 

counter the effects of canopy geometry, soil background, sun view angles, and 

atmospheric conditions. These are the Perpendicular Vegetation Index (Richardson and 

Wiegand, 1977), the Weighted Difference Vegetation Index (Clevers, 1988), the Soil 
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Adjusted Vegetation Index (Huete, 1988), the Transformed Soil Adjusted Vegetation 

Index (Baret and Guyot, 1991), the Modified Soil Adjustment Vegetation Index  (Qi et 

al., 1994), the Modified Normalized Difference Vegetation Index (Liu and Huete 1995), 

the Renormalized Difference Vegetation Index (Roujean and Breon, 1995), the 

Triangular Vegetation Index (TVI) (Broge and Leblanc, 2000), the Chlorophyll 

Absorption Ration Index  and the Modified Chlorophyll Absorption Ration Index which 

was developed as an improvement on Chlorophyll Absorption Ration Index (Daughtry 

et al., 2000). 

 

The improvement of technology brought the use of hyperspectral remote sensing that 

acquires data in narrow bands (many channels). There are different vegetation indices 

that were developed to make use of these narrow bands in the red edge region that are 

referred to as red edge hyperspectral indices (Wamunyima, 2005). Since the red edge 

region is not usually disturbed by vegetation water absorption, it’s relatively much 

easier to apply these vegetation indices. The red edge hyperspectral indices are 

calculated using the narrow channels within the red edge region of the reflectance 

spectrum of vegetation that is located between 680 nm and 750 nm. Some of the 

developed indices include Vogelmanna (VOGa) (Vogelmann et al., 1993), the Red Edge 

Spectral Parameter (RESP), the Carter Index (CI), the Inverse Carter Index (Carter, 

1994), and the Gitelson and Merzylak Index (GMI) (Gitelson and Merzylak, 1997). 

These are not only the red edge hyperspectral indices which have been developed, but 

for this research only indices of interest were selected and their equations are shown in 

Table 3.2 as RESP (Equation 3.2.1), CI (Equation 3.2.2), GMI (Equation 3.2.3), NDVI 

(Equation 3.2.4), SR (Equation 3.2.5), TVI (Equation 3.2.6), and VOGa (Equation 

3.2.7). 

2.7 Red edge position 

The red edge (680nm to 750nm) (Figure 2.1) is defined as a rise in the vegetation 

reflectance from the red part of the visible spectrum to the near infrared part. The 

absorption of the near infrared part of the spectrum is due to the combined effects of 

polymer forms of strong chlorophyll adding closely spaced absorption bands to the far 

red shoulder of the main chlorophyll band and the high multiple scattering of radiation 
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in the leaf mesophyll (Liang, 2003). The red edge uses three parameters for all the 

calculations that are the red edge position (REP), amplitude, and slope (Cho and 

Skidmore, 2006; Mutanga and Skidmore, 2004). Wamunyima (2005) noted that at REP 

the slope of the vegetation spectral curve is at its maximum within the 680nm to 750nm 

range. The amplitude is the first derivative value at the maximum slope position within 

680nm to 750nm range (Dawson and Curran, 1998; Pu et al., 2003; Cho and Skidmore, 

2006). Previous vegetation studies show that REP shifts according to changes of plant 

health, biomass, leaf chlorophyll content, seasonal patterns and phonological state 

(Mutanga and Skidmore, 2004; Cho, 2007; Adam and Mutanga, 2009, Belanger et al., 

1995; Munden et al., 1994). The red edge position shifts toward the longer wavelength 

due to an increase in the amount chlorophyll content which absorbs electromagnetic 

radiation in the red trough. This absorption widens the trough and hence pushes the red 

edge towards the longer wavelengths. A reduction in chlorophyll results in higher 

reflectance in the red and hence a shift of the red edge towards the shorter wavelengths.. 

Through observing these shifts, red edge position can effectively be used to discriminate 

wetland vegetation species with varying amounts of chlorophyll.  

 

There is a variety of analytical techniques that are being used to extract the red edge 

position as a means to classify vegetation, such as four point interpolation (Linear), 

Gaussian, linear extrapolation, Maximum first derivative, Lagrangian interpolation, 

polynomial fitting, and high order curve fitting techniques which have been developed 

to minimize errors in determining the red edge position (Dawson and Curran, 1998; Pu 

et al., 2003; Cho, 2007; Shafri et al., 2006). The aim of this study is to provide an 

alternative method or technique for determining the red edge position that can be used 

to discriminate wetland vegetation species. A number of studies have been using 

analytical techniques for various reasons such as discriminating vegetation species and 

estimating biophysical and biochemical properties for example nitrogen content, leaf 

area index, chlorophyll content, fresh ground biomass or dry biomass (Mutanga, 2004; 

Mutanga and Skidmore, 2004; Cho and Skidmore, 2006; Sun et al., 2008). Only a few 

selected techniques were used in this present research, especially the linear 

extrapolation technique developed by Cho and Skidmore (2006) which is a technique 

that has never been used for wetland vegetation species discrimination. 
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2.8 Lessons learnt from the review 

Wetland vegetation species are very important to many living things including animals, 

birds, and human beings. It is very important to have a clear picture of what exactly is 

found in a particular wetland area in terms of vegetation species so as to conserve them. 

Multispectral remote sensing has been used to monitor changes in wetland vegetation, 

but it’s relatively difficult to analyse vegetation (discrimination, classification, or 

mapping) due to low spectral resolution. This has resulted in the introduction of 

hyperspectral remote sensing which uses narrow continuous spectral bands to 

discriminate different wetland vegetation species. Internationally, the use of the red 

edge position for wetland vegetation species discrimination has been successfully 

applied with favourable results. Red edge extraction techniques and vegetation indices 

have been improved or developed and found to be more reliable. However, in the South 

African context no red edge extraction techniques have been used for wetland 

vegetation species discrimination. Linear extrapolation is a technique that was 

developed to control variations caused by soil background effects as well as 

atmospheric induced variations. Of particular interest is the response of the red edge to 

variation in the biophysical and biochemical properties of different vegetation species. 

Since the red edge region uses non-water absorption bands with minimum atmospheric 

interference it is capable of discriminating wetland vegetation species in the South 

African context. Leaf structure and shape, water content, biomass, and the concentration 

of biochemicals are all functions of vegetation leaves that can improve the 

discrimination of vegetation.    

2.9 Conclusion 

Wetland vegetation discrimination at species level is critical to government departments 

such as the Department of Water Affairs and Forestry, the Department of Rural 

Development and Land Reform, and the Department of Environment Affairs and 

Tourism, since they need to conserve wetlands. The critical component for monitoring 

and managing ecosystems and preserving biological diversity is the discrimination of 

wetland vegetation which requires accurate knowledge of the distribution of plant 

species (Schmidt and Skidmore, 2003). This accurate knowledge is obtained from the 

use of laboratory and field spectroscopy (remote sensing), which will be quantified and 
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be used in vegetation discrimination. Vegetation species have variations in canopy 

reflectance due to biochemical and biophysical properties that are being detected by 

high spectral resolution sensors. This information is critical to distinguish vegetation 

species from one another. This review has shown the potential of hyperspectral remote 

sensing data for wetland vegetation discrimination at species level.  

 

It is critical to note that hyperspectral remote sensing has focussed on the estimation of 

either biochemical properties, biophysical properties of vegetation as well as species 

discrimination independently, without a clear cut attempt to integrate the products in 

improving species mapping. Several maps, algorithms and models have now been 

developed to predict biomass and other structural properties of vegetation at reasonable 

accuracies. The question is, can this available ancillary information be integrated with 

hyperspectral data to improve species discrimination? 
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Chapter Three: 

 Methodology 

3.1 Introduction 

In this chapter, an outline is given of the sampling methods, leaf spectral measurements, 

biochemical and biophysical variables, hyperspectral vegetation indices, and red edge 

extraction techniques used to discriminate wetland vegetation species using 

hyperspectral data.  

3.2 Field spectral measurements 

Canopy spectral measurements used in this study were recorded on the 29th December 

2009 between 10:00 am and 02:00 pm under sunny and cloudless conditions. 

Measurement of hyperspectral leaf reflectance was acquired at canopy level using a 

hand-held field spectroradiometer (FieldSpec Pro, Analytical Spectral Device) over the 

350nm to 2500nm wavelength region at 1.4nm sampling intervals fitted with a 25° field 

of view fibre optic. The instrument has a spectral sampling resolution of 1.4nm, a 

spectral interval of 3nm between 350nm and 1 000nm, a spectral sampling resolution of 

2 nm, and a spectral interval of 10nm between 1 000nm and 2 500nm. Radiance 

measurements were optimized and calibrated before the first measurement was taken. A 

calibrated white reference Spectralon calibration panel was used on the leaf clip every 

10 to 15 measurements to offset any change in the atmospheric conditions and 

irradiance of the sun. Only the spectral range between 670nm and 780nm was analysed 

since the research was mainly focused on the red edge position for vegetation species 

discrimination. 

 

Field sites were selected using two sampling techniques which are random sampling and 

purposive sampling. Random points were generated on a land cover map produced from 

an ASTER image using ArcMap’s extension Hawth's Analysis Tool. When any of the 

random point was inaccessible, purposively selected sampling was applied. Using GPS, 

these points were then located in the field sites.  A total of 41 vegetation plots of 3m by 

3m were taped in the field and the plot size was viewed as suitable. Then three subplots 

of 0.5m by 0.5m were randomly selected from within plot to measure the spectral 
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reflectance which resulted in a total of 7 to 15 field spectrometer measurements. A total 

of 50 samples per vegetation species were selected for measurements. In the 

iSimangaliso Wetland Park, there are many different vegetation species, which is very 

rich in endemic taxa, but the dominant vegetation species were identified as Cyperus 

papyrus, Phragmites australis, Echinochloa pyramidalis, and Thelypteris interrupta. 

These four wetland vegetation species were selected for this study and their 

measurements were recorded based on density and estimation of percentage cover 

(covering at least 40% of the area) (Table 3.1.). 

 
Measurements of biomass were taken after the leaf spectral measurements were taken. 

The biomass from each plot was clipped, after all dry material was removed from the 

clipped plants, and then fresh biomass was measured immediately using a digital 

weighing scale.  The aboveground biomass was determined by dividing the weight of 

the harvested grass by the surface area of the subplot (Mutanga and Skidmore, 2004).  

 

Table 3.1 Four dominant wetland vegetation species of Great St Lucia Wetland Park, 

KwaZulu Natal Province, South Africa 

 

Species Proposed 

Code 

Family No of 

Plots 

No of 

Measurements 

Cyperus papyrus 

Phragmites australis 

Echinochloa pyramidalis 

Thelypteris interrupta 

CP 

PA 

EP 

TI 

Cyperaceae  

Poaceae 

Graminae 

Thelypteridaceae 

15 

9 

7 

10 

134 

111 

101 

113 

 

 

The red edge indices were computed from all possible two band combination indices 

involving 80 bands in the red edge region (670nm to 750nm). These vegetation indices 

(Table 3.2) were selected because they are the most widely used indices for estimating 

biomass and water content for vegetation studies. For example, NDVI has shown that it 

can solve the saturation problem in estimating biomass (Mutanga and Skidmore, 2004) 
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Table 3. 2 Vegetation indices 

 

 

R is the Reflectance 

3.3 Plant water status 

Soon after canopy spectral measurements were acquired a total of 50 plant water 

samples were taken. Leaves were cut and weighed to obtain leaf sample weight (W). 

Then the plant water samples were stored over ice in a portable refrigeration unit and 

were immediately taken to the laboratory for water measurements. After several hours, 

the samples were taken off ice and well dried of any surface moisture with a filter paper. 

Samples were then oven dried at 70 °C for 24h and weighed to determine dry weight 

(DW). Plant water content (PWC) was determined as detailed by Liu et al., (2004): 

 

Vegetation Indices used for wetland vegetation species discrimination using 

reflectance spectra 

Vegetation Index Formula Reference Equation  

Red Edge Spectral 

Parameter (RESP) 

R750 /  R710 Gupta et 

al.,2003 

3.2 1 

 

Carter Index (CI) R695 /  R760 Carter, 1994 3.2 2 

 

Gitelson and Merzylak 

Index (GMI) 

R750 / R700 Gitelson and 

Merzylak, 1997 

3.2 3 

 

Normalized Difference 

Vegetation Index 

(NDVI) 

(R746 - R730) / (R746 

+R730) 

 

Rouse et al., 

1973 

3.2 4 

 

Simple Ratio (SR) R755 / R706 Jordan, 1969 3.2 5 

 

Transformed Vegetation 

Index (TVI) 

√(((R755-R730)/(R730+ 

R755)) + 0.5) 

Rouse et al., 

1973 

3.2 6 

 

Vogelmanna 

 (VOGa) 

R740 /   R720 
Vogelmann et 

al., 1993 

3.2 7 

 



 31 

         PWC (%) = [(W-DW) / (W)] * 100                                      Eq.3.4. 1 

 

Where, 

 

PWC- Plant water content, 

W – Sample fresh weight, and 

DW – sample dry weight. 

 

The 50 plant water measurements were then used for analysis. 

3.4 Red edge position algorithms 

To assess morphological structures and chemical content of vegetation, it is vital to 

apply numerical methods computed from reflectance or derivative spectra. A number of 

techniques for REP extraction have been proposed in the literature on remote sensing 

and their uses depend on the purpose of the application. The red edge position was 

determined by various techniques of analysis such as, linear interpolation, inverted 

Gaussian, linear extrapolation, maximum first derivative, and Lagrangian (Dawson and 

Curran, 1998; Cho and Skidmore, 2006; Shafri et al., 2006; Pu et al., 2003 The response 

is indicated in section 3.4 under methodology page 31. Of the five methods listed above only 

three spectral derivatives were used in this study, linear interpolation, linear 

extrapolation and maximum first derivative. Curran et al., (1990) suggested that spectral 

derivatives are used to resolve or enhance absorption features that might be masked by 

interfering background absorption. Also compared to Lagrangian and inverted 

Gaussian, the spectral derivatives helps to reduce the continuum caused by leaf 

biochemicals and canopy background effects (Curran et al., 1991; Dawson and Curran, 

1998). As a result, the spectral derivatives have become popular in remote sensing as 

compared to the lagrangian and inverted Gaussian models, hence the derivatives were 

used in this study. 
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3.4.1 Linear interpolation technique (Lin- Inter) 

Baret et al. (1987) developed a simple method based on linear interpolation. This 

method assumes that the reflectance curve at the red edge can be simplified to a straight 

line centred around the midpoint between the reflectance in the NIR usually at about 

780nm and the reflectance minimum of the chlorophyll absorption feature usually at 

about 670nm. The REP is then estimated by a simple linear equation using the slope of 

the line (Guyot et al., 1992) that is between four wavebands (670nm, 700nm, 740nm, 

and 780 nm). The REP is determined by using a two-step calculation procedure: 

 

(i) Calculation of the reflectance at the inflexion point (Rre): 

  

                  Rre = (R670 + R780)/2       Eq.3.5.1. 1 

Where R is the reflectance 

(ii)  The red edge wavelength or red edge position was calculated as follows:

  

REP = 700 + 40[(R re - R700)/ (R740- R700)]               Eq.3.5.1. 2 

700 and 40 are constants resulting from interpolation or wavelength interval between 

700 nm and 740 nm. 

3.4.2 Maximum first derivative reflectance (MFD) 

This technique locates the REP as the maximum first derivative of the reflectance 

spectrum in the region of the red edge using high-order curve fitting techniques. The 

maximum first derivative spectrum was employed to enhance absorption features that 

might be masked by interfering background absorption (Curran et al., 1990). The first 

derivative was calculated using a first-difference transformation of the reflectance 

spectrum and it was derived from: 

 

FDR (λi ) = (Rλ( j + 1) − Rλ( j )) / ∆λ                                                 Eq.3.5.2. 1 

                                                 

Where, 

 FDR is the first derivative reflectance at a wavelength i midpoint between wavebands j 

and j+1, 
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Rλ( j ) is the reflectance at the j waveband,  

Rλ( j + 1) is the reflectance at the j+1 waveband, and  

∆λ is the difference in wavelengths between j and j+1. 

3.4.3 Linear extrapolation technique (LE1) 

Cho and Skidmore (2006) developed the linear extrapolation technique to (i) mitigate 

the destabilising effect of the multiple peaks on the correlation between chlorophyll and 

REP, and (ii) track variation in slope near 700nm and 725 nm, where derivative peaks 

occur. Multiple peaks of spectra of four species in this study were found at 705nm, 

720nm, 724nm, 730nm, 763nm and 767nm (Figure.3.1). Cho and Skidmore (2006) 

observed these multiple peaks at 700nm, 720nm, 730nm and 760nm in shrub and tree 

spectra. It could be observed from the first derivative curves that the double peak 

feature is located between 700nm and 770nm. The new technique is based on linear 

extrapolation of two straight lines through two points on the far-red (680nm to 700 nm) 

and two points on the NIR (725m, to 760nm) flanks of the first derivative reflectance 

spectrum of the red edge region (Eq.3.5.3.1 and Eq.3.5.3.2). The REP is then defined by 

the wavelength value at the intersection of the straight lines. 

 

Far red line: FDR = m1λ+c1                                                  Eq.3.5.3.1

                             

NIR line: FDR = m2λ+c2        Eq.3.5.3.2

     

Where m and c represent the slope and intercept of the straight lines. At the intersection, 

the two lines have equal λ (wavelength) and FDR values. Therefore, the REP which is 

the λ at the intersection is given by: 

 

REP = - (c1-c2) / (m1-m2)                                    Eq.3.5.3. 3 
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Figure 3.1 Mean maximum first derivatives of four species showing multiple red edge 

peaks. 

3.5 Data analysis 

3.5.1 Statistical test 

In this research, only bands from 670nm to 780nm (Red edge region) were selected 

because it is relatively less sensitive to atmospheric and soil background effects (Shafri 

et al., 2006). A statistical test was performed to compare the spectral responses of the 

four individual wetland vegetation species and determine if there was any significant 

difference among them. A two-step procedure was applied to adequately discriminate 

species using REPs and vegetation indices. Firstly, one-way ANOVA was performed 

using REP and vegetation indices. The research hypothesis that the means of the 

reflectance between the pairs of species (CP, PA, EP and TI) were significantly 

different i.e. null hypothesis, H0: µ1 = µ2= µ3 = µ4 versus alternative hypothesis, H1: µ1 

≠ µ2 ≠ µ3≠ µ4 was tested, where µ1, µ2, µ3, and µ4 are the mean reflectance of canopy 

indices from Cyperus papyrus (CP), Phragmites australis (PA), Echinochloa 
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pyramidalis (EP), and Thelypteris interrupta (TI). The test was applied using 95% 

confidence interval (p < 0.05).  

 

Second, in order to determine which pair of species means differ, a post hoc Bonferroni 

test was applied. The Bonferroni test simply calculates a new pairwise alpha to keep the 

familywise alpha value at 0.05 (or another specified value depending on the 

application).  Familywise error represents the probability that any one of a set of 

comparisons or significance tests is a Type I error. Type I error is a true null hypothesis 

that is rejected incorrectly. When running multiple hypothesis testing, the likelihood 

that one or more are significant due to chance (Type I error) increases (Feise, 2002; 

Vaiphasa et al., 2005). The Bonferroni test helps to reduce Type I error.  

3.5.2 Discriminating wetland vegetation species using spectral 

reflectance 

In multivariate analysis of spectroscopic data, it is normal to collect and compare 

vegetation spectra from different samples. The variability between the groups or within 

groups cannot be observed without using multiple variables in a multivariate set-up. 

Discriminant analysis is one such technique that can achieve this analysis. Rencher 

(1995) defines discriminant analysis as being a method of distinguishing among classes 

of objects based on linear functions of multiple variables. In this study, there were four 

groups (vegetation species) of six pairs which created a function for discriminating 

between CP and PA, CP and EP, CP and TI, PA and EP, PA and TI, and EP and TI.  

 

Canonical variate analysis (CVA) (also called multiple discriminant analysis or 

canonical discriminant analysis) was used as a suitable technique that could fairly 

discriminate the wetland vegetation species. The main reason why CVA was used for 

wetland vegetation species discrimination is that it investigates the relationship between 

given groups of variables, and the best discrimination between groups will be obtained 

by maximizing the ratio of the among-group variation to the within-group variation. 

CVA is a multivariate analysis technique which discriminates among pre-specified, 

well-defined groups of sampling entities based on a suite of characteristics (Mutanga, 

2004). For all the data that was used in the present research, there were four species that 
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were sampled, and from these samples each species was classified into one of g groups. 

As a result there were four groups with the total variation that were seen as the 

combination of among-group variation and within-group variation. The technique is 

given information about groups which in turn produces new variables that minimizes 

the within group variance while maximizing the among-group variance in canonical 

scores. The canonical variates can be calculated from the eigenvectors of the ratio of the 

among-group sum that is g groups with variables measured on each of a number of 

observations, and this will be equal to the number of groups minus one (g-1), or the 

number of variables in the analysis. Since there were four groups i.e. Cyperus papyrus 

(CP), Phragmites australis (PA), Echinochloa pyramidalis (EP), and Thelypteris 

interrupta (TI), it means that CVA = 4-1 and the result is 3 roots. A root refers to the 

Eigenvalues that are associated with the respective canonical function.  

 

According to Mutanga (2004), the first canonical function defines the specific linear 

combination of new variables that maximizes the ratio of among-group to within group 

variance in any single dimension. The use of such analysis produces linear 

combinations of new variables called ‘canonical variates’ (or latent variables). The first 

discriminant function provides the best separation among classes because the classes 

produce linear combinations with largest correlations, while the second set of linear 

combinations also shows the largest correlation subject to the condition that they are 

orthogonal to the first canonical variates and so forth. The interpretation of the variables 

in each discriminant function is as follows: the larger the standard coefficient, no matter 

what the sign is, either negative or positive, the greater is the power of the respective 

variable to discriminate between groups. In the present research, all the data from the 

results of REPs and vegetation indices were  entered into the analysis based on their 

ability to increase group separation, although the main focus was to observe how the 

new technique, linear extrapolation, performed compared to other REPs and vegetation 

indices.  

 

The main objective of canonical analysis in this application was to obtain a low-

dimensional representation of the data that highlights as accurately as possible the true 

differences existing amongst groups of wetland vegetation species. Accuracy 
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assessment was done using error matrix to evaluate if the research managed to fulfil its 

objective of discriminating wetland vegetation species. An error matrix displays records 

in terms of number of predicted classes and actual land cover revealed by sample site 

results. It lists the actual land cover types of the reference data in the columns and the 

predicted classes in the rows (Table 4.3). Overall accuracy is the sum of the correctly 

classified pixels divided by the total number of test pixels. The user’s accuracy shows 

which samples that are correctly classified within individual categories. This measure of 

accuracy is calculated for each row by dividing the proportion of correctly classified 

pixels in a class by the total number of pixels in that class. On the other hand, the 

producer’s accuracy is a measure of how accurate the image pixels have been classified. 

The producer's accuracy is derived by dividing the number of correct pixels in one class 

divided by the total number of pixels as derived from reference data (Story and 

Congalton, 1986). 

 

 To show if there was a measure of agreement or accuracy with the reference data, 

Kappa analysis was applied. The Kappa statistic incorporates the off diagonal 

observations of the rows and columns as well as the diagonal to give a more robust 

assessment of accuracy than overall accuracy measures do. The values of Kappa range 

from -1 to +1, with -1 indicating perfect disagreement, 0 indicating no agreement, and 

+1 indicating perfect agreement between training and test data. The results of Kappa 

(Khat) statistic are expressed according to Landis and Koch (1977) as follows:  

 

 

Kappa (Khat) Statistic    Strength of Agreement 

< 0.00     

0.00-0.20  

  0.21-0.40 

  0.41-0.60  

  0.61-0.80 

  0.81-1.00  

      

 

Poor 

Slight 

Fair 

Moderate 

Substantial 

Almost Perfect- Perfect 
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The equation of Khat is defined as follows: 

 

= (Observed agreement - Chance agreement) / (1 - Chance agreement) Eq.3.6.2. 1 

 

3.5.3 Discriminating wetland vegetation species using vegetation 

indices integrated with quantified measures of water content and 

biomass.  

In this study, quantified water content and biomass, and vegetation indices were used to 

determine if there was any improvement in wetland vegetation species discrimination. 

To determine if vegetation properties increased the discriminatory power, quantified 

water content and biomass, and vegetation indices (RESP, GMI, CI, and SR) that 

produced favourable results in the first test, were used in this second test. In this study, 

to check whether the introduction of water content and biomass variables had improved 

the discrimination of wetland vegetation at species level, the same discrimination 

techniques or procedures were used.  

 

A statistical test was also used to compare among the spectral responses of the 4 

individual wetland vegetation species and to determine if there was any significant 

difference among them. A two-step procedure was applied to adequately discriminate 

species using vegetation biochemical and biophysical parameters and vegetation 

indices. One-way ANOVA was performed on all vegetation indices and quantified 

measures of water content and biomass. The research hypothesis that the means of the 

reflectance between the pairs (CP vs. PA, CP vs. EP, CP vs. TI, PA vs. EP, PA vs. TI, 

and EP vs. TI) were different i.e. null hypothesis, H0: µ1 = µ2= µ3 = µ4 versus alternative 

hypothesis, H1: µ1 ≠ µ2 ≠ µ3≠ µ4 was tested, where µ1, µ2, µ3 ,and µ4 are the mean 

reflectance of canopy indices from CP, PA, EP, and TI. Then Bonferroni test was 

applied to determine which pair of species means differed. 
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Chapter Four:  

Discriminating wetland vegetation at species level using reflectance 

spectra: a comparison between vegetation indices and the red edge 

position 

4.1 Overview 

Most wetland vegetation species have similar spectral reflectance curves hence this 

poses a problem when trying to discriminate between them using traditional methods 

such as visual interpretation. Nevertheless, it’s possible to discriminate wetland 

vegetation species potentially on the basis of amplitude using hyperspectral remote 

sensing. Schmidt and Skidmore, (2003) noted that, although the spectral reflectance 

curves of different wetland vegetation species might look similar, it is possible to 

discriminate these species using hyperspectral remote sensing techniques such as 

vegetation indices and the red edge position. Such hyperspectral transformations can be 

combined with advanced linear or nonlinear models, multivariate statistical analysis 

technique such as discriminant analysis techniques (mahalanobis distance, Jeffries–

Matusita distance, Canonical variate analysis, and classification trees).  

4.2 Discriminating wetland vegetation using vegetation indices and the 

red edge position 

The results from one-way ANOVA showed that there is a significant difference among 

all the species means for all vegetation indices (RESP, CI, GMI, VOGa, NDVI, SR, and 

TVI) and REPs (MFD,Lin-Inter, and LE1) i.e. the null hypothesis, Ho: H0: µ1 = µ2= µ3 

= µ4 was rejected for all the indices. ANOVA proved that these vegetation species were 

spectrally different using different indices. 

 

The use of one-way ANOVA indicated that hyperspectral remote sensing data can be 

used to distinguish wetland vegetation at species level. REPs and vegetation indices 

have shown that the reflectance spectra of most vegetation species were statistically 

different with a 95% confidence level. From Figure 4.1 the REPs show that EP has the 

highest mean of reflectance spectra of all other species which is around 726nm, 

followed by CP, PA, and TI with means of 723nm, 719nm, and 717nm respectively. 
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Vegetation indices produced different results such that SR, RESP, and GMI yielded 

same order of ranking which starts with the highest mean for EP followed by CP, TI, 

and PA. CI showed that PA has the highest mean of all other vegetation species with a 

mean of 0.174659, followed by TI, CP, and EP with means of 0.125460, 0.118736, and 

0.097873 respectively. The box plots of VOGa, NDVI, and TVI indicated that EP had 

the highest mean followed by CP, PA, and TI. 
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Figure 4.1 Box plots showing the spread of mean, standard error, and Confidence 

Interval of each vegetation species produced by REPs and vegetation indices. 

 

Overall, most of the indices yielded p values less than 0.01, but CI showed that there 

was no significant difference between species with a p value of 0.07509 as shown in 

Figure 4.2. 
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Figure 4.2 Results of ANOVA test showing overall p values of four species from 

different vegetation indices notably MFD, Lin-Inter, LEI, NDVI, SR, TVI, RESP, CI, 

GMI, and VOGa. 

 

One-way ANOVA test did not show which pairs of means were different. To determine 

which pairs of means differ, the post hoc Bonferroni test was applied which is basically 

used for multiple comparisons. From the pair’s means, it can be noted that different 

vegetation species have different spectral responses and this can help to discriminate 

them. After the Bonferroni test was computed, it was observed that some of the species 

were not significantly different, especially when using vegetation indices as compared 

to the REPs (Figure 4.3). Most species pairs were able to be differentiated using REPs 

than all vegetation indices except GMI. All vegetation indices could not discriminate all 

the species excluding GMI which produced highly significant p values with the 

minimum of 0.000000 and maximum of 0.00066 as shown in Figure 4.3. RESP, VOGa, 

NDVI, and TVI showed that the pair of PA and TI was not statistically different with a 

p value of one. CI showed that the pair of CP and TI was not statistically different with 

a p value of 0.713578. SR also showed no statistical difference between PA and TI. 
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Maximum first derivative and linear extrapolation showed that all the vegetation species 

were statistically different. Linear interpolation produced the same results as RESP 

which showed that there was no significant difference between PA and TI with a p 

value of 0.641440. 

 

 

 

Figure 4.3 Results of one-way ANOVA test showing the difference between all four 

species (6 pairs) using RESP, CI, NDVI, SR, TVI, GMI, and VOGa after the Bonferroni 

adjustment. 

 

When all the REPs extracted from maximum first derivative, linear extrapolation and 

linear interpolation was compared, maximum first derivative and linear extrapolation 

showed the highest potential of discriminating wetland vegetation species than linear 

interpolation (Figure 4.4). In general, REPs, except linear interpolation showed that they 

can be used for vegetation discrimination with lower p values than vegetation indices.  
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Figure 4.4 Results of one-way ANOVA test showing the difference between all four 

species (6 pairs) using MFD, Lin-Inter, and LEI after Bonferroni adjustment. 

4.3 Canonical variate analysis results 

To support and further extend the results of one-way ANOVA test, CVA was applied. 

CVA can discriminate among the species and is capable of ranking the important 

remote sensing variables in the discrimination process. CVA proved to be very useful in 

discriminating wetland vegetation species because from the results, it showed that there 

was a highly significant difference between species with Wilks’ lambda of 0.0737251 

and p value of less than 0.0000. If the Wilks’ lambda is in the range of one it shows that 

there won’t be a discriminatory power in the model, but if it is around 0.0, as was 

obtained in the study, it shows that there is a discriminatory power in the model. CVA 

was applied with a standard method and tolerance of 0.001.  

 

From the results in Table 4.1, root 1 showed that vegetation indices, CI, GMI, and LE1 

had relatively more power of discriminating wetland vegetation species with highest 

factor structure coefficients of -0.542223, 0.303967 and 0.25979 respectively. Linear 



 46 

extrapolation method showed that it has more power of discriminating vegetation 

species than when compared to other REPs (maximum first derivative and linear 

interpolation) since it has a highest factor structure coefficient of 0.25979. The second 

canonical function is marked by variables VOGa followed by NDVI, RESP, and TVI 

and to a lesser extent SR and Lin-Inter. The third canonical function shows that the 

largest contribution was provided by GMI followed by SR, RESP, LE1, and TVI 

respectively.  

 

Table 4. 1 Factor structure matrix representing the correlation between the variables and 

the canonical functions 

 Root 1 Root 2 Root 3 

Maximum 

Lin-Inter 

LE1 

NDVI 

SR 

TVI 

RESP 

CI 

GMI 

VOGa 

-0.013753 

0.048586 

0.25979 

0.074005 

0.202803 

0.077425 

0.166538 

-0.542223 

0.303967 

0.115917 

-0.683907 

-0.769295 

-0.758011 

-0.851914 

-0.831706 

-0.843625 

-0.852697 

0.608658 

-0.758661 

-0.868219 

-0.005173 

0.220014 

0.24693 

0.219431 

0.282193 

0.225851 

0.254418 

-0.170163 

0.312395 

0.204568 

Eigenvalues 3.4642 1.9331 0.7226 

 

 

The scatter plots in Figure 4.5 and Figure 4.6 show the position of the hydrophytic 

vegetation species classes in the canonical space. Although there were three functions or 

roots that were produced, root 1 versus root 2 produced better results compared to root1 

versus root 3 and root 2 versus root 3 on how these wetland vegetation species differ 

when the CVA was run. Even though root 1 versus root 2 showed that vegetation 

species were separable, there was a sizeable confusion between CP and EP. 
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Figure 4.5  Scatter plot of canonical roots (root 1 vs root 2) produced by CVA. 

 

Figure 4.6 Scatter plots of canonical roots (root 1 vs root 3 and root 2 vs root 3) 

produced by CVA. 
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From Table 4.2, which shows the means of canonical variables to determine the nature 

of the discrimination for each canonical root, the results show that the first canonical 

function discriminates mostly between the PA and other wetland vegetation species. 

This is followed by TI and CP, and to a lesser extent EP. In the second canonical 

function, EP was discriminated mostly followed by TI, PA, and CP. The third canonical 

function seems to distinguish mostly between CP and other wetland vegetation species; 

however, the magnitude of the discrimination is much smaller and this can be noted in 

Table 4.1 which shows that the Eigenvalue of the third canonical function is much 

smaller than the first and second canonical function. The Eigenvalue of the third 

canonical function is 0.7226 compared to the first and second canonical functions with 

Eigenvalues of 3.4642 and 1.9331 respectively. 

 

Table 4. 2 Means of canonical variables to determine the nature of the discrimination 

for each canonical root 

 

Species Root 1 Root 2 Root 3 

CP 

PA 

EP 

TI 

0.55331 

-2.96247 

0.31154 

2.097624 

-0.69016 

0.87026 

-1.86877 

1.688666 

-1.37209 

0.10329 

0.89374 

0.375062 

 

Table 4. 3 An error matrix of four wetland vegetation species 

 

From Table 4.3, it can be noted that, of those 50 samples per wetland vegetation species 

that were mapped as CP, PA, EP, and TI only 40, 47, 37, and 50 samples were correctly 

assigned to CP, PA, EP, and TI on the ground, resulting in a 80%, 94%, 74%, and 100% 

user’s accuracy respectively. Also from Table 4.3, it can be seen that 40 out of 55 

samples of CP were correctly classified as CP, resulting in a producer’s accuracy of 

77%. On 51 samples of PA, 47 samples were correctly classified as PA, resulting in a 

producer’s accuracy of 94%. Of the 42 samples of EP, only 37 samples were correctly 

classified as EP, which resulted in a producer’s accuracy 88%. Finally, of the 56 

samples of TI, 50 samples were correctly classified as TI, resulting in a producer’s 
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accuracy of 89%. The overall accuracy was 87% with a kappa coefficient of 0.83 which 

was almost perfect according to Landis and Koch’s (1977) strength of agreement. 

 

Species CP PA EP TI Commission Error 

(%) 

User Accuracy (%) 

CP 

PA 

EP 

TI 

40 

2 

10 

0 

2 

47 

2 

0 

4 

1 

37 

0 

4 

0 

2 

50 

20 

6 

26 

0 

80 

94 

74 

100 

Omission Error (%) 23 6 12 11 

Producer Accuracy (%) 77 94 88 89 

 

Overall Accuracy (%) 

Kappa statistic 

87 

0.83 

 

 

4.4 Discussion 

This study investigated whether the spectral information of wetland vegetation at 

species level could be used to discriminate vegetation species. This was done by using 

vegetation indices and the REPs variables. Canonical variate analysis was used to 

discriminate among the species as well as ranking the most important hyperspectral 

transforms in the discrimination process. 

4.4.1 Predictive performance of discriminant analysis 

It was tested whether the REPs (Lin-Inter, MFD, and LE1) can discriminate wetland 

vegetation species better than vegetation indices (RESP, CI, NDVI, SR, TVI, GMI, and 

VOGa). All the calculations were done using the wetland vegetation species reflectance 

spectra collected per species. The application of one-way ANOVA to test if there were 

significant differences among wetland vegetation species has helped to determine if 

there was any chance of species separability. To support the study, the results obtained 

from one-way ANOVA test and Boniferroni adjustment test confirmed that there was a 

significant difference among hydrophytic vegetation by showing which ones were 

statistically different and not statistically different. 
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The results of this study confirmed that it is a reliable method to discriminate 

hydrophytic vegetation using REPs and vegetation indices as shown by one-way 

ANOVA test and the Boniferroni adjustment test on Figure 4.3 and Figure 4.4. Previous 

studies have also shown that the red edge region is relatively insensitive to atmospheric 

interference, to variations in illumination conditions, and to the reflectance of the soil 

background (Guyot et al., 1992; Mutanga, 2004). This has made the use of the red edge 

region to discriminate wetland vegetation species feasible. Linear interpolation and 

maximum first derivative were used in this research, but were not as useful as the 

proposed linear extrapolation technique. The linear extrapolation technique which was 

developed by Cho and Skidmore (2006) to tackle the problem of multiple peaks on the 

correlation between chlorophyll and REP and variation in slope, proved to be more 

useful than linear interpolation and maximum first derivative since it is least sensitive to 

canopy properties and structure (Cho and Skidmore, 2006). Cho and Skidmore (2006) 

suggested that linear extrapolation was more sensitive to leaf chlorophyll content with 

minimal effect of LAI and leaf mass compared to linear interpolation and maximum 

first derivative. Overall, the red edge parameters extracted from hyperspectral data are 

important because they are  comprised of many narrow bands that are linked to 

important biochemical and biophysical properties of plants (Kokaly, 2001; Cho and 

Skidmore, 2006; Mutanga, 2004; Siciliano et al., 2008). These results are comparable to 

those of Mutanga (2004) who found that the visible red absorption as well as REPs can 

discriminate between treatment groups of tropical grass containing different levels of 

nitrogen concentration.  

 

The application of red edge hyperspectral indices or vegetation indices as they are 

known seems to produce invariable results with a slight difference and most of these 

VIs were significant other than CI. Red edge hyperspectral vegetation indices balance 

the absorption towards the red reflectance and towards the near infrared regions of the 

spectrum by utilizing all the bands that are around the inflection point derived from 

maximum first derivative. All vegetation indices couldn’t discriminate all the species 

excluding GMI which produced highly significant p values with the minimum of 

0.000000 and maximum of 0.00066. All other vegetation indices (RESP, VOGa, and CI) 

had one pair they couldn’t discriminate which might be a result of utilizing bands in the 
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longer wavelength than GMI which uses 700nm and 750nm bands which lie on the red 

edge slope.  

 

CVA as suggested by Mutanga (2004) helped to reduce dimensionality in the 

hyperspectral data set to three canonical functions, and to describe and explore the 

difference between REPs and vegetation indices in discriminating wetland vegetation 

species. Using CVA, it was observed that canonical functions assist in showing which 

of the REPs and vegetation indices had discriminatory power when utilizing 

hyperspectral remote sensing data for wetland vegetation discrimination at species level. 

CVA has further revealed that CI, GMI, LE1, SR, and RESP had relatively more power 

to discriminate wetland vegetation species since they had the highest factor structure 

coefficients in the first canonical function as shown in Table 4.1. The results from CVA 

have also shown that the first canonical function has a high magnitude of discriminating 

wetland vegetation species since it has higher Eigenvalues than the second and third 

functions. The only unexpected result was that, after CVA was run, vegetation indices, 

especially GMI and CI, showed more power of discriminating wetland vegetation 

species than linear extrapolation did. This was not expected since the application of this 

new technique on vegetation species discrimination on six species done by Cho (2007) 

which were Hedera, Rhododendron, Prunus, Corylus, Malus, and Aesculus proved to 

have more power for species discrimination. In his study Cho (2007) proved that linear 

extrapolation had a slight edge in discriminating species over linear interpolation and 

maximum first derivative. The results obtained in this study have shown that REPs and 

vegetation indices can be accurately used for wetland vegetation species discrimination 

because they produced an overall accuracy of 87% with Khat of 0.83 and producer’s 

accuracy ranging from 71% (CP) to 92% (PA) after accuracy assessment was done. 
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4.5 Conclusion 

In this study two main objectives were dealt with which were: 

1. To evaluate the ability to detect detailed wetland vegetation types with 

hyperspectral data using red edge position, and 

2. To test different red edge extraction techniques for estimating different 

hydrophytic vegetation. 

From this study it can be conclude that: 

• Spectral reflectance measurements of hydrophytic vegetation at canopy level can 

be used to discriminate CP, TI, EP, and PA. This means that the mean spectral 

reflectance of wetland vegetation varies from the other species mixed within the 

same ecosystem. 

• Canonical functions computed from REPs and vegetation indices can be used to 

discriminate among groups of wetland vegetation species.  

• Red edge region has relatively more information that can be used to discriminate 

wetland vegetation species. Vegetation indices computed from canonical 

functions showed that they have greater discriminatory power than REPs, except 

linear extrapolation.  

Overall, the result which was obtained in this research has confirmed that hydrophytic 

vegetation can be discriminated using spectral reflectance at species level. This study 

also confirmed how hyperspectral remote sensing is useful when identifying and 

mapping wetland vegetation.  

 

The study demonstrated that it is possible to discriminate wetland vegetation species at 

canopy level using reflectance spectra computed from canonical functions. However, 

the biophysical and biochemical properties of vegetation vary from species to species. It 

is therefore imperative to add these properties as independent variables to discriminate 

wetland vegetation species. In the next chapter, biomass and water content variables 

will be used to discriminate wetland vegetation species. 
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Chapter Five: 

Integrating measures of biochemical and biophysical properties with 

vegetation indices to improve wetland vegetation discrimination at 

species level 

5.1 Overview 

The discrimination of wetland vegetation at species level has a very important influence 

on attempts to mitigate ecosystem deterioration. Different wetlands in developing 

countries, especially in Africa, have come under much pressure since their hydrology 

and salinity are being damaged by exploitation of their natural resources, and as a result 

they need to be monitored and conserved for future generations. There are many bio-

indicators such as wetland vegetation, hydric soil, and wetland hydrology that can be 

used to check if there is any wetland change, but vegetation is one of the most important 

factors that can be used (Demuro and Chisholm, 2003). To monitor a large area, remote 

sensing comes into play since it is very practical and cost-effective and it has been 

successfully used for vegetation studies for a long time (Ross, 1981; Guyot and Baret, 

1988; Curran et al., 1992). Vegetation indices have been developed to monitor the 

changes in ecological systems. These vegetation indices operate by contrasting intense 

chlorophyll pigment absorptions in the red region against the high reflectance due to 

multiple scattering in the near infrared region (Todd et al., 1998). Asner (1998) 

suggested that biophysical and biochemical properties of vegetation can be quantified 

and used for vegetation mapping since species differ in their structural and biochemical 

content characteristics. However, to date, no studies to our knowledge have quantified 

these biophysical and biochemical parameters and combined them with hyperspectral 

data for vegetation species discrimination. This study was carried out in the wetlands of 

iSimangaliso Wetland Park and the results are described in the next section. 
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5.2 Discriminating wetland vegetation at species level using a 

combination of biochemical and biophysical properties with 

vegetation indices 

One-way ANOVA results at 95 % confidence level (p < 0.05) indicated that there was a 

significant difference among wetland vegetation species. The means of each and every 

vegetation index (RESP, CI, GMI, and SR), water content and biomass variables 

showed that wetland vegetation species can be distinguished using their means. As 

shown in Figure 5.1, for quantified water content the highest mean is for TI followed by 

EP, CP, and finally PA. The box plot of quantified biomass showed the highest mean 

for CP followed by PA, EP, and TI in that order.  
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 Figure 5.1 Box plots showing the spread of mean, standard error, and Confidence 

Interval of each vegetation species produced water content and biomass variables. 
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From all the vegetation indices, and measures of water content and biomass that were 

applied, their overall p values were less than 0.0004, except CI that had a p value of 

0.075029 as shown in Figure 5.2. One-way ANOVA test did not show which pairs of 

means were different. Therefore, to determine which pairs of means differ, the post hoc 

Bonferroni test was applied. Figure 5.3 shows all the p values of vegetation indices, and 

quantified water content and biomass. The Bonferroni test showed that some vegetation 

indices (RESP and SR) were not able to differentiate between PA and TI. Also CI failed 

to distinguish between CP and TI. GMI was the only vegetation index that managed to 

distinguish all the vegetation species. Water content and biomass variables couldn’t 

discriminate between EP and TI, and CP and PA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Results of ANOVA test showing overall p values of four species from 

different vegetation indices and vegetation properties. 
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Figure 5.3 Results of one-way ANOVA test showing the p values of all four species (6 

pairs) using RESP, GMI, CI, SR, and measures of plant water content and biomass after 

Bonferroni adjustment. 

 

Although the results of one-way ANOVA indicated that the indices were able to 

distinguish among wetland vegetation at species level, it is very difficult to determine 

which one of the indices, quantified water content or biomass, had the best 

discriminatory power. As a result, canonical variate analysis was applied to test if the 

introduction or addition of quantified water content and biomass had improved the 

discriminatory power. The results of CVA supported that all the species were 

statistically different with a Wilk’s lambda of 0.0217327. The first canonical function 

shown in Table 5.1 contains the largest proportion of the explained variance with an 

Eigenvalue of 9.78499. The highest factor structure coefficient is contained in the 

quantified water content and biomass with coefficients of -0.432514 and 0.421967 

respectively. This was followed by CI, GMI, SR, and RESP in that order. The highest 

factor structure coefficient in the second canonical function shows that RESP, SR, and 

quantified biomass made the largest contribution, and to a lesser extent GMI. The third 
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canonical function also shows that the highest factor structure coefficient is in the CI, 

quantified biomass, and in GMI and SR to a lesser extent.  

 

Table 5.1 Factor structure matrix representing the correlation between the variables and 

the canonical functions 

 Root 1 Root 2 Root 3 

SR 

RESP 

CI 

GMI 

Water Content 

Biomass 

-0.178442 

-0.160428 

0.338479 

-0.237049 

-0.432514 

0.421967 

0.832607 

0.855823 

-0.495210 

0.727677 

0.056009 

0.791681 

0.293838 

0.281673 

-0.674013 

0.336985 

0.080464 

0.441068 

Eigenvalues 9.78499 1.69537 0.58288 

 

Table 5.2 shows the means of canonical variable representing the correlation between 

the wetland vegetation at species level and the canonical roots. The results in Table 5.2 

showed that the first canonical root discriminates mostly between PA species and other 

species, followed by TI species, and to a lesser extent EP species. The second canonical 

function discriminates mostly between EP species and other wetland vegetation species, 

followed by TI group. In the third canonical function, it can be noted that CP species 

can be mostly discriminated as compared to other vegetation species, and this is 

followed by PA group, and to a lesser extent EP group. However, the magnitude of the 

discrimination is much smaller, and this can be noted in Table 5.1 which shows that the 

Eigenvalue of the third canonical function is much smaller than the first and second 

canonical function. 
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Table 5.2 Means of canonical variables representing the correlation between the 

wetland vegetation species and the canonical function 

 

Species Root 1 Root 2 Root 3 

CP 

PA 

EP 

TI 

1.45706 

4.35233 

-2.44813 

-3.36126  

0.22934 

-0.36384 

1.86333 

-1.72883 

1.252645 

-0.734683 

-0.403674 

-0.114288 

 

The scatter plot in Figure 5.4 shows positions of wetland vegetation species in the 

canonical space. All the species in the scatter plot are positioned distinctly among them. 

The positioning of the canonical scores shows a gradient from Thelypteris interrupta, 

followed by Echinochloa pyramidalis, and Cyprus papyrus to Phragmites australis. 

Figures 5.5 and 5.6 show the scatter plots of canonical root 1 versus root 3 and root 2 

versus root 3 respectively. The results in these scatter plots clearly indicate that only the 

first canonical function, followed by the second canonical function, makes the highest 

contribution to wetland vegetation species discrimination. The scatter plot of canonical 

root 1 versus root 3 shows that it can be also used to distinguish between wetland 

vegetation at species level to a lesser extent than root 2 versus root 3, although it cannot 

separate between Echinochloa pyramidalis and Thelypteris interrupta. Also, from 

Figure 5.3 it can be noted that there is no confusion between species except for a 

minimal confusion between Cyprus papyrus and Phragmites australis. 
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Figure 5. 4 Scatter plot of canonical roots (root 1 versus root 2) produced by CVA. 

 

Figure 5. 5 Scatter plot of canonical roots (root 1 versus root3) produced by CVA. 
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Figure 5. 6 Scatter plot of canonical roots (root 2 versus root3) produced by CVA. 

 

To determine if measures of biochemical and biophysical properties of vegetation had 

improved the discriminatory power, quantified water content and biomass was added as 

canonical variables. The addition of water content and biomass variables was seen as a 

major improvement on vegetation species discrimination. But to determine the actual 

percentage of improvement made by water content and biomass measures, the confusion 

matrix or error matrix was calculated for those two variables as seen in Table 5.3. The 

overall accuracy and Kappa statistic showed that, wetland vegetation species can be 

classified into their respective groups with overall accuracy of 82 % and Kappa statistic 

of 0.76 respectively. The classification rate that was achieved by adding water content 

and biomass variables in the canonical variate analysis indicted their discriminatory 

power. 
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Table 5.3 An error matrix of four wetland vegetation species showing Producer 

Accuracy, Omission Error, User Accuracy, Commission Error, and Overall Accuracy as 

percentages and Kappa Statistic using water content and biomass variables only 

 

Species CP PA EP TI Commission 

Error (%) 

User Accuracy 

(%) 

CP 

PA 

EP 

TI 

32 

10 

5 

0 

10 

40 

0 

0 

6 

0 

42 

0 

2 

0 

3 

50 

36 

20 

16 

0 

64 

80 

84 

100 

Omission Error (%) 32 20 12 10   

Producer Accuracy (%) 68 

 

80 88 90  

Overall Accuracy (%) 

Kappa statistic 

82 

0.76 

 

 

Table 5.4 An error matrix of four wetland vegetation species showing Producer 

Accuracy, Omission Error, User Accuracy, Commission Error, and Overall Accuracy as 

percentages and Kappa Statistic using quantified water content and biomass, and 

vegetation indices 

 

Species CP PA EP TI Commission 

Error (%) 

User Accuracy 

(%) 

CP 

PA 

EP 

TI 

45 

1 

1 

0 

3 

49 

0 

0 

1 

0 

47 

0 

3 

0 

2 

50 

10 

2 

6 

0 

90 

98 

94 

100 

Omission Error (%) 4 2 2 8   

Producer Accuracy (%) 96 

 

98 98 91  

Overall Accuracy (%) 

Kappa statistic 

95.5 

0.94 
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To further investigate the effectiveness of water content and biomass measures to 

discriminate wetland vegetation species and to explain the observed patterns or changes, 

the samples were classified using Fisher’s linear discriminant function with proportional 

to group size prior probabilities (McGarigal et al., 2000; Mutanga, 2004). From Table 

5.4, it can be noted that, of those 50 samples per wetland vegetation species that were 

mapped as CP, PA, EP, and TI only 45, 49, 47, and 50 samples were correctly assigned 

to CP, PA, EP, and TI, resulting in a 90%, 98%, 94%, and 100% user’s accuracy 

respectively. Also all the vegetation species were correctly classified as CP, PA, EP, 

and TI, and achieved producer’s accuracy of 96%, 98%, 98%, and 91% respectively. 

The overall accuracy and kappa coefficient of 95.5% and 0.94 was obtained 

respectively. The addition of water content and biomass variables increased the 

discriminatory power by 8.5%. 

5.3 Discussion  

In this section, the potential of hyperspectral data in conjunction with biochemical and 

biophysical properties of vegetation to discriminate wetland vegetation species is 

discussed. The main aim is to investigate if there is any improvement in vegetation 

species discrimination after the introduction of water content and biomass as 

independent variables. 

5.3.1 Integrating quantified water content and biomass, and vegetation 

indices to discriminate wetland vegetation at species level  

Vegetation indices have been widely used for wetland vegetation discrimination (Cho 

and Skidmore, 2006), but the motivation for the present study was to determine if there 

was any improvement in vegetation species discrimination with the introduction of 

biochemical and biophysical parameters. To achieve this proposed goal, the quantified 

water content and biomass as independent variables were used in conjunction with 

vegetation indices in the vegetation species discrimination.  

The results confirmed that discriminating different wetland vegetation at the species 

level is improved using vegetation indices with the addition of water content and 

biomass variables.  As suggested by Mutanga (2004), CVA provides an insight into the 

relationship among the wetland vegetation species, thereby showing the importance of 
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hyperspectral remote sensing. The study has shown that canonical functions 

extrapolated from water content and biomass variables in combination with vegetation 

indices can be used for vegetation species separability.  The result indicates that 

quantified water content and biomass of vegetation can be used to distinguish between 

species since they produced an overall accuracy of 82% and a Kappa statistic of 0.76, 

respectively. The addition of water content and biomass variables as ancillary 

information to vegetation indices improved the overall accuracy of species 

discrimination from 87% as shown in Table 4.3 to 95.5% as shown in Table 5.1, 

increasing the percentage overall accuracy by 8.5%.  

 

The CVA results have shown that the highest factor structure coefficient for the first 

canonical function is in the water content and biomass variables. This shows the 

importance of differences in the structural properties of vegetation species in 

discriminating among them. 

 

The scatter plot of canonical roots in Figure 5.4 shows the relative positions of species 

along the canonical axes, and this gives an insight into the relationships among the 

wetland vegetation species. As shown in Figure 5.4, the vegetation species in the 

canonical space are clearly located in their own space. Thelypteris interrupta is 

positioned to the lower left side, followed by Echinochloa pyramidalis positioned in the 

top left side of the canonical space, then followed by Cyperus papyrus in the middle, 

and Phragmites australis positioned in the bottom right of the feature space. This 

positioning shows the gradient of vegetation species, thereby confirming the 

discriminatory power of hyperspectral remote sensing data in combination with the 

structural characteristics of the species themselves. 

 

This study has shown that the availability and improvement in remote sensing 

processing techniques for measuring the structural variables of vegetation is an 

important step towards improving species discrimination. Generated maps from 

empirical or physically based models showing the distribution of vegetation 

biochemical and biophysical characteristics can be input as extra ancillary information, 
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in combination with hyperspectral data to improve the mapping of wetland vegetation 

species as shown in this study.  

5.4 Conclusion 

In this study, the aim was to discriminate wetland vegetation species using the red edge 

hyperspectral vegetation indices with the help of water content and biomass variables. 

The results in this study have shown that: 

 

• The use of measures of biochemical and biophysical properties of plants in 

conjunction with vegetation indices calculated from hyperspectral remote 

sensing data improved the discrimination of wetland vegetation at species level.  

• With the addition of plant water content and biomass variables, wetland 

vegetation species were classified into their respective classes with an overall 

accuracy of 95.5%. By adding quantified water content and biomass the overall 

accuracy was increased by 8.5%. 

• Ancillary information can effectively be used in conjunction with hyperspectral 

remote sensing data (vegetation indices) to discriminate vegetation species. 

 

Overall, the study has indicated that it is possible to discriminate wetland vegetation at 

species level using water content and biomass variables, and vegetation indices derived 

from hyperspectral data.   
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Chapter Six: 

 Conclusion 

6.1 Introduction 

The wetlands of iSimangaliso Wetland Park are important as productive natural 

ecosystem remnants offering wildlife habitat, tourist destinations, and good water 

quality at a given time or over a continuous period. These wetlands are functional 

ecosystems that provide a critical habitat for fauna and flora. Vaiphasa et al. (2005) 

suggest that there are other end users who recognise the importance of wetlands such as 

forestry, fisheries, and environmental conservation. In wetland studies there are three 

variables which must be recognised which are wetland (hydrophytic) vegetation, hydric 

soil, and wetland hydrology (Cowardin et al., 1979). The most important variable when 

it comes to any wetland change is the wetland vegetation. Hydrophytic vegetation is of 

fundamental ecological importance and is used as one of the most important bio-

indicators for early signs of any physical or chemical degradation in wetland systems 

(Demuro and Chisholm, 2003; Belluco et al., 2006; Adam and Mutanga, 2009). 

Wetland vegetation as one of the natural resources, is declining because of the influence 

of natural disturbance and either intentionally or unintentionally harmful human 

activities (Vaiphasa et al., 2005; Adam and Mutanga, 2009). As a result, there are now 

groups which are trying to develop methods for the sustainable management of these 

wetlands e.g Ramsar Convention and UNESCO. Therefore, there is a need for accurate, 

precise, and up-to-date spatial information on the current status of wetland vegetation as 

a prerequisite for the sustainable management of wetland systems (Green et al., 1998).  

 

Remote sensing is regarded as one of the best methods for monitoring and mapping 

wetlands at local, regional, or global scales (Van Aartd and Waynne, 2001; Schmidt and 

Skidmore, 2003; Adam and Mutanga, 2009). Currently, there is extensive use of remote 

sensing for identifying, monitoring, modelling, and discriminating wetland vegetation 

species using their spectral reflectance (Lee and Lunetta, 1996; Demuro and Chisholm, 

2003; Belluco et al., 2006; Hirano et al., 2003; Vaiphasa et al., 2005; Adam and 

Mutanga, 2009). However, remote sensing is inconclusive in the discrimination of 

wetland vegetation at species level in the South African context. There is a major 
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disadvantage in South Africa because there is not much information on previous studies 

for wetland vegetation spectral libraries. The use of multispectral remote sensing for 

wetland vegetation mapping has been done internationally with reasonable results 

(Baret et al., 1987; Shahraini et al., 2003; Belluco et al., 2006; Ndzeidze, 2008), but this 

application was inconclusive when it came to fine details of vegetation, for example, 

biochemical and biophysical properties. This raised the idea of developing hyperspectral 

remote sensing with narrow contiguous spectral bands between visible and shortwave 

infrared regions which have already proved to be a useful tool for wetland vegetation 

discrimination at species level (Schmidt and Skidmore, 2003; Hirano et al., 2003; 

Vaiphasa et al., 2005; Sun et al., 2008; Adam and Mutanga, 2009). This application of 

hyperspectral remote sensing has not yet been done extensively to our knowledge in the 

South African context, except that by Adam and Mutanga (2009). Therefore, in the 

present study, the aim was to further explore the potential of hyperspectral remote 

sensing data with its narrow bands to discriminate wetland vegetation at species level in 

the iSimangaliso Wetland Park, KwaZulu Natal, South Africa. Vegetation indices and 

the red edge position were used to discriminate wetland vegetation species using 

spectral reflectance and the biochemical and biophysical properties of vegetation. In 

order to achieve this goal, the following main objectives were set and achieved: 

 

• to evaluate the ability of hyperspectral remote sensing data in discriminating 

wetland vegetation at species level using the red edge position,  

• to test and compare the performance of red edge position against vegetation 

indices, 

• to test different red edge extraction techniques to distinguish hydrophytic 

vegetation, and 

• to investigate whether there is an improvement in species discrimination by 

combining vegetation structural and biochemical characteristics with 

hyperspectral data. 
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6.2 The use of vegetation indices and REPs for wetland vegetation 

discrimination at species level  

The discrimination of vegetation species using their spectral reflectance was addressed 

in this study (Chapter 4) by evaluating the potential of the red edge position and 

hyperspectral vegetation indices to distinguish Phragmites australis, Thelypteris 

interrupta, Cyperus papyrus, and Echinochloa pyramidalis species from each other. 

Canonical variate analysis showed that we can discriminate vegetation species using 

vegetation indices and REPs as canonical variables. The analysis helps to indicate 

which one of the canonical variables (vegetation indices and REPs) performed better 

compared to others. The hyperspectral vegetation indices performed much better than 

REPs in red edge region. Some vegetation indices especially VOGa, RESP and CI 

showed that they had relatively more power of discriminating wetland vegetation 

species with highest factor structure coefficients than other variables. The overall 

accuracy obtained was 87% after accuracy assessment. The significant finding in this 

study is that vegetation indices yielded a superior discriminatory power than REPs when 

it comes to discriminating wetland vegetation at species level. This finding however 

needs to be further investigated with more data.  

 

6.3 Introducing vegetation properties for discriminating wetland 

vegetation at species level  

CVA was applied to determine the discriminatory power of variables (vegetation 

indices and vegetation properties) that were used in this study. In the first paper 

(Chapter 4), vegetation indices produced 87% overall accuracy compared to 82% of 

water content and biomass variables in the second paper (Chapter 5). CVA in Chapter 5 

showed that water content and biomass variables had superior discriminatory power 

than did vegetation indices since they had highest factor structure coefficients. The 

combination of vegetation indices and quantified water content and biomass produced 

an overall accuracy of 95.5% after accuracy assessment. Comparing results from 

chapter 4 and chapter 5 shows that the overall accuracy increased by 8.5%. In general, 

this study showed that vegetation properties can be used to discriminate vegetation 

species with more discriminatory power than vegetation indices alone. Ancillary 
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information proved that it can effectively be used in conjunction with hyperspectral 

remote sensing data (vegetation indices) to discriminate vegetation species. 

 

6.4 Synthesis 

 This study has shown the potential of hyperspectral remote sensing in wetland 

vegetation spectral separability at species level in the iSimangaliso Wetland Park, 

KwaZulu Natal, South Africa. Evidently, from this study, it can be noted that the visible 

and near infrared regions (red edge region) of the electromagnetic spectrum are very 

important for discriminating wetland vegetation at species level. Spectral reflectance of 

wetland vegetation was used to evaluate the effectiveness of vegetation indices as 

compared to the red edge position. The performance of vegetation indices was 

favourable compared to REPs due to differences in the pigment content (causes of 

absorption differences in the visible region) and canopy structure (or internal leaf 

structure in the near infrared) characterized by a plateau of high reflectance (Schmidt 

and Skidmore, 2003). The use of these vegetation indices overcame the problem of 

saturation due to the use of narrow bands (hyperspectral) data. 

 

However, when quantified vegetation properties (plant water content and aboveground 

biomass) were added in as discriminatory variables, the overall discriminatory power 

increased as well.  Of particular importance was the overall performance of plant water 

content and biomass variables, which yielded highest factor structure coefficients of  

-0.432514 and 0.421967 respectively.  

 

In summary, it was highlighted in the study that adding biochemical and biophysical 

parameters of vegetation to remotely sensed data improves the discrimination of 

vegetation species. Furthermore, the study has shown the potential of discriminating 

wetland vegetation at species level using data obtained by hand-held field spectrometer 

with the possibility of up-scaling field and laboratory data to airborne and satellite 

remote sensing.   
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6.5 Limitation of the study 

One of the limitations of the study was the fact that the study area was waterlogged and 

swampy; therefore it was very difficult to collect the leaf spectral reflectance 

measurements. Sampling was done on areas that were reasonably accessible. Also, the 

field work was done in December in the summer, and usually it rains most of the time. 

For future studies on discrimination of wetland vegetation at species level it might be a 

good idea if the leaf spectral reflectance measurements could be taken in winter or a dry 

season to improve accessibility and reduce the effect of atmospheric obscurities. 

6.6 Conclusion and recommendations  

The main objective was to investigate the potential of narrow band remote sensing to 

discriminate wetland vegetation species at field level. The second objective was to 

investigate whether the addition of quantified vegetation properties (biochemical and 

biophysical properties) can improve the discrimination of vegetation species. It was 

revealed in this study that the information contained in narrow bands data and 

vegetation properties can be used to achieve these goals. Finally, it was concluded that 

hyperspectral vegetation indices and quantified vegetation parameters based on 

wavelengths located in the red edge region can accurately discriminate vegetation 

species at canopy level. 

 

This study was the first attempt to discriminate wetland vegetation using a combination 

of quantified vegetation properties and hyperspectral vegetation indices. Therefore, 

future research in wetland vegetation species discrimination either at field level, or at 

airborne or satellite level should investigate the possibility of using quantified 

vegetation properties in addition to the spectral data. In addition, vegetation properties 

such as nitrogen, phosphorous, lignin, chlorophyll content, and leaf area index could be 

quantified to study their characteristics, and how the differences of these parameters 

may improve the accuracy of wetland vegetation discrimination. Since discriminating 

vegetation species at field level using traditional remote sensing (aerial photography) is 

time consuming, not cost-effective and suffers the disadvantage of some parts of the 

study area being inaccessible, it is recommended that the study be up-scaled to the 

application of airborne and satellite hyperspectral remote sensing. In terms of temporal 
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and spatial resolution, airborne or satellite remote sensing offers a good coverage of 

local, regional, and global scale even in some areas that are difficult to access and also 

offers a repetitive acquisition of wetland vegetation imagery for developing and 

improving sustainable management methods. 
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