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Abstract

Wetland vegetation is of fundamental ecological amignce and is used as one of the
vital bio-indicators for early signs of physical chemical degradation in wetland
systemsWetland vegetation is being threatened by expansf extensive lowland areas of
agriculture, natural resource exploitation, etceSénthreats are increasing the demand
for detailed information on vegetation status, ojotate maps as well as accurate
information for mitigation and adaptive managemenipreserve wetland vegetation.
All these requirements are difficult to producespécies or community level, due to the
fact that some parts of the wetlands are inacdessiemote sensing offers non-
destructive and real time information for sustaleabnd effective management of
wetland vegetation. The application of remote sensn wetland mapping has been
done extensively, but unfortunately the uses ofavesand hyperspectral data remain
unexplored at an advanced level. The aim of thislysis to explore the potential of
hyperspectral remote sensing for wetland vegetatisarimination at species level. In
particular, the study concentrates on enhancinignproving class separability among
wetland vegetation species. Therefore, the stuliigsren the following two factors; a)
the use of narrowband hyperspectral remote senasntgb) the integration of vegetation
properties and vegetation indices to improve aagurdhe potential of vegetation
indices and red edge position were evaluated fgetation species discrimination. One-
way ANOVA and Canonical variate analysis were usestatistically test if the species
were significantly different and to discriminate @my them. The canonical structure
matrix revealed that hyperspectral data transforars discriminate vegetation species
with an overall accuracy around 87%. The additidnbiomass and water content
variables improved the accuracy to 95.5%. Overle study demonstrated that
hyperspectral data and vegetation properties ingpvestland vegetation separability at
species level.
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Chapter One:

I ntroduction

1.1 Background

Wetlands in an African savanna are alluring, dymamand complex unique natural
systems that provide substantive hydrological systebiological and ecological
diversity (Kotze and Breer1994; UNESCO, 2008). A ‘wetland’ is defined as ada
where the water table is usually at or near théasaror which is saturated for long
enough period to promote features such as waterata vegetation that can survive in
wet-altered soils (Cowardiet al., 1979). There are many types of wetlands including
springs, mires, bogs, floodplains, coral reefsgleand beaches, vleis, seeps, extensive
reed and papyrus swamps, coastal lakes, estuanedsmangrove swamps (Collins,
2001; Schmidt and Skidmore, 2003; UNESCO, 2008g¢s€&hwetlands are hard-working
ecosystems that provide a critical habitat for tawand flora including vegetation
species and wildlife animals (Collins, 2001).

There are approximately 120 000 wetlands in Sodtit#éthat cover approximately 7%
of South Africa’s surface area (Wetlands South @&ri2009). From those 120 000
wetlands mapped by the National Wetland Inventorouth Africa, only 12 sites have
been recognised by the Ramsar Convention (Ram@3at,) lincluding the iSimangaliso
Wetland Park in KwaZulu-Natal, Langebaan on thetveesst in the Western Cape,
Barberspan in North West Province, BlesboksprufBauteng, and De Hoop vlei in the
Cape (Wetlands South Africa, 2009). Wetlands asemsl in an arid, water-scarce
country such as South Africa, yet an estimated 3%0% of South Africa’s wetlands
have been destroyed by housing, roads, infrasteicand agricultural development
(Kotze and Breenl994; Begg, 1989; Working for wetlands in SANPARKX)04).

Due to the limited availability of valuable infortm@n in South Africa on the

distribution and state of wetlands, it is a seridogediment for the adequate

identification, monitoring, protection, and managermof wetland resource.



Mapping and assessment of wetlands require a greatkerstanding of the following
three variables: wetland (hydrophytic) vegetatibydric soil, and wetland hydrology
(Mitsch and Gosselink, 1993; Collins, 2001). In tase of iSimangaliso Wetland Park,
the problem of extensive lowland areas for agnigeliand natural resource exploitation
is affecting the hydrology and salinity of the veettl system (Kotze and Breetf94).
Also the land use changes within certain partshefgark are related to the closure of
the iSimangaliso Wetland Park estuary mouth bymsedtation, and the reduction in the

supply of critical resources (Collins, 2001).

The effects of the above mentioned problems cdy loe noticed through ecological
changes. Hydrophytic vegetation is of fundamentalagical importance and is used as
one of the vital bio-indicators for early signsasfy physical or chemical degradation in
wetland systems (Demuro and Chisholm, 2003; Bellecal., 2006; Adam and
Mutanga, 2009). Therefore, acquiring accurate mfdron for identification and
monitoring of vegetation species distribution amemtity is an important technical task
for sustainable management of wetlands (SchmidiSkmdimore, 2003). As a result, the
spectral response of floristic characteristics etlands play a vital role in monitoring
water quality, environment stress management, alatuesource inventory and
managing human impacts on wetlands (Mitsch and &iogs 1993; Van Aardt and
Waynne, 2001; Adam and Mutanga, 2009).

Schmidt and Skidmore (2003), Vaiphagal. (2005), and Adam and Mutanga (2009)
suggest that protection and restoration progranohegtland vegetation require up-to-
date spatial and taxonomic information. Previoustgearchers and scientists had been
using optical interpretation and prior knowledgeveigetation to provide qualitative
assessments of vegetation characteristics (Céarlal., 2005). In addition, these
researchers used traditional floristic mapping éshwhich are labour-intensive, time-
consuming and expensive. Also, some places areesaible since most wetlands are
waterlogged and swampy, which allows only a sm@hdo be covered for study (Lee
and Lunetta, 1996; Schmidt and Skidmore, 2003; AdathMutanga, 2009).

One of the most important tools that are being usedonitor changes in wetland

vegetation is remote sensing (Koiteal., 1995; Lee and Lunetta, 1996; Schmidt and



Skidmore, 2003; Xiest al., 2008). The introduction of remote sensing inetagon
studies has brought the uses of a non-destruchidedaect method of assessing and
monitoring vegetation species from local to glokahles (Datt, 1999). Adam and
Mutanga (2009) recognised that remote sensing soffepractical and cost-effective
means to quantify and discriminate the vegetatmameters of the vegetation species
as well as making field sampling more focused afiitient. Satellite or airborne
imagery provides permanent records useful for nooinig the extent, type, and location
of environmental changes in wetland communitiestt{d#®99). Since the early 1980s,
remotely sensed imagery has become commonly usachpoove identification of
vegetation species (Howland, 1980; Begg, 1989; Keital., 1995; Greeret al., 1998;
Asner et al., 2000; Curranet al., 2001; Hiranoet al., 2003; Mutangeet al., 2003;
Schmidt and Skidmore, 2003; Xéeal., 2008; Adam and Mutanga, 2009).

Multispectral remote sensing has been widely usedhonitor vegetation status, but
unfortunately this system has limited capability &@curate identification of vegetation
species. Due to its coarse spectral resolutioredtes ambiguous differentiation among
vegetation species (Schmidt and Skidmore, 2003)ltidpectral sensors cannot
effectively determine either the fine scale spdieterogeneousness or narrow ecotones
common in most wetlands (Siciliareb al., 2008). Multispectral data provide a wider
view and lower cost needed for its application iifiedent vegetation studies, but have

shown ineffectiveness when distinguishing vegetasigecies (Ndzeidze, 2008).

However, over the past few decades, advances isosdachnology have improved
remote sensing and discrimination of wetland vdgetaat species level, with the
development of hyperspectral sensors. In cont@asiata from multispectral remote
sensing, hyperspectral data are of high spectsalugon of narrow channels less than
10 nm and the data consist of a large number gof narrow contiguous bands between
350 nm and 2500 nm in the electromagnetic specf{iKmkaly and Clark, 1999; Van

Aardt and Waynne, 2001; Kokaly, 2001). With the phef hyperspectral remote
sensing, vegetation parameters such as biomaskgiTu®79; Sumt al., 1991; Moreau

and Toan, 2003; Mutanga and Skidmore, 2004) aneémaintent (Cochrane, 2000;

Mutangaet al., 2003) have been accurately measured and quantifieglse narrow



spectral bands also allow the detection of finaitkebf vegetation species, which could
otherwise be masked by broadband sensors (SchrmddSkidmore, 2003; Mutanga
al., 2003).

Since wetlands are waterlogged and swampy, thetrgpeeflectance will be affected
by atmospheric interference, soil background, aghrental water, which eventually
lead to spectral noise. To overcome this probldns, $tudy concentrated on the red
edge region (680nm to 750 nm) which is insenstiiveoil background and atmospheric
interferences (Guyott al., 1992; Clevers, 1999; Mutanga and Skidmore, 200¥, C
2007). Red edge is defined as the wavelength ahftection point of reflectance slope
that is located between the red trough and neaaregd (NIR) plateau (Collins, 1978;
Curran et al., 2001; Mutanga, 2004). The second method was tipticapon of
vegetation properties to enhance the spectral abilisy among the vegetation species
that ultimately increases the accuracy.

Biophysical and biochemical parameters have an dénpa discriminating wetland

species since they vary as a function of plantispeand hydrologic regime (Mutanga
and Skidmorg 2004; Curranet al., 2001; Puet al., 2003). This was supported by
Schmidt and Skidmore (2003), who point out that \@hetation contains similar
biochemical constituents, but these vary in theapprtions (in terms of absorption and
reflectance). The variation in those proportions/iet is used to discriminate different

plants even if they receive the same amount ofvestén the case of a wetland.

However, to date, there are no studies to the testur knowledge that have been
undertaken to establish what the effects of theggetation properties are on spectral
reflectance of wetland vegetation. Most previousligts have concentrated on mapping
and discriminating wetland vegetation species rathan investigating the effects of
vegetation properties on reflectance spectra (Aaner Martin, 2008). In the present
research, because of time constraints, only bioraagdswater content variables were

investigated.



Most of the wetlands in iSimangaliso Wetland Paseive varying amounts of rainfall
throughout the year that means all the plant alssoifterent amount of water per given
area. Since the most abundant chemical in leaweater that may constitute up to 70%
(Kokaly et al., 2009; Ustinet al., 2004; Vaiphasat al., 2005; Asner and Martin, 2008),
guantification of canopy water content can be vesgful. Every vegetation species
absorbs and stores water differently; hence thetwam in plant water content can be
used as a means to discriminate wetland plantsgg usyperspectral remote sensing
(Collins, 1978; Jago and Curran, 1995). Asner aitdugek (2005) managed to detect
and distinguish two invasive nitrogen fixer and erstory herb speciesjorella faya
and Hedychium gardnerianum, using quantification of foliar nitrogen and plamater

content.

However, most of the previous researchers’ conghssion the aboveground biomass
and water content quantification are not directpplacable to wetland vegetation
discrimination at species level. Also, when diséniating vegetation species, raw data
(bands) might not be effective because of overtapraise that is associated with other
parts of the electromagnetic spectrum. Moreoveemthetecting spectral reflectance of
submerged aquatic vegetation at any scale, vamiatiobiophysical and biochemical
properties must be considered.

It is critical to note that hyperspectral remotasseg has focussed on the estimation of
both biochemical properties and biophysical propsrtof vegetation or species
discrimination independently, without a clear ctiempt to integrate the products in
improving species mapping. Several maps, algoritimé models have now been
developed to predict biomass and other structuglgrties of vegetation at reasonable
accuracies. The question is, can the integratiothisf available ancillary information
with hyperspectral data improve species discrinmmat

The main aim of this study was to investigate tl¢eptial of hyperspectral remote
sensing (using field spectrometry) for vegetatipacses discrimination at field level. In
particular, leaf spectral reflectance at canopellef four wetland vegetation species

was measured for spectral separability. To test utiigy of ancillary vegetation



structural information, this study quantified veagein properties (plant water content
and aboveground biomass) and combined them witherbppctral data in
discriminating vegetation species. The study sugslfito the following aim and

objectives.

1.2 Aim and objectives

Based on the issues articulated above, the resealidbcus on the potential of the red
edge position to identify and map different wetlarefjetation at species level using
hyperspectral data. The main objectives are:
e to evaluate the ability of hyperspectral remotesgen data in discriminating
wetland vegetation at species level using the deg @osition,
» to test and compare the performance of the red @dgdion against other
vegetation indices,
» to test different red edge extraction techniquesdistinguish hydrophytic
vegetation, and
» to investigate if there is an improvement in speciscrimination by combining

vegetation structural and biochemical charactesstiith hyperspectral data.

1.3 Resear ch questions

I.  How useful are red edge parameters to wetland agget discrimination at
species level as compared to other vegetationas@lic

ii.  Which hyperspectral vegetation indices can be usedliscriminate wetland
vegetation species calculated from wavelengtheerréd edge region?

ili. How important are quantified biochemical and biogbsl properties of

vegetation on vegetation discrimination at speldesl?

1.4 Study area

Lake St Lucia was declared South Africa's first iMat World Heritage Site by
UNESCO on 1 December 1999, and its name was chdongéceater St Lucia Wetland
Park which was then renamed on 1 November 2003itoangaliso Wetland Park. This
was done in an effort to give the wetland a unigérecan identity. The wetland site is

registered under one of the Ramsar sites. Thi® lagtland area has 280km?2 of near



pristine terrestrial, wetland, estuarine, coastall marine environments, and it covers
about 328 000 hectares which is why it is regam@edthe largest estuarine area on the
African continent. TheéSimangaliso Wetland Park is located between Magteeln the
south and Kosi Bay near the border of Mozambiquéhe north, and it is between
longitudes 32%1' and 32° 34E latitudes 27 © 38 and 28 ° 245 as shown in Figure 1.1.

It has a mean annual temperature of about 21 °Gurd the iSimangaliso Wetland
Park, rainfall is not available throughout the yaad it is spatially highly variable in the
Park. Depending on the location in the park, rdiméanges from 1200mm to 1300 mm
per annum with approximately 60 % of the rainfalsummer (UNESCO, 2008).

The park supports extraordinary ecological anddgialal diversity due to its location
that is between tropical and subtropical biota [[@®] 2001). In the iSimangaliso
Wetland Park, there are many different wetland tagm species including those in
salt marshes (e.gluncus krausii, Salicornia spp., and Ruppia maritima); Saline reed
swamps Phragmites mauritianus); Sedge SwampE{eocharis limosa) and Echinochloa
floodplain grasslandEchinochloa pyramidalis, Eriochloa spp., and Cyperus spp.), but
the most dominant species are found in freshwaged rand papyrus swamps
(Phragmites australis and Cyperus papyrus). In total, four species were identified as
being the most common species that generally growhea same place. These were
Cyperus papyrus, Phragmites australis, Echinochloa pyramidalis, and Thelypteris
interrupta. Cyperus papyrus and Phragmites australis cover approximately 7 000ha in
the Park.
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Figure 1.1 The location of the study area iSimangaliso WetlBark in KwaZulu-Natal

Province, South Africa.

1.5 Thessoutline

In Chapterl background is provided of wetlands’ vegetationl #ime importance of
remote sensing, especially the availability of aarbands (data). In Chapter 2, the
review of literature regarding application of reeaensing in wetland vegetation is
summarised and the potential of hyperspectral w@olgy for discriminating wetland
vegetation at the species level is demonstrate@. d@dssibility of using vegetation
properties (biochemical and biophysical propertiesjegetation species discrimination

is also discussed.

In Chapter 3 the methods used to carry out theareleare discussed. An explanation is
given of how the field spectral measurements, afpamwend biomass, plant water
content, vegetation indices, and red edge positiere calculated. All the statistical

analysis methods used to check if there were sogmif differences between wetland



vegetation species are outlined. The use of discam analysis techniques in

differentiating vegetation species is also invextd.

In Chapter 4 the results of the relationship betwspectral reflectance, vegetation
indices, and the red edge position are summariketbmparison between vegetation
indices and the red edge derivatives in discrinmgatvetland vegetation at species
level is also done in this chapter. In Chapteh® tesults of discriminating wetland
vegetation at species level using vegetation irsdie@d vegetation properties is

provided. These two chapters are in the form oflag for publication.

In Chapter 6 the research is summarized and theaaohnobjectives of the thesis are

synthesized.



Chapter Two:

Literature Review

2.1 Introduction

The wetlands of the iSimangaliso Wetland Park amportant as productive natural

ecosystem remnants offering wildlife habitat, tetidestinations, and water quality at a
given time or over a continuous period. Wetland etagon has compositional and
structural characteristics that provide specializebitats for a range of important
wetland-dependent species. Wetland vegetation nsy @ovide a range of locally

important goods for local communities such as rdedsveaving, grazing areas for

domestic stock, and services to downstream uselsasiflood attenuation and nutrient
retention (Kotze and Breen, 1994; Schmidt and Skiém2003; Working for Wetlands

in SANPARKS, 2004).

However, in the iSimangaliso Wetland Park, problesush as drainage of extensive
lowland areas for agriculture and the exploitatidbmatural resources are affecting the
hydrology and salinity of the wetland system. Thbeo problems that affect the

iISimangaliso Wetland Park ecology is the land uUssEnges within certain parts of the
park related to the closure of the estuary moutlsdryimentation, and the reduction in
the supply of critical resources. The threat arfogm the transformation of the upper
portion of the Mfolozi Swamps by agriculture (Co#lji 2001; UNEP, 2001). Schmidt

and Skidmore (2003) suggest that there are lomg-tereats to wetlands that require an
investigation into vegetation species that are labka right now and these threats
include pollution, sea level rise, climatic chang&d ground subsidence from gas

extraction.

Wetland vegetation has undergone considerable elsammd most wetlands are
rapidly being lost or degraded because of humaivites, which bring the need to
protect and preserve them (Datial., 1998). A thorough understanding of relationships
between vegetation species distribution and aceukatowledge is vital for the
development, implementation, and monitoring of aed vegetation (Dingt al., 1998;
Schmidt and Skidmore, 2003). When working with aetl vegetation for management
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of sustainability and integrated wetland conseoratstrategies, the most important
thing is the acquisition of accurate knowledge aliba natural relationships of plants
because it makes the interpretation of structueyeldpment, and distribution of

ecological plant communities in the landscape memsier based on the study of plant
groups (Schmidt and Skidmore, 2003). This led @ ititroduction of remote sensing

which has been used for a long time to monitor tedg® status.

2.2 Remote sensing and spectral characteristics of wetland vegetation

Specifically, remote sensing data is acquired us$iagd held spectrometers, aerial
photography, and airborne or satellite sensorscdbasghe detection of electromagnetic
radiation (Provoostt al., 2005; Curraret al., 1990). Currently, there are two main
technigues used to acquire remote sensing dataelpaactive sensors and passive
sensors. Active sensors (LIDAR and RADAR) are systdhat emit energy that is
directed at a target and later measure the reigralsafter the target reflects energy
back to the sensor. Passive sensors measure sel@yethat is naturally available.
Passive sensors are the most common sensors uste facquisition of detailed data

on vegetation species.

The electromagnetic waves emitted by the sun amdiajya absorbed, partially
transmitted, and partially reflected by the diffrenaterials on the earth’s surface
(Provoostet al., 2005; Lillesand and Kiefer, 1994). Remote sendia¢a offer the
opportunity to detect these signals that are dfezted by atmospheric conditions and
the earth’s surface in general and vegetation gatgdetail. The reflected radiance
measured by the sensor is converted to reflectamloes that are defined as the ratio of
the intensity of the reflected light to the inteapaf the incoming light as a function of
the wavelength. Features on the earth’s surface tdferent spectral signatures due to
differences in chemical and physical propertiesoyPost et al., 2005) which are
eventually detected by spectroradiometers devieeh sas an Analytical Spectral
Device (ASD). The ASD measures continuous spedieaids between 350nm and
2500nm throughout the visible (350nm to 700nm), N ®Onm to 1300nm), Mid-
Infrared (MIR), and Thermal Infrared (TIR) (1300nta 2500nm) regions of the
electromagnetic spectrum (Kumat al., 2001; Lillesand and Kiefer, 2000). The
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interaction of electromagnetic radiation with tleaves is dependent upon many factors
including cuticular composition and structure, gkl organization, intercellular air
spaces, biomass, Leaf Area Index (LAIl), cytoplashmclusions, pigments, water
content, emissivity characteristics, and tempeeatlumaret al., 2001; Lillesand and
Kiefer, 2000; Provoostt al., 2005; Sicilianoet al., 2008; Schmidt and Skidmore,
2003).

Provoostet al. (2005) and Curramt al. (1990) found that absorption is strong in the
violet (< 400nm), blue and red (from 400nm to 70Qrpart of the spectrum that is
caused by the composition and concentration of roployll and pigments (e.g.
anthocyanin, lutein, B and carotenoids, and xanthophyll), which result in éow
reflectance. The characteristics of the upper epiteand the refractive index of the
cuticular wax determine the reflectance from thaf lsurface, but the anatomical
structure of the leaf also contributes significaritt NIR reflectance (Provoost al.,
2005). As shown in Figure 2.1, from 495nm to 570mhich is the green part of the
solar spectrum indicate an increase in energyatailee causing plants to show a green
colour. This results in low reflectance in the bisiwavelengths and strong increased
reflectance of the near infrared that appears at@@®nm (Curramt al., 1990). Green
plants hardly absorb NIR because the energy couofetite shortwave infrared part of
the solar spectrum is insufficient to trigger plobtemical reactions, and this part of the
energy spectrum is not absorbed by chlorophylh&rophyll b, or carotene (Kumat

al., 2001; Adam and Mutanga, 2009).

The contrast between red absorption and NIR réflecknown as the ‘red edge’, is the
evident spectral characteristic with more informaticontent for vegetation spectra
(Dawson and Curran, 1998; Mutanga, 2004; Cho andn8ke, 2006). ‘Red edge’ is

defined as being the wavelength of the inflectiaminp of reflectance slope that is

located between two of the most widely used wagttenegions used for narrow band
vegetation studies, the red trough and NIR plaieaihe 680nm to 750nm regions of
vegetation spectra (Collins, 1978; Cursral., 2001; Mutanga, 2004). The absorption
of the red part of the spectrum is due to the coetbieffects of polymer forms of strong

chlorophyll, and the high multiple scattering otlietion in the leaf mesophyll causes
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high reflectance in the NIR part of the spectrunmaillg, 2003; Cho and Skidmore,
2006). A significant advantage of the use of tiee@dge position is that it is relatively
insensitive to variations in illumination condit®rand to the reflectance of the soll
background but it is highly correlated to vegetatipeenness parameters (Mutanga and
Skidmore, 2007). The position of the red edge @ tsuccessfully used in vegetation
studies as an indicator of physiological changeseagetation studies (Collins, 1978;
Jago and Curran, 1995). From Figure 2.1 it can dtedhthat between wavelengths
700nm and 1300nm (Visible and Near Infra-Red (VN#RY lower Shortwave Infrared
(SWIR)) there is high reflectance of energy. Thghhreflectance is caused scattering of
electromagnetic radiation due to the arrangemertebtélar and discontinuities in the
refractive index within the leaf. Finally, SWIR ieg (1300nm to 2600nm) is
characterized by strong water absorption bandsnaimdr absorption of biochemical
content dominating the gradually decreasing redleot of green vegetation (Kumetr
al., 2001).
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Figure 2.1 Reflectance curves of different types of wetlandetation species in the
iISimangaliso Wetland Park (December 2009, ASD nreasents).
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Spectral properties of wetland vegetation are edldab biochemical and biophysical
properties rather than species and its spectrdéctahce is influenced by soil
background and hydrologic regime (Guyot, 1990)sTihierference causes low spectral
reflectance in vegetation spectrum especially & MR region where water is highly
absorbed (Cochrane2000). Within a single species, plants show a etariof
phenological, morphological, and physiological atinds, complicating the spectral
separability of vegetation types based on speaegposition (Schmidt and Skidmore,
2003; Asner, 1998). Estimating biophysical and bemical constituents of vegetation
with imaging spectrometry is a difficult task, stnseveral overlapping absorption
features influence plant reflectance (Cureaal., 1992; Curraret al., 2001; Siciliancet
al., 2008).

The spectral response at either leaf or canopyl leme be affected by leaf internal
structure, leaf age, phenological stages, angl@evl, atmospheric properties, spectral
mixture, moisture content, illumination angle, themical and biophysical properties
(nitrogen, biomass, plant water content, LAI, phuasps, chlorophyll content,
anthocyanin, lutein, (3 andcarotenoids, and xanthophylls) (Cochrane, 2000tufate
knowledge of different spectral response is verganant for discrimination of wetland
vegetation at species level since there is no @mess in spectral signatures (Kurgar
al., 2001; Kamaruzaman and Kasawani, 2007). Biomasischlorophyll content of
wetland vegetation species are thought to varytigraa a function of the plant species
and hydrologic regime (Anderson, 1995; Adam and aviga, 2009). Plant water
content, cellulose and other plant properties ao®nded as being an influence in the
spectral reflectance of vegetation that determthesstrong absorption in mid-infrared

and an increase in near infrared leaf reflectakcen@aret al., 2001).

2.3. Application of remote sensing in wetland vegetation mapping

Previously, some studies have been investigatiegdssibility of providing well-timed
data for identifying and monitoring wetland vegetatand this has been categorized as
an important part of wetlands vegetation restoma{i@ovenderet al., 2007; Schmidt
and Skidmore, 2003). Therefore, the detection, nmgp@nd monitoring of changes in
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these natural ecosystems becomes very importantittdmg wetland vegetation
requires quantitative, accurate, and regular citlecof information that has made the
use of remote sensing a most important tool (Schamd Skidmore, 2003). Over the
past few decades, imagery has been acquired frdearange of sensors, some with
high spatial resolution and low spectral resolutiamd some with coarse spatial
resolution and high spectral resolution. The freshote sensing method used to map
wetland vegetation was aerial photography with gpatial resolution (Howland, 1980;
Jenseret al., 1986; Kamaruzaman and Kasawani, 2007; Adam anthida, 2009).
The drawback of aerial photography, as noted isahgtudies, is that it has coarse
spatial resolution and low spectral resolutionrebg affecting the actual vegetation
mapping (Jensed al., 1986; Klemas and Dobsph993; Smithet al., 2004; Adam and
Mutanga, 2009). Considering the increased use afote sensing data, aerial
photography has been less frequently used sinsendt practically possible to map and
monitor wetland vegetation on a regional scale. Aays, multispectral and
hyperspectral remote sensing is used to monitolangtvegetation on a regular basis,
which requires high temporal resolution and reguaitection of data (Klemas and
Dobson, 1993).

Multispectral remote sensing was introduced in thapping and monitoring of
vegetation with different spatial resolutions ramggirom sub-metre to kilometres and
with different temporal resolutions ranging from ®hutes to weeks or months (Kety
al., 2000). Using traditional multispectral data, theostn common classification
technigues used by some previous researchers ssifglavetlands vegetation were
supervised classification (Parallelepiped classiftm, Minimum Distance
Classification, Mahalanobis Distance Classificatiblearest Neighbour Classification,
and Maximum Likelihood Classification) and the upsryvised classification (K means
and Clustering). Multispectral remote sensing pdoteebe a very useful tool and some
previous researchers have been successful in misating broad vegetation
communities (Smittet al., 2004) and in mapping salt marsh vegetation (Belk al.,
2006). Ndzeidze (2008) reviewed the utility of Laatlimagery from 1973 to 2007 for
change detection and established whether wetlamtisedated land cover classes in the

drainage basin could be classified for the Uppeurm®&asin, Cameroon. From his
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research, it was found that the study failed teeckesignificant changes in the Upper
Noun drainage basin from 1973 to 2007 using mudt§@al and temporal Landsat
satellite images. Eventually, Ndzeidze had to miyhis knowledge of the study area
and information from past fieldwork to identify adatinguish wetland and related land

use and land cover.

Bellluco et al. (2006) used multispectral data from ROSIS (ReiffecOptics System
Imaging Spectrometer), CASI (Compact Airborne Spmepaphic Imager), MIVIS
(Multispectral Infrared and Visible Imaging Spectreter), IKONOS and Quickbird in
The San Felice salt marsh in the northern parthef Yenice Lagoon, Italy. To
distinguish among five dominant vegetation spesidsch were Juncus, Spartina,
Limonium, Sarcocornia, and Salicirnia. The authors obtained an overwhelming overall
accuracy and Kappa coefficient for all the specssying from 74.6 % to 99.2 % and
from 0.59 to 0.99 respectively. The authors perfsdm simple band averaging which
resulted in reduction of noise, but by doing thie tauthors were reducing spectral
resolution that significantly reduced the number reference pixels and gives

misleading information calculated from confusiontnxastatistics.

Shabhrainiet al. (2003) also used multispectral data for mappireg gpatial extent of
lakes and coastal wetlands in Hirmand, Puzak artmirgdakes, Iran, using imagery
from Landsat TM, Advanced Very High Resolution Rexdeter (AVHRR)-LAC and
AVHRR-GAC. The authors showed the potential of LsatdTM, AVHRR-LAC and
AVHRR-GAC data for mapping of lakes, coastal wedlsncoastal mixed pixels
between water and land, and the transitional regafrwetlands using training data and
different supervised classification methods (Maximulikelihood, Mahalanobis

distance, Minimum distance, and Parallelepipedsdiaation).

However, there is a need for more research to iigate the possibility of using

biochemical and biophysical parameters to discratginvetland vegetation at species
level. Discrimination of wetland vegetation speci@g using multispectral remote
sensing was found to be unsatisfactory since it feas bands that cannot describe

vegetation spectra in detail (Schmidt and Skidm28§3). Also, multispectral remote
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sensing data cannot utilize the red edge region ihansensitive to atmospheric

interference and soil background (Snstlal., 2004; Adam and Mutanga, 2009). Due to
its coarse spectral and spatial resolutions, npgtisal remote sensing has been found
to be ineffective to either discriminate vegetatgince some vegetation species has
almost the same spectral signatures or detect pegtral changes associated with
chemical or physiological changes in plants (®ural., 2008). Due to the fact that

wetland vegetation is densely populated, the uderaddband remote sensing with its

coarse spectral resolution might not produce thaired results.

2.4 Hyper spectral remote sensing and improvement in discrimination
of wetland vegetation at specieslevel using spectral reflectance

Hyperspectral remote sensing, also known as ‘intagipectrometery’, ‘imaging
spectroscopy’, ‘ultraspectral imaging’, ‘hyperspattspectroscopy’ and ‘narrow-band
imaging’, is a relatively new technology that isrremtly being used for vegetation
studies (Govendeet al., 2007, Adam and Mutanga, 2009). These names for
hyperspectral remote sensing are often used irgegdably with each other, but the
only way to differentiate them depends on the ainthe scientist or researchers’
intended application. Imaging spectrometry usuaéifers to the use of particular
spectral absorption features in the scene to uhiddentify materials (Kerekes, 2006),
while imaging spectroscopy involves measuring thectal distribution of photon
energies (as wavelengths or frequencies) associaidd radiation that may be
transmitted, reflected, emitted, or absorbed upassing from one medium to another
(Kerekes, 2006; Adam and Mutanga, 2009).

Hyperspectral remote sensing involves acquisitibthe digital images in hundreds of
narrow continuous spectral bands between 350nm2&A8nm throughout the visible
(350nm to 700nm), NIR (700nm to 1300nm), MIR andRTL1300nm to 2500nm)
regions of the electromagnetic spectrum (Govestal., 2007) as shown in Figure 2.1.
Hyperspectral remote sensing acquires images witgh tspectral resolution of
individual bands less than 10nm over a continugusctsum. Since hyperspectral
remote sensing has so many narrow bands, it cactditailed vegetation features that

might otherwise be masked within broader bands wfispectral sensors (Schmidt and
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Skidmore, 2003; Mutanga&t al., 2003). High spectral resolution sensors provide
sensitive fine-scale data on biochemical and bisay parameters that can be used to
discriminate, classify, monitor, and assess wethagktation species (let al., 2005).
This is done with the intention of up-scaling theasurements to airborne or satellite
sensors (Rossd al., 2005; Vaiphasat al., 2005).

Over the past few decades many problems were redamtien discriminating wetland
vegetation at species level using multispectral otety sensed data. This has
necessitated the possibility of separating diffeneggetation species based on foliar
spectral reflectance using greater detailed hyeetsg remotely sensed data.

In Madeira Bay, Florida, USA, Hiranet al. (2003) classified ten vegetation classes
using data they acquired from AVIRIS and the dethilEverglades Vegetation
Database. The following vegetation classes inclyidiattonwood forest, red mangrove
forest, white mangrove forest, white mangrove schdrbaceous prairie, saw grass,
spike rush and lather leaf exotics were classifisthg ENVI spectral angle mapper
(SAM) with producer’s accuracy ranging from 41.966 buttonwood forest to 100%
for spike rush and an overall accuracy of 65.7%.

Spectral discrimination of salt marsh was also doypértigas and Yang (2005) in the
New Jersey Meadowlands, USA. In this research, émmmon wetland species were
selected for discrimination nameRhragmites australis, Spartina alternifolia, Spartina
patens andDistichlis spicata. Leaf spectral reflectance was ascertained usimajyhical
Spectral Devices, FieldSpec ® Full Range spectionagter. Findings from this
research showed that it was possible to classlfynsarshes using the red edge region
between 600 nm and 680nm, usually under fall caordit The red edge first derivative
showed the highest potentially useful informatian discriminate among wetland

vegetation species.
At Lake Onkivesi, Finland, Valta-Hulkkoneat al. (2003) classified seven aquatic

vegetation categories includingPhragmites australis, Equisetum fluviatile,

Schoenoplectus lacustris, Stratiotes aloides, and Sagittaria sagittifolia using a Leica
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RC30 camera equipped with a 153 mm focal lengtk dexd UAGS 13260 lens, and a
Kodak 1443 colour infrared film. The authors usasual and digital classification
(maximum likelihood classifier) of hydrophytic veggon and achieved an overall
accuracy of 81% and 83% respectively. Schmidt dadn$ore (2003) used a GER 3700
spectrometer to test the spectral separability &t snarshes on the island of
Schiermonnikoog, Netherlands. They measured abeenty-seven salt marsh species
including Spartina townsendii, Salicornia europaea, Atriplex portulacoides, Juncus
gerardi, Artemisia maritime, Elymus athericus, Phragmites australis and Scirpus
maritime. For spectral discrimination, the Jeffries—Matusithstance and the

Bhattacharyya distance were applied and resulted ioverall accuracy of 91%.

In 2004, van Tilet al. investigated the use of the GER 2600 field spewtter for
discriminating coastal dune vegetation. The leattjal reflectance measurements were
taken in May and June 2001 for ten herbaceous aggettypes. Multivariate analysis
and Redundancy analysis were calculated to deteriiia percentage of explained
variance of coastal dune vegetation. The betterichienation was achieved in the bands
between 370nm and 690nm for end of May and betv8@&nm and 460nm for end of
June. This research noted that the bands betwe@miand 930nm were not able to
discriminate salt marsh vegetation. The overalcgetages of explained variance for
raw data for both May and June were 82 % and 7®$pectively, after the data were

transformed.

Vaiphasaet al. (2005) used hypespectral remotely sensed datspftral separability
of sixteen tropical mangrove species using laboyadata that avoids the difficulties of
field conditions. They conducted their researchumporn, Thailand using laboratory
data with the intention of reducing costs and ugdisg their research in the future
application of airborne hyperspectral sensors. THad spectral measurements were
conducted using ASD. Using a wrapper feature delet¢bol they selected only bands
that were the best combination for species disoatmn. They applied one-way
Analysis of Variance (ANOVA) and Jeffries—Matustiigstance measure using those
four bands to determine if species were spectsdparable. They produced an overall

accuracy of 80%, but 5 out of 10 of tRkizophoraceae family were spectrally similar.
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From this study it was noted that tropical mangrepecies did not have sufficient
spectral information due to their similarity in mgnt substances.

Pengreet al. (2007) used Hyperion data to classify monodomifdanagmites australis

in the coastal wetlands of the west coast of GEmyy, Northen America Great Lakes.

The authors used minimum noise fraction to redysgesnatic sensor noise that has an
influence on the image analysis. Spectral cor@mtathapper was applied to determine
the spectral similarity among different reflectarspectra by calculating the spectral

angles, such that positive and negative correlatibbetween samples could be

distinguished.Phragmites australis was discriminated from nine other land cover
classes such as cat tail, mixed emergent vegetadmub and shallow water. They

concluded that 3.4 % of the study area was covieydehragmites australis which was

supported by an overall accuracy of 81.4%.

Andrew and Ustin (2008) focused on the role of emwinental characteristics in the
spectral separability ofepidium latifolium from other species. They used minimum
noise fraction, mixture tuned matched filtering,dadeffries—Matusita distances for
discrimination of species in three different looas: the Rush Ranch Open Space
Preserve, the Greater Jepson Prairie Ecosystemthan@osumnes River Preserve, in
California, USA. The discriminant techniques wergpleed to reduce noise,
dimensionality of hyperspectral data, and to detdgects that differ subtly from the
ground (Greeret al., 1998; Andrew and Ustin, 2008). The authors medatp get
distinct differences of species using high speateablution sensors Hymap for Rush
Ranch imagery and then HyVista Corporation for dap®rairie and Cosumnes
imagery. These fine spectral resolution sensorspEamavelengths of 450nm to
2500nm with 150 to 200 contiguous bands of 5Snm0Otani bandwidths. In Rush Ranch,
Lepidium was distinguished fronsalicornia, Distichlis, Centaurea solstitialis, water,
and litter with an overall accuracy of 90%. In JapsPrairie, Lepidium was
differentiated from typha, agriculture, sd@entaurea calcitrapa, water, and litter with
an overall accuracy of 88%. Finally, in the Cosumitver Preserve, the authors
managed to discriminatepidium from agriculture, trees, litter and soil where 6%

overall accuracy was achieved.
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Sunet al. (2008), in the Arboretum of the Institute of Boya Chinese Academy of
Science in Beijing, showed the potential of hypecsral data for wetland vegetation
species discrimination using their spectral reflace characters. The authors chose
eleven wetland vegetation species for discrimimatidich wereCyperus alternifolius,
Cyperus papyrus, Pontederia cordata, Nymphaea tetragona, Hydrocleys nymphoides,
Nymphoides peltatum, Pistia stratiotes, Azolla imbircata, Vallisneria asiatica,
Potamogeton malaianus, Hydrilla verticillata. The spectral reflectances of these eleven
species were acquired using an SVC GER 1500 halt dpectrometer. The first
derivative reflectance, second derivative reflecgan continuum removal, and
Mahalanobis distance were used for selecting bdnals could be used for wetland
vegetation discrimination at species level. Allshanethods showed all the bands that
had a greater possibility of species discriminatiomugh their results. The bands that
were selected for species discrimination are lacaetween 410nm and 999nm i.e. in
the chlorophyll and water absorption region (rede9d

Although all these techniques were able to sucabgsfiscriminate wetland vegetation
at species level successfully, there is a growimgrest by researchers for more
investigation into what exactly cause spectralectfince difference. There are many
factors which causes spectral reflectance diffe@snocluding atmospheric properties,
spectral mixture, soil moisture content, illumiatiangle, biochemical and biophysical
properties (nitrogen, biomass, plant water conteAl, phosphorus, and chlorophyll
content, anthocyanin, lutein, 3 a@ctarotenoids, and xanthophylls). The question that
arises from all these previous studies is: Is ggide to use quantified measures of
biochemical and biophysical properties for vegetaspecies discrimination? And can
they also improve or enhance the overall accurayta what extent can we apply

them.

2.5 Application of quantified biochemical and biophysical properties
for discrimination of wetland vegetation at species level

For the past few decades, hyperspectral remoténgeinas been proven to be useful for
wetland vegetation species discrimination at leaf eanopy level (Artigas and Yang,
2005; Hiranoet al., 2003; Schmidt and Skidmore, 2003; Vaiphasal., 2005; Cho,
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2007; Kamaruzaman and Kasawani, 2007; &wah., 2008; Adam and Mutanga, 2009).
These wetland vegetation species have biochemiudl bdophysical properties that

influence spectral reflectance and there is a rieedesearchers to develop a method
that will use these vegetation parameters to djsish them. Quantifying and

estimating biochemical and biophysical propertiésvetland vegetation species has
been playing a vital role in monitoring the changdsecological systems such as
vegetation quality, vegetation stress, and vegetatiutrient cycles at local, regional,

and global scales (Asner, 1998; Kokalyl., 2009).

Various biophysical and biochemical attributes tlafluence vegetation spectral
reflectance were recognised as being plant watetenb (Wessmaret al., 1988;
Anderson, 1995; Asner, 1998; Ustih al., 1998), pigment composition and content
(Lichtenthaleret al., 1996), chlorophyll content, and biomass (Asi®&98; Mutanga,
2004; Adam and Mutanga, 2009). This was also supgdry Kokalyet al. (2009) who
suggested that water is the most abundant chemidalves and can constitute up to
70% of chemical. Remote sensing offers the oppdytun explore the possibility of
using these vegetation properties for speciesidigzation since it has never been done
in any wetland vegetation discrimination at spetee®l to our knowledge. Traditional
methods have been found to be time-consuming ahdast-effective and some of the
wetland areas are inaccessible because they amepgmand waterlogged. Since plants’
water content and biomass were found to be impbrianthe ecological studies
reviewed, this study focuses only on those two tedgn attributes due to the fact that
they require spatial assessment repetitively apecately.

To date there have been few studies done on thematgin and quantification of
biomass and plant water content for wetland vemetatiscrimination at species level.
The quantification of aboveground biomass and watertent of wetland vegetation
will develop sufficient information for understandi, mapping, identifying, managing,
and modelling vegetation species physical commsitioles, and dynamics in wetland
vegetation systems (Phiret al., 2008; Adam and Mutanga, 2009). Previous studies
have shown that there is a relationship betweemt plater content and biomass that can

be exploited in the discrimination of wetland vegein (Moreau and Le Toan, 2003;
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Phinn et al., 2008). The first attempt to discriminate vegetatspecies using
biochemical properties was done by Wessrmaal. (1988), where lignin and nitrogen

content in the foliage was used.

2.6 The uses of red edge hyperspectral indices in wetland vegetation
discrimination at species level

Vegetation indices (VIs) have been used in remetesiag for a long time and have
been shown to be useful in discriminating betweidierént vegetation types. Vs are
ratios of reflectance values at different wavelaegbr formulations usingimple
operations between reflectances at given wavelsn@ttutanga and Skidmore, 2004;
Wamunyima, 2005).

For the past few decades, vegetation indices basapectral reflectance measurements
have been used as a reliable non-destructive mdtivotheasuring biophysical and
biochemical parameters of plants (Datt, 1999; Aparét al., 2000). Mutanga (2004)
and Jensen (2000) suggested that vegetation indieesisually used because they
remove the variability caused by canopy geometny, soil background and they act as
radiometric measures that function as an indicatoelative abundance and activity of
green vegetation. The logic behind the use of tag® indices is that they contrast
reflectances in the red and near infrared regidniseoelectromagnetic spectrum and, as
a result, scientists are able to use that diffexdioc vegetation analysis (Tod al.,
1998; Mutanga and Skidmore, 2004; Aparietoal., 2000). Many studies have been
conducted which examine the correlation betweeranddiverse measures of canopy
structure and plant composition, such as chlordatoyitent, Nitrogen concentration of
leaves, green and dry biomass, phosphorus comter content and LAI (Mutanga
and Skidmore, 2004; Wamunyima, 2005).

The most widely used vegetation indices are thep®irRatio (Jordan, 1969) and the
NDVI (Rouseet al., 1973; Tucker, 1979). Other vegetation indices wiaeeloped to

counter the effects of canopy geometry, soil bamlkgd, sun view angles, and
atmospheric conditions. These are the Perpenditdgetation Index (Richardson and
Wiegand, 1977), the Weighted Difference Vegetalimhex (Clevers, 1988), the Soil
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Adjusted Vegetation Index (Huete, 1988), the Tramsked Soil Adjusted Vegetation
Index (Baret and Guyot, 1991), the Modified Soiljdgtment Vegetation Index (@t
al., 1994), the Modified Normalized Difference Vegetatindex (Liu and Huete 1995),
the Renormalized Difference Vegetation Index (Ramjeand Breon, 1995), the
Triangular Vegetation Index (TVI) (Broge and Leltan2000), the Chlorophyll
Absorption Ration Index and the Modified Chlorop#bsorption Ration Index which
was developed as an improvement on Chlorophyll Aligm Ration Index (Daughtry
et al., 2000).

The improvement of technology brought the use qfengpectral remote sensing that
acquires data in narrow bands (many channels).eTaer different vegetation indices
that were developed to make use of these narrowshbianthe red edge region that are
referred to as red edge hyperspectral indices (Wigima, 2005). Since the red edge
region is not usually disturbed by vegetation wabsorption, it's relatively much
easier to apply these vegetation indices. The mge ehyperspectral indices are
calculated using the narrow channels within the edde region of the reflectance
spectrum of vegetation that is located between ®@0and 750 nm. Some of the
developed indices include VogelmarfnOG,) (Vogelmanret al., 1993), the Red Edge
Spectral Parameter (RESP), the Carter Index (@8, Ibhverse Carter Index (Carter,
1994), and the Gitelson and Merzylak Index (GMI)téGBon and Merzylak, 1997).
These are not only the red edge hyperspectraleadihich have been developed, but
for this research only indices of interest werested and their equations are shown in
Table 3.2 as RESP (Equation 3.2.1), Cl (Equati@23. GMI (Equation 3.2.3), NDVI
(Equation 3.2.4), SR (Equation 3.2.5), TVI (Equati8.2.6), and VO& (Equation
3.2.7).

2.7 Red edge position

The red edge (680nm to 750nm) (Figure 2.1) is édfias a rise in the vegetation
reflectance from the red part of the visible speutrto the near infrared part. The
absorption of the near infrared part of the spectisi due to the combined effects of
polymer forms of strong chlorophyll adding closslyaced absorption bands to the far
red shoulder of the main chlorophyll band and tigh Imultiple scattering of radiation
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in the leaf mesophyll (Liang, 2003). The red edgesuthree parameters for all the
calculations that are the red edge position (RE®)plitude, and slope (Cho and
Skidmore, 2006; Mutanga and Skidmore, 2004). Wanmiay{2005) noted that at REP
the slope of the vegetation spectral curve issani@aximum within the 680nm to 750nm
range. The amplitude is the first derivative vahtiehe maximum slope position within
680nm to 750nm range (Dawson and Curran, 199&t Blu, 2003; Cho and Skidmore,
2006). Previous vegetation studies show that RHi®s siccording to changes of plant
health, biomass, leaf chlorophyll content, seasqgaterns and phonological state
(Mutanga and Skidmore, 2004; Cho, 2007; Adam andaktya, 2009, Belanget al.,
1995; Munderet al., 1994). The red edge position shifts toward theésrwavelength
due to an increase in the amount chlorophyll cdntgmich absorbs electromagnetic
radiation in the red trough. This absorption widérestrough and hence pushes the red
edge towards the longer wavelengths. A reductiorchiorophyll results in higher
reflectance in the red and hence a shift of theedgge towards the shorter wavelengths..
Through observing these shifts, red edge posit@meifectively be used to discriminate

wetland vegetation species with varying amountshédrophyll.

There is a variety of analytical techniques that laeing used to extract the red edge
position as a means to classify vegetation, suchoas point interpolation (Linear),
Gaussian, linear extrapolation, Maximum first dative, Lagrangian interpolation,
polynomial fitting, and high order curve fittingcteniques which have been developed
to minimize errors in determining the red edge fmsi(Dawson and Curran, 1998; Pu
et al., 2003; Cho, 2007; Shafet al., 2006). The aim of this study is to provide an
alternative method or technique for determining ribe edge position that can be used
to discriminate wetland vegetation species. A numbfe studies have been using
analytical techniques for various reasons suchisgichinating vegetation species and
estimating biophysical and biochemical propertiess éxample nitrogen content, leaf
area index, chlorophyll content, fresh ground bissnar dry biomass (Mutanga, 2004;
Mutanga and Skidmore, 2004; Cho and Skidmore, 2808t al., 2008). Only a few
selected techniques were used in this present robseaspecially the linear
extrapolation technique developed by Cho and Skidnf®006) which is a technique

that has never been used for wetland vegetatiariespdiscrimination.
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2.8 Lessonslearnt from thereview

Wetland vegetation species are very important toynti@ing things including animals,
birds, and human beings. It is very important taeha clear picture of what exactly is
found in a particular wetland area in terms of ‘atien species so as to conserve them.
Multispectral remote sensing has been used to wroditanges in wetland vegetation,
but it's relatively difficult to analyse vegetatiofdiscrimination, classification, or
mapping) due to low spectral resolution. This hasulted in the introduction of
hyperspectral remote sensing which uses narrowimanis spectral bands to
discriminate different wetland vegetation speciegernationally, the use of the red
edge position for wetland vegetation species disoation has been successfully
applied with favourable results. Red edge extractechniques and vegetation indices
have been improved or developed and found to be matiable. However, in the South
African context no red edge extraction techniquesehbeen used for wetland
vegetation species discrimination. Linear extrajata is a technique that was
developed to control variations caused by soil bemknd effects as well as
atmospheric induced variations. Of particular iestris the response of the red edge to
variation in the biophysical and biochemical prdigsr of different vegetation species.
Since the red edge region uses non-water absorpénds with minimum atmospheric
interference it is capable of discriminating wetlanegetation species in the South
African context. Leaf structure and shape, wateteat, biomass, and the concentration
of biochemicals are all functions of vegetation viesa that can improve the

discrimination of vegetation.

2.9 Conclusion

Wetland vegetation discrimination at species levekitical to government departments
such as the Department of Water Affairs and Foyedtie Department of Rural
Development and Land Reform, and the DepartmenEmfironment Affairs and
Tourism, since they need to conserve wetlands.cfiieal component for monitoring
and managing ecosystems and preserving biologiealdity is the discrimination of
wetland vegetation which requires accurate knowded§) the distribution of plant
species (Schmidt and Skidmore, 2003). This accuadeviedge is obtained from the
use of laboratory and field spectroscopy (remotesisg), which will be quantified and
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be used in vegetation discrimination. Vegetatioecgs have variations in canopy
reflectance due to biochemical and biophysical erogs that are being detected by
high spectral resolution sensors. This informat®rritical to distinguish vegetation

species from one another. This review has showpdbential of hyperspectral remote

sensing data for wetland vegetation discriminaéibapecies level.

It is critical to note that hyperspectral remotasseg has focussed on the estimation of
either biochemical properties, biophysical promsrtof vegetation as well as species
discrimination independently, without a clear ctiempt to integrate the products in
improving species mapping. Several maps, algoritimé models have now been
developed to predict biomass and other structuglgrties of vegetation at reasonable
accuracies. The question is, can this availabldlancinformation be integrated with

hyperspectral data to improve species discrimin&tio
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Chapter Three:
M ethodology

3.1 Introduction

In this chapter, an outline is given of the sanplimethods, leaf spectral measurements,
biochemical and biophysical variables, hyperspéstegetation indices, and red edge
extraction techniques used to discriminate wetlamelgetation species using

hyperspectral data.

3.2 Field spectral measurements

Canopy spectral measurements used in this study reeorded on the #9December
2009 between 10:00 am and 02:00 pm under sunny comadless conditions.
Measurement of hyperspectral leaf reflectance veamiieed at canopy level using a
hand-held field spectroradiometer (FieldSpec Prmalgtical Spectral Device) over the
350nm to 2500nm wavelength region at 1.4nm samjifitegvals fitted with a 25ield

of view fibre optic. The instrument has a specsampling resolution of 1.4nm, a
spectral interval of 3nm between 350nm and 1 00G@nspectral sampling resolution of
2 nm, and a spectral interval of 10nm between 1n60@&nd 2 500nm. Radiance
measurements were optimized and calibrated beferérst measurement was taken. A
calibrated white reference Spectralon calibratiangd was used on the leaf clip every
10 to 15 measurements to offset any change in thespheric conditions and
irradiance of the sun. Only the spectral range betw670nm and 780nm was analysed
since the research was mainly focused on the rgd pdsition for vegetation species

discrimination.

Field sites were selected using two sampling tegres which are random sampling and
purposive sampling. Random points were generateadland cover map produced from
an ASTER image using ArcMap’s extension Hawth's I¢gia Tool. When any of the
random point was inaccessible, purposively selestedpling was applied. Using GPS,
these points were then located in the field sit#&gotal of 41 vegetation plots of 3m by
3m were taped in the field and the plot size wasved as suitable. Then three subplots

of 0.5m by 0.5m were randomly selected from witplot to measure the spectral
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reflectance which resulted in a total of 7 to JHdispectrometer measurements. A total
of 50 samples per vegetation species were selefiedmeasurements. In the
iISimangaliso Wetland Park, there are many diffexagetation species, which is very
rich in endemic taxa, but the dominant vegetatipacges were identified aSyperus
papyrus, Phragmites australis, Echinochloa pyramidalis, and Thelypteris interrupta.
These four wetland vegetation species were selefbedthis study and their
measurements were recorded based on density amdagsh of percentage cover

(covering at least 40% of the area) (Table 3.1.).

Measurements of biomass were taken after the fEsdtal measurements were taken.
The biomass from each plot was clipped, after il rdaterial was removed from the
clipped plants, and then fresh biomass was measuonetediately using a digital
weighing scale. The aboveground biomass was detediby dividing the weight of
the harvested grass by the surface area of théadudMutanga and Skidmore, 2004).

Table 3.1 Four dominant wetland vegetation species of Gredtugia Wetland Park,

KwaZulu Natal Province, South Africa

Species ProposedFamily No of| No of
Code Plots | Measurements

Cyperus papyrus CP Cyperaceae 15 134

Phragmites australis PA Poaceae 9 111

Echinochloa pyramidalis | EP Graminae 7 101

Thelypterisinterrupta TI Thelypteridaceae| 10 113

The red edge indices were computed from all posgilvb band combination indices
involving 80 bands in the red edge region (670nm30nm).These vegetation indices
(Table 3.2) were selected because they are thewndsly used indices for estimating
biomass and water content for vegetation studiesekample, NDVI has shown that it

can solve the saturation problem in estimating lissnMutanga and Skidmore, 2004)
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Table 3. 2 Vegetation indices

Vegetation Indices used for wetland vegetation species discrimination using

reflectance spectra

Vegetation I ndex Formula Reference Equation
Red Edge SpectralRss0/ Ry Gupta et 321
Parameter (RESP) al.,2003

Carter Index (CI) Rsos/ Ryeo Carter, 1994 3.22
Gitelson and Merzylak Rsso/ Rroo Gitelson and 3.2 3
Index (GMI) Merzylak, 1997
Normalized Difference (R - Rz / (Rrae| Rouse et al., | 3.24
Vegetation Index +Rz30) 1973

(NDVI)

Simple Ratio (SR) R7ss/ Rros Jordan, 1969 3.25
Transformed VegetationV(((RyssRrs0)/(Rrse+ | Rouse et al., | 3.26
Index (TVI) Rzss) + 0.5) 1973

Vogelmann R/ R Vogelmann et |3.27
(VOGy) al., 1993

Risthe Reflectance

3.3 Plant water status

Soon after canopy spectral measurements were adqairtotal of 50 plant water

samples were taken. Leaves were cut and weighettion leaf sample weight (W).

Then the plant water samples were stored overnice portable refrigeration unit and
were immediately taken to the laboratory for waterasurements. After several hours,
the samples were taken off ice and well dried of surface moisture with a filter paper.
Samples were then oven dried at 70 °C for 24h aeighved to determine dry weight

(DW). Plant water content (PWC) was determinededailtd by Liuet al., (2004):
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PWC (%) = [(W-DW) / (W)] * 100 Eq.3.4.1

Where,

PWC- Plant water content,
W — Sample fresh weight, and
DW — sample dry weight.

The 50 plant water measurements were then usethédysis.

3.4 Red edge position algorithms

To assess morphological structures and chemicakeobmf vegetation, it is vital to
apply numerical methods computed from reflectarrogenivative spectra. A number of
techniques for REP extraction have been proposedeiditerature on remote sensing
and their uses depend on the purpose of the appficalhe red edge position was
determined by various techniques of analysis sughliaear interpolation, inverted
Gaussian, linear extrapolation, maximum first datixe, and Lagrangian (Dawson and
Curran, 1998; Cho and Skidmore, 2006; Shetfel., 2006; Puet al., 2003 The response
is indicated in section 3.4 under methodology paif the five methods listed above only
three spectral derivatives were used in this stulilyear interpolation, linear
extrapolation and maximum first derivative. Cuream@l., (1990) suggested that spectral
derivatives are used to resolve or enhance abearfgatures that might be masked by
interfering background absorption. Also compared ltagrangian and inverted
Gaussian, the spectral derivatives helps to redbee continuum caused by leaf
biochemicals and canopy background effects (Cuerah, 1991; Dawson and Curran,
1998). As a result, the spectral derivatives haaeolme popular in remote sensing as
compared to the lagrangian and inverted Gaussiatelsiohence the derivatives were
used in this study.
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3.4.1 Linear inter polation technique (Lin- Inter)

Baret et al. (1987) developed a simple method based on lingarpolation. This
method assumes that the reflectance curve at thedge can be simplified to a straight
line centred around the midpoint between the redlee in the NIR usually at about
780nm and the reflectance minimum of the chlorophipkorption feature usually at
about 670nm. The REP is then estimated by a sifimar equation using the slope of
the line (Guyotet al., 1992) that is between four wavebands (670nm, 7Q00i@nm,

and 780 nm). The REP is determined by using a tep-calculation procedure:

(1) Calculation of the reflectance at the inflexionmgdR¢):

R= (Re70+ R7s0)/2 Eq.3.5.1.1
Where R is the reflectance

(i) The red edge wavelength or red edge position whsilated as follows:

REP =700 + 40R re- R700)/ (R7a0- Rroo)] Eq.3.5.1. 2
700 and 40 are constants resulting from interpmtatr wavelength interval between
700 nm and 740 nm.

3.4.2 Maximum first derivativereflectance (MFD)

This technique locates the REP as the maximum diestvative of the reflectance
spectrum in the region of the red edge using higlerocurve fitting techniques. The
maximum first derivative spectrum was employed nbance absorption features that
might be masked by interfering background absonp{©urranet al., 1990). The first
derivative was calculated using a first-differenicansformation of the reflectance

spectrum and it was derived from:
FDR iy = Ryj+1 ~ Ruj)) / M B&.2. 1
Where,

FDRis the first derivative reflectance at a wavelerigtiidpoint between wavebands |

and j+1,

32



Ryj) Is the reflectance at the j waveband,
Ry(j + 1) is the reflectance at the j+1 waveband, and

A, is the difference in wavelengths between j and j+1

3.4.3 Linear extrapolation technique (LE1)

Cho and Skidmore (2006) developed the linear emtedion technique to (i) mitigate

the destabilising effect of the multiple peaks loa torrelation between chlorophyll and
REP, and (ii) track variation in slope near 700mmd &25 nm, where derivative peaks
occur. Multiple peaks of spectra of four specieghis study were found at 705nm,
720nm, 724nm, 730nm, 763nm and 767nm (Figure.Ehp and Skidmore (2006)

observed these multiple peaks at 700nm, 720nm,i3md 760nm in shrub and tree
spectra. It could be observed from the first deneacurves that the double peak
feature is located between 700nm and 770nm. Thetaelnique is based on linear
extrapolation of two straight lines through two msion the far-red (680nm to 700 nm)
and two points on the NIR (725m, to 760nm) flankshe first derivative reflectance

spectrum of the red edge region (Eq.3.5.3.1 and.5§.2). The REP is then defined by

the wavelength value at the intersection of thaigit lines.

Far red line: FDR = gi+¢; g.8.5.3.1

NIR line: FDR = mA+c; Eq.3.5.3.2
Where m and c represent the slope and intercapedstraight lines. At the intersection,
the two lines have equal(wavelength) and FDR values. Therefore, the RERwis

the) at the intersection is given by:

REP = - (g-C2) / (my-my) Eq.3.5.3. 3
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Figure 3.1 Mean maximum first derivatives of four species simgamultiple red edge

peaks.
3.5 Dataanalysis

3.5.1 Statistical test

In this research, only bands from 670nm to 780nrad(lRdge region) were selected
because it is relatively less sensitive to atmospland soil background effects (Shafri
et al., 2006). A statistical test was performed to compheespectral responses of the
four individual wetland vegetation species and whetee if there was any significant
difference among them. A two-step procedure wadieppo adequately discriminate
species using REPs and vegetation indices. Firstlg;way ANOVA was performed
using REP and vegetation indices. The researchthgpis that the means of the
reflectance between the pairs of species (CP, PA,aBd TI) were significantly
different i.e. null hypothesis, 3 = = U3 = |y versus alternative hypothesis;: fi;

# U2 # Us# 4 Was tested, where ypl, Y3 and | are the mean reflectance of canopy

indices from Cyperus papyrus (CP), Phragmites australis (PA), Echinochloa
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pyramidalis (EP), and Thelypteris interrupta (Tl). The test was applied using 95%
confidence interval (p < 0.05).

Second, in order to determine which pair of speaieans differ, a post hoc Bonferroni
test was applied. The Bonferroni test simply calted a new pairwise alpha to keep the
familywise alpha value at 0.05 (or another spedifiealue depending on the
application). Familywise error represents the plolity that any one of a set of
comparisons or significance tests is a Type | effgpe | error is a true null hypothesis
that is rejected incorrectly. When running multiplgpothesis testing, the likelihood
that one or more are significant due to chance €Tlyprror) increases (Feise, 2002;

Vaiphasaet al., 2005). The Bonferroni test helps to reduce Typedre

3.5.2 Discriminating wetland vegetation species using spectral
reflectance

In multivariate analysis of spectroscopic datajsithnormal to collect and compare
vegetation spectra from different samples. Theabdity between the groups or within
groups cannot be observed without using multipleabées in a multivariate set-up.
Discriminant analysis is one such technique that aehieve this analysis. Rencher
(1995) defines discriminant analysis as being ehowebdf distinguishing among classes
of objects based on linear functions of multipleiafales. In this study, there were four
groups (vegetation species) of six pairs which tetaa function for discriminating
between CP and PA, CP and EP, CP and TI, PA an&&Rnd TI, and EP and TI.

Canonical variate analysis (CVA) (also called npléi discriminant analysis or
canonical discriminant analysis) was used as aaldeittechnique that could fairly
discriminate the wetland vegetation species. Then meason why CVA was used for
wetland vegetation species discrimination is thatvestigates the relationship between
given groups of variables, and the best discrinmmabetween groups will be obtained
by maximizing the ratio of the among-group variatim the within-group variation.
CVA is a multivariate analysis technique which disinates among pre-specified,
well-defined groups of sampling entities based ®uiée of characteristics (Mutanga,

2004). For all the data that was used in the ptessearch, there were four species that
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were sampled, and from these samples each speageslassified into one @f groups.
As a result there were four groups with the totatiation that were seen as the
combination of among-group variation and withinypovariation. The technique is
given information about groups which in turn proesimew variables that minimizes
the within group variance while maximizing the ameagroup variance in canonical
scores. The canonical variates can be calculated fine eigenvectors of the ratio of the
among-group sum that  groups with variables measured on each of a nuraber
observations, and this will be equal to the numifegroups minus one (g-1), or the
number of variables in the analysis. Since thereevieur groups i.eCyperus papyrus
(CP), Phragmites australis (PA), Echinochloa pyramidalis (EP) and Thelypteris
interrupta (TI), it means that CVA = 4-1 and the result iso®ts. A root refers to the

Eigenvalues that are associated with the respecéinenical function.

According to Mutanga (2004), the first canonicahdtion defines the specific linear
combination of new variables that maximizes therat among-group to within group
variance in any single dimension. The use of sudalyais produces linear
combinations of new variables called ‘canonicaiatas’ (or latent variables). The first
discriminant function provides the best separafomong classes because the classes
produce linear combinations with largest correladiowhile the second set of linear
combinations also shows the largest correlatiorjestitio the condition that they are
orthogonal to the first canonical variates andasthf The interpretation of the variables
in each discriminant function is as follows: thegker the standard coefficient, no matter
what the sign is, either negative or positive, gneater is the power of the respective
variable to discriminate between groups. In thes@né research, all the data from the
results of REPs and vegetation indices were emtert® the analysis based on their
ability to increase group separation, although rtteen focus was to observe how the
new technique, linear extrapolation, performed cara@ to other REPs and vegetation

indices.
The main objective of canonical analysis in thiplamation was to obtain a low-

dimensional representation of the data that higldigas accurately as possible the true

differences existing amongst groups of wetland tedgen species. Accuracy
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assessment was done using error matrix to evailutite research managed to fulfil its
objective of discriminating wetland vegetation dpecAn error matrix displays records
in terms of number of predicted classes and adtumal cover revealed by sample site
results. It lists the actual land cover types @& tbference data in the columns and the
predicted classes in the rows (Table 4.3). Ovexeduracy is the sum of the correctly
classified pixels divided by the total number dfttpixels. The user’'s accuracy shows
which samples that are correctly classified witiigividual categories. This measure of
accuracy is calculated for each row by dividing geportion of correctly classified
pixels in a class by the total number of pixelsthat class. On the other hand, the
producer’s accuracy is a measure of how accuraterthge pixels have been classified.
The producer's accuracy is derived by dividingribenber of correct pixels in one class
divided by the total number of pixels as derivednir reference data (Story and
Congalton, 1986).

To show if there was a measure of agreement arracg with the reference data,
Kappa analysis was applied. The Kappa statistiorparates the off diagonal

observations of the rows and columns as well asdthgonal to give a more robust
assessment of accuracy than overall accuracy mesador The values of Kappa range
from -1 to +1, with -1 indicating perfect disagresm O indicating no agreement, and
+1 indicating perfect agreement between trainind east data. The results of Kappa

(Knay Statistic are expressed according to Landis anchK1977) as follows:

Kappa (Ka) Statistic Strength of Agreement
<0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect- Perfect
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The equation of Ky is defined as follows:

= (Observed agreement - Chance agreement) / (Ancghagreement) Eq.3.6.2. 1

3.5.3 Discriminating wetland vegetation species using vegetation
indices integrated with quantified measures of water content and
biomass.

In this study, quantified water content and biomassl vegetation indices were used to
determine if there was any improvement in wetlardetation species discrimination.
To determine if vegetation properties increased diseriminatory power, quantified
water content and biomass, and vegetation indiB&SP, GMI, Cl, and SR) that
produced favourable results in the first test, weged in this second test. In this study,
to check whether the introduction of water contemd biomass variables had improved
the discrimination of wetland vegetation at spediegel, the same discrimination

techniques or procedures were used.

A statistical test was also used to compare ambegspectral responses of the 4
individual wetland vegetation species and to detgenif there was any significant
difference among them. A two-step procedure wadieppo adequately discriminate
species using vegetation biochemical and biophlysieaameters and vegetation
indices. One-way ANOVA was performed on all vegetatindices and quantified
measures of water content and biomass. The reshgpdithesis that the means of the
reflectance between the pairs (CP vs. PA, CP vs(FPvs. Tl, PA vs. EP, PA vs. TI,
and EP vs. TI) were different i.e. null hypothesls, p1 = o= Uz = |4 Versus alternative
hypothesis, kit Y1 # Y2 # Us# W was tested, whereiup,, U ,and |4 are the mean
reflectance of canopy indices from CPA, EP, and Tl. Then Bonferroni test was

applied to determine which pair of species meafierdd.
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Chapter Four:

Discriminating wetland vegetation at species level using reflectance
spectra: a comparison between vegetation indices and the red edge

position

4.1 Overview

Most wetland vegetation species have similar specaflectance curves hence this
poses a problem when trying to discriminate betwidem using traditional methods
such as visual interpretation. Nevertheless, it&ssible to discriminate wetland
vegetation species potentially on the basis of dog® using hyperspectral remote
sensing. Schmidt and Skidmer@003) noted that, although the spectral reflezan
curves of different wetland vegetation species miglok similar, it is possible to
discriminate these species using hyperspectral teersensing techniques such as
vegetation indices and the red edge position. Syplerspectral transformations can be
combined with advanced linear or nonlinear modeisjtivariate statistical analysis
techniqgue such as discriminant analysis techniqueghalanobis distance, Jeffries—

Matusita distance, Canonical variate analysis,@askification trees).

4.2 Discriminating wetland vegetation using vegetation indices and the
red edge position

The results from one-way ANOVA showed that thera sgnificant difference among

all the species means for all vegetation indicdsSR, CI, GMI, VOG, NDVI, SR, and

TVI) and REPs (MFD,Lin-Inter, and LE1) i.e. the hiaypothesis, Ho: bl p1 = = M3

= |4 was rejected for all the indices. ANOVA provedtttieese vegetation species were

spectrally different using different indices.

The use of one-way ANOVA indicated that hypersp@atemote sensing data can be
used to distinguish wetland vegetation at spe@esll REPs and vegetation indices
have shown that the reflectance spectra of mosetaggn species were statistically
different with a 95% confidence level. From Figdré the REPs show that EP has the
highest mean of reflectance spectra of all othercigs which is around 726nm,
followed by CP, PA, and Tl with means of 723nm, @19 and 717nm respectively.
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Vegetation indices produced different results stiglt SR, RESP, and GMI yielded
same order of ranking which starts with the highmastan for EP followed by CP, TI,

and PA. Cl showed that PA has the highest meail other vegetation species with a
mean of 0.174659, followed by TI, CP, and EP witlsams of 0.125460, 0.118736, and
0.097873 respectively. The box plots of VQGDVI, and TVI indicated that EP had

the highest mean followed by CP, PA, and TI.
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Figure 4.1 Box plots showing the spread of mean, standardr,eamad Confidence

Interval of each vegetation species produced bysRdfid vegetation indices.
Overall, most of the indices yielded p values s 0.01, but CI showed that there

was no significant difference between species wifh value of 0.07509 as shown in

Figure 4.2.
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Figure 4.2 Results of ANOVA test showing overall p values olf species from
different vegetation indices notably MFD, Lin-Int&El, NDVI, SR, TVI, RESP, CI,
GMI, and VOG.

One-way ANOVA test did not show which pairs of mgavere different. To determine
which pairs of means differ, the post hoc Bonfertest was applied which is basically
used for multiple comparisons. From the pair's nseancan be noted that different
vegetation species have different spectral respoasd this can help to discriminate
them. After the Bonferroni test was computed, iswaserved that some of the species
were not significantly different, especially whesing vegetation indices as compared
to the REPs (Figure 4.3). Most species pairs wble @ be differentiated using REPs
than all vegetation indices except GMI. All vegetatindices could not discriminate all
the species excluding GMI which produced highlyngigant p values with the
minimum of 0.000000 and maximum of 0.00066 as shmwfigure 4.3. RESP, VO
NDVI, and TVI showed that the pair of PA and Tl wast statistically different with a
p value of one. Cl showed that the pair of CP ahd/ds not statistically different with
a p value of 0.713578. SR also showed no statidtifi@rence between PA and TI.
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Maximum first derivative and linear extrapolatidmsgved that all the vegetation species
were statistically different. Linear interpolatigroduced the same results as RESP
which showed that there was no significant diffeeetbetween PA and Tl with a p
value of 0.641440.
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Figure 4.3 Results of one-way ANOVA test showing the differermetween all four
species (6 pairs) using RESP, CI, NDVI, SR, TVI, G&hd VOG, after the Bonferroni

adjustment.

When all the REPs extracted from maximum first vidive, linear extrapolation and
linear interpolation was compared, maximum firstidgive and linear extrapolation
showed the highest potential of discriminating aed vegetation species than linear
interpolation (Figure 4.4). In general, REPs, exdi@pear interpolation showed that they

can be used for vegetation discrimination with lopr@alues than vegetation indices.
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Figure 4.4 Results of one-way ANOVA test showing the differermetween all four

species (6 pairs) using MFD, Lin-Inter, and LEkafBonferroni adjustment.

4.3 Canonical variate analysisresults

To support and further extend the results of ong-MIOVA test, CVA was applied.
CVA can discriminate among the species and is dapab ranking the important
remote sensing variables in the discrimination pssc CVA proved to be very useful in
discriminating wetland vegetation species becarma the results, it showed that there
was a highly significant difference between spegigh Wilks’ lambda of 0.0737251
and p value of less than 0.0000. If the Wilks’ lalalis in the range of one it shows that
there won't be a discriminatory power in the modait if it is around 0.0, as was
obtained in the study, it shows that there is argirgnatory power in the model. CVA

was applied with a standard method and toleran©e06¥1.
From the results in Table 4.1, root 1 showed tlegietation indices, Cl, GMI, and LE1

had relatively more power of discriminating wetlamelgetation species with highest
factor structure coefficients of -0.542223, 0.308%hd 0.25979 respectively. Linear
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extrapolation method showed that it has more poefediscriminating vegetation
species than when compared to other REPs (maximigh derivative and linear
interpolation) since it has a highest factor suetcoefficient of 0.25979. The second
canonical function is marked by variables VOi@Gllowed by NDVI, RESP, and TVI
and to a lesser extent SR and Lin-Inter. The thadonical function shows that the
largest contribution was provided by GMI followey IR, RESP, LE1, and TVI

respectively.

Table 4. 1 Factor structure matrix representing the corretelietween the variables and

the canonical functions

Root 1 Root 2 Root 3
Maximum -0.013753 -0.683907 -0.005173
Lin-Inter 0.048586 -0.769295 0.220014
LE1 0.25979 -0.758011 0.24693
NDVI 0.074005 -0.851914 0.219431
SR 0.202803 -0.831706 0.282193
TVI 0.077425 -0.843625 0.225851
RESP 0.166538 -0.852697 0.254418
Cl -0.542223 0.608658 -0.170163
GMI 0.303967 -0.758661 0.312395
VOGa 0.115917 -0.868219 0.204568
Eigenvalues 3.4642 1.9331 0.7226

The scatter plots in Figure 4.5 and Figure 4.6 sliosvposition of the hydrophytic
vegetation species classes in the canonical spitbeugh there were three functions or
roots that were produced, root 1 versus root 2ymred better results compared to rootl
versus root 3 and root 2 versus root 3 on how thestéand vegetation species differ
when the CVA was run. Even though root 1 versug @&showed that vegetation
species were separable, there was a sizeable cumhetween CP and EP.
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Figure4.5 Scatter plot of canonical roots (root 1 vs roop@duced by CVA.
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From Table 4.2, which shows the means of canon@aables to determine the nature
of the discrimination for each canonical root, tlesults show that the first canonical
function discriminates mostly between the BAd other wetland vegetation species.
This is followed by Tl and CPand to a lesser extent EP. In the second canonical
function, EP was discriminated mostly followed by FA, and CP. The third canonical
function seems to distinguish mostly between CPathdr wetland vegetation species;
however, the magnitude of the discrimination is mamaller and this can be noted in
Table 4.1 which shows that the Eigenvalue of thedtbanonical function is much
smaller than the first and second canonical functibhe Eigenvalue of the third
canonical function is 0.7226 compared to the farsti second canonical functions with

Eigenvalues of 3.4642 and 1.9331 respectively.

Table 4. 2 Means of canonical variables to determine the patfirthe discrimination

for each canonical root

Species Root 1 Root 2 Root 3
CP 0.55331 -0.69016 -1.37209
PA -2.96247 0.87026 0.10329
EP 0.31154 -1.86877 0.89374
Tl 2.097624 1.688666 0.375062

Table 4. 3 An error matrix of four wetland vegetation species

From Table 4.3, it can be noted that, of thosedsfdes per wetland vegetation species
that were mapped as CIPA, EP,andTI only 40, 47, 37, and 50 samples were correctly
assigned to CRPA, EP,andTI on the ground, resulting in a 80%, 94%, 74%, ar@pd0
user’'s accuracy respectively. Also from Table 4t3;an be seen that 40 out of 55
samples of CRvere correctly classified as CResulting in a producer’'s accuracy of
77%. On 51 samples of PA, 47 samples were corretdlsified as PA, resulting in a
producer’s accuracy of 94%. Of the 42 samples qfdaR 37 samples were correctly
classified as EPwhich resulted in a producer’s accuracy 88%. Hnatlif the 56

samples of T150 samples were correctly classified as rEisulting in a producer’s
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accuracy of 89%. The overall accuracy was 87% wiklappa coefficient of 0.83 which
was almost perfect according to Landis and Kochd¥¥) strength of agreement.

Species CP PA ER TII Commission Errddser Accuracy (%)
(%)

CP 40 2 4 |4 20 80

PA 2 47 |1 0 6 94

EP 10 2 37 |2 26 74

TI 0 0 0 50 |0 100

Omission Error (%) 23 6 120 11

Producer Accuracy (%) 77 94 83 89

Overall Accuracy (%) | 87
Kappa statistic 0.83

4.4 Discussion

This study investigated whether the spectral infdrom of wetland vegetation at
species level could be used to discriminate velgetapecies. This was done by using
vegetation indices and the REPs variables. Canlonea@ate analysis was used to
discriminate among the species as well as rankiegmost important hyperspectral

transforms in the discrimination process.

4.4.1 Predictive performance of discriminant analysis

It was tested whether the REPs (Lin-Inter, MFD, &fd) can discriminate wetland
vegetation species better than vegetation indiR&SP, Cl, NDVI, SR, TVIGMI, and
VOG,). All the calculations were done using the wetlaedetation species reflectance
spectra collected per species. The applicatiomefway ANOVA to test if there were
significant differences among wetland vegetatiorcggs has helped to determine if
there was any chance of species separability. ppatithe study, the results obtained
from one-way ANOVA test and Boniferroni adjustmésst confirmed that there was a
significant difference among hydrophytic vegetatiop showing which ones were

statistically different and not statistically difét.
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The results of this study confirmed that it is diatde method to discriminate
hydrophytic vegetation using REPs and vegetatiatices as shown by one-way
ANOVA test and the Boniferroni adjustment test aguife 4.3 and Figure 4.4. Previous
studies have also shown that the red edge regiaasvely insensitive to atmospheric
interference, to variations in illumination condits, and to the reflectance of the soill
background (Guyoét al., 1992; Mutanga, 2004). This has made the use ofeth@dge
region to discriminate wetland vegetation specigasible. Linear interpolation and
maximum first derivative were used in this reseatohit were not as useful as the
proposed linear extrapolation technique. The liredrapolation technique which was
developed by Cho and Skidmore (2006) to tackleptioblem of multiple peaks on the
correlation between chlorophyll and REP and vamatin slope, proved to be more
useful than linear interpolation and maximum fdstivative since it is least sensitive to
canopy properties and structure (Cho and Skidn&#@6). Cho and Skidmore (2006)
suggested that linear extrapolation was more seagdi leaf chlorophyll content with
minimal effect of LAl and leaf mass compared tceéin interpolation and maximum
first derivative. Overall, the red edge parameextsacted from hyperspectral data are
important because they are comprised of many watvands that are linked to
important biochemical and biophysical propertiesptEnts (Kokaly, 2001; Cho and
Skidmore, 2006; Mutanga, 2004; Siciliagtaal., 2008). These results are comparable to
those of Mutanga (2004) who found that the visielé absorption as well as REPs can
discriminate between treatment groups of tropicakg containing different levels of

nitrogen concentration.

The application of red edge hyperspectral indicesvepetation indices as they are
known seems to produce invariable results withighsldifference and most of these
VlIs were significant other than Cl. Red edge hypectral vegetation indices balance
the absorption towards the red reflectance andrtisvine near infrared regions of the
spectrum by utilizing all the bands that are arotimg inflection point derived from
maximum first derivative. All vegetation indicesutdn’t discriminate all the species
excluding GMI which produced highly significant @mlues with the minimum of
0.000000 and maximum of 0.00066. All other vegetaindices (RESP, VOgand ClI)

had one pair they couldn’t discriminate which migbkta result of utilizing bands in the
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longer wavelength than GMI which uses 700nm anchi#bbands which lie on the red

edge slope.

CVA as suggested by Mutanga (2004) helped to reddicgensionality in the
hyperspectral data set to three canonical functiansl to describe and explore the
difference between REPs and vegetation indicessaritchinating wetland vegetation
species. Using CVA, it was observed that canorfimattions assist in showing which
of the REPs and vegetation indices had discrimmgatpower when utilizing
hyperspectral remote sensing data for wetland a¢igatdiscrimination at species level.
CVA has further revealed that Cl, GMI, LE1, SR, &ESP had relatively more power
to discriminate wetland vegetation species siney tmad the highest factor structure
coefficients in the first canonical function as wmain Table 4.1. The results from CVA
have also shown that the first canonical functiaas & high magnitude of discriminating
wetland vegetation species since it has higherriz@ees than the second and third
functions. The only unexpected result was thagra®VA was run, vegetation indices,
especially GMI and CI, showed more power of disanating wetland vegetation
species than linear extrapolation did. This wasaxpected since the application of this
new technique on vegetation species discriminatiosix species done by Cho (2007)
which wereHedera, Rhododendron, Prunus, Corylus, Malus, and Aesculus proved to
have more power for species discrimination. Ingtigly Cho (2007) proved that linear
extrapolation had a slight edge in discriminatipgaes over linear interpolation and
maximum first derivative. The results obtainedhrststudy have shown that REPs and
vegetation indices can be accurately used for wetleegetation species discrimination
because they produced an overall accuracy of 87&#b My, of 0.83 and producer’'s

accuracy ranging from 71% (CP) to 92% (PA) afteruaacy assessment was done.
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45 Conclusion

In this study two main objectives were dealt withieh were:
1. To evaluate the ability to detect detailed wetlarejetation types with

hyperspectral data using red edge position, and

2. To test different red edge extraction techniques dstimating different

hydrophytic vegetation.

From this study it can be conclude that:
» Spectral reflectance measurements of hydrophytietagion at canopy level can
be used to discriminate CP, HP, and PA. This means that the mean spectral
reflectance of wetland vegetation varies from ttieepspecies mixed within the

same ecosystem.

» Canonical functions computed from REPs and vegetatidices can be used to

discriminate among groups of wetland vegetatioriggse

* Red edge region has relatively more information tiaa be used to discriminate
wetland vegetation species. Vegetation indices emetp from canonical
functions showed that they have greater discrimonygbower than REPs, except

linear extrapolation.

Overall, the result which was obtained in this e@sk has confirmed that hydrophytic
vegetation can be discriminated using spectraéctdhce at species level. This study
also confirmed how hyperspectral remote sensingissful when identifying and

mapping wetland vegetation.

The study demonstrated that it is possible to oiisnate wetland vegetation species at
canopy level using reflectance spectra computeh fcanonical functions. However,

the biophysical and biochemical properties of vatieh vary from species to species. It
is therefore imperative to add these propertiem@spendent variables to discriminate
wetland vegetation species. In the next chaptemnbss and water content variables

will be used to discriminate wetland vegetationcsge
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Chapter Five:

Integrating measures of biochemical and biophysical properties with
vegetation indices to improve wetland vegetation discrimination at

species level

5.1 Overview

The discrimination of wetland vegetation at spetgegl has a very important influence
on attempts to mitigate ecosystem deterioratiorffef@int wetlands in developing
countries, especially in Africa, have come undercimpressure since their hydrology
and salinity are being damaged by exploitatiorhefrtnatural resources, and as a result
they need to be monitored and conserved for fupereerations. There are many bio-
indicators such as wetland vegetation, hydric smkl wetland hydrology that can be
used to check if there is any wetland change, bgetation is one of the most important
factors that can be used (Demuro and Chisholm,)2d@B8monitor a large area, remote
sensing comes into play since it is very practemadl cost-effective and it has been
successfully used for vegetation studies for a lmg (Ross, 1981; Guyot and Baret,
1988; Curranet al., 1992). Vegetation indices have been developed daitor the
changes in ecological systems. These vegetatianemaperate by contrasting intense
chlorophyll pigment absorptions in the red regi@aiast the high reflectance due to
multiple scattering in the near infrared region ddioet al., 1998). Asner (1998)
suggested that biophysical and biochemical progeenif vegetation can be quantified
and used for vegetation mapping since speciesr diffeheir structural and biochemical
content characteristics. However, to date, no etuth our knowledge have quantified
these biophysical and biochemical parameters antbiced them with hyperspectral
data for vegetation species discrimination. Thislgtwas carried out in the wetlands of

iISimangaliso Wetland Park and the results are de=tin the next section.
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5.2 Discriminating wetland vegetation at species level using a
combination of biochemical and biophysical properties with
vegetation indices

One-way ANOVA results at 95 % confidence level (p.85) indicated that there was a

significant difference among wetland vegetationcggge The means of each and every

vegetation index (RESP, CI, GMI, and SR), waterteon and biomass variables
showed that wetland vegetation species can bengisshed using their means. As
shown in Figure 5.1, for quantified water contdr@ highest mean is for Tl followed by

EP, CP, and finally PA. The box plot of quantifiedbmass showed the highest mean
for CP followed by PA, EP, and Tl in that order.
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Figure 5.1 Box plots showing the spread of mean, standardr,earad Confidence
Interval of each vegetation species produced veatetent and biomass variables.
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From all the vegetation indices, and measures ¢¢ém@ntent and biomass that were
applied, their overall p values were less than @Q@&xcept CI that had a p value of
0.075029 as shown in Figure 5.2. One-way ANOVA tkdtnot show which pairs of
means were different. Therefore, to determine whpins of means differ, the post hoc
Bonferroni test was applied. Figure 5.3 showslalp values of vegetation indices, and
quantified water content and biomass. The Bonfetest showed that some vegetation
indices (RESP and SR) were not able to differemtitween PAndTI. Also Cl failed

to distinguish between CP and. BMI was the only vegetation index that managed to
distinguish all the vegetation species. Water auntend biomass variables couldn’t
discriminate between E&hdTI, andCP andPA.
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Figure 5.2 Results of ANOVA test showing overall p values olif species from

different vegetation indices and vegetation prapsrt
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Figure 5.3 Results of one-way ANOVA test showing the p valagall four species (6
pairs) using RESP, GMI, Cl, SR, and measures oftplater content and biomass after

Bonferroni adjustment.

Although the results of one-way ANOVA indicated ttithe indices were able to
distinguish among wetland vegetation at speciesl|ewis very difficult to determine

which one of the indices, quantified water contemt biomass, had the best
discriminatory power. As a result, canonical vaianalysis was applied to test if the
introduction or addition of quantified water coriteand biomass had improved the
discriminatory power. The results of CVA supportétat all the species were
statistically different with a Wilk’s lambda of ®07327. The first canonical function
shown in Table 5.1 contains the largest proportbnhe explained variance with an
Eigenvalue of 9.78499. The highest factor structewefficient is contained in the

quantified water content and biomass with coeffitseof -0.432514 and 0.421967
respectively. This was followed by CI, GMI, SR, aR&SP in that order. The highest
factor structure coefficient in the second candnfigaction shows that RESP, SR, and

quantified biomass made the largest contributiowl, ta a lesser extent GMI. The third
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canonical function also shows that the highestofastructure coefficient is in the CI,

guantified biomass, and in GMI and SR to a lesstmg.

Table 5.1 Factor structure matrix representing the corretabietween the variables and

the canonical functions

Root 1 Root 2 Root 3

SR -0.178442 0.832607 0.293838
RESP -0.160428 0.855823 0.281673
Cl 0.338479 -0.495210 -0.674013
GMI -0.237049 0.727677 0.336985
Water Content -0.432514 0.056009 0.080464
Biomass 0.421967 0.791681 0.441068
Eigenvalues 9.78499 1.69537 0.58288

Table 5.2 shows the means of canonical variableesgpting the correlation between
the wetland vegetation at species level and thergeal roots. The results in Table 5.2
showed that the first canonical root discriminatesstly between PA species and other
species, followed by TI species, and to a lessemeP species. The second canonical
function discriminates mostly between EP speciesaher wetland vegetation species,
followed by TI group. In the third canonical furani it can be noted that CP species
can be mostly discriminated as compared to othgetation species, and this is
followed by PA group, and to a lesser extent ERigrélowever, the magnitude of the
discrimination is much smaller, and this can beedoh Table 5.1 which shows that the
Eigenvalue of the third canonical function is mwshaller than the first and second

canonical function.
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Table 5.2 Means of canonical variables representing the [ioa between the
wetland vegetation species and the canonical foimcti

Species Root 1 Root 2 Root 3
CP 1.45706 0.22934 1.252645
PA 4.35233 -0.36384 -0.734683
EP -2.44813 1.86333 -0.403674
Tl -3.36126 -1.72883 -0.114288

The scatter plot in Figure 5.4 shows positions etland vegetation species in the
canonical space. All the species in the scattdrg positioned distinctly among them.
The positioning of the canonical scores shows digna from Thelypteris interrupta,
followed by Echinochloa pyramidalis, and Cyprus papyrus to Phragmites australis.
Figures 5.5 and 5.6 show the scatter plots of daabroot 1 versus root 3 and root 2
versus root 3 respectively. The results in thes#tescplots clearly indicate that only the
first canonical function, followed by the secondaaical function, makes the highest
contribution to wetland vegetation species disanation. The scatter plot of canonical
root 1 versus root 3 shows that it can be also usedistinguish between wetland
vegetation at species level to a lesser extentribain2 versus root 3, although it cannot
separate betweegichinochloa pyramidalis and Thelypteris interrupta. Also, from
Figure 5.3 it can be noted that there is no confudletween species except for a

minimal confusion betwee@yprus papyrus andPhragmites australis.
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To determine if measures of biochemical and bioglaygroperties of vegetation had
improved the discriminatory power, quantified watentent and biomass was added as
canonical variables. The addition of water contamd biomass variables was seen as a
major improvement on vegetation species discrinonatBut to determine the actual
percentage of improvement made by water contenbanmdass measures, the confusion
matrix or error matrix was calculated for those tvasiables as seen in Table 5.3. The
overall accuracy and Kappa statistic showed thatJand vegetation species can be
classified into their respective groups with ovieaglcuracy of 82 % and Kappa statistic
of 0.76 respectively. The classification rate tvais achieved by adding water content
and biomass variables in the canonical variateyarsaindicted their discriminatory

power.
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Table 5.3 An error matrix of four wetland vegetation specisowing Producer

Accuracy, Omission Error, User Accuracy, Commisdimror, and Overall Accuracy as

percentages and Kappa Statistsingwater content and biomass variables only

Species CP PA| EP TI CommissiplJser Accuracy
Error (%) (%)

CP 32 10 36 64

PA 10 40 20 80

EP 42 16 84

TI 0 50 0 100

Omission Error (%) 32 20 12 10

Producer Accuracy (%) 68 |80 88 90

Overall Accuracy (%) | 82

Kappa statistic 0.76

Table 5.4 An error matrix of four wetland vegetation specisowing Producer
Accuracy, Omission Error, User Accuracy, Commisdtoror, and Overall Accuracy as

percentages and Kappa Statistising quantified water content and biomass, and

vegetation indices

Species CP PA| EP| TI CommissiphJser Accuracy
Error (%) (%)

CP 45 3 10 90

PA 1 49 |0 98

EP 47 94

TI 0 0 50 100

Omission Error (%) 4 2 2 8

Producer Accuracy (%) 96 |98 98 91

Overall Accuracy (%) | 95.5

Kappa statistic 0.94
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To further investigate the effectiveness of watentent and biomass measures to
discriminate wetland vegetation species and toagxphe observed patterns or changes,
the samples were classified using Fisher’s linésgroninant function with proportional
to group size prior probabilities (McGarigetlal., 2000; Mutanga, 2004). From Table
5.4, it can be noted that, of those 50 samplesmediand vegetation species that were
mapped as CRPA, EP,andTl only 45, 49, 47, and 50 samples were correcbigned

to CP, PA, EP,and TI, resulting in a 90%, 98%, 94%, and 100% usecsusacy
respectively. Also all the vegetation species wasgectly classified as CHPA, EP,
and Tl, and achieved producer’s accuracy of 96%, 9888p9and 91% respectively.
The overall accuracy and kappa coefficient of 95.3%d 0.94 was obtained
respectively. The addition of water content andni@es variables increased the

discriminatory power by 8.5%.

5.3 Discussion

In this section, the potential of hyperspectrabdat conjunction with biochemical and
biophysical properties of vegetation to discrimeatetland vegetation species is
discussed. The main aim is to investigate if therany improvement in vegetation
species discrimination after the introduction of tevacontent and biomass as

independent variables.

5.3.1 Integrating quantified water content and biomass, and vegetation
indicesto discriminate wetland vegetation at species level

Vegetation indices have been widely used for weltlaagetation discrimination (Cho
and Skidmore, 2006), but the motivation for thespré study was to determine if there
was any improvement in vegetation species discation with the introduction of
biochemical and biophysical parameters. To achikieeproposed goal, the quantified
water content and biomass as independent variatdee used in conjunction with
vegetation indices in the vegetation species drsoation.

The results confirmed that discriminating differem¢tland vegetation at the species
level is improved using vegetation indices with thedition of water content and
biomass variables. As suggested by Mutanga (2@4A provides an insight into the
relationship among the wetland vegetation spetieseby showing the importance of
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hyperspectral remote sensing. The study has shdwat tanonical functions
extrapolated from water content and biomass vagalii combination with vegetation
indices can be used for vegetation species sefigyabiThe result indicates that
quantified water content and biomass of vegetatemm be used to distinguish between
species since they produced an overall accura@2¥ and a Kappa statistic of 0.76,
respectively. The addition of water content andniaes variables as ancillary
information to vegetation indices improved the @Weraccuracy of species
discrimination from 87% as shown in Table 4.3 ta59 as shown in Table 5.1,

increasing the percentage overall accuracy by 8.5%.

The CVA results have shown that the highest fastarcture coefficient for the first
canonical function is in the water content and kaem variables. This shows the
importance of differences in the structural propsrtof vegetation species in

discriminating among them.

The scatter plot of canonical roots in Figure Sdves the relative positions of species
along the canonical axes, and this gives an indigiot the relationships among the
wetland vegetation species. As shown in Figure &4, vegetation species in the
canonical space are clearly located in their owacepThelypteris interrupta is
positioned to the lower left side, followed Bghinochloa pyramidalis positioned in the
top left side of the canonical space, then follovagdCyperus papyrus in the middle,
and Phragmites australis positioned in the bottom right of the feature spachis
positioning shows the gradient of vegetation smecithereby confirming the
discriminatory power of hyperspectral remote semgilata in combination with the

structural characteristics of the species themselve

This study has shown that the availability and iowement in remote sensing
processing techniques for measuring the structuealables of vegetation is an
important step towards improving species discrimiima Generated maps from
empirical or physically based models showing thestrdiution of vegetation
biochemical and biophysical characteristics campat as extra ancillary information,
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in combination with hyperspectral data to improke mapping of wetland vegetation

species as shown in this study.

5.4 Conclusion

In this study, the aim was to discriminate wetlaedetation species using the red edge
hyperspectral vegetation indices with the help atew content and biomass variables.

The results in this study have shown that:

e The use of measures of biochemical and biophyscaperties of plants in
conjunction with vegetation indices calculated framyperspectral remote
sensing data improved the discrimination of wetlaegetation at species level.

* With the addition of plant water content and biomasriables, wetland
vegetation species were classified into their retspe classes with an overall
accuracy of 95.5%. By adding quantified water conhtnd biomass the overall
accuracy was increased by 8.5%.

« Ancillary information can effectively be used inngonction with hyperspectral
remote sensing data (vegetation indices) to disnata vegetation species.

Overall, the study has indicated that it is pogstol discriminate wetland vegetation at

species level using water content and biomasshtagaand vegetation indices derived

from hyperspectral data.
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Chapter Six:

Conclusion

6.1 Introduction

The wetlands of iSimangaliso Wetland Park are irgmdr as productive natural
ecosystem remnants offering wildlife habitat, tetirdestinations, and good water
guality at a given time or over a continuous peridtdese wetlands are functional
ecosystems that provide a critical habitat for taamd flora. Vaiphasat al. (2005)
suggest that there are other end users who reetirasmportance of wetlands such as
forestry, fisheries, and environmental conservationwetland studies there are three
variables which must be recognised which are weét{aydrophytic) vegetation, hydric
soil, and wetland hydrology (Cowardahal., 1979). The most important variable when
it comes to any wetland change is the wetland atiget Hydrophytic vegetation is of
fundamental ecological importance and is used as afnthe most important bio-
indicators for early signs of any physical or chemhidegradation in wetland systems
(Demuro and Chisholm, 2003; Belluaa al., 2006; Adam and Mutanga, 2009).
Wetland vegetation as one of the natural resouiseigclining because of the influence
of natural disturbance and either intentionally wmintentionally harmful human
activities (Vaiphasat al., 2005; Adam and Mutanga, 2009). As a result, tlaeeenow
groups which are trying to develop methods for shetainable management of these
wetlands e.g Ramsar Convention and UNESCO. Thexefioere is a need for accurate,
precise, and up-to-date spatial information oncilneent status of wetland vegetation as
a prerequisite for the sustainable management tthmeesystems (Greest al., 1998).

Remote sensing is regarded as one of the best dsefoo monitoring and mapping
wetlands at local, regional, or global scales (Yantd and Waynne, 2001; Schmidt and
Skidmore, 2003; Adam and Mutanga, 2009). Curretitigre is extensive use of remote
sensing for identifying, monitoring, modelling, adécriminating wetland vegetation
species using their spectral reflectance (Lee antetta, 1996; Demuro and Chisholm,
2003; Bellucoet al., 2006; Hiranoet al., 2003; Vaiphasa et al., 2005; Adam and
Mutanga, 2009). However, remote sensing is incantuin the discrimination of

wetland vegetation at species level in the Southcam context. There is a major
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disadvantage in South Africa because there is nmhnmformation on previous studies
for wetland vegetation spectral libraries. The o$enultispectral remote sensing for
wetland vegetation mapping has been done intemalho with reasonable results
(Baretet al., 1987; Shahrairat al., 2003; Bellucaet al., 2006; Ndzeidze, 2008), but this
application was inconclusive when it came to firegadls of vegetation, for example,
biochemical and biophysical properties. This raigedidea of developing hyperspectral
remote sensing with narrow contiguous spectral pdretween visible and shortwave
infrared regions which have already proved to heseful tool for wetland vegetation
discrimination at species level (Schmidt and Skicen®003; Hiranoet al., 2003;
Vaiphasaet al., 2005; Suret al., 2008; Adam and Mutanga, 2009). This applicatbn
hyperspectral remote sensing has not yet beena@deasively to our knowledge in the
South African context, except that by Adam and Mgt (2009). Therefore, in the
present study, the aim was to further explore tbeergial of hyperspectral remote
sensing data with its narrow bands to discrimimgtand vegetation at species level in
the iSimangaliso Wetland Park, KwaZulu Natal, So@ftica. Vegetation indices and
the red edge position were used to discriminatelawet vegetation species using
spectral reflectance and the biochemical and bisighl properties of vegetation. In
order to achieve this goal, the following main alipes were set and achieved:

e to evaluate the ability of hyperspectral remotesgen data in discriminating
wetland vegetation at species level using the deg @osition,

* to test and compare the performance of red edggigrosgainst vegetation
indices,

e to test different red edge extraction techniquesdistinguish hydrophytic
vegetation, and

* to investigate whether there is an improvementpaceges discrimination by
combining vegetation structural and biochemical rab@ristics with

hyperspectral data.
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6.2 The use of vegetation indices and REPs for wetland vegetation
discrimination at species level

The discrimination of vegetation species usingrtepectral reflectance was addressed
in this study (Chapter 4) by evaluating the potdnof the red edge position and
hyperspectral vegetation indices to distinguiBhragmites australis, Thelypteris
interrupta, Cyperus papyrus, and Echinochloa pyramidalis species from each other.
Canonical variate analysis showed that we can ichgtate vegetation species using
vegetation indices and REPs as canonical variaflkes. analysis helps to indicate
which one of the canonical variables (vegetatiatides and REPs) performed better
compared to others. The hyperspectral vegetatidices performed much better than
REPs in red edge region. Some vegetation indicpscesly VOG, RESP and CI
showed that they had relatively more power of dsicrating wetland vegetation
species with highest factor structure coefficietitan other variables. The overall
accuracy obtained was 87% after accuracy assessientsignificant finding in this
study is that vegetation indices yielded a supetiscriminatory power than REPs when
it comes to discriminating wetland vegetation agécsps level. This finding however
needs to be further investigated with more data.

6.3 Introducing vegetation properties for discriminating wetland
vegetation at species|evel

CVA was applied to determine the discriminatory povwof variables (vegetation
indices and vegetation properties) that were usedhis study. In the first paper
(Chapter 4), vegetation indices produced 87% olva@iuracy compared to 82% of
water content and biomass variables in the secapdrdChapter 5). CVA in Chapter 5
showed that water content and biomass variablessbpdrior discriminatory power
than did vegetation indices since they had higlfi@stior structure coefficients. The
combination of vegetation indices and quantifiedevaontent and biomass produced
an overall accuracy of 95.5% after accuracy assassnComparing results from
chapter 4 and chapter 5 shows that the overallracguncreased by 8.5%. In general,
this study showed that vegetation properties carude to discriminate vegetation

species with more discriminatory power than vegatatindices alone. Ancillary
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information proved that it can effectively be usedconjunction with hyperspectral
remote sensing data (vegetation indices) to disodta vegetation species.

6.4 Synthesis

This study has shown the potential of hyperspeatemhote sensing in wetland

vegetation spectral separability at species lemekthie iSimangaliso Wetland Park,
KwaZulu Natal, South Africa. Evidently, from thitugly, it can be noted that the visible
and near infrared regions (red edge region) ofelleetromagnetic spectrum are very
important for discriminating wetland vegetationspecies level. Spectral reflectance of
wetland vegetation was used to evaluate the effsutiss of vegetation indices as
compared to the red edge position. The performasiceregetation indices was

favourable compared to REPs due to differenceshénpigment content (causes of
absorption differences in the visible region) arahapy structure (or internal leaf
structure in the near infrared) characterized Ipladeau of high reflectance (Schmidt
and Skidmore, 2003). The use of these vegetatiditas overcame the problem of

saturation due to the use of narrow bands (hypensgpedata.

However, when quantified vegetation propertiesriplaater content and aboveground
biomass) were added in as discriminatory varialiles,overall discriminatory power
increased as well. Of particular importance wasdberall performance of plant water
content and biomass variables, which yieltigtiest factor structure coefficients of
-0.432514 and 0.421967 respectively.

In summary, it was highlighted in the study thatliad biochemical and biophysical
parameters of vegetation to remotely sensed dafaowas the discrimination of
vegetation species. Furthermore, the study has rshiber potential of discriminating
wetland vegetation at species level using dataimmddaby hand-held field spectrometer
with the possibility of up-scaling field and labtoey data to airborne and satellite

remote sensing.
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6.5 Limitation of the study

One of the limitations of the study was the facttithe study area was waterlogged and
swampy; therefore it was very difficult to collethe leaf spectral reflectance
measurements. Sampling was done on areas thatreasenably accessible. Also, the
field work was done in December in the summer, @swahlly it rains most of the time.
For future studies on discrimination of wetland etgion at species level it might be a
good idea if the leaf spectral reflectance measanesncould be taken in winter or a dry

season to improve accessibility and reduce thetedfieatmospheric obscurities.

6.6 Conclusion and recommendations

The main objective was to investigate the poterdfaharrow band remote sensing to
discriminate wetland vegetation species at fieikle The second objective was to
investigate whether the addition of quantified agjen properties (biochemical and
biophysical properties) can improve the discrimomatof vegetation species. It was
revealed in this study that the information corgdinin narrow bands data and
vegetation properties can be used to achieve thesls. Finally, it was concluded that
hyperspectral vegetation indices and quantified ete#tgpn parameters based on
wavelengths located in the red edge region canramdy discriminate vegetation

species at canopy level.

This study was the first attempt to discriminatelared vegetation using a combination
of quantified vegetation properties and hyperspéctegetation indices. Therefore,
future research in wetland vegetation species idigtation either at field level, or at
airborne or satellite level should investigate thessibility of using quantified
vegetation properties in addition to the specteghdIn addition, vegetation properties
such as nitrogen, phosphorous, lignin, chloropbgtitent, and leaf area index could be
quantified to study their characteristics, and htw differences of these parameters
may improve the accuracy of wetland vegetationrarsoation. Since discriminating
vegetation species at field level using traditiomshote sensing (aerial photography) is
time consuming, not cost-effective and suffers disadvantage of some parts of the
study area being inaccessible, it is recommendat ttte study be up-scaled to the

application of airborne and satellite hyperspeateahote sensing. In terms of temporal
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and spatial resolution, airborne or satellite reaams¢nsing offers a good coverage of
local, regional, and global scale even in somesatieat are difficult to access and also
offers a repetitive acquisition of wetland vegetatiimagery for developing and

improving sustainable management methods.
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