
Investigation of Techniques for Automatic

Polyphonic Music Transcription

Using Wavelets

by

John C. McGuiness

Submitted in fulfilment of the requirements for the degree of

Master of Science

in the School of Computer Science

University of KwaZulu-Natal

Pietermaritzburg

November 2009

 i

Declaration of Originality

This thesis has not previously been submitted for a degree in this or any other university, and,
to the best of my knowledge, contains no material previously published or written by another
person or persons, except where due reference has been made.

Candidate: John C. McGuiness (206519178)

Declaration of Suitability

As the candidate’s supervisor, I have approved this thesis for submission for examination.

Supervisor: Hugh C. Murrell

 ii

Acknowledgements

My sincerest thanks goes to:

• Professor Hugh Murrell, my supervisor, for his continued guidance and support.

• The Natal Society Foundation, for their generous bursary.

• Marcus Henning and the Hexagon Theatre, for the use of their recording studio and
equipment.

• Shona Wallis, Ivan Frommurze and Marc Mervin: thank you for the music.

• Curtis, for proof-reading this thesis and for being a great friend.

• Freda, for friendship, kind generosity and support.

• Father Hugh Ross, the original inspirator for this research while I was still in high

school, without whom I might not have “bashed on regardless” in the first place.

• Dr. JPG “Paddy” Ewer, my internal examiner, for contributing a meticulously
comprehensive and invaluable set of corrections.

• Professor Geoff Wyvill, my external examiner, for his likewise very insightful and

useful comments.

 iii

Abstract

It has been said (although sadly I have no source) that music is one of the most useful yet
useless phenomena known to mankind. Useless in that it has, apparently, no tangible or
immediately practical function in our lives, but extremely useful in that it is a truly universal
language between human beings, which transcends boundaries and allows us to express
ourselves and experience emotions in rather profound ways.

For the majority of us, music exists to be listened to, appreciated, admired (sometimes
reviled) but generally as some sort of stimulus for our auditory senses. Some of us feel the
need to produce music, perhaps simply for our own creative enjoyment, or maybe because we
crave the power it lends us to be able to inspire feelings in others. For those of us who love to
know “the reason why” or “how things work” and wish to discover the secrets of music,
arguably the greatest of all the arts, there can surely be no doubt that a fascinating world of
mathematics, harmony and beauty awaits us. Perhaps the reason why music is able to convey
such strong emotions in us is because we are (for whatever strange evolutionary reason or
purpose) designed to be innately pattern pursuing, sequence searching and harmony hungry
creatures. Music, as we shall discover in this research, is chock-a-block full of the most
incredible patterns, which are just waiting to be deciphered.

 iv

Table of Contents

1 Introduction ... 1

1.1 Music Recognition in General..1
1.2 Research Problem Description ...1
1.3 Aims, Objectives and Scope of Research...2
1.4 Importance and Usefulness of Research ..3
1.5 Thesis Structure..4

2 Audio Signal Analysis – Basic Concepts ... 5

2.1 Waves ...5
2.2 Digital Representation of a Signal ...10
2.3 Transforms ...13
2.4 The Fast Fourier Transform Algorithm..17

3 An ABC of Music Theory ...26

3.1 Musical Pitch..26
3.2 Musical Modes ...30
3.3 Music Notation...35
3.4 Diatonic Intervals and Chords..41
3.5 Chord Progressions ..49

4 The Easy Problem – Single Pitch Extraction.. 54

4.1 Windowing in the Time Domain..54
4.2 The Phase Vocoder...58
4.3 The McLeod Pitch Method (MPM) ...61
4.4 Drawing a Pitch/Time Graph ...66
4.5 Comparison of Output..69

5 The Hard Problem – Multiple Pitch Extraction... 78

5.1 Previous Attempts – Exploration of Existing Software ...78
5.2 Introducing Wavelets ...85
5.3 The Discrete Wavelet Transform ...91
5.4 The Fast Haar and Daubechies Transforms ...93
5.5 The Fast Redundant Haar Transform...101
5.6 Windowing in the Frequency Domain ...103
5.7 Output...104

6 Drawing a Spectrogram Using the Continuous Wavelet Transform..... 111

6.1 The Continuous Wavelet Transform..111
6.2 Four Wavelets ..113
6.3 Implementing the Fast CWT..121
6.4 Comparison of Output..122

7 Interpreting the CWT Spectrogram.. 127

7.1 The Scale of the CWT Spectrogram ..127
7.2 Beats ...129
7.3 Difference Tone Analysis...130
7.4 An Improved Pitch Detection Method ...137

 v

8 Experimental Pitch Detection on Live Audio Recordings 144
8.1 Preparation of Audio Data ... 144
8.2 Methods and Results.. 145

9 From Pitch Graphs to Musical Scores .. 163

9.1 Temporal Note Detection... 163
9.2 Note Classification via Image Processing Techniques .. 165

10 Conclusions .. 169

10.1 Evaluation of Results ... 169
10.2 Ideas for Further Research... 171

Appendix A – Mathematical Notation .. 173
Appendix B – Algebraic Workings.. 176
Appendix C – Code Listings... 182
Appendix D – Musical Scores... 186
Appendix E – Wave Processor 3.0... 189

References and Sources .. 192

 vi

List of Figures

Figure 2.1 – An example of a wave ...5
Figure 2.2 – Three sine wave graphs ...6
Figure 2.3 – Sine and cosine graphs, both with frequency 5Hz...7
Figure 2.4 – Polar graph showing two angles θ1 and θ2 with phase difference φ.....................8
Figure 2.5 – Diagram showing phase difference of a wave at each ear.....................................8
Figure 2.6 – Composite sinusoidal wave ...9
Figure 2.7 – Sampled versions of Figure 2.6 .. 11-12
Figure 2.8 – Frequency domain representation of signal in Figure 2.614
Figure 2.9 – Bit Reversal ...18
Figure 2.10 – Decimation 1..18
Figure 2.11 – Decimation 2..19
Figure 2.12 – Polar complex number diagrams of combinations 23-24
Figure 2.13 – Polar graph representation of a complex Fourier coefficient, v25

Figure 3.1 – A freely vibrating string...27
Figure 3.2 – A vibrating string stopped half-way ..27
Figure 3.3 – Dividing the string into thirds..27
Figure 3.4 – Four divisions of the string: third harmonic ..28
Figure 3.5 – Octaves resonance of two cosine waves..29
Figure 3.6 – An example of a musical staff ...36
Figure 3.7 – Notes drawn on leger lines ..36
Figure 3.8 – Clef symbols ..36
Figure 3.9 – Relative vertical positions of staff systems ...37
Figure 3.10 – The Tenor clef..37
Figure 3.11 – Ties and dots example ...38
Figure 3.12 – Previous example staff with bar lines added ...39
Figure 3.13 – Previous example staff with bar lines and time signature41
Figure 3.14 – Tonic triads of C Major and A Minor..44
Figure 3.15 – Diatonic triads of C Major...44
Figure 3.16 – Diatonic triads of A Harmonic Minor ...44
Figure 3.17 – Inversions of C Major tonic triad...45
Figure 3.18 – Triads comprising fourths and seconds ...46
Figure 3.19 – Suspensions and resolutions ..46
Figure 3.20 – Examples of cluster chords..47
Figure 3.21 – Quartads...47
Figure 3.22 – A wide quartad...47
Figure 3.23 – C Major dominant seventh in different inversions..49
Figure 3.24 – Perfect cadences in C Major and A Minor ..49
Figure 3.25 – Plagal cadences in C Major and A Minor..50
Figure 3.26 – Imperfect cadences in C Major and A Minor ..50
Figure 3.27 – Interrupted cadences in C Major and A Minor..51
Figure 3.28 – Three types of relative voice motion ...51
Figure 3.29 – Doubling of notes in four-part harmony..52

Figure 4.1 – DFT histogram of f(t) = ⅓ sin(10πt) + ⅓ sin(20πt) + ⅓ sin(40πt)......................55
Figure 4.2 – f(t) split into four windows ..56
Figure 4.3 – DFT histogram of f(t) for each window...56
Figure 4.4 – Gaussian function and its product with the first window of f(t)57

 vii

Figure 4.5 – Fourier transform of windowed signal .. 58
Figure 4.6 – f(t) split into seven overlapping windows ... 59
Figure 4.7 – Windowed signal from 0.25 to 0.75 and its Fourier transform........................... 60
Figure 4.8 – An example NSDF output.. 65
Figure 4.9 – First two bars of Nkosi Sikeleli Africa melody.. 68
Figure 4.10 – MPM pitch graph of first two bars of Nkosi Sikeleli Africa melody................. 68
Figure 4.11 – Fourier transform of stationary signal comprising three frequencies 70
Figure 4.12 – Linear chirp signal (time domain)... 70
Figure 4.13 – Fourier transform of linear chirp signal .. 71
Figure 4.14 – Short Time Fourier Transform of linear chirp signal.. 71
Figure 4.15 – STFT of linear chirp signal with Gaussian window function 72
Figure 4.16 – STFT of linear chirp signal with larger window width..................................... 72
Figure 4.17 – Pitch graph of chirp calculated by Phase Vocoder.. 73
Figure 4.18 – Pitch graph of chirp calculated by McLeod Pitch Method................................ 73
Figure 4.19 – Scale of D Minor, one octave, ascending and descending 74
Figure 4.20 – STFT of D Minor scale ... 74
Figure 4.21 – Phase Vocoder pitch graph of D Minor scale ... 75
Figure 4.22 – MPM pitch graph of D Minor scale .. 75
Figure 4.23 – MPM pitch graph of Tartini example scale .. 76
Figure 4.24 – Phase Vocoder pitch graph of first 2 bars of Nkosi Sikeleli Africa melody...... 77

Figure 5.1 – Musical score of marimbaphone melody from DNA example 78
Figure 5.2 – Spectrogram of marimbaphone melody .. 79
Figure 5.3 – Probability distribution spectrogram for frequencies belonging to 12th note...... 81
Figure 5.4 – AudioScore pitch graph of marimbaphone melody... 83
Figure 5.5 – Marimbaphone melody imported into Sibelius from AudioScore....................... 83
Figure 5.6 – Manual transcription of Nkosi Sikeleli Africa quartet example in Sibelius......... 84
Figure 5.7 – AudioScore transcription of NSA quartet imported into Sibelius 84
Figure 5.8 – AudioScore pitch graph of NSA quartet example ... 84
Figure 5.9 – Haar component vectors drawn on the Cartesian plane 87
Figure 5.10 – The Haar mother wavelet as a square function ... 88
Figure 5.11 – Haar wavelets at first scale (s = 1) .. 89
Figure 5.12 – Haar wavelets at second scale (s = 2).. 90
Figure 5.13 – Heisenberg boxes for the STFT .. 92
Figure 5.14 – Heisenberg boxes for the DWT... 92
Figure 5.15 – Lifting Scheme diagram.. 96
Figure 5.16 – Daubechies 4 scaling and mother wavelet functions .. 98
Figure 5.17 – Haar wavelet transform of chirp signal ... 105
Figure 5.18 – Daubechies 4 wavelet transform of chirp signal ... 105
Figure 5.19 – Dyadic graph of D4 wavelet transform of chirp signal................................... 106
Figure 5.20 – Haar wavelet transform of lohi.wav... 107
Figure 5.21 – D4 wavelet transform of lohi.wav ... 107
Figure 5.22 – Redundant Haar wavelet transform of lohi.wav .. 108
Figure 5.23 – Two-part arrangement of first two bars of Nkosi Sikeleli Africa 108
Figure 5.24 – Three-part arrangement of first two bars of Nkosi Sikeleli Africa 109
Figure 5.25 – Automatic transcription of two-part arrangement using DWT/MPM............. 109
Figure 5.26 – Automatic transcription of three-part arrangement using DWT/MPM........... 110

Figure 6.1 – Comparison of DWT and CWT spectrograms of a chirp signal 111
Figure 6.2 – The Morlet wavelet – Graph showing real and imaginary components 114
Figure 6.3 – Fourier transform of Morlet wavelet... 115
Figure 6.4 – Second order real Derivative of Gaussian (Mexican Hat) wavelet................... 117

 viii

Figure 6.5 – Fourier transform of complex Mexican Hat wavelet...117
Figure 6.6 – Paul wavelet, order 4 ...118
Figure 6.7 – Fourier transform of Paul wavelet, order 4, scale = 1:4119
Figure 6.8 – The Shannon wavelet...120
Figure 6.9 – Fourier transform of real Shannon wavelet ...120
Figure 6.10 – CWT spectrograms of chirp signal using four different wavelets...................123

Figure 6.11 – CWT spectrogram of 3-part NSA example using Morlet wavelet (ω0 = 10)..124
Figure 6.12 – Average powers at each frequency for time window X of Figure 6.11124
Figure 6.13 – Pitch Extraction of 3-part NSA example using DoG wavelet transform.........125
Figure 6.14 – Pitch extraction of quartet example with band-limited Morlet transform126

Figure 7.1 – CWT spectrogram of fourth chord of NSA quartet example127
Figure 7.2 – CWT spectrogram of detail Χ..128
Figure 7.3 – CWT spectrogram 440Hz signal (width = 1024 samples).................................129
Figure 7.4 – CWT spectrogram of composite stationary signal (width = 1024 samples)......129
Figure 7.5 – Comparison of 6Hz and 4Hz sinusoids ...130
Figure 7.6 – Sine and cosine components, v1 = 6Hz, v2 = 4Hz, and their product................131
Figure 7.7 – Graph including both roots of the cosine component..131
Figure 7.8 – Difference tone showing double cosine envelope ...132
Figure 7.9 – Average power distribution per frequency for the interval C4 – E4...................133
Figure 7.10 – FT showing a peak at the beat frequency for the interval C4 – E4...................133
Figure 7.11 – Difference tone signal for the interval C4 – E4 ..135
Figure 7.12 – NSDF output for difference tone signal for the interval C4 – E4......................135
Figure 7.13 – Difference tone signal across row 139 of Figure 7.1 spectrogram136
Figure 7.14 – Average power distribution per frequency for NSA quartet, chord six...........138
Figure 7.15 – Transcription of NSA quartet example without difference tone analysis........140
Figure 7.16 – Transcription of NSA quartet example with difference tone analysis.............140
Figure 7.17 – Pitch Extraction of three-part NSA example using DoG wavelet transform...141
Figure 7.18 – Automatic transcription of first five bars of Allegri’s Miserere Mei, Deus142
Figure 7.19 – Opening five bars of Miserere (manual transcription from actual score)143

Figure 8.1 – Spectrograms showing different frequency responses of four microphones.....146
Figure 8.2 – Spectrograms showing a) location of fundamental notes in chord

progression and b) mixed frequency response of all four tested microphones ..147
Figure 8.3 – DWT / MPM transcription (window width = 2048)..149
Figure 8.4 – Phase vocoder (with Gaussian window) transcription.......................................149
Figure 8.5 – CPM (Morlet 40) transcription ..150
Figure 8.6 – Phase vocoder (with Blackman window) transcription153
Figure 8.7 – CPM (Morlet 40) transcription ..155
Figure 8.8 – CPM (DoG 16) transcription ...157
Figure 8.9 – Phase vocoder (with Gaussian window) transcription.......................................159
Figure 8.10 – CPM (Morlet 20) transcription ..155
Figure 8.11 – CPM (Morlet 10) transcription of four-part synthesized control clip..............162

Figure 9.1 – Note identification of 3-part NSA example using Image Processing methods .165
Figure 9.2 – Stages of note identification method leading to the result in Figure 9.1166
Figure 9.3 – Full automatic transcription of 3-part NSA example, imported into Sibelius ...168

Figure 10.1 – AudioScore automatic transcription of NSA 3-part arrangement....................171

 ix

List of Tables

Table 3.1 – Harmonic Series of 262Hz.. 28
Table 3.2 – Harmonic Series of 196.5Hz... 29
Table 3.3 – Harmonic Series of 87.333Hz... 30
Table 3.4 – Closely related pitches in ascending order ... 30
Table 3.5 – Pitch Intervals ... 31
Table 3.6 – Modes ... 33
Table 3.7 – Dodecachordon layout .. 34
Table 3.8 – Note types ... 38
Table 3.9 – Keys and key signatures ... 40
Table 3.10 – Names of Intervals .. 42
Table 3.11 – Degrees of the scale .. 45
Table 3.12 – Seventh Chords... 48

Table 4.1 – Comparison of Fourier coefficients from first and second time windows 60

Table 5.1 – Frequencies and starting times of notes in marimbaphone melody...................... 79
Table 5.2 – Frequency filtering for first note in first window ...80

Table 7.1 – Difference tones for quarter-tone intervals above C4 ... 134
Table 7.2 – Frequencies and nearest pitches corresponding to peaks in Figure 7.14 138
Table 7.3 – Frequencies and nearest pitches corresponding to peaks in Figure 7.14 139

Table 8.1 – Results of automatic transcriptions for two-part string recordings 148
Table 8.2 – Results of automatic transcriptions for two-part piano recording 148
Table 8.3 – Results of automatic transcriptions for two-part synthesized waves.................. 148
Table 8.4 – Results for DWT/MPM .. 149
Table 8.5 – Results for Phase vocoder... 149
Table 8.6 – Results for CPM with Morlet transform... 150
Table 8.7 – Results for CPM with Paul transform... 151
Table 8.8 – Results for CPM with DoG transform .. 151
Table 8.9 – Results of automatic transcriptions for three-part string recordings 152
Table 8.10 – Results of automatic transcriptions for three-part piano recordings................. 152
Table 8.11 – Results of automatic transcriptions for three-part synthesized waves.............. 152
Table 8.12 – Results for Phase Vocoder.. 152
Table 8.13 – Results for DWT/MPM .. 154
Table 8.14 – Results for CPM with Morlet transform... 154
Table 8.15 – Results for CPM with Paul transform... 156
Table 8.16 – Results for CPM with DoG transform.. 156
Table 8.17 – Results of automatic transcriptions for four-part string recordings.................. 158
Table 8.18 – Results of automatic transcriptions for four-part piano recordings 158
Table 8.19 – Results of automatic transcriptions for four-part synthesized waves 158
Table 8.20 – Results for Phase Vocoder.. 158
Table 8.21 – Results for CPM with Morlet transform... 160
Table 8.22 – Results for CPM with Paul transform... 160
Table 8.23 – Results for CPM with DoG transform...161-162

Table 9.1 – Quantization of component widths... 167

 x

Table A.1 – Mathematical notation conventions.. 173-174
Table A.2 – Window functions for the STFT (images from www.wikipedia.org).......175
Table A.3 – Continuous wavelet functions and their Fourier transforms175

Table E.1 – System requirements for running Wave Processor ..189
Table E.2 – Transform options in Wave Processor ...190
Table E.3 – Pitch detection options in Wave Processor ..191

 1

1 Introduction

“Admittedly, however, it is difficult or impossible to picture what goes on in the air when a
chord is struck. The mind is staggered at the thought of the thousands of superposed

vibrations (or ‘waves’) in the air space in a concert-room when an orchestra is playing.”

– Percy A. Scholes, The Oxford Companion to Music, 1965, on Acoustics

1.1 Music Recognition in General

The problem of dissecting musical sounds and attempting to identify their make-up has
interested musicians and scientists alike for centuries. Perhaps one of the most well-known
attempts to transcribe music by ear is the story of the 14-year-old Wolfgang Amadeus Mozart,
on tour of Italy with his father in 1770 [Scholes65L]. Mozart was so entranced by the beauty
of Gregorio Allegri’s nine-voice setting of Psalm 51, Misere Mei, Deus [Tallis01M], when he
heard it in the Sistine Chapel, that he felt compelled to record it, and wrote out the score after
hearing the piece just twice – once from memory and a second time just to make some minor
corrections. He did this despite the fact that it was forbidden, “on pain of excommunication”,
to make a copy of any part of the piece in any form. Copyright was just as important in the
18th century as it is today, but, of course, for different reasons – all sacred music, in the end,
belonged to the Pope. Since Allegri presumably never wrote it down himself, or else his
original was never made available, we have only Mozart (and others who subsequently may
have transcribed it wrongly) to blame if the piece does not now sound quite the way it used
to! Nevertheless, we would probably not be able to hear it in any form today if he had not
been able to record it in this way.

What the incredible mind of Mozart was able to do about 240 years ago still remains quite
elusive for signal processing researchers, who have tried to accomplish exactly the same thing
via automatic means.

1.2 Research Problem Description

In layman’s terms, the main idea behind this research is to work towards creating a computer
system which is, to some extent, able to “hear” music and subsequently generate a musical
score, i.e. a visual representation of the music as typically read and interpreted by a musical
performer. This is akin to the problem of optical character recognition, except in this case, the
inputs are audio signals and the output is printed musical notes. Ideally, our state-of-the-art
music recognition system should have the ability to perform the following tasks:

i) Detect and separate all pitches in any given polyphonic musical recording.
ii) Determine where these pitches occur in time.
iii) Find any beat, pulse or rhythmic patterns in the music and determine the meter

(see the following chapter for an explanation of this musical term).
iv) Detect changes in tempo (speed).
v) Give a measure of clarity of pitches, i.e. distinguish between what is a clear

musical note and what is “noise”.
vi) Recognize the instruments and/or voices which make up the recording.
vii) Represent the music correctly in a musical score.

 2

The above tasks are no mean feat, even for the trained musician. Music dictation is widely
regarded as a skill which requires years of training and practice to master. The reality (and
this is perhaps testimony to how remarkable the human brain is) is that these are extremely
difficult problems to solve synthetically, given current technology and understanding.
Research in this field has only quite recently gained some momentum, and there is still much
work to be done.

Although it may seem like an “artificial intelligence” type project, much of the difficult work
in attempting to solve this problem comes at the pre-processing stage, and so emphasis has
been placed on research into pertinent methods in this area. Most likely, the solution to all of
the above problems will combine purely empirical methods with artificial intelligence, but it
remains to be seen when and where the latter should be utilized in the process.

1.3 Aims, Objectives and Scope of Research

This study is, first and foremost, an exploration of techniques for solving the first two of the
seven problems identified in the previous section, i.e. developing a good pitch/time detection
method which is able to deal adequately with polyphony. At the heart of this method is a
relatively new mathematical tool, namely wavelets, which is the main focus of the research.
While temporal detection (the attempt to correctly position the detected pitches in time) has
been looked at very briefly in Chapter 9, problems iii) and iv) are outside of the scope of this
research. Note that without tempo or meter information (in musical terms) we are unable to
draw bar lines or provide a time signature – both vital components of any musical score
(unless one is a thirteenth century monk using neumatic notation). Therefore, all final
graphical results of pitch/time analysis are presented as unbarred “piano roll”-type graphs,
examples of which are first presented in Chapter 4. These may be compared with the modern
musical score notation used in the examples in Chapter 2.

The quotation marks around the word “noise” in problem v) are to differentiate between what
is considered musical “noise” – that which is intended to be there – and background or
accidental noise. An example of the latter would be hisses, clicks or pops due to a poor
quality recording, or else coughs and the rustle of sweet papers in a live audience. Musical
“noise”, on the other hand, would be content produced by non-pitched instruments, such as
drums and other percussion. In order to reduce the complexity of the problem, this study
assumes that all music and noise in the recording is intended, i.e. the “Garbage In, Garbage
Out” principle applies. This also means that any artistic interpretation of the music (good or
otherwise) when performed by a particular musician or group of musicians will, necessarily,
be transcribed literally. Therefore, given that different musical performances of the same
written work invariably differ greatly from one another, it should not be expected that
automatic transcriptions of different recordings of the same piece should all render identical
scores, or that the scores should be one hundred percent similar to the original from which the
music was performed.

In [Cont07L] an important point is made: the technique of digitally mixing synthetic musical
instruments or post-mixing two or more real instruments which have been recorded separately
is likely to yield different “spectral fusions” to those common in ensemble recordings, where
all instruments have been recorded at the same time, and their sound has blended in the air
before reaching the recording equipment. That is to say, the harmonic mess described by
Scholes at the beginning of this chapter is likely to be different depending on how a particular
recording has been created in the studio. It must necessarily be assumed that these particular
effects will not alter the fundamental notes of the instruments too drastically, although when

 3

attempting to identify the instruments themselves, this would be a major concern. While
multiple instrument detection (problem vi) is not within the scope of this research, this
particular issue and other similar difficulties should be kept in mind.

Finally, in connection with the preceding problem (since rooms, being resonating chambers,
can also be thought of as musical instruments) it should be assumed that the acoustic
conditions of the recording are reasonably dry – too much reverberation or echo interferes
with any system’s ability to determine note lengths or correct harmonic structures of chords.

1.4 Importance and Usefulness of Research

The reaction in the music community, whenever a breakthrough is made in the field of music
recognition, is the first clear indicator that there is an important problem to be solved,
especially in music production, for amateurs and professionals alike. An example is the
discovery, by Canadian mathematics professor Jason Brown, of the precise arrangement and
notation for the infamous opening chord of the Beatles song, A Hard Day’s Night, using “the
mathematics and physics of sound” [Brown04L]. This story was reported on many internet
fora, such as Slashdot, and caused considerable excitement, since it pretty much settled a
forty-year long debate amongst Beatles enthusiasts and music transcribers regarding the
chord’s construction.

Similar excitement surrounds newly released software capable of pitch recognition, namely
Neuratron’s AudioScore Ultimate 6 (for Sibelius) [Neuratron09W] and Celemony’s
Melodyne, which boasts “groundbreaking technology” in the description of its main pitch
manipulation feature, Direct Note Access [Celemony09W]. Quoting from the celemony.com
web site:

“Apr. 4. At this year’s m.i.p.a. (Musikmesse International Press Awards), Direct Note
Access was voted most innovative product of the year by more than 100 music magazines
from all over the world.”

AudioScore has also enjoyed high praise from its reviewers, and its pitch recognition
technology seems fairly robust (see performance tests done on this software in Chapter 5),
although it would seem that it has a long way to go before it could be said to be better than a
basic solution to the first two problems listed in section 1.2.

The reason for the hype surrounding the above software releases is due to the fact that the
problem of automatic transcription is still largely unsolved, and yet if a solution did exist, the
jobs of music producers, transcribers, composers and archivers would be made considerably
easier. Firstly and most importantly, such software makes the job of writing down music, for
whatever purpose, far less time-consuming. Anybody in the music engraving industry would
agree that the task of notating music, and doing so accurately and correctly, is both an art and
a science, and it takes a very long time to master. Professional looking musical scores are not
easy to produce, so any software capable of automating part or all of the procedure would be,
for musicians, akin to suddenly being able to fly having previously had to crawl everywhere.
In fact music recognition has been described by one excited forum user as being “the holy
grail of music technology”. While this statement is perhaps a little excessive, there is still no
denying the usefulness of such a piece of software to the music production industry.

In music archiving, an automatic transcription system would enable musicians who do not
know how to write the music they perform, or have a limited understanding of music notation,

 4

to publish music they would otherwise have no way of sharing with others. There have been
many such talented musicians throughout history whose music has been forgotten because it
has never been written down.

Automatic music transcription systems would also be very useful in developing music
education software. Although still mostly vapourware at the time of writing this thesis, new
applications are currently being developed which will allow users to listen to individual tracks
within popular songs, read the musical scores for each part, follow animated instruments and
observe guitar and keyboard fingerings used by professional musicians [MusicIcon09W].
The job of creating scores, animations and fingering metadata for the hundreds of songs a user
may demand would be overwhelming without the aid of an automated system, and it is likely
that such software will soon require a major increase in effort devoted to music recognition
research.

1.5 Thesis Structure

The rest of this thesis is divided into three main parts over the ten chapters, though the
boundaries between these parts cannot, due to the inter-relatedness of the material, be rigidly
defined.

The bulk of Chapters 2 to 5 is literature review, presenting various fundamental concepts and
theory which is vital to understanding and implementing existing techniques, as well as
evolving new solutions. A whole chapter has been dedicated to music theory and the
development of Western tonal systems. It is extremely important to the task at hand to be
aware of how music came into being, why it exists and what its building blocks are. This
makes the decoding job a little easier. For music transcribers, there really is no substitute for
experience and practice. The best we can do when designing machines (which cannot learn
and do not have human experiences) to do human tasks is to know as much as possible about
the system which we are modeling and to have some knowledge of elements which occur
frequently and of those which do not.

Chapter 5 is also the start of the development section of the thesis. A new (albeit somewhat
naïve) method of multiple pitch extraction for two to three part polyphony is presented,
following introductory wavelet theory. Chapters 6 and 7, however, contain the core of the
main work in this research. Here, the author’s own development of an important algorithm,
based on the mathematical theory preceding it, is discussed. Chapter 8 is a presentation of
experiments and results on studio recorded audio data, and the last chapter before the
conclusion is a very brief look at ideas for solving those tasks in the main research problem
description which begin to fall outside the scope of this study. This chapter has been included
in order to show that it is possible to base a more complete solution on the proposed
techniques. The final chapter evaluates the results from experiments and draws some
conclusions, before ending with some ideas for further research in this field.

In all chapters where mathematical methods are discussed, algorithms have also been
described, which have been implemented in software. The main sound processing application
which contains most of these algorithms is called Wave Processor, which may be installed
from the project CD accompanying this thesis (see Appendix E). Experimental audio has
also been included on the CD, and so all experiments carried out using Wave Processor may
be reproduced.

 5

2 Audio Signal Analysis – Basic Concepts

Before launching into the problem of pitch identification, it is necessary for some vital
fundamental concepts to be explained, in order to achieve a greater understanding of what is
being attempted in the first place. The main purpose of this chapter is to introduce the subject
of signal analysis and, specifically, to describe the important mathematical tools needed if one
is to attempt to solve any problem in this field, and especially the main problems in this
particular research.

2.1 Waves

In order first to understand what exactly it is we are analyzing, this section covers the basic
building blocks of audio signals: waves.

2.1.1 What is a Wave?

At one very basic conceptual level, a wave is the pattern created by a particle changing its
position with respect to time. This pattern may be drawn by plotting the position of the
particle on the y-axis of a graph against time on the x-axis, as illustrated in Figure 2.1 below:

-1

-0.5

0

0.5

1

time

Figure 2.1 – An example of a wave

Note that the vertical axis of a graph such as this could actually represent any mathematical or
physical variable (not just position) which changes over time. For example it may represent
the voltage of an AC power supply or even, thinking on a larger time scale, the number of
newspapers sold per day by a press. The value or magnitude of this variable quantity at a
certain point in time is known as the amplitude of the signal. The word signal can be used
interchangeably with the word wave.

2.1.2 Frequency and Wavelength

Perhaps the most important term to define when talking about waves is frequency. Frequency
is a property of signals that repeat some particular pattern. The frequency is said to be high if
the repetition is rapid, whereas if it is more gradual, it is low. As indicated in Figure 2.1, the
wave pattern forms a series of peaks and troughs. A peak is the highest value reached as a

peak

trough

 6

wave’s amplitude increases before decreasing again (or a change from a positive gradient on
the graph to a negative one). A trough is the lowest amplitude reached, as values decrease,
before they increase again (or a change from a negative to a positive gradient).

 f(t) = sin(10πt) λ = 0.2, v = 5Hz

 f(t) = sin(20πt) λ = 0.1, v = 10Hz

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

 f(t) = sin(40πt) λ = 0.05, v = 20Hz

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

Figure 2.2 – Three sine wave graphs

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

λλλλ

 7

Referring to Figure 2.2, which shows three simple sine wave graphs, the complete traversal
of a wave from one similar peak to the next (or between two successive troughs) is known as
a cycle. The horizontal distance travelled in one cycle is known as the wavelength of the

signal (indicated by the green λ on the first graph). Wavelength is, however, a spatial
measure. When discussing distance in the time dimension, one should rather refer to the
period of the frequency. Frequency, v, is measured in terms of the number of cycles per
second, and has the unit Hertz or Hz for short. Incidentally, Google’s inbuilt calculator
[Google09W] reports that the frequency of “once in a blue moon” is 1.16699016 × 10-8Hz –
about once every two and half years! This is a good example to demonstrate the relationship
between frequency and time: they are inversely proportional to each other, and so, the shorter
the period or wavelength, the higher the frequency of the wave, and vice versa.

2.1.3 Phase

A necessary concept to be grasped fairly early on (the relevance of which will become more
apparent later) is that of phase. Perhaps the easiest way to explain what is meant by this term
is to compare sine and cosine functions with the same frequencies. We know from the basic
properties of sine and cosine that the amplitude of the former begins at zero (at time t = 0) and
the latter at its maximum, 1.

f(t) = sin(10πt) λ = 0.2, v = 5Hz f(t) = cos(10πt) λ = 0.2, v = 5Hz

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6

time

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6

time

Figure 2.3 – Sine and cosine graphs, both with frequency 5Hz

It can be seen that the graphs in Figure 2.3 are waves which have exactly the same period
length, and yet the cosine graph is displaced in time from the sine graph by a quarter of a
cycle (or 0.05 seconds). This displacement in time is what is known as the phase difference
between the two signals, and it is measured in terms of the difference in the position of their
periods at any given instant. In other words, the phase difference is the change in angle

between two signals, which we shall refer to as φ, measured in radians. For sines and cosines,

φ = π / 2, since

().2/sincos πθθ +=

Figure 2.4 further illustrates phase difference, φ, between two angles, θ1 and θ2, which are
different locations in the cycle of a wave with unspecified frequency, v.

 8

Figure 2.4 – Polar graph showing two angles θ1 and θ2 with phase difference φφφφ

Note that if one were to remove the time axis in Figure 2.3 and imagine the waves carrying
on to infinity in both directions, there would be no way to tell the difference between the two.
Phase therefore becomes meaningless without a point of reference. Thus, for practical
purposes, waves which could be perceived as either a sine or a cosine are referred to generally
as sinusoids.

It is also interesting to note that the human auditory system is able to detect extremely subtle
phase differences between signals arriving at the left and right ear. In fact this ability is partly
what enables us to locate sounds spatially, in particular, laterally. This idea was first
proposed by English physicist John W. Strutt, Baron Rayleigh, in 1907 [Stevens65L].
Rayleigh performed a series of experiments to test his theories on binaural location, that is
our ability to locate sounds by using both of our ears. Amongst other things, Rayleigh
rationalized the following:

Figure 2.5 – Diagram showing phase difference of a wave at each ear

θ1
θ2

φφφφ

1 complete wave cycle

Direction of sound wave

Position of vibrating air particle at
time t

Position of vibrating air

particle at time t + 500µs

 9

Regarding Figure 2.5, if one imagines a wave approaching the head from left to right, peaks
and troughs in the signal arrive at the left ear a small fraction of time before the right – to be
more precise, about half a millisecond, assuming that the distance between an average
person’s ears is about 17 to 20 centimetres and the speed of sound is 343 metres per second.
Considering that the wave period of audible sounds is, for the average human, between 50µs
and 50ms (i.e. frequencies between 20kHz and 20Hz) there is a very definite phase difference
between the signal at each ear, especially for middle to low frequencies. The brain must
somehow be measuring this phase difference and determining location from this information.
This assumes that ears analyze sound at the same time, rather than one after the other.

Rayleigh proved this theory by using tuning forks which produced waves with slightly
different frequencies in order to create the effect of a sound with a constantly changing phase.
As expected, to the observer it appeared as if the sound source was moving from left to right
and back again. More than a hundred years on, we now have much more sophisticated
technology to exploit binaural location by phase difference and are able to synthesize this and
other effects using computer programs. A rather enjoyable demonstration* may be found at
QSound.com – The Virtual Barber Shop [QSound96W].

2.1.4 Stationary and Non-stationary Waves

It is of vital importance at this point to make it clear that “cycle” implies repetition. One
should not assume that wavelengths, and thus frequencies, can simply be measured from one
arbitrary peak to the next, because the wave may contain different frequencies at the same
time – so the next peak along the wave may belong to a different frequency. The graphs in
Figure 2.2 all represent waves with fixed frequencies. A wave of this type, for which the
frequency does not change over time, is known as a stationary signal. On the other hand, if,
as is the case in Figure 2.1, the wave’s frequency is variable, it is called a non-stationary
signal. Waves which contain more than one simultaneous frequency (a musical example of
this would be a chord) can also be stationary, as long as all of those frequencies remain
constant throughout the signal. Another way of looking at it is that any waveform which
comprises a continuously repeating pattern is thus stationary and vice versa.

 f(t) = ⅓ sin(10πt) + ⅓ sin(20πt) + ⅓ sin(40πt).

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

Figure 2.6 – Composite sinusoidal wave

* For a further more simple demonstration of binaural location by phase difference detection, please run
Phaser.exe on the project CD, located in Software\Phaser. This will create a demo wave file.

 10

This is demonstrated in Figure 2.6, which shows a wave containing three frequencies. These
are, in fact, the three sine waves from Figure 2.2 added together and scaled.

The final important point to make about waves is that non-stationary signals could possibly be
made stationary simply by repeating the entire signal; however this would, in general, require
a slight alteration of the waveform at its beginning and end in order to create a seamless join.
Nevertheless, it is something to bear in mind while thinking about the significance of
stationarity vs. non-stationarity in the discussion about transforms in section 2.3.

2.2 Digital Representation of a Signal

Before we can begin to do any sound signal analysis with the aid of a computer, we need a
way of representing sound waves, which are continuous / analogue, as discrete / digital
entities. This can be done by extracting values or samples of the wave’s amplitude at regular
intervals – this process, naturally, is called sampling. The main question is how often, or how
close together should these samples be to ensure that all frequencies in the wave are properly
represented? Also, how “often” is “often enough” so that no samples are simply redundant
information?

2.2.1 The Nyquist-Shannon Sampling Theorem

This theorem, one of the most important in the field of telecommunication, states the
following [Shannon49L]:

“If a function f(t) contains no frequencies higher than B cps*, it is completely
determined by giving its ordinates at a series of points spaced B2

1 seconds apart.”

Although Claude Shannon proved and formalized this theory in 1949, Harry Nyquist, a
physicist and research engineer at Bell Laboratories, should also be credited with its
discovery. The B2

1 second rule is alluded to in Nyquist’s paper, Certain Topics in Telegraph

Transmission Theory [Nyquist28L] written several years earlier in 1928 and cited by Shannon
in his own paper. Shannon therefore calls this time spacing the Nyquist interval. W, the
highest frequency limit of a signal, is also known as the bandwidth of the signal.

For a proof of the sampling theorem, see [Shannon49L]. However, it is perhaps easier to
understand why it should be true by looking at Figure 2.7, which is the signal in Figure 2.6
sampled at different rates. The first of these is useless as it does not represent the signal at all.
Since the wave passes through zero every 0.1 seconds (and this is due to the lowest frequency
component of 5Hz) if we start sampling at t = 0, then every sample will be zero, hence the
straight line along the x-axis. This is an extreme example of an effect in signal processing
called aliasing, which occurs when the sample rate is too low to be able to represent the signal
properly. Thus it could represent a number of other continuous functions as well, which can
be thought of as aliases of the same digital signal. At a sample rate of 10 per second, this
straight line graph could in fact represent any continuous function which contains frequencies
above 5Hz. At first, this case may look like a counter-example to the sampling theorem,
because the signal has been sampled every

52
1
× seconds, and so, surely at least the lowest

frequency of 5Hz should be supported. However, one must note that the theorem does not
state where sampling should begin – only the sampling interval is given.
__
* cps = cycles per second, which is the same as Hertz.

 11

a) 10 samples per second

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

b) 10 samples per second

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

c) 20 samples per second

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

Figure 2.7 – Sampled versions of Figure 2.6

 12

d) 20 samples per second

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

e) 40 samples per second

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

f) 50 samples per second

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time

Figure 2.7 (contd.) – Sampled versions of Figure 2.6

 13

The second graph has the same sample rate but the sampling is started at t = 0.02. Now this
lowest frequency appears as a square wave, showing that it is indeed possible to represent
5Hz at this rate. Graphs c) and d) are double the sample rate of the previous two. Again,
graph c) does not yield the middle frequency since sampling began at t = 0, however it does
appear in d), where sampling once again begins at t = 0.02. Graphs e) and f) both fully
represent the signal, although f) is over-sampled. In e) the sampling begins at t = 0.01 while
in f) it is back to t = 0. It can be seen that although the waveform is beginning to look less
square, and more like Figure 2.6, the extra samples in f) do not give any further information
about the signal than e) already did, and they are thus redundant. According to Shannon’s
theorem, graph e) is the optimal way to sample this signal so as to ensure all frequencies are
represented, since the Nyquist interval, N, should be

N = 1 / (2 × 20) seconds.

In other words, 20Hz being the highest frequency in the wave, it should be sampled 40 times
per second. Since the sample rate is also a value “per second”, it is also, in practice, usually
given in Hertz.

As mentioned previously, the normal human hearing range is between about 20Hz and 20kHz.
This is the reason why standard quality digitally recorded music, for example on a compact
disc, is sampled at over 40kHz (actually 44.1kHz for standard audio CDs) since this sample
rate ensures that the highest perceivable frequencies are preserved in the recording process.
Please see the excellent video lecture from Academic Earth [Osgood09W] presented by
Stanford professor of electrical engineering, Brad Osgood, for a demonstration of aliasing
effects caused by undersampling music.

2.3 Transforms

The graphs in Figures 2.1, 2.2 and 2.3 are all drawn in the time domain, meaning that the
wave’s amplitude is plotted as a function of time. A mathematical transform is a conversion
from one domain to another in order to obtain a different representation of the original
function.

2.3.1 The Most Important Signal Analysis Tool

Arguably, the most well-known and incredibly useful mathematical transform (at least
amongst engineers) is the Fourier transform. It is named after Jean-Baptiste Joseph Fourier, a
French mathematician and physicist who investigated Fourier series, of which the transform is
a generalization. Fourier discovered that any continuous square-integrable function could be
expressed as an infinite sum (or integral) of sine and cosine functions at certain amplitudes.
Fourier first published his findings in 1822 in his work, Théorie Analytique de la Chaleur
(The Analytic Theory of Heat) [Fourier22L], applying his method to finding a solution to the
heat equation – a fundamental equation of thermodynamics.

Note that the equation given for f(t) in Figure 2.6 is in fact already expressed precisely in this
way – the amplitude of each of its component sines in this case is ⅓. Also, each sinusoid is
one specific frequency, so putting frequencies on the horizontal axis and amplitudes on the
vertical axis, we could draw the bar graph in Figure 2.8 below as a representation of the
signal instead. Thus, when applied to a signal, which is in the time domain, the Fourier
transform effectively transmigrates it to the frequency domain.

 14

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

frequency

Figure 2.8 – Frequency domain representation of signal in Figure 2.6

The Fourier transformed function, F(v) of a signal, f(t) is given by [Wolfram09W]:

.)()(2
∫

∞+

∞−
−= dtetfvF vti π

 [2.1]

Here, Euler’s formula (eiθ = cosθ + i.sinθ, where θ = 2πvt) is being used to express the
component sines and cosines in a more simplified form. As is evident from the limits of the
integral, the domain of the transform is infinite – amplitudes are calculated for every
frequency from negative infinity to positive infinity. Since negative frequencies are,
practically speaking, indistinguishable from positive frequencies, the resulting graph of a
Fourier transform will always be symmetrical (unless the original function is complex – see
Chapter 6). For practical purposes, negative frequencies are almost always ignored, but
theoretically they are very important to bear in mind, as will be seen in Chapter 7.

The Fourier transform may be inverted to return a function of frequency to the time domain.
The inverse Fourier transform is given by [Wolfram09W]:

.)()(2
∫

∞+

∞−
= dvevFtf vti π

 [2.2]

It can be seen that the only real difference between the two equations is the sign of the
exponent.

2.3.2 The Discrete Fourier Transform

Shannon’s sampling theorem gives us a way of expressing waves as discrete signals, but we
need to do the same with the continuous Fourier transform so that we have a way of
processing those waves using a computer algorithm. In other words, we need a discrete
version of the transform which operates over a fixed or finite domain.

The discrete Fourier transform (DFT) can be derived from the continuous case by considering
the transformed signal simply as another discrete set of samples in the frequency domain with
some frequency spacing, ∆v.

 15

Firstly, from the sampling theorem, we know that a frequency, B, will be the largest

supported if a signal is sampled with time spacing, ∆t, of B2
1 seconds. This is really just

saying that the upper bound of the DFT graph will be B. Remembering the symmetry of the
Fourier transform, the largest supported negative frequency is therefore –B, and so the entire
bandwidth will be 2B (since the range of the DFT is from –B to +B). In the time domain, the
discrete signal comprises an array of N samples, fn from n = 0 to N – 1. Therefore, if L is
the length of the signal in time,

.LtN =∆× [2.3]

Hence

.2 LNB = [2.4]

Similarly, in the frequency domain, assuming the transformed function will have the same
number of samples, N, as the original signal, we have, for the frequency sample spacing, ∆v,

,/2 LNBvN ==∆× from [2.4]

so

.1 Lv =∆ [2.5]

We now have both the range and sampling interval needed for the discrete Fourier transform
and so we can begin sampling the continuous function, which we recall from [2.1] is defined
as:

.)()(2
∫

∞+

∞−
−= dtetfvF vti π

The first step towards discretization is to approximate this integral by a finite sum and to use
index variables, n for samples of t and m for samples of v [Ewer10L]:

() () .
1

0

2 tetfvF
N

n

tvi
nm

nm ∆⋅≈ ∑
−

=

− π

Now, from the prescribed sampling intervals above, in the time domain the value of t at index
n will be:

(),2Bntn =

and in the frequency domain, the mth value of v is:

.Lmvm =

 16

So

nmtv BLmn 2=

.Nmn= from [2.4]

Also

.
N

L
t =∆ from [2.3]

And so, for each of the sampled values of F(v) we have [Ewer10L]:

() () .
1

0

/2∑
−

=

−⋅≈
N

n

Nmni
nm etf

N

L
vF π

The reverse discrete transform may be derived similarly, thus [Ewer10L]:

.)()(2
∫

∞+

∞−
⋅= dvevFtf vti π

 from [2.2]

Then

() () vevFtf
N

m

tvi
mn

nm ∆⋅≈ ∑
−

=

1

0

2π

() .
1 1

0

/2∑
−

=
⋅=

N

m

Nmni
m evF

L
π

 from [2.4] and [2.5]

Note the normalization factors, L/N in the forward transform and 1/L in the reverse
transform. Since multiplying by L in the forward transform and dividing by L in the reverse
transform cancels them out, the L’s may be ommitted [Ewer10L]. Also, to get these functions
in their generalized discrete forms, since the index variables, n and m, are now arbitrary, we
may re-express the set of signal samples, f(tn), as a discrete array, fn. Similarly, the frequency
samples, F(vm), together become Fm. So, finally, we define the forward transform to be

,
1 1

0

/2∑
−

=

−⋅=
N

n

Nmni
nm ef

N
F π

whose inverse will be

.
1

0

/2∑
−

=
⋅=

N

n

Nmni
mn eFf π

 17

Furthermore, since in much of what follows our primary interest is relative strengths of
frequencies, it is not important to include the factor of 1/N [Ewer10L]. It must not be
forgotten, however, if the intention is to resynthesise a transformed signal from the frequency
domain. Therefore, again, the only practical difference between the forward and reverse
DFTs is the sign of the exponent.

The order of the complex number calculations for the DFT (and its inverse) is N2. This is
rather slow and quite impractical, especially when dealing with sound signals, which usually
have many thousands of samples. In 1965, American mathematicians James Cooley and John
Tukey developed a divide-and-conquer type algorithm capable of doing the same calculation
in NlogN operations [Cooley65L]. Their work was based on that of Gordon Danielson and
Cornelius Lanczos [Danielson42L] who, in 1942, discovered a method for re-expressing the
DFT as a combination of two DFTs over two halves of the original signal, now called the
Danielson-Lanczos Lemma. This algorithm later became known as the Fast Fourier
Transform.

A final note before proceeding with the next section: the sample intervals, ∆t and ∆v, affect
the granularity of the time and frequency domains which they respectively break down. Thus
they are usually referred to as the resolution of those domains.

2.4 The Fast Fourier Transform Algorithm

The Cooley-Tukey Radix-2 Decimation In Time (DIT) algorithm is still the most popular
method for calculating DFTs. Although it is not the fastest algorithm available (higher
radices are slightly faster), as will be seen, it is fairly easy to understand and implement, and it
is more than adequate for the purposes of this research. A fairly detailed explanation of the
implementation of the algorithm is given here, since this method is at the very core of the
entire process of music recognition. Thus it is important to be clear about how it works
exactly.

The following sources were used to develop an implementation of the algorithm as it appears
in the software written for this research:

• fftw-3.0.1 (libbench2/mp.c) [FFTW03S] and [Frigo03L]
• Code by N. M. Brenner from Numerical Recipes in C: The Art of Scientific Computing

(Chapter 12) [Brenner92L]
• An in-place complex-complex FFT [Bourke93W]
• Fast Fourier Transform – Don Cross [Ackers00W]
• woD_FFT from A Simplified Approach to Image Processing [Crane97W]

2.4.1 Bit Reversal

The transform begins with a bit reversal step. The “bit reversal” applies to the indices of the
samples in the input data array, rather than the samples themselves. It is a reordering of the
array, since the decimations in time split and reorder the samples into even and odd sets at
each step. Prior shuffling ensures that the output data is in the correct sequence at the end of
the calculation.

 18

The method of reordering is illustrated below in an example, using a set of 8 samples. As will
become apparent, the number of samples in the digital signal must always be a power of two
in order for this algorithm to work.

Binary Index 000 001 010 011 100 101 110 111

Samples t0 t1 t2 t3 t4 t5 t6 t7

Binary Index 000 001 010 011 100 101 110 111

Samples t0 t4 t2 t6 t1 t5 t3 t7

Figure 2.9 – Bit Reversal

In Figure 2.9, each sample, tn is swapped with another, the binary index of which has a
reversed bit order. E.g. sample t1 (001) is exchanged with sample t4 (100). Note that
samples with palindromic binary indexes, such as t5 (101), do not get switched. The method
of shuffling by decimations in time may be clarified by examining what happens to the order
of the data with each decimation. As shown in Figures 2.10 and 2.11, a decimation sorts the
previous set of samples into two sets, placing even indexed samples on the left and odd
samples on the right.

As can be seen, the result of the two decimations is that the data becomes ordered as shown
previously in Figure 2.9. As for the explanation of why the data is re-ordered in this fashion,
some more mathematics is necessary. The next sub-section shows the derivation of the
previously mentioned Danielson-Lanczos Lemma, which is fundamental to Cooley & Tukey’s
algorithm.

 even odd even odd even odd even odd
Binary Index 000 001 010 011 100 101 110 111

Samples t0 t1 t2 t3 t4 t5 t6 t7

 even even even even odd odd odd odd
Binary Index 000 001 010 011 100 101 110 111

Samples t0 t2 t4 t6 t1 t3 t5 t7

Figure 2.10 – Decimation 1

 19

 even odd even odd even odd even odd
Binary Index 000 001 010 011 100 101 110 111

Samples t0 t2 t4 t6 t1 t3 t5 t7

 even even odd odd even even odd odd
Binary Index 000 001 010 011 100 101 110 111

Samples t0 t4 t2 t6 t1 t5 t3 t7

Figure 2.11 – Decimation 2

2.4.2 The Danielson-Lanczos Lemma

Using the same notation as in section 2.4, if f(t) is a wave function from which N samples are
taken (where N = 2m) to yield a discrete signal, fn, then the discrete Fourier transform, Fm, of
this signal is [Wolfram09W]:

.
1

0

/2∑
−

=

−=
N

n

Nmni
nm efF π

For simplicity, let

./2 Ni
N eW π−= [2.6]

So, ignoring the normalizing for further simplicity, we have:

.
1

0
∑

−

=
=

N

n

mn
Nnm WfF

Note that the above calculation, as it stands, involves on the order of N2 operations. As
mentioned above, the radix-2 algorithm splits the data into 2 halves of even and odd indexed
samples. This is due to the following important first step:

 [2.7]

() ()

().
1

0

12
12

1

0

2
2

22

∑∑

∑∑

−

=

+
+

−

=
+=

+=

NN

n

nm
Nn

n

mn
Nn

nodd

mn
Nn

neven

mn
Nnm

WfWf

WfWfF

 20

Next, a little algebra – Recall from [2.6] that
Ni

N eW π2−= , so

[2.8]

Also,

 [2.9]

Let gn and hn be two discrete signal functions, such that

 gn = f2n and hn = f2n+1.

Then, substituting into [2.7],

().
1

0

12
1

0

2
22

∑∑
−

=

+
−

=
+=

NN

n

nm
Nn

n

mn
Nnm WhWgF

From [2.8] and [2.9], this becomes:

.
1

0
2

1

0
2

22

∑∑
−

=

−

=
+=

NN

n

mn
Nn

m
N

n

mn
Nnm WhWWgF

So, if Gm and Hm are defined as the N/2-point Fourier transforms of gn and hn respectively,
then this becomes:

m
m
Nmm HWGF += , 0 ≤ m < N/2.

Now Gm = Gm+N / 2, and Hm = H m+N / 2, since Gm and Hm are periodic (the pattern repeats

for the next half N samples). Also, m
N

Nm
N WW −=+ 2/ , since

() ,122/
2/ == − niNn

N eW π
 and .12/ −== − πiN

N eW

()

..

.

2

222

222

122)12(

m
N

mn
N

NmiNmni

NmiNmni

Nnminm
N

WW

ee

e

eW

=

=

=

=

−−

−−

+−+

ππ

ππ

π

.2

2

222

2

mn
N

mni

Nmnimn
N

W

e

eW
N

=

=

=
−

−

π

π

 21

So, for the complete transform:

m
m
Nmm HWGF += , 0 ≤ m < N/2, [2.10]

and

m
m
NmNm HWGF −=+ 2 , 0 ≤ m < N/2. [2.11]

The factor, WN, is known as the Nth root of unity. Collectively, these are sometimes called the
twiddle factors.

2.4.3 Recombining of Transforms

Now that Fm can be expressed as a combination of two DFTs on the even and odd halves of
the input data, each of those DFTs may be broken down (decimated) recursively, all the way
down to single point transforms. At this stage, all that needs to be done is to copy the input
data directly to output, which is precisely what happens at the bit reversal stage. Note that
calculation time is now much improved and is on the order of Nlog(N) operations.

What remains to be done is to re-combine, from the inside out, pairs of samples into 2-point
transforms, then those pairs into 4-point transforms and so on, until finally the two halves of
the entire data set are combined to render the complete transform. Since the “combining” is
all complex number multiplication and addition, this part of the algorithm is a little more
fiddly. However, here is a rough explanation of how it works:

2.4.3.1 Loop Control

There are three loops in the combination part of the code. The outside loop keeps track of the
number of points – npoints – per transform, at each combination. This starts at 1 and is
doubled at each step until it is half the length of the input data. Nested within, the next loop
counts the current point, i, from 0 to npoints. This provides a starting point for the third,
innermost loop, which is nested within the second. This loop keeps track of the current
position in the data array with 2 variables, j and k. j marks the position of data for the part
of each transform given by equation [2.10] above, and k marks the location of data for
equation [2.11]. The variable jstep moves the markers to the position of the next pair of
transforms, to be combined into one at each iteration of the loop. The shell code looks like
this:

for(npoints = 1; npoints < n; npoints = jstep) {
 jstep = npoints << 1;
 ...
 for(i = 0; i < npoints; i++) {
 for(j = i; j < n; j += jstep) {
 k = j + npoints;
 ...
 }
 ...
 }
 ...
}

 22

Below is an example of how this description of flow works on a set of 8 samples. It is taken
from the output of a debugging version of the sample FFT program on the project CD:

 Loop 1: npoints = 1, jstep = 2 Combination 1:
 Loop 2: i = 0 4 pairs of DFTs of length 1 into 4 DFTs
 Loop 3: j = 0, k = 1
 Loop 3: j = 2, k = 3
 Loop 3: j = 4, k = 5
 Loop 3: j = 6, k = 7

 Loop 1: npoints = 2, jstep = 4 Combination 2:
 Loop 2: i = 0 2 pairs of DFTs of length 2 into 2 DFTs
 Loop 3: j = 0, k = 2
 Loop 3: j = 4, k = 6
 Loop 2: i = 1
 Loop 3: j = 1, k = 3
 Loop 3: j = 5, k = 7

 Loop 1: npoints = 4, jstep = 8 Combination 3:
 Loop 2: i = 0 1 pair of DFTs of length 4 into 1 final DFT
 Loop 3: j = 0, k = 4
 Loop 2: i = 1
 Loop 3: j = 1, k = 5
 Loop 2: i = 2
 Loop 3: j = 2, k = 6
 Loop 2: i = 3
 Loop 3: j = 3, k = 7

2.4.3.2 Twiddle Factors

The rest of the code – the meat inside the loops – calculates wr and wi, the real and
imaginary parts of the twiddle factors at each point in the transforms. Recall that

./2 Nmim
N eW π−=

If instead this is expressed using trigonometry, then it becomes:

() ().2sin2cos NmiNmWm
N ππ −=

Now the complex components of the twiddle factors, wr and wi may be calculated by

increasing the angle, θ = 2πm / N, between 0 and π by a factor of θk. θk begins at π and is
halved for each transform combination at the end of the outer loop, corresponding to the
halving of the number of iterations of the third loop. The variables wkr and wki are the real

and imaginary parts of the complex number derived from θk, the life cycles of which are
shown below:

Initially:

 wkr = -1.0; // theta = pi
 wki = 0.0;

j00 k00 j01 k01 j02 k02 j03 k03
0 1 2 3 4 5 6 7

j00 j10 k00 k10 j01 j11 k01 k11
0 1 2 3 4 5 6 7

j00 j10 j20 j30 k00 k10 k20 k30
0 1 2 3 4 5 6 7

 23

Then:

for(npoints = 1; npoints < N; npoints = jstep) {
...
wki = -sqrt((1.0 - wkr) / 2.0);
wkr = sqrt((1.0 + wkr) / 2.0);

}

As implemented here, it can be seen that the values may be calculated quite neatly using
square roots, rather than with sine and cosine functions, by using the double angle formula for
cosine.

For the full code of the FFT, please see the listing in Appendix C.1, or else view the backend
source code of Wave Processor*.

Finally, the cycle of values for W = (wr, wi) may best be illustrated by the following
diagrams in Figure 2.12, which pertain, once again, to a set of 8 samples. For simplicity,
positive imaginary components have been used, which would thus pertain to the inverse
transform:

Combination 1 – 4 × length 1 transforms

 θk = π

Wk = (–1, 0) θ = 0 W = (1, 0)

Combination 2 – 2 × length 2 transforms

 Wk = (0, 1) W = (0, 1)

 θk = π/2 θ = π/2

 θ = 0 W = (1, 0)

Figure 2.12 – Polar complex number diagrams of combinations

* This may be found on the project CD in the folder Software\Wave Processor\Source

 24

Combination 3 – 1 × length 4 transforms

 Wk = (1/√2, 1/√2) W = (1/√2, 1/√2)

 θm = π/4 θ = π/4

 θ = 0 ω = (1, 0)

 W = (0, 1)
 W = (–1/√2, 1/√2)

 θ = π/2 θ = 3π/4

Figure 2.12 (contd.) – Polar complex number diagrams of combinations

From the above, it becomes clear that the only change to the code which needs to be made in
order to render the inverse transform is to make wmi positive instead of negative at each
update, thus the relevant piece of code becomes:

wki = sqrt((1.0 - wkr) / 2.0);

In the implementation in the software for this research, as is common practice, the forward
and inverse transforms have been combined in the same function. The variable dir controls
which is to be performed: for the forward transform it is set to 1 and for the inverse, –1. The
last thing to remember is to do the normalizing (by 1/N) for the forward transform only.

2.4.4 Output

The output of the DFT is very often misunderstood and should be clarified at this point. It is
important to realise that the discreteness means that values are quantized in the frequency
domain, i.e. there are no “in-between” values. The DFT is possibly better thought of as a
probability distribution histogram with frequency bins. In other words, amplitudes on a DFT
graph actually represent probabilities of a frequency being a certain value, rather than exact
measures. This draws a direct parallel with the uncertainty principle in quantum theory which
states that certain pairs of properties (in this case time and frequency) cannot be measured
precisely simultaneously. The importance of this realisation was pointed out by Dennis
Gabor, who formalized the uncertainty relation between frequency and time resolution in the
Fourier transform [Gabor46L] introduced in subsection 2.3.2.

Referring back to that discussion, the frequency resolution is inversely proportional to the
length of the signal in time. So, the longer the signal, the smaller ∆v becomes. However, ∆v
is also directly proportional to the bandwidth, which in turn is affected by the sample rate and

 25

thus ∆t. The following summarizes this three-way reciprocity relationship between ∆t, ∆v
and N, the number of sample points [Osgood09W].

Time Limitedness: L = N∆t
Bandwidth: 2B = N∆v

.
1

2

2

N

N

N
N

B

N

L
vt

=

=

⋅=∆∆

While the input of the DFT is, for most practical purposes, a function of time, strictly over a
discrete set of real values, the output of the transform is complex and so it comprises two
arrays. Going back to the original description of the Fourier transform as the re-expression of
a function in terms of component sines and cosines, from complex number theory, the real
values are thus the cosine amplitudes, and the imaginary array is the set of sines. Figure 2.13
illustrates this. In the graph, x is the real component of the complex coefficient, v, and y is
the imaginary part. The distance of v from the origin, r = | v |, is then the magnitude of v,
and it is calculated by the Pythagorean theorem:

.22 yxr +=

When drawing a DFT graph, this is the value usually plotted. Finally, θ is a measure of the
instantaneous phase of the frequency, which can be calculated with the argument function,
arg(v), which is arctan(y/x) when x ≠ 0, and π or –π when x = 0 and y > 0 or y < 0
respectively. The importance and usefulness of phase information in the DFT will be
discussed further in Chapter 4 in the section on the Phase Vocoder.

Figure 2.13 – Polar graph representation of a complex Fourier coefficient, v

θ

x

y

v

0

r

 26

3 An ABC of Music Theory

Having covered the basics of signal analysis, it is also necessary to provide the reader with an
overview of music theory from a more technical point of view, so that the musical
terminology used throughout the rest of this thesis may be understood and used freely. The
discussions here also begin to link up some of the ideas from the previous chapter in the
context of music. A discourse on the origins of music and the natural tonal system has been
included, mainly for interest’s sake, but also in order to further familiarize the reader with the
language. The primary sources for this chapter were [Scholes65L] and [Grove00L], although
much of this information may be found in any suitably comprehensive music encyclopedia.

3.1 Musical Pitch

From the Oxford English Dictionary, pitch, in the context of music, is defined as “The quality
of a sound, esp. one produced by a musical instrument or voice, which is governed by the
frequency of the vibrations producing it, and which determines its highness or lowness of tone
(a rapid vibration corresponding to a high tone)” [OED05W].

Here, the notion of “high” and “low” tones is, of course, not a physical one, but, as the phrase
in parentheses suggests, more of a convention decided upon. Perhaps human beings first
associated “high” notes with bird calls – these particular sounds came from above and were
thus, perhaps subconsciously, associated with concepts of “up” and “high”. The idea of the
height of a pitch also corresponds to frequency measurements – “Lower” pitches have smaller
numeric frequency values and vice versa.

3.1.1 The Relationship between Pitch and Frequency

The exact relationship between frequency and pitch is a dyadic one, meaning that factors
which are powers of 2 are involved when converting between the two. This is a well known
relationship, discovered (at least, first recorded) by Pythagoras [Scholes65L], who performed
experiments with different lengths of cord, observing that if he plucked a string and noted its
pitch, then stopped the string halfway and plucked it again, he got a note which sounded very
similar to the first, but which was higher. Dividing it in half again (i.e. into quarters)
produced a note, once again with the same sound quality but which was even higher. What
Pythagoras was actually generating were pitches an octave apart from each other. In music,
this is exactly how the term octave is defined: the interval between two pitches which have
the same quality of sound, one of which is double the frequency of the other. The reason for
the name, octave, which surely implies something to do with eight, will be explained in due
course. Pythagoras continued with further experiments where he divided the string into thirds
and so on, and went on to generate what was later called the harmonic series.

3.1.2 The Harmonic Series

Whenever you play a single note on any musical instrument, you are not actually hearing just
one frequency, but a composite spectrum of frequencies, just as white light is made up of
multiple colours. This spectrum of frequencies is known as the harmonic series of the note,
and each individual frequency within is called a harmonic. The most clearly audible pitch is
usually the lowest frequency in the series, and is called the fundamental note – often referred
to by acoustic engineers as f0. The series follows a pattern which may be explained by

 27

examining all the ways in which a string, for example on a guitar, may vibrate along its
length. Firstly, the fundamental note is a result of the string vibrating along its entire length
as illustrated in the figure below:

Figure 3.1 – A freely vibrating string

If the string is stopped halfway along its length, so that the midway point is stationary, it may
also vibrate freely about that point and its two endpoints, which are also stationary. This is
depicted in Figure 3.2. Now the wavelength of the resulting signal has been halved, and
therefore the frequency is doubled. Subsequently we have a pitch which sounds an octave
above the fundamental. This pitch is the first harmonic in the series.

Figure 3.2 – A vibrating string stopped half-way

The next harmonic is found by dividing the string into thirds, so that there are two stationary
points in between the two ends. The resulting frequency – the second harmonic – is then
three times that of the fundamental note.

Figure 3.3 – Dividing the string into thirds

We may continue generating the series by dividing the string up into increasing numbers of
equal parts, the frequency of each harmonic increasing by that same factor in proportion to the
fundamental frequency at each stage. As the frequencies get higher, the intervals in pitch
between the harmonics become smaller and smaller and tend towards zero (as the number of
subdivisions of the string tends towards infinity). In reality, only the first few harmonics in
the series are ever perceived by our ears, to varying degrees. This is to do with the fact that

 28

the string is able to vibrate most freely and easily about fewer stationary points than more, so
lower order harmonics (especially the fundamental) will normally have higher amplitudes.

Figure 3.4 – Four divisions of the string: third harmonic

3.1.3 Natural Pitch Intervals

Armed with the harmonic series, we now have a basis by which pitch may be more formally
defined, and (hypothetically) a natural explanation for the existence of the entire Western
tonal system [Scholes65L]. In order to do this, we need to look more closely at the intervals
between different pitches within this tonal system, that is the change in pitch (or frequency)
from one note to the next, and consider how they may have come into being. The thought
process presented here is probably quite similar to what Pythagoras and other Greek
philosophers in his time (the first to ponder the mathematical side to music) would have
reasoned in about 550BC [Scholes65L].

As mentioned previously, although the harmonic series in theory has an infinite domain, in
practice our ears are able to hear only a few harmonics consciously. Therefore let us begin by
examining more closely the first few notes in the harmonic series for an arbitrary frequency,
say 262Hz (the choice of which will become clear in the following subsections). In order to
calculate the frequencies of each note in a harmonic series, all that is required is to divide by
its relative wavelength, i.e. multiply by 2, 3, 4 etc., since the frequency of a (stationary) signal
is the inverse of its wavelength (see Chapter 3).

Note in Series Wavelength Frequency (Hz)
F0 (Fundamental Note) λ (= 1/262) 262
H1 (First Harmonic) λ/2 524
H2 (Second Harmonic) λ/3 786
H3 (Third Harmonic) λ/4 1048
H4 (Fourth Harmonic) λ/5 1310

Table 3.1 – Harmonic Series of 262Hz

Note that the intervals between the fundamental note and the first and third harmonics are
both octaves, since the frequencies of these tones double from one to the next. As stated
before, it may be perceived, audibly (certainly at least by Pythagoras) that the quality of the
sound of two pitches which are an octave apart is very similar. This makes sense in a way,
since one would expect the very first harmonic of a note to be its closest relative.

For the sake of formulating a hypothesis, let us first assume that the very closest natural
relationships are those between the first pair of notes in any given harmonic series, using the
above argument that they are the sounds which appear to be most similar to our brains. The
reason they appear similar to us may be explained by the fact that when two such “related”

 29

pitches are played simultaneously, every few wavelengths, the peaks of the two signals
coincide, boosting each others’ amplitudes, i.e. they resonate with one another. The smaller
the lowest common multiple of their wavelengths, the more they will resonate in this way.
The graph below demonstrates this principle clearly for the interval of an octave: the two thin
waves are y = cos(x) and y = cos(2x), and the thick blue signal is their sum. Note how the
peaks of the lower frequency wave are now effectively amplified to twice their original value.

-2

-1

0

1

2

3

-8 -6 -4 -2 0 2 4 6 8

Figure 3.5 – Octaves resonance of two cosine waves

Note also that the average listener may not naturally discern the above signal as two separate
pitches*, but rather as the lower frequency signal with a different sound quality or timbre to
the plain cosine wave.

Secondly, let us define pitches whose frequencies are related by whole powers of 2 (i.e. that
are an octave or octaves apart, as in Figure 3.5) as being closely related enough as to be
equivalent, thus F0, H1 and H3 in the Table 3.1 are all technically the same note. Since H2 is
the first closest relative which is “different” to F0, let us now calculate the first few values of
its harmonic series, but, for clarity’s sake, starting at an equivalent note which has a frequency
closer to F0. N.B. By our definition, dividing any frequency by a power of two will yield an
equivalent pitch: 786Hz / 4 = 196.5Hz – the closest possible to 262Hz:

Note in Series Wavelength Frequency (Hz)
F0 (Fundamental Note) λ 196.500
H1 (First Harmonic) λ/2 393.000
H2 λ/3 589.500
H3 λ/4 786.000
H4 λ/5 982.500

Table 3.2 – Harmonic Series of 196.5Hz

* Listen to a demonstration of this effect in the Sound folder on the project CD. A3.wav and A4.wav are two
sinusoidal signals an octave apart, and A3A4.wav is their sum.

 30

Lastly, let us look at the harmonic series of the note, for which 262Hz is the second harmonic,
i.e. its other closest relative, which will of course have a frequency of one third of this value:
262Hz / 3 = 87.3Hz

Note in Series Wavelength Frequency (Hz)
F0 (Fundamental Note) λ (= 1/87.3) 87.333
H1 (First Harmonic) λ/2 174.667
H2 λ/3 262.000
H3 λ/4 349.333
H4 λ/5 436.667

Table 3.3 – Harmonic Series of 87.333Hz

As a final step, let us assemble the above fifteen frequencies from all three tables in ascending
order, but normalizing all values so that they appear in the same frequency range. In each
case, F0 ≡ H1 ≡ H3 – these and other duplicates may be eliminated. We can also, at the same
time, label all of the frequencies with letters of the alphabet, starting with ‘A’. As is
seemingly true to history, the chosen starting frequency in the note-naming is arbitrary. (In
fact the frequency defined as ‘A’ centuries ago is very different to what it is today):

Frequency (Hz) Equivalent To Pitch
218.333 H4 of 87.3Hz A
245.625 H4 of 196.5Hz B
262.000 F0 of 262.0Hz C
294.750 H2 of 196.5Hz D
327.500 H4 of 262.0Hz E
349.333 F0 of 87.3Hz F
393.000 F0 of 196.5Hz G
436.667 H4 of 87.3Hz A

Table 3.4 – Closely related pitches in ascending order

The final pitch at the end of the table, which has been included to complete the cycle of eight
notes (hence octave) is also ‘A’, since it has a frequency which is double that of the starting
note and is therefore technically equivalent.

It is perhaps a small wonder that this series of closely related pitches, called a scale in musical
terms, quite naturally became the basis for the very earliest forms of music and still defines
and influences the current twelve-tone equal-tempered system used extensively throughout
the Western world [Scholes65L]. The word “scale” also comes from the Ancient Greeks:
Instead of adding the extra ‘A’ to complete the octave as in the above table, they added a
lower G or Γ – Gamma. This gave origin to the Middle English for “scale”, gamut, which in
turn came from “gamma” + “ut” – the Medieval Latin word for the first note. Any series of
ascending or descending pitches is still called a scale today.

3.2 Musical Modes

In order to understand how the transformation from the above naturally occurring scale to the
modern system was completed, we need to look more closely at the intervals between each of
the notes in Table 3.4, which follow a certain pattern known in music as a mode.

 31

3.2.1 Just Intonation

As stated previously, the relationship between pitch and frequency is dyadic, and therefore
when examining pitch differences or intervals between the notes in Table 3.4, we need to
look at frequency ratios rather than differences. These ratios are as follows:

Pitch Frequency (Hz) Interval (Freq. Ratio)

A 218.333

1.125 (= 9:8)

B 245.625

1.067 (= 16:15)

C 262.000

1.125 (= 9:8)

D 294.750

1.111 (= 10:9)

E 327.500

1.067 (= 16:15)

F 349.333

1.125 (= 9:8)

G 393.000

1.111 (= 10:9)

A 436.667

Table 3.5 – Pitch Intervals

It may be observed that smallest differences in frequency are between the notes B & C and E
& F, while the other intervals are roughly the same, D – E and G – A being slightly closer
than the remaining three. The intervals between these eight related notes, as described by
ratios of whole numbers, are known in music as just intervals, and the natural tuning system,
discovered by the Greeks, is called just intonation.

Practically, the ratios 9:8 and 10:9 are close enough as to be indistinguishable to the average
ear. At this point, in order to avoid getting too deep into the subject of tuning systems, we
shall jump forward several centuries in time to the point where the larger two steps of what is
now called a whole tone, were regarded as the same interval, and the ratio 16:15 became the
defining interval for the smallest possible step between two notes: the semitone.

3.2.2 Doh-Ray-Me

Guido d’Arezzo, a Benedictine Monk who was born around the turn of the first millennium, is
generally regarded as being the first music theorist to formalize the scale. He considered the
naturally occurring pitches as being sacred and pure, giving them holy names from an old
Latin hymn written by Paul the Deacon for St. John the Baptist’s day [Scholes65L]:

 32

“Ut queant laxis
Resonare fibris
Mira gestorum
Famuli tuorum,
Solve polluti,
Labii reatum,
Sancte Iohannes.”

Ut was changed to Do (the first syllable of Dominus meaning “Lord”) fairly early on, since it
was more singable. The other names were also changed and anglicized in the 19th century by
an English music teacher, named Sarah Glover, to Doh, Ray, Me, Fah, Soh, Lah and Te. She
altered the seventh note from Si so that each name could begin with a different letter and thus
be shortened to just its initial letter for easy writing purposes: d, r, m, f, s, l and t.

The first six pitches Guido called the hexachord, from the Greek words for “six” and “note”.
The reason these were particularly special to him (and also his choice of nomenclature) was
because it just so happened that each line of the hymn began one note higher than the previous
one, and so they formed a scale up to La. He thus had a useful educational tool for pitching
notes, and is quoted as saying [Scholes65L]:

“If an experienced singer shall so know the opening of each of these sections that he
can, without hesitation, begin forthwith any one of them that he pleases, he will easily
be able to utter, without absolute correctness, each of these six notes, wherever he may
see them.”

The seventh note, Si, was a special case for which Guido found he had to have two versions.
He wanted to create three hexachords which overlapped with one another, starting on the
notes G (the Greek starting note), C and F. Beginning on G, the intervals between each note
in the hexachord are:

tone, tone, semitone, tone, tone

This pattern is also the case if C is the starting note. However, if we start on F, we get the
following pattern:

tone, tone, tone, semitone, tone

Guido and other music theorists of his time saw this particular arrangement of three tones at
the start of the scale as ugly and unholy. They called it “Diabolus in Musica” – the “Devil in
Music” – and forbade the interval formed by three whole tones, the tritone, from being used,
especially in sacred music. In order to exorcise this demon from music which centred itself
around the F hexachord, Guido lowered the pitch of the B so that it was a semitone above the
A and a whole tone above the C, calling it B molle – a “soft B” [Grove00L, Scholes65L].
This simple change removed the chance of a tritone occurring and restored the sacred pattern.
Since the hexachord beginning on G contained the “hard B”, Guido called it the Hard
Hexachord or Hexachordum Durum. The hexachord on F was then Hexachordum Molle, and,
because it contained no B at all, the C hexachord he described as Hexachordum Natrum –
Natural Hexachord. The symbols which Guido used to denote a soft or a natural B were
rounded and square-shaped letter ‘b’s respectively, called B rotundum and B quadratum in

Latin [Grove00L]. These turned into the modern-day symbols: the flat: b and the natural: §.

 33

The flat sign is nowadays used to indicate the lowering of any pitch by one semitone (not just
a B) while the latter restores any altered note to its natural pitch.

3.2.3 Gregorian Modes

The simple change made by Guido to the B also incidentally revolutionized the way
musicians began to think about the arrangement of tones and semitones. Without realising it,
Guido had developed a system known today as a Moveable Doh, where a starting note may be
chosen arbitrarily from one of the seven natural pitches, but adjustments need to be made to
the pitches in order to preserve the natural pattern.

Long before Guido d’Arezzo, however, proponents of early Christian Church music, notably
St. Ambrose, the Bishop of Milan (4th C) and Pope Gregory the Great (6th C) had formalized
the set of musical modes based on the 7 natural pitches in the Greek scale. The patterns of
tones and semitones comprising each mode were defined simply by changing the starting
point of the scale. The names of the modes were as follows:

Starting note Mode
A Aeolian
B Locrian
C Ionian
D Dorian
E Phrygian
F Lydian
G Mixolydian

Table 3.6 – Modes

Practically all medieval music was written based on these modes, and they are still the
foundation upon which the vast majority of Jazz music is built. The Ionian and Mixolydian
modes would have been the most interesting to Guido, since they are a combination of his
hexachords beginning on C and G. The pattern of the Ionian Mode is as follows:

tone, tone, semitone, tone, tone, tone, semitone

The only difference with the Mixolydian mode is in the last interval:

 tone, tone, semitone, tone, tone, semitone, tone

To clarify, for the Ionian Mode, the interval between the last two notes, the (hard) B and the C
is a semitone, whereas in the Mixolydian Mode, the last interval is between the F and the G –
a tone. The use of the Lydian mode would have been inappropriate to Guido since it begins
with three tones:

 tone, tone, tone, semitone, tone, tone, semitone

however if the pattern were altered slightly by using a soft or flattened B, this effectively turns
the Lydian mode into the Ionian mode, but starting on F instead of C. Similarly, if we raise
the seventh note in the pattern starting on G, this would also alter the Mixolydian mode to
become Ionian. Raising the pitch of a note by one semitone became known as sharpening,

and the sharp symbol denoting this effect is #. This sign has similar roots to the flat and

 34

natural symbols and is also in the form of a square ‘b’, but one which has been crossed out or
cancelled. Its original Latin name was B cancellatum – “the cancelled B” [Grove00L].

3.2.4 The Dodecachordon

It was now, in theory, possible to play in any of the seven modes starting on any of the seven
notes by sharpening or flattening notes as necessary. Almost a millennium later than Pope
Gregory, a new idea was put forward in 1547 (although composers were already using it by
then in practice) by a Swiss monk named Henry Glareanus [Scholes65L]. If we count all the
semitones in any given mode of a scale, we find that there are twelve. Therefore, in theory,
there could be twelve starting points rather than just seven. Glareanus called the set of twelve
pitches making up a scale the dodecachordon, continuing with the Greek theme (dodeca
meaning twelve). If we consider all the possible names of the notes, for every semitone, we
find that each of the in-between notes (those in the top row in the layout below) have two
possible names:

 C#/Db D#/Eb F#/Gb G#/Ab A#/Bb
C D E F G A B C

Table 3.7 – Dodecachordon layout

This arrangement will be recognizable to pianists and other keyboard instrumentalists, since
keyboards are still laid out in this way. Technically, the correct naming of the so-called
accidental notes (possibly from the Latin nota adventitia – additional note – as described by
Joachim Burmeister [Grove00L]) will always depend on the mode and the starting point. For
example, if the starting note is F and the mode is Ionian, the adjusted fourth note will be Bb.
Whereas, if the same mode is used beginning on the note B, then the seventh note should
rather be called A#.

3.2.5 Keys and Equal Temperament

Eventually, the modal system of writing broke down, giving way to the idea of keys. Since
the Ionian and Aeolian modes lent themselves best to harmonization of melodies, these were
retained, becoming our current major and minor modes respectively. The key of almost all
pieces of Western music is described by assigning Doh to a starting note and then following
the patterns prescribed by one of these two modes. C Major and A Minor are simply the old
Ionian and Aeolian modes, respectively. These keys contain no accidental notes, however in
the case of A Minor, the seventh note is often sharpened (becoming G#) as a kind of
strengthening effect.

Back to tuning systems briefly: given that the natural tuning system discovered by the Greeks
comprised two slightly different sounding whole tones, it was soon realised that attempting to
play in modes or keys which were too far removed from their original intended starting point
sounded very strange and out of tune. A new system of tuning was needed which made each
semitone in the scale the same interval in order to allow total freedom to composers. The
solution, which was most likely also first proposed by the Ancient Greeks and Chinese, is the
answer to the question, “If the frequency of a pitch increases by a factor of two at every
octave, then by what factor should the frequency of a note be multiplied to move up a
semitone?” This may be rephrased more simply as, “What number, when multiplied by itself
twelve times, is equal to two?” The answer, of course, is the twelfth root of two.

 35

The system of using this factor to tune every semitone in the scale so that the pitches are all
equidistant is called equal temperament. Despite the logic behind this method, equal-
tempered tuning of instruments only became more popular around the 18th century, after
Johann Sebastian Bach wrote his famous set of twenty-four preludes and fugues – a pair of
pieces (for piano or organ) for each of the twelve major and twelve minor keys, which he
called The Well-tempered Clavier. This above all demonstrated the usefulness and flexibility
of the tuning system which Bach chose for his own keyboards. It allowed composers to write
freely in any key and to modulate freely (that is change key during the piece of music)
without having to worry about ugly out-of-tune sounds [Scholes65L].

Bach’s Well-tempered Clavier was a masterpiece of its time, and the preludes and fugues are
still popular today amongst keyboardists. In fact the work lead some to believe that Bach
himself had invented the tuning system it demonstrated, and he must have enjoyed this
association with equal temperament as he went on to write a second volume!

3.3 Music Notation

A huge amount of information has been written on this subject, which, like any other written
language, has developed and grown over many centuries, from its most rudimentary medieval
forms.

Although this section of the chapter could fill an entire thesis on its own, it is not the main
point of this research, and so only the fundamental rules of music notation have been
presented. It is important to realise that the conventions as described here are subject to
change – particularly in more modern times, composers have deliberately tended to break
away from normal practices, in their wish to leave the interpretation of their compositions
much more up to the performer. Since the point here is to extract and present as much
musical information as possible from an audio source, such vague representations of music
notation must be avoided.

As an additional source, The Rudiments and Theory of Music, published by the Associated
Board of the Royal Schools of Music [ABRSM38L] has also been referred to. Sir George
Grove was the founding director of the Royal College of Music and became somewhat of an
authority on music theory. Much of the theory presented in his dictionary [Grove00L] has not
changed and has been adopted by many as a standard.

3.3.1 A Note on Music Engraving

Music engraving is the special art of musical typography, in which a copyist follows a special
set of rules (which vary in subtle ways from publisher to publisher) which govern the design
and layout of printed music [Sibelius09L]. Since it is a skill which is gained primarily in the
master-apprentice tradition, not a great deal of literature exists on the subject. Although the
main principle of music engraving is to notate music as clearly as possible, it is not essential
to the problem at hand. An analogy may be drawn with contents of this thesis: the rules
dictating its format, layout, font etc. are to music engraving as its language, tables and
diagrams are to music notation. For this reason, the software written for this project does not
produce fully rendered printable scores, but rather pitch/time graphs. Besides graphs (see the
following chapter) MusicXML [Recordare09W] is another good choice of output, since this
increasingly popular and easily written format may then be imported into music publishing
packages such as Sibelius. The incredibly difficult job of score rendering is best left to the
engraving masters.

 36

3.3.2 Representation of Pitch

Musical pitches are indicated by the vertical location of glyphs drawn on a set of five
horizontal lines. These lines, known collectively as a staff, may be thought of as grid lines on
a pitch/time graph. An example of a musical staff with four different pitches drawn on it is
shown below in Figure 3.6.

Figure 3.6 – An example of a musical staff

It can be seen that notes are either drawn on a line or in between – on a space. The third note,
for example, is therefore three pitches above the second note and four above the last. Note
also that a pitch may be drawn below the bottom line (or above the top line) of the staff. If
even lower or higher pitches need to be written, additional short lines, called leger lines, may
be drawn to accommodate them and provide a measure of their position relative to the staff.
Figure 3.7 shows an example of leger lines drawn below and above a staff.

Figure 3.7 – Notes drawn on leger lines

The above staves lack one very important symbol, which effectively acts as a label, indicating
the range of the “pitch axis”. This symbol, known as a clef (from the French word for key) is
in fact one of three highly decorative alphabetic characters, namely G, C or F, depicted below:

G clef C clef F clef

Figure 3.8 – Clef symbols

The lines drawn in red in Figure 3.8 are the particular pitch levels to which these three
different labels refer. They act as base pitch identifiers, from which all other pitches may be
measured, based on their relative vertical positions to these lines. Thus, if a G clef were to be
drawn on Figure 3.6, the first note would be four steps above G, i.e. D. The other pitches
would be E, A and another D (an octave below the first). The choice of letters presumably
came from Guido d’Arezzo’s three original hexachords which began on G, C and F.

The position of the clefs relative to each other, shown in Figure 3.9, reveals that lower pitches
should be written using the F clef, while higher pitches fall into the G staff range. The C clef

 37

is used for writing music for middle-range instruments. Thus the G, C and F clefs are also
known as the Treble, Alto and Bass clefs, respectively. The note right in the middle of the
three staff systems is called Middle C (presumably for this very reason), which is the pitch C4
(262Hz). The small 4 tells us which octave, on some grand scale (from Cj to Cj+1 by
convention) the pitch lies. The note C0 is then the master base pitch, to which is normally
assigned the frequency 16.375Hz. This is already close to being inaudible, although some
music theorists prefer to use C-1 as the lowest conceivable pitch. This is not very logical,
however, since at a frequency of around 8Hz this note cannot be heard by humans.

Figure 3.9 – Relative vertical positions of staff systems

The full range of pitches which may be represented, from the lowest line on the bass clef to
the space just above the treble staff, is three octaves. Most of the time, musicians use only
one of these clefs at a time, but may change between different staff systems (by specifying a
different clef symbol) in the same line of music, sometimes several times in one piece, to save
from writing too many leger lines.

The clef symbols may also be moved to different lines on the staff, depending on the
particular range of the instrument for which the music is being written. For example, the
tenor trombone – a middle to low range instrument – reads from a staff written using the
Tenor clef, shown in Figure 3.10, which is the C clef shifted to the fourth line. Other
positions of the C clef are less common, and the G and F clef are very rarely shifted, however
in theory they may be placed on any of the five lines in the staff. The particular pitches which
the F, C and G clefs always define, regardless of their position, are F3, C4 and G4 respectively.

Figure 3.10 – The Tenor clef

3.3.3 Representation of Time

Notes are read from a staff and played in order from left to right. However, the horizontal
spacing between notes gives only a very rough indication of their durations. Instead, precise
note lengths are represented by different note symbols, the longest in current use being the
semibreve or whole note, which is the type of all the notes drawn in Figures 3.6 & 3.7. This
idea of having note durations determined by their appearance rather than by their position or
context was first formalized by French music theorist, Franco of Cologne in the 13th century
[Scholes65L]. Franconian notation, described in Franco’s treatise, Ars Cantus Mensurabilis
(The Art of Measurable Music), is still the standard used today for indicating note lengths.

 38

The various note symbols and their equivalent rests (silences lasting the same duration as
their counterpart notes) are shown in Table 3.8. As can be deduced from their American
names, each note value in the table decreases in duration from its predecessor by a factor of
two. So, for example, if the constant speed of a piece of music is set so that a whole note lasts
for 4 seconds, then all quarter notes will last for 1 second, eighth notes will be half a second,
sixteenth notes will have a duration of 0.25 seconds and so on. Theoretically, note values
may be halved further by adding more hooks, although anything beyond the demisemiquaver
is rare. A note with four hooks is a hemidemisemiquaver or sixty-fourth note, and with five it
is a semihemidemisemiquaver or quasihemidemisemiquaver* (hundred twenty-eighth note).

Note symbol Rest symbol English name American name

w Semibreve Whole note

h
 Minim Half note

q  Crotchet Quarter note

e  Quaver Eighth note

x  Semiquaver Sixteenth note

y  Demisemiquaver Thirty-second note

Table 3.8 – Note types

Other indications of time are the dot and the tie. The latter symbol is a curved line which
effectively joins two notes together. The tied notes then last for the duration of their sum.
More than two notes may be tied together in this way as long as they are the same pitch.

A dot after a note means that the note is to be sustained an additional length of time equal to
half of its value. For example, a dotted crotchet will be held for a crotchet plus a quaver; a
dotted whole note will be held for a whole note plus a half note, and so on. Examples of dots
and ties are shown in Figure 3.11 below. A flat, sharp and natural have also been drawn
against the notes to demonstrate their positioning. A tied note assumes the same accidental as
the first in the group, therefore the first three notes are all Bb. Because the third G (sixth note)
is not tied to the previous two, in order to cancel the effect of the sharp, a natural is drawn.

Figure 3.11 – Ties and dots example

* An example of these notes may be found in the 1st movement of Beethoven’s Pathétique Piano Sonata (Op. 13)

 39

Note also that stems and hooks of notes may be drawn pointing down or up. By convention,
stems are drawn downwards when the pitch is above the middle line and upwards when
below. Stems of notes on the middle line itself may point up or down, depending on what
looks better in their context.

3.3.4 Key Signatures

In order to save drawing hundreds of accidental signs all over the music, the collection of
sharps or flats pertaining to the key of the piece is drawn once at the beginning of each staff
line and thereafter assumed to carry for the whole line or until the key changes, in which case
a new set is drawn. Any additional accidentals which are not normally found in the main key
are then drawn next to notes which require them, as in Figure 3.11. The set of sharps or flats
defining the key is called the key signature. The complete cycle of signatures for all twelve
major and minor keys, as one would draw them on G and F staves, is shown in Table 3.9 on
the next page. Some points to make about this table:

• In the key signature, sharps or flats apply to every occurrence of the note they are
altering, and not just the octave in which they are drawn. This, however, does not
apply for accidentals, i.e. additional sharps and flats drawn on-the-fly pertain only to
the note against which they are drawn (persisting over ties).

• The interval between any two successive keys in the table is always a fifth (seven
semitones). E.g. C – G is five natural tones, so is G – D, etc. This is also the interval
between the first and second harmonics of a note, and is known as a perfect fifth.

• A fifth above the last key, F, is C – the starting key, which means the series of
consecutive fifths is cyclic. This pattern in music is called the Circle of Fifths.

• F# Major / D# Minor are practically (but not theoretically) the same as Gb Major / Eb
Minor. This relationship is called enharmonic equivalence.

• Although rarely used, G# Minor can also be written in its enharmonically equivalent
key, Ab Minor, which would have seven flats in its key signature. Similarly, Db Major
with five flats is the same as C# Major with seven sharps. Seven sharps or flats in the
key signature is the limit, however, since there are only seven available natural pitches
which may be sharpened or flattened.

3.3.4 Time Signatures

A time signature is similar to a key signature in that it provides information which then
applies throughout the entire piece, unless a new time signature is defined. As may be
guessed, time signatures indicate regular intervals by which a piece of music should be
divided up temporally. This time segmentation is done so that a beat may be defined and also
to facilitate reading of the score by the musician. The music in Figure 3.11 would be easier
to figure out if some mark were made at regular intervals, which would indicate each time the
equivalent of say four quarter notes had elapsed. This is similar to the idea of drawing five-
second markations on a clock face. Figure 3.12 shows the same staff but with vertical lines
drawn which divide the staff up into two equal length measures (American) or bars (English).

Figure 3.12 – Previous example staff with bar lines added

 40

Major Minor Number of #### or bbbb Key Signature

C A None

G E 1 sharp: F#

D B 2 sharps: F#, C#

A F#
3 sharps: F#, C#,
G#

E C#
4 sharps: F#, C#,
G#, D#

B G#
5 sharps: F#, C#,
G#, D#, A#

F# D#
6 sharps: F#, C#,
G#, D#, A#, E#

or or

Gb Eb
6 flats: Bb, Eb,
Ab, Db, Gb, Cb

Db Bb
5 flats: Bb, Eb,
Ab, Db, Gb

Ab Fb
4 flats: Bb, Eb,
Ab, Db

Eb C 3 flats: Bb, Eb, Ab

Bb G 2 flats: Bb, Eb

F D 1 flat: Bb

Table 3.9 – Keys and key signatures

 41

As a quick check, in the first bar we have a dotted half note plus a quarter note, which equals
four quarter notes. In the second bar, we have a sixteenth note plus a sixteenth rest, followed
by an eighth tied to a dotted sixteenth, then a thirty-second, and lastly an eighth tied to a half
note. Adding up all these fractions, we get four quarters again.

The time signature itself looks a little bit like a vulgar fraction, but without the dividing line.
The top number tells us how many beats there are in every bar, and the bottom number is the
beat denominator, i.e. it describes what type of note the beat is. Thus, using the same
example, Figure 3.13 shows the complete picture, including the time signature. Unlike a key
signature, the time signature is only written once at the beginning of a section of music and
not on every line.

Figure 3.13 – Previous example staff with bar lines and time signature

The final point to make about time signatures is that the beat type could also be a dotted note.
Such time signatures are called compound, since the numerator (top number) must be
subdivided by three to get the actual number of beats. The time signature 6 over 8, for
example, means that there are six quavers in every bar, but that these should be subdivided
into 2 dotted crotchet beats – each beat containing three quavers. The rule of thumb is if the
top number of a time signature is divisible by three then it is compound, otherwise it is simple.

3.4 Diatonic Intervals and Chords

With some basic music theory under our belt, we can now begin to write some elementary
harmony constructs, the most important of which is the chord. This is simply two or more
notes played simultaneously. On a staff, chords are depicted by drawing pitches above one
another.

3.4.1 Dyads

Not unrelated to the term “dyadic”, a dyad is the most basic type of musical chord. It
comprises just two notes and is usually described by the interval between them. The interval
of the perfect fifth was mentioned in the previous section. Each of the twelve intervals
between the twelve possible pairings of notes within an octave has a similar name. The other
two “perfect” intervals are the fourth and the octave. Note that the latter is the interval
between any fundamental note and its first harmonic, while the perfect fourth is the interval
defined by the second and third harmonic. Since the word “octave” is a unique description of
that interval, the qualifier, “perfect”, is usually omitted.

Whereas the interval C – F is a perfect fourth, the interval F – B is not, since it comprises six
semitones and not five. F – B is thus called an augmented fourth because of this extra
semitone. Similarly, the interval B – F contains one less semitone than C – G, and so it is
called a diminished fifth rather than a perfect fifth. Note that the diminished fifth and the
augmented fourth in fact have the same number of semitones, however the interval must
always be described in terms of the gap between the letter names of the notes, and so
technically they are different. The interval from a note to itself (i.e. no interval) is called a

 42

Interval No. of semitones Name Staff notation

A4 – Bb4 1 Minor Second

A4 – B4 2 Major Second

A4 – C5 3 Minor Third

A4 – C#5 4 Major Third

A4 – D5 5 Perfect Fourth

A4 – D#5 6 Augmented Fourth

A4 – Eb5 6 Diminished Fifth

A4 – E5 7 Perfect Fifth

A4 – F5 8 Minor Sixth

A4 – F#5 9 Major Sixth

A4 – G5 10 Minor Seventh

A4 – G#5 11 Major Seventh

A4 – A5 12 (Perfect) Octave

Table 3.10 – Names of Intervals

 43

unison (rather than a “first”). Two instruments playing in unison are therefore playing exactly
the same notes at the same time.

All other intervals are described as being either major or minor. The former name is used for
wider intervals, while the latter is for closer intervals. For example, the interval from A to C
is a third, as is C – E. However C – E is four semitones while A – C is only three. Therefore
A – C is a minor third and C – E is a major third. Table 3.10 on the previous page
summarizes all possible intervals between the note A and any other note within an octave. A
note which forms a basis for measuring intervals, such as the A used below, is known in
music as the tonic. It is also therefore the base or root of a scale built on top of it: Ut or Doh.

It is important to stress the strict usage of, for example, C# instead of Db and G# instead of Ab.
While these pitches are to all intents and purposes the same, the intervals theoretically are not.
A – Ab, for example, would have to be called a diminished octave rather than a major seventh,
since it is the interval from on type of A to another. Since in music theory there is no such
thing as a diminished octave, this interval would not technically be correctly spelt.

The word diatonic is used to describe pitches and the intervals they form with a tonic note that
belong to a particular mode or scale. All other pitches which create intervals with the tonic
that cannot be described by the above twelve are called chromatic intervals, which comes
from the Greek, chromos, meaning “colour”. For example, Gb is a chromatic note in this
context, since it should be called F# in order to form a major sixth with the tonic note, A.
However, if Eb were the tonic instead, Gb would be diatonic, since the interval would be a
minor third. F# would form an augmented second, which is not a diatonic interval.

Some music theorists argue that the diminished fifth and augmented fourth should not be
included in the diatonic intervals, saying that the word implies strictly major or minor
intervals related to the tonic. The troublesome tritone is, nevertheless, one of the naturally
occurring intervals and is (at least since Guido’s time) a very important construct which
frequently crops up in music, and so it definitely has its place in the above table.

3.4.2 Triads

As its name suggests, a triad is formed from three notes. It may also be thought of as two
dyads sharing one note in common. Triads are also usually formed by superposing diatonic
intervals, although chromaticism became much more widely used in Romantic music (from
the early 19th century) and by the 20th century, this conformity was generally ignored. It is
useful to be aware of the most common triad formations which occur in music, since this
knowledge allows us to predict more accurately which solution is more likely whenever
ambiguities arise in pitch detection. It also means that we can spell the chords and, if we have
enough information, determine the key of the music being analysed.

The most frequently occurring triads in music are the two which define the major or minor
quality of the key. These are the major tonic triad and the minor tonic triad, which are
notated in Figure 3.14. The keys of C Major and A Minor have been chosen for clarity’s
sake, since they contain no sharps or flats to cloud the issue. The chords are called tonic
triads as they are built on top of the tonic note of these keys. Examining the dyads used to
build up the two chords, C Major comprises a minor third stacked on top of a major third,
while the A Minor triad has the minor third at the bottom and the major third at the top. This
is precisely why the terms major and minor are applied to the names of keys – they describe
the size and hence the quality of the third above the tonic.

 44

C Major tonic triad A Minor tonic triad

Figure 3.14 – Tonic triads of C Major and A Minor

Aurally, the two triads are, for most people, easy to distinguish. For some psychological
and/or physiological reason, most find that the major triad sounds happy while the minor triad
sounds sad. This may have something do with the harmonic series: the notes in the C Major
triad are actually the third, fourth and fifth harmonic of the C two octaves below. To our
pattern seeking brains, perhaps these sounds blend better (and make us happy?) They may
also be causing us to imagine the absent lower C – this is sometimes called the ghost
fundamental. For the minor triad, a C is to be found much higher up the harmonic series from
the A, and even then it is slightly out of tune. In just intonation, the frequency ratio between a
tonic note and its minor third is 5:6. The major third ratio is 4:5, and so for the major triad,
the three ratios combined are 4:5:6. For the minor triad, however, one has to find higher
common multiples – 10:12:15. It may be argued that this arrangement is more complex and
therefore not quite so pleasing to our brains (and makes us sad?!)

Other common triads may be built on top of each of the notes in C Major and A Minor, as in
Figures 3.15 and 3.16 respectively. In the A Minor scale, the sharpened seventh note (G#)
has been used, since this is more common in music harmony writing. This form of the mode
is known as the harmonic minor.

Figure 3.15 – Diatonic triads of C Major

Figure 3.16 – Diatonic triads of A Harmonic Minor

Most of these triads have either a major or minor quality. This has been indicated by using
different case Roman numerals underneath the chords. The numeral itself is just the degree of
the scale, but upper case means the chord is major and lower case denotes minor. The other
two possible combinations of two stacked thirds are denoted by a ° for two superposed minor
thirds and a + for a pair of major thirds. The circle assigns the quality diminished to the chord,
and the plus means the chord is augmented. Note that the interval from a C to a G# is actually
an augmented fifth and in fact the raised seventh creates more intervals than those in Table

I ii iii IV V vi vii°

i ii° iii + iv V VI vii°

 45

3.10. Since these intervals rarely need to be described, most music theorists do not normally
include them amongst the regular diatonic intervals, even though technically they are diatonic
to the harmonic minor mode.

In addition to the Roman numerals used to index the notes in the diatonic scale, they are also
given the following names:

Degree Name
1 Tonic
2 Supertonic
3 Mediant
4 Subdominant
5 Dominant
6 Submediant
7 Leading Note

Table 3.11 – Degrees of the scale

Note that we have only been looking at triads which are contained within an octave. Of
course chords may be formed using wider intervals, however employing our original
assumption that notes an octave apart are identical (see subsection 3.1.3) this means that we
can always respell a triad using close intervals.

Similarly, it is not necessary to examine chords built with a combination of fourths and thirds.
The reason for this becomes evident when the triad is stacked differently, with a note other
than the tonic on the bottom. Since there are three notes in the the triad, there are three ways
of arranging them. The different configurations, shown in Figure 3.17 for the tonic triad of C
Major, are called inversions. The arrangement with the tonic on the bottom is known as root
position.

Root Position First Inversion Second Inversion

Figure 3.17 – Inversions of C Major tonic triad

As can be seen, the first inversion is a fourth on top of a third, and the second inversion is a
third on top of a fourth. Depending on the mode and the degree of the scale on which the
chord is built, the fourths may be perfect, diminished or augmented. Again, technically we
seldom talk about diminished fourths but we still need to know about them in order to spell
chords correctly after their component pitches have been identified. Taken out of context,
diminished fourths sound identical to major thirds, just as augmented fifths sound the same as
minor sixths.

In order to indicate the inversion of a chord, figures are added to the Roman numerals used in
Figure 3.15 and 3.16 which specify the interval between the bottom note and the other two.
The chords in Figure 3.17 would be described as follows:

 46

• Root position: I53

• First inversion: I63

• Second inversion: I64

In practice, the figures for root position are always left out – a Roman numeral with no figures
is therefore always assumed to be in root position. Similarly, the subscript 3 for the first
inversion is omitted and so this chord is fully described by just I6. Both numbers are always
written for the second inversion to distinguish it from the first.

Triads created from seconds and fourths are not as common as the above set, but they do
occur fairly frequently and are worth looking at. Again, inverting a chord comprising only
fourths yields a second and a fourth with no further possible configurations:

Figure 3.18 – Triads comprising fourths and seconds

The usual function of these types of chords in music is to create a suspense or tension for
which our minds demand some kind of resolution. If the composer wishes to grant relief to
the tension, the chord will resolve onto one of the more “comfortable” diatonic triads.
Creating moments of tension and resolution in music is one of the most important skills that a
composer can master. The close interval of the second is the reason for the tension – the
difference in frequency between these notes is small so their cycles move in and out of phase
less rapidly, i.e. they do not resonate as well as, say, frequencies in fifths and octaves.

Although they are common in Classical music, there is no symbol for this type of chord in the
theoretical literature. However, in Jazz and on guitar music, they are labelled “sus”, short for
suspension. Figure 3.19 shows how the same suspension may resolve in two different ways.

Suspension resolving up to C Maj., 1st Inv. Suspension resolving down to G Maj., 2nd Inv.

Figure 3.19 – Suspensions and resolutions

Least common in music, but still entirely possible are cluster chords which comprise close
intervals, no bigger than a major second or whole tone. Three is the minimum number of
notes in a cluster and usually there are more. Obviously inverting them turns them into other
chromatic chords which can no longer be called clusters. These types of chords (and their
inversions) occur in music of the late 19th century / early 20th century onwards, when
musicians began to break away from the rules of harmony and experiment with new and
different ideas.

 47

Figure 3.20 – Examples of cluster chords

3.4.3 Quartads

Adding one more note into the mix, we get the four-note chord or quartad. More often than
not, for diatonic chords, quartads are simply triads with one of the notes repeated or doubled
at the octave. Figure 3.21 shows some of the chords from Figure 3.15 and 3.16 with
different doubled notes.

C Major A Minor G Major
(root doubled) (third doubled) (fifth doubled)

Figure 3.21 – Quartads

Quartads may also be inverted, as can be seen in Figure 3.21. The inversion name of a
quartad is the same as the inversion of the lower triad. For example, the C Major chord is in
root position, while the G Major chord is in its second inversion.

As with triads, quartads may be spread out so as to cover a wider range, however, when
describing and labelling them, they are always imagined in close position above the lowest
note. Inversions of quartads are labelled using the same Roman numerals and figures as for
triads, i.e. the intervals between the lowest note and the two notes above it (in close position)
are specified. Figure 3.22 shows another version of the C Major quartad from Figure 3.21
with wider intervals between the notes. It is still made up of two Cs, an E and a G, but it is
spread out over three octaves and drawn over two staves. We know that this chord is still in
root position because the bottom note (the bass) is still the tonic, C:

Figure 3.22 – A wide quartad

There are many other different types of quartads which comprise four different pitches, i.e.
with no doubled notes. Of these, the most common are the sevenths which describes the
interval between the two outside notes. Without going into their musical function – an
enormous topic on its own – the most common sevenths are constructed by stacking three

 48

thirds in different configurations. Each type of seventh quartad with its name and its
component thirds is shown in Table 3.12.

Combination of thirds Name Notation

minor, minor, minor Diminished seventh

minor, minor, major Half-diminished seventh

minor, major, minor Minor seventh

minor, major, major Minor-major seventh

major, minor, minor Dominant seventh

major, minor, major Major seventh

major, major, diminished Augmented minor seventh

major, major, minor Augmented major seventh

Table 3.12 – Seventh Chords

Although the penultimate chord seems to be the odd one out, with its diminished third on the
top, the interval between the bottom and top note is still a type of seventh. Note that the
combination of three major thirds is not possible since the interval formed by the two outer
notes would sound like an octave but technically would have to be called an augmented
seventh, which does not exist in music theory as a valid interval description. Note also that
the word “augmented” in the descriptions “augmented minor seventh” and “augmented major
seventh” refers to the augmented fifth within and not to the seventh, which is always
diminished, minor or major.

A seventh chord in its four possible inversions requires different figures for its Roman
numeral description, which also describe the intervals between the bottom note and two of the
other notes (except for root position, where just the superscript ‘7’ is written). The dominant
seventh of C Major, which has G as its root, has been labelled in all its inversions in Figure
3.23. The dominant seventh may be thought of as the dominant chord, V, in any key, with an
added seventh above the root (hence its name).

 49

 V7 V6

5 V4
3 V4

2

Figure 3.23 – C Major, dominant seventh in different inversions

3.5 Chord Progressions

The final section of this chapter takes a brief look at commonly occurring sequences of chords
found in almost all types of music. Special attention must be paid to these sequences for the
reasons mentioned in the introductory chapter – the more clues and a priori knowledge we
have about the music we are analysing, the easier it is to predict the likelihood of a certain
solution being correct over others.

3.5.1 Cadences

A cadence is a sequence of two chords which commonly occurs at the ends of phrases in a
piece of music. Phrases can be thought of as musical sentences and so cadences are
analogous to punctuation. There are four main types of cadence to be found. These are:

• Perfect
• Plagal
• Imperfect
• Interrupted

A perfect cadence is the strongest type, which gives a phrase of music a very definite sense of
coming to an end. Continuing the grammar metaphor, perfect cadences are closest to being
full stops and commonly mark the ends of musical paragraphs. The two chords comprising a
perfect cadence are the dominant followed by the tonic in root position, i.e. chord V going to
chord I (or i in a minor key). Occasionally chord V will be in its first inversion (but hardly
ever in its second inversion) which has the effect of weakening the cadence slightly.
Examples of the perfect cadence are shown in Figure 3.24 in the keys of C Major and A
Minor. For minor keys, as in the example, the leading note is always sharpened, i.e. the
harmonic minor is always used. Also in the minor example, a dominant seventh has been
written instead of the regular chord V. This usage occurs frequently in music as it has the
effect of further strengthening the cadence. The double barline is drawn to indicate the end of
a section in a piece of music, and so it has been used here after each cadence.

Figure 3.24 – Perfect cadences in C Major and A Minor

I V

C Major: A Minor:

V7
i

 50

Plagal cadences may also occur at the ends of musical paragraphs and final endings, however
they are considered weaker than perfect cadences. The most recognizable use of the plagal
cadence in Western music is the “Amen” sometimes added to the ends of hymns. A plagal
cadence is formed by chord IV followed by chord I (or iv followed by i in a minor key).

Figure 3.25 – Plagal cadences in C Major and A Minor

Sometimes in a plagal cadence, the minor iv is used in a major key. This technique is known
as borrowing and is similar to the idea of using the major chord V in the harmonic minor
mode in order to strengthen perfect cadences. In this case, however, it has the effect of
further weakening the cadence. In the C Major example above, the alto A becomes Ab, which
is a closer step to the next note, G, making the transition between the two chords more subtle.

The imperfect cadence is like a musical semicolon; it always appears in between phrases and
never at endings, unless the intention is to have the music sound unfinished. It is the reverse
of the perfect cadence: chord I is followed by chord V (and i is followed by V in minor keys):

Figure 3.26 – Imperfect cadences in C Major and A Minor

Note that if instead it were assumed the second chord is the tonic, the imperfect cadence
becomes the plagal cadence, since the two are identical aurally. This sort of context-
dependency for cadences is a further useful clue for harmonic analysis when trying to
determine the key of a piece. The second inversion of chord V is very common at Imperfect
cadences. When it is used in this instance, it is known as a cadential six-four. The numbers

naturally refer to the figuring of the chord in its description, which is V64.

Finally, the interrupted cadence is so-called because it sounds like the interruption of what
could be a perfect cadence. It also begins with chord V or V7 but instead moves to chord vi
(or chord VI in a minor key) again, giving a feeling of incompleteness, since the music has
not arrived at the comfortable tonic. Note the notation of a unison in the final bar.

iv i

C Major: A Minor:

IV I

C Major: A Minor:

I V i V

 51

Figure 3.27 – Interrupted cadences in C Major and A Minor

3.5.2 Some Basic Voice Leading Rules

Voice leading is the motion of a note within a melody or chord to its the next note. There are
three possibilities: the pitch may rise, fall or stay the same. Although the following rules
about voice leading are often broken, they are more often the case than not. The word “voice”
is used to describe one particular line of music within a polyphonic structure. Think of a
human voice within a choir singing a particular harmonic line. More often than not, there are
four voice parts in a choir. These parts are named, from lowest to highest, bass, tenor, alto
and soprano.

3.5.2.1 Parallel, Contrary and Oblique Motion

The three ways in which one voice may move give rise to three ways in which a pair of voices
may move in relation to each other. These three types of relative motion are illustrated in
Figure 3.28:

Parallel motion Contrary motion Oblique motion

Figure 3.28 – Three types of relative voice motion

There are some rules regarding the usage of parallel motion (the first type in the figure),
which tend to be obeyed more often than not in polyphonic music, unless a specific effect is
desired. In this type of motion, voices move in the same direction by the same step. Since the
interval of an octave and a perfect fifth are the intervals between the first three pitches of the
harmonic series of a note, it is not desirable to have two voices moving in parallel at these
intervals. Referring back to Figure 3.5, two pitches an octave apart resonate well with each
other, as do perfect fifths, and aurally the effect is that one voice gets absorbed by the other.
Instead of two different pitches, sometimes only one is heard with a different sound quality or
timbre. Therefore moving in parallel octaves or fifths effectively loses a harmonic line.

C Major: A Minor:

V
V

vi
VI

 52

The study of J. S. Bach’s three and four part harmony writing in particular reveals that he and
other composers were very aware of the undesirable effects of writing parallel fifths and
octaves, and they tended to avoid doing so as much as possible in their music. Only rarely
will one find a counter-example of this rule, especially in writing where all four voices have
equal importance.

An important case where writing parallel octaves is used as a deliberate technique is for bass
instruments in an orchestra or band. Very often the bass line will double the roots of chords
an octave below, which has the effect of boosting the entire harmonic series of these pitches,
resonating with other instruments and yielding a much richer sound. In an orchestra, the
lowest string instrument is called the double bass for this reason. Removing double basses
and bass guitars from orchestras and bands has a very noticeable effect – the sound texture
immediately becomes much thinner and less full-bodied.

The most common use of parallel voice-leading is motion in thirds or sixths, and occasionally
fourths. Motion in parallel seconds and sevenths has an interesting effect and occurs more
frequently in 20th century music and Jazz. The other two types of motion, contrary, where
voices move in opposite directions, and oblique, where one voice stays on the same pitch and
the other moves against it, are less restrictive in their usage. Both occur frequently in all types
of music.

3.5.2.2 Doubling of Notes in Quartads

As with parallel motion, the rules regarding the doubling of certain notes within a chord rather
than others are not set in stone, but certain patterns do occur much more frequently in general,
and so it is useful to be aware of them.

More often than not, in a major chord, the root note (i.e. the bottom note of a chord in its root
position) is doubled. Less frequently, the fifth is doubled, although usually only to avoid
writing parallel octaves and/or fifths, and more when a chord is in its first inversion. The
third is seldom doubled, unless the chord is minor, in which case it is quite a likely candidate.
Figure 3.29 shows a chord progression where different doubling has been used for each
chord. Note that since each of the four notes of the final dominant seventh is unique, there is
no doubling in this chord. Note also that the motion between the soprano (top voice) and
tenor (second from bottom) would be considered bad writing by Bach, since parallel octaves
are formed between the second and third chord, as indicated by the parallel lines. By
convention, when two parts are written per staff, such as in the example below, the stems of
the upper voice notes should always point upwards and lower voice stems should point
downwards, regardless of whether or not the pitches are above or below the middle line.

Figure 3.29 – Doubling of notes in four-part harmony

I V6 vi V7

 53

The doubled notes in the above chords are as follows:

• I – Root doubled – bass & soprano C
• V6 – Fifth doubled – tenor & soprano D
• vi – Third doubled – tenor & soprano C
• V7 – Four unique notes (no doubling)

3.5.2.3 More miscellaneous rules

Finally, the following should be observed when writing for voices within chords forming
cadences especially and elsewhere in general. Again, these rules are not always the case, but
are much more likely to occur in music than not:

• Voices should not cross over one another or move too far into the range of a
neighbouring voice part. That is to say, if one were to draw contour lines through all
the notes belonging to two neighbouring voices, these lines should not cross or exhibit
too much deviation.

• Intervals between bass and tenor voices may be over an octave, but should be less than
an octave between other pairs of neighbouring voices.

• In chord progressions, notes which are shared by two different chords should stay in
the same voice. For example in a plagal cadence in C Major, both chord IV and chord
I have a C in them. Accordingly, in Figure 3.25, the C in the first cadence stays in the
soprano part.

• In a perfect cadence, the leading note – the seventh degree of the scale (e.g. a B in C
Major) should rise to the tonic (e.g. C in C Major). It may also fall to the fifth degree
of the scale, i.e. the dominant (G in C Major).

• If the first chord of a perfect cadence is a dominant seventh, the seventh of chord V7
should fall to the third of chord I (e.g. F should fall to E in C Major).

While there are several other rules of harmony, those outlined in the above sections are more
than enough to start with and they cover the basics for an already extremely wide range of
musical styles. As with good English grammar, the rules do not exist because somebody has
decided that they should be law, but rather because when music is written in adherence to
them, it simply sounds better, and so therefore they have survived the test of time. While an
attempt has been made to understand exactly why this should be so, according some
scientific, physical or physiological reason (such as resonance and the harmonic series) it can
perhaps never be known for sure why our minds tend to favour one set of patterns over
another. There is in fact a whole branch of scientific study dedicated to exploring human
perception of sounds and music, and how sound affects us psychologically. This subject is
known as psychoacoustics. Although it is perhaps extremely important in this kind of
research, further discussion of this field cannot be accommodated by the scope of this already
bulky chapter, and so hopefully this brief mention of it will suffice.

 54

4 The Easy Problem – Single Pitch Extraction

Perhaps the word “easy” isn’t quite right here, since the problem of determining f0 for even
single musical pitches and hence transcribing melodies is no mean feat, and a fast and
accurate method has eluded many great thinkers for many years. Nevertheless, the
complexity of this problem pales in comparison to that of multiple pitch and multiple
instrument recognition, which will be dealt with in the following chapters. The current
favourite method of single pitch extraction (at least in the author’s opinion) will be discussed
in the third subsection of this chapter, and some examples of this highly successful algorithm
working on live recorded music will be shown. Credit to this algorithm goes to Philip
McLeod who has implemented it in his real-time music analysis tool, Tartini [Tartini07S].

4.1 Windowing in the Time Domain

The Fourier transform is able to provide accurate information about the frequency content of
signal. However, there is no way of telling when those frequencies occur, since the
underlying assumption of the transform is that all frequencies making up the signal are
stationary and extend infinitely over time [Gabor46L], or at least in the discrete case, for the
entire duration of the signal. Therefore on its own it is not much use for melody extraction,
unless the melody consists of just one continuous note!

4.1.1 The Short Time Fourier Transform

The first attempt to get around this particular problem seems a logical one: split the audio
signal into small segments (or windows) and identify the frequency content with separate
Fourier transforms in each. This idea was first alluded to by Dennis Gabor in 1946 in his
paper Theory of Communication [Gabor46L], although the link between the Gabor transform
and the more modern name for this technique, the Short Time Fourier Transform (STFT) was
only discovered much later in 1980 by Dutch engineer, Martin Bastiaans [Bastiaans80L].

The discrete STFT, Fk,m, is a two dimensional sampled function indexed by m over
frequency, and k over a time shift. kW is then the kth position of a sliding window of width
W along the signal. So, we have:

.
1

0

/2
, ∑

−

=
−

− ⋅⋅=
N

n
kWn

Wmni
nmk wefF π

As can be seen, Fk,m is the DFT multiplied by another discrete function, w, known as the
window function, whose starting time is shifted from the signal’s starting time by the duration
of k window widths. Before discussing window functions, however, we need to know their
necessity due to the following problems which arise from cutting up a signal in this way.

4.1.2 Time Slicing Issues

As discussed previously, the Fourier transform of a signal becomes less meaningful for non-
stationary waves, that is waves which do not comprise repeating patterns and therefore do not
have any discernable frequencies.

 55

Referring to Figure 2.6 in chapter two once again, the discrete Fourier transform of this
stationary wave, sampled over 2 seconds with high resolution time spacings of 1/8192
seconds, is shown in Figure 4.1, still represented as a bar graph. As expected, we get three
spikes at 5Hz, 10Hz and 20Hz (the symmetrical spikes in the negative domain of the graph
have been omitted).

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80 90 100

frequency

Figure 4.1 – DFT histogram of f(t) = ⅓ sin(10ππππt) + ⅓ sin(20ππππt) + ⅓ sin(40ππππt)

In this case, the reciprocity relationship discussed in chapter two tells us that the sampling rate
and the length of the signal are more than adequate to yield an accurate discrete transform into
the frequency domain. Chosen values are:

.

,2

8192
1=∆

=
t

L

So:

.16384=
∆

=
t

L
N

.8192

2

=

=
L

N
B

.

2

2
1=

=∆
N

B
v

 56

The highest frequency which needs to be supported is 20Hz, which falls well within the
bandwidth (–4096Hz to +4096Hz). At the other end of the scale, the lowest frequency of 5Hz
is also supported, since the frequency resolution is 0.5Hz.

Now, if we chop this signal into four equal portions, as in Figure 4.2 (in preparation for a
STFT) we have altered the phase and effectively destroyed the stationarity of the wave.
Furthermore, the value of L is now only 0.5 seconds. Although the bandwidth, 2B, stays the

same, the values for N and ∆v have changed:

.4096
4

16384

=

=N

.2
4096
8192

=

=∆v

-1

-0.5

0

0.5

1

0 0.25 0.5

time

-1

-0.5

0

0.5

1

0.5 0.75 1

time

-1

-0.5

0

0.5

1

1 1.25 1.5

time

-1

-0.5

0

0.5

1

1.5 1.75 2

time

Figure 4.2 – f(t) split into four windows

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80 90 100

frequency

Figure 4.3 – DFT histogram of f(t) for each window

 57

The adverse effects expected from the phase alteration and the poorer frequency resolution
may be seen in Figure 4.3, which shows the DFT of each of the four windows of the signal:
the 5Hz peak (which no longer has its own bin) appears to have leaked into neighbouring
frequency bins, hence the name for this phenomenon – spectral leakage. Another way of
looking at the above leakage at 5Hz is to think of the wavelength of this signal component,
0.2 seconds, in comparison with the width of the window, 0.5 seconds. The window width is
not wholly divisible by this wavelength – two and a half oscillations of the wave component
fit into each window. The other two frequency components, 10Hz and 20Hz, are unaffected
because five and ten complete cycles, respectively, fit neatly in 0.5 seconds, and so their
phase is always zero at the start of each window.

The above example signal is specifically designed for the concepts which it demonstrates.
Naturally, real world audio signals rarely contain such conveniently divisible frequency
values, and so these issues almost always arise when slicing up waves. To try and combat the
phase problem, a window function (other than the current Rectangle Function, w(t) = 1)
which tapers the left and right edges of the signal slice should be used. This effectively
makes each window one complete cycle of a wave, regardless of the original signal, and still
preserves the frequency content, at least in the middle of the window.

4.1.3 Window Functions

There are many window functions, which have varying degrees of effectiveness. Amongst
the more common ones in use, are the Triangle (or Bartlett), Hann, Hamming and Cosine
functions*, but (largely thanks to Gabor and Bastiaans) we know that the best improvement,
i.e. the best localization of frequencies in Fourier space, is achieved by using a Gaussian
Function [McLeod02L], where σ ≤ 0.5:

() ()
.

2

2
2

2
1

W
Wt

etw σ
−−

=

Figure 4.4 shows a Gaussian curve (σ = 0.5) and one of the windows of the same f(t) again
after the function has been applied to it. The FT of this window is shown in Figure 4.5.

0

0.5

1

0 0.25 0.5

time

-1

-0.5

0

0.5

1

0 0.25 0.5

time

Figure 4.4 – Gaussian function and its product with the first window of f(t)

* Please see Appendix A.2 for a list of window functions supported by Wave Processor.

 58

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80 90 100

frequency

Figure 4.5 – Fourier transform of windowed signal

Although the amplitudes in the graph are diminished, due to the damping effect of the
window function, and there is still some leakage, the localization is now much better for the
5Hz component.

Note that since the quantization of the frequency domain does not provide for a 5Hz bin, the
4Hz and 6Hz bins claim roughly the same probability of realising the 5Hz component – it
should be clear by now that these two peaks do not necessarily indicate the presence of two
weaker 4Hz and 6Hz components instead. The next section describes a very popular
technique for combating this type of ambiguity, which achieves even more accurate frequency
estimation with the STFT by exploiting the phase information in the Fourier transform,
hitherto ignored in favour of the much more obvious magnitude information.

4.2 The Phase Vocoder

The term “phase vocoder” is not to be confused with the vocoder, short for voice encoder,
which is a telecommunications device designed in 1928 by Homer Dudley, a Bell
Laboratories engineer [Raphael06L]. The vocoder was originally built to encode speech
before transmission, so that secure messages could be sent over radio. Dudley also created
another device capable of outputting synthesized speech – the voder, which stood for Voice
Operation Demonstrator. This machine was operated by a technician who would control a set
of keys and a pedal which manipulated different aspects of a carrier signal, such as spectral
content, frequency and type of sound emitted*.

4.2.1 A Brief Look at the Vocoder

The vocoder works by analysing speech and measuring changes in frequency spectra over
time. As will be seen in the next subsection, this is why the name was borrowed for the
analysis technique. It then splits the speech signal into several frequency bands (often ten)
and uses the measured spectrum changes to determine a level of the signal’s energy in each
band at any given time, thus creating a set of filters. This may be likened to performing a

* For a full demonstration of this machine, please listen to voder.wav in the Sound folder on the project CD.

 59

Short Time Fourier Transform with a very coarse frequency resolution, but instead only
recording the differences in frequency per bin between each time window. In order to
recreate the speech, in the decoding process a noise signal with a large bandwidth, called the
carrier signal, is passed through the filters, yielding the original speech, but sounding
somewhat dehumanized.

Vocoders became very popular in music and the entertainment industry in general. Instead of
noise, the carrier signal for this type of musical vocoder is synthesized musical sounds. A
good example of the use of a vocoder in music is the song “Hide and Seek” by Imogen Heap,
which may be found on the project CD [Heap05M]. Another amusing and clever example of
the use of a vocoder is in the remix of Carl Sagan’s Cosmos, which appeared on YouTube to
great acclaim in September 2009 [Boswell09M].

4.2.2 From Frequency to Phase Difference

As mentioned previously, the vocoder records differences in the spectral content between time
frames. The Phase Vocoder, which is a computer algorithm rather than a physical electronic
device, also determines differences in frequency information, but with special regard to phase.
The method was introduced in the 60s by James Flanagan and Roger Golden, two American
researchers at Bell Laboratories [Flanagan66L].

The first step in the Phase Vocoder algorithm is to generate more windows of the signal
which overlap with windows in the regular STFT. Usually a sufficient overlapping is from
half-way through one window into the next, as indicated by Figure 4.6, which shows the
same signal from the previous section, f(t), now split into seven windows (the original four
plus three in between). Each of these sections has been multiplied by the Gaussian window
function.

-1

-0.5

0

0.5

1

0 0.25 0.5

-1

-0.5

0

0.5

1

0.5 0.75 1

-1

-0.5

0

0.5

1

1 1.25 1.5

-1

-0.5

0

0.5

1

1.5 1.75 2

-1

-0.5

0

0.5

1

0.25 0.5 0.75

-1

-0.5

0

0.5

1

0.75 1 1.25

-1

-0.5

0

0.5

1

1.25 1.5 1.75

Figure 4.6 – f(t) split into seven overlapping windows

 60

The reason for doing this is to create a slight phase difference for the same frequency
component between two windows, and then to examine this difference in the frequency
domain to obtain a much more accurate measure of its value. Referring back to Figure 2.4
from the previous chapter, if θ1 represents the phase of the frequency in the first window,

then θ2 is its phase in the second window and φ is the phase difference caused by the small

time shift between the two windows, t2 – t1 = ∆t. Depending on the angular velocity of the

frequency, the phase position at θ2 may be the very next position in the cycle of the wave in

time ∆t, or it may be the position plus an unknown number, n, of complete cycles, i.e.

.212 πφθθ n+=−

The value of φ restricted to the range –π and π is known as its principle argument, which

may be written as the function princarg(φ).

Figure 4.7 shows the first of the new overlapped windows (from 0.25 to 0.75 seconds) and its
Fourier transform histogram. Comparing with Figure 4.5 for the first window, the frequency
magnitudes are much the same. However for the peaks at 4Hz and 6Hz, the real and
imaginary parts of the Fourier coefficients are quite different when one examines the raw
output. Table 4.1 shows these values and the resulting magnitudes and phases.

-1

-0.5

0

0.5

1

0.25 0.5 0.75

time

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50

frequency

Figure 4.7 – Windowed signal from 0.25 to 0.75 and its Fourier transform

 Window Real Part Imaginary Part Magnitude Phase
1 0.079526 0.000843 0.079531 0.010600
2 0.000011 0.075847 0.075847 1.570651 4Hz

Bin φ 1.560051
1 0.076778 0.001078 0.076785 3.127553
2 0.000011 -0.080098 0.080098 -1.570659 6Hz

Bin φ -4.698212

Table 4.1 – Comparison of Fourier coefficients from first and second time windows

 61

Now, given that the angular frequency, ω = 2πv, is the time taken to complete one cycle of

the wave, it follows that the change in angle, φ plus n complete cycles, must be equal to ω

multiplied by the change in time, ∆t, or:

.
2

2

.22

t

n
v

tvn

∆⋅
+=∴

∆⋅=+

π
πφ
ππφ

Substituting the values into the equation for the 4Hz frequency bin, we get:

n v
0 0.99316
1 4.99316
2 8.99316
3 12.99316

Since 4.99316 is the closest value to 4, the correct value of n in this case is 1, and thus actual
frequency represented by this spike is 4.99Hz – a huge improvement for the measure of the
5Hz component.

Similarly, for the 6Hz frequency bin, the values when substituted into the equation for n and v
are:

n v
0 -2.99097
1 1.009025
2 5.009025
3 9.009025

In this case, since the value of v for n = 2 is closest to 6Hz, this is the correct value for n. So
the peak in the 6Hz bin also in fact represents a measurement which is much closer to 5Hz.

The refined accuracy possible with the Phase Vocoder technique makes it an extremely
popular frequency estimation method, and so it has been included for experiment in Wave
Processor. However the following section describes a possibly even better technique which
works extremely well with melodies in particular, as will be seen.

4.3 The McLeod Pitch Method (MPM)

A fairly detailed description of MPM is given in the paper aptly titled A Smarter Way to Find
Pitch [McLeod05L]. It was developed as an improved solution to an earlier effort –
Visualization of Musical Pitch [McLeod02L] – which made use of a Short Time Fourier
Transform with a Gaussian window.

Since this paper was the only source (apart from the Tartini source code), the implementation
of the algorithm in the Wave Processor application has been based entirely on this one paper.
This section is, for the most part, to show how the code was derived, and so there is some
repetition of McLeod’s work. However, along the way, one or two gaps in the argument

 62

needed to be filled – some of the more basic steps which it appears were originally left to the
reader to decipher.

4.3.1 General Algorithm Description

The “smarter way” is also a time-window method. McLeod has shown a useful relationship
between two functions, namely the Autocorrelation Function and the Square Difference
Function, and also how they may be used to calculate the Normalized Square Difference
Function. This is all described in the following two subsections. From the normalized square
differences, a peak picking algorithm is used to extract the strongest frequency (usually the
fundamental) hence the pitch at each time frame. This process is explained in subsection
4.3.4.

4.3.2 The Autocorrelation and Square Difference Functions

The autocorrelation function, R(τ), is, as its name suggests, a measure of how much a set of

data is similar to itself at different time intervals, τ. It is useful in signal analysis for finding
repeating patterns, or, as in this case, identifying the fundamental note of a sound signal
comprising a certain frequency plus its harmonics. There are many autocorrelation functions
to choose from, depending on the application at hand. For signal processing, the function
that is most often used is given by:

,)(*)()(∫
∞+

∞−
−= dttftfR ττ

where f(t) is the signal function,τ is the time interval or lag and * denotes the complex
conjugate.

For a discrete set of samples, fn, autocorrelation may be computed over windows of width W
[McLeod05L], starting at a time index, n, according to:

.
1

, ∑
−−+

=
+=

kWn

nj
kjjnk ffR [4.1]

Notice that as k increases, the number of terms in the summation decreases. This is because
the windowed signal is, out of necessity, padded with zeros beforehand, and so for larger k,
fewer non-zero terms are being used in the calculation.

The square difference function, Dk,n, which is the one we eventually want a normalized
version of, is given by:

.)(
1

2
, ∑

−−+

=
+−=

kWn

nj
kjjnk ffD [4.2]

This function is useful since it yields minima when the lag, k, is a multiple of the number of
samples in a pitch period in the signal. Revisiting the example of a vibrating string briefly
(see the section on harmonics in chapter two), these minima relate to the stationary points at

 63

regular intervals along the string, which will always have an amplitude of zero. Expanding
the brackets of equation [4.2], we get:

().2
1

22
, ∑

−−+

=
++ +−=

kWn

nj
kjkjjjnk ffffD [4.3]

From [4.1], this then becomes:

() ,2 ,

1
22

, nk

kWn

nj
kjjnk RffD −+= ∑

−−+

=
+ [4.4]

and we see that autocorrelation is actually contained within the squared differences. The
remainder of the squared differences we shall call the “Sum of Squares Function” or Sk,n,
defined by:

().1
22

, ∑
−−+

=
++=

kWn

nj
kjjnk ffS [4.5]

So, finally, we can rewrite [4.4] as:

.2 ,,, nknknk RSD −= [4.6]

4.3.3 The Normalized Square Difference Function

To normalize, McLeod divides Dk,n through by Sk,n and subtracts the result from one, so that
minima become maxima and the range of the resulting graph is now between –1 and +1.
Thus, we have the Normalized Square Difference function, Nk,n, defined by:

.1
,

,
,

nk

nk
nk S

D
N −= [4.7]

Then, from [4.6]:

nk

nknk
nk S

RS
N

,

,,
,

2
1

−
−= [4.8]

.
2

,

,

nk

nk

S

R
= [4.9]

Thus to compute the normalized square differences, Mcleod must compute both the
autocorrelation and the sum of squares. He uses Fourier theory to calculate these efficiently
as follows:

 64

,1

2

2

2

,0

,0

,0

,0
,0

=

=

=

n

n

n

n
n

R

R

S

R
N

,2

2

,0

1
2

,0

n

Wn

nj
jn

R

fS

=

= ∑
−+

=

In order to compute Rk,n, McLeod uses an algorithm which incorporates the FFT (derived
from the Wiener-Khinchin Theorem [Wolfram09W]), so the computation time is reduced
from O(Ww), when calculated by summation, to O((W+w)log(W+w)). The steps, as
given in part 6 of the paper [McLeod05L] are worth outlining again here:

1. Zero pad the window by the number of normalized values required, W.
2. Take a Fast Fourier Transform of this real signal.
3. Multiply each complex coefficient by its conjugate (yielding power spectral density).
4. Take the inverse Fast Fourier Transform.

When implemented in software, this part of the algorithm is actually only a few lines of code,
as shown in Appendix C.2 (see the ACF code listing).

The sum of squares part of equation [4.9], Sk,n, may also be calculated quickly by using
the result from Sk–1,n and subtracting the appropriate fj

2, thus:

.2
1

2
,,1 kWnnknknk ffSS −−+++ −−=

In the case of k = 0, from [4.5] we have:

 [4.10]

which has already been calculated. Given the ACF implementation, this particular
computation for k = 0 is achieved in one line of code:

double ss = ACF(in, out, N) * 2;

Thus, the full computation of the normalised square differences is easily implemented in
Appendix C.3 (see the NSDF code listing).

Note that N0,n will always be equal to 1:

 from [4.9]

 from [4.10]

and as mentioned above, Nk,n will never exceed +1 or fall below –1, since the greatest
possible magnitude of 2Rk,n is Sk,n, i.e.:

.|2| ,, nknk SR ≤

 65

An example of NSDF output is shown in Figure 4.8 (drawn in Microsoft Excel from debug
output of the testing software). It can be seen that the graph tapers somewhat, due to more
zero terms being used in the calculation (since the window is zero-padded) as k, the sample
index, increases. The main peaks of the graph tell us the pitch period of the fundamental note
as well as those of any harmonics. Usually the fundamental frequency is the strongest, and in
the case of the example graph, it seems that the main peaks occur approximately every 225
samples within this particular window (which is 1024 samples wide). To obtain to the actual
frequency, however, we must divide the number of samples per second in the digital signal (in
this case 44.1kHz) by this value:

.196
225

44100=

196Hz is equivalent to the musical pitch G3.

-1

-0.5

0

0.5

1

0 200 400 600 800 1000

Samples

Figure 4.8 – An example of NSDF output

4.3.4 Peak Picking Algorithm

An efficient method is needed to choose peaks, as was done manually in the example above.
The source code for an adapted version of McLeod’s peak-picking routine, based on his
description in section 5 of [McLeod05L], is listed in Appendix C.4. This function takes the

NSDF output and fills an array of integers with the values of τ at the chosen maxima. The
number of peaks found is then returned.

As a kind of trade-off, McLeod’s parabolic interpolation step has been deliberately left out,
since the same kind of accuracy that he was after is not really required here. His method
yields a slightly more refined calculation of the pitch period by fitting a curve through the
maximum and the two points either side of it and then finding the turning point of the
parabola, rather than just picking the maximum. Without using parabolic interpolation it is
still possible to calculate pitches to well within the nearest semitone.

The following pseudo-code should suffice as an explanation of how the peak-picking function
works, without simply repeating McLeod’s description:

 66

PICKPEAKS(NSDF, PEAKS[], n) {
Find first negative zero crossing
LET N_PEAKS_FOUND = 0
WHILE not at end of NSDF {

Find next positive zero crossing
LET MAX_PEAK = 0
WHILE graph is positive and not at end of NSDF {

Find next LOCAL_PEAK
IF LOCAL_PEAK > MAX_PEAK {

LET MAX_PEAK = LOCAL_PEAK
}

}
Record MAX_PEAK in PEAKS[] array
Increment N_PEAKS_FOUND

}
RETURN N_PEAKS_FOUND

}

Once the “key maxima” have been found, a threshold is defined, which is equal to the product

of the highest maximum and a constant, κ, which has an effect on how well the algorithm is
able to discern between the fundamental note and a strong harmonic. The lower the value, the
more likely the chance that a pitch will be identified, but the less likely the correct
fundamental note (rather than a harmonic) will be chosen, and vice versa. As stipulated in

[McLeod05L], κ should be between 80% and 100%. The dominant frequency for the window
is chosen by taking the lag, k, for the first key maximum above the threshold and performing
the calculation as shown in the example in the section above. When a clearly defined pitch is
not found, the frequency is set to zero.

A measure of the clarity of a pitch is also obtained directly from the amplitude of the chosen
key maximum, which then indicates how coherent the detected pitch is. As is done in Tartini,
clarity may be represented by changing the intensity of the colour when plotting each pitch in
the output – the clearer the pitch, the brighter the colour. The clarity value is also set to 0 if a
pitch has not been found.

4.4 Drawing a Pitch/Time Graph

In the previous chapter, a musical score was described as a graph of pitch against time. Of
course, a score is much more than just a graph and contains many other symbols and written
instructions which indicate how the music it represents should be played. Since the main
purpose of this study is pitch identification and not full score re-synthesis and rendering, it is
necessary that the output be much more simple and in the form of a pitch/time graph.

4.4.1 Calculation of Relative Pitches from Frequencies

As explained in chapter three, pitches and frequencies are not the same, although they have a
dyadic relationship. The McLeod Pitch Method renders frequencies rather than pitches,
therefore in order to draw something which more closely resembles a musical score, a
conversion is needed. For yielding a note on the Western musical even-tempered scale, the
following pitch formula (adapted from the one given in [McLeod02L]) should be used:

 67

()
().2log

log
12

0C
v

p =

In program code, this translates as:

pitch = log(freq / C0) / log(TWELFTH_ROOT_2);

C0 is the base frequency, i.e. the note whose pitch we shall assign a value of 0. For musicians,
this is equivalent to the C four octaves below Middle C on a piano (in fact a few notes lower
than the lowest note on most pianos – usually A0), which has a frequency of 16.375Hz. All
other pitches may then be calculated in terms of how many semitones they are above the base
note, hence the twelfth root of two factor (see chapter two). For example, the note A4 has a
frequency, v = 440Hz. Substituting the values into the pitch formula, we get:

()
()

.57
025.0

429.1

2log

log
12

375.16
440

4

≈

=

=Ap

Thinking in terms of pitches, this result is as expected, since A4 is 4 octaves + 9 semitones
above C0:

.579124 =+×

4.4.2 Graphical Representation

Using the pitch formula on the fundamental frequency in each window, we can produce a set
of linear pitches by shifting the window (in our case, ¼ window length at a time). We need to
plot these pitches on some sort of graph that finds a happy compromise between something a
mathematician would understand and that which a musician is used to reading, preferably
leaning towards the latter – the closer the output is to an actual score, the better.

At this point we are unable to divide notes into measures, draw barlines or even use
Franconian notation (see chapter three) because further analysis of the output is required in
order to determine the duration of a beat and decide on correct quantization. Therefore, for
now, time should be represented by length on the x-axis.

As for pitch, further analysis of content based on simple rules of Harmony, as outlined in
chapter two, is also required. This is necessary in order to write correct key signatures
according to the detected mode, so that music may be written on the much more compact five
line staff without having to use too many accidentals. Since this kind of analysis is a post-
processing problem, for the time being the key is always assumed to be C Major, which does
not have a key signature. Notes are thus spelt according to diatonic pitches within this key,
e.g. the note between F and G is F# rather than Gb. See Table 3.10 in chapter three for all
correctly spelt diatonic pitches in the scale beginning on C. In the case of D# / Eb, D# has
been chosen since the key in which it appears, E Major, is more closely related to C Major /

 68

A Minor than Eb, which appears in Bb Major. Pitches are thus represented as thick solid lines
drawn over two staves. The twin treble / bass staff system is called, by some music theorists,
the grand staff, and it is the standard for most piano music, since this instrument requires a
wide range of pitches to be represented.

The musical sample chosen for analysis demonstrations, which will be used throughout this
thesis in various guises, is the opening line to the South African National Anthem, Nkosi
Sikeleli Africa [Sontonga97M]. Figure 4.9 shows the musical score of the melody, notated
using Sibelius 6 [Sibelius09W], and Figure 4.10 is a pitch graph of the same, analysed using
the McLeod Pitch Method as implemented in Wave Processor. The music was played on the
violin and recorded using a deliberately poor quality microphone and with a lower-than-usual
sampling rate (22050Hz) in order to demonstrate how well MPM performs under these
conditions.

Figure 4.9 – First two bars of Nkosi Sikeleli Africa melody

Figure 4.10 – MPM Pitch graph of first two bars of Nkosi Sikeleli Africa melody

 69

Note the following with regards to the pitch graph:

• Accidentals are indicated by the use of different colours: blue means the note is a
natural Guidonian pitch, red is for sharps and green (not seen in this example) denotes
flats. According to the key signature in the score, the melody is in the key of G Major,
and so Fs should be sharpened, hence the colour of the second pitch in the graph.

• Clarity of pitch is shown by the depth of colour. Less clear pitches, e.g. the artefacts
on the bass staff, are fainter.

• Listening carefully to the recording, where the algorithm has apparently mis-
calculated some pitches, these are all moments when the violinist makes a certain
movement such as a finger shift, bow direction / bow pressure change, or slight
vibrato, causing a short noise to occur. This sensitivity to noise may be controlled by

adjusting the threshold, κ, discussed in subsection 4.3.4 and also a clarity threshold,
which can be set at a lower level to reject pitches which are not very clear.

• The lack of temporal quantizing and the use of pixel width to show durations means
that the melody must be drawn over more staff systems, in this case three instead of
one. It is unfortunately necessary for now to make do without the useful compactness
of Franconian notation.

• The notes are not neatly measured and spaced to fit exactly into one staff line as with
the Sibelius score. This is a music engraving issue which will not be tackled here.
Good-looking note distribution over multiple staves is considered a difficult problem,
even with proper notation.

• Because of the lack of quantizing, some notes at the ends of staves are cut part-way
through and wrap round onto the next line.

• There is no way of telling where some notes begin and end if they have the same
pitch. For example, the Bs and As in the middle of the melody could represent
minims instead of pairs of crotchets.

4.5 Comparison of Output

A performance comparison of the various signal analysis and pitch identification techniques
was conducted for various different signals and the results of these experiments are presented
as a conclusion to this chapter.

4.5.1 A Stationary Signal

Firstly, a simple stationary signal was constructed using Wave Processor’s wave creation
feature. This signal is similar to the example used in chapter two – see Figure 2.6 – in that it
is also a sinusoid comprising three frequencies. The chosen frequencies were 440Hz, 555Hz
and 660Hz, which, when translated into pitches, form the tonic triad of A Major. A simple
Fourier transform was done, and the three frequencies appear very clearly in the graph shown
in Figure 4.11, which is in the form of a spectrogram. This is a type three dimensional graph
which makes use of different colours or shades to indicate amplitudes for a spectrum of
frequencies. Unlike the histograms encountered previously, frequency is now on the vertical
axis. Spectrograms are particularly useful representations for the purposes of this study,
since, keeping time on the horizontal axis, we have a time-frequency representation of a
signal – one step closer to the desired time-pitch graph. Since this particular signal is
stationary, the three frequencies do not change over time.

 70

Figure 4.11 – Fourier transform of stationary signal comprising three frequencies

4.5.2 A Chirp Signal

The best example of a non-stationary wave is one which does not contain any fixed
frequencies at all, and this is precisely the case with the chirp signal. The one constructed
here is a sinusoid which oscillates over two seconds and whose frequency constantly increases
throughout, starting at 32Hz and ending at 8192Hz. In chirp signals, the frequency may
increase linearly or logarithmically. In this case the choice was linear, so, aurally, the sound
seems to rise rapidly in pitch at first, and then the increase becomes more gradual as the
frequency gets higher. This is due to the dyadic relationship between frequency and pitch,
discussed in the previous chapter. Thus a linear change in frequency results in a logarithmic
change in pitch and vice versa.

In the time domain, the first part of the signal is shown in Figure 4.12. As can be seen, the
peaks of each oscillation get closer and closer as the wavelength constantly decreases and the
frequency increases.

-1

-0.5

0

0.5

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time

Figure 4.12 – Linear chirp signal (time domain)

0

100

200

300

400

500

600

700

800

freq.

0.00 0.50 0.25 0.75 1.00

time

 71

Figure 4.13 – Fourier transform of linear chirp signal

The figure above shows an ordinary Fourier transform of this signal. To explain why this
spectrogram is simply a solid block of colour, one needs to consider that the Fourier transform
does not operate over the time domain, hence all frequencies in the chirp appear with constant
amplitude over all time. Instead of spectrograms for non-windowed Fourier transforms, Wave
Processor is also capable of drawing histograms, similar to those encountered here and in
chapter two. Bar graphs are better representations of the transform in any case where the
signal is assumed to be stationary. Figure 4.14 shows a Short Time Fourier Transform
spectrogram of the chirp. Now the time axis becomes much more meaningful and the
linearity of the increase in frequency is clear. In this case, the window width used was 512
samples, and no tapering function was applied.

Figure 4.14 – Short Time Fourier Transform of linear chirp signal

0

1000

2000

3000

4000

5000

6000

7000

8000

freq.

0.0 1.0 0.5 1.5 2.0

time

0

1000

2000

3000

4000

5000

6000

7000

8000

freq.

0.0 1.0 0.5 1.5 2.0

time

 72

Figure 4.15 – STFT of linear chirp signal with Gaussian window function

With a Gaussian window function, Figure 4.15 reveals how much of the blurring caused by
spectral leakage disappears, despite the fact that the same window width has been used for
this transform.

Finally, Figure 4.16 shows another STFT of the chirp, also with a Gaussian window function,
but with a larger window size of 4096 samples. It can be seen that frequencies are now less
well-localized in time but the frequency detail is better in each window.

Figure 4.16 – STFT of linear chirp signal with larger window width

0

1000

2000

3000

4000

5000

6000

7000

8000

freq.

0.0 1.0 0.5 1.5 2.0

time

0

1000

2000

3000

4000

5000

6000

7000

8000

freq.

0.0 1.0 0.5 1.5 2.0

time

 73

8va 16va 24va

8va 16va 24va

24va

The Phase Vocoder and McLeod Pitch Method were then used to determine f0 and hence the
pitch of the chirp. The resulting pitch-time graphs are shown in Figures 4.17 and 4.18
respectively. Note the clearly logarithmic change in pitch through time. The lines labelled
8va, 16va and 24va are used in music to indicate that a range of pitches sounds one, two or three
octaves higher respectively.

As can be seen, MPM is able to achieve a finer time resolution and a more precise measures
of mid-range pitches, due to the smaller window shifts. This is also why its output is
stretched out over two staves. However, for higher frequencies it does not seem to perform as
well as the Phase Vocoder, which detected all pitches up to C9, which is 8384Hz – the closest
estimate of the actual ending frequency of 8192Hz. Neither method performed well for the
lowest frequencies, and both began an octave higher at C1 – roughly 65Hz as opposed to the
correct value of 32Hz.

Figure 4.17 – Pitch graph of chirp calculated by Phase Vocoder

Figure 4.18 – Pitch graph of chirp calculated by McLeod Pitch Method

 74

4.5.3 A Scale Played by a Synthetic Instrument

A scale in D Minor, as shown in the score in Figure 4.19, was written using Sibelius and
played back using a flute sound. The output was captured and saved as a wave file*.

Figure 4.19 – Scale of D Minor, one octave, ascending and descending

The STFT, Phase Vocoder and MPM outputs are shown in Figures 4.20, 4.21 and 4.22
respectively. For the STFT / Phase Vocoder, the window size was set to 1024, and for MPM
it was 4096. Note that each B is flattened because of the key signature, and therefore should
indeed appear in green, as is the case on both pitch graphs. Also, the harmonic minor form of
the scale has been used, hence the red C#s.

Although not by a great amount in this instance, MPM somewhat outperforms the Phase
Vocoder in general. Pitches are clearly defined and at no point is a harmonic chosen over the
fundamental note. The reason for the transitional pitches, showing as different colours at the
beginnings and endings of some notes in the MPM pitch graph, may be due to the timbre of
the synthetic instrument. Listening to the recording it may be heard that a slight breath sound
occurs at the attack of each note, presumably in order to make the samples sound more
authentically like a flautist blowing. The Phase Vocoder does not detect a change in pitch at
these places, however, and is as clear as MPM, although there are one or two other artefacts.

Figure 4.20 – STFT of D Minor scale

* Flute – D Minor Scale.wav on the project CD in Sound

0

2000

4000

freq.

0.00 3.06 1.53 4.59 6.12

time

 75

Figure 4.21 – Phase Vocoder pitch graph of D Minor scale

Figure 4.22 – MPM pitch graph of D Minor scale

 76

Figure 4.23 – MPM pitch graph of Tartini example scale

 77

4.5.4 A Scale Played by a Real Instrument

An example wave file is included with the original Tartini program. This sample is also an
ascending and descending scale, but is recorded from a real violin playing the notes. As can
be seen in the pitch graph in Figure 4.23, the key of the scale may be deduced to be G Major,
since the range is from G3 to G4, and each F is red and thus sharpened. A window width of
2048 was used in this case. The sudden jump up the octave on the note E in the fourth staff
system reflects a pressure change in the violinist’s bow which caused the note to squeak
slightly. This may also be heard clearly in the recording.

4.5.5 A Melody

Lastly, the Phase Vocoder was also used to detect pitches in the violin melody of Figure 4.9 –
Nkosi Sikeleli Africa for comparison with the MPM output of Figure 4.10. The results were
not as good, however. Only by lowering the frequency upper bound in the STFT was it
possible to force the algorithm not to select some strong high harmonics over fundamental
notes and get it as accurate as seen in Figure 4.24. It is important to note that MPM does not
require any such restrictions. Based on these few tests, on the whole MPM seems to be the
preferred melody detection algorithm, but it could be worth re-exploring the peak-picking part
of the Phase Vocoder to see if any improvements may be made.

Figure 4.24 – Phase Vocoder pitch graph of first 2 bars of Nkosi Sikeleli Africa melody

 78

5 The Hard Problem - Multiple Pitch Extraction

Although much progress continues to be made in the field of polyphonic music recognition,
the best current methods still need a lot of refining. This chapter introduces some of these
existing methods and makes an attempt to decipher and duplicate at least one of them.
Wavelets and the wavelet transform, the main concepts of this research, are also introduced
here, and a new method of multiple pitch extraction which combines a wavelet transform with
the McLeod Pitch Method is explored.

5.1 Previous Attempts – Exploration of Existing Software

The two major pieces of software capable of pitch extraction on the market (mentioned in the
introductory chapter) are Melodyne’s Direct Note Access and AudioScore by Neuratron.
While the former piece of software was unavailable for testing, fortunately AudioScore was,
and so a brief examination of its capabilities has been done here.

5.1.1 Direct Note Access for Melodyne

Evidence of the accuracy of Direct Note Access may be seen in the demonstration video on
the Celemony web site [Celemony09W]. The original reason for the development of this
technology was to have a method whereby pitches within a polyphonic musical signal may
adjusted individually without affecting the pitches of the other notes, or otherwise destroying
the signal, even when their frequency spectra may overlap. In the interview video, the
inventor, Peter Neubäcker, mentions that his first attempt at solving the problem of separating
individual pitches in a polyphonic recording was a manual one. He did this by looking for
beginnings and endings of notes temporally, and then examining the spectrogram to determine
“which spectral parts belong to which fundamental tones”. In other words, what he may have
been doing was looking at the harmonic series of known fundamentals (which he presumably
deduced aurally or from a given score) and then subtracting each of these frequency spectra
from the whole. After removing fundamentals and harmonics, presumably what is left over is
regarded as noise.

Figure 5.1 shows the musical score of the example music signal from the video*. These
notes were determined by doing an aural (manual) transcription. Although this score looks
monophonic, due to the slow decay in the envelope of notes played on this instrument, the
audio signal poses the same problems as polyphony since the notes overlap in time.

Figure 5.1 – Musical score of marimbaphone melody from DNA example

While time and the scope of this study did not allow for a fully working reconstruction of
Neubäcker’s method, at least a proof of concept program has been written**, which

* The location on the project CD of this example is Sound\marimbaphone.wav
** Please see the command line demonstration program in Software\PV

 79

successfully analyses, filters and shifts frequency spectra, although somewhat crudely, and for
this particular example only. The following is a description of how the algorithm works:

Firstly, the manual/aural inspection of both the waveform and an STFT spectrogram (shown
in Figure 5.2) was done in order to estimate the starting times of the notes and their
frequencies. As suggested, these values were stored as constants or “magic numbers” in the
program, to be used in dictating precisely when and where to look for fundamental notes and
their harmonics. The STFT here used a window width of 2048 samples and no window
function. With these settings, the resulting image is closest to the same output that Neubäcker
demonstrates in the video, except that the latter seems to have been converted into pitch rather
than frequency information, i.e. his graph is dyadic.

Figure 5.2 – Spectrogram of marimbaphone melody

Note Pitch Frequency (Hz) Start Time (s) Starting STFT Window
0 C# 277.58 0.04 0
1 B 247.30 0.21 4
2 A 220.31 0.37 7
3 D 294.09 0.51 10
4 C# 277.58 0.68 14
5 B 247.30 0.84 18
6 E 330.10 1.00 21
7 D# 311.57 1.15 24

8 C# 277.58 1.29 27
9 B 247.30 1.44 31
10 A 220.31 1.62 34
11 B 247.30 1.75 37

Table 5.1 – Frequencies and starting times of notes in marimbaphone melody

0

1000

2000

3000

4000

5000

6000

7000

8000

freq.

0.0 1.0 0.5 1.5 2.0

time
2.5 3.0 3.5

 80

The manually estimated values of the starting points of each pitch and its frequency are shown
in Table 5.1 above. Each note was assumed to resonate for as long as the final note, which
appeared to sustain for at least 1.67 seconds – about 36 windows. In fact, some of the notes
do not ring for this long, because they are either dampened by other interfering frequencies or
else they are repeated, as, for example, with the first note, C#, which is hit 3 times. However,
if the notes are to be pitch-shifted, one would not want a note ending prematurely when it
could, in theory, resonate longer. As an experiment, we attempt to repeat what Neubäcker
might have done to detect the notes and then re-synthesize the result for aural comparison
with the original piece.

Given that this spectrogram is yielded by a STFT rather than some other method, it is almost
certain that Neubäcker used a Phase Vocoder to refine his detected frequencies so that he
could determine which harmonic series they belonged to. Even if he did not, this technique
certainly yields a more accurate extraction, since there is no guesswork involved. Thus a
separate array of refined frequency information was created for each window of the
transform.

The next part of the algorithm is the most difficult, and certainly the current method used here
could do with some improvements. The general idea is that each of the frequencies identified
from the transform in each window needs to be assigned to one of the twelve notes, or else
rejected as background noise. The approach here attempts to assign a probability to each
frequency for belonging to a particular note, based firstly on whether or not the frequency

Frequency in
Window (Hz)

Closest Matching
Harmonic (Hz)

Interval – Frequency
Ratio (Hz)

Probability Freq.
belongs to Note

292.01 f0 = 277.58 1.052 0.91
2749.06 f10 = 2775.79 1.010 0.95
255.07 - - 0.00
44.27 f-5 = 46.26 1.045 0.92
286.10 f0 = 277.58 1.031 0.93
1102.17 f4 = 1110.32 1.007 0.95
2752.05 f10 = 2775.79 1.009 0.95
217.48 - - 0.00
220.10 - - 0.00
324.22 - - 0.00
42.04 - - 0.00
824.85 f3 = 832.74 1.010 0.95
214.52 - - 0.00
1110.38 f4 = 1110.32 1.000 0.96
2789.80 f10 = 2775.79 1.005 0.96
325.91 - - 0.00
87.09 - - 0.00
370.52 - - 0.00
832.58 f3 = 832.74 1.000 0.96
43.45 - - 0.00
131.76 - - 0.00
861.04 - - 0.00
127.10 - - 0.00

Table 5.2 – Frequency filtering for first note in first window

 81

falls within the correct time range for the note and secondly how close is it to a frequency
within in the harmonic series of the fundamental note, f0.

For example, Table 5.2 shows all the frequencies identified in the second window of the
transform, in order of their magnitudes, for which the first note is the only candidate for
ownership (since the other notes have not yet started sounding at this point). These were all
compared with the assumed frequency of the first note, 277.58Hz, and each of the frequencies
in its harmonic series. A probability value was calculated, based on the interval between the
closest matching harmonic and the frequency being analysed, as well as how much the note
may have decayed by this window. If the interval between the frequency and the closest
harmonic was larger than a semitone, the frequency was rejected as unrelated background
noise and the probability value was set to zero. Note that the harmonic series examined also
includes lower related harmonics, hence, for example, f-5.

Again, by listening carefully to the first note alone, one can concur with the detection of f10 as
a strong harmonic due to the particular timbre of the instrument, although the other harmonics
are harder to hear. When a frequency such as this was re-detected, the note with the higher
probability value was selected. Figure 5.3 shows what could be described as a probability
distribution spectrogram for frequencies which belong to the final note. As can be seen, the
lower frequencies are more difficult to separate, and most of these have equal probability of
belonging to some of the other notes too.

Figure 5.3 – Probability distribution spectrogram for frequencies belonging to 12th note

With the complete set of probabilities per frequency bin, per window, per note, separation of
the notes may now be attempted and the pitch of each individual note may thus be adjusted.
This was tried with the fourth note, which was shifted up three semitones*. In order to do the
pitch shift, each of the detected frequencies belonging to the note was multiplied by two to the
power of three twelfths (see Chapter 3 for an explanation for this particular factor) and a new
bin was assigned. The phase, θ, in every kth window of each new frequency bin, j, was
calculated by the following:

.21 tv jj
k

j
k ∆+= − πθθ

where vj is the frequency in the j th bin and ∆t is the difference in time from one window to
the next. Real and imaginary parts of the affected Fourier coefficients were recalculated thus:

θcosRe vv j = , .sinIm θvv j =

* The result of this may be heard in Sound\marimbaphone_shifted.wav on the project CD

 82

To re-synthesize the output wave, an inverse Fourier transform of each window was taken, i.e.
an inverse STFT.

The slight scratchiness of the resulting signal is most likely due to the lack of proper
calculation of the new phases for the shifted peaks, and also the magnitudes of the bins from
which the notes are shifted should probably not be set to zero. The phases of surrounding
bins should also be re-adjusted. Also, it would be better not to include note decay as a factor
in calculating probabilities, although knowing the attack-decay-sustain-release envelope for a
particular instrument is very helpful. While fixing these issues and other possibly naïve
methods within the algorithm constructed here would certainly improve the quality of the
output, the result clearly demonstrates that it is indeed possible to adjust overlapping spectra
and preserve the timbre of the instrument as well as other frequencies using this kind of
approach.

5.1.2 AudioScore for Sibelius

Although the algorithms which drive AudioScore are, of course, also a trade secret, there are a
few clues as to how its pre-processing might work in the specifications listed on the Sibelius
web site [Sibelius09W]. For most, Sibelius is the music publishing application of choice to
plug AudioScore into, and so this chapter also includes some screenshots of output exported to
Sibelius and transformed into scores, as well as some pitch graphs from AudioScore itself.

The software specification details of interest are the following:

• Opens polyphonic MP3s and CD tracks and locates up to 16 notes/instruments playing
at a time

• Pitch recognition range F0 to C8 (22Hz to 4186Hz)
• Timing accuracy down to 1/86th of a second
• Pitch accuracy 0.3Hz (about 1/100th of a semitone at A4)

Firstly, the clue that the program reads CD tracks and the given time resolution mean that the
algorithm expects a standard sample rate of 44.1kHz as input, and that the frequencies are
measured in time windows of duration

86
1≈Λ seconds. Thus, we can calculate the number

of samples in each window by the formulae discussed in Chapter 2:

.79.512

8644100

2

≈
≈

Λ= BN

The fact that this result is close to being a power of two is surely not a coincidence. It
suggests that the pre-processing algorithm of choice is, again, a Short Time Fourier Transform
with a window width of 512 samples. The claimed pitch accuracy of 0.3Hz also indicates that
a Phase Vocoder algorithm has been used, since with an ordinary STFT, the value for ∆v per
window would be:

.13.86

51244100

2

=
=
=∆ WBv

 83

This would be an unacceptable resolution for low to middle range musical pitch identification,
since at A4, which is a mid-range pitch, a semitone is a change of about 26Hz. Instead of
attempting to work out further how pitches are chosen, an investigation of the abilities and
limitations of this program is perhaps more useful.

Firstly, the DNA marimbaphone example was opened and analysed. The resulting pitch
graph, shown in Figure 5.4, while not entirely accurate, at least demonstrates that the
software is capable of determining most of the correct fundamental notes, even though their
location in time is somewhat confused.

Figure 5.4 – AudioScore pitch graph of marimbaphone melody

When imported into Sibelius, the result is not very satisfactory, and would require a lot of
patch-editing on the part of the user to get it looking like Figure 5.1. The Sibelius score
derived from AudioScore’s exported data and unaltered is shown in Figure 5.5 below. The
time signature was chosen manually in AudioScore and not detected.

Figure 5.5 – Marimbaphone melody imported into Sibelius from AudioScore

The indication at the top of the score,  = 87, is called a metronome mark. The metronome

was originally a clockwork device, invented by Johann Maelzel at the beginning of the 19th
century. It had as sliding weight which could be set at the level of the number indicated.
When its pendulum was set in motion, it would tick precisely that number of times per
minute. Thus the metronome mark is an indication of speed or tempo. In this case, the beats
specified by the time signature and the metronome mark are crotchets, or quarter notes. If
there are 87 of them in one minute, this means that each crotchet beat will last 0.69 seconds.
Given that there are four sixteenth notes in every crotchet beat, then the length of each note
has been estimated to be 0.17 seconds. The actual length of the notes, given Table 5.1, is on
average very close to that, and so this is a good tempo estimate.

The software performed adequately with a string quartet arrangement (four voices) of the first
two bars of the main demonstration tune, Nkosi Sikeleli Africa*. The actual score, obtained
by doing an aural / manual transcription (with 100% confidence of its accuracy) is shown in
Figure 5.6, while the transcription from AudioScore into Sibelius is in Figure 5.7. The latter

* Listen to Sound\NSA\Quartet - 2 bars.wav on the project CD

 84

has been tidied up a little to make it a little more readable and re-voiced using a grand staff.
No pitches or timings have been altered in this process. The yellow notes indicate where the
algorithm has picked up some harmonics as fundamentals. As can be seen when comparing
the two, many of the pitches have been identified correctly, however they are out of order and
note durations are incorrect.

Figure 5.6 – Manual transcription of Nkosi Sikeleli Africa quartet example in Sibelius

Figure 5.7 – AudioScore transcription of NSA quartet imported into Sibelius

Figure 5.8 – AudioScore pitch graph of NSA quartet example

 85

From the pitch graph in Figure 5.8 it appears that some of the errors happen after the
frequency analysis stage, for example the final bass note, G2, which is present in the graph, is
absent in the final transcription. Going by its lighter shade of green, this is possibly because it
was not as clearly defined and detected as the other pitches and so it was rejected as being
noise.

On the whole AudioScore seems to be an adequately sturdy pitch detector, but could do with
some improvements with regards to correct note time location and other post-processing
issues. These improvements are vital if it is to become a useful automatic transcriber, since
the amount of work needed to correct its output when exporting to Sibelius is the same as, if
not more than, doing a manual transcription. Furthermore, unless the user is a skilled music
transcriber, mistakes made by the program, such as incorrect timings and choosing harmonics
over fundamentals as pitches, are likely to be overlooked.

For further theoretical reading about other algorithms and ideas not presented here, see
[Cont07L] which presents a real-time multiple pitch recognition method, as well as the
excellent three papers by Yipeng Li and DeLiang Wang from Ohio State University [Li07L],
[Li08L] and [Li09L] on pitch detection and separation.

5.2 Introducing Wavelets

Much of the basic theory and mathematics in this and the following sections is drawn from a
few very good introductory papers on the subject of wavelets, [Graps95L], [Strang89L] and
[Strang94L], which are highly recommended for entry level reading. Ingrid Daubechies’s
book, Ten Lectures on Wavelets [Daubechies92L], parts of which were available via a Google
books preview, was also used as a primary source, as well as [Olver05W], which is perhaps
the clearest explanation of Fourier and wavelet analysis yet. Lastly, Robi Polikar’s web-based
tutorial, [Polikar03W], provides an excellent broad overview of wavelets and signal
processing in general, despite its lack of official publication.

5.2.1 What is a Wavelet?

In 1940, a seismologist by the name of Norman Ricker coined the word wavelet to describe a
short, travelling wave caused by a sharp seismic disturbance [Ricker40L]. Ricker noted that
these wavelets changed shape and broadened as they moved away from their source through
different media in the earth’s crust, and wanted to find a mathematical explanation for this
phenomenon.

In the current context of signal processing, wavelets were first given their formal definition in
the early 1980s by engineers, Jean Morlet and Alex Grossman. Morlet also needed to
describe a set of short, finite, oscillatory functions which could be broadened or dilated, but
which, unlike Ricker’s original wavelets, did not change their basic form. Grossman and
Morlet first called them “ondelettes de forme constante” – “wavelets of constant shape” in
their groundbreaking paper [Grossman84L] in 1984, which revolutionalized their field by
providing a new way of describing a signal using these wavelets as basis functions. For the
first time, an alternative to the Fourier transform was available. Firstly though, to understand
what is meant by basis function, we need to go back a little further in History to the work of
Hungarian mathematician, Alfréd Haar.

 86

5.2.2 The Haar Function

In his paper, written almost a century ago [Haar10L], Haar explored what are known as
orthogonal function systems. Without going too much into the mathematics, these are infinite
families of functions, ψn(t), which exhibit orthogonality on a Hilbert space, in other words
the inner product, or Lebesgue integral of the product, of any two distinct functions is zero:

() () ,0, =tt qp ψψ (p≠q, p, q = 0, 1, 2, …)

or

() () .0=∫ dttt
b

a qp ψψ

Haar also includes in his definition the property that the integral of the square of each function
should be equal to one – this means that the functions are orthonormal:

()() .1
2

=∫ dtt
b

a pψ

A complete orthogonal function system is then a set of orthogonal and orthonormal functions
which satisfy a completeness relation. That is to say, on an interval (a, b), for any square-
integrable function, f, a series may be written in terms of the functions:

()() () () () () L+




+





= ∫∫∫

2

1

2

0

2 b

a

b

a

b

a
dtttfdtttftf ψψ

The most well-known orthogonal function system is the set of sine and cosine functions on
the interval (–π, π). These are the components of Fourier series, which may be used to
expand any periodic square-integrable function, f [Fourier22L, Wolfram09W]:

() ()[],)sin(cos
1

0 ∑
∞

=
++=

n
nn ntbntaatf

where

()

() ()

() () .sin
1

,cos
1

,
2

1
0

∫

∫

∫

−

−

−

=

=

=

π

π

π

π

π

π

π

π

π

dtnttfb

dtnttfa

dttfa

n

n

 87

The sines and cosines are known as the basis functions for the Fourier transform, which is
derived from this series. Haar’s study led him to construct a new set of orthogonal basis
functions, which were later to become recognized as the first wavelets [Daubechies92L].

Haar wavelets, the name by which Haar’s new basis functions are now known, may best be
understood initially in terms of vectors and matrices on the simplest of Hilbert spaces – the
Euclidean plane. Consider the vectors (1, 1) and (1, –1). If we draw these on the plane, as in
Figure 5.9, we can easily see that they are orthogonal, since they are at right angles to each
other. To confirm the orthogonality of these two vectors, we should check that their dot
product (the inner product in Euclidean space) is zero, and this is indeed the case:

(1, 1) . (1, –1)
= 1 × 1 + 1 × – 1 = 0.

Figure 5.9 – Haar component vectors drawn on the Cartesian plane

In the above graph, the horizontal and vertical axes are the generated vectors (1, 0) and (0, 1)
respectively. These vectors are likewise orthogonal, and they define the Cartesian coordinate
system. Just as we can represent all points on the plane in terms of these two vectors, we can
also represent the same points in terms of the new diagonal vectors, (1, 1) and (1, –1). Such
vectors are called basis vectors [Strang94L] and are the simplest examples of basis functions,
being in only two dimensions. We can convert between the Cartesian coordinate system and
the 2D Haar space by constructing a transformation matrix, H2, from the two vectors:

.
11

11
2 









−
=H

Consider a very simple discrete signal comprising only two samples, with amplitudes of say 4
and 2. This signal can be represented by a point in Euclidean space: in terms of the axes
vectors, it is 4 × (1, 0) + 2 × (0, 1). Using the two-dimensional Haar basis vectors instead, the
signal is, equivalently, 3 × (1, 1) + 1 × (1, –1). In terms of matrix multiplication, the
transform is:

(1, –1)

(1, 1)

0

 88

.
2

4

1

3

11

11







=






⋅








−

The first basis column vector, (1, 1), may be thought of as a steady signal with a constant
amplitude of 1, whereas the second basis column vector, (1, –1), is a square wave – half the
signal is up and the other half is down, as shown in Figure 5.10. The two functions which
define these signals over the interval (0, 1] are:

()


=

,0

,1
tφ

,

10

otherwise

t ≤<
 and









−=
,0

,1

,1

)(tψ

.

1

0

2
1

2
1

otherwise

t

t

≤<
≤<

Figure 5.10 – The Haar mother wavelet, ψψψψ(t), as a square function

φ(t) is called the father wavelet and ψ(t) is known as the mother wavelet, sometimes written

ψ0(t) to properly differentiate it from other wavelets. The reasons for this nomenclature will
become apparent as we see how all other wavelets in successive generations of the Haar
family are derived from these two.

For longer signals, we need more dimensions. Consider, for example, one with four samples
(4, 2, 5, 5). Extending the standard basis vectors in two-dimensional space to four, we can
express the signal as 4 × (1, 0, 0, 0) + 2 × (0, 1, 0, 0) + 5 × (0, 0, 1, 0) + 5 × (0, 0, 0, 1). In
order to get the Haar basis functions in four dimensions, we first expand the existing 2-point
vectors to 4-points, retaining their respective constant and square wave shapes. Thus (1, 1)
becomes (1, 1, 1, 1) and (1, –1) becomes (1, 1, –1, –1). Then, the other two vectors are
obtained by shifting the (1, –1) vector to the first half of an otherwise null vector: (1, –1, 0, 0),
and then to the second half: (0, 0, 1, –1). Thus, the four-dimensional Haar matrix is:

.

1011

1011

0111

0111

4



















−−
−

−
=H

The corresponding square wave graphs of the last two bases are shown in Figure 5.11. Note
that the interval is still over (0, 1] and so the wavelets have effectively been scaled.

0
½

1

–1

1

 89

() ()tt 200,1 ψψ = () ()1201,1 −= tt ψψ

Figure 5.11 – Haar wavelets at first scale (s = 1)

The function which squashes and shifts the mother wavelet, ψ0(t), to generate the next set at
each scale is defined by:

() (),22 0, τψψ τ −= tt ss
s [5.1]

where s is the scale and τ is the shift, which, for audio signals, may be thought of as a time

delay before the onset of the scaled wavelet. The mother wavelet, ψ, may also be expressed

in terms of the father wavelet, φ, similarly by compression and translation:

() () ().122 −−= ttt φφψ [5.2]

For this reason, the father wavelet is also known as the scaling function. We can confirm
[5.2] holds, for example, for t = ½, t = ¼ and t = ¾:

() () ()

() () ()

() () ()

.1

10

.1

01

.1

01

01

2
1

2
3

4
3

2
1

2
1

4
1

2
1

−=
−=

−=

=
−=

−−=
=

−=

−=

φφψ

φφψ

φφψ

The normalizing factor, √2s, in [5.1] is chosen so that over (0, 1] the orthonormal property of
the wavelet still holds at each scale. With the Haar wavelets, the constant is easy to derive
since the Lebesgue Integral – the area under the graph – of the mother wavelet function is
simply the sum of the two rectangles. This is ½ + ½ = 1 for the mother wavelet, and

0
½

1

–1

1
0

½

1

–1

1

 90

subsequently the area halves at each scale. At a scale of 3, for example, the area is 1/23. The
square root of this multiplied by the square root of its inverse is 1, as it should be.
The example signal, (4, 2, 5, 5), transforms into (4, –1, 1, 0) in terms of the new basis vectors.
The next sections of the chapter will reveal how these coefficients are determined, i.e., how
the Haar transform is computed, so that the transformed signal, when multiplied by the
transformation matrix yields the original signal:

.

5

5

2

4

0

1

1

4

1011

1011

0111

0111



















=



















−
⋅



















−−
−

−
 [5.3]

We can continue scaling and shifting the basis vectors in order to generate matrices and thus
basis functions for higher dimensions indefinitely. For eight dimensions, the Haar matrix is:

.

10001011

10001011

01001011

01001011

00100111

00100111

00010111

00010111

8































−−−
−−

−−
−

−−
−

−

=H

Now there are four positions of the wavelet at the new scale, s = 2, and thus four values of τ.
Figure 5.12 shows these four new wavelets as square waves.

() ()tt 400,2 ψψ = () ()1401,2 −= tt ψψ () ()2402,2 −= tt ψψ () ()3403,2 −= tt ψψ

Figure 5.12 – Haar wavelets at second scale (s = 2)

0
½

1

–1

1
0

½

1

–1

1
0

½

1

–1

1
0

½

1

–1

1

 91

5.3 The Discrete Wavelet Transform

Assuming, as Haar tells us, that we can carry on applying the scaling function to yield an
infinite orthogonal function system, we can thus express a function, f, by the expansion:

() () () (),,
1

12

0
, tctbtatf s

s
s

s

τ
τ

τψψφ ∑∑
∞

=

−

=
++= [5.4]

where a, b, c1,0, c1,1 … cs,τ are the wavelet coefficients and ψs,τ is the scaled and shifted

wavelet function and s and τ are now indexes rather than values. For discrete signals, we
need to limit s so that 2s is the number of samples in the signal, thus, as with the Fourier
transform, the number of samples (per scale) will always be a power of two. The list of
wavelet coefficients for scales 0 to S – 1 form the discrete wavelet transform (DWT) of fn.
As seen in the first column of the Haar matrices, the scaling function, φ(t), is a constant value

of one at all times in the interval (0, 1], and so sometimes φ(t) is left out of the equation when

talking about the Haar transform in particular. Also, the mother wavelet, ψ(t), is sometimes
included in the summation, which then goes from s = 0. In the Haar case, the signal may be
decomposed by:

.,

1

0

12

0
,0

Haar
s

S

s
sn

s

ccf τ
τ

τψ∑∑
−

=

−

=
+=

Under a different light, the wavelet transform is a measure of correlation between a signal and
another signal, the wavelet, at different time shifts. At each scale, the wavelet is compressed
to half of its previous wavelength, and therefore its frequency (if we were to continue the
signal for more than just one oscillation) doubles. So in actual fact, the coefficients of the
transform are telling us how much of a certain frequency exists in the signal and when it
exists. The output of the transform is therefore in the time-frequency (or rather time-scale)
domain and thus, like the STFT, it is usually presented in the form of a spectrogram or a 3D
graph.

The wavelet transform is what is known as a multi-resolution analysis technique since it
allows analysis of a signal at different frequencies with different time resolutions
[Polikar03W]. At lower scales (or frequencies) we can only shift the wavelet a few times, but
can obtain a better frequency resolution, whereas at higher scales (frequencies) the time
resolution is much better and the frequencies are less well localized. On this point, the
transform may be compared to the STFT by drawing Heisenberg boxes [Graps95L]. It was
mentioned previously, in Chapter 2 that attempting to determine both the precise time and the
exact instantaneous frequency of a signal at that time is limited by the Heisenberg Uncertainty
Principle, i.e. one cannot measure both with the same arbitrary precision. Let us first look at
the range of frequencies which may be measured by a Short Time Fourier Transform per
window, given a certain window width. Figure 5.13 illustrates how the time and frequency
resolution, defined by a particular, fixed window width, is always the same for every row of
the transform in which it is used, regardless of the window’s location:

 92

 frequency frequency

 time time

Transform 1 – Narrower window: Transform 2 – Wider window:
- Poorer frequency resolution - Better frequency resolution
- Better time resolution - Poorer time resolution

Figure 5.13 – Heisenberg boxes for the STFT

For the discrete wavelet transform, however, the frequency spacing increases per row – in fact
it doubles at every scale – and also the time spacing or window width halves. This is
illustrated in Figure 5.14. As can be seen, the area of the Heisenberg boxes, ∆t.∆v, remains

the same. This represents the Heisenberg limit, which is π4
1 [Polikar03W].

 frequency

 Higher frequencies: Tall, narrow windows
 - Poorer frequency resolution

- Better time resolution

 Lower frequencies: Short, wide windows
 - Better frequency resolution

- Poorer time resolution

 time

Figure 5.14 – Heisenberg boxes for the DWT

The DWT is therefore more flexible than the STFT, since it can analyse higher frequencies
with good time resolution but poor frequency resolution and vice versa. This makes it
suitable for analysing musical sound signals in particular, since we are most interested in the
mid-range frequencies and not so much the extremities. Before looking at some output of the
Haar wavelet transform, we should first examine the fast algorithm used to compute it, and
also look at one other discrete wavelet which uses a different set of basis vectors.

 93

5.4 The Fast Haar and Daubechies Transforms

Revisiting the example signal from section 5.2, which was (4, 2, 5, 5), the method by which
the Haar wavelet coefficients, (4, –1, 1, 0), are calculated is quite simple, as will be seen. The
inverse of H4 is obtained by scaling its column vectors by a factor of 2s–2 and transposing
them. Multiplying both sides of [5.3] by (H4)

–1 yields [Strang89L]:

.

0

1

1

4

5

5

2

4

00

00

2
1

2
1

2
1

2
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1



















−
=



















⋅





















−
−

−−

Normally, this multiplication requires N2 steps, where N is the number of samples. However
if we examine more precisely what is going on at each stage, a recursive pattern emerges
which allows the same calculation to be done in only 2N steps. The following example
outlines how the fast Haar wavelet transform works to achieve this. This algorithm has been
constructed from the description given in [Strang94L].

5.4.1 The Fast Haar Transform

Consider the following array of data, an 8-sample signal:

1 3 9 7 8 4 6 2

We begin by calculating the set of averages and the set of half the differences for each pair of
samples. The averages go on the left and the differences go on the right, as follows:

1 3 9 7 8 4 6 2

2 8 6 4

 Averages Differences
 ½(fn + fn+1) ½(fn – fn+1)

The process is repeated on the set of averages recursively, until there is only one average left
– this sample is then the average of the entire data set, or the data at its lowest “resolution”.
Thus, continuing with the same example, we have:

-1 1 2 2

 94

1)

2 8 6 4

2)

5 5

3)

5

4)

5

The set of wavelet coefficients is then the last average (a in equation [5.4]), and all the sets of

differences (b and cs,τ in equation [5.4]), collected by scanning from left to right back up
through the differences. Note that the number of scales or resolutions is one less than the
number of steps required to complete the transform, the final result of which is shown below:

5 0 -3 1 -1 1 2 2

5.4.2 The Haar Wavelet Lifting Scheme Algorithm

Looking at the above method from a programmer’s point of view, it would be desirable to
transform the data without having to create a temporary array of the same size, which for a
sound signal, could be very large. This does seem necessary at first glance, since some
calculations would overwrite values that have not yet been read. However, the algorithm
described here shows how it is possible to use the same array for both input and output.
Although it was eventually decided that the algorithm would not be implemented in Wave
Processor, it is worth examining it anyway.

The lifting scheme begins, again, by splitting the data in half. Again, the number of data
elements must be a power of 2. This time the split is not down the middle, but into odd and
even indexed samples, moving the odd samples to the end of the array and leaving the even
ones at the beginning. Using the same data set, this is demonstrated below:

even odd even odd even odd even odd

1 3 9 7 8 4 6 2

1 9 8 6

-1 1 2 2

-3 1

0

3 7 4 2

 95

This involves quite a lot of array element switching. After experimenting with some code
originally written by Ian Kaplan [Kaplan03W] it was realised that the time taken to perform
the re-shuffling is very costly with large data sets, and in fact the duration of the entire
operation grows exponentially with an increasing array size. This unfortunately defeats the
whole purpose of creating a fast algorithm.

The next step is to calculate the set of differences. This is done, accordingly, by subtracting
the odd samples from the even samples (and dividing by 2) and storing the results in the
“odds” array:

1 9 8 6

Finally, the averages are calculated. Since the odd samples have already been overwritten,
some algebra is needed in order to recover the original values. Recall from the fast Haar
transform algorithm that the averages are calculated from each pair by:

 x = ½(x1 + x2) or even’ = ½(even + odd). [5.5]

Now each new odd is given by:

 odd’ = ½(even – odd). [5.6]

Putting the equation in terms of odd (the original) we get:

 odd = even – 2odd’. [5.7]

Substituting this back into equation [5.5], this becomes:

 even’ = ½(even + [even – 2odd’])

 = ½(2even – 2odd’)

 = even – odd’. [5.8]

So, in other words, all that needs to be done is to subtract the new odd samples from the
current even ones to get the new even samples. It can be seen that the resulting pair of arrays
is now identical to those in step 1) of the fast Haar transform in the preceding section:

2 8 6 4

As with the fast Haar transform, the lifting scheme is repeated recursively on the new even
samples until there is only one left (the gross average). The reason why this algorithm is
called the “lifting” scheme may be illustrated in the diagram in Figure 5.15. As the data is
split recursively into evens and odds, the even averages get “lifted” and processed at the next
scale, while the odd differences (coefficients) are output at the bottom.

-1 1 2 2

-1 1 2 2

 96

 evens

 evens

 data odds

 odds coefficients

Figure 5.15 – Lifting Scheme diagram

5.4.3 Daubechies Wavelets

The Daubechies family of wavelets, discovered by the Belgian mathematician, Ingrid
Daubechies in 1988 [Strang94L], are, like the Haar wavelet, orthogonal basis functions with
increasing complexity. They were the first family of wavelets to have compact support,
which means that the interval on which they are defined is bounded, but an infinite number of
points in the interval describes their functions. This is also basically an engineer’s way of
saying that they are easy to implement, practically, as a digital filter – almost as easy as the
Haar wavelet. More simply put, they are easy to use because the formula for each of the
Daubechies father wavelets does not need to be known, only a set of “magic numbers”
[Strang94L] – the scaling function coefficients.

The Haar wavelet is actually the first in the Daubechies series, code-named D2, and the next
is D4. The ‘2’ and ‘4’ simply refer to the dimension of the father wavelet and hence the
number of scaling function coefficients – Haar (D2) has two, (1, 1), D4 has four and D20 has
twenty, and so on. In each case, the mother wavelet, and subsequently the child wavelets, are
derived from the scaling function by compressing and shifting it, as in equation [5.1]. Given
that there may be more than just two scaling function coefficients, the general form of the
equation which expresses the mother wavelet in terms of the father is:

()tψ () () () ()nthththth nnn −±−−+−−= −− 222122 021 φφφφ L

() (),21
0
∑

=
− −−=

n

k
kn

k nth φ [5.9]

where hn are the function coefficients of a (n + 1)-dimensional father wavelet. The equation
to which the father wavelet must be a solution is called a dilation equation, and has a similar
form:

()tφ () () ()nththth n −++−+= 2122 10 φφφ L

().2
0
∑

=
−=

n

k
k kth φ [5.10]

It is fairly trivial to see that the Haar scaling function, φ(t) = 1, is a 1-dimensional solution to
the above:

SPLIT DIFF AVG

SPLIT DIFF AVG

 97

() () ().122 −+= ttt φφφ

so [5.10] is satisfied if h0 = h1 = 1 and hk = 0 otherwise [Ewer10L].

The brilliant discovery made by Daubechies was that one can indeed find scaling functions
which solve [5.10] with any arbitrary even number of coefficients. Odd numbers of
coefficients do not yield orthogonal functions, and so cannot be used. Skipping over the
mathematical proofs here, Daubechies found that the scaling function coefficients for D4 had
to satisfy the following conditions so that they rendered orthogonal wavelet bases:

.0

,2

,2

3120

2
3

2
2

2
1

2
0

3210

=+
=+++

=+++

hhhh

hhhh

hhhh

Furthermore, the following conditions must also apply [Ewer10L], [Strang94L]:

.0432

,0

0123

3210

=−+−
=−+−
hhhh

hhhh

These equations yield the following values for the coefficients:

()
()
()
().31

,33

,33

,31

4
1

3

4
1

2

4
1

1

4
1

0

−=

−=

+=

+=

h

h

h

h

Note that another solution set exists where the signs in front of the square roots are reversed.
Usually this second is discarded because otherwise h0 < 0, which is inconvenient [Ewer10L].

From equation [5.10], the D4 scaling function, which is bounded on the interval (0, 3) is then
given by [Strang94L]:

() () () () () () () () ().3222122
4

31
4

33
4

33
4

31 −+−+−+= −−++ ttttt φφφφφ

while the D4 mother wavelet is:

() () () () () () () () ().3222122
4

31
4

33
4

33
4

31 −−−+−−= ++−− ttttt φφφφψ

The appearance of the scaling function on the right hand side of these equations makes it
somewhat difficult to draw the graph of these two functions. However, this may be done

 98

recursively by substituting values of t at increasing levels of detail, after finding the points at
the integer values, t = 1 and t = 2. Tackling the scaling function first, we have:

() () ().211 01 φφφ hh +=

() () ().212 23 φφφ hh +=

Note that the other points are zero since the function does not operate outside the interval
(0, 3), i.e. 0 < t < 3. To solve for φ, we must find the eigenvalues, λk, of a matrix
comprising the four coefficients, such that:

()
()

()
() .
2

1

2

1

23

01







=






⋅








φ
φ

λ
φ
φ

khh

hh

This yields the values λ1 = 1 and λ2 = ½*. The components of the normalized eigenvector

associated with λ1 gives us the values of ½(1+√3) and ½(1+√3) for φ(1) and φ(2)
respectively*. To get these components, we need to make the magnitude of the eigenvector
√2 – the prescribed normalization factor at each scale. All other points in the function may

be found by subdividing the intervals recursively, i.e., next we find φ(
2
1), φ(

2
3), and φ(

2
5),

then the quarter integers and so on.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Scaling Function

Wavelet Function

Figure 5.16 – Daubechies 4 scaling and mother wavelet functions**

* Full workings are given in Appendix B.1.
** These graphs were drawn in Microsoft Excel using values outputted by the program d4.exe which, with its
source code, may be found in Software\Daubechies4\ on the project CD.

 99

Shown in Figure 5.16 is the graph of this function together with the D4 mother wavelet,
which is easily derived from the father wavelet by equation [5.9]. As can be seen, the graphs
are not very smooth, and have some interesting fractal-type properties, due to the recursion
relationships.

5.4.4 The Fast D4 Transform

As with the Haar transform, there exists a fast method of computing the Daubechies wavelet
transform. In order to construct a filter matrix (as with Haar) we start by renaming the
coefficients of the mother wavelet function to match those of the scaling function, which are
the same but in reverse order and with alternating signs:

()
()

()
().31

.33

.33

.31

4
1

03

4
1

12

4
1

21

4
1

30

−−=−=

+==

+−=−=

−==

hg

hg

hg

hg

The next step in constructing the matrix is to normalize by dividing everything by √2. In a
computer program, one would want to include this factor in the definition of the wavelet
coefficients so that this particular step does not need to be recalculated each time they are
used. To write the matrix, we multiply out and shift the coefficients along each row by two
elements at each iteration. Instead of doing the smoothing and differencing separately, we
can combine the two filters into one and, furthermore, represent the whole operation (at each
scale) in one big 2D matrix, which will have N columns and N rows, where N is the number
of samples in the signal, or portion thereof. The transform begins by multiplying the filter
matrix by the signal vector, as shown below for an 8-sample signal:































⋅































7

6

5

4

3

2

1

0

10

10

3210

3210

3210

3210

3210

3210

000000

000000

0000

0000

0000

0000

0000

0000

x

x

x

x

x

x

x

x

gg

hh

gggg

hhhh

gggg

hhhh

gggg

hhhh

It can be seen the last two rows in the transform matrix are problematic, in that there is no
space left for h2 & h3, and g2 & g3. There are several ways in which the edge problem is
treated, all of which produce very slightly different results:

 100

1) Simply ignore it, as has been done in the above matrix.
2) Wrap the signal data around, so that we use x0 and x1 again in the calculation, and

expand the above matrix, for example, to 10 × 10 to accommodate the extra
coefficients.

3) Mirror the signal data at the end, i.e. use x7, then x6 again in the calculation.

There are other techniques which may be used. However, since the overall effect is minor, it
is not a big problem to use the first option. In Wave Processor, a method has been
implemented whereby the Haar averages and differences – only requiring two coefficients –
were used at the boundary. This method was not seen in any of the sources examined, but is
certainly just as good as (if not better than) the three given above, since what we are trying to
do is find some sort of smooth value, which Haar provides.

The result of the matrix multiplication is an array which is then split in half – on the left side
of the array we have the newly smoothed values (even elements) and on the right are the
differences (odd elements), which become the final output. As with the Haar algorithm, the
D4 function is called recursively on the first half of the array – the smooth values – until there
are only four left, at which point the calculation can go no further.

The pseudo-code for the algorithm is fairly clear and easy to understand. As can be seen, the
splitting is done by creating pointers to the first and second half of the output array and simply
writing the smoothed values and differences to these locations.

FD4T(N) {
SMOOTH_PTR = TRANSFORM_PTR
IF N < 4 { // Copy last four values and return

FOR I = 0 TO 4
SMOOTH[I] = SIGNAL[I]
RETURN

}
HALF = N / 2 // Differences half
DIFFS_PTR = TRANSFORM_PTR + HALF

// Calculate smoothed values and differences
FOR I = 0 TO HALF {

J = I * 2
SMOOTH[I] = H0 * SAMPLES[J] + H1 * SAMPLES[J + 1] +

H2 * SAMPLES[J + 2] + H3 * SAMPLES[J + 3]
DIFFS[I] = G0 * SAMPLES[J] + G1 * SAMPLES[J + 1] +

G2 * SAMPLES[J + 2] + G3 * SAMPLES[J + 3]
}

// Use Haar for final pair of coefficients
I = N – 1; J = I * 2
SMOOTH[I] = (SIGNAL[J] + SIGNAL[J + 1]) / 2
DIFFS[I] = (SIGNAL[J] – SIGNAL[J + 1]) / 2

// Copy the smoothed values and recurse
FOR I = 0 TO HALF – 1

SIGNAL[I] = SMOOTH[I]
FD4T(HALF)

}

 101

5.5 The Fast Redundant Haar Transform

The last type of discrete wavelet transform, the à trous or redundant transform, provides an
improvement on the ordinary Haar transform in that it yields extra detail, which makes it a
better frequency filter.

The source used for the following algorithm was a paper entitled Wavelet-Based Combined
Signal Filtering and Prediction [Murtagh05L]. The technique presented here is relatively
new, having been developed in 2005. The reader is referred to section IIC of the paper
specifically, which deals with the transform in question.

The redundant Haar transform is very similar to the original transform, except that the
decimation step is not done. This means that at every scale, extra (redundant) information is
kept, which is the set of differences between the averaged data at the current scale and the
previous set of averages. The output is a two dimensional array which thus requires a lot
more storage space than the original data, since it comprises S arrays, each of size N, where N
is the length of the original wave data and S is the number of scales used in the transform.
This time the function is not recursive, since the same number of points is transformed for
every scale, and therefore it is calculated by iterating a loop. From here, rather than repeating
the already clear description given in the source paper, the transform will be presented by
working through an example.

5.5.1 Redundant Haar Transform Example

We start, as usual, by calculating the set of averages and differences, this time starting with
every pair of elements, not just for every odd and even pair as with ordinary Haar. Sticking
with the same array of data as previously, which we’ll call a0, then for a1, the new set of
averages, we have:

a0 = 1 3 9 7 8 4 6 2

Note that the first element of a0, is simply copied to the first element of a1 (shown in grey)
As the transform progresses, we shall see why this is done. The differences we shall name ds,
where s is the current scale. These differences may be calculated either by subtracting the
current set of averages from the previous, or by taking the difference between array elements
(as opposed the sum) and dividing by 2, which comes to the same thing:

d1 = 0 1 3 –1 ½ –2 1 –2

a1 = 1 2 6 8 7½ 6 5 4

 102

The set of averages, a1, then becomes the input for the calculation at the next scale, and the
set of differences, d1, is the set of wavelet coefficients at the first scale. Note that the original

dataset, a0 must also have a length which is a power of 2. This is because as s increases, τ,

the interval between array elements used in the calculation, doubles, i.e. τ = 2s (where s is a
positive integer).

As observed in the first step, those elements on the left hand side, which do not have a
“partner” (i.e. their position in the array is less than τ at some scale, s) are copied to the

beginning of the next averages array, thus for s = 1 (τ = 2):

a1 = 1 2 6 8 7½ 6 5 4

The pattern continues with s = 2 (τ = 4): …

a2 = 1 2 3½ 5 6¾ 7 6¼ 5

… until no more calculations can be performed, i.e. τ = N, or in this case, 8:

a2 = 1 2 3½ 5 6¾ 7 6¼ 5

d2 = 0 0 2½ 3 ¾ –1 –1¼ –1

a3 = 1 2 3½ 5 3⅞ 4½ 4⅞ 5

d3 = 0 0 0 0 2⅞ 2½ 1⅜ 0

a4 = 1 2 3½ 5 3⅞ 4½ 4⅞ 5

d4 = 0 0 0 0 0 0 0 0

 103

In order to reconstruct the original signal, we take the final set of smoothed averages, a4, and
add it to the sum of all the dk arrays. Thus our final array of coefficients – the complete
transform for this example is:

1 2 3½ 4 3⅞ 4½ 4¾ 4½

0 1 3 –1 ½ –2 1 –2

0 0 2½ 3 ¾ –1 –1¼ –1

0 0 0 0 2⅞ 2½ 1⅜ 0

Note that the sum of all the columns is equivalent to the original dataset.

5.5.2 Source Code for the Algorithm

With no source on which to base code for the algorithm in Wave Processor, the method may
be slightly naïve in terms of memory usage, however it is still very efficient as far as speed
goes and is thus an acceptable approach. It may be seen from the source code that a
temporary array is used to the store the previous set of averages at each scale – a waste of
memory if there is another way of recovering this, as in the lifting scheme algorithm*.

Smooth values are also not copied to the final row of the output array, since these really only
need to be retained so that a reverse transform back to the original signal is possible, and this
was not needed. This could be done, however, by including the two lines which have been
currently commented out (at the beginning of the main loop) in the source, although this
means that all the zero values in the ds rows will contain, instead, corresponding elements
from the as rows. This doesn’t actually make all that much of a difference to the final result,
since the very lowest frequency bands (where this has the greatest significance) do not contain
much information that is useful anyway and could even be ignored completely.

Note that in this and all other DWT algorithms implemented in Wave Processor, the
transformed signal samples have been squared so as to get the energy of the function at their
points, or instantaneous power. This is a better and more correct representation of magnitude,
which is the desired output for the spectrogram.

5.6 Windowing in the Frequency Domain

The heading of this sub-section is one way of looking at a new method proposed here which
may be used to achieve multiple pitch extraction. Just as the STFT first divides the signal up
into time slices – windows in the time domain, we now have a facility, the redundant Haar
transform, which allows us to divide the signal up into separate frequency bands – windows in
the frequency domain. We can then analyse each of these bands separately and, with MPM,
pick out only those clear frequencies which should lie in a particular band.

* Close to the time of publishing of this thesis, this algorithm has now been improved, as suggested.

 104

5.6.1 Combining Redundant Haar with MPM

While all the above wavelet theory may be quite complicated and takes some digesting, in
practice this algorithm is quite simple. Given that the McLeod Pitch Method, described in the
previous chapter is encapsulated in a function MPM(), the pseudo-code for the proposed
PITCH_EXTRACTION() function, for single or multiple pitches, looks like this:

PITCH_EXTRACTION(WAVE, MULTIPLE) {
 Get length of wave

Make length a multiple of specified window width
 IF(MULTIPLE)
 REDUNDANT_HAAR_TRANSFORM(WAVE)
 ELSE
 DATA = WAVE.DATA
 FOR N = 0 TO NUM_FREQ_BANDS - 1 {
 IF(MULTIPLE)
 DATA = WAVE.TRANSFORM_DATA[N]
 MPM(DATA)
 }
 }

If single pitch recognition is being done, the FOR loop will only be iterated once, since the
“frequency band” in this case is the whole signal. Note that for the Redundant Haar, the
power spectrum should not be used in the analysis, since the signal bias is, undesirably,
shifted above zero due to the squaring of all the sample values.

5.6.2 Calculation Time

Since all functions within this multiple pitch extraction method have been optimized in terms
of efficiency, the total calculation time is actually very short, given the combined complexity
of the various transforms. Furthermore, it depends only on the length of the wave file being
analyzed, and not its content. Using a fast Intel Core 2 Duo processor, the entire operation,
for a five-second wave file containing 3-part harmonies, takes only about eight seconds. This
could in fact be made even faster in the peak-picking stage of MPM, where the search for a
particular pitch period could start and end only within the limits that are applicable to the
particular frequency band being analysed, i.e. it would be more efficient to look for only those
frequencies that are expected to lie in a certain band.

5.7 Output

Having covered a large amount of theory in this chapter, it is now time to put it into practice.
The following spectrograms and pitch graphs are all screenshots from Wave Processor, and
the experiments may be repeated by loading the given wave files into the application and
selecting the correct parameters.

5.7.1 Spectrograms from Discrete Wavelet Transforms

The first signal of interest is, again, the chirp from Chapter 2. Figures 5.17 and 5.18 show the
Haar and D4 transforms of the wave, respectively. Note how the Daubechies transform is a
much better filter than the Haar, which has rather poor frequency localization in comparison
[Daubechies92L].

 105

Figure 5.17 – Haar wavelet transform of chirp signal

Figure 5.18 – Daubechies 4 wavelet transform of chirp signal

0

4000

8000

20000

freq.

0.00 0.25

time

16000

12000

0.50 0.75 1.00 1.25 1.50 1.75 2.00

0

4000

8000

20000

freq.

0.00 0.25

time

16000

12000

0.50 0.75 1.00 1.25 1.50 1.75 1.00

 106

The entire bandwidth of the frequency axis in these spectrograms is half the sample rate of the
signal, which in this case is 44,100 bits per second. Since the duration of the signal is 2
seconds, there are 88,200 samples altogether. This means that there are 131,072 (= 217) points
in the transform – the nearest power of two – and thus 17 scales. At each row of the
transform, scale halves and frequency doubles. Another way of displaying the graph is to
have rows of equal height in the transform, but have a dyadic frequency scale. This is an
option which may be set for each transform in Wave Processor, the result of which is shown
in Figure 5.19, which is, again, the D4 transform of the same signal.

Figure 5.19 – Dyadic graph of D4 wavelet transform of chirp signal

Note that in this graph, the bands of colour – the rows of the transform at each scale – are all
the same height. Again, the dyadic relationship between frequency and pitch is illustrated
here, since each row could also be thought of as representing the musical interval of one
octave. The frequency at the top of each band in this graph is calculated as follows:

,2 SbBf −×=

where S is the number of scales, b is the band and B is the whole bandwidth of the
spectrogram, i.e. the maximum of the frequency axis.

The next test wave was a synthesized piano sound playing high and low Cs at different
octaves*. Figures 5.20 and 5.21 show the dyadic spectrograms of the Haar and D4
transforms of this signal, respectively.

* This is saved as Sound\lohi.wav on the project CD

0

22050

freq.

0.00 0.25

time
0.50 0.75 1.00 1.25 1.50 1.75 1.00

10558

5055

1159

61

 107

Figure 5.20 – Haar wavelet transform of lohi.wav

Figure 5.21 – D4 wavelet transform of lohi.wav

0

22050

freq.

0.00 0.33

time
0.65 0.98 1.30 1.63 1.96 2.28 2.61

10558

5055

1159

61

0

22050

freq.

0.00 0.33

time
0.65 0.98 1.30 1.63 1.96 2.28 2.61

10558

5055

1159

61

 108

As can be seen, the D4 transform does not operate as well as the Haar transform in the
detection of higher frequencies – the high Cs, which have a frequency of 2096Hz, are barely
visible on the D4 spectrogram.

The spectrogram of the redundant Haar transform, shown in Figure 5.22, is similar to the
normal Haar, except that it has equal smoothness (or lack thereof) at lower scales. The reason
for Renaud, Starck and Murtagh’s French name, à trous, meaning “holey” or “full of holes”
[Murtagh05L] becomes apparent upon close inspection of the spectrogram.

Figure 5.22 – Redundant Haar wavelet transform of lohi.wav

In order to demonstrate the performance of the algorithm described in section 5.6, two and
three part arrangements of the opening two bars of Nkosi Sikeleli Africa were created by
recording synthesized sounds from Sibelius. The scores used to create these arrangements are
shown in Figures 5.23 and 5.24.

Figure 5.23 – Two-part arrangement of first two bars of Nkosi Sikeleli Africa

0

22050

freq.

0.00 0.33

time
0.65 0.98 1.30 1.63 1.96 2.28 2.61

10558

5055

1159

61

 109

Figure 5.24 – Three-part arrangement of first two bars of Nkosi Sikeleli Africa

The middle and upper voices were assigned a flute patch in Sibelius, which has a relatively
simple timbre, while the bass part was given a string bass sound. The results of the adapted
McLeod Pitch Method for multiple pitch recognition on these two arrangements are shown in
Figures 5.25 and 5.26. Apart from one or two anomalies, the two-part transcription is
extremely accurate – the melody line is in fact 98.4% accurate if one counts the slight visible
pitch bends at the ends of four of the notes as errors.

Figure 5.25 – Automatic transcription of two-part arrangement using DWT/MPM

 110

Figure 5.26 – Automatic transcription of three-part arrangement using DWT/MPM

The three-part arrangement is also a good rendering of the score with really only one poor
estimation of the pitch of the fifth note in the middle voice line, which should be a D4.

While these results are encouraging, the method is not quite so discerning if the parts are not
balanced properly – a slight change in volume to the middle voice, for example, rendered it
almost invisible to the algorithm. Also, when changing this voice’s instrument to an oboe or
clarinet patch, most of the notes in the output for this line disappeared. Nevertheless, given
that very little tweaking of parameters was required to produce the results shown here, this
method is certainly worth investing some time in improving, and should definitely be
considered in the case of simple two and three-part transcriptions, as it proves to be fast and
generally robust.

The settings for MPM which produced the best results in each case were as follows:

• Two-part arrangement – window width: 2048 samples, pitch detection threshold: 90%,
poor clarity threshold: 50%

• Three-part arrangement – window width: 2048 samples, pitch detection threshold:
90%, poor clarity threshold: 35%

 111

6 Drawing a Spectrogram Using the
Continuous Wavelet Transform

Up to this point we have looked at algorithms for transforming signals using discrete methods.
Unfortunately, with the discrete wavelet transform in the previous chapter, regardless of
which wavelet is used, the frequency resolution is not good enough for fine musical pitch
detection. We can only be confident about the particular octave in which a detected pitch lies,
since frequencies double at every scale of the transform. This is the reason why the
transcription method in the previous chapter worked well for the two-part arrangement and
acceptably for three parts – the intervals between each voice are all wide, and so they are well
separated by the redundant Haar transform. However, for closer intervals, the method must
pick whichever frequency is strongest in each octave and reject all the others, which is quite
restrictive and unrefined – we need semitone accuracy at the very least. What is required then
is a multi-resolution analysis method like the DWT, but one which allows us to choose any
arbitrary set of scales and not be restricted to just powers of two.

6.1 The Continuous Wavelet Transform

Fortunately another method exists for discretizing the wavelet transform which allows the
approximation of a much smoother function. Compare the images in Figure 6.1 below,
which show a DWT and the proposed continuous wavelet transform (CWT) of a chirp signal
(pictures courtesy of Petr Klapetek [Klapetek02W]):

a) Discrete wavelet transform b) Continuous wavelet transform

Figure 6.1 – Comparison of DWT and CWT spectrograms of a chirp signal

As we can see immediately, the plot on the right renders a much more detailed picture of what
is happening to the frequency of the signal. As with the discrete transform on the left, the
higher frequency information is more blurred; however, for music analysis, the practical
frequency range falls well within the boundaries of these graphs and so this is not too much of

 112

a problem. Due to the large amount of information obtained from the CWT, it is well worth
examining as a likely candidate for use within an accurate pitch detection algorithm. This
hypothesis has been corroborated fairly recently in a comparative study by Michael Cowling
as part of his PhD thesis [Cowling04L], in which he recommends using the CWT for a
number of different applications. The only major drawback about this transform is that it is
very slow to compute. However, for the purposes of this study, accuracy and high resolutions
have been considered much more important than speed, hence the dedication of most of the
rest of this thesis to methods that use the CWT at their core.

6.1.1 The CWT Function

Suppose ψ0 is an unscaled, unshifted wavelet function (in other words a mother wavelet) the
continuous wavelet transform is defined by the following [Zhan06L]:

() () ,
1

, *
0∫

∞+

∞−







 −=Ψ dt
s

t

s
tfsf τψτ [6.1]

where * denotes the complex conjugate. As with the Fourier transform, the integration is
performed over all time. Although some elements of this equation could be recognizable
from the previous discussion of the DWT, it is worth explaining in full again:

Ψf(s,τ) is the wavelet transform of the signal f(t). It is a two-dimensional function over s,

scale and τ, translation. The s is inversely proportional to the frequency of the wavelet – as
the frequency increases, scale decreases. The s is therefore technically equivalent to the
wavelength of the wavelet (in proportion to the duration of the signal being analyzed). While
on the subject of scale, the concept is analogous to that of maps: a scale of 1:1 is life size,
while at 1:10,000 a map shows a zoomed out view. Likewise, with wavelets, a scale of 1
means that the wavelet is stretched across the entire signal, whereas when s = 1/10,000, the

wavelet is squashed so that 10,000 cycles may be fitted*. The τ is the shift in time, i.e. the
location of the wavelet within the signal, subtracted from t because it is, in effect, a time delay

before the convolution of ψ with f(t).

The scaling function**, included in the above equation, is sometimes written separately for
clarity [Zhan05L]:

() ,
1

0, 






 −=
s

t

s
ts

τψψ τ

Accordingly, a plot of Ψf(s,τ) will reveal information about the signal, f(t), in the time-
frequency domain. It is interesting to note here that this function bears some similarity to
autocorrelation (see section 4.3.2 in Chapter 4) except that the wavelet transform is a measure
of similarity between the signal and another function – the wavelet – rather than itself.
Autocorrelation does not operate over different scales, so it is a function of time only.

* Please read the article [Mackenzie01L] for a good overview about how viewing things at different scales –
multi-resolution analysis – is one of the ways in which we ourselves sense information.
** In order to demonstrate the wavelet scaling function, the CWT Options Dialog box in Wave Processor
includes an animated image of each wavelet, which shows the effects of changing the scale (linearly) between
1:1 and 1:2.

 113

6.1.2 The Discretized CWT

Equation [6.1] indicates that the CWT can be regarded as an image, the rows of which are a
set of convolutions of the signal with a scaled wavelet function. Thus, each row of the
discretized transform may be calculated at any arbitrary scale, s, for N samples, fn, of a
discrete signal, f, by the following:

.
11

0

*
00,, ∑

−

=







 −⋅=⊗=Ψ
N

n
ns

f
s s

n

s
ff

τψψτ

In the equation, Ψf

s,τ represents rows of coefficients of the transform at chosen scales, s. The

τ is again the position of the wavelet in the signal. Since the transform has the same time

resolution as the signal, τ will also run from 0 to N – 1. ⊗ denotes a convolution with ψ s,τ ,
the sampled wavelet, which is scaled and shifted.

6.1.3 A Useful Mathematical Trick

Unfortunately, an algorithm based on the above summation is far too slow (O(N2) per scale)
to be of any practical use. A much faster algorithm may be constructed using the Convolution
Theorem which states that a convolution is simply a point-wise product in Fourier space

[Wolfram09W]. Thus, if f and g are two functions and F denotes a Fourier transform

operator, with F –1 as its inverse, then:

 f ⊗ g = F –1[F(f) . F(g)].

Now, we can calculate the discrete Fourier transform of a discrete signal using the Fast
Fourier Transform, and, as will be shown in the next section, the Fourier transform of the
scaled wavelet function is also known empirically. Thus the Discretized CWT may be
expressed very simply by the following, where the hat symbol (^) denotes a DFT:

.ˆˆˆ
,, msm

f
ms f ψ⋅=Ψ

Note that this is a function of scale and frequency, as opposed to time shift. Both signal and
transform row have the same number of points, so this may be indexed by the same variable,
m, which is different from the scale variable, s. All that remains to be done to complete the
transform is the inverse DFT to return from Fourier space. This calculation is now order
Nlog(N) per scale, which, although not fast enough to be implemented in real-time, is still a
great improvement.

6.2 Four Wavelets

There are many different wavelet functions that may be used as the kernel for the CWT. The
choice of wavelet depends largely on the intended application. Four popular wavelets have
been chosen for experiment and are implemented in Wave Processor. Of these, the most
frequently used in practice (and the original wavelet) is the first.

 114

6.2.1 The Morlet Wavelet

The original work done by French geophysicist Jean Morlet in the 1970s was really the
precursor to the wavelet transform. Morlet called his new method the cycle-octave transform,
[Goupillaud 84L] extending the ideas of Gabor’s tranform [Gabor46L] but using time
windows of varying width. As mentioned in the introduction to wavelets in Chapter 5, Morlet
realised that the whole key to the transform was finding a basis function which retained its
shape when scaled, thus the Morlet wavelet was born. Although Morlet’s new transform was
originally published in 1982 [Morlet82L], the technique was more properly formulated with
the help of his friend and colleague, Pierre Goupillaud, together with physicist Alex
Grossman in [Goupillaud 84L] and in [Grossman84L].

-0.8

-0.4

0

0.4

0.8

-4 -3 -2 -1 0 1 2 3 4

Real

Imaginary

Figure 6.2 – The Morlet wavelet – Graph showing real and imaginary components

The Morlet mother wavelet is defined as [Grossman84L, Zhan05L]:

() .)(2

22
004

1

0

t

eeet tiM −−− −= ωωπψ

This is basically a damped complex sinusoidal function. The constant, ω0, is the central
angular frequency of the wavelet and is called its wavenumber. For the wavelet to meet
certain suitability criteria, ω0 should be greater than 5. This means that the second term
inside the bracket, known as the correction term, becomes negligibly small and may be left
out completely, yielding the simple Morlet wavelet [Kronland87L]:

.)(2

2

04
1

0

t

eet tiM −−= ωπψ

The Fourier transform of the scaled Morlet wavelet is [Torrence98L , Zhan05L]

 115

()
.)(ˆ

2
02

1
4
1 ωωπωψ −−−= sM

s e

where ω = 2πv. This is simply a Gaussian curve, the peak of which is at 1/s when the
wavelet is scaled. Figures 6.2 and 6.3 show the Morlet mother wavelet with a wavenumber
of 6, and its Fourier transform, respectively. Since the FT is very nearly zero for negative
values when ω0 is suitably large, and because we must assume that ψM(t) contains only
positive frequencies [Kronland87L], it makes for easy and more rapid computations if we use:

() ()
,)(ˆ

2
02

1
4
1 ωωωπωψ −−−= sM

s eH

where H(ω) is the Heaviside (or Step) function, defined as [Wolfram09W]:

()


=

,1

,0
ωH

.0

;0

>
≤

ω
ω

The fact that the Fourier transform of this and other complex wavelets is strictly positive
means that unlike the FT, the CWT does not necessarily detect negative frequencies, though
the integral is from negative infinity.

0

0.2

0.4

0.6

0.8

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

frequency (v)

Figure 6.3 – Fourier transform of Morlet wavelet

6.2.2 The Derivative of Gaussian Wavelet

The real component of the Derivative of Gaussian mother wavelet is given by [Torrence98L]

()
() ,
1

)(2

2

2
1

1

0

t
n e

dt

d

n
t

n

nn
D −

+

+Γ
−=ψ

 116

where n is the order of the derivative and ()
2
1+Γ n , the Gamma Function, is calculated by

() ()
.

2

!!12
2
1 π

n

n
n

−=+Γ

Note that the double factorial notation (!!) does not mean the factorial of a factorial, but is
defined as [Wolfram09W]:

()[]



−
=

!!2

,1
!!

nn
n

.1

;1,0

>
==

n

nn

For example, 7!! = 1 × 3 × 5 × 7 = 105.

Putting the normalizing factor aside for a moment, the first three derivatives of the Gaussian
are as follows:

,2

2

2

2 tt

tee
dt

d −−=
−

() ,1 2

2

2

2
2

2

2 tt

ete
dt

d −−=
−

() .3 2

2

2

2
3

3

3 tt

ette
dt

d −−−=
−

It should be noted that the nth derivative of the Gaussian is the Gaussian itself multiplied by
alternately positive and negative nth Hermite probabilistic polynomials, Hen(t)
[Abramowitz65L, Arfken85L]:

() .)(1 2

2

2

2
1 tt

etHee
dt

d
n

n
n

n
−+−=

−

Thus, a recursive algorithm may be created in order to generate the wavelet function for any
order, using the formula [Arfken85L]:

() (),)(11 tnHettHetHe nnn −+ −=

where He0(t) = 1 and He1(t) = t. With an order of 2, the Derivative of Gaussian (DoG)
wavelet is also known as the Mexican Hat wavelet. After simplifying the normalization
factor, this instance of the function is then:

() .1
3

2
)(2

2

4
1

2 2
0

t

ettD −− −= πψ

 117

-0.4

0

0.4

0.8

-4 -3 -2 -1 0 1 2 3 4

Figure 6.4 – Second order real Derivative of Gaussian (Mexican Hat) wavelet

0

0.2

0.4

0.6

0.8

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0

frequency (v)

Figure 6.5 – Fourier transform of complex Mexican Hat wavelet

Unlike the Morlet wavelet, the DoG wavelet does not have an imaginary component.
However, a complex wavelet may be created by including the Heaviside function in the
Fourier transform, which (for the real wavelet) is given by:

() .)(ˆ 2

2

2
10

ω
ωωψ −

+Γ
−= e
n

i n
n

Dn

 118

For the scaled complex Mexican Hat wavelet, the Fourier transform is thus:

()()
()

.
3

2
)(ˆ 2

2

4
1

2 2
ω

ωωπωψ
s

esHD
s

−−=

6.2.3 The Paul Wavelet

Thierry Paul [Paul09W] is the French mathematician for whom this wavelet was named and
the mother wavelet of order n is given by [Torrence98L]:

() () .1
!2

!2
)()1(

0
+−−= n

nn
P it

n

ni
tn

π
ψ

Figure 6.6 shows the fast-decaying components of the order 4 Paul wavelet.

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-4 -3 -2 -1 0 1 2 3 4

Real

Imaginary

Figure 6.6 – Paul wavelet, order 4

For this wavelet to meet the admissibility requirements (see [Grossman84L] and/or
[Kronland87L]) the order of the wavelet, n, should be at least 4. As with the preceding
wavelets, the Paul wavelet may be separated into its real and imaginary components.
However, the rather ugly algebra required in order to do so has been omitted from all
available sources referring to this wavelet, and so a proof for the following polynomial
generator has been included in Appendix B.2 without reference to any source:

() () ()[] () ,1
!2

!2
)(

)1(2ImRe
0

+−
+⋅Φ+Φ=

n

nn

n
P ttit

n

n
tn

π
ψ

 119

where ()tn
ReΦ and ()tn

ImΦ are defined recursively as:

() ,1Re
0 =Φ t and () ,Im

0 tt =Φ

() ;ReImRe
1 nnn tt Φ−Φ−=Φ + () .ImReIm

1 nnn tt Φ−Φ=Φ +

The Fourier transform of the scaled Paul wavelet is given by the following equation:

() ()() .
!12

2
)(ˆ ωωωωψ sn

n
P
s esH

nn
n −

−
=

Figure 6.7 shows a graph of this function with a scale of 1:4.

0

0.2

0.4

0.6

0.8

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0

frequency (v)

Figure 6.7 – Fourier transform of Paul wavelet, order 4, scale = 1:4

6.2.4 The Shannon Wavelet

The last wavelet of interest, shown in Figure 6.8, is named after the father of signal sampling,
and is given by:

 () =tS
0ψ sinc ,

2
3

cos
2
















 tt ππ

where sinc(t) =
t

tsin
. When t is 0, sinc(t) is defined as 1 [Wolfram09W].

 120

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

-4 -3 -2 -1 0 1 2 3 4

Figure 6.8 – The Shannon wavelet

-0.5

0

0.5

1

1.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

frequency (v)

Figure 6.9 – Fourier transform of real Shannon wavelet

Via some trigonometric identities, this wavelet function may also be expressed as:

() 20 =tSψ sinc()−tπ2 sinc()tπ .

 121

The FT of the wavelet is a simple box function as can be seen in the graph in Figure 6.9:

() ,
2/32/3

ˆ ∏∏ 






 ++






 −=
π

πω
π

πωωψ ssS
s

where

()


=∏ ,0

,1
x

.

,

2
1

2
1

>

≤

x

x

Note that since this is a real wavelet, there is no Heaviside function included in the FT.

6.3 Implementing the Fast CWT

Translating the above mathematical theory into practical program code requires some careful
consideration, especially with regards to the following important issues.

6.3.1 Calculation Time

Since colours in spectrograms are interpolated between the maximum and minimum values in
any given transform, it is not necessary to calculate normalizing factors in the FT for any type
of wavelet. This saves a bit of calculation time, especially for the Paul wavelet, which has
quite a complicated normalizing factor.

For complex wavelets, only half of the points in each row need to be calculated. The rest may
all simply be set to zero due to the Heaviside function component which excludes negative
values in Fourier space.

Using the Convolution Theorem does save a lot of calculation time, but one still has to be
careful to keep the innermost loop as succinct as possible. As seen in the pseudo-code at the
end of this section, which is the shell of the CWT algorithm for the Morlet wavelet transform,
the loop in question is the one which multiplies each point of the DFT of the signal by the
DFT of the scaled wavelet.

With regard to this point, a small time-saver is to do any calculations involving scale before
the innermost loop. This means that instead of the calculation being in terms of v, which is

the instantaneous frequency atmf̂ , it is in terms of the frequency sample index, m.

To get each v from m, we divide by the number of points in the transformed signal and
multiply by the bandwidth, i.e. the sample rate. As demonstrated in the pseudo-code, if the
division is done once and the multiplication of “sr_np ” is moved to the calculation of the
scale factor, we can avoid having to do S × N extra multiplications (number of scales ×
number of points). Since it is easier to think in terms of analyzing frequencies than scales,
and furthermore, both linear and dyadic forms of the transform should be supported, the
frequency corresponding to each row is calculated, from which the scale is then derived.

 122

Pseudo-code for the fast continuous Morlet wavelet transform:

FCWT(samples[], n_scales, n_points, min_freq, max_f req) {
 LET f = min_freq
 LET df = (max_freq / min_freq) ^ (1 / n_scales)
 LET sr_np = sample_rate / n_points

 FFT(FWD, samples[], n_points)
 FOR row = 0 TO n_scales – 1 {
 LET scale = sr_np / f
 FOR(col = 0 TO n_points / 2) {
 LET x = scale * col – sigma
 LET y = e ^ (-0.5 * x * x) // for Morlet wa velet
 LET cwt[row][col] = samples[col] * y
 }
 FFT(REV, cwt[row], n_points)
 LET f = f * df
 }
 RETURN cwt[][]

}

6.3.2 Memory Usage

The CWT contains as many points per scale as there are samples in the signal. Typically, one
would want to analyse music at 12 scales per octave as a minimum for semitone accuracy, and
preferably double that. Thus, say for three octaves – the range of a grand staff, excluding
notes on leger lines – one would want about 72 scales. The maximum number of scales
supported in Wave Processor for any frequency range is 512. In this case, at a signal sample
rate of 44.1kHz, even a 1 second wave requires 44100 × 512 × 8 bytes (the size of a double
floating point number) = approximately 172MB, just to store the final values. In fact much
more memory than this is needed in the calculation, since for the Fourier transform the
number of samples must be a power of two. Further memory is required for temporary input
and output arrays for both sets of real and imaginary components of the initial FT of the
signal.

Wave Processor handles the memory usage problem by swapping out to a temporary file and
doing a transform in sections if more than 256MB is required. In drawing a spectrogram
however, the image is much more compressed, and so only the initial plot is slow.

6.4 Comparison of Output

For each of the spectrograms in Figure 6.10, the grid lines and time / frequency labels have
been removed for clarity, as by now the chirp signal from previous transform examples should
be immediately recognizable and the limits and scales of the graphs have not changed. As is
clear from the width of the bands of colour in each graph, the Morlet wavelet seems to
provide the best localization of frequencies of the four (corroborating other sources such as
[DeMoortel06L] which report the same), while the Paul wavelet performs slightly less well
than the DoG wavelet, although at even higher orders, the Fourier transform of the DoG is as
sharp a peak as that of the Morlet wavelet with the wavenumber used to generate the image
shown here.

 123

a) Morlet (ω0 = 20) b) Paul (n = 10)

c) Derivative of Gaussian (n = 16) d) Shannon

Figure 6.10 – CWT spectrograms of chirp signal using four different wavelets

The appearance of the sharp edge of the solid green band in the Shannon CWT spectrogram is
due to the square shape of the wavelet’s Fourier transform, and the noise in background is as a
result of the slow damping of the wavelet function (see Figure 6.8) and hence its lack of
compact support. Given the image above, this wavelet may be a good choice for creating a
band pass filter, which is a device or algorithm that allows certain frequencies in a certain
range to pass through while rejecting others. However, it does not seem suitable for music
analysis, given the noisy background, which would be difficult to separate from relevant
frequency content.

In order to further test the frequency localizing ability of each wavelet, tests were done on the
three-part arrangement of Nkosi Sikeleli Africa from the previous chapter (Figure 5.24). A
simple pitch extraction algorithm was constructed, which bears some similarity to McLeod’s
peak-picking method, but simply involves choosing the highest power levels of the CWT in
windowed sections. To calculate the general power of each window at each scale, the average
was taken of the magnitudes. For each window, the highest peak was found and then
subsequent peaks were chosen which were within a certain threshold of this maximum.
Figure 6.12 shows an example graph drawn by capturing the values across one column of the
transformed signal, whose spectrogram is in Figure 6.11.

 124

Figure 6.11 – CWT spectrogram of 3-part NSA example using Morlet wavelet (ωωωω0 = 10)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

frequency

Figure 6.12 – Average powers at each frequency for time window X of Figure 6.11

64

255

511

723

860

1024

freq.

0.00 0.63

time
1.27 1.90 2.53 3.17 3.80 4.43 5.07

ΧΧΧΧ

 125

The three major peaks in the graph occur at corresponding frequencies of 96.7Hz, 246.4Hz
and 788.8Hz, which are, equivalently, the musical pitches G2, B3 and G5 respectively, to the
nearest semitone. These are precisely the notes comprising the first chord of the example. In
this case, the wavelet which rendered the best pitch extraction, shown in Figure 6.13, was the
Derivative of Gaussian (order 6), which tended to ignore the slightly weaker harmonics
picked up by the Morlet transform. In general it was observed that wavelets with more
oscillations, such as the Morlet and higher order DoG and Paul wavelets, are more sensitive to
harmonics and high frequencies but less sensitive to bass frequencies. A window width of
2048 was used with a clarity threshold of 53% for the peak-picking stage of the algorithm.

Figure 6.13 – Pitch Extraction of three-part NSA example using DoG wavelet transform

This result is most encouraging, given that the algorithm was allowed to choose up to sixteen
peaks, which means it is already a very discerning and precise method, particularly for
detecting middle to high range frequencies.

The method does not perform quite so well, however, if frequencies are not well-separated
from each other, i.e. wide intervals between notes yield better results. Figure 6.14 shows the
result of the CWT pitch detector on the string quartet example previously experimented upon
in Chapter 5 (see Figure 5.6). For the CWT, the Morlet wavelet with a wavenumber of 16
was used.

In actual fact, the result below is only this good because the upper analysis frequency bound
was lowered, allowing the algorithm to reject many strong harmonics outside of the narrow
band from 64Hz to 512Hz (approximately C2 to C5). This, however, did not stop the
algorithm from picking up the first and last B3 in the viola part as a strong harmonic at B4. It
can also be seen, from the jumble of artefacts at the start and end, how sensitive the transform
is to noise, which does not bode well for poorer quality recordings, or music such as this
which is rich in harmonics. Despite these issues, the algorithm constructed so far managed to
pick up every pitch that is present in the original score. This is a very good starting point on
which to base a robust pitch detection method.

 126

Figure 6.14 – Pitch extraction of quartet example with band-limited Morlet transform

The following chapter takes a closer look at the CWT spectrogram and offers some further
insights for refining the above results, which could lead to a much improved multiple pitch
detector than previously demonstrated in this study.

 127

7 Interpreting the CWT Spectrogram

As seen in the previous chapter, the CWT is capable of extremely accurate pitch detection, but
again, its application is only really suitable for music containing wider intervals and
instruments of simple timbre. If the CWT is not interpreted correctly, more naïve methods of
pitch extraction may not perform satisfactorily when notes are closer together in pitch.

7.1 The Scale of the CWT Spectrogram

It is important to note that the spectrogram has identical resolution in time to the signal of
which it is a transform. Figure 7.1 shows the dyadic spectrogram of the Nkosi Sikeleli Africa
quartet example analyzed previously (see Figure 5.6 and subsequent transcriptions) zoomed
in to the sixth chord, which comprises the notes G3, D4, G4 and B4. The image was generated
using the Morlet wavelet with a wavenumber of 10.

Figure 7.1 – CWT spectrogram of fourth chord of NSA quartet example

Much detail is to be observed in this image, especially in the upper frequency range, which is
mostly harmonics in this case. The top two notes in the chord, G4 and B4, which have
frequencies of 392.6Hz and 494.6Hz respectively, are seen to be overlapping. The exact
location of their peaks in the frequency domain is therefore unclear and presents a problem.

1.90

1570

98
2.28

ΧΧΧΧ

freq.

time

390

783

 128

We can zoom in even further on the time axis: Figure 7.2 shows the spectrogram in a time

window, Χ, demarcated in the previous figure by the red arrows. The width of this window is
just 1024 samples and this image is now at the highest level of detail.

Figure 7.2 – CWT spectrogram of detail ΧΧΧΧ

It is very clear from the detail in these time stretched spectrograms that the frequency
magnitudes in each row of the transform are not constant, but vary at certain frequencies of
their own. In the short time frame in Figure 7.2 the bass and tenor notes appear to be at a
point of low power, while the overlapping treble and soprano voices exhibit peaks in the
middle and at the edges of the window. The power variation of the latter pair of voices
appears to have a shorter cycle, and in general it may be observed that the higher the
frequencies the faster the modulation of their signal strength.

If, however, we examine a pure stationary sine wave at the same level of detail, the result is a
constant signal. This is demonstrated in Figure 7.3, which shows 1024 samples of a CWT
spectrogram of the wave function f(t) = sin(2πvt), where v = 440Hz (the pitch A4).

If more frequencies are added to the audio signal, similar patterns to those seen in Figure 7.2
begin to emerge. Figure 7.4 is a similar CWT spectrogram of a stationary wave function with
constituent frequencies of 440Hz, 524Hz and 623Hz.

1570

98

freq.

390

783

time 2.029 2.053

 129

Figure 7.3 – CWT spectrogram 440Hz signal (width = 1024 samples)

Figure 7.4 – CWT spectrogram of composite stationary signal (width = 1024 samples)

These images are evidence that the varying magnitudes across each row of the CWT are
caused by interference of different frequencies with each other. The interference patterns may
be explained by a phenomenon in the field of acoustics known as beats.

7.2 Beats

Usually when talking about beats, we are referring to the pulse which indicates tempo, rhythm
and meter of a piece of music. In acoustics, beats are the faintly audible knocking sound
caused by the interference of two waves oscillating at slightly different frequencies
[Scholes65L]. The reason for the varying signal strength is due to the changing phase
between added frequencies. Consider Figure 7.5, which shows superimposed sinusoids of
6Hz (blue) and 4Hz (red). At t = 0, ½ and 1, the phase of the two waves coincide, and so
around these points, the sum of their amplitudes results in a strong signal. However, around
the ⅓ and ⅔ points, the two signals cancel each other out, since their phase difference moves
through the maximum of 180 degrees.

1024

256

freq.

1024

256

freq.

 130

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

time

Figure 7.5 – Comparison of 6Hz and 4Hz sinusoids

The occurrence of acoustic beats is well known and has been used by musicians for centuries
in order to fine tune pianos and organs [Scholes65L]. The composer and violinist Giuseppe
Tartini (1692 – 1770) was the first to describe beats as “the third sound” (il terzo suono). The
reason he called it this is because when a beat frequency is fast enough, it becomes audible as
an extra tone underneath the two pitches causing it. Tartini discovered that by listening
carefully for this note, he could ensure that his double-stopping* was perfectly in tune
[McLeod05L, Scholes65L]. He knew (but could not explain why) that the third tone could be
used as a precise measure of the interval between any two notes played simultaneously.

7.3 Difference Tone Analysis

Using the simple case of sine waves, the following shows, mathematically, why beats are also
known as difference tones in acoustics:

Given two signals with different frequencies, f(t) = sin(2πv1t) and g(t) = sin(2πv2t),
v1 ≠ v2, then

() () () ().2sin2sin 21 tvtvtgtf ππ +=+

By the sum-to-product trigonometric identity for sin(θ1) + sin(θ2),

() () () ()
.

2
2

sin
2

2
cos2 2121 







 +⋅






 −=+ tvvtvv
tgtf

ππ
 [7.1]

Dissecting equation [7.1], we can see that this is a sinusoidal signal with a general frequency
that is the average of the two integral frequencies, v1 and v2. Its amplitude is controlled by
the cosine component, the frequency of which is the half the difference between the two
frequencies. This gives the shape of the signal’s envelope and causes the periodic variations
in its magnitude, hence the beat.

* This is a technique on the violin whereby two or more strings are stopped on the fingerboard and played
simultaneously, producing a chord.

 131

In Figure 7.6, the dashed wave is the sum of the 6Hz and 4Hz sinusoids from the previous
example. The red wave is the sine component and the blue wave is the cosine component,
assuming that v1 = 6Hz and v2 = 4Hz.

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

time

Figure 7.6 – Sine and cosine components, v1 = 6Hz, v2 = 4Hz, and their product

Acoustics tells us that the actual beat frequency, however, is the difference between v1 and v2
[Howard06L] and not half the difference, as equation [7.1] would seem to suggest. Recall
from Chapter 2, section 2.3 the discussion about the symmetry of a Fourier transform:
Frequencies may, in theory, be positive or negative. It may be argued that since we can also
let v1 = 4Hz and v2 = 6Hz, the sign of the beat frequency in this case should be negative, since

4 – 6 = –2. N.B. We are not arguing that cos(α) is positive and cos(–α) is negative because

clearly this is false. Instead we are saying that if there exists a beat frequency, v = cos(α),
then Fourier theory predicts there will also be a complementary signal, v’ = –cos(α).

This is clarified if one considers the half-angle formula for cosine, extending [7.1] as follows:

() () ()() ()
.

2
2

sin
2

2cos1
2 2121 







 +⋅






 −+±=+ tvvtvv
tgtf

ππ
 [7.2]

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

time

Figure 7.7 – Graph including both roots of the cosine component

 132

If we plot both of these roots on the same graph, as in Figure 7.7, we see the resulting double
envelope which has a frequency of not 1 but 2Hz. In order to complete the picture, the
product of the sine wave with both roots of the cosine component is shown in Figure 7.8.

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1

time

Figure 7.8 – Difference tone showing double cosine envelope

In telecommunications theory, this type of signal is fairly common. It is used in television
broadcast, for example, to vary pixel colour levels in transmitted images. The technique of
varying the strength of a carrier signal in this way is known as amplitude modulation. In the

case of beats, the carrier is the sine part of equation [7.2] which we shall denote by χ. As an
example, taking two of the frequencies in the signal from Figure 7.4, 440Hz, 524Hz, if the

beat frequency, β, is the difference between the two, then:

,84440524 =−=β and () .4822440524 =÷+=χ

Here, β is a low (yet audible) frequency, since the interval between the two notes is small.

In Figures 7.5 and 7.8 the beat frequency can clearly be seen from the coincidental phase
points and the resulting envelope as being 2Hz – half second knocks. It is also apparent in
Figure 7.4 that almost two cycles of the beat signal between the lower pair of bands fit in
1024 samples. Two cycles of 84Hz last about 0.024 seconds, which, at a sample rate of
44.1kHz, is 1050 samples; this does seem to match the visible amplitude modulation at a
glance. In order to be absolutely certain that this observation is correct, however, we should
apply a Fourier transform to rows of the spectrogram where the modulation is greatest to see
if the predicted beat frequencies are indeed present in the transform. The Fourier transform of
a spectrum such as this as known as the power cepstrum [Bogert63L].

As a thorough test, 24 sinusoid waves were generated, each containing a base pitch of C4
(262Hz) and a second note above this, in increasing quarter-tone intervals. The final interval
is an octave: C4 to C5. Spectrograms were generated* using the Morlet wavelet with a
suitably high wavenumber (20) so as to render thin bands – well-localized frequencies. For
each transform, a power graph was created, similar to that of Figure 6.2, except the average
power across the whole signal was used, instead of in a window. Figure 7.9 shows a graph
for the interval of C4 plus 8 quarter tones (E4), which is equivalent to a major third.

* An animation of the 24 spectrograms, representing an ascending and descending scale, may be seen on the
project CD at Sound\Quarter Tone Intervals\animation.wmv

 133

0

500

1000

1500

2000

2500

3000

3500

4000

4500

128 256 384 512 640 768

frequency

Figure 7.9 – Average power distribution per frequency for the interval C4 – E4

The two peaks in the graph correspond to frequencies of 262.1Hz and 330.5Hz, which are, as
expected, good estimates for the constituent frequencies in this example. The trough in
between corresponds to a frequency of 295.357Hz. If we take the average of the peak
frequencies, we find that it is equal to this value. It is precisely this halfway point that

equation [7.1] also predicts the beat frequency will be defined, i.e. it is the location of χ.
Therefore this is the row of the transform which should be analyzed. Figure 7.10 shows a
Fourier transform of the relevant row in the current example interval.

0

20

40

60

80

100

120

0 32 64 96 128 160 192 224 256

frequency

Figure 7.10 – FT showing a peak at the beat frequency for the interval C4 – E4

 134

The peak at 0Hz in the graph is explained by the fact that this is a Fourier transform of strictly
positive values. This peak may be eliminated by shifting the bias of the signal back to zero,
i.e. making zero the average amplitude. The falloff from 1Hz is also logically explained by
the fact that the signal begins at 0 seconds and ends at 1 second, and so also has a one second
cycle according to the Fourier transform. This problem may also be solved by applying a
Gaussian function to the signal prior to doing the FT (see Chapter 2).

Taking similar FTs of the row of each spectrum halfway between the two rows of highest
energy, the set of strong low frequencies in Table 7.1 was obtained for each interval from
262Hz.

Upper
Frequency (Hz)

¼ tones
from C4

Actual frequency
difference (Hz)

Measured frequency
of difference tone (Hz)

Error
(Hz)

269.677 1 7.677 - -
277.579 2 15.579 15.477 –0.102
285.713 3 23.713 23.552 –0.161
294.085 4 32.085 32.300 0.215
302.702 5 40.702 40.375 –0.327
311.572 6 49.572 49.796 0.224
320.702 7 58.702 58.543 –0.159
330.099 8 68.099 67.964 –0.135
339.772 9 77.772 78.058 0.286
349.728 10 87.728 87.479 –0.249
359.976 11 97.976 (98.245) 0.269
370.524 12 108.524 (108.339) –0.185
381.381 13 119.381 (119.106) –0.275
392.557 14 130.556 (130.545) –0.011
404.059 15 142.059 - -
415.899 16 153.899 - -
428.086 17 166.086 - -
440.630 18 178.630 - -
453.541 19 191.541 - -
466.831 20 204.831 - -
480.510 21 218.510 - -
494.590 22 232.590 - -
509.083 23 247.083 - -
524.000 24 262.000 - -

Table 7.1 – Difference tones for quarter-tone intervals above C4

Note that after the interval from C4 to G4 (14 quarter-tones), the strength of the difference tone
diminishes considerably and only appears as a small bump in the Fourier transform, which
cannot reasonably be counted as a clear peak. In fact the bracketed values in the table were
also rather low peaks in comparison to those of lower frequencies.

We can be content, however, with only being able to detect difference tones for sufficiently
close intervals, since this is really the only time when it becomes necessary to do so. Beyond
the interval of about a perfect fourth, two frequencies are separated enough as to be
independently determined by their position in the frequency domain alone.

 135

The missing difference tone for the first quarter tone interval was due to the fact that the peak-
finding algorithm did not detect two clear peaks between which to locate a trough, since the
peaks merged into one, being very close together. For now, this is not too much of a problem,
however, and eventually it will be seen that the final algorithm does not depend on this issue.

We could also use the McLeod Pitch Method in order to measure the beat frequency more
accurately, except that the algorithm does not work for strictly positive signals such as this.
Figure 7.11 shows a window of the difference tone signal for which Figure 7.10 was the
Fourier transform. In a way, this is similar to taking Figure 7.8 and removing all points
below the time axis, since the signal comprises only positive magnitudes. It would have to be
re-biased so that it is centered around zero before being passed to the MPM function.

0

100

200

0.20 0.25 0.30 0.35 0.40

time

Figure 7.11 – Difference tone signal for the interval C4 – E4

-1

-0.5

0

0.5

1

0 2048 4096 6144 8192 10240 12288 14336 16384

Samples

Figure 7.12 – NSDF output for difference tone signal for the interval C4 – E4

 136

The graph of the normalized square differences for this window, shown in Figure 7.12,
reveals why MPM is unsuitable for determining the period of the beat signal. A signal with
no negative values will yield only strictly positive normalized square differences, since
autocorrelation of positive values is also always positive. MPM is designed to look for the
first zero crossing point and then take the first peak after that [McLeod05L]. Since in this
case the graph never crosses over zero, the algorithm will fail to find this first peak.

We can also get a finer estimation of the beat frequency by applying the Phase Vocoder
algorithm to a windowed FT, but in actual fact, these advanced methods are not necessary.
Close examination of another example difference tone signal, shown in Figure 7.13, reveals
that all we have to do is measure the average distance between successive peaks in the signal,
i.e. get the shortest wavelength present directly from the time series.

0

50

100

150

1.91 1.95 1.99 2.03 2.07 2.11 2.15 2.19 2.23 2.27

time

Figure 7.13 – Difference tone signal across row 139 of Figure 7.1 spectrogram

This example is the cross section of row 139 of the window shown in Figure 7.1. The
frequency to which this row corresponds is 444.520Hz. If this theory is correct, then we
should get a measure close to the difference tone for the interval G4 – B4, since this row’s

frequency is close to being their average and therefore an approximation of the carrier, χ.

The frequency difference, β, between the two notes is 494.590 – 392.557 = 102.033. We
don’t even have to measure the peaks differences in this particular case, although doing so
gives better precision and is the preferable method. Counting the peaks, there are 38 of them.
16384 samples at 44100 samples per second means that the window’s duration is 0.372
seconds. So, in one second, the number of peaks will be 38 ÷ 0.372 = 102.151.

This is an extremely accurate measure, with an error comparable to those in Table 7.1.
Furthermore, this is a much faster method, since we never have to leave the time domain.
Using a large window such as the one here is always a good idea, since from Table 7.1, beat
frequencies which are detectable for mid-range pitch intervals are mostly low-frequency: the

more wavelengths available to measure, the more precise the estimation of β.

 137

7.4 An Improved Pitch Detection Algorithm

Applying the above technique of detecting difference tones at any scale in the CWT spectrum
now gives us a method of unmixing overlapping frequencies, by creating useful data from the
apparently confusing interference patterns in the spectrogram. In the example in the previous
section, we knew where to look for certain difference tones because we knew the frequencies
of the pitches causing them a priori. If we need to reverse the procedure, strong difference
tones could be searched for first, and then the frequencies which caused them may be found
by the following:

If two frequencies v1 and v2 interfere with each other and create a difference tone with central

frequency χ and amplitude modulation frequency β, then from equation [7.1]:

,221 χ=+ vv [7.3]

and

.21 β=− vv [7.4]

Since we can measure both χ and β, v1 and v2 may be determined from these simultaneous
equations. We may solve for v1 and v2 in general:

,
21
βχ +=v [7.5]

and

.
22
βχ −=v [7.6]

Using the C4 – E4 interval example again, as detected, χ = 295.357 and β = 67.964.
Substituting these values into equations [7.5] and [7.6].

329.339,1 =v

and

.375.6122 =v

This is a good approximation for the frequencies of these simple sine waves, but let us now
apply this technique to the same large window of the four-voice chord, as extracted previously
in Figure 7.1. First, another CWT was taken of the signal using the Morlet wavelet with a
high wavenumber of 20, so that power maxima for rows of the transform could be found
easily.

As seen in Figure 7.14, there are several peaks for this chord.

 138

0

500

1000

1500

2000

2500

3000

98 226 354 482 610 738 866 994 1122 1250 1378 1506

frequency

Figure 7.14 – Average power distribution per frequency for NSA quartet, chord six

The peaks in the graph were found to correspond to the following frequencies and pitches:

Peak Frequency Nearest Pitch
1 196.5964 G3
2 294.0162 D4
3 394.3892 G4
4 495.6024 B4
5 583.4404 D5
6 782.6187 G5
7 983.4643 B5
8 1170.431 D6

Table 7.2 – Frequencies and nearest pitches corresponding to peaks in Figure 7.14

This is already a good detection of the pitches in the chord, despite the inclusion of four
strong harmonics as well. We can corroborate these results by looking for difference tones in
the locations which they predict.

A Morlet transform was taken again, but with a lower wavenumber (10) for better time
localization. The difference tones in Table 7.3 were detected by measuring the average
wavelength between peaks along rows of the CWT for chord six. Rather than just obtaining
one value, the 16384 points across each row were divided up and frequencies were found in
four windows of 2048 samples each. These were weighted according to their corresponding
clarities. Clarity was measured by comparing the height of peaks in a window with the
maximum power for that window. The average clarity for all windows across each row is
shown in the table. The chosen rows correspond closest to the averages of adjacent pairs of
frequencies in Table 7.2. Values for v1 and v2 were determined via equations [7.2] and [7.3],
and subsequently their nearest pitches, which are also included in the table.

 139

CWT
Row

Carrier
Frequency (χχχχ)

Modulation
Frequency (ββββ)

Clarity v1 p1 v2 p2

85 247.050 96.180 13% 295.140 D4 198.960 G3
115 342.381 99.819 18% 392.290 G4 292.472 D4
139 444.520 101.719 72% 495.379 B4 393.661 G4
157 540.664 88.960 55% 585.144 D5 496.184 B4
178 679.416 201.790 17% 780.311 G5 578.521 D5
202 882.097 173.268 36% 968.731 B5 795.463 G5
220 1072.883 191.227 51% 1168.496 D6 977.270 B5

Table 7.3 – Frequencies and nearest pitches corresponding to peaks in Figure 7.14

These results are quite accurate, despite the low power of some of the amplitude modulations
resulting in poor clarity. The shaded row in the table is where there was the most error, but
when rounding the frequencies to their nearest equal-tempered values, all of the difference
tones were quantized to their correct pitches.

The best way to handle the extra data provided by the difference tone analysis is debatable
and would require further experimentation with different post-processing methods. One
simple idea, which has been implemented in Wave Processor, is to increase the clarity of
pitches already found if their detection is supported by the presence of accurately measured
difference tones. The algorithm is summarized by the following pseudo-code, which
basically checks each detected frequency against each difference tone and boosts its clarity if
the difference tone is caused by frequencies matching it. This allows for an error of one
quarter tone.

FOREACH detected FREQUENCY with clarity CLAR {
FOREACH WINDOW {

FOREACH ROW {
Get detected BEAT.FREQ for this WINDOW in this ROW

 Calculate CARRIER.FREQ for this ROW
 V1 = CARRIER.FREQ + BEAT.FREQ / 2
 V2 = CARRIER.FREQ - BEAT.FREQ / 2
 IF FREQUENCY within quarter tone of V1 or V2 {
 CLAR = CLAR ^ (1 – BEAT.CLAR)
 }
 }
 }

}

Figures 7.15 and 7.16 show the full transcription of the NSA quartet example before and after
applying difference tone detection. The Morlet wavelet with a wavenumber of 15 was used
for both transforms. Unfortunately, if the window size is too small, the method does not
perform so well, since lower frequency beats cannot be measured accurately enough, as
illustrated by Figure 7.4. Thus, the window size used in this example is 2048 samples.
While not greatly different, Figure 7.16 is a definite improvement nevertheless.

Note that this method still does not solve the problem of confusing harmonics with
fundamental notes; if anything it compounds it. However this is a post-processing issue
involving harmonic analysis and instrument timbre recognition, which is not within the scope
of this study.

 140

Figure 7.15 – Transcription of NSA quartet example without difference tone analysis

Figure 7.16 – Transcription of NSA quartet example with difference tone analysis

For another demonstration of this algorithm, the pitch extraction of the three-part Nkosi
Sikeleli Africa excerpt from the previous chapter was repeated with the same settings (see
Figure 6.13), except this time with difference tone analysis switched on. The improvement is
most noticeable in the bass part, where most of the faintly detected notes have now been filled
in. Scrutinizing the transcription, even counting the artefacts at the end, which are due to
noise in the recording, the result shown in Figure 7.17 is now 90% accurate. Percentage error
was measured in each time frame by how far (in semitones) the transcription strays from the
actual notes in each voice.

 141

Figure 7.17 – Pitch Extraction of three-part NSA example using DoG wavelet transform

For a final example to end off this chapter, Figure 7.18 shows an attempt at transcribing a
five-part choral excerpt with Wave Processor. This is the opening five bars of Gregorio
Allegri’s Miserere Mei, Deus, which was mentioned in the introductory chapter*. The chosen
frequency range for the CWT was 80Hz – 640Hz over 512 scales, and a Morlet wavelet with
a wavenumber of 32 was used. While the difference tone analysis has been included, it had
little effect on this particular output, since the pitch detection window width was very narrow
(256 samples). The calculation utilized 272MB of memory and 3.75GB of hard disk swap
space. A Pentium Core2 Duo Processor took 12 minutes and 13 seconds to complete the task.

Note the following:

• It was discovered that this particular recording is slightly flat, and so the base pitch,
C0, had to be adjusted from 16.375Hz to 16Hz so that frequencies would convert to
their correctly tuned pitches. It is intended that a fine tuning feature be added to Wave
Processor so that the user may tweak the output in this way, if and when necessary.

• For this example, the program was manually altered to write D# as Eb, since this is the
correct diatonic spelling of this pitch in the context of Bb Major – the key of the piece
(see section 3.4 in Chapter 3 and section 4.4 in Chapter 4).

• Bar lines have also been added manually so that this result may be more easily
compared with the actual musical score in Figure 7.19.

• There is much reverberation and acoustic delay in the recording, which is why many
notes in each voice, especially in the top soprano line, appear to continue sounding
after the next note has begun.

• Checking the score pitch for pitch confirms that Wave Processor has managed to
detect all notes in all parts, though some of them less clearly than others. The least
well-detected pitch is the bass Bb in the fourth beat of the third bar, but it does still
appear nevertheless.

* Please find this excerpt at Sound\Allegri – Miserere – 5 bars.wav on the project CD.

 142

• The vertical overlapping of the Bb and the C in the two uppermost voices at the
beginning of bar 4, creating the interval of a major forms a typical suspension (see
Chapter 3, section 3.4.2). This has been accurately detected, though not drawn very
well. In general, Wave Processor could benefit from some improvements to the
graphical representation of pitches, especially in cases such as this. Compare this
rendering of two adjacent notes on a staff with that of the score notation.

• Apart from the noise at the beginning, very few of the pitches detected in each time
frame are harmonics or invalid fundamental notes, in comparison to the number which
have been identified correctly.

• The note type in the penultimate bar of the score in Figure 7.19, , is a breve. It
lasts twice the length of a semibreve or whole note, .

Figure 7.18 – Automatic transcription of first five bars of Allegri’s Miserere Mei, Deus

W
w

 143

Figure 7.19 – Opening five bars of Miserere (manual transcription from actual score)

 144

8 Experimental Pitch Detection on Live Audio Recordings

This chapter is mainly a record of experiments carried out on the pitch detection theories
discussed in this thesis. As mentioned in Chapter 1, it is important that an automatic
transcription system be tested on live audio recordings and not just synthetically produced
sounds, and so all experimental data is from live recordings. The intention here is to
demonstrate the performance of the algorithms implemented in Wave Processor and also to
examine the effects on the output of varying certain transform parameters. In this way, a
better understanding may be gained of how best to configure settings, given different musical
situations or methods of recording.

As a space-saver, only spectrograms and pitch graphs which show the most crucial results
have been included. There are, however, discussions about all settings attempted, and for
each set of sounds, one has been chosen to show details of the experimentation, with respect
to adjusting transform parameters.

8.1 Preparation of Audio Data

A number of studio recordings were made of some real instruments playing various simple
harmonic constructs. The musical scores for these have all been included in Appendix D and
references to these are given. It was considered important that these sound samples should be
acoustically mixed, i.e. the instruments were recorded playing simultaneously and not just on
separate tracks to be mixed later on [Cont07L].

Listed below are brief descriptions of the various sets of recordings made. String instruments
were chosen specifically because they have a very rich timbre, since it is vital the detection
algorithm be configurable so as not too be too sensitive that it always detects harmonics as
fundamental notes. Piano recordings of the same scores were also made for the same reason,
and they provide some comparison for analysis. For control sound samples, simple sinusoidal
signals were created synthetically and mixed, following the same pitch sequences as in the
recordings. These, of course, have no timbre. The software used to create these clips was a
command line program* which reads and parses an input text file containing pitch and time
information, and outputs a PCM wave file.

Set 1 – Two Similar Instruments (see Appendix D.1)

i) Middle C pedal (held) note and C Major scale above, one octave, ascending
ii) C5 pedal note and C Major scale below, one octave, ascending
iii) G4 pedal note and G Minor scale above, one octave, ascending
iv) A3 pedal note and chromatic (semitones) scale above, 1 octave, ascending

Set 2 – Three Similar Instruments (see Appendix D.2)

i) Close interval diatonic triads built on each note of a scale (root position only)
Keys: F Major and D Minor

ii) Wide interval diatonic triads on notes of a scale.
Keys: C Major (root positions) and A Minor (2nd inversions)

* Please find synth.exe in Software\Synthesizer on the project CD

 145

Set 3 – Four Similar Instruments (see Appendix D.3)

i) Perfect cadence in C Major
ii) Two chord progressions in G Major and A Minor

The studio recordings were produced as follows: Four different microphones were set up,
namely:

• RØDE – NT1-A condenser microphone [RØDE08W]
• RØDE – NT3 condenser microphone [RØDE09W]
• SHURE – Beta 57A instrument microphone [Shure09W]
• AKG – D 112 large-diaphragm microphone [AKG09W]

For more information about these microphones and their specifications, including envelopes
and frequency responses, please visit the web sites given in each reference. Note that the last
of these, the D 112, is designed specifically for use with bass instruments and its most
common use is for kick drums.

These four microphones were then used to record four separate tracks at the same time, of
exactly the same music. It was supposed that microphones with different frequency responses
would yield slightly different signals and thus different transformed signals, which in turn
could affect pitch detection. The extent of the differences and their effects may be measured
by comparing spectrograms of four samples of the same piece of recorded sound. Purely for
interest’s sake, the output of the four different microphones was also mixed together (post
recording) to see what the effect would be, as an additional experiment.

The tracks were all recorded digitally and saved as continuous mono 16 bit PCM WAV files,
at a sample rate of 44,100kb/s (CD quality.) They were each then cut into smaller files – one
for each of the various melodic or harmonic constructs – using Cool Edit Pro 2.0
[Syntrillium02S]. Since all five master tracks were recordings of exactly the same thing, start
and end times were noted for each cut made in one of the tracks, and then automatically
applied in the same places to the other four tracks, resulting in identically timed clips.

No further processing was done or effects applied to the sound bites, other than to normalize
them, in order to make them all the same volume. A normalizing threshold of 90% was used
in order to avoid clipping or distortion of the waveforms.

The synthesized control clips (employing sine waves) were all created from short programs
written in C++, three examples of which have been listed in Appendix B. Again, the clips
were normalized to 90%, so as to conform with the other experimental clips, although this
step was incorporated into the program code, instead of using Cool Edit Pro 2.0. Note: to
save space on the project CD, the raw recorded tracks have not been provided, but the cut
tracks used in the experiments are available.

8.2 Methods and Results

In these experiments, the terms sensitivity or sensitive transform, and the initialism DTA have
been utilized. The former refers to a transform for which values have been calculated by
taking the square root of the magnitude. This yields a more “sensitive” result because the
difference between maxima and minima is reduced and the curve of values between them
becomes flatter. DTA stands for Difference Tone Analysis, which may be turned on or off.

 146

8.2.1 Microphone Testing

The first experiment was to see if using different microphones in the recording had a definite
effect on each algorithm’s ability to detect frequencies. This experiment made some
necessary assumptions about how best to set parameters in the CWT (the subject of the
second set of experiments) but since these parameters were fixed and not variable for each
microphone test, the results were independent of them. The parameters chosen for the
transform were:

• Wavelet: Morlet
• Wavenumber: 40
• Upper frequency bound: 1320Hz (E6)
• Lower frequency bound: 65Hz (C2)
• Number of scales: 256
• Sensitivity: On

Since frequency response was the main issue, it was also not necessary to test more than one
of the tracks, as long as its frequency range was suitably large The chosen clip was taken
from Set 3 ii) – the four-part chord progressions. The A Minor progression had the widest
range and so was chosen for this reason. The resulting spectrograms are shown below:

a) RØDE NT1-A b) RØDE NT3

c) SHURE Beta 57A d) AKG D 112

Figure 8.1 – Spectrograms showing different frequency responses of four microphones

 147

It can be seen that while there are differences in each image, they are not very profound.
Looking at the first of the bass notes in each case, the AKG D 112 microphone performed the
best in this range, picking this frequency up strongly. This is as one would expect, since it is
designed as a high-performance bass microphone. In general, the AKG D 112 performed
better than the other microphones, possibly with the exception of the RØDE NT3, which also
produced good all-round results. The Shure microphone seems to be slightly better at picking
up higher frequencies than the others, but the difference in performance is not large. In
corroboration to the claim on the RØDE web site that the NT1-A is the “world’s quietest
studio condenser microphone”, it can be seen that the spectrogram is indeed somewhat more
clear of noise in comparison to the others. However, the detection of higher frequencies has
suffered slightly as a result. The AKG D 112 in particular has picked up much noise
especially in the lower frequency range.

Based on these results, it was decided that the microphone of choice for the rest of the
experiments would be the AKG D 112, since it was the most sensitive microphone and so
yielded the most frequency information in its output.

Only the spectrograms were examined for differences because the experiment concerns
effects at the pre-processing stage. The pitch extraction from the frequency information
(where difference tone analysis is done, for example) is a post-processing step.

To give an idea of harmonics vs. fundamental tones picked up by each microphone, Figure
8.2 shows the same transform on the synthesized wave. Also in the same figure, the result
from mixing all four microphones is presented.

a) Sine wave synthesis b) All microphones

Figure 8.2 – Spectrograms showing a) location of fundamental notes in chord
progression and b) mixed frequency response of all four tested microphones

Spectrogram b) in the above figure shows a large amount of noise, which is the combined
product of all the microphones. Amongst other things, it demonstrates the loss of quality as a
result of using multiple close-up microphones in a studio. Microphone placing and angle is
an important consideration for a studio sound engineer, but instead of going into the specifics
of this subject here, this instruction booklet from Shure [Shure09L] is instead recommended
as an excellent guide.

 148

8.2.1 Set 1 – Two Similar Instruments

For these experiments, the lower and upper bounds of the frequency scale were set from
128Hz to 1024Hz, which covers the range of all scales. Also, for these tests and all those
following, the number of scales in each CWT remained fixed at 128. This provides ample
frequency resolution for these particular audio samples. Whereas in the previous experiments
spectrograms were examined, here the full pitch extraction step was added, and pitch graphs
were compared with the known scores for similarity. The settings for which the output was
deemed most similar to the original, in terms of pitch and time location, were recorded.

8.2.1.1 Best Parameter Settings

It was found that for many of the parameter configurations for wavelet transforms and also the
Phase Vocoder, the first harmonic of the pedal note, in both the strings and in the piano
recordings, was detected instead of its fundamental. The tables below show the best
parameter settings found by varying each in turn while keeping the others fixed. The first
table is for the recordings of string instruments and the second contains results for the piano
samples. For the control set in the third table, it was possible to get the transcriptions near to
perfect and in a couple of cases 100% accurate with the CWT Pitch Method (CPM for short).

Strings

Configuration yielding best pitch detection Scale
Method Parameters

i) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
ii) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
iii) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
iv) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled

Table 8.1 – Results of automatic transcriptions for two-part string recordings

Piano

Configuration yielding best pitch detection Scale
Method Parameters

iii) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
i, ii), iv) Could not be tested due to lack of similar quality data and content

Table 8.2 – Results of automatic transcriptions for two-part piano recording

Synthetic

Configuration yielding near to perfect pitch detection Scale
Method Parameters

i) CPM Morlet wavelet, wavenumber: 16, not sensitive, DTA enabled
ii) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA enabled or disabled
iii) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA enabled or disabled
iv) CPM Morlet wavelet, wavenumber: 40, sensitive, DTA enabled or disabled

Table 8.3 – Results of automatic transcriptions for two-part synthesized waves

 149

8.2.1.2 Detailed Analysis

The next set of tables shows the experimentation process, with observations made on results
for a chosen sample from this set of sounds. In this case, the piano scale in G Minor with the
lower held note (scale iii) is presented. Although CPM with the Morlet transform was
observed to work a little better than other techniques, the DWT / MPM result should also get
a mention, since it eliminated more unwanted harmonics than the others. However, it did not
detect the pedal note very well either. Note that the best setting of the parameters was the
same as for each of the strings scales.

Redundant Haar / MPM
Window Width Comments
512 Fundamentals in scale generally correct, but no pedal note was

detected. Some first harmonics detected and other minor artefacts.
2048 Clearer detection and fewer artefacts. Harmonics also reduced.

Table 8.4 – Results for DWT / MPM

Figure 8.3 – DWT / MPM transcription (window width = 2048)

Phase Vocoder
Window Function Comments
Gaussian Fundamentals and first harmonics of scale detected equally

strongly. Pedal note detected as being held over nearly four and a
half notes, but at the wrong octave. Several artefacts.

Blackman Worst result: too many harmonics detected, confusing with
correctly detected pitches.

None Average result, though with several artefacts eliminated when using
the Gaussian window.

Table 8.5 – Results for Phase vocoder

Figure 8.4 – Phase vocoder (with Gaussian window) transcription

 150

Morlet Wavelet
Wavenumber: 5 Comments
Ordinary transform Correct fundamentals roughly detected. Strong first harmonics

detected
With sensitivity Poorer detection of

fundamentals. First harmonics
detected slightly more strongly
instead.

With DTA Better clarity for both
fundamentals and harmonics.
Some more harmonics detected.

(Both) Better clarity of both
fundamentals and extra
harmonics detected with
sensitivity.

Wavenumber: 20 Comments
Ordinary transform More correct fundamentals, but harmonics also detected clearly

Low note was detected an octave high, i.e. at the first harmonic
With sensitivity Better detection of both

fundamentals and harmonics.
Lower note is clearer but still at
the wrong octave.

(Both) Many more harmonics
detected.

With DTA More harmonics and upper
fundamentals detected.

Wavenumber: 40 Comments
Ordinary transform BEST RESULT – fewer

harmonics accepted, but first
harmonic of lower note was still
detected as being stronger than
the actual fundamental.

With sensitivity Better detection of both
fundamentals and harmonics.
Lower note is clearer but still at
the wrong octave.

(Both) No difference to ordinary
detection with sensitivity and
without DTA.

With DTA No difference.

Table 8.6 – Results for CPM with Morlet transform

Figure 8.5 – CPM (Morlet 40) transcription

 151

Paul Wavelet
Order: 4
Ordinary transform Very poor result. Hardly any fundamentals detected, mainly a few

harmonics.
With sensitivity Slightly better detection, but still

largely inaccurate.
With DTA No difference.

(Both) No difference to ordinary
detection with sensitivity and
without DTA.

Order: 10
Ordinary transform Much improved detection of fundamentals, but first harmonics are

also stronger.
With sensitivity Greater clarity for both

fundamentals and harmonics.
With DTA Greater clarity for both

fundamentals and harmonics.

(Both) Even better clarity for
both fundamentals and
harmonics.

Table 8.7 – Results for CPM with Paul transform

Derivative of Gaussian Wavelet
Order: 2 (Mexican Hat)
Ordinary transform Poor result. Hardly any fundamentals detected, mainly a few

harmonics. However, lower note G is present as a first harmonic.
With sensitivity Slightly different result, but

quality is still as poor as without
this option.

With DTA No difference.

(Both) No difference to ordinary
detection with sensitivity and
without DTA.

Order: 16
Ordinary transform Much improved detection of fundamentals, but first harmonics are

also stronger.
With sensitivity Better detection of both

fundamentals and harmonics.
More harmonics detected.
Lower note is much clearer but
still at the wrong octave.

With DTA Better detection of both
fundamentals and harmonics.
Not as many harmonics detected
as with sensitivity.

(Both) Even better clarity for
both fundamentals and
harmonics, but extra harmonics
also begin to appear.

Table 8.8 – Results for CPM with DoG transform

8.2.2 Set 2 – Three Similar Instruments

The next set of sounds were the triads in different keys. As with the previous example, it
should be remembered that the software is not yet capable of key detection, and so, although
the notes may not be diatonically correct to the scores, notes detected as D#, for example, are
still equivalent to Eb if the key is say G Minor. It is already becoming clear in these examples
that the inclusion of DTA, while useful, is not always a good thing, since, more often than
not, it has the effect of clarifying weaker harmonics which should be filtered out of the
transcription.

 152

8.2.2.1 Best Parameter Settings

Strings

Configuration yielding best pitch detection Triads
Method Parameters

i) F Major CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
i) D Minor CPM Morlet wavelet, wavenumber: 32, sensitive, DTA disabled
ii) C Major CPM DoG wavelet, order: 16, sensitive, DTA enabled
ii) A Minor CPM DoG wavelet, order: 16, sensitive, DTA enabled

Table 8.9 – Results of automatic transcriptions for three-part string recordings

Piano

Configuration yielding best pitch detection Triads
Method Parameters

i) F Major CPM Morlet wavelet, wavenumber: 40, not sensitive, DTA disabled
i) D Minor CPM Morlet wavelet, wavenumber: 36, sensitive, DTA disabled
ii) C Major CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
ii) A Minor CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled

Table 8.10 – Results of automatic transcriptions for three-part piano recordings

Synthetic

Configuration yielding near to perfect pitch detection Triads
Method Parameters

i) F Major CPM Morlet wavelet, wavenumber: 34, sensitive, DTA enabled
i) D Minor CPM Morlet wavelet, wavenumber: 33, sensitive, DTA enabled
ii) C Major CPM Morlet wavelet, wavenumber: 37, DTA enabled or disabled
ii) A Minor CPM Morlet wavelet, wavenumber: 32, DTA enabled

Table 8.11 – Results of automatic transcriptions for three-part synthesized waves

8.2.2.2 Detailed Analysis

The chosen clip in this case was the set of wide interval triads in C Major, played by the string
instruments. Note that although CPM with the Morlet wavelet performed best, no result was
all that satisfactory in this case.

Phase Vocoder
Window Function Comments
Gaussian Many high frequency harmonics detected. Only the final note of the

lowest voice appeared in the output.
Blackman Best out of all windows for detection of fundamentals, but more

harmonics and other artefacts appeared.
None Slightly clearer detection than with Gaussian window, but still poor.

Some harmonics filtered out.

Table 8.12 – Results for Phase Vocoder

 153

Figure 8.6 – Phase Vocoder (with Blackman window) transcription

 154

Redundant Haar / MPM

Window Width Comments
512 Many harmonics chosen over fundamentals.
2048 Same harmonics chosen over fundamentals, but clearer. Screenshots

were not taken for this result, which was even less satisfactory than the
Phase Vocoder.

Table 8.13 – Results for DWT / MPM

Morlet Wavelet
Wavenumber: 5 Comments
Ordinary transform Generally poor, with many artefacts and harmonics detected. Most

fundamentals were incorrectly identified.
With sensitivity More notes detected, but tuning

was calculated to be slightly
sharper than it should be.

With DTA More harmonics detected and
generall clarification of all
pitches.

Greater clarity of both
fundamentals and harmonics, but
tuning is still wrong.

Wavenumber: 20 Comments
Ordinary transform Result is an improvement from the previous, and notes are correctly

tuned, however many fundamentals are still missing, especially in
the lowest line. Generally hardly anything is detected below Middle
C (C4).

With sensitivity Detection of lower frequencies is
better, but more harmonics also
appear.

With DTA Many more notes detected,
mostly harmonics. Viola
remains very weak and only
appears with the last two chords.

Harmonics detected with
sensitivity enabled now very
strongly detected. Last four
notes of viola part appear, and
middle voice is also slightly
stronger.

Wavenumber: 40 Comments
Ordinary transform Last two notes of viola part now strongly detected, but the rest are

not present.
With sensitivity Further improvement in

detection of lower notes. All but
the first two viola notes are now
present, albeit weakly. Result is
not very different from when
wavenumber is set at 20.

With DTA Little difference. One or two
additional harmonics are
detected.

Slight improvement from
detection with sensitivity turned
on only.

Table 8.14 – Results for CPM with Morlet transform

 155

Figure 8.7 – CPM (Morlet 40) transcription

 156

Paul Wavelet

Order: 4
Ordinary transform Result was generally very poor. Only one or two fundamentals

correctly identified. Many artefacts.
With sensitivity Hardly any improvement than

without.
With DTA No difference to ordinary

detection.

No difference to ordinary
detection with sensitivity and
without DTA.

Order: 10
Ordinary transform Result is still very poor despite increasing the order of the wavelet.
With sensitivity Hardly any improvement than

without.
With DTA No difference to ordinary

detection.

Slight increase in clarity of all
detected components.

Table 8.15 – Results for CPM with Paul transform

Derivative of Gaussian Wavelet
Order: 2 (Mexican Hat)
Ordinary transform Result was generally very poor. Only one or two fundamentals

correctly identified. Many artefacts.
With sensitivity Hardly any improvement than

without.
With DTA No difference to ordinary

detection.

No difference to ordinary
detection with sensitivity and
without DTA.

Order: 16
Ordinary transform Fewer harmonics than with Morlet 20, but also fewer fundamentals

detected. Also none detected below Middle C.
With sensitivity More harmonics detected. Last

three notes of viola part are now
present.

With DTA More harmonics are clarified.

BEST RESULT – While only
two chords, the third and fourth
in the progression, are now quite
clear, the result is only
marginally better than the Morlet
40 detection. Both screenshots
have been included for further
comparison.

Table 8.16 – Results for CPM with DoG transform

 157

Figure 8.8 – CPM (DoG 16) transcription

 158

8.2.3 Set 3 – Four Similar Instruments

The final set of experiments were those done on the four-part harmonies and the clip chosen
for the more detailed analysis was the progression in A Minor, as played on the strings.

8.2.3.1 Best Parameter Settings

Strings

Configuration yielding best pitch detection Quartads
Method Parameters

i) Cadence CPM Morlet wavelet, wavenumber: 40, sensitive, no DTA
ii) G Major CPM Morlet wavelet, wavenumber: 40, sensitive, no DTA
ii) A Minor Phase Vocoder Gaussian window, window width: 1024

Table 8.17 – Results of automatic transcriptions for four-part string recordings

Piano

Configuration yielding best pitch detection Quartads
Method Parameters

i) Cadence CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
ii) G Major CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
ii) A Minor CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled

Table 8.18 – Results of automatic transcriptions for four-part piano recordings

Synthetic

Configuration yielding near to perfect pitch detection Quartads
Method Parameters

i) Cadence CPM Morlet wavelet, wavenumber: 16, not sensitive, DTA enabled
ii) GMajor CPM Morlet wavelet, wavenumber: 12, not sensitive, DTA enabled
ii) A Minor CPM Morlet wavelet, wavenumber: 10, not sensitive, DTA enabled

Table 8.19 – Results of automatic transcriptions for four-part synthesized waves

8.2.3.2 Detailed Analysis

Here the Phase Vocoder only marginally outperformed CPM. Both screenshots are included.

Phase Vocoder
Window Function Comments
Gaussian BEST RESULT – Most of the fundamental pitches were detected

with some harmonics. Some base notes were faint but were
nevertheless present.

Blackman Not a good result – out-of-tune detection of some fundamentals
None A clearer result than with the Gaussian function, but more

harmonics and other artefacts appeared.

Table 8.20 – Results for Phase vocoder

 159

Figure 8.9 – Phase vocoder (with Gaussian window) transcription

 160

Morlet Wavelet
Wavenumber: 5 Comments
Ordinary transform A sparse result, but not bad in that it did not contain too many

artefacts. One or two bass notes detected as their first harmonics.
With sensitivity More notes detected, but tuning

was calculated to be slightly
sharper than it should be.

With DTA Clarity is much improved, but
some notes are detected out of
tune.

All notes, including out-of-tune
pitches were clearer still.

Wavenumber: 20 Comments
Ordinary transform An improved detection in terms of tuning, but there are still a

number of fundamental notes missing.
With sensitivity Better result, but the penultimate

bass note is still mostly being
detected as its first harmonic.

With DTA Result is improved, with more of
the notes in the higher frequency
range now appearing.

Generally a good result, but
more harmonics were detected
which made the pitch graph look
rather cluttered. However, with
this setting, the lower bass notes
are clear.

Wavenumber: 40 Comments
Ordinary transform Only marginally better result than with wavenumber set to 20.
With sensitivity Slightly better result with more

of the notes in the higher
frequency range appearing.

With DTA Only a few more harmonics
detected, otherwise hardly any
difference.

Only a few more harmonics
detected.

Table 8.21 – Results for CPM with Morlet transform

Paul Wavelet
Order: 4
Ordinary transform Poor result with only a few notes correctly identified and many

artefacts.
With sensitivity An improvement – one or two of

the bass notes are clear, but
much detail is still missing.

With DTA A few more artefacts and
harmonics appear.

A slight improvement in clarity.

Order: 10
Ordinary transform A somewhat improved result with more notes correctly identified.
With sensitivity Further improvement, especially

in the upper frequency range.
With DTA The result is improved and the

bass line is now almost fully
rendered.

Greater clarity achieved,
yielding a fair result, although
many notes appear broken up
and there are still artefacts.

Table 8.22 – Results for CPM with Paul transform

 161

Figure 8.10 – CPM (Morlet 20) transcription

Derivative of Gaussian Wavelet
Order: 2 (Mexican Hat)
Ordinary transform A very sparse result, similar to that of the Paul transform /

extraction.
With sensitivity A slight improvement.
With DTA A few more frequencies

detected, but still very bare.

No difference to ordinary
detection with sensitivity and
without DTA.

Table 8.23 – Results for CPM with DoG transform

 162

Derivative of Gaussian Wavelet
Order: 16
Ordinary transform Result is much improved, and although pitches are rather weakly

detected, most are present and correct.
With sensitivity A very good result, but

unfortunately the penultimate
bass note is detected as its first
harmonic.

With DTA Clarity is very much improved
for all detected pitches.
Penultimate bass note still
detected as its first harmonic.

Very good clarity was achieved
with this setting, but was only
rejected as being the best result
because of the important bass
note which the other two
methods managed to detect.

Table 8.23 (contd.) – Results for CPM with DoG transform

For comparison, as a matter of interest, Figure 8.11 shows the result of pitch detection on the
control clip, using the parameters given in Table 8.19 which produced the best output. This is
almost 100% accurate.

Figure 8.11 – CPM (Morlet 10) transcription of four-part synthesized control clip

 163

9 From Pitch Graphs to Musical Scores

Up to this point, pre-processing techniques for pitch detection have been discussed in depth,
but this is really only half the problem of music recognition. In order to complete a solution,
further processing is required of the pitch and clarity information – the output of the pitch
detection algorithms. Without this vital step, we cannot draw anything better than the current
pitch graphs seen in Chapters 4 to 8, which are unacceptable representations of music in the
eyes of a musician.

The issues which need to be dealt with in order to render a score from the pitch data comprise
tasks ii) to iv) and also vii) from the overall research problem description (see Chapter 1).
These may be combined into two main objectives:

1) Properly segment the time domain by locating note edges and determining durations
from this, then quantize each note and fit them into bars of equal length, determined
by a time signature.

2) Further scrutinize the detected pitches and eliminate artefacts, via melodic and
harmonic analysis, then from this determine keys (if any) and spell pitches
diatonically.

In many ways these steps are dependent on each other, but more information is to be acquired
for the second task by tackling temporal note detection first. While methods have been
offered for achieving 1), research into 2) would fill a new thesis on its own, and so only the
most tentative suggestions have been made as to how to approach this problem heuristically.
The second step of task 1) may require a non-trivial method if the time signature was not
known a priori, however ideas for solving this have also been offered.

In general for this chapter, since the post-processing techniques presented here begin to fall
outside the scope of this study, their descriptions have been kept intentionally short, and
complete solutions have not been provided. Furthermore, the methods discussed have not
been fully implemented in Wave Processor and so could not be tested thoroughly.

9.1 Temporal Note Detection

A useful by-product of the McLeod Pitch Method described in Chapter 4 is that it gives a very
precise indication of the beginnings and endings of different notes within a melody, unless
two notes in succession share the same pitch. Therefore the problem of (monophonic)
temporal note detection is already nearly solved, quite incidentally. This is also the case with
the CWT Pitch Method in Chapter 6, but for polyphonic music this becomes much more
difficult, especially when dealing with non-percussive instruments which blend in well with
each other. It was shown in Chapter 7 that difference tones yield different interference
patterns in the spectrogram for different intervals, and therefore the onset of a new note (or
change in harmony) would also be the point at which a particular pattern changes most
dramatically. It is still not altogether clear, however, whether these changes are necessarily
due to the evolution of a note or chord in terms of an instrument’s particular timbre or note
articulation, or whether they are as a result of a definite change in pitch. It is therefore useful,
perhaps, to consider treating the problem as a separate issue and then to use the results to aid
in the task of temporal segmentation. In [Bello04L] and [Brossier04L], some note onset
detection functions have been offered, which will now be examined and reiterated here.

 164

9.1.1 Note Onset Detection Functions

The first function described by Brossier is the High Frequency Content function (originally
defined in [Masri96L]). This function has the effect of highlighting changes which occur in
the higher frequency range of the spectrum, which means that it is suitable for locating
percussive sounds, since these contain many high frequencies at their attack points. The HFC
function takes windows of an STFT as its input, and is given by:

,
0

,∑
=

=
N

m
mk

H
k FmD

where the STFT, Fk,m, has been defined in Chapter 4, section 4.1. As can be seen, the value
of each point in the function is the sum of linearly weighted frequency magnitudes in each
window. Since the values used are the bin magnitudes, we can also use windows of the CWT
if so desired. Such an approach, however, suffers from the same problems as already exist
from just examining MPM or CPM output – smoother transitions between chords and note
attacks of non-percussive instruments will not be detected successfully by this function.

The next pair of functions compare bin frequencies in neighbouring windows of the STFT by
their magnitude and their phase, resulting in a measure of spectral difference and phase
deviation. The Spectral Difference function is defined by the following sum of differences
function, which also operates on magnitudes:

()∑
=

−−=
N

m
mkmk

S
k FFD

0
,1, .

According to the Phase Vocoder algorithm (see Chapter 4, section 4.2.2), the difference in

phase between similar frequency bins in neighbouring windows of the STFT will be φ plus a

certain number of cycles of the frequency. If the frequency of a bin is stationary, then φ will
change at a constant rate between successive windows. However, when a frequency changes,

due to either a smooth transition to a new pitch or else a note onset/offset, a deviation in φ
will occur. We define phase deviation as the second derivative of the instantaneous phase
θ k,m of bin m, window k as follows:

.
~

2
,

2

,
k

mk
mk ∂

∂
=

θ
φ

This may be estimated using finite differences as:

.2
~

,2,1,, mkmkmkmk −− +−= θθθφ

The Phase Deviation function is then the average of all the phase deviations in each bin for

each window. Note that the principle argument should be used forφ~ , i.e. –π <φ~≤ π :

∑
=

=
N

m
mkk N

D
0

,
~1 φφ .

 165

Finally, by converting phase and magnitude back to the complex domain, we can use the
phase deviation measure also to define overall frequency deviation for bins of the STFT as
follows:

.
~ ,

~

,,
mki

mkmk eFF φ=

9.1.2 The Combined Onset Detection Function

If we combine S
kD and φ

kD we can measure the difference between deviated and actual values,

including phase information as well as magnitude, thereby obtaining a function which is much
better at emphasizing new note or chord onsets by subtle changes in frequency. The

difference is measured by calculating the Euclidean distance betweenF
~

andF :

.
~1

0

2
,,∑

=
−=

N

m
mkmk

C
k FF

N
D

According to Brossier, this effectively solves the problem of detecting both percussive onsets
and smooth note transitions.

9.2 Note Classification via Image Processing Techniques

Since in the CWT spectrogram we have a detailed pictoral representation of sound, it is well
worth looking at a few feature extraction techniques borrowed from image processing theory
which could be highly beneficial. Revisiting the three-part arrangement of Nkosi Sikeleli
Africa one last time, the image in Figure 9.1 below shows the result of an experimental
feature extraction, using a combination of techniques, as implemented in [McGuiness06S].

Figure 9.1 – Note identification of 3-part NSA example using Image Processing methods

As can be seen, the notes have been extracted and identified as being one of four different
types (which are explained below). Apart from some of the bass notes, the categorization is
accurate and furthermore only three harmonics remain unfiltered.

There is not room in the scope of this study to allow for a very detailed discussion of all the
theory, but the following is a summary of the process which yielded the above result. Figure
9.2 shows the image at the first three stages of the procedure.

 166

a) Firstly a greyscale CWT spectrogram was generated, using the Morlet wavelet with a
moderately high wavenumber of 20, so as to get good frequency localization but
without sacrificing too much time resolution. Instead of stretching the spectrogram
vertically, as for normal viewing purposes, the image was saved at its original height
of 1 pixel per scale, which in this case was 256.

b) The saved image was then binarized using a threshold of 72. This means that greys
with a level of 72 – 255 (maximum) were selected and the rest filtered out. This
simple process effectively removed a lot of the noise and weaker signal components.

c) Next, connected components in the black and white image were identified and
separated. The algorithm used for this is a scanner which examines the image, row by
row, and determines whether or not a path exists from the current pixel to each of its
neighbours. If a separated pixel is found, a new component is created, otherwise the
pixel is added to that of the connected neighbour. The algorithm was set to reject
components with a total pixel area of less than 200, thereby removing more noise.

d) The final stage of the analysis was separation of the image components into four
classes – one for each type of note. This was achieved by calculating various
attributes of each shape, namely perimeter, compactness and elongation, and then
classifying them by their similarity using k-means clustering [MacQueen67L].

a) CWT spectrogram saved as a greyscale image

b) Image converted to black and white by thresholding

c) Connected component analysis identifying notes

Figure 9.2 – Stages of note identification method leading to the result in Figure 9.1

 167

In the classification stage, component elongation is an obvious choice by which to categorize,
since it best represents duration. The reason for the inclusion of the other criteria is due the
effects on the components’ shapes from the way their extraction was done. Components
caused by bass sounds tend to be slightly shorter and fatter, being more spread out in the
frequency domain, whereas higher frequencies end up longer and thinner. This is evident in
the images above. Note that if the spectrogram had not been drawn dyadically, however, the
effect is reversed, but it is much more exaggerated and therefore cannot be exploited in this
way. Compactness is simply a measure of how well a component fits inside its bounding
rectangle. It was found via experimentation with different settings that including this attribute
made the algorithm perform better on the whole, and so it was retained.

There is one more step before the data is ready to be combined with information from pitch
methods, and this will clarify the purpose of doing the component classification. Most music
is constructed using regular length beats, and, even if the tempo changes, the durations of
almost all other nearby notes will be multiples of the shortest ones (see Chapter 3, section
3.3.3). Note types may therefore be more formally identified from the image by taking the
average length of a few of the shortest type of component found nearby, and then measuring
approximately how many of these fit into each of the other types of component. At the
beginning of the current example, it may be seen for the first bass component, three of the
shortest type (of which there are three in the top line and one in the middle) fit its length,
therefore it may be identified as some type of dotted note. Notes which appear to stop and
start between beats and out of synch with the general trend may be ignored, since they are
likely to be harmonics, which vary in strength according to different reasons compared to
sounds which have deliberate placement in measured time. However, notes which appear
within the time boundaries of other larger notes should not be discarded, since they may be
weaker fundamentals. These should be snapped to whichever beat position they are closest
to. It may not always be the case, but in this example, the first rule eliminates one of the
troublesome harmonics at the start, just below the middle line.

The lengths in pixels of each class of component in Figure 9.1 (excluding the one eliminated
harmonic) were measured and are shown in Table 9.1. This has been drawn so that the table
columns are in proportion to the average width of the smallest component, in order to
demonstrate how the quantization may be carried out.

56 55 58 55 117 114 113 115 219

112 63 74 110 111 119 110 214
 37 82

194 48 41 57 69 110 203

Table 9.1 – Quantization of component widths

From here, it becomes a relatively straightforward task to combine the above appropriately
time-quantized output with pitch information from the methods discussed in Chapters 6 and 7.
This data may then be parsed, and a MusicXML file, for example, generated. Finally, the
MusicXML could be imported into Sibelius or another music publishing package which
supports this format. Figure 9.3 shows a Sibelius score, obtained by using the pitch and note
type information from combined algorithms. Compare this with Figure 5.24 in Chapter 5,
which shows the original. This result may be improved even further with the likes of Figure
7.17 in Chapter 7, which completely eliminates the problem of the fading bass notes and
would also get rid of all but the last harmonic.

 168

Figure 9.3 – Full automatic transcription of 3-part NSA example, imported into Sibelius

The key signature of this score was determined by first taking all identified pitches in the
passage and arranging them in a scale, within one octave:

A B C D E F# G

By examining the intervals between the notes in this scale, it may be seen that the Ionian
mode (major) may be formed by starting on G, and the Aeolian mode (minor) would begin on
E. These two options account for 90% of all Western music (which is a rough yet educated
estimate). By virtue of the fact that the musical phrase begins and ends on a G Major triad,
and that there is a perfect cadence in G formed by the last two chords, the most likely key is
thus G Major. Three and four-part chords which form common patterns such as this may
easily be stored and searched for in a lookup table, and thus cadences may be recognized;
however, we don’t even need to go nearly this far with the analysis. Simply detecting that any
F in the passage of music is always sharpened is enough to write a correct key signature, even
if we are wrong and the key is technically E Minor and not G Major.

The only remaining assumption which had to be made was concerning the number and type of
beats per bar, but nine times out of ten in music, the beat type will be a quarter note, as
defined here. As for the number of beats, one clue is that the total number of the smallest
denomination note (the quaver) which fits into the whole phrase is 16. This number is a
multiple of 2 and of 4, as opposed to 3, or 5, or 6. Therefore, assuming a whole number of
bars, the best subdivision of the passage is into either two sets of eight quavers or four sets of
four quavers. The latter configuration is less common, but does exist in Music, and would
have a time signature of either 2

4 or 48 . The choice of 44 (the former division) is not just

because it is more popular or commonly occurring, but also because the best way in Music
Theory to identify the beat is to determine which note type is most frequent. This is logical,
since repetitiveness tends to give something a defining quality. The most frequent class of
note which appeared in the component classification was that of the red bounding rectangles
in Figure 9.1. This note type is twice the smallest in length, and so the smallest notes are
therefore subdivisions rather than main beats. Given the assumption about the beat type, eight
crotchets per bar is an extremely rare time signature, and so the best solution is two bars of
four crotchets each.

Although done manually in this demonstration, it has now been shown that the score in
Figure 9.3 may also be computed by a fully automatic method, given the audio signal alone.

 169

10 Conclusions

Thorough attempts have been made to solve research problems i) and v), and to some extent
ii) and iii) , as defined in Chapter 1, section 1.2. This chapter summarizes and evaluates the
current solutions, and suggests ways in which they may be improved. Some ideas for further
development of methods, towards a more complete solution to automatic transcription, have
also been offered.

10.1 Evaluation of Results

10.1.1 Monophonic Recognition

Several years before the time of writing of this thesis, single pitch recognition was already
well understood and successfully implemented in a number of pitch detection applications.
The point of including a thorough discourse on melody transcription methods again was to
find ways of improving and evolving them, or at least use them as part of a broader solution.
With the McLeod Pitch Method, this was indeed seen to be the case, since fair to decent
results were achieved by combining it with the Redundant Haar wavelet transform, as
proposed in Chapter 5.

Certainly with the Phase Vocoder this is also the case, since the implementation shows that by
searching for the next highest peak in windows of the STFT, multiple pitch extraction may be
achieved. Although this algorithm was tested less thoroughly, not being the main focus of
this research, it is very important to consider, since it is the current algorithm of choice for
most automatic transcription applications in the field. For this reason, the Phase Vocoder may
be used as a standard against which to measure the level of success of other methods.

The note onset detection method discussed briefly in the previous chapter works well for
single melody lines, but could not be tested on polyphonic material. This is because the
algorithm only provides information about when a change has occurred, throughout the entire
spectrum of frequencies, and not to which note the variance measure applies. In a way, it is
similar to the case of the Fourier transform yielding frequency but not time information. This
would seem to suggest another frequency domain windowing approach be used. However the
connected components analysis demonstrated in the same chapter may be a better method.
This would, however, require further testing in order to construct a more conclusive
argument.

10.1.2 Polyphonic Recognition

Given the high level of accuracy in the results of four and five-part harmony transcriptions,
the new method of multiple pitch detection using the continuous wavelet transform has
proved, at the very least, to be comparable with current techniques implemented in the field.
While the pre-processing part of this algorithm has been well-examined and implemented, the
actual pitch extraction is in need of further development and exploration of different
techniques, of which there are many, as implied in Chapter 9.

It would appear from the general clarity achieved in the relatively simple examples in Chapter
8 that the CWT pitch method almost always outperforms the Phase Vocoder for multiple pitch
recognition. However, there are many parameters which must be set, as shown in the
experiments, in order for the new method to yield these good results every time. It is also

 170

apparent that the content affects the correct choice of method and parameter settings,
sometimes dramatically, which presents a problem. While one configuration may be perfect
for some types of music, it may not work as well for others, even given similar instruments
and recording techniques but different harmonic material. For example, for higher frequency
content, a lower Morlet wavenumber may be used, since the frequency spread it provides in
this range gives a slightly clearer measure.

One solution is to make better use of the Phase Vocoder. Since this is a much faster
algorithm, it could do very well as a pre-pre-processing tool, feeding the CWT algorithm data
concerning the overall complexity of the music about to be analyzed. If relatively few
frequencies are detected by the Phase Vocoder, then the transcription system may choose a
simpler method in preference to the CWT, such as the Redundant Haar / MPM combination.
If, however, the Phase Vocoder found the audio to be much richer in harmonic content, the
more scrutinous CWT pitch method would be assigned to the pre-processing task. The type
and order of the wavelet to be used could also be determined from this data. For example, it
is apparent that thicker musical texture requires higher order wavelets, but higher frequency
content does not, and so on. Thus, inclusion of this step means that development of a robust
automatic algorithm-selection method is entirely possible.

From one or two of the results in the previous chapter, where the Paul wavelet does not seem
very suitable for this particular application, the Derivative of Gaussian is certainly worth
further attention. In some cases, quieter lower to middle range frequencies were best detected
by this transform. Also, unwanted harmonics tended to be filtered out better than in the
Morlet transform. The only reason higher orders had not been implemented in Wave
Processor was because of the difficulty of calculating the large factors in the normalizing
constants due to the Gamma function (see Appendix A.3) but this was only for display
purposes. However, higher order wavelets could prove more accurate, just as the higher
wavenumber Morlet wavelets have shown to be.

10.1.3 Usefulness of Music Transcription Software

One of the primary and most important measures of the usefulness of any given piece of
software is how much time is saved by using it to perform a certain task. The most popular
applications are either those which provide entertainment or those which make otherwise
tedious work relatively quick and easy to complete.

First and foremost, a program claiming to assist in the job of music transcription must make
the problem faster and easier to solve than doing it by ear, even if it is only a partial solution
which the user must then complete. It must also prove to be more accurate and more
discerning than the average experienced music transcriber – a quick, yet poor solution is still
of little use if too many corrections need to be made.

Figure 10.1 shows another unedited automatic transcription of the same three-part
arrangement of Nkosi Sikeleli Africa as demonstrated in Chapter 9. This transcription was
computed by one of the current most highly rated commercial music transcription systems
available, Neuratron’s AudioScore Utimate 6 [Neuratron09W].

While the program does indeed get all of the pitches correct, with only four or five extraneous
harmonics detected, there are many major errors in the assignment of note values and their
placement in time, which appear to be due to rather perfunctory post-processing techniques.
These errors make the correctional editing job for the user much more difficult, demonstrating
that precise temporal location is just as important as correct pitch detection when transcribing

 171

Figure 10.1 – AudioScore automatic transcription of NSA 3-part arrangement

music. For this reason, as it stands, AudioScore cannot truly be deemed useful. It is clear,
however, that this is not in fact the “ultimate” version of the software, since the tempo and
time signature options dialog box currently shows many greyed out settings, which could help
improve the output. Presumably these features are yet to be implemented by the developers.
The other somewhat more obvious requirement of an automatic music transcription system is
that its output should be easily imported into a music publishing application, such as Sibelius,
or else provide its own comprehensive set of engraving and publishing tools. For this reason,
although Figure 9.3 is a better result than Figure 10.1, this link has not yet been provided in
Wave Processor, and therefore it cannot claim to be a complete solution, as AudioScore can.

10.2 Ideas for Further Research

10.2.1 Improving the Speed of Algorithms

Attempts have been made to optimize most methods implemented in Wave Processor, but
there is still much room for further improvement. Firstly, there exist more advanced
algorithms than those presented here which are able to calculate transforms faster. For
example, as mentioned in Chapter 4, the FFT may be computed using higher radices. There
also exist hardware devices, such as certain field-programmable gate arrays, configured to
dedicated FFT calculation. Some graphics processing units, such as [Wang07W] are now
able to calculate DWTs, since Daubechies wavelets have become part of the JPEG2000
standard, and so wavelet transforms have become necessary stock requirements for codecs.

Studies have also been conducted with regards to finding a more efficient CWT algorithm,
including one by Michael Vrhel [Vrhel97L] claiming to achieve O(N) per scale. This means
that the FFT does not have to be used in the calculation at all.

10.2.2 Artificially Intelligent Pattern Recognition Techniques

This study mainly concerns itself with pre-processing methods of music transcription. Of
course this is really only half the battle. Purely empirical sound analysis methods are
analogous with what goes on in our inner ear. Sounds are filtered and converted into signals
which are more suitable for our brain to digest, but further analysis must be done before we
are able to recognize sounds as musical pitches and glean their context.

 172

Chapter nine touches lightly on this subject, but does not suggest methods beyond the
empirical. There are many other “artificial intelligence” techniques of which the intention is
to explore thoroughly, given the findings of research such as [Abdallah02L], [Andreão07L],
[Cont07L] and others. The subjects techniques of interest are:

• Machine Learning
• Neural Networks
• Hidden Markov Models

The last in the list looks particularly promising as a method for harmonic analysis, since it
provides a method of modelling based on the evaluation of the probability of a sequence of
observations occurring. Given the rules, or rather general trends, of music harmony discussed
in Chapter 3, an analysis/prediction algorithm could be constructed, whose output is
information about the likelihood of a pattern of detected pitches belonging to, say, melodic
lines or counterpoint, or else being part of the structure of a cadence. It may also possibly be
used to predict the instrument on which a line of music is being played, although this is only
hypothetical. Transcription of notes based on their harmonic function is a very powerful
technique, and one that is recommended by musicologists for manual transcription
[Scholes65L].

10.2.3 Importing pitch/time data into music engraving software

The previous section discussed the importance of making output of an automatic transcription
immediately accessible and editable to the user, but the favoured method of doing so has only
been tentatively suggested in Chapter 3. While further theory will not be discussed, since this
is the concluding chapter, it is intended that the MusicXML standard [Recordare09W] be
explored thoroughly and incorporated into Wave Processor, since this is arguably the most
widely supported format for representing music. Research, such as [Cunningham04L], has
also shown that it is one of the best, in that:

• It allows representation of music from very simple to extremely complex scores.
• It enjoys full support and continued development by the company which created it,

Recordare LLC.
• The data structuring and organization of MusicXML is based on an already robust and

widely used mark-up language, namely XML.
• The use of plain text to store data means that it is easily edited manually, but also that

it is compact and takes up little space when stored. It may also be compressed further
if desired by standard lossless techniques.

• Implementation of MusicXML is included in all major applications which deal with
either music engraving or music transcription.

• It comes with a free licence agreement, which means it may be used freely by software
developers in the music transcription / engraving industry, provided that the terms of
the licence are observed.

 173

Appendix A – Mathematical Notation

A.1 Notation Conventions

The following table summarizes the notational standard for most of the mathematical
formulae found in this thesis:

Symbol Designation Notes
t time value in seconds

τ shift in time value in seconds

f(t) continuous function of time

f[t] sampled version of f(t)

fn discrete function (of time) indexed by n

λ wavelength λk is also used to denote
eigenvalues (chapter five)

v frequency value in Hertz

ω angular frequency where ω = 2πv

p pitch
measured in semitones from
the base pitch, defined as
C0 = 0

F(v) continuous Fourier transform this is specifically of f(t)

Fm discrete Fourier transform, indexed by m also written mf̂

F, F–1 Fourier transform operator and its inverse

k, n, m index variables

n is normally used for time
series and m for frequency
arrays. tn & vm are values
of t & v at indexes n & m
respectively. n is also used
for Paul and DoG wavelet
orders.

B bandwidth of a signal measured in Hertz

N number of samples in a discrete signal

L duration or time limit of a non-stationary
signal

measured in seconds

∆t
change in time between two adjacent
points in a discrete time series

measured in seconds

∆v
change in frequency between two adjacent
points in a discrete frequency series

measured in Hertz

Fk,m discrete Short Time Fourier Transform,
indexed by k (windows), m (frequencies)

W window width in windowed transforms,
i.e. the number of samples in the window

also WN for Nth root of unity
(twiddle factors) in Cooley-
Tukey FFT algorithm

Λ duration or time limit of a window measured in seconds

Table A.1 – Mathematical notation conventions

 174

wn – kW discrete window function (shifted)
The window is at position n
shifted by k window widths

θ instantaneous phase angle measured in radians

φ(t) father wavelet or scaling function
φ is also used to denote
phase difference (chapters
four and nine)

ψ(t) mother wavelet or wavelet function also ψ0(t)
ψ s,τ (t) wavelet function at scale, s and shift, τ

s scale

S number of scales in a discrete transform

Ψf(s,τ) continuous wavelet transform of f(t)

Ψf
s,τ discretized CWT

of discrete signal fn
N. B. s and τ are now
indexes as opposed to values

* complex conjugate

⊗ convolution

!! double factorial ()



>−
==

=
1,!!2

1,0,1
!!

nnn

nn
n

H(ω) Heaviside or Step function ()




>
≤

=
0,1

0,0

ω
ω

ωH

Γ(z) Gamma function () ∫
∞ −−=Γ
0

1 dtetz tz

Π(t) Box function ()




>
≤

=Π
2
1
2
1

,0

,1

t

t
t

Hen(t) nth Hermite probabilistic polynomial in t
()
()

() ()tnHettHetHe

ttHe

tHe

nnn 11

1

0

)(

1

−+ −=
=
=

()tn
ReΦ and

()tn
ImΦ

Paul wavelet generator polynomials in t See Appendix B.2

Table A.1 (contd.) – Mathematical notation conventions

 175

A.2 Window Functions

Name Formula Parameter Diagram

Rectangular () 1=tw

Gaussian ()
2

2
1

2

2







 −−
= w

Wt

etw σ
5.0≤σ

Triangular () 1
2

1 −−=
W

t
tw

Cosine () 






=
W

t
tw

π
sin

Hann () 














−=
W

t
tw

π2
cos15.0

Hamming () 






−=
W

t
tw

π2
cos46.054.0

Blackman () 






+






−−=
W

t

W

t
tw

παπα 4
cos

2
2

cos
2
1

2
1 16.0=σ

Table A.2 – Window functions for the STFT (images from www.wikipedia.org)

A.3 Continuous Wavelet Functions

Name ()t0ψ ()t0ψ̂

Morlet
(ω0 ≥ 5)

2

2

04
1

)(0

t

eet tiM −−= ωπψ () ()2
02

1
4
1

)(ˆ ωωωπωψ −−−= sM
s eH

Derivative
of
Gaussian
(n ≥ 2)

()
()

2

2

2
1

1

0
1

)(
t

n e
dt

d

n
t

n

nn
D −

+

+Γ
−=ψ

()
2

2

2
10)(ˆ

ω
ωωψ −

+Γ
−= e
n

i n
n

Dn

Paul
(n ≥ 4) () ())1(

0 1
!2

!2
)(+−−= n

nn
P it

n

ni
tn

π
ψ

() ()() ωωωωψ sn
n

P
s esH

nn
n −

−
=

!12

2
)(ˆ

Shannon () =tS
0ψ sinc 

















2
3

cos
2

tt ππ

()

∏

∏








 ++








 −=

π
πω

π
πωωψ

2/3

2/3
ˆ

s

sS
s

Table A.3 – Continuous wavelet functions and their Fourier transforms

 176

Appendix B – Algebraic Workings

B.1 Finding the Points of the Daubechies 4 Scaling & Wavelet Functions

The D4 function coefficients are given as:

()
()
()
().31

,33

,33

,31

4
1

3

4
1

2

4
1

1

4
1

0

−=

−=

+=

+=

h

h

h

h

B.1.1 The Scaling Function

φ(t) is given by the following equation, where 0 ≤ t < 3:

() () () () ().3222122 3210 −+−+−+= ththththt φφφφφ [B.1]

The integer points, φ(1) and φ(2), are then:

() () ().211 01 φφφ hh +=

() () ().212 23 φφφ hh +=

To find eigenvalues, λ1 and λ2, we must find the determinant of the matrix, M2, such that

M2µ = λkµ, where:

,
23

01
2 








=

hh

hh
M and

()
() .
2

1







=
φ
φ

µ

Thus:

()()
()

() ()() ()()

()()
.,1

.0112

.01316

.0313133333333416

.0

.0

2
1

21

2

2

302121
2

3021

==∴

=−−∴
=+−∴

=−+−−++−++−∴

=−++−∴

=−−−

λλ
λλ
λλ

λλ

λλ

λλ

hhhhhh

hhhh

 177

The eigenvector for λ1 = 1 is:

()
()

()
() .
2

1

2

1

23

01







=
















φ
φ

φ
φ

hh

hh

Hence

() () ()
() () () .0211

.0211

23

01

=−+
=+−

φφ
φφ

hh

hh

Observe that

,1 20 hh −= and .1 13 hh −=

Therefore

() (),21
3

0 φφ
h

h= and () ().12
0

3 φφ
h

h= [B.2]

()
() () () .

1
2

1
1

2

1
3

0

0

3 







=












=







=∴ h
h

h
h φφ

φ
φ

µ

Let 2=µ , then

() ()()
() ()
() .

2

31
1

.
1

2
1

.211

2
2

22

0

3

0

3

+=∴








 +
=∴

=+

φ

φ

φφ

h
h

h
h

Finally, from [B.2]:

() ()

.
2

31

12
0

3

−=

= φφ
h

h

 178

The half integer points, φ(
2
1), φ(

2
3), and φ(

2
5), and subsequently all dyadic fractional points,

are then determined from equation [B.1] as follows:

() ()
() ()

.
4

32

8

3321

2

31

4

31

102
1

+=

++=

+⋅+=

= φφ h

() () ()
() () () ()

.0
2

31

4

33

2

31

4

33

12 212
3

=

+⋅−+−⋅+=

+= φφφ hh

() ()
() ()

.
4

32

8

3321

2

31

4

31

232
5

−=

+−=

−⋅−=

= φφ h

From here, the quarter, eighth, sixteenth integer points, and so on, may be found recursively
by subdividing intervals ad infinitum.

B.2.2 The Wavelet Function

The derivation of the points for the D4 mother wavelet function, ()tψ , is trivial once the

scaling function has been calculated. This is achieved simply by substituting values of the
points found for φ(t) in the wavelet equation:

() () () () ().3222122 0123 −+−+−+= ththththt φφφφψ

 179

B.2 Extracting the Real and Imaginary Components of the Paul Wavelet

The Paul wavelet (order n) is defined as:

() (),1)(1
0

+−−= nnP ititn αψ

where

 () .
!2

!2

n

nn

π
α =

In order to plot the real and imaginary parts of the function, the expression () ()11 +−− nn iti

needs be written as the sum of its real and imaginary components, which are unknown
polynomials in t.

() () () ().1 ImRe1 tiPtPiti nn
nn +=− +−

 [B.3]

B.2.1 Examining the First Four Orders

The first four orders of the complex function expressed in terms of separate real and
imaginary components are as follows:

n = 0:

()

()()

.
11

1

11

1
1

1
1

22

10

t

t
i

t

itit

it
it

iti

+
+

+
=

+−
+=

−
=− −

n = 1:

()

()
()

()222

2

2

22
21

14

12

12

1
21

1

−+

−−−=

−+−
=

+−
=− −

tt

tit

tit

tiit

i
iti

 180

()

()

() () .
1

1

1

2

12

12

124

12

22

2

22

24

2

242

2

t

t
i

t

t

tt

tit

ttt

tit

+

−+
+

−=

++
−−−=

+−+
−−−=

n = 2:

()

() ()
() ()

() ()

() () .
1

3

1

13

331

331

331

331

331

1
1

32

3

32

2

642

32

232

32

32
32

t

tt
i

t

t

ttt

ttit

ttt

ttit

ittit
iti

+

+−+
+

−=

+++
−−−−=

+−+−

+−+−−=

+−−
−=− −

n = 3:

()

()

() ()
()

8642

423

24223

423

423

432
43

4641

6144

6144

)61(44

6144

1
4641

1

tttt

ttitt

tttt

ttitt

ttitt

tittit

i
iti

++++
+−−−=

+−+−

+−−−=

+−+−
=

++−−
−=− −

() () .
1

61

1

44
42

42

42

3

t

tt
i

t

tt

+

−+−+
+

−=

 181

We see that a pattern begins to emerge:

() () () ()
() ,
1

1
12

ImRe
1

+
+−

+

Φ+Φ=−
n

nnnn

t

tit
iti

where)(Re tnΦ and)(Im tnΦ are the unknown polynomials in equation [B.3] multiplied by

(1 + t2)n+1. From the first few cases, we hypothesize the following recurrence relations:

);()()(ReImRe
1 tttt nnn Φ−Φ−=Φ +

).()()(ImReIm
1 tttt nnn Φ−Φ=Φ +

B.2.2 Proof

Given that

() ()() () (),11 ImRe121 tittiti nn

nnn Φ+Φ=+−
++−

then

() ()()
() ()() ()

()

() ()[] ()()
()()

() ()[] ()()
()

() ()[] ()
() () () ()[]

() ().

1

11

11

11

1

1
11

11

Im
1

Re
1

ImReReIm

ImRe

2

2
ImRe

2
ImRe

2121

)11(2111

tit

tttittt

titit

t

itti
tit

itit

itti
tit

it

t
ititi

titi

nn

nnnn

nn

nn

nn

nnn

nnn

++

++−

++++−+

Φ+Φ=

Φ−Φ+Φ−Φ−=

−⋅Φ+Φ=










+
++⋅Φ+Φ=










+−
++⋅Φ+Φ=










−
++−=

+−

 182

Appendix C – Code Listings

C.1 Fast Fourier Transform (FFT)

void FFT(int dir, DWORD n, double *rdata, double *i data = NULL,
 BOOL c2r = FALSE) {
 /* Real to real, real to complex, complex to real or complex to complex
 n-point Fast Fourier Transform

 idata == NULL: real to real
 c2r == TRUE: complex to real

 Forward - dir == 1
 Inverse - dir == -1
 */

 // Check for valid input
 if(!(dir == 1 || dir == -1))
 return;
 if(n <= 1)
 return;
 if(!rdata) return;

 BOOL r2r = FALSE;
 // If real to real transform, create temp imagina ry parts array and set
to 0
 if(!idata) {
 r2r = TRUE;
 c2r = FALSE;
 idata = new double[n];
 memset(idata, 0, n * sizeof(double));
 }

 // Bit reversal of real parts
 DWORD i, j = 0, k;
 double tmp;
 for(i = 0; i < n - 1; i++) {
 if(i < j) {
 tmp = rdata[i];
 rdata[i] = rdata[j];
 rdata[j] = tmp;
 if(!r2r) {
 tmp = idata[i];
 idata[i] = idata[j];
 idata[j] = tmp;
 }
 }

 k = n;
 do {
 k >>= 1;
 j ^= k;
 } while(!(j & k));
 }

 183

 // Combine Transforms
 DWORD npoints, jstep;
 double wr, wrt, wi, wmr, wmi, tempr, tempi;

 wmr = -1.0; // w = 2pi
 wmi = 0.0;

 for(npoints = 1; npoints < n; npoints = jstep) {
 jstep = npoints << 1;
 wr = 1.0;
 wi = 0.0;
 for(i = 0; i < npoints; i++) {
 for(j = i; j < n; j += jstep) {
 k = j + npoints;
 // wG2(x)
 tempr = wr * rdata[k] - wi * idata[k];
 tempi = wr * idata[k] + wi * rdata[k];
 // F(x + n/2) = G1(x) - wG2(x)
 rdata[k] = rdata[j] - tempr;
 idata[k] = idata[j] - tempi;
 // F(x) = G1(x) + wG2(x)
 rdata[j] += tempr;
 idata[j] += tempi;
 }
 wr = (wrt = wr) * wmr - wi * wmi;
 wi = wrt * wmi + wi * wmr;
 }
 wmi = -dir * sqrt((1.0 - wmr) / 2.0);
 wmr = sqrt((1.0 + wmr) / 2.0);
 }

 // If real to real transform, calculate magnitude of complex numbers
 // If forward transform, scale by 1/n
 if(r2r || c2r || dir == 1) {
 for(i = 0; i < n ;i++) {
 if(r2r || c2r)
 rdata[i] = sqrt(rdata[i] * rdata[i] + idata [i] * idata[i]);
 if(dir == 1) {
 rdata[i] /= n;
 idata[i] /= n;
 }
 }
 }

 // Finished with imaginary parts
 if(r2r) delete idata;
}

 184

C.2 Autocorrelation Function (ACF)

double ACF(double *in, double *out, DWORD N) {
 /* Fast ACF algorithm using Fourier Transform */

 // in - Input samples
 // out - Output data
 // N - Width of padded window

 // Copy data to output array
 memcpy(out, in, N * sizeof(double));
 // Create empty imaginary array
 double *idata = new double[N];
 memset(idata, 0, N * sizeof(double));

 // Do forward Fourier Transform
 FFT(1, N, out, idata);

 // Multiply by complex conjugates
 for(DWORD i = 0; i < N; i++) {
 out[i] = out[i] * out[i] + idata[i] * idata[i];
 idata[i] = 0.0;
 }

 // Do inverse Fourier Transform
 FFT(-1, N, out, idata);
 delete idata;
 return out[0];
}

C.3 Normalized Square Difference Function (NSDF)

double NSDF(double *in, double *out, DWORD N, DWORD n) {

/* Normalized Square Difference Function */

// Find ACF
double ss = ACF(in, out, N) * 2; // SSF[0]

// Subtract appropriate normalized terms to get sub sequent terms of SSF
for(DWORD i = 0; i < n; i++) {

out[i] = 2.0 * out[i] / ss;
ss -= in[i] * in[i] / N;
ss -= in[N - i - 1] * in[N - i - 1] / N;

}

return out[0];

}

 185

C.4 Adapted Peak-Picking Algorithm

UINT PickPeaks(double *nsdf, UINT *Peaks, DWORD n) {
 /* Algorithm adapted from MPM (Phil McCleod) */

 // nsdf - Normalized Square Difference Function a s input
 // n - Number of terms in NSDF
 // Peaks - Array of maxima as output
 // k - Peak picking threshold constant
 // Output - Number of maxima found

 memset(Peaks, 0, MAX_PEAKS * sizeof(UINT));
 UINT i, np, pmax;

 // Find first negative zero crossing
 for(i = 0; i < n - 1 && nsdf[i] >= 0.0; i++);

 // Start looking for peaks
 for(np = 0; np < MAX_PEAKS && i < n - 1; np++) {
 // Find next positive zero crossing
 for(; i < n - 1 && nsdf[i] <= 0.0; i++);
 if(i == n - 1) return np;

 // Crossed over zero line - Look for a peak
 pmax = i;
 for(; nsdf[i] > 0.0; i++) {
 for(; i < n - 1 && nsdf[i] > 0.0 &&
 (nsdf[i] <= nsdf[i - 1] || nsdf[i] < nsdf[i + 1]); i++);
 if(i == n - 1) return np;
 if(nsdf[i] <= 0.0) break;

 // Found a local peak
 if(nsdf[i] > nsdf[pmax])
 pmax = i; // local is greater than current maximum
 }

 // Crossed back over zero line - record peak's tau and continue
 // TODO - Parabolic interpolation - more accura te time location of peak
 Peaks[np] = pmax;
 }
 return np;
}

 186

Appendix D – Musical Scores

D.1 Two-Part Harmonies

D.1.1 Middle C pedal note with C Major scale above, one octave, ascending

D.1.2 C5 pedal note and C Major scale below, one octave, ascending

D.1.3 G4 pedal note and G Harmonic Minor scale above, one octave, ascending

D.1.4 A3 pedal note and chromatic (semitones) scale above, one octave, ascending

 187

D.2 Three-Part Harmonies

D.2.1 Close Position Triads

F Major:

D Minor:

D.2.2 Wide Position Triads

C Major:

A Minor:

 188

D.3 Four-Part Harmonies

D.3.1 Perfect Cadence

 C Major:

D.3.2 Two Chord Progressions

G Major:

A Minor:

 189

Appendix E – Wave Processor 3.0

Although it has a large number of completed features, Wave Processor is still very much a
work in progress*. It was written in Microsoft Visual C++ (Platform SDK) under Microsoft
Visual Studio 2008 and has the working title Mozart – named after one of the most notorious
music transcribers.

E.1 Installation

E.1.1 System Requirements

The following requirements are the minimum recommended for the computer system on
which you want to install Wave Processor:

Operating System
Microsoft Windows XP. Does not
yet work in Vista. An upgrade is
planned for Windows 7.

Processor
Suitably fast, preferably Intel Core2
Duo or better.

RAM
At least 2GB, preferably more for
finer analysis methods.

Hard disk free space

1GB – 10GB swap space, depending
on the duration of music needing to
be analysed and the depth of the
analysis. 2MB for program files and
additional space for storage of wave
files, which are approx. 5MB per
minute in size using the default wave
creation settings.

Table E.1 – System requirements for running Wave Processor

E.1.2 Setup

Wave Processor may be installed from the project CD as follows:

• Insert the project CD and locate the installation folder:
Software\Wave Processor\Install\

• Launch setup.exe
• Click Next to accept the copyright agreement
• Choose a destination folder for the program and data files by clicking Browse… or

click Next to accept the default location
• Click Next to start the installation and wait while the software installs
• Click Close to exit the setup program

* The latest version of the software may be downloaded from http://mars.cs.ukzn.ac.za/~johnmcg/

 190

E.1.3 Manual Installation

Should the above setup program fail for any reason, Wave Processor may also be
installed manually as follows:

• Create a destination folder on your computer in a location of your choice
• Insert the project CD and locate the folder:

Software\Wave Processor\Executable\
• Copy all files (Mozart.exe and *.dat) from this folder to your installation folder
• If desired, create a shortcut to Mozart.exe

E.2 Functionality

The following features have been implemented in the application:

• Open and view the waveform of a Windows 16-bit PCM wave file. Note that opening
and manipulating stereo tracks is not complete and so it is disabled in this version

• Play back the opened wave (recording is disabled in this version)
• Create an audio signal with up to eight frequencies at different amplitudes (sinusoidal

only)
• Perform a variety of mathematical transforms on a wave (see Table E.2)
• Perform a variety of pitch detection methods on a wave (see Table E.3)
• View the histogram, spectrogram and pitch graphs following a transform or pitch

extraction
• Export a spectrogram image to a bitmap
• Options and preferences settings (system options are not adjustable in this version)

Transforms Options

Choice of spectrogram or histogram view
Setting of upper frequency bound
Windowed (STFT) or ordinary transform
Phase Vocoder correction
Choice of seven window functions

Discrete Fourier

Window width adjustment for STFT and Phase Vocoder
Choice between Haar, Daubechies 4 or Redundant Haar
Detection threshold adjustment Discrete Wavelet
Choice of dyadic or linear spectrogram
Choice between Morlet, Paul, Derivative of Gaussian (Mexican
Hat) or Shannon wavelets
Adjustment of wavelet parameters (wavenumber or order)
Adjustment of lower and upper frequency bounds of output
spectrogram
Adjustment of number of scales to use in the transform
Choice of dyadic or linear spectrogram
Sensitivity option
Greyscale spectrogram option

Continuous Wavelet

Animated view of each wavelet

Table E.2 – Transform options in Wave Processor

 191

Method Options
Melody / single pitch extraction (MPM) Adjustment of window width, peek-

picking threshold and clarity threshold
Melody / single pitch extraction (Phase Vocoder) See Fourier Transform options – Phase

Vocoder is assumed
Two / three part extraction (DWT / MPM) Same as MPM options
Full / multiple pitch extraction (Phase Vocoder) See Fourier Transform options – Phase

Vocoder is assumed
Adjustment of window width (for post-
processing) and pitch detection threshold
Option to enable or disable Difference
Tone Analysis

Full / multiple pitch extraction (CWT)

See Continuous Wavelet Transform
options for more settings

Table E.3 – Pitch detection options in Wave Processor

E.3 Known Issues

Since this version of Wave Processor is still in Beta phase, there are a number of issues which
remain unresolved. These are listed below:

• Some features (but not those listed above) are not fully implemented, but may not
have been greyed out on menus and dialog boxes. Unknown behaviour may result
when attempting to use these features.

• The program remains untested on very long musical samples. The most file sections it
is known to be able to handle for a large CWT is 16. Unknown behaviour may result
if the hard disk on which swap files are made runs out of space, or if memory
availability is low on the system on which it is running.

• The y-axes of dyadic graphs are being mislabelled due to an incorrect calculation,
however the spectrograms themselves are drawn with the correct range and scale.

• The pitch meter is not yet complete, but in this feature a marker will be implemented
which indicates in real-time the value of a pitch sung or whistled into a microphone,
using MPM to determine the value.

• Other visible features not functioning are the record and wave navigation buttons
(fast-forward and rewind). It is intended that the retractable control panel have
features such as volume controls and VU meters, however for now it is just a blank
extendable panel (which is fun to play with if you are very bored!)

• If all tools are pulled off the docking toolbar, and the pitch meter is re-docked,
unfortunately it resizes to fill the width of the toolbar, and so the other tools will not fit
back on again. Simply restart the application if this happens.

• It is possible to open some options dialog boxes twice. Since only one handle is used
for each dialog box, the other copies spawned become orphaned and so cannot be
closed. Again, the application must be restarted to get rid of them.

• Due to the idiosyncrasies of the Windows waveOut interface, the application may
occasionally crash during wave playback, although this is a rare occurrence.

 192

References and Sources

Where possible, for each of the references listed below, the location on the project CD of a
soft copy of the source has been provided. For web sources, due to the dynamic nature of the
World Wide Web, copies of some of the web pages (only at the time of writing) have been
stored, as well as providing references to the original sites.

Literature

[Abdallah02L] S. A. Abdallah, Ph.D Thesis: Towards music perception by

redundancy reduction and unsupervised learning in probablistic
models, 2002, Department of Electronic Engineering, King’s College
London
Literature\Abdallah - PhD.pdf

[Abramowitz65L] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions

with Formulas, Graphs and Mathematical Tables (Chapter 22), 1st
Ed., 1965, Dover

 Literature\
Abramowitz & Stegun – Chapter 22*.png

[ABRSM38L] ABRSM, Rudiments and Theory of Music, 1938, The Associated

Board of the Royal Schools of Music, London
 (soft copy unavailable)

[Andreão07L] R. V. Andreao, J. Boudy, Combining Wavelet Transform and Hidden

Markov Models for ECG Segmentation, 2007, EURASIP Journal on
Advances in Signal Processing, vol. 2007, Article ID 56215, 8 pages
Literature\Andreão - Combining CWT and HMM.pdf

[Arfken85L] G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists

(Hermite Functions), 3rd Ed., 1985, Academic Press
 (soft copy unavailable)

[Bastiaans80L] M. J. Bastiaans, Gabor’s Expansion of a Signal into Gaussian

Elementary Signals, April 1980, Proceedings of IEEE, vol. 68,
pp. 538-539
Literature\Bastiaans – Gabor’s Expansion.pdf

[Bello03L] J. P. Bello, PhD Thesis: Towards the Automated Analysis of Simple

Polyphonic Music: A Knowledge-based Approach, 2003, Department
of Electronic Engineering, Queen Mary, University of London
Literature\Bello - PhD.pdf

[Bello04L] P. Brossier, J. P. Bello, M. D. Plumbley, Fast Labelling of Notes in

Music Signals, October 2004, Proceedings of 5th International
Conference on Music Information Retrieval (ISMIR 2004), Barcelona,
pp. 331-336
Literature\Brossier – Fast Labelling of Notes
in Music Signals.pdf

 193

[Bogert63L] B. P. Bogert, M. J. R. Healy, J. W. Tukey, The Quefrency Alanysis of
Time Series for Echoes: Cepstrum, Pseudo Autocovariance, Cross
Cepstrum and Saphe Cracking, 1963, Proceedings of Symposium on
Time Series Analysis (M. Rosenblatt, ed.), Chapter 15, pp. 209-243,
John Wiley, New York, NY
(partially available via Google Books preview)

[Brenner92L] N. M. Brenner, Numerical Recipes Software, excerpt from Numerical
 Recipes in C: The Art of Scientific Computing, 1988 – 1992,

Cambridge University Press
 Literature\Numerical Recipes in C – 12.2. pdf

[Brossier04L] P. Brossier, J. P. Bello, M. D. Plumbley, Real-time Temporal

Segmentation of Note Objects in Music Signals, November 2004,
Proceedings of International Computer Music Conference (ICMC
2004), Miami, FL, pp. 458-461
Literature\Brossier – Real-time Temporal
Segmentation of Note Objects.pdf

[Brown04L] J. I. Brown, Mathematics, Physics and A Hard Day’s Night, 2004,

Dalhousie University (public domain)
Literature\Brown - A Hard Day's Night.pdf

[Cont07L] A. Cont, S. Dubnov, D. Wessel, Real-time Multiple-pitch and

Multiple-instrument Recognition for Music Signals Using Sparse Non
Negative Constraints, September 2007, Proceedings of the 10th
International Conference on Digital Audio Effects (DAFx-07),
Bordeaux
Literature\Cont - Real-time Multiple-pitch and
Multiple-instrument Recognition.pdf

[Cooley65L] J. W. Cooley, J. W. Tukey, An Algorithm for the Machine Calculation

of Complex Fourier Series, 1965, Mathematics of Computation, vol.
19, pp. 297-301
Literature\Cooley-Tukey – FFT.pdf

[Cowling04L] M. Cowling, PhD Thesis: Non-Speech Environmental Sound

Classification System for Autonomous Surveillance, 2004, Griffith
University, Gold Coast Campus
Literature\Cowling – PhD.pdf

[Cunningham04L] S. Cunningham, Suitability of MusicXML as a Format for Computer

Music Notation and Interchange, 2004, Proceedings of the IADIS
International Conference Applied Computing, Lisbon
Literature\Cunningham – Suitability of
MusicXML.pdf

[Danielson42L] G. C. Danielson, C. Lanczos, Some Improvements in Practical

Fourier Analysis and their Application to X-ray Scattering from
Liquids, 1942, J. Franklin Inst. 233, pp. 365-380 and 435-452

 (soft copy unavailable)

 194

[Daubechies92L] I. Daubechies, Ten Lectures on Wavelets, January 1992, SIAM
(partially available via Google Books preview)

[DeMoortel06L] I. De Moortel, Propagating Magnetohydrodynamics Waves in

Coronal Loops, February 2006, Philosophical Transactions of the
Royal Society, A15, vol. 364, no. 1839, pp. 461-472
\Literature\DeMoortel – Propagating
Magnetohydrodynamics Waves.pdf

[Ewer10L] J. P. G. Ewer, private communication, 2010

[Flanagan66L] J. L. Flanagan, R. M. Golden, Phase Vocoder, November 1966,

Bell System Technical Journal, vol. 45, pp. 1493-1509
 (soft copy unavailable)

[Fourier22L] J. B. J. Fourier, Théorie Analytique de la Chaleur, 1822, Firmin Didot

– Père et Fils (now public domain, scanned by Google)
 \Literature\Fourier - Théorie Analytique de la

Chaleur.pdf

[Frigo03L] M. Frigo, S. Johnson, FFTW Manual, 2003, Massachusetts Institute of
 Technology, Cambridge, MA
 \Literature\Frigo & Johnson - fftw3.pdf

[Gabor46L] D. Gabor, Theory of Communication, November 1946, Journal of

IEEE, London, vol. 93, Part III, pp. 429-457
Literature\Gabor - Theory of Communication.pdf

[Goupillaud 84L] P. Goupillaud, A. Grossmann, J. Morlet, Cycle-Octave and Related

Transforms in Seismic Signal Analysis, 1984/85, Geoexploration,
vol. 23, pp. 85-102

 (soft copy unavailable)

[Graps95L] A. Graps, An Introduction to Wavelets, Summer 1995, IEEE

Computational Science and Engineering, vol. 2, no. 2, pp. 50-61
Literature\Graps – Introduction to Wavelets.pdf

[Grossman84L] A. Grossman, J. Morlet, Decomposition of Hardy Functions into

Square Integrable Wavelets of Constant Shape, July 1984, SIAM
Journal on Mathematical Analysis, vol. 15, no. 4, pp. 723-736
Literature\Grossman & Morlet – Wavelets.pdf

[Grove00L] G. Grove, A Dictionary of Music and Musicians, 2nd Ed., 1900,

Macmillan, London
Literature\Grove – Dictionary (107).jpg
(page 107 only)

 195

[Haar10L] A. Haar, Zur Theorie der Orthogonalen Funktionensysteme, 1910,
Mathematische Annalen, vol. 69, pp331-371, translated by G.
Zimmermann, pub. in C. Heil and D. F. Walnut, Fundamental Papers
in Wavelet Theory, pp. 155-188, Princeton 2006, Princeton University
Press
Literature\Haar - Orthogonal Function
Systems.pdf

[Howard06L] D. M. Howard, J. A. S. Angus, Acoustics and Psychoacoustics, 1st

Ed., 2006, Focal Press, Elsevier, Oxford
Literature\Howard – Acoustics (242).jpg
(page 242 only)

[Kronland87L] R. Kronland-Martinet, J. Morlet, A. Grossman, Analysis of Sound

Patterns Through Wavelet Transforms, 1987, International Journal of
Pattern Recognition and Artificial Intelligence, vol. 1, no. 2,
pp. 97-126
Literature\Kronland - Analysis of Sound
Patterns.pdf

[Li07L] Y. Li, D. Wang, Pitch Detection in Polyphonic Music using

Instrument Tone Models, April 2007, Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing,
Honolulu, HI, pp. II. 481-484
Literature\Li-Wang - Pitch Detection.pdf

[Li08L] Y. Li, D. Wang, Musical Sound Separation using Pitch-based

Labeling and Binary Time-frequency Masking, March 2008,
Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, Las Vegas, NV, pp. 173-176
Literature\
Li-Wang - MusicalSoundSeparation08.pdf

[Li09L] Y. Li, D. Wang, Musical Sound Separation based on Binary Time-

frequency Masking, 2009, EURASIP Journal on Audio, Speech and
Music Processing, vol. 2009, Article ID 130567, 10 pages
Literature\
Li-Wang - MusicalSoundSeparation09.pdf

[Mackenzie01L] D. Mackenzie, ast. I. Daubechies, D. Kleppner, S. Mallat, Y. Meyer,

M. B. Ruskai, G. Weiss, Wavelets: Seeing the Forest and the Trees,
2001, National Academy of Sciences, Washington DC
Literature\Mackenzie - Wavelets.pdf

[MacQueen67L] J. B. MacQueen, Some Methods for Classification and Analysis of

Multivariate Observations, 1967, Proceedings of 5th Berkeley
Symposium On Mathematical Statistics and Probability, Berkeley,
University of California Press, vol. 1, pp. 281-297
Literature\MacQueen - k-means.pdf

 196

[Masri96L] P. Masri, PhD Thesis: Computer Modeling of Sound for
Transformation and Synthesis of Musical Signals, 1996, University of
Bristol, UK
(soft copy unavailable)

[McLeod02L] P. McLeod, G. Wyvill, Visualization of Musical Pitch, July 2003,

Proceedings of Computer Graphics International, Tokyo, Japan,
pp. 300-303
Literature\Visualization of Musical Pitch.pdf

[McLeod05L] P. McLeod, G. Wyvill, A Smarter Way to Find Pitch, September

2005, Proceedings of International Computer Music Conference,
Barcelona, Spain, pp. 138-141
Literature\A Smarter Way to Find Pitch.pdf

[Morlet82L] J. Morlet, G. Arens, E. Fourgeau, Wave Propogation and Sampling

Theory Part I: Complex Signal and Scattering in Multilayer Media,
Part II: Sampling Theory and Complex Waves, 1982, Geophysics,
vol. 47, no. 2, pp. 203-236

 (soft copy unavailable)

[Murtagh05L] O. Renaud, J-L. Starck, F. Murtagh, Wavelet-Based Combined Signal

Filtering and Prediction, December 2005, IEEE Transactions on
Systems, Man and Cybernetics, Part B: Cybernetics, vol. 35, no. 6,
pp. 1241-1251
Literature\Murtagh - Signal Filtering and
Prediction.pdf

[Nyquist28L] H. Nyquist, Certain Topics in Telegraph Transmission Theory,

February 1928, Transactions of the AIEE, New York, pp. 617-644
Literature\Nyquist - Certain Topics in
Telegraph Transmission Theory.pdf

[Raphael06L] L. J. Raphael, G. J. Borden, K. S. Harris, Speech Science Primer:

Physiology, Acoustics, and Perception of Speech, 5th Ed., 2006,
Lippincott Williams & Wilkins

 (soft copy unavailable)

[Ricker40L] N. H. Ricker, The Form and Nature of Seismic Waves and the

Structure of Seismograms, October 1940, Geophysics, vol. 5, no. 4,
pp. 348-366

 (soft copy unavailable)

[Scholes65L] P. A. Scholes, The Oxford Companion to Music, 9th Ed., 1965,
 Oxford University Press
 (soft copy unavailable)

[Shannon49L] C. E. Shannon, Communication in the Presence of Noise, January

1949, Proceedings of the Institute of Radio Engineers, vol. 37, no. 1,
pp. 10-21
Literature\Shannon - Communication in the
Presence of Noise.pdf

 197

[Shure09L] Shure, Microphone Techniques for Recording, 2009, A Shure
Educational Publication, Shure Incorporated
Literature\Shure – Microphone Techniques.pdf

[Sibelius09L] D. Spreadbury, B. Finn, J. Finn, Sibelius 6 Reference, 6th Ed., 2009,
 Avid Technology, Inc.
 Literature\Sibelius 6 Reference.pdf

[Stevens65L] S. S. Stevens, F. Warshofsky, Life Science Library – Sound and

Hearing, 1965, Time-Life Books, New York, pp. 102-103
 (soft copy unavailable)

[Strang89L] G. Strang, Wavelets and Dilation Equations: A Brief Introduction,

December 1989, SIAM Review, vol. 31, no. 4, pp. 614-627
Literature\Strang – Wavelets and Dilation
Equations.pdf

[Strang94L] G. Strang, Wavelets, April 1994, Appendix 1, American Scientist 82,
 250-255

Literature\Strang – Wavelets.pdf

[Torrence98L] C. Torrence, G. P. Compo, A Practical Guide to Wavelet Analysis,

1998, Bulletin of the American Meteorological Society, vol. 79, no. 1,
pp. 61-78
Literature\Torrence & Compo - A Practical Guide
to Wavelet Analysis.pdf

[Vrhel97L] M. J. Vrhel, C. Lee, M. Unser, Rapid Computation of the Continuous

Wavelet Transform by Oblique Projections, April 1997, IEEE
Transactions on Signal Processing, vol. 45, no. 4, pp. 891-900
Literature\Vrhel - Rapid Computation of the
CWT.pdf

[Zhan06L] Y. Zhan, D. Halliday, P. Jiang, X. Liu, J. Feng, Detecting Time-

Dependent Coherence Between Non-Stationary Electrophysiological
Signals, 2006, Elsevier Journal of Neuroscience Methods, no. 156,
pp. 322-332
Literature\Zhan - Detecting Time-Dependent
Coherence.pdf

World Wide Web

[Ackers00W] F. Ackers, presentation of original Fast Fourier Transform code by

Don Cross, 2000, (no longer available online)
 Web\Introduction FFTs.doc

[AKG09W] AKG D 112 microphone specifications, AKG,

http://www.akg.com/site/products/powerslave,id,261,pid,261,nodeid
2,_language,EN.html

 Web\D 112.htm

 198

[Bourke93W] P. Bourke, DFT (Discrete Fourier Transform) FFT (Fast Fourier
 Transform), 1993,
 http://local.wasp.uwa.edu.au/~pbourke/other/dft/
 Web\Discrete Fourier Transform.htm

[Celemony09W] Celemony, Melodyne (Direct Note Access), 2009,

http://www.celemony.com/
 Web\DNA - Demo.wmv (demonstration video)
 Web\DNA - Interview.flv (interview video)

[Crane97W] R. Crane, excerpt from A Simplified Approach to Image Processing,
 1997, Prentice Hall PTR,
 http://zone.ni.com/devzone/conceptd.nsf/webmain/
 A61876074AE0B9918625684600522CF4?
 opendocument&node=1301_US
 Web\FFT Tutorial.htm

[Google09W] Google, Google Calculator, 2009,
 http://www.google.com/search?q=once+in+a+blue+moon
 Web\Once in a blue moon.htm

[Graps04W] A. Graps, An Introduction to Wavelets, 1995 – 2004, Institute of

Electrical and Electronics Engineers, Inc.,
http://www.amara.com/IEEEwave/IEEEwavelet.html

 Web\Introduction to Wavelets\

[Klapetek02W] P. Klapetek, Wavelet Transform, Discrete Transform and Continuous

Wavelet Transform, 2002,
http://klapetek.cz/index.html
Web\Petr Klapetek\

[Misiti96W] M. Misiti, Y. Misiti, G. Oppenheim, J. M. Poggi,

Wavelet Toolbox, 1996, The Maths Works Inc.,
http://www.mathsworks.com/access/helpdesk/help/toolbox/wavelet

 Web\Wavelet Toolbox\

[MusicIcon09W] Music Icon, Music Icon, 2009, Music Icon, Inc.,
 http://www.musiciconinc.com/
 Web\MusicIcon.htm

[Recordare09W] Recordare, MusicXML, 2009, Recordare LLC,
 http://www.recordare.com/xml.html

Web\MusicXML Definition.htm

[Neuratron09W] Neuratron, AudioScore Ultimate 6, 2009,

http://www.neuratron.com/

[OED05W] Oxford English Dictionary, Oxford University Press, 2005,
 http://www.oed.com
 Web\OED pitch.htm

 199

[Olver05W] P. J. Olver, Applied Mathematics Lecture Notes, Chapter 13 – Fourier
 Analysis, 2005, School of Mathematics, University of Minnesota, MN,

http://www.math.umn.edu/~olver/am_/fa.pdf
 Web\Olver - Fourier Analysis.pdf

[Osgood09W] B. G. Osgood, Aliasing Demonstration With Music, 2009, The Fourier

Transform and its Applications – Video Lecture 19 of 30, Stanford
Engineering Everywhere,
http://academicearth.org/lectures/aliasing-demonstration-with-music

 (video not included on project CD due to its size)

[Paul09W] T. Paul, home page at Département de Mathématiques et Applications

(DMA), http://www.dma.ens.fr/~paul/
Web\Thierry Paul.htm

[Polikar03W] R. Polikar, The Wavelet Tutorial, 1993, Rowan University,
 http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html
 Web\Robi Polikar - Wavelets Tutorial\

[QSound96W] QSoundLabs, Virtual Barber Shop – Binaural Audio Demo, 1996,
 http://www.qsound.com/demos/virtualbarbershop_long.htm

[RØDE08W] RØDE NT1-A condenser microphone specifications,

RØDE Microphones,
http://www.rodemic.com/microphone.php?product=NT1-A

 Web\RØDE Microphones – NT1-A.htm

[RØDE09W] RØDE NT3 condenser microphone specifications,

RØDE Microphones,
http://www.rodemic.com/microphone.php?product=NT3

 Web\RØDE Microphones – NT3.htm

[SHURE09W] SHURE Beta 57A instrument microphone specifications,

SHURE Pro Audio,
http://shure.com/ProAudio/Products/WiredMicrophones/
us_pro_Beta57A_content
Web\Shure - Microphones - Beta 57A Instrument
Microphone.htm

[Sibelius09W] Sibelius, Sibelius 6, 2009, Avid Technology, Inc.,
 http://www.sibelius.com

[Wang07W] J. Wang, T-T. Wong, P-A. Heng, C-S. Leung, Discrete Wavelet

Transform on GPU, 2007, Department of Computer Science and
Engineering, The Chinese University of Hong Kong,
http://www.cse.cuhk.edu.hk/~ttwong/demo/dwtgpu/dwtgpu.html
Web\Discrete Wavelet Transform on GPU.htm

[Wolfram09W] E. W. Weisstein, Wolfram MathWorld, http://mathworld.wolfram.com

 200

Music

[Boswell09M] A Glorious Dawn – Cosmos Remixed, music by John Boswell, lyrics

by Carl Sagan & Stephen Hawking, 2009, Colorpulse Music, USA
Sound\Carl Sagan - A Glorious Dawn.mpg

[Heap05M] Hide and Seek, Speak For Yourself, music and lyrics by Imogen

Heap, 2005, White Rabbit / SonyBMG, UK
Sound\Imogen Heap - Hide And Seek.mp3

[Sontonga97M] Nkosi Sikeleli Africa, music and Xhosa lyrics by Enoch Sontonga,

1897, South Africa
Sounds\NSA\ (various arrangements)

[Tallis01M] Misere Mei, Deus, music by Gregorio Allegri, performed by The

Tallis Scholars, directed by Peter Phillips, April 2001, Gimell
Records, UK
Sound\Allegri - Misere.mp3

Software

[FFTW03S] M. Frigo, S. Johnson, fftw-3.0.1, 2001 – 2003, Massachusetts Institute

of Technology, Cambridge, MA

[McGuiness06S] J. C. McGuiness, Image Processor 3.0, 2006, Written as part of

requirement for Image Processing module of BSc. Hons. degree,
School of Computer Science, University of KwaZulu Natal, KZN

[Syntrillium02S] Syntrillium Software, Cool Edit Pro version 2.0, 1992 – 2002,
 Syntrillium Software Corporation, Phoenix AZ

[Tartini07S] P. McLeod, Tartini 1.2, 2002 – 2007, Written as part of PhD work,

Department of Computer Science, University of Otago, Otago

