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Abstract

It has been said (although sadly | have no souha)music is one of the most useful yet
useless phenomena known to mankind. Uselesstiit thes, apparently, no tangible or
immediately practical function in our lives, butiemely useful in that it is a truly universal
language between human beings, which transcendslbaas and allows us to express
ourselves and experience emotions in rather profovays.

For the majority of us, music exists to be listet®dappreciated, admired (sometimes
reviled) but generally as some sort of stimulusoier auditory senses. Some of us feel the
need to produce music, perhaps simply for our ongatoe/e enjoyment, or maybe because we
crave the power it lends us to be able to insgedirigs in others. For those of us who love to
know “the reason why” or “how things work” and wighdiscover the secrets of music,
arguably the greatest of all the arts, there caglysbe no doubt that a fascinating world of
mathematics, harmony and beauty awaits us. Pethapsason why music is able to convey
such strong emotions in us is because we are (fatever strange evolutionary reason or
purpose) designed to be innately pattern purssieguence searching and harmony hungry
creatures. Music, as we shall discover in thisassh, is chock-a-block full of the most
incredible patterns, which are just waiting to leeighered.
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1 Introduction

“Admittedly, however, it is difficult or impossibie picture what goes on in the air when a
chord is struck. The mind is staggered at the ghowf the thousands of superposed
vibrations (or ‘waves’) in the air space in a conemom when an orchestra is playing.”

— Percy A. Scholeg,he Oxford Companion to Musit965, orAcoustics

1.1 Music Recognition in General

The problem of dissecting musical sounds and attienpo identify their make-up has
interested musicians and scientists alike for agggu Perhaps one of the most well-known
attempts to transcribe music by ear is the stoth@fl4-year-old Wolfgang Amadeus Mozart,
on tour of Italy with his father in 1770 [Schole&§5 Mozart was so entranced by the beauty
of Gregorio Allegri’s nine-voice setting of Psalrh, Blisere Mei, Deu$TallisO1M], when he
heard it in the Sistine Chapel, that he felt corgplelo record it, and wrote out the score after
hearing the piece just twice — once from memoryasdcond time just to make some minor
corrections. He did this despite the fact thatas forbidden, “on pain of excommunication”,
to make a copy of any part of the piece in any fofdopyright was just as important in the
18" century as it is today, but, of course, for diéferreasons — all sacred music, in the end,
belonged to the Pope. Since Allegri presumablyenawote it down himself, or else his
original was never made available, we have only &ffio@nd others who subsequently may
have transcribed it wrongly) to blame if the pieloes not now sound quite the way it used
to! Nevertheless, we would probably not be abledar it in any form today if he had not
been able to record it in this way.

What the incredible mind of Mozart was able to dowt 240 years ago still remains quite
elusive for signal processing researchers, who haato accomplish exactly the same thing
via automatic means.

1.2 Research Problem Description

In layman’s terms, the main idea behind this redear to work towards creating a computer
system which is, to some extent, able to “hear’imasd subsequently generate a musical
score, i.e. a visual representation of the mustgsally read and interpreted by a musical
performer. This is akin to the problem of opticharacter recognition, except in this case, the
inputs are audio signals and the output is printedical notes. Ideally, our state-of-the-art
music recognition system should have the abilitgedorm the following tasks:

1) Detect and separate all pitches in any given pagpghmusical recording.

i) Determine where these pitches occur in time.

1) Find any beat, pulse or rhythmic patterns in thesimand determine the meter
(see the following chapter for an explanation @ thusical term).

V) Detect changes in tempo (speed).

V) Give a measure of clarity of pitches, i.e. distisguoetween what is a clear
musical note and what is “noise”.

Vi) Recognize the instruments and/or voices which nugkihie recording.

vii)  Represent the music correctly in a musical score.



The above tasks are no mean feat, even for theettanusician. Music dictation is widely
regarded as a skill which requires years of trgir@nd practice to master. The reality (and
this is perhaps testimony to how remarkable thedrubrain is) is that these are extremely
difficult problems to solve synthetically, givenrcent technology and understanding.
Research in this field has only quite recently gdisome momentum, and there is still much
work to be done.

Although it may seem like an “artificial intelligea” type project, much of the difficult work
in attempting to solve this problem comes at tleegrocessing stage, and so emphasis has
been placed on research into pertinent methodssratea. Most likely, the solution to all of
the above problems will combine purely empiricakimoels with artificial intelligence, but it
remains to be seen when and where the latter stheuldilized in the process.

1.3 Aims, Objectives and Scope of Research

This study is, first and foremost, an exploratidtechniques for solving the first two of the
seven problems identified in the previous secti@developing a good pitch/time detection
method which is able to deal adequately with potyph At the heart of this method is a
relatively new mathematical tool, namelavelets which is the main focus of the research.
While temporal detection (the attempt to correpibgition the detected pitches in time) has
been looked at very briefly in Chapter 9, problemsandiv) are outside of the scope of this
research. Note that without tempo or meter infaroma(in musical terms) we are unable to
draw bar lines or provide a time signature — bathl ¢omponents of any musical score
(unless one is a thirteenth century monk using ragiemotation). Therefore, all final
graphical results of pitch/time analysis are présg@as unbarred “piano roll’-type graphs,
examples of which are first presented in Chaptefdese may be compared with the modern
musical score notation used in the examples in ©h&p

The quotation marks around the word “noise” in eabv) are to differentiate between what
is considered musical “noise” — that which is irtted to be there — and background or
accidental noise. An example of the latter wowddisses, clicks or pops due to a poor
quality recording, or else coughs and the rustiewset papers in a live audience. Musical
“noise”, on the other hand, would be content preduoy non-pitched instruments, such as
drums and other percussion. In order to reducedh#lexity of the problem, this study
assumes that all music and noise in the recordimgended, i.e. the “Garbage In, Garbage
Out” principle applies. This also means that arigtic interpretation of the music (good or
otherwise) when performed by a particular musicaagroup of musicians will, necessarily,
be transcribed literally. Therefore, given thdtedent musical performances of the same
written work invariably differ greatly from one ather, it should not be expected that
automatic transcriptions of different recordingslod same piece should all render identical
scores, or that the scores should be one hundredmesimilar to the original from which the
music was performed.

In [ContO7L] an important point is made: the tecjud of digitally mixing synthetic musical
instruments or post-mixing two or more real instemts which have been recorded separately
is likely to yield different “spectral fusions” those common in ensemble recordings, where
all instruments have been recorded at the same @intetheir sound has blended in the air
before reaching the recording equipment. Thai saly, the harmonic mess described by
Scholes at the beginning of this chapter is likelpe different depending on how a particular
recording has been created in the studio. It meséssarily be assumed that these particular
effects will not alter the fundamental notes of ithe&truments too drastically, although when
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attempting to identify the instruments themselvless, would be a major concern. While
multiple instrument detection (problen) is not within the scope of this research, this
particular issue and other similar difficulties alibbe kept in mind.

Finally, in connection with the preceding problesm¢e rooms, being resonating chambers,
can also be thought of as musical instruments$)atilsl be assumed that the acoustic
conditions of the recording are reasonably dryc+tmch reverberation or echo interferes
with any system’s ability to determine note lengbthgorrect harmonic structures of chords.

1.4 Importance and Usefulness of Resear ch

The reaction in the music community, whenever alireough is made in the field of music
recognition, is the first clear indicator that #hés an important problem to be solved,
especially in music production, for amateurs arafgssionals alike. An example is the
discovery, by Canadian mathematics professor Jasman, of the precise arrangement and
notation for the infamous opening chord of the BsasongA Hard Day’s Nightusing “the
mathematics and physics of sound” [BrownO4L]. T8i@y was reported on many internet
fora, such as Slashdot, and caused consideraliterment, since it pretty much settled a
forty-year long debate amongst Beatles enthussastsnusic transcribers regarding the
chord’s construction.

Similar excitement surrounds newly released softveapable of pitch recognition, namely
Neuratron’sAudioScore Ultimate @for Sibeliug [NeuratronO9W] and Celemony’s
Melodyne which boasts “groundbreaking technology” in tlesctiption of its main pitch
manipulation featureDirect Note AccesgCelemony09W]. Quoting from the celemony.com
web site:

“Apr. 4. At this year’s m.i.p.a. (Musikmesse Intational Press Awardsirect Note
Accessvas voted most innovative product of the year loyerthan 100 music magazines
from all over the world.”

AudioScoréhas also enjoyed high praise from its revieward,its pitch recognition
technology seems fairly robust (see performands teme on this software in Chapter 5),
although it would seem that it has a long way tdogfore it could be said to be better than a
basic solution to the first two problems listecsectionl.2.

The reason for the hype surrounding the above softneleases is due to the fact that the
problem of automatic transcription is still largelgsolved, and yet if a solution did exist, the
jobs of music producers, transcribers, composeaisaachivers would be made considerably
easier. Firstly and most importantly, such sofevarakes the job of writing down music, for
whatever purpose, far less time-consuming. Anybodiie music engraving industry would
agree that the task of notating music, and doingcsorately and correctly, is both an art and
a science, and it takes a very long time to mad®eofessional looking musical scores are not
easy to produce, so any software capable of autogyaért or all of the procedure would be,
for musicians, akin to suddenly being able to fhying previously had to crawl everywhere.
In fact music recognition has been described byexwéed forum user as being “the holy
grail of music technology”. While this statemesiperhaps a little excessive, there is still no
denying the usefulness of such a piece of softiwatiee music production industry.

In music archiving, an automatic transcription sgstwould enable musicians who do not
know how to write the music they perform, or haverated understanding of music notation,
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to publish music they would otherwise have no wagharing with others. There have been
many such talented musicians throughout historysehousic has been forgotten because it
has never been written down.

Automatic music transcription systems would alsavéxy useful in developing music
education software. Although still mostly vapourgvat the time of writing this thesis, new
applications are currently being developed which aliow users to listen to individual tracks
within popular songs, read the musical scoresdcheart, follow animated instruments and
observe guitar and keyboard fingerings used byegsadnal musicians [Musiclcon09W].

The job of creating scores, animations and fingenretadata for the hundreds of songs a user
may demand would be overwhelming without the aidrofiutomated system, and it is likely
that such software will soon require a major inseci effort devoted to music recognition
research.

1.5 Thesis Structure

The rest of this thesis is divided into three nzants over the ten chapters, though the
boundaries between these parts cannot, due tatdrerelatedness of the material, be rigidly
defined.

The bulk of Chapters 2 to 5 is literature reviewggenting various fundamental concepts and
theory which is vital to understanding and impletirenexisting techniques, as well as
evolving new solutions. A whole chapter has besthachted to music theory and the
development of Western tonal systems. It is ex¢tgnmportant to the task at hand to be
aware of how music came into being, why it exists what its building blocks are. This
makes the decoding job a little easier. For mtraigscribers, there really is no substitute for
experience and practice. The best we can do wésigrdng machines (which cannot learn
and do not have human experiences) to do humas s know as much as possible about
the system which we are modeling and to have soroeledge of elements which occur
frequently and of those which do not.

Chapter 5 is also the start of the developmentmeof the thesis. A new (albeit somewhat
naive) method of multiple pitch extraction for teeothree part polyphony is presented,
following introductory wavelet theory. Chaptersuid 7, however, contain the core of the
main work in this research. Here, the author’s al@melopment of an important algorithm,
based on the mathematical theory preceding itisiudsed. Chapter 8 is a presentation of
experiments and results on studio recorded auda& dad the last chapter before the
conclusion is a very brief look at ideas for sofythose tasks in the main research problem
description which begin to fall outside the scopéhes study. This chapter has been included
in order to show that it is possible to base a ncoraplete solution on the proposed
techniques. The final chapter evaluates the i=fulin experiments and draws some
conclusions, before ending with some ideas fohtrtesearch in this field.

In all chapters where mathematical methods areugésxl, algorithms have also been
described, which have been implemented in softwéle main sound processing application
which contains most of these algorithms is caliave Processorvhich may be installed
from the project CD accompanying this thesis &ppendix E). Experimental audio has

also been included on the CD, and so all experisnegntried out using/ave Processanay

be reproduced.



2 Audio Signal Analysis — Basic Concepts

Before launching into the problem of pitch idemt#iion, it is necessary for some vital
fundamental concepts to be explained, in ordeclhieze a greater understanding of what is
being attempted in the first place. The main psepof this chapter is to introduce the subject
of signal analysis and, specifically, to describe important mathematical tools needed if one
is to attempt to solve any problem in this fieldgdaspecially the main problems in this
particular research.

2.1 Waves

In order first to understand what exactly it is ave analyzing, this section covers the basic
building blocks of audio signals: waves.

2.1.1 What is a Wave?
At one very basic conceptual level, a wave is #tepn created by a particle changing its

position with respect to time. This pattern maydbewn by plotting the position of the
particle on the-axis of a graph against time on thaxis, as illustrated ikigure 2.1below:

peak
0.5

-0.5 {
trough

time

Figure 2.1 — An example of a wave

Note that the vertical axis of a graph such asdbigdd actually represent any mathematical or
physical variable (not just position) which changesr time. For example it may represent
the voltage of an AC power supply or even, thinkamga larger time scale, the number of
newspapers sold per day by a press. The valuagnitade of this variable quantity at a
certain point in time is known as thenplitudeof the signal. The worsignalcan be used
interchangeably with the wordave

2.1.2 Frequency and Wavelength

Perhaps the most important term to define whennglabout waves iBequency Frequency
is a property of signals that repeat some partiquadtern. The frequency is said toligh if
the repetition is rapid, whereas if it is more graldit islow. As indicated irFigure 2.1, the
wave pattern forms a seriespgaksandtroughs A peakis the highest value reached as a
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wave’s amplitude increases before decreasing ggaenchange from a positive gradient on
the graph to a negative one).trAughis the lowest amplitude reached, as values dezreas
before they increase again (or a change from ativega a positive gradient).

f(t) = sin(10%) A =0.2,v = 5Hz

1

ATATAVATATAY,

0 0.4 0.6 0.8 1 12 1.4

time

f(t) =sin(20t) A=0.1,v=10Hz

1

0.5 1

0

-0.5 {

time

f(t) = sin(40t) A = 0.05,v = 20Hz

1

0.5

0 -

-0.5 4

time

Figure 2.2 — Three sine wave graphs



Referring toFigure 2.2 which shows three simple sine wave graphs, theptete traversal
of a wave from one similar peak to the next (oms&n two successive troughs) is known as
acycle The horizontal distance travelled in one cyslknown as thevavelengtiof the

signal (indicated by the greehon the first graph). Wavelength is, however, atigp

measure. When discussing distance in the timerdiiar, one should rather refer to the
period of the frequency. Frequenay;,is measured in terms of the number of cycles per
second, and has the uHRiertzor Hz for short. Incidentally, Google’s inbuilt calctia
[Google09W] reports that the frequency of “oncaiiblue moon” is 1.16699016 x gz —
about once every two and half years! This is adgw@ample to demonstrate the relationship
between frequency and time: they are inverselyqagnal to each other, and so, the shorter
the period or wavelength, the higher the frequesfdpe wave, and vice versa.

2.1.3 Phase

A necessary concept to be grasped fairly earlytloa relevance of which will become more
apparent later) is that phase Perhaps the easiest way to explain what is nigatitis term
is to compare sine and cosine functions with tmeesiiequencies. We know from the basic
properties of sine and cosine that the amplitudd®former begins at zero (at timme 0) and
the latter at its maximum, 1.

f(t) = sin(lot)  A=0.2v=5Hz f(t) = cos(10t) A=0.2,v=5Hz

1 1

0.5 / 0.5
0 0 4
.05 | / -0.5 1
-1 -1
0.2 0.4 0

.6 0 0.2 0.4 0.6

time time

Figure 2.3 — Sine and cosine graphs, both with frency 5Hz

It can be seen that the graph$-igure 2.3are waves which have exactly the same period
length, and yet the cosine graph is displacedne from the sine graph by a quarter of a
cycle (or 0.05 seconds). This displacement in isnghat is known as thghase difference
between the two signals, and it is measured indeithe difference in the position of their
periods at any given instant. In other words,pghase difference is the changeaygle

between two signals, which we shall refer tagameasured in radians. For sines and cosines,
@= 11/ 2, since

cosd =sin(6+711/2).

Figure 2.4 further illustrates phase differenag,between two angle€}; and &, which are
different locations in the cycle of a wave with pesified frequencyy.
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1 complete wave cycle

Figure 2.4 — Polar graph showing two angled; and 6, with phase difference@

Note that if one were to remove the time axifigure 2.3and imagine the waves carrying

on to infinity in both directions, there would be way to tell the difference between the two.
Phase therefore becomes meaningless without a @aieterence. Thus, for practical
purposes, waves which could be perceived as aitBare or a cosine are referred to generally
assinusoids

It is also interesting to note that the human augisystem is able to detect extremely subtle
phase differences between signals arriving atdfiehd right ear. In fact this ability is partly
what enables us to locate sounds spatially, inquaat, laterally. This idea was first
proposed by English physicist John W. Strutt, BaRayleigh, in 1907 [Stevens65L].
Rayleigh performed a series of experiments toltisstheories ominaural location that is

our ability to locate sounds by using both of carse Amongst other things, Rayleigh
rationalized the following:

Position of vibrating air particle at
timet

»
»

Direction of sound wave

Position of vibrating ai
particle at time + 50Qus

Figure 2.5 — Diagram showing phase difference ofwmave at each ear



Regardingrigure 2.5 if one imagines a wave approaching the head fedinto right, peaks
and troughs in the signal arrive at the left eamall fraction of time before the right — to be
more precise, about half a millisecond, assumiag tthe distance between an average
person’s ears is about 17 to 20 centimetres angpbed of sound is 343 metres per second.
Considering that the wave period of audible sousd®r the average human, betweep$0
and 50ms (i.e. frequencies between 20kHz and 20téz¢ is a very definite phase difference
between the signal at each ear, especially for lmigdiow frequencies. The brain must
somehow be measuring this phase difference andeiag location from this information.
This assumes that ears analyze sound at the sameréither than one after the other.

Rayleigh proved this theory by using tuning forksietn produced waves with slightly

different frequencies in order to create the eftéa sound with a constantly changing phase.
As expected, to the observer it appeared as sadbnad source was moving from left to right
and back again. More than a hundred years onowehave much more sophisticated
technology to exploit binaural location by phasi#edénce and are able to synthesize this and
other effects using computer programs. A rath@yeaile demonstration* may be found at
QSound.com Fhe Virtual Barber ShofQSound96W].

2.1.4 Stationary and Non-stationary Waves

It is of vital importance at this point to makel¢ar that “cycle” implies repetition. One
should not assume that wavelengths, and thus fnetege can simply be measured from one
arbitrary peak to the next, because the wave matacodifferent frequenciest the same
time— so the next peak along the wave may belonglitiexent frequency. The graphs in
Figure 2.2all represent waves with fixed frequencies. A watthis type, for which the
frequency does not change over time, is knownsiateonarysignal. On the other hand, if,
as is the case iRigure 2.1, the wave’s frequency is variable, it is calledlos-stationary
signal. Waves which contain more than one simatas frequency (a musical example of
this would be &hord) can also be stationary, as long as all of thosguencies remain
constant throughout the signal. Another way okiog at it is that any waveform which
comprises a continuously repeating pattern is gtatsonary and vice versa.

f(t) = 15 sin(10rt) + ¥4 sin(20rt) + Y5 sin(40rt).

1

0.5 1

-0.5 4

time

Figure 2.6 — Composite sinusoidal wave

* For a further more simple demonstration of birslmcation by phase difference detection, please r
Phaser.ex@n the project CD, located Bof t war e\ Phaser . This will create a demo wave file.
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This is demonstrated frigure 2.6, which shows a wave containing three frequencidsese
are, in fact, the three sine waves frbigure 2.2 added together and scaled.

The final important point to make about waves & tion-stationary signals could possibly be
made stationary simply by repeating the entireaigmwever this would, in general, require
a slight alteration of the waveform at its begirgnand end in order to create a seamless join.
Nevertheless, it is something to bear in mind wthilaking about the significance of
stationarity vs. non-stationarity in the discussidaout transforms in secti@?3.

2.2 Digital Representation of a Signal

Before we can begin to do any sound signal analyiisthe aid of a computer, we need a
way of representing sound waves, which are contisd@nalogue, as discrete / digital
entities. This can be done by extracting valuesaanplesof the wave’s amplitude at regular
intervals — this process, naturally, is caldasnpling The main question is how often, or how
close together should these samples be to enatraltfirequencies in the wave are properly
represented? Also, how “often” is “often enougb’tlsat no samples are simply redundant
information?

2.2.1 The Nyquist-Shannon Sampling Theorem

This theorem, one of the most important in thedfigfl telecommunication, states the
following [Shannon49L]:

“If a function f(t) contains no frequencies higher tfaweps*, it is completely
determined by giving its ordinates at a seriesobfis space%B seconds apart.”

Although Claude Shannon proved and formalizedttiesry in 1949, Harry Nyquist, a
physicist and research engineer at Bell Laboratpsieould also be credited with its

discovery. Th%B second rule is alluded to in Nyquist’'s papgeertain Topics in Telegraph

Transmission TheorjNyquist28L] written several years earlier in 1998 cited by Shannon

in his own paper. Shannon therefore calls thig tapacing th&lyquist interval W, the
highest frequency limit of a signal, is also knoamthebandwidthof the signal.

For a proof of the sampling theorem, see [Shannign49owever, it is perhaps easier to
understand why it should be true by lookindrafure 2.7, which is the signal ifrigure 2.6
sampled at different rates. The first of thesasisless as it does not represent the signal at alll.
Since the wave passes through zero every 0.1 se¢and this is due to the lowest frequency
component of 5Hz) if we start samplingtat O, then every sample will be zero, hence the
straight line along the-axis. This is an extreme example of an effecigmal processing
calledaliasing which occurs when the sample rate is too lonet@lble to represent the signal
properly. Thus it could represent a number of otloatinuous functions as well, which can
be thought of as aliases of the same digital sigAdla sample rate of 10 per second, this
straight line graph could in fact represany continuous function which contains frequencies
above 5Hz. At first, this case may look like a mmu-example to the sampling theorem,

because the signal has been sampled %glsyeconds, and so, surely at least the lowest

frequency of 5Hz should be supported. However,moast note that the theorem does not
state where sampling should begin — only the sargpiterval is given.

* cps = cycles per second, which is the same atzHer
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a) 10 samples per second

1

0.5
0
-0.5
-1
0 0.2 0.4 0.6 0.8 1.2 14
time
b) 10 samples per second
1
0.5 |
o J
-0.5
-1
0 0.2 0.4 0.6 0.8 1.2 1.4
time
c) 20 samples per second
1
0.5
0 B
-0.5
-1
0 0.2 0.4 0.6 0.8 1.2 14
time

Figure 2.7 — Sampled versions of Figure 2.6
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d) 20 samples per second

1

0.5 -
0 J
-0.5
-1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
time
e) 40 samples per second
1
0.5 A
0 J
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f) 50 samples per second
1
0.5 -
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0 0.2 0.4 0.6 0.8 1 1.2 14
time

Figure 2.7 (contd.) — Sampled versions of Figure &.
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The second graph has the same sample rate budrtimisg is started dt= 0.02. Now this
lowest frequency appears as a square wave, shalahg is indeed possible to represent
5Hz at this rate. Grapltg andd) are double the sample rate of the previous twgair,
graphc) does not yield the middle frequency since sampiegan at = 0, however it does
appear ird), where sampling once again begin$ at0.02. Graphs) andf) both fully
represent the signal, althouf)his over-sampled In €) the sampling begins &t 0.01 while

in f) it is back tot = 0. It can be seen that although the waveforbegnning to look less
square, and more likeigure 2.6, the extra samples fijy do not give any further information
about the signal thag) already did, and they are thus redundant. Acogrth Shannon’s
theorem, grapk) is the optimal way to sample this signal so asnsure all frequencies are

represented, since the Nyquist inter\d),should be

N=1/(2 x 20) seconds.

In other words, 20Hz being the highest frequenap@wave, it should be sampled 40 times
per second. Since the sample rate is also a Yduesecond”, it is also, in practice, usually
given in Hertz.

As mentioned previously, the normal human hearamge is between about 20Hz and 20kHz.
This is the reason why standard quality digitadlgarded music, for example on a compact
disc, is sampled at over 40kHz (actually 44.1kHzstandard audio CDs) since this sample
rate ensures that the highest perceivable freqegmece preserved in the recording process.
Please see the excellent video lecture from Acacl&aith [Osgood09W] presented by
Stanford professor of electrical engineering, Besgjood, for a demonstration of aliasing
effects caused by undersampling music.

2.3 Transforms

The graphs ifrigures 2.1, 2.2and2.3 are all drawn in thtme domainmeaning that the
wave’s amplitude is plotted as a function of timfemathematicatransformis a conversion
from one domain to another in order to obtain &ed#nt representation of the original
function.

2.3.1 The Most Important Signal Analysis Tool

Arguably, the most well-known and incredibly usefudthematical transform (at least
amongst engineers) is tReurier transform It is named after Jean-Baptiste Joseph Fowxier,
French mathematician and physicist who investig&tmatier series, of which the transform is
a generalization. Fourier discovered that anyinaous square-integrable function could be
expressed as an infinite sum (or integral) of siné cosine functions at certain amplitudes.
Fourier first published his findings in 1822 in Wisrk, Théorie Analytique de la Chaleur
(The Analytic Theory of HegliFourier22L], applying his method to finding dwion to the
heat equation — a fundamental equation of thermaayecs.

Note that the equation given ft{t) in Figure 2.6is in fact already expressed precisely in this
way — the amplitude of each of its component singkis case i%5. Also, each sinusoid is
one specific frequency, so putting frequencieshenhiorizontal axis and amplitudes on the
vertical axis, we could draw the bar graplFigure 2.8below as a representation of the
signal instead. Thus, when applied to a signai¢chvis in the time domain, the Fourier
transform effectively transmigrates it to the freqay domain.
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Figure 2.8 — Frequency domain representation of si@l in Figure 2.6

The Fourier transformed functiok(V) of a signalf(t) is given by [Wolfram09W]:
+0oo _:
F(v) = j f (t)e 2™t [2.1]

Here, Euler's formulad® = co99+ i.sind, where@= 27#t) is being used to express the
component sines and cosines in a more simplified.foAs is evident from the limits of the
integral, the domain of the transform is infinitamplitudes are calculated for every
frequency from negative infinity to positive infigi Since negative frequencies are,
practically speaking, indistinguishable from pasgtirequencies, the resulting graph of a
Fourier transform will always be symmetrical (ursléise original function is complex — see
Chapter 6). For practical purposes, negative gagies are almost always ignored, but
theoretically they are very important to bear imdhias will be seen in Chapter 7.

The Fourier transform may be inverted to returaraction of frequency to the time domain.
The inverse Fourier transform is given by [Wolfre8):

f(t) = Ij:F (v)€'?™dv. 2.2]

It can be seen that the only real difference betvike two equations is the sign of the
exponent.

2.3.2 The Discrete Fourier Transform

Shannon’s sampling theorem gives us a way of exprgsvaves as discrete signals, but we
need to do the same with the continuous Fouriesfoam so that we have a way of
processing those waves using a computer algorithnother words, we need a discrete
version of the transform which operates over adfigefinite domain.

The discrete Fourier transform (DFT) can be deriveoh the continuous case by considering
the transformed signal simply as another discret®fssamples in the frequency domain with

some frequency spacingy.
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Firstly, from the sampling theorem, we know théteguency B, will be the largest
supported if a signal is sampled with time spacdkiy of }QB seconds. This is really just

saying that the upper bound of the DFT graph vélBb Remembering the symmetry of the
Fourier transform, the largest supported negatiegufency is thereforeB, and so the entire
bandwidth will beZ2B (since the range of the DFT is fred to +B). In the time domain, the

discrete signal comprises an arraj\b$amplesf, fromn = OtoN — 1 Therefore, il is
the length of the signal in time,

N xAt = L. [2.3]
Hence
2B =N/L. [2.4]

Similarly, in the frequency domain, assuming tlasformed function will have the same
number of sampledyl, as the original signal, we have, for the freqyesample spacind)v,

NxAv=2B=N/L, from[2.4]
SO
Av=1/L. [2.5]

We now have both the range and sampling intervadiee for the discrete Fourier transform
and so we can begin sampling the continuous fumctubiich we recall fronj2.1] is defined
as:

Fv =] e ™dt

The first step towards discretization is to appmeadie this integral by a finite sum and to use
index variablesn for samples of andm for samples o¥ [Ewer10L]:

N-1 _
F(v)= > f(t,) & %At
n=0

Now, from the prescribed sampling intervals abavehe time domain the value bt index
N will be:

t, =n/(2B),
and in the frequency domain, thd" value ofv is:

v, =m/L.
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So

vt, =mn/2BL
=mr/N. fronj2.4]

Also
At=—. fronfi2.3]

And so, for each of the sampled value$@¥) we have [Ewer10L]:

LN ®|2mm/N
V) N =

The reverse discrete transform may be derived aitpjlthus [Ewer10L]:

f(t)= J_MF(V) &' 2™dv. from[2.2]
Then
N —
Z @I 278 t”AV
m=
1 N
- I Z Y@M, from[2.4] and[2.5]

Note the normalization factork/N in the forward transform antiL in the reverse
transform. Since multiplying bly in the forward transform and dividing lhyin the reverse
transform cancels them out, thss may be ommitted [Ewer10L]. Also, to get thesadtions
in their generalized discrete forms, since thexnesiablesn andm, are now arbitrary, we
may re-express the set of signal samgids), as a discrete arraf, Similarly, the frequency
samplesF(Vy), together becomk,,. So, finally, we define the forward transformbke

F f @—|27mn/ N

1
TN A

I MZ

whose inverse will be
— i27mn/ N
— i27mn
=) F, @ .
n=0

16



Furthermore, since in much of what follows our @mninterest is relative strengths of
frequencies, it is not important to include thetéaof 1/N [Ewer10L]. It must not be
forgotten, however, if the intention is to resyrdise a transformed signal from the frequency
domain. Therefore, again, the only practical défece between the forward and reverse
DFTs is the sign of the exponent.

The order of the complex number calculations ferE#T (and its inverse) N% Thisis

rather slow and quite impractical, especially wdealing with sound signals, which usually
have many thousands of samples. In 1965, Amere@hematicians James Cooley and John
Tukey developed a divide-and-conquer type algoritapable of doing the same calculation
in NlogN operations [Cooley65L]. Their work was basedtat bf Gordon Danielson and
Cornelius Lanczos [Danielson42L] who, in 1942, disered a method for re-expressing the
DFT as a combination of two DFTs over two halvegheforiginal signal, now called the
Danielson-Lanczos Lemma. This algorithm later bez&nown as the Fast Fourier
Transform.

A final note before proceeding with the next settithe sample intervalét andAv, affect
the granularity of the time and frequency domaihgctv they respectively break down. Thus
they are usually referred to as tiesolutionof those domains.

2.4 The Fast Fourier Transform Algorithm

The Cooley-Tukey Radix-2 Decimation In Time (DITyarithm is still the most popular
method for calculating DFTs. Although it is noetfastest algorithm available (higher

radices are slightly faster), as will be seers fairly easy to understand and implement, and it
is more than adequate for the purposes of thisrelse A fairly detailed explanation of the
implementation of the algorithm is given here, sitltis method is at the very core of the
entire process of music recognition. Thus it ipamant to be clear about how it works
exactly.

The following sources were used to develop an impl&ation of the algorithm as it appears
in the software written for this research:

o fftw-3.0.1(I i bbench?2/ np. ¢) [FFTWO03S] and [FrigoO3L]

* Code by N. M. Brenner froNumerical Recipes in C: The Art of Scientific Cotimgu
(Chapter 12) [Brenner92L]

* Anin-place complex-complex FFBourke93W]

» Fast Fourier Transform Don Cross [AckersO0W]

 woD_FFTfrom A Simplified Approach to Image Processj@gane97W]

2.4.1 Bit Reversal

The transform begins with a bit reversal step. Tuereversal” applies to the indices of the
samples in the input data array, rather than thrgokes themselves. It is a reordering of the
array, since the decimations in time split anddeothe samples into even and odd sets at
each step. Prior shuffling ensures that the owdptd is in the correct sequence at the end of
the calculation.
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The method of reordering is illustrated below ineaxample, using a set of 8 samples. As will
become apparent, the number of samples in theatigiggnal must always be a power of two
in order for this algorithm to work.

Binary Index | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Samples to t1 to t3 {4 ts {6 t7

Binary Index | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Samples to ty to ts 18] {5 t3 t7

Figure 2.9 — Bit Reversal

In Figure 2.9 each sampld,, is swapped with another, the binary index of whiek a
reversed bit order. E.g. samp{g001) is exchanged with samplg(100). Note that

samples with palindromic binary indexes, sucls4401), do not get switched. The method
of shuffling by decimations in time may be clarifiby examining what happens to the order
of the data with each decimation. As showfigures 2.10and2.11, a decimation sorts the
previous set of samples into two sets, placing éveaxed samples on the left and odd
samples on the right.

As can be seen, the result of the two decimatisisat the data becomes ordered as shown
previously inFigure 2.9, As for the explanation of why the data is reesadi in this fashion,
some more mathematics is necessary. The nextestiiois shows the derivation of the
previously mentioned Danielson-Lanczos Lemma, wisdandamental to Cooley & Tukey’s
algorithm.

even| odd| even odd even odd even aodd
Binary Index | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Samples | tog | t1 | to | t3 | &4 | &5 | tg | 17

even| even even even odd odd odd odd
Binary Index | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Samples | tg | to | &4 | tg | t1 | t3 | t5 | t7

Figure 2.10 — Decimation 1
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even| odd| even oddg even odd even qdd
Binary Index | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Samples to o ty {6 t1 t3 ts t;

L XL X

even| even odd oddg even even odd odd
Binary Index | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Samples to {4 to ts t1 ts t3 t;

Figure 2.11 — Decimation 2

2.4.2 The Danielson-Lanczos Lemma

Using the same notation as in sect®o4 if f(t) is a wave function from which samples are

taken (wherd\ = 2") to yield a discrete signdi, then the discrete Fourier transfori,, of
this signal is [WolframQ9W]:

N . iommn/N
— —| Z7mn
= E f.e :

For simplicity, let
— Ai271/N
Wy =e . [2.6]

So, ignoring the normalizing for further simplicitye have:
N-1
— mn
= fwWg™
n=0

Note that the above calculation, as it stands,li@gon the order dx? operations. As
mentioned above, the radix-2 algorithm splits thtadnto 2 halves of even and odd indexed
samples. This is due to the following importangtfstep:

= > f W +Zf

everfn) odd(n

?_
= Z onWI\ZImn + Z 1E2n+1 WA 2n+1). [2.7]
n=0
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-i27/N

Next, a little algebra — Recall fro[f.6] thatWN =e , SO
W2mn — 4-i2m2miYN
-i2mn/N
=—e 2
—\A/MN
Also,

W|\r|n(2n+1) — e—i27m(2n+1)/N

— o i2m2myN-i2m/N

— o i2m2myN g-i2m/N

=W W 29

Let g, andh,, be two discrete signal functions, such that
On = fon and  hp =T

Then, substituting int{2.7],

Y=
|
H

N\Z

1
F.=3g. W2mn ZhnWI\rIn(2n+l)'
n=0

>
1
o

From[2.8] and[2.9], this becomes:

%—1 M—1
|:m = g WN/2 +Wl\rln2h
n=0 n=0

So, if Gy, andH,, are defined as thd/2-point Fourier transforms @, andh,, respectively,
then this becomes:

=G, +W(H,, , 0<m<N/2

Now G, = Grny 2 andH, = H 1wy 2, sinceGy, andH,, are periodic (the pattern repeats

for the next halfN samples). AIS(S/Vm“L’\I /2 = WN , since

N/2 i
6N,\T/2) =M =1 and WN/2 =g,
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So, for the complete transform:
F.=G,,+Wy'H,,0<m<N/2, [2.10]
and

Fren2 =Gm —~WN'Hp, O<Sm<N/2 [2.11]

The factor Wy, is known as th&™ root of unity Collectively, these are sometimes called the
twiddle factors

2.4.3 Recombining of Transforms

Now thatF, can be expressed as a combination of two DFTe@e\ten and odd halves of
the input data, each of those DFTs may be brokemddecimated) recursively, all the way
down to single point transforms. At this stagéttedt needs to be done is to copy the input
data directly to output, which is precisely whappens at the bit reversal stage. Note that

calculation time is now much improved and is ondhder ofNlog(N) operations.

What remains to be done is to re-combine, frominbkige out, pairs of samples into 2-point
transforms, then those pairs into 4-point trans&amd so on, until finally the two halves of
the entire data set are combined to render the lepenjppansform. Since the “combining” is
all complex number multiplication and addition sipiart of the algorithm is a little more
fiddly. However, here is a rough explanation oivhibworks:

2.4.3.1 Loop Control

There are three loops in the combination part efcibde. The outside loop keeps track of the
number of points -Apoi nt s — per transform, at each combination. This strsand is
doubled at each step until it is half the lengthhaf input data. Nested within, the next loop
counts the current point, from 0 tonpoi nt s. This provides a starting point for the third,
innermost loop, which is nested within the secomtis loop keeps track of the current
position in the data array with 2 variablgpsandk. j marks the position of data for the part
of each transform given by equatil0] above, and marks the location of data for
equation2.11]. The variablg st ep moves the markers to the position of the next iair
transforms, to be combined into one at each itmaif the loop. The shell code looks like
this:

for(npoints = 1; npoints < n; npoints = jstep) {
jstep = npoints << 1;
fbk(i = 0; i < npoints; i++) {
for(j =1i; j <n; j +=jstep) {
k = j + npoints;
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Below is an example of how this description of flaxwrks on a set of 8 samples. It is taken
from the output of a debugging version of the s&# T program on the project CD:

Loop 1. npoints =1, jstep = 2 Combination 1:
Loop 2: i =0 4 pairs of DFTs of length 1 into 4 DFTs
tggg g j :g’ t:é joo Koo | Jor  Koi| joz Koz | jos  Kos
Loop 3: j =4, k =5 ol 1] 2] 3[ 4[] 5[ 6] 7
Loop 3: | =6, k =7 -
Loop 1. npoints = 2, jstep = 4 Combination 2:
Loop 2: i =0 2 pairs of DFTs of length 2 into 2 DFTs
Loop 3: j =0, k =2 ) ) ) )
Loop 3: | =4, k=6 Joo jio Koo Ko | Jor jiz Ko ki
Loop 2: i =1 o] 1] 2] 3[ 4[] 5[] 6] 7
Loop 3: j =1, k =3 ~ ~ ~ ~ ~
Loop 3: j =5, k=7
Loop 1. npoints = 4, jstep = 8 Combination 3:
Loop 2: i =0 1 pair of DFTs of length 4 into 1 final DFT
Loop 3: j =0, k =4
Loop 2: i =1 oo Jio Joo  jso Koo kio koo Kso
L00p3:j:1 k =5 O|1|2|3|4|5| 6|7
Loop 2: i =2 — —— e
Loop 3: j =2, k =6
Loop 2: i =3
Loop 3: j =3, k =7

2.4.3.2 Twiddle Factors

The rest of the code — the meat inside the loopaeculatesm andwi , the real and
imaginary parts of the twiddle factors at each pwoirthe transforms. Recall that

m _— —i2rm/N
Wy =e :

If instead this is expressed using trigonometrgnth becomes:

W' = cod27m/N) —i sin(27mm/ N ).

Now the complex components of the twiddle factarsandwi may be calculated by

increasing the angléd = 2rm/ N, betweerD and 77by a factor ofg. @, begins av7and is
halved for each transform combination at the engh@fouter loop, corresponding to the
halving of the number of iterations of the thirdjo The variableskr andwki are the real
and imaginary parts of the complex number derivethfd,, the life cycles of which are
shown below:

Initially:

wkr
wWKi

-1.0; // theta = pi
0. 0;
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Then:
for(npoints = 1; npoints < N, npoints = jstep) {

Wi
wkr
}

As implemented here, it can be seen that the vahagsbe calculated quite neatly using
square roots, rather than with sine and cosinetitums; by using the double angle formula for
cosine.

-sqrt((1.0 - wkr) / 2.0);
sqrt((1.0 + wkr) / 2.0);

For the full code of the FFT, please see the listmAppendix C.1, or else view the backend
source code dlVave Processdr

Finally, the cycle of values faV = (wr , wi ) may best be illustrated by the following
diagrams irFigure 2.12 which pertain, once again, to a set of 8 sampfes.simplicity,
positive imaginary components have been used, whahd thus pertain to the inverse
transform:

Combination 1 — 4 x length 1 transforms

Wi = (-1, 0) =0 W= (1, 0)

Combination 2 — 2 x length 2 transforms

W= (0, 1) W= (0, 1)

W= (1, 0)

Figure 2.12 — Polar complex number diagrams of conmibations

* This may be found on the project CD in the fol@erf t war e\ Wave Pr ocessor\ Source
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Combination 3 — 1 x length 4 transforms

Wi = (1/\/2, 1/\/2) W= (1N2, 1N2)

6=0 w= (1, 0)

W= (-1KN2, 1N2)

Figure 2.12 (contd.) — Polar complex number diagrasiof combinations

From the above, it becomes clear that the only gbam the code which needs to be made in
order to render the inverse transform is to make positive instead of negative at each
update, thus the relevant piece of code becomes:

wki = sqrt((12.0 - wkr) / 2.0);

In the implementation in the software for this @®sh, as is common practice, the forward
and inverse transforms have been combined in the $anction. The variabléi r controls
which is to be performed: for the forward transfatns set to 1 and for the inverse, —1. The

last thing to remember is to do the normalizing 1B) for the forward transform only.
2.4.4 Output

The output of the DFT is very often misunderstood should be clarified at this point. Itis
important to realise that the discreteness meais/#iues are quantized in the frequency
domain, i.e. there are no “in-between” values. DIRF is possibly better thought of as a
probability distribution histogram with frequenbins In other words, amplitudes on a DFT
graph actually represent probabilities of a freqydmeing a certain value, rather than exact
measures. This draws a direct parallel with theettainty principle in quantum theory which
states that certain pairs of properties (in thsedame and frequency) cannot be measured
precisely simultaneously. The importance of tealisation was pointed out by Dennis
Gabor, who formalized the uncertainty relation lestw frequency and time resolution in the
Fourier transform [Gabor46L] introduced in subsatf.3.2

Referring back to that discussion, the frequensgltgion is inversely proportional to the

length of the signal in time. So, the longer tlymal, the smalleAv becomes. HowevefAv
is also directly proportional to the bandwidth, ahin turn is affected by the sample rate and
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thusAt. The following summarizes this three-wagiprocity relationshipbetweenAt, Av
andN, the number of sample points [Osgood09W].

Time Limitednessk = NAt
Bandwidth:2B = NAv

While the input of the DFT is, for most practicalrposes, a function of time, strictly over a
discrete set of real values, the output of thesfiam is complex and so it comprises two
arrays. Going back to the original descriptionha Fourier transform as the re-expression of
a function in terms of component sines and cosiines) complex number theory, the real
values are thus the cosine amplitudes, and theim@a@garray is the set of sinebigure 2.13
illustrates this. In the grapR,is the real component of the complex coefficighndy is

the imaginary part. The distancewfrom the originy = |V |, is then thenagnitudeof v,
and it is calculated by the Pythagorean theorem:

When drawing a DFT graph, this is the value usyaliyted. Finally,fis a measure of the
instantaneous phas# the frequency, which can be calculated withargument function,
arg(), which isarctan{/x) whenx # 0, and77or —7twhenx = Oandy > Oory < 0
respectively. The importance and usefulness o$@id#ormation in the DFT will be
discussed further in Chapter 4 in the section erPthase Vocoder.

Figure 2.13 — Polar graph representation of a compk Fourier coefficient,v
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3 An ABC of Music Theory

Having covered the basics of signal analysis, @$® necessary to provide the reader with an
overview of music theory from a more technical pahview, so that the musical

terminology used throughout the rest of this thesay be understood and used freely. The
discussions here also begin to link up some oidéas from the previous chapter in the
context of music. A discourse on the origins ofsiwand the natural tonal system has been
included, mainly for interest’s sake, but also idey to further familiarize the reader with the
language. The primary sources for this chapteeecholes65L] and [Grove0O0L], although
much of this information may be found in any suiyatbmprehensive music encyclopedia.

3.1 Musical Pitch

From the Oxford English Dictionary, pitch, in thentext of music, is defined agHe quality

of a sound, esp. one produced by a musical instntiorevoice, which is governed by the
frequency of the vibrations producing it, and whitgtermines its highness or lowness of tone
(a rapid vibration corresponding to a high toh¢pEDO5W].

Here, the notion of “high” and “low” tones is, abarse, not a physical one, but, as the phrase
in parentheses suggests, more of a conventionetkaion. Perhaps human beings first
associated “high” notes with bird calls — thesdipalar sounds came from above and were
thus, perhaps subconsciously, associated with ptsoé “up” and “high”. The idea of the
height of a pitch also corresponds to frequencysmeanents — “Lower” pitches have smaller
numeric frequency values and vice versa.

3.1.1 The Relationship between Pitch and Frequency

The exact relationship between frequency and pgteldyadicone, meaning that factors
which are powers of 2 are involved when converbiatyveen the two. This is a well known
relationship, discovered (at least, first recordagPythagoras [Scholes65L], who performed
experiments with different lengths of cord, obsegvihat if he plucked a string and noted its
pitch, then stopped the string halfway and pludkedain, he got a note which sounded very
similar to the first, but which was higher. Diwigj it in half again (i.e. into quarters)
produced a note, once again with the same sourldygoat which was even higher. What
Pythagoras was actually generating were pitchextaveapart from each other. In music,
this is exactly how the terwctaveis defined: the interval between two pitches whiekie

the same quality of sound, one of which is doubéeftequency of the other. The reason for
the nameopctave which surely implies something to do walght will be explained in due
course. Pythagoras continued with further expemisiehere he divided the string into thirds
and so on, and went on to generate what was laliedaheharmonic series

3.1.2 The Harmonic Series

Whenever you play a single note on any musicatunsént, you are not actually hearing just
one frequency, but a composite spectrum of fregesnjst as white light is made up of
multiple colours. This spectrum of frequencieknswn as thdaarmonic serie®f the note,
and each individual frequency within is calledaamonic The most clearly audible pitch is
usually the lowest frequency in the series, aralled thefundamental note often referred

to by acoustic engineers fs The series follows a pattern which may be exgldiby
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examining all the ways in which a string, for exdaenpn a guitar, may vibrate along its
length. Firstly, the fundamental note is a restithe string vibrating along its entire length
as illustrated in the figure below:

Figure 3.1 — A freely vibrating string

If the string is stopped halfway along its lengtb,that the midway point is stationary, it may
also vibrate freely about that point and its twdpmints, which are also stationary. This is
depicted inFigure 3.2 Now the wavelength of the resulting signal hasrbhalved, and
therefore the frequency is doubled. Subsequergihave a pitch which sounds an octave
above the fundamental. This pitch is tlist harmonicin the series.

Figure 3.2 — A vibrating string stopped half-way

The next harmonic is found by dividing the stringpi thirds, so that there are two stationary
points in between the two ends. The resultingdesgy — thesecond harmonie is then
three times that of the fundamental note.

Figure 3.3 — Dividing the string into thirds

We may continue generating the series by dividiregstring up into increasing numbers of
equal parts, the frequency of each harmonic inargdsy that same factor in proportion to the
fundamental frequency at each stage. As the frege® get higher, the intervals in pitch
between the harmonics become smaller and smalliereawal towards zero (as the number of
subdivisions of the string tends towards infinity. reality, only the first few harmonics in
the series are ever perceived by our ears, tongudegrees. This is to do with the fact that
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the string is able to vibrate most freely and gaaidout fewer stationary points than more, so
lower order harmonics (especially the fundamentél)normally have higher amplitudes.

Figure 3.4 — Four divisions of the string: third hamonic

3.1.3 Natural Pitch Intervals

Armed with the harmonic series, we now have a dasishich pitch may be more formally
defined, and (hypothetically) a natural explanafmmthe existence of the entire Western
tonal system [Scholes65L]. In order to do this,need to look more closely at thtervals
between different pitches within this tonal systémat is the change in pitch (or frequency)
from one note to the next, and consider how they naae come into being. The thought
process presented here is probably quite similatat Pythagoras and other Greek
philosophers in his time (the first to ponder thatimematical side to music) would have
reasoned in about 550BC [Scholes65L].

As mentioned previously, although the harmonicesein theory has an infinite domain, in
practice our ears are able to hear only a few haltea@onsciously. Therefore let us begin by
examining more closely the first few notes in tlaenhonic series for an arbitrary frequency,
say 262Hz (the choice of which will become cleathia following subsections). In order to
calculate the frequencies of each note in a harors®eries, all that is required is to divide by
its relative wavelength, i.e. multiply by 2, 3, #.e since the frequency of a (stationary) signal
is the inverse of its wavelength (see Chapter 3).

Note in Series Wavelength | Frequency (Hz)
Fo (Fundamental Note) A (= 1/262) | 262

H; (First Harmonic) A2 524

H, (Second Harmonic)| A/3 786

Hs (Third Harmonic) | A/4 1048

H,4 (Fourth Harmonic) | A/5 1310

Table 3.1 — Harmonic Series of 262Hz

Note that the intervals between the fundamenta aatl the first and third harmonics are
both octaves, since the frequencies of these twmasle from one to the next. As stated
before, it may be perceived, audibly (certainlfeast by Pythagoras) that the quality of the
sound of two pitches which are an octave apareig similar. This makes sense in a way,
since one would expect the very first harmonic abte to be its closest relative.

For the sake of formulating a hypothesis, let &t issume that the very closeatural
relationships are those between the first pairodés in any given harmonic series, using the
above argument that they are the sounds which appéa most similar to our brains. The
reason they appear similar to us may be explaigetdfact that when two such “related”
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pitches are played simultaneously, every few wangtles, the peaks of the two signals
coincide, boosting each others’ amplitudes, i.eytesonatewith one another. The smaller
the lowest common multiple of their wavelengthg, thore they will resonate in this way.
The graph below demonstrates this principle clefaryhe interval of an octave: the two thin
waves ar¢/ = C0SK) andy = c0oS(X), and the thick blue signal is their sum. Note hbe
peaks of the lower frequency wave are now effelstimenplified to twice their original value.

-2 L

Figure 3.5 — Octaves resonance of two cosine waves

Note also that the average listener may not nayudedcern the above signal as two separate
pitches*, but rather as the lower frequency sigvith a different sound quality aimbreto
the plain cosine wave.

Secondly, let us define pitches whose frequenciesedated by whole powers of 2 (i.e. that
are an octave or octaves apart, aBigure 3.5) as being closely related enough as to be
equivalentthus b, H; and H in theTable 3.1are all technically the same note. SingaH

the first closest relative which is “different” E, let us now calculate the first few values of
its harmonic series, but, for clarity’s sake, star@@n equivalent note which has a frequency
closer to . N.B. By our definition, dividing any frequency l power of two will yield an
equivalent pitch: 786Hz / 4 = 196.5Hz — the clogpestsible to 262Hz:

Note in Series Wavelength | Frequency (Hz)
Fo (Fundamental Note) A 196.500
H, (First Harmonic) A2 393.000
Ha A3 589.500
Hs A4 786.000
Hq A/5 982.500

Table 3.2 — Harmonic Series of 196.5Hz

* Listen to a demonstration of this effect in tBeund folder on the project CDA3. wav andA4. wav are two
sinusoidal signals an octave apart, &8&4. wav is their sum.
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Lastly, let us look at the harmonic series of theenpfor which 262Hz is the second harmonic,
i.e. its other closest relative, which will of cearhave a frequency of one third of this value:
262Hz / 3 =87.3Hz

Note in Series Wavelength | Frequency (Hz)
Fo (Fundamental Note) A (= 1/87.3) | 87.333

H, (First Harmonic) A2 174.667

Ha A3 262.000

Hs N4 349.333

Hy A5 436.667

Table 3.3 — Harmonic Series of 87.333Hz

As a final step, let us assemble the above fiftesuencies from all three tables in ascending
order, but normalizing all values so that they appe the same frequency range. In each
case, b= H; = Hz — these and other duplicates may be eliminated.c&v also, at the same
time, label all of the frequencies with letterdloé alphabet, starting with ‘A’. As is

seemingly true to history, the chosen startingdesgy in the note-naming is arbitrary. (In
fact the frequency defined as ‘A’ centuries ageesy different to what it is today):

Frequency (Hz) Equivalent To Pitch
218.333 H of 87.3Hz A
245.625 H of 196.5Hz B
262.000 Iy of 262.0Hz C
294.750 H of 196.5Hz D
327.500 H of 262.0Hz E
349.333 b of 87.3Hz F
393.000 Iy of 196.5Hz G
436.667 H of 87.3Hz A

Table 3.4 — Closely related pitches in ascending aer

The final pitch at the end of the table, which haen included to complete the cycle of eight
notes (hencectavg is also ‘A’, since it has a frequency which isufe that of the starting
note and is therefore technically equivalent.

It is perhaps a small wonder that this series adally related pitches, calledealein musical
terms, quite naturally became the basis for thg garliest forms of music and still defines
and influences the current twelve-tagual-temperedystem used extensively throughout
the Western world [Scholes65L]. The word “scallsbacomes from the Ancient Greeks:
Instead of adding the extra ‘A’ to complete theavetas in the above table, they added a
lower G orl — Gamma. This gave origin to the Middle English‘scale”,gamut which in
turn came from “gamma” + “ut” — the Medieval Latiord for the first note. Any series of
ascending or descending pitches is still callecadestoday.

3.2 Musical Modes
In order to understand how the transformation ftbenabove naturally occurring scale to the

modern system was completed, we need to look ntoselg at the intervals between each of
the notes iMmable 3.4 which follow a certain pattern known in musicaasode
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3.2.1 Just Intonation

As stated previously, the relationship betweenhpaied frequency is dyadic, and therefore
when examining pitch differences or intervals betwéhe notes iifable 3.4 we need to
look at frequencyatios rather than differences. These ratios are agvist|

Pitch Frequency (Hz) Interval (Freq. Ratio)
A 218.333
1.125 (= 9:8)
B 245.625
1.067 (= 16:15)
C 262.000
1.125 (= 9:8)
D 294.750
1.111 (= 10:9)
E 327.500
1.067 (= 16:15)
F 349.333
1.125 (= 9:8)
G 393.000
1.111 (= 10:9)
A 436.667

Table 3.5 — Pitch Intervals

It may be observed that smallest differences igueacy are between the notes B & C and E
& F, while the other intervals are roughly the sabe- E and G — A being slightly closer
than the remaining three. The intervals betweesdleight related notes, as described by
ratios of whole numbers, are known in musiquss intervals and the natural tuning system,
discovered by the Greeks, is calladt intonation

Practically, the ratios 9:8 and 10:9 are close ghas to be indistinguishable to the average
ear. At this point, in order to avoid getting teep into the subject of tuning systems, we
shall jump forward several centuries in time to ploent where the larger two steps of what is
now called a wholéone were regarded as the same interval, and theXétikb became the
defining interval for the smallest possible stepaen two notes: theemitone

3.2.2 Doh-Ray-Me
Guido d’Arezzo, a Benedictine Monk who was borruaisthe turn of the first millennium, is
generally regarded as being the first music thetiformalize the scale. He considered the

naturally occurring pitches as being sacred and,miving them holy names from an old
Latin hymn written by Paul the Deacon for St. Jti Baptist's day [Scholes65L]:
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“Ut queant laxis
Resonare fibris
Mira gestorum
Famuli tuorum,
Solve polluti,
Labii reatum,
Sanctelohannes.

Ut was changed tDo (the first syllable oDominusmeaning “Lord”) fairly early on, since it
was more singable. The other names were also ebamy anglicized in the $Zentury by
an English music teacher, named Sarah Glovédptg Ray, Me, Fah, Soh LahandTe She
altered the seventh note frddnso that each name could begin with a differem¢tetnd thus
be shortened to just its initial letter for easytiwg purposes: d, r, m, f, s, | and t.

The first six pitches Guido called thexachordfrom the Greek words for “six” and “note”.
The reason these were particularly special to find @lso his choice of nomenclature) was
because it just so happened that each line ofytm ibegan one note higher than the previous
one, and so they formed a scale updo He thus had a useful educational tool for pitghi
notes, and is quoted as saying [Scholes65L]:

“If an experienced singer shall so know the opemihgach of these sections that he
can, without hesitation, begin forthwith any ondlem that he pleases, he will easily
be able to utter, without absolute correctnesd) ethese six notes, wherever he may
see them.”

The seventh not&i, was a special case for which Guido found he bdthve two versions.
He wanted to create three hexachords which ovezthppth one another, starting on the
notes G (the Greek starting note), C and F. Beggon G, the intervals between each note
in the hexachord are:

tone, tone, semitone, tone, tone

This pattern is also the case if C is the stamioig. However, if we start on F, we get the
following pattern:

tone, tone, tone, semitone, tone

Guido and other music theorists of his time saw garticular arrangement of three tones at
the start of the scale as ugly and unholy. Thdgad “Diabolus in Musica— the “Devil in
Music” — and forbade the interval formed by thre®ole tones, th&itone, from being used,
especially in sacred music. In order to exordmse demon from music which centred itself
around the F hexachord, Guido lowered the pitcin®B so that it was a semitone above the
A and a whole tone above the C, calling inolle— a “soft B” [GroveOOL, Scholes65L].

This simple change removed the chance of a tribtmcerring and restored the sacred pattern.
Since the hexachord beginning on G contained thed“B”, Guido called it thélard
Hexachordor Hexachordum DurumThe hexachord on F was thdaxachordum Molleand,
because it contained no B at all, the C hexacherddscribed adexachordum Natrum
Natural Hexachord The symbols which Guido used to denote a sodt matural B were
rounded and square-shaped letter ‘b’s respecticaliedB rotundumandB quadratumn

Latin [Grove0OL]. These turned into the modern-dgmbols: thedlat: b and thenatural b.
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The flat sign is nowadays used to indicate the tawgeof any pitch by one semitone (not just
a B) while the latter restores any altered notigstaatural pitch.

3.2.3 Gregorian Modes

The simple change made by Guido to the B also @mtally revolutionized the way
musicians began to think about the arrangemerdr&st and semitones. Without realising it,
Guido had developed a system known today Meweeable Dohwhere a starting note may be
chosen arbitrarily from one of the seven naturdhas, but adjustments need to be made to
the pitches in order to preserve the natural patter

Long before Guido d’Arezzo, however, proponentsarly Christian Church music, notably
St. Ambrose, the Bishop of Milan'{4C) and Pope Gregory the Gredt 6) had formalized
the set of musical modes based on the 7 natucdigstin the Greek scale. The patterns of
tones and semitones comprising each mode wereededimply by changing the starting
point of the scale. The names of the modes wefellasys:

Starting note Mode
Aeolian
Locrian
lonian
Dorian
Phrygian
Lydian
Mixolydian

®TMmoo0 ® >

Table 3.6 — Modes

Practically all medieval music was written basedl®se modes, and they are still the
foundation upon which the vast majority of Jazz imisbuilt. The lonian and Mixolydian
modes would have been the most interesting to Ggidoe they are a combination of his
hexachords beginning on C and G. The patterneofadhian Mode is as follows:

tone, tone, semitone, tone, tone, tone, semitone

The only difference with the Mixolydian mode isthre last interval:
tone, tone, semitone, tone, tone, semitone, ton

To clarify, for the lonian Mode, the interval bewvethe last two notes, the (hard) B and the C
Is a semitone, whereas in the Mixolydian Mode,|#s¢ interval is between the F and the G —
atone. The use of the Lydian mode would have besgpropriate to Guido since it begins
with three tones:

tone, tone, tone, semitone, tone, tone, seiton

however if the pattern were altered slightly byngsa soft or flattened B, this effectively turns
the Lydian mode into the lonian mode, but starond- instead of C. Similarly, if we raise
the seventh note in the pattern starting on G wvioisld also alter the Mixolydian mode to
become lonian. Raising the pitch of a note by ssmaitone became known sisarpening

and thesharpsymbol denoting this effect # This sign has similar roots to the flat and
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natural symbols and is also in the form of a squardut one which has been crossed out or
cancelled. Its original Latin name wWsancellatum- “the cancelled B” [GroveOOL].

3.2.4 The Dodecachordon

It was now, in theory, possible to play in anylué seven modes starting on any of the seven
notes by sharpening or flattening notes as neges#dmost a millennium later than Pope
Gregory, a new idea was put forward in 1547 (altfiocomposers were already using it by
then in practice) by a Swiss monk named Henry @laus [Scholes65L]. If we count all the
semitones in any given mode of a scale, we fintttiexe are twelve. Therefore, in theory,
there could be twelve starting points rather thest geven. Glareanus called the set of twelve
pitches making up a scale ttledecachordoncontinuing with the Greek themeddeca
meaning twelve). If we consider all the possitdenes of the notes, for every semitone, we
find that each of the in-between notes (thoseértdip row in the layout below) have two
possible names:

C#/Db | D4/Ep F£/Gb | Ga/Ab | A¢/Bb
c b [ JF |G |A [B |C |

Table 3.7 — Dodecachordon layout

This arrangement will be recognizable to pianisis ather keyboard instrumentalists, since
keyboards are still laid out in this way. TechHigahe correct naming of the so-called
accidental notegpossibly from the Latimota adventitia- additional note — as described by
Joachim Burmeister [Grove0QOL]) will always depemdtbe mode and the starting point. For
example, if the starting note is F and the modensan, the adjusted fourth note will bé.B
Whereas, if the same mode is used beginning ondteeB, then the seventh note should
rather be called A

3.2.5 Keys and Equal Temperament

Eventually, the modal system of writing broke dowiving way to the idea dfeys Since

the lonian and Aeolian modes lent themselves lbdsatmonization of melodies, these were
retained, becoming our curremiajor andminor modes respectively. Theyof almost all
pieces of Western music is described by assignoigtb a starting note and then following
the patterns prescribed by one of these two mo@edlajor and A Minor are simply the old
lonian and Aeolian modes, respectively. These keysain no accidental notes, however in
the case of A Minor, the seventh note is oftenst@ed (becoming £pas a kind of
strengthening effect.

Back to tuning systems briefly: given that the nalfttuning system discovered by the Greeks
comprised two slightly different sounding whole ésnit was soon realised that attempting to
play in modes or keys which were too far removedftheir original intended starting point
sounded very strange and out of tune. A new sysfaonming was needed which made each
semitone in the scale the same interval in ordefltov total freedom to composers. The
solution, which was most likely also first propodsdthe Ancient Greeks and Chinese, is the
answer to the question, “If the frequency of alpitacreases by a factor of two at every
octave, then by what factor should the frequency nbte be multiplied to move up a
semitone?” This may be rephrased more simply\@$iat number, when multiplied by itself
twelve times, is equal to two?” The answer, ofrseuis the twelfth root of two.

34



The system of using this factor to tune every semeitin the scale so that the pitches are all
equidistant is calledqual temperament Despite the logic behind this method, equal-
tempered tuning of instruments only became morellaoground the 8century, after
Johann Sebastian Bach wrote his famous set of yweuat preludes and fugues — a pair of
pieces (for piano or organ) for each of the twehagor and twelve minor keys, which he
calledThe Well-tempered ClavierThis above all demonstrated the usefulnesslaribiity

of the tuning system which Bach chose for his oeyboards. It allowed composers to write
freely in any key and to modulate freely (thathsuege key during the piece of music)
without having to worry about ugly out-of-tune sdsrjScholes65L].

Bach’'sWell-tempered Claviewas a masterpiece of its time, and the preluddgwgues are
still popular today amongst keyboardists. In thetwork lead some to believe that Bach
himself had invented the tuning system it demotedtiiaand he must have enjoyed this
association with equal temperament as he went amite a second volume!

3.3 Music Notation

A huge amount of information has been written ags $lubject, which, like any other written
language, has developed and grown over many cesfdrom its most rudimentary medieval
forms.

Although this section of the chapter could fill @ntire thesis on its own, it is not the main
point of this research, and so only the fundamemtak of music notation have been
presented. It is important to realise that theveations as described here are subject to
change — particularly in more modern times, compokave deliberately tended to break
away from normal practices, in their wish to leétve interpretation of their compositions
much more up to the performer. Since the poing ieto extract and present as much
musical information as possible from an audio seusach vague representations of music
notation must be avoided.

As an additional sourc&he Rudiments and Theory of Mygablished by the Associated
Board of the Royal Schools of Music [ABRSM38L] redso been referred to. Sir George
Grove was the founding director of the Royal Cadled Music and became somewhat of an
authority on music theory. Much of the theory eréged in his dictionary [GroveOOL] has not
changed and has been adopted by many as a standard.

3.3.1 A Note on Music Engraving

Music engraving is the special art of musical tygdpy, in which a copyist follows a special
set of rules (which vary in subtle ways from puhdisto publisher) which govern the design
and layout of printed music [SibeliusO9L]. Sintesia skill which is gained primarily in the
master-apprentice tradition, not a great dealtefdiure exists on the subject. Although the
main principle of music engraving is to notate s clearly as possible, it is not essential
to the problem at hand. An analogy may be drawh wontents of this thesis: the rules
dictating its format, layout, font etc. are to nwsngraving as its language, tables and
diagrams are to music notation. For this readmsoftware written for this project does not
produce fully rendered printable scores, but ragieh/time graphs. Besides graphs (see the
following chapter) MusicXML [Recordare09W] is anetigood choice of output, since this
increasingly popular and easily written format nilagn be imported into music publishing
packages such &belius The incredibly difficult job of score renderimgbest left to the
engraving masters.
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3.3.2 Representation of Pitch

Musical pitches are indicated by the vertical lamabf glyphs drawn on a set of five
horizontal lines. These lines, known collectivayastaff may be thought of as grid lines on
a pitch/time graph. An example of a musical swath four different pitches drawn on it is
shown below irFigure 3.6.

0

O

£
L 4

Figure 3.6 — An example of a musical staff

It can be seen that notes are either drawa lineor in between -en a space The third note,
for example, is therefore three pitches above ¢igersd note and four above the last. Note
also that a pitch may be drawn below the bottom (or above the top line) of the staff. If
even lower or higher pitches need to be writtedjtaxhal short lines, callekkger lines may
be drawn to accommodate them and provide a meastineir position relative to the staff.
Figure 3.7 shows an example of leger lines drawn below amdal staff.

i

©-

Figure 3.7 — Notes drawn on leger lines

The above staves lack one very important symbalghviffectively acts as a label, indicating
the range of the “pitch axis”. This symbol, knoasmaclef (from the French word fdtey) is
in fact one of three highly decorative alphabeliaracters, namely G, C or F, depicted below:

o)
A 112) ¢):
[ Fan) | ILaY V4
.V | |
)
G clef C clef F clef

Figure 3.8 — Clef symbols

The lines drawn in red iRigure 3.8are the particular pitch levels to which theseé¢hr
different labels refer. They act as base pitchtifiers, from which all other pitches may be
measured, based on their relative vertical postiorthese lines. Thus, if a G clef were to be
drawn onFigure 3.6 the first note would be four steps above G,D.e.The other pitches
would be E, A and another D (an octave below trst)fi The choice of letters presumably
came from Guido d’Arezzo’s three original hexaclsondich began on G, C and F.

The position of the clefs relative to each othboven inFigure 3.9 reveals that lower pitches
should be written using the F clef, while highedcpes fall into the G staff range. The C clef

36



is used for writing music for middle-range instrurtee Thus the G, C and F clefs are also
known as th@reble Alto andBassclefs, respectively. The note right in the midaig¢he
three staff systems is calldtiddle C(presumably for this very reason), which is thelpiC,
(262Hz). The small 4 tells us which octave, on sgrand scale (from;@ G, by
convention) the pitch lies. The noteg i€ then the master base pitch, to which is nogmall
assigned the frequency 16.375Hz. This is alredmbedo being inaudible, although some
music theorists prefer to use; @s the lowest conceivable pitch. This is not Vegycal,
however, since at a frequency of around 8Hz thie nannot be heard by humans.

o)
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[ an
NV Jé)
e |
e ) &y
o

y.4

Figure 3.9 — Relative vertical positions of staffystems

The full range of pitches which may be represerited) the lowest line on the bass clef to

the space just above the treble staff, is threevest Most of the time, musicians use only
one of these clefs at a time, but may change betdierent staff systems (by specifying a
different clef symbol) in the same line of musiceetimes several times in one piece, to save
from writing too many leger lines.

The clef symbols may also be moved to differergdion the staff, depending on the
particular range of the instrument for which thesmus being written. For example, the
tenor trombone — a middle to low range instrumerdaels from a staff written using the
Tenor clef, shown ifrigure 3.1Q which is the C clef shifted to the fourth lin®ther

positions of the C clef are less common, and tlenGF clef are very rarely shifted, however
in theory they may be placed on any of the fivediim the staff. The particular pitches which
the F, C and G clefs always define, regardleskaif position, are § C, and G respectively.

Figure 3.10 — The Tenor clef

3.3.3 Representation of Time

Notes are read from a staff and played in ordenfieft to right. However, the horizontal
spacing between notes gives only a very rough @tidic of their durations. Instead, precise
note lengths are represented by different note signthe longest in current use being the
semibreve or whole note, which is the type offad hotes drawn iRigures 3.6& 3.7. This
idea of having note durations determined by thgjrearance rather than by their position or
context was first formalized by French music thsiifranco of Cologne in the "1 8entury
[Scholes65L]. Franconian notationdescribed in Franco’s treatiga's Cantus Mensurabilis
(The Art of Measurable Music), is still the stardlased today for indicating note lengths.
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The various note symbols and their equivatests(silences lasting the same duration as
their counterpart notes) are showrTeible 3.8 As can be deduced from their American
names, each note value in the table decreasesatiatufrom its predecessor by a factor of
two. So, for example, if the constant speed akagof music is set so that a whole note lasts
for 4 seconds, then all quarter notes will lastffaecond, eighth notes will be half a second,
sixteenth notes will have a duration of 0.25 sesattl so on. Theoretically, note values
may be halved further by adding more hooks, althaugything beyond the demisemiquaver
is rare. A note with four hooks ishemidemisemiquaver sixty-fourth note, and with five it

is asemihemidemisemiquaverquasihemidemisemiquaveghundred twenty-eighth note).

Note symbol | Rest symbol English name American name

o - Semibreve Whole note

- Minim Half note

3 Crotchet Quarter note

Y Quaver Eighth note

J
)
D
‘h 5 Semiquaver Sixteenth note

‘}7 Demisemiquaver Thirty-second note

Table 3.8 — Note types

Other indications of time are tlo®t and thetie. The latter symbol is a curved line which
effectively joins two notes together. The tiedasothen last for the duration of their sum.
More than two notes may be tied together in thig a&long as they are the same pitch.

A dot after a note means that the note is to besesl an additional length of time equal to
half of its value. For example, a dotted crotahditbe held for a crotchet plus a quaver; a
dotted whole note will be held for a whole notespéuhalf note, and so on. Examples of dots
and ties are shown Figure 3.11below. A flat, sharp and natural have also beawd

against the notes to demonstrate their positionfgied note assumes the same accidental as
the first in the group, therefore the first threxas are all B Because the third G (sixth note)
is not tied to the previous two, in order to cartbel effect of the sharp, a natural is drawn.

o)

4 } k!
2 H == 1) N—Rr
[ an W &/ o o |/
\\SY poF 4

Figure 3.11 — Ties and dots example

* An example of these notes may be found in thenbvement of BeethovenRathétiquePiano Sonata (Op. 13)
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Note also that stems and hooks of notes may berdpamting down or up. By convention,
stems are drawn downwards when the pitch is adwveniddle line and upwards when
below. Stems of notes on the middle line itselfmpaint up or down, depending on what
looks better in their context.

3.3.4 Key Signatures

In order to save drawing hundreds of accidentalssajl over the music, the collection of
sharps or flats pertaining to the key of the pisagrawn once at the beginning of each staff
line and thereafter assumed to carry for the whiéeor until the key changes, in which case
a new set is drawn. Any additional accidentalscivlare not normally found in the main key
are then drawn next to notes which require thenm &ggure 3.11 The set of sharps or flats
defining the key is called tHeey signature The complete cycle of signatures for all twelve
major and minor keys, as one would draw them om@GFRastaves, is shown Trable 3.90n

the next page. Some points to make about this:tabl

* In the key signature, sharps or flats apply to gwecurrence of the note they are
altering, and not just the octave in which theydmvn. This, however, does not
apply for accidentals, i.e. additional sharps datsfdrawn on-the-fly pertaionly to
the note against which they are drawn (persistireg tes).

» The interval between any two successive keys inahle is always a fifth (seven
semitones). E.g. C — G is five natural tonesssB + D, etc. This is also the interval
between the first and second harmonics of a natéjsaknown as perfect fifth

» Afifth above the last key, F, is C — the startk&y, which means the series of
consecutive fifths is cyclic. This pattern in nws called theCircle of Fifths

* F¢ Major / D¢ Minor are practically (but not theoretically) tekeme as &Major / B
Minor. This relationship is calleehharmonic equivalence

* Although rarely used, £Minor can also be written in its enharmonicallyipglent
key, A Minor, which would have seven flats in its keyrature. Similarly, B Major

with five flats is the same ast®ajor with seven sharps. Seven sharps or flatisan
key signature is the limit, however, since theree@rly seven available natural pitches
which may be sharpened or flattened.

3.3.4 Time Signatures

A time signature is similar to a key signaturehattit provides information which then

applies throughout the entire piece, unless a imaw signature is defined. As may be
guessed, time signatures indicate regular intetwalghich a piece of music should be

divided up temporally. This time segmentationas& so that a beat may be defined and also
to facilitate reading of the score by the musicidime music irFigure 3.11would be easier

to figure out if some mark were made at regulagrivdls, which would indicate each time the
equivalent of say four quarter notes had elap3éus is similar to the idea of drawing five-
second markations on a clock fadggure 3.12shows the same staff but with vertical lines
drawn which divide the staff up into two equal léngheasuregAmerican) omars (English).

\{:
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Figure 3.12 — Previous example staff with bar lineadded
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Major | Minor | Number of $ or b | Key Signature
0
C A | None .’),"r\ r
0l
9 ﬁ XX
G E |1sharp: F (r & or
DI
)Q ﬁru XX
D B |2 sharps: F Ci (o 74
[Y)
Wi e
3 sharps: E Ci, 1 T X —
A | F S < )5
Gt 54 i
4 sharps:  Ct, 99_&_%7 e ——
E Ct [ fan) i 75
Gg, Dt 5% T
B Gt 5 sharps: § C, YERS oy
Gt, D, At Ot —— T
[Y)
6 sharps: F, Ct, % -
Fe | DE |G, bo e o PECE
Q) bl
or or
. 0 1
Gb BEb 6 flats: B, B, _r{nbulub'hb 'I':'hl[)l bl D
Ab, Db, Gb, C» N 5
5 flats: B, B, b T
D> | B | G v o
y ’ e) v
: 0 1
pe | B |HTESEE ] D A
Ab, Db oS 22
) |
B> | C |3flats:B, B, A | fonbb )
\‘!_jl V1
|
B> | G |2flats: B, B 6> & B
[Y)
F D |1flatB > )
\;)y 14

Table 3.9 — Keys and key signatures
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As a quick check, in the first bar we have a dottaldl note plus a quarter note, which equals
four quarter notes. In the second bar, we havet@esnth note plus a sixteenth rest, followed
by an eighth tied to a dotted sixteenth, then ytisiecond, and lastly an eighth tied to a half
note. Adding up all these fractions, we get fouarers again.

The time signature itself looks a little bit likevalgar fraction, but without the dividing line.
The top number tells us how many beats there aggery bar, and the bottom number is the
beat denominator, i.e. it describes what type o tloe beat is. Thus, using the same
exampleFigure 3.13shows the complete picture, including the timaatgre. Unlike a key
signature, the time signature is only written oatéhe beginning of a section of music and
not on every line.

) N
ﬁk/- P — NS
- 7% o—te v

Figure 3.13 — Previous example staff with bar lineand time signature

The final point to make about time signatures & the beat type could also be a dotted note.
Such time signatures are calls@mpoundsince the numerator (top number) must be
subdivided by three to get the actual number ofdbe@he time signature 6 over 8, for
example, means that there are six quavers in dagr\but that these should be subdivided
into 2 dotted crotchet beats — each beat contathiregg quavers. The rule of thumb is if the
top number of a time signature is divisible by thtieen it iscompoundotherwise it isimple

3.4 Diatonic Intervals and Chords

With some basic music theory under our belt, werzam begin to write some elementary
harmony constructs, the most important of whictinéchord This is simply two or more
notes played simultaneously. On a staff, chordglapicted by drawing pitches above one
another.

3.4.1 Dyads

Not unrelated to the term “dyadic” dyadis the most basic type of musical chord. It
comprises just two notes and is usually describeithd interval between them. The interval
of the perfect fifth was mentioned in the previsestion. Each of the twelve intervals
between the twelve possible pairings of notes withni octave has a similar name. The other
two “perfect” intervals are the fourth and the @eta Note that the latter is the interval
between any fundamental note and its first harmamwiile theperfect fourthis the interval
defined by the second and third harmonic. Sineeatbrd “octave” is a unique description of
that interval, the qualifier, “perfect”, is usualbynitted.

Whereas the interval C — F is a perfect fourth,itiverval F — B is not, since it comprises six
semitones and not five. F — B is thus calledagmented fourtbecause of this extra
semitone. Similarly, the interval B — F contaimedess semitone than C — G, and so it is
called adiminished fifthrather than a perfect fifth. Note that the dirsivad fifth and the
augmented fourth in fact have the same numbermiteees, however the interval must
always be described in terms of the gap betweelettex names of the notes, and so
technically they are different. The interval framote to itself (i.e. no interval) is called a
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Interval | No. of semitones| Name Staff notation
o)
. P’ A
As— By 1 Minor Second P oO0————
NV
)
V.
As—By 2 Major Second & —
NV
)
V.
As—-G 3 Minor Third {~—
NV
)
o)
. . o L
As—Cis 4 Major Third S O
NV
e
V.
As—Ds 5 Perfect Fourth P~—o
NV
)
H .,
S A
As—Dis 6 Augmented Fourth| o f—
NV
)
0|
L . o DO
A, — Bs 6 Diminished Fifth A —
NV
)
o)
. V" 4 O
As—-Es 7 Perfect Fifth (~o
NV
)
) o
As—-F 8 Minor Sixth P~ o
NV
)
) 4o
. . o #
As—Bs 9 Major Sixth PO
NV
)
) o
Ar—-G 10 Minor Seventh l~ O
NV
)
) o
. P’ A
As— G5 11 Major Seventh (~ o
A4
)
h ©
P A
As—As 12 (Perfect) Octave A —
NV
)

Table 3.10 — Names of Intervals
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unison(rather than a “first”). Two instruments playiimgunisonare therefore playing exactly
the same notes at the same time.

All other intervals are described as being eithejomor minor. The former name is used for
wider intervals, while the latter is for closerantals. For example, the interval from Ato C
is a third, as is C — E. However C — E is four genes while A — C is only three. Therefore
A — C is aminor thirdand C — E is anajor third. Table 3.100n the previous page
summarizes all possible intervals between the Aaiad any other note within an octave. A
note which forms a basis for measuring intervalshsas the A used below, is known in
music as théonic. It is also therefore the baseroot of a scale built on top of ityt or Doh.

It is important to stress the strict usage of gwample, € instead of Dand G instead of A.
While these pitches are to all intents and purptsesame, the intervals theoretically are not.
A — Ab, for example, would have to be called a diminisbethve rather than a major seventh,
since it is the interval from on type of A to aneth Since in music theory there is no such
thing as a diminished octave, this interval woubd technically be correctly spelt.

The worddiatonicis used to describe pitches and the intervals fibrey with a tonic note that
belong to a particular mode or scale. All othéchpes which create intervals with the tonic
that cannot be described by the above twelve diedadhromaticintervals, which comes
from the Greekgchromos meaning “colour”. For example @ a chromatic note in this
context, since it should be calleglii order to form a major sixth with the tonic note
However, if B were the tonic instead »@ould be diatonic, since the interval would be a
minor third. B would form an augmented second, which is not #odie interval.

Some music theorists argue that the diminishek &ftd augmented fourth should not be
included in the diatonic intervals, saying that wwrd implies strictly major or minor
intervals related to the tonic. The troublesonterie is, nevertheless, one of the naturally
occurring intervals and is (at least since Guidim'g) a very important construct which
frequently crops up in music, and so it definites its place in the above table.

3.4.2 Triads

As its name suggests, a triad is formed from thiges. It may also be thought of as two
dyads sharing one note in common. Triads areussally formed by superposing diatonic
intervals, although chromaticism became much modely used in Romantic music (from

the early 18 century) and by the 30century, this conformity was generally ignoredlis|

useful to be aware of the most common triad foromestiwhich occur in music, since this
knowledge allows us to predict more accurately Wisiclution is more likely whenever
ambiguities arise in pitch detection. It also netirat we can spell the chords and, if we have
enough information, determine the key of the mbging analysed.

The most frequently occurring triads in music de tivo which define the major or minor
quality of the key. These are thmajor tonic triadand theminor tonic triad which are
notated inFigure 3.14 The keys of C Major and A Minor have been chdsemlarity’s

sake, since they contain no sharps or flats todctba issue. The chords are caliedic

triads as they are built on top of the tonic ndtthese keys. Examining the dyads used to
build up the two chords, C Major comprises a mithind stacked on top of a major third,
while the A Minor triad has the minor third at thettom and the major third at the top. This
is precisely why the terms major and minor are igpigo the names of keys — they describe
the size and hence the quality of the third abbeednic.
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C Major tonic triad A Minor tonic triad

Figure 3.14 — Tonic triads of C Major and A Minor

Aurally, the two triads are, for most people, e@sgistinguish. For some psychological
and/or physiological reason, most find that theantsjad sounds happy while the minor triad
sounds sad. This may have something do with thedvac series: the notes in the C Major
triad are actually the third, fourth and fifth hamnic of the C two octaves below. To our
pattern seeking brains, perhaps these sounds béttet (and make us happy?) They may
also be causing us to imagine the absent lowethis-+s sometimes called tighost
fundamental For the minor triad, a C is to be found muchleigup the harmonic series from
the A, and even then it is slightly out of tune.just intonation, the frequency ratio between a
tonic note and its minor third is 5:6. The majurd ratio is 4:5, and so for the major triad,
the three ratios combined are 4:5:6. For the miinad, however, one has to find higher
common multiples — 10:12:15. It may be argued tihigtarrangement is more complex and
therefore not quite so pleasing to our brains (aa#tes us sad?!)

Other common triads may be built on top of eacthefnotes in C Major and A Minor, as in
Figures 3.15and3.16respectively. In the A Minor scale, the sharpesedenth note (£

has been used, since this is more common in masimdny writing. This form of the mode
is known as thé@armonic minor

0 o
- P =4 =4
| Fan WHIPN (@] P4 P4 ~
SV & (@) P4 ~
Y o O =
I i iii \Y Vv vi vii®
Figure 3.15 — Diatonic triads of C Major
0
L . =< =4
[ fan o~ N L4
VS D=4 S #O
Y, :g: . © =
i i° ii * iv Y Vi vii°

Figure 3.16 — Diatonic triads of A Harmonic Minor

Most of these triads have either a major or mina@lity. This has been indicated by using
different case Roman numerals underneath the chdias numeral itself is just the degree of
the scale, but upper case means the chord is @ragblower case denotes minor. The other
two possible combinations of two stacked thirdsdaeoted by a ° for two superposed minor

thirds and a for a pair of major thirds. The circle assigns tjualitydiminishedto the chord,
and the plus means the chordigymented Note that the interval from a C to & (S actually
an augmented fifth and in fact the raised severghtes more intervals than thos&able
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3.1Q Since these intervals rarely need to be destrimest music theorists do not normally
include them amongst the regular diatonic intepv@len though technically they are diatonic
to the harmonic minor mode.

In addition to the Roman numerals used to indexntites in the diatonic scale, they are also
given the following names:

Degree Name

Tonic
Supertonic
Mediant
Subdominant
Dominant
Submediant
Leading Note

N[OOI WIN -

Table 3.11 — Degrees of the scale

Note that we have only been looking at triads wlaidh contained within an octave. Of
course chords may be formed using wider intenfaigjever employing our original
assumption that notes an octave apart are idelfsiealsubsectiad.1.3 this means that we
can always respell a triad using close intervals.

Similarly, it is not necessary to examine chordgt lvith a combination of fourths and thirds.
The reason for this becomes evident when the isiathcked differently, with a note other
than the tonic on the bottom. Since there aresthoges in the the triad, there are three ways
of arranging them. The different configuratiortspwn inFigure 3.17for the tonic triad of C
Major, are callednversions The arrangement with the tonic on the bottokmiswn asoot
position

%n <)
(@] (@]
’m 4% 4% 4%
NV Pt 5 =
Y S
Root Position First Inversion Second Inversion

Figure 3.17 — Inversions of C Major tonic triad

As can be seen, the first inversion is a fourthamof a third, and the second inversion is a
third on top of a fourth. Depending on the mode e degree of the scale on which the
chord is built, the fourths may be perfect, dimieid or augmented. Again, technically we
seldom talk about diminished fourths but we s&éd to know about them in order to spell
chords correctly after their component pitches Hasen identified. Taken out of context,
diminished fourths sound identical to major thigdst as augmented fifths sound the same as
minor sixths.

In order to indicate the inversion of a chord, figgiare added to the Roman numerals used in

Figure 3.15and3.16which specify the interval between the bottom raotd the other two.
The chords irFigure 3.17would be described as follows:
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* Root position:g
. Firstinversion:g

« Second inversion:g

In practice, the figures for root position are ajwéeft out — a Roman numeral with no figures
is therefore always assumed to be in root posit®imilarly, the subscript 3 for the first
inversion is omitted and so this chord is fully chitsed by justi. Both numbers are always
written for the second inversion to distinguisfram the first.

Triads created from seconds and fourths are ncosnon as the above set, but they do
occur fairly frequently and are worth looking @gain, inverting a chord comprising only
fourths yields a second and a fourth with no furghessible configurations:

o)
A

[ fan
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[y,

OO

olo]o
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Figure 3.18 — Triads comprising fourths and seconds

The usual function of these types of chords in missto create a suspense or tension for
which our minds demand some kind of resolutionthdf composer wishes to grant relief to
the tension, the chord wilesolveonto one of the more “comfortable” diatonic triads
Creating moments of tension and resolution in migsane of the most important skills that a
composer can master. The close interval of thergkis the reason for the tension — the
difference in frequency between these notes islsadheir cycles move in and out of phase
less rapidly, i.e. they do not resonate as welsag, frequencies in fifths and octaves.

Although they are common in Classical music, themo symbol for this type of chord in the
theoretical literature. However, in Jazz and omagunusic, they are labelled “sus”, short for
suspensionFigure 3.19shows how the same suspension may resolve iniffieoesht ways.

) 0!
K—o O K —Oo—5
XH—o— — O—o =
A\NSY;
e O = e O O

Suspension resolving up to C Maj® Ihv. Suspension resolving down to G Maj“ Rwv.

Figure 3.19 — Suspensions and resolutions

Least common in music, but still entirely possiatecluster chordsvhich comprise close
intervals, no bigger than a major second or whatet Three is the minimum number of
notes in a cluster and usually there are more.iddly inverting them turns them into other
chromatic chords which can no longer be calledterss These types of chords (and their
inversions) occur in music of the Iate”i@entury [ early 2‘00entury onwards, when
musicians began to break away from the rules ohbay and experiment with new and
different ideas.
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Figure 3.20 — Examples of cluster chords

3.4.3 Quartads

Adding one more note into the mix, we get the foate chord oguartad More often than
not, for diatonic chords, quartads are simply siadth one of the notes repeatedioubled
at the octaveFigure 3.21shows some of the chords frafigure 3.15and3.16with
different doubled notes.

0 0 0
L O L (@) A P4
[ fan) O [ fan) (@) [ Fan b4
~V P4 ~V O NV ~
Y, © Y, © Y, O
C Major A Minor G Major
(root doubled) (third doubled) (fiftlowabled)

Figure 3.21 — Quartads

Quartads may also be inverted, as can be sdegume 3.21 The inversion name of a
quartad is the same as the inversion of the lomaat.t For example, the C Major chord is in
root position, while the G Major chord is in itscead inversion.

As with triads, quartads may be spread out so aever a wider range, however, when
describing and labelling them, they are always imedjin close position above the lowest
note. Inversions of quartads are labelled usiegsime Roman numerals and figures as for
triads, i.e. the intervals between the lowest awi@ the two notes above it (in close position)
are specified.Figure 3.22shows another version of the C Major quartad fFogure 3.21

with wider intervals between the notes. It id stihde up of two Cs, an E and a G, butitis
spread out over three octaves and drawn over aw@st We know that this chord is still in
root position because the bottom note (the bassijlishe tonic, C:

)

% (@]
[ an

DR

D (@)

V4 (@)

Figure 3.22 — A wide quartad

There are many other different types of quartadshvbomprise four different pitches, i.e.
with no doubled notes. Of these, the most commenheeseventhsvhich describes the
interval between the two outside notes. Withouhganto their musical function — an
enormous topic on its own — the most common segeath constructed by stacking three
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thirds in different configurations. Each type ef/enth quartad with its name and its
component thirds is shown irable 3.12

Combination of thirds Name Notation

Y
9J

minor, minor, minor Diminished seventh

minor, minor, major Half-diminished seventh

minor, major, minor Minor seventh

3=
)

minor, major, major Minor-major seventh

major, minor, minor Dominant seventh

=
)

p==

major, minor, major Major seventh

3

pmw

major, major, diminished Augmented minor seventt

O\ 66*3 66*3 e SYIE ST SN QQS*D QQS*D

=
P)

3

major, major, minor Augmented major seventt

=

Table 3.12 — Seventh Chords

Although the penultimate chord seems to be theamgdout, with its diminished third on the
top, the interval between the bottom and top reiil a type of seventh. Note that the
combination of three major thirds is not possiles the interval formed by the two outer
notes would sound like an octave but technicallyldave to be called an augmented
seventh, which does not exist in music theory @alid interval description. Note also that
the word “augmented” in the descriptions “augmemigdor seventh” and “augmented major
seventh” refers to the augmentdth within and not to the seventh, which is always
diminished, minor or major.

A seventh chord in its four possible inversionsureeg different figures for its Roman
numeral description, which also describe the irglsrbetween the bottom note and two of the
other notes (except for root position, where justguperscript ‘7’ is written). The dominant
seventh of C Major, which has G as its root, hababelled in all its inversions Figure

3.23 The dominant seventh may be thought of as th@rmmt chord, V, in any key, with an
added seventh above the root (hence its name).
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Figure 3.23 — C Major, dominant seventh in differehinversions

3.5 Chord Progressions

The final section of this chapter takes a brieklabcommonly occurring sequences of chords
found in almost all types of music. Special aitantnust be paid to these sequences for the
reasons mentioned in the introductory chapter -frtbee clues and priori knowledge we

have about the music we are analysing, the edssgeta predict the likelihood of a certain
solution being correct over others.

3.5.1 Cadences

A cadencas a sequence of two chords which commonly ocatitse ends of phrases in a
piece of music. Phrases can be thought of as adussatences and so cadences are
analogous to punctuation. There are four maingygeadence to be found. These are:

» Perfect

* Plagal

* Imperfect

e Interrupted

A perfect cadences the strongest type, which gives a phrase ofcrausery definite sense of
coming to an end. Continuing the grammar metagbenfect cadences are closest to being
full stops and commonly mark the ends of musicahgaphs. The two chords comprising a
perfect cadence are the dominant followed by thetim root position, i.e. chord V going to
chord | (or i in a minor key). Occasionally chardvill be in its first inversion (but hardly
ever in its second inversion) which has the eftéateakening the cadence slightly.
Examples of the perfect cadence are showkigare 3.24in the keys of C Major and A
Minor. For minor keys, as in the example, the legahote is always sharpened, i.e. the
harmonic minor is always used. Also in the mircaraple, a dominant seventh has been
written instead of the regular chord V. This usageurs frequently in music as it has the
effect of further strengthening the cadence. dtwble barlineis drawn to indicate the end of
a section in a piece of music, and so it has bsed bere after each cadence.

A C Major: A Minor:
o O :
[ 7 an D=4 O S O
\\y -« o« '”\_’
o) o o
O -©O-
— O O
) O ©
7 O
O
\Y I 87 i
V

Figure 3.24 — Perfect cadences in C Major and A Mior
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Plagal cadencemay also occur at the ends of musical paragraptig$imal endings, however
they are considered weaker than perfect cadendss most recognizable use of the plagal
cadence in Western music is the “Amen” sometimeeddo the ends of hymns. A plagal
cadence is formed by chord IV followed by chorai i followed by i in a minor key).

A C Major: A Minor:
o O
(O O (@) O
AN/ == (@) o
e
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v I \Y [

Figure 3.25 — Plagal cadences in C Major and A Mino

Sometimes in a plagal cadence, the minor iv is us@dmajor key. This technique is known
asborrowingand is similar to the idea of using the major dhgrin the harmonic minor

mode in order to strengthen perfect cadenceshidrcase, however, it has the effect of
further weakening the cadence. In the C Major gptarabove, the alto A becomes, Avhich

is a closer step to the next note, G, making thesition between the two chords more subtle.

Theimperfect cadencis like a musical semicolon; it always appearksetween phrases and
never at endings, unless the intention is to hlgartusic sound unfinished. It is the reverse
of the perfect cadence: chord | is followed by chd@r(and i is followed by V in minor keys):

A C Major: A Minor:
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Figure 3.26 — Imperfect cadences in C Major and A hor

Note that if instead it were assumed the secondddsdhe tonic, the imperfect cadence
becomes the plagal cadence, since the two ardddeatrally. This sort of context-
dependency for cadences is a further useful cluedomonic analysis when trying to
determine the key of a piece. The second inversiamord V is very common at Imperfect
cadences. When it is used in this instance kihgavn as a&adential six-four The numbers

naturally refer to the figuring of the chord in d@sscription, which is \?

Finally, theinterrupted cadences so-called because it sounds like the interoumptif what
could be a perfect cadence. It also begins wittctN or V' but instead moves to chord vi
(or chord VI in a minor key) again, giving a feglinf incompleteness, since the music has
not arrived at the comfortable tonic. Note theation of a unison in the final bar.
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C Major: A Minor:
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Figure 3.27 — Interrupted cadences in C Major and AMinor

3.5.2 Some Basic Voice Leading Rules

Voice leadings the motion of a note within a melody or chavdts the next note. There are
three possibilities: the pitch may rise, fall crysthe same. Although the following rules
about voice leading are often broken, they are mtien the case than not. The word “voice”
Is used to describe one particular line of musithivia polyphonic structure. Think of a
human voice within a choir singing a particularrhanic line. More often than not, there are
four voice parts in a choir. These parts are narimeth lowest to higheshass tenor, alto
andsoprano

3.5.2.1 Parallel, Contrary and Oblique Motion
The three ways in which one voice may move give tasthree ways in which a pair of voices

may move in relation to each other. These thrpesyf relative motion are illustrated in
Figure 3.28

QQS*D

.

3

Parallel motion Contrary motion Oblique matio

Figure 3.28 — Three types of relative voice motion

There are some rules regarding the usage of plarabigon (the first type in the figure),

which tend to be obeyed more often than not inladyic music, unless a specific effect is
desired. In this type of motion, voices move ia fame direction by the same step. Since the
interval of an octave and a perfect fifth are titetivals between the first three pitches of the
harmonic series of a note, it is not desirableawehtwo voices moving in parallel at these
intervals. Referring back téigure 3.5 two pitches an octave apart resonate well witthea
other, as do perfect fifths, and aurally the effe¢hat one voice gets absorbed by the other.
Instead of two different pitches, sometimes onlg aheard with a different sound quality or
timbre. Therefore moving in parallel octaves &h8 effectively loses a harmonic line.
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The study of J. S. Bach’s three and four part hagnvariting in particular reveals that he and
other composers were very aware of the undesiedfdets of writing parallel fifths and
octaves, and they tended to avoid doing so as msigossible in their music. Only rarely
will one find a counter-example of this rule, esplg in writing where all four voices have
equal importance.

An important case where writing parallel octavessed as a deliberate technique is for bass
instruments in an orchestra or band. Very oftenkhss line will double the roots of chords
an octave below, which has the effect of boostimegantire harmonic series of these pitches,
resonating with other instruments and yielding aimicher sound. In an orchestra, the
lowest string instrument is called tHeublebass for this reason. Removing double basses
and bass guitars from orchestras and bands hay aaticeable effect — the sound texture
immediately becomes much thinner and less full-eaddi

The most common use of parallel voice-leading isionan thirds or sixths, and occasionally
fourths. Motion in parallel seconds and seventssdn interesting effect and occurs more
frequently in 28 century music and Jazz. The other two types dfanpcontrary, where
voices move in opposite directions, and obliquegnglone voice stays on the same pitch and
the other moves against it, are less restrictivbeir usage. Both occur frequently in all types
of music.

3.5.2.2 Doubling of Notes in Quartads

As with parallel motion, the rules regarding theildiing of certain notes within a chord rather
than others are not set in stone, but certain ipetdo occur much more frequently in general,
and so it is useful to be aware of them.

More often than not, in a major chord, the rooen@e. the bottom note of a chord in its root
position) is doubled. Less frequently, the fifshdioubled, although usually only to avoid
writing parallel octaves and/or fifths, and moreenta chord is in its first inversion. The
third is seldom doubled, unless the chord is mimowhich case it is quite a likely candidate.
Figure 3.29shows a chord progression where different doulliagybeen used for each
chord. Note that since each of the four notesiefiinal dominant seventh is unique, there is
no doubling in this chord. Note also that the motbetween the soprano (top voice) and
tenor (second from bottom) would be consideredvadithg by Bach, since parallel octaves
are formed between the second and third chorchdasated by the parallel lines. By
convention, when two parts are written per staf€hsas in the example below, the stems of
the upper voice notes should always point upwandd@wer voice stems should point
downwards, regardless of whether or not the pitenesbove or below the middle line.

)
% o o
o~ 2 & 2
o f i |
—
) - -
| VG Vi V7

Figure 3.29 — Doubling of notes in four-part harmory
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The doubled notes in the above chords are as fsllow

| — Root doubled — bass & soprano C
V® — Fifth doubled — tenor & soprano D
Vi — Third doubled — tenor & soprano C
V' — Four unique notes (no doubling)

3.5.2.3 More miscellaneous rules

Finally, the following should be observed when wmgtfor voices within chords forming
cadences especially and elsewhere in general.nAtiegse rules are not always the case, but
are much more likely to occur in music than not:

Voices should not cross over one another or mowéaiointo the range of a
neighbouring voice part. That is to say, if oneev® draw contour lines through all
the notes belonging to two neighbouring voicesséh@es should not cross or exhibit
too much deviation.

Intervals between bass and tenor voices may beawvectave, but should be less than
an octave between other pairs of neighbouring woice

In chord progressions, notes which are shared bydifferent chords should stay in
the same voice. For example in a plagal caden€eNtajor, both chord IV and chord

| have a C in them. Accordingly, Figure 3.25 the C in the first cadence stays in the
soprano part.

In a perfect cadence, the leading note — the skwsgree of the scale (e.g.aBinC
Major) should rise to the tonic (e.g. C in C Majol) may also fall to the fifth degree
of the scale, i.e. the dominant (G in C Major).

If the first chord of a perfect cadence is a domirseventh, the seventh of chord V
should fall to the third of chord | (e.g. F shot#dl to E in C Major).

While there are several other rules of harmonysehmutlined in the above sections are more
than enough to start with and they cover the bdercan already extremely wide range of
musical styles. As with good English grammar,riiles do not exist because somebody has
decided that they should be law, but rather becats® music is written in adherence to
them, it simply sounds better, and so thereforg lfaee survived the test of time. While an
attempt has been made to understand exactly whgltiould be so, according some
scientific, physical or physiological reason (sashresonance and the harmonic series) it can
perhaps never be known for sure why our minds teridvour one set of patterns over
another. There is in fact a whole branch of sdiergtudy dedicated to exploring human
perception of sounds and music, and how soundtaftecpsychologically. This subject is
known agpsychoacousticsAlthough it is perhaps extremely important irstkind of

research, further discussion of this field canroabcommodated by the scope of this already
bulky chapter, and so hopefully this brief mentadnt will suffice.
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4 The Easy Problem — Single Pitch Extraction

Perhaps the word “easy” isn’'t quite right heregcsithe problem of determinirigfor even
single musical pitches and hence transcribing me¢od no mean feat, and a fast and
accurate method has eluded many great thinkeradory years. Nevertheless, the
complexity of this problem pales in comparisonttattof multiple pitch and multiple
instrument recognition, which will be dealt withtime following chapters. The current
favourite method of single pitch extraction (atstem the author’s opinion) will be discussed
in the third subsection of this chapter, and soraamples of this highly successful algorithm
working on live recorded music will be shown. Qted this algorithm goes to Philip
McLeod who has implemented it in his real-time rowsialysis toolTartini [Tartini07S].

4.1 Windowing in the Time Domain

The Fourier transform is able to provide accuratermation about the frequency content of
signal. However, there is no way of tellimgen those frequencies occur, since the
underlying assumption of the transform is thafraljuencies making up the signal are
stationary and extend infinitely over time [Gabdtli@®r at least in the discrete case, for the
entire duration of the signal. Therefore on itsxatds not much use for melody extraction,
unless the melody consists of just one continuadts! n

4.1.1 The Short Time Fourier Transform

The first attempt to get around this particularijpeon seems a logical one: split the audio
signal into small segments (or windows) and idgritie frequency content with separate
Fourier transforms in each. This idea was firktddd to by Dennis Gabor in 1946 in his
paperTheory of Communication [Gabor46L], although the link between tGabor transform
and the more modern name for this techniqueStioet Time Fourier Transform (STFT) was
only discovered much later in 1980 by Dutch enginkrrtin Bastiaans [Bastiaans80L].

The discrete STFT y, is a two dimensional sampled function indexedrbgver
frequency, andk over a time shift KW is then thek™ position of a sliding window of width
W along the signal. So, we have:

N-1 _
Fk’m — Z fn @—|27mn/W Evvn_kw-
n=0

As can be seelk;y m is the DFT multiplied by another discrete functiafh known as the
window function, whose starting time is shiftedrfrohe signal’s starting time by the duration

of k window widths. Before discussing window functiphewever, we need to know their
necessity due to the following problems which afieen cutting up a signal in this way.

4.1.2 Time Slicing Issues
As discussed previously, the Fourier transform sigaal becomes less meaningful for non-

stationary waves, that is waves which do not coseprepeating patterns and therefore do not
have any discernable frequencies.
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Referring toFigure 2.6in chapter two once again, the discrete Fouraarsiorm of this
stationary wave, sampled over 2 seconds with hegblution time spacings of 1/8192
seconds, is shown Figure 4.1, still represented as a bar graph. As expectedyet/three
spikes at 5Hz, 10Hz and 20Hz (the symmetrical spikehe negative domain of the graph

have been omitted).
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Figure 4.1 — DFT histogram off(t) = % sin(107t) + % sin(20rt) + % sin(40rt)

In this case, the reciprocity relationship discdssechapter two tells us that the sampling rate
and the length of the signal are more than adedaatield an accurate discrete transform into
the frequency domain. Chosen values are:

L=2,

- 1
At = 819:°

So:
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The highest frequency which needs to be suppost@diz, which falls well within the
bandwidth (—4096Hz to +4096Hz). At the other ehthe scale, the lowest frequency of 5Hz
is also supported, since the frequency resolusdn5Hz.

Now, if we chop this signal into four equal portsms inFigure 4.2 (in preparation for a
STFT) we have altered the phase and effectivelyralgsd the stationarity of the wave.

Furthermore, the value &f is now only 0.5 seconds. Although the bandwifB, stays the
same, the values f0M andAv have changed:

— 16384
N = 4
=4009c¢.
— 8192
Av = 4096
=2.
1 1 1 1
0.5 - 0.5 0.5 0.5
0] 0- 0 0-
-0.5 -0.5 -0.5 -0.5
-1 -1 -1 -1
0 0.25 0.5 0.5 0.75 1 1 1.25 1.5 15 1.75 2
time time time time
Figure 4.2 —f(t) split into four windows
0.2
0.15 A
0.1 -
0.05 A
o I I | - - ! . ! . !
0 10 20 30 40 50 60 70 80 90 100
frequency

Figure 4.3 — DFT histogram off(t) for each window
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The adverse effects expected from the phase atteratd the poorer frequency resolution
may be seen iRigure 4.3 which shows the DFT of each of the four windowhe signal:
the 5Hz peak (which no longer has its own bin) appé& have leaked into neighbouring
frequency bins, hence the name for this phenomerspectral leakage. Another way of
looking at the above leakage at 5Hz is to thinkhefwavelength of this signal component,
0.2 seconds, in comparison with the width of thedew, 0.5 seconds. The window width is
not wholly divisible by this wavelength — two andhaf oscillations of the wave component
fit into each window. The other two frequency caments, 10Hz and 20Hz, are unaffected
because five and ten complete cycles, respectifiehgatly in 0.5 seconds, and so their
phase is always zero at the start of each window.

The above example signal is specifically desigmedife concepts which it demonstrates.
Naturally, real world audio signals rarely contauth conveniently divisible frequency
values, and so these issues almost always arise slisgng up waves. To try and combat the
phase problem, a window function (other than threetut Rectangle Functiom(t) = 1)

which tapers the left and right edges of the sigheé should be used. This effectively
makes each window one complete cycle of a waveydbgss of the original signal, and still
preserves the frequency content, at least in tiaeleof the window.

4.1.3 Window Functions

There are many window functions, which have varyiegrees of effectiveness. Amongst
the more common ones in use, are the Triangle 4oitddt), Hann, Hamming and Cosine
functions*, but (largely thanks to Gabor and Basts) we know that the best improvement,
i.e. the best localization of frequencies in Fausigace, is achieved by using a Gaussian

Function [McLeod02L], wherer < 0.5

_l(t—w/z)2

W(t):e 2\ow/2

Figure 4.4shows a Gaussian curvg (= 0.5 and one of the windows of the saff) again
after the function has been applied to it. TheoFihis window is shown iifrigure 4.5,

1 1
0.5 A
0.5 | 0 -
-05
0 -1
0 0.25 0.5 0 0.25 0.5
time time

Figure 4.4 — Gaussian function and its product wittthe first window of f(t)

* Please seAppendix A.2 for a list of window functions supported lyave Processor.
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frequency

Figure 4.5 — Fourier transform of windowed signal

Although the amplitudes in the graph are diminisltkeee to the damping effect of the
window function, and there is still some leakage, lbcalization is now much better for the
5Hz component.

Note that since the quantization of the frequermyain does not provide for a 5Hz bin, the
4Hz and 6Hz bins claim roughly the same probabdityealising the 5Hz component — it
should be clear by now that these two peaks do@ewdssarily indicate the presence of two
weaker 4Hz and 6Hz components instead. The nekibealescribes a very popular

technique for combating this type of ambiguity, @éhachieves even more accurate frequency
estimation with the STFT by exploiting the phaseimation in the Fourier transform,

hitherto ignored in favour of the much more obviouesgnitude information.

4.2 The Phase Vocoder

The term “phase vocoder” is not to be confused withvocoder, short for voice encoder,
which is a telecommunications device designed 2818 Homer Dudley, a Bell
Laboratories engineer [RaphaelO6L]. The vocodes argginally built to encode speech
before transmission, so that secure messages lsewdént over radio. Dudley also created
another device capable of outputting synthesizegdp— the voder, which stood for Voice
Operation Demonstrator. This machine was opetayetitechnician who would control a set
of keys and a pedal which manipulated differeneatpof a carrier signal, such as spectral
content, frequency and type of sound emitted*.

4.2.1 A Brief Look at the Vocoder

The vocoder works by analysing speech and meascahiagges in frequency spectra over
time. As will be seen in the next subsection, ihiwhy the name was borrowed for the
analysis technique. It then splits the speechasigio several frequency bands (often ten)
and uses the measured spectrum changes to detexrtewe of the signal’s energy in each
band at any given time, thus creating a set @r8lt This may be likened to performing a

* For a full demonstration of this machine, pletisten tovoder.wav in theSound folder on the project CD.
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Short Time Fourier Transform with a very coarsg@@ncy resolution, but instead only
recording thalifferences in frequency per bin between each time windoworbter to
recreate the speech, in the decoding process a sigisal with a large bandwidth, called the
carrier signal, is passed through the filters, yielding the avagispeech, but sounding
somewhat dehumanized.

Vocoders became very popular in music and the eamenent industry in general. Instead of
noise, the carrier signal for this type of muswatoder is synthesized musical sounds. A
good example of the use of a vocoder in musicassting “Hide and Seek” by Imogen Heap,
which may be found on the project CD [HeapO5M].ofrer amusing and clever example of
the use of a vocoder is in the remix of Carl Sag@aesmos, which appeared on YouTube to
great acclaim in September 2009 [Boswell09M].

4.2.2 From Frequency to Phase Difference

As mentioned previously, the vocoder records diifiees in the spectral content between time
frames. The Phase Vocoder, which is a computerighgn rather than a physical electronic
device, also determines differences in frequenfoyrimation, but with special regard to phase.
The method was introduced in the 60s by James §danand Roger Golden, two American
researchers at Bell Laboratories [Flanagan66L].

The first step in the Phase Vocoder algorithm igenerate more windows of the signal
which overlap with windows in the regular STFT. udBy a sufficient overlapping is from
half-way through one window into the next, as iatkel byFigure 4.6 which shows the
same signal from the previous sectif{t), now split into seven windows (the original four
plus three in between). Each of these sectionb&as multiplied by the Gaussian window
function.

1 1 1 1
0.5 0.5 0.5 0.5
0 0 0 0
-0.5 1 -0.5 1 -0.5 1 -0.5 1
1 -1 -1 -1
0 025 05 05 0.75 1 1 125 15 15 175 2
1 1 1
0.5 4 0.5 - 0.5 -
0 0 - 0
-05 | -0.5 -0.5 1
1 -1 -1
025 05 075 0.75 1 1.25 125 15 175

Figure 4.6 —f(t) split into seven overlapping windows
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The reason for doing this is to create a slightspldifference for the same frequency
component between two windows, and then to exathisalifference in the frequency
domain to obtain a much more accurate measurs wéltie. Referring back tigure 2.4

from the previous chapter, &, represents the phase of the frequency in theviirsdow,
then & is its phase in the second window apis the phase difference caused by the small
time shift between the two windowts,—t; = At. Depending on the angular velocity of the
frequency, the phase positiontmay be the very next position in the cycle ofwaere in
time At, or it may be the position plus an unknown numheaof complete cycles, i.e.

(92—51:¢+n277.

The value of@restricted to the range7zand 77is known as itprinciple argument, which
may be written as the functi@rincarg@.

Figure 4.7 shows the first of the new overlapped windowsn(fi@.25 to 0.75 seconds) and its
Fourier transform histogram. Comparing wWiigure 4.5for the first window, the frequency
magnitudes are much the same. However for thespetakHz and 6Hz, the real and
imaginary parts of the Fourier coefficients aretguiifferent when one examines the raw
output. Table 4.1shows these values and the resulting magnitudegplaases.

0.2
1
0.15 A
05 -
0.1
07 |
0.05 - ‘ ‘
-0.5 1
\ LA 1
0.25 0.5 0.75 0 10 20 30 40 50
time frequency
Figure 4.7 — Windowed signal from 0.25 to 0.75 anits Fourier transform
Window | Real Part Imaginary Part | Magnitude | Phase
4H 1 0.079526 0.000843 0.079531 0.010600
Bi Z12 0.000011 0.075847 0.075847 1.570651
N | 1560051
6H 1 0.076778 0.001078 0.076785 3.127553
1217 0.000011 -0.080098 0.080098 -1.570659
Bin | -4.698212

Table 4.1 — Comparison of Fourier coefficients fronfirst and second time windows
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Now, given that thangular frequency,w= 27%, is the time taken to complete one cycle of
the wave, it follows that the change in angilusn complete cycles, must be equalib
multiplied by the change in timAt, or:

¢+n27n =2 At
_@ptn2r
2n(At

Substituting the values into the equation for thig frequency bin, we get:

\'
0.99316
4.99316
8.99316
12.99316

WIN|R|O|S

Since 4.99316 is the closest value to 4, the comaoe ofn in this case is 1, and thus actual
frequency represented by this spike is 4.99Hz uge improvement for the measure of the
5Hz component.

Similarly, for the 6Hz frequency bin, the valuesambsubstituted into the equation foandv
are:

n Vv

0 -2.99097
1 1.009025
2 5.009025
3 9.009025

In this case, since the valuewfor N = 2is closest to 6Hz, this is the correct valuerforSo
the peak in the 6Hz bin also in fact represent®asurement which is much closer to 5Hz.

The refined accuracy possible with the Phase Vacddnique makes it an extremely
popular frequency estimation method, and so itdegs included for experiment Wave
Processor. However the following section describes a pdgslen better technique which
works extremely well with melodies in particulas, \&ill be seen.

4.3 The McLeod Pitch Method (MPM)

A fairly detailed description of MPM is given indlpaper aptly titled Smarter Way to Find
Pitch [McLeodO5L]. It was developed as an improved gofuto an earlier effort —
Visualization of Musical Pitch [McLeod02L] — which made use of a Short Time Feuri
Transform with a Gaussian window.

Since this paper was the only source (apart fraTdntini source code), the implementation
of the algorithm in th&Vave Processor application has been based entirely on this opempa
This section is, for the most part, to show howdbéde was derived, and so there is some
repetition of McLeod’s work. However, along theywane or two gaps in the argument
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needed to be filled — some of the more basic stdypsh it appears were originally left to the
reader to decipher.

4.3.1 General Algorithm Description

The “smarter way” is also a time-window method. LMod has shown a useful relationship
between two functions, namely tAatocorrelation Function and theSquar e Difference
Function, and also how they may be used to calculaté&tnenalized Square Difference
Function. This is all described in the following two subsens. From the normalized square
differences, a peak picking algorithm is used twaet the strongest frequency (usually the
fundamental) hence the pitch at each time frantas process is explained in subsection
4.3.4

4.3.2 The Autocorrelation and Square Difference Fuctions

The autocorrelation functiof(7), is, as its name suggests, a measure of how msehcd

data is similar to itself at different time intelsar. It is useful in signal analysis for finding
repeating patterns, or, as in this case, idengfyire fundamental note of a sound signal
comprising a certain frequency plus its harmonitkere are many autocorrelation functions
to choose from, depending on the application atthdfor signal processing, the function
that is most often used is given by:

R =[O * (-1,

wheref(t) is the signal functior;is the time interval or lag and * denotes the claxp
conjugate.

For a discrete set of samplég,autocorrelation may be computed over windows iathWV
[McLeodO5L], starting at a time indeR, according to:

n+W-1-k

Ran= O fifiue [4.1]
j=n

Notice that a¥ increases, the number of terms in the summatioredses. This is because

the windowed signal is, out of necessity, paddet weéros beforehand, and so for larkjer
fewer non-zero terms are being used in the calonlat

The square difference functioby ,, which is the one we eventually want a normalized
version of, is given by:

n+W-1-k )
Dk,n = Z(fj - fj+k) . [42]
j=n

This function is useful since it yields minima white lagk, is a multiple of the number of
samples in a pitch period in the signal. Revigitime example of a vibrating string briefly
(see the section on harmonics in chapter two) eth@sima relate to the stationary points at
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regular intervals along the string, which will alygahave an amplitude of zero. Expanding
the brackets of equatida.2], we get:

n+W-1 k2 5
Din= S(F2-2ff ., +f2) 3

j=n
From[4.1], this then becomes:

n+W-17k
Dk,n = Z(sz + fj2+k)_2Rk,n’ [44]

j=n

and we see that autocorrelation is actually comthwmithin the squared differences. The

remainder of the squared differences we shalltbalfSum of Squares Function” d& p,,
defined by:

n+W —1( k

Scn = z:ff+fﬁm) [4.5]

j=n
So, finally, we can rewritpt.4] as:

Dk,n = SK,n - 2Rk,n' [4.6]

4.3.3 The Normalized Square Difference Function

To normalize, McLeod divideBy , through byS , and subtracts the result from one, so that
minima become maxima and the range of the resuliagh is now between —1 and +1.
Thus, we have the Normalized Square DifferencetfancNy ,,, defined by:

D
Ny, =1- <" [4.7]

Scn

Then, from[4.6]:

-2
Nk ) —1- SK,n I:\>k,n [4.8]

’ S
_ 2R,
Sn
Thus to compute the normalized square differendeteod must compute both the

autocorrelation and the sum of squares. He usasdraheory to calculate these efficiently
as follows:

[4.9]

63



In order to comput€ ,, McLeod uses an algorithm which incorporates A& Flerived
from the Wiener-Khinchin Theorem [Wolfram09W]), $e@ computation time is reduced
from O(WWW), when calculated by summation,@f(\WHw)log(W+w)). The steps, as
given in part 6 of the paper [McLeodO5L] are woutltlining again here:

Zero pad the window by the number of normalizedigalrequiredyV.

Take a Fast Fourier Transform of this real signal.

Multiply each complex coefficient by its conjugdtgelding power spectral density).
Take the inverse Fast Fourier Transform.

PwnN PR

When implemented in software, this part of the atgm is actually only a few lines of code,
as shown iAppendix C.2 (see theACFcode listing).

The sum of squares part of equatjdr®], S, may also be calculated quickly by using
the result fron§_; , and subtracting the appropriziﬁa thus:

— 2 2
SK+Ln - SK,n - 1Ek+n - 1En+W—1—k'
In the case ok = O, from [4.5] we have:
n+w-1 )
SO,n = Zij
j=n
= 2Ry, [4.10]

which has already been calculated. GivenAG& implementation, this particular
computation fok = Qis achieved in one line of code:

double ss = ACF(in, out, N) * 2;

Thus, the full computation of the normalised squhifierences is easily implemented in
Appendix C.3 (see theNSDFcode listing).

Note thatNy , will always be equal td:

Non = ZSROO-” frorf4.9]
N
_ 2Ry frorfd.10]
2Ron
=1,

and as mentioned abowd, ,, will never exceed-1 or fall below—1, since the greatest
possible magnitude &Ry, is S, i.e.:

12Rcn £ Scne
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An example oNSDFoutput is shown ifrigure 4.8 (drawn in Microsoft Excel from debug
output of the testing software). It can be sean tthe graph tapers somewhat, due to more

zero terms being used in the calculation (sinceniineow is zero-padded) &sthe sample
index, increases. The main peaks of the graplusethe pitch period of the fundamental note
as well as those of any harmonics. Usually theldummental frequency is the strongest, and in
the case of the example graph, it seems that tive meaks occur approximately every 225
samples within this particular window (which is #0gamples wide). To obtain to the actual
frequency, however, we must divide the number offdas per second in the digital signal (in
this case 44.1kHz) by this value:

44100
22¢

=196

196Hz is equivalent to the musical pitch. G

0.5 -

0 AA NN [\J\«\(\}\ [\r\r\n F\/\A

> NV Ve VY bkt VNV VT e oo

-0.5 4

Samples

Figure 4.8 — An example oNSDF output

4.3.4 Peak Picking Algorithm

An efficient method is needed to choose peaks,assdene manually in the example above.
The source code for an adapted version of McLepeék-picking routine, based on his
description in section 5 of [McLeodO05L], is listedAppendix C.4. This function takes the

NSDFoutput and fills an array of integers with theued of 7 at the chosen maxima. The
number of peaks found is then returned.

As a kind of trade-off, McLeod’s parabolic interptbn step has been deliberately left out,
since the same kind of accuracy that he was afteot really required here. His method
yields a slightly more refined calculation of thich period by fitting a curve through the
maximum and the two points either side of it arehtfinding the turning point of the
parabola, rather than just picking the maximum thélit using parabolic interpolation it is
still possible to calculate pitches to well witliire nearest semitone.

The following pseudo-code should suffice as anaxation of how the peak-picking function
works, without simply repeating McLeod’s descriptio
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PICKPEAKS(NSDF, PEAKS]], n) {
Find first negative zero crossing
LET N_PEAKS_FOUND =0
WHILE not at end of NSDF {
Find next positive zero crossing
LET MAX_PEAK =0
WHILE graph is positive and not at end of NSDF {
Find next LOCAL_PEAK
IF LOCAL_PEAK > MAX_PEAK {
LET MAX_PEAK = LOCAL_PEAK
}
}

Record MAX_PEAK in PEAKS]] array
Increment N PEAKS FOUND

}
RETURN N_PEAKS_FOUND

}

Once the “key maxima” have been found, a threstsotikfined, which is equal to the product

of thehighest maximumand a constank, which has an effect on how well the algorithm is
able to discern between the fundamental note atcbag harmonic. The lower the value, the
more likely the chance that a pitch will be ideietff, but the less likely the correct
fundamental note (rather than a harmonic) will besen, and vice versa. As stipulated in

[McLeodO5L], K should be between 80% and 100%. The dominantémxy for the window

is chosen by taking the lalg, for the first key maximum above the threshold padorming
the calculation as shown in the example in the@eetbove. When a clearly defined pitch is
not found, the frequency is set to zero.

A measure of the clarity of a pitch is also obtdid@ectly from the amplitude of the chosen
key maximum, which then indicates how coherentditected pitch is. As is doneTartini,
clarity may be represented by changing the intgmdithe colour when plotting each pitch in
the output — the clearer the pitch, the brighterdablour. The clarity value is also setto O if a
pitch has not been found.

4.4 Drawing a Pitch/Time Graph

In the previous chapter, a musical score was destias a graph of pitch against time. Of
course, a score is much more than just a graple@mdins many other symbols and written
instructions which indicate how the music it regrs should be played. Since the main
purpose of this study is pitch identification arat full score re-synthesis and rendering, it is
necessary that the output be much more simpleratigeiform of a pitch/time graph.

4.4.1 Calculation of Relative Pitches from Frequernes

As explained in chapter three, pitches and freqgesrare not the same, although they have a
dyadic relationship. The McLeod Pitch Method resdeequencies rather than pitches,
therefore in order to draw something which moreselp resembles a musical score, a
conversion is needed. For yielding a note on tlestédfn musical even-tempered scale, the
following pitch formula (adapted from the one givariMcLeod02L]) should be used:
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In program code, this translates as:
pitch = log(freq / C0O) / log(TWELFTH_ROOT _2);

Co is the base frequency, i.e. the note whose pitlshall assign a value of 0. For musicians,
this is equivalent to the C four octaves below Mgd@ on a piano (in fact a few notes lower
than the lowest note on most pianos — usuagly which has a frequency of 16.375Hz. All
other pitches may then be calculated in terms of many semitones they are above the base
note, hence the twelfth root of two factor (seeptbatwo). For example, the notq Bas a

frequencyyV = 440Hz. Substituting the values into the pitoinfula, we get:

0, = |09(44%6.a75)
M logl%2)
1429

 0.025
~57.

Thinking in terms of pitches, this result is asested, since Ais 4 octaves + 9 semitones
above G:

4x12+9=57.
4.4.2 Graphical Representation

Using the pitch formula on the fundamental freqyenceach window, we can produce a set
of linear pitches by shifting the window (in oursea¥s window length at a time). We need to
plot these pitches on some sort of graph that fndappy compromise between something a
mathematician would understand and that which aaiausis used to reading, preferably
leaning towards the latter — the closer the outptd an actual score, the better.

At this point we are unable to divide notes intcaswges, draw barlines or even use
Franconian notation (see chapter three) becaudefuanalysis of the output is required in
order to determine the duration of a beat and @eardcorrect quantization. Therefore, for
now, time should be represented by length onxthes.

As for pitch, further analysis of content basedsonple rules of Harmony, as outlined in
chapter two, is also required. This is necessaprder to write correct key signatures
according to the detected mode, so that music reayrliten on the much more compact five
line staff without having to use too many accidéntéince this kind of analysis is a post-
processing problem, for the time being the keyvags assumed to be C Major, which does
not have a key signature. Notes are thus spedtrdicg to diatonic pitches within this key,
e.g. the note between F and G tgd&ther than @ SeeTable 3.10in chapter three for all

correctly spelt diatonic pitches in the scale bemig on C. In the case oftD B, D¢ has
been chosen since the key in which it appears, jorivia more closely related to C Major /
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A Minor than B, which appears intBViajor. Pitches are thus represented as thick fiakks
drawn over two staves. The twin treble / basd siattem is called, by some music theorists,
thegrand staff, and it is the standard for most piano music,esth¢s instrument requires a
wide range of pitches to be represented.

The musical sample chosen for analysis demonstigtishich will be used throughout this
thesis in various guises, is the opening line &Sbuth African National Antherhlkosi

Skeldi Africa [Sontonga97M].Figure 4.9 shows the musical score of the melody, notated
usingSbelius 6 [Sibelius09W], andrigure 4.10is a pitch graph of the same, analysed using
the McLeod Pitch Method as implementedNave Processor. The music was played on the
violin and recorded using a deliberately poor gyahicrophone and with a lower-than-usual
sampling rate (22050Hz) in order to demonstrate tvell MPM performs under these
conditions.

() &

. .

[Y)

Figure 4.9 — First two bars ofNkos Sikeleli Africa melody

2

» _| L ———

Figure 4.10 — MPM Pitch graph of first two bars ofNkos Sikeleli Africa melody
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Note the following with regards to the pitch graph:

* Accidentals are indicated by the use of differetbars: blue means the note is a
natural Guidonian pitch, red is for sharps and gi@et seen in this example) denotes
flats. According to the key signature in the sctine melody is in the key of G Major,
and so Fs should be sharpened, hence the coldlie sEcond pitch in the graph.

» Clarity of pitch is shown by the depth of colouress clear pitches, e.g. the artefacts
on the bass staff, are fainter.

» Listening carefully to the recording, where theoaithm has apparently mis-
calculated some pitches, these are all moments titgeviolinist makes a certain
movement such as a finger shift, bow directionw Ippessure change, or slight
vibrato, causing a short noise to occur. Thisiseitg to noise may be controlled by

adjusting the threshold, discussed in subsectidB.4and also a clarity threshold,
which can be set at a lower level to reject pitovkgh are not very clear.

* The lack of temporal quantizing and the use of lpidth to show durations means
that the melody must be drawn over more staff systen this case three instead of
one. It is unfortunately necessary for now to maéevithout the useful compactness
of Franconian notation.

* The notes are not neatly measured and spacedetafitly into one staff line as with
theSbelius score. This is a music engraving issue which natl be tackled here.
Good-looking note distribution over multiple stavesonsidered a difficult problem,
even with proper notation.

* Because of the lack of quantizing, some noteseat¢tits of staves are cut part-way
through and wrap round onto the next line.

» There is no way of telling where some notes begthend if they have the same
pitch. For example, the Bs and As in the middléhefmelody could represent
minims instead of pairs of crotchets.

4.5 Comparison of Output

A performance comparison of the various signalysisland pitch identification techniques
was conducted for various different signals andréseilts of these experiments are presented
as a conclusion to this chapter.

4.5.1 A Stationary Signal

Firstly, a simple stationary signal was construatethgWave Processor’'s wave creation
feature. This signal is similar to the exampleduisechapter two — sdeigure 2.6— in that it

is also a sinusoid comprising three frequencidse dhosen frequencies were 440Hz, 555Hz
and 660Hz, which, when translated into pitchesnftire tonic triad of A Major. A simple
Fourier transform was done, and the three freqesrappear very clearly in the graph shown
in Figure 4.11, which is in the form of gpectrogram. This is a type three dimensional graph
which makes use of different colours or shadeadacate amplitudes for a spectrum of
frequencies. Unlike the histograms encounterediqusly, frequency is now on the vertical
axis. Spectrograms are particularly useful repriedmns for the purposes of this study,
since, keeping time on the horizontal axis, we hatiene-frequency representation of a
signal — one step closer to the desired time-gtaiph. Since this particular signal is
stationary, the three frequencies do not changetove.
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Figure 4.11 — Fourier transform of stationary signdcomprising three frequencies

4.5.2 A Chirp Signal

The best example of a non-stationary wave is onehwdoes not contain any fixed

frequencies at all, and this is precisely the ea#ie thechirp signal. The one constructed

here is a sinusoid which oscillates over two sesamt whose frequency constantly increases
throughout, starting at 32Hz and ending at 8192Hzchirp signals, the frequency may
increase linearly or logarithmically. In this cake choice was linear, so, aurally, the sound
seems to rise rapidly in pitch at first, and thies increase becomes more gradual as the
frequency gets higher. This is due to the dyaglationship between frequency and pitch,
discussed in the previous chapter. Thus a lineange in frequency results in a logarithmic
change in pitch and vice versa.

In the time domain, the first part of the signasi®wn inFigure 4.12 As can be seen, the

peaks of each oscillation get closer and closéhnesvavelength constantly decreases and the
frequency increases.

WW\M il
b i

0 0.01 0. 0.07 0.08 0.09 0.1

time

Figure 4.12 — Linear chirp signal (time domain)
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Figure 4.13 — Fourier transform of linear chirp signhal

The figure above shows an ordinary Fourier tramsfof this signal. To explain why this
spectrogram is simply a solid block of colour, oreeds to consider that the Fourier transform
does not operate over the time domain, haticeequencies in the chirp appear with constant
amplitude oveall time. Instead of spectrograms for non-windowedrfeo transformsyVave
Processor is also capable of drawing histograms, similathtse encountered here and in
chapter two. Bar graphs are better representatibtiee transform in any case where the
signal is assumed to be stationaRygure 4.14shows a Short Time Fourier Transform
spectrogram of the chirp. Now the time axis becomach more meaningful and the

linearity of the increase in frequency is clear.tHis case, the window width used was 512
samples, and no tapering function was applied.
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Figure 4.14 — Short Time Fourier Transform of linea chirp signal
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Figure 4.15 — STFT of linear chirp signal with Gausian window function
With a Gaussian window functioRkijgure 4.15reveals how much of the blurring caused by
spectral leakage disappears, despite the factitbaame window width has been used for
this transform.
Finally, Figure 4.16shows another STFT of the chirp, also with a Ganssindow function,

but with a larger window size of 4096 samplescalt be seen that frequencies are now less
well-localized in time but the frequency detaibistter in each window.
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Figure 4.16 — STFT of linear chirp signal with larger window width
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The Phase Vocoder and McLeod Pitch Method were tised to determinfy and hence the
pitch of the chirp. The resulting pitch-time grapdre shown ifrigures 4.17and4.18
respectively. Note the clearly logarithmic changeitch through time. The lines labelled
8%, 16" and24* are used in music to indicate that a range ohpisounds one, two or three
octaves higher respectively.

As can be seen, MPM is able to achieve a finer teselution and a more precise measures
of mid-range pitches, due to the smaller windowitshiThis is also why its output is

stretched out over two staves. However, for hidregjuencies it does not seem to perform as
well as the Phase Vocoder, which detected all pgalp to G, which is 8384Hz — the closest
estimate of the actual ending frequency of 8192Neither method performed well for the
lowest frequencies, and both began an octave hah@r— roughly 65Hz as opposed to the
correct value of 32Hz.

Figure 4.17 — Pitch graph of chirp calculated by Pase Vocoder

\th

Figure 4.18 — Pitch graph of chirp calculated by Mteod Pitch Method
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4.5.3 A Scale Played by a Synthetic Instrument

A scale in D Minor, as shown in the scord-igure 4.19 was written using Sibelius and
played back using a flute sound. The output wasucad and saved as a wave file*.

0 [———

(_L._&_——%‘?I' —~— > @ ]

Figure 4.19 — Scale of D Minor, one octave, ascendiand descending

The STFT, Phase Vocoder and MPM outputs are showigures 4.2Q 4.21and4.22

respectively. For the STFT / Phase Vocoder, thelawv size was set to 1024, and for MPM
it was 4096. Note that each B is flattened becatifiee key signature, and therefore should
indeed appear in green, as is the case on bothgriéphs. Also, the harmonic minor form of

the scale has been used, hence the ted C

Although not by a great amount in this instance MVddmewhat outperforms the Phase
Vocoder in general. Pitches are clearly definedi@mo point is a harmonic chosen over the
fundamental note. The reason for the transitipitahes, showing as different colours at the
beginnings and endings of some notes in the MPbhgtaph, may be due to the timbre of
the synthetic instrument. Listening to the recogdi may be heard that a slight breath sound
occurs at the attack of each note, presumablydardo make the samples sound more
authentically like a flautist blowing. The Phasecdder does not detect a change in pitch at
these places, however, and is as clear as MPMyuglththere are one or two other artefacts.

400C

200C

freq.
0
0.00 1.53 3.06 459 6.12
time
Figure 4.20 — STFT of D Minor scale
* Flute — D Minor Scale.wav on the project CD isound
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Figure 4.21 — Phase Vocoder pitch graph of D Minoscale
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Figure 4.22 — MPM pitch graph of D Minor scale
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Figure 4.23 — MPM pitch graph of Tartini example scale
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4.5.4 A Scale Played by a Real Instrument

An example wave file is included with the origifartini program. This sample is also an
ascending and descending scale, but is recordeddneal violin playing the notes. As can
be seen in the pitch graphkigure 4.23 the key of the scale may be deduced to be G Major
since the range is fromz@ G;, and each F is red and thus sharpened. A windioih\wf

2048 was used in this case. The sudden jump upctiage on the note E in the fourth staff
system reflects a pressure change in the violgsiw which caused the note to squeak
slightly. This may also be heard clearly in theargling.

4.5.5 A Melody

Lastly, the Phase Vocoder was also used to deitebieg in the violin melody dfigure 4.9—
Nkosi Skeleli Africa for comparison with the MPM output Bfgure 4.1Q The results were
not as good, however. Only by lowering the freqyeumpper bound in the STFT was it
possible to force the algorithm not to select sestneng high harmonics over fundamental
notes and get it as accurate as seéfngare 4.24 It is important to note that MPM does not
require any such restrictions. Based on thesddstg, on the whole MPM seems to be the
preferred melody detection algorithm, but it cob&worth re-exploring the peak-picking part
of the Phase Vocoder to see if any improvementsimayade.
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Figure 4.24 — Phase Vocoder pitch graph of first Bars of Nkosi Sikeleli Africa melody
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5 The Hard Problem - Multiple Pitch Extraction

Although much progress continues to be made itfi¢ihet of polyphonic music recognition,
the best current methods still need a lot of rafini This chapter introduces some of these
existing methods and makes an attempt to decipitedaplicate at least one of them.
Wavelets and the wavelet transform, the main casaathis research, are also introduced
here, and a new method of multiple pitch extractitnich combines a wavelet transform with
the McLeod Pitch Method is explored.

5.1 Previous Attempts — Exploration of Existing Sttware

The two major pieces of software capable of pitdinaetion on the market (mentioned in the
introductory chapter) are MelodyndXrect Note AccesandAudioScoreby Neuratron.

While the former piece of software was unavaildbteesting, fortunateAudioScorewas,
and so a brief examination of its capabilities hasn done here.

5.1.1 Direct Note Access for Melodyne

Evidence of the accuracy Direct Note Accessay be seen in the demonstration video on
the Celemony web site [Celemony09W]. The orighealson for the development of this
technology was to have a method whereby pitchdsmi polyphonic musical signal may
adjusted individually without affecting the pitchefsthe other notes, or otherwise destroying
the signal, even when their frequency spectra nvaylap. In the interview video, the
inventor, Peter Neubacker, mentions that his &t&mpt at solving the problem of separating
individual pitches in a polyphonic recording wasanual one. He did this by looking for
beginnings and endings of notes temporally, and &xamining the spectrogram to determine
“which spectral parts belong to which fundamentalkes”. In other words, what he may have
been doing was looking at the harmonic series oflimfundamentals (which he presumably
deduced aurally or from a given score) and thertraating each of these frequency spectra
from the whole. After removing fundamentals anchianics, presumably what is left over is
regarded as noise.

Figure 5.1shows the musical score of the example music kfgma the video*. These
notes were determined by doing an aural (manuatstription. Although this score looks
monophonic, due to the slow decay in the enveldp®tes played on this instrument, the
audio signal poses the same problems as polyphoog the notes overlap in time.
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Figure 5.1 — Musical score of marimbaphone melodydm DNA example

While time and the scope of this study did notwalfor a fully working reconstruction of
Neubacker's method, at least a proof of concepgnara has been written**, which

* The location on the project CD of this exampl&@und\marimbaphone.wav
** Please see the command line demonstration prognéSoftware\PV
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successfully analyses, filters and shifts frequespmctra, although somewhat crudely, and for
this particular example only. The following is e@sdription of how the algorithm works:

Firstly, the manual/aural inspection of both theveéfarm and an STFT spectrogram (shown

in Figure 5.2) was done in order to estimate the starting tioféke notes and their
frequencies. As suggested, these values weralsisreonstants or “magic numbers” in the
program, to be used in dictating precisely whenwahdre to look for fundamental notes and
their harmonics. The STFT here used a window widtd048 samples and no window
function. With these settings, the resulting imagelosest to the same output that Neubacker
demonstrates in the video, except that the lattems to have been converted into pitch rather
than frequency information, i.e. his graph is dgadi
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Figure 5.2 — Spectrogram of marimbaphone melody

Note | Pitch | Frequency (Hz)| Start Time (s)| Starting STFT Whdow
0 Ct 277.58 0.04 0
1 B 247.30 0.21 4
2 A 220.31 0.37 7
3 D 294.09 0.51 10
4 Ct 277.58 0.68 14
5 B 247.30 0.84 18
6 E 330.10 1.00 21
7 D# 311.57 1.15 24
8 Ct 277.58 1.29 27
9 B 247.30 1.44 31
10 A 220.31 1.62 34
11 B 247.30 1.75 37

Table 5.1 — Frequencies and starting times of not&s marimbaphone melody
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The manually estimated values of the starting gadfiteach pitch and its frequency are shown
in Table 5.1above. Each note was assumed to resonate fongas the final note, which
appeared to sustain for at least 1.67 secondsut 8ovindows. In fact, some of the notes
do not ring for this long, because they are eitt@npened by other interfering frequencies or
else they are repeated, as, for example, withitseniote, @, which is hit 3 times. However,

if the notes are to be pitch-shifted, one wouldwaht a note ending prematurely when it
could, in theory, resonate longer. As an experim&a attempt to repeat what Neubacker
might have done to detect the notes and then riaasize the result for aural comparison

with the original piece.

Given that this spectrogram is yielded by a STRhaathan some other method, it is almost
certain that Neubacker used a Phase Vocoder tterbfs detected frequencies so that he
could determine which harmonic series they belorigedEven if he did not, this technique
certainly yields a more accurate extraction, sthege is no guesswork involved. Thus a
separate array of refined frequency information araated for each window of the
transform.

The next part of the algorithm is the most difficaind certainly the current method used here
could do with some improvements. The general isiélaat each of the frequencies identified
from the transform in each window needs to be assigo one of the twelve notes, or else
rejected as background noise. The approach heraats to assign a probability to each
frequency for belonging to a particular note, bagstly on whether or not the frequency

Frequency in | Closest Matching | Interval — Frequency | Probability Freq.
Window (Hz) | Harmonic (Hz) Ratio (Hz) belongs to Note
292.01 fo=277.58 1.052 0.91
2749.06 f10=2775.79 1.010 0.95
255.07 - - 0.00
44.27 fs=46.26 1.045 0.92
286.10 fo=277.58 1.031 0.93
1102.17 f,=1110.32 1.007 0.95
2752.05 f10=2775.79 1.009 0.95
217.48 - - 0.00
220.10 - - 0.00
324.22 - - 0.00
42.04 - - 0.00
824.85 f3 = 832.74 1.010 0.95
214.52 - - 0.00
1110.38 f,=1110.32 1.000 0.96
2789.80 f10=2775.79 1.005 0.96
325.91 - - 0.00
87.09 - - 0.00
370.52 - - 0.00
832.58 f3 = 832.74 1.000 0.96
43.45 - - 0.00
131.76 - - 0.00
861.04 - - 0.00
127.10 - - 0.00

Table 5.2 — Frequency filtering for first note in frst window
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falls within the correct time range for the notelaecondly how close is it to a frequency
within in the harmonic series of the fundamentaknfa.

For exampleTable 5.2shows all the frequencies identified in the secemtiow of the
transform, in order of their magnitudes, for whibk first note is the only candidate for
ownership (since the other notes have not yetestawunding at this point). These were all
compared with the assumed frequency of the firg, v 7.58Hz, and each of the frequencies
in its harmonic series. A probability value watcotated, based on the interval between the
closest matching harmonic and the frequency bemadyaed, as well as how much the note
may have decayed by this window. If the intenatieen the frequency and the closest
harmonic was larger than a semitone, the frequesasyrejected as unrelated background
noise and the probability value was set to zerotehat the harmonic series examined also
includes lower related harmonics, hence, for exanfpl

Again, by listening carefully to the first note ay one can concur with the detectiorf;gfas

a strong harmonic due to the particular timbrehefinstrument, although the other harmonics
are harder to hear. When a frequency such asviige-detected, the note with the higher
probability value was selectedrigure 5.3shows what could be described as a probability
distribution spectrogram for frequencies which beglto the final note. As can be seen, the
lower frequencies are more difficult to separatel most of these have equal probability of
belonging to some of the other notes too.

Figure 5.3 — Probability distribution spectrogram for frequencies belonging to 12 note

With the complete set of probabilities per frequebim, per window, per note, separation of
the notes may now be attempted and the pitch ¢f eatvidual note may thus be adjusted.
This was tried with the fourth note, which was sdfup three semitones*. In order to do the
pitch shift, each of the detected frequencies lggtanto the note was multiplied by two to the
power of three twelfths (see Chapter 3 for an exgtian for this particular factor) and a new
bin was assigned. The phaékjn everyk[h window of each new frequency bijnwas
calculated by the following:

g =6)_ +2m'At.

whereV is the frequency in thjéh bin andAt is the difference in time from one window to
the next. Real and imaginary parts of the affe€egdrier coefficients were recalculated thus:

Ve =|Vicos8, v}, =|Msiné.

* The result of this may be heard$ound\marimbaphone_shifted.wav on the project CD
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To re-synthesize the output wave, an inverse Fotraasform of each window was taken, i.e.
an inverse STFT.

The slight scratchiness of the resulting signahast likely due to the lack of proper
calculation of the new phases for the shifted peakd also the magnitudes of the bins from
which the notes are shifted should probably natdido zero. The phases of surrounding
bins should also be re-adjusted. Also, it wouldbter not to include note decay as a factor
in calculating probabilities, although knowing tttack-decay-sustain-release envelope for a
particular instrument is very helpful. While figrihese issues and other possibly naive
methods within the algorithm constructed here wagdainly improve the quality of the
output, the result clearly demonstrates thatindeed possible to adjust overlapping spectra
and preserve the timbre of the instrument as veetither frequencies using this kind of
approach.

5.1.2 AudioScore for Sibelius

Although the algorithms which driveudioScoreare, of course, also a trade secret, there are a
few clues as to how its pre-processing might warthe specifications listed on tibelius

web site [SibeliusO9W]. For mosSjbeliusis the music publishing application of choice to
plug AudioScorento, and so this chapter also includes some sshexs of output exported to
Sibeliusand transformed into scores, as well as some gregbhs fromAudioScoratself.

The software specification details of interesttaeefollowing:

* Opens polyphonic MP3s and CD tracks and locatese ap notes/instruments playing
at a time

» Pitch recognition rangegfo G (22Hz to 4186H2z)

« Timing accuracy down to 1/86of a second

« Pitch accuracy 0.3Hz (about 1/1D6f a semitone at A

Firstly, the clue that the program reads CD traukd the given time resolution mean that the
algorithm expects a standard sample rate of 44. HdHnput, and that the frequencies are

measured in time windows of duratidh = L seconds. Thus, we can calculate the number

86
of samples in each window by the formulae discussé&thapter 2:
N =2BA
~ 4410086
=51z.76S.

The fact that this result is close to being a posfdwo is surely not a coincidence. It
suggests that the pre-processing algorithm of ehisicagain, a Short Time Fourier Transform
with a window width of 512 samples. The claimettipiaccuracy of 0.3Hz also indicates that

a Phase Vocoder algorithm has been used, sinceawitidinary STFT, the value f&w per
window would be:

Av = 2B/W
= 44100512
=86.13.
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This would be an unacceptable resolution for lowntddle range musical pitch identification,
since at A, which is a mid-range pitch, a semitone is a cbarfgabout 26Hz. Instead of
attempting to work out further how pitches are @msn investigation of the abilities and
limitations of this program is perhaps more useful.

Firstly, the DNA marimbaphone example was openetaaralysed. The resulting pitch
graph, shown ifrigure 5.4, while not entirely accurate, at least demonstrtiat the
software is capable of determining most of theexirfundamental notes, even though their
location in time is somewhat confused.
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Figure 5.4 —AudioScore pitch graph of marimbaphone melody

When imported int&ibelius the result is not very satisfactory, and woulguiee a lot of
patch-editing on the part of the user to get iklog like Figure 5.1 TheSibeliusscore
derived fromAudioScorés exported data and unaltered is showRigure 5.5below. The
time signature was chosen manuallAidioScoreand not detected.
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Figure 5.5 — Marimbaphone melody imported intoSibelius from AudioScore

The indication at the top of the scoses 87, is called anetronome mark The metronome

was originally a clockwork device, invented by Joh&/laelzel at the beginning of the™.9
century. It had as sliding weight which could k¢ at the level of the number indicated.
When its pendulum was set in motion, it would fckcisely that number of times per
minute. Thus the metronome mark is an indicatiospeed otempo In this case, the beats
specified by the time signature and the metronorakkrare crotchets, or quarter notes. If
there are 87 of them in one minute, this meansdhelt crotchet beat will last 0.69 seconds.
Given that there are four sixteenth notes in ecenjchet beat, then the length of each note
has been estimated to be 0.17 seconds. The #mtgéh of the notes, givefable 5.7, is on
average very close to that, and so this is a gexgd estimate.

The software performed adequately with a stringtgtiarrangement (four voices) of the first
two bars of the main demonstration tuN&psi Sikeleli AfricA The actual score, obtained
by doing an aural / manual transcription (with 1008f6fidence of its accuracy) is shown in
Figure 5.6 while the transcription frorAudioScorénto Sibeliusis in Figure 5.7. The latter

* Listen to Sound\NSA\Quartet - 2 bars.wav on the project CD
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has been tidied up a little to make it a little smoeadable and re-voiced using a grand staff.
No pitches or timings have been altered in thix@ss. The yellow notes indicate where the
algorithm has picked up some harmonics as fundaisenfAs can be seen when comparing
the two, many of the pitches have been identifedectly, however they are out of order and
note durations are incorrect.
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Figure 5.6 — Manual transcription of Nkosi Sikeleli Africa quartet example inSibelius
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Figure 5.7 —AudioScore transcription of NSA quartet imported into Sibelius
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Figure 5.8 —AudioScore pitch graph of NSA quartet example
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From the pitch graph iRigure 5.8it appears that some of the errors happen afer th
frequency analysis stage, for example the finas lbade, G2, which is present in the graph, is
absent in the final transcription. Going by igghlier shade of green, this is possibly because it
was not as clearly defined and detected as the pitobes and so it was rejected as being
noise.

On the wholeAudioScoreseems to be an adequately sturdy pitch deteatbgduld do with
some improvements with regards to correct note looation and other post-processing
issues. These improvements are vital if it is¢odme a useful automatic transcriber, since
the amount of work needed to correct its outputwdsegporting tdSibeliusis the same as, if
not more than, doing a manual transcription. Farrtiore, unless the user is a skilled music
transcriber, mistakes made by the program, suafcasrect timings and choosing harmonics
over fundamentals as pitches, are likely to belowked.

For further theoretical reading about other algoni$ and ideas not presented here, see
[Cont07L] which presents a real-time multiple piteltognition method, as well as the
excellent three papers by Yipeng Li and DeLiang @/&om Ohio State University [LIO7L],
[LiO8L] and [LiO9L] on pitch detection and sepaati

5.2 Introducing Wavelets

Much of the basic theory and mathematics in thisthe following sections is drawn from a
few very good introductory papers on the subjesta¥elets, [Graps95L], [Strang89L] and
[Strang94L], which are highly recommended for ememel reading. Ingrid Daubechies’s
book, Ten Lectures on Waveldi3aubechies92L], parts of which were availableasi@oogle
books preview, was also used as a primary souso@eh as [OlverO5W], which is perhaps
the clearest explanation of Fourier and wavelelyamsayet. Lastly, Robi Polikar's web-based
tutorial, [PolikarO3W], provides an excellent braacerview of wavelets and signal
processing in general, despite its lack of offigiablication.

5.2.1 What is a Wavelet?

In 1940, a seismologist by the name of Norman Rickéed the wordvaveletto describe a
short, travelling wave caused by a sharp seisnsitidiance [Ricker40L]. Ricker noted that
these wavelets changed shape and broadened asdked away from their source through
different media in the earth’s crust, and wantefing a mathematical explanation for this
phenomenon.

In the current context of signal processing, watgaleere first given their formal definition in
the early 1980s by engineers, Jean Morlet and Bl@ssman. Morlet also needed to
describe a set of short, finite, oscillatory funas which could be broadened or dilated, but
which, unlike Ricker’s original wavelets, did ndtange their basic form. Grossman and
Morlet first called them dndelettes de forme constahte‘wavelets of constant shape” in
their groundbreaking paper [Grossman84L] in 1984ictvrevolutionalized their field by
providing a new way of describing a signal usingséhwavelets as basis functions. For the
first time, an alternative to the Fourier transfosas available. Firstly though, to understand
what is meant bpasis functionwe need to go back a little further in Historythe work of
Hungarian mathematician, Alfréd Haar.
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5.2.2 The Haar Function

In his paper, written almost a century ago [HaaflBlaar explored what are known as
orthogonal function systems&Vithout going too much into the mathematicsséhare infinite

families of functions g(t), which exhibitorthogonalityon a Hilbert space, in other words
the inner product, or Lebesgue integral of the pobdof any two distinct functions is zero:

(o)) =0, P4,p.q=0,1,2, ..)

or

j:wp(t)zpq (t)dt =0.

Haar also includes in his definition the propeftsgttthe integral of the square of each function
should be equal to one — this means that the fumg@reorthonormal

j:(wp(t))zdt =1

A complete orthogonal function systénthen a set of orthogonal and orthonormal fumsi
which satisfy acompleteness relationThat is to say, on an interval, p), for any square-

integrable functionf, a series may be written in terms of the functions

(£ @) = IX (t)//o(t)dtT 'IK (t)t/Jl(t)dtT .

a

The most well-known orthogonal function systemhis set of sine and cosine functions on
the interval(—77 7). These are the components of Fourier series,hwhigy be used to
expand any periodic square-integrable functfdfourier22L, Wolfram09W]:

f(t)= 2o+ Y. [an codnt)+ by, sin()},

n=1

where

1 7
=— f (t)dt,
3= |, fltd
1 e

= _”f(t)cos(nt)dt,
_1n :
b, =— __f(t)sin(nt)dt.

86



The sines and cosines are known adtms functiongor the Fourier transform, which is
derived from this series. Haar’s study led hincdostruct a new set of orthogonal basis
functions, which were later to become recognizethadirst wavelets [Daubechies92L].

Haar wavelets, the name by which Haar’s new basistions are now known, may best be
understood initially in terms of vectors and mas®n the simplest of Hilbert spaces — the
Euclidean plane. Consider the vectors (1, 1) andX). If we draw these on the plane, as in
Figure 5.9 we can easily see that they are orthogonal, shreeare at right angles to each
other. To confirm the orthogonality of these twextors, we should check that their dot
product (the inner product in Euclidean spacegi®zand this is indeed the case:

=1x1+1x-1=0.

1, 1)

(11 _1)

Figure 5.9 — Haar component vectors drawn on the Ggesian plane

In the above graph, the horizontal and verticakaate the generated vectors (1, 0) and (0, 1)
respectively. These vectors are likewise ortho@mal they define the Cartesian coordinate
system. Just as we can represent all points opléne in terms of these two vectors, we can
also represent the same points in terms of thedi@gonal vectors, (1, 1) and (1, —1). Such
vectors are callelasis vector$gStrang94L] and are the simplest examples of Hasistions,
being in only two dimensions. We can convert betwine Cartesian coordinate system and

the 2D Haar space by constructing a transformatiatrix, H,, from the two vectors:

H_1 1
2711 -1

Consider a very simple discrete signal comprisinky two samples, with amplitudes of say 4
and 2. This signal can be represented by a poiBticlidean space: in terms of the axes
vectors, itis 4 x (1, 0) + 2 x (0, 1). Using tia-dimensional Haar basis vectors instead, the
signal is, equivalently, 3 x (1, 1) + 1 x (1, =1y terms of matrix multiplication, the

transform is:
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The first basis column vector, (1, 1), may be thdwgj as a steady signal with a constant
amplitude of 1, whereas the second basis columtondd, —1), is a square wave — half the
signal is up and the other half is down, as shawkigure 5.1Q0 The two functions which
define these signals over the interval (0, 1] are:

1 O<t<i
1, 0<t<1 . 2
(dt): _ and  Y(t)=4-1 ;<ts<l
0, otherwise .
O, otherwise
1
0 Y 1
-1

Figure 5.10 — The Haar mother waveletf/(t), as a square function

1) is called thdather waveleand ¢(t) is known as thenother waveletsometimes written

(1) to properly differentiate it from other wavelef§he reasons for this nomenclature will
become apparent as we see how all other wavelstscoessive generations of the Haar
family are derived from these two.

For longer signals, we need more dimensions. @ensior example, one with four samples
(4, 2, 5,5). Extending the standard basis vecatotwo-dimensional space to four, we can
express the signalas 4 x (1,0,0,0)+2x (0,0)+5x%x(0,0,1,0)+5x (0,0,0,1). In
order to get the Haar basis functions in four disi@ms, we first expand the existing 2-point
vectors to 4-points, retaining their respectivestant and square wave shapes. Thus (1, 1)
becomes (1, 1, 1, 1) and (1, —1) becomes (1, 1H1, Then, the other two vectors are
obtained by shifting the (1, —1) vector to thetflralf of an otherwise null vector: (1, -1, 0, 0),
and then to the second half: (O, O, 1, —1). Tthesfour-dimensional Haar matrix is:

1 1 1 0]

11 -1 0
H, =

1 -1 0 1

1 -1 0 -1

The corresponding square wave graphs of the lasbages are shown ingure 5.11 Note
that the interval is still over (0, 1] and so thawelets have effectively been scaled.
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s 1 & 1

‘/flo(t):‘ﬂo(Zt) ‘/Ju(t):‘)[/o(Zt _1)

Figure 5.11 — Haar wavelets at first scales(= 1)

The function which squashes and shifts the motlaaevet, {4(t), to generate the next set at
each scale is defined by:

s, (t)= V2o, (23'[ - T), [5.1]

whereS s the scale andis the shift, which, for audio signals, may beutlot of as a time
delay before the onset of the scaled wavelet. fibenher wavelet{/, may also be expressed
in terms of the father wavelag similarly by compression and translation:

w(t)=¢(2t) - g2t -2) 5.2]

For this reason, the father wavelet is also knosvthascaling function We can confirm
[5.2] holds, for example, fdr= Y4t = Yaandt = %

w(3)= o) - #0)
=1-0
=1
w)=di)-d-2)

=1-0

o) le)-ot)

The normalizing factor}/ZS, in[5.1] is chosen so that over (0, 1] the orthonormal @riypof
the wavelet still holds at each scale. With thaH®@avelets, the constant is easy to derive
since the Lebesgue Integral — the area under #hgr of the mother wavelet function is
simply the sum of the two rectangles. This is % = 1 for the mother wavelet, and
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subsequently the area halves at each scale. ddl@af 3, for example, the area is*1/The
square root of this multiplied by the square rdatoinverse is 1, as it should be.

The example signal, (4, 2, 5, 5), transforms idto(l, 1, 0) in terms of the new basis vectors.
The next sections of the chapter will reveal hoesthcoefficients are determined, i.e., how
the Haar transform is computed, so that the tramsdd signal, when multiplied by the
transformation matrix yields the original signal:

1 1 1 0|[4] [4

1 1 -1 0/|]-1 2
[l = _ | [5.3]
1 -1 0 1 1 5

1 -1 0 -1 0] |5

We can continue scaling and shifting the basisoreah order to generate matrices and thus
basis functions for higher dimensions indefiniteRor eight dimensions, the Haar matrix is:

1 1 1 0 1 0 0 0]
11 1 0 -1 0 O
11 -1 0 0 1 0 O
Lt 1 -10 0 -10 0
® 11 -1 0 12 0o 0 1 o0
1 -1 0 1 0 0 -1 0
1-10 -10 0 0 1
1 -1 0 -1 0 0 0 -1

Now there are four positions of the wavelet atribes scales = 2, and thus four values dt
Figure 5.12shows these four new wavelets as square waves.

11— 1 1 1
0 n 1 ° Y 1 ° s 10 s
= ~1 1 ~1

Woolt)=to(4t)  wanlt)=wo(4-1) wao(t)=wo(4t-2) woslt)=w,(4t-3)

Figure 5.12 — Haar wavelets at second scake< 2)
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5.3 The Discrete Wavelet Transform

Assuming, as Haar tells us, that we can carry @hyagm the scaling function to yield an
infinite orthogonal function system, we can thupress a functiorf, by the expansion:

0 25-1

f(t)=agt)+by(t)+> ch W (t) [5.4]

s=17=0

wherea, b, C o, C1 1 ... Csrare the wavelet coefficients ag , is the scaled and shifted
wavelet function an® and 7 are now indexes rather than values. For dissigtals, we

need to limitS so tha2® is the number of samples in the signal, thus, i#ts the Fourier
transform, the number of samples (per scale) Wwilags be a power of two. The list of
wavelet coefficients for scalésto S— 1form the discrete wavelet transform (DWT)fgf

As seen in the first column of the Haar matriche,dcaling functiong{t), is a constant value
of one at all times in the interval (0, 1], andsemetimes/t) is left out of the equation when
talking about the Haar transform in particular.s@lthe mother waveleg/(t), is sometimes

included in the summation, which then goes fi®m 0. In the Haar case, the signal may be
decomposed by:

S-12°-1

3 s

s=07=0

Under a different light, the wavelet transform isi@asure of correlation between a signal and
another signal, the wavelet, at different timetshifAt each scale, the wavelet is compressed
to half of its previous wavelength, and therefdsdiequency (if we were to continue the
signal for more than just one oscillation) doubl& in actual fact, the coefficients of the
transform are telling us how much of a certain @ieacy exists in the signahd whernit

exists. The output of the transform is thereforéhe time-frequency (or rather time-scale)
domain and thus, like the STFT, it is usually préed in the form of a spectrogram or a 3D
graph.

The wavelet transform is what is known as@lti-resolution analysisechnique since it

allows analysis of a signal at different frequesaigth different time resolutions
[PolikarO3W]. At lower scales (or frequencies) @an only shift the wavelet a few times, but
can obtain a better frequency resolution, whereagyaer scales (frequencies) the time
resolution is much better and the frequencieses® Well localized. On this point, the
transform may be compared to the STFT by drawlegenberg boxg&raps95L]. It was
mentioned previously, in Chapter 2 that attemptindetermine both the precise time and the
exact instantaneous frequency of a signal at ttm&t its limited by the Heisenberg Uncertainty
Principle, i.e. one cannot measure both with tmeesarbitrary precision. Let us first look at
the range of frequencies which may be measured3hoa Time Fourier Transform per
window, given a certain window widthrigure 5.13illustrates how the time and frequency
resolution, defined by a particular, fixed windowdth, is always the same for every row of
the transform in which it is used, regardless efihndow’s location:

91



frequency frequency
A A

» »

time time
Transform 1 — Narrower window: Traovsh 2 — Wider window:
- Poorer frequency resolution ettBr frequency resolution
- Better time resolution odper time resolution

Figure 5.13 — Heisenberg boxes for the STFT

For the discrete wavelet transform, however, tegdency spacing increases per row — in fact
it doubles at every scale — and also the time sgami window width halves. This is

illustrated inFigure 5.14 As can be seen, the area of the Heisenberg hfké%/, remains
the same. This represents the Heisenberg limithwib %T [PolikarO3W].

frequency
A

HigHezquencies: Tall, narrow windows
- Poohequency resolution
- Better time resolution

Loweeduencies: Short, wide windows
- Betteequency resolution
- Poorer time resolution

»

time

Figure 5.14 — Heisenberg boxes for the DWT

The DWT is therefore more flexible than the STHiics it can analyse higher frequencies
with good time resolution but poor frequency refioluand vice versa. This makes it
suitable for analysing musical sound signals ittipaliar, since we are most interested in the
mid-range frequencies and not so much the extresnitBefore looking at some output of the
Haar wavelet transform, we should first examineféis¢ algorithm used to compute it, and
also look at one other discrete wavelet which asesferent set of basis vectors.
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5.4 The Fast Haar and Daubechies Transforms

Reuvisiting the example signal from secti®2, which was (4, 2, 5, 5), the method by which
the Haar wavelet coefficients, (4, -1, 1, 0), alewated is quite simple, as will be seen. The

inverse ofH, is obtained by scaling its column vectors by adaof 252 and transposing
them. Multiplying both sides §6.3] by (H.) " yields [Strang89L]:

1 1 1 1

2 4 2 4|4 |4
1 1 1 _1 —
i@ Tad i N
o 0o i -1f|5] |0,

Normally, this multiplication requirehl2 steps, wher8 is the number of samples. However
if we examine more precisely what is going on @hestage, a recursive pattern emerges

which allows the same calculation to be done iry @M steps. The following example
outlines how the fast Haar wavelet transform wddkachieve this. This algorithm has been
constructed from the description given in [Strarig94

5.4.1 The Fast Haar Transform

Consider the following array of data, an 8-samjea:

We begin by calculating the set of averages angehef half the differences for each pair of
samples. The averages go on the left and the@ifées go on the right, as follows:

\ J \ J \ J \ J
Y Y Y Y
21 8| 6| 4 111 2] 2
Averages Differences
Yol + frea) VAf —Toen)

The process is repeated on the set of averagesingay, until there is only one average left
— this sample is then the average of the entira slatt or the data at its lowest “resolution”.
Thus, continuing with the same example, we have:
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1)

28| 6] 4] |-1|1] 2] 2
2)

5| 5 301

3)

5 0

4)

5

The set of wavelet coefficients is then the lagtrage & in equatior{5.4]), and all the sets of

differences g andcg - in equatior{5.4]), collected by scanning from left to right back up
through the differences. Note that the numbecafes or resolutions is one less than the
number of steps required to complete the transftmenfinal result of which is shown below:

5031|112 2

5.4.2 The Haar Wavelet Lifting Scheme Algorithm

Looking at the above method from a programmer’sijpoi view, it would be desirable to
transform the data without having to create a teamyaarray of the same size, which for a
sound signal, could be very large. This does sesressary at first glance, since some
calculations would overwrite values that have reithheen read. However, the algorithm
described here shows how it is possible to ussdhee array for both input and output.
Although it was eventually decided that the aldgortwould not be implemented in Wave
Processor, it is worth examining it anyway.

The lifting scheme begins, again, by splitting daa in half. Again, the number of data
elements must be a power of 2. This time the gpiibt down the middle, but into odd and
even indexed samples, moving the odd samples teriti®f the array and leaving the even
ones at the beginning. Using the same data seistdemonstrated below:

even| odd| even odd even odd eyven ¢odd

13| 9] 7| 8 4 6] 2
11 9| 8| 6 3| 7| 4] 2
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This involves quite a lot of array element switchinAfter experimenting with some code
originally written by lan Kaplan [KaplanO3W] it waisalised that the time taken to perform
the re-shuffling is very costly with large datassetnd in fact the duration of the entire
operation grows exponentially with an increasingasize. This unfortunately defeats the
whole purpose of creating a fast algorithm.

The next step is to calculate the set of differencehis is done, accordingly, by subtracting
the odd samples from the even samples (and divigjr2) and storing the results in the
“‘odds” array:

19| 8| 6 1112 2

Finally, the averages are calculated. Since tliesaghples have already been overwritten,
some algebra is needed in order to recover théafigalues. Recall from the fast Haar
transform algorithm that the averages are calctiffctan each pair by:

X =Y + %) or even’'=Yz(ven+ odd). [5.5]
Now each nevoddis given by:

odd’ = Y2(even—odd). [5.6]
Putting the equation in terms otld (the original) we get:

odd=even- 2odd'. [5.7]

Substituting this back into equatif®m5], this becomes:

even’'= Ys(event [even— 2odd’)

Y2(2even— 20dd’)

even—odd'. [5.8]

So, in other words, all that needs to be done subdract the new odd samples from the
current even ones to get the new even sample&anlbe seen that the resulting pair of arrays
Is now identical to those in stdp of the fast Haar transform in the preceding sectio

21864 |-1/1]2)| 2

As with the fast Haar transform, the lifting scheimeepeated recursively on the new even
samples until there is only one left (the grossaye). The reason why this algorithm is
called the “lifting” scheme may be illustrated iretdiagram irFigure 5.15 As the data is
split recursively into evens and odds, the evemames get “lifted” and processed at the next
scale, while the odd differences (coefficients) @ugput at the bottom.
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A\ 4
evens ?—> SPLIT DIFF | | AVG
r * A

dds
SPLIT DIFF AVG ) —p

data

A
odds é —  cogfints

Figure 5.15 — Lifting Scheme diagram

5.4.3 Daubechies Wavelets

The Daubechies family of wavelets, discovered leyBblgian mathematician, Ingrid
Daubechies in 1988 [Strang94L], are, like the Haawvelet, orthogonal basis functions with
increasing complexity. They were the first fanmolywavelets to haveompact support

which means that the interval on which they aréngeffis bounded, but an infinite number of
points in the interval describes their functiofsis is also basically an engineer’'s way of
saying that they are easy to implement, practicalfya digital filter — almost as easy as the
Haar wavelet. More simply put, they are easy mhecause the formula for each of the
Daubechies father wavelets does not need to berknmly a set of “magic numbers”
[Strang94L] — the scaling function coefficients.

The Haar wavelet is actually the first in the Datlbes series, code-named D2, and the next
is D4. The ‘2’ and ‘4’ simply refer to the dimeaosiof the father wavelet and hence the
number of scaling function coefficients — Haar (D2s two, (1, 1), D4 has four and D20 has
twenty, and so on. In each case, the mother wia\ald subsequently the child wavelets, are
derived from the scaling function by compressing shifting it, as in equatiofb.1]. Given
that there may be more than just two scaling femctioefficients, the general form of the
equation which expresses the mother wavelet ingefthe father is:

w(t) =he(2t) - h1g(2t 1)+ h, (2t - 2) -+ hyg(2t —n)

= Zi:(_ 1)k ho @2t = n), [5.9]

whereh,, are the function coefficients of(a + 1)}dimensional father wavelet. The equation
to which the father wavelet must be a solutioraited adilation equation and has a similar
form:

g(t) = hg(2t) + hg(2t =1) +--- + hyg(2t - n)

n
=> hg2t k). [5.10]
k=0

It is fairly trivial to see that the Haar scalingnttion, ¢{t) = 1, is a 1-dimensional solution to
the above:
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o(t) = ¢(2t) + ¢(2t 1)
so0[5.10] is satisfied ihy = h; = 1 andhy = 0 otherwise [Ewer10L].
The brilliant discovery made by Daubechies was ¢im&t can indeed find scaling functions
which solve[5.10] with any arbitraryevennumber of coefficients. Odd numbers of
coefficients do not yield orthogonal functions, awdcannot be used. Skipping over the

mathematical proofs here, Daubechies found thas¢hkng function coefficients for D4 had
to satisfy the following conditions so that thepdered orthogonal wavelet bases:

hp+h+h, +hy =2
b b 1 = 2
hoh, +hyhs =0.
Furthermore, the following conditions must alsolggiEwer10L], [Strang94L]:
hp—h+h, —hy =0,
h, —2h, +3h, - 4h, = 0.

These equations yield the following values for ¢befficients:

Note that another solution set exists where thessiig front of the square roots are reversed.
Usually this second is discarded because othefugise O, which is inconvenient [Ewer10L].

From equatiorn5.10], the D4 scaling function, which is bounded onittterval (0, 3) is then
given by [Strang94L]:

_ (143 +3 ok V3
)= ofn) + 802 gl —1)+ B3 gt - 2) 4 BB 1 - 5)
while the D4 mother wavelet is:

W)= gf2)- 53 gl 1) + BBl gt - 2) - Bl g1 - g)

The appearance of the scaling function on the hgind side of these equations makes it
somewhat difficult to draw the graph of these twodtions. However, this may be done
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recursively by substituting values oét increasing levels of detail, after finding fhants at
the integer value¢,= 1andt = 2 Tackling the scaling function first, we have:

¢(1) = hg(1) + hoe(2).
¢(2) = heg(1) + hye(2).

Note that the other points are zero since the fonatoes not operate outside the interval

(0, 3),i.e.0 <t < 3 To solve forgg we must find the eigenvalued, of a matrix
comprising the four coefficients, such that:

n b [A)]_ [
n o) Lef2)] 4 of2)]

This yields the valued; = 1andA, = ¥%. The components of the normalized eigenvector

associated withl; gives us the values &8(1+V3) and¥(1+/3) for ¢{1) and {2)
respectively*. To get these components, we neadaie the magnitude of the eigenvector

V2 —the prescribed normalization factor at eachescall other points in the function may
be found by subdividing the intervals recursivély,, next we findq(%), ¢(%) andﬂg),

A

then the quarter integers and so on.

2.0
15
1.0

0.5 1

0.0 ) A —— Scaling Function

0l0 1/0 1.5 2, 2.5 3lg |—— Wavwelet Function

-0.5 {

-1.0 {

-1.5 {

-2.0

Figure 5.16 — Daubechies 4 scaling and mother waeéfunctions**

* Full workings are given il\ppendix B.1.
** These graphs were drawn in Microsoft Excel usuadues outputted by the prograt#h.exe which, with its
source code, may be foundSftware\Daubechies4\ on the project CD.
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Shown inFigure 5.16is the graph of this function together with the mdther wavelet,

which is easily derived from the father waveletdgyation5.9]. As can be seen, the graphs
are not very smooth, and have some interestingelrfygoe properties, due to the recursion
relationships.

5.4.4 The Fast D4 Transform

As with the Haar transform, there exists a fasthoetof computing the Daubechies wavelet
transform. In order to construct a filter matras (with Haar) we start by renaming the
coefficients of the mother wavelet function to niatisose of the scaling function, which are
the same but in reverse order and with alternaiggs:

Jo = hg :?11(1_\/5)'
0 =-h, :%(_3"'\/5)'
0P :hl:?l1(3+\/§)'
93 =~hy :%(_1_\/5)'

The next step in constructing the matrix is to naliee by dividing everything b§/2. In a
computer program, one would want to include thctdain the definition of the wavelet
coefficients so that this particular step doesnsa&d to be recalculated each time they are
used. To write the matrix, we multiply out andfsthe coefficients along each row by two
elements at each iteration. Instead of doing theothing and differencing separately, we
can combine the two filters into one and, furthemmoepresent the whole operation (at each
scale) in one big 2D matrix, which will hadécolumns andN rows, whereN is the number

of samples in the signal, or portion thereof. Tla@sform begins by multiplying the filter
matrix by the signal vector, as shown below foBaample signal:

h, b h b, 0 0 0 0][%

b % 9 93 0 0 0 O0]|x
O hh b h, hb 0 O0]|]|x

O g o 9, 93 0 O 0 X3

hh hh hh hl{x

Jo 1 92 93| | X%
0 0 h h||X
0 0 g G|X%

O O O O o o

o O o o
o O O O

It can be seen the last two rows in the transforrisnare problematic, in that there is no

space left foh, & hz, andg, & gs. There are several ways in which the edge proldem
treated, all of which produce very slightly diffateesults:
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1) Simply ignore it, as has been done in the abovexnat

2) Wrap the signal data around, so that weXgs&ndX; again in the calculation, and
expand the above matrix, for example, to 10 x l&ctmommodate the extra
coefficients.

3) Mirror the signal data at the end, i.e. XsethenXg again in the calculation.

There are other techniques which may be used. kewsince the overall effect is minor, it
is not a big problem to use the first option.Wiave Processpa method has been
implemented whereby the Haar averages and diffeser@nly requiring two coefficients —
were used at the boundary. This method was natisegny of the sources examined, but is
certainly just as good as (if not better than)ttiree given above, since what we are trying to
do is find some sort of smooth value, which Haawvjtes.

The result of the matrix multiplication is an arsaigich is then split in half — on the left side
of the array we have the newly smoothed valuesn(el@ments) and on the right are the
differences (odd elements), which become the fgbut. As with the Haar algorithm, the
D4 function is called recursively on the first haffthe array — the smooth values — until there
are only four left, at which point the calculatican go no further.

The pseudo-code for the algorithm is fairly clead @asy to understand. As can be seen, the
splitting is done by creating pointers to the fastd second half of the output array and simply
writing the smoothed values and differences toghesations.

FDAT(N) {
SMOOTH_PTR = TRANSFORM_PTR
IF N <4{// Copy last four values and return

FOR1=0TO 4
SMOOTH]I] = SIGNALJI]
RETURN

}
HALF = N / 2 // Differences half

DIFFS_PTR = TRANSFORM_PTR + HALF

/I Calculate smoothed values and differences
FOR 1=0TO HALF {
J=1*2
SMOOTH][I] =HO * SAMPLES[J] + H1 * SAMPLES[J + 1] +
H2 * SAMPLES[J + 2] + H3 * SAMPLES[J + 3]
DIFFS[l] =G0 * SAMPLESI[J] + G1 * SAMPLES[J + 1] +
G2 * SAMPLES[J + 2] + G3 * SAMPLES[J + 3]
}

I/l Use Haar for final pair of coefficients
I=N-21;J=1*2

SMOOTH]JI] = (SIGNAL[J] + SIGNAL[J + 1])/ 2
DIFFS[I] = (SIGNAL[J] — SIGNAL[J + 1]) / 2

I/l Copy the smoothed values and recurse
FORI=0TO HALF -1

SIGNALJI] = SMOOTH]II]
FDAT(HALF)
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5.5 The Fast Redundant Haar Transform

The last type of discrete wavelet transform,ahteousor redundantransform, provides an
improvement on the ordinary Haar transform in thgields extra detail, which makes it a
better frequency filter.

The source used for the following algorithm wasapgy entitledVavelet-Based Combined
Signal Filtering and PredictiofiMurtaghO5L]. The technique presented here @tinetly
new, having been developed in 2005. The readefasred to sectiohC of the paper
specifically, which deals with the transform in gtien.

The redundant Haar transform is very similar todhginal transform, except that the
decimation step is not done. This means thatextyescale, extra (redundant) information is
kept, which is the set of differences between the¥aged data at the current scale and the
previous set of averages. The output is a two dgie@al array which thus requires a lot
more storage space than the original data, sirmmiprisesSarrays, each of siZd, whereN

is the length of the original wave data & the number of scales used in the transform.
This time the function is not recursive, since $hene number of points is transformed for
every scale, and therefore it is calculated bwaiteg a loop. From here, rather than repeating
the already clear description given in the souageep, the transform will be presented by
working through an example.

5.5.1 Redundant Haar Transform Example

We start, as usual, by calculating the set of agess@and differences, this time starting with
everypair of elements, not just for every odd and gva&in as with ordinary Haar. Sticking
with the same array of data as previously, whichlwall a,, then fora,, the new set of
averages, we have:

=|1|3| 9| 7| 8| 4] 6] 2

\Y)\Y}\YJKY}

VOVOVON
AN

6 51| 4

a=| 1| 2 8| /%2 6

Note that the first element @, is simply copied to the first elementa@if (shown in grey)
As the transform progresses, we shall see whyshiene. The differences we shall nathe

whereS s the current scale. These differences may loeleded either by subtracting the
current set of averages from the previous, or kintpathe difference between array elements
(as opposed the sum) and dividing by 2, which cotméise same thing:

b= 0| 1| 3| -1 Y -2 1 -2
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The set of averageg;, then becomes the input for the calculation ahibe scale, and the
set of differenced],, is the set of wavelet coefficients at the ficsdls. Note that the original
datasetgy must also have a length which is a power of 2is hbecause &increasesy,

the interval between array elements used in theitztion, doubles, i.ef = 2° (whereSis a
positive integer).

As observed in the first step, those elements eretth hand side, which do not have a
“partner” (i.e. their position in the array is lébsin 7 at some scale) are copied to the
beginning of the next averages array, thussfer1 (7= 2):

a, = 7Y% 4

\\k\K\K\K\K

a= 3% 64 6Y4| 5

b= 0| 0 |2% 3| % | -1 -1u -1

The pattern continues with= 2 (7= 4): ...

a=| 1| 2 |3%| 5 | 6% 7 | 6% 5

as=| 1 | 2 |3%| 5 | 3n|4Y%2 4%k 5

d=| 0| 0| 0| O |Zs|2% 1% O

.. until no more calculations can be performed, #.&.N, or in this case, 8:

a=| 1| 2 |3%| 5 |3k |4%2 4k 5

=000, 0] 0,0|0|O0
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In order to reconstruct the original signal, weetélke final set of smoothed averaggs,and

add it to the sum of all theh arrays. Thus our final array of coefficients e tomplete
transform for this example is:

3%2| 4 | T | 4Y2| A4%a| 4%
3| -1 Y| -2 1 -2
2% 3 | Y| -1|-1%) -1
O 0] 2|2%|1%| O

O | O |0 |k
O | o |k, |DN

Note that the sum of all the columns is equivaterihe original dataset.
5.5.2 Source Code for the Algorithm

With no source on which to base code for the allgoriin Wave Processothe method may
be slightly naive in terms of memory usage, howdaverstill very efficient as far as speed
goes and is thus an acceptable approach. It magdrefrom the source code that a
temporary array is used to the store the previetisfsaverages at each scale — a waste of
memory if there is another way of recovering thsjn the lifting scheme algorithm*.

Smooth values are also not copied to the final @bthe output array, since these really only
need to be retained so that a reverse transforitbabe original signal is possible, and this
was not needed. This could be done, however, dydimg the two lines which have been
currently commented out (at the beginning of thenn@op) in the source, although this
means that all the zero values in chgows will contain, instead, corresponding elements

from theag rows. This doesn’t actually make all that mucla afifference to the final result,
since the very lowest frequency bands (where thssthe greatest significance) do not contain
much information that is useful anyway and couldrelse ignored completely.

Note that in this and all other DWT algorithms iplented inWVave Processothe
transformed signal samples have been squaredtegyasthe energy of the function at their
points, or instantaneous power. This is a betidrraore correct representation of magnitude,
which is the desired output for the spectrogram.

5.6 Windowing in the Frequency Domain

The heading of this sub-section is one way of Ingkat a new method proposed here which
may be used to achieve multiple pitch extractidast as the STFT first divides the signal up
into time slices — windows in the time domain, veswhave a facility, the redundant Haar
transform, which allows us to divide the signalinjp separate frequency bands — windows in
the frequency domain. We can then analyse eattiesé bands separately and, with MPM,
pick out only those clear frequencies which shdigldh a particular band.

* Close to the time of publishing of this theskhistalgorithm has now been improved, as suggested.
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5.6.1 Combining Redundant Haar with MPM

While all the above wavelet theory may be quite plicated and takes some digesting, in
practice this algorithm is quite simple. Giventttiee McLeod Pitch Method, described in the
previous chapter is encapsulated in a fundildtiM(), the pseudo-code for the proposed
PITCH_EXTRACTION() function, for single or multiple pitches, lookkdithis:

PITCH_EXTRACTION(WAVE, MULTIPLE) {

Get length of wave
Make length a multiple of specified window width

IF(MULTIPLE)

REDUNDANT_HAAR_TRANSFORM(WAVE)
ELSE

DATA = WAVE.DATA
FOR N =0TO NUM_FREQ BANDS -1 {

IF(MULTIPLE)

DATA = WAVE.TRANSFORM_DATAIN]
MPM(DATA)

}
}

If single pitch recognition is being done, tA®Rloop will only be iterated once, since the
“frequency band” in this case is the whole signdbte that for the Redundant Haar, the
power spectrum should not be used in the analyisise the signal bias is, undesirably,
shifted above zero due to the squaring of all Hree values.

5.6.2 Calculation Time

Since all functions within this multiple pitch eattion method have been optimized in terms
of efficiency, the total calculation time is actyalery short, given the combined complexity
of the various transforms. Furthermore, it depesrdg on the length of the wave file being
analyzed, and not its content. Using a fast I@tale 2 Duo processor, the entire operation,
for a five-second wave file containing 3-part hanies, takes only about eight seconds. This
could in fact be made even faster in the peak-pgktage of MPM, where the search for a
particular pitch period could start and end onlyhwm the limits that are applicable to the
particular frequency band being analysed, i.e oiil be more efficient to look for only those
frequencies that are expected to lie in a certaimdb

5.7 Output

Having covered a large amount of theory in thigotég it is now time to put it into practice.
The following spectrograms and pitch graphs arsakenshots froave Processoand
the experiments may be repeated by loading thengixare files into the application and
selecting the correct parameters.

5.7.1 Spectrograms from Discrete Wavelet Transfors
The first signal of interest is, again, the chipni Chapter 2 Figures 5.17and5.18show the
Haar and D4 transforms of the wave, respectivblgte how the Daubechies transform is a

much better filter than the Haar, which has rafiaar frequency localization in comparison
[Daubechies92L].
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Figure 5.17 — Haar wavelet transform of chirp signh
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Figure 5.18 — Daubechies 4 wavelet transform of aipi signal
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The entire bandwidth of the frequency axis in thgsectrograms is half the sample rate of the
signal, which in this case is 44,100 bits per sdcdgince the duration of the signal is 2
seconds, there are 88,200 samples altogether.niddss that there are 131,072 {3 points

in the transform — the nearest power of two — & tL7 scales. At each row of the
transform, scale halves and frequency doubles.tiemavay of displaying the graph is to

have rows of equal height in the transform, butehawyadic frequency scale. This is an
option which may be set for each transfornriiave Processothe result of which is shown

in Figure 5.19 which is, again, the D4 transform of the samealig
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Figure 5.19 — Dyadic graph of D4 wavelet transfornof chirp signal

Note that in this graph, the bands of colour —rtives of the transform at each scale — are all
the same height. Again, the dyadic relationshigvben frequency and pitch is illustrated
here, since each row could also be thought of @gsenting the musical interval of one
octave. The frequency at the top of each bandisngraph is calculated as follows:

f =Bx2°S

whereSis the number of scalel,is the band anB is the whole bandwidth of the
spectrogram, i.e. the maximum of the frequency.axis

The next test wave was a synthesized piano soaythgl high and low Cs at different
octaves*. Figures 5.20and5.21show the dyadic spectrograms of the Haar and D4
transforms of this signal, respectively.

* This is saved aSound\lohi.wav on the project CD
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Figure 5.20 — Haar wavelet transform of ohi . wav
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Figure 5.21 — D4 wavelet transform of ohi . wav
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As can be seen, the D4 transform does not opesateelhas the Haar transform in the
detection of higher frequencies — the high Cs, thiave a frequency of 2096Hz, are barely
visible on the D4 spectrogram.

The spectrogram of the redundant Haar transforowshn Figure 5.22 is similar to the
normal Haar, except that it has equal smoothnedadk thereof) at lower scales. The reason
for Renaud, Starck and Murtagh’s French naaneous meaning “holey” or “full of holes”
[MurtaghO5L] becomes apparent upon close inspecidhe spectrogram.
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Figure 5.22 — Redundant Haar wavelet transform of ohi . wav

In order to demonstrate the performance of therdlgo described in sectidh 6, two and

three part arrangements of the opening two baldkoti Sikeleli Africavere created by

recording synthesized sounds fr@ibelius The scores used to create these arrangements are
shown inFigures 5.23and5.24
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Figure 5.23 — Two-part arrangement of first two bas of Nkosi Sikeleli Africa
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Figure 5.24 — Three-part arrangement of first two lars of Nkosi Sikeleli Africa

The middle and upper voices were assigned a flatichgnSibelius which has a relatively
simple timbre, while the bass part was given agthbiass sound. The results of the adapted
McLeod Pitch Method for multiple pitch recognition these two arrangements are shown in
Figures 5.25and5.26 Apart from one or two anomalies, the two-paahscription is
extremely accurate — the melody line is in facd98accurate if one counts the slight visible
pitch bends at the ends of four of the notes as®rr
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Figure 5.25 — Automatic transcription of two-part arangement using DWT/MPM
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Figure 5.26 — Automatic transcription of three-partarrangement using DWT/MPM

The three-part arrangement is also a good rendefitige score with really only one poor
estimation of the pitch of the fifth note in theddie voice line, which should be a.D

While these results are encouraging, the methadtigjuite so discerning if the parts are not
balanced properly — a slight change in volume ¢ortiddle voice, for example, rendered it
almost invisible to the algorithm. Also, when chang this voice’s instrument to an oboe or
clarinet patch, most of the notes in the outputlics line disappeared. Nevertheless, given
that very little tweaking of parameters was requit@ produce the results shown here, this
method is certainly worth investing some time iproving, and should definitely be
considered in the case of simple two and threetpanscriptions, as it proves to be fast and
generally robust.

The settings for MPM which produced the best resnlieach case were as follows:
* Two-part arrangement — window width: 2048 sampdésh detection threshold: 90%,
poor clarity threshold: 50%

* Three-part arrangement — window width: 2048 sampliésh detection threshold:
90%, poor clarity threshold: 35%

110



6 Drawing a Spectrogram Using the
Continuous Wavelet Transform

Up to this point we have looked at algorithms fansforming signals using discrete methods.
Unfortunately, with the discrete wavelet transfamthe previous chapter, regardless of
which wavelet is used, the frequency resolutiomotsgood enough for fine musical pitch
detection. We can only be confident about theiqaer octave in which a detected pitch lies,
since frequencies double at every scale of thestoam. This is the reason why the
transcription method in the previous chapter wonkedl for the two-part arrangement and
acceptably for three parts — the intervals betwesah voice are all wide, and so they are well
separated by the redundant Haar transform. Howéwecloser intervals, the method must
pick whichever frequency is strongest in each cectawd reject all the others, which is quite
restrictive and unrefined — we need semitone acguaaithe very least. What is required then
is a multi-resolution analysis method like the DWlif one which allows us to choose any
arbitrary set of scales and not be restrictedsbgowers of two.

6.1 The Continuous Wavelet Transform

Fortunately another method exists for discretizimgwavelet transform which allows the
approximation of a much smoother function. Complhesimages ifrigure 6.1 below,
which show a DWT and the proposamhtinuous wavel et transform (CWT) of a chirp signal
(pictures courtesy of Petr Klapetek [KlapetekO2W]):

a) Discrete wavelet transform b) Continuous wavelet transform

Figure 6.1 — Comparison of DWT and CWT spectrogram®f a chirp signal

As we can see immediately, the plot on the rightlezs a much more detailed picture of what
is happening to the frequency of the signal. Athwhe discrete transform on the left, the
higher frequency information is more blurred; hoeg\for music analysis, the practical
frequency range falls well within the boundarieshafse graphs and so this is not too much of

111



a problem. Due to the large amount of informatbtained from the CWT, it is well worth
examining as a likely candidate for use within aousate pitch detection algorithm. This
hypothesis has been corroborated fairly recently @tomparative study by Michael Cowling
as part of his PhD thesis [Cowling04L], in whichreeommends using the CWT for a
number of different applications. The only majoawlback about this transform is that it is
very slow to compute. However, for the purposethisf study, accuracy and high resolutions
have been considered much more important than sheade the dedication of most of the
rest of this thesis to methods that use the C\Wifeit core.

6.1.1 The CWT Function

Supposd/ is an unscaled, unshifted wavelet function (ireothrords a mother wavelet) the
continuous wavelet transform is defined by thedwihg [ZhanO6L]:

wi(s7)=["t ) éwg(t : Tjdt, 61

where * denotes the complex conjugate. As withRberier transform, the integration is
performed over all time. Although some elementthid equation could be recognizable
from the previous discussion of the DWT, it is woexplaining in full again:

W(s, 1) is the wavelet transform of the sigifigt). It is a two-dimensional function ovsy
scale andr, translation. Th&is inversely proportional to the frequency of tavelet — as

the frequency increases, scale decreases SiBiherefore technically equivalent to the
wavelength of the wavelet (in proportion to theation of the signal being analyzed). While
on the subject of scale, the concept is analogotisat of maps: a scale of 1:1 is life size,
while at 1:10,000 a map shows a zoomed out vielkeviise, with wavelets, a scale of 1

means that the wavelet is stretched across theeesiginal, whereas whe&r= 1/10,000, the
wavelet is squashed so that 10,000 cycles maytted*i TheT7is the shift in time, i.e. the
location of the wavelet within the signal, subteatfromt because it is, in effect, a time delay
before the convolution of/ with f(t).

The scaling function**, included in the above edgomatis sometimes written separately for
clarity [ZhanO5L]:

W)= }Swo(t 'Srj

Accordingly, a plot ofP'(s, 7) will reveal information about the sign(f), in the time-
frequency domain. It is interesting to note hé this function bears some similarity to
autocorrelation (see sectidrB.2in Chapter 4) except that the wavelet transformniseasure
of similarity between the signal and another fumct the wavelet — rather than itself.
Autocorrelation does not operate over differentes;aso it is a function of time only.

* Please read the article [MackenzieO1L] for a gowdrview about how viewing things at differentlssa—
multi-resolution analysis — is one of the ways imah we ourselves sense information.

** |n order to demonstrate the wavelet scaling tiort, the CWT Options Dialog box Mave Processor
includes an animated image of each wavelet, whichws the effects of changing the scale (lineargtineen
1:1 and 1:2.
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6.1.2 The Discretized CWT

Equation[6.1] indicates that the CWT can be regarded as an inlageows of which are a
set of convolutions of the signal with a scaled @tavfunction. Thus, each row of the

discretized transform may be calculated at anytraityi scales, for N samplesf,, of a
discrete signalf, by the following:
N-1
f 1 «(n-r1
l'ler:f Dl/jsO: fn wo( )
| | nZ:;‘) Js s
In the equationEPfS,T represents rows of coefficients of the transfotroh@sen scales, The

Tis again the position of the wavelet in the sigrfaince the transform has the same time

resolution as the signaf,will also run fromOto N — 1 [] denotes a convolution wit¥/s -,
the sampled wavelet, which is scaled and shifted.

6.1.3 A Useful Mathematical Trick

Unfortunately, an algorithm based on the above satiom is far too sIow(D(Nz) per scale)
to be of any practical use. A much faster alganithay be constructed using the Convolution
Theorem which states that a convolution is simpbpiat-wise product in Fourier space

[Wolfram09W]. Thus, iff andg are two functions and” denotes a Fourier transform
operator, with” "t as its inverse, then:

f0g=7"17(f) . 7(@)

Now, we can calculate the discrete Fourier tramsfof a discrete signal using the Fast
Fourier Transform, and, as will be shown in thetrs@ction, the Fourier transform of the
scaled wavelet function is also known empiricalljhus the Discretized CWT may be
expressed very simply by the following, where thé $ymbol (*) denotes a DFT:

~f 7
LIJs,m - fm |Ips,m'

Note that this is a function of scale and frequemsyopposed to time shift. Both signal and
transform row have the same number of points, isontlay be indexed by the same variable,
M, which is different from the scale variab&, All that remains to be done to complete the
transform is the inverse DFT to return from Fouspace. This calculation is now order
NIog(N) per scale, which, although not fast enough tavii@émented in real-time, is still a
great improvement.

6.2 Four Wavelets
There are many different wavelet functions that inaysed as the kernel for the CWT. The
choice of wavelet depends largely on the intenggdi@ation. Four popular wavelets have

been chosen for experiment and are implement&dire Processor. Of these, the most
frequently used in practice (and the original wat)elk the first.
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6.2.1 The Morlet Wavelet

The original work done by French geophysicist Manlet in the 1970s was really the
precursor to the wavelet transform. Morlet calginew method theycle-octave transform,

[Goupillaud 84L] extending the ideas of Gabor'sitcam [Gabor46L] but using time
windows of varying width. As mentioned in the oduction to wavelets in Chapter 5, Morlet
realised that the whole key to the transform wadifig a basis function which retained its
shape when scaled, thus the Morlet wavelet was. balthough Morlet’'s new transform was
originally published in 1982 [Morlet82L], the teagone was more properly formulated with
the help of his friend and colleague, Pierre Gdapd, together with physicist Alex

Grossman in [Goupillaud 84L] and in [Grossman84L].

Real
Dt S A R Imaginary

[»)

Figure 6.2 — The Morlet wavelet — Graph showing rdaand imaginary components

The Morlet mother wavelet is defined as [Grossman&han05L]:

_af . 2| _t?
t//(')v'(t):n“(e""ot—e_“’o)e 2,

This is basically a damped complex sinusoidal fimnct The constanty, is the central
angular frequency of the wavelet and is calleavagenumber. For the wavelet to meet

certain suitability criteria¢y should be greater than 5. This means that trengeerm
inside the bracket, known as the correction temeplmes negligibly small and may be left

out completely, yielding the simple Morlet waveflétonland87L]:

2

L
2

-1 -
Yo' (1) =7 ‘e%e

The Fourier transform of the scaled Morlet waveddiorrence98L , Zhan05L]
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o (@ = et

wherew=27%. This is simply a Gaussian curve, the peak ottvie at 1% when the

wavelet is scaledFigures 6.2and6.3 show the Morlet mother wavelet with a wavenumber
of 6, and its Fourier transform, respectively. cgithe FT is very nearly zero for negative
values whenwy is suitably large, and because we must assumqbff*(d) contains only
positive frequencies [Kronland87L], it makes fosgand more rapid computations if we use:

PY (@ = 7 (e )

whereH( @) is the Heaviside (or Step) function, defined a®fvem0O9W]:

{0, a<0;

H(w)=
1, «>0.
The fact that the Fourier transform of this andeottomplex wavelets is strictly positive

means that unlike the FT, the CWT does not nedgsdatect negative frequencies, though
the integral is from negative infinity.
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Figure 6.3 — Fourier transform of Morlet wavelet

6.2.2 The Derivative of Gaussian Wavelet

The real component of the Derivative of Gaussiatherowvavelet is given by [Torrence98L]

(_ 1)n+1 d n 2

2

Yo (t) = ez,
0 /Fin+;idtn
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wheren is the order of the derivative arll'((n + %) the Gamma Function, is calculated by
2n-1}!
rney)= @1
2I’]

Note that the double factorial notation (!!) does mean the factorial of a factorial, but is
defined as [Wolfram0O9W]:

1, n=0,n=1
n'=
n(n-2)1] n>1.
For example/!! =1 x 3 x5 x 7 =105.

Putting the normalizing factor aside for a moméme, first three derivatives of the Gaussian
are as follows:

%e_f :—te_tj,

2 2 {2
qee =
dt

It should be noted that th#" derivative of the Gaussian is the Gaussian itselfiplied by

alternately positive and negati€ Hermite probabilistic polynomial$ies(t)
[Abramowitz65L, Arfken85L]:

d" - n+l -2
o =(-1)"" He, (t)e 2.

Thus, a recursive algorithm may be created in cwlgenerate the wavelet function for any
order, using the formula [Arfken85L]:

Hena(t) = tHe, () - nHe, 4 t),

whereHey(t) = LandHey(t) =t. With an order of 2, the Derivative of GaussiBoG)
wavelet is also known as tiMexican Hat wavelet. After simplifying the normalization
factor, this instance of the function is then:

0 :%n‘i(ktz)e‘f.
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Figure 6.4 — Second order real Derivative of Gausan (Mexican Hat) wavelet
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Figure 6.5 — Fourier transform of complex Mexican Hat wavelet

Unlike the Morlet wavelet, the DoG wavelet does Im@te an imaginary component.
However, a complex wavelet may be created by inefuthe Heaviside function in the
Fourier transform, which (for the real waveletyigen by:

PO (@)=l
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For the scaled complex Mexican Hat wavelet, therieotransform is thus:

2

_1 _(sw)
P2 () = 2 iy (w)(sw)’e 2

NE

6.2.3 The Paul Wavelet

Thierry Paul [Paul09W] is the French mathemati¢@rwhom this wavelet was named and
the mother wavelet of ordéris given by [Torrence98L]:

2Ni "l (s
Wi (t) = ﬁ'%ﬁ(l—lt)( D,

Figure 6.6 shows the fast-decaying components of the ordRaut wavelet.

1IN
N

Real

------- Imaginary

1N
N

Figure 6.6 — Paul wavelet, order 4

For this wavelet to meet the admissibility requiests (see [Grossman84L] and/or
[Kronland87L]) the order of the waveldt, should be at least 4. As with the preceding
wavelets, the Paul wavelet may be separated sted and imaginary components.
However, the rather ugly algebra required in otdedo so has been omitted from all
available sources referring to this wavelet, and pooof for the following polynomial
generator has been includeddppendix B.2 without reference to any source:

wopn (t) = [CDRe +Iq3|m ][61 ) (n+1)
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where® Ee(t)andcb:,]m (t)are defined recursively as:
¢§e(t) =1 and (D:)m (t) =t,
Re - Im Re. Im — HRe Im
q)n+1(t)__cbn _tcbn , (Dn+1(t)_cbn _thn .
The Fourier transform of the scaled Paul wavelgiven by the following equation:
n
AP 2
Po(@) =
> J/n(2n-1)

Figure 6.7 shows a graph of this function with a scale of 1:4

H (w)(sw)"e .
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Figure 6.7 — Fourier transform of Paul wavelet, orér 4, scale = 1:4

6.2.4 The Shannon Wavelet

The last wavelet of interest, shownHFigure 6.8 is named after the father of signal sampling,
and is given by:

Wi (t) :sinc(%) cos{g’?ﬂ),

sint

wheresinc() = . Whent is O, sincf) is defined ad [Wolfram09W].

119



1
n

0.4 1

-0.8 1

=
n

Figure 6.8 — The Shannon wavelet
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Figure 6.9 — Fourier transform of real Shannon waviet

Via some trigonometric identities, this waveletdtion may also be expressed as:

WS (t) =2 sind27t) - sind7t).
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The FT of the wavelet is a simple box function as be seen in the graphkigure 6.9

03() = 1 (sa)—]?;iT/ZjJr 1 (sa)+§ﬂ/2)’

IN
N N

(1 X
()= 0 >

Note that since this is a real wavelet, there iglraviside function included in the FT.

6.3 Implementing the Fast CWT

Translating the above mathematical theory intofizakcprogram code requires some careful
consideration, especially with regards to the feitay important issues.

6.3.1 Calculation Time

Since colours in spectrograms are interpolated @atvthe maximum and minimum values in
any given transform, it is not necessary to cateuteormalizing factors in the FT for any type
of wavelet. This saves a bit of calculation tiregpecially for the Paul wavelet, which has
quite a complicated normalizing factor.

For complex wavelets, only half of the points icleaw need to be calculated. The rest may
all simply be set to zero due to the Heaviside fiemccomponent which excludes negative
values in Fourier space.

Using the Convolution Theorem does save a lot lmutation time, but one still has to be
careful to keep the innermost loop as succincioasiple. As seen in the pseudo-code at the
end of this section, which is the shell of the CWlgorithm for the Morlet wavelet transform,
the loop in question is the one which multiplieslepoint of the DFT of the signal by the
DFT of the scaled wavelet.

With regard to this point, a small time-saver isltbany calculations involving scale before
the innermost loop. This means that instead ot#beulation being in terms & which is

the instantaneous frequencyfﬁqt, it is in terms of the frequency sample index,

To get eaclv from m, we divide by the number of points in the transfed signal and
multiply by the bandwidth, i.e. the sample rates demonstrated in the pseudo-code, if the
division is done once and the multiplication ef “np " is moved to the calculation of the
scale factor, we can avoid having to8e N extra multiplications (number of scalgs
number of points). Since it is easier to thinkerms of analyzing frequencies than scales,
and furthermore, both linear and dyadic forms eftiansform should be supported, the
frequency corresponding to each row is calculdtedy which the scale is then derived.
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Pseudo-code for the fast continuous Morlet wavedetsform:

FCWT(samples[], n_scales, n_points, min_freq, max_f req) {
LET f = min_freq
LET df = (max_freq / min_freq) ~ (1 / n_scales)
LET sr_np = sample_rate / n_points
FFT(FWD, samples[], n_points)
FOR row =0 TO n_scales —1{
LET scale=sr np/f
FOR(col =0 TO n_points / 2) {
LET x = scale * col — sigma
LETy=e " (-0.5* x *x) // for Morlet wa velet
LET cwt[row][col] = samples|col] * y

}
FFT(REV, cwt[row], n_points)
LETf=f*df

}
RETURN cwt[][]

6.3.2 Memory Usage

The CWT contains as many points per scale as #rersamples in the signal. Typically, one
would want to analyse music at 12 scales per oa@aveminimum for semitone accuracy, and
preferably double that. Thus, say for three odavéhe range of a grand staff, excluding
notes on leger lines — one would want about 72scal’he maximum number of scales
supported inWave Processor for any frequency range is 512. In this case, gignal sample
rate of 44.1kHz, even a 1 second wave requires@4 1812 x 8 bytes (the size of a double
floating point number) = approximately 172MB, joststore the final values. In fact much
more memory than this is needed in the calculasorte for the Fourier transform the
number of samples must be a power of two. Furthemnory is required for temporary input
and output arrays for both sets of real and imaginamponents of the initial FT of the
signal.

Wave Processor handles the memory usage problem by swappingoautémporary file and
doing a transform in sections if more than 256MBeguired. In drawing a spectrogram
however, the image is much more compressed, andlgdhe initial plot is slow.

6.4 Comparison of Output

For each of the spectrogramsHigure 6.1Q the grid lines and time / frequency labels have
been removed for clarity, as by now the chirp sidran previous transform examples should
be immediately recognizable and the limits andescaf the graphs have not changed. As is
clear from the width of the bands of colour in egcliph, the Morlet wavelet seems to
provide the best localization of frequencies offth& (corroborating other sources such as
[DeMoortelO6L] which report the same), while theuPaavelet performs slightly less well
than the DoG wavelet, although at even higher stdbe Fourier transform of the DoG is as
sharp a peak as that of the Morlet wavelet withviagenumber used to generate the image
shown here.
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a) Morlet () = 20) b) Paul (1= 10)

7

c) Derivative of Gaussiam(= 16) d) Shannon

Figure 6.10 — CWT spectrograms of chirp signal usipfour different wavelets

The appearance of the sharp edge of the solid dpaaahin the Shannon CWT spectrogram is
due to the square shape of the wavelet's Fouaestorm, and the noise in background is as a
result of the slow damping of the wavelet funct{saeFigure 6.8) and hence its lack of
compact support. Given the image above, this veaveay be a good choice for creating a
band passfilter, which is a device or algorithm that allows certeiequencies in a certain

range to pass through while rejecting others. Hmmat does not seem suitable for music
analysis, given the noisy background, which wowddilificult to separate from relevant
frequency content.

In order to further test the frequency localizitity of each wavelet, tests were done on the
three-part arrangement Nkosi Skeleli Africa from the previous chapteFiQure 5.24. A

simple pitch extraction algorithm was constructetdich bears some similarity to McLeod’s
peak-picking method, but simply involves choosing highest power levels of the CWT in
windowed sections. To calculate the general pmkeach window at each scale, the average
was taken of the magnitudes. For each windowhitjeest peak was found and then
subsequent peaks were chosen which were withintaircéhreshold of this maximum.

Figure 6.12shows an example graph drawn by capturing theegadigross one column of the
transformed signal, whose spectrogram iBigure 6.11
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Figure 6.11 — CWT spectrogram of 3-part NSA examplesing Morlet wavelet (@ = 10)
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Figure 6.12 — Average powers at each frequency ftime window X of Figure 6.11
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The three major peaks in the graph occur at cooredipg frequencies of 96.7Hz, 246.4Hz
and 788.8Hz, which are, equivalently, the musidahes G, B; and G respectively, to the
nearest semitone. These are precisely the notegring the first chord of the example. In
this case, the wavelet which rendered the bedt pittraction, shown ifigure 6.13 was the
Derivative of Gaussian (order 6), which tendedytwore the slightly weaker harmonics

picked up by the Morlet transform. In general #snobserved that wavelets with more
oscillations, such as the Morlet and higher ordeGand Paul wavelets, are more sensitive to
harmonics and high frequencies but less sensiivass frequencies. A window width of
2048 was used with a clarity threshold of 53% har peak-picking stage of the algorithm.

L]

Figure 6.13 — Pitch Extraction of three-part NSA eample using DoG wavelet transform

This result is most encouraging, given that thelgm was allowed to choose up to sixteen
peaks, which means it is already a very disceraimgjprecise method, particularly for
detecting middle to high range frequencies.

The method does not perform quite so well, howetérquencies are not well-separated
from each other, i.e. wide intervals between ngielsl better resultsFigure 6.14shows the
result of the CWT pitch detector on the string gela@xample previously experimented upon
in Chapter 5 (sekigure 5.6). For the CWT, the Morlet wavelet with a wavenwnbf 16

was used.

In actual fact, the result below is only this gdmtause the upper analysis frequency bound
was lowered, allowing the algorithm to reject mainpng harmonics outside of the narrow
band from 64Hz to 512Hz (approximately © Gs). This, however, did not stop the
algorithm from picking up the first and last B the viola part as a strong harmonic at B

can also be seen, from the jumble of artefactiseastart and end, how sensitive the transform
is to noise, which does not bode well for poorealigy recordings, or music such as this
which is rich in harmonics. Despite these isstlesalgorithm constructed so far managed to
pick up every pitch that is present in the origisedre. This is a very good starting point on
which to base a robust pitch detection method.
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Figure 6.14 — Pitch extraction of quartet example vth band-limited Morlet transform

The following chapter takes a closer look at theTC%gectrogram and offers some further
insights for refining the above results, which ebldad to a much improved multiple pitch
detector than previously demonstrated in this study
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7 Interpreting the CWT Spectrogram

As seen in the previous chapter, the CWT is capaftdatremely accurate pitch detection, but
again, its application is only really suitable fousic containing wider intervals and
instruments of simple timbre. If the CWT is noterpreted correctly, more naive methods of
pitch extraction may not perform satisfactorily whetes are closer together in pitch.

7.1 The Scale of the CWT Spectrogram

It is important to note that the spectrogram hasitigdal resolution in time to the signal of
which it is a transformFigure 7.1shows the dyadic spectrogram of tkosi Sikeleli Africa
guartet example analyzed previously (Begure 5.6 and subsequent transcriptions) zoomed
in to the sixth chord, which comprises the notesl;, G, and B. The image was generated
using the Morlet wavelet with a wavenumber of 10.
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Figure 7.1 — CWT spectrogram of fourth chord of NSAguartet example

Much detall is to be observed in this image, esdlydn the upper frequency range, which is
mostly harmonics in this case. The top two natawé chord, Gand B, which have
frequencies of 392.6Hz and 494.6Hz respectively saen to be overlapping. The exact
location of their peaks in the frequency domaitherefore unclear and presents a problem.
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We can zoom in even further on the time akigure 7.2shows the spectrogram in a time

window, X, demarcated in the previous figure by the redvesroThe width of this window is
just 1024 samples and this image is now at thedsiglevel of detail.
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Figure 7.2 — CWT spectrogram of detailX

It is very clear from the detall in these time &thed spectrograms that the frequency
magnitudes in each row of the transform are nostao, but vary at certain frequencies of
their own. In the short time frame kigure 7.2the bass and tenor notes appear to be at a
point of low power, while the overlapping trebledasoprano voices exhibit peaks in the
middle and at the edges of the window. The povaeiation of the latter pair of voices
appears to have a shorter cycle, and in genaraytbe observed that the higher the
frequencies the faster the modulation of their sigitrength.

If, however, we examine a pure stationary sine wavbe same level of detail, the result is a
constant signal. This is demonstratedrigure 7.3 which shows 1024 samples of a CWT

spectrogram of the wave functifft) = sin(27at), wherev = 440Hz (the pitch 4.
If more frequencies are added to the audio sigiral)ar patterns to those seerfigure 7.2

begin to emergeFigure 7.4is a similar CWT spectrogram of a stationary whwestion with
constituent frequencies of 440Hz, 524Hz and 623Hz.
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Figure 7.4 — CWT spectrogram of composite stationgrsignal (width = 1024 samples)

These images are evidence that the varying magrstadross each row of the CWT are
caused by interference of different frequenciefwdch other. The interference patterns may
be explained by a phenomenon in the field of accaighown adeats

7.2 Beats

Usually when talking about beats, we are refertinthe pulse which indicates tempo, rhythm
and meter of a piece of music. In acoustics, ber@she faintly audible knocking sound
caused by the interference of two waves oscillatingjightly different frequencies
[Scholes65L]. The reason for the varying signadrgjth is due to the changing phase
between added frequencies. Conskgure 7.5 which shows superimposed sinusoids of
6Hz (blue) and 4Hz (red). At=0, %2 and 1, the phase of the two waves coineide,so
around these points, the sum of their amplitudssltgin a strong signal. However, around
the s and% points, the two signals cancel each other outesiheir phase difference moves
through the maximum of 180 degrees.
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Figure 7.5 — Comparison of 6Hz and 4Hz sinusoids

The occurrence of acoustic beats is well knowntaslbeen used by musicians for centuries
in order to fine tune pianos and organs [Scholek6%he composer and violinist Giuseppe
Tartini (1692 — 1770) was the first to describetbes “the third soundil(terzo suond. The
reason he called it this is because when a begidrey is fast enough, it becomes audible as
an extra tone underneath the two pitches causintaittini discovered that by listening
carefully for this note, he could ensure that luslile-stopping* was perfectly in tune
[McLeodO5L, Scholes65L]. He knew (but could nopkin why) that the third tone could be
used as a precise measure of the interval betweetwa notes played simultaneously.

7.3 Difference Tone Analysis

Using the simple case of sine waves, the follovehgws, mathematically, why beats are also
known adlifference tones acoustics:

Given two signals with different frequenciéft) = sin(2tvit) andg(t) = sin(Zwv,t),
V1 # Vy, then

f(t)+g(t)=sin(27t) + sin(27w,t).

By the sum-to-product trigonometric identity fin(&,) + sin(6),
f(t)+galt)= ZCO{ 277(V12— VZ)tj Eﬁ;in( ZH(V12+ VZ)tj. [7.1]

Dissecting equatiofv.1], we can see that this is a sinusoidal signal wigfeneral frequency
that is the average of the two integral frequenaleandV,. Its amplitude is controlled by
the cosine component, the frequency of which ishtdéthedifferencebetween the two
frequencies. This gives the shape of the sigraiielope and causes the periodic variations
in its magnitude, hence the beat.

* This is a technique on the violin whereby twonaore strings are stopped on the fingerboard anggla
simultaneously, producing a chord.
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In Figure 7.6 the dashed wave is the sum of the 6Hz and 4Hssids from the previous
example. The red wave is the sine component anbltle wave is the cosine component,

assuming tha¥; = 6Hz andv, = 4Hz.

time

Figure 7.6 — Sine and cosine component, = 6Hz,V, = 4Hz, and their product

Acoustics tells us that the actual beat frequehowever, is the difference betwegnandv,
[HowardO6L] and not half the difference, as equafibl] would seem to suggest. Recall
from Chapter 2, sectioh.3the discussion about the symmetry of a Fouriersfiam:
Frequencies may, in theory, be positive or negatlvenay be argued that since we can also

let vV, = 4Hz andv, = 6Hz, the sign of the beat frequency in this cds®uld be negative, since
4 — 6 =-2. N.B. We are not arguing teais(@) is positive an€c0S(-€) is negative because
clearly this is false. Instead we are saying ifhthiere exists a beat frequenay= C0S@),

then Fourier theory predicts there will also beomplementary signayf’ = —C0s@).

This is clarified if one considers the half-angbeniula for cosine, extendirfg.1] as follows:

ft)+g(t)=2 = \/1+ cos(27;(v1 Vo)) E'J;in( ZH(V12+ VZ)t). [7.2]

time

Figure 7.7 — Graph including both roots of the cosie component
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If we plot both of these roots on the same graphn &igure 7.7, we see the resulting double
envelope which has a frequency of not 1 but 2Hzorter to complete the picture, the
product of the sine wave with both roots of theilmesomponent is shown Figure 7.8

Figure 7.8 — Difference tone showing double cosimavelope

In telecommunications theory, this type of sigrsaairly common. It is used in television
broadcast, for example, to vary pixel colour levelgansmitted images. The technique of
varying the strength of a carrier signal in thismsknown asamplitude modulation In the

case of beats, the carrier is the sine part oftemjugy.2] which we shall denote by. As an
example, taking two of the frequencies in the difroan Figure 7.4, 440Hz, 524Hz, if the

beat frequencyf3, is the difference between the two, then:
B=524-44C=84, and x=(524+440)+2=482
Here,[is a low (yet audible) frequency, since the inakbetween the two notes is small.

In Figures 7.5and7.8the beat frequency can clearly be seen from tireictental phase
points and the resulting envelope as being 2HZfskaond knocks. It is also apparent in
Figure 7.4that almost two cycles of the beat signal betwtberower pair of bands fit in

1024 samples. Two cycles of 84Hz last about 0@bnds, which, at a sample rate of
44.1kHz, is 1050 samples; this does seem to mh&ckisible amplitude modulation at a
glance. In order to be absolutely certain that dtiservation is correct, however, we should
apply a Fourier transform to rows of the spectrogvehere the modulation is greatest to see
if the predicted beat frequencies are indeed ptesdhe transform. The Fourier transform of
a spectrum such as this as known as the pogmstruniBogert63L].

As a thorough test, 24 sinusoid waves were gergrageh containing a base pitch af C
(262Hz) and a second note above this, in increagiagter-tone intervals. The final interval
is an octave: £to G. Spectrograms were generated* using the Morleelesa with a
suitably high wavenumber (20) so as to renderllaimds — well-localized frequencies. For
each transform, a power graph was created, sitoildrat ofFigure 6.2 except the average
power across the whole signal was used, insteadafvindow. Figure 7.9shows a graph
for the interval of @ plus 8 quarter tones {E which is equivalent to a major third.

* An animation of the 24 spectrograms, represergimgscending and descending scale, may be sdbr on
project CD atSound\Quarter Tone Intervals\animation.wmv
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Figure 7.9 — Average power distribution per frequeiy for the interval C4 — E4

The two peaks in the graph correspond to frequerafie62.1Hz and 330.5Hz, which are, as
expected, good estimates for the constituent fregjas in this example. The trough in
between corresponds to a frequency of 295.357Hwe take the average of the peak
frequencies, we find that it is equal to this vallies precisely this halfway point that

equation7.1] also predicts the beat frequency will be defingd,it is the location of.

Therefore this is the row of the transform whiclwd be analyzedFigure 7.10shows a
Fourier transform of the relevant row in the cutrexample interval.
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Figure 7.10 — FT showing a peak at the beat frequex for the interval C4 — E4
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The peak at OHz in the graph is explained by thetfat this is a Fourier transform of strictly
positive values. This peak may be eliminated hifgisg the bias of the signal back to zero,

i.e. making zero the average amplitude. The fiaftoim 1Hz is also logically explained by

the fact that the signal begins at 0 seconds ads &nl second, and so also has a one second
cycle according to the Fourier transform. Thisgeon may also be solved by applying a
Gaussian function to the signal prior to doing Ffie(see Chapter 2).

Taking similar FTs of the row of each spectrumalf between the two rows of highest
energy, the set of strong low frequencie3able 7.1was obtained for each interval from
262Hz.

Upper Yatones | Actual frequency | Measured frequency | Error
Frequency (Hz) | from C, | difference (Hz) | of difference tone (Hz) | (Hz)
269.677 1 7.677 - -
277.579 2 15.579 15.477 —0.102
285.713 3 23.713 23.552 —-0.16[1
294.085 4 32.085 32.300 0.215
302.702 5 40.702 40.375 —-0.32]7
311.572 6 49.572 49.796 0.224
320.702 7 58.702 58.543 —0.159
330.099 8 68.099 67.964 —-0.135
339.772 9 77.772 78.058 0.286
349.728 10 87.728 87.479 —-0.249
359.976 11 97.976 (98.245) 0.269
370.524 12 108.524 (108.339) —0.185
381.381 13 119.381 (119.106) —-0.275
392.557 14 130.556 (130.545) -0.011
404.059 15 142.059 - -
415.899 16 153.899 - -
428.086 17 166.086 - -
440.630 18 178.630 - -
453.541 19 191.541 - -
466.831 20 204.831 - -
480.510 21 218.510 - -
494.590 22 232.590 - -
509.083 23 247.083 - -
524.000 24 262.000 - -

Table 7.1 — Difference tones for quarter-tone interals above G

Note that after the interval fromy@ G, (14 quarter-tones), the strength of the differenoe
diminishes considerably and only appears as a smalp in the Fourier transform, which
cannot reasonably be counted as a clear pealactnhe bracketed values in the table were
also rather low peaks in comparison to those otldinequencies.

We can be content, however, with only being ablédiect difference tones for sufficiently
close intervals, since this is really the only tiwieen it becomes necessary to do so. Beyond
the interval of about a perfect fourth, two freqcies are separated enough as to be
independently determined by their position in trezgjiency domain alone.
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The missing difference tone for the first quarterd interval was due to the fact that the peak-
finding algorithm did not detect two clear peaksA®en which to locate a trough, since the
peaks merged into one, being very close together.now, this is not too much of a problem,
however, and eventually it will be seen that tmaffialgorithm does not depend on this issue.

We could also use the McLeod Pitch Method in otdeneasure the beat frequency more
accurately, except that the algorithm does not Vioristrictly positive signals such as this.
Figure 7.11shows a window of the difference tone signal foick Figure 7.10was the
Fourier transform. In a way, this is similar t&iteg Figure 7.8and removing all points

below the time axis, since the signal compriseg pokitive magnitudes. It would have to be
re-biased so that it is centered around zero béfeireg passed to the MPM function.
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Figure 7.11 — Difference tone signal for the intel C, — E4
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Figure 7.12 —-NSDF output for difference tone signal for the intervalC, — E4
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The graph of the normalized square differenceshisrwindow, shown ifrigure 7.12
reveals why MPM is unsuitable for determining tleeipd of the beat signal. A signal with
no negative values will yield only strictly posgiwnormalized square differences, since
autocorrelation of positive values is also alwagsifve. MPM is designed to look for the
first zero crossing point and then take the fiesilpafter that [McLeodO5L]. Since in this
case the graph never crosses over zero, the dligowill fail to find this first peak.

We can also get a finer estimation of the beatueegy by applying the Phase Vocoder
algorithm to a windowed FT, but in actual fact,sa@dvanced methods are not necessary.
Close examination of another example difference wgnal, shown ifrigure 7.13 reveals

that all we have to do is measure the averagendisthetween successive peaks in the signal,
i.e. get the shortest wavelength present direobiynfthe time series.
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Figure 7.13 — Difference tone signal across row 128 Figure 7.1 spectrogram

This example is the cross section of row 139 ofwhrelow shown irFigure 7.1 The
frequency to which this row corresponds is 444.520H this theory is correct, then we
should get a measure close to the difference tontaé interval G— By, since this row’s
frequency is close to being their average and tberen approximation of the carrigy,

The frequency differencg3, between the two notes494.590 — 392.557 = 102.03%/e
don’t even have to measure the peaks differencisgiparticular case, although doing so
gives better precision and is the preferable metl@alunting the peaks, there are 38 of them.
16384 samples at 44100 samples per second mearisehleandow’s duration is 0.372
seconds. So, in one second, the number of pedlkiseid8 +~ 0.372 = 102.151

This is an extremely accurate measure, with arr emmparable to those able 7.1
Furthermore, this is a much faster method, sincaever have to leave the time domain.
Using a large window such as the one here is al@ay®od idea, since froififable 7.1, beat
frequencies which are detectable for mid-rangehpittervals are mostly low-frequency: the

more wavelengths available to measure, the moxgsaréhe estimation ¢f.
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7.4 An Improved Pitch Detection Algorithm

Applying the above technique of detecting diffeianes at any scale in the CWT spectrum
now gives us a method of unmixing overlapping featgies, by creating useful data from the

apparently confusing interference patterns in greegogram. In the example in the previous

section, we knew where to look for certain diffexeiones because we knew the frequencies
of the pitches causing theapriori. If we need to reverse the procedure, stron@diffce

tones could be searched for first, and then trguiacies which caused them may be found
by the following:

If two frequencied/; andV; interfere with each other and create a differédnoe with central
frequencyy and amplitude modulation frequenBythen from equatiofv.1]:

v +V, =2), [7.3]
and

Since we can measure bgfrand3, v; andv, may be determined from these simultaneous
equations. We may solve fagf andV, in general:

v=x+2, [7.5]
and
v,=x-%. [7.6]

Using the G — E interval example again, as detectgd; 295.357 ang3= 67.964.
Substituting these values into equatipns] and[7.6].

v; =329.339,
and

v, = 261375

This is a good approximation for the frequenciethete simple sine waves, but let us now
apply this technigue to the same large window efftur-voice chord, as extracted previously
in Figure 7.1 First, another CWT was taken of the signal usiegMorlet wavelet with a

high wavenumber of 20, so that power maxima forsrafthe transform could be found
easily.

As seen irFigure 7.14 there are several peaks for this chord.
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Figure 7.14 — Average power distribution per frequacy for NSA quartet, chord six

The peaks in the graph were found to correspoigetdollowing frequencies and pitches:

eak | Frequency | Nearest Pitch
196.5964
294.0162
394.3892
495.6024
583.4404
782.6187
983.4643
1170.431

OIN|O|OPAWINFT

W@ |O|WD T |@

Table 7.2 — Frequencies and nearest pitches corresmling to peaks in Figure 7.14

This is already a good detection of the pitcheéchord, despite the inclusion of four
strong harmonics as well. We can corroborate thesdts by looking for difference tones in
the locations which they predict.

A Morlet transform was taken again, but with a lome&venumber (10) for better time
localization. The difference tonesTiable 7.3were detected by measuring the average
wavelength between peaks along rows of the CWTHord six. Rather than just obtaining
one value, the 16384 points across each row wereedi up and frequencies were found in
four windows of 2048 samples each. These werehtaiigaccording to their corresponding
clarities. Clarity was measured by comparing thiglt of peaks in a window with the
maximum power for that window. The average cldiatyall windows across each row is
shown in the table. The chosen rows corresporgkstdo the averages of adjacent pairs of
frequencies iMable 7.2 Values fov; andV, were determined via equatiof¥s2] and[7.3],
and subsequently their nearest pitches, whichlacecluded in the table.
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CWT | Carrier Modulation Clarity | v; P | Vo P>
Row | Frequency (¥) | Frequency (B

85 247.050 96.180 13% 295.140 , D 198.960 | G
115 342.381 99.819 18% 392.290 4, 6292.472 | I
139 444.520 101.719 72% 495.379 4, B393.661 | G
157 540.664 88.960 55% 585.144 5 [0496.184 | B
178 679.416 201.790 17% 780.310 5 (6578.521 | I3
202 | 882.097 173.268 36% 968.731 | Bs | 795.463 | Gs
220 1072.883 191.227 51% 1168.496¢ D977.270 | B

Table 7.3 — Frequencies and nearest pitches correspling to peaks in Figure 7.14

These results are quite accurate, despite the tavepof some of the amplitude modulations
resulting in poor clarity. The shaded row in thblé is where there was the most error, but
when rounding the frequencies to their nearestlagugpered values, all of the difference
tones were quantized to their correct pitches.

The best way to handle the extra data providedheylifference tone analysis is debatable
and would require further experimentation with eliéint post-processing methods. One
simple idea, which has been implementetMawve Processois to increase the clarity of
pitches already found if their detection is supporby the presence of accurately measured
difference tones. The algorithm is summarizedhgyfollowing pseudo-code, which
basically checks each detected frequency againktditierence tone and boosts its clarity if
the difference tone is caused by frequencies magahi This allows for an error of one
quarter tone.

FOREACH detected FREQUENCY with clarity CLAR {
FOREACH WINDOW {
FOREACH ROW {
Get detected BEAT.FREQ for this WINDOW in this ROW
Calculate CARRIER.FREQ for this ROW
V1 = CARRIER.FREQ + BEAT.FREQ /2
V2 = CARRIER.FREQ - BEAT.FREQ /2
IF FREQUENCY within quarter tone of V1orV2{
CLAR =CLAR " (1 - BEAT.CLAR)
}
}
}
}

Figures 7.15and7.16show the full transcription of the NSA quartet exde before and after
applying difference tone detection. The Morlet elat with a wavenumber of 15 was used
for both transforms. Unfortunately, if the wind®ize is too small, the method does not
perform so well, since lower frequency beats cailweaineasured accurately enough, as
illustrated byFigure 7.4 Thus, the window size used in this example #&326amples.

While not greatly different-igure 7.16is a definite improvement nevertheless.

Note that this method still does not solve the fwbof confusing harmonics with
fundamental notes; if anything it compounds it.wewer this is a post-processing issue
involving harmonic analysis and instrument timkeeagnition, which is not within the scope
of this study.
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Figure 7.15 — Transcription of NSA quartet examplavithout difference tone analysis

.__ [
S

Figure 7.16 — Transcription of NSA quartet examplewith difference tone analysis

For another demonstration of this algorithm, thetpextraction of the three-pasikosi

Sikeleli Africaexcerpt from the previous chapter was repeated thé same settings (see
Figure 6.13, except this time with difference tone analysitched on. The improvement is
most noticeable in the bass part, where most ofdinly detected notes have now been filled
in. Scrutinizing the transcription, even countthg artefacts at the end, which are due to
noise in the recording, the result showrrigure 7.17is now 90% accurate. Percentage error
was measured in each time frame by how far (in teemas) the transcription strays from the
actual notes in each voice.
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Figure 7.17 — Pitch Extraction of three-part NSA eample using DoG wavelet transform

For a final example to end off this chaptéigure 7.18shows an attempt at transcribing a
five-part choral excerpt witiVave ProcessorThis is the opening five bars of Gregorio
Allegri’s Miserere Mei, Deuswhich was mentioned in the introductory chaptefhe chosen
frequency range for the CWT was 80Hz — 640Hz our &cales, and a Morlet wavelet with

a wavenumber of 32 was used. While the differeane analysis has been included, it had
little effect on this particular output, since thiech detection window width was very narrow
(256 samples). The calculation utilized 272MB a&fmory and 3.75GB of hard disk swap
space. A Pentium Core2 Duo Processor took 12 esnartd 13 seconds to complete the task.

Note the following:

e It was discovered that this particular recordinglightly flat, and so the base pitch,
Co, had to be adjusted from 16.375Hz to 16Hz softkguencies would convert to
their correctly tuned pitches. It is intended thdine tuning feature be addedwave
Processorso that the user may tweak the output in this Wand when necessary.

« For this example, the program was manually altevegrite D¢ as B, since this is the

correct diatonic spelling of this pitch in the cexttof B Major — the key of the piece
(see sectioB.4in Chapter 3 and secti@gn4 in Chapter 4).

* Bar lines have also been added manually so thatékult may be more easily
compared with the actual musical scor&igure 7.19

* There is much reverberation and acoustic delalgarrécording, which is why many
notes in each voice, especially in the top sopfiauey appear to continue sounding
after the next note has begun.

» Checking the score pitch for pitch confirms tiiéave Processdras managed to
detectall notes in all parts, though some of them less lgi¢han others. The least
well-detected pitch is the bass iB the fourth beat of the third bar, but it dogh s
appear nevertheless.

* Please find this excerpt 8ound\Allegri — Miserere — 5 bars.wav on the project CD.
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* The vertical overlapping of thesBind the C in the two uppermost voices at the
beginning of bar 4, creating the interval of a m&gwms a typical suspension (see
Chapter 3, sectioB.4.2. This has been accurately detected, thoughnastrdvery
well. In general\Wave Processarould benefit from some improvements to the
graphical representation of pitches, especiallyases such as this. Compare this
rendering of two adjacent notes on a staff with tfdhe score notation.

* Apart from the noise at the beginning, very fewita pitches detected in each time
frame are harmonics or invalid fundamental notegpimparison to the number which
have been identified correctly.

» The note type in the penultimate bar of the scofagure 7.19 ol , is dreve It
lasts twice the length of a semibreve or whole rote

Figure 7.18 — Automatic transcription of first five bars of Allegri’'s Miserere Mel, Deus
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Figure 7.19 — Opening five bars oMiserere (manual transcription from actual score)
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8 Experimental Pitch Detection on Live Audio Recadings

This chapter is mainly a record of experimentsiedrout on the pitch detection theories
discussed in this thesis. As mentioned in Chaptéris important that an automatic
transcription system be tested on live audio reagsgdand not just synthetically produced
sounds, and so all experimental data is from leerdings. The intention here is to
demonstrate the performance of the algorithms implged inWave Processor and also to
examine the effects on the output of varying carteansform parameters. In this way, a
better understanding may be gained of how bestnifigure settings, given different musical
situations or methods of recording.

As a space-saver, only spectrograms and pitch grapich show the most crucial results
have been included. There are, however, discussibaut all settings attempted, and for
each set of sounds, one has been chosen to shaiNg déthe experimentation, with respect
to adjusting transform parameters.

8.1 Preparation of Audio Data

A number of studio recordings were made of somkims&ruments playing various simple
harmonic constructs. The musical scores for thase all been included kppendix D and
references to these are given. It was considenpdritant that these sound samples should be
acoustically mixed, i.e. the instruments were recorded plagingultaneously and not just on
separate tracks to be mixed later on [ContO7L].

Listed below are brief descriptions of the varigests of recordings made. String instruments
were chosen specifically because they have a v@ntimbre, since it is vital the detection
algorithm be configurable so as not too be tooiseaghat it always detects harmonics as
fundamental notes. Piano recordings of the sam@savere also made for the same reason,
and they provide some comparison for analysis. cbatrol sound samples, simple sinusoidal
signals were created synthetically and mixed, Withg the same pitch sequences as in the
recordings. These, of course, have no timbre. sbftevare used to create these clips was a
command line program* which reads and parses aut tegt file containing pitch and time
information, and outputs a PCM wave file.

Set 1 — Two Similar Instruments (s&ppendix D.1)

i) Middle C pedal (held) note and C Major scale abowne, octave, ascending
i) Cs pedal note and C Major scale below, one octawwenakng

iii) G4 pedal note and G Minor scale above, one octacendig

iv) A3 pedal note and chromatic (semitones) scale aldiowetave, ascending

Set 2 — Three Similar Instruments (ggmendix D.2)

) Close interval diatonic triads built on each ndta gcale (root position only)
Keys: F Major and D Minor

i) Wide interval diatonic triads on notes of a scale.
Keys: C Major (root positions) and A Minor"(dnversions)

* Please findsynt h. exe in Sof t war e\ Synt hesi zer on the project CD
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Set 3 — Four Similar Instruments (&pendix D.3)

) Perfect cadence in C Major
i) Two chord progressions in G Major and A Minor

The studio recordings were produced as followsr eifterent microphones were set up,
namely:

* RODE — NT1-A condenser microphone [RGDEO8W)]

* RODE — NT3 condenser microphone [RZDEO9W]

*  SHURE - Beta 57A instrument microphone [ShureQ9W]
* AKG - D 112 large-diaphragm microphone [AKG0O9W)]

For more information about these microphones aanl #ipecifications, including envelopes
and frequency responses, please visit the webgiiten in each reference. Note that the last
of these, the D 112, is designed specifically & with bass instruments and its most
common use is for kick drums.

These four microphones were then used to recondskeparate tracks at the same time, of
exactly the same music. It was supposed that picnoes with different frequency responses
would yield slightly different signals and thusfdient transformed signals, which in turn
could affect pitch detection. The extent of thiéelences and their effects may be measured
by comparing spectrograms of four samples of theeggiece of recorded sound. Purely for
interest’s sake, the output of the four differemtnmphones was also mixed together (post
recording) to see what the effect would be, asdatitianal experiment.

The tracks were all recorded digitally and savedadinuous mono 16 bit PCM WAV files,

at a sample rate of 44,100kb/s (CD quality.) Tiveye each then cut into smaller files — one
for each of the various melodic or harmonic corety usingCool Edit Pro 2.0
[SyntrilliumO02S]. Since all five master tracks waecordings of exactly the same thing, start
and end times were noted for each cut made in btieedracks, and then automatically
applied in the same places to the other four tra@salting in identically timed clips.

No further processing was done or effects appbeitié sound bites, other than to normalize
them, in order to make them all the same volumeroAnalizing threshold of 90% was used
in order to avoid clipping or distortion of the wedgrms.

The synthesized control clips (employing sine wavesre all created from short programs
written in C++, three examples of which have bested inAppendix B. Again, the clips
were normalized to 90%, so as to conform with tiieoexperimental clips, although this
step was incorporated into the program code, idstéasingCool Edit Pro 2.0. Note: to
save space on the project CD, the raw recordekistitzave not been provided, but the cut
tracks used in the experiments are available.

8.2 Methods and Results

In these experiments, the tersessitivity or sensitive transform, and the initialisnDTA have
been utilized. The former refers to a transformvibich values have been calculated by
taking the square root of the magnitude. Thisdgel more “sensitive” result because the
difference between maxima and minima is reducedlaadurve of values between them
becomes flatter. DTA stands for Difference Tonalsis, which may be turned on or off.
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8.2.1 Microphone Testing

The first experiment was to see if using differemtrophones in the recording had a definite
effect on each algorithm’s ability to detect freqoies. This experiment made some
necessary assumptions about how best to set pansnmethe CWT (the subject of the
second set of experiments) but since these paresneéee fixed and not variable for each
microphone test, the results were independenteshthThe parameters chosen for the
transform were:

* Wavelet: Morlet

*  Wavenumber: 40

» Upper frequency bound: 1320HzJE
* Lower frequency bound: 65Hz £{C

* Number of scales: 256

* Sensitivity: On

Since frequency response was the main issue, ialgsasot necessary to test more than one
of the tracks, as long as its frequency range waasldy large The chosen clip was taken
from Set 3i) — the four-part chord progressions. The A Minmgpession had the widest
range and so was chosen for this reason. Thdirgsapectrograms are shown below:

a) RODE NT1-A b) RODE NT3

QUL U

Figure 8.1 — Spectrograms showing different frequesy responses of four microphones
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It can be seen that while there are differencesath image, they are not very profound.
Looking at the first of the bass notes in each cdweAKG D 112 microphone performed the
best in this range, picking this frequency up ggipn This is as one would expect, since it is
designed as a high-performance bass microphongeneral, the AKG D 112 performed
better than the other microphones, possibly withetaception of the RGDE NT3, which also
produced good all-round results. The Shure miaophseems to be slightly better at picking
up higher frequencies than the others, but themffce in performance is not large. In
corroboration to the claim on the RGDE web sit¢ tha NT1-A is the “world’s quietest
studio condenser microphone”, it can be seen bieaspectrogram is indeed somewhat more
clear of noise in comparison to the others. Howewe detection of higher frequencies has
suffered slightly as a result. The AKG D 112 imtaular has picked up much noise
especially in the lower frequency range.

Based on these results, it was decided that theophione of choice for the rest of the
experiments would be the AKG D 112, since it wasrtiost sensitive microphone and so
yielded the most frequency information in its outpu

Only the spectrograms were examined for differethezsause the experiment concerns
effects at the pre-processing stage. The pitalaetkdn from the frequency information
(where difference tone analysis is done, for exajnigla post-processing step.

To give an idea of harmonics vs. fundamental tqielsed up by each microphorfégure
8.2shows the same transform on the synthesized walge. in the same figure, the result
from mixing all four microphones is presented.

a) Sine wave synthesis b) All microphones

Figure 8.2 — Spectrograms showing a) location of fidamental notes in chord
progression and b) mixed frequency response of dbhur tested microphones

Spectrogranip) in the above figure shows a large amount of neweéch is the combined
product of all the microphones. Amongst otherdbirit demonstrates the loss of quality as a
result of using multiple close-up microphones stw@dio. Microphone placing and angle is
an important consideration for a studio sound esmgjinbut instead of going into the specifics
of this subject here, this instruction booklet fr&mure [Shure09L] is instead recommended
as an excellent guide.
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8.2.1 Set 1 - Two Similar Instruments

For these experiments, the lower and upper bouhtihedrequency scale were set from
128Hz to 1024Hz, which covers the range of allexalAlso, for these tests and all those
following, the number of scales in each CWT remdifieed at 128. This provides ample
frequency resolution for these particular audioglasn Whereas in the previous experiments
spectrograms were examined, here the full pitchaetibn step was added, and pitch graphs
were compared with the known scores for similarithe settings for which the output was
deemed most similar to the original, in terms e¢ipiand time location, were recorded.

8.2.1.1 Best Parameter Settings

It was found that for many of the parameter configjons for wavelet transforms and also the
Phase Vocoder, the first harmonic of the pedal,nptkoth the strings and in the piano
recordings, was detected instead of its fundameritaé tables below show the best
parameter settings found by varying each in turileAkeeping the others fixed. The first
table is for the recordings of string instrumentd ¢he second contains results for the piano
samples. For the control set in the third talilesas possible to get the transcriptions near to
perfect and in a couple of cases 100% accuratethagtiCWT Pitch Method (CPM for short).

Strings
Scale Configuration yielding best pitch detection

Method | Parameters
)] CPM Morlet wavelet, wavenumber: 40, sensitivd ADdisabled
i) CPM Morlet wavelet, wavenumber: 40, sensitid,A disabled
1) CPM Morlet wavelet, wavenumber: 40, sensitila A disabled
V) CPM Morlet wavelet, wavenumber: 40, sensitibd A disabled

Table 8.1 — Results of automatic transcriptions fotwo-part string recordings

Piano

Configuration yielding best pitch detection

Method | Parameters

i) CPM Morlet wavelet, wavenumber: 40, sensitilad,A disabled
I, i), iv) | Could not be tested due to lack of dimmiquality data and content

Scale

Table 8.2 — Results of automatic transcriptions fotwo-part piano recording

Synthetic

Configuration yielding near to perfect pitch detecton
Scale

Method | Parameters
)] CPM Morlet wavelet, wavenumber: 16, not sensitidTA enabled
1) CPM Morlet wavelet, wavenumber: 40, sensiti2d,A enabled or disabled
i) CPM Morlet wavelet, wavenumber: 40, sensitild,A enabled or disabled
Iv) CPM Morlet wavelet, wavenumber: 40, sensitibdA enabled or disabled

Table 8.3 — Results of automatic transcriptions fotwo-part synthesized waves
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8.2.1.2 Detailed Analysis

The next set of tables shows the experimentatioogss, with observations made on results
for a chosen sample from this set of sounds. ithd&se, the piano scale in G Minor with the
lower held note (scal@) is presented. Although CPM with the Morlet tdamsy was
observed to work a little better than other techeg the DWT / MPM result should also get
a mention, since it eliminated more unwanted haiosatihan the others. However, it did not
detect the pedal note very well either. Note thatbest setting of the parameters was the
same as for each of the strings scales.

Redundant Haar / MPM

Window Width | Comments

512 Fundamentals in scale generally correct, bygeatal note was
detected. Some first harmonics detected and ath@sr artefacts.

2048 Clearer detection and fewer artefacts. Harrsadso reduced.

Table 8.4 — Results for DWT / MPM

\

Figure 8.3 — DWT / MPM transcription (window width = 2048)

Phase Vocoder

Window Function | Comments

Gaussian Fundamentals and first harmonics of skérted equally
strongly. Pedal note detected as being held ozardyfour and a
half notes, but at the wrong octave. Several actef

Blackman Worst result: too many harmonics deteatedfusing with
correctly detected pitches.
None Average result, though with several artefatitsinated when using

the Gaussian window.

Table 8.5 — Results for Phase vocoder

Figure 8.4 — Phase vocoder (with Gaussian windowdanscription
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Morlet Wavelet

Wavenumber: 5

Comments

Ordinary transform

Correct fundamentals roughlyedttd. Strong first harmonics

detected

With sensitivity

Poorer detection of
fundamentals. First harmonics
detected slightly more strongly
instead.

With DTA

Better clarity for both
fundamentals and harmonics.

Some more harmonics detecte

.

(Both) Better clarity of both
fundamentals and extra
harmonics detected with
sensitivity.

Wavenumber: 20

Comments

Ordinary transform

More correct fundamentals, karionics also detected clearly
Low note was detected an octave high, i.e. atiteeHfarmonic

With sensitivity

Better detection of both
fundamentals and harmonics.
Lower note is clearer but still at
the wrong octave.

(Both) Many more harmonics
detected.

With DTA

More harmonics and upper
fundamentals detected.

Wavenumber: 40

Comments

Ordinary transform

BEST RESULT - fewer
harmonics accepted, but first
harmonic of lower note was stil
detected as being stronger thal
the actual fundamental.

N

With sensitivity

Better detection of both
fundamentals and harmonics.
Lower note is clearer but still at
the wrong octave.

(Both) No difference to ordinary
detection with sensitivity and
without DTA.

With DTA

No difference.

Table 8.6 — Results for CPM with Morlet transform

Figure 8.5 — CPM (Morlet 40) transcription
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Paul Wavelet

Order: 4

Ordinary transform

Very poor result. Hardly anpdamentals detected, mainly a fev

harmonics.

With sensitivity

Slightly better detection, butlist
largely inaccurate.

With DTA

No difference.

(Both) No difference to ordinary
detection with sensitivity and
without DTA.

Order: 10

Ordinary transform

Much improved detection of fumaantals, but first harmonics are

also stronger.

With sensitivity

Greater clarity for both
fundamentals and harmonics.

With DTA

Greater clarity for both
fundamentals and harmonics.

(Both) Even better clarity for
both fundamentals and
harmonics.

Table 8.7 — Results for CPM with Paul transform

Derivative of Gaussian Wavelet

Order: 2 (Mexican Hat)

Ordinary transform

Poor result. Hardly any fundataés detected, mainly a few
harmonics. However, lower note G is present assthfarmonic.

With sensitivity

Slightly different result, but

quality is still as poor as without detection with sensitivity and

this option.

(Both) No difference to ordinary

without DTA.

With DTA

No difference.

Order: 16

Ordinary transform

Much improved detection of fumaantals, but first harmonics are

also stronger.

With sensitivity

Better detection of both
fundamentals and harmonics.
More harmonics detected.
Lower note is much clearer but
still at the wrong octave.

(Both) Even better clarity for
both fundamentals and

harmonics, but extra harmonics

also begin to appear.

With DTA

Better detection of both
fundamentals and harmonics.
Not as many harmonics detects
as with sensitivity.

2d

D

Table 8.8 — Results for CPM with DoG transform

8.2.2 Set 2 — Three Similar Instruments

The next set of sounds were the triads in diffekeys. As with the previous example, it
should be remembered that the software is notalde of key detection, and so, although
the notes may not be diatonically correct to thwes, notes detected as, Bor example, are
still equivalent to Eif the key is say G Minor. It is already becomuigar in these examples
that the inclusion of DTA, while useful, is not @ys a good thing, since, more often than
not, it has the effect of clarifying weaker harnmeawhich should be filtered out of the

transcription.
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8.2.2.1 Best Parameter Settings

Strings
Triads Configuration yielding best pitch detection

Method | Parameters
i) F Major CPM Morlet wavelet, wavenumber: 40, sens, DTA disabled
1) D Minor | CPM Morlet wavelet, wavenumber: 32, séne, DTA disabled
i) C Major | CPM DoG wavelet, order: 16, sensitiizEl A enabled
i) A Minor | CPM DoG wavelet, order: 16, sensitigTA enabled

Table 8.9 — Results of automatic transcriptions fothree-part string recordings

Piano
Triads Configuration yielding best pitch detection
Method | Parameters
1) F Major CPM Morlet wavelet, wavenumber: 40, sensitive, DTA disabled
1) D Minor | CPM Morlet wavelet, wavenumber: 36, séue, DTA disabled
i) C Major | CPM Morlet wavelet, wavenumber: 40, siéive, DTA disabled
i) A Minor | CPM Morlet wavelet, wavenumber: 40, sdive, DTA disabled

Table 8.10 — Results of automatic transcriptions fothree-part piano recordings

Synthetic
Tri Configuration yielding near to perfect pitch detecton

riads

Method | Parameters

1) F Major CPM Morlet wavelet, wavenumber: 34, sens, DTA enabled
i) D Minor | CPM Morlet wavelet, wavenumber: 33, séne, DTA enabled
i) C Major | CPM Morlet wavelet, wavenumber: 37, DBAabled or disabled
i) A Minor | CPM Morlet wavelet, wavenumber: 32, DTeékabled

Table 8.11 — Results of automatic transcriptions fothree-part synthesized waves

8.2.2.2 Detailed Analysis

The chosen clip in this case was the set of witkrval triads in C Major, played by the string
instruments. Note that although CPM with the Mowavelet performed best, no result was

all that satisfactory in this case.

Phase Vocoder

Window Function | Comments

Gaussian Many high frequency harmonics detectady e final note of the
lowest voice appeared in the output.

Blackman Best out of all windows for detection shflamentals, but more
harmonics and other artefacts appeared.

None Slightly clearer detection than with Gaussiamow, but still poor.

Some harmonics filtered out.

Table 8.12 — Results for Phase Vocoder
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Figure 8.6 — Phase Vocoder (with Blackman windowyanscription
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Redundant Haar / MPM

Window Width | Comments
512 Many harmonics chosen over fundamentals.
2048 Same harmonics chosen over fundamentals|darec. Screenshots

were not taken for this result, which was even $gisfactory than the
Phase Vocoder.

Table 8.13 — Results for DWT / MPM

Morlet Wavelet

Wavenumber: 5

Comments

Ordinary transform

Generally poor, with many arté$aand harmonics detected. Mo
fundamentals were incorrectly identified.

t

(%24

With sensitivity

More notes detected, but tuningGreater clarity of both
was calculated to be slightly

sharper than it should be. tuning is still wrong.

With DTA

More harmonics detected and
generall clarification of all
pitches.

fundamentals and harmonics, [

ut

Wavenumber: 20

Comments

Ordinary transform

Result is an improvement from pinevious, and notes are correc
tuned, however many fundamentals are still misssgecially in
the lowest line. Generally hardly anything is déte below Middle
C (G).

Ly

With sensitivity

Detection of lower frequencies islarmonics detected with
better, but more harmonics also sensitivity enabled now very
appear. strongly detected. Last four

With DTA

Many more notes detected, notes of viola part appear, and
mostly harmonics. Viola middle voice is also slightly
remains very weak and only | stronger.

appears with the last two chords.

Wavenumber: 40

Comments

Ordinary transform

Last two notes of viola part netwongly detected, but the rest arg
not present.

)

With sensitivity

Further improvement in Slight improvement from
detection of lower notes. All butdetection with sensitivity turned
the first two viola notes are now on only.
present, albeit weakly. Result is
not very different from when
wavenumber is set at 20.

With DTA

Little difference. One or two
additional harmonics are

detected.

Table 8.14 — Results for CPM with Morlet transform
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Paul Wavelet

Order: 4

Ordinary transform

Result was generally very pa®nly one or two fundamentals
correctly identified. Many artefacts.

With sensitivity

Hardly any improvement than
without.

With DTA

No difference to ordinary
detection.

No difference to ordinary
detection with sensitivity and
without DTA.

Order: 10

Ordinary transform

Result is still very poor despiicreasing the order of the wavele

With sensitivity

Hardly any improvement than
without.

With DTA

No difference to ordinary
detection.

Slight increase in clarity of all
detected components.

L.

Table 8.15 — Results for CPM with Paul transform

Derivative of Gaussian Wavelet

Order: 2 (Mexican Hat)

Ordinary transform

Result was generally very podnly one or two fundamentals
correctly identified. Many artefacts.

With sensitivity

Hardly any improvement than
without.

With DTA

No difference to ordinary
detection.

No difference to ordinary
detection with sensitivity and
without DTA.

Order: 16

Ordinary transform

Fewer harmonics than with M

detected. Also none detected below Middle C.

oBef but also fewer fundamental

With sensitivity

More harmonics detected. Lag
three notes of viola part are no
present.

StBEST RESULT — While only
Wtwo chords, the third and fourth

in the progression, are now quite

With DTA

More harmonics are clarified.

clear, the result is only

marginally better than the Morlet
40 detection. Both screenshots

have been included for further

comparison.

Table 8.16 — Results for CPM with DoG transform
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Figure 8.8 — CPM (DoG 16) transcription
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8.2.3 Set 3 — Four Similar Instruments

The final set of experiments were those done orfidilnepart harmonies and the clip chosen
for the more detailed analysis was the progressignMinor, as played on the strings.

8.2.3.1 Best Parameter Settings

Strings

Configuration yielding best pitch detection
Quartads Method Parameters
i) Cadence | CPM Morlet wavelet, wavenumber: 40, isgasno DTA
i) G Major | CPM Morlet wavelet, wavenumber: 40, sitive, no DTA
i) A Minor | Phase Vocoder Gaussian window, windowltiv: 1024

Table 8.17 — Results of automatic transcriptions fofour-part string recordings

Piano

Configuration yielding best pitch detection
Quartads Method | Parameters
1) Cadence | CPM Morlet wavelet, wavenumber: 40, itgrsDTA disabled
i) G Major | CPM Morlet wavelet, wavenumber: 40, sitine, DTA disabled
i) A Minor | CPM Morlet wavelet, wavenumber: 40, sdive, DTA disabled

Table 8.18 — Results of automatic transcriptions fofour-part piano recordings

Synthetic

Configuration yielding near to perfect pitch detecton
Quartads Method | Parameters
i) Cadence | CPM Morlet wavelet, wavenumber: 16,seoisitive, DTA enabled
i) GMajor | CPM Morlet wavelet, wavenumber: 12, isensitive, DTA enabled
i) A Minor | CPM Morlet wavelet, wavenumber: 10, re@nsitive, DTA enabled

Table 8.19 — Results of automatic transcriptions fofour-part synthesized waves

8.2.3.2 Detailed Analysis

Here the Phase Vocoder only marginally outperfor@B#1. Both screenshots are included.

Phase Vocoder

Window Function | Comments

Gaussian BEST RESULT — Most of the fundamental pitches were detected
with some harmonics. Some base notes were fainvéne
nevertheless present.

Blackman Not a good result — out-of-tune detectibsome fundamentals

None A clearer result than with the Gaussian fmgtbut more

harmonics and other artefacts appeared.

Table 8.20 — Results for Phase vocoder
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Figure 8.9 — Phase vocoder (with Gaussian windowanscription
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Morlet Wavelet

Wavenumber: 5

Comments

Ordinary transform

A sparse result, but not bathat it did not contain too many
artefacts. One or two bass notes detected asfitiseinarmonics.

With sensitivity

More notes detected, but tunin
was calculated to be slightly
sharper than it should be.

With DTA

Clarity is much improved, but
some notes are detected out of
tune.

dAll notes, including out-of-tune
pitches were clearer still.

Wavenumber: 20

Comments

Ordinary transform

An improved detection in ternisuming, but there are still a
number of fundamental notes missing.

With sensitivity

Better result, but the penultima
bass note is still mostly being
detected as its first harmonic.

it&enerally a good result, but
more harmonics were detected
which made the pitch graph log

With DTA

Result is improved, with more ¢
the notes in the higher frequen

vfrather cluttered. However, with

range now appearing.

are clear.

Wavenumber: 40

Comments

Ordinary transform

Only marginally better resulinhwith wavenumber set to 20.

With sensitivity

Slightly better result with more
of the notes in the higher
frequency range appearing.

Only a few more harmonics
detected.

With DTA Only a few more harmonics
detected, otherwise hardly any
difference.
Table 8.21 — Results for CPM with Morlet transform
Paul Wavelet
Order: 4

Ordinary transform

Poor result with only a few rterrectly identified and many

artefacts.

With sensitivity

An improvement — one or two
the bass notes are clear, but
much detail is still missing.

oA slight improvement in clarity.

With DTA

A few more artefacts and
harmonics appear.

Order: 10

Ordinary transform

A somewhat improved result witbre notes correctly identified.

With sensitivity

Further improvement, especia
in the upper frequency range.

lYGreater clarity achieved,
yielding a fair result, although

With DTA

The result is improved and the
bass line is now almost fully
rendered.

many notes appear broken up
and there are still artefacts.

Table 8.22 — Results for CPM with Paul transform
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Figure 8.10 — CPM (Morlet 20) transcription

Derivative of Gaussian Wavelet

Order: 2 (Mexican Hat)

Ordinary transform| A very sparse result, similathtat of the Paul transform /

extraction.
With sensitivity A slight improvement. No difference to ordinary
With DTA A few more frequencies detection with sensitivity and
detected, but still very bare. without DTA.

Table 8.23 — Results for CPM with DoG transform
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Derivative of Gaussian Wavelet

Order: 16

Ordinary transform| Result is much improved, andalgh pitches are rather weakly
detected, most are present and correct.

With sensitivity A very good result, but Very good clarity was achieved
unfortunately the penultimate | with this setting, but was only
bass note is detected as its first rejected as being the best resu

~—

harmonic. because of the important bass
With DTA Clarity is very much improved | note which the other two
for all detected pitches. methods managed to detect.

Penultimate bass note still
detected as its first harmonic.

Table 8.23 (contd.) — Results for CPM with DoG trasform

For comparison, as a matter of interésgure 8.11shows the result of pitch detection on the
control clip, using the parameters givermable 8.19which produced the best output. This is
almost 100% accurate.
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Figure 8.11 — CPM (Morlet 10) transcription of four-part synthesized control clip
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9 From Pitch Graphs to Musical Scores

Up to this point, pre-processing techniques fachpdetection have been discussed in depth,
but this is really only half the problem of musezognition. In order to complete a solution,
further processing is required of the pitch anditglanformation — the output of the pitch
detection algorithms. Without this vital step, @@ not draw anything better than the current
pitch graphs seen in Chapters 4 to 8, which areaemable representations of music in the
eyes of a musician.

The issues which need to be dealt with in ordeetaler a score from the pitch data comprise
tasksii) toiv) and alswii) from the overall research problem description Gkapter 1).
These may be combined into two main objectives:

1) Properly segment the time domain by locating ndigee and determining durations
from this, then quantize each note and fit thero bars of equal length, determined
by a time signature.

2) Further scrutinize the detected pitches and eliteiagefacts, via melodic and
harmonic analysis, then from this determine kefyar(y) and spell pitches
diatonically.

In many ways these steps are dependent on eaah lmtihenore information is to be acquired
for the second task by tackling temporal note detedirst. While methods have been
offered for achieving.), research int@) would fill a new thesis on its own, and so onlg th
most tentative suggestions have been made as techapproach this problem heuristically.
The second step of tagdk may require a non-trivial method if the time sityma was not
knowna priori, however ideas for solving this have also beeeret.

In general for this chapter, since the post-prangggchniques presented here begin to fall
outside the scope of this study, their descriptiwenge been kept intentionally short, and
complete solutions have not been provided. Fumbeg, the methods discussed have not
been fully implemented ikVave Processor and so could not be tested thoroughly.

9.1 Temporal Note Detection

A useful by-product of the McLeod Pitch Method dédsed in Chapter 4 is that it gives a very
precise indication of the beginnings and endingdiftérent notes within a melody, unless
two notes in succession share the same pitch.efdrerthe problem of (monophonic)
temporal note detection is already nearly solvedtegncidentally. This is also the case with
the CWT Pitch Method in Chapter 6, but for polypttamusic this becomes much more
difficult, especially when dealing with non-percivesinstruments which blend in well with
each other. It was shown in Chapter 7 that diffeeetones yield different interference
patterns in the spectrogram for different intervalsd therefore the onset of a new note (or
change in harmony) would also be the point at whiglarticular pattern changes most
dramatically. It is still not altogether clearvirever, whether these changes are necessarily
due to the evolution of a note or chord in termaminstrument’s particular timbre or note
articulation, or whether they are as a result @éfinite change in pitch. It is therefore useful,
perhaps, to consider treating the problem as aa&pigasue and then to use the results to aid
in the task of temporal segmentation. In [BelloPdhd [BrossierO4L], some note onset
detection functions have been offered, which wilvrbe examined and reiterated here.
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9.1.1 Note Onset Detection Functions

The first function described by Brossier is thigh Freguency Content function (originally
defined in [Masri96L]). This function has the eff@f highlighting changes which occur in
the higher frequency range of the spectrum, whielams that it is suitable for locating
percussive sounds, since these contain many tegléncies at their attack points. The HFC
function takes windows of an STFT as its input, engiven by:

N
= 21iFe
m=0

where the STFTEy m, has been defined in Chapter 4, secidn As can be seen, the value
of each point in the function is the sum of lingareighted frequency magnitudes in each
window. Since the values used are the bin magesude can also use windows of the CWT
if so desired. Such an approach, however, sufifens the same problems as already exist
from just examining MPM or CPM output — smoothansitions between chords and note
attacks of non-percussive instruments will not eedted successfully by this function.

The next pair of functions compare bin frequenaieseighbouring windows of the STFT by
their magnitude and their phase, resulting in asuesaofspectral difference andphase
deviation. TheSpectral Difference function is defined by the following sum of differences
function, which also operates on magnitudes:

N
DkS = Zqu,m‘ _‘Fk—LmD'

m=0

According to the Phase Vocoder algorithm (see Graptsectior.2.2, the difference in
phase between similar frequency bins in neighbgunmdows of the STFT will bplus a

certain number of cycles of the frequency. Iffifeguency of a bin is stationary, thewill
change at a constant rate between successive wenddewever, when a frequency changes,

due to either a smooth transition to a new pitchlse a note onset/offset, a deviatiorgin
will occur. We define phase deviation as the sdagrivative of the instantaneous phase

6« m of binm, windowK as follows:
2

076 m
ok?

This may be estimated using finite differences as:

Bm =

Gm= gk,m - 2‘9k—1,m + gk—z,m'

ThePhase Deviation function is then the average of all the phase deviatiomesah bin for
each window. Note that the principle argument &hbe used fo@ , i.e.—7T<@ < TT:

N
é"=%m2:\@m\
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Finally, by converting phase and magnitude badkéocomplex domain, we can use the
phase deviation measure also to define overaluéeqgy deviation for bins of the STFT as
follows:

From =|Fem€ %

9.1.2 The Combined Onset Detection Function

If we combineDkSanlef we can measure the difference between deviatedendl values,

including phase information as well as magnitutlergby obtaining a function which is much
better at emphasizing new note or chord onsetsibifeschanges in frequency. The

difference is measured by calculating the Eucliddiatance betwedn andF :

N —~
DE =2 3 [Fem = Fun
N m=0

According to Brossier, this effectively solves fiteblem of detecting both percussive onsets
and smooth note transitions.

9.2 Note Classification via Image Processing Tecljues

Since in the CWT spectrogram we have a detaileaicrepresentation of sound, it is well
worth looking at a few feature extraction techngjberrowed from image processing theory
which could be highly beneficial. Revisiting thede-part arrangement Nkosi Skeleli

Africa one last time, the image gure 9.1 below shows the result of an experimental
feature extraction, using a combination of techagjas implemented in [McGuiness06S].

Figure 9.1 — Note identification of 3-part NSA exarple using Image Processing methods

As can be seen, the notes have been extractediamtfied as being one of four different
types (which are explained below). Apart from sarhthe bass notes, the categorization is
accurate and furthermore only three harmonics nemnadiltered.

There is not room in the scope of this study tovalfor a very detailed discussion of all the

theory, but the following is a summary of the psg®hich yielded the above resuRigure
9.2 shows the image at the first three stages of thesglure.
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a) Firstly a greyscale CWT spectrogram was generatgdg the Morlet wavelet with a
moderately high wavenumber of 20, so as to get g@apiency localization but
without sacrificing too much time resolution. leatl of stretching the spectrogram
vertically, as for normal viewing purposes, the gmavas saved at its original height
of 1 pixel per scale, which in this case was 256.

b) The saved image was then binarized using a thréstigl2. This means that greys
with a level of 72 — 255 (maximum) were selected e rest filtered out. This
simple process effectively removed a lot of thesa@nd weaker signal components.

c) Next, connected components in the black and whitge were identified and
separated. The algorithm used for this is a sgamhigh examines the image, row by
row, and determines whether or not a path exista the current pixel to each of its
neighbours. If a separated pixel is found, a nemmonent is created, otherwise the
pixel is added to that of the connected neighbdimre algorithm was set to reject
components with a total pixel area of less than B@reby removing more noise.

d) The final stage of the analysis was separatioh@frhage components into four
classes — one for each type of note. This waswaeldiby calculating various
attributes of each shape, namely perimeter, compastand elongation, and then
classifying them by their similarity usingmeans clustering [MacQueen67L].

a) CWT spectrogram saved as a greyscale image

b) Image converted to black and white by thresholding

c) Connected component analysis identifying notes

Figure 9.2 — Stages of note identification methoeading to the result in Figure 9.1
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In the classification stage, component elongatsoani obvious choice by which to categorize,
since it best represents duration. The reasothéinclusion of the other criteria is due the
effects on the components’ shapes from the way éxdfaction was done. Components
caused by bass sounds tend to be slightly shartefadter, being more spread out in the
frequency domain, whereas higher frequencies erndnger and thinner. This is evident in
the images above. Note that if the spectrogramnioatbeen drawn dyadically, however, the
effect is reversed, but it is much more exaggeratetitherefore cannot be exploited in this
way. Compactness is simply a measure of how wedinaponent fits inside its bounding
rectangle. It was found via experimentation wiiffiedent settings that including this attribute
made the algorithm perform better on the whole, snd was retained.

There is one more step before the data is readg tmmbined with information from pitch
methods, and this will clarify the purpose of dothg component classification. Most music
is constructed using regular length beats, and) é\the tempo changes, the durations of
almost all other nearby notes will be multipleghad shortest ones (see Chapter 3, section
3.3.3. Note types may therefore be more formally idexat from the image by taking the
average length of a few of the shortest type ofmament found nearby, and then measuring
approximately how many of these fit into each @ tither types of component. At the
beginning of the current example, it may be seemh® first bass component, three of the
shortest type (of which there are three in thelitpand one in the middle) fit its length,
therefore it may be identified as some type ofatbtiote. Notes which appear to stop and
start between beats and out of synch with the gétrend may be ignored, since they are
likely to be harmonics, which vary in strength acltiog to different reasons compared to
sounds which have deliberate placement in measuned However, notes which appear
within the time boundaries of other larger notesusth not be discarded, since they may be
weaker fundamentals. These should be snappedithevier beat position they are closest
to. It may not always be the case, but in thigvgXa, the first rule eliminates one of the
troublesome harmonics at the start, just belownltklle line.

The lengths in pixels of each class of componeRigare 9.1 (excluding the one eliminated
harmonic) were measured and are showhable 9.1 This has been drawn so that the table
columns are in proportion to the average widtrhefgmallest component, in order to
demonstrate how the quantization may be carried out

56 | 55| 58] 55 117 114 113 115 219

112 63| 74 110 111 119 110 214
37 | 82|

194 | 48] | 41| 57| | 69 110 | 203

Table 9.1 — Quantization of component widths

From here, it becomes a relatively straightforwtask to combine the above appropriately
time-quantized output with pitch information frohetmethods discussed in Chapters 6 and 7.
This data may then be parsed, and a MusicXML filegexample, generated. Finally, the
MusicXML could be imported int&@belius or another music publishing package which
supports this formatFigure 9.3shows &Sbelius score, obtained by using the pitch and note
type information from combined algorithms. Comptiie with Figure 5.24in Chapter 5,

which shows the original. This result may be inya even further with the likes &igure
7.17in Chapter 7, which completely eliminates the peobof the fading bass notes and

would also get rid of all but the last harmonic.
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Figure 9.3 — Full automatic transcription of 3-part NSA example, imported intoSibelius

The key signature of this score was determinedrbitbking all identified pitches in the
passage and arranging them in a scale, within oteve:

A B C D E ¥ G

By examining the intervals between the notes ig $sicale, it may be seen that the lonian
mode (major) may be formed by starting on G, amrdAbolian mode (minor) would begin on
E. These two options account for 90% of all Westausic (which is a rough yet educated
estimate). By virtue of the fact that the muspalase begins and ends on a G Major triad,
and that there is a perfect cadence in G formetthédyast two chords, the most likely key is
thus G Major. Three and four-part chords whiclnf@ommon patterns such as this may
easily be stored and searched for in a lookup ;aiole thus cadences may be recognized;
however, we don’t even need to go nearly this fitin Wine analysis. Simply detecting that any
F in the passage of music is always sharpenedisgénto write a correct key signature, even
if we are wrong and the key is technically E Miamd not G Major.

The only remaining assumption which had to be nvealke concerning the number and type of
beats per bar, but nine times out of ten in mubie beat type will be a quarter note, as
defined here. As for the number of beats, one igltieat the total number of the smallest
denomination note (the quaver) which fits into Wiele phrase is 16. This number is a
multiple of 2 and of 4, as opposed to 3, or 5,.0ffBerefore, assuming a whole number of
bars, the best subdivision of the passage is itttereawo sets of eight quavers or four sets of
four quavers. The latter configuration is less nwn, but does exist in Music, and would

have a time signature of eith}ror g. The choice oﬁ (the former division) is not just

because it is more popular or commonly occurring,dlso because the best way in Music
Theory to identify the beat is to determine whichentype is most frequent. This is logical,
since repetitiveness tends to give something anishgfiquality. The most frequent class of
note which appeared in the component classificatias that of the red bounding rectangles

in Figure 9.1 This note type is twice the smallest in lengiig so the smallest notes are
therefore subdivisions rather than main beats.eGthe assumption about the beat type, eight
crotchets per bar is an extremely rare time sigeaind so the best solution is two bars of
four crotchets each.

Although done manually in this demonstration, & haw been shown that the score in
Figure 9.3may also be computed by a fully automatic metigncen the audio signal alone.
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10 Conclusions

Thorough attempts have been made to solve respasblems) andv), and to some extent
i) andiii), as defined in Chapter 1, sectib2 This chapter summarizes and evaluates the
current solutions, and suggests ways in which thay be improved. Some ideas for further
development of methods, towards a more completdisnlto automatic transcription, have
also been offered.

10.1 Evaluation of Results
10.1.1 Monophonic Recognition

Several years before the time of writing of thisdis, single pitch recognition was already
well understood and successfully implemented inralver of pitch detection applications.
The point of including a thorough discourse on rdglranscription methods again was to
find ways of improving and evolving them, or atdease them as part of a broader solution.
With the McLeod Pitch Method, this was indeed sieelpe the case, since fair to decent
results were achieved by combining it with the Rethnt Haar wavelet transform, as
proposed in Chapter 5.

Certainly with the Phase Vocoder this is also thee¢ since the implementation shows that by
searching for the next highest peak in windowhef$TFT, multiple pitch extraction may be
achieved. Although this algorithm was tested thssoughly, not being the main focus of

this research, it is very important to considercsiit is the current algorithm of choice for
most automatic transcription applications in tledédi For this reason, the Phase Vocoder may
be used as a standard against which to measuleviéiief success of other methods.

The note onset detection method discussed briefllya previous chapter works well for
single melody lines, but could not be tested orygmbnic material. This is because the
algorithm only provides information about when amte has occurred, throughout the entire
spectrum of frequencies, and not to which notevdreance measure applies. In a way, it is
similar to the case of the Fourier transform yietpfrequency but not time information. This
would seem to suggest another frequency domainomiimdy approach be used. However the
connected components analysis demonstrated irathe shapter may be a better method.
This would, however, require further testing in@rtb construct a more conclusive
argument.

10.1.2 Polyphonic Recognition

Given the high level of accuracy in the result$onfr and five-part harmony transcriptions,
the new method of multiple pitch detection using tlontinuous wavelet transform has
proved, at the very least, to be comparable withecu techniques implemented in the field.
While the pre-processing part of this algorithm hasn well-examined and implemented, the
actual pitch extraction is in need of further deypshent and exploration of different
techniques, of which there are many, as implieGhapter 9.

It would appear from the general clarity achiewethie relatively simple examples in Chapter
8 that the CWT pitch method almost always outpenfothe Phase Vocoder for multiple pitch
recognition. However, there are many parameteishwhust be set, as shown in the
experiments, in order for the new method to yibkke good results every time. Itis also

169



apparent that the content affects the correct ehgiiecnethod and parameter settings,
sometimes dramatically, which presents a probl&hile one configuration may be perfect
for some types of music, it may not work as wetldithers, even given similar instruments
and recording techniques but different harmonicemiat For example, for higher frequency
content, a lower Morlet wavenumber may be use@esihe frequency spread it provides in
this range gives a slightly clearer measure.

One solution is to make better use of the Phased&c Since this is a much faster
algorithm, it could do very well aspae-pre-processing tool, feeding the CWT algorithmadat
concerning the overall complexity of the music dltowbe analyzed. If relatively few
frequencies are detected by the Phase Vocoderthkdranscription system may choose a
simpler method in preference to the CWT, such afibdundant Haar / MPM combination.
If, however, the Phase Vocoder found the audicetaich richer in harmonic content, the
more scrutinous CWT pitch method would be assidodle pre-processing task. The type
and order of the wavelet to be used could alsoeberchined from this data. For example, it
is apparent that thicker musical texture requiighédr order wavelets, but higher frequency
content does not, and so on. Thus, inclusioniefdfep means that development of a robust
automatic algorithm-selection method is entirelggble.

From one or two of the results in the previous tiiapvhere the Paul wavelet does not seem
very suitable for this particular application, fBerivative of Gaussian is certainly worth
further attention. In some cases, quieter loweniadle range frequencies were best detected
by this transform. Also, unwanted harmonics teneoke filtered out better than in the

Morlet transform. The only reason higher orderd hat been implemented WWave

Processor was because of the difficulty of calculating thegle factors in the normalizing
constants due to the Gamma function @&ppendix A.3) but this was only for display
purposes. However, higher order wavelets couleigoroore accurate, just as the higher
wavenumber Morlet wavelets have shown to be.

10.1.3 Usefulness of Music Transcription Software

One of the primary and most important measurebetisefulness of any given piece of
software is how much time is saved by using itedgrm a certain task. The most popular
applications are either those which provide eniterant or those which make otherwise
tedious work relatively quick and easy to complete.

First and foremost, a program claiming to assish&job of music transcriptiamust make
the problem faster and easier to solve than daibg €ar, even if it is only a partial solution
which the user must then complete. It must alseg@to be more accurate and more
discerning than the average experienced musicdriées — a quick, yet poor solution is still
of little use if too many corrections need to bedma

Figure 10.1shows anothannedited automatic transcription of the same three-part
arrangement dilkosi Skeleli Africa as demonstrated in Chapter 9. This transcriptias
computed by one of the current most highly ratedroercial music transcription systems
available, Neuratron’sudioScore Utimate 6 [NeuratronO9W].

While the program does indeed get all of the pgatm@rect, with only four or five extraneous
harmonics detected, there are many major errdrsissignment of note values and their
placement in time, which appear to be due to rgtbeiunctory post-processing techniques.
These errors make the correctional editing joltHeruser much more difficult, demonstrating
that precise temporal location is just as imporéntorrect pitch detection when transcribing
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Figure 10.1 —AudioScore automatic transcription of NSA 3-part arrangement

music. For this reason, as it stan@isdioScore cannot truly be deemed useful. Itis clear,
however, that this is not in fact the “ultimate’rs®n of the software, since the tempo and
time signature options dialog box currently shovesgngreyed out settings, which could help
improve the output. Presumably these featuregetr® be implemented by the developers.
The other somewhat more obvious requirement oluéonaatic music transcription system is
that its output should be easily imported into ssimyublishing application, such Sbelius,

or else provide its own comprehensive set of enggaand publishing tools. For this reason,
althoughFigure 9.3is a better result thafigure 10.], this link has not yet been provided in
Wave Processor, and therefore it cannot claim to be a compleletiem, asAudioScore can.

10.2 Ideas for Further Research
10.2.1 Improving the Speed of Algorithms

Attempts have been made to optimize most methodkemented inNave Processor, but
there is still much room for further improvemeifirstly, there exist more advanced
algorithms than those presented here which aretaluialculate transforms faster. For
example, as mentioned in Chapter 4, the FFT maypbguted using higher radices. There
also exist hardware devices, such as certain fisdgrammable gate arrays, configured to
dedicated FFT calculation. Some graphics procgasiits, such as [Wang07W] are now
able to calculate DWTs, since Daubechies wavekrts become part of the JPEG2000
standard, and so wavelet transforms have beconessmy stock requirements for codecs.

Studies have also been conducted with regardadofy a more efficient CWT algorithm,

including one by Michael Vrhel [Vrhel97L] claimirtg achieveO(N) per scale. This means
that the FFT does not have to be used in the edlounlat all.

10.2.2 Artificially Intelligent Pattern Recognition Techniques

This study mainly concerns itself with pre-procagsinethods of music transcription. Of
course this is really only half the battle. Puretypirical sound analysis methods are
analogous with what goes on in our inner ear. 8swame filtered and converted into signals
which are more suitable for our brain to digest, fautther analysis must be done before we
are able to recognize sounds as musical pitcheglaad their context.
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Chapter nine touches lightly on this subject, lmésinot suggest methods beyond the
empirical. There are many other “artificial intgince” techniques of which the intention is
to explore thoroughly, given the findings of resdesuch as [AbdallahO2L], [Andredo07L],
[Cont07L] and others. The subjects techniquesitefest are:

* Machine Learning
 Neural Networks
e Hidden Markov Models

The last in the list looks particularly promisingy@method for harmonic analysis, since it
provides a method of modelling based on the evialiaif the probability of a sequence of
observations occurring. Given the rules, or ratjeereral trends, of music harmony discussed
in Chapter 3, an analysis/prediction algorithm ddug constructed, whose output is
information about the likelihood of a pattern ofefged pitches belonging to, say, melodic
lines or counterpoint, or else being part of tactre of a cadence. It may also possibly be
used to predict the instrument on which a line ok is being played, although this is only
hypothetical. Transcription of notes based onrtharmonic function is a very powerful
technique, and one that is recommended by musistdoigr manual transcription
[Scholes65L].

10.2.3 Importing pitch/time data into music engraing software

The previous section discussed the importance &fngautput of an automatic transcription
immediately accessible and editable to the usértheufavoured method of doing so has only
been tentatively suggested in Chapter 3. Whildh&rrtheory will not be discussed, since this
is the concluding chapter, it is intended thathvhesicXML standard [Recordare09W] be
explored thoroughly and incorporated iM@ve Processor, since this is arguably the most
widely supported format for representing music.séech, such as [CunninghamO4L], has
also shown that it is one of the best, in that:

» It allows representation of music from very simfgeextremely complex scores.

» It enjoys full support and continued developmenth®/company which created it,
Recordare LLC.

* The data structuring and organization of MusicXMlbased on an already robust and
widely used mark-up language, namely XML.

» The use of plain text to store data means thatetsily edited manually, but also that
it is compact and takes up little space when stofenhay also be compressed further
if desired by standard lossless techniques.

* Implementation of MusicXML is included in all majapplications which deal with
either music engraving or music transcription.

* It comes with a free licence agreement, which méamay be used freely by software
developers in the music transcription / engravindustry, provided that the terms of
the licence are observed.
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Appendix A — Mathematical Notation

A.1 Notation Conventions

The following table summarizes the notational staddor most of the mathematical
formulae found in this thesis:

i

Symbol Designation Notes
t time value in seconds
T shift in time value in seconds
f(t) continuous function of time
f[t] sampled version d{t)
fi discrete function (of time) indexed Iy
1 wavelength A_k is also used to denqte
eigenvalues (chapter five)
\% frequency value in Hertz
w angular frequency where w= 278
measured in semitones fro
p pitch the base pitch, defined as
Co =0
F(V) continuous Fourier transform this is specifically of(t)
Fm discrete Fourier transform, indexed sy | also writtenf
F, F1 Fourier transform operator and its inverse
N is normally used for time
series andn for frequency
arrays.t, & Vv, are values
kK, n,m index variables oft & V at indexedl & M
respectively.n is also used
for Paul and DoG wavelet
orders.
B bandwidth of a signal measured in Hertz
N number of samples in a discrete signal
duration or time limit of a non-stationary .
L . measured in seconds
signal
change in time between two adjacent .
At oo . . . measured in seconds
points in a discrete time series
AV chgngg in fr(_equency between twq adjace% easured in Hertz
points in a discrete frequency series
= discrete Short Time Fourier Transform,
k,m indexed byk (windows),m (frequencies)
window width in windowed transforms, alSQWN for N” rqot of unity
W i.e. the number of samples in the window (twiddle factors n Cooley-
o Tukey FFT algorithm
N duration or time limit of a window measured in sed®

Table A.1 — Mathematical notation conventions
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The window is at position

discrete window function (shifted
W —kw (shifted) shifted byk window widths
I7) instantaneous phase angle measured in radians
@is also used to denote
At) father wavelet or scaling function phase difference (chapters
four and nine)
Q) mother wavelet or wavelet function also ¢p(t)
Ys() wavelet function at scals,and shift,T
S scale
S number of scales in a discrete transform
Wi(s, 1) continuous wavelet transform of f(t)
of discrete signd,
Wi, discretized CWT N. B.Sand 7 are now
indexes as opposed to valu
* complex conjugate
U convolution
. 1 n=0n=1
I double factorial nl=
n(n-2)!, n>1
H Heaviside or Step function H (a)) )0 «=0
() P 1 w>0
r(2 Gamma function r(z)= j:tz‘le‘tdt
1, =i
Box function n(t) = 2
M) (t) {O' (51
Hey(t)=1
He,(t) n" Hermite probabilistic polynomial ih | He(t) =t

Hen+1(t) = tHen (t) - nHen—l(t)

Paul wavelet generator polynomialstin

SeeAppendix B.2

es

Table A.1 (contd.) — Mathematical notation convenbns
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A.2 Window Functions

Name Formula Parameter | Diagram
Rectangul t)= | |
serangtar W() - n-mHH‘HHHJ I
_ _1[t—W/2]2
Gaussian W(t) e 2\ ow2 0<05 J_
2t
Triangular | W=17E0 = "A y
ranguiar W() ‘W ]~ : il M Wn.mu
(7t
Cosi t)=sin — £ i
owe | )= AL
Hann t)= 05(1_00{271 ] A l
W Sy %
Hamming | W(t) = 054- O46COS{$</I) A AL
_l-a 1 (o) a (4| A
Blackman | W(t)= 5 ZCO{W}LZCO{WJ o =0.16 A | JL

Table A.2 — Window functions for the STFT (imagesrbm www. wi ki pedi a. or g)

A.3 Continuous Wavelet Functions
Name l/jo(t) lﬁo(t)
Morlet 1 _t? _1 _1 2
(@>5) |W%o ()= €™e? DY () = 774 H () )
Derivative M+l -
of D _ (_1) d’ -v D .~ -
)= e | P5r(w)=—— e 2
Gaussian 1 n 1
s rn+1)dt \/F(m
Paul P, _ 2"1"nl - \—(n+1) n_-sw
(n>4) l//o (t)_m(l It) 4175 ) m ( )(Sw) e
sa—3n/2
7t 31t belw [ j
Shannon | ¢ (t) =sin 2) CO{Z)
N I_l (sa)+ 3t/ 2)
V4

Table A.3 — Continuous wavelet functions and theiFourier transforms

175




Appendix B — Algebraic Workings

B.1 Finding the Points of the Daubechies 4 Scalirg\Wavelet Functions

The D4 function coefficients are given as.

e
N[N 4>II|I—\ Bl N
W
|
@

B.1.1 The Scaling Function
1) is given by the following equation, where 0 < t < 3;

a(t) = hog(2t) + g (2t - 1)+ hyg(2t - 2) + hg(2t - 3) B4
Theinteger points, ¢{1) and ¢(2), are then:

¢(1) = hg(1) + hoe(2).
¢(2) = hoe(1) + hyg(2).

To find eigenvalues, A1 and A,, we must find the determinant of the matrix, M, such that
Mo = At, where:

) ol

Thus:
(h, = A)(h, =) -hehs =0.
042 = (hy +h,)A +yhy, —hghy =0.
164 - 4(3+3+3- 430 + (3+3)3-v3)- L+ v3)1-v3)=0.
0164 =34 +1=0.
0(24-1)(A-1)=0.
O0A4=11,=1.
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The eigenvector for A, = 1lis:

el

Hence

(hy, —De(2) + hog(2) = 0.
hel1) + (h, —1)ef2) = 0.
hy=1-h,, ad hy=1-h,.

Therefore

Finaly, from [B.2]:

2)= %qa(l)

143
7
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The half integer points, qz(%) qz(%) and qz(g) and subsequently all dyadic fractional points,
are then determined from equation [B.1] asfollows:

A2)= o)
_(1+\/§)D(1+\/§)
4 2
_1+2/3+3
-8
_2+43
==

¢(3) hl2) + held)

=@tf§41f3+@:@*92@)

=0.

)= he2)
_{1-+3) (1-+3)
4 2
_1-23+3
=S
_2-43
=S

From here, the quarter, eighth, sixteenth integer points, and so on, may be found recursively
by subdividing intervals ad infinitum.

B.2.2 The Wavelet Function
The derivation of the points for the D4 mother wavelet function, {/ (t) , istrivial once the

scaling function has been calculated. Thisisachieved simply by substituting values of the
points found for ¢(t) in the wavelet equation:

w(t) = hoe(2t) + hyg(2t - 1) + by (2t - 2) + hog(2t - 3).
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B.2 Extracting the Real and Imaginary Components fothe Paul Wavelet
The Paul wavelet (order n) is defined as:

wi ) =ai"(L-it) ",
where

2"n!

Jr2n)

In order to plot the real and imaginary parts of the function, the expression i " (1— it)_(nﬂ)

needs be written as the sum of itsreal and imaginary components, which are unknown
polynomiasint.

in(@-it) ™Y = pRe() +ipM ). B3]

B.2.1 Examining the First Four Orders

The first four orders of the complex function expressed in terms of separate real and
Imaginary components are as follows:

n=0:
ooyt L
P =
_ 1+it
(1-it)a+it)
_ 1 i t
1+t2  1+t%
n=1
PR
-t 1-2it +i%t?
- 1, \
-2t +ilt? -1
il
a2+ (2 -1f
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_ 2=l -
A% +14-2t% +1

:—2t—i(t2—1)
t*+2t2+1
-2t . 1-t?

] L+t2f " L+t2f

n=2:
-1t S 1-3it —;tz +it3
:—(1—3t2)+i(—3t +t3)
(1-3t)° +(—3t +t3)2
—b-a)-ifa-]
1+3t% +3t* +t°
_3%-1 -3 +td

) (1+t2)3 " (1+t2)3 |

n=a3:
.3 ..\-4 _i
P{1-1t) "=
(1-it) 1-4it —6t% + 4it3 +t*
_ 1 \
4 -4t +i(L-6t2 +1)
_ a-43-ia-6t2 +th

(4t —4t3)2 + (1—6t2 +t4)2
_4t—4t3—i(1—6t2 +t4)
1447 +6t% + 4t +8
_4t-4t N —1+6t2—t4.

i) e
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We see that a pattern begins to emerge:

(i) - OO 10
b+?)

where® rFfe (t)and P :,]m (t) are the unknown polynomialsin equation [B.3] multiplied by

(1 + )™, From thefirst few cases, we hypothesize the following recurrence relations:
Re — Im Re /1.
ch+1(t) - _cbn (t) _tcbn (t);

() = PRE(t) —td " (1).

B.2.2 Proof

Given that

=ity 0 = o) +i0l(),
then

(1=t (g2

=i"(1-it) ™Y (1+t2)n+1{i %t—i))}

=ofe)+iol )] i((i .ttz)%(llj iitt))_

il 2)aeit)]
_ _ (L+12)
= |dre(t) +io" ()| - t)

o ()t () +1[05°() -t} ()
= O3 (t)+ieT(t)

=[oFe(t) +io!m ()]0
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Appendix C — Code Listings

C.1 Fast Fourier Transform (FFT)

void FFT(int dir, DWORD n, double *rdata, double *i

BOOL c2r = FALSE) {
/* Real to real, real to complex, complex to real
n-point Fast Fourier Transform

idata == NULL.: real to real
c2r == TRUE: complex to real

Forward - dir ==
Inverse - dir == -1
*/

/I Check for valid input
if(!(dir == 1 || dir == -1))
return;
if(n <=1)
return;
if(Irdata) return;

BOOL r2r = FALSE;
/I If real to real transform, create temp imagina
to 0
if(lidata) {
r2r = TRUE;
c2r = FALSE;
idata = new double[n];
memset(idata, 0, n * sizeof(double));

}

/I Bit reversal of real parts
DWORD i, j=0, k;
double tmp;
for(i=0;i<n-1;i++){
if(i <J){

tmp = rdata[i];

rdata[i] = rdatal[j];

rdata[j] = tmp;

if('r2r) {
tmp = idatali];
idata[i] = idatalj];
idata[j] = tmp;
}
k=n;
do {
k >>=1;
i"=k;

} while(1(j & K)):;
}
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}

// Combine Transforms
DWORD npoints, jstep;
double wr, wrt, wi, wmr, wmi, tempr, tempi;

wmr = -1.0; // w = 2pi
wmi = 0.0;

for(npoints = 1; npoints < n; npoints = jstep) {
jstep = npoints << 1;
wr = 1.0;
wi = 0.0;
for(i = 0; i < npoints; i++) {
for(j=1i;j<n;j+=jstep) {
k =] + npoints;
I wG2(x)
tempr = wr * rdata[k] - wi * idata[k];
tempi = wr * idata[k] + wi * rdatalk];
I F(x + n/2) = G1(x) - wG2(X)
rdata[k] = rdatalj] - tempr;
idata[k] = idata[j] - tempi;
I F(x) = G1(x) + wG2(X)
rdata[j] += tempr;
idatal[j] += tempi;
}
wr = (wrt = wr) * wmr - wi * wmi;
wi = wrt * wmi + wi * wmr;

wmi = -dir * sqrt((1.0 - wmr) / 2.0);
wmr = sgrt((1.0 + wmr) / 2.0);

/I If real to real transform, calculate magnitude
/I If forward transform, scale by 1/n
if(r2r || c2r || dir == 1) {
for(=0;i<n;i++){
if(r2r || c2r)
rdata[i] = sqrt(rdata[i] * rdatali] + idata
if(dir == 1) {
rdata[i] /= n;
idata[i] /= n;
}
}
}

/I Finished with imaginary parts
if(r2r) delete idata;
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C.2 Autocorrelation Function (ACF)

double ACF(double *in, double *out, DWORD N) {
[* Fast ACF algorithm using Fourier Transform */

/l'in - Input samples
/[ out - Output data
/I'N - Width of padded window

/I Copy data to output array
memcpy(out, in, N * sizeof(double));
/I Create empty imaginary array
double *idata = new double[N];
memset(idata, 0, N * sizeof(double));

/I Do forward Fourier Transform
FFT(1, N, out, idata);

/I Multiply by complex conjugates
for(DWORD i =0; i < N; i++) {
out[i] = out[i] * out[i] + idata]i] * idata][i];
idata[i] = 0.0;
}

/I Do inverse Fourier Transform
FFT(-1, N, out, idata);

delete idata;

return out[O];

C.3 Normalized Square Difference FunctionNSDF)

double NSDF(double *in, double *out, DWORD N, DWORD n) {
/* Normalized Square Difference Function */

/l Find ACF
double ss = ACF(in, out, N) * 2; // SSF[0]

/I Subtract appropriate normalized terms to get sub sequent terms of SSF
for(ODWORD i = 0; i < n; i++) {

out[i] = 2.0 * out][i] / ss;

ss -=in[i] *in[i] / N;

ss-=in[N-i-1]*in[N-i-1]/N;
}

return out[O];
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C.4 Adapted Peak-Picking Algorithm

UINT PickPeaks(double *nsdf, UINT *Peaks, DWORD n)
/* Algorithm adapted from MPM (Phil McCleod) */

/I nsdf - Normalized Square Difference Function a
/I n - Number of terms in NSDF

/I Peaks - Array of maxima as output

I/l k - Peak picking threshold constant

/I Output - Number of maxima found

memset(Peaks, 0, MAX_PEAKS * sizeof(UINT));
UINT i, np, pmax;

Il Find first negative zero crossing
for(i = 0; i < n - 1 && nsdffi] >= 0.0; i++);

/I Start looking for peaks

for(np = 0; np < MAX_PEAKS && i<n-1; np++){
/I Find next positive zero crossing
for(; i< n -1 && nsdffi] <= 0.0; i++);
if(i ==n - 1) return np;

/I Crossed over zero line - Look for a peak
pmax = i;
for(; nsdffi] > 0.0; i++) {
for(;i<n-1 && nsdffi] > 0.0 &&
(nsdffi] <= nsdffi - 1] || nsdf[i] < nsdffi
if(i ==n - 1) return np;
if(nsdffi] <= 0.0) break;

// Found a local peak
if(nsdffi] > nsdf[pmax])
pmax = i; // local is greater than current

}

/I Crossed back over zero line - record peak's
/I TODO - Parabolic interpolation - more accura
Peaks[np] = pmax;

}

return np;

}
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Appendix D — Musical Scores

D.1 Two-Part Harmonies

D.1.1 Middle C pedal note with C Major scale aboveone octave, ascending

D.1.2 G pedal note and C Major scale below, one octave,@nding

)

FE= =

[Y)

D.1.3 G pedal note and G Harmonic Minor scale above, onectave, ascending

) -

&%
===

e — C
Ko ¥ K 4
v v

e —
: R
v v
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)’,~/

3\0

N

o
9|
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D.2 Three-Part Harmonies

D.2.1 Close Position Triads

F Major:

QQ;*_D

D Minor:

TN

'\

QQ;*_D

D.2.2 Wide Position Triads

C Mgor:
0
% ()
@ ~ [ =
[y f [’
| a] A et - e
L B >—fF
>, =
A Minor:
) b g o
o= e
Dj P i
]9 . = o =
) & ft -
.4
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D.3 Four-Part Harmonies

D.3.1 Perfect Cadence

C Mgor:
1! Py (@]
[ Fan WD =4 Py
ANSY Al oS
e O o
) O
e):
4 O
D.3.2 Two Chord Progressions
G Mgjor:
() 4
o 3
L 4 b b
Y, O © O O e
. O le)
-©- QB
()
j IH
[ an Py Pl Py
V oS oS O ~
) =~ e F O
. O — — ()
. H < \ - 4
hdll X4 Py
7 ~ (@) LS4
A Minor:
H = Q ©- fo ©
O ~ (@] T e~
> O S <)
ﬁ (@) ~ ~ O
[Y)
% Py O
4 O O
-©O
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Appendix E — Wave Processor 3.0

Although it has a large number of completed fea\Wave Processor is still very much a
work in progress*. It was written in Microsoft \ial C++ (Platform SDK) under Microsoft
Visual Studio 2008 and has the working tMezart — named after one of the most notorious
music transcribers.

E.1 Installation

E.1.1 System Requirements

The following requirements are the minimum recomdeehfor the computer system on
which you want to instalave Processor:

Microsoft Windows XP. Does not
Operating System yet work in Vista. An upgrade is
planned for Windows 7.

Suitably fast, preferably Intel Core2
Duo or better.

At least 2GB, preferably more for
finer analysis methods.

1GB — 10GB swap space, depending
on the duration of music needing tQ
be analysed and the depth of the
analysis. 2MB for program files an
additional space for storage of wav
files, which are approx. 5MB per
minute in size using the default waye
creation settings.

Processor

RAM

j®N

Hard disk free space

¢

Table E.1 — System requirements for running/NVave Processor

E.1.2 Setup
Wave Processor may be installed from the project CD as follows:

* Insert the project CD and locate the installatioidér:
Sof t war e\ Wave Processor\lnstall\
e Launchset up. exe
* Click Next to accept the copyright agreement
* Choose a destination folder for the program and fils by clickingBrowse... or
click Next to accept the default location
» Click Next to start the installation and wait while the safte installs
* Click Closeto exit the setup program

* The latest version of the software may be dowaézhfromhttp://mars.cs.ukzn.ac.za/~johnmcg/
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E.1.3 Manual Installation

Should the above setup program fail for any reagéve Processor may also be
installed manually as follows:

Create a destination folder on your computer incation of your choice

Insert the project CD and locate the folder:
Sof t war e\ WAve Processor\ Execut abl e\

Copy all files (bzar t . exe and*. dat ) from this folder to your installation folder
If desired, create a shortcuthtbzart . exe

E.2 Functionality

The following features have been implemented ingjyaication:

Open and view the waveform of a Windows 16-bit P@&Ve file. Note that opening
and manipulating stereo tracks is not completesanid is disabled in this version
Play back the opened wave (recording is disabledignversion)

Create an audio signal with up to eight frequenatedifferent amplitudes (sinusoidal
only)

Perform a variety of mathematical transforms oraaev(sed able E.2)

Perform a variety of pitch detection methods ona@ev(sed able E.3

View the histogram, spectrogram and pitch grapheviing a transform or pitch
extraction

Export a spectrogram image to a bitmap

Options and preferences settings (system optiasaradjustable in this version)

Transforms Options

Discrete Fourier

Choice of spectrogram or histogram view

Setting of upper frequency bound

Windowed (STFT) or ordinary transform

Phase Vocoder correction

Choice of seven window functions

Window width adjustment for STFT and Phase Vocoder

Discrete Wavelet Detection threshold adjustment

Choice between Haar, Daubechies 4 or Redundant Haar

Choice of dyadic or linear spectrogram

Continuous Wavelet

Choice between Morlet, Paul, Derivative of Gaus¢Maxican
Hat) or Shannon wavelets

Adjustment of wavelet parameters (wavenumber oemrd
Adjustment of lower and upper frequency boundsupot
spectrogram

Adjustment of number of scales to use in the ti@nsf
Choice of dyadic or linear spectrogram

Sensitivity option

Greyscale spectrogram option

Animated view of each wavelet

Table E.2 — Transform options inWave Processor
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Method Options

Melody / single pitch extraction (MPM) Adjustmerftwindow width, peek-
picking threshold and clarity threshold
Melody / single pitch extraction (Phase VocodeBee Fourier Transform options — Phas
Vocoder is assumed

Two / three part extraction (DWT / MPM) Same as MBpMions

Full / multiple pitch extraction (Phase Vocoder) eS®urier Transform options — Phase
Vocoder is assumed

Full / multiple pitch extraction (CWT) Adjustment of window width (for post-
processing) and pitch detection thresho
Option to enable or disable Difference
Tone Analysis

See Continuous Wavelet Transform
options for more settings

D

a

Table E.3 — Pitch detection options iWave Processor

E.3 Known Issues

Since this version dlVave Processor is still in Beta phase, there are a number ofeéssuhich
remain unresolved. These are listed below:

* Some features (but not those listed above) aréutipimplemented, but may not
have been greyed out on menus and dialog boxekndym behaviour may result
when attempting to use these features.

* The program remains untested on very long musaraptes. The most file sections it
is known to be able to handle for a large CWT is UBiknown behaviour may result
if the hard disk on which swap files are made rousof space, or if memory
availability is low on the system on which it iswning.

» They-axes of dyadic graphs are being mislabelled damtimcorrect calculation,
however the spectrograms themselves are drawntiégtborrect range and scale.

» The pitch meter is not yet complete, but in thestdee a marker will be implemented
which indicates in real-time the value of a pitcimg or whistled into a microphone,
using MPM to determine the value.

» Other visible features not functioning are the rdand wave navigation buttons
(fast-forward and rewind). It is intended that teractable control panel have
features such as volume controls and VU metersefienfor now it is just a blank
extendable panel (which is fun to play with if yane very bored!)

« If all tools are pulled off the docking toolbar,dathe pitch meter is re-docked,
unfortunately it resizes to fill the width of thealbar, and so the other tools will not fit
back on again. Simply restart the applicatiomi$ happens.

» Itis possible to open some options dialog boxaesetwSince only one handle is used
for each dialog box, the other copies spawned beamphaned and so cannot be
closed. Again, the application must be restarnbegkt rid of them.

* Due to the idiosyncrasies of the WindoweveOut interface, the application may
occasionally crash during wave playback, althodmh it a rare occurrence.

191



Refer ences and Sour ces

Where possible, for each of the references lisedoviy the location on the project CD of a
soft copy of the source has been provided. Forsoeices, due to the dynamic nature of the
World Wide Web, copies of some of the web pageby(ainthe time of writing) have been
stored, as well as providing references to themalgites.
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