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Thesis abstract 
 
High starch content is an important component of root quantity and quality for almost all 

uses of cassava (flour, chips, and industrial raw material).  However, there is scanty 

information on genetic variability for dry matter and starch contents and relatively little 

attention has been paid to genetic improvement of root dry matter content and starch 

content in Tanzania. The major objective of this research was to develop improved cassava 

varieties that are high yielding, with high dry matter and starch content for Tanzania and  

specifically to: i) identify farmers’ preferences and selection criteria for cassava storage root 

quality characteristics and other traits of agronomic relevance for research intervention 

through a participatory rural appraisal; ii) determine the genotypic variability for starch 

quantity and dry matter content evaluated for three harvesting times in four sites; iii) 

determine the inheritance of dry matter and starch content in cassava genotypes; and iv) 

develop and evaluate clones for high storage root yield, high dry matter content and starch.  

Attributes desired by farmers were yield, earliness, tolerance to pests and diseases. The 

complementing attributes associated with culinary qualities were sweetness, good 

cookability, high dry matter content or mealyness and marketability. The preliminary study 

conducted to evaluate the variability in root dry matter content (RDMC) and starch quantity 

and yield of ten cassava cultivars indicated that RDMC ranged from 29 to 40% with the 

mean of 34.3%. The RDMC at 7 months after planting (MAP) was higher than at 11 and 14 

MAP. Starch content (StC) ranged from 20.3% to 24.9% with the mean of 22.8%. The StC 

differed significantly between cultivars, harvesting time and sites. An increase in StC was 

observed between 0 and 7 MAP, followed by a decline between 7 and 11 MAP, and finally 

an increase again noted between 11 and 14 MAP. However, for most of the cultivars at 

Kibaha an increase in StC between 11 and 14 MAP could not surpass values recorded at 7 

MAP. At Kizimbani, cultivar Kalolo and Vumbi could not increase in StC after 11 MAP. At 

Chambezi and Hombolo, a dramatic gain in StC was observed for most of the cultivars 

between 11 and 14 MAP. Starch yield ranged from 0.54 to 4.09 t ha-1. Both StC and fresh 

storage root yield are important traits when selecting for commercial cultivars for starch 

production. Generation of the F1 population was done using a 10 x 10 half diallel design, 

followed by evaluation of genotypes using a 4 x 10 α-lattice. Results from the diallel analysis 

indicated that significant differences in fresh storage root yield (FSRY), fresh biomass 

(FBM), storage root number (SRN), RDMC, starch content (StC), and starch yield (StY), and 

cassava brown streak disease root necrosis (CBSRN) were observed between families and 
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progeny. The FSRY for the families ranged from 15.0 to 36.3 t ha-1; StC ranged from 23.0 to 

29.9%; RDMC ranged from 31.4 to 40.1%; and StY ranged from 3.3 to 8.3 t ha-1. The 

cassava mosaic disease (CMD) severity ranged from 1.7 to 2.7, while cassava brown streak 

disease (CBSD) severity for above ground symptoms ranged from 1.0 to 1.9. Additive 

genetic effects were predominant over non-additive genetic effects for RDMC, StC, and 

CBSRN, while for FSRY, FBM, SRN, and StY non-additive genetic effects predominated. 

Negative and non-significant correlation between RDMC and FSRY was observed at the 

seedling stage (r=-0.018), while at clonal stage the correlation was positive but not 

significant (0.01). The RDMC and StC were positive and significantly correlated (r=0.55***) 

at clonal stage. However, the StC negatively and non-significantly correlated with FSRY (r=-

0.01). High, positive and significant correlation (r=0.94; p≤0.001) was observed between the 

StY and FSRY at clonal stage. High, positive and significant correlations between the 

seedling and clonal stage in FSRM (r=0.50; p≤0.01), RDMC (r=0.67; p≤0.001), HI (r=0.69; 

p≤0.001), and SRN (r=0.52; p≤0.01) were observed, suggesting that indirect selection could 

start at seedling stage for FSRM, RDMC, HI, and SRN. The best overall genotype for StC 

was 6256 (40.9%) from family Kiroba x Namikonga followed by genotype 6731 (40.6%; 

Vumbi x Namikonga). Among the parents, Kiroba and Namikonga were identified as the best 

combiners in terms of GCA effects for StC. Genotype 6879 from family Vumbi x AR 42-3 

had the highest StY value of 34.8 t ha-1 followed by genotype 6086 (30.4 t ha-1; Kalolo x AR 

40-6). Among the parents, Kalolo and AR 42-3 were identified as good combiners for the 

trait. Mid-parent heterosis for StC ranged from 41.6 to 134.1%, while best parent heterosis 

ranged from 30.4 to 119.6%. Genotype KBH/08/6807 from family Vumbi x TMS 30001 had 

the highest mid-and best parent heterosis percentage for StC. For StY, mid-parent and best 

parent heterosis ranged from 168.0 to 1391.0%, and from 140.4 to 1079.0%, respectively, 

with the genotype 6879 (Vumbi x AR 42-3) exhibiting the highest mid- and best parent 

heterosis percentage for StY. Improvement for StC, RDMC, and CBSRN may be realized by 

selecting parents with the highest GCA effects for the traits and hybridize with those that 

combine well to maximize the positive SCA effects for the StC, RDMC and CBSRN. 

Selected genotypes from the clonal stage will be evaluated in preliminary yield trial and 

advanced further to multi-locational trials while implementing participatory approaches 

involving farmers and processors in selection. New promising lines should be tested at 

different sites and the best harvesting dates should be established. 
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Introduction to Thesis 
 
 

1. Importance of cassava  
 
Cassava (Manihot esculenta Crantz) is a tropical root crop consumed by over 600 million 

people in Africa, Asia and Latin America. It is the third most important source of calories in 

the tropics after rice and maize (Fauquet and Tohme, 2008). The crop is vital for both food 

security and income generation. In Asia and Latin America, cassava serves as livestock 

feed, an industrial raw material, and a source of food. In Africa, it serves as the second most 

important source of calories, an inexpensive food, and emerging cash crop (Fauquet and 

Tohme, 2008). It is known to have the highest carbohydrates contents among the staple 

crops (Coursey, 1973). In sub-Saharan Africa, cassava is mainly a subsistence crop grown 

by small-scale farmers and it feeds over 200 million people daily (Madeley, 1993). 

 

World production of fresh cassava roots was 172 million metric tons in 2000, an increase of 

almost 75% since 1970. In 2007, world production had reached 228 million metric tons, with 

Africa accounting for more than 53%, Asia for 30% and Latin America and the Caribbean for 

17% of the total (FAOSTAT, 2007). According to Scott et al. (2000), the production of 

cassava is expected to increase to 290 million metric tons by 2020. The annual per capita 

consumption of cassava in sub-Saharan Africa is estimated at 106 kg and is reported to 

have increased by 2.1% annually between 1983 and 1996 (Scott et al., 2000). However, in 

some sub-Saharan African countries, consumption exceeds 300 kg per person per annum 

(Fregene et al., 2003). The demand for cassava in developing countries is estimated to grow 

at 2% annually for food purposes and 1.6% for feed (Scott et al., 2000). This escalating 

demand calls for improved varieties that are high yielding to satisfy current food and feed 

requirements. 

 

Cassava plays a number of different but equally important roles in African development, 

including: a rural food staple, an urban food staple, an industrial raw material and as livestock 

feed. However, the bulk of cassava production is consumed as food (Nweke et al., 2002). 

Described as a ‘classic food security crop’ (DeVries and Toenniessen, 2001), cassava offers 

several advantages: it grows well under marginal conditions where few other crops could 

survive, it provides a decent harvest under erratic rainfall conditions and degraded soils, and 
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it provides a flexible harvesting date or extended harvesting period, allowing farmers to keep 

the roots stored in the ground until needed (El-Sharkawy, 1993; Cock, 1979). Therefore, 

there is a need to increase cassava production through improving the yield and adoption of 

the improved varieties, in order to satisfy the increasing population in developing countries, 

especially in sub-Saharan Africa. 

  
Table 1 Cassava production, area harvested and yield in the world, including selected major 
producer countries 
Country Area harvested (Ha)  Production (MT) Yield (kg ha-1) 
 
World   18,664,658  228,138,068  12,223 
Africa   11,904,448  117,887,743    9,903 
Angola                  575,000      5,400,000    9,391 
Brazil                1,687,272               23,108,076  13,695 
Colombia                  208,377                 2,214,990  10,629 
Congo, D.R.               1,839,962               14,929,410    8,114 
Ghana                        794,440                 9,731,040  12,248 
India                   270,000                 6,900,000  25,555 
Indonesia               1,290,000               16,723,257  13,963 
Nigeria                  3,455,000               34,476,000    9,978 
Tanzania                  660,000                 6,888,000  10,422 
Thailand               1,030,000    16,870,000  16,378 
 
Source, FAOSTAT 2007 

 

2. Cassava production in Tanzania 
 

Native to tropical America, cassava was introduced to Africa by the Portuguese in the 16th 

Century (Cock, 1985). The crop was first recorded in Zanzibar in 1799 (Jennings, 1970; 

Purseglove, 1968). The cultivation of cassava increased gradually until the mid 19th Century, 

when its ability to withstand a locust attack and to tolerate drought, low soil fertility and poor 

husbandry made it a valuable famine reserve crop. Tanzania is the sixth largest producer of 

cassava in Africa – after Nigeria, the Democratic Republic of Congo, Ghana, Angola and 

Mozambique – producing almost 7 million tons of fresh cassava roots annually (Table 1), 

with an average yield of 10 t ha-1, ranging from 1.5 to 35 t ha-1 (FAOSTAT, 2007;Temu et al., 

2002). The average yield has been stagnant around 10 t ha-1 for more than two decades 

due to many factors, including important abiotic and biotic stresses that occurred in the 

country. However, a doubling of production from 3.5 to 7.8 million tons per year was noted in 

the 1970s, with the yield increasing from 5 to 13 t ha-1. This increase was due to factors 
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such as the growth in the export market of dry cassava to Europe for the animal feed 

industry (FAOSTAT, 2005) and increased land area under cassava production (Figure. 1). 

 
Figure 1: Fresh root yield in tons per hectare in Tanzania from 1961 to 2006 (FAOSTAT, 2007) 

 

In Tanzania, the crop is produced in greatly varying environments. The main producing 

areas are the coastal belt on the Indian Ocean (humid and sub-humid lowland agro-

ecology), the southern zone, the Lake Victoria basin (mid altitude tropical agro-ecologies) 

and on the shores of lakes Nyasa and Tanganyika (mid to high altitude tropical agro-

ecologies). The production of cassava in the southern zone accounts for 32% of the total 

cassava production in the country, the eastern coastal zone accounts for 18%, the Lake 

Victoria zone accounts for 13% and the southern highlands for 9%. The central and 

western zones account for the rest (Herzeberg et al., 2004). Usually, cassava is 

intercropped with legumes and cereals such as maize and sorghum. The estimated 

productivity of cassava crops suggests that there is room for improvement since a yield 

ranging from 1.5 to 35 t ha-1 has been reported in different parts and ecologies of the 

country. 
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In Tanzania, cassava is a primary or secondary staple food in most households in the four 

main agro-ecological zones (FAOSTAT, 2005) and is consumed in different ways according 

to local customs and resources (Table 2). Cassava can be blended with cereals such as 

maize, sorghum and millet to improve the texture of the stiff porridge ‘Ugali’. Reports 

Figure 2 Main crop zones of Tanzania (source FAOSTAT, 1997) 
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indicate that in the 1970s, cassava contributed 12% of the average daily dietary intake per 

person in Tanzania (Nweke et al., 1998), while in the 1980s, the contribution increased to 

24% (Cock, 1985). However, Westby (2002) indicated that in the 1990s the contribution of 

cassava was 21.6% of the total energy intake of the principal consuming regions. It is 

estimated that the annual growth of cassava consumption for the period between 1980 and 

2000 was 3.4%, which is similar to the estimate for maize (NALRP, 1991). The increased 

demand for cassava in Tanzania provides justification for the development of improved 

cassava varieties. 

 

Table 2 Production of starchy staple food in Tanzania in metric tons 
Crop  2003 2004 

Maize 2,430,000 2,400,000 

Cassava (dry weight) 2,067,000 2,067,000 

Sorghum 630,000 630,000 

Paddy rice 640,159 647,000 

Millet 270,000 270,000 

Wheat 71,000 71,000 

Other root crops (sweet potato, yam, potato) 1,200,000 1,200,000 

Source: FAOSTAT 2005. 

 

3. Cassava production constraints 
 

The major factors limiting cassava production and productivity include the use of genotypes 

with low root yielding potential, pests and diseases, poor crop management practices, 

declining soil fertility, inadequate use of inputs, erratic weather conditions, limited access to 

quality planting material, low adoption rate of improved varieties, poor farm implements and 

lack of incentives for increased production. However, compared to other crops, cassava 

excels under sub-optimal conditions, offering the possibility of using marginal land to 

increase total agricultural production (Cock, 1985). 

 

Different fungal, bacterial, viral and mycoplasma diseases infecting cassava have been 

reported (IITA, 1990). Of these diseases, cassava mosaic disease (CMD), cassava bacterial 

blight (CBB), cassava brown steak disease (CBSD) and cassava anthracnose (CAD) are of 

major economic importance. Important pests are cassava green mites (CGM), cassava 
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mealybug, and whiteflies. Other pests include; termites, root scales and elegant grasshopper. 

Whitefly incidence is harmful to cassava only as a vector to CMD and CBSD (Hillocks et al., 

2001; Hahn et al., 1979). Cassava mealybugs damage cassava by sucking the sap and 

hence shoot stunting. Green shoots die due to severe incidence, though die back may or may 

not occur. Drought stress favours pest incidence and build up (Leuschner, 1976). Green 

mites feed on young leaves and tender shoots. Usually a ‘candle stick’ appearance is 

observed in severe attacks. Economic loss results from the damage to fresh leaves and 

quality and quantity of tuber production. Cassava productivity could be sustained by using 

resistant varieties, pests-free and disease-free planting materials, and appropriate crop 

management practices.  

 

4. Cassava processing and utilization  
 

Two clusters of cassava, bitter and sweet are of economic importance, as they signify the 

absence or presence of toxic levels of cyanogenic potential (CNP) (O’Hair, 1990). However, 

sweetness is not absolutely correlated with low CNP producing ability (Bokanga, 1994). 

Cases of cyanide exposure and acute intoxication have been reported in Tanzania, 

Mozambique and elsewhere, but such cases are rare. Cyanide exposure is due to the 

consumption of insufficiently processed cassava, and occurs mostly during food shortage 

periods (Mlingi, 1995).  

 

The highly perishable nature of harvested cassava roots and the presence of cyanogenic 

potential require immediate processing of the storage roots into more stable and safer 

products (Hillocks, 2002; Westby, 2002). Cassava processing methods involve different 

combinations of drying, grating, soaking, boiling and fermentation of whole or fragmented 

roots. The processed products include a wide variety of granules, paste, flours, or starch. 

Nweke et al. (1998) showed that flour and chips were the most common intermediate 

products in 90% of the villages in Tanzania. However, cassava roots that are sweet and low 

in CNP are normally used in fresh form as boiled, roasted, or eaten raw. High levels of CNP 

observed in some cassava genotypes can be reduced effectively to safe levels by using 

improved processing technologies for grating, dewatering, and drying. A safe level of 

cyanogens in cassava flour has been set by the World Health Organization (WHO) as 

10 ppm or 100 mg/kg HCNeq (FAO/WHO, 1991).    
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There is considerable variation in the cassava utilization patterns in different parts of the 

world. In Africa, the majority of cassava produced is used as human food (88%), with over 

50% used as processed products (Nweke et al., 1998). Starch and animal feed are minor 

uses of the crop in Africa (Westby, 2002). However, attempts were made in several African 

countries to promote cassava utilization as a commercial feedstuff, with limited success as 

low international prices for feed grains and overvalued domestic currencies made cassava 

chips and pellets uncompetitive relative to imported feedstuffs (FAO, 2000). For example, in 

Tanzania, cassava was utilized in the making of poultry and pig feeds by the Tanzania 

Feeds Company in the mid 1980s, a practise that was later discontinued as cassava prices 

were high compared with grains. In contrast, the by-products of cassava processing in 

Nigeria are gaining popularity among commercial livestock producers (FAO, 2000).  

 

Several large-scale cassava starch factories were installed in the 1970s and 1980s in 

eastern and southern African countries (in Lira, Uganda; Mwanza, Tanzania; Kitwe, Zambia 

and in Mombasa, Kenya). However, most of the factories did not operate for long due to a 

variety of reasons, such as destruction by war and lack of local markets (textile mills and 

paper industries), shortage of raw materials and low world market prices (SARRNET, 2002; 

Henry et al., 1998). The Tanzania starch manufacturing company located in Mwanza had 

the capacity to process 40 t of fresh cassava or 15 t of dry cassava per day (MALD, 1987). A 

lack of raw material of appropriate varieties was the major bottleneck, which led to the 

closure of the factory in mid 1980s. Currently, Mohamed Enterprise Company Limited is 

exploring the possibility of setting up a large-scale starch factory near Tanga town (north-

east coast). Several small-scale extraction plants have been established around the coast of 

Tanzania. It is expected that the demand for varieties with high dry matter content and 

starch will increase due to the establishment of several processing sites already operating in 

Tanzania.  

 

Cassava starch is used for the production of starch derivatives, food products; for sizing 

paper and textiles; and in the manufacture of adhesives (Rickard et al., 1991). Other 

potential uses include a raw material for ethanol, a binding agent in the timber industry, and 

in the production of sodium monoglutamate (MSG) (Balagopalan, 2002). Cassava leaves 

are rich in minerals, protein and vitamins and are consumed in countries such as Tanzania, 

the Democratic Republic of Congo and Mozambique (Westby, 2002). Expansion of the 

utilization base of cassava as food and feed, and for new industrial uses, requires the urgent 
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development of cassava varieties with high root quality, in terms of high dry matter content 

and starch, as well as high root yields for specific market end-users. 

 

5. Cassava variety selection by farmers 
 

Nearly all cassava in Tanzania is presently grown by small-scale farmers for use as food 

and a cash crop. Storage root requirements for the fresh market include taste, the size of the 

root and low levels of cyanogenic potential in roots (Kawano et al., 1998). For the 

processing market, cultivars with higher root yield and high starch and dry matter content 

are required (Kawano et al., 1998). The Collaborative Study of Cassava in Africa (COSCA) 

conducted in several countries provided much valuable information on the characteristics of 

improved varieties most sought after by farmers. Prominent among the characteristics are 

high yield, early bulking and high dry matter content (Nweke et al., 1998). Similarly, Temu et 

al. (2002) in a study of cassava markets in Tanzania revealed three key attributes that lead 

to variety acceptance by consumers: high dry matter content, low fibre content and 

sweetness. Farmers normally select for the desired characteristics over a period of time and 

cultivars with undesirable characteristics are abandoned. The most frequent reason given by 

farmers for discarding varieties was late bulking (Hillocks, 2002).  

 

Root dry matter content is believed to be positively correlated with the eating quality 

especially when the root is consumed after boiling (Kawano et al., 1987). Safo-Kantanka 

and Owusu-Nipah (1992) studied the cooking qualities of cassava and reported that mealier 

varieties had a higher content of dry matter and starch. Kapinga et al. (1997) tested cassava 

varieties on-farm in the Lake Victoria area of Tanzania and reported that improved varieties 

with relatively low dry matter content were hardly adopted by farmers. Similarly, in the Lake 

Victoria area, a high yielding improved cassava variety was rejected simply because when 

processed into flour and cooked into stiff porridge (Ugali) it became watery (or weeping). 

Therefore, there is a need to include root quality aspects such as starch characteristics in 

the breeding programme to enhance the adoption of improved varieties.    

 
Cassava storage roots essentially contain large carbohydrate reserves, mainly of starch; 

therefore, cultivars with high dry matter content are important (Tan and Mak, 1995). In 

addition, high root dry matter content is important because it ensures a high recovery rate of 

dried roots (Byrne, 1984). Graham et al. (1999) commented that for the vast majority of 
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uses, cultivars of high dry matter content are mostly preferred. Participatory plant breeding is 

important to capture and include desired characteristics by farmers in the breeding 

programme. 

 

In Tanzania, human food will continue to be the main cassava market. However, animal feed 

and starch are the principal growth markets in the medium term future. Starch content is the 

key to nearly every use of cassava. Improved root quality will have the highest overall 

positive impact on processing and utilization innovations. Breeding offers the possibility of 

adding value to the products that growers move to the marketplace and therefore, improving 

starch content by breeding is feasible. The development of high starch varieties that are 

tolerant to major diseases is of prime importance for cassava development in Tanzania.    

 

6. Research focus 
 

The potential role of cassava in alleviating hunger and generating income through its 

utilization in the food and industrial sectors (animal feed, food, power alcohol, fermented 

products and non-starch uses) provides the justification for improving traits such as root 

yield, dry matter and starch content. In the past, efforts were devoted to improving cassava 

as a staple food, with an emphasis on generating, adapting and disseminating genotypes 

with high fresh root yield, resistance to pests and diseases, low CNP and early bulking. 

These efforts led to the release of varieties for the humid and sub-humid lowlands and for 

semi-arid areas in Tanzania. However, many of the improved varieties and those clones in 

the advanced stages of evaluation have been rejected mainly due to a lack of important 

attributes such as high dry matter content and starch quantity and quality (Kapinga et al., 

1997). For cassava to become competitive in the industrial sector, it is imperative to develop 

varieties that are high yielding, high in dry matter and starch content. However, the genetic 

variability of cassava for dry matter and starch content has not been fully determined. In 

other words, there is scanty information on genetic variability for dry matter and starch 

content. Researchers have given various reasons for the lack of information. Iglesias et al. 

(1994) and Kawano et al. (1987) suggested that intensive selection for disease resistance 

and root yield potential in the early stages of the breeding scheme restricted and reduced 

the availability of genetic variation for dry matter content. In other words, relatively little 

attention has been paid to the genetic improvement of root dry matter content for an 
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increased yield. Thus, there is a need to screen the available germplasm to determine its 

variability for root yield potential, dry matter content and starch content. 

 

7. Research objectives 
 
The major objective of this research was to develop improved cassava varieties that are 

high yielding, with high dry matter and starch content; which can be adopted by farmers and 

different market end-users in Tanzania.  

 

The specific objectives of the research were as follows: 

1. Review relevant literature on dry matter content, starch content, yield and yield 

components; 

2. identify farmers’ perceptions and preferences for cassava storage root yield, dry 

matter, root quality characteristics and other traits of agronomic relevance;   

3. evaluate and determine variability in root dry matter content, starch, and yield of 

cassava cultivars in Tanzania 

4. develop and evaluate clones for high storage root yield, high dry matter content and 

starch;  

5. determine the inheritance and genotypic variability of dry matter and starch contents 

in cassava genotypes; and 

6. provide a review and conclude the completed research 

 

The content and references of the chapters in this thesis may overlap. 
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Chapter 1 

Literature Review 
 
 

1.1 Introduction  
 

A number of studies have been undertaken in the last decade on cassava storage root 

quality and related agronomic traits relevant to breeders. The objective of this chapter is to 

critically review current knowledge of cassava breeding for root quality traits (dry matter 

content and starch) and physiological processes related to its breeding. The review focuses 

on the cassava plant and its flowering habits, cassava genetic improvement, hybridization in 

cassava and its techniques, breeding procedures commonly used in cassava, breeding for 

high dry matter content and starch and the physiological aspects of dry matter accumulation, 

estimation of dry matter content and starch, starch properties and its challenges. Finally, it 

highlights correlation between traits in cassava. This chapter forms a framework for 

reference in this study. 

 

1.2 The cassava plant 
 

1.2.1 Classification of cassava 
 

Cassava is a member of the genus Manihot, family Euphorbiaceae. The genus has two 

sections, the Arborae, containing tree species, and the Fructicosae, containing low-growing 

shrubs adapted to savannah grassland or desert conditions (Jennings and Iglesias, 2002; 

Otim-Nape et al., 2001). According to Rogers and Appan (1973), as many as 98 Manihot 

species, all confined to the tropical Americas, have been distinguished. Cultivated cassava 

belongs to the Fructicosae and is regarded as a cultigen unknown in the wild (Rogers and 

Appan, 1973). All species of Manihot have 2n=36 chromosomes, and can be regarded as 

polyploids (n=18), although the species studied have regular bivalent pairing and behave as 

diploids (Jennings, 1976).  The regular diploid behaviour during meiosis is one of the 

assumptions for the diallel mating design, hence it is justified to determine the inheritance of 

cassava root yield, dry matter and starch content using the diallel analysis in this study.  
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1.2.2 Flowering habit in cassava 
 

Cassava is monoecious, producing both male (pistillate) and female (staminate) flowers on 

the same plant (Jennings and Hershey, 1985). The female flowers are normally located on 

the lower part of the inflorescence and are fewer in number than the male flowers, which are 

numerous on the upper part of the inflorescence (Alves, 2002; Kawano, 1980). On the same 

inflorescence, the female flowers open one to two weeks before the male flowers 

(protogyny). Male and female flowers on different branches of the same plant can open at 

the same time. Usually, cassava is cross–pollinated, thus it is a highly heterozygous plant 

(Alves, 2002; Jennings and Iglesias, 2002). Sporadic, self-pollination has been reported 

(Jennings and Iglesias, 2002; Nassar, 2002) but the proportions of self and cross–pollinated 

seed produced depends on the genotype, plant design and the type of pollinating insect 

present. Some inbreeding exists in cassava (Nassar, 2002), resulting in high inbreeding 

depression (Kawano, 2003; Kawano, 1980; CIAT, 1974). Due to its predominantly cross 

pollinating nature, there is need to control pollination so that only the desired pollinations 

occur during breeding. 

 

Information about flowering in cassava is scarce (Davies et al., 2005), and some genotypes 

have never been known to flower (Jennings and Iglesias, 2002). However, flowering is 

controlled by the complex interaction of a range of genetic and environmental factors (Alves, 

2002). A wide variety of flowering types in cassava has been reported (Byrne, 1984), 

ranging from those with frequent flowering to types that do not flower even after 24 or more 

months of growth. Flowering may begin very early from six weeks after planting, depending 

on the cultivar and the environment (Jennings and Iglesias, 2002). Forking or reproductive 

branching is related to the onset of flowering, depending on the genotype and agro-

ecological conditions. Optimum flowering occurs at moderate temperatures of approximately 

24°C (Alves, 2002). According to Kawano (1980), cas sava cannot flower during a long dry 

season; therefore irrigation of the pollination field during the dry season is important. 

Knowledge of the optimum flowering period is important so that nurseries can be planted 

such that crosses will be formed during the period with the best temperatures.  

 

The control of flowering and flowering itself are major challenges in cassava breeding. A 

valuable genotype may not be used in breeding due to its shyness and non-synchronized 

flowering (Davies et al., 2005). This is a dilemma for breeders, who must produce shy 
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flowering types for high yield but require profuse early flowering types for making crosses 

(Davies et al., 2005; Kawano et al., 1978). Matching the flowering dates of genotypes to be 

hybridized may present a problem. However, flowering on a single plant usually lasts for 

more than 2 months (Jennings and Iglesias, 2002). Since male flowers are usually more 

numerous than female flowers, the number of female flowers available for pollination is a 

limiting factor for the mass production of hybrid seeds (Alves, 2002; Kawano, 1980). In 

practice, genotypes to be used as female parents should be planted in larger numbers and 

staggered in planting dates (Kawano, 1980). Genotypes differ significantly in their ability as 

female parents in terms of number of seeds set per female flower. The selection of highly 

fertile genotypes as female parents is a critical factor.  

 

1.2.3 Fruits and seed germination 

 
Cassava fruit generally matures between 75 to 90 days after pollination (Alves, 2002). 

Rajendran et al. (2005) recorded seed output ranging from 306 to 332 seeds plant-1 in one 

of the improved cassava varieties in India. Seed weight ranging from 95 to135 mg seed-1 

has been reported elsewhere (Rajendran et al., 2005; Alves, 2002).  Cassava seeds usually 

germinate soon after collection, taking about 16 days on average (Ghosh et al., 1988). 

However, a lack of quick and uniform seed germination in cassava has been reported 

(Nassar and O’Hair, 1985), thus presenting a challenge to breeders.  

 

The physiological dormancy of both wild and domesticated cassava seed has been reported 

(Pujol et al., 2002; Nassar and O’Hair, 1985). Ellis et al. (1981) reported that cassava seeds 

(Manihot esculenta Crantz) are recalcitrant due to the fact that after six months of storage at 

laboratory temperature and between 5.9% and 1.9% moisture content germination was 

reduced from 80% to 28%. Rajendran et al. (2005), on the other hand, observed that sexual 

seeds can be stored under ambient conditions up to 6 months without any appreciable loss 

of viability, and a gradual loss of viability observed during 6-8 months and after 8 months of 

storage, which is a sharp decline in germination percentage. However, Kawano (1980) 

commented that cassava seeds can be stored for about a year under ambient conditions 

without any serious decline in viability, and much longer at lower temperature and relative 

humidity. The selection of cassava clones with early germinating seed would permit the use 

of plant breeding techniques such as mass selection to gradually modify cassava population 

characteristics. 
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1.3 Cassava pests and diseases 
 
Although robust in nature, cassava suffers from a number of stresses that must be 

addressed before it can show its true potential, both as a subsistence crop and an 

industrial crop. Biotic stresses primarily comprise a range of pests and diseases. African 

farmers recognize pests and diseases as important production constraints (Ndunguru et 

al., 2005). Arthropod pests including the cassava green mite (Mononychellus tanajoa 

Bonder), cassava mealybug (Phenaccocus manihoti Matile-Ferrero), and whitefly (Bemisia 

tabaci Gennadius) and (Bemisia afer Priesner and Hosny) which pose serious damage to 

the crop, affect the final yield (IITA, 2000).  The M. tanajoa and P. manihoti mainly cause 

direct physical damage whilst B. tabaci is primarily important as a virus vector. Cassava 

mealybug and cassava green mite are both under effective classical biological control. 

  

One of the major diseases of economic importance is cassava bacterial blight (CBB) 

(Xanthomonas axonopodis f.sp. manihoti) which is the most important non-virus disease 

(Lozano, 1975). Cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses 

(CMGs) (Geminiviridae; Begomovirus) and cassava brown streak disease (CBSD) caused 

by cassava brown streak virus (CBSV) (Potyviridae; Ipomovirus) (Hillocks and Jennings, 

2003; Nichols, 1950). Yield losses on susceptible varieties due to CMD have been reported 

to range from 20 to 95% (Hahn et al., 1979). Unlike CMD, symptoms of CBSD may be found 

on the roots as brown/yellow, corky necrosis in the starch-bearing tissue, making the 

severely affected roots unfit for consumption (Hillocks et al., 2001). Cassava brown streak 

disease can decrease the root weight of the susceptible cultivars by up to 70% (Hillocks et 

al., 2001). Mtunda et al. (2003) recorded yield losses due to CBSD of up to 64% in Muheza 

district, Tanzania. These diseases are the biggest threats to the crop’s health and 

productivity. 

 

Recent studies (Ndunguru et al., 2005) have uncovered the presence of six distinct 

cassava mosaic geminiviruses (CMG) species found to infect cassava in Africa: African 

cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African 

cassava mosaic Cameroon virus (EACMCV), East African cassava mosaic Malawi virus 

(EACMMV), East African cassava mosaic Zanzibar virus (EACMZV) and South African 

cassava mosaic virus (SACMV). The report indicate that much variation exists in the 

CMGs including the evidence that certain CMGs when present in mixtures, employ 
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pseudo-recombination or re-assortment strategies and recombination at certain hot spots 

such as the origin of replication resulting in the emergence of new viruses with altered 

virulence (Ndunguru et al., 2005). For example, the severe CMD designated East African 

cassava mosaic virus-Ugandan variant (EACMV-Ug) currently devastating cassava in east 

and central Africa is a recombination between ACMV and EACMV. Additionally, small 

satellite DNA molecules (satDNA II and III), which seem to spread with CGMs and have 

shown to increase disease severity and break resistance in some of the most CMD-

resistant varieties, have been discovered (Ndunguru et al., 2005). These emerging CMGs 

and satellite DNA molecules pose the greatest threat to cassava production and 

productivity in Tanzania.  

 

The extent of the yield reduction caused by these pests and diseases depends on the 

variety, soil and climatic conditions, cultural practices and the severity of the pest and 

disease incidences (Hahn et al., 1979). However, effective control measures include using 

resistant varieties, pest- and disease-free planting materials, and appropriate crop 

management systems. Cassava breeders have devoted great efforts to breeding and 

developing new varieties with moderate levels of resistance to many pests and diseases. 

However, the consequences of cassava virus infections are not limited to a reduction in 

crop yield; they include undermining the ongoing efforts in genetic improvement for yield, 

and quality aspects such as starch and dry matter content. 

 

1.4 Genetic improvement in cassava 
 
In cassava, genetic improvement begins with the assembly and evaluation of broad based 

germplasm (Ceballos et al., 2004; Poehlman and Sleper, 1995; Hahn et al. 1979). The 

source populations with high frequencies of genes associated with desirable characters are 

acquired, followed by the production of new recombinant genotypes derived from selected 

elite clones (Ceballos et al., 2004; Hahn et al., 1979). Selected genotypes from the initial 

germplasm evaluation normally enter the hybridization scheme, followed by selection of 

superior clones in the segregating population (Kawano, 2003; Poehlman, 1987).  
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1.4.1 Hybridization and selection in cassava 

 

Hybridization in crops is important for evolving new varieties and is achieved by the transfer 

of genes across different plants, through the exploitation of heterosis and recombination of 

the desirable traits from different plants (Simmonds and Smartt, 1999; Wricke and Weber, 

1986). The recombination of genes occurs only as a result of sexual reproduction 

(Poehlman, 1987). Since the cassava parent genotypes are highly heterozygous, the 

selection of suitable parents for hybridization is one of the most important steps in a 

hybridization programme. Parents are generally selected on the basis of their known 

performance as varieties and as parents in hybridization programmes. However, selection 

based on phenotypic performance alone is not a sound procedure (Hallauer and Miranda, 

1988), since phenotypically superior lines may yield poor recombinants in the segregating 

population. Hence, it is necessary that the parents are chosen on the basis of genetic value 

(Singh, 2003).   

 

The performance of a genotype in hybridization programmes depends on its effectiveness in 

transmitting heredity characteristics to its offsprings and combining ability (Falconer and 

Mackay, 1996). If general combing ability (GCA) is more important, a small number of 

parents with good GCA should be used in hybridization programmes. On the other hand, 

when specific combining ability (SCA) is important, a large number of parents should be 

used to produce a large number of the F1 families (Singh, 2003; Poehlman, 1987). 

Knowledge of the clones to be used as parents is very important to enhance effective 

hybridization. 

 

Improvement through hybridization comprises 1) selection of parents; 2) production of F1 

progeny; and 3) selection of superior clones (Singh, 2003). Crossing in cassava is relatively 

easy (Kawano, 1980; Kawano et al., 1978). Clonally propagated crops are generally 

improved by crossing two or more desirable clones, followed by selection in the F1 progeny. 

Crossing can occur by controlled pollination, carried out manually to produce full-sib 

families, or in polycross nurseries where open pollination results, in half-sib families 

(Ceballos et al., 2004). The breeding procedure, then, is essentially the clonal selection 

(Poehlman, 1987). 

 
 



20 
 

1.4.2 Breeding procedures 
 
The major objective of breeding is to improve the characteristic of plants so that they 

become more desirable agronomically and economically (Singh, 2003; Chahal and Gosal, 

2002). However, improvement in some specific traits of certain crops may become a priority 

objective for various agronomic and economic reasons. The common breeding methods in 

cassava include: clonal selection, recurrent selection and backcross breeding. Backcross 

breeding has been used to incorporate genes for disease resistance (Ceballos et al., 2004; 

Hahn et al., 1979). 

 

1.4.3 Clonal selection  
 

A clone is a group of genetically identical vegetatively propagated from a single plant 

(Simmonds and Smartt, 1999; Poehlman and Sleper, 1995). Clones are obtained by sexual 

reproduction, which is necessary to create genetic variability through gene recombination. 

By crossing clones with superior characters, a source population is created that may be 

utilized for the selection of new clones (Poehlman and Sleper, 1995). Seeds obtained from 

the cross are grown into seedlings. Seedlings are exposed to major diseases and pests 

such as CMD, CBSD, and bacterial blight (CBB). Susceptible seedlings are eliminated 

(Hahn et al., 1979).  

 

From a mixed variable population, a few hundred to a few thousand desirable plants are 

selected. Clones from the selected plants are grown separately, without replications 

(Ceballos et al., 2004; Hahn et al., 1979). The selection is based on visual observations and 

on breeders’ judgement of the value of the clone (Singh, 2003). The replicated preliminary 

yield trial should be conducted with a suitable standard check. A few superior performing 

clones with desirable characteristics are selected for the next yield trials. Replicated trials 

are conducted in several locations along with a suitable standard check. The yielding ability, 

quality (dry matter) and disease resistance are evaluated. The best clones are then 

multiplied and released as a new variety (Poehlman, 1987; Hahn et al., 1979).  

 

Alternatively, superior clones may be isolated and propagated as a variety from a genetically 

mixed population of an asexually propagated species. The progress is limited to the isolation 

of the best genotype present (Poehlman, 1987). The phenotypic value of a clone is due to 
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the effects of its genotype, the environment and the genotype x environment interactions 

(Dhabolkar, 1992). In the early stages of clonal selection, single plants or single plots are 

considered. The emphasis is to eliminate weak and undesirable plants (Hahn et al., 1979). 

In later stages, i.e. in replicated yield trials yield and yield components are the basis of 

selection, and the emphasis is to identify and select superior clones (Jennings and Hershey, 

1985; Byrne, 1984). At the clonal stage, starch content has seldom been considered as a 

trait for selection, hence the loss of genetic variability for starch content. 

 

1.4.4 Recurrent selection 
 

Recurrent selection involves: 1) selecting a number of plants with desirable phenotype, 2) 

growing, evaluating and selecting the seedling-derived clones grown from seeds produced 

in the first step, and 3) intercrossing the progenies in all possible combinations (Singh, 2003; 

Poehlman and Sleper, 1995). At IITA, a recurrent selection system has been used to 

improve populations for CMD resistance and other agronomic characters, while maintaining 

a large genetic variation (Hahn et al., 1980). Resistance alone was improved in one cycle, 

taking 1-2 years; however, it took 4-5 years to combine resistance with high yield potential. 

Introgression of exotic sources from other continents, especially Latin America, into IITA 

breeding populations was done after achieving adequate resistance to CMD (Hahn et al., 

1980).   

 

1.4.5 Backcross breeding 
 

In the backcross method of breeding, the hybrid and the progenies in subsequent 

generations are repeatedly backcrossed to one of the parents (Poehlman, 1987). As a 

result, the progeny becomes increasingly similar to the recurrent parent. Nichols (1947) 

achieved interspecific hybridisation between cultivated cassava (M. esculenta) and other 

related Manihot species, particularly M. glaziovii. This was followed by backcrossing to 

cultivated cassava to recover positive agronomic characters of cassava as well as 

resistance to CMD. The results from the first backcross were variable. However, an 

improvement in fertility was noted in the second backcross generation. The production of the 

F3 generation by controlled back-crossing to cassava using cassava as the female parent 

was successful (Jennings, 1976; Nichols, 1947).   
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In an attempt to transfer the high protein content of the tuberous roots from wild species, 

hybrids between cassava and M. tristis subsp. saxiola were used (Bolhuis, 1967; Nichols, 

1947). However, efforts to increase the protein content in cassava roots were unsuccessful 

as the high levels in the initial hybrids were not maintained in the backcross progenies 

(Asiedu et al., 1994). Although incompatibility systems that prevent crossing among species 

in genus Manihot have not been reported so far, differences among genotypes in their 

performance as female parents in crossing schemes do exist (Kawano, 1980).  

 

1.4.6 Inbreeding in cassava 

 
Inbreeding raises the frequency of desirable genes by reducing the genetic load of 

deleterious genes (Ceballos et al., 2004) and improves selection efficiency (Easwari-Amma 

et al., 1995). In sweet potato for example, it has been observed that inbreeding depression 

occurs for total storage root yield and to a lesser extent for total storage root number and 

vine length, yet it does not occur for dry matter content (Komaki et al., 1998). They 

suggested that for the best method to develop new cultivars with high dry matter content and 

high storage root yield, the development of high dry matter inbred lines was necessary. 

These inbred lines can be crossed among themselves or with superior cultivars. The 

concentration of genes controlling the starch content in a cultivar is essential for the 

development of the cultivar with high starch content (Komaki et al., 1998). However, 

inbreeding in cassava has seldom been pursued, particularly due to the time required to 

obtain high levels of inbreeding (9-10 years) and the high level of inbreeding depression 

(Ceballos et al., 2004). Tolerance to inbreeding depression can be bred into crops. Fifth 

generation inbred lines of cassava have been developed at IITA (DeVries and Toenniessen, 

2001). In addition, successive generations of inbred lines of cassava that are reasonably 

homozygous have been reported in four generations in India (Easwari-Amma et al., 1995). 

The breeding programme in Tanzania may explore inbreeding procedures to concentrate 

the genes controlling starch content.  
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1.4.7 Selection and evaluation in cassava 
 
Any breeding programme should have priority research themes and objectives that are 

clearly established on the basis of the production constraints to be resolved (Hahn et al., 

1979) and/or on the ultimate use of the crop (Ceballos et al., 2004). Most of the efforts in the 

early days of the International Centres (CIAT, IITA) and the national programmes were 

devoted to improving cassava as a human staple food (Jennings and Iglesias, 2002). The 

general breeding objectives were: a high yield, resistance to major insect pests and 

diseases, adaptability to a wide range of environmental conditions, root characteristics and 

early maturity (Ceballos et al., 2004; Hahn et al., 1979). Relatively little attention was given 

to the genetic improvement of root dry matter content and starch. Intensive selection for 

disease resistance and root yield potential have restricted the availability of genetic 

variability for dry matter content and starch (Iglesias and Hershey, 1994). 

 
Early generation testing is used in self- and cross-pollinated species to estimate the genetic 

potential of an individual (Fehr, 1987). The early selection in cassava includes seedling and 

clonal (single row) stages which are based on high heritability traits such as plant type, 

branching habits and reaction to certain diseases (Iglesias et al., 1994; Hershey, 1988; 

Hahn et al., 1980) and harvest index (Kawano, 1990). In addition, selection has been based 

on single plant performance (Ceballos et al., 2004). Seedlings are normally exposed to 

important diseases such as CMD, CBSD and CBB using spreader varieties, and susceptible 

seedlings are selected out. This method was implemented in Africa, where CMD is endemic 

(Hahn et al., 1979) (Appendix 1). 

 
Plants that are low branching (branching height of about 50-100 cm) are discarded because 

they are associated with heavy branching that tends to lead to a low harvest index and yield 

(Kawano, 2003; Kawano et al., 1998; Hahn et al., 1979; Tan and Cock, 1979). Seedlings 

with a short neck (1–3 cm) and fat roots that are uniform, short, and compact are selected. 

Seedlings from low cyanide populations are selected (Iglesias and Hershey, 1994; Sadik et 

al., 1974). The selected seedlings are uprooted after 12 months and screened for 

conformation and root characteristics. Kawano and Thung (1982) suggested that it is 

important to establish seedling populations at low planting densities to give all plants an 

opportunity to express their genetic capacity and to minimise the effects of intergenotypic 

competition. When seedlings are planted at very high densities, it is possible for plants in the 

population not to express their genotypic ability properly. Competition between neighbouring 
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genotypes in the clonal evaluation trial may favour more vigorous plant architectures 

(Kempton, 1997; Kawano and Thung, 1982).         

 

In order to handle a large number of materials at lower costs visual evaluation with few data 

recording has been a common feature in the first stages of selection (Ceballos et al., 2004). 

Selection relied heavily on highly heritable traits such as harvest index (Kawano, 2003; 

Kawano et al., 1998), plant type, and sometime root dry matter and cyanogenic potential 

(Iglesias and Hershey, 1994). In cassava, the harvest index represents the efficiency of 

storage root production and is usually determined by the ratio of storage root weight to the 

total plant weight. However, significant differences in harvest index have been reported 

among cultivars (Kawano et al., 1978), indicating that it can be used in cassava as a 

selection criterion for higher yield potential in cassava. However, care should be taken in 

using the harvest index as a selection criterion due to the differential response of plants to 

soil fertility and water stress (Cock and El-Sharkawy, 1988) 

 

The clones that perform poorly in terms of establishment, growth and resistance to diseases, 

and insect pests are discarded (Hahn et al., 1979). Only the selected clones are evaluated 

for dry matter, yield potential and cyanogenic potential (Iglesias and Hershey, 1994; Hahn et 

al., 1979). However, it has become apparent that cassava genotypes perform differently at 

different stages of evaluation and selection (Kawano and Thung, 1982). Byrne (1984) 

observed that there were significant correlations (r=0.48**) between dry matter content in 

seedling and single row trials, and suggested that evaluation for dry matter content was 

feasible at the F1 stage.  

 
At a later stage, the emphasis of selection shift from highly heritable traits to those of low 

heritability such as yield. Trials that are considered include preliminary yield trial (PYT), 

advanced yield trial (AYT) and regional trial (RT). Each plot is replicated twice or more 

(Ceballos et al., 2004). At this stage, selection is based on yield per plot, dry matter, CNP 

levels, consumer acceptance, and adaptation of the crop (Hahn et al., 1979). The trials are 

conducted in several locations covering a wide range of environments. Stability across 

location is given greater weight. Elite clones are evaluated on-farm for farm level testing and 

farmer evaluation. The clones that are the most popular with farmers are multiplied and 

distributed. 
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1.5  Breeding designs 
 

1.5.1 Gene action and inheritance  

 

The gene, the basic unit of inheritance, is responsible for the transmission of characteristics 

from one generation to the next (Chahal and Gosal, 2002). Crop improvement involves both 

gene actions and gene inheritance. The action of genes determines the expression of every 

characteristic of a plant, such as its morphology, response to environmental conditions, and 

yielding ability. Physiologically, gene action reflects gene differences that provide the basis 

for the selection of desirable genotypes in plant breeding (Sleper and Poehlman, 2006; 

Rasmusson and Gengenbach, 1983). Gene inheritance is the transmission of genetic 

information to succeeding generations (Falconer, 1989). Inheritance, as explained by the 

classical Mendelian genetic pattern (Klug and Cummings, 1999; Poehlman and Sleper, 

1995), indicates the expression of one dominant, when two contrasting characters are 

brought together in a cross and the other one is recessive (latent) in F1 and in F2 the two 

characters segregate and express themselves phenotypically. The efficient recovery and 

maintenance of desirable genes transmitted from selected parents to their progeny requires 

knowledge about gene inheritance (Falconer and Mackay, 1996).  

 

Multiple genes affect the phenotypic expression of a quantitative trait in any of the following 

four gene actions: additive, dominance, epistatic and overdominance. Additive genes act 

cumulatively or additively to a quantitative character, while dominance gene effects are 

deviations from additive effects (Bernado, 2002; Falconer, 1989). Epistatic effects are a 

result of non-allelic gene interactions, while over-dominance effects occur when each allele 

contributes a separate effect, and the combined alleles contribute an effect greater than 

either allele separately (Falconer and Mackay, 1996; Sharma, 1995; Hayman, 1958). 

 

The majority of physiological characters i.e. dry matter content, yield and disease resistance 

are inherited quantitatively (Poehlman and Sleper, 1995). The varied expression of the 

character is continuous and can be measured (Rasmusson and Gengenbach, 1983). The 

quantitatively inherited characters are conditioned by polygenes with small individual effects 

and often there is a sizeable environmental effect (Falconer, 1989; Rasmusson and 

Gengenbach, 1983).   



26 
 

Different mating designs e.g. diallel or North Carolina II, allow for the estimation of two 

important genetic parameters for the set of genotypes involved: (a) the average performance 

of parents in crosses, which estimates the breeding value of a given genotype due to 

additive gene effects, known as GCA, and (b) the deviation of individuals crosses from the 

average performance of parents, due to specific allelic combinations or dominance effects, 

or SCA (Falconer, 1989). 

 

1.5.2 Estimation of genetic variances 
 

Phenotype is a joint expression of genotypic and environmental effects. The main interest of 

a breeder is to determine what proportion of the phenotypic expression is due to genotypic 

and environmental effects (Hallauer and Miranda, 1988). The genotypic effect for a 

particular genotype is the difference between the mean of all the phenotypes with that 

genotype and the mean of all the phenotypes in the population (Falconer, 1989; Cockerham, 

1956). In predicting what improvement can be expected from inbreeding and crossing, the 

variance between crosses is important. Therefore, mating designs that develop progenies 

for evaluation should be considered for the estimation of components of variance (Falconer, 

1989; Hallauer and Miranda, 1988).  

 

The purpose of using the mating designs is: firstly to furnish the breeder with information on 

the genetic control of the character under investigation. Secondly, it is to generate a 

breeding population that can be used as a basis for the selection and development of 

potential varieties (Sharma, 1995; Dabholkar, 1992). This in turn will enable the breeder to 

choose an appropriate breeding strategy and so assess the progress that can be expected 

for a given selection intensity (Hill et al., 1998). Dabholkar (1992) and Cockerham (1963) 

classified mating designs as one, two, three and four factor designs, depending upon the 

number of ancestors per progeny over which control is exercised. 

 

A number of mating designs have been described (Kearsey and Pooni, 1996; Hallauer and 

Miranda, 1988; Mather and Jinks, 1982). These include: biparental progenies (BIP), North 

Carolina I (NCI) (Nested design), North Carolina II (NCII), North Carolina III (NCIII) and 

Diallels. In all mating designs, the individuals are taken randomly and crossed to produce 

progenies which are related to each other as half-sibs or full-sibs. A form of multivariate 

analysis or the analysis of variance can be adopted to estimate the components of variance 
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(Bernado, 2002; Chahal and Gosal, 2002). The expected values of these variances in terms 

of different components of genetic variance i.e. additive, dominance, and epistasis are 

determined by equating with the observed values to estimate the components of genetic 

variation. Common mating designs such as diallel cross, North Carolina designs (I, II and 

III), line x tester and partial diallel are two factor designs. The triallel and quadriallel crosses 

are three and four factor mating designs, respectively (Bernado, 2002; Hill et al., 1998; 

Hallauer and Miranda, 1988). A set of half-sib families or polycross progenies constitute on 

one factor design (Hill et al., 1998; Dabholkar, 1992). The choice of the mating design 

depends primarily on simplicity of the information provided by the design and its 

interpretation. 

 
However, at the early stages of a breeding programme, additive genetic variation is more 

important (Sprague and Tatum, 1942). Non-additive effects become more important when 

selection proceeds because the selected material has greater similarity, thereby largely 

eliminating additive effects. The particular mating design chosen should reflect these 

processes.  

 

1.5.3 Polycross design 
 

The polycross is a mating arrangement for intercrossing a group of cultivars or clones using 

natural hybridisation in an isolated crossing block (Stuber, 1980). A polycross design is 

frequently used for forage grasses and legumes, sweetpotato, cassava and sugarcane 

(Poehlman and Sleper, 1995). The purpose of the polycross is to provide an equal 

opportunity for each entry to be crossed with every other entry; the field layout is the critical 

feature of the design (Wright, 1965). Progeny from each entry have a common parent in the 

polycross (Stuber, 1980). Polycross design in cassava does not prevent self-pollination, but 

it produces considerably more cross-bred seeds than controlled pollination methods 

(Jennings and Iglesias, 2002).  

 

A minimum effort for intermating a group of entries is required in the polycross. Deviations 

from random mating may occur unless all entries flower simultaneously (Stuber, 1980). Early 

flowering cultivars may be delayed to synchronise mating. Emasculation of plants located 

near an intercrossing population may be applied (Jennings and Iglesias, 2002; Byrne, 1984). 

The use of male sterile genotypes is another alternative to minimise self-pollination. Male 
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sterility could be due to either male flowers dropping before they reach maturity or a male 

flower fully develops, but the anthers do not contain any pollen (Kawano, 1980). In polycross 

design, half-sib families are generated which are frequently used for evaluating general 

combining ability (GCA). In addition, the design is often used for generating synthetic 

cultivars and may be used for recombining selected entries or families in recurrent selection 

programmes (Stuber, 1980)   

  

The variation measured in a progeny test can be partitioned into within and between 

maternal groups. Like the paired cross (biparental) design the polycross generates 

insufficient statistics to estimate all the parameters. Nevertheless, an estimate of the additive 

genetic component can be calculated from between maternal groups if dominance is 

assumed to be absent (Hill et al., 1998). In a polycross, the breeder has no control over the 

pollen source (Kawano, 1980). Therefore, doubt arises about the actual relationship among 

the offspring of a particular mother. A polycross can only yield a pure half-sib family if every 

pollen grain involved in the pollination of a maternal plant comes from a different male; this 

is an unrealistic assumption (Hill et al., 1998). In practise, therefore, maternal progenies will 

be a mixture of full- and half-sibs. Consequently, the variance between maternal groups will 

overestimate the additive genetic component, even if dominance is assumed to be absent.  

 

The polycross design is ideally suited for identifying those mother plants with superior 

genotypes, as judged by the performance of their progeny in out-breeding species (Hill et 

al., 1998; Hallauer and Miranda, 1988). The estimation of GCA for a particular line depends 

upon the mating design (Sharma and Sain, 2004). The GCA is essentially the departure of 

its progeny mean from the mean of all lines included in the trial. In theory, therefore, it is the 

difference between maternal groups that measures variation in their GCA. Improvement in 

cross-fertilized crops, such as legumes, maize, rye requires genotypes with high GCA (Hill 

et al., 1998). The cassava improvement programme in Tanzania has been implementing a 

polycross design, and therefore information on variance components for Tanzanian 

germplasm is lacking.  

 

1.5.4 The North Carolina II mating design 

 
The North Carolina II (NC II) mating design is a factorial design that has been modified from 

North Carolina I (NC I) by Comstock and Robinson (1948). It is used to estimate genetic 
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variances and to evaluate inbred lines for combining ability (Stuber, 1980). It involves 

different sets of parents used as males and females. In NCII, an equal number of males and 

females is randomly selected from an F2 population; each male is crossed with each female 

creating female half-sib (HS) groups as well as male HS groups (Kearsey and Pooni, 1996; 

Dabholkar, 1992). This is accomplished by a systematic crossing programme in which males 

and females are mated in all possible combinations to give progeny families. Reciprocal 

crosses may be carried out to analyse maternal effects (Hill et al., 1998; Hallauer and 

Miranda, 1988). The mean squares for males and females supply separate and independent 

estimates of the additive component of variation, viz- 1) variance due to males, and 2) 

variance due to females. Similarly, the interaction mean squares between males and 

females yield an estimate of the non-additive genetic variance (dominance variance).  

 

The difference between the mean performance of the progeny of a given male and the mean 

of the progeny from all the males is the GCA. It reflects how well the genes combine, on 

average, to produce the best progeny when crossed to a random sample of females in the 

population. Hence, the mean square (MS) between HS family groups is often referred to as 

the GCA MS. Any significant deviation from the mean performance of the progeny must be 

due to dominance or epistatic effects. These deviations, specific to individual crosses, are 

measured by the ‘male x females’ MS in the ANOVA of the NCII (Kearsey and Pooni, 1996) 

 

The NCII enables the inclusion of a large number of parents in the experiment (Hallauer and 

Miranda, 1988). The expectation of males and females for design II are equivalent to GCA, 

and the male x female source of variation is equivalent to the SCA variation of the diallel 

analysis. Since there are two sets of parents in design II, there are two independent 

estimates of GCA. Provided the number of males and female parents are the same  

(i.e. n1=n2=n) then the extent of the maternal effects is determined from the variance ratio 

MSF/MSM (Kearsey and Pooni, 1996). The design provides a test of significance and 

estimates of additive and dominance variances (VA and VD), hence heritability estimates can 

be calculated (Kearsey and Pooni, 1996). 

 

1.5.5 Diallel design 
 
The diallel cross is a set of all possible matings between several genotypes (Stuber 1980; 

Griffing, 1956a; Hayman, 1954). Diallel crossing schemes and analyses have been 
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developed for parents that range from inbred lines, clones or individuals. The mating design 

permits an estimation of the magnitude of additive and non-additive components of heritable 

variance. Hallauer and Miranda (1988) commented that although extensive theoretical 

research and discussion have been presented, the main problem arises from the 

interpretations and inference that can be made about estimates obtained from analysis of 

the diallel crosses. Diallel analysis is based on the following assumptions (Dabholkar, 1992; 

Hayman, 1954): 1) normal diploid segregation, 2) lack of maternal effects, 3) absence of 

multiple alleles, 4) homozygosity of parents, 5) absence of linkage among genes affecting 

the character, 6) lack of epistasis and 7) random mating.  

 

Most diallel experiments are restricted to the estimation of GCA and SCA mean squares and 

effects (Sharma, 1995; Dabholkar, 1992; Baker, 1978). The diallel analysis, although 

effective and widely used, does not provide estimates of non-allelic interactions (Sharma 

and Sain, 2004; Hill et al., 1998). Significant epistatic variation clearly indicates the role of 

epistatic gene actions besides additive and dominance gene actions, which play a major role 

in the expression of heterotic potential (Stuber and Moll, 1974; Brim and Cockerham, 1961; 

Hayman, 1958). Perez et al. (2005) reported significant epistatic effects in fresh root yield of 

cassava combined with a large dominance variance. A major disadvantage of the diallel is 

the large number of crosses generated in the mating scheme. Thus, requirements for space, 

seed, and labour involved in the crossing block and in the experimental evaluations usually 

limit the number of parents to no more than eight to ten (Stuber, 1980).  

  

Diallel methods proposed by Griffing (1956b) determine the combining ability of lines and 

characterises the nature and extent of gene action in plants and animals (Christie and 

Shattuck, 1992). Griffing‘s analysis allows the option to test for fixed (Model 1) or random 

(Model 2) effects. Four methods of diallel crossing includes: 1) method 1 (full diallel), the 

parents, F1 and reciprocals included; 2) method 2 (half diallel), parents and F1’s included, 

but no reciprocals; 3) method 3, F1’s and reciprocals included, but no parents and 4) method 

4, F1’s included, but no reciprocals or parents. No genetic assumptions on combining ability 

are required in Griffing’s analysis. In addition, reliable information on the combining potential 

of parents is indicated. The best parental combiners can be crossed to identify the optimal 

hybrid combinations or hybridised with the intention of selecting promising genotypes within 

the segregating generation (Christie and Shattuck, 1992).   
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General combining ability measures the average performance of a parent in hybrid 

combination. When the performance of a hybrid is relatively better or worse than would be 

expected on the basis of the average performance of the parents involved is the SCA 

(Falconer and Mackay, 1996). A relatively large GCA/SCA variance ratio suggests the 

importance of additive gene action effects, and a low ratio implies the presence of dominant 

and/or epistatic gene effects (Kearsey and Pooni, 1996; Christie and Shattuck, 1992; 

Dabholkar, 1992).  Where the SCA is small relative to the GCA, the performance of the 

single cross progeny can be predicted on the basis of the GCA of the parents. However, the 

choice of Griffing’s methods depends on: 1) researcher preferences; 2) the characteristic of 

the crop; and 3) the trait under evaluation (Christie and Shattuck, 1992).  

 

The controversy over diallel crosses is centered on three issues: 1) The choice of design; 2) 

the nature of the population under test (ancestral or descendant); and 3) the type of analysis 

and the assumptions required (Christie and Shattuck, 1992; Wright 1985). To avoid much of 

the controversy and criticism, breeders need to consider carefully the goals of their research 

or the level of analysis required. Wright (1985) and Bray (1971) suggested three possible 

levels of analysis: 1) estimation of general and specific combining ability; 2) estimation of 

genetic variance components; and 3) complete genetic analysis. 

 

According to Christie and Shattuck (1992), the GCA effects for each parent and the SCA 

effects for each cross may be estimated, and no assumptions are necessary with regard to a 

reference population. Comparison can be made based on the best parents or parental 

combinations selected. The parents may be a selected or fixed group or a random sample 

from an ancestral reference population, in which case the variance of GCA and SCA can be 

estimated as well. Baker (1978) suggested that diallel analyses should be used only to 

estimate combining ability and to attempt to do anything more would involve assumptions 

which would be difficult to meet. 

 
To estimate variance components, a reference population is required which is in the Hardy-

Weinberg equilibrium (Bernado, 2002; Christie and Shattuck, 1992). Authors (Christie and 

Shattuck, 1992; Wright, 1985; Griffing, 1956a) have suggested two possibilities for 

generating a reference population, i.e. ancestral or descendant. The ancestral population is 

one from which the diallel parents can be considered a sample or from which they were 

derived by inbreeding without selection. Unbiased estimates of VA and VD will be obtained 
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from such a population only if the parents are excluded in the analysis (Dabholkar, 1992). If 

the ancestral reference population is used, the assumptions are that of no epistasis and no 

reciprocal effects (Christie and Shattuck, 1992). The F1s are assumed to be a sample of 

crosses from the population, but parents and especially their S1 (one generation of self-

pollinated) offspring should not be considered as a part of the ancestral population. 

Therefore, data from F1s should be used to estimate variance components such as in 

method 3 or 4 of Griffing (1956b) (Christie and Shattuck, 1992). A descendant reference 

population is the equilibrium population generated by repeated cycles of random mating 

among the diallel parents. This population relates to the genetic properties of the parents 

(Wright, 1985). It is this population which is defined when assuming a random distribution of 

genes among parents. The complete diallel set should be included; hence method 1 is 

appropriate (Christie and Shattuck, 1992). This is the full genetic analysis, devised by Jinks 

and Hayman (1953), for which parents are required and for which the assumptions can be 

used. According to Griffing (1956a), it is often advisable to include parents and use methods 

1 or 2, especially for inbreeding species. It is impossible to estimate the genetic components 

of variance if parents are not included. 

 

1.5.6 Partial diallel 
 
As the number of parents increases, diallel crosses become unmanageable in terms of time, 

labour and physical resources. A sample of crosses can be grown and analysed to obtain 

reasonable estimates of variance genetic components (Christie and Shattuck, 1992). In a 

partial diallel, the relative proportion of the degree of freedom attributable to GCA effects 

increases, while the precision is reduced by the decrease in the expected value of the GCA 

mean square (Kempthorne and Curnow, 1961). Partial diallels are constructed so that each 

parent is represented in the same number of crosses. Kempthorne and Curnow (1961) 

mentioned three advantages for the partial diallel cross: 1) selection can be among crosses 

from many parents; 2) the GCA of the parents will be estimated with less precision, but 

larger gains may result from intense selection among a larger number of parents; and 3) 

where the parents represent a population, the variance for general combining ability can be 

estimated more accurately. Moreover, a partial diallel has an advantage over the complete 

diallel where an incomplete and irregular series of crosses have been made which must be 

evaluated (Hill et al., 1998; Tai, 1976). However, the usefulness of a partial diallel depends 
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on its size, because of its statistical estimates based on only a small number of crosses may 

be far removed from the actual values for the population of parents (Hill et al., 1998). 

 

In a partial diallel, high SCA variances can lead to inconsistencies in the ranking of parents 

for combining ability (Hill et al., 1998; Bray, 1971). Characters for which the parents exhibit 

SCA are particularly prone to misinterpretation. Therefore, partial diallels should be confined 

to those characters which exhibit a greater proportion of additive rather than non-additive 

variation (Hill et al., 1998).  Because of these limitations the partial diallel is not commonly 

used. The analysis of variance of a partial diallel is similar to that presented by Griffing 

(1956a) for the four experimental methods (Hill et al., 1998). 

 

To summarise, polycross design has been used extensively in cassava breeding. However, 

polycross design does not generate sufficient statistics to estimate all the parameters. In 

addition, in polycross the maternal variance (σ2
BM) provides an overestimated additive 

genetic component (Hill et al., 1998). The North Carolina II and diallel designs provide the 

same type of information and similar tests of the hypothesis. In this research, the diallel 

design will be implemented based on the amount of information which the design supplies, 

the characteristic of the crop and the traits under evaluation. In order to capture information, 

all possible crosses will be made with the parental lines. An attempt to determine the GCA 

and SCA will be made. This information has been lacking for the Tanzanian cassava 

germplasm. 

 

1.6 Breeding for high dry matter and starch content  
 

1.6.1 Cassava root yield  
 

Fresh root yield multiplied by the root dry matter percentage constitute the dry matter yield of 

cassava (Kawano et al., 1987). Traditionally, cassava root yield is expressed in fresh root 

weight. However, there are significant varietal differences for root dry matter content (CIAT, 

1976). The total photosynthesis of the crop sets the ceiling for the dry biomass, which is to 

be shared among fresh root yield and dry matter content (Kawano et al., 1998). When the 

genetic variation in the dry biomass is ample, fresh root yield and dry matter content can be 

handled largely as independent characters. As breeding advances, the capacity of the 

breeding population may approach the physiological ceiling of photosynthetic assimilation. 
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Then, fresh root yield and dry matter content become components competing for the same 

resources at a given harvest index (Kawano and Takahashi, 1968). Kawano et al. (1987) 

commented that there was no indication of a negative correlation between fresh yield and 

dry matter content, which suggest that the plateau has not yet reached. Consequently, 

selection for either fresh yield or dry matter can be done independently. Studies at CIAT and 

IITA have established that dry matter content and starch content are closely correlated traits 

(r=0.81) (IITA, 1974; CIAT, 1975), suggesting that indirect selection can be applied to 

improve starch content. 

 

1.6.2 Dry matter content  

 

The concentration of dry matter in cassava roots can vary from 15 to 45% depending on the 

age of the crop plus the genotype and environmental conditions (Babayoko et al., 2009; 

Okechukwu and Dixon, 2009; Ojulong et al., 2008; Graham et al., 1999) thus providing the 

potential for selection. On average, about 90% of root dry matter is carbohydrate, with 4% 

crude fibre, 3% ash, 2% crude protein and 1% fat (Kawano et al., 1987; Lim, 1968). This 

makes dry matter an important trait for cassava producers since it is a crop grown largely for 

its carbohydrate content (Byrne, 1984). High root dry matter content is important especially 

when roots are used as food, feed and industrial raw materials (Tan and Mak, 1995). 

Iglesias et al. (1994) reported that root dry matter content segregated either independently 

or was positively correlated with root yield, indicating that both traits could be improved 

simultaneously. However, dry matter content is not associated with fresh root yield, although 

it is still uncertain whether a high level can be maintained when yields are high and that 

progress in one may require sacrifice in the other. Heritability of dry matter content has been 

observed to be intermediate to high (Kawano et al., 1987), and the trait can be improved by 

simple breeding techniques such as phenotypic mass selection to exploit the additive 

variations. 

1.6.3 Partitioning of dry matter into cassava stora ge root 
 

In cassava, the partitioning of dry matter into different parts of the plant varies during the 

growth cycle (Figure 1.1). The allocation of dry matter to the storage roots varies from 

almost zero during the early growth stages to nearly 80% of the daily dry matter production 

during the late growth stages (Ekanayake et al., 1997). Between 60-75 days after planting 



35 
 

(DAP), cassava accumulates dry matter more in the leaves than in the stems and storage 

roots (Alves, 2002). Then accumulation in the storage roots increases rapidly, reaching  

50–60% of the total dry matter around 120 DAP (Howeler and Cadavid, 1983). Thus 

selection for dry matter content should not be performed before 120 DAP. 

 

           

 

 
 

          

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           
 

Figure 1.1 Dry matter accumulations in cassava storage roots (source: www.iita.org) 

 

Genotypes differ in the duration of the maximum rates for dry matter accumulation, 

depending on growing conditions (Alves, 2002). Suggesting that breeders can select for 

different number of days to maximum dry matter accumulation, depending on the 

environment in which varieties would be deployed. A maximum rate of dry matter 

accumulation attained at 3-5 months after planting (MAP) has been reported under tropical 

conditions where the growth rate is fastest (Howeler and Cadavid, 1983). Similarly, Oelsligle 

(1975) observed a maximum rate of dry matter accumulation at 7 MAP at high altitude. 

Kawano and other workers (1987) reported that root dry matter content tended to be higher 

at 8 MAP rather than 12 MAP, and higher at the beginning of the dry season than at the 

beginning of the wet season, because during this period starch material is hydrolysed as a 

source of energy for the growing leaves, leaving roots with less starch. The importance of 

 

 Month  after planting  
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growing conditions in determining the maximum rates for dry matter accumulation suggests 

that the germplasm should be evaluated under different environments to estimate the 

possible problem of G x E during selection. 

 

The dry matter accumulation depends on the availability of photo-assimilates and the sink 

capacity of the storage roots (Alves, 2002). Cock et al. (1979) assumed that the storage 

roots received only those assimilate remaining after the requirements for shoot growth had 

been satisfied. It is suggested that vigorous genotypes produce large amounts of stems and 

leaves while root production is slow, and less vigorous genotypes produce relatively few 

stems and leaves but translocate most of their dry matter to the roots, which become the 

dominant sink after the third month (Howeler and Cadavid, 1983). Varieties that branch six 

to eight weeks after planting and six to eight times a year with four branches formed on each 

occasion, allocate too little of their resources to the roots (Cock et al., 1979), suggesting that 

they are low yielding. 

 

1.6.4 Estimation of dry matter content  
  
There are essentially two methods for determining the dry matter content in cassava. 

Specific gravity method is a quick method for determining root dry matter content.  The other 

method is the forced oven dry method (Jennings and Iglesias, 2002; Kawano et al., 1987; 

Wholey and Booth, 1979). Usually unpeeled fresh roots are weighed in air and then in water 

or by passing samples through a series of sodium chloride solutions of increasing specific 

gravity to find the one with the lowest specific gravity in which samples will float (Jennings 

and Iglesias, 2002). Keating et al. (1981) observed a linear relationship between specific 

gravity and dry matter content by calculating a regression model. Similar relationships have 

been reported by several researchers working in different countries (Kawano et al., 1987; 

Wholey and Booth, 1979; CIAT, 1976) (Table 1.1). However, root dry matter content (as a 

percentage of fresh storage root yield; RDMC) has been reported to vary depending on 

genotypes and the environment (Nassar, 2002; Kawano et al., 1987; Wholey and Booth, 

1979). The RDMC regressed on storage root specific gravity provides a linear regression 

model that determines estimates of RDMC and starch content (Bainbridge et al., 1996). The 

formula calibrated at CIAT is commonly used in Africa. However, there is a limitation that 

calibration of the method should be done for fresh cassava grown under diverse conditions 

of environment, soil type, age at harvest etc.  
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Table 1.1 Linear regression equations developed by different researchers for determining 
dry matter percentage  
Linear regression R2 Country of Origin Reference 

Y= 199.1x - 189.1 0.95 Australia Keating et al. (1981) 

Y= 142.3x - 124.9 n/a Malaysia Wholey and Booth (1979) 

Y= 158.3x - 142.0 0.84 Colombia CIAT (1976) 

Y= 159.1x - 147.0 n/a Virgin Islands Krochmal and Kilbride (1966) 

Y=  239.2x - 244.8 n/a Madagascar Cours G. (1951) 

Y= 271.7x -  287.6 n/a Madagascar Cours G. (1951) 

Key: Y= dry matter percentage; x = mass in air/ (mass in air – mass in water) = specific 
gravity; n/a = information not provided 
 

1.6.5 Inheritance of dry matter content in cassava 
 

Although little progress in understanding the inheritance of the agronomic traits has been 

achieved in cassava (Jaramillo et al., 2005; Ceballos et al., 2004), few studies conducted on 

genetic analyses suggest that inheritance of root dry matter content is controlled by 

polygenic additive factors (Jaramillo et al., 2005; Perez et al., 2005; Kawano et al., 1987). 

Sakai (1964) working on the sweet potato crop reported that dry matter content is controlled 

by additive gene effects and the total storage root yield by dominant gene effects.  

 

In an attempt to generate quantitative data in relation to the inheritance pattern in cassava, 

Jaramillo et al. (2005), using diallel analysis, observed that the SCA effects were relatively 

more important for the root yield than GCA effects. In addition, the GCA was reported to be 

high and important for harvest index, plant architecture and dry matter content. Hence, dry 

matter content was additively controlled. Perez et al. (2005), on the other hand, recorded 

contrasting results, that GCA was significant for all traits of agronomic relevance except for 

fresh root yield and dry matter content. They further commented that fresh root yield was the 

only trait with significant epistatic effects, which combined with a large dominance variance, 

suggesting the prevalence of non-additive effects. For harvest index and dry matter content, 

SCA accounted for about 35% of the F1s crosses’ sum of squares (Perez et al., 2005). 

However, in studies by Easwari-Amma et al. (1995) in India, it was observed that both 

additive and non-additive gene effects were important in the control of agronomic traits of 

relevance. They reported that storage root yield and dry matter content indicated the 
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predominant role of non-additive gene action in the expression of character. However, 

further studies are required to understand the gene action controlling dry matter content and 

starch. 

 

1.6.6  Starch in the storage roots 
 

Starch deposition in the roots of cassava commences soon after the development of 

secondary xylem tissue some three weeks after planting (Hunt et al., 1977). The majority of 

the starch grains accumulate within the amyloplasts in parenchyma cells of the thickened 

roots (Wholey and Booth, 1979). The key step in starch biosynthesis in plants takes place 

inside the amyloplasts where the enzyme adenosine diphosphate glucose 

pyrophosphorylase (AGPase) catalyses the synthesis of ADP-glucose from Adenosine 

TriPhosphate (ATP) and glucose-1-phosphate (Hannah and James, 2008). Researchers 

have reported maximum starch content obtained at 8 MAP (Sriroth et al., 1998a; Ketiku and 

Oyenuga, 1972). Cock (1976) indicated that maximum starch content was obtained between 

8 and 12 MAP.  In contrast, Obigbesan and Agboola (1973) observed peak starch content at 

15 MAP. However, starch yield declines after the plant reaches maturity, whereafter, the 

fibre content increases (Obigbesan and Agboola, 1973). In order to attain the maximum 

starch yield, the optimum age for harvesting cassava differs according to the variety. The 

age of the crop at which maximum fresh root yield is attained may not necessarily be the 

same as that of maximum starch yields (Wholey and Booth, 1979). Cock (1976) commented 

that variety differences exist not only in the starch content of roots but possibly with the time 

of maximum starch content. 

 

1.6.7 Starch content, composition and properties 
 

The main constituent of cassava carbohydrate is starch. On a dry weight basis, values of 

starch ranging from 74 to 85% of the total carbohydrate content have been reported for a 

number of cassava cultivars, using different analytical techniques (Sanchez et al., 2009; 

Ceballos et al., 2007; Onitilo et al., 2007; FAO, 2005; Rickard et al., 1991; Rickard and 

Behn, 1987; Wholey and Booth, 1979). Nuwamanya et al. (2010) obtained a much wider 

range of starch content from 70.4 to 93.8%. Similarly, starch content ranging from 21.2 to 

27.8% of the fresh root weight has been reported (Abera and Rakshit, 2003; Tan and Mak, 
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1995). Other carbohydrate constituents include sugars (sucrose, maltose, glucose and 

fructose) in limited levels, dextrose and dextrin (Ketiku and Oyenuga, 1972). Among the 

sugars in cassava carbohydrates, sucrose is prominent, accounting for 70 to 80% of the 

total sugars (Wholey and Booth, 1979) 

 

Cassava starch granules can be fractionated into two polymers namely amylose and 

amylopectin (Rickard et al., 1991; Wholey and Booth, 1979). Amylose is a linear polymer 

consisting of (1-4) linked α-D-glucopyranosyl units, while amylopectin is a highly branched 

polymer of α-D-glucopyranosyl units, primarily linked by (1-4) bonds, with branches resulting 

from (1-6) linkages (Rickard et al., 1991) (Table 1.3). The amylose content of cassava 

starch, evaluated using a variety of methods has been reported to range from 14 to 24% 

(Freitas et al., 2004; Rickard et al., 1991; Kawabata et al., 1984; Wholey and Booth, 1979; 

Ketiku and Oyenuga, 1972). Wheatley et al. (1992) studying CIAT germplasm reported a 

range between 15 and 28% amylose in the roots of cassava plants. In order to understand 

the variability in the amylose content of Tanzanian germplasm, there is a need to determine 

amylose content in cassava.  

 

Starch quality is influenced by the amylose content, and for good cooking varieties is 21%, 

for industrial varieties (more waxy types) 15% and for multipurpose varieties around 17% 

(IITA, 1977). A range between 15 and 28% amylose has been reported from CIAT 

germplasm (Wheatley et al., 1992). Zero amylopectin (non waxy) mutants have been 

detected. However, variations in the ratio of amylose to amylopectin could open new 

markets for cassava starch (Jennings and Iglesias, 2002). Amylose content determines the 

stickiness of cooked staple such as rice (Oryza sativa). The waxy endosperm of rice 

consisting of up to 2% amylose, shows low water absorption and expansion on cooking and 

the grain become sticky (glutinous). Non waxy (non-glutinous) rice may have low (20%), 

intermediate (21-25%) and high (25%) amylose contents (Singh, 2003). According to Singh 

(2003) amylose content is governed by a single gene, but is affected by environmental 

factors.  
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1.6.8 Granular characteristics of cassava starch 
 

Starch structure properties differ according to the botanical source and stage of 

development of the plant (Sriroth et al., 1999). The functional properties of the starch are 

affected by both genetic and environmental conditions (Asaoka et al., 1992). The starch 

granules of cassava are compound granules and are reported to vary in shape and size 

(Table 1.2) (Rickard et al., 1991). The granules are found to increase in size only over the 

first 5-6 months of growth and then remain nearly uniform throughout the 18 month period 

(Moorthy and Ramanujan, 1986).  

 

Table 1.2 Properties of the amylose and amylopectin components of starch 

Property Amylose Amylopectin 

General structure Essentially linear Branched 

Colour with iodine Dark blue Purple/red 

Max. of iodine complex ~ 650nm ~ 540nm 

Iodine affinity 19 - 20% < 1% 

Average chain length (glucose 

residues) 

100-10 000 20-30 

Degree of polymerization (glucose 

residues) 

100-10 000 10 000-100 000 

Solubility in water Variable Soluble 

Stability In aqueous solution Retrogrades Stable 

Conversion to maltose by crystalline 

β-amylase 

~ 70% ~ 55% 

Source: Shannon and Garwood, 1984 
 

1.6.9 Starch yield 

 
Starch yield in cassava is a product of fresh storage root yield and starch content. Starch 

yield ranging from 3.6 to 9.0 and from 3.18 to 8.74 t ha-1 from improved promising clones 

have been reported in Indonesia (Shohilin, 2009) and Malaysia (Tan, 2000). The trait is 

influenced by genetic and environmental factors, including plant maturity (Shohilin, 2009). 

Few articles regarding the performance and inheritance of starch yield have been published, 
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yet it is an important economic trait. To address the knowledge gap, there is a need to 

determine starch yield in Tanzanian cassava germplam. 

 

1.6.10 Genetic modification of cassava for high sta rch content 

 
Genetic transformation of cassava with enhanced agronomic traits has been reported 

(Siritunga and Sayre, 2003; Munyikwa et al., 1997). Transgenic cassava plants with 

enhanced starch content and short crop production cycle have also been reported (Ihemere 

et al., 2006). They generated transgenic plants with enhanced tuberous root ADP-glucose 

phosphorylase (AGPase) activity. The AGPase plays a role in the regulation of starch 

synthesis in plants, and catalyses the rate limiting step in starch biosynthesis and therefore 

the expression of more active bacterial form of the enzyme expected to lead increased 

starch production. The modified Escherichia coli (glgC) gene has been used to facilitate the 

maximal AGPase activity. Plants having the highest AGPase activity were observed to have 

increased total tuberous root biomass and above ground biomass when grown in 

glasshouse (Ihemere et al., 2006).  

 

1.6.11 Factors affecting starch  

 
Starch functionality shows unpredictable variations, depending on the environmental 

conditions at the time of harvest, and the age of the crop (Asaoka et al., 1992). Delay in the 

harvesting of cassava roots until 14-16 months result in increased fiber content, which 

affects the increased starch and decreased water content attained after 12 months 

(Chatakanonta et al., 2003). With increased fiber content starch extraction is more difficult. 

The starch granules from older cassava roots are also characterised by decreased amylose 

content and an altered granule size distribution, changing gradually from a normal to 

bimodal distribution with increased harvest time. The environmental conditions also alter the 

response to the granules uptake to water (swelling power) and subsequent thermal 

gelatinisation (Chatakanonda et al., 2003).  

 
Santisopasri et al. (1998) studying cassava varieties in Thailand, observed a high content of 

starch between 26-28% in released varieties; Rayong 90 and Kasetsart 50. Furthermore, 

they revealed that the roots had the highest accumulation of starch at 8 MAP. They also 

observed that roots with a high amount of biochemicals like lipid, protein, cyanide, phenolic 
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compounds and fibre had a resulting lowering of starch quality. The accompanied lipids and 

phenolic compounds will cause rancidity and darkening of the cassava flour. Moreover, the 

toxic cyanide and dense fiber will cause difficulties in the industrial starch production 

process. Therefore, there is a need to consider the age of the crop when harvesting for 

starch purposes. 

 
Amylose content determines the functional properties of starch such as gelatinisation and 

pasting. Researchers in Thailand obtained an amylose content of 20% in the roots at 10 

months after planting (Santisopasri et al., 1998). However, rainfall one month prior to 

harvest, affected the content and size of amylose. And rainfall during the harvesting time 

could influence starch granular properties, possibly reflecting recovery of the plant from the 

dry period as new foliage develops. During this period starch material is hydrolysed as a 

source of energy for the growing leaves with preferential hydrolysis of the granules 

amorphous region (Sriroth et al., 1998b). Roots harvested in the high rainfall period are 

reported not suitable for starch extraction due to low peak viscosity. In addition, with 

prolonged harvesting, the amount of amylose decreases with the increasing size (DPn) and 

chain length of amylopectin. Sriroth et al. (1998c) obtained maximum amylose content at 10 

months.   

 
Potassium (K) fertiliser has been reported to increase root yield and starch content 

(Howeler, 2002; Obigbesan and Agboola, 1973). A similar result of an increase in starch 

content with increasing application of K have been reported at CIAT as well as in Southern 

Vietnam (Nguyen et al., 1998; CIAT, 1982). Large doses of nitrogen and magnesium 

fertilisers are negatively associated with starch content (Tan and Mak, 1995). Therefore care 

should be taken when choosing a type of fertiliser for use in cassava crop for starch 

extraction. Cassava diseases such as cassava brown streak have a direct effect on root 

quality, because they affect the starch tissue in cassava roots (Hillocks et al., 2001). 

 

1.6.12 Genetic and phenotypic correlations  
 
Genetic correlations are of interest to determine the degree of association between traits 

and how they can enhance selection (Falconer, 1989; Hallauer and Miranda 1988). Genetic 

correlations are useful for indirect selection; however, they depend on estimates of 

heritability for each trait and the genetic correlation between them. Kawano et al. (1998) 

indicated that indirect selection for cassava yield through biomass was not effective; 
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however, the regression of fresh root yield on harvest index was significant. Kawano (1998) 

concluded that, direct selection for yield itself in single row trials (SRT) was less effective 

than indirect selection for yield through harvest index, because of the significant differences 

between the yield performances of the same genotype in SRT and in replicated trial. A 

reason for this is border effects caused by inter-genotypic competition (Kawano, 2003). In a 

single row trial or single-plant planting, those genotypes with a high biomass tend to 

dominate others with less biomass in competition for light (Kawano and Thung, 1982). 

Additionally, genotypes with high harvest index are usually weak competitors while those 

with a large biomass are strong competitors. In plot trials where inter-genotypic competition 

is absent, weak competitors with a high harvest index tend to perform better than strong 

competitors with a low harvest index (Kawano, 1990; Kawano and Jennings, 1983). 

Therefore, there is a need to determine the harvest index at SRT. 

The association between two characters that we observe and measure is the phenotypic 

correlation (Falconer, 1989). Phenotypic correlation is estimated from the phenotypic values 

observed on a number of individuals for a pair of characters. Phenotypic value is determined 

by genotypic values and environmental deviations (Dabholkar, 1992). Phenotypic correlation 

between biomass and fresh root yield in cassava has been reported to be very high (0.97) at 

the early evaluation stages, and lower (0.54) at the advanced stage of evaluation (Kawano 

et al., 1998; Cock, 1984; Kawano and Thung 1982; Cock et al., 1979). In contrast, the 

correlation between harvest index and fresh root yield has been found to be very low (-0.19) 

at the early stages but very high (0.93) at the later evaluation stage. Furthermore, RDMC 

and starch have been reported to have a high and significant correlation  

(r = 0.81; IITA, 1974; CIAT, 1975) hence there is a possibility of employing indirect selection 

to improve starch content. Starch content can be estimated from root dry matter percentage 

(Bainbridge et al., 1996).  

 

1.7 Summary of the review 
 
Presently, the main feature of the breeding methodology in cassava involve inter-cultivar 

recombination of phenotypically selected parents through controlled or open pollination and 

the selection of superior genotypes followed by clonal perpetuation of the selected ones. 

Selection in cassava at the early stages include seedling and clonal (single row) stages 

which are based on high heritability estimates. Parameters such as the harvest index are 

important in selection for yield at the early stages. At the PYT, AYT and RT stages, the 
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emphasis of selection shift from high heritability traits of low heritability such as yield. Trials 

are normally conducted in several locations to determine the stability across locations. 

 

Major diseases of economic importance include cassava bacterial blight (CBB; caused by X. 

manihotis) which is the most important non-virus disease, cassava mosaic disease (CMD) 

and cassava brown streak disease (CBSD) both caused by Bemisia spp. These diseases 

are the biggest threats to productivity and the health of the crop. The consequences of 

cassava virus infections are not only a reduction in crop yield but also the undermining of 

ongoing efforts in genetic improvement for yield, and of quality aspects such as starch and 

dry matter contents. 

 
Crossing in cassava is relatively easy, but flowering and its control is one of the most 

important challenges of cassava breeding. Knowledge about flowering capacity is important 

in order to select a group of materials with synchronised flowering. Since the parent clones 

are highly heterozygous, selection of suitable parents for hybridization is one of the most 

important steps in a hybridization programme. Parents have been generally selected on the 

basis of their per se performance both as varieties and as parents in hybridisation 

programmes which is not a sound procedure. The use of combining ability is important for 

genetic improvement. Although clonal and recurrent selection have been used extensively in 

cassava breeding, the development of inbred clones specifically designed for their utilisation 

as parents in breeding nurseries offers interesting advantages such as the possibility of a 

gradual and consistent assembly of favourable gene combinations, which in the current 

system occur just by chance. 

 

The literature indicates that dry matter content and starch are highly correlated; therefore, 

there is a possibility of employing indirect selection to improve starch content. The 

concentration of dry matter in cassava roots can vary from 15 to 45% depending on the 

genotype and environmental conditions thus providing the potential for selection. About 90% 

of the dry matter is carbohydrate; hence this makes dry matter an important trait for cassava 

breeders as the crop is grown largely for its carbohydrate content. High dry matter content is 

important for food, feed and industrial raw material.  

 
According to the literature, selection for dry matter content should be done after 120 DAP, 

because that’s when the accumulation in the storage roots has reached above 50%. 

However, the maximum rates for dry matter accumulation depend on the genotype and 
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growing conditions. The maximum rates of dry matter accumulation between 3-7 months 

have been indicated. Reports also indicated that maximum starch content has been attained 

between 8-12 months, but there are varietal differences that exist not only in starch content 

but possibly in time of maximum starch accumulation. Starch functionality is affected by the 

amylose/amylopectin ratio. The variation in this ratio could open new markets for cassava. 

Environmental factors immediately prior to harvesting of roots do affect starch quantity and 

quality. Other factors that affect starch quantity include the age of the crop and the type of 

fertilisers used.  

  
Polycross design has been extensively used in cassava breeding. However, polycross 

design does not generate sufficient statistics to estimate all the parameters. North Carolina II 

and diallel designs provide the same type of information and similar tests of hypothesis. In 

this research, diallel design has been implemented based on the amount of information 

which the design supplies, the characteristic of the crop and the traits under evaluation. The 

general combining ability and specific combining ability were determined. This information 

has been lacking for Tanzanian germplasm. 

 

Few articles have been published regarding the inheritance of quantitative traits in cassava. 

There is little information on the relative importance of additive and non-additive genetic 

effects in cassava. However, some studies have indicated the presence of important non-

additive gene action for root yield, dry matter content, and the related starch content. 

Therefore, improvement through phenotypic selection which exploits additive variation is not 

adequate. The heritability of dry matter content ranging from intermediate to high with 

narrow sense heritability ranging from 51 to 67%, and the broad sense heritability of 87% 

obtained for the clonal mean have been reported. Similarly, High heritability estimates for 

root dry matter content (95%), harvest index (93%) and fresh foliage (84%) across several 

locations have been reported at CIAT. The high heritability estimates indicates that the 

cassava genotypes could be improved through selection which exploits the additive 

variation. Regression of parent-offspring is most reliable as an estimate of heritability 

therefore it will be employed in this research. 
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Appendices  
Appendix 1 Evaluation scheme at IITA, CIAT, SARRNET and National Root and Tuber Crops Research Programme in Tanzania 

 
Year IITA (Hahn et al, 1979)  CIAT-Colombia 

(Kawano, 2003) 
CIAT- Asia (Kawano, 2003)  CIAT and IITA  

Jennings and Iglesias (2003) 
Tanzania R/T 

programme/SARRNET ( Mahungu 
and Kanju, 1997) 

1 Acqiure or improve the 
source population by 

making crosses (20000 – 
100000 seedlings 

produced) 

Selection of 
germplasm and 
crossing to get 

F1 seeds 

Crossing elite clones as 
parents 

Crosses among elite clones. Up 
to 100 000 seeds produced 

Crosses among elite clones 

2 Selected seedlings are 
cloned (500 – 3000 clones) 
in a preliminary yield trial 

(PYT) 

Seedling trial. 
Seeds sown in 

pots 

Seedling trial: F1 seeds 
sown in plastic bags of 5cm 

diameter and 8cm depth. 
Planted in the field at 1 x 

1.5m apart 

F1: Evaluation of seedlings from 
botanical seeds. Strong 

selection for ACMV in Africa. 
IITA-100 000; CIAT (Col) – 50 
000; 17 500 (Asia) seedlings 

evaluated 

F1: seedlings trial, 5000-50 000 

3 Advanced yield trial (AYT) 
(50 -100 clones) selected 

from PYT 

Single row trial 
(SRT) evaluated 

in 3 sites 

Single row trial (SRT). Single 
row with 10 cuttings planted 

at 1 x 1m spacing. 

Clonal evaluated trial (CET): 
2000-3000 seedlings (IITA, 

CIAT - Col) and 1800 CIAT - 
Asia 

Clonal evaluation trial (CET), 500-
5000 clones evaluated 

4 Uniform yield trial (UYT), 
the most promising 20 

clones from AYT evaluated 

Replicated yield 
trial (RT) 

conducted in 3 
locations. 30 

cuttings per plot. 

Preliminary Yield Trial (PYT). 
50 cuttings in a plot of 5 x 

10m planted at 1 x 1m 
spacing. 

Preliminary yield trial (PYT): 100 
(IITA), 300 (CIAT-Col), 130 

(CIAT-Asia) seedlings evaluated 

Preliminary yield trial (PYT), 50-500 
clones evaluated 

5 Elite 5 clones from UYT 
evaluated for yield and 

consumer acceptance and 
adaptation 

 Advanced Yield Trial (AYT). 
Superior clones from PYT 
planted in 4 replications. 

Planted in 3 sites. 

Advanced yield trial (AYT) Advanced yield trial (AYT), 10-15 
clones evaluated. Multilocational 
trials conducted and first year on-

farm 
6 Most popular clones 

multiplied and distributed 
 Regional Yield Trial (RT). 6 

representative clones 
planted in 4 replications and 

replicated in 6 sites. 

Regional trial (RT) 5- 30 clones Uniform Yield Trial (UYT). 5-8 
breeding lines plus 2 standard 

checks. Multi-location trials 
repeated. Confirm with farmer about 

their selection in on-farm trials. 
7.     Selected clones multiplied and 

distributed. 
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Chapter 2 

Breeding cassava for high dry matter content and st arch: 
understanding farmers preferences and selection cri teria for research 

intervention through participatory rural appraisal in Tanzania 
 

Abstract 
 
Cassava is an important staple in humid and sub-humid lowlands of the eastern agro-ecological 

zone of Tanzania. Many farmers practise selection, yet the process has rarely been 

documented. Their involvement in selection and evaluation of cassava germplasm is therefore 

not new. The objective of this study was to improve researchers’ understanding of the farmers’ 

cassava cultivar preferences and selection criteria so as to contribute more effectively to the 

improvement of the crop. A participatory rural appraisal study was conducted in Bagamoyo and 

Rufiji districts in Coast region, and Mkinga district Tanga region. The majority of farmers grew 

cassava in mixed culture, except in Rufiji district where the majority grew cassava as a 

monoculture, due to socio-economic influences. Major constraints to cassava production and 

productivity included vermin, pests and diseases. However, drought and lack of market were 

mentioned as additional important constraints in Mkinga and Rufiji districts respectively.  About 

32 cultivars were recorded in the surveyed areas, with more that 70% identified as sweet, 

indicating the relatively high prevalence of sweet type in the coastal belt. The majority of farmers 

in Bagamoyo and Rufiji cultivated at most three cultivars, while in Mkinga more than 65% 

farmers grew four to six cultivars per household. The average cassava production recorded was 

4 t ha-1, which was very low compared to the district data and previous reports. Preferred traits 

frequently cited by farmers were categorized into agronomic, culinary, and others. High yield 

and pests and disease tolerance featured high in the agronomic category. Sweetness, high dry 

matter content and cultivars that cook well were the attributes frequently mentioned in the 

culinary category. Marketable roots and root that keep long in ground without rotting were the 

preferred attributes in the other category. Root dry matter content for the most preferred 

cultivars was high (above 35%), and found to be important in both sweet and bitter cultivars. 

These attributes mentioned by farmers do not occur in isolation but are interrelated. Because 

farmers are selecting cultivars based on multiple criteria, participatory plant breeding at the early 

stages of evaluation and selection is essential for a successful cassava breeding programme.  
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2.1 Introduction 
 
As a staple food crop and raw material for many industrial uses, the hardy root crop cassava 

has an important role in many parts of Tanzania, particularly in the coastal lowland, Lake 

Victoria and southern agro-ecological zones. Its tolerance to drought and poor soils (El 

Sharkawy and Cock, 1987) adds to its value in farming communities. 

 

Many farmers practise selection, yet the process has rarely been documented (Soleri et al., 

1999). Farmer involvement in selection and evaluation of cassava is not new (Nweke et al., 

1998), and they have been carefully selecting their landraces over decades (Fukuda and Saad, 

2001). The COSCA study (Collaborative Study of Cassava in Africa) (Nweke et al., 1998) 

indicated that farmers in rural areas of Tanzania have been practising selection of cassava 

cultivars by introducing new genotypes and dropping undesired ones. Reasons given for 

abandoning some of the cassava cultivars were: poor in-ground storability, low root yield, 

disease and pest susceptibility, late bulking, high level of cyanogens, poor processing qualities, 

difficulty in harvesting due to root shape and arrangements and low leaf yield (Nweke et al., 

1998). Similar results have been reported in Ghana (Manu-Aduening et al., 2005) where 

farmers introduced new cultivars and abandoned landraces with undesirable root 

characteristics. Farmers choose between varieties or within populations of a crop species. 

Within a population, farmers typically practise mass selection or selection of individual plants 

(Soleri et al., 1999), composing the next generation by bulking the seed of those selections. In 

addition, their crop populations are subject to ongoing natural selection for fitness during each 

growing season (Simmonds, 1979). In plant breeding, selection is the discrimination (Soleri et 

al., 1999) between individuals or populations, that determines which will contribute to the next 

generation. Through selection, plant breeders try to create a final population that shows most 

desirable performance for specific selection criteria. This artificial selection in combination with 

natural selection defines the genetic structure of the crop population (Simmonds, 1979) 

 

The SARRNET (Southern Africa Root Crops Research Network) and the NARS (National 

Agricultural Research Systems) in Southern Africa proposed (Mahungu, 2002) to involve 

farmers in the selection of genotypes from segregating F1 populations. They commented that, 

while researchers are focusing on recording quantitative data, most farmers’ assessments are 

based on visual observations. In Bukoba region in Tanzania, for example, farmers’ participation 

in the selection of cassava varieties in on-farm trials resulted in the selection of varieties for 
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specific interests, such as high root yield, suitability for intercropping, leaves for vegetable or 

high dry matter for processing (Kapinga et al., 1997). Despite this, cassava landraces had 

remained predominant in Tanzania (Nweke et al., 1998). Reports (Banziger and De Meyer, 

2002; Sieglinde, 2002) indicated that farmers participated in the evaluation and selection of 

cultivars in CIMMYT’s (International Maize and Wheat Improvement Center) mother-baby trials 

in Malawi, Zimbabwe, and elsewhere. Similarly, in Peru, farmers evaluated genotypes at 

harvest, focusing on yield and tuber characteristics of potato (tuber shape, coluor, and 

proportion of different sizes), and culinary qualities (Ortiz, 2002). Choice of local varieties based 

on root formation, colour of the skin and flesh, ease of peeling, cooking time, aroma and taste 

differed widely from place to place making wide acceptance of improved varieties a difficult task 

(Ortiz, 2002).  

 

In developing new genotypes and disseminating them to farmers, classical plant breeding faces 

two major obstacles. First, undesirable traits go undetected during the breeding process 

consequently new varieties can be disappointing to farmers. Secondly, breeders discard many 

crosses and varieties during the selection process, because of the traits considered 

undesirable; however, these traits may actually be of interest to farmers (De Groote et al., 2002; 

Haugerud and Collison, 1990). On the Kenyan coast, for example, a technician brought home a 

discarded cassava variety and this variety was rapidly adopted by farmers (De Groote et al., 

2000). A survey of cassava in Mukono, Soroti and Apac districts of central, north eastern and 

north western Uganda respectively revealed that farmers often returned to growing local 

germplasm that are low yielding and susceptible to virus even when improved clones were 

available (Fregene et al., 2003). Researchers (Witcombe et al., 2003; Paris and Atlin, 2002; 

Fukuda and Saad, 2001; Thiele et al., 1997; Joshi and Witcombe, 1996; Sthapit et al., 1996) 

argued that farmers were involved in final selection and verification of clones/cultivars, 

consequently, low adoption rate of improved varieties. Therefore, participatory approaches need 

to be decentralized and implemented even at early stages of selection (Manu-Aduening et al., 

2006; Witcombe et al., 2003; Sperling et al., 1993) involving farmers actively in selection from 

the segregating material to generate improved cultivars that are preferred.  

 

The major socio-economic factor affecting the production and productivity of cassava has been 

the low adoption rates of improved germplasm in Tanzania and elsewhere. DeVries and 

Toeniessen (2001) estimated that 80% of the East Africa’s cassava harvest comes from late-

bulking, unimproved genotypes, while 40% of production in West Africa is from local varieties. 
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The 60% production from improved varieties in West Africa has made a country like Nigeria to 

reach 14 t ha-1 in terms of productivity. Socio-economic contribution of high yielding cassava 

varieties in increasing farmers’ income has been substantial in Asia (Puspitorini et al., 1998). 

According to Kawano (2003), new cultivars planted on one million hectares in Asia increased 

the economic benefits resulting from the increased productivity. The target population of small 

scale farmers in the poorer rural areas of the tropics captured a large proportion of these 

economic benefits.  

  

Several hypotheses regarding the adoption of improved varieties have been put forward (Paris 

and Atlin, 2002; Almekinders and Elings, 2001; Ceccareli et al., 2001). One of the main reasons 

for this low rate of adoption seemed to be the fact that all the research work has been carried 

out by breeders at the experimental station, whereby the evaluation agenda and criteria are 

defined by the researcher. Thus the “promising” varieties brought to the growers/farmers 

reflected the breeder’s opinion (FAO, 2009). Secondly, varieties selected on research station 

may not outperform traditional varieties under farmer management (Manu-Aduening et al., 

2006; Ceccarelli et al., 2003; Paris and Atlin, 2002). Traits such as high yielding and tolerance 

to pests and diseases may not be enough to ensure adoption of improved cassava varieties 

(Manu-Aduening et al., 2006). Such a situation suggests that the improved varieties are not 

adequately satisfying farmers’ needs and preferences (Witcombe et al., 2003; Ceccarelli et al., 

2001). Therefore, a participatory rural appraisal (PRA) (Chambers, 1994) was introduced with 

the aim of narrowing the communication gap between scientists and farmers, which is reported 

elsewhere (Witcombe et al., 1996; Kamara et al., 1996). However, efforts are being made to 

reduce this gap, in particular by participatory plant breeding (Sperling et al., 2001). Manu-

Aduening et al. (2006) implemented a successful participatory plant breeding in the developing 

superior cassava cultivars in Ghana involving farmers as early as the seedling trial. Schofield et 

al. (2009) involved farmers in participatory variety selection (PVS) of cassava varieties in the 

Great Lakes area. Furthermore, Kamau and Migwa (2009) also have implemented participatory 

plant breeding in Kenya and selected 23 promising cassava lines which are early maturing, high 

yielding with average dry matter content (30%). These approaches facilitate close interaction 

among farmers, researchers, and other key stakeholders in the genetic improvement of the 

crop. 

  

Participatory rural appraisal is a participatory methodology (Chambers, 1989) for interacting with 

rural and urban people, understanding them and learning from them. It enables rural and urban 
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people to share, enhance and analyse their knowledge of life and conditions to plan and act 

(IDS, 1996; Chambers, 1994). The PRA approaches which evolved from rapid rural appraisal 

(RRA) in the early 1990s (Chambers, 1993) is considered important in assisting researchers to 

acknowledge the needs of the communities that they work with. The participatory approach is 

one of the ways that: respondents’ feelings and perceptions can be captured and accounted for 

as hard data; the people’s resourcefulness and creativity can be challenged and captured; 

breeders may demonstrate respect for the insight and knowledge of the farmers (Adebo, 2000; 

Chambers, 1994). Whilst the statistical analysis of information gathered by participatory means 

is difficult, it is considered a more accurate picture of the real situation (IDS, 1996). A rapid 

change in the cultivar composition with an emphasis on higher productivity and value addition is 

required for cassava to contribute more to food security and to the market economy. The overall 

objective of this study was to improve researchers’ understanding of the cultivars preferences 

and selection criteria so as to contribute most effectively to improvement of the crop. In addition, 

it also aimed at understanding farmers cultivars that are high in dry matter content and starch 

for future improvement for the processing industry.  

 

2.2 Materials and methods 
 

2.2.1 Study area 

 
The PRA study was conducted in the Bagamoyo, and Rufiji districts in Coast and Mkinga district 

in Tanga regions in the eastern agro-ecological zone during 2007/08. The two regions are 

located in the eastern agro-ecological zone (MALD, 1994) in the coastal belt of the Indian 

Ocean. The rainfall pattern received is bimodal, whereby two distinct rainy seasons are 

experienced in a year. The short rains occur from October to December and the main rains from 

early March to May-June. The area is characterized as humid and sub-humid lowlands and has 

a cassava-cashew-coconut farming system. The elevation from sea level, the global positioning 

system (GPS) coordinates, and the annual rainfall are summarized in Table 2.1. The study area 

experiences high temperatures and humidity except for the month of June. 
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Table 2.1 Physical data of the surveyed area 

Region District Village Elevation (m) Coordinates 

Annual 
Rainfall 
(mm) 

Coast Bagamoyo Yombo 43 S 06⁰34.977̒ 750-900 
    E038⁰51.105̒  
 Rufiji Bungu 157 S 07º38.09' 700-1000 

    E 039º 03.69’  
  J/Mpakani 173 S 07º 32.76’ 700-1000 

    E 039º 07.67’  
Tanga Mkinga Mtimbwani   37 S 04º57.50’ 800-1000 
    E 039º 05.37’  
  B/Mwarongo   81 S 04º 54.18’ 800-1200 
    E 039º 03.41’  

Source: District agricultural offices (2007) 
 

2.2.2 Sampling procedure 

 
A purposive sampling procedure was employed to identify district, villages, and farmers included 

in the study. Two regions, Coast and Tanga were selected for this study, due to their potential 

for cassava production. The target group for this study involved cassava farmers and 

processors. Farmers involved in the formal and informal interviews were randomly selected from 

the village register by the village and hamlet leaders with the help of the agricultural extension 

officer. In Mtimbwani and Bungu villages cassava processing groups were purposely selected 

for the study. 

  

2.2.3 Data collection  

 
A number of participatory methods were used in data collection. Both informal and semi-formal 

methods were implemented to obtain information. For primary data collection, semi-structured 

questionnaires, focus group discussions, seasonal analysis, and ranking techniques were 

implemented (Witcombe et al., 2003; Joshi and Witcombe, 1996; Chambers, 1994). Secondary 

data were obtained from previous reports. In each village, focus group discussions were 

conducted with groups of between 10 to 30 representative farmers. Focus groups were used to 

collect general information through discussion. In these groups information on food and cash 

crops grown, cassava cultivation, production constraints, cultivars grown and their 

characteristics, seasonal analysis and activity calendar, and cassava processing methods were 
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discussed. Listing and ranking of crops grown, cassava cultivars, constraints to production and 

selection criteria were done by local people. A checklist was prepared to guide the discussion. A 

total of 117 farmers attended focus group discussion in three districts (Table 2.2). The main idea 

of informal interviews in participatory research was to open up a conversation in a way that 

allowed the interviewed person to express knowledge and views in their own words and 

according to their own values, concepts and ways of thinking. 

 

Semi-structured interviewing was the core of the PRA. About 67 interviewees in three districts 

were allowed to express their opinions through discussions. In semi-structured interviews, 

questions and topics were pre-determined, whilst the majority of questions were formulated 

during the interview. The interviews involved: 1) individual farmers or households; and 2) key 

informants. Randomly selected individuals such as teachers, development staff, village leaders, 

retired officers and agricultural extension workers were selected as key informants. Ranking 

technique was employed to complement semi-structured interviews. Different aspects, for 

example, types of crops, constraints, and opportunities were compared to investigate farmers’ 

preferences and relative importance. A group of comparable variables was chosen, for example 

cassava varieties. Criteria for assessing the variables were identified through discussion and 

listing. The local people were asked which items were most preferred or of greatest importance. 

The resulting information was drawn on a flip chart. The purpose of ranking was to learn about 

local people’s choices and priorities and the complexities of decision-making; to reveal 

differences in priorities of different social groups. 

 
 
 Table 2.2 Household data for sampled districts in 2007/2008 
District  Village  Number of  Number  Group  People 

households     of people discussion      interviewed 
 
Rufiji  Bungu       860    4998     15     10 
  J/Mpakani    1504    7770     11       8 
 
Bagamoyo Yombo       489    1693     33     29 
 
Mkinga  Mtimbwani      380    1781     30     10 
  Mwarongo      243      887     31     10 
 
Source: District agricultural office, 2007 
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2.2.4 Root dry matter content  
 

During the survey, cassava roots of the readily available cultivars were collected and put in a 

cool box with ice to facilitate preservation and transport. Dry matter content of the roots was 

determined according to Dixon and Nukenine (2000). Cassava roots were washed and cut into 

thin slices. Duplicate samples of 200 g each were taken and dried in a forced draught oven at 

70°C for 72 h. The dried samples were re-weighed to  obtain the dry mass, and the dry matter 

content as percentage were obtained as a proportion of the fresh mass. 

 

2.3 Data analysis  
 
Statistical analysis of both quantitative and qualitative data was performed in SPSS (Release 

15) computer package (SPSS Inc., 2006). Descriptive statistics, analysis of variance and mean 

comparisons were computed for data collected in each village and district. Mean comparisons 

between districts were performed. 

 

2.4 Results 

2.4.1 Household and farm characteristics 
 

Major food crops grown by farmers in Bagamoyo, Mkinga and Rufiji districts are presented in 

Table 2.3. Cassava, maize (Zea mays), cowpea (Vigna unguiculata), pigeon pea (Cajanus 

cajan) and banana (Musa spp.) were important in all three districts. Sweet potato (Ipomea 

batatas) was important in Bagamoyo district and rice (Oryza sativa) was cultivated in Bagamoyo 

and Rufiji. Major cash crops included coconut (Cocos nucifera), cashew (Anacardium 

occidentale) and pineapple (Ananas comosus) (Table 2.4). Cashew was one of the most 

important cash crops reported in all three districts.  

  

The mean land area allocated to different crops per household is presented in Appendix 1. Crop 

land area planted with cassava, maize, cowpea, and pigeon pea differed significantly. The mean 

land area in hectares allocated to cassava was relatively higher than other food crops grown in 

the study area. On average farmers allocated 0.7 ha for cassava, 0.4 ha for maize, 0.2 ha for 

cowpea, 0.2 ha for sorghum, 0.2 for sweet potato and 0.1 ha for pigeon pea. Most of these 

crops were grown in mixed culture. 
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Household resource base refers to household labour, farmland and other economic activities of 

the household. The survey revealed that the average number of people in the household was 

6.8 with the minimum of 1 and maximum of 19 people. However, those who were active in 

farming activities were 2.9 persons per household (Appendix 2). The average total land area in 

the three districts was 3.1 ha which ranged between 0.4 and 8.0 ha per household. The 

common livestock found in the study area were goats and chickens. No goats were recorded 

from representative farmers in Rufiji and no cattle were observed from representative farmers in 

Rufiji and Bagamoyo district (Appendix 2). However, the average number of chicken and goats 

per household was 17.9 and 6.4 respectively. Cattle were observed in Mkinga district with the 

average of 2.6 cattle per household. Tree crops of importance were coconut, cashew, mangos 

and citrus; these were good sources of income. The highest number of coconut (169.5) and 

cashew (172.8) trees per household was recorded in Mkinga and Rufiji districts respectively 

(Appendix 2). Mango trees were more abundant in Bagamoyo than the other two districts. Each 

household had at least one radio indicating that they could receive news transmitted everyday 

from different sources and one bicycle for transport. Each household could at least access one 

telephone for communication. Television sets were not common. 

                                                                                                                                                                                                                                                          
Table 2.3 Food crops grown by farmers (%) in Bagamoyo, Mkinga and Rufiji districts, 2007/08 
Crop      Bagamoyo (N=29)    Mkinga (N=20) Rufiji (N=18) Overall mean 
                                                                                                                                        
Cassava   72.4           100.0     100.0  90.8 
Maize   72.4  95.0       77.8  81.7 
Cowpea   72.4  30.0       16.7  39.7 
Pigeon pea   72.4  15.0       11.1  32.8 
Banana   34.5  50.0       27.8  37.4 
Rice   48.3   -       33.3  40.8 
Sorghum   10.3   -       22.2  16.3 
Sweet potato  37.9    5.0        -   21.5 
Groundnut     3.4     -        -       3.4 
                                                                                                                                            
                                                                                                                                           
Table 2.4 Cash crops grown by farmers (%) in Bagamoyo, Mkinga and Rufiji districts, 2007/08 
Crop Bagamoyo (N=29) Mkinga (N=20) Rufiji (N=18) Overall mean 
                                                                                                                                            
                                                                                                                                            
Coconut  58.6        70.0        n/a   64.3  
Cashew  82.8        80.0      88.9   83.9 
Pineapple  27.6        45.0      38.9   37.2 
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2.4.2 Cassava production 

 
Average area under cassava cultivation and production per household differed significantly 

between districts (Table 2.5). In general the cassava area ranged from 0.1 to 4.0 ha with the 

overall mean of 0.7 ha per household. The overall mean of cassava root production in fresh 

mass basis was 3.8 tonnes per household (equivalent to 4 metric tonnes ha-1), which ranged 

from 0.6 to 12.8 tons in Bagamoyo, 1.0 to 21.0 tons in Mkinga and 0.8 to 8.5 tons per household 

in Rufiji districts. However, district data indicated that the average yield in the three districts 

ranged between 3.0 and 12.0 t ha-1 (Table 2.6). The production of cassava roots per household 

reported was that which could be remembered by farmers during interviews and not what was 

recorded before.  

 

Results from the survey indicated that the majority of farmers planted cassava on flat seedbeds 

and very few planted on ridges (Appendix 3). More than 50% farmers planted cassava in rows 

using a spacing which was wider than the recommended spacing of 1m x 1 m from row to row 

and plant to plant. Intercropping of cassava with other crops was common and reported by 

66.1% farmers, most of them from Bagamoyo and Mkinga district  

(Appendix 3; Figure 2.2). However, in Rufiji district about 83.3% of farmers practiced 

monoculture in cassava cultivation. 

                                                                                                                        
Table 2.5 Cassava production and mean area under cultivation per household 
  Bagamoyo Mkinga  Rufiji  Overall  F probability 
        mean  
Cassava area (ha)  
 Mean     0.68      0.50      1.11      0.74  0.001 
 Min     0.31      0.10      0.41 
 Max     1.42       1.21     4.01 
Cassava production (kg household-1) 
 Mean 3013.8   7170.0 2633.3  3802.5  0.003 
 Min   640.0   1050.0   750.0 
 Max   12800.0            21000.0 8500.0 
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Table 2.6 Cassava production data and district population, 2007/08 
District   Season Cassava area (ha) Cassava  Yield t ha-1 

production (t) 
 
Rufiji   2004/05  14 616  164,626 11.3 

2005/06  12 856  154,265 12.0 
2006/07  20 241  141,687   7.0 
 

Bagamoyo  2004/05    7 286    21,888   3.0 
   2005/06    2 735      22,419   8.2 
   2006/07    2 792    22,421    8.0 
 
Mkinga   2005/06  13 053  111,967   8.6 
   2006/07    9 101    91,010 10.0 
   2007/08  15 444  154,440 10.0 
   2008/09    8 653    51,918   6.0  
 

Source: District agricultural offices (2007) 
 
Although a few farmers (22.2%) in the surveyed area weeded four times per season, three 

weedings per season was common to the majority of farmers. Cassava is propagated 

vegetatively and the use of planting material derived from the previous crop was a common 

practice. From the survey, it was established that the farmers’ sources of planting material were 

mainly from their own production fields (60.8%) and neighbours production fields (21.1%) and 

sometimes from nearby villages (9.7%).  A few farmers (8.3%) especially in Mkinga district 

received improved planting materials from research institutions (Figure 2.3; Appendix 3). 
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Figure 2.2 Intercropping of cassava with (A) Maize; (B) sugarcane, coconut, cashew  
 
 

A 

B 
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Figure 2.3 Source of cassava planting material as indicated by farmers 

 

2.4.3 Constraints to cassava production and process ing  

 
Generally the most important constraints affecting cassava production as identified by farmers 

were vermin (small mammals), insect pests and diseases (Table 2.7). On average 89.1% of 

representative farmers said vermin mostly affected the cassava production. Small mammals 

include wild pigs (Sus spp), monkeys (Catrol spp), baboons (Chacma baboon) and rodents 

(Acomys spp). However, in Bagamoyo district pests especially spiraling whitefly and in Rufiji 

lack of market was mentioned as the second most important factor limiting cassava production. 

In Mkinga district, farmers identified bad weather or drought as third most important factor 

affecting cassava production. In Bagamoyo and Mkinga soil degradation was identified as a 

constraint to cassava production, while in Rufiji district the low producer price also featured high 

for 22.2% farmers. Other constraints to production included weeds, lack of reliable market, poor 

in-ground storability, inadequate extension service, poor transportation of products from farms 

to cities, lack of manpower as related to farm tools used, and lack of credit to support input 

purchase. 
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The post harvest constraints frequently mentioned by farmers included inefficient drying 

technology (62.7%), root rot caused by CBSD (28.6%), lack of improved processing equipment 

(14.3%), water shortage (18.2%), storage pests especially large grain borer (10.8%) and 

difficulty in peeling roots (7.8%) (Figure 2.4; Appendix 4). Shortages of water and storage pests 

were the second most important constraint in Mkinga and Rufiji districts respectively. Cassava 

root rot caused by CBSD was the second most important problem in Bagamoyo district (Figure 

2.5). Other important constraints were poor working tools in peeling roots which was reported to 

be very labour intensive, inadequate storage facilities to stock large quantities of dried cassava, 

transport costs from farm to towns or cities, small margin accrued after selling processed 

products, and rapid deterioration of fresh cassava roots (Appendix 4).  

 

Table 2.7 Cassava production constraints as identified by farmers in Bagamoyo, Mkinga and 
Rufiji 
Constraint   Bagamoyo Mkinga  Rufiji  Overall mean 
 
 
Disease        44.8   40.0  11.1      31.9 
Vermin        89.6 100.0  77.8      89.1 
Weeds          6.9   10.0  22.2      13.3 
Pests        79.3     5.0  22.2      35.5 
Lack of manpower        3.4   10.0  16.6      10.0 
Lack of reliable market        -      5.0  33.3      12.8 
Low price           -       -   22.2        7.4 
Lack of credit         3.4   10.0    -        4.5 
Poor ground storability       -       -    5.6        1.9 
Inadequate ext. service      -       -    5.6        1.9 
Poor transportation         -    10.0    5.6        5.2 
Poor farm equipment        6.9   10.0     -        5.6 
Soil degradation        3.4     5.0     -        2.8 
Bad weather       10.3   30.0    5.6      15.3 
Poor farming technique     3.4     -      -        1.1 
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Figure 2.4 Post-harvest constraints in the study area 

 

 

 

Figure 2.5 Root rot caused by cassava brown streak disease as reported by farmers 
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2.4.4 Cassava cultivars grown 
 

The number of cassava cultivars grown per household differed significantly between districts. 

The mean number of cultivars per household in Mkinga district was 4.9, which was higher than 

Bagamoyo (2.2) and Rufiji (1.6) (Table 2.8). A minimum of two and maximum of 10 cultivars per 

household were recorded in Mkinga district, while other districts had at most three cultivars per 

household. A total of 32 cultivars of cassava were found in the study area, out of which 22 were 

reported from Mkinga district, 7 from Bagamoyo and 6 from Rufiji districts (Appendix 5). An 

improved variety Kiroba was reported to be grown across the surveyed districts. Cultivars 

Kigoma and Kitumbua were common in Mkinga and Rufiji districts. In general, more than 70% 

farmers in the three districts cultivated at most three cultivars of cassava. However, the majority 

of cultivars reported by farmers were specific to each agro-ecology (in response to use and 

preferences). 

 

Farmers indicated that sweet cultivars were relatively more available than bitter types. Of the 32 

cultivars identified in the surveyed area, 25.8% were bitter and 74.2% sweet, signifying a higher 

relative proportion of sweet types than bitter ones in the coastal area. Previous studies have 

shown similar results (Nweke et al., 1998). Sweet cultivars are used for boiling, roasting, stews 

or eaten raw, while bitter cultivars are traditionally processed into intermediate products such as 

chips known as ‘makopa’ and flour.   

 

Farmers in Mkinga district reported that among many, cultivars Udugu, Gago, Kiroba and 

Haraka were dominant (Appendix 5). According to Fukuda and Saad (2001) farmers generally 

maintain broad genetic diversity of cassava varieties on their farms; however only a few occupy 

a bigger market share. In Bagamoyo district, cultivar Mfaransa was cultivated by all 

representative farmers in the district, while cultivars Kalolo and Kiroba were grown by 56% and 

50% farmers, respectively. Minor cultivars in Bagamoyo district included Mtanga, Mzungu, 

Kitunguu and Kambinjenga. Almost all farmers in Rufiji district grew cultivar Kiroba which is very 

marketable. However, some minor cultivars such as Cosmas, Krismas, Usimpejuma, Kichooko 

and Dihanga were also reported in Rufiji district. These minor cultivars were maintained in small 

proportions. Cultivars were categorized as early and late bulking types. For example cultivars 
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Kiroba, Udugu and Haraka from were early bulking and matured within 8-12 months, while 

Guzo, Agrikacha, and Mwakinyavu were late bulking types and matured within 18-24 months. 

Table 2.8 Average number of cassava cultivars grown by farmers in Bagamoyo, Mkinga and 
Rufiji districts 

    Bagamoyo Mkinga  Rufiji       Overall F prob 
Number of cultivars 
 Mean  2.2  4.9  1.6  2.8 0.000 
 Min  1.0  2.0  1.0  1.0 
 Max  6.0           10.0  3.0           10.0 
 Std dev.           1.20           1.84           0.62                 1.89 
                                                                                                                               
 

Table 2.9 Number of cassava cultivars grown by farmers (%) in the past five years in 
Bagamoyo, Mkinga and Rufiji districts 
Number of cultivars  Bagamoyo Mkinga  Rufiji  Overall 
    (N=29)  (N=20)  (N=18)  mean 

                                                                                                                                       
 1    37.9  -  55.6  31.2 
 2   20.7    5.0  38.9  21.5 
 3   34.5  15.0    5.6  18.4 
 4     3.4  20.0  -    7.8 
 5      -  20.0  -    6.7 
 6     3.4  25.0  -    9.5 
 7      -  10.0  -    3.3 
 8-10     -    5.0  -    1.7 

                                                                                                                                       

2.4.5 Preferred traits in cassava 
 

The cultivars Mfaransa, Kalolo and Kiroba were the mostly preferred in Bagamoyo district. In 

Mkinga and Rufiji districts, cultivars Gago, Udugu and Kiroba were mostly preferred (Appendix 

5). When asked why those cultivars were mostly preferred the farmers mentioned several 

attributes that were desired. The attributes are categorized into agronomic, culinary, and others. 

The most frequently cited attributes considered in selecting cassava varieties were high yield 

(69.1%) and disease tolerance (48.1%) (Table 2.10). However, early maturity and/or early 

bulking types were preferred by 46.7% farmers. Cultivars that are sweet were cited by 52.2% 

farmers as important culinary characteristics. High dry matter content or mealiness was 

mentioned by 43.5% farmers and roots that cook well by 34.8% farmers as second and third 
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most important attributes under culinary characteristics. Ease of marketing was the most cited 

attribute under other characteristics, followed by the size of the root as the second most 

preferred attribute in this category. For example, consumers preferred medium sized cassava 

roots. Cultivars Mfaransa from Bagamoyo and Kiroba from Rufiji districts were easily marketed 

for fresh market. Furthermore, farmers said they would prefer cultivars that have good in-ground 

storability and that are late bulking as a security for the family. These cultivars should not be 

susceptible to root necrosis. Cultivars Agrikacha, Gago and Dihanga were mentioned as late 

bulking and could stay in the ground for up to 36 months. It was apparent that farmers select 

cultivars based on diverse criteria. For example, farmers commented that they liked cultivars 

Gago and Macho because they are drought tolerant.  

 

2.4.6 Quality of preferred cultivars 
 

Attributes such as high yield, high dry matter content, early maturity, and disease tolerance are 

important whether a cultivar is sweet or bitter (Table 2.11). Good cookability, marketability, and 

sweetness are pertinent to sweet cultivars. Good flour quality is specific to bitter cassava. 

Despite having preferred attributes, these cultivars also exhibit undesirable attributes such as 

fibrousness in roots, late bulking, short in-ground storability, and root rot due to CBSD.    
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 Table 2.10 Attributes preferred by farmers (%) in the study area 
Characteristic       Bagamoyo   Mkinga  Rufiji   Mean 
         (N=29)  (N=20)  (N=18)                                                                                                                

Agronomic 
   Disease tolerance  31.0  80.0  33.3  48.1  
   Early bulking/maturity 24.1  55.0  61.1  46.7 
   High yielding  51.7           100.0  55.6  69.1 
   Resistant to pests    -    5.0  11.1    5.4 
   Less branching    -    -      5.6    1.9 
   Drought tolerance    -  30.0    -  10.0 
Culinary  
   Cook well    62.1  20.0  22.2  34.8 
   High dry matter/mealy 48.3  60.0  22.2  43.5 
   Sweet    51.7  55.0  50.0  52.2 
   Low CNP      -    5.0    -    1.7 
   Easy peeling    -    5.0    -    1.7 
   Good flour quality  10.3  10.0    -    6.8 
   Non fibrous   -    5.0   5.0    3.3 
Other 
   Good in ground storage 3.4    5.0  -    2.8 
   Late bulking    -    5.0  -    1.7 
   Size of the root  24.1    5.0   5.6  11.6 
   Marketable root  34.5    5.0            11.1  16.9 
   Shape of the root   -    -   5.6    1.9 
                                                                                                                                           

 

2.4.7 Dry matter content of cassava cultivars   
 

Results indicated that root dry matter content (RDMC) of the cultivars collected from farmers 

ranged between 32.5 and 46.3% from cultivar Mjawa and Kibandameno respectively with the 

mean RDMC of 38.3%.  Majority of the cultivars had RDMC above 36% at the time of collection 

(season). Most of the cultivars presented were harvested after 12 months. Results also showed 

that the most preferred cultivars such as Mfaransa in Bagamoyo, Kiroba in Rufiji, and Gago and 

Udugu in Mkinga had RDMC of 37% and above.  
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 Table 2.11 Strengths and weaknesses of preferred cultivars as presented by key informants 

Cultivar District  Strengths   Weakness 
 
Mfaransa Bagamoyo  -High yielding   -fibrous if not mature 
    -Good cookability  -susceptible to pests 
    -High dry matter   -late maturing/bulking 
    -Palatable 
    -Easily marketed 
    -Good in-ground storability 
    -Sweet 
    -Big roots 
    -Disease tolerant 
    -No root rotting 
Kiroba Rufiji  -High yielding   -not stable in taste 
 Mkinga  -Early bulking   -short in-ground storability 
 Bgamoyo  -Early maturing 
    -Sweet 
    - Easily marketed 
    -Good cookability 
    -Disease tolerant 
    -Soft leaves for vegetable 
    -Less branching 
    -Palatable 
    -High dry matter content 
    -Easy peeling 
 Gago Mkinga  -Good in-ground storability   -fibrous if not mature 
    -High yielding 
    -Bitter taste 
    -High starch content 
    -Drought tolerant 
    -Good flour quality 
    -Tolerant to disease 
Udugu Mkinga  -Early bulking     -root rotting 
    -Early maturing 
    -Good flour quality 
    -High dry matter content 
    -High yielding 
    -Moderate resistance to diseases 
    -Bitter 
Kalolo Bagamoyo  -Moderate to high yielding -root rotting 
    -Good flour quality 
    -Bitter 
    -Mealiness 
    -Soft leaves for vegetable 
    -Medium maturity 
    -High dry matter content 
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2.4.8 Cassava processing 
 

When farmers were asked which cultivars they preferred most for processing, they mentioned 

cultivars Mfaransa and Kiroba (sweet), and Kalolo, Gago, Udugu, Kichooko and Dihanga (bitter) 

(Table 2.13). Both sweet and bitter cultivars were processed into intermediate products such as 

dry chips and flour. The common cassava processing methods used by farmers is presented in 

Figure 2.6. Other traditional methods are presented in Appendix 7. Processing involves peeling 

the fresh cassava roots, slicing to reduce size, drying, cleaning or scraping to remove any 

exogenous material or mould growth, and then milling to get flour. The whole process takes 7-

12 days depending on weather conditions. During the rainy season it takes 12 days to produce 

flour using traditional methods. The long processing time involved in traditional processing 

resulted in the release of toxic cyanogenic compounds.  

 

Table 2.12 Cultivars mostly preferred for processing by farmers (%) in Bagamoyo, Mkinga and 
Rufiji districts 
Cultivar   Bagamoyo  Mkinga   Rufiji                                                                                                                                            

Mfaransa   62.5     -     - 
Kalolo   37.5     -     - 
Gago     -   40.0     -  
Kiroba     -   15.0   88.9 
Udugu     -   45.0     - 
Kichooko     -     -     5.6 
Dihanga     -     -     5.6 

 

However, due to poor quality of the final product (fungal growth, presence of sand and 

inadequate drying technologies), improved processing technologies were introduced by the 

National Root and Tuber Crops Programme in collaboration with the International Institute of 

Tropical Agriculture (IITA) (Figure 2.7). Essentially roots are harvested, peeled, chipped or 

grated, pressed (for grating) to reduce water content, then dried over a raised platform to avoid 

contamination by sand and/or trash. The improved processing technologies have advantages 

over traditional processing such as fast drying because of the reduced particle size (within one 

day), white flour, no sand in flour, no fermentation odour, and cyanogenic potentials are reduced 

to safe levels. The high quality cassava flour can be used to make different novel products 

(biscuits, buns, bread etc).  
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Two farmers groups; Sululu in Rufiji and Kiwaumu in Mkinga districts were visited in the study 

area, where improved cassava processing technologies are implemented. Sululu group are 

processing cassava roots into high quality cassava flour (HQCF) and had the capacity of 

producing 4 t of flour per month. The flour produced was sold to a biscuit factory in Dar-es-

Salaam. Kiwaumu group was running a small scale starch extraction plant, and had the capacity 

of producing about 1 t of fine native starch per month, which was sold to two companies in Dar-

es-Salaam as well. Data on starch importation was also collected during the PRA study, and 

indicated that between 1999 and 2005, approximately 2700 -8000 t of starch was imported 

annually (Appendix 6) into the country. Increased cassava starch production in the country 

would save foreign exchange money used for importation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Common cassava processing method in the study area 

Cassava root peeled 

 

                                                  Roots are heaped for 3-4 days  

                                    then sun dried for 6-10 

Drying 

                                                       Roots are scraped of mould and  

                                                    foreign particles before milling 

 

Milling to flour 
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Figure 2.7. Small scale rural processing of cassava 

Drying cassava chips on raised platform 

Chipping fresh sweet cassava 
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2.5 Discussion and conclusion 
 

The PRA study was conducted to understand farmer’s preferences and priorities in their cultivar 

selection. The study has clearly established that cassava is an important staple food in 

Bagamoyo, Mkinga and Rufiji districts. It was established that farmers had good knowledge of 

cassava cultivars. The crop is used as food in fresh and processed forms. It is also a source of 

income when traded to towns and cities. Other food crops of importance were maize and rice. 

Cowpea and pigeonpea were important legumes in the study area. Coconut, cashew, and 

pineapple were the major cash crops in the study area. The study identified that the crops were 

sometimes grown as sole crop and/or as intercrops in a mixed culture. However, farmers would 

decide which one is the major and which one is the minor crop in the mixture. Most of the farm 

activities such as land preparation, planting and weeding used family labour. The mean total 

cropped land area per household was generally small.  

 

Generally the cassava root production per household recorded in Bagamoyo, Mkinga and Rufiji 

districts was very low. The actual yield or productivity was not well captured because of the 

piecemeal harvesting fashion whereby record keeping is poor. Normally, harvesting would be 

done according to the objectives. For home consumption, piecemeal harvesting or a few plants 

would be uprooted according to the family needs. For market purposes, the whole field or plot 

would be uprooted at once with prior arrangement with a trader and the labour involved will be 

tagged to the trader. Yield estimates that range from 1.5 to 35.0 t ha-1 in farmers’ field in 

Tanzania have been reported (Temu et al., 2003). In this study planting material of improved 

varieties was inadequately available to few farmers. Investment in planting material of improved 

varieties and hired labour could improve cassava production and productivity. 

 

Survey results showed that sources of introduced planting materials were limited to own fields, 

neighbours and nearby villages. Less than 10% farmers received cuttings of improved varieties 

from the research institutions. Cassava is propagated vegetatively using cuttings; utilization of 

planting material derived from pest infested or pathogen infected plants is a common way of 

spreading pests/pathogens of the crop. However, farmers seldom selected for “clean” planting 
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materials. Selection and use of planting material derived from healthy plants could reduce 

incidence and severity of important diseases.   

Major production constraints included vermin, pests and diseases. Among the vermin, wild pigs, 

rodents, and monkeys were seriously affecting cassava production. Cassava mosaic disease 

(CMD) and cassava brown streak disease (CBSD) are a threat to plant health and cassava 

productivity in the study area. Previous studies established that yield loss of up to 64% occurred 

due to CBSD in Muheza district (Muhanna and Mtunda, 2002). Thresh and Otim-Nape (1994) 

indicated that yield loss by CMD ranged between 20% and 90% depending on the variety. 

Among the pests occurring in the country, spiralling whitefly was frequently mentioned as an 

important pest threatening crop productivity in Bagamoyo district. Farmers mentioned that 

weeds were a constraint in cassava production. Studies on weed management have indicated 

that if weeding is not done within the first two months, there is a 70% reduction in yield. On the 

other hand, one hand weeding only at one month after planting gave 31% of the expected yield 

(TARO, 1983). 

 

Inadequate drying techniques were frequently cited as a major post-harvest constraint in the 

study area. Efficient drying depends on the size of the slice, method of drying and 

environmental factors such as sunny or rainy days if sun drying is employed. Roots with 

irregular shapes and small sized roots are difficult to peel by hand, and require more labour. 

Fresh cassava roots are highly perishable, therefore processing is important to increase shelf 

life, add value and render products stable. 

 

Farmers distinguished cassava cultivars by local names which were often descriptive of the 

physical characteristics of a plant. The majority of farmers in Bagamoyo and Rufiji districts grew 

at most three cultivars, indicating loss of diversity with the exception of Mkinga district where a 

reasonable number of farmers grew four to six cultivars, and a few farmers grew seven to 10 

cultivars per household. Environmental conditions (land, moisture conditions, etc) as well as 

usefulness of the cultivar to meet specific needs were the major factors determining farmers’ 

choices. Different cultivars fulfil different livelihood functions, and farmers respond to the 

multiplicity of needs by growing a range of cultivars. However, in areas with easy access to 
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markets and good roads such as Rufiji district, very few cultivars were recorded, indicating a 

trend of cultivating few marketable cultivars. 

 

Both sweet and bitter cultivars were processed into intermediate products such as flour and 

chips. Usually, sweet cultivars were meant for fresh use and the fresh market; however, since 

they are available throughout the year they are also processed into flour. Secondly, small roots 

remaining after selling medium and big roots would also be processed into flour. Bitter cultivars 

are preferred for processing. Several reasons were given as to why bitter cassava is preferred. 

Reasons mentioned included; bitter cassava makes good flour, has high dry matter content, 

makes good stiff porridge ‘ugali’, and has high starch content. Bitter cassava cannot easily be 

attacked by vermin because of the bitterness and most of them are late bulking, hence keep 

long in the soil. Therefore they prefer those for processing.  

 

Results also indicated that farmers in Bagamoyo, Rufiji and Mkinga desired high yielding 

cultivars as the most frequently cited attribute, but they also wanted other related attributes that 

could strongly affect positively or negatively the adoption of any improved high yielding variety. 

Sweetness of the root, high dry matter and high starch, roots that cook well, and flour that make 

good stiff porridge ‘ugali’ were among the attributes mentioned in this study that could influence 

the culinary characteristics and farmers felt that they were important. High yield is linked with 

pests and disease tolerance. Likewise, farmers desired early maturing cultivars to provide the 

family not only with food but also with cash. Early maturity here refers to 8-10 months after 

planting (MAP) and cultivars such as Kiroba, Udugu, Haraka and Kitumbua were early bulking 

types. However, other farmers wanted late bulking type as the family would be assured of food 

security.  

 

Marketable roots was frequently cited as most important criteria under other characteristics. 

Farmers select specific cassava cultivars to meet their market needs, which are measured in 

terms of ease of marketing. This study revealed a well established trade of fresh cassava roots 

between Rufiji and Bagamoyo districts and Dar-es-salaam city, whereby cultivars Kiroba and 

Mfaransa respectively were highly marketed. However, the characteristics of marketable roots 

are root size and shape and colour of the skin, which determine the demand and price for the 
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different cassava cultivars in the market (Ntumngia, 2008). Cassava cultivars that are selected 

for the market, should therefore meet most of these qualities if farmers have to stay competitive 

in the market and increase income from cassava. The combination of desired traits that meet 

their culinary, agronomic and other needs are based on local knowledge which is translated into 

their everyday cultivar selection strategies and practices.  

 

Dry matter content of cultivars most preferred by farmers such as Mfaransa, Kiroba, Udugu and 

Gago was high (≥35%). Studies by Asaoka et al. (1992) indicated considerable variation in 

glassiness and hardness of texture of cooked roots between varieties. Hardness of texture in 

cooked roots is a reflection of RDMC and starch contents. Safo-Kantanka and Owusu-Nipah 

(1992) studying cooking qualities of cassava reported that mealier varieties had higher contents 

of dry matter and starch. Similarly, Kawano et al. (1987) also indicated that RDMC was 

positively correlated with the eating quality especially when roots are consumed after boiling. 

Graham et al. (1999) and Byrne (1984) commented that high RDMC in cassava roots is 

important to ensure high recovery of dried roots and for the vast majority of uses, cultivars of 

high dry matter content are preferred. 

  

To bridge the gap between breeders and farmers and to ensure that new varieties satisfy 

farmers’ preferences and suit their socio-economic situations, it is important to develop and 

adapt participatory methods for identifying farmers’ variety preferences from early stages of 

breeding in Tanzania. Both participatory variety selection and participatory plant breeding 

should be used to promote collaborations between farmers and breeders for improved adoption. 

Improved varieties bred specifically for the new markets, for example high dry matter content 

varieties for the flour and starch markets and simple processing technology, such as grating, 

chipping and drying machines, can assist the economic growth of cassava farmers in Tanzania. 
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Appendix 1 Crop land area in hectare per household in Bagamoyo, Mkinga and Rufiji districts 

 
Crop Bagamoyo  Mkinga   Rufiji   Mean  F prob 
                                                                                                                                            
Cassava  0.67  0.50  1.11  0.74  0.001 
Maize  0.22  0.32  0.77  0.40  0.000 
Cowpea  0.17  0.17  0.71  0.21  0.001 
Pigeon pea  0.16  0.19   -  0.12  0.000 
Rice  0.36   -  0.28  0.34  0.482 
Sorghum  0.11   -  0.30  0.22  0.064 
Groundnut  0.08   -  0.10  0.06  0.667 
Sweet potato 0.23  0.20    -  0.23  0.837 
Banana  0.13  0.14  0.30  0.15  0.008 
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Appendix 2 Household data, resources and assets per household in Bagamoyo, Mkinga and 
Rufiji districts. 

 

       Bagamoyo Mkinga  Rufiji   Mean  F prob 
 
Number of people in hh 6.41 7.84  6.50  6.84  0.337 
People involved in farming 3.27 2.89  2.27  2.89  0.056 
 
Land resources (ha) 
    Total farmed land  2.38 2.43  2.67 2.49 
    Total land area  2.78 3.00  3.67 3.09  0.309 
 
Livestock resources (number) 
     Cattle      -   2.6   -   0.86    - 
     Goat    6.5 12.6  -   6.4  0.461 
     Chicken    18.7 15.4  19.9   17.9  0.744 
 
Tree crops resources (number) 
     Coconut    28.6 169.5  16.5    80.6  0.041 
     Cashew    28.2   39.9  172.8    58.1  0.000 
     Citrus    12.3  73.7   24.5    31.25 0.061 
     Mango    50.0  20.6     -    16.75 0.271 
    
Household assets 
    Bicycle    1.12 1.12  1.4     1.2  0.236 
    Hand hoes   4.0 4.1  4.0     4.04  0.994 
    Machete    1.7 2.1  2.0     1.9  0.430 
    Radio    1.3 1.33  1.29     1.30  0.985 
    Telephone   1.2 1.0   -     1.1  0.407 
     
 
Key: hh=household 
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Appendix 3 Crop management practiced by farmers (%) in Bagamoyo, Mkinga and Rufiji 
districts 

  
Practice   Bagamoyo Mkinga  Rufiji  Mean 
                                                                                                                                    
Seed bed type  
    Flat land   100.0  95.0  100.0  98.3   
    Ridges      -    5.0    -    1.7 
 
Planting arrangement 
    In rows   24.13  60.0   10.3  50.3 
    At random  75.86  40.0   33.3  49.7 
 
Number of weeding 
    Two times  10.3    5.0    5.6    6.9 
    Three times  72.4  95.0   72.2  79.9 
     Four times  11.0  10.8     -     22.2 
 
Cropping pattern 
    Intercrop   96.6  85.0  16.7  66.1 
    Monocrop    3.4  15.0  83.3  33.9 
 
Spacing 
   1 m apart    6.9  50.0  38.9  31.9 
    > 1 m apart  93.1  35.0  61.1  63.1 
    < 1 m apart    -  15.0  15.0    5.0 
 
Source of planting material  
    Own field   75.9  40.0  66.7  60.8 
    Nearby village 24.1    5.0     -    9.7 
    Neighbour    -  30.0  33.3  21.1 
    Research institution  -  25.0     -    8.3 
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Appendix 4 Percent farmers who indicated post harvest constraints in Bagamoyo, Mkinga and 
Rufiji 

                                                                                                                                            
Constraint   Bagamoyo Mkinga  Rufiji      Mean                                                                                                            

 
% farmers indicated the processing constraint 

 
Root rot (CBSD) 28.6   -  -  28.6 
Drying takes too long 60.7  90.0            37.5  62.7 
Lack of proc eqpt  10.7  20.0   6.3  14.3 
Storage pests  13.6   -   31.3  22.5 
Peeling problem   7.1  10.0    6.3    7.8 
Storage facility   7.1    5.0  18.8  10.8 
Transport cost    3.6    5.0    -    4.3 
Small margin     -    5.0    6.3    5.7 
Water shortage    -  30.0    6.3  18.2 
Rapid deterioration 10.7  10.0    6.3    9.0 
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Appendix 5 List of cassava cultivars grown by farmers in Bagamoyo, Mkinga and Rufiji districts 

 
Varieties   Bagamoyo  Mkinga   Rufiji 
   (N=29)   (N=20)   (N=18) 
                                                                                                                                        
Mfaransa   100.0   -   - 
Kiroba     42.3   55.0   100.0 
Kalolo     55.2   -   - 
Mtanga       3.4   -   - 
Mzungu       3.4   -   - 
Kambinjenga         3.4   -   - 
Kitunguu       3.4   -   - 
Haraka   -   40.0   - 
Mjawa   -     5.0   - 
Mpemba   -   30.0   - 
Agrikacha   -   10.0   - 
Gago   -   65.0   - 
Kibandameno  -   35.0      5.6 
Macho   -   15.0   - 
Udugu   -   70.0   - 
Kitumbua   -   15.0      5.6 
Mahiza   -     5.0   - 
Muarusha   -   20.0   - 
Kigoma   -     5.0      5.6 
Dide   -     5.0   - 
Kibangiri   -     5.0   - 
Kitingisha   -   35.0   - 
Kiberiti   -     5.0   - 
Msusa wa nungu -   10.0   - 
Mwakinyavu   -   15.0   - 
Karatasi   -     5.0   - 
Marasta   -     5.0   - 
Guzo   -     5.0   - 
Krismas   -   -    22.2 
Usimpejuma   -   -      5.6 
Cosmas   -   -      5.6 
                                                                                                                     

Appendix 6 Aggregate starch imports and values for Tanzania 

YEAR QUANTITIES TZS VALUE 

1999 4,202,960 1,586,981,407 

2000 5,182,093 1,657,058,366 

2001 3,755,813 1,330,199,894 

2002 5,435,263 1,975,344,180 

2003 8,025,824 1,933,936,897 

2004 7,896,975 3,178,255,998 

            May 2005 2,771,211 1,201,844,474 

Source: Tanzania Revenue Authority, August 2005; TZS (Tanzania shillings) 
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Appendix 7 Flow chart of traditional processing technologies 

 

A. BADA (Traditional dry fermented product) 
 

  Harvest 

 

 

  Peel 

 

  Heap [3 – 4 days] 

 

 

  Slice 

 

 

          Dry [one day] 

 

                         

   Milling 

 

 

Flour (Bada) 

 

B. KIVUNDE (Traditional wet fermented product) 
 

Harvest 
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Peel 

 

 

Soak (3 –4 days) and dewatering 

 

 

Breaking to small particles 

 

 

Dry (depend on sun but normally 2-3 days) 

 

 

   Milling 

 

 

                                                      Flour            
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Chapter 3 

Variability in root dry matter content, starch cont ent and yield in 
cassava cultivars in Tanzania 

 

Abstract 
 

High starch content is an important component of root quality for almost all uses of cassava. 

The study was conducted to evaluate the variability in root dry matter content, starch 

quantity and yield of 10 cassava cultivars in Tanzanian environments. The effect of cultivars 

and harvesting dates were investigated for one season at four locations; SRI-Kibaha, ARI-

Chambezi, ARI-Kizimbani and ARI-Hombolo. Harvesting was done at 7, 11, and 14 months 

after planting (MAP). The root dry matter content (RDMC) ranged between 29 and 40% with 

the overall mean of 34.3%. Cultivar Namikonga (40%) and Kalolo (29%) had the highest and 

lowest RDMC respectively. The RDMC at 7 MAP was higher in RDMC than at 11 and 14 

MAP. The starch content (StC) ranged between 20.3% (Vumbi) and 24.9% (Namikonga). 

The StC increased up to 7 MAP, while a decline was observed between 7 and 11 MAP. 

However, this decline may have commenced during the dry season and continued up to the 

start of the new season.  Starch yield (StY) ranged between 0.54 and 4.09 t ha-1. Cultivar 

Kiroba had the highest StY. Cassava brown streak disease root necrosis (CBSRN) 

contributed to poor performance of cultivar Vumbi. From this study it was learned that 

harvesting could be done at 7-8 MAP for Kibaha and Kizimbani, while at Chambezi and 

Hombolo, harvesting at 14 MAP could be more profitable. Both StC and fresh storage root 

yield (FSRY) are important traits when selecting for a commercial cultivar for starch 

production. Further studies are required to evaluate the effect of CBSRN on starch content 

and yield, and to determine the accurate trend of starch accumulation considering closer 

harvest intervals. 

 

3.1 Introduction 
 

Cassava is grown primarily for its enlarged roots, which contain large carbohydrate 

reserves, mainly starch (Westby, 2002). A typical range of composition in a cassava root 

includes: water (60-65%); carbohydrate (30-35%); fibre (0.8-1.3%); ash (0.3-1.3%), crude 
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protein (0.03-0.60%) and ether extracts (0.2-0.6%) (FAO, 2005; Rickard and Behn, 1987). 

Of its carbohydrate, 64-75% is starch (FAO, 2005). Therefore high starch content is an 

important component of root quality for almost all uses of cassava (Jennings and Hershey, 

1985). Moreover, cassava roots are valued for their starchy properties (Ceballos et al., 

2004). Cassava starch has a wide range of applications in both food-related and non-food 

related industries (Sudarmonowati et al., 2008; Rickard et al., 1991). In food industry starch 

derivatives have been used as additive compound (candies, bread, canned food, frozen 

food). In non-food industry they are used in the manufacture of adhesives, paper sizing and 

textiles (Rickard et al., 1991) and more recently in the production of ethanol and 

biodegradable polymers (Sudarmonowati et al., 2008). Cassava starch as a raw material in 

the food industry is bland in taste and has a low tendency to retrograde (Asaoka et al., 

1992). Its unique thickening properties, high purity, low cost and its ability to form clear 

viscous paste gives cassava starch a competitive advantage (Chatakanonda et al., 2003). 

Starch and starch derivatives, such as dextrins, glucose, and high fructose syrup are the 

main products of the cassava starch agro-industry.  

 

Variation in RDMC has been reported (Kawano et al., 1987). Studies have shown RDMC 

ranging between 15-45%, depending on the genotype and environmental conditions 

(Graham et al., 1999). For the vast majority of uses, cultivars with high dry matter content 

are preferred (Graham et al., 1999), because increased dry matter content has a positive 

effect on the extraction efficiency in cassava processing (flour or starch) (Kawano et al., 

1987). Variation in starch quantity with values ranging between 13.6 and 35.8% has been 

reported (Rickard et al., 1991; Rickard and Behn, 1987; Moorthy and Ramanujam, 1986). 

However, starch content as low as 1.2-3.5% at 6 months after planting (MAP) under 

stressed conditions and 20.4-25.9% without initial water stress conditions have also been 

reported (Santisopasri et al., 2001). Both starch quantity and quality are sensitive to the 

conditions at and immediately after planting. Dry conditions during the early establishment 

period results in roots with low dry weight and starch content (Sriroth et al., 2001). Starch 

quantity at harvest is affected by environmental factors such as rainfall and age of the crop 

prior to harvesting (Sriroth et al., 2001). 
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Several fibrous roots (3-14) that develop from adventitious roots become storage roots 

between 60 and 90 days after planting (DAP) (Alves, 2002). At initiation of storage root 

thickening, the cambium differentiates, the secondary xylem is formed and starch grains are 

deposited in storage cells, within the amyloplasts (IITA, 2005; Tester et al., 2004) However, 

storage root initiation is a critical physiological event for the development of root yield. The 

number of roots initiated, and root enlargement rate (or bulking rate) depend on genotype 

and environmental factors (IITA, 2005). Rapid root bulking is characterized by a mass of 

starch-rich parenchymatous tissues (Wholey and Cock, 1974). There is not enough 

information available regarding the optimum time of harvesting of cassava storage roots for 

commercially viable starch industry. This study was therefore conducted to evaluate the 

variability of storage root yield, dry matter content and starch content and yield over time of 

different cassava cultivars in four cassava growing areas in Tanzania. 

 

3.2 Materials and methods 
 

3.2.1 Germplasm source 
 

Ten cassava cultivars were evaluated in this trial (Table 3.1). Four cultivars were 

introductions from the Centro Internacional de Agricultura Tropical (CIAT) (AR 42-3, AR 40-

6, AR 37-80, CR 25-4) and one from the International Institute of Tropical Agriculture (IITA) 

(TMS 30001). The other five cultivars (Kalolo, Vumbi, Namikonga, Nanchinyaya and Kiroba) 

were from local germplasm which included an improved variety (Kiroba) which was released 

in 2004. The progenitors for the CIAT material include TME 3 (CMD2 gene donor parent), 

CW66 (green mite resistance), MTAI from Thailand, TMS 30555 from IITA and CM7951-5 

from Columbia. The CMD2 gene is believed to enhance resistance against cassava mosaic 

disease (CMD) (Fregene et al., 2006). Genotypes were considered a fixed effect because 

they were not randomly sampled to represent an identifiable population of germplasm. The 

genotypes were evaluated in one season across four locations in Tanzania.  
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3.2.2 Experimental design 
 

The experiment was laid out in a split plot design, with cultivars the main plots and 

harvesting dates the sub-plots. The genotypes were evaluated at four sites; SRI-Kibaha (E 

038°58´; S 06°46´), ARI-Chambezi (E 038°54´; S 06°3 4´), ARI-Hombolo (E 03°55´; S 

05°45´) on the Tanzania mainland and ARI-Kizimbani (E 039°26´; S 06°08´) on Zanzibar 

Island in the 2007/08 season (Table 3.2). At each location the trial was planted in three 

replications. The genotypes were grown under rain-fed conditions. Planting was done at the 

beginning of the rainy season, between December and January except for Zanzibar where 

planting was done in April.  

Table 3.1 Description of the ten cultivars used in the study 

Cultivar   Description 

1. AR 42-3 Clone from CIAT, resistant to CMD, CBB and CGM, sweet 

2. AR 40-6 Clone from CIAT, resistant to CMD, CBB and CGM, sweet 

3. AR 37-80 Clone from CIAT, resistant to CMD, CBB and CGM, sweet 

4. CR 25-4 Clone from CIAT, resistant to CMD, CBB and sweet 

5. TMS 30001 Clone from IITA, resistant to CMD, tolerant to CBSD, sweet (Hahn et al., 

1980) 

6. Kalolo Local cultivar, bitter taste, high dry matter, good flour quality 

7. Namikonga Local improved cultivar from Amani research centre (EAAFRO), sweet, high 

dry matter, tolerant to CBSD,  

8. Nanchinyaya Local cultivar, sweet, high dry matter, tolerant to CBSD 

9. Vumbi Local improved cultivar from Amani (EAAFRO) research centre, sweet, early 

bulking type, good cooking qualities 

10. Kiroba Local improved cultivar, early maturing, tolerant to CBSD, good cooking 

qualities, sweet, moderate tolerance to CMD 

EAAFRO=East African Agricultural and Forestry Research Organization; IITA=International Institute of Tropical 
Agriculture; CIAT=Centro Internacional de Agricultura Tropical CMD=Cassava mosaic disease; CBSD=Cassava 
brown streak disease; CGM=Cassava green mite; CBB=Cassava bacterial blight. 
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Table 3.2 Agro-ecological characteristics of the locations where evaluation was performed, 2007/ 
2008       

Location Agro-ecological Soil type Altitude   Rain  Wet season Temp. range 

 zones   (m) (mm)               (C°)  

Kibaha Sub-humid lowland 
Deep 
clay- 158 1028 Oct-Dec 18-32  

   sand   Mar-Jun   

         

Chambezi Humid lowland 
Deep 
sand  39 839 Oct-Dec 22-32  

   Well drained  Mar-Jun   

         

Kizimbani Humid lowland 
Sand 
loam 72 1730 Sept-Nov 21-32  

      March-May   

           

Hombolo Semi-arid,  Sand clay 1050 589 Nov-March 11-34  

  mid-altitude               

         

Plants were spaced at 1 m x 1 m giving a population of 10 000 plants ha-1. The plot size was 

35 m2, having seven rows of five plants for each row. No fertilizer or herbicide was applied 

during the course of the experiment. Hand weeding was done whenever necessary. 

Harvesting was done at 7, 11 and 14 MAP and data were collected from the middle rows 

leaving border rows in between plots and border plants at each end of the row to take care 

of the interference between plots (Kempton, 1997). The harvesting time represents 1) a 

period at the middle of normal harvesting dates (7 MAP); 2) just before normal harvesting 

time (11 MAP); and few months after normal harvesting time (14 MAP). The normal 

harvesting time for breeding trials is 12 MAP.  

 

3.2.3 Data collection 
 

Field data were collected from a net plot of three plants (3 m2). Samples for RDMC and 

starch quantity determination were taken. Data on yield and its components were collected 

at each harvest as follows: 

a. Fresh storage root yield (FSRY) included all roots in a plant;  

b. Shoot yield (SY) included stems, leaves, and stump;  
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c. Fresh biomass yield (FBY) included shoot and roots; 

d. Dry storage root yield (DSRY) was obtained by multiplying root dry matter content 

and fresh storage root yield; and  

e. Harvest index (HI) was determined by taking a ratio between storage root yield: total 

biomass     

f. Cassava mosaic disease (CMD) severity was subjectively scored at 6 MAP on a 

scale of 1-5 according to Mahungu and Kanju (1997) as follows: 

1= No symptoms observed; 

2= Mild chlorotic pattern on entire leaflets or mild distortion at base of 

     leaflets, the rest of leaflets appearing green and healthy; 

3= Strong mosaic pattern on entire leaf, and narrowing and distortion of 

     lower one-third of leaflets; 

4= Severe mosaic with distortion of two-thirds of leaflets and general  

     reduction of leaf size; 

5= Severe mosaic, distortion of four-fifths or more of leaflets, twisted and 

     misshapen leaves. 

g. Cassava brown streak disease (CBSD) severity was assessed subjectively at 6 MAP 

on above ground parts, on a scale of 1-5 (Mahungu and Kanju, 1997), where; 

1= No visible symptoms; 

2= Slight foliar chlorosis between leaf vein, no stem lesions; 

3= Foliar chlorosis between leaf veins, with mild stem lesions, no die-back 

4= Foliar chlorosis between leaf veins, and pronounced stem lesions with 

     beginning of die-back; 

5=Defoliation with pronounced die-back and stem lesions   

h. Cassava brown streak disease was assessed subjectively on root necrosis (below 

ground) as indicated in Figure 3.1 below.  
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           Figure 3.1 Cassava brown streak scoring for severity (class 1-5) 

 

i. Dry mass composition was determined according to Dixon and Nukenine (2000).  

• Sampling for root dry matter (RDMC) and starch was done by selecting three 

representative roots from a bulk of roots harvested from three plants. Cassava roots 

were washed and cut into thin slices. Duplicate samples of 100 g each were taken and 

dried in a forced draught oven at 70°C for 72 h. Th e dried samples were weighed to 

obtain the dry mass, and the dry matter content calculated as percentage of fresh 

storage root mass were obtained as a proportion of the fresh mass as follows: 

 

Dry matter content (%)     =       DM      X   100     ;                                            

                                                      FM 

Where; FM= Fresh mass and DM= Dry mass 

                                     

CBSD 
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j. Starch content (StC) expressed as percentage of fresh storage root yield was obtained by 

a modified method of Asaoka et al. (1992).  

• The starch granules were isolated by disintegrating 500 g of wet roots using a 

laboratory Waring blender with excess water. The slurry was double filtered through 

a sieve mesh and muslin cloth. The residue was rinsed twice with 500 ml of water 

each time to remove remnants of starch. The filtrate was allowed to settle for 2 h 

before decanting the liqour. The starch was suspended three times in 3 L water and 

non-starch materials removed by decanting the supernatant. The starch was then 

dried in a ventilated oven at 30-33ºC for 72 h, sieved with 200 µm mesh sieve, then 

placed in polythene bag and stored until required. When a large number of samples 

were collected and time did not allow prompt analyses, representative samples of 

roots were put in polythene bags and stored in a deep freezer at -20ºC within 6 h. 

The dried starch was calculated as a percentage of fresh root weight and dry weight 

basis as follows. 

 

Dry starch (%) =         DSW      X   100  

                          FM  

Where; FM= Fresh root mass; DSM= Dry starch mass 

 

k. Starch yield in t ha-1 was calculated as a product of fresh storage root yield multiplied with 

the percentage starch of the root. 

 

 3.2.4 Statistical analyses 
 

General analyses of variance were performed for all cultivars for yield and other agronomic 

traits, which included fresh biomass yield, storage root number, fresh storage root yield, dry 

matter content and starch content using GENSTAT release 11 (Payne et al., 2008) 

computer package. The F-test and significances of various main effects and interactions 

were determined using appropriate error term and degree of freedom (McIntosh, 1983). 
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Mean separation was done by Fisher’s protected least significance difference (LSD). 

Standard analysis of a split plot design was performed according to Cochran and Cox (1992) 

using the following linear model: 

 

 Yijk=µ + αi + βj + (αβ)ij + τk + (ατ)ik + εijk  

Where: 

Yijk = the response to the ith level factor A and the jth level of factor B in the kth 

block (replication); 

µ = the overall population mean; 

αi = the effect of the ith level of factor A (cultivar); 

βj = the effect of jth level of factor B (harvesting time); 

(αβ)ij = the interaction effect of the ith level of factor A and the jth level of factor  

               B; 

τk = the effect of the kth block (replication) 

(ατ)ik = the interaction effect of the ith level of factor A and the kth block 

              (replication) 

εijk  = the random errors (associated with the sub-plots) which are assumed to be 

independent and normally distributed with mean 0 and variance σ2; 

i =1, 2,…., a; j=1, 2, …., b; k=1, 2,….., r 

 

Combined analyses of variances (ANOVA) were carried out for fresh storage root yield, root 

number, dry matter yield, root dry mass expressed as a percentage of root fresh mass (%), 

starch content (%) and starch yield using Genstat software release 12 (2009). Partitioning of 

environment was done as location and genotype x location. The following mixed model, with 

genotype as fixed effect and environment as random was assumed (Bernado, 2002) as 

follows: 



104 
 

Pijk = µ + gi + lj +(gl)ij +eijk 

Pijk = phenotypic value of genotype I tested in replicate k in environment j 

µ = population mean 

gi = genotype effect 

lj = environment/location effect 

(gl)ij = genotype x environment interaction effect 

eijk = within environment error term associated with genotype i, and  

              environment j and replicate k 

 

Cultivar superiority index for starch content across four environments was determined by 

calculating the superiority index (Lin and Binns, 1988) using the model: Pi = Σ(Xij – Mj)
2/(2n) 

where Pi = superiority index of ith cultivar in the jth environment (i = 1, 2, 3,…,10; jth = 1, 2, 

3,….., 4); Xij= starch content for ith cultivar in jth environment; Mj= maximum starch content 

for all cultivars in the jth environment; n = number of environments (n = 1, 2, 3, 4). Cultivars 

with the lowest Pi value were regarded as the most superior and stable across test 

environments. 

 

The degree of association between FSRY, RDMC and starch content were measured as 

correlation coefficient (r) as follows (Mead et al., 1993):  

 r =    Cov(x,y) 

                      (SxSy) 

Where:  

  x = independent variable 

   y = dependent variable 

   S = sample standard deviation  
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Variance components for genotype by environment interaction (Bernado, 2002) 
 

 σ2
p = σ2

G  + σ2
E  + σ2

GE + σ2
e 

 

 σ2
G = Variance due to phenotype 

 σ2
E = Variance due to genotype 

 σ2
GE =  Variance due to genotype by environment interaction 

 σ2
e  = Error term 

 

3.3 Results  
 

3.3.1 Agronomic characteristics 
 

Agronomic characteristics considered include storage root number (SRN), SY and FSRY in t 

ha-1. Other characteristics included are disease mean scores for CMD and CBSD. Results 

indicated that cultivars and harvesting dates differed significantly (p≤0.001) in SY across 

sites with the exception of Hombolo (Table 3.3). Combined means across locations showed 

that SY ranged from 8.7 to 30.1 t ha-1 for cultivar TMS 30001 and AR 37-80 respectively. 

However, at Hombolo cultivar Namikonga had the highest SY of 20.6 t ha-1,  while in other 

locations cultivar AR 37-80 had the highest SY; Kibaha (12.6 t ha-1), Chambezi (64.7 t ha-1) 

and Kizimbani (21.0 t ha-1). When the four locations were compared, cultivars at Chambezi 

site had a higher mean SY of 41.9 t ha-1 and the lowest mean SY was recorded at Kizimbani 

(6.9 t ha-1) (Table 3.3). However, the differences in average SY varied significantly (p≤0.05) 

between cultivars within individual harvesting dates, the third harvest (14 MAP) showed 

significantly higher SY of 24.3 t ha-1 (Appendix 1).  
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Table 3.3 Shoot yield in t ha-1 of ten cultivars evaluated at four locations and three harvesting intervals in Tanzania, 2007/08 

Cultivar   Kibaha        Chambezi 
          7MAP         11MAP          14MAP          Mean†          7MAP        11MAP         14MAP         Mean† 
 
Kalolo  5.78  5.22    6.89  5.96  37.81  49.12  31.70  39.5 
Vumbi  7.39  3.94    6.89  6.24  23.90  46.11  40.62  36.9 
TMS 30001 3.56  5.39    4.28  4.41  14.62  29.00  11.13  18.2 
Namikonga 9.78  8.00  18.90            12.13  33.33  51.31  54.41  46.4 
AR 42-3 6.11  4.39    9.06  6.52  22.44  34.45    5.00  20.6 
AR 40-6 5.22  5.11  17.89  9.41  30.12  56.74  91.10  59.3 
Kiroba  6.78  4.83    9.22  6.94  34.25  53.61  57.21  48.3 
AR 37-80        11.06  7.06  19.67            12.59  46.34  86.11  61.73  64.7 
Nanchinyaya 6.67  7.33  12.33  8.78  15.00  44.43  69.41  43.0 
CR 25-4 2.67  2.89    5.89  3.81  15.00  30.41  40.00  28.5 
Mean  6.67  5.49  11.26  7.81  29.00  49.64  47.22  41.9 
LSD (0.05) 4.32  -    8.33  4.06  15.90  30.43  35.21  16.0 
CV (%)  17.9  29.6  36.92            30.64    6.70  14.00    7.23  22.4 
F probability 0.023*            0.107ns  0.006**            0.003**  0.002**  0.037*  0.002**            0.001*** 
  
Cultivar   Kizimbani        Hombolo   Overall 
          7MAP         11MAP         14MAP         Mean†            7MAP         11MAP         14MAP          Mean†   Mean‡ 
Kalolo  3.56  4.67  1.56  3.26    4.89  4.30  14.11    7.76  14.23  
Vumbi  4.67  4.22  3.89  4.26  12.22  6.91  29.47  16.20 15.75 
TMS 30001 3.11  4.22  1.33  2.89    6.33  6.47  15.78    9.53   8.67 
Namikonga 6.89            10.27            11.44  9.67  13.56  5.80  42.33  20.56 24.11 
AR 42-3 2.56  5.44  2.67  3.56    6.22  5.56  11.20    7.33   9.57 
AR 40-6 4.00  7.78            10.67  7.48  16.11            11.33  32.61  20.02 25.09 
Kiroba  6.67  4.44  3.11  4.74  14.00  7.63  26.22  15.95 19.45 
AR 37-80 8.44            23.56            31.11            21.04  12.56  8.19  29.33  16.69 30.07 
Nanchinyaya 4.22            11.67  4.11  6.67    7.56  7.78  11.67    9.00 17.50 
CR 25-4 4.00  6.89  7.56  6.15    5.67  3.06  33.50  14.07 13.54 
Mean  5.08  8.30  7.16  6.85  10.62  8.22  23.71  14.16 18.35 
LSD (0.05) -  9.79            -             10.09    6.23  5.74  -  - - 
CV (%)            14.00  24.3            38.20  22.7  20.51            11.81  12.01  43.2 36.00 
F probability    0.174ns  0.02*            0.104ns  0.04*  0.003**            0.001***              0.293ns  0.133 0.352 
     
Significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001 †= cultivar mean over three harvest dates; MAP=months after planting 
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Results also showed that both cultivars (p≤0.01) and harvesting dates (p≤0.001) differed 

significantly in SRN plant-1 (Table 3.4). The mean SRN across locations ranged between 2.1 

(Vumbi) and 5.2 (AR 40-6) roots plant-1 (Table 3.4). Cultivar AR 40-6 showed higher SRN at 

three locations as observed at Hombolo (6.6 roots), Chambezi (7.7 roots), and Kizimbani (2.2 

roots plant-1). However, at Kibaha site the highest number of SRN was observed from cultivar 

Nanchinyaya (4.1 roots ha-1). Among the three harvesting dates, the second harvest (11 MAP) 

had significantly (p≤0.001) higher SRN of 6.4 roots plant-1 than the other two harvests (Appendix 

1). Plants at Chambezi site had relatively higher mean SRN (5.1 root plant-1) than the other sites 

(Table 3.4). 

 

Significant differences were observed between cultivars (p≤0.05) and harvesting dates 

(p≤0.001) for FSRY (Table 3.5) across locations. The mean FSRY ranged between 4.0 and 17.5 

t ha-1 from cultivar Vumbi and AR 40-6, respectively. For individual harvesting dates, the mean 

FSRY of 17.7 t ha-1 at 14 MAP was significantly higher than the mean FSRY at 7 and 11 MAP 

(6.0 and 10.9 t ha-1, respectively) (Appendix 1). Plants at Chambezi site recorded relatively 

higher mean FSRY of 21.4 t ha-1 (Table 3.5).  

 

Cultivars differed significantly (p≤0.05) in mean dry storage root yield (DSRY) across locations. 

The mean DSRY ranged between 1.4 and 6.6 t ha-1 for cultivar Vumbi and Kiroba respectively 

(Table 3.6). Mean DSRY in t ha-1 were significantly higher (p≤0.001) at 14 MAP (5.8 t ha-1) than 

the other two harvesting dates (Appendix 2). When sites were compared, plants at Chambezi 

site had relatively higher DSRY of 6.7 t ha-1 than other sites (Table 3.6).  

 

Mean harvest index (HI) differed significantly between cultivars (p≤0.001). The differences in HI 

between harvesting dates were not significant. The HI ranged between 0.23 and 0.50 from 

cultivars Vumbi and Kiroba respectively (Table 3.7). For individual locations, cultivars at 

Kizimbani site had relatively higher mean HI (0.47) than the other three sites. When individual 

cultivars were considered for the same trait, cultivar AR 42-3 had generally higher HI of 0.72 (14 

MAP) while cultivar Namikonga recorded the lowest of 0.01 (7 MAP) both at Hombolo site 

(Table 3.7).  
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Table 3.4 Storage root number plant-1 of 10 cultivars evaluated at four locations and three harvesting intervals in Tanzania, 2007/08 

Cultivar   Kibaha        Chambezi 
        7 MAP        11 MAP       14 MAP          Mean†         7 MAP        11 MAP       14 MAP         Mean† 
Kalolo  2.4  3.0  2.4  2.6  6.3  6.4  5.1  6.0 
Vumbi  2.1  1.8  1.3  1.7  4.1  2.6  2.6  3.1 
TMS 30001 1.9  2.9  2.9  2.6  2.1  3.2  1.8  2.4 
Namikonga 3.4  2.8  3.4  3.2  5.1  3.2  7.1  5.2 
AR 42-3 2.9  2.6  2.6  2.7  4.0  4.0  1.1  3.0 
AR 40-6 3.0  3.1  4.0  3.4  6.4  7.7  9.0  7.7 
Kiroba  3.1  2.8  2.8  2.9  6.9  7.8  8.0  7.5 
AR 37-80 3.8  3.1  1.9  2.9  4.1  4.7  4.6  4.4 
Nanchinyaya 4.3  4.8  3.2  4.1  4.1  6.7  6.6  5.8  
CR 25-4 2.3  1.9  2.1  2.1  3.7  5.0  6.4   5.0 
Mean  2.9  2.8  2.7  2.8  4.7  5.2  5.3  5.1 
LSD (0.05)      15.6            16.6            13.8            14.8           25.5  -            34.5            23.3  
CV (%)  5.8            14.6            11.4            16.9           31.7            12.7            12.0            26.8 
F probability   0.092ns          0.073ns          0.036*          0.001***         0.029*          0.136ns           0.001ns          0.001ns  
          
Cultivar   Kizimbani       Hombolo     Overall 
           7 MAP         11 MAP         14 MAP         Mean†         7 MAP       11 MAP        14 MAP        Mean† Mean‡ 
 
Kalolo    0.7    1.3                0.6  0.9  2.2  2.7  4.8  3.2    3.2 
Vumbi    0.3                0.8    1.3  0.8   2.2  1.1  6.2  3.2    2.1 
TMS 30001   2.6    2.1    1.4  2.0  2.2  4.2  4.8  3.7    2.9  
Namikonga   1.9    1.7    2.4  2.0  0.1  0.2  3.8  1.3    3.0 
AR 42-3              0.3    2.7        0.3  1.1  1.9  4.1  5.3  3.8    2.8 
AR 40-6   1.9    2.3    2.3  2.2  4.2  7.2  8.3  6.7    5.1 
Kiroba    2.1    2.3    1.6  2.0  3.1  4.7  7.3  5.0    4.4 
AR 37-80   1.6    1.9    2.6  2.0  3.4  4.0  6.3  4.6    3.6 
Nanchinyaya   1.9    2.3    1.4  1.9  3.4  3.8  6.9  4.7    4.1 
CR 25-4   1.3    1.8    2.7  1.9  1.6  1.7  4.4  2.6    3.0 
Mean    1.8    2.1    1.6  1.9  2.9  4.2  5.7  4.3    3.6 
LSD (0.05) 11.9  17.6              21.1            10.9            20.8            27.3            34.0            26.7         17.5 
CV (%)  19.0  48.4  76.7            34.1            29.0            37.9            35.1            23.6         50.6 
F probability     0.001***             0.057ns            0.325ns          0.002**          0.001***          0.001***          0.048*          0.002**    0.001*** 
 
MAP =months after planting; significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001 †= cultivar mean over three harvest dates; ‡=Mean across locations  



109 
 

Table 3.5 Fresh storage root yield (t ha-1) of 10 cultivars evaluated in four locations and three intervals in Tanzania, 2007/08 

Cultivar    Kibaha        Chambezi 
  7 MAP  11 MAP  14 MAP  Mean†  7 MAP  11 MAP  14 MAP  Mean† 
 
Kalolo  4.00  4.92  6.11  5.02  18.61  36.72  32.62  29.29  
Vumbi  2.82  2.06  2.53  2.47    4.42    4.71    8.91    6.00 
TMS 30001 2.36  7.00  7.44  5.60    5.91  18.39  13.29  12.60 
Namikonga 5.50  5.39            11.61  7.50    6.74    8.93  40.00  18.53 
AR 42-3 4.37  4.56  9.19  6.04  10.33  23.91    5.63  13.31 
AR 40-6 3.79  4.89            10.62  6.43  14.21  32.39  60.00  35.53 
Kiroba  6.64  5.83            10.44  7.64  27.22  42.64  58.33  42.69 
AR 37-80 5.46  4.50  3.33  4.43  11.91  20.00  12.81  14.94 
Nanchinyaya 5.08  5.94  6.23  5.75    4.74  24.44  34.42  21.22 
CR 25-4 3.09  3.17  5.44  3.90    6.23  18.41  38.33  21.01 
Mean  4.30 (2.27) 4.69 (2.35) 7.38 (2.79) 5.45 (2.41) 10.81(3.27) 23.33 (4.65) 29.91 (5.10) 21.43 (4.34)  
LSD (0.05) 3.16 (0.67) 4.20 (0.83) 4.78 (0.90) 2.62 (0.51) 12.11 (1.41) 26.42 (2.37) 26.44 (2.65) 13.34 (1.54) 
CV (%)  13.5 (17.1) 29.7 (20.5) 23.9 (18.8) 28.2 (22.0) 14.14 (25.4) 66.51 (29.9) 51.82 (30.5) 36.71 (37.8) 
F probability       0.227 (0.16) 0.48 (0.42) 0.01 (0.01)       0.115 (<0.001) 0.021 (0.008)      0.188 (0.055) 0.002 (0.002)       0.085 
  
Cultivar  Kizimbani        Hombolo    Overall 
  7 MAP  11 MAP  14 MAP  Mean†  7 MAP  11 MAP  14 MAP  Mean† Mean‡ 
Kalolo  2.00  6.22  2.00  3.41  2.34  2.11  11.11  5.19 10.92  
Vumbi  1.44  1.56  2.78  1.93  2.33  1.12  18.13  7.20   3.97 
TMS 30001 3.56  9.56  3.78  5.63  2.85  5.93  16.73  8.50   9.10 
Namikonga 2.44  8.89            11.33  7.56  0.23  0.47    9.44  3.38   9.14  
AR 42-3 0.67  9.78  0.89  3.78  1.85  4.44  24.51            10.27   9.12 
AR 40-6 13.33  9.33  7.33            10.00  6.17            12.07  37.52            18.58 17.53 
Kiroba  9.78            13.11  7.78            10.22  5.33  4.29  27.33            12.32 17.04 
AR 37-80 4.44            15.56            13.11            11.04  5.08  4.54  33.38            14.33 12.35 
Nanchinyaya 4.89            13.78  8.00  8.89  3.79  7.00    8.39  6.39 10.71 
CR 25-4 2.89  9.11            16.89  9.63  1.57  1.37  27.36            10.10 10.36 
Mean  5.06 (2.25)       10.28 (3.21)               7.12 (2.64) 7.49 (2.63) 3.83 (1.93) 5.34 (2.16) 20.50 (4.42)          9.89 11.13 (3.14) 
LSD (0.05) -       -      -   (1.50)                 -   (1.72)  -       (0.97) 3.69 (0.89) 4.91 (0.94) -         (2.83)           -         3.01(-) 
CV (%)             127.3 (40.8)        56.7 (27.3)                89.3 (37.9) 58.2 (39.1) 56.6 (26.9) 54.0 (25.4) 70.6   (37.2)           52.5   96.1(31.6) 
F probability      0.319 (0.113)     0.179 (0.100) 0.111 (0.043)     0.173 (0.002)      0.001 (0.048) 0.001 (0.002) 0.222(0.24)      0.106   0.001(0.596) 
 
MAP =months after planting; significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; †= cultivar mean over three harvest dates; ‡=Mean across locations 
Values in brackets are transformed using Genstat release 12; Square root = (x + 1.0)**0.5, x=observed value 
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Table 3.6 Dry storage root yield (t ha-1) of 10 cultivars evaluated at four locations and three harvesting intervals in Tanzania, 2007/08 

Cultivar    Kibaha        Chambezi 
          7 MAP         11 MAP        14 MAP         Mean†          7 MAP          11 MAP          14 MAP           Mean† 
 
Kalolo  1.36  1.56  1.56  1.50  6.20  10.36    9.30    8.62 
Vumbi  0.98    0.28  0.58  0.62  1.47    0.92    2.40    1.60 
TMS 30001 0.90  2.71  1.93  1.85  1.80    5.01    4.60    3.81 
Namikonga 2.31  2.08  4.71  3.04  2.58    3.17  15.57    7.11 
AR 42-3 1.72  1.66  2.74  2.04  3.60    8.08    0.00    3.89 
AR 40-6 1.56  1.84  3.29  2.23  4.98  10.65  17.46  11.03 
Kiroba  2.41  2.03  3.51  2.65  9.49  14.79  18.57  14.29 
AR 37-80 2.10  1.39  0.87  1.45  3.91    0.00    1.04    1.65 
Nanchinyaya 2.16  2.32  2.07  2.18  1.86    9.24  12.45    7.85 
CR 25-4 1.22  1.08  1.85  1.38  2.24    5.97  11.29    6.50 
Mean  1.66 (1.62) 1.65 (1.61) 2.35 (1.78) 1.89 (1.67) 3.77 (2.10)   7.07 (2.63)   9.14 (2.90)   6.68 (2.55) 
LSD (0.05) 1.18 (0.36) 1.69 (0.47) 1.57 (0.44) 0.95 (0.26) 4.25 (0.81)   7.86 (1.25)   8.57 (1.37)   4.92 (0.85) 
CV (%)  41.7 (12.9) 60.2 (17.2) 39.2 (14.5) 53.5 (16.7) 66.1 (22.6)   65.3 (27.8)   55.0 (27.9)   78.6 (35.4) 
F probability      0.142 (0.105)      0.265 (0.144)        0.001(0.001)       0.001 (0.001)         0.026 (0.014)        0.021 (0.002) 0.001 (0.001)      0.001 (0.001) 
  
Cultivar  Kizimbani        Hombolo    Overall 
          7 MAP         11 MAP         14 MAP          Mean†           7 MAP         11 MAP           14 MAP         Mean†   Mean‡ 
Kalolo  0.62  2.08  0.60  1.10  1.64  0.44    3.53  1.63 3.20 
Vumbi  0.40  0.51  0.93  0.61  0.91  0.14    6.65  2.51 1.37 
TMS 30001 1.13  2.80  0.86  1.60  1.05  1.37    6.43  2.95 2.15 
Namikonga 1.11  4.11  4.89  3.37  0.00  0.00    3.59  1.20 3.82 
AR 42-3 0.22  2.85  0.28  1.12  0.72  1.19  10.42  4.11 2.76 
AR 40-6 4.88  3.40  2.75  3.67  2.60  3.17  14.92  6.89 6.30 
Kiroba  3.98  4.52  3.18  3.89  2.13  1.01  10.43  4.52 6.55 
AR 37-80 1.73  6.14  4.59  4.15  2.01  0.72  12.42  4.63 3.54 
Nanchinyaya 2.10  5.56  3.26  3.64  1.63  1.31    3.30  2.08 4.16 
CR 25-4 1.17  3.73  6.79  3.90  0.63  0.19  10.01  3.61 4.08 
Mean  1.95 (1.62) 3.82 (2.12) 2.86 (1.83) 2.83 (1.86) 1.59 (1.48) 1.35 (1.35)     7.63(2.86)          3.46(1.90)  3.84 (1.99) 
LSD (0.05) 4.13 (-)  3.79 (0.80)            4.07 (0.93)    2.37 (0.53) 1.40 (0.42) 1.56 (0.44)         9.24  -                    4.35(-)      3.78 (-) 
CV (%)  21.1 (31.8) 58.3 (22.2) 39.2 (29.9) 89.4 (31.0) 51.6 (16.3) 68.0 (18.7)    71.1(32.7)         134.4(49.6) 107.2(26.2) 
F probability     0.269 (0.103)        0.105 (0.043)       0.062 (0.021)        0.005 (0.001)        0.001(0.011)       0.001 (0.004)   0.117(0.17)      0.369(0.26) 0.001(0.232) 
     
MAP =months after planting; significance levels:  * p≤0.05; ** p≤0.01; *** p≤0.001; †= cultivar mean over three harvest dates; ‡=Mean across locations 
Values in brackets are transformed using Genstat release 12; Square root = (x + 1.0)**0.5, x=observed value 
 



111 
 

Table 3.7 Harvest index of 10 cultivars evaluated in four locations and three harvesting intervals in Tanzania, 2007/08 

Cultivar   Kibaha        Chambezi 
          7 MAP        11 MAP        14 MAP         Mean†          7 MAP        11 MAP        14 MAP         Mean† 
 
Kalolo  0.46  0.44  0.51  0.47  0.32  0.39  0.50  0.40  
Vumbi  0.29  0.36  0.27  0.31  0.16  0.09  0.16  0.14 
TMS 30001 0.39  0.49  0.63  0.51  0.26  0.33  0.67  0.42 
Namikonga 0.36  0.37  0.40  0.38  0.17  0.13  0.42  0.24 
AR 42-3 0.42  0.54  0.54  0.50  0.32  0.41  0.53  0.42 
AR 40-6 0.42  0.51  0.55  0.44  0.30  0.35  0.39  0.35 
Kiroba  0.47  0.56  0.55  0.52  0.41  0.44  0.51  0.45 
AR 37-80 0.34  0.39  0.16  0.30  0.21  0.19  0.17  0.19 
Nanchinyaya 0.44  0.44  0.32  0.40  0.25  0.35  0.33  0.31 
CR 25-4 0.55  0.50  0.47  0.51  0.28  0.38  0.48  0.38 
Mean  0.41  0.45  0.42  0.43  0.26  0.30  0.41  0.32 
LSD (0.05) 0.15  0.17  0.16  0.10  0.12  0.11  0.08  0.07  
CV (%)  21.8  21.8  19.0  14.2  27.8  21.1  11.6  18.3 
F probability 0.09ns            0.097ns            0.001***  0.02**            0.006**            0.001***            0.001***            0.001*** 
  
Cultivar   Kizimbani        Hombolo   Overall 
          7 MAP          11 MAP         14 MAP          Mean†          7 MAP        11 MAP        14 MAP         Mean†   Mean‡ 
Kalolo  0.24  0.59  0.27  0.37  0.19  0.32  0.19  0.23 0.39 
Vumbi  0.19  0.21  0.31  0.24  0.14  0.14  0.39  0.23 0.22 
TMS 30001 0.55  0.65  0.75  0.65  0.26  0.47  0.24  0.33 0.45 
Namikonga 0.26  0.46  0.47  0.40  0.01  0.07  0.18  0.09 0.27 
AR 42-3 0.21  0.50  0.16  0.29  0.19  0.44  0.72  0.45 0.39 
AR 40-6 0.61  0.55  0.41  0.52  0.25  0.53  0.54  0.44 0.44 
Kiroba  0.57  0.75  0.68  0.67  0.26  0.35  0.47  0.36 0.50 
AR 37-80 0.33  0.38  0.31  0.34  0.31  0.37  0.53  0.40 0.31 
Nanchinyaya 0.52  0.56  0.66  0.58  0.33  0.41  0.42  0.39 0.42 
CR 25-4 0.43  0.56  0.69  0.56  0.20  0.31  0.51  0.34 0.45 
Mean  0.41  0.54  0.46  0.47  0.23  0.35  0.44  0.33 0.39 
LSD (0.05) 0.25  0.25  0.36  -  0.16  0.19  0.24  - - 
CV (%)  36.7  27.9  20.2  23.0  38.2  33.6  31.1  40.3 32.3 
F probability    0.007**            0.018*            0.029*            0.246ns             0.011*            0.003**            0.008**            0.098ns0.703ns  
     
MAP =months after planting; significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; †= cultivar mean over three harvest dates; ‡=Mean across 
locations 
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3.3.2 Virus diseases  
 

Cultivars differed significantly (p≤0.001) in their reaction to cassava mosaic disease (CMD) 

and cassava brown streak disease (CBSD) (Table 3.8 and 3.9). The mean score across 

locations showed that cultivars Namikonga (2.7) and Vumbi (2.4) had higher rates of CMD 

infection than other cultivars. Cultivars AR 40-6 (1.1), AR 42-3 (1.2), AR 37-80 (1.2) and CR 

25-4 (1.2) showed the lowest rates of CMD infection. Plants at Chambezi location recorded 

the highest rate of CMD infection (2.2). Combined mean score across locations indicated 

significant differences in the rate of CBSD infection between cultivars. Cultivar CR 25-4 (2.9) 

and AR 37-80 (2.8) had the highest rate of CBSD infection across locations, while cultivar 

Namikonga showed the lowest rate of CBSD infection (1.3). Hombolo site had significantly 

lower rate of CBSD (1.5) and CMD (1.2) infection compared to the other sites.  

 

Significant differences in CBSRN were observed between cultivars (p≤0.001). However, 

harvesting dates did not significantly influence CBSRN, except for Chambezi site. Cultivar 

Vumbi recorded an overall mean score of 2.8 across locations and harvesting dates (Table 

3.10). For individual locations, cultivar Vumbi scored 3.8 (Kibaha); 3.0 (Chambezi); 2.7 

(Kizimbani); and 1.7 (Hombolo). However, cultivar AR 42-3 scored 3.5 and 3.1 at Chambezi 

and Kizimbani, respectively which was relatively higher than other cultivars. Cultivars 

Namikonga and Nanchinyaya did not exhibit CBSRN at any of the sites or three harvesting 

dates and appeared to have tolerance to CBSD.  
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Table 3.8 Cassava mosaic disease (CMD) severity of 10 cultivars recorded at six months 
after planting at four locations in Tanzania, 2007/08  

 
Location 

                                                                                                                                                                
Cultivar         Kibaha Chambezi Kizimbani Hombolo Overall mean   
                                                                                                                                        
         
Kalolo  1.91  3.07  2.13  1.07  2.05   
Vumbi  2.85  3.27  2.09  1.21  2.36     
TMS 30001 1.82  2.44  1.82  1.00  1.77 
Namikonga 2.24  3.57  2.83  2.25  2.72 
AR 43-2 1.02  1.00  1.96  1.00  1.25 
AR 40-6 1.00  1.13  1.43  1.00  1.14 
Kiroba  1.80  2.85  2.36  1.07  2.02 
AR 37-80 1.00  1.02  1.62  1.13  1.19 
Nanchinyaya 2.44  2.87  2.13  1.05  2.12 
CR 25-4 1.00  1.00  1.89  1.00  1.22 

Mean  1.84  2.20  2.03  1.17  1.82     
LSD (5%) 0.35  2.22  0.37  0.33  0.44 
CV (%)  3.70   7.80   5.20  4.00              3.70 
F probability    0.001***            0.001***            0.001***            0.001***            0.001*** 
 
Significance levels: * p≤0.05**; p≤0.01; *** p≤0.001                                                                                                                                                                                       
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Table 3.9 Cassava brown streak disease (CBSD above ground) severity recorded at six 
months after planting of 10 cultivars evaluated at four locations in Tanzania, 2007/08   

 
Location 

                                                                                                                                                                
Cultivar        Kibaha Chambezi Kizimbani     Hombolo Overall mean   
                
 
Kalolo  2.43  2.12  3.00  1.17  2.18 
Vumbi  1.47  2.08  2.98  1.36  1.98 
TMS 30001 2.33  2.62  1.52  1.08  1.89  
Namikonga 1.09  1.27  1.92  1.05  1.33 
AR 42-3 3.74  2.93  2.10  1.56  2.58  
AR 40-6 2.64  2.65  1.72  1.90  2.23  
Kiroba  2.28  1.82  2.20  1.27  1.89 
AR 37-80 3.54  2.97  2.72  2.11  2.83  
Nanchinyaya 2.07  2.16  1.98  1.16  1.84  
CR 25-4 3.25  2.68  3.29  2.43  2.91  

Mean  2.38  2.31  2.34  1.46  2.11   
LSD (5%) 0.35  0.85  0.72  0.39  0.58 
CV (%)  2.30  7.30  12.4  9.70  7.20 
F probability    0.001***            0.013**            0.001***            0.001***            0.001*** 
 
   Significance levels: * p≤0.05**; p≤0.01; *** p≤0.001                                                                                                                                                                                   
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Table 3.10 Root necrosis scores (for CBSD) of 10 cultivars recorded at each harvest date at four locations in Tanzania, 2007/08 
Cultivar   Kibaha        Chambezi 
          7 MAP          11 MAP         14 MAP         Mean†          7 MAP         11 MAP        14 MAP         Mean† 
Kalolo  1.67  1.67  2.33  1.89  1.33  1.00  2.33  1.56 
Vumbi  3.67  4.00  3.67  3.78  3.67  4.00  1.33  3.00 
TMS 30001 3.00  2.00  3.00  2.67  3.33  2.00  2.17  2.50 
Namikonga 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00 
AR 42-3 2.33  2.33  2.67  2.44  3.67  2.67  4.17  3.50 
AR 40-6 1.00  1.00  1.00  1.00  1.00  1.33  1.33  1.22 
Kiroba  1.33  1.00  1.00  1.11  1.00  1.00  1.00  1.00 
AR 37-80 3.00  3.67  3.67  3.44  3.00  3.33  3.33  3.22 
Nanchinyaya 1.00  1.00  1.00  1.00  1.67  1.00  1.00  1.22 
CR 25-4 1.67  1.67  2.00  1.78  2.33  2.00  2.33  2.22 
Mean  2.03  2.00  2.18  2.07  2.15  1.94  2.03  2.04 
LSD (0.05) 0.93  0.68  1.63  1.12  1.31  1.06  1.15  1.15 
CV (%)  26.8  19.8  43.8  16.1  35.8  32.1  33.1  21.9 
F probability    0.001***           0.001***            0.006**            0.991ns             0.001***            0.001***            0.001***            0.004** 
   
Cultivar   Kizimbani        Hombolo   Overall 
         7 MAP        11 MAP        14 MAP         Mean†          7 MAP        11 MAP        14 MAP         Mean†   Mean‡ 

Kalolo  2.33  2.33  2.83  2.50  1.47  2.00  1.13  1.53  1.80  
Vumbi  1.34  3.83  2.83  2.67  1.00  2.67  1.33  1.67 2.77 
TMS 30001 2.00  2.67  2.00  2.22  2.00  2.33  1.67  2.00 2.38 
Namikonga 1.00  1.00  1.00  1.00  1.01  1.00  1.00  1.02 1.00 
AR 42-3 3.53  2.67  3.20  3.13  1.92  2.33  1.00  1.75 2.63 
AR 40-6 1.33  1.67  1.33  1.44  1.00  1.33  1.00  1.11 1.19 
Kiroba  1.00  1.00  1.00  1.11  1.00  1.33  1.00  1.11 1.08 
AR 37-80 2.00  1.67  2.00  1.89  1.33  2.33  2.00  1.89 2.61 
Nanchinyaya 1.00  1.00  1.00  1.00  1.00  1.33  1.00  1.11 1.08 
CR 25-4 1.33  1.33  1.33  1.33  1.00  2.00  1.00  1.33 1.67 
Mean  1.63  1.86  1.87  1.78  1.25  1.82  1.19  1.42 1.82 
LSD (0.05) 1.06  1.14  -  -  0.72  -  0.39  - 0.63 
CV (%)  37.6  36.3  55.3  43.1  33.6  35.9  19.9  37.0 37.5 
F probability    0.004**            0.002**            0.272ns            0.472ns             0.022*  0.55ns            0.001***           0.432ns0.001***  
 
MAP =months after planting; significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; †= cultivar mean over three harvest dates; ‡=Mean across locations 
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3.3.3 Root dry matter content 
 

Root dry matter content (RDMC) differed significantly between cultivars (p≤0.05) within 

individual locations (Table 3.11) and harvesting dates (p≤0.05). However, harvesting dates 

across locations did not cause significant differences in RDMC (Appendix 2). The RDMC 

based on cultivar averages over locations and harvesting dates ranged from 29.1% (Kalolo) 

to 40.3% (Namikonga) with the overall mean of 34.1% (Table 3.11). However, individual 

cultivar averages for the trait ranged from 10.0% (Kalolo; 14 MAP) to 46.5% (Namikonga; 11 

MAP) both at Kizimbani. For individual locations, the lowest RDMC was observed from 

cultivar AR 37-80 at Chambezi (16.0%; 14 MAP) and Hombolo (13.8%; 11 MAP) and the 

highest for the same locations was observed from cultivar Nanchinyaya (39.3% and 42.8% 

respectively). At Kibaha the RDMC ranged from 22.0% (Vumbi; 11 MAP) to 42.2% 

(Nanchinyaya; 7 MAP) and at Kizimbani RDMC ranged between 10.0% (Kalolo; 14 MAP) 

and 46.5% (Namikonga; 11 MAP). The RDMC at 7 MAP was significantly higher (37.2%) 

than other harvesting dates across locations, (Appendix 2). 

 

3.3.4 Starch content   
 

Significant differences (p≤0.01) in starch content (StC) were observed between cultivars 

within individual harvesting dates (Appendix 2; Table 3.12).  The overall mean StC was 

22.8%, with the maximum StC of 24.9% (Namikonga) and the minimum content of 20.29% 

(Vumbi) across locations, cultivars and harvesting dates. However, for individual cultivars 

the same trait ranged from 2.8% (Hombolo; 11 MAP) to 35.2% (Kizimbani; 14 MAP) both 

from cultivar TMS 30001 observed at different harvesting dates (Table 3.12). For individual 

harvesting dates across locations, the mean StC ranged from 20.0% (11 MAP) to 24.8% (14 

MAP) (Appendix 2). However, at 7 MAP, cultivar AR 42-3 had StC of 26.9% which was the 

highest for the harvesting date; the lowest was recorded from cultivar Vumbi (16.1%; 7 

MAP), (Appendix 2).  However, cultivar Vumbi had the highest StC of 24.0% (11 MAP) and 

cultivar AR42-3 the lowest (17.0%; 11 MAP) (Appendix 2). At 14 MAP, cultivar TMS 30001 

had the highest StC (30.6%) across all locations and cultivars, while the lowest at 14 MAP 

was observed from cultivar Kalolo (16.3%). Different locations had relatively different StC for 

the same cultivars. At Kibaha, the highest StC was observed from cultivar AR 37-80 (30.1%; 
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7 MAP), and the lowest from cultivar Kalolo (14.5%; 14 MAP), (Table 3.12; Figure 3.2). At 

Chambezi cultivar Namikonga showed the highest StC (28.5%; 14 MAP) while the lowest 

was from cultivar AR 42-3 (13.0%; 11 MAP) (Figure 3.3). At Kizimbani, cultivar TMS 30001 

had the highest (35.2%) while cultivar Kalolo had the lowest (10.5%) StC both at 14 MAP 

(Figure 3.4). At Hombolo, the StC ranged between 2.8% (Kalolo; 11 MAP) and 31.9% (AR 

42-3; 14 MAP) (Figure 3.5). When sites were compared, Kizimbani site had relatively higher 

mean StC (25.2%) than other sites. 

 

Significant differences between harvesting dates were observed (p≤0.001) in StC as a 

proportion of DSRY (dry starch/dry storage root yield) (Table 3.13). Cultivar TMS 30001 

showed highest StC of 72% on dry weight basis, while AR 40-6 was the lowest (58%). The 

StC of 70% at 14 MAP was significantly higher than at 7 and 11 MAP (p≤0.01) (Table 3.13). 
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Table 3.11 Root dry matter content (%) of 10 cultivars evaluated in four locations and three harvesting intervals in Tanzania, 2007/08 

Cultivar   Kibaha        Chambezi 
           7 MAP           11 MAP           14 MAP           Mean†           7 MAP          11 MAP         14 MAP           Mean† 
Kalolo  34.17  31.33  25.67  30.39  33.17  29.00  28.67  30.28  
Vumbi  35.33  27.70  22.00  28.35  33.17  36.42  32.17  33.92 
TMS 30001 36.33  36.83  25.83  33.00  33.40  31.65  33.71  32.92 
Namikonga 42.17  37.50  40.17  39.94  38.33  36.83  39.00  38.06 
AR 42-3 39.33  36.33  29.00  34.89  35.33  33.83  30.96  33.58 
AR 40-6 41.00  36.83  32.67  36.83  35.17  32.67  29.67  32.50 
Kiroba  36.17  34.17  33.67  34.67  35.33  34.83  31.50  33.89 
AR 37-80 38.50  31.50  29.17  33.06  33.00  24.79  16.04  24.61  
Nanchinyaya 42.17  39.17  33.17  38.17  39.33  37.67  34.67  37.22 
CR 25-4 38.83  33.50  33.00  35.11  36.00  32.33  29.50  32.61 
Mean  38.30  34.43  30.68  34.47  35.40  37.22  30.75  33.16 
LSD (0.05)   3.91    4.81    7.17    5.29    2.61    2.88    6.66    4.04 
CV (%)    6.00    8.10    13.7    9.80    4.3    4.8  12.2    7.10 
F probability      0.003**              0.004**              0.003**              0.001***            0.001***  0.001*** 0.001*** 0.001*** 
  
Cultivar    Kizimbani        Hombolo  Overall 
           7 MAP          11 MAP          14 MAP           Mean†            7 MAP          11 MAP         14 MAP           Mean†  Mean‡  

Kalolo  28.88  33.50  10.00  24.13  40.04  19.33  29.77  29.78 28.12 
Vumbi  29.67  20.45  28.22  26.11  38.00  22.05  35.50  31.84 30.95 
TMS 30001 31.67  32.17  33.17  32.33  33.87  22.33  40.20  32.00 32.44 
Namikonga 45.00  46.50  42.67  44.72  40.19  26.41  38.00  34.87 40.16 
AR 42-3 34.33  30.83  31.46  32.21  26.00  27.00  41.00  31.33 33.37 
AR 40-6 38.33  36.33  36.83  37.33  41.50  26.00  40.08  34.74 35.63 
Kiroba  39.33  35.50  40.50  36.97  40.17  20.67  39.67  33.50 35.13 
AR 37-80 37.33  35.50  40.50  38.44  39.33  13.83  34.00  29.06 32.04 
Nanchinyaya 42.67  39.50  41.37  41.18  42.83  21.33  38.83  34.33 33.59 
CR 25-4 40.33  40.50  40.17  40.33  39.33  35.83  37.33  37.50 35.54 
Mean  37.08  35.84  34.55  35.82  38.19  24.40  37.31  32.86 34.27 
LSD (0.05)   5.34  12.66  10.76    9.91  -  -    6.16  10.43 - 
CV (%)      8.4               20.7    17.6    14.8  20.00    28.9      9.6    19.6   19.7 
F probability 0.001*** 0.041*  0.001*** 0.034*  0.356ns  0.054ns  0.048*  0.023* 0.098 
     
MAP =months after planting; significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; †= cultivar mean over three harvest dates; ‡=Mean across locations 



119 
 

Table 3.12 Mean starch content in percentage (fresh mass basis) of 10 cultivars evaluated in four locations in Tanzania 

Cultivar   Kibaha        Chambezi 
           7 MAP          11 MAP           14 MAP            Mean†            7 MAP         11 MAP         14 MAP          Mean† 
Kalolo  26.87  22.75  14.53  21.10  22.00  15.41  16.13  17.58  
Vumbi  20.87  23.36  17.33  18.69  24.29  14.33  22.41  18.44 
TMS 30001 28.07  15.83  22.84  21.01  25.78  16.44  22.41  22.22 
Namikonga 29.73  22.70  25.13  24.43  25.63  22.07  28.47  25.39 
AR 42-3 27.43  23.33  19.83  22.33  25.00  13.00  22.41  17.56 
AR 40-6 29.73  22.63  18.67  21.08  20.80  15.00  19.00  18.27 
Kiroba  24.97  21.37  23.00  21.21  22.60  19.00  21.13  20.91 
AR 37-80 30.07  25.97  24.80  25.43  23.73  16.44  22.41  20.38 
Nanchinyaya 29.20  28.47  24.50  26.63  26.72  19.53  28.40  24.88 
CR 25-4 27.77  24.92  17.47  21.52  25.17  14.13  18.53  19.28 
Mean  28.04  23.45  20.90  22.25  24.29  16.44  22.41  20.60 
LSD (0.05) -  -  -  -  -  4.062  6.623  - 
CV (%)    18.1    12.5    19.4    17.5    10.9    13.7    16.6    16.3 
F probability 0.361                   0.12  0.166  0.112  0.153  0.006  0.007  0.060 
  
Cultivar   Kizimbani        Hombolo           Overall 
           7 MAP          11 MAP          14 MAP          Mean†            7 MAP           11 MAP          14 MAP           Mean†  Mean‡  

Kalolo  17.62  20.60  10.48  15.11  15.11    2.79  21.70  13.14 20.72 
Vumbi  24.79  22.15  28.30  28.45  17.82    5.49  24.24  15.85 20.28 
TMS 30001 22.83  20.86  35.20  28.11  17.41  10.25  28.47  18.66 24.19 
Namikonga 29.60  24.60  31.90  28.27  18.09    5.76  24.51  16.12 24.91 
AR 42-3 24.79  22.15  28.10  25.19  24.77  11.77  31.86  22.80 23.25 
AR 40-6 25.21  24.79  30.40  26.21  20.26    7.27  25.47  17.67 20.68 
Kiroba  26.09  15.53  26.10  22.72  20.35    9.76  30.24  20.11 22.67 
AR 37-80 26.58  23.47  32.40  25.06  23.51    6.70  27.87  19.36 23.66 
Nanchinyaya 24.59  22.13  28.30  25.14  20.92  10.94  29.33  20.39 24.50 
CR 25-4 24.79  22.73  27.10  24.61  17.77    5.45  24.19  15.86 23.27 
Mean  24.79  22.15  28.10  25.20  19.71    7.95  26.49  18.01 22.81 
LSD (0.05) 2.98    6.61  11.84    8.81  -  -    6.74  - - 
CV (%)     5.7    17.0    22.4    19.7    12.8    22.2    14.8    20.0   19.8 
F probability 0.003  0.156  0.051  0.033  0.564  0.095  0.051  0.766 0.060 
 Cultivar                0.732 
 Harvest date               0.002 
 
MAP (months after planting); significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; †= cultivar mean over three harvest dates; ‡=Mean across locations  
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            Figure 3.1 Starch content of 10 cultivars across sites   

 

 

           Figure 3.2 Starch content at Kibaha for different cultivars and harvesting dates 
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             Figure 3.3 Starch content at Chambezi for different cultivars and harvesting dates 

 

               Figure 3.4 Starch content at Kizimbani for different cultivars and harvesting dates 
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               Figure 3.5 Starch content at Hombolo for different cultivars and harvesting dates 

 
 
Table 3.13 Mean starch content as a proportion of dry root yield of 10 cultivars, 
 2007/08 
Cultivar        7 MAP      11 MAP      14 MAP          Mean 
 
Kalolo   0.64  0.66  0.58  0.64   
Vumbi   0.32  0.42  0.67  0.60 
TMS 30001  0.67  0.63  0.83  0.72 
Namikonga  0.63  0.58  0.69  0.62 
AR 42-3  0.68  0.57  0.69  0.65 
AR 40-6  0.58  0.53  0.65  0.58 
Kiroba   0.62  0.54  0.70  0.62 
AR 37-80  0.69  0.66  0.82  0.70 
Nanchinyaya  0.63  0.54  0.74  0.65 
CR 25-4  0.55  0.57  0.62  0.62 
Mean   0.60  0.57  0.70  0.64 
LSD (0.05)  0.12  -           0.134  - 
CV (%)   0.26  33.2  14.9  23.4 
F probability           0.001             0.07           0.023           0.231 
 Cultivar                0.863 
 Harvest date                0.001 
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Figures 3.6 to 3.9 summarize the performance of each cultivar at each site in terms of StC. At 

Kibaha (Figure 3.6) highest StC was attained at 7 MAP, whereby cultivar Namikonga and 

Nanchinyaya showed higher StC. However, cultivar TMS 30001 showed a major decline from 7 

to 11 MAP, probably due to its reaction to CBSD infection in the roots or it was not stable to the 

environmental changes from the dry and wet season. At Chambezi (Figure 3.7), almost all 

cultivars showed a decline in StC between 7 and 11 MAP. At Kizimbani (Figure 3.8) all cultivars 

had a decline between 7 and 11 MAP with the exception of cultivar Kalolo. However, the decline 

at Kizimbani site was small compared to cultivars at Chambezi site. Cultivar Kalolo did not 

recover even at 14 MAP at Kizimbani. The CBSRN was high (2.83≈3) for cultivar Kalolo at 14 

MAP such that StC was affected. At Hombolo (Figure 3.9), all cultivars except TMS 30001 had a 

major decline in StC between 7 and 11 MAP. However, starch accumulation resumed later and 

an increase was observed at 14 MAP. 
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Figure 3.6 Starch content of 10 cultivars at 7, 11, and 14 months after planting, Kibaha, site 
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Figure 3.7 Starch contents of 10 cultivars at 7, 11, and 14 months after planting, Chambezi site 
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Figure 3.8 Starch content of 10 cultivars at 7, 11, and 14 months after 
planting, Kizimbani site 
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Figure 3.9 Starch content of 10 cultivars at 7, 11, and 14 months after planting, Hombolo site 
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3.3.5 Starch yield 
 

Significant differences in StY (p≤0.001) were observed between harvesting dates (Appendix 2) 

as well as between cultivars across locations (Table 3.14). The StY ranged from 0.54 (Vumbi) to 

4.09 t ha-1 (Kiroba). Cultivar Namikonga which had the highest StC of 24.9%, had a StY of 2.5 t 

ha-1 (Table 3.14). However, the mean StY for different harvesting dates ranged from 0.02 to 

6.97 t ha-1 from cultivars Vumbi (7 MAP) and Kiroba and AR 40-6 (14 MAP) (Appendix 2). For 

individual sites, plants at Chambezi site indicated relatively higher mean StY of 4.96 t ha-1 than 

other sites (Figure 3.10; Table 3.14). There were small increase (≈25%) in mean StY between 7 

and 11 MAP, but more than 100% increase between 11 and 14 MAP with the exception of 

cultivars Kalolo and TMS 30001 (Figure 3.11; Appendix 2). However, cultivars at Kibaha and 

Kizimbani sites had no definitive increase in StY between different harvesting dates, this has 

been contributed with poor FSRY obtained (Figures 3.11; Table 3.14, Appendix 2)   
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Figure 3.10 Rainfall amount, fresh storage root yield, starch content and starch yield of 10 cultivars over three harvesting 
times 
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Table 3.14 Mean starch yield (t ha-1) of 10 cultivars evaluated in four locations and three harvesting intervals in Tanzania, 2007/08 

Cultivar   Kibaha        Chambezi 
          7 MAP         11 MAP         14 MAP         Mean†           7 MAP         11 MAP        14 MAP          Mean† 
 
Kalolo  1.06  0.95  0.92  0.97  3.95  7.60  5.73  5.76  
Vumbi  -  -  0.11  0.11  1.52  0.33  4.81  1.21 
TMS 30001 0.40  1.78  1.01  1.06  1.70  3.55  8.03  4.43 
Namikonga 1.65  1.46  2.32  1.81  1.79  1.95            11.04  4.92 
AR 42-3 1.19  0.94  1.09  1.07  2.57  3.05  8.22  4.61 
AR 40-6 1.15  1.05  1.30  1.17  2.88  5.02            10.85  6.25 
Kiroba  1.59  1.36  1.99  1.65  6.27  8.20            12.44  8.97 
AR 37-80 1.64  0.62  -  0.76  2.87  4.72  9.20  5.60 
Nanchinyaya 1.49  1.56  1.37  1.47  0.34  4.79            10.24  5.22 
CR 25-4 0.83  0.56  0.53  0.64  1.59  1.89  7.07  3.51 
Mean  1.07 (1.43) 0.99 (1.39) 1.06 (1.40) 1.10 (1.41) 2.23 (1.78) 4.08 (1.83) 8.56 (2.35) 4.96 (1.98) 
LSD (0.05) 0.84 (0.27) -       (0.43) 1.09 (0.36) - - 3.19 (0.66) 4.57 (0.95) 7.59 (0.88) 4.98 (0.64) 
CV (%)  44.9 (11.0) 30.1 (18.3) 45.7 (14.9) 36.7 (16.1) 68.0 (21.7) 59.3 (30.6) 62.6 (22.0) 33.0 (34.5) 
F probability    0.006 (0.002)    0.272 (0.179)  0.007 (0.003)    0.456 (0.001) 0.12 (0.008) 0.03 (0.003)    0.011 (0.001) 0.39 (0.001) 
  
Cultivar   Kizimbani        Hombolo   Across 
           7 MAP          11 MAP         14 MAP         Mean†          7 MAP        11 MAP          14 MAP         Mean†  Mean‡ 
Kalolo  0.33  0.88  0.44  0.55  0.00  0.00    2.50  0.83 1.76  
Vumbi  -  -  0.88  0.88  0.00  0.00    4.37  1.46 0.38 
TMS 30001 0.81  1.75  0.41  1.03  0.42  0.31    4.95  1.89 1.10 
Namikonga 0.30  2.24  3.57  2.04  0.00  0.00    2.30  0.77 2.36 
AR 42-3 -  -  -  -  0.00  0.10    7.86  2.65 1.47 
AR 40-6 3.16  2.28  1.56  2.33  0.10  0.65    9.46  3.40 3.26 
Kiroba  2.12  1.98  1.79  1.96  0.40  0.00    7.39  2.60 3.51 
AR 37-80 0.81  3.73  2.74  2.42  0.97  0.14    9.40  3.50 2.22 
Nanchinyaya 0.95  3.13  2.15  2.08  0.40  0.08    2.56  1.01 2.54 
CR 25-4 0.00  2.13  4.40  2.18  0.00  0.00    6.65  2.22 1.94 
Mean  1.01 (1.33) 2.01 (1.67) 1.78 (1.56) 1.60 (1.48) 0.44 (1.09) 0.23 (1.06)   5.37 (2.47)     2.01(1.54) 2.09 (1.629) 
LSD (0.05) -  3.01 (0.62) -  -                       0.92    0.49 -   - -           4.94 (-)     1.96 (-) 
CV (%)  19.9 (0.79) 24.3 (21.7) 37.9 (33.8) 77.4 (33.0)      122.0 (17.0)     126.5 (11.5)   74.6 (31.9)     67.0(19.9) 127.2 (26.9) 
F probability   0.349 (0.216)      0.02 (0.006)      0.275 (0.117)   0.174 (0.004)   0.001 (0.274)  0.001 (0.218) 0.177 (0.22)   0.039(0.79) 0.001(0.82) 
     
MAP =months after planting; significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; †= cultivar mean over 3 harvest dates; ‡=Mean across locations; Values in brackets are 
transformed using Genstat release 12; Square root = (x + 1.0)**0.5, x=observed values 
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                   Figure 3.11 Starch yield across sites  

 

3.3.6 Genotype x environment interaction 
 

The combined analyses of variances for the FSRY, SRN, DSRY, RDMC, StC and StY 

revealed significant variation between cultivars for all the traits and at each harvesting date 

(Table 3.15). The effect of location was also significant for almost all the traits with the 

exception of StC at 7 MAP. Genotype x environment effects was highly significant at 14 

MAP for FSRY, DSRY and StY (p≤0.001). The proportion of treatment sum of squares due 

to the main effects of location ranged between 14.5 to 62.5%, while that due to genotypes 

ranged from 19.9 to 37.2%, and that due to cultivar x location from 15.5 to 42.8%. 

Contribution of genotype effects to the treatment sum of squares was more than location 

effects for RDMC and StC suggesting that genetic control was more important than 

environment. Location means ranged between 5.48 (Kibaha) and 21.50 (Chambezi) for 

FSRY in t ha-1, 33.07% (Hombolo) and 35.54% (Kizimbani) for RDMC, 21.23% (Chambezi) 

and 24.91% (Kizimbani) for StC, and 1.04 (Kibaha) and 3.68 (Chambezi) for StY in t ha-1 

(Appendix 4). The six yield traits presented in Table 3.16 appear to be influenced partly by 

the genotype. In comparison with other sources of variation, the genotype component for 

RDMC and StC were apparently strong at 7 and 14 MAP. However, based on the F test of 

significance, strong environment effects were detected for all the traits in the combined 

anova, and were the main source of variation for FSRY, SRN, DSRY and starch yield. 
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Table 3.15 Combined analyses of variance for six traits of 10 cultivars evaluated in four locations, 2007/08  

 
        Mean square 
 
Source  df  SRN  FSRY  DSRY  RDMC    StC              StY 
 
7 MAP  
 
Cultivar     9    1306.0*** 107.9***  15.1***  107.9***   57.8***   8.7*** 
Location   3    4542.6** 349.9*** 35.1***    66.3    48.6  47.9*** 
Rep/Loc   2      173.5       38.0    5.5    17.3  452.6    2.8 
G X E  27      476.8***     39.8    4.9    23.5    15.8    6.2*** 
Error  78      126.4   25.1    3.3    17.4    10.7     2.3 
 
11 MAP 
 
Genotype   9  2319.9***   211.6**   30.1*** 138.2***     18.7    8.5*** 
Location   3  6322.4*** 2457.8*** 230.0*** 868.5*** 1545.9** 41.3*** 
Rep/Loc   2      46.8      41.9      2.9      3.4      80.1    4.1 
G X E  27    890.9* **         97.0    16.4**      66.1**          25.1**   6.5*** 
Error  78    260.9      72.1      7.0    29.3        9.5    2.5 
 
14 MAP 
 
Genotype   9    2256.9(19.9)***  708.3(21.5)***   97.7(24.7)*** 204.9(37.2)*** 147.2(33.3)***   53.9(23.8)*** 
Location   3  23606.1(62.5)***4890.9(44.6)*** 483.2(36.6)*** 266.6(14.5)* 379.2(25.7)** 260.0(33.5)*** 
Rep/Loc   2    1188.6(2.1)      71.7(0.44)     6.6(0.34)   12.3(0.5) 436.8(19.7)     6.8 (0.53) 
G X E  27      585.2(15.5)*    365.8(33.4)***   50.5(38.3)***   90.8(47.8)***   39.3(21.3)*   32.4 (42.2)*** 
Error  78      355.5    138.5    17.1    19.9    19.2    10.9 
 
Significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; SRN (storage root number); FSRY (fresh storage root yield in t ha-1); DSRY (dry storage root yield t ha-1); 
RDMC (root dry matter content in %); StY (Starch yield in t ha-1); StC (starch content in %); Values in brackets are contributions to total variations calculated as 
percentage of the sum of squares   
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Table 3.16 Variance components of yield, yield components, starch content and starch yield 
of 10 cultivars evaluated in four locations in Tanzania, 2007/08 

 
7 MAP 
Trait     σ2

g       σ
2
l     σ2

gl     σ
2
e  

      
SRN  30.11  176.93  54.53  131.3 
FSRY    6.81    11.70    4.40    24.7 
DRY    0.95      1.16    0.43      3.3 
RDMC    8.34      1.68    1.70    19.5 
StC  12.21      0.86    1.07    21.1 
StY    0.29      0.82    0.33      1.6 
  
11 MAP 
SRN  98.69  171.25  58.0  213.9 
FSRY  10.33    73.29    7.8    75.5 
DRY    1.36      6.49  3.28      7.2 
RDMC    8.28    28.85  11.3    30.2 
StC    1.89    43.90  1.57    20.9 
StY    0.39      1.25  1.33    2.50 
 
14 MAP 
 
SRN  167.98  662.65  88.0  362.7 
FSRY    44.68  148.81  86.3  141.1 
DRY      6.38    14.54  12.6    18.0 
RDMC    14.53    10.22  19.8    20.6 
StC      11.58      9.22  7.47    19.4 
StY       3.33      7.72  7.87    11.6 
 
σ

2
g= genotypic variance; σ2

l = variance due to location/environment; σ2
gl = variance due to interaction (gxl); σ2

e = 
error term; SRN (storage root number); FSRY (fresh storage root yield in t ha-1); DSRY (dry storage root yield t 
ha-1); RDMC (root dry matter content in %); StY (Starch yield in t ha-1); StC (starch content in %). 
 

3.3.7 Cultivar superiority index 
 

Cultivar superiority index (Pi) for StC ranged between 1.34 and 29.55. Cultivar Nanchinyaya 

showed the lowest superiority index of 1.338, which implicate that the cultivar is superior for 

starch content compared to the other cultivars (Table 3.17). The second most superior 
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cultivar was Namikonga (3.84) and the most inferior with the highest Pi value of 29.55 was 

cultivar Kalolo. 

 

Table 3.17 Superiority index (Pi) for starch content and percent response of 10 cultivars 
 
Cultivar   Mean starch (%)     % response           Pi 
Nanchinyaya  24.50   107.36     1.34 
Namikonga  24.91   109.16     3.84  
AR 37-80  23.66   103.68     4.04 
TMS 30001  24.19   106.00     5.47 
Kiroba   22.67     99.34     6.88 
AR 42-3  23.35   102.32     7.54 
AR 40-6  20.68     90.62     9.54 
CR 25-4  23.27   101.97   10.29 
Vumbi   20.29     88.91   13.04 
Kalolo   20.72     90.79   29.55   
   
 

 

3.3.8 Correlation between traits in yield and yield  components    
 

Correlations between DSRY and SRN (0.75; p≤0.001), FSRY (0.98; p≤0.001), SY (0.77; 

p≤0.001), StY (0.96; p≤0.001) were highly significant across all locations (Table 3.18). The 

StC and RDMC correlated highly, positively and significantly at 7 (0.38; p≤0.001), 11 (0.60, 

p≤0.001) and 14 MAP (0.71; p≤0.001). Starch yield correlated positively and significantly 

with DSRY (0.96; p≤0.001), SRN (0.70; p≤0.001), FSRY (0.93; p≤0.001), SY (0.72; p≤0.001) 

and StC (0.24; p≤0.001) across locations. In addition, SY had a significant but negative 

correlation with HI (-0.36; p≤0.001).  
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Table 3.18 Phenotypic correlation between traits of 10 cultivars evaluated in four locations in Tanzania, 2007/08 

 
Trait 7MAP 
 
DSRY 1 - 
HI 2 0.2232  - 
RDMC 3         -0.1513  0.0334  - 
SRN 4 0.5351***       -0.2061  -0.0641 -  
FSRY 5 0.9936***        0.1975  -0.2412* 0.5279*** - 
SY 6 0.4915***       -0.5849***        -0.3272**         0.5664*** 0.5243*** - 
StC 7         -0.2374  0.1034   0.3826***      -0.2007            -0.2642*          -0.3036** - 
StY 8 0.9823*** 0.2252* -0.1912 0.4975*** 0.9830***  0.4805*** -0.1164 - 
  DSRY  HI  RDMC  SRN  FSRY  SY  StC  StY 
 
11 MAP 
 
DSRY 1 - 
HI 2         -0.0633  - 
RDMC 3          0.0674  0.0169  - 
SRN 4 0.6101***       -0.1718            -0.2163  - 
FSRY 5 0.9782***       -0.0551            -0.0863  0.6374*** - 
SY 6 0.7854***       -0.5580***        -0.0361  0.5786*** 0.7816*** - 
StC 7         -0.1244  0.2220* 0.6003***        -0.4785***       -0.2024            -0.2541* - 
StY 8 0.9601*** 0.0215  0.0870  0.4745*** 0.9429*** 0.6985*** 0.0825  - 
  DSRY  HI  RDMC  SRN  FSRY  SY  StC  StY 
 
Significance levels: * p≤0.05; ** p≤0.01; *** p≤0.001; SRN=storage root number; FSRY=fresh storage root yield in t ha-1; DSRY= dry storage root yield t ha-1; HI= 
harvest index; SRN=storage root number; RDMC=root dry matter content in %; StY= Starch yield in t ha-1; StC=starch content in % 
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Table 3.18 Phenotypic correlation between traits of 10 cultivars at 14 MAP and across four locations in Tanzania, 2007/08 

 
Trait  14 MAP 
 
DSRY 1 - 
HI 2 0.1343  - 
RDMC 3          0.1888  0.3435*** - 
SRN 4 0.7532***       -0.0661  0.1575  - 
FSRY 5 0.9707*** 0.0988  0.0551  0.7470*** - 
SY 6 0.7398***       -0.3004**         -0.0083  0.6459*** 0.7913*** - 
StC 7          0.2413* 0.1942  0.7147*** 0.2321* 0.1459  0.1340  - 
StY 8 0.9665*** 0.1065  0.1836  0.7290*** 0.9337*** 0.7401*** 0.3721*** - 
  DSRY  HI  RDMC  SRN  FSRY    SY  StC  StY 
 
MEAN ACROSS LOCATIONS 
 
DSRY   1  -       
HI          2          0.1303  -      
RDMC  3           0.0003                 0.0633               -     
SRN     4           0.7494***            -0.1000             -0.0755                -    
FSRY   5           0.9805***             0.1215             -0.1174              0.7558***  -   
SY        6           0.7677***           -0.3622***         -0.1012              0.7055***           0.7877***              -  
StC       7           0.0772                0.1226              0.5059***          0.0024                0.0066                -0.0206  - 
StY       8           0.9578***            0.1316*             0.0005              0.6973***            0.9341***             0.7212***          0.2392***          - 
                         DSRY                    HI                     RDMC                SRN                  FSRY                  SY                    StC  StY 
 
Significance levels:* p≤0.05; ** p≤0.01; *** p≤0.001; SRN (storage root number); FSRY (fresh storage root yield in t ha-1); DSRY (dry storage root yield t ha-1);  
HI (harvest index); SRN (storage root number); RDMC (root dry matter content in %); StY (Starch yield in t ha-1); StC (starch content in %).
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3.4 Discussion and conclusion 
 

The study was conducted to establish the variation in FSRY, RDMC, StC and StY of 10 

cassava cultivars in four locations in Tanzania. The participatory rural appraisal study 

(Chapter 2) and other reports (Nweke et al., 1998), have indicated that farmers sell cassava 

roots from sweet cultivars for cash income while roots from bitter cultivars and small roots 

from sweet cultivars are processed into more stable products (Westby, 2002). The starch 

industry is one of the potential markets for cassava roots in Tanzania. In order to maximize 

their economic returns farmers need high starch varieties. The information on the right time 

to harvest the tuberous root for optimum starch yield is also important. 

 

Variations in FSRY, RDMC, StC and StY were observed between cultivars. Cultivars also 

varied in SRN, HI and their reaction to diseases. Cultivars from CIAT exhibited tolerance to 

CMD but were rather susceptible to CBSD. The RDMC was highest at 7 MAP. Similar 

findings have been reported elsewhere (Kawano et al., 1987). However, RDMC was strongly 

influenced by genotype, suggesting that selection pressure could be applied to improve the 

trait. Variations in StC and StY were observed between cultivars as well as harvesting dates. 

Cultivars Namikonga and Vumbi gave the highest and lowest StC respectively across 

locations. The differences in StC might however be due to the genetic composition of the 

cultivars, cultural practices on the field as well as a combination of environmental factors 

(Rickard et al., 1991). The StC showed an increasing trend up to 7 MAP followed by a 

decline in starch content between 7 and 11 MAP. Studies (Setter and Fregene, 2007) have 

indicated that during water deficit conditions, leaf and stem growth ceases, limiting demands 

for assimilates. Sources of assimilates to meet respiratory and other tissue maintenance 

requirements are provided by starch quantities stored in stems and leaf petioles (Setter and 

Fregene, 2007). This study shows that some starch reserves are drawn from the roots to 

support plant maintenance during the dry season. The accumulation of starch resumes after 

the rains return. An increased starch percentage was observed at 14 MAP for Hombolo and 

Chambezi sites. Similar findings have been reported elsewhere (Sriroth et al., 1999; Asaoka 

et al., 1992) where the lowest starch content was observed at 10 MAP.  
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When the rain returns after a dry spell, new leaves develop rapidly and a dramatic gain in 

root starch content occurs as starch synthesis and accumulation resume. The results have 

shown that it is best to harvest between 7 and 8 MAP at Kibaha, because after this period a 

decline in StC was observed; and even at 14 MAP not much improvement in starch content 

was noted. However, at Chambezi and Hombolo sites, plants could be left in the field for up 

to 14 MAP, as StC and yield increased rapidly between 11 and 14 MAP. At Kizimbani, 

cultivars Kalolo and Kiroba did not show much increase in StC at 14 MAP, therefore they 

could be harvested earlier to enable the land to be used for other crops. Early maturing 

varieties with high root yield and starch content would be appropriate at Kibaha and 

Kizimbani sites.  

 

The StY (t ha-1) indicates the potential economic return expected from a cultivar for 

processing. High StC in a cultivar is important, but it has to be matched with high FSRY in 

order to maximize StY. For example, cultivar Namikonga which had the highest StC did not 

have high FSRY, resulting in moderate StY. Instead, cultivar Kiroba, which had moderate 

StC but a high FSRY gave the highest StY. Breeders need to strike a balance for optimum 

FSRY and StC to attain maximum economic StY. A high FSRY with low StC would mean 

increased costs for root crushing, pulp homogenization, water usage, filtration and 

decantation. 

 

In conclusion, cultivars Kiroba and AR 40-6 performed well in terms of starch yield. 

However, cultivars such as Namikonga and others with high starch content could be 

improved by breeding and selection to increase storage root yield for the starch industry. 

Farmers need to know the cyclic trend in starch content and be informed on when the 

appropriate time is to harvest at each site. Both StC and FSRY are important traits to 

maximize StY for economic returns; therefore selection for StY should consider both StC 

and FSRY. There is a need to develop varieties for specific location as evidenced in this 

study. Early maturing varieties that have high StC are also required.  However, further 

studies are required to more accurately determine starch accumulation trends in relation to 

environmental factors. Close intervals between harvesting dates should be considered. 

Effect of CBSD root necrosis on starch content should be further explored.  
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Appendix 1 Yield components of 10 cultivars evaluated at 7, 11, and 14 MAP across four locations in Tanzania, 2007/08 

 
Cultivar   Shoot yield t ha-1      Root number plant-1  
   

7 MAP  11 MAP  14 MAP  Mean†          7 MAP        11 MAP       14 MAP         Mean† 
Kalolo  13.00  15.82  13.87  14.23  2.9  3.4  3.0  3.1  
Vumbi  12.17  15.30  19.78  15.75  2.2  1.6  2.8  2.2 
TMS 30001   6.89  11.27    7.85    8.67  2.2  3.1  2.7  2.7 
Namikonga 15.89  18.95  37.49  24.11  2.6  2.0  5.3  3.3 
AR 42-3   9.33  12.46    6.93    9.57  2.3  3.3  2.4  2.7 
AR 40-6 13.86  20.22  41.19  25.09  3.9  5.1  6.7  5.2 
Kiroba  15.42  17.62  25.32  19.45  3.8  4.4  5.4  4.5 
AR 37-80 19.60  31.23  39.39  30.07  3.2  3.4  4.7  3.8 
Nanchinyaya   8.36  17.81  26.34  17.50  3.4  4.4  5.2  4.3 
CR 25-4   6.83  10.82  22.97  13.54  2.2  2.6  4.4  3.1 
Mean  12.84  17.89  24.32  18.35  5.6  6.4  4.8  3.7 
LSD (0.05)   4.35    8.05  11.88  -  9.5            13.1  -  - 
CV (%)    41.8    55.4    60.2     56.1            37.6            44.7            45.0           43.1 
F probability 0.001  0.015  0.004  0.352          0.001          0.001          0.058         0.508 
  
Cultivar   Root yield t ha-1        Harvest index 
  7 MAP  11 MAP  14 MAP  Mean†  7 MAP  11 MAP  14 MAP  Mean†  
Kalolo  6.74  12.49  13.17  10.80  0.33  0.44  0.40  0.39  
Vumbi  2.75    2.35    8.58    4.56  0.20  0.20  0.28  0.23 
TMS 30001 3.68  10.23  10.32    8.08  0.37  0.49  0.51  0.45   
Namikonga 3.73    5.91  19.21    9.62  0.20  0.26  0.36  0.27 
AR 42-3 4.31  10.67  10.21    8.40  0.28  0.47  0.42  0.39 
AR 40-6 9.36  14.68  32.61  18.89  0.39  0.49  0.43  0.44 
Kiroba            12.24  16.45  27.28  18.65  0.43  0.52  0.55  0.50 
AR 37-80 6.72  11.15  20.33  12.73  0.29  0.33  0.29  0.31 
Nanchinyaya 4.63  12.79  15.95  11.12  0.38  0.44  0.44  0.42 
CR 25-4 3.44    8.02  23.53  11.66  0.37  0.44  0.54  0.45 
Mean  6.01  10.90  17.72  11.54  0.33  0.41  0.42  0.38 
LSD (0.05) 3.98  -  9.26  -            0.085            0.088            0.124  - 
CV(%)  81.8    78.4  64.4     75.2  32.0  26.8  36.8  24.4 
F probability    0.038              0.158            0.001   0.693            0.002            0.046            0.001            0.701 
     
MAP (months after planting); significance levels: * p=0.05; ** p=0.01; *** p=0.001; †= cultivar mean over three harvest dates;  
‡=Mean across locations 
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Appendix 2 Mean DRY, FSRY, starch content and starch yield in t ha-1 of 10 cultivars evaluated in four locations in Tanzania, 2007/08 

 
Cultivar   Dry matter yield t ha-1       RDMC (%) 
   

7 MAP  11 MAP  14 MAP  Mean†  7 MAP  11 MAP  14 MAP  Mean† 
Kalolo  2.42  3.61    3.70  3.20  34.02  28.29  24.96  29.09    
Vumbi  0.94  0.46    2.70  1.37  34.04  26.87  30.94  30.62 
TMS 30001 1.22  2.97    2.27  2.15  33.72  30.65  33.27  32.54 
Namikonga 1.50  2.34    7.61  3.82  41.17  39.62  39.96  40.25 
AR 42-3 1.57  3.44    3.28  2.76  33.75  32.00  34.99  33.58 
AR 40-6 3.50  4.76  10.63  6.30  39.00  33.08  33.97  35.35 
Kiroba  4.50  5.59    9.55  6.55  37.75  31.29  36.33  35.12 
AR 37-80 2.44  2.06    6.13  3.54  37.04  25.50  28.70  30.41 
Nanchinyaya 1.94  4.61    5.94  4.16  41.75  34.42  37.01  37.73 
CR 25-4 1.31  2.74    8.19  4.08  38.62  35.33  35.00  36.32 
Mean  2.24  3.47    5.84  3.84  37.21  32.09  33.48  34.26 
LSD (0.05) -  4.37    6.65  3.79    6.92    8.68    7.35    7.62 
CV (%)  80.5  77.7    70.2            106.2    11.4    16.6    13.5    16.3 
F probability     0.073            0.002  0.001            0.001              0.246  0.004  0.001  0.919 
  
Cultivar   Starch content (%)       Starch yield t ha-1 
  7 MAP  11 MAP  14 MAP  Mean†  7 MAP  11 MAP  14 MAP  Mean†  
Kalolo  22.42  23.46  16.29  20.72  1.29  1.65  2.16  1.70    
Vumbi  16.13  24.00  20.74  20.29  0.02  0.16  1.46  0.54 
TMS 30001 23.13  18.87  30.58  24.19  0.80  0.76  0.71  0.76 
Namikonga 25.10  22.13  27.49  24.91  0.88  1.40  5.25  2.51 
AR 42-3 26.91  17.02  26.11  23.35  0.79  0.55  2.44  1.26 
AR 40-6 21.76  17.48  22.80  20.68  1.76  2.25  6.97  3.66 
Kiroba  22.72  19.76  25.54  22.67  2.46  2.84  6.97  4.09 
AR 37-80 25.78  17.60  27.60  23.66  1.42  1.25  4.40  2.36 
Nanchinyaya 25.90  19.88  27.72  24.50  0.90  2.29  4.62  2.61 
CR 25-4 26.48  21.51  21.83  23.27  0.56  1.17  5.30  2.34 
Mean  23.64  20.02  24.80  22.82  1.09  1.43  4.03  2.18 
LSD (0.05)   3.29    3.46    3.89  -  1.10  1.48  3.27  - 
CV(%)    17.7    24.3    19.5    23.7            116.7            120.5            101.9  104.7 
F probability 0.001  0.024  0.001  0.060            0.001            0.001            0.001  0.001 HVD 
                0.850 Cult x hvd 
     
MAP (months after planting); significance levels: * p=0.05; ** p=0.01; *** p=0.001; †= cultivar mean over three harvest dates; ‡=Mean across 
locations 
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 Appendix 3 Mean fresh yield, RDMC, starch content and starch yield of 10 cultivars combined across four locations in Tanzania, 2007/08 

 
Fresh root yield t ha -1     Root dry matter content (%)  

Cultivar  7 MAP  11 MAP  14 MAP  Mean  7 MAP  11 MAP  14 MAP  Mean 
Kalolo    6.74  12.49  13.2  10.80  34.15  28.29  25.21  28.31   
Vumbi    2.75    2.35    8.60    4.56  34.04  26.62  30.85  30.95 
TMS 30001   3.68  10.23  10.30    8.08  34.17  30.58  33.31  32.16 
Namikonga   3.73    5.91  19.2    9.62  42.14  37.56  39.96  40.16 
AR 42-3   4.31  10.67  10.2    8.40  33.75  32.00  33.63  33.35 
AR 40-6   9.36  14.68  32.6  18.89  39.00  33.08  33.97  35.35 
Kiroba  12.24  16.45  27.3  18.65  37.75  31.29  36.33  35.12 
AR 37-80   6.72  11.15  20.3  12.73  37.04  28.70  28.95  32.05 
Nanchinyaya   4.63  12.79  16.0  11.12  41.75  34.42  37.01  37.72 
CR 25-4   3.44    8.02  23.5  11.66  38.63  35.46  35.00  36.52 
Mean    5.76  10.47  18.10  11.45  37.24  31.80  33.42  34.16 
LSD (5%)   14.13  19.31  -  7.186  8.97      7.4  - 
F-probability      0.07  0.179  0.001  0.003  0.219  0.008  0.001  0.001 
 Cultivar 0.001  0.007  0.001  0.001  0.001  0.001  0.001  0.057 
 Site 0.001  0.001  0.001  0.001  0.016  0.001  0.001  0.030 
 
    Starch content (%)       Starch yield t ha -1 
Cultivar  7 MAP  11 MAP  14 MAP  Mean  7 MAP  11 MAP  14 MAP  Mean 
Kalolo  18.99  18.29  16.34  18.69  1.29  1.65  2.16  1.70 
Vumbi  13.52  14.04  24.21  22.25  0.02  0.16  1.46  0.54 
TMS 30001 22.92  15.82  28.59  22.74  0.80  0.76  0.71  0.76 
Namikonga 25.84  20.17  27.49  25.66  0.88  1.40  5.25  2.51 
AR 42-3 24.38  17.11  26.54  24.32  0.79  0.55  2.44  1.26 
AR 40-6 22.18  17.26  23.23  20.93  1.76  2.25  6.97  3.66 
Kiroba  23.48  15.65  25.54  23.52  2.46  2.84  6.97  4.09 
AR 37-80 25.78  18.48  27.56  24.24  1.42  1.25  4.40  2.36 
Nanchinyaya 24.94  20.11  27.72  25.04  0.90  2.29  4.62  2.61 
CR 25-4 23.50  17.68  21.83  22.57  0.56  1.17  5.30  2.34 
Mean  22.55  17.46  24.91  23.00  1.09  1.43  4.03  2.18 
LSD (5%) 7.605  7.570  3.595  5.059  2.03  2.55  5.55  2.99 
F probability 0.347  0.294  0.013  0.001            0.046            0.001            0.001            0.002 
        Cultivar 0.001  0.049  0.001  0.001            0.001            0.001            0.001            0.001 
 Site 0.097  0.001  0.001  0.001            0.001            0.001            0.001            0.001 
 
MAP (months after planting); significance levels: * p=0.05; ** p=0.01; *** p=0.001; †= cultivar mean over three harvest dates; ‡=Mean across 
locations 
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Appendix 4 Location means for yield and yield components, starch and starch yield of ten cultivars, 2007/08 

 Cultivar    FSRY (t ha-1)                                                         RDMC (%) 
   KBH CHZ KIZ HBL Mean  KBH CHZ KIZ HBL Mean 

Kalolo   5.02 29.28   3.41   5.48 10.80  30.39 30.26 24.17 28.00 28.21 
Vumbi   2.47   5.98   1.93   7.85   4.56  28.53 33.90 26.96 34.41 30.95 
TMS 30001  5.60 12.57   5.63   7.56   8.08  33.72 32.81 32.74 29.35 32.16 
Namikonga  7.50 18.54   7.56   4.86   9.62  39.94 38.06 44.72 37.92 40.16 
AR 42-3  6.04 13.26   3.78 10.50   8.40  34.89 34.58 32.60 31.33 33.35 
AR 40-6  6.43 35.54 10.00 23.57 18.89  36.83 32.50 37.33 34.74 35.35 
Kiroba   7.64 42.69 10.22 14.06 18.65  34.67 33.89 38.44 33.50 35.17 
AR 37-80  4.43 14.89 11.04 20.58 12.73  33.06 29.10 36.97 29.06 32.05 
Nanchinyaya  5.75 21.21   8.89   8.64 11.12  38.17 37.22 41.18 34.33 37.72 
CR 25-4  3.90 20.99   9.63 12.13 11.66  35.11 32.61 40.33 38.03 36.52 
Mean   5.48 21.50   7.21 11.62 11.45  34.54 33.49 35.54 33.07 34.16 
LSD (0.05) cult x site       11.26      6.124 
CV (%)       106.1        19.3 
F probability      0.003      0.030 
 Cultivar      0.001      0.001 
 Site      0.001      0.057 
 
    Starch content (%)    Starch yield (t ha-1) 

KBH CHZ KIZ HBL Mean  KBH CHZ KIZ HBL Mean 
Kalolo   20.46 18.20 15.57 20.54 18.69  0.86 4.96 0.55 0.55 1.70     
Vumbi   20.19 13.72 30.87 24.24 22.25  0.07 0.16 0.29 1.65 0.54 
TMS 30001  22.43 25.46 24.46 18.61 22.74  0.83 0.47 1.03 0.69 0.76 
Namikonga  24.43 25.39 28.30 24.51 25.66  1.92 4.92 2.04 1.14 2.51 
AR 42-3  21.86 21.77 26.23 27.42 24.32  1.15 1.21 0.00 2.68 1.26 
AR 40-6  21.08 18.27 25.85 18.53 20.93  1.22 6.25 2.33 4.84 3.66 
Kiroba   21.21 20.91 22.25 29.71 23.52  1.54 8.97 1.96 3.89 4.09 
AR 37-80  24.94 23.73 25.42 22.88 24.24  0.82 0.96 2.42 5.23 2.36 
Nanchinyaya  25.88 24.80 25.18 24.31 25.04  1.32 5.42 2.08 1.61 2.61 
CR 25-4  21.12 20.01 24.93 24.19 22.57  0.71 3.51 2.18 2.98 2.34 
Mean   22.36 21.23 24.91 23.49 23.00  1.04 3.68 1.49 2.52 2.18 
LSD (0.05) cult x site     5.059      2.99   
CV (%)         23.6                147.7 
F probability      0.001                0.002 
 Cultivar      0.001                0.001 
 Site      0.001                0.001 
Significance levels: * p=0.05; ** p=0.01; *** p=0.001; †= cultivar mean over three harvest dates                  
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              Chapter 4 

Performance of F 1 seedling populations for yield and yield 
components in cassava 

 

Abstract 
 
Ten parents with desirable characteristics were planted in a crossing block at SRI-Kibaha in 

January 2007. A 10 x 10 half diallel mating design was used to generate the F1 population. 

Collected botanical seeds from 36 families (excluding selfs) were raised on raised seed 

beds in November 2006 and transplanted to the main field in March 2007. The progeny 

were evaluated in a 6x6 triple lattice design. Data on yield, yield components and diseases 

were recorded. Each family comprised 150 genotypes divided equally across the three 

replications. Plants were harvested 12 months after planting (MAP). Seed set ranged 

between 14.5 and 71.5% with a mean of 34.9%. Seed germination recorded 1 MAP ranged 

between 40.0 and 83.4% with the mean of 63.4%. Significant differences in fresh storage 

root mass (FSRM), total biomass (FBM), storage root number (SRN), harvest index (HI), 

and root dry matter (RDMC) were observed between families. The mean values for the 

families for SRN were 4.1, for FSRM was 0.84 kg plant-1, 2.3 kg plant-1for FBM, 0.35 for the 

HI, and 34.0% for the RDMC. Fresh storage root mass had a negative correlation with 

RDMC. The high level of variation in the segregating F1 progeny for almost all the traits 

provided good potential for genetic gain.      

 

4.1 Introduction 
 
Genetic improvement of crops depends on the extent of genetic variation present in 

available germplasm (Poehlman and Sleper, 1995). Genetic diversity provides farmers and 

plant breeders with variability that can be used to develop, through selection and breeding, 

crops that are resistant to virulent pests and diseases, have high yield potential, and are 

adapted to adverse environments (Okogbenin et al., 2007).  

 
Clonally propagated crops are generally improved by crossing two or more desirable 

parental clones (Ceballos et al., 2004; Hahn et al., 1979). Sexual reproduction leading to 

recombination and segregation should provide new genetic variation in clonal crops (Singh, 
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2003; Poehlman, 1987). The seedlings obtained from sexual reproduction would be 

genotypically different from the asexually derived progeny of either parental clone. Selection 

and clonal propagation of superior genotypes in the segregating progeny population would 

then follow (Kawano, 2003; Kawano et al., 1998). Clonal advancement of superior 

genotypes is relatively easy and quick because all genetic variability is instantly fixed 

(Simmonds, 1979).  

  

Selection at the early stages of a cassava breeding programme is from seedling and clonal 

(single row) trials, and is based on high heritability traits such as plant type, branching habits 

and reaction to certain diseases (Iglesias et al., 1994; Hershey, 1984; Hahn et al., 1980).  In 

addition, the selection is based on single plant performance (Ceballos et al., 2004) within 

each family at seedling stage. Intermediate to high heritability values for root dry matter 

composition (RDMC) have been reported (Iglesias and Heshey, 1994), with narrow sense 

heritability ranging from 51 to 67%, while a broad sense heritability estimate of 87% was 

obtained for the clonal mean (Kawano et al., 1987; Byrne, 1984). At CIAT, high heritability 

estimates for RDMC (95%), HI (93%) and fresh foliage composition (84%) across 13 

locations have also been reported (Perez et al., 2005). Harvest index is a highly heritable 

trait in cassava and therefore a better selection criterion than single plant yield in 

segregating populations (Kawano et al., 1978; CIAT, 1974). Kawano and Thung (1982) and 

Kawano et al. (1998) reported high correlation and regression coefficients for HI with root 

yield and demonstrated the effectiveness of using the trait at all stages of selection as an 

indirect selection for root yield.  

 

Root number, a trait affecting root yield, is known to be determined early in the growth cycle 

(Hunt et al., 1977; Wholey and Cock, 1974; Magoon, 1970), and can be used as an early 

selection criteria. However, storage root number can be affected by growing conditions such 

as fertilizer application (Hunt et al., 1977). Cours (1951) noted that new storage roots could 

be formed at the onset of a new filling period after a dry season.  

 

Phenotypic correlation between total biomass and fresh root yield in cassava has been 

observed to be very high (0.97) at the early evaluation stages, and lower (0.54) at an 

advanced stage of evaluation (Kawano et al., 1998; Cock, 1984; Kawano and Thung, 1982; 

Cock et al., 1979). Kawano et al. (1998) reported very low correlation (-0.19) between HI 
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and fresh root yield at the early stages (seedling and clonal), but very high (0.93) at 

advanced evaluation stages. However, cassava genotypes perform differently in terms of 

yield, harvest index and biomass at different stages of evaluation and selection (Kawano 

and Thung, 1982). Those genotypes with higher biomass at seedling or clonal evaluation 

trial tend to dominate others with less biomass in competition for light. Likewise, genotypes 

with high harvest index are weak competitors while those with greater biomass are strong 

competitors. Byrne (1984) observed that there were significant correlations (r=0.48**) in root 

dry matter content between seedling and single row trials.  

The objectives of this study were to evaluate the performance of a diallel derived seedling 

population for yield characteristics in general, with the specific objective of improving root 

yield and dry matter content as a step towards starch content improvement. Virus diseases 

(cassava mosaic disease and cassava brown streak disease) affecting production were 

taken into consideration. 

 

4.2 Materials and methods 
 

4.2.1 Germplasm source 

 

Parent genotypes for this study comprised five local cultivars, one from IITA and four CIAT 

(Table 4.1). Both the local germplasm and exotic varieties were selected based on their 

characteristics of good performance in terms of dry matter, pest and disease resistance and 

flowering ability.  
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Table 4.1 Description of parent genotypes used in the diallel mating design 

Cultivar   Description 

1. AR 42-3 Clone from CIAT, resistant to CMD, CBB and CGM, sweet 

2. AR 40-6 Clone from CIAT, resistant to CMD, CBB and CGM, sweet 

3. AR 37-80 Clone from CIAT, resistant to CMD, CBB and CGM, sweet 

4. CR 25-4 Clone from CIAT, resistant to CMD, CBB and sweet 

5. TMS 30001 Clone from IITA, resistant to CMD, tolerant to CBSD, sweet (Hahn et al., 

1980) 

6. Kalolo Local cultivar, bitter taste, high dry matter, good flour quality 

7. Namikonga Local improved cultivar from Amani, sweet, high dry matter, tolerant to 

CBSD,  

8. Nanchinyaya Local cultivar, sweet, high dry matter, tolerant to CBSD 

9. Vumbi Local improved cultivar from Amani research centre, sweet, early bulking 

type, good cooking qualities 

10. Kiroba Local improved cultivar, early maturing, tolerant to CBSD, good cooking 

qualities, sweet, moderate tolerance to CMD 

CIAT=   Centre for Cassava Improvement; IITA= International Institute of Tropical Agriculture 
CMD=Cassava mosaic disease; CBSD=Cassava brown streak disease; CBB=Cassava bacterial blight; 
CGM=Cassava green mite. 
 

4.2.2 Crossing block 
 

Selected parents with desirable characteristics were planted in a crossing block at SRI- 

Kibaha, in January 2006. The parents were arranged to facilitate a 10x10 half diallel mating 

design (Stuber, 1980). A spacing of 1.0 m intra-row and 1.5 m inter-row was used to provide 

enough space for plant growth. Normally flowering is rare during the dry season, therefore 

plants were irrigated as required to ensure adequate flowering and seed set (Kawano, 

1980). Hand weeding was performed as required but no chemical control was exercised 

over insects or diseases. Controlled hand pollination was done according to the standard 

procedure described by Kawano (1980).  

 

Plants were observed for signs of flowering each morning. Muslin bags were used to 

enclose flowers about to open to prevent fertilization by stray pollen upon opening. Pollen 

from the corresponding male parent in accordance with the diallel mating design was 

collected in the morning before 10h00 and pollination done later in the day (primarily 

between 11h00 and 14h00) after flowers had opened by dusting on the stigma of a matching 
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female. However, as both male and female flowers are large and pollen is sticky, pollination 

did not need any tool. 

 

One male flower could pollinate up to three female flowers. After pollination the female 

flowers were covered with the muslin bags for one to two weeks. Each flower branch was 

marked by a tag indicating cross combination with female parent listed first, date of 

pollination and pollinator.  Developing fruits were covered with netting bags three to four 

weeks after pollination to catch the dehisced seeds when ripe. Seeds were collected after 

two months, labeled and stored ready for planting. Percent seed set was determined by 

dividing pollinated fruits (survived after pollination) with total number of seeds per cross. For 

pollinated fruits it was assumed that every fruit had three ovules. 

 

 
                  Figure 4.1 Pollinated flowers covered with muslin bag 

 

4.2.3 Propagation of the progeny 
 

Seed of the F1 generation were sown on raised seed beds end of November 2006, at SRI-

Kibaha. The number of seeds per cross ranged between 250 and 300 depending on the 

amount of seeds available. During this time of the year soil temperatures were high (30-

35°C) which facilitated fast germination (Jennings and Hershey, 1985). Germinating seeds 

were hand-watered on a daily basis. Hardening of seedlings was done one week before 

transplanting to the main field by reduced watering regimes.   
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Figure 4.2 Seed bed with germinating seedlings at SRI-Kibaha, February 2007.  

 

4.2.4 Seedling field trial  
 

The seedling trial was established at SRI-Kibaha at the end of February 2007. The trial was 

laid out as 6x6 triple lattice with six plots in each of six blocks per replication. The 36 families 

were randomly allocated to plots within blocks, and blocks randomly allocated within each 

replication. The seedlings were planted at 1 x 1 m spacing. Each family comprising 150 

progeny was divided equally across the three replications i.e. 50 progeny per plot in each 

replication. Seedlings were watered at establishment and thereafter whenever necessary. 

Spreader rows of the cultivar Mreteta which was infected by cassava brown streak (Cassava 

brown streak virus; Ipomovirus; Potyviridae) were planted around each replication and 

between replications to enhance transmission of the disease by white flies (Bemisia tabaci 

Gennadius). No fertilizer was applied. 
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4.2.5 Data collection 
 

The seedling trial was harvested at the end of March 2008, delayed by three weeks by the 

onset of the main rains. Plants were harvested on an individual basis. Shoot and roots were 

weighed to obtain fresh yield. All storage roots in a plant (SRN) were counted. Harvest index 

(HI) was determined by dividing fresh storage root mass (FSRM) by total biomass (FBM). 

Percent dry matter (RDMC) was determined using a forced draught oven (Dixon and 

Nukenine, 2000) as follows: cassava roots were washed and cut into thin slices. Duplicate 

samples of 100 g each were taken and dried at 70°C for 72 h. The dried samples were 

weighed to obtain the dry mass, which was expressed as a percentage of the fresh mass. 

Dry storage root yield (DSRY) was derived as a product of RDMC and FSRY.  Disease 

assessment was done at 3, 6, and 9 MAP. However, data presented are disease scores 

recorded at 6 MAP. Cassava mosaic and cassava brown streak diseases were rated as 

follows:  

i. Cassava mosaic disease (CMD) severity was assessed subjectively at 6 

MAP on a scale of 1-5  (Mahungu and Kanju,1997) as follows: 

1= No symptoms observed; 

2= Mild chlorotic pattern on entire leaflets or mild distortion at base of 

     leaflets, the rest of leaflets appearing green and healthy; 

3= Strong mosaic pattern on entire leaf, and narrowing and distortion of 

     lower one-third of leaflets; 

4= Severe mosaic with distortion of two-thirds of leaflets and general  

     reduction of leaf size; and 

5= Severe mosaic, distortion of four-fifths or more of leaflets, twisted and 

     misshapen leaves. 

ii. Cassava brown streak disease (CBSD) severity was assessed subjectively at 

6 MAP on above ground parts, on a scale of 1-5 (Mahungu and Kanju, 1997), 

where: 

1= No visible symptoms; 

2= Slight foliar chlorosis between leaf vein, no stem lesions; 

3= Foliar chlorosis between leaf veins, with mild stem lesions, no die-back 

4= Foliar chlorosis between leaf veins, and pronounced stem lesions with 

     beginning of die-back; and 

5=Defoliation with pronounced die-back and stem lesions 
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 4.2.6 Data analysis 

 

All data were analysed using Genstat Version 12 (Payne et al., 2008). The REML linear 

mixed model was used to analyse family and progeny data at seedling stage. Families and 

progeny were declared as fixed effects in the model, while replications, blocks, and plots 

were declared as random effects. Phenotypic correlation between traits on a family mean 

basis was performed using the Pearson correlation procedure.  Principal component 

analysis was done to study the relative contribution of various traits in genotype 

improvement. Principal component analysis involves a mathematical procedure that 

transforms a number of correlated variables into a smaller number of uncorrelated variables 

called principal components (PC) (Jollife, 2002). The first PC accounts for as much of the 

variability in the data as possible, and each succeeding component accounts for as much of 

the remaining variability as possible. 

 

4.3 Results 
 

4.3.1 Seed set and germination 
 

A total of 45 crosses were expected from a 10 x 10 half diallel. However, two crosses did not 

produce seed, and another seven crosses produced less than 150 seeds. The required 

number of seed was between 250 to 300 seed per family to account for potential 

germination and transplanting losses. Therefore the nine crosses were left out remaining 

with 36 families. Seed set per cross ranged from 14.5 to 71.5% with a mean of 34.9% (Table 

4.2). The family CR 25-4 x AR 40-6 had relatively more seeds (71.5%) than other families, 

while the lowest seed set (14.5%) was observed in family Kiroba x AR 37-80. The rate of 

seed germination determined four weeks after sowing ranged between 40.0 and 83.4% with 

a mean of 63.4% (Table 4.2). The highest and lowest rates of seed germination were 

recorded from families Kalolo x Namikonga (83.4%) and Vumbi x AR 40-6 (40.0%) 

respectively.  
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Table 4.2 Percent seed set per cross and seed germination of the diallel crosses  
at SRI-Kibaha, 2006/07  

Cross 
Seed 

set   
Seed 
germination  

  %       Rank  %      Rank  

1. Kalolo x Vumbi 42.6 8 70.6 8 
2. Kalolo x Namikonga 26.9 26 83.4 1 
3. Kalolo x AR 40-6 17.5 34 68.0 10 
4. Kalolo x TMS 30001 55.9 4 82.2 3 
5. Kalolo x AR 42-3 31.8 21 62.6 21 
6. Kalolo x AR 37-80 33.3 17 57.4 28 
7. Kiroba x Namikonga 19.3 33 67.5 12 
8. Kiroba x Vumbi 16.9 35 70.3 9 
9. Nanchinyaya x Vumbi 60.5 2 63.6 20 
10. Kiroba x AR40-6 22.6 32 64.5 18 
11. Kiroba x TMS 30001 26.0 29 61.3 24 
12. Kiroba x AR 42-3 22.9 31 64.0 19 
13. Kiroba x AR 37-80 14.5 36 67.5 13 
14. Nanchinyaya x Namikonga 29.1 23 79.2 4 
15. Nanchinyaya x AR 40-6 34.3 16 66.0 16 
16. Nanchinyaya x TMS 30001 32.1 20 82.6 2 
17. Nanchinyaya x AR 42-3 28.7 24 74.6 5 
18. Nanchinyaya x AR 37-80 38.3 12 66.8 14 
19. Vumbi x Namikonga 37.0 14 42.7 35 
20. Vumbi x AR 40-6 38.1 13 40.0 36 
21. Vumbi x TMS 30001 30.5 22 60.7 25 
22. Vumbi x AR 42-3 36.6 15 55.3 29 
23. Vumbi x AR 37-80 50.4 5 47.0 33 
24. TMS 30001 x AR 37-80 42.1 10 65.9 17 
25. Namikonga x AR 40-6 27.5 25 54.3 30 
26. Namikonga x TMS 30001 24.5 30 71.0 7 
27. TMS 30001 x AR 42-3 42.9 7 73.0 6 
28. Namikonga x AR 42-3 32.2 19 61.8 23 
29. Namikonga x AR 37-80 41.0 11 66.0 15 
30. AR 40-6 x TMS 30001 26.6 27 67.7 11 
31. AR 40-6 x AR 42-3 33.3 18 52.3 31 
32. AR 40-6 x AR 37-80 44.0 6 46.0 34 
33. AR 42-3 x AR 37-80 26.4 28 58.3 26 
34. CR 25-4 x AR 42-3 42.3 9 58.0 27 
35. CR 25-4 x AR 40-6 71.5 1 62.2 22 
36. CR 25-4 x AR 37-80 58.7 3 49.1 32 

Mean 34.9   63.4   

Maximum 71.5   83.4   

Minimum 14.5   40   

Standard error of the mean 2.14   1.78   

Standard deviation 12.8   10.7   

Skewness 0.89   -0.21   
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4.3.2 Yield and yield components of the progeny 
 

The FBM for the 1653 progeny ranged from 0.20 to 21.5 kg plant-1 with a mean of 2.4 kg 

plant-1. Genotype 131-21 R2 had the highest FBM of 21.5 kg plant-1. Storage root number 

(SRN) ranged from 0.0 to 16 roots plant-1 with a mean of 4.3 roots plant-1, and the (HI) from 

0.01 to 0.8. The highest SRN of 16 roots plant-1 was recorded from family Kalolo x TMS 

30001 (genotype 213-16 R2). The mean FSRM was 0.9 and ranged between 0.0 and 6.5 kg 

plant-1, with genotype 105-02 R1 from the family (Kalolo x AR 42-3) having the highest 

individual progeny FSRM of 6.5 kg plant-1. Family Kalolo x AR 42-3 had FSRM values 

ranging from 0.0 to 6.5 kg plant-1, compared with family such as Nanchinyaya x TMS 30001 

which had ranged from 0.0 to 2.5 kg plant-1, indicating genetic variability within families and 

the potential for selection (Tables 4.3; 4.4). Mean RDMC was 34.3%, and ranged between 

6.4 and 60.5%. Genotype 125-8 R2 (Namikonga x AR 40-6) had the highest RDMC value of 

60.5%, followed by genotype 121-22 R2 (Vumbi x TMS 30001) with the RDMC value of 

53.2%. It is also important to note that some families recorded very low RDMC of 8.8% and 

6.4% (Kalolo x AR 42-3 and Kiroba x Namikonga, respectively) (Table 4.5). Plant height 

(PLht) and first branching height (BRht) ranged from 15 to 285 cm, and 15 to 235 cm, 

respectively (Table 4.3).  

 
Table 4.3 Minimum, maximum and mean values for yield and yield components of the 1653 
genotypes on individual progeny evaluated at the seedling evaluation trial 2007 
 
Variable Min  Max  Mean    SD  SEM  Skew 
 
FBM  0.20  21.5    2.4    1.5  0.04     3.2 

SRN  0.00  16.0    4.3    0.7  0.02     1.9  

HI  0.01    0.8    0.4    0.2  0.03    -0.2 

FSRM  0.00    6.5    0.9    0.7  0.02     1.9 

RDMC  6.40  60.5  34.3    5.5  0.14    -0.7 

PLht           15.00           285.0           135.4  36.7  0.51       0.10 

BRht           15.00           235.0           115.3  29.1  0.61       0.25 

FBM (fresh biomass in kg plant-1); SRN (total number of storage roots); HI (harvest index); FSRM (fresh storage 
root mass in kg plant-1); RDMC (root dry matter content in %); PLht (plant height in cm); BRht (branching height 
in cm); Min (minimum); Max (maximum); SD (standard deviation); SEM (standard error of the mean); skew 
(skewness) 
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Table 4.4 Minimum, maximum, mean of fresh root mass (kg plant-1) evaluated at the 
seedling evaluation trial, SRI-Kibaha, 2007  
 
Cross                   Min Max Mean  SD     SEM Rank   
 
1. Kalolo x Vumbi   0.1 5.4 1.5 1.1 0.2   2    
2. Kalolo x Namikonga             0.05 2.7 1.0 0.7 0.1   8  
3. Kalolo x AR 40-6   0.0 3.8 1.2 0.8 0.1   3 
4. Kalolo x TMS 30001   0.0 3.9 1.1 0.8 0.1   5 
5. Kalolo x AR 42-3   0.0 6.5 1.7 1.2 0.2   1 
6. Kalolo x AR 37-80   0.0 4.0 1.2 0.9 0.1   4 
7. Kiroba x Namikonga   0.0 2.3 0.5 0.5 0.1 36 
8. Kiroba x Vumbi   0.0 1.8 0.6 0.5 0.1 35 
9. Nanchinyaya x Vumbi   0.0 2.2 0.6 0.5 0.1 24 
10. Kiroba x AR40-6   0.0 2.5 0.7 0.6 0.1 25 
11. Kiroba x TMS 30001   0.0 2.3 0.9 0.5 0.1 11 
12. Kiroba x AR 42-3   0.0 2.3 0.9 0.6 0.1 12 
13. Kiroba x AR 37-80   0.0 2.6 0.8 0.5 0.1 13 
14. Nanchinyaya x Namikonga  0.0 3.2 0.6 0.6 0.1 34 
15. Nanchinyaya x AR 40-6  0.0 4.0 0.9 0.7 0.1 14 
16. Nanchinyaya x TMS 30001  0.0 1.4 0.7 0.4 0.1 26 
17. Nanchinyaya x AR 42-3  0.0 1.6 0.7 0.4 0.1 27 
18. Nanchinyaya x AR 37-80  0.0 1.6 0.7 0.4 0.1 28 
19. Vumbi x Namikonga   0.0 2.2 0.8 0.7 0.1 18 
20. Vumbi x AR 40-6   0.0 2.0 0.8 0.5 0.1 19 
21. Vumbi x TMS 30001   0.0 2.5 0.9 0.7 0.1 15 
22. Vumbi x AR 42-3   0.0 3.6 0.8 0.7 0.1 20 
23. Vumbi x AR 37-80   0.0 3.6 0.9 0.8 0.1 16 
24. TMS 30001 x AR 37-80  0.0 1.7 0.6 0.5 0.1 33 
25. Namikonga x AR 40-6  0.0 4.5 0.6 0.7 0.1 29 
26. Namikonga x TMS 30001  0.0 3.5 0.7 0.7 0.1 30 
27. TMS 30001 x AR 42-3  0.0 2.5 0.9 0.6 0.1   9 
28. Namikonga x AR 42-3  0.0 2.5 0.7 .06 0.1 31 
29. Namikonga x AR 37-80  0.0 2.1 0.7 0.5 0.1 21 
30. AR 40-6 x TMS 30001  0.0 2.0 0.8 0.5 0.1 22 
31. AR 40-6 x AR 42-3   0.0 2.2 0.8 0.5 0.1 23 
32. AR 40-6 x AR 37-80   0.0 2.6 0.7 0.6 0.1 17 
33. AR 42-3 x AR 37-80   0.0 6.2 1.0 1.1 0.2   6 
34. CR 25-4 x AR 42-3   0.0 3.7 1.1 1.0 0.6   7 
35. CR 25-4 x AR 40-6   0.1 4.0 0.9 0.8 0.1 10 
36. CR 25-4 x AR 37-80   0.0 4.5 0.5 0.9 0.1 32 
 
Min (minimum); Max (maximum); SD (standard deviation); SEM (standard error of the mean)  
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Table 4.5 Minimum, maximum, and mean for root dry matter (%) evaluated at the 
seedling evaluation trial, SRI-Kibaha 

Cross Min Max Mean 
  
SD SEM Rank 

1. Kalolo x Vumbi 17.0 44.0 32.9 0.6 0.8 28 

2. Kalolo x Namikonga 14.0 42.0 31.8 6.3 0.9 32 

3. Kalolo x AR 40-6 19.0 46.0 34.0 6.8 1.0 17 

4. Kalolo x TMS 30001 15.3 42.0 30.2 6.5 1.0 36 

5. Kalolo x AR 42-3 8.8 43.0 33.3 5.7 0.8 24 

6. Kalolo x AR 37-80 17.7 36.0 31.6 5.3 0.8 33 

7. Kiroba x Namikonga 6.4 44.0 30.8 7.5 1.2 34 

8. Kiroba x Vumbi 17.5 40.1 32.4 4.2 0.7 29 

9. Nanchinyaya x Vumbi 20.0 43.8 35.7 0.8 0.8 8 

10. Kiroba x AR40-6 22.8 45.1 35.7 4.9 0.8 9 

11. Kiroba x TMS 30001 14.8 40.0 33.0 5.0 0.7 27 

12. Kiroba x AR 42-3 27.0 42.0 36.4 3.3 0.5 5 

13. Kiroba x AR 37-80 18.2 44.0 33.3 5.8 0.9 22 

14. Nanchinyaya x Namikonga 23.0 44.0 35.2 5.0 0.8 13 

15. Nanchinyaya x AR 40-6 26.0 43.0 34.6 4.4 0.7 14 

16. Nanchinyaya x TMS 0001 25.0 44.0 34.3 4.9 0.7 16 

17. Nanchinyaya x AR 42-3 21.0 43.0 35.3 4.5 0.7 11 

18. Nanchinyaya x AR 37-80 21.0 43.0 35.4 4.5 0.7 10 

19. Vumbi x Namikonga 26.0 43.0 35.7 3.4 0.5 7 

20. Vumbi x AR 40-6 23.7 43.0  36.9 4.3 0.7 3 

21. Vumbi x TMS 30001 27.0 51.7 35.8 4.7 0.7 6 

22. Vumbi x AR 42-3 26.0 43.0 35.2 3.6 0.6 12 

23. Vumbi x AR 37-80 22.0 42.0 33.8 5.1 0.8 19 

24. TMS 30001 x AR 37-80 18.0 46.7 33.6 5.8 0.9 20 

25. Namikonga x AR 40-6 16.0 60.5 36.7 7.2 1.2 4 

26. Namikonga x TMS 30001 19.2 42.7 33.6 5.3 0.8 21 

27. TMS 30001 x AR 42-3 13.2 42.3 33.3 5.6 0.8 23 

28. Namikonga x AR 42-3 22.9 44.0 37.5 4.4 0.7 1 

29. Namikonga x AR 37-80 13.0 50.0 33.2 6.6 1.0 25 

30. AR 40-6 x TMS 30001 24.2 42.0 34.5 4.5 0.7 15 

31. AR 40-6 x AR 42-3 30.1 43.0 37.4 2.9 0.5 2 

32. AR 40-6 x AR 37-80 23.2 39.0 33.1 3.9 0.6 26 

33. AR 42-3 x AR 37-80 17.5 45.3 32.1 5.2 0.8 30 

34. CR 25-4 x AR 42-3 16.1 38.0 32.1 4.5 0.7 31 

35. CR 25-4 x AR 40-6 23.0 42.6 33.9 4.2 0.6 18 

36. CR 25-4 x AR 37-80 16.2 39.0 30.4 6.5 1.2 35 
 Min (minimum); Max (maximum); SD (standard deviation); SEM (standard error of the mean)
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4.3.3 Family yield and yield components 
 

Large and significant (p≤0.001) differences among families were observed in FBM, RDMC, 

SRN, FSRM, and HI (Table 4.6). The overall mean SRN for all 36 families was 4.1, and ranged 

between 2.4 and 5.8 roots plant-1 (Tables 4.6; 4.7). The family Kalolo x AR 42-3 had the highest 

mean SRN of 6.4 roots plant-1 (Table 4.7). The FSRM for the 36 families ranged between 0.5 

and 1.7 with a mean of 0.8 kg plant-1 (Tables 4.6; 4.7). Family Kalolo x AR 42-3 had the highest 

mean FSRM of 1.7 kg plant-1 (Table 4.7). The HI ranged from 0.3 to 0.5 for the 36 families 

evaluated, with a mean of 0.4 (Tables 4.6; 4.7). Family Kalolo x AR 42-3 recorded the highest 

mean HI of 0.5 (Table 4.7). Plant height ranged between 104.8 (Nanchinyaya x AR 42-3) and 

149.5 cm (Kalolo x TMS 30001), while the first branching height ranged between 93.5 (CR 25-4 

x AR 40-6) and 140.2 cm from family (Namikonga x AR 42-3). The top five individual progeny 

for FSRM were recorded from three different families, namely: Kalolo x AR 42-3 (105-02 R1, 

105-14 R2, 105-22 R1), Kalolo x Vumbi (101-18 R1), and AR 42-3 x AR 37-80 (133-04 R1). 

Families differed significantly from one another (p≤0.001) in RDMC, and the family means 

ranged from 30.3 (Kalolo x TMS 30001) to 37.5% (Namikonga x AR 42-3) with an overall mean 

of 34.0% (Table 4.7). Family AR 40-6 x AR 42-3 had the second highest RDMC (37.4%).   

 
 
Table 4.6 Residual maximum likelihood Wald’s F statistic for yield and yield components of 36 
families evaluated at  
the seedling evaluation trial 
 

 
Degrees of 
freedom   F Statistic      

Variable  Family                   
Family       Min        Max Mean SEM SED 

FSRM 35 3.16*** 0.53 1.71 0.84 0.15 0.21 
FBM 35 2.71*** 1.53 3.55 2.31 0.29 0.39 
SRN 35 2.17*** 2.38 5.81 4.11 0.52 0.68 
HI 35 2.80*** 0.26 0.45 0.35 0.02 0.04 
RDMC 35 4.67*** 30.32 37.48 34.02 1.65 1.60 
PLht 35 4.74*** 104.80 149.50 128.8 6.76 9.83 
BRht 35 9.36*** 93.50 146.10 118.15 3.87 5.41 

 
FSRM (fresh storage root mass in kg plant-1); HI (harvest index); FBM (fresh biomass in kg plant-1); SRN (total 
number of storage roots);  
RDMC (root dry matter content in %); PLht (plant height); BRht (branching height);Min (minimum); Max (maximum); 
SEM (standard error of the mean); Significance levels: * p≤0.05; ** p≤0.01; ***p≤0.001;  
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Table 4.7 Family means of yield and yield components evaluated at the seedling evaluation 
trial, SRI-Kibaha, 2007  

Cross  FBM SRN FSRM RDMC HI PLht BRht 
1. Kalolox Vumbi 3.3 6.2 1.5 32.9 0.44 141.2 127.7 
2. Kalolo x Namikonga 2.3 5.0 1.0 31.8 0.40 142.3 132.7 
3. Kalolo x AR 40-6 2.7 6.2 1.2 33.9 0.44 127.8 110.0 
4. Kalolo x TMS 30001 2.7 6.2 1.1 30.3 0.40 149.5 138.4 
5. Kalolo x AR 42-3 3.6 6.4 1.7 33.3 0.45 131.9 119.5 
6. Kalolo x AR 37-80 2.9 6.3 1.2 31.6 0.41 133.1 131.5 
7. Kiroba x Namikonga 1.8 3.8 0.5 30.9 0.30 148.7 136.7 
8. Kiroba x Vumbi 2.1 3.5 0.6 32.4 0.27 128.2 112.4 
9. Nanchinyaya x Vumbi 2.4 4.5 0.6 35.7 0.27 139.7 125.8 
10. Kiroba x AR40-6 2.1 4.0 0.7 35.7 0.31 121.0 106.1 
11. Kiroba x TMS 30001 2.2 4.5 0.9 33.0 0.39 139.9 127.1 
12. Kiroba x AR 42-3 2.4 4.0 0.9 36.4 0.35 123.6 121.1 
13. Kiroba x AR 37-80 2.3 4.3 0.8 33.3 0.31 124.7 116.9 
14. Nanchinyaya x Namikonga 1.8 4.5 0.7 35.2 0.35 117.3 119.1 
15. Nanchinyaya x AR 40-6 2.5 5.5 0.9 34.6 0.35 117.3 100.7 
16. Nanchinyaya x TMS 30001 1.9 4.3 0.7 34.3 0.36 112.2 108.6 
17. Nanchinyaya x AR 42-3 2.5 4.2 0.7 35.3 0.31 104.8 96.4 
18. Nanchinyaya x AR 37-80 2.1 5.6 0.7 35.4 0.33 107.7 94.8 
19. Vumbi x Namikonga 2.5 3.8 0.8 35.7 0.31 137.4 124.7 
20. Vumbi x AR 40-6 2.5 3.5 0.8 36.9 0.29 126.5 107.6 
21. Vumbi x TMS 30001 2.3 4.2 0.9 35.8 0.38 126.8 122.2 
22. Vumbi x AR 42-3 2.4 3.4 0.8 35.2 0.33 132.2 122.4 
23. Vumbi x AR 37-80 2.5 3.5 0.9 33.8 0.31 140.6 126.6 
24. TMS 30001 x AR 37-80 1.9 3.5 0.6 33.6 0.30 153.3 134.8 
25. Namikonga x AR 40-6 1.9 3.5 0.6 36.7 0.34 120.3 113.2 
26. Namikonga x TMS 30001 1.8 3.7 0.7 33.6 0.34 133.7 138.0 
27. TMS 30001 x AR 42-3 1.9 5.1 0.9 33.3 0.45 112.8 118.2 
28. Namikonga x AR 42-3 1.9 3.4 0.7 37.5 0.31 124.0 140.1 
29. Namikonga x AR 37-80 2.1 4.1 0.7 33.2 0.33 135.4 146.1 
30. AR 40-6 x TMS 30001 2.0 4.8 0.8 34.5 0.40 129.1 114.9 
31. AR 40-6 x AR 42-3 2.7 4.5 0.8 37.4 0.38 128.5 101.9 
32. AR 40-6 x AR 37-80 1.7 4.4 0.7 33.1 0.37 129.0 100.5 
33. AR 42-3 x AR 37-80 2.7 4.6 1.0 32.2 0.35 131.0 109.7 
34. CR 25-4 x AR 42-3 2.7 5.1 1.1 32.1 0.38 129.4 114.1 
35. CR 25-4 x AR 40-6 2.2 5.2 0.9 33.9 0.38 117.1 93.5 
36. CR 25-4 x AR 37-80 1.5 2.7 0.5 30.4 0.26 120.0 99.2 
Mean  2.3 4.1 0.84 34.0 0.35 0.78 118.2 
SEM  0.29 0.52 0.15 1.65 0.02 0.02 3.87 
SED  0.39 0.68 0.21 1.6.0 0.04 0.02 5.41 

FBM (fresh biomass plant-1); SRN (storage root number); FSRM (fresh storage root mass plant-1); RDMC (root 
dry matter in %); HI (harvest index); PLht (plant height); BRht (branching height); SEM (standard error of the 
mean); SED (standard error of the difference)  
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4.3.4 Virus diseases 
 

Significant differences between families (p≤0.001) were observed in the expression of 

cassava mosaic disease (CMD) and cassava brown streak disease symptoms (CBSD). The 

CMD severity ranged between 1.4 (Kiroba x TMS 30001, Vumbi x TMS 30001, TMS 30001 

x AR 37-80, Namikonga x TMS 30001, AR 40-6 x TMS 30001, and CR 25-4 x AR 37-80) 

and 2.5 (Kalolo x AR 37-80) with a mean score of 1.7, while for CBSD only a few families 

(Vumbi x AR 40-6, Namikonga x AR42-3, CR 25-4 x AR 40-6,and CR 25-4 x AR 37-80) 

expressed the disease with a mean of 1.03 (Table 4.8). 
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Table 4.8 Family means for yield, yield components and disease scores  
evaluated at the seedling evaluation trial SRI-Kibaha, 2007  

Cross    CMD  CBSD 
1. Kalolo x Vumbi   2.3  1.0 
2. Kalolo x Namikonga  1.9  1.0 
3. Kalolo x AR 40-6   2.0  1.0 
4. Kalolo x TMS 30001  1.5  1.0 
5. Kalolo x AR 42-3   2.0  1.0 
6. Kalolo x AR 37-80   2.5  1.0 
7. Kiroba x Namikonga  1.7  1.0 
8. Kiroba x Vumbi   2.0  1.0 
9. Nanchinyaya x Vumbi  2.2  1.0 
10. Kiroba x AR40-6   1.6  1.0 
11. Kiroba x TMS 30001  1.4  1.0 
12. Kiroba x AR 42-3   1.6  1.0 
13. Kiroba x AR 37-80  1.6  1.0 
14. Nanchinyaya x Namikonga  1.9  1.0 
15. Nanchinyaya x AR 40-6  1.8  1.0 
16. Nanchinyaya x TMS 30001  1.6  1.0 
17. Nanchinyaya x AR 42-3  2.0  1.0 
18. Nanchinyaya x AR 37-80  2.0  1.0 
19. Vumbi x Namikonga  1.7  1.0 
20. Vumbi x AR 40-6   1.7  1.1 
21. Vumbi x TMS 30001  1.4  1.0 
22. Vumbi x AR 42-3   1.6  1.0 
23. Vumbi x AR 37-80  1.6  1.0 
24. TMS 30001 x AR 37-80  1.4  1.0 
25. Namikonga x AR 40-6  1.6  1.0 
26. Namikonga x TMS 30001  1.4  1.0 
27. TMS 30001 x AR 42-3  1.5  1.0 
28. Namikonga x AR 42-3  1.6  1.1 
29. Namikonga x AR 37-80  1.6  1.0 
30. AR 40-6 x TMS 30001  1.4  1.0 
31. AR 40-6 x AR 42-3  1.5  1.0 
32. AR 40-6 x AR 37-80  1.5  1.0 
33. AR 42-3 x AR 37-80  1.6  1.0 
34. CR 25-4 x AR 42-3  1.7  1.0 
35. CR 25-4 x AR 40-6  1.7  1.2 
36. CR 25-4 x AR 37-80  1.4  1.4 
Mean    1.7  1.03 
SEM    0.07  0.01 
SED    0.16  0.04 

CMD (cassava mosaic disease scores); CBSD (cassava brown streak disease scores);  
SEM (standard error of the mean); SED (standard error of the difference) 
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4.3.5 Correlation between traits  
 

The trait DSRY was highly, positively and significantly correlated (p≤0.001) with almost all 

yield traits evaluated as follows: HI (r=0.66; p≤0.001), SRN (r=0.59; p≤0.001), FSRM 

(r=0.97; p≤0.001) (Table 4.9). The RDMC correlated positively with DRSY (r=0.17; p≤0.001), 

HI (r=0.08; p≤0.001), and SRN (r=0.07; p≤0.001). Negative and non-significant association 

was observed between FSRY and RDMC (r=-0.018) indicating that these two traits were 

independent.  

 
Table 4.9 Correlations between five traits of the families in the seedling evaluation trial  

DSRY 1       
HI 2 0.6591***      
RDMC 3 0.1669*** 0.0822***     
SRN 4 0.5890*** 0.5002*** 0.0678***    
FSRM 5 0.9709*** 0.6532*** -0.018***** 0.6165*** 1.00  
  DSRY HI RDMC SRN FSRM  

DSRY (dry storage root yield); HI (harvest index); RDMC (root dry matter in %); SRN (storage root number); 
FSRM (fresh storage root M); FSRY (fresh storage root yield); Significance levels: * p≤0.05; ** p≤0.01; 
***p≤0.001; 

 

4.3.5 Principal component analysis 
 

Principal component analysis was used to explain the relative contribution of the various 

traits to the performance of the progeny. The first four PCs accounted for 99.86% of the total 

variation (Table 4.10). The PC1 accounted for 78% of the total variance. The RDM was the 

main contributing trait to PC1. The PC2 accounted for 17.51% of the total variance, with 

SRN, FBM and FSRM contributing most to the variation. The PC3 and PC4 contributed 4.02 

and 0.42% of the total variance, with SRN and HI contributing to PC3, and FBM and SRN to 

PC4. 
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Table 4.10 Principal component coefficients of five traits evaluated on 36 families at 
seedling evaluation trial, SRI-Kibaha, 2007  

Trait PC1 PC2 PC3 PC4     

HI -0.002 0.028 0.011 -0.233   
RDMC 0.999 0.041 0.002 0.005   
SRN -0.038 0.899 0.428 0.085   
FSRM -0.004 0.207 -0.256 -0.918   
FBM -0.015 0.383 -0.867 0.311   
Percent variation 78.03 17.51 4.02 0.42   
Cumulative 
variation 78.03 95.54 99.56 99.98     

HI (harvest index); RDMC (root dry matter %); SRN (storage root number); FSRM (fresh storage root mass); 
FBM (fresh biomass) 
 
  

Frequency distributions of progeny within the top nine families for RDMC (Figures 4.2) 

indicate that in general most of the families were negatively skewed, while for FSRM (Figure 

4.3) almost all nine families were positively skewed which imply that FSRM can be improved 

through hybridization with elite parents and selection done in order to make improvement in 

yield response.  
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Skewness -0.39 

Skewness -1.30 
Skewness -0.60 

Skewness -0.86 

Skewness 0.47 

Skewness -0.05 

Skewness -1.30 
Skewness -0.03 Skewness -1.34 

Figure 4.2 Frequency distribution of progeny within the top nine families for root dry matter (%) evaluated at the seedling 
evaluation trial 
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Figure 4.3 Frequency distribution of progeny within the top nine families for fresh storage root mass (kg plant-1) evaluated at the 
seedling evaluation trial 
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4.5 Discussion and conclusion 
 
The study was conducted with the objective of generating and evaluating genotypes for yield, 

yield components, and diseases tolerance. The average seed set obtained in this study was 

reasonable, about one third of the theoretical maximum (34.9%), assuming that every fruit has 

three ovules (Ceballos et al., 2004; Jennings and Iglesias, 2002; Byrne, 1984) which means that 

on average one seed per fruit had developed. These findings are in line with previous studies 

(Alves, 2002; Jennings and Hershey, 1985; Jennings, 1963). Ceballos et al. (2004) indicated 

that one to two viable seeds are obtained from hand pollination. However, Mbahe et al. (1994) 

obtained a mean of 2.57 seed per fruit from hand pollination. Unnikrishnan et al. (2004) in India 

reported seed set ranging from 17 to 74% per cross. Seed set per cross depends on the female 

parent (Jennings and Iglesias, 2002) and in this study CR 25-4 and Nanchinyaya proved to be 

prolific seed parents. In general, pollination was very successful for the majority of the parent 

clones and a good number of seeds were obtained, indicating that controlled pollination is a 

reliable method of generating F1 progeny, with the advantage of knowing both parents involved 

in the production of full-sib progeny. The high percentage of seed germination obtained in this 

study could be attributed to the favourable environment prevailing at the time. The temperatures 

were relatively high around November and December which provided favourable environment 

for seed germination. Unnikrishnan et al. (2004) reported seed germination ranging between 46 

and 87% evaluated from seedbed. Temperatures below 24ºC delay seed germination (Jennings 

and Hershey, 1985).  

 

The number of storage roots was highly variable, with some genotypes with no roots at all and 

some with a good number of roots per plant. However, data obtained in this study were within 

the reported range (Munga, 2008; Alves, 2002). Storage root number is influenced by genotype 

and growing condition (Hunt et al., 1977). In addition, the good SRN obtained could have been 

influenced by the technique used in raising seedlings on seedbed and transplanting. A tap root 

of the seedling is often damaged while pulling it from the soil for transplanting, which enhances 

storage root development (Nair and Unikrishnan, 2008).  Significantly high FSRM plant-1 within 

each F1 family was observed indicating potential new clonal lines and ultimately, cultivars.  

 

Root dry matter content varied significantly from 30.3 to 37.5% on family basis. However for 

individual progeny RDMC ranged between 6.4 and 60.5%. Root dry matter content ranging 

between 23-43% has been reported by other workers (Okechukwu and Dixon, 2009; 
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Unnikrishnan et al., 2004; Kawano et al., 1987).  The mean branching height of genotypes 

within families (118.2 cm) was good and acceptable. Hahn et al. (1979) commented that low 

branching genotypes were associated with heavy branching which tended to lower the HI and 

yield. All 36 families expressed CMD symptoms at different levels, indicating the presence of 

sufficient inoculum around the trial field. However, the CMD average scores for each family 

were low; some families had maximum scores of up to class 4. Although a spreader cultivar was 

planted around the field, the expression of CBSD symptoms was not so pronounced at the 

seedling stage. Munga et al. (2008) recorded low and non-significant severity of CBSD at the 

seedling stage. Absence of CBSV from seedlings grown from seeds obtained from infected 

plants has been reported (Maruthi et al., 2005). Bringing in CMD and CBSD at the earliest 

possible stage of the breeding population is important, to ensure enough build up of virus titre. 

Dry storage root yield correlated significantly and positively with HI, RDMC, SRN, and FSRM 

indicating that they are a function of dry storage root yield. These findings are in line with those 

of Okechukwu and Dixon (2009). A negative association between RDMC and FSRM was 

observed which has also been reported elsewhere (Iglesias et al., 1994). The RDMC and FSRM 

are independent characters therefore can be improved simultaneously. The positive 

transgressive segregation observed in the F1 progeny for different traits evaluated in the 

seedling trial provides for potential genetic advance.  The high genetic heterogeneity and 

associated variation in the seedling trial is the major basis for selection. 
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Appendix 
Appendix 1 Field layout for the seedling evaluation  trial 
REPLICATION 1 
B1     SPREADER ROW  2 m 

alley 
    SPREADER ROW  B6 

 Kalolo x Vumbi     
    CR 25-4 x AR 37-80  
 Kalolo x Namikonga     
    CR 25-4 x AR 40-6  
 Kalolo x AR 40-6     
    CR 25-4 x AR 42-3  
 Kalolo x TMS 30001     
    AR 42-3 x AR 37-80  
 Kalolo x AR 42-3     
    AR 40-6 x AR 37-80  
S Kalolo x AR 37-80 S S  S 
P  P P AR 40-6 x AR 42-3 P 

B2 R Kiroba x Namikonga R R  R B5 
E  E E AR 40-6 x TMS 30001 E 
A Kiroba x Vumbi A A  A 
D  D D Namikonga x AR 37-80 D 
E Nanchinyaya x Vumbi E E  E 
R  R R Namikonga x AR 42-3  R 
 Kiroba x AR 40-6     
R  R R TMS 30001 x AR 42-3 R 
O Kiroba x TMS 30001 O O  O 
W  W W Namikonga x TMS 30001 W 
 Kiroba x AR 42-3     
    Namikonga x AR 40-6  

B3  Kiroba x AR 37-80     B4 
    TMS 30001 x AR 37-80  
 Nanchinyaya x Namikonga     
    Vumbi x AR 37-80  
 Nanchinyaya x AR 40-6     
    Vumbi x AR 42-3  
 Nanchinyaya x TMS 30001     
    Vumbi x TMS 30001  
 Nanchinyaya x AR 42-3     
    Vumbi x AR 40-6  
 Nanchinyaya x AR 37-80     
    Vumbi x Namikonga  
   SPREADER ROW       SPREADER ROW  

                          27 m                                                                                                       27 m                                                               
 
Each plot (family) had 50 genotypes planted in two rows of 25 m long 
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REPLICATION 2 
B2     SPREADER ROW  2 m 

alley 
    SPREADER ROW  B5 

 Kiroba x Namikonga     
    Namikonga x AR 37-80  
 Kiroba x Vumbi     
    TMS 30001 x AR 42-3  
 Kiroba x TMS 30001     
    Namikonga x AR 42-3  
 Kiroba x AR 42-3     
    Namikonga x AR 40-6  
 Nanchinyaya x Vumbi     
    Namikonga x TMS 30001  
 Kiroba x AR 40-6     
    AR 40-6 x TMS 30001  

B3 S Nanchinyaya x AR 40-6 S S  S B6 
P  P P CR 25-4 x AR 37-80 P 
R Nanchinyaya x Namikonga R R  R 
E  E E AR 40-6 x AR 37-80 E 
A Nanchinyaya x TMS 30001 A A  A 
D  D D CR 25-4 x AR 40-6 D 
E Nanchinyaya x AR 37-80 E E  E 
R  R R AR 42-3 x AR 37-80 R 
 Nanchinyaya x AR 42-3     
R  R R CR 25-4 x AR 42-3 R 
O Kiroba x AR 37-80 O O  O 
W  W W AR 40-6 x TMS 30001 W 

B1  Kalolo x TMS 30001     B4 
    Vumbi x AR 37-80  
 Kalolo x AR 40-6     
    Vumbi x AR 42-3  
 Kalolo x Namikonga     
    AR 37-80 x TMS 30001  
 Kalolo x AR 37-80     
    Vumbi x TMS 30001  
 Kalolo x AR 42-3     
    Vumbi x AR 40-6  
 Kalolo x Vumbi     
    Vumbi x Namikonga  
   SPREADER ROW       SPREADER ROW  

                                27 m                                                                                                      27 m 
 
 
Each plot (family) had 50 genotypes planted in two rows of 25 m long 
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REPLICATION 3 
B5     SPREADER ROW  2 m 

alley 
    SPREADER ROW  B1 

 Namikonga x TMS 30001     
    Kiroba x AR 40-6  
 AR 40-6 x TMS 30001     
    Kalolo x TMS 30001  
 Namikonga x AR 37-80     
    Kalolo x Vumbi  
 Namikonga x AR 40-6     
     Kalolo x AR 40-6  
 TMS 30001 x AR 42-3     
     Kalolo x AR 42-3  
 Namikonga x AR 42-3     
     Kalolo x AR 37-80  

B6 S CR 25-4 x AR 40-6 S S  S B3 
P  P P Kiroba x AR 37-80 P 
R AR 42-3 x AR 37-80 R R  R 
E  E E Nanchinyaya x Namikonga E 
A AR 40-6 x AR 42-3 A A  A 
D  D D Nanchinyaya x AR 42-3 D 
E CR 25-4 x AR 42-3 E E  E 
R  R R Nanchinyaya x AR 40-6 R 
 AR 40-6 x AR 37-80     
R  R R Nanchinyaya x TMS 30001 R 
O CR 25-4 x AR 37-80 O O  O 
W  W W Nanchinyaya x AR 37-80 W 

B4  Vumbi x AR 42-3     B2 
    Kiroba x AR 40-6  
 AR 37-80 x TMS 30001     
    Kiroba x TMS 30001  
 Vumbi x Namikonga     
    Kiroba x Vumbi  
 Vumbi x TMS 30001     
    Nanchinyaya x Vumbi  
 Vumbi x AR 40-6     
    Kiroba x Namikonga  
 Vumbi x AR 37-80     
    Kiroba x AR 42-3  
   SPREADER ROW       SPREADER ROW  

                                     27 m                                                                                         27 m 
 
Each plot (family) had 50 genotypes planted in two rows of 25 m long 
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CROSSING BLOCK (10 PARENTS) 
 
Block1                                        Block  2                                        Block 3 
Kalolo Kalolo Kalolo 
AR 40-6 AR 42-3 AR 37-80 
Kalolo Kalolo Kalolo 
Vumbi Vumbi Vumbi 
AR 40-6 AR 42-3 AR 37-80 
Vumbi Vumbi Vumbi 
Kiroba Kiroba Kiroba 
AR 40-6 AR 42-3 AR 37-80 
Kiroba Kiroba Kiroba 
Namikonga Namikonga Namikonga 
AR 40-6 AR 42-3 AR 37-80 
Namikonga Namikonga Namikonga 
Nanchinyaya Nanchinyaya Nanchinyaya 
AR 40-6 AR 42-3 AR 37-80 
Nanchiyaya Nanchinyaya Nanchinyaya 
   
Block 4  Block 5  Block 6  
Kalolo Kalolo AR 40-6 
CR 25-4 TMS 30001 CR 25-4 
Kalolo Kalolo AR 40-6 
Vumbi Vumbi AR 42-3 
CR 25-4 TMS 30001 CR 25-4 
Vumbi Vumbi AR 42-3 
Kiroba Kiroba AR 37-80 
CR 25-4 TMS 30001 CR 25-4 
Kiroba Kiroba AR 37-80 
Namikonga Namikonga AR 40-6 
CR 25-4 TMS 30001 AR 37-80 
Namikonga Namikonga AR 42-3 
Nanchinyaya Nanchinyaya  
CR 25-4 TMS 30001  
Nanchinyaya Nanchinyaya  
                 15 m                                       15m                                                  15m 
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Chapter 5 

Diallel analysis of cassava genotypes evaluated at clonal stage 
 

Abstract 
Cassava genotypes selected from a 10X10 half diallel were evaluated at ARI-Chambezi, Coast 

region, Tanzania, in 2008/09 season. The objective of the study was to determine the combining 

abilities of the parents, and evaluate the performance of the F1 progeny for yield, starch content, 

and starch yield. The study also aimed to identify genotypes that are high in starch content 

(StC) and starch yield (StY) and determine the heterosis of the best genotypes for StC and StY 

relative to the mid-parent and best parent values. A total of 1440 genotypes were evaluated 

using 4 row x 10 column design superimposed on an α- lattice design, with three replications 

and six blocks for each replication. Data were collected on yield, yield traits, diseases, StC, and 

StY. Significant differences in fresh storage root yield (FSRY), fresh biomass (FBM), storage 

root number (SRN), root dry matter (RDMC), StC, and StY, and cassava brown streak disease 

root necrosis (CBSRN) were observed between families and progeny. The FSRY for the 

families ranged from 15.0 to 36.3 t ha-1 with a mean of 20.9 t ha-1. The StC ranged from 23 to 

29.9% with the mean of 27%; mean RDMC was 36.6% and ranged from 31.4 to 40.1%. Starch 

yield ranged from 3.3 to 8.3 t ha-1 with a mean of 5.2 t ha-1. The cassava mosaic disease (CMD) 

severity ranged from 1.7 to 2.7 with the mean of 2.2, while cassava brown streak disease 

(CBSD) severity for above ground symptoms ranged from 1.0 to 1.9 and averaged at 1.6. 

Additive genetic effects were predominant over non-additive genetic effects for RDMC, StC, and 

CBSRN, while for FSRY, FBM, SRN, and StY non-additive genetic effects predominated. Mid-

parent heterosis for StC ranged from 41.6 to 134.1%, while best parent heterosis ranged from 

30.4 to 119.6%. Genotype KBH/08/6807 from family Vumbi x TMS 30001 had the highest mid-

and best parent heterosis percentage for StC. For StY, mid-parent and best parent heterosis 

ranged from 168.0 to 1391%, and from 140.4 to 1079%, respectively, with the genotype 6879 

(Vumbi x AR 42-3) exhibiting the highest mid- and best parent heterosis percentage for StY. 

Improvement for StC, RDMC, and CBSRN may be realized by selecting parents with the highest 

GCA effects for the traits and hybridize with that combine well to maximize the positive SCA 

effects for the StC, RDMC and CBSRN. The hybridization programme should include 

complementary desirable traits such as resistance to CBSD and CMD, and pyramid the genes 

through convergent breeding. The predominance of non-additive genetic effects in the 
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expression of StY, FSRY, SRN, and FBM suggest the use of different approach. Cassava 

clones might be grouped into heterotic pools and specific hybrid combinations implemented to 

select potential genotypes to exploit non-additive gene action. 

5.1 Introduction 
 

Cassava, introduced as food security crop in Africa in the 16th century by the Portugese (Nweke 

et al., 2002; Jennings, 1970), has recently (1990s) attained the status of a commercial crop, 

generating income to farmers and processors in Africa. In addition to simply cooking fresh 

cassava roots and processing them into flour and granules, they can be used as chips or pellets 

for animal feed and in the production of starch (Westby, 2002). Since roots tend to perish rapidly 

after harvest (Van Oirschot et al., 2000), the roots have to be used immediately or processed 

into dry products (Westby, 2002; Bokanga, 1994). In Tanzania, the cassava starch industry is 

still young; however, there is potential for its growth due to the local and international demand 

for starch. Therefore, cassava cultivars that are high yielding and high in starch content are 

required. 

 

The main traits determining cassava root quantity and quality includes starch, dry matter 

content, cyanogenic potential, post harvest physiological deterioration, protein and carotene 

contents, and minerals (Chavez et al., 2005; Ceballos et al., 2004; Byrne, 1984). However, for 

industrial or even small scale processing of cassava, high dry mass and starch content are the 

main quantity criteria for the roots, whereas for human consumption cooking quality and/or 

starch characteristics (waxyness, mealiness, texture) are the determining criteria (Ceballos et 

al., 2004). Other quality characteristics include root shape, size, colour, ease of peeling, and 

taste (bitter or sweet). 

 

Diallel designs have been implemented in cassava to evaluate combining ability and to provide 

information on the quantitative inheritance of important traits (Cach et al., 2006; Jaramillo et al., 

2005; Perez et al., 2005; Easwari Amma et al., 1995). Combining ability analysis can be very 

useful in the selection of parents and in the designing of a crossing plan for a plant breeding 

programme (Easwari Amma et al., 1995; Rajendran, 1989; Tai et al., 1976). Information on the 
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relative magnitude of general (GCA) and specific (SCA) combining ability is also helpful in the 

analysis and interpretation of the genetic basis of important traits such as yield in root crops.  

 

The major challenge in early breeding stages is the limited number of cuttings available for 

evaluation because the vegetative multiplication rate of cassava is low. From a single plant five 

to 10 cuttings can typically be obtained at the end of the growing season. This is the case for 

both seed and cutting propagated generations, so enough cuttings for replicated trials across 

several locations can only be produced over an extended period of three to four years. Previous 

experience with cassava breeding at early stages has been mainly based on mass phenotypic 

selection with little data recorded; this has resulted in a lack of organized information on the 

breeding values of the parental lines used in breeding programme (Ceballos et al., 2004). To 

address this issue, this research was conducted using a modified scheme proposed by CIAT 

(CIAT, 2003). In this system replication and blocking in the clonal evaluation trial are employed 

and data on yield and yield components from all genotypes are collected. A similar system has 

been mentioned by Ceballos et al. (2004). The generated information which is obtained from 

each genotype and family can be used to derive the relative breeding values of the parental 

lines  The objective of the study was to evaluate the F1 progeny and: 1) determine combining 

ability and gene action controlling starch content, yield, and yield components; 2) identify 

parents and their progeny with high starch content, high yield and high root dry matter content 

for the processing industry in Tanzania; 3) determine heterosis percentage based on starch 

content and starch yield; and 4) identify superior genotypes in terms of starch content and 

starch yield. 

 

5.2 Materials and methods 
 

The study was conducted at Agricultural Research Institute (ARI)-Chambezi, in Bagamoyo 

district, Coast region, Tanzania in the 2008/09 cropping season. The area has two rain seasons: 

October to December, and March to May, with the annual rainfall ranging between 750 to 900 

mm. The annual mean temperature ranging between 22 to 32 ºC; the altitude is 39 masl; and 

the coordinates are 38º 54´ E and 06º 34´ S. The site is characterized by deep, well drained, 

sandy soils (ustic soil moisture regime) with flat to almost flat topography, in the humid lowland 

agro-ecology (soil analysis attached; Appendix 1; Map Appendix 2). 
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5.2.1 Germplasm source 
 

Ten parents from two genetically diverse germplasm groups were crossed in a half-diallel 

(excluding selfs) and their respective full-sib families were generated in 2006 (Table 4.1). 

Genotypes from 36 families selected from the 45 and constituting a 10x10 half-diallel were 

evaluated at the seedling stage at the Sugarcane Research Institute (SRI)-Kibaha in 2007 

(Chapter 4). Among the many F1 progeny of a given cross, 40 were randomly selected based on 

their capacity to produce at least six vegetative cuttings from a plant. On that basis a total of 

1440 genotypes were randomly selected from the seedling trial for evaluation at the clonal 

stage.  

 

5.2.2 Experimental design 
 

Two of the cuttings from the selected genotypes were planted in one of the three replications in 

a 4 x 10 α-lattice design at ARI-Chambezi in the 2008/09 season. Planting was done in the first 

week of April 2008. The 40 clones from each F1 cross were planted together in the respective 

plots of each replication. The families were observed for several traits including yield and yield 

components, and starch content. In the seedling trial, spreader rows had been used to facilitate 

cassava brown streak disease infection of the genotypes. However, in the clonal trial cultivar 

Kifumulo was planted in two border rows around each replication to facilitate the spread of 

cassava mosaic and cassava brown streak disease infection. In addition, Chambezi site is 

considered as a ‘hot spot’ area for both cassava brown streak (CBSD) and cassava mosaic 

diseases (CMD). In this trial, therefore disease spread depended on: 1) infection gathered at 

seedling stage; 2) spreader rows; and 3) natural inoculum because of the abundance of the 

vector, whitefly (Bemisia tabaci Gennadius) during the rainfall season. Plants were spaced at 1 

x 1 m between and within rows, resulting in a population of 10 000 plants ha-1. No fertilizer or 

herbicide was applied during the course of the trial. Hand weeding was done whenever 

necessary. Harvesting was done 12 months after planting.  
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5.2.3 Data collection 
 

Data on yield, yield components and starch content (StC) for each progeny were recorded. The 

progeny were numbered according to the National Root and Tuber Crops Research Programme 

system in Tanzania (MALD, 1991), therefore the numbers started from KBH/08/6001 up to the 

last genotype 7440. For brevity only the last four numbers are used for presentation purposes 

(e.g. 6001) (the numbers from KBH/08/01 to KBH/08/5999 were given to other genotypes 

generated by the programme at SRI-Kibaha in 2008). The number of storage roots (SRN) from 

each plot was counted. Fresh yield of storage roots (FSRY) and stems plus foliage were 

weighed (FSM). Harvest index (HI) was measured as a percentage of fresh root mass relative to 

total biomass. Root dry matter content (RDMC) was estimated using a forced draught oven 

(Dixon and Nukenine, 2000) as follows: cassava roots were washed and cut into thin slices. 

Duplicate samples of 100 g each were taken and dried at 70°C for 72 h. The dried samples 

were weighed to obtain the dry mass, and the dry matter content as percentage were obtained 

as a proportion of the fresh mass. Dry storage root yield (DSRY) in t ha-1 was calculated as a 

product of FSRY and RDMC. 

The StC was determined by a modified method of Asaoka et al. (1992). About 300 g of wet 

roots were disintegrated using a laboratory Waring blender with excess water.  The slurry was 

double filtered through a sieve mesh and muslin cloth. The residue was rinsed twice with 500 ml 

of water each time to remove remnants of starch. The filtrate was allowed to settle for 2 h before 

decanting the liquid. The starch was suspended three times in 3 L water and non-starch 

materials removed by decanting the supernatant. The starch was then dried in a ventilated oven 

at 30 to 33ºC for 72 h, sieved with 200 µm mesh sieve, then placed in polythene bag and stored 

until required. When a large number of samples were collected and time did not allow prompt 

analyses, representative samples of roots were put in polythene bags and stored in a deep 

freezer at -20ºC within 6 h. The dried starch was calculated as a percentage of fresh root mass. 

Starch yield (StY) in t ha-1 was calculated as a product of fresh storage root yield multiplied by 

the percentage starch of the root. Destructive sampling was done by cutting the roots 

transversely into several pieces at harvest to check for CBSD root necrosis symptoms and its 

severity was recorded as follows: 
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Cassava mosaic and cassava brown streak diseases above ground symptoms were rated as 

follows: 

i. Cassava mosaic disease (CMD) severity was assessed subjectively at 6 MAP on  

            a scale of 1 to 5 according to Mahungu and Kanju (1997) as follows: 

1= No symptoms observed; 

2= Mild chlorotic pattern on entire leaflets or mild distortion at base of 

     leaflets, the rest of leaflets appearing green and healthy; 

3= Strong mosaic pattern on entire leaf, and narrowing and distortion of 

     lower one-third of leaflets; 

4= Severe mosaic with distortion of two-thirds of leaflets and general  

     reduction of leaf size; and 

5= Severe mosaic, distortion of four-fifths or more of leaflets, twisted and 

     misshapen leaves. 

ii. Cassava brown streak disease (CBSD) severity was assessed subjectively at 

6 MAP on above ground parts, on a scale of 1 to 5 (Mahungu and Kanju, 1997), 

where; 

Figure 5.1 Scoring system for cassava brown streak root necrosis (source: IITA, Tanzania, 2008) 
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1= No visible symptoms; 

2= Slight foliar chlorosis between leaf vein, no stem lesions; 

3= Foliar chlorosis between leaf veins, with mild stem lesions, no die-back; 

4= Foliar chlorosis between leaf veins, and pronounced stem lesions with 

     beginning of die-back; and 

5=Defoliation with pronounced die-back and stem lesions  

  

 

5.2.4 Statistical analyses 
 

The residual maximum likelihood (REML) spatial analysis procedure in Genstat version 12 

(Payne et al., 2008) was used to analyse clonal stage data at both the family and progeny level. 

Either family or progeny, and the linear trend across rows and columns were declared as fixed 

effects, while replications, blocks within replications and interaction between rows and columns 

were considered random. At the family level of the statistical analysis, mean SRN, FSRY, FBM, 

HI, CBSRN, RDMC, StC, and StY for the 40 progeny of each family  across three replications, 

were computed by the REML spatial analysis procedure. Similarly, at the progeny level of 

statistical analysis, means across replications for the same traits were computed for each of the 

Figure 5.2 Cassava brown streak disease symptoms in (A) leaf, (B) stem, and (C) 
roots 



182 
 

1440 progeny. If there were missing values within families and genotypes REML computed chi-

square (χ2) probability, while the F probability was computed if there were no missing values. 

The analysis of variance (ANOVA) for combining ability effects conducted using SAS version 

9.2 (Zhang et al., 2005) for traits for which there were significant differences (p≤0.05) between 

families at the clonal stage. Griffing’s (1956) diallel method IV model I for a fixed model was 

fitted for the GCA and SCA analysis as follows: 

 Yijk = µ + gi + gj + sij + (Σk Σl Єijkl)/b; where: 

Yijk= observed value of the cross between parent i and j and replication k; 

µ= the overall mean; 

gi= the GCA of the parent i; 

 gj= the GCA of the parent j; 

sij= SCA of the cross between parents i and j; 

Єijkl= experimental error; 

b= replications. 

In determining the performance of the hybrids generated, the relative importance of GCA and 

SCA for each trait was measured by expressing the GCA and SCA sum of squares (SS) as a 

percentage of family SS. Pearson’s phenotypic correlations between traits were performed 

using Genstat version 12, for the family means. Mid-parent and best parent heterosis of the 30 

best performing F1 progeny was calculated for StC, StY, RDMC and FSRY.  

 

5.3 Results 
 

5.3.1 Agronomic characteristics at the progeny leve l 
 

Significant differences (p≤0.001) in FSM, FBM, SRN, FSRY, CBSRN and HI were observed 

between progeny (Table 5.1). Linear effects across columns were significant (p≤0.05) for FBM, 

FSRY, SRN, FSM, and CBSRN, while the linear effects across rows were not significant with 

the exception of HI (p≤0.01) and CBSRN (p≤0.05). The mean FSRY over three replications was 

20.8 with a range of 0.0 to 124.2 t ha-1. Genotype 6086 (Kalolo x AR 40-6) had the highest 

mean FSRY (124.2 t ha-1), followed by genotype 6090 (100.1 t ha-1; Kalolo x AR 40-6). The 
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DSRY ranged from 0.0 to 43.1 t ha-1 with the mean of 7.6 t ha-1. The genotype 6086 (43.05 t  

ha-1; Kalolo x AR 40-6) had the highest DSRY, followed by genotype 6879 (40.9 t ha-1; Vumbi x 

AR 42-3). The mean FBM over three replications ranged between 1.9 and 268.3 t ha-1 with the 

mean value of 57.8 t ha-1. Genotype 6086 had the highest FBM (268.3 t ha-1) followed by 

genotype 6841 (209.2 t ha-1; Vumbi x AR 42-3). The SRN ranged from 0.0 to 14.4 roots plant-1 

with a mean of 4.6 roots plant-1. Genotype 6629 (14.4; Nachinyaya x TMS 30001) had the 

highest SRN, followed by the genotype 6682 (13.5; Nanchinyaya x AR 37-80). The CBSRN 

ranged between 1.0 and 5.0, with the mean of 1.6. Four genotypes (6781, 7424, 7304, and 

7316) recorded the maximum root necrosis severity of class 5.0. The frequency distribution of 

the other genotypes according to class of severity was as follows: mean score for class 1.0 

(35.4%), class 2 (46.0%), class 3 (14.4%), class 4 (3.2%) and class 4 and above (0.9%). 
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Table 5.1 Residual maximum likelihood Wald’s chi-square statistic of significance and summary statistics for eight traits of the 
progeny at clonal stage  

            

     Degrees of freedom    Chi-square (χ2) statistic      

Variable 
 
Lin_R      Lin_C Progeny 

 
Lin_R Lin_C Progeny   Min   Max   Mean    SEM   SED 

FBM 1 1 1436 0.82** 6.99** 4549.1*** 1.86 268.3 57.83 4.45 26.56 

FSRY 1 1 1439 0.51** 8.51** 5045.1*** 0.00 124.22 20.82 8.59 12.02 

SRN 1 1 1434 1.89** 3.98** 4442.1*** 0.00 14.36 4.55 1.39 1.95 

DSRY 1 1 1437  2.02    4.04* 4658.5*** 0.00 43.05 7.63 0.28 2.42 

CBSRN 1 1 1394  4.18* 6.22** 2049.4*** 1.00 5.00 1.58 0.57 0.82 

HI 1 1 1392 7.10** 0.78** 3939.2*** 0.01 0.80 0.35 0.07 0.10 

RDMC 1 1 1381 2.52** 6.63** 2561.5*** 13.92 56.67 36.53 3.48 4.93 

StC 1 1 1321 0.53** 0.70** 2048.7*** 6.69 40.92 26.97 0.33 5.02 

StY 1 1 1321 1.07** 1.95** 3788.2*** 0.00 34.90 5.10 0.36 3.78 
 

FSRY (fresh storage root yield in t ha-1); FBM (fresh biomass weight in kg plant-1); HI (harvest index); DSRY (dry storage root yield);  RDMC (root dry matter in %); 
StC (starch content in %); StY (starch yield in t ha-1); CBSRN (cassava brown streak disease root necrosis severity); Lin_R (Linear row); Lin _C (Linear column); 
Min (minimum); Max (maximum); SEM (standard error); SED (standard error of the mean); significance levels: * 0.05; ** 0.01; *** 0.001
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5.3.2 Root dry matter content, starch content and y ield at the progeny level 
 

Significant differences in RDMC, StC and StY (p≤0.001) were observed between progeny 

(Table 5.1). Linear effects across rows as well as columns for the same traits were not 

significant with the exception of RDMC which had significant (p≤0.05) linear effects across 

columns. The overall performance of the progeny in RDMC ranged from 13.9 (7433; CR 25-4 x 

AR 37-80) to 56.7% with a mean of 36.5%. Genotype 7085 had the highest RDMC (56.7%) 

(Table 5.1) followed by genotype 6769 (50.5%). The StC ranged from 6.7 to 40.9%, with a mean 

of 27.0%, while StY ranged from 0.0 to 34.9 t ha-1 with a mean of 5.2 t ha-1 (Table 5.1). 

Genotype 6256 from cross Kiroba x Namikonga had the highest StC (40.9%), and genotype 

6879 from cross Vumbi x AR 42-3 had the highest StY (34.9 t ha-1). The lowest StC was 

recorded from genotype 6828 (6.7%; Vumbi x TMS 30001). The majority of the progeny (>80%) 

had StC ranging between 25 and 35% (figure 5.3). For StY, more than 90% of the genotypes 

achieved between 0 and 10 t ha-1 (figure 5.4) 

 

Figure 5.3 Frequency distribution of the genotypes in starch composition at the progeny level 
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Figure 5.4 Frequency distribution of genotypes in starch yield (t ha-1) at progeny level 

 

5.3.3 Yield and yield components at the family leve l 
   

The family variances for FSRY, FBM, SRN, CBSRN and HI were highly significant (p≤0.001) 

(Table 5.2). The linear effects across the rows and columns were not significant, except for the 

linear effects across rows for HI (p≤0.05). The mean value for FSRY was 21 t ha-1 and varied 

from 15.0 to 36.3 t ha-1, from families Kiroba x Namikonga and Kalolo x AR 40-6, respectively. 

The SRN ranged from 3.1 (Vumbi x Namikonga) to 6.3 roots plant-1 (Nanchinyaya x AR 37-80) 

with the mean of 4.6 roots plant-1. Mean FBM was 58.6 t ha-1 and varied from 41.9 (Vumbi x 

TMS 30001) to 82.3 t ha-1 (Kalolo x AR 40-6) (Table 5.3). Mean HI was 0.35 and varied from 

0.27 (Vumbi x Namikonga) to 0.45 (TMS x AR42-3). Dry storage root yield ranged from 5.2 to 

13 t ha-1, with the mean of 7.7 t ha-1 

 
5.3.4 Root dry matter content, starch content and y ield at the family level 
 

The family variance for RDMC, StC and StY were highly significant (p≤0.001) (Table 5.2). The 

linear effects across rows and columns were not significant. The RDMC for families ranged from 

a low of 31.4 (Kalolo x TMS 30001) to a high of 40.1% (Nanchinyaya x Namikonga) with a mean 

of 36.6%. The mean StC across families was 27% (Tables 5.2 and 5.3), with the lowest StC  of 

23% measured in family Kalolo x TMS 30001, and the highest of 29.9% in two families 

Nanchinyaya x Namikonga and AR 40-6 x AR 42-3 (Table 5.3). Overall mean StY for families 

was 5.16 t ha-1 and varied from 3.7 (TMS 30001 x AR 37-80) to 8.5 t ha-1 (Kalolo x AR 40-6) 

(Table 5.3).  



187 
 

       Table 5.2 Residual maximum likelihood Wald’s F statistic of significance and summary statistics for eight traits of the families at  
       clonal stage  

 
                               Degrees of freedom 

                                                                        
                      
                   F statistic         

Variable Lin_R Lin_C Families Lin_R Lin_C Families Min Max Mean SE SED 

FBM 1 1 35 0.00 0.18 4.20*** 41.9 82.32 58.6 4.89 0.66 

FSRY 1 1 35 1.86 1.50 4.04*** 14.95 36.27 20.96 2.55 3.17 

SRN 1 1 35 2.84 0.00 6.23*** 3.07 6.34 4.6 0.37 0.43 

DSRY 1 1 35 4.40 0.54 4.40***  5.23 12.98   7.67  0.38 1.11 

HI 1 1 35 7.82* 0.02 5.76*** 0.27 0.45 0.35 0.02 0.03 

RDMC 1 1 35 3.24 2.69 6.21*** 31.47 40.14 36.59 0.91 1.14 

StC 1 1 35 0.02 0.58 3.98*** 22.79 29.9 26.98 0.93 1.23 

StY 1 1 35 3.45 1.15 3.59*** 2.73 8.45 5.16 0.89 1.17 
        
        FSRY (fresh storage root yield in t ha-1); FBM (fresh biomass in t ha-1); HI (harvest index); DSRY (dry storage root yield in t ha-1); RDMC (root dry matter in  
       %); StC (starch content in %); StY (starch yield in t ha-1); Lin_R (Linear row); Lin _C (linear column); Min (minimum); Max (maximum); SEM (standard  
        error of the mean) and SD (standard deviation); significance levels: * 0.05; ** 0.01; *** 0.001.



188 
 

Table 5.3 Family means for fresh storage root yield, root dry matter content, starch content and 
starch yield at clonal stage. 

 Cross FSRY       RDMC                   StC                 StY 
Kalolo x Vumbi 18.68 34.95 26.54 4.19 
Kalolo x Namikonga 23.59 34.63 26.00 5.17 
Kalolo x AR 40-6 35.94 33.39 23.67 8.31 
Kalolo x TMS 30001 23.04 31.42 23.01 4.28 
Kalolo x AR 42-3 26.56 35.96 26.81 6.03 
Kalolo x AR 37-8 23.14 33.30 26.07 4.51 
Kiroba x Namikonga 14.08 37.34 27.54 3.95 
Kiroba x Vumbi 18.00 38.43 28.16 5.36 
Nanchinyaya x Vumbi 20.49 39.74 28.76 5.14 
Kiroba x AR 40-6 20.15 39.30 28.82 5.83 
Kiroba x TMS 30001 23.58 36.20 27.63 6.10 
Kiroba x AR 42-3 25.56 39.99 28.11 5.66 
Kiroba x AR 37-80 20.50 37.36 28.25 5.71 
Nanchinyaya x Namikonga 20.20 40.10 29.78 5.32 
Nanchinyaya x AR 40-6 20.83 36.98 25.46 4.72 
Nanchinyaya x TMS 30001 20.08 38.72 28.94 4.81 
Nanchinyaya x AR 42-3 18.07 38.26 27.64 4.29 
Nanchinyaya x AR 37-80 20.78 36.84 26.54 5.06 
Vumbi x Namikonga 17.00 38.03 26.42 3.84 
Vumbi x AR 40-6 16.76 37.38 25.74 4.05 
Vumbi x TMS 30001 15.38 35.71 24.92 3.42 
Vumbi x AR 42-3 27.00 38.11 26.55 7.07 
Vumbi x AR 37-80 18.51 37.20 25.87 4.62 
TMS 30001 x AR 37-80 16.42 33.28 24.62 3.23 
Namikonga x AR 40-6 18.97 38.99 28.72 4.72 
Namikonga x TMS 30001 19.35 38.20 28.64 5.06 
TMS 30001 x AR 42-3 26.04 36.14 27.15 6.72 
Namikonga x AR 42-3 20.46 37.90 29.34 5.72 
Namikonga x AR 37-80 22.34 36.41 27.40 5.66 
AR 40-6 x TMS 30001 20.27 36.32 27.73 5.21 
AR 40-6 x AR 42-3 23.88 37.54 29.78 6.62 
AR 40-6 x AR 37-80 17.42 36.52 27.66 5.00 
AR 42-3 x AR 37-80 19.14 34.57 25.13 4.54 
CR 25-4 x AR 42-3 22.21 34.68 26.13 6.00 
CR 25-4 x AR 40-6 24.03 35.75 27.24 6.22 
CR 25-4 x AR 37-80 16.22 31.51 24.55 3.68 
Mean 20.96 36.59 26.98 5.16 
SEM 0.904 0.29 0.49 0.30 
LSD 6.428 2.30 2.56 2.84 

                                           

FSRY (fresh storage root yield in t ha-1); RDMC (root dry matter in %); StC (starch content in %);  

StY (starch yield in t ha-1); SEM (standard error of the mean); LSD (least significant difference) 

 



189 
 

Table 5.4 Family means for storage root number, harvest index and  

fresh biomass  at clonal stage 

Cross SRN  HI FBM 
Kalolo x Vumbi 3.73 0.33 55.3 
Kalolo x Namikonga 4.85 0.37 61.6 
Kalolo x AR 40-6 6.19 0.43 82.3 
Kalolo x TMS 30001 4.53 0.41 53.3 
Kalolo x AR 42-3 5.16 0.41 61.7 
Kalolo x AR 37-8 4.57 0.35 62.9 
Kiroba x Namikonga 3.65 0.29 49.9 
Kiroba x Vumbi 3.15 0.33 58.0 
Nanchinyaya x Vumbi 5.17 0.30 66.5 
Kiroba x AR 40-6 4.05 0.34 63.6 
Kiroba x TMS 30001 5.08 0.41 54.9 
Kiroba x AR 42-3 4.76 0.33 80.8 
Kiroba x AR 37-80 5.04 0.35 63.9 
Nanchinyaya x 5.56 0.29 67.2 
Nanchinyaya x AR 40-6 6.02 0.35 60.2 
Nanchinyaya x TMS 5.91 0.35 54.7 
Nanchinyaya x AR 42-3 5.11 0.32 53.6 
Nanchinyaya x AR 37- 6.40 0.34 58.7 
Vumbi x Namikonga 3.11 0.27 58.7 
Vumbi x AR 40-6 3.89 0.29 57.0 
Vumbi x TMS 30001 4.18 0.34 41.9 
Vumbi x AR 42-3 4.50 0.35 77.7 
Vumbi x AR 37-80 3.91 0.33 59.2 
TMS 30001 x AR 37-80 3.90 0.35 46.9 
Namikonga x AR 40-6 4.14 0.32 59.1 
Namikonga x TMS 4.75 0.38 50.4 
TMS 30001 x AR 42-3 4.74 0.45 57.5 
Namikonga x AR 42-3 4.08 0.33 61.1 
Namikonga x AR 37-80 4.97 0.38 54.8 
AR 40-6 x TMS 30001 5.03 0.41 47.4 
AR 40-6 x AR 42-3 4.70 0.39 60.1 
AR 40-6 x AR 37-80 4.08 0.36 49.4 
AR 42-3 x AR 37-80 4.11 0.35 59.1 
CR 25-4 x AR 42-3 4.53 0.39 55.6 
CR 25-4 x AR 40-6 4.82 0.39 58.7 
CR 25-4 x AR 37-80 3.38 0.35 45.5 
Mean   4.6 0.35 58.6 
SEM 0.24         0.005  4.9 
LSD 0.84  0.04 14.2 

SRN (storage root number plant-1); HI (harvest index) FBM (fresh biomass in t ha-1);  

SEM (standard error of the mean); LSD (least significant difference)                                                                                                              
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  Figure 5.5 (A) Plants at 9 MAP and (B) harvested roots at 12 MAP  

 

5.3.5 Virus diseases at family level 
 
Families differed significantly (p≤0.001) in the expression of CMD and CBSD above ground 

symptoms (Table 5.5).  The CMD severity for the above ground symptoms ranged from 1.7 

(Vumbi x AR 42-3) to 2.7 (Vumbi x Namikonga) with the mean of 2.2 (Table 5.6). The CBSD 

severity for the above ground symptoms averaged at 1.2 and ranged from 1.0 (Namikonga x AR 

40-6) to 1.9 (CR 25-4 x AR 40-6). For the CBSRN, the below ground symptoms ranged from 1.2 

(Namikonga x AR 37-80) to 2.2 (TMS 30001 x AR 37-80) with the mean of 1.6 (Tables 5.5; 5.6).   

Table 5.5 Residual maximum likelihood Wald’s F statistic and summary statistics for two 
cassava diseases of the family at clonal stage 

 Degrees of F statistic                

 freedom       

Source df Family Min   Max Mean SEM SED 

CMDS 35    9.75*** 1.71   2.68 2.15 0.09 0.12 

CBSDS  35  28.19*** 1.00   1.87 1.15 0.02 0.05 

CBSRN 35    4.38*** 1.18   2.24 1.58 0.14 0.17 

CMDS (cassava mosaic disease severity); CBSD (cassava brown streak disease severity); CBSRN (cassava brown 
streak disease root necrosis); Min (minimum); Max (maximum); SEM (standard error of the mean); SED (standard 
error of the difference) 
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Table 5.6 Family means for cassava mosaic and cassava brown streak disease severity scores for the 
above ground symptoms and root necrosis at clonal stage 

Cross CMDS   CBSDS  CBSDNCR 
Kalolo x Vumbi 2.58  1.15  1.70  
Kalolo x Namikonga 2.51  1.13  1.46  

Kalolo x AR 40-6 2.43  1.11  1.53  

Kalolo x TMS 30001 2.46  1.02  1.54  

Kalolo x AR 42-3 2.24  1.05  1.39  

Kalolo x AR 37-8 2.42  1.03  1.77  

Kiroba x Namikonga 2.52  1.05  1.37  

Kiroba x Vumbi 2.22  1.05  1.38  

Nanchinyaya x Vumbi 2.43  1.18  1.79  

Kiroba x AR 40-6 2.15  1.09  1.23  

Kiroba x TMS 30001 2.08  1.08  1.34  

Kiroba x AR 42-3 1.89  1.04  1.46  

Kiroba x AR 37-80 2.24  1.10  1.47  

Nanchinyaya x Namikonga 2.35  1.10  1.56  

Nanchinyaya x AR 40-6 1.93  1.08  1.43  

Nanchinyaya x TMS 30001 2.45  1.04  1.83  

Nanchinyaya x AR 42-3 2.30  1.20  1.71  

Nanchinyaya x AR 37-80 1.98  1.35  1.99  

Vumbi x Namikonga 2.68  1.05  1.47  

Vumbi x AR 40-6 2.25  1.12  1.58  

Vumbi x TMS 30001 2.31  1.10  1.75  

Vumbi x AR 42-3 1.71  1.03  1.65  

Vumbi x AR 37-80 2.08  1.19  1.58  

TMS 30001 x AR 37-80 2.18  1.08  2.16  

Namikonga x AR 40-6 2.27  1.00  1.53  

Namikonga x TMS 30001 2.22  1.07  1.37  

TMS 30001 x AR 42-3 2.03  1.03  1.57  

Namikonga x AR 42-3 2.12  1.07  1.24  

Namikonga x AR 37-80 1.98  1.03  1.17  

AR 40-6 x TMS 30001 1.75  1.04  1.30  

AR 40-6 x AR 42-3 1.71  1.12  1.44  

AR 40-6 x AR 37-80 1.72  1.11  1.46  

AR 42-3 x AR 37-80 1.78  1.25  2.12  

CR 25-4 x AR 42-3 2.03  1.58  1.96  

CR 25-4 x AR 40-6 1.72  1.87  1.41  

CR 25-4 x AR 37-80 1.81   1.74  2.12  

Mean 2.15  1.15  1.58  
SE 0.09  0.02  0.05  
LSD 0.24  0.10  0.34  

CMDS (cassava mosaic disease severity); CBSD (cassava brown streak disease severity); CBSRN (cassava  
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brown streak root necrosis); SE (standard error of the mean); LSD (least significant difference) 

 

 

 

5.3.6 Combining ability effects  
 

The GCA and SCA effects were highly significant (p≤0.001) for StC, StY, RDMC, FSRY, FBM, 

SRN and CBSRN. The SCA effects for StC (p≤0.05) and CBSRN (p≤0.01) were also significant 

(Table 5.7). The GCA SS as a percentage of family SS ranged from 35 to 56% for the seven 

traits under consideration (Table 5.5). The SCA SS as a percentage of family SS ranged from 

44 to 65%. The SCA SS % was higher than the GCA SS % for FSRY, StY, SRN, and FBM 

(Table 5.7). However, for RDMC, StC, and CBSRN the GCA SS % was greater than SCA%.  

 

 

Figure 5.6 (A), (B), (C) plants with no symptoms of cassava mosaic disease; and (D) plant with cassava 
mosaic disease symptoms 
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Table 5.7 Combining ability ANOVA for seven traits of ten cassava parents and 10 x 10 half 
diallel at clonal stage 

 

 

 

The GCA effects for RDMC were positive and significant for the parents Vumbi (p≤0.001), 

Kiroba (p≤0.01), Namikonga (p≤0.01), and Nanchinyaya (p≤0.001), but negative and significant 

(p≤0.001) for parents Kalolo,  AR 37-80, CR 25-4, and TMS 30001 (p≤0.05). The GCA effects 

for StC were high, positive and significant for parents Namikonga (p≤0.001) and Kiroba 

(p≤0.05), while for parents Kalolo and CR 25-4, the GCA effects were high, negative and 

significant (p≤0.001) (Table 5.8). Significant and positive GCA effects for StY were observed for 

parents Kalolo and AR 42-3, while parents AR 37-80 and CR 25-4 had negative significant GCA 

effects. Parent Kalolo indicated significant GCA effects for seven of eight traits: RDMC (p≤.001), 

FSRY (p≤0.001), StC (p≤0.001), StY (p≤0.001), SRN (p≤0.01), FBM (p≤0.01), and CBSRN 

(p≤0.001) (Table 5.8). Parent AR 42-3 had positive GCA effects for all the traits; however, only 

FSRY (p≤0.001), StC (p≤0.01), FBM, and HI were significant (p≤0.05). Parent AR 37-80 

indicated negative significant effects for RDMC, FSRY, StarchY, SRN, and FBWT. However, it 

showed positive significant effects for CBSRN (p≤0.001).  

 

Source df FSRY RDMC StC StY CBSRN SRN FBM 

Family 44   63.5*** 11.96***   9.85*** 4.76*** 0.19*** 1.72*** 233.7*** 

GCA 9 125.3*** 32.87*** 26.82*** 8.20*** 0.48*** 3.79*** 403.6*** 

SCA 35   47.6***   6.58***   1.59* 3.87***     0.11** 1.19*** 190.1*** 

Error 88   12.4   2.63   3.44 1.22     0.06 0.29   79.5 
 
%Family SS       

     GCA (%)  40.38 56.24 55.71 35.28 52.36 52.36 35.32 

     SCA (%)  59.62 43.76 44.29 64.72 47.64 55.00 64.68 
         

FSRY (fresh storage root t ha-1); RDMC (root dry mass in %); StC (starch content in %); StY (starch yield in t ha-1); 
CBSRN (cassava brown steak disease root necrosis); SRN (storage root number); FBM (fresh biomass t ha-1); GCA 
(general combining ability); SCA (specific combining ability); SS (sum of squares); significance levels: * 0.05; ** 0.01; 
*** 0.001 
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Table 5.8 General combining ability effects for eight traits of ten cassava parents and 10 x10 half 
diallel at the clonal stage 
 

Parent RDMC FSRY   StC   StY   SRN    CBSRN   FBM HI  

Kalolo -1.52*** 5.14*** -1.44*** 1.08*** 0.33*** -0.04*** 5.06*** 0.04*** 

Vumbi 1.06*** -1.33*** -0.11*** -0.24*** -0.63*** 0.03*** 3.64*** 0.03***  

Kiroba 0.96*** -0.19*** 0.92*** 0.19*** -0.23*** -0.18*** 1.59*** -0.006***  

Namikonga 0.94*** -1.62*** 1.83*** -0.13*** -0.21*** -0.20*** -0.92*** -0.024***  

Nanchinyaya 1.38*** -1.02*** 0.21*** -0.34*** 0.82*** 0.08*** 0.81*** -0.25***  

AR 40-6 0.31*** 0.93*** 0.31*** 0.38*** 0.19*** -0.15***    1.45 0.01***  

TMS 30001 -0.73*** -0.91*** -0.11*** -0.35*** 0.13*** 0.03*** -7.39*** 0.033***  

AR 42-3 0.49*** 2.44*** 0.62*** 0.72*** 0.04*** 0.07*** 4.08*** 0.01***  

AR 37-80 -1.71*** -2.59*** -0.50*** -0.79*** -0.23*** 0.23*** -4.65*** -0.009***  

CR 25-4 -1.19*** -0.83*** -1.73*** -0.52*** -0.21*** 0.13*** -3.66*** 0.004***  

SEM 0.312*** 0.09*** 0.39*** 0.22*** 0.11*** 0.05*** 0.18*** 0.006***  

CV (%) 4.44*** 20.7*** 6.93*** 20.8*** 11.5*** 15.1*** 14.8*** 9.5***  

R2 0.71*** 0.61*** 0.6*** 0.69*** 0.77*** 0.65*** 0.66*** 0.68***  
LSD 0.05    0.63 0.18 0.72   0.42 0.21     0.09    0.34      0.01  
LSD 0.01    0.83 0.24 0.95   0.56 0.27        0.12      0.45 0.02  

FSRY (fresh storage root yield in t ha-1); RDMC (root dry matter content in %); StC (starch content in %); HI (harvest 
index); StY (starch   yield in t ha-1); CBSRN (cassava brown steak disease root necrosis); SRN (storage root 
number); FBWT (fresh biomass weight in t ha-1);  SEM (standard error of the mean); significance levels: * 0.05; ** 
0.01; *** 0.001; g=general combining ability (LSD for g 
 
 
 

The deviations of the individual crosses from the average performance of the parents were 

compared on the basis of SCA effects (Table 5.9). Among the families, three families: Kiroba x 

AR 40-6, Kiroba x AR42-3, and Kiroba x AR 37-80 had positive and significant (p≤0.05) SCA 

effects for RDMC. Family Kiroba x AR 42-3 had the highest, positive SCA effect (2.11; p≤0.05) 

of all the families for RDMC. However, families Kalolo x TMS 30001, Kiroba x Namikonga, and 

AR 37-80 x CR 25-4 had negative and significant (p≤0.01) effects for the RDMC. Four families 

had significant SCA effects (p≤0.05) for StC. Among the four, Nanchinyaya x TMS 30001 and 

Namikonga x AR 37-80 had positive significant SCA effects, while the other two Kalolo x TMS 

30001 and AR 42-3 x AR37-80 had negative significant SCA effects for StC. Family 

Nanchinyaya x TMS 30001 recorded highest positive (2.3) and significant (p≤0.01) SCA effect 

for StC (Table 5.9). The families Kalolo x TMS 30001 and AR 42-3 x AR 37-80 had negative 

and significant effects (p≤0.01) for StC. For StY, family Kalolo x AR 40-6 recorded the highest, 

positive (3.12) significant (p≤0.001) SCA effects. Other families with positive and significant 
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effects include: Vumbi x AR 42-3 (1.96; p≤0.01), Kiroba x TMS 30001 (1.37; p≤0.05), Kiroba x 

AR 37-80 (1.39; p≤0.05) and Namikonga x AR 37-80 (1.66; p≤0.01). However, the majority of 

the families did not record significant SCA effects for StY. For FSRY, Kalolo x AR 40-6 recorded 

the highest, positive (13.39) significant (p≤0.001) SCA effects, whereas most of the other 

families had non-significant SCA effects. 

 

Three families, Kalolo x AR 42-3, Vumbi x AR 37-80, and Namikonga x AR 37-80 had negative 

(-0.27, -0.26, -0.41) and significant (p≤0.05; p≤0.05; p≤0.001 respectively) SCA effects for 

CBSRN (Table 5.9). Family Namikonga x AR 37-80 had the lowest, negative (-0.41) highly 

significant (p≤0.001) SCA effects for CBSRN. Only eight of the 36 families had significant SCA 

effects for SRN. Family Kalolo x AR 40-6 had the highest, positive (1.25) and significant 

(p≤0.001) SCA effects for SRN. For HI, families Kalolo x Vumbi, Kalolo x Namikonga, Kalolo x 

AR 40-6 and Namikonga x AR 37-80 had positive and significant (p≤0.001; p≤0.001; p≤0.01, 

and p≤0.01 respectively) SCA effects, while for FBM, Kalolo x AR 40-6, Vumbi x AR 42-3, 

Kiroba X AR 42-3 recorded positive (19.5; 15.2; 14.1) and significant (p≤0.001; p≤0.01; p≤0.01 

respectively) SCA effects. The family Namikonga x AR 37-80 recorded positive (1.98; 1.66; 

4.59) and significant (p≤0.05; p≤0.01; p≤0.05 respectively) SCA effects for the StC, StY, and 

FSRY while the family AR 42-3 x AR 37-80 recorded negative (-2.58; -1.23) and significant 

(p≤0.01; p≤0.05 respectively) SCA effects for the StC and StY. 
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Table 5.9 Specific combining ability effects for eight traits of ten cassava parents and 10 x 10 half diallel at the clonal stage 

Family RDMC StC StY FSRY      CBSRN   SRN         HI 
        
FBM 

Kalolo x Vumbi -0.48  1.51 -0.72   -3.36***          0.22*** -0.34***    0.001*** -9.55*** 
Kalolo x Namikonga -0.66 -0.91 0.49   1.65** 0.03*** 0.30***      0.03*** 1.68*** 
Kalolo x AR 40-6 -1.36 -1.67     3.12***   13.39*** 0.11*** 1.25***    0.04** 19.53*** 
Kalolo x TMS 30001 -2.28**  -2.07*    -0.48     -0.05 -0.12*** -0.42***   0.005*** -0.75*** 

Kalolo x AR 42-3  1.02  1.16 0.58 0.48   -0.27*** 0.54*** 0.020*** -3.69*** 

Kalolo x AR 37-80  0.36  1.47 0.29 1.27 -0.06*** 0.04*** -0.010*** 6.71*** 

Vumbi x Kiroba  0.04  0.83 0.08      -0.45 -0.08*** -0.54*** 0.020*** -6.41*** 

Vumbi x Namikonga  -0.53 -1.74    -0.66      -1.30 -0.005*** -0.73***    -0.04* -0.83*** 

Vumbi x Nanchinyaya  1.03 1.08 0.72 2.98 0.03*** 0.64***  0.01 2.49*** 

Vumbi x AR 40-6 -0.57 -0.91    -1.06      -3.45 0.11*** -0.34***  -0.04* 4.86*** 

Vumbi x TMS 30001 -1.12 -1.07 -1.39* -4.64* 0.17*** -0.03*** -0.020*** -9.73*** 

Vumbi x AR 42-3  0.31 -0.04    1.96**     6.35*** -0.03*** 0.46*** 0.020*** 15.19*** 
Vumbi x AR 37-80  1.18 -0.03 0.54 1.69 -0.26*** 0.05*** 0.010*** 3.96*** 
Kiroba x Namikonga -3.50***  0.93    -1.53   -5.42** 0.09*** -0.47*** -0.030*** -11.08*** 
Kiroba x AR 40-6  1.76*  1.00 0.08 -0.48 -0.07*** -0.44*** -0.010*** 0.84*** 

Kiroba x TMS 30001 -0.49  0.48  1.37* 3.48 -0.05*** 0.47*** 0.030*** 2.15*** 

Kiroba x AR 42-3  2.11*  0.12 0.12 3.40 -0.04*** 0.36*** -0.030*** 14.14*** 

Kiroba x AR 37-80  1.64*  0.86  1.39* 2.16 -0.20*** 0.87*** 0.010*** 7.34*** 

Namikonga x Nanchinyaya  1.19  0.99  0.57 1.32 0.06*** 0.31*** -0.020*** 8.45*** 

Namikonga x AR 40-6  1.12      -0.39 -0.97 -2.17 0.36*** -0.48*** -0.020*** -2.01*** 

Namikonga x TMS 30001  1.56  0.26 -0.03 -0.19 -0.006*** 0.21*** 0.020*** -1.53*** 

Namikonga x AR 42-3  0.07  0.44  0.05 -0.93 -0.19*** -0.35*** -0.020*** -0.54*** 

Namikonga x AR 37-80  0.50   1.98*    1.66** 4.59* -0.41*** 0.79***      0.06*** 1.28*** 
Nanchinyaya x AR 40-6 -1.28      -1.72 -0.47 -0.52 -0.16*** 0.40***    0.003*** -1.48*** 
Nanchinyaya x TMS 30001  1.43   2.30*  0.41 0.59 0.08*** 0.31*** -0.020***      2.46 
Nanchinyaya x AR 42-3 -0.33  0.03  -1.51*   -5.52** 0.02*** -0.42*** -0.030*** -11.82*** 
Nanchi nyaya x AR 37-80  0.37  0.10 0.72 2.19 0.14*** 1.11*** 0.010*** 5.32*** 

AR 40-6 x TMS 30001 -0.01  0.80 -0.19 -2.26 -0.11*** 0.06*** 0.010*** -7.21*** 

AR 40-6 x AR 42-3 -0.10  1.36 -0.50 -2.84 -0.02*** -0.17*** 0.010*** -5.15*** 

AR 40-6 x AR 37-80  0.93  0.29 -0.49 -3.29 -0.14*** -0.54*** -0.010*** -9.42*** 

AR 40-6 x CR 25-4 -0.49  1.24  0.49  1.62 -0.08*** 0.27*** 0.010*** 0.02*** 

TMS 30001 x AR 42-3 -0.02 -0.13  0.76  3.27 -0.09*** -0.03*** 0.050***      2.49 

TMS 30001 x AR 37-80 -0.99 -0.94 -1.10 -1.95 0.29*** -0.65*** -0.030***      1.06 

AR 42-3 x AR 37-80 -1.25 
  -2.58**  -1.23* -2.16 0.35*** -0.38*** -0.030***         -

3.85*** 

AR 42-3 x CR 25-4 -1.80* -0.35 -0.22 -2.04 0.27*** -0.01*** 0.010*** 
        -

6.77*** 

AR 37-80 x CR 25-4 -2.74** -1.16   -1.78**  -4.50*         0.30***        -1.30***       -0.020*** 
      -

12.41*** 
SCA SE 0.821 0.954  0.59     0.235    0.121   0.276  0.02   0.469 

 FSRY (fresh storage root yield in t ha-1); FBM (fresh biomass in t ha-1); HI (harvest index); RDMC (root dry matter content in %); StC (starch content in %); StY 
(starch yield in t ha-1); CBSRN (cassava brown streak disease root necrosis severity)  
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5.3.7 Correlation between traits at the clonal stag e 
 

High, positive (r≥0.5) and significant (p≤0.05) phenotypic correlations were obtained between 

the following traits (Table 5.10): 

  

• The StY and DSRY, FSRY, FBM, HI and SRN;  

• The StC and RDM; 

• The FSRY and DSRY, SRN, HI, and FBM; 

• The SRN and DSRY, FSRY and FBM. 

Low, negative (r≤-0.3) and non-significant correlations were obtained between the following 

traits (Table 5.10) 

• The CBSRN and StY, StC and RDM;  

• The StC and FSRY, and HI. 

 

5.3.8 Correlation of traits between the seedling an d clonal stages 
 

The RDMC and FSRY values at seedling and clonal stages were positive and significantly 

(p≤0.01) correlated (r=0.67; r=0.50, respectively) (Table 5.11). The HI and SRN were also 

positive and significantly correlated (r=0.69; r=0.52 respectively) between the two stages. 

However, FBM was not significantly correlated between the two stages (Table 5.11). 
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Table 5.10 Phenotypic correlations between ten traits at clonal stage 

DSRY  -          

FSRY 0.96***  -         

FSM 0.55*** 0.54***  -        

FBM 0.82*** 0.83*** 0.92***  -       

HI 0.51*** 0.55*** -0.23**** 0.11***  -      

CBSRN 0.006** 0.03*** 0.04* 0.04* 0.01  -     

SRN 0.62*** 0.64*** 0.36*** 0.54*** 0.46*** 0.03     

RDMC 0.21*** 0.01 0.09*** 0.07*** -0.06 -0.11 0.06**    

StC 0.10*** -0.01*** 0.04* 0.02ns -0.04 -0.11 0.024 0.55***  -  

StY 0.95*** 0.94*** 0.52*** 0.79*** 0.51*** -0.01 0.62*** 0.16*** 0.26***  - 

 DSRY FSRY FSM FBM HI CBSRN SRN RDMC StC StY 

FSRY (fresh storage root yield in t ha-1); FSM (fresh shoot mass in kg plant-1); FBM (fresh biomass in t ha-1); HI (harvest index); DSRY (dry storage root yield in t 
ha-1); RDMC (root dry matter in %); StC (starch content %); StY (starch yield in t ha-1); CBSRN (cassava brown streak disease root necrosis severity); SRN 
(storage root yield); significance levels: * 0.05; ** 0.01; *** 0.001 

 

 

Table 5.11 Correlation between four traits in the seedling and clonal stages 

 
Variable  df t-statistic correlation (r) 
Root dry matter  70 4.40*** 0.67*** 
Fresh storage root yield 70 13.86*** 0.50*** 
Harvest index 70    0.20ns* 0.69*** 
Fresh biomass  69 21.34***                 0.33ns 
Storage root number 70 0.71ns                 0.52** 

 
Significance levels: * 0.05; ** 0.01; *** 0.001; ns=not significant 
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5.3.9 Starch content, starch yield and six other tr aits and heterosis of the 30 top progeny 
at clonal stage (ranking based on starch content) 
 

The StC of the top 30 families ranged from 35.1 to 40.9% (Table 5.12). The highest value of StC 

was recorded from progeny 6256 (40.9%) from the family Kiroba x Namikonga, followed by 

progeny 6731 from the family Vumbi x Namikonga (40.6%). The best progeny (6256) from 

family Kiroba x Namikonga  had 51% more StC than the overall progeny mean, while the best 

family (Nanchinyaya x Namikonga and AR 40-6 x AR 42-3) had 10.4% more StC than the 

overall family mean. The StY of the top 30 progeny ranged from 0.52 to 16.8 t ha-1, while RDMC 

ranged from 28.5 to 49.0%. The SRN ranged from 0.6 to 9.1 roots plant-1. For FSRY, the range 

was from 1.3 to 47.2 t ha-1. Progeny 6537 from family Nanchinyaya x Namikonga was the best 

in FSRY among the 30 best performers based on StC. However, if the progeny are individually 

ranked on StY then not surprisingly a different order of performance is obtained (Tables 5.12 

and 5.14).  
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                       Table 5.12 Starch content and yield, and other six traits of the 30 top progeny at clonal stage (ranking based on starch content) 

Cross Clone StC StY FSRY RDMC SRN FBM HI CBSRN 
Kiroba x Namikonga 6256 40.93 1.12 2.80 40.92 1.23 17.38 0.36 1.00 
Vumbi x Namikonga 6731 40.56 6.33 13.44 43.89 2.56 40.65 0.46 1.00 
TMS 30001 x AR 42-3 7078 40.31 6.45 10.85 44.25 1.98 40.50 0.34 1.05 
Namikonga x AR40-6 6991 39.33 6.47 20.21 44.81 3.68 49.67 0.38 1.57 
Nanchinyaya x Namikonga 6535 39.23 10.44 27.24 49.02 9.09 97.00 0.28 1.00 
Namikonga x TMS 30001 7036 38.80 6.75 27.06 39.03 6.79 101.17 0.27 1.00 
Namikonga x AR40-6 6984 38.30 2.41 9.59 35.48 2.44 20.50 0.60 1.00 
Namikonga x TMS 30001 7039 38.03 3.92 16.93 43.56 4.39 37.67 0.48 1.30 
Namikonga x TMS 30001 7030 37.78 3.54 9.50 42.20 2.78 33.00 0.33 1.00 
Nanchinyaya x AR 37-80 6688 37.59 2.46 11.69 28.50 3.69 42.00 0.34 2.32 
AR 40-6 x AR 42-3 7218 37.22 1.31 8.64 36.85 3.31 49.33 0.23 1.30 
Vumbi x TMS 30001 6807 37.06 0.99 8.46 37.92 3.51 30.60 0.28 3.62 
Namikonga x AR 40-6 6996 37.06 10.63 18.85 37.37 2.12 34.67 0.57 1.05 
AR 40-6 x AR 42-3 7203 36.89 6.93 19.62 39.84 4.74 64.33 0.28 1.03 
Kiroba x Namikonga 6265 36.69 12.23 32.42 42.02 6.31 72.62 0.44 1.05 
Nanchinyaya x TMS 30001 6635 36.32 10.15 3.76 39.87 1.97 22.71 0.26 3.59 
Kalolo x Namikonga 6045 36.85 16.82 47.17 39.75 5.70 92.07 0.51 1.38 
Namikonga x AR 42-3 7102 36.14 0.52 1.33 43.53 0.60 23.50 0.09 1.06 
Namikonga x AR 42-3 7084 35.94 7.38 19.19 46.28 5.63 65.50 0.27 1.01 
TMS 30001 x AR 42-3 7070 35.87 8.96 37.59 36.82 4.99 63.50 0.61 1.89 
Namikonga x AR 40-6 7000 35.76 4.46 24.78 37.93 6.14 112.67 0.23 1.57 
Kiroba AR 40-6 6372 35.64 4.68 7.02 40.84 3.55 41.74 0.28 1.02 
Nanchinyaya x AR40-6 6585 35.52 0.85 2.65 46.44 2.40 19.10 0.19 1.00 
TMS 30001 x AR 42-3 7066 35.43 11.13 32.92 45.06 5.80 60.50 0.56 1.00 
Namikonga x AR 40-6 6988 35.42 3.18 10.59 39.55 3.63 24.83 0.51 2.45 
TMS 30001 x AR 42-3 7166 35.34 6.49 14.81 40.04 4.13 60.00 0.53 1.00 
AR 40-6 x TMS 30001 7074 35.33 15.67 17.68 35.15 7.82 49.33 0.65 1.00 
Nanchinyaya x Namikonga 6537 35.27 14.98 43.92 46.48 5.20 132.20 0.34 1.00 
Kiroba x AR 40-6 6369 35.18 3.90 10.43 42.71 2.35 27.20 0.41 1.00 
Vumbi x AR 42-3 6856 35.09 10.31 28.52 47.56 3.51 88.38 0.35 1.29 
Parents           
Kalolo  16.56 4.04 21.21 27.67 3.00 50.81 0.42 2.00 
Vumbi  16.86 1.72 15.00 27.33 2.75 32.00 0.49 3.00 
Kiroba  26.97 5.77 25.00 35.00 6.75 40.02 0.55 1.00 
Namikonga  24.22 2.87 11.52 36.33 2.50 30.04 0.38 1.00 
Nanchinyaya  25.53 2.39 12.50 35.33 5.75 48.52 0.28 1.50 
AR 40-6  23.38 7.26 34.00 33.00 5.75 104.01 0.34 1.50 
TMS 30001  14.76 2.18 15.50 24.33 5.75 25.02 0.62 1.50 
AR 43-2  22.78 2.96 13.04 33.00 2.00 22.50 0.57 1.80 
AR 37-80  22.14 1.08 5.53 28.33 3.25 16.73 0.31 3.00 
CR 25-4  19.33 4.36 22.21 34.33 4.25 22.51 0.45 1.00 

                              
                            FSRY (fresh storage root yield in t ha-1); FBM (fresh biomass in t ha-1); HI (harvest index); RDMC (root dry matter content in %); StC (starch content in %); StY (starch  
                             yield in t ha-1); CBSRN (cassava brown streak disease root necrosis severity)  
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Mid-parent heterosis for StC ranged from 41.6 and 134.1% for progeny 6372 (Kiroba x AR 40-6) 

and progeny 6807 (Vumbi x TMS 30001) respectively, while the best parent heterosis ranged 

from 30.4 to 119.6 for progeny 6369 from Kiroba x AR 40-6 and progeny 6807 from Vumbi x 

TMS 30001, respectively (Table 5.13).  Among the top 30 progeny, the highest value of both 

mid-parent (134.1%) and best parent heterosis (119.6%) for StC was recorded by progeny 6807 

(Vumbi x TMS 30001). For StY, the highest mid-parent (469.6%) and best parent (422%) 

heterosis was recorded by progeny 6537 (Nanchinyaya x Namikonga). These values are based 

on best performance in StC (Table 5.13). The highest mid-parent heterosis (57.7%) for RDMC 

was recorded by progeny 6856 (Vumbi x AR 42-3), and the highest best parent heterosis 

(44.1%) was recorded by progeny 6807 (Vumbi x AR 42-3) (Appendix 3). The mid-parent 

heterosis for FSRY ranged from -88.9 (6585; Nanchinyaya x AR 40-6) to 267.3% (6537; 

Nanchinyaya x Namikonga) (Appendix 3). The best parent heterosis ranged from -92.4 (6585; 

Nanchinyaya x AR 40-6) to 252.6 (Nanchinyaya x Namikonga). However, more than half of the 

top 30 progeny had negative mid-parent and best parent heterosis for FSRY.  
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Table 5.13 Starch content and yield, and estimates of heterosis of the 30 top progeny at clonal stage 
 (ranking based on starch content) 

                    StC (%)                 StY t ha-1  

Family Clone      StC StC† StC‡      StY StY† StY‡ 

Kiroba x Namikonga 6256 40.93 59.91 51.76 1.12 -74.07 -80.59 
Vumbi x Namikonga 6731 40.56 97.47 67.46 6.33 175.82 120.56 
TMS 30001 x AR 42-3 7078 40.31 115.93 77.92 6.45 150.97 117.91 
Namikonga x AR40-6 6991 39.33 66.18 63.29 6.47 27.74 -10.88 
Nanchinyaya x Namikonga 6535 39.23 61.23 60.21 10.44 296.96 256.31 
Namikonga x TMS 30001 7036 38.80 96.10 57.80 6.75 167.33 135.19 
Namikonga x AR40-6 6984 38.30 60.42 57.64 2.41 -52.42 -66.80 
Namikonga x TMS 30001 7039 38.03 94.46 56.48 3.92 55.25 36.59 
Namikonga x TMS 30001 7030 37.78 92.51 54.91 3.54 40.20 23.34 
Nanchinyaya x AR 37-80 6688 37.59 60.57 52.75 2.46 41.79 2.93 
AR 40-6 x AR 42-3 7218 37.22 70.69 64.35 1.31 -74.36 -81.96 
Vumbi x TMS 30001 6807 37.06 134.41 119.81 1.00 -49.23 -54.59 
Namikonga x AR 40-6 6996 37.06 55.71 53.01 10.63 109.87 46.42 
AR 40-6 x AR 42-3 7203 36.89 60.49 58.43 6.91 35.23 -4.82 
Kiroba x Namikonga 6265 36.69 43.35 36.04 12.23 141.46 111.96 
Nanchinyaya x TMS 30001 6635 36.32 86.77 49.57 10.15 344.20 324.69 
Kalolo x Namikonga 6045 36.85 80.74 52.32 16.82 386.83 316.34 
Namikonga x AR 42-3 7102 36.14 53.79 49.22 0.52 -82.16 -82.43 
Namikonga x AR 42-3 7084 35.94 52.94 48.39 7.38 153.17 149.32 
TMS 30001 x AR 42-3 7070 35.87 92.80 57.46 8.96 248.64 202.70 
Namikonga x AR 40-6 7000 35.76 50.25 47.65 4.46 -11.94 -38.57 
Kiroba x AR 40-6 6372 35.64 41.57 32.15 4.68 -28.17 -35.54 
Nanchinyaya x AR40-6 6585 35.52 48.28 44.80 0.85 -82.38 -88.29 
TMS 30001 x AR 42-3 7066 35.43 88.76 55.53 11.13 333.07 276.01 
Namikonga x AR 40-6 6988 35.42 48.82 46.24 3.18 -37.22 -56.20 
TMS 30001 x AR 42-3 7166 35.34 88.28 55.14 6.49 152.53 119.26 
AR 40-6 x TMS 30001 7074 35.33 85.26 51.11 15.67 231.99 115.84 
Nanchinyaya x Namikonga 6537 35.27 44.70 43.78 14.98 469.58 421.95 
Kiroba x AR 40-6 6369 35.18 39.74 30.44 3.90 -40.14 -46.28 
Vumbi x AR 42-3 6856 35.09 77.04 54.04 10.31 340.60 248.31 

StC (mean starch content in %); StY (mean starch yield in t ha-1); StC† (mid-parent heterosis %); StC‡ (best parent 
heterosis %); StY† (mid-parent heterosis %); StY‡ (best-parent heterosis %). 
 

5.3.10 Starch yield, starch content and other six t raits and heterosis of the 30 top 
progeny at clonal stage (ranking based on starch yi eld) 
 

The StY for the top 30 progeny ranged from 16.7 (6407 to 6431 both from Kalolo x AR 42-3) 

and 34.80 t ha-1 (6879 from Vumbi x AR 42-3). The highest StY was recorded by genotype 6879 

(Vumbi x AR 42-3) followed by genotype 6086 (30.4 t ha-1; Kalolo x AR 40-6). In contrast, the 

same set of 30 top progeny based on StY, its StC ranged from 21.6 (6111 from Kalolo x AR 40-

6) to 36.9% (6045 from Kalolo x Namikonga). The top 30 genotypes in terms of StC presented 

in Table 5.12 do not appear in the Table 5.14 except for genotype 6045.  Importantly, the best 

genotype in FSRY (6086; 30.4 t ha-1) was second best in terms of StY (Table 5.14). These 

results also indicate clearly that FSRY is highly associated with StY (r=0.94; p≤0.001; Table 
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5.10). Other genotypes exhibiting the same relationship are 6879 (34.9 t ha-1; Vumbi x AR 42-3), 

6090 (23.2 t ha-1; Kalolo x AR 40-6), 6081 (22.9 t ha-1; Kalolo x AR 40-6). In general almost all 

30 top progeny exhibit this kind of relationship.  

 

The mid-parent heterosis for StY ranged from 168.0 (progeny 6400 from Kiroba x AR 40-6) to 

1391.0% (progeny 6879 from Vumbi x AR 42-3), while best parent heterosis ranged from 131.4 

(progeny 6103 from Kalolo x AR 40-6) to 1079.0% (progeny 6879 from Vumbi x AR 42-3). The 

highest mid-parent and best parent heterosis was recorded by genotype 6879, followed by 

genotype 6845 (955.6) from Vumbi x AR42-3 (Table 5.15). However, the extremely high mid-

parent and best parent heterosis observed from genotype 6879 (1391%; 1079%) could have 

been attributed by the poor performance of the parent Vumbi in terms of StY (1.72 t ha-1) and 

high levels of CBSRN (class 3) recorded (Table 5.12).  
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Table 5.14 Starch yield, starch content and other six traits of the top 30 progeny at clonal stage (ranking based on starch yield) 
Cross Clone       StY       StC      RDMC       FSRY        SRN         FBM            HI CBSRN 
Vumbi x AR42-3 6879 34.85 32.81 41.78 98.11 6.96 190.94 0.51 1.00 
Kalolo x AR 40-6 6086 30.43 23.19 32.42 124.22 11.53 268.33 0.45 1.38 
Vumbi x AR42-3 6845 24.72 34.59 41.15 70.63 6.42 130.32 0.55 1.31 
Kalolo x AR 40-6 6090 23.24 23.92 35.43 100.01 11.40 174.50 0.56 1.34 
Kalolo x AR 40-6 6081 22.88 24.43 35.43 93.12 10.59 189.33 0.48 1.16 
Kalolo x AR 40-6 6114 22.07 24.19 36.64 92.88 10.89 152.87 0.60 2.73 
Namikonga x AR 42-3 7092 21.20 28.41 44.15 73.28 8.78 152.50 0.51 1.03 
CR 25-4 x AR 40-6 7391 20.57 25.56 34.95 82.38 9.75 170.65 0.52 1.04 
Kalolo x AR 40-6 6119 19.86 31.32 45.31 63.76 8.33 114.78 0.56 1.01 
AR 40-6 x AR 43-2 7239 19.97 26.35 36.26 72.14 6.24 104.50 0.57 1.00 
Kalolo x AR 40-6 6116 19.89 29.25 40.44 68.47 8.06 132.20 0.52 2.04 
Kalolo x AR 42-3 6183 19.72 26.40 35.96 80.53 9.42 173.33 0.47 1.07 
Kalolo x AR 40-6 6111 19.71 21.61 34.75 91.81 10.94 188.90 0.47 1.08 
Kalolo x AR 42-3 6180 18.79 26.40 37.70 71.07 5.77 139.70 0.05 1.63 
Kalolo x AR 42-3 6167 18.66 25.21 36.22 74.64 8.49 115.27 0.65 1.36 
AR 40-6 x AR 37-80 7267 18.83 29.60 34.83 63.76 9.73 122.33 0.55 1.00 
Kalolo x Namikonga 6077 18.50 31.50 40.56 56.61 6.56 134.38 0.41 1.36 
Nanchinyaya x Vumbi 6328 18.09 29.02 35.95 57.84 9.09 99.85 0.56 1.34 
Kalolo x AR 37-80 6214 18.15 28.58 35.06 59.88 7.06 114.38 0.51 1.05 
Namikonga x AR 42-3 7093 18.39 29.81 41.22 60.91 5.71 150.33 0.40 1.02 
Kiroba x AR 42-3 6461 18.26 26.74 38.24 75.76 10.00 134.88 0.50 1.05 
Kalolo x TMS 30001 6143 17.78 28.68 29.56 53.49 7.17 112.18 0.48 1.00 
Kiroba x AR 40-6 6400 17.16 26.50 36.18 67.11 9.90 168.35 0.39 1.00 
Kalolo x AR 40-6 6104 17.37 33.37 42.30 49.94 8.05 107.93 0.43 1.07 
Kalolo x Namikonga 6042 17.12 30.52 40.20 72.03 8.91 170.17 0.41 1.08 
Vumbi x Namikonga 6725 17.12 28.68 38.38 61.97 7.67 146.33 0.42 1.66 
Kalolo x Namikonga 6045 16.82 36.85 39.75 47.17 5.70 92.07 0.51 1.38 
Kiroba x TMS 30001 6407 16.73 31.04 34.96 49.98 7.18 92.95 0.50 1.34 
Kalolo x AR 40-6 6103 16.79 31.17 41.23 54.63 8.96 95.25 0.56 1.08 
Kiroba x TMS 30001 6431 16.69 33.99  40.58 48.96 9.78 99.33 0.48 1.09 
Parents           
Kalolo  4.04 16.56 26.67 21.21 3.00 50.81 0.42 2.00 
Vumbi  1.72 16.86 27.33 15.00 2.75 32.00 0.49 3.00 
Kiroba  5.77 26.97 35.00 25.00 6.75 40.02 0.55 1.00 
Namikonga  2.87 24.22 36.33 11.52 2.50 30.04 0.38 1.00 
Nanchinyaya  2.39 25.53 35.33 12.50 5.75 48.52 0.28 1.50 
AR 40-6  7.26 23.38 33.00 34.00 5.75 104.01 0.34 1.50 
TMS 30001  2.18 14.76 24.33 15.50 5.75 25.02 0.62 1.50 
AR 42-3  2.96 22.78 33.00 13.04 2.00 22.50 0.57 1.80 
AR 37-80  1.08 22.14 28.33 5.53 3.25 16.73 0.31 3.00 

CR 25-4  4.36 19.33 34.33 22.21 4.25 22.51 0.45 1.00 
StY (starch yield t ha-1); StC (starch content in %); RDMC (root dry matter in %); FSRY (fresh storage root yield in t ha-1); SRN  
(storage root number); FBM (fresh biomass weight in t ha-1); HI (harvest index); CBSRN (cassava brown streak root necrosis)



205 
 

Table 5.15 Starch yield and content, and estimates of heterosis of the 30 top progeny at clonal stage 
(ranking based on starch yield) 
Cross Clone StC StC† StC‡     StY    StY† StY‡ 

Vumbi x AR42-3 6879 32.85 72.53 54.81 34.85 1391.45 1079.05 

Kalolo x AR 40-6 6086 23.02 22.28 9.15 30.43 438.05 318.73 

Vumbi x AR42-3 6845 34.72 82.35 63.62 24.72 955.56 734.46 

Kalolo x AR 40-6 6090 23.56 25.15 11.71 23.24 310.62 219.56 

Kalolo x AR 40-6 6081 24.44 29.83 15.88 22.88 305.31 215.43 

Kalolo x AR 40-6 6114 24.08 27.92 14.18 22.15 291.15 204.41 

Namikonga x AR 42-3 7092 28.55 25.66 17.88 21.20 627.27 616.22 

CR 25-4 x AR 40-6 7391 25.73 27.31 22.00 20.47 252.84 182.37 

Kalolo x AR 40-6 6119 31.05 64.94 47.23 19.86 252.21 174.10 

AR 40-6 x AR 43-2 7239 26.26 24.13 23.75 19.97 291.39 175.48 

Kalolo x AR 40-6 6116 29.07 54.42 37.84 19.89 252.21 174.10 

Kalolo x AR 42-3 6183 26.26 39.02 23.75 19.72 462.86 387.62 

Kalolo x AR 40-6 6111 21.62 14.85 2.51 19.71 248.67 171.35 

Kalolo x AR 42-3 6180 26.11 38.22 23.04 18.79 437.14 365.35 

Kalolo x AR 42-3 6167 24.94 32.03 17.53 18.66 434.29 362.87 

AR 40-6 x AR 37-80 7267 29.59 36.90 33.65 18.83 302.57 158.95 

Kalolo x Namikonga 6077 31.22 53.11 28.90 18.50 435.46 357.92 

Nanchinyaya x Vumbi 6328 28.80 35.88 12.81 18.09 780.78 657.32 

Kalolo x AR 37-80 6214 28.44 46.98 28.46 18.15 610.94 313.64 

Namikonga x AR 42-3 7093 29.92 31.69 23.53 18.39 531.22 521.62 

Kiroba x AR 42-3 6461 26.77 11.10 -0.74 18.26 319.24 217.16 

Kalolo x TMS 30001 6143 28.34 80.97 71.14 17.78 472.35 340.59 

Kiroba x AR 40-6 6400 26.26 9.28 -2.63 17.16 164.01 136.91 

Kalolo x AR 40-6 6104 33.25 76.63 57.66 17.37 207.96 139.67 

Kalolo x Namikonga 6042 30.40 49.09 25.52 17.12 394.93 323.27 

Vumbi x Namikonga 6725 28.66 39.53 18.33 17.12 479.12 495.82 

Kalolo x Namikonga 6045 36.85 80.74 52.32 16.82 386.83 316.34 

Kiroba x TMS 30001 6407 30.90 48.09 14.57 16.73 320.13 189.43 

Kalolo x AR 40-6 6103 31.08 65.10 47.37 16.79 197.35 131.40 

Kiroba x TMS 30001 6431 34.11 63.48 26.47 16.69 320.13 189.43 
 
 StC (mean starch content in %); StY (mean starch yield in t ha-1); StC† (mid parent heterosis); StC‡ (best parent  
 heterosis); StY† (mid parent heterosis); StY‡ (best parent heterosis);  
 

 

5.4 Discussion and conclusion 
 

The diallel analysis was conducted to study the combining ability and the gene action 

determining StC, StY, RDMC, FSRY, FBM, and CBSRN. In addition, the study aimed to identify 
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parents and genotypes with high RDMC, StC and StY for the processing industry in Tanzania. 

Since parents were not randomly selected from the population the families and progeny were 

declared as fixed effects and consequently these results only apply to the germplasm in this 

study. 

 

Progeny and families varied significantly in all the traits studied i.e. StC, StY, FSRY, SRN, FBM, 

RDMC, HI and CBSRN. The quantification of StC (%) and StY (t ha-1) in this study has provided 

an insight into the performance under Tanzanian conditions of more than 1000 progeny 

generated from the crosses. The StC recorded in this study ranged from as low as 6.7 to as 

high as 41%. Other workers (Sriroth et al., 1999) reported starch content varying between 18.6 

and 27% from Thai improved cultivars harvested at 12 MAP. Similarly, Easwari Amma et al. 

(1995) reported mean StC ranging from 17.0 to 37.3% obtained from hybrids that were crossed 

from inbred lines in India. Average value of 24% for StC has also been reported (ISI-Denmark, 

2008). The range in StC obtained in the present study provides potential opportunity for 

selection. The best progeny in StC was 6256 (40.9%) from the family Kiroba x Namikonga, 

followed by progeny 6731 (40.6%) from family Vumbi x Namikonga. The StY also varied 

significantly between progeny and families. The highest StY was recorded from progeny 6879 

(34.8 t ha-1; Vumbi x AR 42-3), followed by progeny 6086 (34.7 t ha-1; Kalolo x AR 40-6).  

  

The variances for families for the traits (FSRY, FBM, HI, SRN, CBSRN) were highly significant. 

The GCA and SCA effects were also significant, indicating that both additive and non-additive 

genetic effects were important in the expression of the traits. However, SCA effects were 

relatively more important than GCA effects for FSRY, SRN, and FBM suggesting the 

predominance of non-additive over additive genetic effects. Similar findings were reported for 

FSRY (Jaramillo et al., 2005; Perez et al., 2005). Studies by Abraham et al. (2001) reported that 

root yield and most of the yield components in cassava were governed by dominant gene 

action. The contribution of GCA SS to family SS% was relatively higher than SCA SS for 

CBSRN severity suggesting prevalence of additive genetic effects. However, the ratio between 

GCA SS% and SCA SS% was narrow (>2) suggesting that both additive and non-additive 

genetic effects had a role in controlling the expression of CBSRN. Munga (2008) reported that 

GCA effects for the severity of root necrosis due to CBSD were more important that SCA 
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effects. Differences due to GCA of the parent are due to additive genetic variances whereas 

SCA is a reflection of non-additive genetic variances (Chahal and Gosal, 2002). 

   

Both GCA and SCA effects were significant for RDMC, StC and StY, suggesting that both 

additive and non-additive genetic effects played a role in expressing the StC, RDMC, and StY. 

However, the contribution to the family SS% denote that GCA effects were relatively more 

important in determining StC and RDMC, while for the StY, SCA effects were more important 

than GCA effects, suggesting that additive genetic effects had a predominant role in controlling 

RDMC and StC. Cach et al. (2006) reported that RDMC was controlled by additive genetic 

effects. In contrast, Easwari-Amma et al. (1995) observed that StC was controlled by  

non-additive genetic effects. Application of selection pressure would improve the RDMC and 

StC, but for StY, a different approach would be required. Parents Vumbi, Kiroba, Namikonga, 

Nanchinyaya were found to be good combiners for RDMC, whereas, parents Kalolo, TMS 

30001, AR 37-80 and CR 25-4 had significant negative general combining ability. Parent Kiroba 

and Namikonga were found to be the best combiners in terms of GCA for StC. For StY, Kalolo 

and AR 42-3 had significant positive general combining ability, while AR 37-80 and CR 25-4 

indicated significant negative general combining ability. 

 

High, positive and significant correlations were obtained between StC and RDMC. Similar 

findings were observed from yield trials which evaluated 205 clones (IITA, 1974). This implies 

that indirect selection can be done for starch content at clonal stage. Starch yield correlated 

significantly with DRY, FSRY, FBWT, HI, and SRN at clonal stage. However, the correlation 

between starch yield and FSRY was stronger (r=0.94***) than with starch content (r=0.26***), 

suggesting that FSRY has a positive effect in determining starch yield. The CBSRN correlated 

negatively with StC, StY and RDMC. Hillocks et al. (2001) reported that CBSD affected root 

quality in cassava roots. Collectively, these results indicate that when breeding for high starch 

content, selection should also consider CBSD resistance. A negative non-significant correlation 

was also obtained between StC and FSRY, suggesting that the two characters seem to be 

negatively associated. Fresh storage root yield positively and significantly correlated with DRY, 

FBM, HI, and SRN. Reports have indicated similar results (Okechukwu and Dixon, 2009; 

Kamau, 2006).  
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High and significant correlation between the seedling and clonal stage in FSRM, RDMC, HI, and 

SRM were observed, suggesting that indirect selection could start at seedling stage for FSRM, 

RDMC, HI, and SRN. Byrne (1984) reported significant correlation (r = 0.48**) between dry 

matter content in both seedling and clonal stage trials, therefore selection for dry matter at the 

F1 seedling stage is feasible. However, other breeding programmes i.e. IITA, have been 

screening genotypes at seedling stage for diseases tolerance, root conformation (neck length, 

uniformity, and compact roots), branching and cyanogenic potentials, while RDMC was not 

considered at the seedling stage (Jennings and Hershey, 1985; Hahn et al., 1979). The 

significant positive correlation between seedling and clonal stage for RDMC obtained in this 

study suggests the potential of screening for the trait at seedling stage. 

 

From the study, it is clear that the progress in improving starch content has been achieved in 

the F1 population as all the top 30 genotypes based on StC indicated positive mid- and best 

parent heterosis values. Different combinations between local and introduced clones produced 

these best progeny. When StY was considered, the mid-parent or best parent heterosis 

estimates of the top 30 genotypes were also positive and very high. When genotypes were 

ranked individually according to the StY a different order of performance was obtained with the 

exception of genotype 6045 which appeared in both StC and StY ranking and had StC of 36.9% 

and StY of 16.8 t ha-1. The superiority of the progeny compared to either of the two parents for 

StC, StY, and FSRY suggest the presence of both additive and non-additive gene action, 

however it depends on the relative magnitudes of GCA and SCA. This form of heterosis is due 

to the masking of unfavourable recessive alleles in a heterozygote (Bernado, 2002). Empirical 

evidence strongly indicated that heterosis is mostly due to partial or complete dominance. 

 

It is obvious from the present study that both additive and non-additive gene actions were 

involved in the expression of the characters evaluated at the clonal stage. For those traits (StC, 

RDMC and CBSRN) where additive genetic effects accounted for most of the variation, a 

hybridization scheme followed by phenotypic mass selection may be effective in creating 

desirable recombinants. Improvement for StC and RDMC may be realized by selecting parents 

with the highest GCA effects for the StC and RDMC and hybridize with that combine well to 
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maximize the positive SCA effects for the StC and RDMC. The hybridization programme should 

include complementary desirable traits such as resistance to CBSD and CMD, and pyramid the 

genes through convergent breeding. The predominance of non-additive genetic effects in the 

expression of StY, FSRY, SRN, and FBM suggest the use of different approach. Cassava 

clones might be grouped into heterotic pools and specific hybrid combinations implemented to 

select potential genotypes to exploit non-additive gene action. Since cassava is a vegetatively 

propagated species, in selecting outstanding clones all genetic effects (additive, dominant and 

epistatic effects) are exploited. As a way forward, selected genotypes from the clonal stage will 

be evaluated in preliminary yield trial and advanced further to multi-locational trials while 

implementing participatory approaches involving farmers and processors in selection.  
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APPENDIX  

Appendix 1 CHAMBEZI SOIL PROFILE DESCRIPTION AND AN ALYTICAL DATA 

Profile No. Chambezi 01 

General information on site and soil 

Location: 

Region : Coastal  District : Bagamoyo district Site/Village:  Chambezi Exper.Station 

Co-ordinates: 060 33’ 32”S,   380 54’ 37”E 

Landforms: Coastal Plain Topography : Flat to almost flat  Position:  summit  

Slope of site: 1-2% Microtopgraphy:  Termite mounds Elevation: 48 masl 

Soil Temperature Regime: Isohyperthemic  Soil Moisture Regime: Ustic  

Land use and vegetation:  Annual and perennial field cropping (cassava, coconuts, cashew, cowpeas, 

pigeon peas and sweet potatoes). Human influence:  natural vegetation disturbed due to cultivation 

and wild fires. 

Drainage: somewhat excessively drained. Internal drainage: moderately rapid  

Moist conditions: dry up to 28 cm, below moist  Ground water table: not observed 

Parent material: Marine deposits Effective soil depth : Very deep (>150 cm).   Erosion: no 

evidence of erosion 

Authors: Njapuka A and Mugogo S.E.  Date of description : 30th June 2007 

 

Soil profile description  

Ap:  Brownish black (10YR 3/2) moist, dully yellowish brown (10YR 5/3) dry; 0-12 cm: loamy sand; 

fine, granular and weak subangular blocky; slightly hard when dry, friable when moist, non-sticky and no-

plastic when wet; many pores; many very fine and fine roots; clear and wavy boundary. 

AB:  Dully yellowish brown (10YR 4/3) moist, dully yellowish brown (10YR 5/3) dry; 12-28 cm: Loamy 

sand; fine granular and weak subangular blocky; slightly hard when dry, friable when moist, non-sticky 

and no-plastic when wet; many pores; many very fine and fine and few medium roots; clear and smooth 

boundary 
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 Bs1:  Brown (10 YR 4/4) moist; sandy loam; weak, fine and medium sub-angular 28-56 cm: blocky, 

friable when moist, non-sticky and non-plastic when wet; many pores; moderate fine roots; gradual and 

smooth boundary 

 

Bs2:  Brown (10 YR 4/6) moist; sandy loam; weak, fine and medium sub-angular 56-100 cm: blocky, 

friable when moist, non-sticky and non-plastic when wet; many pores; few fine roots; gradual and smooth 

boundary 

Bs3:  Brown (10 YR 4/4) moist; sandy loam; weak, fine and medium subangular 100-158+ cm: blocky, 

friable when moist, non-sticky and non-plastic when wet; many pores; moderate fine roots; gradual and 

smooth boundary 

 

Analytical data  

Horizon 
Depth (cm)  

Ap 
0-
12 

AB 
12-
28 

Bs1 
28-
56 

Bs2 
56-
100 

Bs3 
100-
158+ 

Texture 
Clay    % 
Silt      % 
Sand    % 
Textural class 

 
  8 
  4 
88 
S 

 
  8 
  4 
88 
S 

 
14 
  6 
80 
LS 

 
18 
  4 
78 
SL 

 
18 
  4 
78 
SL 

pH water  1:2.5 
pH KCL   1:2.5 
EC mmho  1:2.5 

5.6 
4.4 
0.7 

4.7 
4.1 
1.2 

4.5 
3.7 
1.3 

4.1 
3.7 
1.5 

4.5 
3.7 
1.3 

Organic C % 
TN % 
Available P Bray 1 mg/kg 

2.3 
0.1 
9.8 

0.4 
0.1 
6.9 

0.4 
0.1 
4.2 

0.3 
0.1 
2.95 

0.2 
0.1 
1.9 

CEC NH4OAc  
Exch. Ca                     me/100g 
Exch. Mg                    me/100g 
Exch. K                       me/100g 
Exch. Na                     me/100g 
Base saturation % 

3.8 
3.6 
0.0 
0.1 
0.1 
98 

3.2 
1.2 
0.0 
0.1 
0.1 
42 

4.0 
1.2 
0.1 
0.1 
0.5 
34 

3.0 
1.0 
0.1 
0.2 
0.0 
39 

3.9 
0.8 
0.6 
0.1 
0.0 
40 

Brief description of the soil:  

Very deep sandy top soil over loamy sand to sandy loamy subsoil, very acidic and of very low fertility 
status as shown by very low organic matter content, CEC and base saturation. 
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APPENDIX 2 Map of Tanzania 

 

 

            Root and Tuber Crop Research team in Tanzania 

 

            ARI CHambezi, Bagamoyo, Coast region, where clonal evaluation trial was conducted 
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Appendix 3 Per se performance and heterosis percentage of the F1 progeny for the root dry matter 
content and fresh storage root yield  

  Root dry matter content Fresh storage root yield 

Cross Clone RDMC   RDMC† 
   

RDMC‡   FSRY   FSRY†   FSRY‡ 

Kiroba x Namikonga 6256 40.92 14.73 12.63    2.80 -83.73 -88.12 

Vumbi x Namikonga 6731 43.89 37.89 20.81  13.44 0.00 -11.67 

TMS 30001 x AR 42-3 7078 44.25 54.37 34.09 10.85 -24.00 -30.13 

Namikonga x AR40-6 6991 44.81 29.27 23.34 20.21 -10.99 -40.44 

Nanchinyaya x Namikonga 6535 49.02 36.81 34.93 27.24 126.75 117.68 

Namikonga x TMS 30001 7036 39.03 28.68 7.43 27.06 100.44 74.58 

Namikonga x AR40-6 6984 35.48 2.35 -2.34 9.59 -57.80 -71.76 

Namikonga x TMS 30001 7039 43.56 43.62 19.90 16.93 25.48 9.29 

Namikonga x TMS 30001 7030 42.20 39.14 16.16 9.50 -29.04 -38.19 

Nanchinyaya x AR 37-80 6688 28.50 -10.46 -19.33 11.69 28.67 -7.36 

AR 40-6 x AR 42-3 7218 36.85 11.67 11.67 8.64 -63.23 -74.59 

Vumbi x TMS 30001 6807 37.92 46.81 38.75 8.46 -45.11 -46.00 

Namikonga x AR 40-6 6996 37.37 7.80 2.86 18.85 -17.05 -44.50 

AR 40-6 x AR 42-3 7203 39.84 20.73 20.73 19.62 -16.55 -42.32 

Kiroba x Namikonga 6265 42.02 17.82 15.66 32.42 78.52 30.32 

Nanchinyaya x TMS 30001 6635 39.87 33.66 12.85 3.76 -48.21 -53.23 

Kalolo x Namikonga 6045 39.75 24.22 9.41 47.17 189.54 123.30 

Namikonga x AR 42-3 7102 43.53 25.57 19.82 1.33 -87.92 -88.62 

Namikonga x AR 42-3 7084 46.28 33.51 27.39 19.19 56.49 47.46 

TMS 30001 x AR 42-3 7070 36.82 28.45 11.58 37.59 163.72 189.08 

Namikonga x AR 40-6 7000 37.93 9.42 4.40 24.78 8.44 -27.44 

Kiroba x AR 40-6 6372 40.84 20.12 16.69 7.02 -75.86 -79.06 

Nanchinyaya x AR40-6 6585 46.44 35.93 31.45 2.65 -88.86 -92.38 

TMS 30001 x AR 42-3 7066 45.06 57.20 36.55 32.92 130.95 112.32 

Namikonga x AR 40-6 6988 39.55 14.09 8.86 10.59 -53.32 -68.76 

TMS 30001 x AR 42-3 7166 40.04 39.68 21.33 14.81 173.40 151.35 

AR 40-6 x TMS 30001 7074 35.15 22.62 6.52 17.68 -28.65 -48.06 

Nanchinyaya x Namikonga 6537 46.48 29.72 27.94 43.92 267.33 252.64 

Kiroba x AR 40-6 6369 42.71 25.62 22.03 10.43 -64.24 -68.97 

Vumbi x AR 42-3 6856 47.56 57.67 44.12 28.52 102.71 89.20 
 RDMC (root dry matter content in %); FSRY (fresh storage root yield t ha-1); † (mid-parent heterosis);  
‡ (better parent heterosis).                                                                                                                                                        
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Appendix 4 Per se performance and heterosis percentage of the F1 progeny for the root dry 
matter content and fresh storage root yield 

Cross Clone  RDMC   RDMC†  RDMC‡ 
    
FSRY 

     
FSRY† 

   
FSRY‡ 

Vumbi x AR 42-3 6879 41.42 37.31 25.52 98.24 601.71 554.93 

Kalolo x AR 40-6 6086 32.67 7.70 -1.00 125 352.90 267.65 

Vumbi x AR 42-3 6845 41.00 35.92 24.24 70.32 402.29 368.80 

Kalolo x AR 40-6 6090 35.33 16.47 7.06 101.17 266.56 197.56 

Kalolo x AR 40-6 6081 36.00 18.67 9.09 92.67 235.76 172.56 

Kalolo x AR 40-6 6114 37.00 21.97 12.12 92.87 236.49 173.15 

Namikonga x AR 42-3 7092 44.33 27.88 22.02 72.5 491.84 457.69 

CR 25-4 x AR 40-6 7391 35.24 4.68 2.65 81.86 191.32 140.76 

Kalolo x AR 40-6 6119 45.33 50.27 37.36 64.78 134.71 90.53 

AR 40-6 x AR 43-2 7239 36.00 9.09 9.09 72.83 209.91 114.21 

Kalolo x AR 40-6 6116 40.67 34.07 23.24 68.87 149.53 102.56 

Kalolo x AR 42-3 6183 36.18 19.27 9.64 80.68 371.81 280.57 

Kalolo x AR 40-6 6111 35.33 16.47 7.06 91.4 231.16 168.82 

Kalolo x AR 42-3 6180 37.67 24.18 14.15 72.2 322.22 240.57 

Kalolo x AR 42-3 6167 36.33 19.76 10.09 75.47 341.35 255.99 

AR 40-6 x AR 37-80 7267 34.67 13.06 5.06 64.00 224.05 88.24 

Kalolo x Namikonga 6077 40.67 27.09 11.95 57.72 253.03 172.26 

Nanchinyaya x Vumbi 6328 36.00 14.91 1.90 58.60 326.18 290.67 

Kalolo x AR 37-80 6214 35.16 25.57 24.11 60.15 350.56 179.77 

Namikonga x AR 42-3 7093 41.33 19.23 13.76 60.33 392.49 364.08 

Kiroba x AR 42-3 6461 38.67 13.74 10.49 74.88 294.11 199.52 

Kalolo x TMS 30001 6143 29.14 12.08 5.31 53.85 193.46 154.01 

Kiroba x AR 40-6 6400 36.00 5.88 2.86 68.35 131.69 101.03 

Kalolo x AR 40-6 6104 42.67 40.66 29.30 49.93 80.91 46.85 

Kalolo x Namikonga 6042 40.67 27.09 11.95 71.83 339.33 238.82 

Vumbi x Namikonga 6725 37.33 17.28 2.75 62.17 369.21 314.47 

Kalolo x Namikonga 6045 40.00 25.00 10.10 47.9 192.97 125.94 

Kiroba x TMS 30001 6407 35.00 17.98 0.00 50.45 149.14 101.80 

Kalolo x AR 40-6 6103 41.67 37.37 26.27 54.42 97.17 60.06 

Kiroba x TMS 30001 6431 41.00 38.21 17.14 48.5 139.51 94.00 
 

RDMC (mean root dry matter content %); RDMC† (mid-parent heterosis ); RDMC‡ (better parent value 
heterosis); FSRY† (mid-parent heterosis); FSRY‡ (best parent heterosis) 
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Chapter 6 

General overview 
 
Cassava is a potential industrial crop for Tanzania, but no cassava cultivars have up to now 

been developed or recommended for such an enterprise. This research was conducted with the 

aim of evaluating crosses developing new varieties that are high yielding, with high dry matter, 

and high starch content. The objectives were studied in two parts: 1) preliminary studies were 

carried out through a participatory rural appraisal in three representative districts, and screening 

of germplasm was done at four sites to determine the variability of root dry matter (RDMC), 

starch content (StC) and starch yield (StY) over time; 2) the second part involved the generation 

and evaluation of F1 clones to determine the combining ability of the parents and the 

performance of the new genotypes in terms of fresh storage root yield (FSRY), StC, StY and 

virus diseases mainly cassava mosaic (CMD) and cassava brown streak disease (CBSD) 

resistance, and to identify superior genotypes. This overview summarizes the main findings of 

the study and discusses the implication for cassava breeding. 

The participatory rural appraisal was conducted in Bagamoyo and Rufiji districts in Coast region 

and Mkinga district in Tanga region with the aim of understanding farmers’ cultivar preferences 

and selection criteria. The main findings of the study were: 

• The cassava crop, which is grown as a sole crop or intercropped with other crops such 

as cereals, legumes, and young tree crops (cashew, coconut), had relatively low yield  

(4 t ha-1)  

• Recycling of cassava planting materials is a common practise by the majority of farmers, 

and less than 10% of farmers received planting material of improved varieties 

• Major production constraints include; pests, diseases, and root rotting caused by CBSD. 

Other constraints are low farm gate prices for fresh roots, issues related to infrastructure 

such as inadequate transport, unreliable markets for fresh cassava, and drought. Post 

harvest constraints include poor drying technologies.   

• Sweet cultivars are predominant over bitter cultivars in the coastal area, reflecting that 

most of the cultivars are for fresh use. However both sweet and bitter are processed into 

stable products (flour and chips).  
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• Attributes desired by farmers were high yielding cultivars, earliness, tolerance to pests 

and diseases. The complementing attributes associated with culinary qualities were 

sweetness, good cookability, high dry matter content or mealyness and marketability.  

• High RDMC ranging from 32.5 and 46% was observed in landraces, signifying that 

farmers are also practicing selection pressure to landraces.  

 

A preliminary study was carried out to evaluate the variability in FSRY, RDMC, StC, and StY 

over different harvesting times of ten cassava cultivars. The study involved three harvesting 

dates (7, 11, and 14 MAP), and four sites; Kibaha, Chambezi, Hombolo in Tanzania mainland 

and Kizimbani in Zanzibar Island and the following were the findings: 

• Cultivars varied significantly in RDMC, and the highest RDMC was recorded at 7 MAP 

rather than 11 and 14 MAP. The RDMC ranged from 29 to 40%. Cultivar Namikonga had 

the highest RDMC content and the lowest was recorded from cultivar Kalolo. 

• The StC varied significantly with cultivars and harvesting dates. Values of StC ranged 

from 20 to 25%. Cultivar Namikonga had the highest StC value. The differences 

observed might be due to the genetic composition of cultivars, cultural practices, and 

environmental factors. Sites also differed significantly in StC. 

• An increase in StC was observed up to 7 MAP, followed by a decline between 7 and 11 

MAP, and finally an increase again between 11 and 14 MAP. However, for most of the 

cultivars at Kibaha an increase in StC between 11 and 14 MAP could not surpass values 

recorded at 7 MAP. At Kizimbani, cultivar Kalolo and Vumbi did not increase StC after 11 

MAP. At Chambezi and Hombolo, a dramatic gain in StC was observed for most of the 

cultivars between 11 and 14 MAP. 

• At Hombolo, a substantial decline in StC was observed between 7 and 11 MAP. It is 

important to note that probably starch from roots was used to support tissue 

maintenance during the long dry season. Further drawing of starch from roots was also 

expected at the beginning of the new rain season.  

• Significant differences in StY were observed between cultivars, harvesting dates and 

sites. In general, a marginal increase was noted between 7 and 11 MAP for most of the 

cultivars and sites, and a considerable increase was observed between 11 and 14 MAP 

especially at Chambezi and Hombolo sites.  

• High levels of disease (CMD, CBSD) severity were recorded for some of the cultivars 

such as Vumbi, TMS 30001, AR 42-3, and AR 37-80. 
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Diallel analysis of cassava genotypes was implemented at seedling and clonal stages. At 

seedling stage the performance of the F1 seedling population was determined for yield 

characteristics and at clonal stage the aim was to determine: combining abilities of the parents, 

performance of F1 progeny for FSRY, StC, StY, RDMC, and other agronomic traits. The study 

also aimed to identify genotypes that are high in StC, and StY, and determine the mid- and best 

parent heterosis of the best genotypes.  

• The fresh storage root mass (FSRM), storage root number (SRN), harvest index (HI), 

fresh biomass (FBM), and RDMC varied significantly in the F1 segregating population. 

High genetic heterogeneity and variation in the seedling trial and clonal stage for the 

traits provides potential for selection. 

• Although spreader rows were employed at the seedling trial, genotypes did not express 

high levels of disease (CBSD) symptoms. However, application of spreader rows at 

seedling stage is important to ensure that genotypes are screened at early stages of the 

breeding programme. 

• High values of FSRY were obtained in this study and genotype 6086 (124.2 t ha-1) and 

6090 (100.1 t ha-1) were the best in FSRY and were both from family Kalolo x AR 40-6. 

The parent clones Kalolo and AR 42-3 were identified to have positive GCA effects for 

the trait.  

• Good levels of RDMC were obtained both at seedling and clonal stage. At seedling 

stage, the progeny RDMC ranged from 6.4 (Kiroba x Namikonga) to 60.5% (Namikonga 

x AR 40-6), while at family level the range was from 30.3 (Kalolo x TMS 30001) to 37.5% 

(Namikonga x AR 42-3). In the clonal trial, progeny RDMC ranged from 13.9 (CR 25-4 x 

AR 37-80) to 56.7% (Namikonga x AR 42-3), and family RDMC ranged from 31.4 (Kalolo 

x TMS 30001) to 40.1% (Nanchinyaya x Namikonga). 

• The StC varied significantly and high values were obtained for the trait at the clonal 

stage. The StC at progeny level ranged from 6.7 (Vumbi x TMS 30001) to 40.9% (Kiroba 

x Namikonga), while at family level StC ranged from 22.8 (Kalolo x TMS 30001) to 

29.9% (Nanchinyaya x Namikonga and AR 40-6 x AR 42-3). The best overall genotype 

was 6256 (40.9%) from family Kiroba x Namikonga followed by genotype 6731 (40.6%; 

Vumbi x Namikonga). Among the parents, Kiroba and Namikonga were identified as best 

combiners in terms of GCA effects for StC.  

• High values of StY were obtained at the clonal stage, and at progeny level the range 

was as low as 0.0 to as high as 34.9 t ha-1 (Vumbi x AR 42-3). At family level, StY ranged 
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from 2.7 (TMS 30001 x AR 37-80) to 8.5 t ha-1 (Kalolo x AR 42-3). Genotype 6879 from 

family Vumbi x AR 42-3 had the highest StY value of 34.8 t ha-1 followed by genotype 

6086 (30.4 t ha-1; Kalolo x AR 40-6). Among the parents, Kalolo and AR 42-3 were 

identified as good combiners for the trait. 

• Negative and non-significant correlation between RDMC and FSRY was observed at the 

seedling stage (r=-0.018), while at clonal stage the correlation was positive and non-

significant (r=0.01). The RDMC and StC were positive and significantly correlated 

(r=0.55***) at clonal stage, therefore, indirect selection for starch can start at the 

seedling stage by selecting for high RDMC. However, the StC negatively and non-

significantly correlated with FSRY (r=-0.01), implying that the two traits were 

independent.  

• High, positive and significant correlation (r=0.94; p≤0.001) was found between the StY 

and FSRY at clonal stage. Since StC and FSRY were negatively correlated it is therefore 

recommended to breed and select for reasonably high FSRY with high StC to achieve 

high levels of StY. 

• High, positive and significant correlations between the seedling and clonal stage for 

FSRM (r=0.50; p≤0.01), RDMC (r=0.67; p≤0.001), HI (r=0.69; p≤0.001), and SRN 

(r=0.52; p≤0.01) were observed, suggesting that indirect selection could start at seedling 

stage for FSRM, RDMC, HI, and SRN. 

• Although both additive and non-additive gene action were involved in the expression of 

the characters considered in the diallel study, additive genetic effects were predominant 

over non-genetic effects for the RDMC, StC and CBSRN. Similarly, non-additive genetic 

effects were predominant over additive genetic effects for StY, FSRY, FBM, and SRN, 

hence exploitation of dominance and epistasis genetic effects for further improvement, 

and selection can be done among crosses 

• Heterosis values for StC and StY were high, and major progress has been achieved to 

improve the two traits. The genotype with the highest mid- and best parent heterosis for 

StC was 6807 (134.1%; 119.6%) from family Vumbi x TMS 30001. For StY, genotype 

6879 from family Vumbi x AR 42-3 had the highest mid- and best parent heterosis values 

(1391%; 1079%). However, the very high mid- and best parent heterosis exhibited by 

genotype 6879 for StY may have been exaggerated by the poor performance of the 

parents and susceptibility to CBSRN. 
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Implications for cassava breeding  
 
Clones with high yielding potential have been generated in this research project. Genotypes 

with high FSRY, RDMC, StC, and StY have been identified. Involvement of farmers through 

participatory plant breeding in the next evaluation cycle (preliminary yield trial; PYT) will provide 

an opportunity for them to select clones that are high yielding, tolerant to pests and diseases, 

high in RDMC, mealy, with good cooking quality according to farmers’ preferences. Asaoka et 

al. (1992) and Safo-Kantanka and Owusu-Nipah (1992) commented that good cooking quality 

and mealiness is associated with high RDMC and StC. The process of farmer participation will 

also facilitate adoption of improved cultivars.  

The preliminary study conducted to determine variability in RDMC, StC and yield has 

established the periods to expect high RDMC. Hence, breeders could apply selection for RDMC 

around 7 MAP. The study has also revealed the critical periods for StC in cassava growth cycle 

and its variation over time and between sites. It is therefore recommended that, genotypes 

meant for the processing industry, should be evaluated for RDMC, StC, and StY over time and 

in different sites to establish the optimum harvest date before recommending for release. Since 

StC and FSRY are negatively correlated, breeders should find a balance between StC and 

FSRY for the maximum returns. Earliness is an important trait in cassava; however earliness 

can be associated with yield penalty. Kamau (2006) focused on earliness and obtained good 

yields at 6 MAP. Breeding for earliness should be accompanied with screening for high StC and 

StY to provide farmers with early maturing varieties, to serve a cassava processing industry. 

Starch physico-chemical properties are influenced by the amylose to amylopectin ratio. 

Variations in the ratio of amylose to amylopectin could create new markets for cassava starch. 

Therefore, it is recommended to conduct further analyses on starch quality (amylose: 

amylopectin ratio, starch particle size, etc) in order to provide relevant information on the use of 

the starch from different cassava clones developed in this research.  

It is obvious from the diallel analysis that both additive and non-additive gene actions were 

involved in the expression of the characters evaluated at the clonal stage. For those traits (StC, 

RDMC and CBSRN) where additive genetic effects accounted for most of the variation, a 

hybridization scheme followed by phenotypic mass selection may be effective in creating 

desirable recombinants. Improvement for StC, RDMC, and CBSRN may be realized by 

selecting parents with the highest GCA effects for StC and RDMC and hybridize with that 

combine well to maximize the positive SCA effects for the StC and RDMC. The hybridization 
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programme should include complementary desirable traits such as resistance to CBSD and 

CMD, and pyramid the genes through convergent breeding. The prevalence of non-additive 

genetic effects in the expression of StY, FSRY, SRN, and FBM suggest the use of another 

approach. Cassava clones might be grouped into heterotic pools and specific hybrid 

combinations implemented to select potential genotypes to exploit non-additive gene action. 

Since cassava is a vegetatively propagated species, in selecting outstanding clones all genetic 

effects (additive, dominant and epistatic effects) are exploited. As a way forward, selected 

genotypes from the clonal stage will be evaluated in preliminary yield trial (PYT) and advanced 

further to multi-locational trials (AYT) while implementing participatory approaches involving 

farmers and processors in selection. The PYT will also be conducted over several sites to 

determine the performance and stability of different traits of interest under diverse environment. 

The new promising cultivars should be tested at different sites and the best harvesting dates 

should be established.   
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