
Modelling Acute HIV Infection Using

Longitudinally Measured Biomarker Data

Including Informative Drop-out

A thesis presented to

The University of KwaZulu-Natal

in fulfilment of the requirement for the degree

of

Master of Science in Statistics

by

Lise Werner

School of Statistics and Actuarial Science

December 2009



Abstract

Background

Numerous methods have been developed to model longitudinal data. In HIV/AIDS studies, HIV

markers, CD4+ count and viral load are measured over time. Informative drop-out and the lower

detection limit of viral load assays can bias the results and influence assumptions of the models.

Objective

The objective of this thesis is to describe the evolution of HIV markers in an HIV-1 subtype C

acutely infected cohort of women from the CAPRISA 002: Acute Infection Study in Durban, South

Africa. They were HIV treatment näıve.

Methods

Various linear mixed models were fitted to both CD4+ count and viral load, adjusting for repeated

measurements, as well as including intercept and slope as random effects. The rate of change in

each of the HIV markers was assessed using weeks post infection as both a linear effect and piecewise

linear effects. Left-censoring of viral load was explored to account for missing data resulting from

undetectable measurements falling below the lower detection limit of the assay. Informative drop-

out was addressed by using a method of joint modelling in which a longitudinal and survival model

were jointly linked using a latent Gaussian process. The progression of HIV markers were described

and the effectiveness and usefulness of each modelling procedure was evaluated.

Results

62 women were followed for a median of 29 months post infection (IQR 20-39). Viral load increased

sharply by 2.6 log copies/m` per week in the first 2 weeks of infection and decreased by 0.4 log

copies/m` per week the next fortnight. It decreased at a slower rate thereafter. Similarly CD4+

count fell in the first 2 weeks by 4.4 square root cells/µ` per week then recovered slightly only

to decrease again. Left-censoring was unnecessary in this acute infection cohort as few viral load

measures were below the detection limit and provided no improvement on model fit.

Conclusion

Piecewise linear effects proved to be useful in quantifying the degree at which the HIV markers

progress during the first few weeks of HIV infection, whereas modelling time as a linear effect was

not very meaningful. Modelling HIV markers jointly with informative drop-out is shown to be

necessary to account for the missing data incurred from participants leaving the study to initiate

ARV treatment. In ignoring this drop-out, CD4+ count is estimated to be higher than what it

actually is.
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Notes
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modelling of CD4+ T-cell counts and HIV-RNA to describe the evolution of HIV markers.
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tistical Association (SASA) in Muldersdrift (29 October to 2 November 2007) as an oral

presentation, titled Joint Modelling of CD4+ cell counts and HIV-RNA.

� The analysis on the data used in this thesis, specifically on describing the evolution of the HIV

markers, was presented at the UKZN Postgraduate Research Day for the Faculty of Science

and Agriculture, hosted by UKZN Westville campus on 25 May 2009. This oral presentation

won third prize and was titled Modelling Acute HIV Infection Using Longitudinally Measured

Biomarker Data Including Informative Drop-out.

� A poster presentation on piecewise linear mixed models and joint modelling, as presented

in this thesis, was exhibited at the 30th annual conference of the International Society for

Clinical Biostatistics (ISCB) after receiving a conference award for scientists. The conference

was hosted by the University of Economics in Prague, Czech Republic (23 to 27 August

2009) and the poster was titled Exploring CD4+ count and viral load evolution in an acutely

infected cohort using joint modelling.

iii



Acknowledgements

I want to thank Prof Henry Mwambi for his thorough feedback and support. It has been a tough

four years, doing this thesis part-time, whilst working full-time; something I could not have done

without Prof Mwambi as a supervisor. I’m very appreciative of his careful dedication to my work.

I also want to thank CAPRISA for the use of their data and a special thanks for the hard work

put in by the CAPRISA 002: Acute Infection Cohort Study Team; without them, this would not

have been possible. I’m grateful for the wonderful opportunity of working for CAPRISA and I

have learnt so much in these past few years while working in research.

I want to thank my family and friends for their love and support, especially Mom, Dad and

Wesley; and also Scott for his encouragement and love. Thanks for believing in me.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

1.1 The Human Immunodeficiency Virus . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 HIV and the Human Body . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 HIV Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Treatment of HIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5 Types of HIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.6 Markers for HIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Acute HIV Infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Joint Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Exploratory Data Analysis 16

2.1 CAPRISA 002: Acute Infection Study . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Viral Load and CD4+ Count Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Individual Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Basic Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Semi-variograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Sample Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



3 Mixed Models 33

3.1 Linear Mixed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Modelling Longitudinal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 The General Linear Mixed Effects Model . . . . . . . . . . . . . . . . . . . 36

3.3 Estimation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Estimation of the Marginal Model . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Maximum Likelihood Estimation of Parameters . . . . . . . . . . . . . . . . 43

3.3.2.1 Estimation of Fixed Effects . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2.2 Prediction of Random Effects . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Restricted Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . 46

3.3.4 REML Estimation for the General Linear Mixed Model . . . . . . . . . . . 48

3.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Inference and Testing for the Marginal Model . . . . . . . . . . . . . . . . . 48

3.4.1.1 Approximate Wald Test . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1.2 Approximate t- and F-test . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1.3 Robust Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1.4 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Inference for the Variance Components . . . . . . . . . . . . . . . . . . . . . 52

3.4.2.1 Approximate Wald Test . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2.2 The Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Marginal Testing for the Need of Random Effects . . . . . . . . . . . . . . . 53

3.4.4 Information Criteria (IC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.5 Inference for the Random Effects . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.5.1 Empirical Bayes Inference . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.5.2 Best Linear Unbiased Prediction . . . . . . . . . . . . . . . . . . . 56

3.4.6 A Comment on the Normality Assumption for Random Effects . . . . . . . 57

3.4.7 Power for Fixed Effects Under the Linear Mixed Model . . . . . . . . . . . 58

3.4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Statistical Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Fitting Linear Mixed Models Using Statistical Software . . . . . . . . . . . 59

4 Joint Modelling 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Parametric Survival Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



4.2.2 Semi-parametric Survival Models . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Joint modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 The likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Left-censoring Of Viral Load . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Application 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1.1 Marginal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1.2 Random Intercept Model . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1.3 Random Intercept and Slope Model . . . . . . . . . . . . . . . . . 80

5.2.2 Viral load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2.1 Marginal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2.2 Random Slope Model . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Piecewise Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1.1 Marginal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1.2 Random Intercept Model . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 Viral Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2.1 Marginal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 The Effects Of Left-censoring On Viral Load . . . . . . . . . . . . . . . . . . . . . 96

5.5 Joint Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1.1 Time as a Linear Effect . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1.2 Piecewise Linear Effects . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Viral load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.2.1 Time as a Linear Effect . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.2.2 Piecewise Linear Effects . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusion and Future Work 122

References 124

Appendix: SAS Code 130

vii



List of Figures

1.1 Natural History of HIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 HIV Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 HIV-1 subtype prevalence in 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Average trajectories of viral load and CD4+ count during the first 3 years after the

first HIV-seropositive visit (MACS Cohort) . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Kaplan-Meier graph of time to ARV initiation . . . . . . . . . . . . . . . . . . . . . 18

2.2 Scatter plot of all CD4+ count (cells/µ`) measurements with a Loess smoothing

regression line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Scatter plot of all viral load (log copies/m`) measurements with a Loess smoothing

regression line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 CD4+ count (cells/µ`) for the first year of infection, each line representing an indi-

vidual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Viral load (log copies/m`) for the first year of infection, each line representing an

individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Examples of four individual profiles for viral load and CD4+ count . . . . . . . . . 24

2.7 Boxplot of CD4+ count (cells/µ`) by months post infection for the first year of

infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Boxplot of viral load (copies/m`) by months post infection for the first year of infection 26

2.9 Histogram of CD4+ count (cells/µ`) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Histogram of square root of CD4+ count (cells/µ`) . . . . . . . . . . . . . . . . . . 27

2.11 Histogram of viral load (copies/m`), including only viral load below 2 000 000

copies/m` (a) and then viral load below 10 000 copies/m` (b) . . . . . . . . . . . . 27

2.12 Histogram of viral load (log copies/m`) . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13 Semi-variogram of square root transformed CD4+ count . . . . . . . . . . . . . . . 28

2.14 Semi-variogram of log transformed viral load measurements . . . . . . . . . . . . . 29

2.15 Scatterplot of all viral load (on a log scale) and CD4+ count measurements . . . . 30

viii



2.16 Scatter plot of all viral load (on a log scale) and CD4+ count measurements, sepa-

rated by different intervals weeks post infection . . . . . . . . . . . . . . . . . . . . 31

5.1 Predicted marginal model for CD4+ count with time as a linear effect . . . . . . . 83

5.2 Predicted marginal model for viral load with time as a linear effect . . . . . . . . . 88

5.3 Modelling CD4+ count with time as piecewise effects . . . . . . . . . . . . . . . . . 93

5.4 Modelling viral with time as piecewise effects . . . . . . . . . . . . . . . . . . . . . 97

5.5 Different joint models for modelling CD4+ count with time as a linear effect . . . . 103

5.6 Different joint models for modelling CD4+ count with time as piecewise effect . . . 109

5.7 Different joint models for modelling viral load with time as a linear effect . . . . . 114

5.8 Different joint models for modelling viral load with time as piecewise effects . . . . 121

5.9 Different joint models for modelling viral load with time as piecewise effects, between

4 and 5 log copies/m` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ix



List of Tables

2.1 Repeated Measurements of CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Repeated Measurements of viral load . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Basic summary statistics of CD4+ count and viral load at pre-infection, and months

1, 3, 6, 9, 12, 15, 18 and 24 post infection . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Common survival functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Fit statistics and the Null Model Likelihood Ratio Test for fitting a marginal model

to CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Fixed effects estimates modelling CD4+ count in a marginal model with weeks post

infection as a continuous linear predictor . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Covariance parameter estimates for modelling CD4+ count in a marginal model . . 77

5.4 Fit statistics for fitting a random intercept model to CD4+ count . . . . . . . . . . 78

5.5 Fixed effects estimates modelling CD4+ count in a random intercept model with

weeks post infection as a continuous linear predictor . . . . . . . . . . . . . . . . . 78

5.6 Covariance parameter estimates for modelling CD4+ count in a random intercept

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Subject-specific effect estimates for the first 10 subjects, modelling CD4+ count in

a random intercept model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Fit statistics for fitting a random intercept and slope model to CD4+ count . . . . 80

5.9 Fixed effects estimates modelling CD4+ count in a random intercept and slope

model with weeks post infection as a continuous linear predictor . . . . . . . . . . 81

5.10 Covariance parameter estimates for modelling CD4+ count in a random intercept

and slope model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.11 Subject-specific effect estimates for the first 5 subjects, modelling CD4+ count in a

random intercept and slope model . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

x



5.12 Fit statistics and the Null Model Likelihood Ratio Test for fitting a marginal model

to viral load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.13 Fixed effects estimates modelling viral load in a marginal model with weeks post

infection as a continuous linear predictor . . . . . . . . . . . . . . . . . . . . . . . . 84

5.14 Fixed effects estimates modelling viral load in a no-intercept marginal model with

weeks post infection as a continuous linear predictor . . . . . . . . . . . . . . . . . 84

5.15 Covariance parameter estimates for modelling viral load in a marginal no-intercept

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.16 Fit statistics for fitting a random slope no-intercept model to viral load . . . . . . 86

5.17 Fixed effects estimates modelling viral load in a random slope no-intercept model

with weeks post infection as a continuous linear predictor . . . . . . . . . . . . . . 86

5.18 Covariance parameter estimates for modelling viral load in a random slope no-

intercept model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.19 Subject-specific effect estimates for the first 10 subjects, modelling viral load in a

random slope no-intercept model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.20 Fit statistics for fitting a piecewise linear effects marginal model to CD4+ count . 90

5.21 Fixed effects estimates for modelling a piecewise linear marginal model for CD4+

count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.22 Covariance parameter estimates for modelling a piecewise linear marginal model for

CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.23 Fit statistics for fitting a piecewise linear effects marginal model to CD4+ count . 91

5.24 Fixed effects estimates for modelling a piecewise linear random intercept model for

CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.25 Covariance parameter estimates for modelling a piecewise linear random intercept

model for CD4+ count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.26 Correlation Matrix of Fixed Effects fitting a random intercept model to CD4+ count

with piecewise linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.27 Fit statistics for fitting a piecewise linear effects marginal model to viral load . . . 94

5.28 Fixed effects estimates for modelling a piecewise linear marginal model for viral load 94

5.29 Fixed effects estimates for modelling a piecewise linear marginal no-intercept model

for viral load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.30 Covariance parameter estimates for modelling a piecewise linear marginal no-intercept

model for viral load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.31 Correlation Matrix of Fixed Effects fitting a marginal model to viral load with

piecewise linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xi



5.32 Univariate results for fixed effects modelling viral load, with and without left-censoring. 98

5.33 Fit statistics for modelling viral load, with and without left-censoring. . . . . . . . 98

5.34 Fit statistics for a joint CD4+ count and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.35 Parameter estimates for a joint CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.36 Fit statistics for a joint CD4+ count and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.37 Parameter estimates for a joint CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.38 Fit statistics for a joint CD4+ count and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = r0U0 + r1U1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.39 Parameter estimates for a joint CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1 . . . . . . . . . . . . . . . . . . . . . . 101

5.40 Summary of joint modelling results for a linear CD4+ count model . . . . . . . . . 102

5.41 Fit statistics for a joint piecewise CD4+ count and informative drop-out model with

W1(t) = U0 and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.42 Parameter estimates for a joint piecewise CD4+ count and informative drop-out

model with W1(t) = U0 and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.43 Fit statistics for a joint piecewise CD4+ count and informative drop-out model with

W1(t) = U0 and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.44 Parameter estimates for a joint piecewise CD4+ count and informative drop-out

model with W1(t) = U0 and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . 105

5.45 Fit statistics for a joint piecewise CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1 . . . . . . . . . . . . . . . . . . . . . . 106

5.46 Parameter estimates for a joint piecewise CD4+ count and informative drop-out

model with W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1 . . . . . . . . . . . . . . . 106

5.47 Summary of joint modelling results for a piecewise CD4+ count model . . . . . . . 107

5.48 Fit statistics for a joint viral load and informative drop-out model with W1(t) = U1t

and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.49 Parameter estimates for a joint viral load and informative drop-out model with

W1(t) = U1t and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.50 Fit statistics for a joint viral load and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xii



5.51 Parameter estimates for a joint viral load and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.52 Fit statistics for a joint viral load and informative drop-out model with W1(t) = U1t

and W2(t) = r1U1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.53 Parameter estimates for a joint viral load and informative drop-out model with

W1(t) = U1t and W2(t) = r1U1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.54 Summary of joint modelling results for a linear viral load model . . . . . . . . . . . 113

5.55 Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U1t and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.56 Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U1t and W2(t) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.57 Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U0 and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.58 Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U0 and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.59 Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U1t and W2(t) = r1U1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.60 Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U1t and W2(t) = r1U1 . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.61 Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.62 Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U0 + U1t and W2(t) = r0U0 . . . . . . . . . . . . . . . . . . . . . . . 118

5.63 Summary of joint modelling results for a piecewise viral load model . . . . . . . . . 119

xiii



Chapter 1

Introduction

The Human Immunodeficiency Virus (HIV) has become a global epidemic with an estimated 33

million people (30-36 million) living with HIV in 2007 (UNAIDS, 2008). In 2007, there were a

total of 2.7 million new HIV infections and 2 million HIV-related deaths (UNAIDS, 2008). Sub-

Saharan Africa has carried the biggest burden and accounts for 67% of those living with HIV

and for 75% of AIDS deaths in 2007 (UNAIDS, 2008). Much research has been done and is still

ongoing, on various aspects of the disease, including how the virus replicates, what effect this has

on the human body and how the virus can be controlled. The most common surrogate biomarkers

used for determining clinical progress in someone infected with HIV is viral load and CD4+ count.

These HIV markers react differently when someone first gets infected with the virus, compared to

chronic infection, and compared to when antiretroviral treatment is taken. Understanding these

key markers do not only let health providers monitor a patient’s health, but also allows researchers

to discover essential information regarding the mechanisms of the virus and the human immune

system. In turn this allows researchers to develop HIV vaccines, new efficient treatments and pre-

ventative measures such as microbicides and pre-exposure prophylaxis (PrEP).

This thesis aims to describe the evolution of these HIV biomarkers in a cohort of acutely in-

fected women who were followed up longitudinally over time. However, because of the way the

virus and the immune system reacts during the initial few weeks of HIV infection, a simple linear

regression is not adequate in describing the evolution of the disease over time. The history and

biology behind HIV, as well as treatment, diagnosis, different HIV types and the reaction by the

human body will be discussed in Section 1.1. Another issue that will be addressed is missing data

brought on by informative drop-out. This is study withdrawal by a participant for a reason related

to one or more of the responses being modelled.
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In the case of the data used in this thesis as part of an ongoing study, women are being followed

immediately after infection and they are not yet ready to be initiated on antiretroviral therapy.

However, once their body shows signs of being unable to adequately control the virus and their

CD4+ count falls below a certain threshold, they are initiated on treatment and are no longer

followed up in this specific cohort. Informative drop-out will be accounted for by using a statistical

technique called joint modelling, which aims to combine a longitudinal model, describing the CD4+

count or viral load evolution, to a survival model which accounts for time to informative drop-out.

This is important, as ignoring informative drop-out can lead to inaccurate statements about the

HIV markers, because those who drop out are weighted less in the study. Another problem occurs

when there are viral load observations which fall below the detection limit of the assay used to

quantify the measurement. This thesis will address this issue by using a parametric approach to

apply left-censoring to viral load.

1.1 The Human Immunodeficiency Virus

1.1.1 History

In 1981 the Centre for Disease Control (CDC), based in Atlanta, United States of America (USA),

published a report on a pattern of Pneumocystis carinii pneumonia that occurred in homosexual

men in Los Angeles (CDC, 1981). Around the same time a few aggressive cases of Kaposi Sarcoma,

usually a rare and benign cancer of the skin, mouth, gastrointestinal and respiratory tract, was

found in young homosexual men in New York (Hymes et al., 1981). Later this would be recognised

as Acquired Immune Deficiency Syndrome (AIDS). The CDC had set up a task force to investigate

these unusual events, which seemed to appear more and more. By the end of 1981, the first case

of AIDS was reported in the United Kingdom (du Bois et al., 1981). It seemed that AIDS was

an appropriate name because it was an acquired condition and not inherited. It was a deficiency

within the immune system which allowed opportunistic diseases to easily infect the host. It was

also seen as a syndrome with various manifestations instead of a single disease. Throughout 1982

and 1983 it became clear that this new disease was spreading through sex with infected people,

as well as blood transfusions and injectable drug use. In 1983, French scientist Luc Montagnier

and in 1984 American Robert Gallo, isolated what is now known as the Human Immunodeficiency

Virus (HIV) (Barre-Sinoussi et al., 1983; Marx, 1984).

After discovering a similar virus in a chimpanzee (Cohen, 2000; Gao et al., 1999), the Simian
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Immunodeficiency Virus (SIV), it has been generally accepted that HIV is a descendant of this

virus because of the close resemblance in genetic structure and biological properties. Other strains

of SIV have been found in other primate species and many theories exist on how the virus could

have crossed over to humans (Cohen, 2000; Hooper, 1999; Blancou et al., 2001). One such theory

proposes that SIV was transferred after humans hunted and killed infected primates, and the blood

from the monkeys or apes came into contact with cuts or wounds from the humans hunting them.

The issue remains a controversial one up to the present time.

1.1.2 HIV and the Human Body

The Human Immunodeficiency Virus (HIV) is a retrovirus that infects bodily fluids in humans and

remains in the immune cells in these fluids. HIV targets these immune cells in order to replicate,

killing them in the process. These immune cells, CD4+ cells and macrophages, play an important

role in the body’s immune system. The CD4+ cells are mature T helper cells, a type of white

blood cell, which expresses a surface protein CD4. T-cells cannot kill infected cells or invading

pathogens and without other immune cells, they cannot fight infection in the human body. Their

purpose is to activate and direct other immune cells which play a major role in fighting off disease.

Macrophages are another type of white blood cell within tissues and they are also known as `eater

cells ´since they remove dead cell material and pathogens. They also stimulate other immune cells

to respond to the pathogen and are vital to the regulation of immune responses. The CD4+ cells

are the primary entry point for HIV into the host. The virus attaches itself to the CD4 receptor

via its own surface protein when exposed to the CD4+ cells. The outer membrane of the virus

fuses to the cell membrane and the virus enters the CD4+ cell. Every retrovirus has a reverse

transcriptase enzyme which copies genetic information from ribonucleic acid (RNA) to deoxyri-

bonucleic acid (DNA). When attached to the CD4+ cell, the virus encodes the enzyme reverse

transcriptase and allows a DNA copy to be made from viral RNA. However, this process is prone

to error and accounts for the genetic variability that HIV is known for. The DNA molecule is then

transported to the nucleus where it is incorporated into human DNA. This proviral DNA can re-

main dormant for a long time or become active, especially when there is inflammation present. The

virus makes use of the host cell to replicate itself and destroys it, crippling the functionality of the

immune system. Hence this is why medical professionals rely on the CD4+ count to decide on the

state of the immune system and to decide when the patient needs to be initiated on HIV treatment.

There are three main routes of transmission of HIV, i.e. sexual, blood transfusions and mother-

to-child transmission. Majority of HIV infections are acquired through unprotected sex with an
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infected person. The transmission can occur through infected secretions coming in contact with

oral, genital or rectal membranes. Studies have shown that women are significantly more likely

to contract HIV through heterosexual intercourse compared to men (Padian, Shiboski and Jewell,

1991; European Study Group on Heterosexual Transmission of HIV, 1992). The presence of other

sexually transmitted infections increases the risk of contracting HIV through further sexual contact

(Fleming and Wasserheit, 1999).

If infected blood comes into contact with any open wound, HIV will be transmitted. Thus HIV is

easily spread through blood transfusions and intravenous drug use where infected blood is involved.

HIV transmission between a mother and infant can happen while pregnant, during childbirth, or

whilst breastfeeding. However, preventative antiretroviral treatment can be used by the mother to

protect the child from getting infected, such as Nevirapine which will be discussed below.

Within a few weeks of infection, there is a high level of replication in the blood that can ex-

ceed ten million viral particles per millilitre of blood (Abdool Karim, 2005). This rapid replication

of viral particles is followed by a decline of CD4+ cells in the body. However, after a few weeks the

body develops its own immune response to the HIV which stops the viral replication and the viral

load declines and the number of CD4+ cells increase again to levels which are near normal. Thus

infected individuals can remain asymptomatic for many years. However, it has been shown that

during this time in which the person is feeling well, the body destroys up to a billion HIV particles

and produces up to two billion CD4+ cells a day (Abdool Karim, 2005). The virus continues to

replicate, causing a gradual decline in CD4+ count, which in turn makes the individual susceptible

to various opportunistic diseases such as TB and pneumonia. This signals the onset of AIDS and

in the absence of treatment the immune system fails to protect the person from invading oppor-

tunistic infections and the viral load increases. The natural history of HIV is depicted in Figure 1.1

from DeFranco, Locksley and Robertson (2007). In the absence of treatment, the time from HIV

infection to AIDS diagnosis is between 5 and 10 years. Death will occur between eighteen months

and two years after the onset of AIDS (Abdool Karim, 2005). These figures came from studies

done in Europe and North America, and the natural history of HIV/AIDS in Africa is actually

shorter by one or two years (Abdool Karim, 2005). A healthy person has between 500 and 1500

CD4+ cells/µ` blood (Abdool Karim, 2005) or even higher, but if the CD4+ count falls to low

levels then the immune system can no longer fight disease properly. The CD4+ cells are counted

from a blood sample with a method called laser flow cytometry. Flow cytometry is a technique

used for counting, examining and sorting microscopic particles suspended in fluid. Through the

binding of monoclonal antibodies, which recognise specific surface structures on these cells, the
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Figure 1.1: Natural History of HIV

CD4+ cells are labelled with special fluorescent markers. This allows one to distinguish the CD4+

cells in the blood sample and they are counted while passing a detector.

The HIV-RNA (HIV ribonucleic acid) viral load measurement determines the amount of HIV

particles in the individual’s blood, the number of copies of HIV-RNA per millilitre blood. One

method that is used is a direct amplification of the viral load RNA, exactly defined multiplication

of the RNA copies in the sample, and is called the Polymerase Chain Reaction (PCR) technique.

Another method used is a high amplification of the measured signal (branched DNA assay, bDNA).

With development of such technologies, scientists have been able to achieve a lower detection limit

of 50 copies/m`. These are quite low numbers since, more than 30 000 viral copies/m` plasma is

regarded as a high viral load.

1.1.3 HIV Diagnosis

There are two diagnostic approaches when it comes to testing for HIV, i.e. detecting the virus

itself (rapid tests, ELISA) and detecting an immunological response to the virus, such as testing

for HIV antibodies. The choice of the diagnostic test depends on the situation. A very early

infection can only be diagnosed using tests that detect the virus, as the body would not have

developed antibodies or cellular responses yet to the virus. Common tests for detecting the virus

itself would include p24 antigen and PCR tests, and tests for detecting an immunological response

would be rapid antibody tests or Enzyme-Linked ImmunoSorbent Assay (ELISA). If someone had

to test PCR positive and antibody negative on a sample of blood taken on the same day then
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they would be considered in the process of seroconverting (i.e. developing antibodies) and thus

must have been infected recently. This stage of being antibody negative and PCR positive is

called the window period. The distinction between these two methods has been exploited to es-

timate incidence rates for HIV by several researchers, among them Kaplan and Brookmeyer (1999).

The p24 antigen is a protein that is part of HIV and as the virus replicates, more p24 is pro-

duced and can be detected in the blood. Thus PCR is used to test for the genetic material of the

virus itself. The process itself involves extracting and amplifying genetic material of an organism

and testing for it using an Nucleic-acid Amplification Testing (NAT). These can test for either

HIV-DNA or HIV-RNA. HIV-DNA is mainly used on newborn babies born to HIV positive moth-

ers, as the HIV-RNA from the mother might still be in the baby’s system and will give a false

impression of the status of the infant. PCR testing for HIV usually involves testing for HIV-RNA.

Tests for the virus itself would be able to detect an HIV infection much sooner than an antibody

test, and a PCR-RNA test would produce a positive test result within 2 to 3 weeks after infection

(Abdool Karim, 2005).

Antibody tests are the most common test used to determine whether someone has HIV, as it

is also the least expensive in some cases. The test determines whether a person has developed

specific antibodies against HIV. Rapid antibody tests are available that can deliver a result in

under 30 minutes and are therefore used in the public clinic setting when testing a patient for HIV.

The ELISA antibody test may take a few days to produce results, but it is more accurate as it is

sensitive and reliable. An antibody test will produce a positive result after 6 weeks of infection.

1.1.4 Treatment of HIV

With the CD4+ count at dangerously low levels, an infected person’s immunity is compromised

and this person becomes prone to acquiring opportunistic infections, such as Tuberculosis, Cryp-

tococcal Meningitis, Kaposi’s Sarcoma, Peripheral Neuropathy, etc. The best way to prevent

these opportunistic infections is to improve the level of immune function through highly active an-

tiretroviral therapy (HAART), a combination of three or four different antiretroviral (ARV) drugs.

When ARVs were first developed and used to treat HIV, only one drug was prescribed as treat-

ment. Later, as different ARVs were developed and the medical community realised that patients

were developing resistance to these ARVs, they started prescribing three or four concurrent ARVs

as treatment and found this to be more effective in controlling HIV. HAART has now become

standard treatment. Today the terms HAART and ARVs are used interchangeably to refer to HIV
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treatment. The main aim of HAART is to delay or prevent the progression to AIDS and death

of those infected with HIV by suppressing and slowing down the replication of the virus. HAART

maintains the reproductive number (Anderson and May, 1991) of the viral population below a

threshold that cannot allow the viral population to increase and dominate. The World Health

Organization (WHO) have recommended guidelines as when to start antiretroviral therapy (Panel

on Antiretroviral Guidelines for Adults and Adolescents, 2008). Unfortunately, if a person is at an

advanced stage of HIV/AIDS, when the CD4+ count is less than 50 cells/µ`, then starting therapy

would not be always successful. Once an HIV infected person initiates HAART, he or she has to

take it for the rest of his or her life in order to control the virus.

There are different opinions on when HAART therapy should be initiated. Since the therapy

will have to be continued for the rest of the infected person’s life and thus many years, it is not

advisable to start HAART immediately after testing HIV positive. Another reason for postpon-

ing treatment until it is absolutely necessary, is that most of the ARV drugs have side-effects.

There are some official guidelines regarding the initiation of HAART therapy. In particular, the

US Department of Health and Human Services (Panel on Antiretroviral Guidelines for Adults and

Adolescents, 2008) recommend that HAART should be started if someone has an AIDS-defining

illness or if their CD4+ count falls below 350 cells/µ`. They also state that certain groups of peo-

ple should be initiated on HAART regardless of their CD4+ count, for example pregnant women,

patients with HIV-related nephropathy (kidney disease) or patients co-infected with hepatitis B

virus. Guidelines for initiating therapy can differ between countries. In South Africa, the criteria

for initiating HAART, according to the National Department of Health, is that a person must

either have a CD4+ count under 200 cells/µ` or a WHO stage IV, regardless of the CD4+ count

(National Department of Health South Africa, 2004). In 1990 the World Health Organization

(WHO) developed a staging system for people infected with HIV. This system uses conditions and

infections to classify someone with HIV into a particular stage, ranging from stage I to IV. The

staging increases as the severity of the diseases increases with stage IV corresponding to full-blown

AIDS (WHO, 1990).

There are three broad types of antiretroviral drugs that have been developed:

� Nucleoside Reverse Transcriptase Inhibitors (NRTI), such as Zidovudine (AZT) or Lamivu-

dine (3TC), which mimics the natural building blocks of DNA and act as chain terminators.

� Non-nucleoside Reverse Transcriptase Inhibitors (NNRTI), like Nevirapine (NVP) or Efavirenz

(EFV), which bind directly to the enzyme reverse transcriptase and inhibits its activity; and
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� Protease Inhibitors which prevents cleavage of viral proteins resulting in the production of

immature viral particles.

Since the introduction of HAART, there has been dramatic decrease in rates of mortality due to

HIV/AIDS. It has changed the perceptions of the HIV/AIDS epidemic from it being viewed as a

death sentence to be seen as just a manageable chronic illness.

A main concern in the treatment of individuals with HAART is the fact that the HIV has the

characteristic ability to mutate and develop resistance to the drugs. Another reason why initi-

ation of ARV therapy is delayed, until deemed necessary, is to decrease the chances of someone

developing resistance to treatment. The mutation of HIV and resistance to antiretroviral therapy

threatens the usefulness of the treatments available on the market. Although HAART is able to

control viral replication, it cannot completely eradicate HIV which persists in the host cells. This

storage of infected cells allows the virus to replicate when HAART is discontinued or when the

therapy can no longer suppress the virus.

Currently new treatments are being studied, the most advanced of those are entry inhibitors

which prevent the interaction between the virus and the host cell. These class of drugs will be par-

ticularly useful in preventative agents such as microbicides and pre-exposure prophylaxis (PrEP).

In HIV research, microbicides is a substance used vaginally or rectally to reduce the infectivity and

replication of HIV and other sexually transmitted diseases. It can come in various forms, including

gels, creams, sponges, rings or suppositories. PrEP is the long term use of an oral antiretrovi-

ral treatment for HIV prior to exposure, which is already being implemented in mother-to-child

transmission of HIV. Currently studies are being done with PrEP in healthy adults to determine

whether it is protects against HIV acquisition.

1.1.5 Types of HIV

There are two main types of HIV, namely HIV-1 (including three lineages called the M, N, and

O groups) and HIV-2 (with three lineages A, B and G). The viruses in the HIV-1 M group are

mainly responsible for the AIDS epidemic. The HIV-1 M group is divided further into 11 subtypes

(A1, A2, B, C, D, F1, F2, G, H, J and K). Figure 1.2 (Kuiken et al., 1999) offers a graphical

representation of some of the different HIV subtypes that have been classified. HIV-1 subtype C

is the virus that dominates the epidemic in South Africa, as well as in Nepal and India, and in

2000 accounted for 47% of all HIV infections in the world (Osmanov et al., 2002). Studies have

shown that subtype C dominates the HIV infections in South Africa with one study showing a
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Figure 1.2: HIV Subtypes

92% prevalence of subtype C (Van Harmelen et al., 1999). HIV-2 is less harmful and is restricted

to West Africa. HIV-1 subtype B is dominant in the Americas, Europe, Japan, Thailand and

Australia, while subtype D is limited to East and Central Africa. Figure 1.3 is from Osmanov et

al. (2002) and shows the prevalence of HIV-1 subtypes in 2000. A study presented in 2007 found

that women infected with HIV-1 subtype D in Kenya had more than double the risk of death

compared to women infected with HIV-1 subtype A over six years (Baeten et al., 2007). Another

study of sex workers in Senegal found that women infected with HIV-1 subtype C, D or G were

more likely to progress to AIDS within five years of infection compared to those infected with

subtype A (Kanki et al., 1999). Thus there are different subtypes of HIV which have been shown

to be more virulent then other subtypes.

1.1.6 Markers for HIV

CD4+ cell count provided the first reliable marker for disease progression since it gives an indica-

tion of how the immune system is doing. The viral load is also a reliable marker as it is the most

important indicator for the effectiveness of HAART. Both these markers are the best available

predictors of progression to disease and death (Lyles et al., 2000). The aim of HAART is to lower

the viral load in the infected person’s blood to a point where the virus is undetectable and in turn,

allow the CD4+ cells to increase and the immune system to recover. Thus reduction of viral load
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Figure 1.3: HIV-1 subtype prevalence in 2000

is associated with a delay of disease progression and lower rates of transmission. However, if a

person’s viral load is undetectable, it does not mean that he or she no longer has the virus. Rather,

it means that the virus is under control and the individual would have to be on HAART for the rest

of his or her life. Newer assays lead to much lower detection limits of the viral load. An increase

in CD4+ count and a decrease in viral load, a suppression of viral load below 50 copies/m` are

standard endpoints of HAART trials. However, it should be noted that these surrogate markers

do not truly represent clinical outcomes.

The current thesis is aimed at applying statistical methods useful in understanding the evolu-

tion of CD4+ count and viral load for newly infected individuals, before they need to be initiated

on HAART. Such work is important because it provides investigators with a tool to understand

the dynamics of HIV/AIDS before and after HAART initiation.

A review of publications on acute HIV infection and joint modelling will be follow in Section

1.2 and an exploratory analysis on the data used for this thesis is described in Chapter 2. The
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theory on the statistical methods used will be covered in Chapters 3 and 4, while the application

will be in presented in Chapter 5. Finally the conclusion and future work will be discussed in

Chapter 6.

1.2 Literature Review

1.2.1 Acute HIV Infection

Currently there are not many studies aimed at acute HIV infection. Many HIV studies look at

treatment, disease progression, opportunistic infections and genetic factors influencing HIV acqui-

sition and progression. It is difficult to study acute HIV infection for logistical reasons. Individuals

need to be recruited early enough after acquiring HIV to make sure they are still in the acute in-

fection stage of the disease. Thus their date of infection needs to be known and the only effective

way of doing this is to run large cohort studies following HIV negative subjects at risk of getting

HIV, testing them regularly and study the subjects who acquire HIV.

Goujard et al. (2006) followed 552 patients who were enrolled into the French PRIMO cohort

during primary HIV infection and majority of the patients were male (80.8%). Patients were

enrolled if they had become HIV infected less than 6 months prior to enrolment. Primary HIV

infection was diagnosed with one of the following criteria: (i) having an incomplete Western Blot

result (with the absence of anti-p68 and anti-p34), (ii) a positive HIV-RNA test result and a neg-

ative ELISA (antibody test) result or (iii) an interval of less than 6 months between last negative

and first positive ELISA.

Goujard et al. (2006) estimated date of infection as either the date of the incomplete Western

Blot result minus one month, or the midpoint between last negative and first positive ELISA. If

the patient had experienced symptoms of HIV seroconversion (and subsequent tests later proved

a positive HIV diagnosis), then the date of infection was estimated to be 15 days prior to onset of

the symptom(s). Patients were ARV treatment näıve and were followed for a median of 30 months

(interquartile range 16 to 54 months). Clinical and laboratory investigations were performed at

months 1, 3, 6 and six-monthly thereafter. Goujard et al. (2006) analysed the risk factors associ-

ated with disease progression, which they defined by the occurrence of death or an AIDS defining

illness or event. Disease progression was also defined as a patient having a CD4+ count mea-

surement of less than 350 cells/µ` after 3 months of follow-up. This value was chosen because

it is the threshold which is recommended at which ARV treatment should be initiated (Panel on
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Antiretroviral Guidelines for Adults and Adolescents, 2008). Goujard et al. (2006) found that low

initial CD4+ count and high viral load are predictive of rapid disease progression and their conclu-

sion was that HIV infected patients will benefit from regular clinical and immunological monitoring.

Lyles et al. (2000) looked at the Multicenter AIDS Cohort Study (MACS), which is an ongo-

ing study and at the time of their analysis had a total of 5622 homosexual or bisexual men. Of

these, 3427 were HIV antibody negative at baseline and 511 of the 3427 men seroconverted dur-

ing study follow-up. The MACS cohort enrolled men from centres in four US cities and they

were followed semi-annually. Physical examinations, laboratory testing and questionnaires were

administered at each visit. There were 269 of the 511 men who fulfilled the criteria which Lyles

et al. (2000) set, which was to have at least 2 plasma specimens after seroconversion available.

All available samples at the last negative and the first positive visits and for 2 years thereafter,

were assayed for viral load. Beyond 2 years after the first positive visit, one sample per year from

each participant was assayed. The total number of samples in which viral load was measured for

these 269 men was 2527 and this stretched over a period of 10 years after seroconversion. For

90% of the men, the dates of their last negative and first positive HIV test result was less than

7 months apart. According to Lyles et al. (2000) the last negative and the first positive visits

took place on average at -3 and +3 months from seroconversion. Lyles et al. (2000) described the

association between CD4+ count and viral load at the first positive visit using a multiple linear

regression model. They also described trends in viral load and CD4+ count over time by fitting

random-effects linear models, providing estimates of the average linear marker trajectories over

time, while taking into account repeated measurements. Since the data was restricted to samples

taken prior to 1990, none of the men were on ARV treatment at the time the data was analysed,

thus they could model the natural history of HIV over this long period of time.

Lyles et al. (2000) found in this specific cohort that CD4+ count decreased by 249 cells/µ` per

year within the first 3 years of HIV infection. Within the same time period, viral load increased by

0.18 log copies/m` per year. Between 3 and 7 years after seroconversion, CD4+ count decreased

at a slower rate of 89 cells/µ` per year while viral load continued to increase at a rate of 0.09 log

copies/m` per year. After 7 years of HIV infection, CD4+ count continued to decrease at a similar

rate of 87 cells/µ` per year. Interestingly, their model showed that viral load was decreasing in the

period after 7 years after seroconversion with a rate of 0.01 log copies/m` per year. However, they

found that the slope during the 3 years prior to progression to AIDS was 0.14 to 0.20 log copies/m`

per year and the estimated level at the time of progression to AIDS was 5.2 to 5.3 log copies/m`.

Lyles et al. (2000) and the MACS cohort provided information on the CD4+ count and viral load

12



levels and slopes in the first few years after HIV infection, specifically on men who were not on any

ARV treatment. Lyles et al. (2000) depicted the average viral load and CD4+ count trajectories

in the first 3 years after the first HIV-seropositive visit for 218 participants a plot as shown in

Figure 1.4. The first HIV-seropositive visit was approximately 3 months after seroconversion and

they only included measurements before 1 January 1990 to avoid potential confounding effects of

antiretroviral therapy.

Figure 1.4: Average trajectories of viral load and CD4+ count during the first 3 years after the
first HIV-seropositive visit (MACS Cohort)

1.2.2 Joint Modelling

This thesis also investigates the joint modelling approach of Henderson, Diggle and Dobson (2000)

which enables one to combine longitudinal and survival data. Henderson, Diggle and Dobson

(2000) applied the method to data from a clinical trial on the treatment of schizophrenia. The

interest was in the effect of the three treatments and this effect was measured with a particular

scoring system called the Positive And Negative Symptom Score (PANSS), a measure of psychiatric

disorders. The PANSS score was measured at entry into the study (-1), baseline (0), 1, 2, 4, 6 and

8 weeks. Of the 523 patients on the trial, over a third dropped out because of `inadequate response

´and these were treated as informative drop-outs. Their joint modelling strategy was based on

the specification of two linked latent Gaussian processes. They used a linear random effects model
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for the longitudinal PANSS data and the EM estimation algorithm was their preferred method of

estimation. They used the semi-parametric Cox regression model to fit the informative drop-out

process. They also used various models for the latent Gaussian processes, looking at different types

of associations between the longitudinal and time-to-event models.

Henderson, Diggle and Dobson (2000) found that, depending on the specification of the latent

Guassian random processes, there can be difficulties with identifiability and sensitivity. They

found several models to be a good fit to the data, if the patients do not drop out, but the models

give very different results for the predicted drop-out-free population profiles.

Guo and Carlin (2004) revisited the method proposed by Henderson, Diggle and Dobson (2000).

They looked at jointly modelling longitudinal and survival data from an AIDS clinical trial which

compared two ARV treatments, Didanosine (ddI) and Zalcitabine (ddC). This trial specifically

looked at patients who had failed or were intolerant to another antiretroviral treatment, Zidovu-

dine (AZT). Their longitudinal outcome was CD4+ count, to which they applied a square root

transformation in order to ensure normality. These CD4+ counts were measured at irregular in-

tervals, i.e. at study entry and at 2-, 6-, 12- and 18-month visits. Time to death was also recorded

and deaths were deemed as informative drop-outs. They had various explanatory variables in their

model, namely current ARV treatment (ddI or ddC), gender, previous opportunistic infection or

AIDS diagnosis at study entry and AZT failure or intolerance. They used a linear random effects

model for square root CD4+ count, and both the exponential survival model (parametric) and the

Cox proportional hazards model (semi-parametric) to analyse the time-to-event data. They fitted

the models separately and then jointly and then proceeded to fit the joint model using Bayesian

methods. Guo and Carlin (2004) found that the joint analysis increased the estimated median

survival times by approximately 50% due to the model’s correct accounting for the correlation

between the longitudinal and survival data.

Pantazis and Touloumi (2005) also modelled AIDS data, and specifically fitted a bivariate re-

peated measures model to CD4+ count and viral load using a random effects model. They also

added piecewise linear effects for the time component as they found that there was a sharp decline

in viral load with the first year of seroconversion and slow increase thereafter. They adjusted for in-

formative drop-out, which was due to disease progression or death, using a parametric log-normal

survival model. The results of their analysis on simulated data confirmed that in the presence

of informative drop-out, conventional analyses such as random-effects models lead to biased es-

timates. The method they applied performed well, giving model estimates with negligible bias.
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Their two independent models (adjusting for informative drop-out but not for correlated markers)

gave slightly larger biases for the fixed effects than the bivariate model, but a much smaller bias

compared with the two independent or the bivariate random effects models.

Thiébaut et al. (2005) looked at the data from the CASCADE project, which followed a group of

994 patients on HAART. They restricted their analysis to 494 patients who had a CD4+ count

and viral load measurement done at treatment initiation and at least one measurement thereafter.

They analysed the CD4+ count and viral load in a bivariate mixed model, with two linear piecewise

effects which allowed them to model the rate of change of the HIV markers in the first 1.5 months

and after 1.5 months. They accounted for left-censoring of viral load measurements, using a para-

metric approach, as 57% of the viral load measurements were below the lower limit of detection.

Thiébaut et al. (2005) used joint modelling to combine the longitudinal bivariate mixed model to

a log-normal survival model in order to take into account the informative drop-out. They found

that modelling the longitudinal model as bivariate, i.e. having both CD4+ count and viral load in

the outcome variable, had changed the fixed effects significantly compared to just modelling each

of these HIV markers in a univariate model. It was also useful that the bivariate model provided

estimates of the correlation between CD4+ count and viral load throughout follow-up. Thiébaut

et al. (2005) also found that the piecewise modelling was useful in the interpretation of the HIV

markers, but they found its major drawback was the inability to detect a viral rebound. This would

certainly be the case as simple piecewise modelling requires pre-specified intervals. However they

admit that in their case it would probably not have been possible to witness this viral rebound

because of the restrictions they had placed on the data they analysed. With regards to their joint

modelling, they found a significant correlation between the random slope in CD4+ count and time

to treatment modification. In their models accounting for informative drop-out, the latter slope

of CD4+ count was lower compared to the models where informative drop-out was not modelled.

Similarly in the viral load model which accounted for both drop-out and left-censoring, the slope

for viral load was actually predicted to be lower compared to the crude model not accounting for

left-censoring or drop-out.
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Chapter 2

Exploratory Data Analysis

2.1 CAPRISA 002: Acute Infection Study

In August 2004, the Centre for the AIDS Programme of Research in South Africa (CAPRISA)

initiated a cohort study, enrolling high risk HIV negative women (Van Loggerenberg et al., 2008).

The objective of the CAPRISA 002: Acute Infection (AI) Study was to describe demographic

and clinical characteristics, and measure HIV incidence of a cohort at high risk for HIV infection

in South Africa. A total of 245 women were enrolled, the mean age of the cohort being 34.2

years (range 18-58), and majority of the women (78.8%) were self-reported sex workers (Van Log-

gerenberg et al., 2008). Various clinical assessments and behavioural questions were asked during

enrolment into the study and CD4+ count measurements of these HIV negative women were also

measured. These women were followed monthly for up to two years and received regular clinical

examinations, including monthly HIV tests. During this follow-up period, 245 women completed

4784 visits, and from these, 28 women acquired HIV infection. A second phase of the study followed

these newly infected individuals closely to determine clinical characteristics of HIV during early

infection. Thirty four acutely infected women from other CAPRISA research cohorts in urban and

rural were enrolled into this phase of the study, bringing the total of acutely infected individuals

up to 62. The mean age of the 62 acutely infected women was 28.1 (SD=9.08). The acutely HIV

infected women were accrued over approximately four years with the first HIV infected woman en-

rolled into this phase of the study in October 2004 and the last woman enrolled in September 2008.

One of the criteria for enrolling these HIV infected women into the second phase of the AI study

was that the time between last negative and first positive HIV test had to be no more than 5 months

apart. This was to ensure that participants are enrolled as early as possible into their infection to
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be classified as acutely infected. Since each woman had a last negative and first positive test date

their possible date of infection could only be approximated. For the purposes of this thesis the

midpoint method was used to determine the possible date of infection assuming event times are

uniformly distributed between the two dates. Participants who tested HIV negative on an antibody

test and positive on a PCR on the same day, were those who had recently been infected and they

have not developed antibodies yet and were still in their window period. Their date of infection

was estimated to be 14 days prior to when they tested antibody negative and PCR positive. There

were 17 women who tested PCR positive and antibody negative. Estimating the date of infection

allows for analysis of the natural history of HIV with regards to the surrogate markers (CD4+

count and viral load), since time post infection can be calculated and the evolution of the disease

can be described. Of course a more precise way of analysing such data would be to use methods

which take into account the uncertainty in the date of infection data, such as interval censoring or

the measurement error approach (Carroll et al., 2006). However, this is not the aim of the current

study.

After identifying the women as HIV positive they were enrolled into the second phase of the

study and were followed up thereafter weekly for three weeks, fortnightly for two months, monthly

for nine months and from there onwards quarterly until the end of the study. At each visit various

clinical examinations were performed, including measuring CD4+ count and viral load. It is im-

portant to note that these women were not treated for HIV and thus were ARV näıve. The reason

for this is that these women, being acutely infected with HIV, are not yet eligible for HIV treatment.

Since the participants had their CD4+ count regularly measured, their disease progression could

be assessed. When their CD4+ count fell below 350 cells/µ` for more than two consecutive visits,

they would be referred to a public government clinic for ARV treatment. However, these partici-

pants would only start HAART once their CD4+ count falls below 200, according to South African

government policy (National Department of Health South Africa, 2004). These participants would

still be followed up in the AI study and only terminated once they initiate ARV therapy. These

terminations would be classified as informative drop-outs since their exit from the study is related

to the outcome that will be analysed. Out of the 62 women, 11 (17.7%) had to be initiated on

treatment and the median month post infection these women were at initiated on ARV therapy

was 27.5 months (interquartile range 15 - 40 months). Figure 2.1 shows the Kaplan-Meier graph

of time to ARV initiation from date of infection. Participants who were not initiated on treatment

were censored at their last HIV positive follow-up visit.
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Figure 2.1: Kaplan-Meier graph of time to ARV initiation

2.2 Viral Load and CD4+ Count Data

Out of the 245 HIV negative women who were enrolled initially, 28 seroconverted and three of

these 28 women were actually HIV positive at entry into the study, as PCR tests later showed.

Hence, only 25 women were truly negative at study entry and had a healthy (HIV negative) CD4+

count. The HIV infected women in the second phase of the study were followed for a median of

33.2 months (range 2.2 to 53.6 months). At entry into the second phase of the study, the women

had been infected for a median of 4.5 weeks (range 1 to 15). For the 28 women who were enrolled

into the original HIV negative cohort, this time post infection at the second phase was a mere 2

weeks (range 1 to 4), illustrating how soon after being infected with HIV that these women were

studied. There was a total of 1384 viral load and 1378 CD4+ count measurements taken at various

time points during follow-up. A further 62 viral load measurements were assumed to be 0 at week

0 when participants were still HIV negative (giving a total of 1446 viral load measurements). By

plotting the CD4+ count and viral load observations over time post infection a pattern in the HIV

markers can be established and the effect of HIV among those newly infected can be studied.
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Figure 2.2: Scatter plot of all CD4+ count (cells/µ`) measurements with a Loess smoothing
regression line

Figure 2.2 and 2.3 illustrates the actual CD4+ count and viral load measurements plotted over

weeks post infection with a Loess smoothing line overlaid in each. Note that week 0 represents

an HIV negative state. The CD4+ count plot (Figure 2.2) shows an initial drop followed by a

return to near stable level. However, the CD4+ count never reaches its initial HIV-uninfected

state. The viral load plot (Figure 2.3) indicates a sharp rise followed by a drop to a near stable

state as expected for HIV infected individuals who are still in the acute phase of the disease.
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Figure 2.3: Scatter plot of all viral load (log copies/m`) measurements with a Loess smoothing
regression line

Table 2.1 and 2.2 show the distribution of the number of repeated measures for CD4+ count and

viral load respectively. There were a total of 1378 CD4+ count and 1446 viral load measurements

for 62 participants. From these tables it can be seen that 98.4% (61/62) of individuals had 11

or more CD4+ count measurements, with 79.0% (49/62) of individuals having at least 20 CD4+

count measurements. Table 2.2 shows that again, 79.0% (49/62) of individuals had at least 20

viral load measurements.
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No. of observations Number of % of subjects Total number of

per subject subjects (cumulative %) observations (%)

4 1 1.6 (1.6) 4 (0.3)

11 1 1.6 (3.2) 11 (0.8)

14 1 1.6 (4.8) 14 (1.0)

15 2 3.2 (8.1) 30 (2.2)

17 2 3.2 (11.3) 34 (2.5)

18 4 6.5 (17.7) 72 (5.2)

19 2 3.2 (21.0) 38 (2.8)

20 4 6.5 (27.4) 80 (5.8)

21 5 8.1 (35.5) 105 (7.6)

22 5 8.1 (43.5) 110 (8.0)

23 4 6.5 (50.0) 92 (6.7)

24 2 3.2 (53.2) 48 (3.5)

25 3 4.8 (58.1) 75 (5.4)

26 6 9.7 (67.7) 156 (11.3)

27 4 6.5 (74.2) 108 (7.8)

28 5 8.1 (82.3) 140 (10.2)

29 5 8.1 (90.3) 145 (10.5)

30 3 4.8 (95.2) 90 (6.5)

31 3 4.8 (100.0) 93 (6.7)

Table 2.1: Repeated Measurements of CD4+ count

2.2.1 Individual Profiles

Figures 2.4 and 2.5 illustrate the actual CD4+ count and viral load measurements for each par-

ticipant over time. There is clearly a lot of variability between individuals throughout follow-up

in both CD4+ count and viral load. These graphs also show that there is much variability within

individuals. In Figure 2.4 it can be seen that a decrease in CD4+ count is experienced after HIV

infection, but again with evident variability in this drop in CD4+ count between individuals. It

is important to note that CD4+ count was only measured within the HIV negative women at

enrolment into the study and it is assumed that this was their healthy CD4+ count the day before

infection. Over the same time interval in Figure 2.5, these women experienced a sharp rise in viral

load, assuming that viral load is zero at week 0.
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No. of observations Number of % of subjects Total number of

per subject subjects (cumulative %) observations (%)

4 1 1.6 (1.6) 4 (0.3)

11 1 1.6 (3.2) 11 (0.8)

14 1 1.6 (4.8) 14 (1.0)

15 2 3.2 (8.1) 30 (2.1)

17 2 3.2 (11.3) 34 (2.4)

18 4 6.5 (17.7) 72 (5.0)

19 2 3.2 (21.0) 38 (2.6)

20 4 6.5 (27.4) 80 (5.5)

21 5 8.1 (35.5) 105 (7.3)

22 5 8.1 (43.5) 110 (7.6)

23 4 6.5 (50.0) 92 (6.4)

24 2 3.2 (53.2) 48 (3.3)

25 3 4.8 (58.1) 75 (5.2)

26 6 9.7 (67.7) 156 (10.8)

27 4 6.5 (74.2) 108 (7.5)

28 5 8.1 (82.3) 140 (9.7)

29 5 8.1 (90.3) 145 (10.0)

30 3 4.8 (95.2) 90 (6.2)

31 3 4.8 (100.0) 93 (6.4)

Table 2.2: Repeated Measurements of viral load

Four participants’ CD4+ count and viral load data are depicted in Figure 2.6. The solid line

represents viral load and the dotted line, CD4+ count. Participant 1 in Figure 2.6 (a) is a rapid

progressor as her CD4+ count is consistently below 350 cells/µ`. She has been initiated on ARVs.

In contrast, Participant 5 in Figure 2.6 (b), who maintains a high CD4+ count and a low viral

load is controlling the retro virus very well, is considered to be a slow progressor. Participant 9 in

Figure 2.6 (c) is one of the infected who was initiated on HAART as her CD4+ count fell below

200 cells/µ` and this is why there is not as much CD4+ count and viral load data as she had left

the study for treatment. Participant 11 in Figure 2.6 (d) represents a typical case, and her data

clearly shows the interactive relationship between viral load and CD4+ count, however her latest

measurements show she is progressing towards AIDS and she has also been initiated on HAART.
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Figure 2.4: CD4+ count (cells/µ`) for the first year of infection, each line representing an individual

Figure 2.5: Viral load (log copies/m`) for the first year of infection, each line representing an
individual
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Figure 2.6: Examples of four individual profiles for viral load and CD4+ count

2.2.2 Basic Descriptive Statistics

Using time post infection, the closest measurement to months 1, 3, 6, 9, 12, 15, 18 and 24 were

determined and basic summary measures for CD4+ count and viral load were calculated at these

months post infection. Table 2.3 shows a summary of these basic statistics at the time points

indicated.

From the box plots in Figure 2.7 and 2.8, it is seen how CD4+ count and viral load change at the

specified time points after infection. Note that month 0 represents pre-infection, i.e. HIV negative.

These box plots also show that the data, especially viral load, is not normally distributed as the

mean and median measures at each time point tend to be quite different. The two sets of box plots

both suggest variables which are clearly skewed to the right. The normality assumption can also

be checked by plotting a histogram of CD4+ count and viral load separately. These are presented

in Figures 2.9 and 2.10 for CD4+ count and Figures 2.11 and 2.12 for viral load.
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Time CD4+ count Viral Load

n Mean (SD) Median (Range) n Mean (SD) Median (Range)

Pre-Infection 25 993.1 (366.75) 969 (424 - 2231) - - -

1 Month Post Inf 19 574.7 (210.32) 557 (275 - 989) 21 162 118 (217 418) 55 900 (547 - 698 000)

3 Months Post Inf 62 555.0 (223.6) 512 (242 - 1358) 62 123 954 (277 022) 39 100 (<400 - 1 890 000)

6 Months Post Inf 59 507.0 (218.18) 431 (206 - 1378) 59 85 201 (146 059) 21 100 (<400 - 750 000)

9 Months Post Inf 59 494.1 (266.48) 404 (182 - 1411) 59 57 092 (79 238.) 20 500 (<400 - 310 000)

12 Months Post Inf 58 461.6 (181.02) 404 (188 - 1030) 58 105 516 (275 576) 22 000 (<400 - 1 680 000)

15 Months Post Inf 50 476.8 (204.64) 435 (94 - 1110) 50 78 437 (222 601) 15 100 (<400 - 1 500 000)

18 Months Post Inf 43 483.4 (224.73) 416 (210 - 1240) 43 61 160 (117 917) 22 800 (<400 - 689 000)

24 Months Post Inf 35 456.5 (201.83) 423 (153 - 979) 35 62 764 (116 221) 21 100 (<400 - 541 000)

Table 2.3: Basic summary statistics of CD4+ count and viral load at pre-infection, and months 1,

3, 6, 9, 12, 15, 18 and 24 post infection

Figure 2.7: Boxplot of CD4+ count (cells/µ`) by months post infection for the first year of infection

The histogram of actual CD4+ count shows non-normality with a right-skewed histogram. By

applying a square root transformation to CD4+ count, the data is normalised, as can be seen in

Figure 2.10. This justifies the use of square root CD4+ count rather than actual CD4+ count as

the response variable in the modelling processes in Chapter 5.
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Figure 2.8: Boxplot of viral load (copies/m`) by months post infection for the first year of infection

Figure 2.9: Histogram of CD4+ count (cells/µ`)

Figure 2.11 is the histogram of all viral load measurements. The first histogram (a) was limited to

viral load below 2 million copies/m` since the nine measurements that were above this threshold

skewed the histogram in such a way that it was difficult to discern what was going on. Figure

(b) looks more closely at viral load below 10 000 copies/m`. A spike around 400 copies/m` can
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Figure 2.10: Histogram of square root of CD4+ count (cells/µ`)

Figure 2.11: Histogram of viral load (copies/m`), including only viral load below 2 000 000
copies/m` (a) and then viral load below 10 000 copies/m` (b)

be seen in these histograms, as this was the lower detection limit of the viral load assays. With

viral load being extremely right skewed, a log transformation was performed to normalise the

data. Looking at the histogram of log transformed viral load, the data appears more normal after

transforming it. However, there is a spike around 2.7 log copies. This is again due to so many viral

load measurements being 400 copies/m` (which is equivalent to 2.6 log copies/m`), because of the

lower detection limit of the viral load assay. This highlights the importance of left-censoring. Of

the 1384 viral load measurements which were taken at various time points for different individuals

throughout the study, 71 measurements were undetectable, accounting for 5.1% of the viral load

data.
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Figure 2.12: Histogram of viral load (log copies/m`)

2.2.3 Semi-variograms

Figure 2.13: Semi-variogram of square root transformed CD4+ count

Figure 2.13 is the semi-variogram of all the CD4+ count measurements. Since the Loess regression
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line does not converge to zero as time approaches zero this is an indication that measurement

error is present in the data. Since the slope of the Loess line is not zero there is indication of

serial correlation. Lastly, the Loess line does not reach the process variance of 21.17 cells/µ` (the

horizontal line) and this is further indication of the presence of random or subject-specific effects.

Figure 2.14 is the variogram of all log viral load measurements. The Loess regression line crosses

Figure 2.14: Semi-variogram of log transformed viral load measurements

the process variance of 1.18 log copies/m` (horizontal line), which indicates that there are no

random effects associated with viral load. It reaches zero as time approaches zero, implying zero

measurement error. The slope of this line varies over time and this could be an indication of serial

correlation.
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2.2.4 Sample Correlations

Because of the natural interaction between the immune system and the HIV virions, a correlation

between these two markers, CD4+ count and viral load, is expected.

Figure 2.15: Scatterplot of all viral load (on a log scale) and CD4+ count measurements

Figure 2.15 shows a negative correlation between viral load and CD4+ count. Hence, as viral

load increases, CD4+ count decreases, which is exactly what is expected given the relationship

between these two variables in the absence of treatment. The Pearson’s correlation coefficient

was -0.4514 (n=1378) and this was statistically significant (p-value (p)<0.0001). When looking at

the correlation between CD4+ count and viral load within specified four-weekly intervals, it can

be seen that the highest correlation is within the first four weeks of infection, with a correlation

coefficient of -0.6418 (p<0.0001). This explains the observed initial behaviour between the two

markers where viral load exhibits a sharp increase and decline while CD4+ count exhibits a sharp

decline and rebound a few weeks post infection. Figure 2.16 shows that the correlation between

CD4+ count and viral load is higher in the first four weeks of infection compared to all later time

periods. After the initial month of infection, the correlation between CD4+ count and viral load

drops almost 50% but remains significant in all intervals post infection (p<0.0001).
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Figure 2.16: Scatter plot of all viral load (on a log scale) and CD4+ count measurements, separated
by different intervals weeks post infection

2.3 Discussion

The CAPRISA 002: Acute Infection (AI) Study is a unique cohort since the women infected with

HIV are enrolled into the study early, followed intensely and monitored closely. When comparing

this cohort to the studies reviewed in section 1.2.1, the AI study proves itself to be invaluable data.

It is important to note the differences between the AI study and the other Acute Infection cohorts

(Goujard et al., 2006; Lyles et al., 2000). Although the PRIMO cohort described in Goujard et

al. (2006) is large (n=552), the AI study offers more precise estimates of infection dates. The

PRIMO cohort also follows HIV infected participants, but only implement clinical and laboratory

investigations at follow-up month 1, 3 and 6 (and six-monthly thereafter). From what can be seen
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in the AI cohort, the most important and interesting changes in viral load and CD4+ count occurs

within the first eight weeks post infection, with viral load peaking at approximately two weeks post

infection. The MACS cohort also follows participants after infection but again, samples are not

taken at such close and intense intervals. The participants enrolled into the AI cohort were followed

in CAPRISA 002 and other CAPRISA cohort studies and tested for HIV monthly. Because of this,

it is highly likely that a sample could be collected around two weeks post infection since they are

enrolled so early after getting infected. The same can be said when comparing the AI study to the

MACS cohort (Lyles et al., 2000), which on average enrolled participants around 3 months post

infection. Another difference to note is that the AI cohort is infected with HIV-1 subtype C, as

opposed to the American or European cohorts which are mainly HIV-1 subtype B. This is very

important since it is generally thought that subtype C is a more virulent strain.
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Chapter 3

Mixed Models

3.1 Linear Mixed Model

Consider the normal linear regression model

Y = Xβ + ε (3.1)

where Y is a vector of observations from a continuous response or dependent variable and X is

the design matrix of the independent variables. The usual assumptions are that ε is normally

distributed with a mean of zero and variance σ2I, while β is a vector of fixed unknown regression

coefficients which explain the dependence of Y on the independent variables in X. The linear

regression model is used to construct a simple estimation method in order to predict the outcome

of interest and to test whether a given predictor variable in the model has a significant effect on

the outcome. In normal linear regression least squares estimation or maximum likelihood are both

used to obtain effect estimates. The model can be extended to include categorical explanatory

variables, giving rise to the general linear model. Suppose this model is fitted to data where there

are a number of categorical factors or variables which will contribute in explaining the response Y ,

with each factor consisting of a number of levels. It should be noted that each level of a factor can

have a different linear effect on the value of the dependent variable. If the interest was restricted to

the factor levels included only in this study, the model would be a fixed effects model. However, if

the levels of the factor in the data were randomly selected from a population of all possible factor

levels then the factor would be called a random effect. A model can contain both fixed and random

effects in order to explain the outcome and this would then be a Linear Mixed Model. The Linear
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Mixed Model has the following general form:

Y = Xβ + Zb+ ε (3.2)

where Z represents the design matrix for the random effects and b is the vector of the random ef-

fect coefficients. Thus model (3.2) has three discernible components, namely the fixed component

(Xβ), the random component (Zb) and the error components. In contrast, model (3.1) does not

explicitly model the random component hence the major distinction between the two. Including

random effects in the model is useful since it explains the excess variability in the dependent vari-

able that is not accounted for by the measured covariates. Readily available statistical software

such as SAS has a specific procedure, PROC MIXED, which can be used to specify the relationship

between the response Y and the levels of the random effects. If the covariance structure is not

specified, it assumes by default that the levels of the random effects are uncorrelated and have the

same variance. This model is explained in detail in sub-section 3.2.1.

In many clinical research studies, data for a continuous response are accrued repeatedly over

time. The linear mixed model extends naturally to accommodate repeated or longitudinal data

and expands on the general linear mixed model, allowing for the error terms and random effects

to be correlated and also allows for possible non-constant variability. Thus a complex covariance

structure for Y can be specified and still maintain the normality assumption. This makes it much

more flexible to model the mean of the dependent variable and its covariance structure and also

to model the relationship between the levels of the repeated effects. The model structure in (3.2)

was first formulated by Laird and Ware (1982).

The details of how the linear mixed model is derived follows in Section 3.2. The linear mixed

model is a general model which accommodates many linear models as a special case. One such

special case is the general linear longitudinal model which models data where a number of subjects

are followed over time or prospectively. The data from such a study is also known as repeated

measurements or longitudinal data. Clearly observations from the same individual are bound to

be more correlated than observations from two different individuals. Two ways to model such a

dependence is by either (1) modelling the correlation between the repeated measurements leading

to the Generalised Estimating Equation (GEE) approach of Liang and Zeger (1986) or (2) by

simply adding subject-specific effects in the form of random effects as in Laird and Ware (1982).

Data is considered longitudinal when the same response is repeatedly measured or observed on
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the same subject for a given number of time points, resulting in a vector of measurements per indi-

vidual. Because these measurements are repeatedly observed, the individual effect can be analysed

and assessed. This vector of measurements in this thesis is often denoted by Y and it is naturally

ordered by time. Thus such data is amenable to several, generally non-equivalent, extensions of

univariate models.

One of the aims of fitting a longitudinal model to a data set is to model how the response variable

evolves over time for each subject, taking into account several independent variables which affect

the response in some way. The effect of the independent variables can also be estimated and their

significance in the model can be determined. From a designed experiment consideration, in agri-

culture an individual or subject can be viewed as a whole plot and the measurement time occasions

within an individual sequence of observations as the split plots. Thus an individual effect is not of

prime importance and this effect can be viewed as a blocking factor which can be random or fixed

while the treatments applied at the split plots are of main interest and whose effects need to be

estimated more accurately. In this thesis the time evolution of the HIV disease, using CD4+ count

and viral load measurements, is of prime interest while at the same time accounting for individual

variability.

3.2 Modelling Longitudinal Data

Longitudinal data is unbalanced when the number of measurements for all subjects are not equal

and/or measurements are not taken at fixed time points. This is definitely the case in the CAPRISA

002: Acute Infection Study data since not all the participants have measurements taken at the

exact same time points in the study. In addition, information between two time points is unknown

because of the discrete nature on how the observations are taken. In such a case it should be clear

that some kind of incomplete data is being dealt with.

Some participants arrive late for their scheduled visits or do not arrive at all until the next study

visit. This results in missing data which presents an added complexity in modelling longitudinal

data. There are several suggested methods of modelling missing data (Molenberghs and Kenward,

2007; Molenberghs and Verbeke, 2005; Verbeke and Molenberghs, 2000). In the case of the AI

(Acute Infection) study, the phase II participants (those who are HIV positive), visit the clinic

every week after being infected and enrolled into the study, for 2 weeks, then attend bi-weekly for 2

months, and then monthly. They are followed-up for 2 years after seroconverting, until they reach

their end point in the study or until they drop out. Under such an intense visit schedule, some

35



participants are bound to be less adherent to the intended schedule leading to missing information.

There are different types of missing data.

Data can be missing completely at random (MCAR) meaning that when an observation is missing

it does not depend on observed (Y oi ) or missing (Y mi ) responses. On the other hand data can be

missing at random (MAR) meaning the probability of missing data is not related to any variable

that is unmeasured but the pattern of missing data is predictable from observed data (Y oi ). When

data is not missing at random (NMAR) then the missing data are not random and are related to

the values which are missing and possibly also related to observed responses.

Because of the data being unbalanced, it cannot be analysed using standard multivariate regression

methods and since there are repeated measures for each subject, both the subject-specific effects

as well as the effect of other measured covariates can be modelled. That is, both marginal and

random effects can be assessed. To derive the model, a two stage formulation is adopted for the

longitudinal data model (Verbeke and Molenberghs, 2000). In the first stage the vector of the

repeated measurements is summarized for each subject by a vector of estimated subject-specific

regression coefficients. Then in the second stage, multivariate regression methods are used to relate

the estimates to measured covariates. In other words, it will be demonstrated how model (3.2)

is derived. Since the information is not the same for all individuals, the appropriate statistical

methods need to be used to be able to recover inter-individual information in order to estimate

the fixed effects.

3.2.1 The General Linear Mixed Effects Model

The General Linear Mixed Model is an extension of the linear model in equation (3.1) to include

both fixed and random effects and further to accommodate both cross-sectional and longitudinal

data settings. The response vector of observations within an individual is assumed to be multi-

variate normal. The two stage formulation of such a model is presented below.

Stage 1

Let Yij denote the jth observation for the ith participant made at time tij , i = 1, 2, ..., N and

j = 1, ..., ni. The response vector Yi is an ni-dimensional vector of repeated measurements taken

from the ith subject. In the first stage of model building, the individual linear regression model

can be written as

Yi = Ziβi + εi (3.3)
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where Zi is a design matrix of dimension (ni× q), of known covariates, βi is a q-dimensional vector

of unknown subject-specific regression coefficients which are to be estimated and εi is a vector of

residual components εij , j = 1, ..., ni.

It is assumed that the components of εi are normally and independently distributed with a mean

vector of zero and a covariance matrix σ2Ini (where Ini is the identity matrix). This model describes

a specific regression model and in this way, modelling subject-specific effects.

Stage 2

In stage 2 model formulation, a multivariate regression model for the N regression vector param-

eters βi is given by

βi = Kiβ + bi (3.4)

is used to explain the observed variability between the subjects with respect to their subject-

specific regression coefficients βi, where Ki is a matrix of known covariates of dimension (q × p),

β is a p-dimensional vector of unknown regression coefficients and bi is a q-dimensional vector of

subject specific effects, where bi is assumed to be normally distributed with mean vector zero and

general covariance matrix D. It is assumed that bi ∼ N(0, D) where D is the variance-covariance

matrix of the random effects. Model 3.4 can be viewed as a means of pooling information from

the different subjects in order to estimate population-based regression parameters in β.

Finally, to complete the formulation, βi in (3.4) is substituted into (3.3) leading to the follow-

ing derivation.

Yi = Zi(Kiβ + bi) + εi

= Xiβ + Zibi + εi (3.5)

where Yi is a vector of responses from individual i of length ni generally assuming not all scheduled

measurements for an individual are necessarily available. The (ni × p) design matrix Xi = ZiKi is

the matrix of p known covariates, or fixed effects, measured alongside the response (assuming no

measurement error). The fixed effects are denoted by β, a p-dimensional vector corresponding to the

columns of Xi. The subject-specific effects (or random effects) are denoted by bi, a q-dimensional

vector corresponding to Zi (Note that q<p). The ni-dimensional vector εi is a vector of residuals

accounting for any unaccounted variation in the model. This means that further structure can be
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imposed on εi if there is evidence to do so, such as splitting εi further into a residual component

and serial correlation. The overall distributional assumptions are:

bi ∼ N(0, D), εi ∼ N(0,Σi) (3.6)

where D is the covariance matrix of the elements in bi and Σi is the covariance matrix of the

elements in εi. Most frequently the assumption Σi = σ2Ini is used such that in the absence of

or conditional on random effects, this assumption implies the components in Yi = (yi1, ..., yini)
′

measured at times ti = (ti1, ..., tini)
′ are independent. A somewhat unrealistic assumption. Model

(3.5) assumes that the vector of repeated measurements on each subject follows a linear regression

model where some of the regression parameters are population-averaged, i.e. the same for all sub-

jects, and other regression parameters are subject-specific.

The above model has two important interpretations namely, the marginal and hierarchical in-

terpretation. Marginally, the model for Yi is

Yi ∼ N(Xiβ, ZiDZ
′
i + Σi) (3.7)

where the mean of Yi is Xiβ, also called the mean structure in general. The variance of Yi is

Vi = ZiDZ
′
i + Σi, also called the overall covariance structure. The diagonal elements, or param-

eters, in D and Σi are called variance components. It should be noted that under the marginal

interpretation of the model, negative variance components are admissible provided the overall

variance-covariance matrix Vi is positive definite.

Under the hierarchical interpretation, the model can be specified as

Yi|bi ∼ N(Xiβ + Zibi,Σi) (3.8)

where bi ∼ N(0, D) and εi ∼ N(0,Σi). Thus under this hierarchical interpretation of the model,

negative variance components do not make sense at all.

The diagonal elements of D show how much the individual regression coefficients, the bsi vec-

tor of random effects (s = 1, ..., q) vary from subject to subject, after adjusting for the covariates in

the fixed effects β. The random effects can also be thought of as subject-specific regression coef-

ficients, accounting for the natural heterogeneity in the study population. Random effects model

the between-subject variability, while Σi models the within-subject variability or residual variance.
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The structure of D should be specified before the model is fitted and the type of covariance struc-

ture often depends on the type of data that is being modelled.

There are several covariance structures that can be assigned to the structure of the covariance

matrix for the random effects and the repeated observations within an individual. These covari-

ance structures can be specified in the SAS software in the RANDOM and REPEATED statements in PROC

MIXED under the TYPE= setting, respectively. Note that the covariance structure for the random

effects accounts for the variation in effects between subjects, while for the repeated measures it

accounts for the within-subject variation. The most common covariance structures are: variance

components (under the independence assumption), autoregressive structure, the compound sym-

metry and unstructured covariance. The order of the autoregressive structure has to be specified

in most statistical packages, but the default being order one or the AR(1) structure.

Assuming a 4x4 variance-covariance matrices, the different forms of the covariance structures can

be specified as follows. The variance components (VC) structure is the default in SAS PROC MIXED

and it assumes that different measurements are independent. It is also known as the SIMPLE

structure and has the following form if used for describing the covariance structure for random

effects where there are, for example, four random effects in the model.



σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4


The VC or SIMPLE structure has the following form if it is used to describe how the repeated

measurements are related if there are, for example, a maximum of four measurements per subject.



σ2 0 0 0

0 σ2 0 0

0 0 σ2 0

0 0 0 σ2


The AR(1) covariance structure has homogeneous variances and correlations that decline with time

or distance. It assumes that the variance of any measurements is constant, regardless of when you

measure it and also that measurements that are closer to each other in time are more correlated

than measurements further away. The AR(1) structure also assumes that data are equally spaced
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and has the following structure:

σ2



1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


The compound symmetry (CS) structure has homogeneous variances and the correlation between

any two measurements is assumed to be constant regardless of how far apart they are. Simply put,

this covariance structure specifies that all pairs of measurements on the same individual have the

same correlation. The CS covariance structure is given by:



σ2 + σ2
1 σ2

1 σ2
1 σ2

1

σ2
1 σ2 + σ2

1 σ2
1 σ2

1

σ2
1 σ2

1 σ2 + σ2
1 σ2

1

σ2
1 σ2

1 σ2
1 σ2 + σ2

1


The unstructured (UN) covariance structure does not assume any particular pattern about the

variance and covariance between measurements and allows every variance and covariance to be

different. Although this structure seems like the most desirable to fit, it requires the most number

of parameters to estimate and can cause computational difficulties. The unstructured covariance

matrix has the following form where σij = σji.



σ2
1 σ12 σ13 σ14

σ21 σ2
2 σ23 σ24

σ31 σ32 σ2
3 σ34

σ41 σ42 σ43 σ2
4


Other covariance structures are the so-called spatial covariance structures. The correlations are

positive and decreasing functions of the Euclidean distances between observations. Thus when

specified for the relationship between repeated measurements, they take into account the distance

between the observations within each subject. The coordinates of the measurements are given by a

set of variables which are specified in a list written next to the SP option. There are three common

types of spatial structures - power, exponential and Gaussian - each one specifying and defining

how fast the correlations decrease as functions of the distances between measurements. The power
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spatial correlation structure is called by using SP(POW)(list) in the TYPE= setting, with dij = dji.

σ2



1 ρd12 ρd13 ρd14

ρd21 1 ρd23 ρd24

ρd31 ρd32 1 ρd34

ρd41 ρd42 ρd43 1


The exponential spatial covariance structure, specified with SP(EXP)(list) has the following struc-

ture:

σ2



1 exp(−d12/ρ) exp(−d13/ρ) exp(−d14/ρ)

exp(−d21/ρ) 1 exp(−d23/ρ) exp(−d24/ρ)

exp(−d31/ρ) exp(−d32/ρ) 1 exp(−d34/ρ)

exp(−d41/ρ) exp(−d42/ρ) exp(−d43/ρ) 1


The Gaussian spatial covariance structure, specified with SP(GAU)(list) has the following struc-

ture:

σ2



1 exp(−d2
12/ρ

2) exp(−d2
13/ρ

2) exp(−d2
14/ρ

2)

exp(−d2
21/ρ

2) 1 exp(−d2
23/ρ

2) exp(−d2
24/ρ

2)

exp(−d2
31/ρ

2) exp(−d2
32/ρ

2) 1 exp(−d2
34/ρ

2)

exp(−d2
41/ρ

2) exp(−d2
42/ρ

2) exp(−d2
43/ρ

2) 1



In some literature the covariance structures are presented in terms of the correlation matrices in-

stead of the actual variances and covariances. Note that the spatial structure specifications do not

require that the tij ’s be equally spaced. There are a few factors which will influence the decision

on which covariance structure to use for the random effects or between observations within an

individual. These factors include the number of parameters, the interpretation of the structure,

diagnostic results and the effects on the fixed effects. Often it is possible to fit the unstructured

covariance structure, but in the expense of more parameters to estimate. Thus it is always better

and more efficient to have less parameters to estimate in the model. However, choosing a structure

that is too simple, such as the independence and common variance assumption, increases the fixed

effects type I error rate.

Another strategy of choosing the appropriate covariance structure is to fit a couple of candi-

date covariance structures and then use information criteria, such as Akaike’s Information Criteria

(AIC) or others, to compare the different models and to determine which model has a better fit to

the data. However this might not be the best method for selecting the covariance structure because

information criteria, such as AIC and Bayesian Information Criteria (BIC), have been shown to
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predict the correct model poorly (Ferron, Dailey and Yi, 2002; Keselman et al., 1998).

Alternatively, a graphical method of deciding on the covariance structure can be used. Here one

fits the model with an unstructured covariance matrix, using say SAS PROC MIXED and make the

procedure output the residual correlations and covariances. Then plot the covariances separately

for each starting time, i.e. plot lag 1 covariance, lag 2 covariance, etc. for errors starting at time 0.

Then the same should be done for errors starting at time 1, then errors at time 2, etc. If there are

linearly declining covariances with increasing lags then a AR(1) structure can be fitted and if the

lines cross each other then this shows that the random effects have a constant variance (Kincaid,

2005).

3.3 Estimation Procedures

3.3.1 Estimation of the Marginal Model

Recall the structure for the general linear mixed model was derived as

Yi = Xiβ1 + Zibi + εi (3.9)

where it was assumed that bi ∼ N(0, D), εi ∼ N(0,Σi), and that bi and εi are mutually independent.

Recall, the marginal interpretation of the model implies that

Yi ∼ N(Xiβ, ZiDZ
′
i + Σi) (3.10)

where Vi = ZiDZ
′
i + Σi is the variance-covariance matrix of the vector Yi, which can be found by

setting up the random-effects design matrix Z and specifying the covariance structures for D and

Σ. For simplicity, the subscript of i will be ignored. It can be shown mathematically that

V = Cov(Y )

= E[Cov(Y |b)] + Cov(E[Y |b)])

= Σ + Cov(Xβ + Zb)

= Σ + Cov(Zb)

= Σ + ZDZ′ (3.11)

The unconditional mean of Y is E(Y ) = Xβ. The unknown parameters to estimate in the model

are β, bi, D and Σi. It should be noted that the marginal model does not explicitly assume the
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presence of random effects representing the natural heterogeneity between subjects. The following

notation will be used in this and subsequent developments. Namely β denotes the vector of fixed

effects, α the vector of all variance-covariance parameters, or variance components, in D and Σi.

Further let θ = (β′,α′)′ denote the vector of all parameters in the marginal model.

An advantage of the linear mixed model is that covariate interactions can be specified which

will allow one to estimate the different linear effects allowing for a combination of factor levels

that may have an effect on the dependent variable. A major advantage of using the mixed model

approach with subject specific effects is that the same number of observations per subject are not

required, rather it allows for subjects with missing data. In addition, as in any regression model,

time can be treated as a continuous variable instead of having a set of fixed time points.

3.3.2 Maximum Likelihood Estimation of Parameters

3.3.2.1 Estimation of Fixed Effects

The maximum likelihood method is one of the most commonly applied methods of estimation in

statistics. This method calculates the values of the model parameters by maximising the likelihood

of the data with respect to the model parameters which are to be estimated.

For example, consider the normal distribution whose probability density function is

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ

)
(3.12)

Suppose you have n normally, and independently distributed variables Y1, Y2, ..., Yn, each with

mean µ and variance σ2. The likelihood of these variables can be written as the continuous joint

probability density function:

L(µ, σ2) = f(y1, y2, ..., yn)

=

n∏
i=1

f(yi)

=
1

(
√

2πσ2)n

n∏
i=1

exp

(
− (yi − µ)2

2σ

)
(3.13)
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Following a similar argument as for the multivariate regression model and using matrix notation,

the marginal likelihood function for the full longitudinal data is given by

LML =

N∏
i=1

[
(2π)−

ni
2 |Vi(α)|−

1
2 exp

(
− 1

2
(Yi −Xiβ)′V −1

i (α)(Yi −Xiβ)

)]
(3.14)

In order to estimate the fixed parameters the log of the likelihood l = logL needs to be maximized

by differentiating it with respect to β and solving the equation for ∂l
∂β

= 0:

∂l

∂β
=

∂

∂β

(
− 1

2
(Yi −Xiβ)′V −1

i (α)(Yi −Xiβ)

)
=

∂

∂β

(
− 1

2
(V −1
i (α)Y − V −1

i (α)Xiβ)′(Yi −Xiβ)

)
=

∂

∂β

(
− 1

2
(Y ′i V

−1
i (α)Yi − Y ′i V −1

i (α)Xiβ − β′X ′iV −1
i (α)Yi + β′X ′iV

−1
i (α)Xiβ)

)
= −(X ′iV

−1
i (α)Xiβ −X ′iV −1

i (α)Yi) (3.15)

Now equating the derivative to zero implies

∂l

∂β
= 0

X ′iV
−1
i (α)Xiβ −X ′iV −1

i (α)Yi = 0

X ′iV
−1
i (α)Xiβ = X ′iV

−1
i (α)Yi

β̂ = (X ′iV
−1
i (α)Xi)

−1X ′iV
−1
i (α)Yi (3.16)

The above estimate is only based on information from a single individual. Combining information

from all the N profiles, the revised estimate is given by:

β̂(α) =

( N∑
i=1

X ′iWiXi

)−1 N∑
i=1

XiWiYi (3.17)

where Wi equals V −1
i . It thus follows, that E(β̂(α))=β(α) and var(β̂(α))=(X ′iWiXi)

−1. Note that the

estimate above is the same as the weighted generalised least squares (WGLS) estimate. However,

in most cases α is unknown, therefore it needs to be replaced by an estimate α̂. Two frequently

used estimates for α are the maximum likelihood (ML) and restricted maximum likelihood (REML)

estimates.

Let the ML estimate of α be denoted by α̂ML for a fixed β. Then α̂ML is obtained by maximising

LML(α) = LML(α, β(α)) (3.18)
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with respect to α. The resulting estimate β̂(α̂ML) for β is denoted by β̂ML, obtained by maximising

its profile likelihood L(βα̂). Alternatively, α̂ML and β̂ML can also be obtained from the direct

maximisation of LML with respect to θ, that is with respect to α and β simultaneously (where

θ=(α′,β′)).

3.3.2.2 Prediction of Random Effects

Under the longitudinal mixed effect model structure, individual predictions can be made even if

the number of observation points for the specific individual is less than the number of estimated

parameters or fixed effects. This comes from the main assumption that each individual has its

own subject-specific parameter βi = β + bi, whose expectation is the population mean parameter

β. The advantage with repeated measurements is that individual observations ni may be small,

but since there are several individuals, this enhances information required to estimate the required

model parameters. Random effects can be predicted under maximum likelihood estimation. If

cov(b, Y )=DZ′, where Y is the response vector from a typical individual and b the vector of indi-

vidual specific parameters, then

 Y

b

 ∼ N

 Xβ

0

 ,

 V ZD

DZ′ D




and the random effects can be predicted as

b̂ = E(b|Y )

= E(b) + cov(b|Y )[var(Y )]−1[Y − E(Y )]

= DZ′V −1(Y −Xβ) (3.19)

It can be shown that

E(b̂) = 0 (3.20)

and

var(b̂) = DZ′V −1D −D(Z′V −1X)(X ′V −1X)−1(X ′V −1Z)D′ (3.21)

where X is the design matrix for fixed effects which are common to all individuals. Sometimes the

fact that b̂ = E(b|Y ) estimation of b is referred to as prediction of random effects to emphasise the

conditional posterior structure of the equation (3.19), similar to Bayesian estimation. It should be

noted that since the methods for predicting random effects are non-Bayesian in formulation, the

random effect estimates are empirical Bayes (EB), which are the means of the conditional random

effects distribution, given the overall observed data and plug-in estimates of hyper-parameters.
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The hyper-parameters are estimated marginally through likelihood-based methods from the data;

thus the EB methods underestimate the variability in the random effects since uncertainty in the

hyper-parameters is not allowed. This results in narrow confidence intervals from EB methods,

which in turn leads to apparent significant results.

3.3.3 Restricted Maximum Likelihood Estimation

To develop the concept of REML estimation, consider a sample of N observations or measurements

Y1, Y2, ..., YN from N(µ, σ2). Given the mean µ is known the maximum likelihood estimate, or MLE,

of σ2 will now be given by

σ̂2
ML =

N∑
i=1

(Yi − µ)2/N (3.22)

In this case, σ̂2
ML is an unbiased estimator for σ2. However if µ is unknown it is replaced by Ȳ , the

sample mean. The MLE of σ2 is now given by

σ̂2
ML =

N∑
i=1

(Yi − Ȳ )2/N (3.23)

Now σ̂2
ML is a biased estimator of σ2, because E(σ̂2

ML) = (1−N−1)σ2, leading to a bias of −N−1σ2

and is thus biased downwards. The biased expectation leads to the conclusion that an unbiased

estimate for σ2 when µ is unknown should be

s2 =

N∑
i=1

(Yi − Ȳ )2/(N − 1) (3.24)

The above discussion shows that having to estimate µ introduces bias into the maximum likelihood

estimation of σ2. Thus one way to circumvent this problem is to find a way of estimating σ2 without

having to estimate µ first. Note that all the data can be combined into one distributional model

Y =


Y1

:

YN

 ∼



µ

:

µ

 , σ2IN

 (3.25)

or Y ∼ N(µ1N , σ
2IN ) where 1N is a N-dimensional vector full of 1’s and IN the N-dimensional

identity matrix. One way to avoid estimation of µ is to transform the vector of observations Y

such that µ vanishes from the likelihood. Let U be such a transformation where Ui = Yi − Yi+1,
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then

U =



Y1 − Y2

Y2 − Y3

:

YN−1 − YN


= A′Y ∼ N(0, σ2A′A) (3.26)

where A is a (N − 1) × N matrix with elements Ai,i = 1, Ai,i+1 = −1 and zero elsewhere. Based

on this transformation the MLE of σ2 is exactly as given by s2 which is unbiased for σ2. The

transformation operator A defines a set of N − 1 linearly independent error contrasts and s2 is

called the REML estimate of σ2, and is independent of A. The above formulation can be extended

to the case of the linear regression model. Thus consider a set of N observations Y1, Y2, ..., YN

from a normal linear regression model Y ∼ N(Xβ, σ2IN ) where Y is a N-dimensional vector of

observations, X is the design matrix, β is a vector of regression parameters and σ2 the residual

variance. Following the above arguments the MLE of σ2 for the linear regression model is

σ2
ML = (Y −Xβ̂)′(Y −Xβ̂)/N (3.27)

and the REML estimate is given by

σ2
REML = (Y −Xβ̂)′(Y −Xβ̂)/(N − p) (3.28)

where p is the number of parameters in β. The REML estimate can also be obtained by transforming

the data orthogonal to X that is, from Y to

U = A′Y ∼ N(0, σ2A′A) (3.29)

In essence, REML estimation involves applying the maximum likelihood (ML) method to linear

functions of Y , say A′Y , for which A′ is designed so that A′Y contains none of the fixed effects

which are apart of the model for Y . The idea behind REML estimation is to adjust the variance

which will protect it against potential bias that comes from using ML estimation. Two important

consequences of using REML estimation is that the variance components are estimated without

being affected by the fixed effects, making them invariant to the values of the fixed effects. Sec-

ondly, REML estimation takes into account the degrees of freedom of the fixed effects implicitly,

whereas in ML estimation these are not taken into account.

REML estimation is used for estimating variance components. By choosing A such that A′Y

contains no fixed effects will result in A′X = 0. Maximum likelihood estimation will be done on
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A′Y instead of Y . Thus A′Y ∼ N(0, σ2A′A) and the ML equations for A′Y can be derived from

those for Y ∼ N(Xβ, σ2) by replacing Y with A′Y , X with A′X = 0 and σ with σ2A′A.

3.3.4 REML Estimation for the General Linear Mixed Model

Let Yi denote the individual ni-dimensional vector of observations that is Yi = (Yi1, Yi2, ..., Yini)
′

where it is assumed that Yi ∼ N(Xiβ, Vi). The strategy is first to combine the N subject-specific

information into one augmented vector Y such that Y ∼ N(Xβ, V ) where

Y =


Y1

:

YN

 , X =


X1

:

XN

 , V (α) =



V1 0 ... 0

0 V2 ... 0

: : ... :

0 0 ... VN


(3.30)

Next the data are transformed orthogonal from X to U = A′Y ∼ N(0, A′V (α)A) where U is a vector

of error contrasts defined earlier. The MLE of α, based on U is called the REML estimate and is

denoted by α̂REML. The resulting estimate for β will be denoted by β̂REML. Alternatively α̂REML

and β̂REML can also be obtained from maximising

LREML(θ) = |
N∑
i=1

X ′iWi(α)Xi|−
1
2LML(θ) (3.31)

with respect to θ = (α′, β′), i.e. with respect to α and β simultaneously. Note that the expression

above for LREML(θ) is LML(θ) but subjected to a penalty. LREML(α, β̂(α)) is the likelihood of

the error contrasts U often called the REML likelihood function. It is important to note that

LREML(θ) is not a likelihood of the original data Y . Solution for the ML (and REML) equations

is usually acquired using numerical iterative methods, such as the Newton-Rhapson or Fisher’s

Scoring methods. They are the best known methods for finding successively better approximations

to the zero of a function - hence they are termed root-finding algorithms.

3.4 Inference

3.4.1 Inference and Testing for the Marginal Model

After fitting the correct model to the data, interest also lies in testing hypotheses about the

parameters which have been estimated. For fixed effects, a hypotheses of the form that difference

between levels of a factor are zero, or some constant, can be tested. The inference for the estimated

parameters in the marginal model will be briefly discussed, for both the mean model (or fixed
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effects) and the variance components. In particular, the Wald test, the t-test, the F -test, robust

inference and the likelihood ratio (LR) test for fixed effects are revisited. For variance components,

the methods that will be given attention to are the Wald and the LR tests. The information criteria

(IC) for making inference will also be discussed. Recall that the estimate for β is given by

β̂(α) =

(
N∑
i=1

X ′iWiXi

)−1 N∑
i=1

XiWiyi (3.32)

with α replaced by its ML or REML estimate. It follows that conditional on α, β̂(α) is MVN with

mean β and covariance

var(β̂) =

(
N∑
i=1

X ′iWiXi

)−1( N∑
i=1

X ′iW
′
ivar(Yi)WiXi

)(
X ′iWiXi

)−1
(3.33)

which is simplified by

var(β̂) =

(
N∑
i=1

X ′iWiXi

)−1

(3.34)

if the assumption var(Yi)=Vi=W−1
i holds.

3.4.1.1 Approximate Wald Test

For each fixed effect, an approximate Wald test can be obtained from approximating the distribu-

tion of (β̂j − βj)/SE(β̂j), j = 1, 2, ..., p, by a standard normal distribution. For any known matrix

L, the test statistic for the hypothesis

H0 : Lβ = 0 vs HA : Lβ 6= 0 (3.35)

is given by the Wald test statistic

Ws = β̂′L′

L( N∑
i=1

X ′iV
−1
i Xi

)−1

L′

−1

Lβ̂ (3.36)

which is asymptotically χ2 distributed with degrees of freedom equal to rank(L) under H0.

The Wald test is based on the variance of the fixed effects estimate β̂,

var(β̂) =

(
N∑
i=1

X ′iWi(α)Xi

)−1

(3.37)
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However, it should be noted that the variability introduced by replacing the variance components

α by some estimate (ML or REML) is not taken into account in Wald tests. Thus the Wald test

will only provide valid inferences in sufficiently large samples.

3.4.1.2 Approximate t- and F-test

The downward bias from using the Wald test can be resolved by using an F-test for the hypothesis

H0 : Lβ = 0 vs HA : Lβ 6= 0 (3.38)

where the F -statistic is

Fs =
β̂′L′(L(

∑N
i=1 X

′
iV
−1
i Xi)

−1L′)−1Lβ̂

rank(L)
(3.39)

where the approximate null-distribution for Fs is the F distribution with numerator degrees of

freedom equal to rank(L). The denominator degrees of freedom can be estimated using methods,

such as the containment method, Satterthwaite approximation, or the Kenward & Roger approx-

imation. For longitudinal data, all methods would lead to large numbers of degrees of freedom,

and therefore to similar p-values for the different methods. For a univariate hypothesis, rank(L)=1

and the F -test is equivalent to a t-test.

3.4.1.3 Robust Inference

Since

β̂(α) =

(
N∑
i=1

X ′iWiXi

)−1 N∑
i=1

X ′iWiyi (3.40)

with α replaced by either its ML or REML estimate, it implies that E[β̂(α)]=β provided E(Yi)=Xiβ.

Hence in order for β̂ to be unbiased it is sufficient that the mean of the response be correctly

specified. Further, conditional on α, β̂ has covariance

var(β̂) =

(
N∑
i=1

X ′iWi(α)Xi

)−1

= CN (3.41)

provided var(Yi) is correctly modelled as Vi = ZiDZ
′
i + Σi. The covariance estimate CN is called

the “naive”estimate. The so-called “robust”estimate for var(β̂), which is denoted by CR, does not

require a correct specification of var(Yi) in (3.33). Rather, it is obtained by replacing var(Yi) by

(Yi − Xiβ̂)(Yi − Xiβ̂)′), which is the empirically based estimate of var(Yi). The robust variance

estimate of var(β̂) is called the sandwich estimator and based on this, robust versions of the Wald,

t- and F -tests can be derived.
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The above analysis suggests that as long as interest is only on inference of the mean structure,

little effort may be spent in modelling the covariance structure of Yi, provided the data is suffi-

ciently large. However this is not to say an appropriate covariance modelling is not of interest. An

appropriate covariance structure is still of interest for gaining efficiency in parameter estimation.

In addition, in the presence of missing data, robust inference is only valid under very restrictive as-

sumptions about the underlying missingness process such as data be missing completely at random

(MCAR).

3.4.1.4 Likelihood Ratio Test

The likelihood ratio test is commonly used to compare two models when one model is a special

case of the other. In the case where two models with different mean structures (or fixed effects)

but with equal covariance structures are compared, the hypothesis is

H0 : βεΘβ,0;Vi = Γ vs HA : βεΘβ ;Vi = Γ (3.42)

The second part of the statement of each hypothesis is to emphasise that the covariance structure

of the data is the same in both cases. As before, let LML denote the ML function and let the ML

estimates under H0 and HA be θ̂ML,0 and θ̂ML, respectively. Then the likelihood ratio test statistic

is given by

Tβ,LR = −2 lnλN = −2 ln

[
LML(θ̂ML,0)

LML(θ̂ML)

]
(3.43)

where

λN =
LML(θ̂ML,0)

LML(θ̂ML)
(3.44)

is the ratio of the likelihoods under H0 and HA. Thus the closer λN is to 1, the more probable

that H0 is true. When H0 is not true, Tβ,LR will be large and positive, therefore providing evidence

that H0 is not true. The asymptotic null distribution of Tβ,LR is χ2 with degrees of freedom equal

to dim(Θβ)-dim(Θβ,0). Note that as stated earlier, it is assumed that dim(Θβ,0)⊆dim(Θβ).

However, it should be noted that the LR tests are not valid under REML estimation because

here the response vector Y is first transformed into error contrasts U = A′Y , for some matrix of

constants A such that A′X = 0. Then ML estimation is done on U as the data. The likelihood value

LREML(θ̂) is the likelihood at the maximum based on the error contrasts U . Thus the model with

different mean structures lead to different REML error contrasts hence the subsequent likelihoods

are not comparable.
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3.4.2 Inference for the Variance Components

Most often it is the inference for the mean structure that is usually of primary interest. However,

inferences for the covariance structure could also be of interest as well, for obvious reasons, among

them the interpretation of the random variation in the data. It is also important to note that an

over-parameterized covariance structure (e.g. the UN structure) may lead to inefficient inferences

for the mean model (due to overspending on the degrees of freedom in estimating the variance-

covariance components). On the other hand, a covariance model which is too restrictive will

invalidate inferences for the mean structure. The best covariance model is therefore a balance

between a fully unstructured model and the independence assumption.

3.4.2.1 Approximate Wald Test

Asymptotically, ML and REML estimates of α are normally distributed with correct mean and

inverse Fisher information matrix as covariance. Therefore approximate standard errors and Wald

tests can easily be obtained. However, there is need for caution in the context of the hierarchical

model in relation to the marginal model interpretation. A null hypothesis of a zero variance com-

ponent is meaningful only under the marginal model when no underlying random effects structure

is believed to describe the data. The quality of the normal approximation for α̂ML and α̂REML

estimates strongly depends on the true value of α. The approximation is poor once α is relatively

close to the boundary of the parameter space. If α is a boundary value then the normality ap-

proximation fails completely. Under the hierarchical normal interpretation, a null hypothesis of a

zero variance component implies the p-value is based on an incorrect null distribution for the Wald

test statistic. The test is only correct when the null hypothesis is not a boundary value. However,

even under the hierarchical model interpretation a Wald test is valid for testing a zero covariance

parameter such as d12 = 0 versus d12>0 where d12 = d21 =cov(bi1, bi2) is the covariance between the

first and second individual specific parameters or random effects.

3.4.2.2 The Likelihood Ratio Test

The Likelihood Ratio (LR) test is best for comparing nested models with equal mean structures

but different covariance structures. The null hypothesis of interest is similar to that of the mean

structure, namely

H0 : αεΘα,0 vs HA : αεΘα (3.45)
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where Θα,0 ⊂ Θα. Let α̂ML,0 and α̂ML be the MLEs under H0 and HA. Then the LR test statistic

is given by

Tα = −2 lnλN = −2 ln

[
LML(α̂ML,0)

LML(α̂ML)

]
(3.46)

The asymptotic null distribution of Tα is χ2 with degrees of freedom equal to the difference in

dimensions of Θα and Θα,0. Now, as long as the comparison is under the same mean structure, a

valid LR test can still be obtained under REML since the error contrasts U are the same in both

cases.

It is important to note that when the likelihood ratio test is used to compare covariance mod-

els, keeping the mean structures (or fixed effects) the same for both models is necessary. When

testing two fixed effects models, the covariance structure is kept the same in both models. This

is done so that when, for example, two models with different sets of fixed effects are compared

and a significant difference is detected, then the difference is solely as a result of the difference

in fixed effects and not because of a better covariance structure for the one model and not the

other. Likewise, the same applies when the aim is to compare two models with different covariance

structures.

3.4.3 Marginal Testing for the Need of Random Effects

Under the hierarchical model interpretation, the asymptotic null distribution for the LR test statis-

tic for significance of all variance components related to one or multiple random effects, can be

derived. For example, consider the hypothesis of no random effects versus one random effect model

H0 : D = 0 vs HA : D = d11 (3.47)

for some scalar d11>0. Here the asymptotic null distribution of Tα is χ2
0:1, a mixture of χ2

0 and χ2
1

with 50:50 weights. Under H0, Tα equals 0 in 50% of the cases. Intuitively, the extended parameter

space R can be considered for d11. Under H0, d̂11 will be negative in 50% of the cases which means

that under the restriction d11>0, these cases lead to d̂11 = 0. Hence LML(α̂ML, 0) = LML(α̂ML) in

50% of the cases. In general to test the hypothesis of q versus q + 1 random effects, that is

H0 : D = Dq×q vs HA : D = D(q+1)×(q+1) (3.48)

the null distribution of Tα is distributed as χ2
q:q+1, a mixture of χ2

q and χ2
q+1 with equal weights

wq = wq+1 = 0.5. However, to test the hypothesis of q versus q + k random effects where under H0,

D is q× q and under HA, D is a (q+ k)× (q+ k) positive definite matrix, simulations are needed to
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derive the asymptotic null distribution. Practically, correcting for the boundary problem reduces

the p-value. On the other hand, ignoring the boundary problem too often leads to oversimplified

covariance structures which may lead to invalid inferences, even for the mean structure.

3.4.4 Information Criteria (IC)

Note that the general idea behind the LR test for comparing model A to a more extended model B,

is to select model A if the increase in L under model B is small compared to increase in complexity.

Thus to compare non-nested models, the model with the largest likelihood is selected, provided it

is not too complicated. Under the IC method, the model with the highest penalised log-likelihood

l-Pen(θ) for some penalty function Pen(.) dependent on the number of parameters, #θ, is selected.

Different forms of Pen(.) lead to different criteria. Some commonly used ones are listed in the

table below:

Criteria Penalty

Akaike (AIC) Pen(#θ)=#θ

Schwarz (BIC) Pen(#θ)=(#lnn∗)/2

Hannan and Quinn (HQIC) Pen(#θ)=#ln(lnn∗)

Bozdogan (CAIC) Pen(#θ)=#θ(lnn∗ + 1)/2

However, it should be emphasised here that IC are not formal testing procedures. For the same

reason mentioned earlier for comparing models with different mean structures, IC should be based

on ML rather than REML, because REML values will be based on different sets of error contrasts

and therefore no longer comparable.

3.4.5 Inference for the Random Effects

In this section the problem of making inference on the random effects bi is addressed. In particular,

the idea of empirical Bayes (EB) and best linear unbiased predictors will be given attention (BLUP).

The concept of shrinkage estimators will be derived and the normality assumption for random

effects discussed. The random intercepts and slopes model will be used as a special case.

3.4.5.1 Empirical Bayes Inference

Consider the linear mixed model

Yi = Xiβ + Zibi + εi (3.49)
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under consideration where bi ∼ N(0, D), εi ∼ N(0,Σi) and bi and εi are independent. The random

effects bi reflect how the evolution for the ith subject deviates from the expected evolution Xiβ. Es-

timation of the random effects bi is helpful for detecting outlying profiles from the expected profile.

Thus inference from random effects is only meaningful under the hierarchical model assumptions

where

Yi|bi ∼ N(Xiβ + Zibi,Σi) (3.50)

and

bi ∼ N(0, D) (3.51)

Since bi behaves like random “parameters”, it is most natural to consider Bayesian-like approaches

where the prior distribution of the random parameters (here random effects) is bi ∼ N(0, D). Thus

using the Bayes rule the posterior distribution of the bi, given the data Yi = yi, can be expressed

as

f(bi|yi) =
f(yi|bi)f(bi)∫
f(yi|bi)f(bi)δbi

(3.52)

Since the marginal distribution of bi and the conditional distribution of Yi|bi is known, the posterior

distribution of bi, given Yi is

bi|yi ∼ N(DZ′iWi(yi −Xiβ),Λi) (3.53)

for some positive definite matrix Λi. Thus it can be seen that the posterior mean of bi, given yi,

as an estimate of bi is

b̂i(θ) = E(bi|Yi = yi) =

∫
fbi|yi(bi|yi)δbi = DZ′iWi(α)(yi −Xiβ̂) (3.54)

and the covariance of b̂i(θ) is given by

var(b̂i(θ)) = DZ′i

(
Wi −WiXi

(∑
X ′iWiXi

)−1

X ′iWi

)
ZiD (3.55)

However inference on bi should take into account the variability in bi, therefore inference for bi is

usually based on

var(b̂i(θ)− bi) = D − var(b̂i(θ)) (3.56)

It follows that once the correct variance in (3.56) is found, Wald tests can be performed in order

to test hypotheses about bi(θ). Parameters in θ are replaced by their ML and REML estimates,

obtained after fitting the marginal model. The estimate b̂i = b̂i(θ) is called the empirical Bayes

estimate (EB) of bi. Approximate t and F tests to account for the variability introduced by

replacing θ by θ̂ can be constructed similarly to tests for fixed effects.
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3.4.5.2 Best Linear Unbiased Prediction

Often parameters of interest are linear combinations of fixed effects in β and random effects in

bi. For example, a subject-specific slope is the sum of the average slope for subjects with same

covariate values and the subject-specific random slope for that subject. In general suppose that

γ = l′ββ + l′bbi (3.57)

is the quantity of interest. Then conditionally on α,

γ̂ = l′β β̂ + l′bb̂i (3.58)

is the best linear unbiased predictor of γ. Note that γ̂ is linear in the observations Yi, unbiased and

minimises the variance among all unbiased linear estimators. In practise, histograms and scatter

plots of certain components of bi can be used to detect subjects with exceptional or extreme

evolutions over time. The predicted evolution of the ith subject is given by

Ŷi = Xiβ̂ + Zib̂i

= Xiβ̂ + ZiDZ
′
iV
−1
i (yi −Xiβ̂)

= (Ini − ZiDZ
′
iV
−1
i )Xiβ̂ + ZiDZ

′
iV
−1
i yi

= ΣiV
−1
i Xiβ̂ + (Ini − ΣiV

−1
i )yi (3.59)

which is a weighted average of the population-averaged profile Xiβ̂ and the observed individual

data yi, with weights ΣiV
−1
i and (Ini − ΣiV

−1
i ), respectively. Note that Xiβ̂ gets more weight if

the residual variability is large compared to the total variability given by Vi = ZiDZ
′
i + Σi. This

phenomenon is the so-called “shrinkage”, meaning the observed data are shrunk towards the prior

marginal average profile Xiβ, depending on the degree of how much within-subject variability there

is. This is also reflected in the fact that for any linear combination l′bi of random effects

var(l′b̂i) ≤ var(l′bi) (3.60)

A simple example is now considered to demonstrate some of the concepts raised above for purposes

of clarity. Consider the random intercepts model given by

yij = β0 + b0i + β1tij + εij (3.61)
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where yij is the jth observation from the ith individual in the study for i = 1, 2, ..., N and j =

1, 2, ..., ni. β0 is the average intercept, b0i is the subject-specific intercept which is a random effect

assumed to be distributed as N(0, d2
0), β1 is the common average slope for all individuals which is

assumed not to suffer from between-subject variability, tij is the actual time measurement and εij

is the measurement error or residual. Following the above model derivations, it follows that the

empirical Bayes estimate for the random intercept b0i is given by

b̂0i = DZ′iWi(α)(yi −Xiβ)

= d2
0I
′
ni

(
σ21ni1

′
ni + σ2Ini

)−1
(yi −Xiβ)

=
d2

0

σ2
1′ni

(
Ini −

d2
0

σ2 + nid2
0

1ni1
′
ni

)
(yi −Xiβ)

=
nid

2
0

σ2 + nid2
0

1

ni

ni∑
j=1

(yij −X [j]
i β) (3.62)

where b̂0i is a weighted average of 0 (the ’prior’ mean) and the average residual for i. Thus the

larger ni is, the less the shrinkage effect. Likewise, the smaller σ2 is, relative to d2
0, the lesser the

shrinkage.

3.4.6 A Comment on the Normality Assumption for Random Effects

In practise, histograms for empirical Bayes (EB) estimates are often plotted to check the normality

assumption for the random effects. But since

b̂i = DZ′iWi(yi −Xiβ̂)

var(b̂i) = DZ′i

Wi −WiXi

(
N∑
i=1

X ′iWiXi

)−1

X ′iWi

ZiD (3.63)

one should at least standardise the EB estimates. Further, due to the shrinkage effect, the EB

estimates do not fully reflect the heterogeneity in the data. Thus EB estimates obtained under

the normality assumption cannot again be used to check the same normality assumption. This

suggests that the best strategy to check the normality assumption would be to fit a more general

model, with the classical generalised linear mixed model as a special case and then compare the

two using the LR test. One other possible way to address the distributional assumption of the

random effects would be to assume a finite mixture model for the random effects of the form

bi ∼
d∑
k=1

pkN(µk, D) with

d∑
k=1

pk = 1 and

d∑
k=1

pkµk = 0 (3.64)
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The implication of such an assumption is that the population consists of d sub-populations. Each

sub-population contains a fraction pk of the total population. In each sub-population a linear

mixed model holds. The classical model is then just a special case with d = 1. The finite mixture

model is popularly commonly fitted using the EM algorithm. A SAS macro is also available to run

such a model.

3.4.7 Power for Fixed Effects Under the Linear Mixed Model

In this section, the question of power of the F -test for fixed effects will be looked into. Consider

testing the hypothesis

H0 : Lβ = β0 = 0 vs HA : Lβ 6= 0 (3.65)

for some matrix constant L such that rank(L)>0. Then the F -statistic for the above test is given

by

Fβ =
β̂′L′(L(

∑N
i=1 X

′
iV
−1
i Xi)

−1L′)−1Lβ̂

rank(L)
(3.66)

as stated earlier. Under H0, Fβ is distributed as F with numerator degrees of freedom equal to

rank(L) and denominator degrees of freedom will be estimated by one of three methods, namely the

(1) Containment method (2) Satterthwaite approximation, or (3) Kenward-Roger approximation,

or any other available method. In general when H0 is not true, Fβ is approximately F with the

same numerator and denominator degrees of freedom, but now with a non-centrality parameter

δ = β′L′
[
L

(
N∑
i=1

X ′iV
−1
i Xi

)
L′
]−1

Lβ (3.67)

which is equal to 0 under H0. Here δ can be used to calculate power for the test under a variety

of models and under a variety of alternative hypotheses. Note that δ = rank(L)×Fβ and with β̂

replaced by its expected value β. SAS procedure MIXED can be used to calculate δ and the related

number of degrees of freedom. Under HA, where δ>0, the power is calculated as

P (δ) = P (Fn,d,δ>Fcalc) (3.68)

where Fcalc is the calculated F -value such that

P (Fn,d,0>Fcalc) = α(= level of significance) (3.69)

where n and d denote the numerator and denominator degrees of freedom, respectively. The PROC

MIXED options finv and probf are used to calculate Fcalc and the power respectively. Finally, it
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should be noted that in longitudinal data settings, within-subject correlation increases power for

inferences on within-subject effects but decreases power for inferences on between-subject effects.

3.4.8 Discussion

This section in the chapter is concluded by discussing general guidelines for model building. Recall

that the probability distribution of the general linear mixed model for Yi can be written as

Yi ∼ N(Xiβ, ZiDZ
′
i + σ2Ini) (3.70)

Thus fitting a linear mixed model requires the specification of a mean structure, as well as the

covariance structure. The mean structure may in fact include the effects of measured or observed

covariates, time effects and possibly their interactions. The covariance model includes random

effects and possible serial correlation. Both components (mean and covariance models) affect each

other through the estimation of θ = (α′, β′), the covariance matrix for θ̂, the construction of t- and

F - tests, confidence intervals, efficiency and prediction. It should be noted that recursive or the

stage fitting of the model makes dealing with high dimensional parameters easier.

When most variability is due to between-subject effects, the two stage model will often lead to

an acceptable marginal model. In the presence of a lot of within-subject variability, the two-stage

approach is less straight forward. Also, a two stage approach may imply an unrealistic marginal

model. Thus the general fitting strategy is to work with a preliminary mean structure Xiβ, pre-

liminary random effects structure Zibi and residual covariance structure Σi. Then look for a more

parsimonious model by first attempting to reduce the random effects in Zibi, then reduce the mean

structure Xiβ.

3.5 Statistical Software

3.5.1 Fitting Linear Mixed Models Using Statistical Software

A number of statistical software available now have capability to fit linear mixed models with ease.

These include SAS, GenStat, S-Plus, SPSS and many more. In this thesis, the SAS software is

used to fit the various models under consideration. In SAS software, for estimation of fixed effects

and variance components, PROC MIXED is used to primarily specify the data set and method of

estimation (REML or ML) with REML being the default method. The CLASS statement is used to

declare categorical or factor variables in the data. The MODEL statement is used to state the model
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relating the response to the fixed effects variables. This statement also has an option of whether

to call for solutions and whether to fit a model with an intercept or not. The RANDOM statement

is used to define the random effects in the model. The statement has options to specify which

variable identifies the subjects, assuming independence across subjects, type of random effects

matrix D, options g and gcorr to print the matrix D and the corresponding correlation matrix,

options v and vcorr to print the matrix Vi and the corresponding correlation matrix. The REPEATED

statement is used to first identify the factor variable used for ordering the repeated measurements

within a subject e.g. time, age, birth order in a family, and so on. There is also an option with

the REPEATED statement to specify which variable identifies the individual or subject, the type of

residual covariance matrix Σi, options r and rcorr to print Σi and the corresponding correlation

matrix. Frequently used covariance structures available to the RANDOM and REPEATED statement

are the unstructured (UN), variance components or simple independence (VC or SIMPLE), compound

symmetry (CS), first-order autoregressive (AR(1)), several spatial structures (SP), and so on. A

more exhaustive list of possible covariance structures can be found in the books by Verbeke and

Molenberghs (2000), Diggle et al. (2002), Molenberghs and Verbeke (2005) among others.
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Chapter 4

Joint Modelling

4.1 Introduction

Longitudinal studies are often analysed using mixed models, taking into account repeated measure-

ments for each subject in the model. Since these subjects are followed up for a substantial amount

of time, some of them will drop out of the study or they will experience some event which is related

to the outcome or measurement of interest. This thesis aims to model the evolution of HIV mark-

ers, CD4+ count and viral load, within a group of newly HIV infected individuals. However, since

some of these individuals initiate antiretroviral (ARV) treatment because their CD4+ count falls

below 200 cells/µ` and they are progressing towards acquired immunodeficiency syndrome (AIDS)

they cease being in the CAPRISA 002: Acute Infection Study and are no longer in follow-up.

CD4+ count is no longer measured after they drop out of the study and a lot of information is lost

as these individuals no longer contribute data in the initial cohort. Modelling the HIV markers

without taking this informative drop-out into account will lead to optimistic conclusions about

CD4+ count within this population.

This chapter will look at the application of the method of joint modelling as proposed by Hen-

derson, Diggle and Dobson (2000) in order to model the evolution of each of the HIV markers

separately, while taking into account informative drop-out. First the theory of survival analysis

will briefly be discussed. Survival analysis is the method which will be used to model the infor-

mative drop-out, and then the theory behind joint modelling will be discussed. Bivariate joint

modelling is also possible but currently beyond the scope of this thesis. This advanced type of

analysis will be left as a future extension on the current project.

61



4.2 Survival Analysis

Survival analysis allows one to study the occurrence of and time to events, such as deaths or onset

of disease. It has many applications in various different areas in the natural and social sciences,

and is designed to be used on longitudinal data with the occurrence of a particular event of interest.

Survival analysis can be done prospectively, as well as retrospectively. For a prospective anal-

ysis, a cohort of individuals or subjects are observed from a well-defined point in time and followed

up for a substantial amount of time, while recording the times at which the events occur. Risk

factors of experiencing an event can also be accounted for by recording several covariates at base-

line or even time-varying covariates during follow-up. However, not everyone who is being followed

has to experience the event and those who do not experience the event are regarded as censored.

Subjects can be censored without experiencing the event.

A retrospective survival analysis can be done by asking individuals to recall important dates of

events of interest, such as deaths, marriages, disease, etc. However, there is an element of recall bias

with such type of information which can compromise the validity of the results. The individuals

might not be able to accurately remember information and particularly in collecting information

on time-varying covariates. In the current study, the survival analysis data is prospective where

a cohort of newly HIV infected participants are followed over time. The aim of survival analysis

in joint modelling lies in its ability to model the survival data including informative drop-out as

events of interest in the cohort and then simultaneously combining the survival sub-model to the

longitudinal sub-model. This will give rise to the so-called joint model for the two processes.

4.2.1 Parametric Survival Models

In survival analysis, the component which is of most interested is the survival function, S, which

is defined as

S(t) = P (T>t) (4.1)

where t is the observed time and T is a random variable denoting the time to event. The survival

function is clearly non-increasing and it is usually assumed to approach zero as time increases

without bound, thus S(t)→ 0 as t→∞

All standard approaches to survival analysis are probabilistic (or stochastic), thus the times at

which the events occur are assumed to be realisations of a random process. The probability dis-
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tribution of the events can be described by three functions, namely (i) the cumulative distribution

function (c.d.f.), (ii) probability density function (p.d.f.), or the more commonly used (iii) hazard

function.

The c.d.f. of the variable T is denoted by F (t) and it is defined as the probability that T will

be less or equal to a specific time t.

F (t) = P (T ≤ t) = 1− S(t) (4.2)

The p.d.f. of T is the derivative (slope) of the c.d.f. and is related to S(t) as follows

f(t) =
dF (t)

dt
= −dS(t)

dt
(4.3)

The hazard function is defined as

h(t) = lim
∆t→0

P (t ≤ T<t+ ∆t|T ≥ t)
∆t

=
f(t)

P (T ≥ t) (4.4)

The aim of the hazard function is to quantify the instantaneous risk that the event will happen at

time t. Because time is a continuous variable, the probability that the event will happen exactly

at time t is highly unlikely. Thus instead, the probability that the event will happen in an inter-

val between t and t + ∆t, conditional on the subject having survived to time t, is specified. Since

one wants to get as close to time t as possible, ∆t is let to approach zero, reaching its limiting value.

The survival function S(t), the p.d.f. f(t) and the hazard function h(t) can all be used to de-

scribe the probability distribution of the events in the survival analysis and the three functions are

related as follows

h(t) =
f(t)

S(t)
(4.5)

Thus from (4.3) and (4.5),

h(t) = − d

dt
logS(t) (4.6)

which leads to

S(t) = exp

{
−
∫ t

0

h(u)du

}
(4.7)

and so

f(t) = h(t) exp

{
−
∫ t

0

h(u)du

}
(4.8)
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Furthermore, parametric survival models can be constructed by choosing a specific probability

distribution for the survival function. The distribution chosen will lead to a specific form or

structure for S(t). Some of the commonly used distributions and the corresponding formulae for

S(t) are given in the table below where Φ is the cumulative distribution function of the standard

normal distribution.

Distribution S(t)

Exponential e−λt

Weibull e−λt
γ

Gompertz e
λ

θ(1−eθt)

Log-normal 1− Φ
(

ln(t)−µ
σ

)
Log-logistic

(
1 + ( tα )β

)−1

Table 4.1: Common survival functions

The exponential distribution is the most simple, with an assumption that the hazard is constant

over time. Thus

h(t) = λ (4.9)

which can also be written as log h(t) = µ where −∞<µ<∞. Substituting (4.9) into (4.7) gives

S(t) = e−λt which gives the p.d.f. as f(t) = λe−λt. When the hazard rate varies over exposure time,

a Weibull distribution is more appropriate.

The survival model can be extended to allow for the effects of explanatory variables. If there

are covariates x1, x2, ..., xk, then the exponential model, for example, would be written as

log h(t|x) = µ+ β1x1 + β2x2 + ...+ βkxk (4.10)

and a Weibull which has log h(t) = µ+ αt, will have a model with covariates written as

log h(t|x) = µ+ αt+ β1x1 + β2x2 + ...+ βkxk (4.11)

These model parameters are estimated using maximum likelihood estimation, but not a standard

likelihood because now there is the possibility of censored observations in the current data. It is

assumed that there are n independent individuals in the sample (i = 1, 2, ..., n) and each individual

i has three parts of information measured. These are ti, δi and xi, where ti is the time to event

or censoring, δi is the indicator variable specifying whether individual i actually experienced the

event or whether i was censored and xi is the vector of covariates. Usually δi = 1 if ti is uncensored
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(subject i experienced the event) and δi = 0 if ti is censored (i.e. subject i dropped out of the

study). Also xi = (1, xi1, ..., xik) denotes the vector of covariate values.

If it is assumed that all participants experienced an event then the likelihood function would

be

L =

n∏
i=1

fi(ti) (4.12)

but in practise, the likelihood aught to account for those individuals who are censored. If it is

assumed that r individuals were not censored and n− r were censored then

L =

r∏
i=1

fi(ti)

n∏
i=r+1

Si(ti) (4.13)

Using the indicator variable δi which denotes a censored or uncensored observation for each subject,

the likelihood function can be written as

L =

n∏
i=1

[fi(ti)]
δi [Si(ti)]

1−δi (4.14)

Thus if δi = 1 (i.e. an event), it is fi(ti) which contributes to the likelihood formulation while if

δi = 0 (i.e. censored) then it is Si(ti) which contributes to the likelihood.

Once a probability distribution for the survival times (and consequently hazard function) has been

chosen, the necessary terms can be substituted in (4.14) and the derivative of the log-likelihood

w.r.t. the parameters of interest in the model can be calculated. This derivative is then equated

to zero and the resulting equations solved in order to estimate the survival model.

As an example, the case of the exponential distribution gives

fi(ti) = λie
−λiti and Si(ti) = e−λiti

where λi = e−βxi and β is the vector of coefficients for the covariates. Now

L =

n∏
i=1

(
λie
−λiti

)δi (
e−λiti

)1−δi

=

n∏
i=1

λδii e
−λiti (4.15)

65



By taking the logarithm of the likelihood,

logL =

n∑
i=1

δi log λi −
n∑
i=1

λiti

=

n∑
i=1

δi log(e−βxi)−
n∑
i=1

(e−βxi)ti

= −β
n∑
i=1

δixi −
n∑
i=1

tie
−βxi (4.16)

Equation (4.16) is then differentiated w.r.t. β, set equal to zero and then solved for β. This will

give the following equation
n∑
i=1

δixi =

n∑
i=1

xitie
−βxi (4.17)

From here iterative methods are used to estimate β, such as the Newton-Rhapson algorithm, which

is the default method for PROC LIFEREG.

4.2.2 Semi-parametric Survival Models

Cox (1972) proposed a regression method for survival analysis which does not require a specific

distribution for the survival times, which is why it is called a semi-parametric model and this

approach is therefore more robust than the parametric models because of less parametric restriction.

The basic Cox model can be derived in terms of the hazard function of individual i at time t given

by

hi(t) = λ0(t) exp(β1xi1 + ...+ βkxik) (4.18)

where λ0(t) is called the baseline hazard and β1xi1 + ... + βkxik is a linear function of k fixed

covariates. The baseline hazard is the hazard function for an individual when the covariates have

values of 0. If the logarithm of (4.18) is taken then

log hi(t) = α(t) + β1xi1 + ...+ βkxik (4.19)

where α(t) = log λ0(t). If α(t) = α then this is the same as the exponential model as mentioned in

the subsection above and specifying α(t) = α log t gives the Weibull model. The function α(t) can

take any form. The hazard for any individual is a fixed proportion of the hazard for any other

individual and therefore this is called a proportional hazards model. For example the ratio of the

hazards for individuals i and j assuming the presence of k predictor variables is

hi(t)

hj(t)
= exp {β1(xi1 − xj1) + ...+ βk(xik − xjk)} (4.20)
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Note that the baseline hazard function cancels out and the ratio of the two hazards becomes

constant over time and is only dependent on the measured covariates. The proportional hazard

property implies that the hazard functions are parallel.

Cox (1972) also proposed a new estimation method, the partial likelihood (PL) method of es-

timation. With this estimation method, the β coefficients can be estimated without having to

specify the baseline hazard λ0(t). The partial likelihood method depends only on the order of the

event times and not their exact values.

To explain the concept of partial likelihood estimation, suppose there are n independent indi-

viduals (i = 1, 2, ..., n) and for each individual i there is ti, δi and xi, denoting the time to event,

whether or not the individual was censored and a vector of k covariate variables, respectively.

Usually a likelihood function is written as the product of all the individual likelihood functions.

The partial likelihood can be written as a product of likelihoods for all the events experienced. If

R is the number of events,

PL =

R∏
r=1

Lr (4.21)

where Lr is the likelihood for the rth event. The likelihood is calculated for each event by taking

the hazard function for that event at time t and dividing it by the summation of the remaining at

risk individual hazard functions if they were to have happened at time t without loss of generality

assume the case of one covariate. The general equation for the partial likelihood for data with one

fixed covariate is

PL =

n∏
i=1

(
eβxi∑n

j=i Yije
βxj

)δi
(4.22)

where Yij=1 if tj ≥ ti and Yij=0 if tj<ti. Note that because of the proportional hazards assumption,

the baseline hazard cancels out automatically. The partial likelihood can be maximised for β by

taking the logarithm of (4.22), namely

logPL =

n∑
i=1

δi

(
βxi − log

(
n∑
j=1

Yije
βxj

))
(4.23)

and differentiating with respect to β, then equated to zero and solved for β. Again, this would

be solved iteratively for β, using a method such as the Newton-Rhapson algorithm. The above

objective function in equation 4.23 can easily be extended to more than one covariate or predictor

variable.

For purposes of this thesis, the parametric exponential survival model was used to model time
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to ARV initiation in order to take into account informative drop-out.

4.3 Joint modelling

This section will describe how to model time to event data jointly with longitudinal data. Let

Y ′i = (Yi1, Yi2, ..., Yini) denote the vector of repeated measurements for individual i which have been

measured at times t′i = (ti1, ti2, ..., ttni). Also, let the observed time in the study for the ith individ-

ual be TOi =min(Ti, Ci) where Ti denotes the time the individual experienced the event of interest

and Ci denote the time at which the individual was censored. Let δi be the censoring indicator

which is equal to 1 if the individual experienced the event, and equal to 0 if the individual was

censored.

Thus each individual in the cohort contributes the information (TOi , Yi, ti, X1i, x2i), where X1i is

the matrix of observed covariates in the longitudinal model and x2i is the vector of observed co-

variates in the survival model.

The joint model by Henderson, Diggle and Dobson (2000) on how to join a longitudinal model

to a time-to-event sub-model will be revisited. The main concept in this modelling strategy is

to assume a latent bivariate Gaussian process Wi(t) = {W1i(t),W2i(t)} and then assume that the

longitudinal measurements and event processes are conditionally independent given Wi(t) and any

additional measured covariates. So an association between the longitudinal and survival models is

described through the cross-correlation between W1i(t) and W2i(t). The direct link between W1i(t)

and W2i(t) is called the latent association. Note that the longitudinal measurements depends on

W1i(t), while the time-to-event process depends on W2i(t). For example, the longitudinal data

would take on the form

Yi = µi(ti) +W1i(t) + εi (4.24)

The µi(ti) component in the model above is the mean response that can be described by a linear

model, for example µi(ti) = X1iβ, which represents both baseline and time-varying explanatory

variables and their regression coefficients. The εi is a vector of the mutually independent measure-

ment errors in the model, which is normally distributed with mean zero and variance σ2
ε I. A basic

example for the latent process W1i(t) is

W1i(t) = U1i + U2it (4.25)
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where (U1i, U2i) is a bivariate normal random vector with mean zero, and variance-covariance

structure

G =

 σ2
1 σ12

σ12 σ2
2

 (4.26)

W1i(t) as stated in (4.25) may include the random effects for intercept and slope over time and this

allows different individuals to have different baseline measurements and different time trends or

slopes for these measurements. Note that µi(ti) corresponds to Xiβ in (3.5) and W1i(t) corresponds

to Zibi in (3.5), where bi is equivalent to (U1i, U2i) in the current setup.

The association between the measurement and time to event processes is achieved through the

random term W2i(t). If this survival model is a Cox model then the hazard function for the ith

individual would be

λi(t) = λ0(t) exp (x2iβS +W2i(t)) (4.27)

If the survival model is parametric, say an exponential distribution, then the survival model with

the random component W2i(t) would take the form

λi(t) = exp (x2iβS +W2i(t)) (4.28)

It is assumed that (4.27) and (4.28) are conditionally independent to (4.24), given Wi(t). In order to

model an association between the longitudinal and time-to-event sub-models, W2i(t) is taken to be

related to particular components of W1i(t). A general equation for W2i(t), assuming proportionality,

is

W2i(t) = γW1i(t) (4.29)

while yet another equation for W2i(t) would allow the random slope and intercept to have different

effects on the event process leading to a more general relation

W2i(t) = γ1U1i + γ2U2i + γ3W1i(t) (4.30)

Thus this would have both the random intercept U1i, slope U2i and current value of W1i(t) in (4.25)

affect the risk of an individual experiencing an event, as modelled in the time-to-event sub-model.

The parameters of the longitudinal models and the survival model are estimated jointly by max-

imising the observed joint likelihood of the data.

As mentioned before, the longitudinal and the time-to-event (or survival) processes are condi-
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tionally independent, given W1i, W2i and the measured covariates X. Without this conditioning,

dependence between the longitudinal and time-to-event processes comes from the deterministic

effects of common covariates in the two models, or it comes through the stochastic dependence

between W1i and W2i (or the latent association). If there is neither common covariates between

the longitudinal and survival sub-models, nor a latent association, then there is no use in joint

modelling as no additional precision is gained from this method.

There are various relationships and different combinations that can be modelled between W1i

and W2i. These are

W1i(t) = U1i and W2i(t) = 0 (4.31)

W1i(t) = U1i + U2it and W2i(t) = 0 (4.32)

W1i(t) = U1i and W2i(t) = γW1i(t) (4.33)

W1i(t) = U1i + U2it and W2i(t) = γ1U1i+ γ2U2i+ γ3W1i(t) (4.34)

Equation (4.31) and (4.32) would assume independence between the longitudinal process and the

time-to-event process, whereas (4.33) and (4.34) allows for dependence between these two processes

leading to the joint model, combining the two processes.

Through this joint modelling it is assumed that the time to event, T oi , is correlated to the random

effects bi through the vector of covariances (Thiébaut, 2005), Bq×1, where

 bi

T oi

 ∼ N

 0

µTo

 ,

 D B

B′ σ2
To


 (4.35)

4.3.1 The likelihood function

The likelihood function of the joint model is obtained by taking the product of the marginal dis-

tribution of the longitudinal data sub-model and the conditional time-to-event sub-model, given

the observed values of Y.

Let θ denote the combined vector of unknown parameters, ω2i denotes the complete path of W2i for

subject i and ω2 the collection of these paths over all subjects. Also, let N denote the time-to-event
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process. The likelihood of the joint model can be written as

L(θ, Y,N) = LY × LN|Y

= LY (θ, Y )× Eω2|Y
{
LN|W2

(θ,N |ω2)
}

(4.36)

The likelihood LY (θ, Y ) is the likelihood function of the marginal multivariate normal distribution

of longitudinal data Y . The conditional likelihood of the time-to-event process LN|W2
(θ,N |ω2)

contributes to the likelihood the numbers of longitudinal measurements before the individual drops

out of the study. The likelihood LN|W2
(θ,N |ω2) in (4.36) can be written as

LN|W2
(θ,N |ω2) =

∏
i

{(∏
t

[exp {x2i(t)β2 +W2i(t)}λ0(t)]δi

)
× exp

(
−
∫ τ

0

λ0(u) exp
{
x2i(t)

′β2 +W2i(t)
}
du

)}
(4.37)

The current problem can be related to a similar approach by Thiébaut et al (2005) who writes

their likelihood of the joint model, combining the longitudinal data and time-to-event process, as

L(θ) =

N∏
i=1

(∫
Rq
fYi|bi(Yi|bi = u)

{
fToi |bi(Ti|bi = u)

}δi {
1− FToi |bi(Ti|bi = u)

}1−δi
fbi(u)du

)
(4.38)

where

fYi|bi(Yi|bi) =

{
ni∏
j=1

fYij |bi(Yij |bi)

}
(4.39)

In (4.38), fToi |bi and FToi |bi are the conditional probability density function and cumulative distri-

bution function of T oi given bi, respectively, and

T oi |bi ∼MVN
(
µTo + B′D−1

i bi, σ
2
To −B′D−1

i B
)

Thus in equation (4.38), if there was no informative drop-out, that is δi = 0 for all i, then the

likelihood would only depend on the contribution of the response variables Y if FToi |bi(Ti|bi) = 0,

as drop-out is impossible.

4.3.2 Left-censoring Of Viral Load

Viral load is one of the most common biomarker or measurement used as the primary endpoint

in HAART studies as it gives an indication of viral suppression within an individual. Viral sup-

pression can also occur in those recently infected with HIV as their bodies fight off the infection

and is seen in those who are able to control the virus. Assays used to quantify viral load copies

in the blood often have a lower detection limit which renders viral load measurements that fall
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below this lower threshold undetectable. In the CAPRISA 002: Acute Infection Study cohort, the

lower detection limit is 400 copies/m` and therefore all viral load measurements below this limit

are unobservable and therefore considered as left-censored.

This is a relatively complex problem when modelling viral load data from patients on HAART

as viral suppression is the aim of the treatment. In the current data, approximately 5% of all

viral load measurements are undetectable. Part of the current work is to model the effect of left-

censoring in the analysis and assess whether the results will benefit from incorporating methods

capable of handling this problem such as that proposed by Jacqmin-Gadda et al. (2000).

There are two frequently used methods when dealing with the problem of the lower detection

limit for viral load. In HAART studies the outcome is frequently modelled as a binary value so

that subjects are classified as having a suppressed viral load or not. The proportion of subjects

with a viral load below the detection limit is calculated. However, this method loses information,

such as slopes and magnitude of peaking viral load and this method cannot be used in the current

data as majority of viral load measures are in fact detectable. In addition, the aim of the current

study is more to understand the natural evolution of the HIV markers, CD4+ count and viral load,

over time during the acute infection stage of HIV. Another method of dealing with the issue of

undetectable viral load measurements involves imputing half the lower detection limit of the assay

(O’Brien et al., 1998) for those viral load measurements which are undetectable but this approach

may result in biased estimates.

In this thesis, left-censoring of viral load will be handled using a likelihood approach to esti-

mate undetectable viral load data. This approach involves replacing the conditional probability

density function presented in (4.39) by

fYi|bi(Yi|bi) = fY oi |bi(Y
o
i |bi)P (Y ci <si|bi) =

{
nio∏
j=1

fY oij |bi(Y
o
ij |bi)

}{
nic∏
j=1

FY cij |bi(sij |bi)

}
(4.40)

where Y oi represents the noi -dimensional vector of observed measurements, Y ci is the nci -dimensional

vector of left-censored measurements and si is the nci -dimensional vector of measurement thresholds.

Thus each individual contributes to the likelihood the product of the density of the observed

measurements and of the conditional distribution function of the censored measurements given the
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observed measures and random effects. Since normal distribution is assumed,

P (Y ci <si|bi) = Φ(si|bi) (4.41)

where Φ is the c.d.f of the standard normal distribution.
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Chapter 5

Application

5.1 Introduction

The software of choice used to do the analysis and fit the various models was SAS version 9.1.3

(SAS Institute Inc., Cary, NC, USA). Specific procedures used were PROC MIXED, PROC NLMIXED, and

PROC LIFEREG.

PROC MIXED is a procedure which generalises standard linear models, which would be fitted us-

ing PROC GLM or PROC REG, and fits the wider class of mixed linear models. PROC MIXED allows one to

incorporate both fixed and random effects in modelling repeated measures problems. The RANDOM

statement in PROC MIXED is used to add random effects to the model while the REPEATED statement is

used to specify repeated measurements. PROC MIXED also allows a wider variety of covariance struc-

tures and carries out several analyses, including the estimation and testing of linear combinations

of fixed and random effects. PROC MIXED assumes that the outcome variable is normally distributed

and either maximum likelihood (ML) or restricted maximum likelihood (REML) estimation can

be used. PROC MIXED will be used to fit the linear mixed models to viral load and CD4+ count. For

this thesis, REML estimation will be applied and empirically correct estimators will be used for

the fixed effects by using the option EMPIRICAL in the PROC MIXED statement. This method gives a

consistent estimator of precision, even if the covariance structure is incorrectly specified (Verbeke

and Molenberghs, 2000).

PROC NLMIXED can be viewed as a generalisation of the random effects models fit by the PROC MIXED.

This procedure lets the random effects to enter the model non-linearly, in contrast to PROC MIXED

where random effects are linear. PROC NLMIXED only allows ML estimation because the procedure

74



involves high dimensional integrals over all of the fixed effects parameters non-linearly and this

integral is not available in a closed form. PROC NLMIXED allows one to fit not only data that is

normally distributed, but also binomial, Poisson or any distribution for which a likelihood function

can be user-programmed. This procedure will be used to address the problem of left-censoring of

viral load, as well as the univariate joint modelling.

PROC LIFEREG is a parametric regression procedure for modelling the distribution of survival time.

This procedure will be used to model the survival or time-to-event data, where the events are the

informative drop-outs.

Because of the nature of HIV during acute infection, with the viral load reaching a peak and

then decreasing, while the CD4+ count drops quickly and then recovers, the time component was

divided up into intervals and a piecewise model was fitted. These time components were modelled

in order to describe and quantify the evolution of the markers during acute HIV infection. The

piecewise time intervals were chosen in consideration to the results from the exploratory analy-

sis, namely the scatter plot and Loess smoothing line in Figures 3.1 and 3.2. From the models

presented the slopes for CD4+ count and viral load within these intervals are calculated and the

evolutionary change in these HIV markers are described. The intervals are 0 to 2, 2 to 4, 4 to 8, 8

to 12, 12+ weeks post infection. Initially the interval 0 to 4 was used, but this seemed to under-

estimate the viral load peak that was evident immediately after infection and it did not entirely

agree with the results that were seen in the Loess smoothing line. Viral load was log-transformed,

while CD4+ count had a square-root transformation in order to ensure the normality assumption

in the modelling process.

5.2 Linear Mixed Models

5.2.1 CD4+ count

5.2.1.1 Marginal Model

A marginal model was fitted to CD4+ count with weeks post infection as a continuous predic-

tor, after a square root transformation was applied to the CD4+ count measurements to ensure

normality. The initial model had the following form:

yij = β0 + β1tij + εij (5.1)
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where yij is the jth square root CD4+ count measurement for subject i (j = 1, 2, ..., ni), β0 is the

intercept, tij represents the weeks post infection at the ith measurement, while β1 is the slope

estimate for the change in square root CD4+ count for every one week increase. The εij is the

random error associated with the jth measurement for subject i. The model was fitted using SAS

PROC MIXED with the variable week in the MODEL statement, thus declaring it a fixed effect. No

random effects were defined. As with the viral load model, various covariance structures were

used to model the within-subject variance. The unstructured covariance (UN) would not allow the

model to converge as there were too many repeated observations per individual. The autoregres-

sive AR(1) structure was not suitable for the type of data as the measurements were not equally

spaced. Covariance structures used was the compound symmetry (CS), the exponential spatial

(SP(EXP)), power spatial (SP(POW)) and the Gaussian spatial (SP(GAU)) structures. The best

covariance structure was determined using the fit statistics output by the model in Table 5.1.

Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 6989.8 7090.5 7090.5 7940.2

AIC 6993.8 7094.5 7094.5 7944.2

BIC 6998.1 7098.7 7098.7 7948.5

Chi-Square 1115.15 1014.51 1014.51 164.75

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.1: Fit statistics and the Null Model Likelihood Ratio Test for fitting a marginal model to

CD4+ count

It can be seen that the covariance structure that provided the best fit to the data was the CS struc-

ture since that was the model which provided that lowest AIC of 6989.8. Note that the SP(EXP)

and SP(POW) structures produce the same fit statistics and if the AIC is the lowest, then either

one of these structures can be used.

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Intercept 22.9690 0.4775 61 48.10 <.0001

week -0.02361 0.004248 1313 -5.56 <.0001

Table 5.2: Fixed effects estimates modelling CD4+ count in a marginal model with weeks post

infection as a continuous linear predictor

The effect estimates show that the model intercept is equal to 22.9690 square root CD4+ cells/µ`

when weeks post infection is fitted linearly and equals 0. The effect estimate for weeks post infec-

tion shows a highly significant negative effect with -0.02361 square root CD4+ cells/µ` (p<0.0001).
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This is the slope, or rate of change in square root CD4+ count per unit increase in weeks post infec-

tion. Hence for every week post infection, CD4+ count decreases by 0.02361 square root cells/µ`,

showing that over time CD4+ count decreases after HIV infection, which is what is expected. The

covariance parameter estimates are displayed in Table 5.3.

Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
CS pid 12.8615 2.3969 5.37 <.0001

Residual 7.9629 0.3107 25.62 <.0001

Table 5.3: Covariance parameter estimates for modelling CD4+ count in a marginal model

Since the covariance structure used is the compound symmetry, which assumes constant covari-

ance, the estimate 12.8615 is the covariance between any two measures on the same subject, i.e.

Cov(yij ,yik)=ρσ2=12.8615 where yij and yik are the jth and kth measurements for subject i, respec-

tively. The estimate 7.9629 is the residual variance component, the variance of yij conditional on

a participant, thus Var(yij |i)=7.9629. The unconditional variance of yij is Var(yij)=Cov(yij ,yik) +

Var(yij |i)= 12.8615 + 7.9629 = 20.8244. The estimated covariance matrix of Y for any subject i

has dimensions ni × ni and looks like the following



20.8244 12.8615 12.8615 · · · 12.8615

12.8615 20.8244 12.8615 · · · 12.8615

12.8615 12.8615 20.8244 · · · 12.8615

...
...

...
. . .

...

12.8615 12.8615 12.5225 · · · 20.8244


Note that within-subject variation, i.e. Cov(yij ,yik), is statistically significant from zero, indicating

that there is significant variation between CD4+ count measurements within each participant as

expected.

5.2.1.2 Random Intercept Model

By allowing for a random intercept in the model, it can be determined whether the intercept for

CD4+ count is subject-specific. If there is a lot of variation in CD4+ count when weeks post

infection is equal to zero, then it is important to have a random intercept in the model to account

for this between-subject variation. The random intercept model can be written in the following

form:

yij = (β0 + b0i) + β1tij + εij (5.2)
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where the added term b0i is the subject-specific effect for the intercept for subject i. By adding the

term intercept to the RANDOM statement in PROC MIXED, the intercept will be modelled as random

and the subject-specific variation will be accounted for. Given the model 5.2.1.2, it is important

to note that there will only be one random effect in the model and therefore a covariance structure

for random effects does not need to be specified. If a covariance structure is not specified then the

default variance components (VC) or SIMPLE structure will be applied. However, when the VC

structure is used in the RANDOM or REPEATED statements then the Null Model Likelihood Ratio Test

is not performed. This is because the null hypothesis lies on the boundary of the parameter space

and the standard asymptotic theory does not apply in this case. Because of this, the unstructured

(UN) covariance structure will be fitted under the TYPE= option in the RANDOM statement to ensure

SAS performs the Null Model Likelihood Ratio test. This has no effect on the model and would

be no different than using the default VC structure for modelling the variance between random

effects. Different covariance structures will be used to model the within-subject variance, for the

repeated measurements, under the REPEATED statement. The best covariance structure is selected

using the fit statistics for the separate models. As before the unstructured (UN) and autoregressive

(AR(1)) covariance structures were not suitable to model the within-subject variance.

Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 6989.8 6816.6 6816.6 6934.1

AIC 6995.8 6822.6 6822.6 6940.1

BIC 7002.2 6829.0 6829.0 6946.4

Chi-Square 1115.15 1288.36 1288.36 1170.91

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.4: Fit statistics for fitting a random intercept model to CD4+ count

The fit statistics for the models with various covariance structures in Table 5.4 indicate that either

the spatial exponential or power covariance structure are suitable for fitting the random intercept

model as they both have the same and lowest AIC of 6816.6. The SP(POW) was used to model

the within-subject variation.

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Intercept 22.9756 0.4879 61 47.09 <.0001

week -0.02345 0.004102 1313 -5.72 <.0001

Table 5.5: Fixed effects estimates modelling CD4+ count in a random intercept model with weeks

post infection as a continuous linear predictor
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The effect estimates for the fixed effects change slightly, with a slight increase in the standard

errors. Again the rate of change in CD4+ count over weeks post infection is significantly negative

with CD4+ count decreasing by 0.02345 square root cells/µ` per week (p<0.0001). The covariance

parameter estimates are displayed in Table 5.6.

Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
UN(1,1) pid 13.4961 2.5772 5.24 <.0001

SP(POW) pid 0.7417 0.02176 34.09 <.0001

Residual 8.7100 0.4220 20.64 <.0001

Table 5.6: Covariance parameter estimates for modelling CD4+ count in a random intercept model

The covariance parameter estimate for UN(1,1) is the between-subject variance in the model in-

tercept modelled as a random effect. This is statistically significant which indicates that there

is indeed variation between subject intercepts. The resulting covariance matrix of yij is different

for each subject as the SP(POW) structure models the covariance as a function of the Euclidean

distances between observations and intervals between observations are unequal within and between

subjects. To get the subject-specific estimates for intercept the SOLUTION option needs to be spec-

ified in the RANDOM statement. This will output a random effect estimate for each subject and a

sample of the first 10 subjects are displayed in Table 5.7.

Solution for Random Effects

Effect pid Estimate Std Err DF tValue Prob>|t|
Intercept 1 -3.8137 0.8665 1313 -4.40 <.0001

Intercept 2 1.7191 0.9878 1313 1.74 0.0820

Intercept 3 -1.7809 0.8558 1313 -2.08 0.0376

Intercept 4 -1.4447 0.8625 1313 -1.68 0.0942

Intercept 5 10.7701 0.8071 1313 13.34 <.0001

Intercept 6 0.4151 0.7867 1313 0.53 0.5978

Intercept 7 -2.4596 1.2517 1313 -1.96 0.0496

Intercept 8 -5.2773 0.8463 1313 -6.24 <.0001

Intercept 9 -4.5015 1.0889 1313 -4.13 <.0001

Intercept 10 2.5007 0.8496 1313 2.94 0.0033

Table 5.7: Subject-specific effect estimates for the first 10 subjects, modelling CD4+ count in a

random intercept model

The subject-specific estimates show how much each subject differs from the population-averaged

estimate (from the Solution for Fixed Effects). Thus the intercept for pid (participant) 1 is β0 + b01
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= 22.9756 - 3.8137 = 19.1619 square root CD4+ cells/µ`, while the intercept for pid 2 is β0 + b02 =

22.9756 + 1.7191 = 24.6947 square root CD4+ cells/µ`, and so forth. The t-test displayed in the

table tests whether the subject-specific estimate is statistically significant from zero, i.e. whether

it is significantly different from the population estimate of the intercept. In this small sample it

can be seen that the intercept estimates of eight of the ten subjects are different from the popula-

tion estimate, supporting the fact that there is significant variability from individual to individual

intercept in the data.

5.2.1.3 Random Intercept and Slope Model

Since it has already been shown that there exists significant variation between subjects at baseline

which corresponds to the intercept, the slope will now also be fit as a random effect in order to

determine whether this level of variation is also necessary to take into account. By adding the

variable week to the RANDOM statement, along with intercept, a random slope (and intercept) model

will be fitted. Weeks post infection will also be under the MODEL statement as a fixed effect in order

to get a population estimate while accounting for the subject-specific variation by fitting it as a

random effect at the same time. Following the same strategy, different covariance structures are

fitted to the repeated measures for the within-subject variance and the best model is chosen. Since

there are two random effects in the model (intercept and slope), a covariance structure needs to be

specified. To keep it simple and robust, the unstructured (UN) covariance structure was applied

to estimating the covariance between random effects. The UN structure is also the most liberal

and since there are only two random effects it would not be computationally intense to estimate

the covariance parameters. The random intercept and slope model has the following form

yij = (β0 + b0i) + (β1 + b1i)tij + εij (5.3)

where now the added term b2i is the subject-specific random effect to account for between-subject

variability in the rate of change of CD4+ count over weeks post infection.

Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 6757.6 6701.5 6701.5 6733.9

AIC 6767.6 6711.5 6711.5 6743.9

BIC 6778.2 6722.2 6722.2 6754.5

Chi-Square 1347.40 1403.44 1403.44 1371.11

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.8: Fit statistics for fitting a random intercept and slope model to CD4+ count

80



Since both the spatial exponential and power covariance structures provide the best fit for the

within-subject variance, with the lowest AIC of 6711.5, either one of these structures can be used

to model the repeated measurements. For the random intercept and slope model, the SP(POW)

covariance structure will be used. The fixed effect estimates change slightly when adding both

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Intercept 23.1207 0.4596 61 50.31 <.0001

week -0.03044 0.004772 61 -6.38 <.0001

Table 5.9: Fixed effects estimates modelling CD4+ count in a random intercept and slope model

with weeks post infection as a continuous linear predictor

intercept and slope as subject-specific effects, with the estimate for week decreasing to -0.03044

square root CD4+ cells/µ`. In essence, the magnitude of the slope is bigger than when the model

accounts for only baseline heterogeneity.

Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
UN(1,1) pid 12.1265 2.3958 5.06 <.0001

UN(2,1) pid 0.001152 0.01673 0.07 0.9451

UN(2,2) pid 0.001040 0.000305 3.41 0.0003

SP(POW) pid 0.5822 0.03884 14.99 <.0001

Residual 6.4949 0.2981 21.79 <.0001

Table 5.10: Covariance parameter estimates for modelling CD4+ count in a random intercept and

slope model

In Table 5.10, UN(1,1) refers to the between-subject variance of the model intercept, while UN(2,2)

is the between-subject variance for the slope. It can be seen that the variance of the slope between

subjects is significant (p=0.0003) indicating that a random slope should be fitted to the model.

Note that these variance estimates make up the D matrix of covariance of random effects given by

D =

 12.1265 0.001152

0.001152 0.001040

 (5.4)

The estimates of the random effects, namely the intercept and slope, are obtained through the

solution of the random effects in SAS.
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Solution for Random Effects

Effect pid Estimate Std Err DF tValue Prob>|t|
Intercept 1 -2.6842 0.9816 1252 -2.73 0.0063

week 1 -0.01105 0.01083 1252 -1.02 0.3079

Intercept 2 2.7147 1.1266 1252 2.41 0.0161

week 2 -0.01704 0.01960 1252 -0.87 0.3848

Intercept 3 -0.7263 0.9632 1252 -0.75 0.4509

week 3 -0.01379 0.01154 1252 -1.20 0.2323

Intercept 4 -4.9332 0.9544 1252 -5.17 <.0001

week 4 0.05584 0.01165 1252 4.79 <.0001

Intercept 5 7.4587 0.9143 1252 8.16 <.0001

week 5 0.04215 0.008782 1252 4.80 <.0001

Table 5.11: Subject-specific effect estimates for the first 5 subjects, modelling CD4+ count in a

random intercept and slope model

The subject-specific estimates for the random intercept and slopes for five subjects are shown

in Table 5.11, and their interpretation is similar to the random intercept model (and fixed slopes)

as described in Table 5.7. For example, the intercept for pid 1 is β0 + b01 = 23.1207 - 2.6842 =

20.4365 square root CD4+ cells/µ` and the slope for pid 1 is β1+b11 = -0.03044 - 0.01105 = -0.04149

square root CD4+ cells/µ` per week. This gives the estimated regression model for subject 1 as
√
CD4+=20.4365 - 0.04149 tij . Note that the correlation between the subject-specific intercept

and slope is not significant (p=0.9451). Figure 5.1 is a graphical representation of the fixed effect

estimates for the marginal model, where weeks post infection is modelled as a linear effect with a

random intercept and slope. Needless to say, this model does not offer a precise description of the

CD4+ count data, especially when it is compared to what is seen in Figure 2.2.

5.2.2 Viral load

5.2.2.1 Marginal Model

A marginal model, with no random effects, was fitted to viral load with weeks post infection as a

continuous linear predictor variable. Viral load was log-transformed to ensure that the normality

assumption is met. The model had the following general form:

yij = β0 + β1tij + εij (5.5)
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Figure 5.1: Predicted marginal model for CD4+ count with time as a linear effect

where yij is the jth log viral load measurement for subject i (j = 1, 2, ..., ni), β0 is the intercept,

tij represents the weeks post infection at the ith measurement, while β1 is the slope estimate

for the change in log viral load for every one week increase. The εij term is the random error

associated with the jth measurement for subject i. Different covariance structures were used to

model the within-subject variation. The unstructured (UN) covariance structure was much too

computationally intensive since there are so many repeated measurements for each individual. It

is also not correct to use the autoregressive AR(1) covariance structure as this assumes that data

are equally spaced and are taken at the same points in time for all individuals, which is not the

case for this data. The compound symmetry (CS) and various spatial covariance structures were

applied to the repeated measurements and the fit statistics used to determine which covariance

structure was to be used (Table 5.12).

Since the CS structure had the lowest AIC, it was chosen as the covariance structure appropriate

to model the repeated measurements. The model estimates are shown in Table 5.13. The results

show that the intercept of viral load is 4.0759 log copies/m` while the slope over time 0.001631

log copies/m` per week. Both of these estimates are significantly different from zero with p-values

<0.0001 and 0.0263, respectively. There is a definite increase in viral load over time after HIV
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Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 4429.7 4955.3 4955.3 6519.0

AIC 4433.7 4959.3 4959.3 6523.0

BIC 4438.0 4963.6 4963.6 6527.3

Chi-Square 319.93 2477.84 2477.84 914.14

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.12: Fit statistics and the Null Model Likelihood Ratio Test for fitting a marginal model

to viral load

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Intercept 4.0759 0.08916 61 45.71 <.0001

week 0.001631 0.000733 1380 2.22 0.0263

Table 5.13: Fixed effects estimates modelling viral load in a marginal model with weeks post

infection as a continuous linear predictor

infection, which agrees with the opposite result seen in the model for CD4+ count which showed

a significant decrease. However, the estimate for the intercept being 4.0759 log copies/m` is a bit

confusing, as this is when weeks post infection is zero and it is assumed that log viral load is nil at

zero weeks post infection. This happens because weeks post infection is fitted as a linear predictor

so the actual value of log viral load at week 0 is not really captured. Because of this, a no-intercept

model will be fitted by using the NOINT option in the MODEL statement. It is also to be noted that

at this point the intercept of the viral load is not of interest as it is already assumed to be zero.

Note that now the intercept falls away and the no-intercept model would have the following form:

yij = β1tij + εij (5.6)

The different covariance structures for modelling the within-subject correlation were applied and

the CS structure provided the best fit. The model estimates, fitting a no-intercept model to log

viral load, are provided in Table 5.14.

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
week 0.001883 0.000736 1380 2.56 0.0106

Table 5.14: Fixed effects estimates modelling viral load in a no-intercept marginal model with

weeks post infection as a continuous linear predictor
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The slope of viral load over time is increasing at 0.001883 log copies/m` per week and this is

statistically significant (p=0.0106). This result also agrees with the earlier CD4+ count model

which showed that CD4+ count decreased over time after HIV infection. The covariance parame-

ter estimates for the model are shown in Table 5.15. The estimate 16.9524 is the covariance between

two measures on the same subject, while the estimate 1.1319 is the residual variance component,

the variance of yij conditional on a participant. The unconditional variance of yij is Var(yij)=

16.9524 + 1.1319 = 18.0843. Note that within-subject variation, i.e. Cov(yij ,yik), is statistically

significant from zero, hence there is significant variation between viral load measurements within

each participant.

Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
CS pid 16.9524 3.0622 5.54 <.0001

Residual 1.1319 0.04310 26.26 <.0001

Table 5.15: Covariance parameter estimates for modelling viral load in a marginal no-intercept

model

5.2.2.2 Random Slope Model

Since a no-intercept model was used, there was no need to test for a random intercept. Thus a

random slope model was fitted and it had the following form:

yij = (β1 + b1i)tij + εij (5.7)

where the added term b1i is the subject-specific slope estimate of log viral load for subject i. The

variable week is added to the RANDOM statement. Note that as with the CD4+ count model, the

UN covariance structure is specified even though there is only one random effect (the slope). This

is because the default VC structure does not allow the Null Model Likelihood Ratio Test to be

performed as described earlier, but fitting the UN structure does not impact on the results. The

best covariance structure for the within-subject correlation is selected using the fit statistics for the

separate models and the CS structure proved to have the better fit, even after adding a random

slope (Table 5.16).

85



Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 4640.2 4955.3 4955.3 6452.6

AIC 4646.2 4959.3 4959.3 6458.6

BIC 4652.6 4963.6 4963.6 6465.0

Chi-Square 2792.98 2477.84 2477.84 980.59

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.16: Fit statistics for fitting a random slope no-intercept model to viral load

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
week 0.002286 0.000765 61 2.99 0.0041

Table 5.17: Fixed effects estimates modelling viral load in a random slope no-intercept model with

weeks post infection as a continuous linear predictor

Again, the estimates show that there is a significantly increasing log viral load after infection with

a 0.002286 log copies/m` increase for every week post infection (p=0.0041). Note that the slope is

now larger than when a random slope effect is not accounted for in the model.

The covariance estimate UN(1,1) = 0.000011 is the variance between subjects in the slope and

clearly it is very small. There seems to be marginal significant variation between subjects regard-

ing there rate of change of log viral load over time post infection (p=0.0414) when accounting

for both within- and between-subject variation. Although this between-subject variation is small.

Table 5.19 is a sample of the first ten subjects and their subject-specific slope estimates. Note that

none of the subject-specific estimates differ significantly from the population (or fixed) estimate

for the slope. Although the covariance estimate for the between-subject variation in the slope es-

timates is significant overall (p=0.0414), this is just a mild significant effect at the 5% significance

level.

When looking at the solution to the random effects in Table 5.19 it can be seen that the subject-

specific slope estimates for the first 10 subjects are not statistically significant from zero. This

may suggest that viral load as an HIV marker may be a more reliable predictor of the disease as

claimed by other researchers (Huang et al., 2006).

Figure 5.2 is a graphical representation of the marginal model shown in Table 5.17, and as with

Figure 5.1, it can be seen that Figure 5.2 does not fit the data properly. The no-intercept model
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Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
UN(1,1) pid 0.000011 6.316E-6 1.73 0.0414

CS pid 16.8713 3.0473 5.54 <.0001

Residual 1.1078 0.04298 25.78 <.0001

Table 5.18: Covariance parameter estimates for modelling viral load in a random slope no-intercept

model

Solution for Random Effects

Effect pid Estimate Std Err DF tValue Prob>|t|
week 1 -0.00158 0.002529 1381 -0.62 0.5326

week 2 -0.00135 0.003097 1381 -0.44 0.6631

week 3 0.001571 0.002629 1381 0.60 0.5501

week 4 -0.00241 0.002650 1381 -0.91 0.3640

week 5 -0.00268 0.002217 1381 -1.21 0.2272

week 6 -0.00214 0.002071 1381 -1.04 0.3008

week 7 0.000498 0.003278 1381 0.15 0.8794

week 8 -0.00247 0.002361 1381 -1.05 0.2950

week 9 0.000787 0.003223 1381 0.24 0.8070

week 10 -0.00157 0.002225 1381 -0.71 0.4805

Table 5.19: Subject-specific effect estimates for the first 10 subjects, modelling viral load in a

random slope no-intercept model

forces the regression line through zero viral load copies/m` when week is zero, since it is assumed

that subjects are HIV-negative at that point.
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Figure 5.2: Predicted marginal model for viral load with time as a linear effect

5.2.3 Discussion

Fitting time as a linear predictor is very useful as it indicates whether weeks post infection has a

significant effect on CD4+ count or viral load. For CD4+ count there was a significant within-

subject variation, which agrees with the results seen in the line plot in Figure 2.4. The results

from fitting the random intercept and slope model to CD4+ count showed that there is significant

variation between subjects for both the intercept and the slope over time. The population estimate

for weeks post infection shows a significant decreasing trend in CD4+ count after HIV infection

with a loss of 0.03044 square root CD4+ cells/µ` per week on average (p<0.0001). When modelling

viral load, a no-intercept model was fitted. A significant within-subject variation was found and

subsequently it was shown that there was also significant between-subject variation in the slope

over time. However, looking at the subject-specific slope estimates it was clear that most of these

were not statistically significant from zero even though overall there was significant variation in

the slopes. The population estimate for weeks post infection shows a significant increasing viral

load after infection of 0.002286 log copies/m` increase per week (p=0.0041). Both models agree

with the literature in that after infection viral load increases, CD4+ count declines until the

person is diagnosed with AIDS and thereafter start receiving antiretroviral therapy or dies due

to opportunistic infections. However, as useful as these linear models may be, they do not depict
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much about the evolution of the HIV markers or the disease since time is modelled as a linear

predictor. Thus a closer look at the trajectory of both markers is necessary. Thus in Section 5.3

the analysis is enhanced by applying piecewise modelling techniques in order to better understand

the natural disease process for individuals infected with HIV-1 Subtype C.

5.3 Piecewise Linear Mixed Models

In the following section, piecewise linear time components will be fitted to both CD4+ count and

viral load in order to explore the natural evolution of HIV infection via the HIV markers. In using

piecewise effects, the rate of change (or slope) of CD4+ count or viral load can be measured for

pre-specified intervals of weeks post infection.

5.3.1 CD4+ count

5.3.1.1 Marginal Model

Five piecewise linear components of weeks post infection, as described earlier, were fitted to CD4+

count. The model fitted had the following form

yij = β0 + β1t
(0,2)
ij + β2t

(2,4)
ij + β3t

(4,8)
ij + β4t

(8,12)
ij + β5t

(8+)
ij + εij (5.8)

where yij is the jth square root CD4+ count measurement for subject i (j = 1, 2, ..., ni), β0 is the

intercept. t(0,2)
ij represents the piecewise component for 0 to 2 weeks post infection, while β1 is the

slope estimate for the change in square root CD4+ count for every week increase between 0 to

2 weeks post infection. Similarly, t(2,4)
ij , t(4,8)

ij , t(8,12)
ij and t

(8+)
ij represent the piecewise components

for 2 to 4, 4 to 8, 8 to 12 and 12 or more weeks post infection. The regression parameters β2,

β3, β4 and β5 represent the corresponding piecewise slope parameters. The εij is the random

error associated with the jth measurement for subject i. As with the linear model case in Section

5.2, various covariance structures were used to model the within-subject variation in the repeated

measurements.

The CS covariance structure provided the better fit to the model as it had the lowest AIC. The

population estimates of the piecewise linear effects are shown in Table 5.21. The results show that

the intercept for CD4+ count is 31.1216 square root cells/µ` (p<0.0001). Within the first two weeks

of acquiring HIV, the CD4+ count decreases by 4.4492 square root cells/µ` per week. This initial

drop in CD4+ count is statistically significant with p<0.0001. In the following fortnight the CD4+

count recovers slightly by 0.2875 square root cells/µ` per week, however this is not a significant
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Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 6748.4 6922.7 6922.7 7850.0

AIC 6752.4 6926.7 6926.7 7854.0

BIC 6756.7 6931.0 6931.0 7858.3

Chi-Square 1268.18 1093.88 1093.88 166.59

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.20: Fit statistics for fitting a piecewise linear effects marginal model to CD4+ count

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Intercept 31.1216 1.0384 61 29.97 <.0001

Slope 0 to 2 -4.4492 0.8601 1309 -5.17 <.0001

Slope 2 to 4 0.2875 0.7960 1309 0.36 0.7180

Slope 4 to 8 0.1678 0.1737 1309 0.97 0.3342

Slope 8 to 12 -0.3246 0.09275 1309 -3.50 0.0005

Slope 12+ -0.01764 0.003870 1309 -4.56 <.0001

Table 5.21: Fixed effects estimates for modelling a piecewise linear marginal model for CD4+ count

increase (p=0.7180) Between weeks 4 to 8 of HIV infection, CD4+ count continues a slight increase

with 0.1678 square root cells/µ` per week, but this is still not significant (p=0.3342). From week 8

to 12 CD4+ count decreases at a rate of 0.3246 square root cells/µ` per week (p<0.0001) and after

12 weeks post infection decreases at a rate of 0.01764 square root cells/µ` per week (p<0.0001).

These results show the initial drop in CD4+ count, its slight recovery thereafter and the eventual

decline. The significant initial drop in CD4+ count cells is due to the impact of the invading

disease pathogen. Immediately after this the body mounts its own immune response and this is

the stage of the disease where a supposedly increase in CD4+ count is seen. However this seems

only temporary as the body continually loses CD4+ cells and the infected subjects progressively

move towards the AIDS stage of the disease.

Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
CS pid 12.8864 2.3899 5.39 <.0001

Residual 6.6170 0.2586 25.59 <.0001

Table 5.22: Covariance parameter estimates for modelling a piecewise linear marginal model for

CD4+ count

The covariance parameter estimate for CS (12.8864) is statistically significant at p<0.0001 indi-
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cating that there is significant within-subject variance, which also implies that observations within

an individual are highly correlated, as expected in clustered correlated data. The model fitted

above is a population averaged model or marginal model but also accounts for correlation between

observations from the same individual.

5.3.1.2 Random Intercept Model

In order to determine whether there is significant between-subject variation in the intercept or

baseline mean outcome, a random intercept is specified in the model. The model fitted has the

form:

yij = (β0 + b0i) + β1t
(0,2)
ij + β2t

(2,4)
ij + β3t

(4,8)
ij + β4t

(8,12)
ij + β5t

(8+)
ij + εij (5.9)

where the added component b0i is the subject-specific estimate for the intercept. Following the same

strategy as before, various covariance structures are used to model the within-subject variance. An

UN covariance structure is specified for the random intercept effect, since the default VC structure

does not allow for the Null Model Likelihood Ratio test to be performed.

Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 6748.4 6578.8 6578.8 6692.9

AIC 6754.4 6584.8 6584.8 6698.9

BIC 6760.8 6591.2 6591.2 6705.3

Chi-Square 1268.18 1437.83 1437.83 1323.70

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.23: Fit statistics for fitting a piecewise linear effects marginal model to CD4+ count

The fit statistics indicate that either SP(POW) or SP(EXP) provide a better fit to the repeated

measures data as both have the lowest AIC of 6584.8. The SP(POW) covariance structure was

used to model the within-subject variance. The population estimates shown in Table 5.24 change

slightly but the conclusions remain the same. The estimated effect for Slope 2 to 4 is now negative,

but it is insignificant (p=0.8115).

The estimate for UN(1,1)=13.5069 is the between-subject variance for the intercept and this is

statistically significant (p<0.0001) which shows that there is indeed variation between subjects in

the intercept. At this point it should be stated that even though it is clear from the previous

analysis that there would be significant variation in slopes between subjects, fitting a model with

all piecewise time components as well as the intercept as random effects proved impossible as model

convergence could not be achieved. However, a common random effect for all the piecewise slopes
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Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Intercept 31.1500 1.0284 61 30.29 <.0001

Slope 0 to 2 -4.0301 0.6358 1309 -6.34 <.0001

Slope 2 to 4 -0.1444 0.6053 1309 -0.24 0.8115

Slope 4 to 8 0.02992 0.1360 1309 0.22 0.8259

Slope 8 to 12 -0.2076 0.08543 1309 -2.43 0.0152

Slope 12+ -0.01686 0.003711 1309 -4.54 <.0001

Table 5.24: Fixed effects estimates for modelling a piecewise linear random intercept model for

CD4+ count

Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
UN(1,1) pid 13.5069 2.5448 5.31 <.0001

SP(POW) pid 0.7093 0.02353 30.14 <.0001

Residual 6.9886 0.3235 21.60 <.0001

Table 5.25: Covariance parameter estimates for modelling a piecewise linear random intercept

model for CD4+ count

were fitted in the application of the joint modelling, in Section 5.5, where the more generalisable

SAS procedure NLMIXED was used.

The correlation matrix of Fixed Effects in Table 5.26 shows how the different piecewise com-

ponents are related to one another.

Effect Intercept Slope 0 to 2 Slope 2 to 4 Slope 4 to 8 Slope 8 to 12 Slope 12+

Intercept 1.0000 -0.4091 -0.2401 -0.2242 0.0107 -0.2306

Slope 0 to 2 -0.4091 1.0000 -0.6650 0.0250 -0.0757 0.0817

Slope 2 to 4 -0.2401 -0.6650 1.0000 -0.1850 0.0811 0.0198

Slope 4 to 8 -0.2242 0.0250 -0.1850 1.0000 -0.3653 -0.1179

Slope 8 to 12 0.0107 -0.0757 0.0811 -0.3653 1.0000 0.1422

Slope 12+ -0.2306 0.0817 0.0198 -0.1179 0.1422 1.0000

Table 5.26: Correlation Matrix of Fixed Effects fitting a random intercept model to CD4+ count

with piecewise linear effects

The correlation matrix shows that adjacent piecewise slope estimates are more correlated than

piecewise components further apart. One such correlation is between Slope 0 to 2 and Slope 2

to 4 with ρ=-0.6650. In the first two weeks of HIV infection the CD4+ count falls significantly
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and then recovers between weeks 2 and 4. The rate of CD4+ count loss in the first fortnight is

negatively correlated to the rate of CD4+ count recovery in the second fortnight. Slope 2 to 4

and subsequent Slope 4 to 8 have a weak negative correlation (ρ=-0.1850), while Slope 4 to 8 and

subsequent Slope 8 to 12 have a relatively stronger negative correlation (ρ=-0.3653). There is an-

other weaker correlation between Slope 8 to 12 and Slope 12+ (ρ=0.1422). Figure 5.3 graphically

represents the fixed effect estimates for the model. When comparing this against Figure 2.2, it can

be seen that the piecewise model gives a more clear picture on what is happening during the first

stage of acute HIV infection.

Figure 5.3: Modelling CD4+ count with time as piecewise effects

5.3.2 Viral Load

5.3.2.1 Marginal Model

The same five piecewise linear components of weeks post infection is fitted to viral load. This is

done to make both the piecewise models comparable in their results regarding the evolution of the

HIV markers. The model has the following form:

yij = β0 + β1t
(0,2)
ij + β2t

(2,4)
ij + β3t

(4,8)
ij + β4t

(8,12)
ij + β5t

(8+)
ij + εij (5.10)
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where yij is the jth log viral load measurement for subject i (j = 1, 2, ..., ni), β0 is the intercept.

t
(0,2)
ij represents the piecewise component for 0 to 2 weeks post infection, while β1 is the slope esti-

mate for the change in log viral load for every week increase between 0 to 2 weeks post infection.

Similarly, t(2,4)
ij , t(4,8)

ij , t(8,12)
ij and t

(8+)
ij represent the piecewise components for 2 to 4, 4 to 8, 8 to

12 and 12 or more weeks post infection. The regression coefficients β2, β3, β4 and β5 represent

the corresponding piecewise slope parameters. The εij is the random error associated with the jth

measurement for subject i.

Covariance Structure CS SP(EXP) SP(POW) SP(GAU)

-2 Log Likelihood 2639.4 2812.0 2812.0 3519.5

AIC 2643.4 2816.0 2816.0 3523.5

BIC 2647.6 2820.3 2820.3 3527.7

Chi-Square 1085.95 913.31 913.31 205.85

Pr>Chi-Square <.0001 <.0001 <.0001 <.0001

Table 5.27: Fit statistics for fitting a piecewise linear effects marginal model to viral load

The CS covariance structure provided the better fit to the model as it had the lowest AIC of 2643.4.

The population estimates of the piecewise linear effects are shown in Table 5.28.

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Intercept 0.03470 0.02771 61 1.25 0.2153

Slope 0 to 2 2.6525 0.1145 1376 23.17 <.0001

Slope 2 to 4 -0.4022 0.1535 1376 -2.62 0.0089

Slope 4 to 8 0.03518 0.04935 1376 0.71 0.4760

Slope 8 to 12 -0.08449 0.02993 1376 -2.82 0.0048

Slope 12+ -0.00113 0.000741 1376 -1.52 0.1289

Table 5.28: Fixed effects estimates for modelling a piecewise linear marginal model for viral load

It is interesting to note that the fixed effect estimates show that the intercept for viral load is

0.03470 and that this is not significantly different from zero (p=0.2153). In the marginal viral load

model where weeks post infection was fitted as a linear continuous predictor in Section 5.2.2, the

intercept estimate was 4.0759 log copies/m`. This estimate did not make sense as an assumption is

already made that log viral load is equal to zero when weeks post infection is zero. This happened

because weeks post infection was fitted as a linear predictor and a straight line was fitted through

log viral load. The intercept was where this line crossed the y-axis when weeks post infection

was zero. Thus in a revised model, a no-intercept model was used. In the piecewise linear effects
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model it is noted that the intercept is not significantly different from zero (p=0.2150) and hence

the intercept is therefore omitted in the case of the piecewise model by using the NOINT option in

the MODEL statement. The piecewise components of weeks post infection is adjusting for the initial

peak of viral load and it’s subsequent decline. Fit statistics show that the CS structure is still the

best to model the within-subject variation.

Solution for Fixed Effects

Effect Estimate Std Err DF tValue Prob>|t|
Slope 0 to 2 2.6594 0.1151 1376 23.11 <.0001

Slope 2 to 4 -0.4023 0.1536 1376 -2.62 0.0089

Slope 4 to 8 0.03520 0.04935 1376 0.71 0.4758

Slope 8 to 12 -0.08450 0.02993 1376 -2.82 0.0048

Slope 12+ -0.00113 0.000741 1376 -1.52 0.1289

Table 5.29: Fixed effects estimates for modelling a piecewise linear marginal no-intercept model

for viral load

The fixed effect estimates reveal that viral load increases significantly in the first two weeks of

infection at 2.6594 log copies/m` per week (p<0.0001). In the following fortnight it decreases at a

slower rate of 0.4023 log copies/m` per week and this was statistically significant (p=0.0089). From

4 to 8 weeks post infection, there is a slight increase in viral load but this slope is not significantly

different from zero (p=0.4758). Between 8 and 12 weeks post infection, viral load decreases signif-

icantly (-0.08450 log copies/m` per week with p-value=0.0048). Interestingly, viral load decreases

after 12 weeks post infection, albeit very slightly at 0.00113 log copies/m` decrease per week but

this is insignificant at p=0.1289.

Covariance Parameter Estimates

Cov Parm Subject Estimate Std Err Z Value Prob>|Z|
CS pid 0.4723 0.08758 5.39 <.0001

Residual 0.3057 0.01165 26.24 <.0001

Table 5.30: Covariance parameter estimates for modelling a piecewise linear marginal no-intercept

model for viral load

The covariance parameter estimate for CS (0.4723) is statistically significant at p<0.0001, indi-

cating that there is significant within-subject variance which also allows to account for correlation

between observations from the same subject. As with modelling piecewise linear effects for CD4+

count, it is clear from previous analysis that there would be significant variation in slopes be-

tween subjects. However, fitting a model with all piecewise time components as random effects
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proved impossible as model convergence could not be achieved. As noted previously, this could be

achieved using a more generalisable model with SAS PROC NLMIXED where a common random effect

was modelled for all the piecewise slopes.

Effect Slope 0 to 2 Slope 2 to 4 Slope 4 to 8 Slope 8 to 12 Slope 12+

Slope 0 to 2 1.0000 -0.7882 0.1941 -0.0912 -0.1967

Slope 2 to 4 -0.7882 1.0000 -0.6296 0.1549 0.1567

Slope 4 to 8 0.1941 -0.6296 1.0000 -0.5486 -0.1191

Slope 8 to 12 -0.0912 0.1549 -0.5486 1.0000 -0.0513

Slope 12+ -0.1967 0.1567 -0.1191 -0.0513 1.0000

Table 5.31: Correlation Matrix of Fixed Effects fitting a marginal model to viral load with piecewise

linear effects

The correlation matrix in Table 5.31 shows that adjacent piecewise slope estimates are more cor-

related than piecewise components further apart. The same was seen in the correlation matrix for

the CD4+ count model above. The correlation between Slope 0 to 2 and Slope 2 to 4 is ρ=-0.7882.

In the first two weeks of HIV infection the viral load increases rapidly and then falls between weeks

2 and 4. The rate of viral load increase in the first fortnight is negatively correlated to the rate

of change in the second fortnight. Slope 2 to 4 and subsequent Slope 4 to 8 also have a strong

negative correlation (ρ=-0.6296). Slope 4 to 8 and subsequent Slope 8 to 12 also have a strong

negative correlation (ρ=-0.5486). There is a very weak correlation between Slope 8 to 12 and Slope

12+ (ρ=-0.0513). When representing the fixed effects estimates graphically in Figure 5.4, it can

be seen that once again the piecewise model is more accurate in capturing the true evolution of

HIV during the first weeks of infection when as depicted by the scatter plot and Loess smoothing

line on the viral load measurements in Figure 2.3.

5.4 The Effects Of Left-censoring On Viral Load

The left-censoring of viral load was applied using a method proposed by Jacqmin-Gadda (2000)

using the SAS procedure PROC NLMIXED. Results from the left-censored univariate model for viral

load are shown in the table below, alongside the results from the model without left-censoring. It

can be seen how accounting for left-censoring affects the parameter estimates. The difference in

degrees of freedom (DF) for the two models is as a result of the way the repeated measures and

subject effects are taken into account using the specific SAS procedures. When fitting PROC MIXED

for viral load without left-censoring, the subject effect is taken into account through the REPEATED

statement. When fitting a left-censored model for viral load, PROC NLMIXED is used which does
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Figure 5.4: Modelling viral with time as piecewise effects

not accommodate for a REPEATED statement, however it can take into account the random subject

effect by creating a participant variable and accounting for it with the RANDOM statement within

the NLMIXED procedure. Also of importance is that maximum likelihood (ML) estimation was used

in both the MIXED and NLMIXED procedures because PROC NLMIXED does not cater for restricted max-

imum likelihood (REML) estimation and the models need to be comparable.

The actual parameter estimates (Table 5.32), their standard errors and conclusions based on the

estimates do not change much after accounting for left-censoring. However, it does seem as if the

standard errors are slightly higher in the model adjusting for left-censoring. This is not surprising

considering that the cohort under study was recently infected. Since the body’s immune system

has not had enough time to suppress the viral load during this early stage of HIV, not many viral

load measurements are below the limit of detection (approximately only 5% of all measurements

fell below the 400 copies/m` limit).

Table 5.33 gives the fit statistics for the two models of having viral load with and without left-

censoring and shows that the model without left-censoring seems to provide the better fit to the

data. When constructing the likelihood ratio test between the two models, the χ2 test statistic is

(2733.5-2601.5)=132 and this value is significant on the χ2-distribution with two degrees of freedom
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Solution for Fixed Effects

Without left-censoring With left-censoring

Effect Estimate Std Err DF tValue Prob>|t | Estimate Std Err DF tValue Prob>|t|

Slope 0 to 2 2.6594 0.0617 1376 43.13 <.0001 2.6585 0.0641 61 41.46 <.0001

Slope 2 to 4 -0.4023 0.0736 1376 -5.46 <.0001 -0.3931 0.0766 61 -5.13 <.0001

Slope 4 to 8 0.0352 0.0312 1376 1.13 0.2640 0.0286 0.0325 61 0.88 0.3834

Slope 8 to 12 -0.0845 0.0170 1376 -4.96 <.0001 -0.0871 0.0178 61 -4.90 <.0001

Slope 12+ -0.0011 0.0003 1376 -3.31 0.0016 -0.0011 0.0004 61 -3.21 0.0021

Table 5.32: Univariate results for fixed effects modelling viral load, with and without left-censoring.

Fit Statistics

Fit Statistic Without left-censoring With left-censoring

-2 Log Likelihood 2601.5 2733.5

AIC (smaller is better) 2615.5 2747.5

BIC (smaller is better) 2630.3 2762.4

Table 5.33: Fit statistics for modelling viral load, with and without left-censoring.

(p<0.0001). This result works in favour of the model which does not apply left-censoring and this

could be due to the fact that only 5% of viral load measurements are undetectable. Thus it can

be concluded that left-censoring of viral load is not necessary for this particular cohort.

5.5 Joint Modelling

5.5.1 CD4+ count

5.5.1.1 Time as a Linear Effect

In Section 5.2.1 it was shown that when fitting weeks post infection as a linear continuous predictor,

there was indeed a significant random intercept and random slope effect. Thus a random intercept

and slope model will be adopted for the longitudinal measurement model. To fit the joint model for

the measurement and time to event processes, an exponential survival model will be used to model

time to informative drop-out (in the current application this is the time to ARV initiation). Using

the method by Henderson, Diggle and Dobson (2000) described in Section 4.3, the longitudinal

and survival sub-models are joined using a Gaussian latent process Wi(t) = {W1i(t),W2i(t)}. The

association between the longitudinal and survival sub-models are described through the cross-

correlation between W1i(t) and W2i(t) and the relationship between these processes are specified.

The following sections will look at different latent associations between the longitudinal model for
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CD4+ count and the survival model for informative drop-out.

Model 1: W1(t) = U0 + U1t and W2(t) = 0

A random intercept and slope was fitted to the longitudinal model, with W1(t) = U0 + U1t. There

was no joint effect specified as W2(t) = 0. Note that now the longitudinal and survival models

are not joined through the Gaussian latent process and this would be the same as fitting the two

models separately.

Fit Statistics

-2 Log Likelihood 6960.8

AIC (smaller is better) 6974.8

BIC (smaller is better) 6989.7

Table 5.34: Fit statistics for a joint CD4+ count and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = 0

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 8.6220 0.3014 60 28.61 <.0001 8.0192 9.2248

Long Intercept 23.1499 0.4531 60 51.09 <.0001 22.2435 24.0563

Long Week -0.0318 0.00518 60 -6.14 <.0001 -0.04216 -0.02145

Residual 6.0689 0.2437 60 24.90 <.0001 5.5814 6.5565

v11 11.9850 2.2690 60 5.28 <.0001 7.4463 16.5236

v12 -0.0016 0.0174 60 -0.09 0.9257 -0.03640 0.03314

v22 0.00128 0.00033 60 3.88 0.0003 0.000620 0.001938

Table 5.35: Parameter estimates for a joint CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = 0

The fit statistics and parameter estimates are shown in Tables 5.34 and 5.35 respectively. Both

the longitudinal and survival sub-models have been modelled using the same PROC NLMIXED. The

intercept for the exponential survival model is 8.6220 and the intercept for the longitudinal CD4+

count model is 23.1499 square root cells/µ`. The CD4+ count decreases at a rate of 0.0318 square

root cells/µ` per week and as seen before, this slope is statistically significant (p<0.0001). The

residual of 6.0689 in Table 5.35 is the residual variance component, the variance of CD4+ count

conditional on participant. The estimates v11, v12 and v22 are the covariance estimates for the

random intercept and slope.
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Model 2: W1(t) = U0 + U1t and W2(t) = r0U0

Now a joint effect is brought into the Gaussian process linking the longitudinal and survival models

through the random intercept. Here the term r0U0 gets added to the survival model in the NLMIXED

procedure.

Fit Statistics

-2 Log Likelihood 6954.9

AIC (smaller is better) 6970.9

BIC (smaller is better) 6987.9

Table 5.36: Fit statistics for a joint CD4+ count and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = r0U0

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 8.8813 0.4038 60 21.99 <.0001 8.0735 9.6891

Long Intercept 23.1414 0.4538 60 50.99 <.0001 22.2337 24.0491

Long Week -0.0314 0.00503 60 -6.25 <.0001 -0.04148 -0.02136

Residual 6.0844 0.2449 60 24.84 <.0001 5.5945 6.5743

r0 0.2481 0.1128 60 2.20 0.0317 0.02252 0.4737

v11 12.0262 2.2774 60 5.28 <.0001 7.4707 16.5817

v12 -0.00090 0.01693 60 -0.05 0.9580 -0.03477 0.03297

v22 0.00119 0.00031 60 3.86 0.0003 0.000575 0.001812

Table 5.37: Parameter estimates for a joint CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0

The fit statistics and parameter estimates are shown in Tables 5.36 and 5.37 respectively. The

parameter estimates for this model do not change much when compared to the previous model

parameter estimates in Table 5.35. Interestingly the new addition, the joint effect estimate r0,

which accounts for the longitudinal and survival model to be linked through the random intercept,

is now significant with p=0.0317. This suggests that there is indeed an importance in joining the

longitudinal CD4+ count model to the survival model in order to take into account informative

drop-out. This also gives a more valid representation of the true process. Note that all three fit

statistics are in support of the joint model.
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Model 3: W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1

Taking the joint modelling a step further, the survival model is linked to the longitudinal model

via both a random intercept and slope. The terms r0U0 + r1U1 are added to the survival model

and the following results are obtained. The parameter estimates in Table 5.39 do not change much

from the previous models, although the intercept for the exponential survival model has increased.

However the standard errors in the joint model under Model 3 are generally higher as compared to

those under Model 2. Both estimates r0 and r1 which measure the joint effect through the random

intercept and slope are statistically significant (p=0.0307 and p=0.0006, respectively) indicating

that there is a significant joint effect in both the intercept and slope. It is also noted that all fit

statistics are in support of the joint sub-models via a random intercept and slope.

Fit Statistics

-2 Log Likelihood 6934.4

AIC (smaller is better) 6952.4

BIC (smaller is better) 6971.5

Table 5.38: Fit statistics for a joint CD4+ count and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = r0U0 + r1U1

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 9.6204 0.6162 60 15.61 <.0001 8.3877 10.8530

Long Intercept 23.1486 0.4528 60 51.12 <.0001 22.2428 24.0543

Long Week -0.03184 0.00513 60 -6.21 <.0001 -0.04210 -0.02158

Residual 6.0624 0.2430 60 24.94 <.0001 5.5762 6.5485

r0 0.3173 0.1434 60 2.21 0.0307 0.03053 0.6041

r1 39.1503 10.8542 60 3.61 0.0006 17.4387 60.8618

v11 11.9747 2.2667 60 5.28 <.0001 7.4408 16.5087

v12 -0.0012 0.0172 60 -0.07 0.9449 -0.03567 0.03328

v22 0.00127 0.00032 60 3.93 0.0002 0.000622 0.001910

Table 5.39: Parameter estimates for a joint CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1
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The differences between the three specifications of the latent Gaussian processes can be seen when

comparing the three models and their effect estimates side-by-side. The model that provided the

best fit was Model 3 with W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1, as it had the lowest AIC and

BIC fit statistics. It is interesting to note that the survival intercept of 9.6204 is higher compared

to Model 1 and 2. The other estimates in the model do not change significantly between the

different models. There is a significant random intercept and slope effect in Model 3 with the

between-subject variation for the intercept and slope being statistically significant with p<0.0001

and p=0.0002 respectively. Both the joint effect estimates r0 and r1 are significant indicating that

there is a significant joint effect through the random intercept and slope (p=0.0307 and p=0.0006,

respectively). The graphical representation of the joint models are shown in Figure 5.5.

Figure 5.5: Different joint models for modelling CD4+ count with time as a linear effect

5.5.1.2 Piecewise Linear Effects

The benefits of fitting a piecewise linear effects model to CD4+ count was seen in Section 5.3.1.

Indeed, the evolution of this HIV marker could be assessed more closely during the acute infection

stage of the infection. This section will look at the effects of joining the survival sub-model to the

longitudinal model with piecewise effects, as a better approach of representing the true underlying

process compared to just a linear combination of the random intercept and slope.
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Model 1: W1(t) = U0 and W2(t) = 0, piecewise

This specification of the latent Gaussian process allows for a random intercept in the longitudinal

CD4+ count model, with no link to the survival model for informative drop-out. Tables 5.41 and

5.42 show the fit statistics and parameter estimates for this joint model. The longitudinal and

survival sub-models are not linked through a latent Gaussian process. This model is equivalent to

fitting a random intercept mixed piecewise model to the CD4+ count data and a survival model

separately, where v11 is the estimate for the between-subject variation in the intercept for CD4+

count.

Fit Statistics

-2 Log Likelihood 6943.3

AIC (smaller is better) 6961.3

BIC (smaller is better) 6980.4

Table 5.41: Fit statistics for a joint piecewise CD4+ count and informative drop-out model with

W1(t) = U0 and W2(t) = 0

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 8.6220 0.3014 61 28.61 <.0001 8.0194 9.2246

Long Intercept 31.1290 0.6878 61 45.26 <.0001 29.7538 32.5043

Slope 0 to 2 -4.4587 0.5990 61 -7.44 <.0001 -5.6565 -3.2610

Slope 2 to 4 0.2950 0.6010 61 0.49 0.6253 -0.9067 1.4967

Slope 4 to 8 0.1674 0.1499 61 1.12 0.2684 -0.1323 0.4672

Slope 8 to 12 -0.3245 0.07985 61 -4.06 0.0001 -0.4842 -0.1648

Slope 12+ -0.01764 0.001593 61 -11.08 <.0001 -0.02083 -0.01446

Residual 6.5919 0.2572 61 25.63 <.0001 6.0777 7.1062

v11 12.6672 2.3299 61 5.44 <.0001 8.0082 17.3261

Table 5.42: Parameter estimates for a joint piecewise CD4+ count and informative drop-out model

with W1(t) = U0 and W2(t) = 0

The parameter estimates for the measurement process in Table 5.42 gives quite similar conclusions

as those in Table 5.24 except for Slope 2 to 4 weeks post infection where the estimates are of

opposite signs, but both are statistically insignificant (p=0.6253 and p=0.6053, respectively).
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Model 2: W1(t) = U0 and W2(t) = r0U0, piecewise

Now a joint effect is specified through the random intercept accounting for the informative drop-

out which occurs later on during follow-up.

Fit Statistics

-2 Log Likelihood 6925.6

AIC (smaller is better) 6945.6

BIC (smaller is better) 6966.9

Table 5.43: Fit statistics for a joint piecewise CD4+ count and informative drop-out model with

W1(t) = U0 and W2(t) = r0U0

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 9.5782 0.6288 61 15.23 <.0001 8.3209 10.8355

Long Intercept 31.1147 0.6881 61 45.22 <.0001 29.7388 32.4906

Slope 0 to 2 -4.4250 0.5989 61 -7.39 <.0001 -5.6226 -3.2274

Slope 2 to 4 0.2757 0.6008 61 0.46 0.6479 -0.9257 1.4772

Slope 4 to 8 0.1636 0.1498 61 1.09 0.2793 -0.1361 0.4632

Slope 8 to 12 -0.3245 0.07981 61 -4.07 0.0001 -0.4841 -0.1649

Slope 12+ -0.01777 0.001591 61 -11.17 <.0001 -0.02095 -0.01459

Residual 6.5910 0.2571 61 25.64 <.0001 6.0770 7.1051

r0 0.5090 0.1455 61 3.50 0.0009 0.2180 0.8000

v11 12.7010 2.3364 61 5.44 <.0001 8.0291 17.3729

Table 5.44: Parameter estimates for a joint piecewise CD4+ count and informative drop-out model

with W1(t) = U0 and W2(t) = r0U0

It can be seen from the parameter estimates in Table 5.44 that r0, the joint effect through the

random intercept, is statistically significant (p=0.0009) indicating that there is indeed an impor-

tant joint effect via the random intercept. The standard error of the survival model fixed effect

parameter has increased because of the extra variability accounted for in this model. Otherwise the

parameter estimates of the longitudinal measurement process have not changed much and standard

errors are still in the same order of magnitude.

Model 3: W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1, piecewise

This following specification of the latent Gaussian process indicates that the longitudinal and

survival sub-models will be joined through both a random intercept and slope. The fit statistics

and parameter estimates follow in Tables 5.45 and 5.46
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Fit Statistics

-2 Log Likelihood 6632.6

AIC (smaller is better) 6658.6

BIC (smaller is better) 6686.2

Table 5.45: Fit statistics for a joint piecewise CD4+ count and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 9.7517 0.6571 60 14.84 <.0001 8.4374 11.0660

Long Intercept 31.1179 0.6307 60 49.34 <.0001 29.8563 32.3796

Slope 0 to 2 -4.2731 0.5201 60 -8.22 <.0001 -5.3136 -3.2327

Slope 2 to 4 0.0970 0.5200 60 0.19 0.8527 -0.9432 1.1372

Slope 4 to 8 0.1445 0.1307 60 1.11 0.2733 -0.1169 0.4058

Slope 8 to 12 -0.2566 0.06950 60 -3.69 0.0005 -0.3957 -0.1176

Slope 12+ -0.0253 0.005080 60 -4.99 <.0001 -0.03550 -0.01517

Residual 4.7788 0.1915 60 24.95 <.0001 4.3957 5.1618

r0 0.3478 0.1431 60 2.43 0.0181 0.06158 0.6340

r1 42.8867 11.5358 60 3.72 0.0004 19.8117 65.9618

v11 12.1906 2.2813 60 5.34 <.0001 7.6274 16.7539

v12 -0.00333 0.01698 60 -0.20 0.8451 -0.03729 0.03063

v22 0.001246 0.000304 60 4.10 0.0001 0.000638 0.001853

Table 5.46: Parameter estimates for a joint piecewise CD4+ count and informative drop-out model

with W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1

As can be seen from the parameter estimates in Table 5.46 that the joint effect estimates which

combine the longitudinal and survival sub-models through the random intercept and slope are

significant with p=0.0181 and p=0.0004, respectively. Overall, most standard errors of the fixed

effects in Table 5.46 are higher than those in Table 5.44 except parameter r0 which has reduced

slightly from 0.1455 to 0.1431. It should be noted that the random slope and intercept effects are

not significantly correlated (p=0.8451).
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Table 5.47 depicts the different methods of joint modelling used on the piecewise model for CD4+

count and it can be seen that Model 3 has the best fit since it has the lowest AIC and BIC fit

statistics. Again this model has W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1 where the longitudinal

and survival sub-models are joined through a random intercept and common random slope.

Both Model 2 and Model 3 have larger survival intercepts and both models fit better than Model 1,

which is in fact not applying joint modelling at all. Model 3 has a lower CD4+ count decline slope

in the first two weeks of infection compared to Model 1, with a decrease of 4.27 square root cells/µ`l

per week. The CD4+ count recovery between 2 and 4 weeks post infection is also predicted to be

lower than previously modelled in Model 1 and 2 at 0.097 square root cells/µ` per week. However

this rebound in CD4+ count is not statistically significant in all three models. Of interest as well

is that the slope after 12 weeks post infection is also steeper compared to the other models with a

decrease of -0.025 square root cells/µ` per week.

When looking at this data graphically in Figure 5.6, it can be seen that Model 3 is predicting

CD4+ count to be lower after 12 weeks post infection and participants are doing worse than what

was previously thought. The effect of adjusting for informative drop-out can be seen more clearly

in Figure 5.6, as CD4+ count is the main HIV marker used to determine when someone should be

initiated on ARVs. Not accounting for these participants dropping out of the study because their

CD4+ count is low gives over-optimistic results, when in fact the CD4+ count should actually be

lower, as can be seen in Figure 5.6. Thus a model which includes individual heterogeneity as well

as informative drop-out has a better predictive feature of the disease than one with none of these.

108



Figure 5.6: Different joint models for modelling CD4+ count with time as piecewise effect

5.5.2 Viral load

5.5.2.1 Time as a Linear Effect

In Section 5.2.2 it was discussed that when modelling viral load over weeks post infection, where

week 0 represents the HIV negative state, there is no need to have an intercept for the model since

viral load is zero when you are HIV uninfected. It was also highlighted that the necessary model,

when modelling time as a linear component, was a no-intercept random slope model.

Model 1: W1(t) = U1t and W2(t) = 0

This specification of the latent Gaussian process is equivalent to fitting a random slope model.

Note that there is no joint link between the longitudinal and survival sub-models. The fit statistics

and parameter estimates for this model is shown in Tables 5.48 and 5.49. As seen in the analysis,

the intercept for the exponential survival model is 8.623. The slope of viral load over weeks post

infection is 0.05427 log copies/m` per week (p<0.0001). The residual of 8.9074 is the residual

variance component and the estimate v22 is the variance of the random slope.
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Fit Statistics

-2 Log Likelihood 7569.6

AIC (smaller is better) 7577.6

BIC (smaller is better) 7586.1

Table 5.48: Fit statistics for a joint viral load and informative drop-out model with W1(t) = U1t

and W2(t) = 0

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 8.6230 0.3015 61 28.60 <.0001 8.0201 9.2259

Long Week 0.05427 0.003604 61 15.06 <.0001 0.04706 0.06147

Residual 8.9074 0.3475 61 25.64 <.0001 8.2126 9.6022

v22 0.000489 0.000172 61 2.85 0.0059 0.000146 0.000833

Table 5.49: Parameter estimates for a joint viral load and informative drop-out model with W1(t) =

U1t and W2(t) = 0

Model 2: W1(t) = U0 + U1t and W2(t) = r0U0

Now a joint link is specified through a random intercept. Even though there is no need for

an intercept for the viral load model, the joint estimate is introduced to see whether there is a

significant joint effect between the average viral load in the longitudinal model and the informative

drop-out in the survival model.

Fit Statistics

-2 Log Likelihood 4824.4

AIC (smaller is better) 4838.4

BIC (smaller is better) 4853.3

Table 5.50: Fit statistics for a joint viral load and informative drop-out model withW1(t) = U0+U1t

and W2(t) = r0U0

From the fit statistics in Table 5.50 an improvement can already be seen as the AIC of 4838.4 is

much smaller than that in Table 5.48 (AIC=7577.6). The parameter estimates in Table 5.51 show

that the joint effect estimate r0 (-2.0932) is statistically significant with p=0.0047. This supports

the fact that there is a significant joint effect between the longitudinal viral load model and the

survival model. Note that the survival intercept has increased approximately two-fold, compared

to the results shown in 5.49 where no joint effect is present. Also note that the slope estimate for

viral load over weeks post infection has decreased, being only 0.008294 log copies/m` per week and
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Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 18.0034 3.4130 60 5.27 <.0001 11.1764 24.8303

Long Week 0.008294 0.004992 60 1.66 0.1019 -0.00169 0.01828

Residual 1.1097 0.04300 60 25.81 <.0001 1.0237 1.1957

r0 -2.0932 0.7126 60 -2.94 0.0047 -3.5185 -0.6679

v11 16.9043 3.0551 60 5.53 <.0001 10.7931 23.0154

v12 -0.02492 0.02093 60 -1.19 0.2386 -0.06679 0.01696

v22 0.000047 0.000064 60 0.74 0.4599 -0.00008 0.000175

Table 5.51: Parameter estimates for a joint viral load and informative drop-out model with W1(t) =

U0 + U1t and W2(t) = r0U0

this is no longer significant (p=0.1019). This may imply that much of the systematic component

of viral load evolution post-infection is accounted for by the drop-out model linked via the random

intercept term r0U0.

Model 3: W1(t) = U1t and W2(t) = r1U1

This particular specification of the latent Gaussian process links the longitudinal and survival sub-

models through the random slope only. The fit statistics and parameter estimates are shown in

Tables 5.52 and 5.53.

Fit Statistics

-2 Log Likelihood 7553.0

AIC (smaller is better) 7563.0

BIC (smaller is better) 7573.6

Table 5.52: Fit statistics for a joint viral load and informative drop-out model with W1(t) = U1t

and W2(t) = r1U1

This model shows that there is a significant joint effect r1 via the random slope with the effect

estimate being -48.1210 (p=0.0007).
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Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 8.9318 0.4242 61 21.06 <.0001 8.0836 9.7800

Long Week 0.05475 0.003643 61 15.03 <.0001 0.04747 0.06204

Residual 8.8689 0.3430 61 25.86 <.0001 8.1830 9.5548

r1 -48.1210 13.4430 61 -3.58 0.0007 -75.0019 -21.2401

v22 0.000536 0.000174 61 3.07 0.0032 0.000187 0.000885

Table 5.53: Parameter estimates for a joint viral load and informative drop-out model with W1(t) =

U1t and W2(t) = r1U1

Model 4: W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1

The following processes link the longitudinal and survival sub-models through both through a

random intercept and slope. However this model failed to converge properly and could not be

used. A summary of the fitted models for viral load outcome are given in Table 5.54.
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It would appear from Table 5.54 that Model 2 provides the best to the data. However, with

an inflated survival intercept and an extremely low slope estimate for the log viral load change

over time, this model does not seem to fit the data well. Figure 5.7 shows the estimates for the

longitudinal data, and as discussed previously, the linear model in general is not a good model to

fit to the acute infection data.

Figure 5.7: Different joint models for modelling viral load with time as a linear effect

5.5.2.2 Piecewise Linear Effects

As was seen in 5.3.2, a piecewise model can show the evolution of viral load as a disease marker

more clearly including the peak in the initial few weeks post infection. Now the effect of joint

modelling, taking into account informative drop-out, will be assessed using the piecewise linear

mixed model to model the longitudinal viral load measurements.

Model 1: W1(t) = U1t and W2(t) = 0, piecewise

This specification of the latent Gaussian process fits a common random effect to the piecewise slopes

and there is no joint effect between the longitudinal and survival sub-models. The fit statistics and

parameter estimates are given in Tables 5.55 and 5.56 respectively.
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Fit Statistics

-2 Log Likelihood 3280.6

AIC (smaller is better) 3296.6

BIC (smaller is better) 3313.6

Table 5.55: Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U1t and W2(t) = 0

Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 8.6230 0.3015 61 28.60 <.0001 8.0201 9.2259

Slope 0 to 2 2.7072 0.06384 61 42.41 <.0001 2.5796 2.8349

Slope 2 to 4 -0.4562 0.08573 61 -5.32 <.0001 -0.6277 -0.2848

Slope 4 to 8 0.05552 0.03593 61 1.55 0.1275 -0.01632 0.1274

Slope 8 to 12 -0.09631 0.02001 61 -4.81 <.0001 -0.1363 -0.05630

Slope 12+ -0.00111 0.001844 61 -0.60 0.5490 -0.00480 0.002576

Residual 0.4223 0.01614 61 26.17 <.0001 0.3901 0.4546

v22 0.000184 0.000038 61 4.79 <.0001 0.000107 0.000261

Table 5.56: Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U1t and W2(t) = 0

The results in Table 5.56 show that there is indeed a significant common random effect between

the slope estimates, since the between-subject variance component v22=0.000184 is statistically

significant (p<0.0001).

Model 2: W1(t) = U0 and W2(t) = r0U0, piecewise

A joint effect is added connecting the longitudinal piecewise viral load model to the survival model

through a random intercept. The U0 term is added to the viral load model as a random effect,

while r0U0 is added to the survival model.

Fit Statistics

-2 Log Likelihood 2800.9

AIC (smaller is better) 2818.9

BIC (smaller is better) 2838.0

Table 5.57: Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U0 and W2(t) = r0U0

115



Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 9.3926 0.5402 61 17.39 <.0001 8.3125 10.4727

Slope 0 to 2 2.6590 0.06165 61 43.13 <.0001 2.5357 2.7823

Slope 2 to 4 -0.4038 0.07362 61 -5.49 <.0001 -0.5511 -0.2566

Slope 4 to 8 0.03626 0.03122 61 1.16 0.2500 -0.02617 0.09868

Slope 8 to 12 -0.08462 0.01703 61 -4.97 <.0001 -0.1187 -0.05056

Slope 12+ -0.00110 0.000340 61 -3.24 0.0020 -0.00178 -0.00042

Residual 0.3046 0.01159 61 26.28 <.0001 0.2814 0.3278

r0 -2.0413 0.6637 61 -3.08 0.0031 -3.3684 -0.7142

v11 0.4704 0.08712 61 5.40 <.0001 0.2962 0.6446

Table 5.58: Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U0 and W2(t) = r0U0

The results in Table 5.58 show that the common joint effect captured through r0 is statistically

significant from zero (p=0.0031) indicating that there is indeed a significant joint effect between

the longitudinal and survival sub-models. It is also interesting to note that the piecewise slopes are

more precisely estimated (smaller standard errors) under the joint model compared to that when

W2(t) = 0.

Model 3: W1(t) = U1t and W2(t) = r1U1, piecewise

Now, instead of the random intercept, a random slope is added to the longitudinal model which

is common to all piecewise effects. The survival model is then linked to the longitudinal model

through this random slope.

Fit Statistics

-2 Log Likelihood 3263.9

AIC (smaller is better) 3263.9

BIC (smaller is better) 3301.0

Table 5.59: Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U1t and W2(t) = r1U1

The results in Table 5.60 show that the common joint effect r1 is statistically significant from zero

(p=0.0001) indicating that there is indeed a significant joint effect between the longitudinal and

survival sub-models via the common random slope.
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Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 9.2621 0.4766 61 19.43 <.0001 8.3091 10.2151

Slope 0 to 2 2.7072 0.06383 61 42.41 <.0001 2.5796 2.8348

Slope 2 to 4 -0.4566 0.08571 61 -5.33 <.0001 -0.6280 -0.2852

Slope 4 to 8 0.05574 0.03592 61 1.55 0.1259 -0.01609 0.1276

Slope 8 to 12 -0.09672 0.02001 61 -4.83 <.0001 -0.1367 -0.05672

Slope 12+ -0.00101 0.001842 61 -0.55 0.5837 -0.00470 0.002668

Residual 0.4222 0.01612 61 26.19 <.0001 0.3900 0.4545

r1 -97.9038 24.0116 61 -4.08 0.0001 -145.92 -49.8897

v22 0.000184 0.000038 61 4.83 <.0001 0.000108 0.000261

Table 5.60: Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U1t and W2(t) = r1U1

Model 4: W1(t) = U0 + U1t and W2(t) = r0U0, piecewise

This specification places a common random slope effect for all the piecewise slopes and the longi-

tudinal and survival models are linked through a random intercept effect.

Fit Statistics

-2 Log Likelihood 2607.7

AIC (smaller is better) 2629.7

BIC (smaller is better) 2653.1

Table 5.61: Fit statistics for a joint piecewise viral load and informative drop-out model with

W1(t) = U0 + U1t and W2(t) = r0U0

In Table 5.62, the joint effect r0 is statistically significant from zero (p=0.0083) thus there is a

significant joint effect between the longitudinal and survival sub-models via the common random

intercept. Also important to note is that the between-subject variance in the common random

slope between the piecewise effects, v22 is significantly different from zero (p=0.0002).
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Parameter Estimates

Parameter Estimate Std Err DF t Value Pr >|t | Lower Upper

Surv Intercept 9.3446 0.5521 60 16.92 <.0001 8.2401 10.4490

Slope 0 to 2 2.6752 0.05591 60 47.85 <.0001 2.5634 2.7871

Slope 2 to 4 -0.4014 0.06640 60 -6.05 <.0001 -0.5343 -0.2686

Slope 4 to 8 0.03334 0.02842 60 1.17 0.2454 -0.02351 0.09019

Slope 8 to 12 -0.08725 0.01550 60 -5.63 <.0001 -0.1183 -0.05625

Slope 12+ -0.00177 0.000944 60 -1.87 0.0657 -0.00366 0.000119

Residual 0.2436 0.009515 60 25.60 <.0001 0.2246 0.2627

r0 -2.1732 0.7959 60 -2.73 0.0083 -3.7651 -0.5812

v11 0.4173 0.07955 60 5.25 <.0001 0.2582 0.5765

v12 0.000188 0.000614 60 0.31 0.7611 -0.00104 0.001416

v22 0.000040 0.000010 60 3.99 0.0002 0.000020 0.000061

Table 5.62: Parameter estimates for a joint piecewise viral load and informative drop-out model

with W1(t) = U0 + U1t and W2(t) = r0U0

Model 5: W1(t) = U0 + U1t and W2(t) = r0U0 + r1U1

As with modelling time as a linear slope, this specification of joining the longitudinal and survival

sub-models through both a random intercept and slope failed to converge properly and was not

used.
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Model 4 provides the best fit for a joint model combining the longitudinal piecewise model for

viral load to the exponential model modelling the informative drop-out. Thus the best specified

association between the two models was W1(t) = U0 + U1t and W2(t) = r0U0, where they are linked

via a random intercept. A common random slope was also applied to the piecewise random effects

and this also provided a better fit, compared to Model 2 which also links the models through the

random intercept.

In Section 5.3.2, which looked at modelling the piecewise linear mixed model to viral load, SAS

procedure PROC MIXED was used to fit the models. To specify the slopes as random effects would

have required to put these variables after the RANDOM, however this assumes that each of the five

slopes have their own random slope and have their own subject-specific estimates and the model

would try to calculate a variance-covariance matrix for all five slopes. This proved impossible given

the data used and thus could not be done. However, the NLMIXED procedure in SAS allows one to

fit a generalised model and in this case, a common random slope estimate was specified for all five

slopes, taking into account the between-subject variation that occurs over time.

In all the joint models Model 2, 3 and 4, the intercept for the survival model is higher in all

the three models compared to Model 1, as well as the univariate marginal model described in

Section 5.3.2. The effect estimates do not change much in magnitude, however the standard errors

in Model 4 are smaller than the other models. The joint effect estimates, r0 and r1 are statisti-

cally significant in all models where used. The different joint models are represented graphically

in Figures 5.8 and 5.9. Figure 5.8 looks at the first two years of HIV infection, while Figure 5.9

looks more closely what happens between 4 and 5 log copies/m`. Thus Model 4, having both

random intercept and slope effects for the longitudinal measurements process and linking it to the

informative drop-out process via the random intercept effect best depicts the viral load evolution

better than the other three candidate models.
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Figure 5.8: Different joint models for modelling viral load with time as piecewise effects

Figure 5.9: Different joint models for modelling viral load with time as piecewise effects, between
4 and 5 log copies/m`
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Chapter 6

Conclusion and Future Work

The problem of understanding the pathogenesis of HIV/AIDS is still a very active research area,

particularly now that several treatment and mitigating strategies are in consideration. Statistical

methods to model and quantify the evolution of two key HIV markers during the acute infection

stage of the disease were presented in this work. Because of the variability in trajectories over time

in both CD4+ count and viral load during the first few weeks post infection, a piecewise linear

mixed effects model was applied and shown to provide a better fit to the data in describing the

biomarkers.

Fitting a simple linear regression would not be adequate and even fitting a quadratic or cubic term

for weeks post infection would not be meaningful. The piecewise linear effects approach allowed

for the quantification of the rate of change in the surrogate HIV markers in the initial two weeks

following HIV infection, showing the peak in viral load and the decline in CD4+ count. There-

after, in the subsequent fortnight it could be shown, that viral load decreases as the body starts

to control the virus. However, CD4+ count does not recover after the initial drop and remains low.

This method of modelling the HIV markers would be useful when analysing the effect of pre-

exposure to antiretroviral treatment before acquiring HIV, as would be the case in those individuals

using microbicides or pre-exposure prophylaxis (PrEP). Although these methods are designed to

protect against HIV, their effectiveness is still being evaluated in clinical trials. If one such subject

on the active arm did indeed acquire HIV, then determining the effect of pre-exposure to antiretro-

viral treatment on viral load replication would be important. For instance, if it is found that those

who have been pre-exposed to antiretroviral treatment have a lower peak viral load during acute

infection and a sustained lower viral load, then this would be a useful finding. Similarly the effects
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of intervention on CD4+ count could also be studied. Understanding and quantifying the effect

of microbicides or PrEP on viral load and CD4+ count could help to better the understanding of

these preventative methods. The piecewise linear effects model would also be useful when studying

genetic factors which affect how someone responds to HIV infection as well as disease progression

over time. For example, analysis done on the same cohort by Sewram et al. (2009) and Naicker et

al. (2009) can use this model to quantify the effect of the different genotypes on the evolution of

viral load and CD4+ count.

As was shown in Section 5.4, accounting for left-censoring was not necessary and did not provide

a better fit to the model for this cohort. This was due to the fact that only a small proportion of

viral load measurements fell below the lower limit of detection. However, the maximum-likelihood

approach for left-censoring has been shown to produce less biased estimates compared to crude

methods such as using the censoring limit (Jacqmin-Gadda et al., 2000). If one is modelling viral

load in a cohort where a moderate proportion of the measurements fall below a certain detection

limit, as would be the case in individuals on HAART, then the methods for left-censoring should

be explored.

In this thesis, joint modelling was used to combine the longitudinal measurement process and

time to HAART initiation based on CD4+ levels. Joint modelling was shown to provide a better

fit to the data. Comparing the piecewise linear mixed effects model which accounted for informa-

tive drop-out with one that did not, showed that CD4+ count decline was indeed underestimated

in the latter model, especially in the interval past 12 weeks post infection. Viral load was not af-

fected as much when adjusting for informative drop-out, despite the correlation with CD4+ count.

We note however that CD4+ count is a direct determinant of whether someone drops out and

gets initiated on HAART. Joint modelling seems to be a very important method to take account

of incomplete data resulting from informative drop-out. Overall the current study has helped to

understand the acute infection stage of HIV better for individuals infected with HIV-1 subtype C

in a South African cohort of women.

The measurement longitudinal data process due to CD4+ count and viral load were modelled

univariately, where only one dependent variable was considered at a time. However, when there

are two response variables observed jointly with each other then bivariate linear mixed modelling

may be the most appropriate approach because it can take account of possible dependence between

these response variables. Multivariate longitudinal data analysis is an area attracting renewed focus

in biostatistics. Such an approach will be the subject of future studies.
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Appendix: SAS Code

Linear Mixed Models

/************************************* CD4 COUNT ***************************/

/*FITTING MARGINAL LINEAR MIXED MODEL ON CD4 COUNT WITH WEEKS POST INFECTION AS A LINEAR

EFFECT (MODEL IN TABLE 5.2)*/

proc mixed data=mscdata method=reml covtest empirical;

class pid week2;

model sqrtcd4=week/s;

repeated week2/subject=pid type=sp(pow)(week);

title ’CD4 = week, marginal model SP(POW)’;

run;

/*FITTING A RANDOM INTERCEPT LINEAR MIXED MODEL ON CD4 COUNT WITH WEEKS POST INFECTION

AS A LINEAR EFFECT (MODEL IN TABLE 5.5)*/

proc mixed data=mscdata method=reml covtest empirical;

class pid week2;

model sqrtcd4=week/s;

random intercept/s subject=pid type=un;

repeated week2/subject=pid type=sp(pow)(week);

title ’CD4 = week, repeated SP(POW), random intercept’;

run;

/*FITTING A RANDOM INTERCEPT AND SLOPE LINEAR MIXED MODEL ON CD4 COUNT WITH WEEKS POST

INFECTION AS A LINEAR EFFECT (MODEL IN TABLE 5.9)*/

proc mixed data=mscdata method=reml empirical covtest;

class pid week2;

model sqrtcd4=week/s;

random intercept week/s subject=pid type=un;

repeated week2/subject=pid type=sp(pow)(week);

title ’CD4 = week, repeated SP(POW), random intercept and slope’;

run;

/************************************* VIRAL LOAD ***************************/

/*FITTING MARGINAL LINEAR MIXED NO-INTERCEPT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION

AS A LINEAR EFFECT (MODEL IN TABLE 5.14)*/

proc mixed data=mscdata method=reml empirical covtest;

class pid week2;
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model logvl=week/noint s;

repeated week2/subject=pid type=cs;

title ’LogVL = week, marginal model CS’;

run;

/*FITTING MARGINAL LINEAR MIXED NO-INTERCEPT RANDOM SLOPE MODEL ON VIRAL LOAD WITH

WEEKS POST INFECTION AS A LINEAR EFFECT (AND RANDOM EFFECT) (MODEL IN TABLE 5.17)*/

proc mixed data=mscdata method=reml empirical covtest;

class pid week2;

model logvl=week/noint s;

random week/s subject=pid type=un;

repeated week2/subject=pid type=cs;

title ’logvl = week, repeated CS, random intercept’;

run;

Piecewise Linear Mixed Models

/************************************* CD4 COUNT ***************************/

/*FITTING MARGINAL LINEAR MIXED MODEL ON CD4 COUNT WITH WEEKS POST INFECTION AS PIECEWISE

LINEAR EFFECTS (MODEL IN TABLE 5.21)*/

proc mixed data=mscdata method=reml empirical covtest;

class pid week2;

model sqrtcd4=slope0 2 slope2 4 slope4 8 slope8 12 slope12 /corrb s;

repeated week2/subject=pid type=cs;

title ’CD4 piecewise repeated CS, marginal’;

run;

/*FITTING MARGINAL LINEAR MIXED RANDOM INTERCEPT MODEL ON CD4 COUNT WITH WEEKS POST

INFECTION AS PIECEWISE LINEAR EFFECTS (MODEL IN TABLE 5.24)*/

proc mixed data=mscdata method=reml empirical covtest;

class pid week2;

model sqrtcd4= slope0 2 slope2 4 slope4 8 slope8 12 slope12 /corrb s;

random intercept/s subject=pid type=un;

repeated week2/subject=pid type=sp(pow)(week);

title ’CD4 piecewise repeated SP(POW), random intercept’;

run;

/************************************* VIRAL LOAD ***************************/

/*FITTING MARGINAL LINEAR MIXED NO-INTERCEPT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION

AS PIECEWISE LINEAR EFFECTS (MODEL IN TABLE 5.29)*/

proc mixed data=mscdata method=reml empirical covtest;

class pid week2;

model logvl= slope0 2 slope2 4 slope4 8 slope8 12 slope12 /noint corrb s;

repeated week2/subject=pid type=cs;

title ’LogVL piecewise repeated CS, marginal’;

run;
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Left-censoring Of Viral Load

/********NLMIXED MODEL - VIRAL LOAD WITH LEFT-CENSORING**********/

/*FITTING MARGINAL LINEAR MIXED NO-INTERCEPT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION

AS PIECEWISE LINEAR EFFECTS TAKING INTO ACCOUNT LEFT-CENSORING (MODEL IN TABLE 5.32)*/

proc nlmixed data=mscdata;

parms b0 2=2.66 b2 4=-0.40 b4 8=0.03 b8 12=-0.08 b12 =-0.00123 sigsqe=0.29;

pi=2*arsin(1);

mu=b0 2*slope0 2 + b2 4*slope2 4 + b4 8*slope4 8 + b8 12*slope8 12 + b12 *slope12

+ participant;

if vlOBS eq 1 then ll=(1/(sqrt(2*pi*sigsqe)))*exp(-(logvl-mu)**2/(2*sigsqe));

if vlobs eq 0 then ll=probnorm((logvl-mu)/sqrt(sigsqe));

L=log(ll);

model logvl ∼ general(L);

random participant ∼ normal([0],[pvar]) subject=pid out=temp;

title ’VL piecewise model with LEFT CENSORING’;

run;

Joint Modelling

/************************************* CD4 COUNT ***************************/

/*FITTING JOINT MODEL ON CD4 COUNT WITH WEEKS POST INFECTION FITTED AS A LINEAR EFFECT

(MODEL IN TABLE 5.35)*/

title ’Joint Model - CD4 count - W1(t) = U0 + U1t / W2(t)=0’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl0=23.0 bl1=-0.02 residual=7.8;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha * G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv = 0;

/*Longitudinal model for CD4 count*/

mu = (bl0 + u0) + (bl1 + u1)*week;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(sqrtcd4-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 u1 ∼ normal([0, 0],[v11,v12,v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON CD4 COUNT WITH WEEKS POST INFECTION FITTED AS A LINEAR EFFECT

(MODEL IN TABLE 5.37)*/
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title ’Joint Model - CD4 count - W1(t) = U0 + U1t / W2(t) = r0U0’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl0=23.0 bl1=-0.02 residual=7.8;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r0*U0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv = 0;

/*Longitudinal model for CD4 count*/

mu = (bl0 + u0) + (bl1 + u1)*week;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(sqrtcd4-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 u1 ∼ normal([0, 0],[v11,v12,v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON CD4 COUNT WITH WEEKS POST INFECTION FITTED AS A LINEAR EFFECT

(MODEL IN TABLE 5.39)*/

title ’Joint Model - CD4 count - W1(t) = U0 + U1t / W2(t) = r0U0 + r1U1’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl0=23.0 bl1=-0.02 residual=7.8;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r0*u0 + r1*u1;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;

/*Longitudinal model for CD4 count*/

mu = (bl0 + u0) + (bl1 + u1)*week;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(sqrtcd4-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 u1 ∼ normal([0, 0],[v11,v12,v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON CD4 COUNT WITH WEEKS POST INFECTION FITTED AS PIECEWISE LINEAR

EFFECTS (MODEL IN TABLE 5.42)*/
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title ’Joint Model - Piecewise CD4 count - W1(t) = U0/ W2(t) = 0’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl0=31.16 bl02=-4.03 bl24=-0.129 bl48=0.03242 bl812=-0.2339 bl12=-0.01504

residual=7.8;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;

/*Longitudinal model for CD4 count*/

mu = (bl0 + u0) + (bl02)*slope0 2 + (bl24)*slope2 4 + (bl48)*slope4 8 + (bl812)*slope8 12

+ (bl12)*slope12 ;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(sqrtcd4-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 ∼ normal([0],[v11]) subject=pid;

run;

/*FITTING JOINT MODEL ON CD4 COUNT WITH WEEKS POST INFECTION FITTED AS PIECEWISE LINEAR

EFFECTS (MODEL IN TABLE 5.44)*/

title ’Joint Model - Piecewise CD4 count - W1(t) = U0/ W2(t) = r0U0’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl0=31.16 bl02=-4.03 bl24=-0.129 bl48=0.03242 bl812=-0.2339 bl12=-0.01504

residual=7.8;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r0*U0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;

/*Longitudinal model for CD4 count*/

mu = (bl0 + u0) + (bl02)*slope0 2 + (bl24)*slope2 4 + (bl48)*slope4 8 + (bl812)*slope8 12

+ (bl12)*slope12 ;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(sqrtcd4-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 ∼ normal([0],[v11]) subject=pid;
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run;

/*FITTING JOINT MODEL ON CD4 COUNT WITH WEEKS POST INFECTION FITTED AS PIECEWISE LINEAR

EFFECTS (MODEL IN TABLE 5.46)*/

title ’Joint Model - Piecewise CD4 count - W1(t) = U0 + U1t/ W2(t) = r0U0 + r1U1’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl0=31.16 bl02=-4.03 bl24=-0.129 bl48=0.03242 bl812=-0.2339 bl12=-0.01504

residual=7.8;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r0*u0 + r1*u1;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;

/*Longitudinal model for CD4 count*/

mu = (bl0 + u0)+ (bl02 + u1)*slope0 2 + (bl24 + u1)*slope2 4 + (bl48 + u1)*slope4 8

+ (bl812 + u1)*slope8 12 + (bl12 + u1)*slope12 ;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(sqrtcd4-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 u1 ∼ normal([0,0],[v11,v12,v22]) subject=pid;

run;

/************************************* VIRAL LOAD ***************************/

/*FITTING JOINT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION FITTED AS A LINEAR EFFECT

(MODEL IN TABLE 5.49)*/

title ’Joint Model - Viral Load - W1(t) = U1t / W2(t)=0’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl1=0.0542 residual=8.9074;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha * G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv = 0;

/*Longitudinal model for Viral Load*/

mu = (bl1 + u1)*week;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(logvl-mu)**2/(2*residual));
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lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u1 ∼ normal([0],[v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION FITTED AS A LINEAR EFFECT

(MODEL IN TABLE 5.51)*/

title ’Joint Model - Viral Load - W1(t) = U0+U1t / W2(t) = r0U0’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl1=0.0542 residual=8.9074;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r0*u0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha * G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv = 0;

/*Longitudinal model for Viral Load*/

mu = u0 + (bl1 + u1)*week;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(logvl-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 u1 ∼ normal([0,0],[v11,v12,v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION FITTED AS A LINEAR EFFECT

(MODEL IN TABLE 5.53)*/

title ’Joint Model - Viral Load - W1(t) = U1t / W2(t) = r1U1’;

proc nlmixed data=mscdata;

parms bs0=8.75 bl1=0.0542 residual=8.9074;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r1*u1;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha * G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv = 0;

/*Longitudinal model for Viral Load*/

mu = (bl1 + u1)*week;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(logvl-mu)**2/(2*residual));
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lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u1 ∼ normal([0],[v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION FITTED AS PIECEWISE LINEAR

EFFECTS (MODEL IN TABLE 5.56)*/

title ’Joint Model - Piecewise Viral Load - W1(t) = U1t/ W2(t) = 0’;

proc nlmixed data=mscdata;

parms bl02=2.70 bl24=-0.456 bl48=0.055 bl812=-0.096 bl12=-0.0011 residual=0.42;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;

/*Longitudinal model for Viral Load*/

mu = (bl02 + u1)*slope0 2 + (bl24 + u1)*slope2 4 + (bl48 + u1)*slope4 8 + (bl812

+ u1)*slope8 12

+ (bl12 + u1)*slope12 ;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(logvl-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u1 ∼ normal([0],[v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION FITTED AS PIECEWISE LINEAR

EFFECTS (MODEL IN TABLE 5.58)*/

title ’Joint Model - Piecewise Viral Load - W1(t) = U0/ W2(t) = r0U0’;

proc nlmixed data=mscdata;

parms bl02=2.70 bl24=-0.456 bl48=0.055 bl812=-0.096 bl12=-0.0011 residual=0.42;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r0*u0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;

/*Longitudinal model for Viral Load*/

mu = u0 + (bl02)*slope0 2 + (bl24)*slope2 4 + (bl48)*slope4 8 + (bl812)*slope8 12
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+ (bl12)*slope12 ;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(logvl-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 ∼ normal([0],[v11]) subject=pid;

run;

/*FITTING JOINT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION FITTED AS PIECEWISE LINEAR

EFFECTS (MODEL IN TABLE 5.60)*/

title ’Joint Model - Piecewise Viral Load - W1(t) = U1t/ W2(t) = r1U1’;

proc nlmixed data=mscdata;

parms bl02=2.70 bl24=-0.456 bl48=0.055 bl812=-0.096 bl12=-0.0011 residual=0.42;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r1*u1;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;

/*Longitudinal model for Viral Load*/

mu = (bl02 + u1)*slope0 2 + (bl24 + u1)*slope2 4 + (bl48 + u1)*slope4 8 + (bl812

+ u1)*slope8 12

+ (bl12 + u1)*slope12 ;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(logvl-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u1 ∼ normal([0],[v22]) subject=pid;

run;

/*FITTING JOINT MODEL ON VIRAL LOAD WITH WEEKS POST INFECTION FITTED AS PIECEWISE LINEAR

EFFECTS (MODEL IN TABLE 5.62)*/

title ’Joint Model - Piecewise Viral Load - W1(t) = U0+U1t/ W2(t) = r0U0’;

proc nlmixed data=mscdata;

parms bl02=2.70 bl24=-0.456 bl48=0.055 bl812=-0.096 bl12=-0.0011 residual=0.42;

/*Survival Exponential model on time to ARV initiation*/

if (lastvisit) then do;

linpsurv = bs0 + r0*u0;

alpha = exp(-linpsurv);

G t = exp(-alpha*days);

g = alpha*G t;

llsurv = (ARV=1)*log(g) + (ARV=0)*log(G t);

end; else llsurv=0;
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/*Longitudinal model for Viral Load*/

mu = u0 + (bl02 + u1)*slope0 2 + (bl24 + u1)*slope2 4 + (bl48 + u1)*slope4 8 + (bl812

+ u1)*slope8 12

+ (bl12 + u1)*slope12 ;

pi = 2*arsin(1);

ll = (1/(sqrt(2*pi*residual)))*exp(-(logvl-mu)**2/(2*residual));

lllong = log(ll);

model lastvisit ∼ general(lllong + llsurv);

random u0 u1 ∼ normal([0,0],[v11,v12,v22]) subject=pid;

run;
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