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ABSTRACT 

 
Local maize landraces have evolved over hundreds of years of natural and farmer 

selection under varying conditions. These landraces may have developed tolerance 

to abiotic stresses such as water deficits during this cycle of selection. However, 

despite its continued existence and importance, little is known on their agronomy and 

responses to water stress. If indeed landraces have developed tolerance to water 

stress, they may prove a key genetic resource for future crop improvement in light of 

increasing water scarcity. The primary objective of this study was to evaluate the 

responses of a local maize landrace to water stress at different stages of growth in 

comparison to two known commercial hybrids, SC701 and SR52.  

 

Seed from a local maize landrace was multiplied and characterised according to 

kernel colour. Two distinct colours were selected for the purposes of this study, white 

(Land A) and dark red (Land B). In a holistic approach, the thesis consisted of four 

separate studies whose overall objective was to evaluate the responses of the maize 

landraces to water stress at different growth stages, up to and including yield and its 

components. These comprised three controlled environment studies (25°C; 60% RH) 

and a field trial. For the controlled environment, two water regimes were used, 25% 

field capacity (FC) (stress treatment) and 75% FC (non-stress). 

 

The first study investigated the effect of water stress on early establishment 

performance. Seed quality was evaluated using the standard germination test 
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together with electrolyte leakage. Catalase activity and accumulation of proline were 

examined as seedling physiological response to water stress. The second study was 

conducted as a pot trial to investigate the effect of water stress on growth, 

photosynthesis and yield. Photosynthesis was measured as chlorophyll fluorescence 

(CF). 

 

In addition, a field study over three planting dates was conducted at Ukulinga 

Research Farm in Pietermaritzburg, under dryland conditions, during the period from 

August 2008 to June 2009. The objective was to evaluate the effect of planting dates 

and changing soil water content on growth, yield and yield components. Three 

planting dates were used, representative of early (28 August 2008), optimum (21 

October 2008) and late planting (9 January 2009). 

 

Lastly, a study on hydro-priming was conducted, necessitated by observations made 

primarily in the first study. The study was carried out under controlled environment 

conditions. The objective was to evaluate whether hydropriming can improve 

germination, vigour and emergence under water stress. Seeds were soaked in water 

for 0 hours (Un-primed or control), 12 hours (P12) and 24 hours (P24). 

 

Results from the first study showed that maize landraces were slower to germinate 

and emerge, and produced less vigorous seedlings compared to the hybrids. The 

study showed that hybrids were more superior under optimum (75% FC) conditions 

than under stress conditions (25% FC). Physiological showed that both hybrids and 

landraces expressed catalase under water stress, with landraces showing slightly 
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better expression compared to the hybrids. Proline accumulation was observed in 

both hybrids and landraces as a response to water stress, with hybrids being more 

sensitive to water stress. 

 

In the pot trial, results showed that the vegetative stage of both hybrids and landraces 

was less sensitive to water stress than the reproductive stage. Results showed no 

differences between field capacities, with respect to emergence, mean emergence 

time, leaf number, CF, ear prolificacy and ear length. Photosynthesis, as measured 

by CF, was shown to be desiccation tolerant. Water stress had a negative effect on 

cob mass, lines per cob, grains per cob and total grain mass, and resulted in 

barrenness in the landraces. The hybrids had superior yield compared to the 

landraces. 

 

Results for the field trials showed that planting date had highly significant effects on 

emergence, plant height, leaf number and days to tasseling (DTT). Landraces 

emerged better than hybrids in all plantings; highest emergence was in the early and 

late plantings. Optimum and late planting resulted in maximum plant height and leaf 

number, respectively, compared to early planting. Hybrids were superior, growing 

taller and with more leaves than landraces in all plantings. DTT decreased with 

successive plantings. Planting date had an effect on ear prolificacy (EP), kernels/ear 

(KNE) and 100 grain mass. Planting date had no effect on ear length and mass, 

kernel rows/cob, grain mass and yield. With the exception of EP, hybrids out-yielded 

the landraces in all three planting dates. 
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Hydro-priming landraces for 12 hours and 24 hours, respectively, improved 

germination velocity index, reduced mean germination time and improved emergence 

and mean emergence time of maize landraces under water stress. Performance of 

hybrid seeds remained superior to that of landraces even after seed treatment to 

improve germination and vigour. 

 

Landraces were slower to germinate and emerge and produced less vigorous 

seedlings in controlled conditions only. Both hybrids and landraces expressed 

catalase activity and also accumulated proline in response to water stress, although 

hybrids were more sensitive to stress in the establishment phase. Results confirmed 

literature, showing that, for both hybrids and landraces, the vegetative stage is less 

sensitive to stress than the reproductive stage. Hybrids produced superior yields 

compared to landraces in both controlled environment and field conditions. However, 

the pattern of seedling establishment observed in the initial controlled environment 

study for hybrids and landraces was reversed in the field study. Lastly, hydro-priming 

is of some benefit to maize establishment. 
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CHAPTER 1 

LITERATURE REVIEW 

 

1.0 Introduction 

Of the many crops grown in South Africa (SA), maize (Zea mays, L) is one of the 

staple foods. Maize (Zea mays, L.) belongs to the family Poaceae (Gramineae) and 

the tribe Maydeae (Sikandar et al., 2007). In terms of global production, it is the third 

most important cereal, after wheat and rice, respectively. It is one of the staple food 

crops of the world and the staple cash crop of southern Africa (Burtt-Davy, 1914). 

About half of its global production is in developing countries, where maize flour 

(mealie-meal) is the staple food. It also has many diversified uses which include: 

starch products, corn oil, baby foods, popcorn, etc.  

 

Maize is also referred to as corn or Indian corn in the United States and Great Britain  

and is one of the most widely distributed food plants today (Andrews, 1993). Although 

the exact origins of maize are still a point of academic debate, there seems to be 

general consensus that maize originated in Mexico, South America. The name maize 

is believed to come from the Arawak mahiz. Experts have established that modern 

maize came from teosinte (God’s corn) or Zea mays ssp. Mexicana (Beadle, 1939).  

 

In Sub-Saharan Africa, maize is the staple for an estimated 50% of the population 

and provides 50% of the calories. It is an important source of carbohydrate, protein, 
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iron, vitamin B, and minerals. In South Africa, in addition to the traditional uses, the 

government is also considering maize fuel: an alcohol based alternative fuel produced 

by fermenting and distilling the rich starch grains of the crop.  

 

According to FAO statistics, maize yields currently average 1.5 t/ha in Africa. Most of 

the crop is grown under dryland conditions by small-scale farmers, mainly for 

subsistence purposes and as part of a multi-enterprise agricultural system. This 

system often lacks inputs such as fertilizers, improved seed, irrigation and labour. In 

most developing countries there are very little purchased inputs for the cropping 

system and it mainly depends on the natural resource base (Ofori & Kyei-Baffour, 

2008). 

 

Rainfall is the single most important natural resource input and limiting factor under 

this traditional system of cropping. Rainfall distribution in South Africa is uneven 

throughout the country (South African Weather Service, 2008). SA is a dry country 

with less than 500 mm mean annual rainfall recorded over about two-thirds of its 

area; compared to a world average of 836mm mean annual rainfall. Drought is a 

normal, recurrent feature of the South African climate and has in the past resulted in 

significant economic, environmental, and social impacts. Climate change is expected 

to have a severe impact on agriculture as it is expected that the frequency of drought 

will increase. This will have a negative effect on farming, especially on rural farmers, 

farming already on marginal lands (Hassan, 2006).  
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Historically, rainfall has been the single biggest cause of yield losses in agriculture 

(Duvick, 1997; Cassman, 1999). Poor rainfall has always resulted in many 

subsistence families going hungry in times of drought as their crops fail. This has led 

to researchers directing their efforts towards the development of drought-resistant or 

drought-tolerant cultivars. This has been the case since the 1930s when Africa’s 

maize revolution started taking shape. Emphasis has been put on developing high 

yielding varieties that can withstand water stress. 

 

However, noble as these efforts might be, they have resulted in indigenous and 

traditional crops receiving scant attention from researchers in Africa, including South 

Africa, with regards to improving agronomic practices and upgrading their genetic 

potential. There seems, however, to have recently emerged new interest amongst 

South Africans towards these crops. Local maize varieties (landraces) have often 

been shunned by researchers in favour of developing drought tolerant hybrids, 

although many farmers still grow them. This is evident from the apparent lack or 

inadequacy of information concerning responses of landraces to crop stresses, of 

which water is the most significant. Responses of landraces to drought stress and 

adaptability to the most varied of conditions, for which landraces are reputed, have 

been least studied.  

 

This study aimed to study a local maize germplasm with the aim of comparing it to 

two popular cultivars, SR52 and SC701, with respect to water stress tolerance. 
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1.1 Maize as a Traditional Crop in Southern Africa 

All maize varieties belong to a single species, Zea mays, but the number of varieties, 

adapted to the most varied environmental conditions, is numerous (Arnon, 1972). 

Most of the cultivated varieties belong to two maize groups, Horse-tooth and Flint 

maize. The Horse-tooth are those with the greatest yield potential whilst the Flint 

varieties are better adapted to adverse growing conditions. 

 

Despite some earlier controversy, it now seems clear that the Portuguese first 

introduced maize into Africa during the 16th century (Miracle, 1966; McCann, 2005). 

Early Portuguese merchants introduced maize into Africa through their trade networks 

along the eastern and western coasts of Africa starting in the 16th century. The Dutch 

introduced maize along the southern African coast in 1658 (Miracle, 1966). The 

Afrikaans word for maize, “mielie” is a corruption of the Portuguese word milho, 

meaning grain (Burtt-Davy, 1914). Caribbean and Brazilian flints such as yellow-to-

orange Cateto variety had hard endosperm, were early maturing, and had variegated 

bright coloured grains. These varieties formed the now local maize populations or 

landraces. Although maize may have its ancestry outside of Africa, it has been 

around for so long and has become indigenised as a result of hundreds of years of 

farmer and natural selection.  

 

Zeven (1998) defined landraces as crop genetic resources that have evolved 

continuously under natural and farmer selection practices rather than in the collection 

of gene banks or plant breeding programs. Apart from being identified by its local 

names, landraces also possess other unique characteristics which distinguish them 
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from improved varieties. Historically, landraces were the progenitors of modern crop 

varieties. Landraces possess certain unique phenotypic, morphological and 

phenological characteristics as well as a reputation for adaptation to local climatic 

conditions and cultural practices, resistance and tolerance to disease and pests. As a 

result, landraces usually have yield stability and intermediate yield levels under a low 

input agricultural system (Zeven, 1998). 

 

The term “hybrid” refers to a first generation progeny of a cross between two different 

strains of the same species. A hybrid may combine characteristics derived from the 

two parents and may be more desirable than either parent (Stoskopf, 1981). The 

SR52 hybrid was the first to be introduced in southern Africa and was released in 

1960 and is still very popular amongst local farmers in KwaZulu-Natal. It was a long 

season variety (158 days) with yields of 7-12t/ha. Its release marked the start of the 

first African green revolution (Derek & Eicher, 1994). 

 

However, the higher yield potential of hybrids is of value only if environmental 

conditions make it possible to exploit this advantage; when crops are grown under 

adverse growing conditions, hybrids may be inferior to well-adapted open-pollinated 

varieties (Stoskopf, 1981). 

 

As a result of this, and partly due to the cost of hybrid seed, small-scale farmers in 

traditional farming systems of KwaZulu-Natal continue to use landraces which they 

have kept from generation to generation. Although these farmers are still planting 
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maize landraces to this day, there has been little or no research to characterize these 

landraces with respect to drought tolerance and adaptability to water stress. 

 

1.2 Drought and Water Stress 

Plant water stress, often caused by drought or a large variation in rainfall, can have 

major impacts on plant growth and development. The SA Weather Service defines 

drought on the basis of the degree of dryness in comparison to “normal” or average 

amounts of rainfall for a particular area or place and the duration of the dry period- 

meteorological drought. In crop production, there is physiological drought. This is 

when there is insufficient moisture in the soil to support plant growth and 

development. This can occur as a result of a meteorological drought, poor rainfall 

distribution during the duration of the growing season and poor cultural practices 

which effectively reduce soil water content resulting in the plant being water stressed.  

 

Drought, through insufficient rainfall and poor distribution during growth, is one of the 

most important abiotic stresses affecting maize production (Ofori & Kyei-Baffour, 

2008). It is the single most important source of variation in yield over time; highlighting 

our continuing vulnerability with regards to this natural phenomenon (South African 

Weather Service, Drought Monitoring Desk, 2008). 

 

Although maize has its origins in a semi-arid climate, it is not a reliable crop for 

growing under dryland conditions with limited or erratic rainfall (Arnon, 1972). Maize is 

apparently more drought resistant in the early stages of growth than when fully 
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developed. This may explain why the practice of sowing maize early is desirable 

despite the danger of wilting during periods between light showers which precede the 

rainy season. The early sown maize has the advantage of a longer growing season 

than later-sown maize, though the latter is sown under more favourable conditions of 

moisture (Glover, 1959). Extreme water stress at different stages of crop 

development has been reported to reduce yield significantly (Dhillon et al., 1995). The 

response of the maize crop to climate depends on the physiological makeup of the 

variety/hybrid being grown. Yield differences are the result of genetic composition of 

the variety/hybrid, the environmental conditions under which the crop is grown and 

the infestation of plant pests. 

 

1.3 Effect of Water Stress on Maize Growth  

1.3.1 Crop Establishment 

Traditionally, the first crop of maize is sown in late-Spring, before the onset of the 

rainy season when the soil is still too dry to support good germination and 

emergence. This often results in poor emergence and crop stand. Seeds sown in 

seedbeds with unfavourable soil moisture have been shown to have poor and 

unsynchronised emergence (Mwale et al., 2003). Water stress has been shown to 

decrease both percentage and rate of germination in numerous crops; Senna 

occidentalis seeds (Delachiave & Pinho, 2003), wheat (Radhouane, 2007; Rauf et al., 

2007) and maize varieties (Mohammadkhani & Heidari, 2008). Poor germination and 

emergence, as a result of water stress, can have serious deleterious effects on crop 



 8 

stands and ultimately yield. As such, the response of seeds to drought could prove an 

important indicator to plant stress tolerance in later growth stages. 

 

The intimate relationship between seed quality and ability to germinate under 

unfavourable conditions and to establish maximum crop stand cannot be taken for 

granted. Seed quality confers a seedlot’s ability to establish an optimum plant stand in 

both optimum and sub-optimum conditions. However, there is not much written in 

literature about the seed quality of maize landraces and its relation to drought. The 

huge variability that also exists within maize landraces may also explain the gap in 

literature. 

  

1.3.2 Leaf Area Development 

Leaf area is the measure of the photosynthetic system; it is the sum of all leaf laminae 

(Stoskopf, 1981). All aspects of agricultural production are intimately associated with 

the growth of leaves (Milthorpe, 1956) because photosynthesis is usually proportional 

to leaf area. However, green leaf area does not always equate with actively 

photosynthesizing leaf area (Valentinuz, 2004). 

 

Water stress has been shown to reduce leaf area (Jun-Chen & Dai-Junying, 1996). 

Reduction of leaf area is a drought avoidance mechanism, which reduces plant water 

use rate and hence conserves water during periods of drought (Ludlow & Muchow, 

1990; Jones, 1992). This reduction of leaf area is attributed to inhibition of individual 

leaf expansion and reduced total number of leaves per plant (Chartzoulakis et al., 
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1993; Belaygue et al., 1996). Reduction of the number of leaves per plant under 

water deficits can be brought about by reduction of leaf appearance rate, branch 

formation in species that do branch (or tiller), leaf number per branch, plant height as 

well as accelerated leaf senescence (Carberry et al., 1993a, b; Belaygue et al., 1996; 

Marcelis et al., 1998; Gupta et al., 2001; Pic et al., 2002;). The extent of reduction of 

leaf appearance rate depends on the timing and duration of the stress period 

(Belaygue et al., 1996). 

 

The reduction of individual leaf area involves inhibition of expansive growth of the 

leaf. Expansive growth results from cell division and enlargement, which involves 

extensibility of the cell wall under turgor pressure (Pugnaire et al., 1999). Under 

limited water supply, turgor pressure is reduced and growth becomes dependent 

upon the rate of water supply (Jones, 1992). Reduction in leaf area can thus be 

considered to be a plant’s first line of defence against drought. 

 

1.3.3 Root Development  

Root development is an important factor determining the adaptability of a given plant 

to water stress conditions (Russell, 1959). Water stress enhances root growth and 

enhanced root growth is a plant’s second line of defence to drought. 

 

Water stress not only influences dry matter production, but dry matter partitioning as 

well (Jones, 1992). Studies indicated that relatively more dry matter is partitioned to 

the roots as compared to the shoot in plants facing drought (Wilson, 1988; Li et al., 
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1994; Lehto & Grace, 1994; Wien, 1997; Arora & Mohan, 2001). Increase in 

root:shoot ratios under drought has been attributed to the fact that shoot growth is 

more sensitive to increasing soil water stress than root growth (Kramer & Boyer, 

1995) as has been shown in cowpea (Sangakkara, 1998), French beans (Sangakkara 

et al., 1996a, b), soybean (Huch et al., 1986) and various C4 grasses (Fernandez et 

al., 2002). Generally, roots will grow until the demand for photosynthate from the 

shoot equals the supply.  

 

1.3.4 Dry Matter Partitioning 

By limiting leaf area development, water stress reduces radiation interception by 

plants. Consequently, less biomass is produced as has been reported in most crops 

(Singh, 1991; Jones, 1992; Sadras et al., 1993; Turc & Lecoeur, 1997; Nam et al., 

1998; Delfine et al., 2000). In addition, the reduction in stomatal conductance caused 

by water deficits leads to reduced carbon assimilation and consequently low biomass 

production (Kumar et al., 1994; Delfine et al., 2000, 2001; Medrano et al., 2002). 

Furthermore, water stress can negatively affect the photosynthetic system of the 

plant. An example is through inactivation of enzymes involved in photosynthesis 

(Chaves et al., 2002; Lawlor, 2002; Medrano et al., 2002). This inactivation can be 

due to an increase in leaf temperature beyond a certain threshold, for instance 30°C 

in maize (Crafts-Brandner & Salvucci, 2002), resulting from reduced transpirational 

cooling that accompanies reduction of transpiration under water stress (Jones, 1992).  
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1.3.5 Growth, Development and Yield 

Stem height is significantly affected by water stress (Khan et al., 2001). Plant height 

has been shown to decrease due to water stress (Hernandez, 1980; Porro & Cassel, 

1986). Khan et al. (2001) found that water stress decreased the grain yield of maize 

through decreasing stem height and leaf area. 

 

Grain yield of maize is most susceptible to water stress during flowering, tasseling 

and silking (Shaw, 1977). Water stress slows ear growth, and consequently silk 

emergence, more than tassel growth or anthesis, resulting in a widening interval 

between anthesis and silking (Bolanos & Edmeades, 1996). In research carried out in 

the United States of America (USA), the greatest yield reduction was associated with 

stresses that were most intensive during the 25 day period after flowering (Campos et 

al., 2004). 

 

1.4 Effect of Water Stress on Maize Physiology 

1.4.1 Chlorophyll Fluorescence (CF)  

According to Lemon (1966), photosynthesis is the basis of all crop yield. Luna et al. 

(2004), working on wheat, observed severe inhibition of photosynthesis when soil 

water content decreased to 30%. Chlorophyll fluorescence (CF) analysis has become 

one of the most powerful and widely used techniques available to plant physiologists. 

CF can give an insight into the ability of a plant to tolerate water stresses and the 
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extent to which those stresses have negatively impacted on the photosynthetic 

apparatus (Maxwell & Johnson, 2000).  

 

CF is based on the Kautsky (1960) effect. In green tissue, photosynthetically active 

radiation (PAR) is absorbed by chlorophyll and accessory pigments of the protein-

chlorophyll a/b apparatus, and it migrates to the reaction centres of photosystem I 

and II, where the quantum photosynthetic process takes place (Horton et al., 1996). 

Based on this, measurement of CF is considered an important technique in eco-

physiological studies of plants (Goedheer, 1972; Govindjee et al., 1981; Havaux & 

Lannoye, 1983; Krause & Weis, 1991). Use of CF parameters, such as Fo (initial), Fm 

(maximum), Fv (variable= Fm-Fo), Fv/Fm to evaluate intact leaves, make it possible to 

estimate photosynthetic efficiency of the leaf, under various conditions (Durães et al., 

2001). The Fv/Fm ratio (the measurement of quantum yield potential of 

photosynthesis, or maximal photochemical efficiency of PSII) has been shown to be a 

reliable stress indicator (Krause & Weis, 1991; Schreiber et al., 1994). 

 

Severe levels of drought may irreversibly damage the photosynthetic apparatus 

(Zulini et al., 2007). While several physiological traits have been associated with 

stress tolerance in maize and other crops (Bolaños & Edmeades, 1993; Cárcova et 

al., 2000; Mu-Qing et al., 2000; Durães et al., 2000, 2001), measurement of CF is 

considered important (Goedheer, 1972; Krause & Weis, 1991). 
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1.4.2 Protein Synthesis and Accumulation 

Changes in protein expression, accumulation and synthesis have been observed in 

plants exposed to drought (Chen & Tabaeizadeh, 1992; Cheng et al., 1993). Girousse 

et al. (1996) observed that during prolonged periods of drought, the decrease in water 

availability led to changes in the concentrations of many metabolites followed by 

disturbances in amino acid metabolism. Riccardi et al. (1998) observed quantitative 

and qualitative changes to proteins in leaves of two maize genotypes during drought 

stress and concluded that protein quantity was differently modified by stress, 

according to genotype. 

 

In maize, drought stress has been reported to increase the expression of some 50 

proteins, decrease expression of 23 and to induce the synthesis of 10 other proteins 

(Riccardi et al., 1998). Proteins synthesized in response to drought are called 

dehydrins (dehydration induced) and belong to the group II late embryogenesis 

abundant (LEA) proteins (Close & Chandler, 1990), which range from 9-200kDa 

(Close, 1996).  Evidence is increasing in favour of a relationship between the 

accumulation of drought-induced proteins and physiological adaptations to drought 

(Bray, 1993; Han & Kermode, 1996; Riccardi et al., 1998). 

 

1.4.3 Antioxidant Response  

Photosynthesis is particularly sensitive to water deficit because stomata close to 

conserve water as available soil water declines. Stomatal closure deprives leaves of 

carbon dioxide and photosynthetic carbon assimilation is decreased in favour of 
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photorespiratory oxygen uptake (Luna et al., 2004). As a result of stomatal closure 

and the subsequent photorespiration, an increase in reactive oxygen species (ROS) 

occurs, also known as free radicals. These, in particular hydrogen peroxide (H2O2), 

can cause oxidative damage to the plant. H2O2 is also generated as a secondary 

messenger in abscisic acid (ABA)-mediated stomatal closure (Pei et al., 2000). In 

photorespiration, H2O2 is produced at very high rates by the glycollate oxidase 

reaction in the peroxisomes (Noctor et al., 2002).  

 

However, plants have various physiological strategies to respond to diverse 

environmental stresses such as drought (Pastori & Foyer, 2002) and minimize 

oxidative damage. Studies have shown that there exists a relationship between 

antioxidant activity and the ability of plants to tolerate water stress in wheat (Luna et 

al., 2004) and maize (Ti-da et al., 2006; Mohammadkhani & Heidari, 2007).  H2O2 is 

eliminated by catalases (CAT) (Chen & Asada, 1989; Scandalios et al., 1997). 

Catalase is the principle H2O2 scavenging enzyme in plants and is located in 

peroxisomes/glyoxisomes (Asada, 1999) and is an example of oxygen-scavenging 

systems consisting of several other antioxidants, such as ascorbate peroxidase (APX) 

and guaiacol peroxidase (GPX) (Noctor & Foyer, 1998). 

 

1.4.4 Proline Accumulation  

Proline accumulation in water stressed plant tissue was first observed by Kemble and 

MacPherson (1954). Since then, accumulation of proline has been reported as a 

widespread plant response to environmental stresses, including water stress (Yancey 
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et al., 1982). Accumulation in leaves is caused by a combination of increased 

biosynthesis and slower oxidation in mitochondria. It is synthesised from glutamate 

via ∆1-pyrroline-5-carboxylate (P5C); a reaction catalysed by P5C reductase; P5Cs 

have been shown to increase in response to drought stress (Samaras et al., 1995). 

 

Garcia et al. (1987) reported that free proline levels significantly increased in maize 

seedlings in response to water stress. Progressive water stress imposed on wheat 

also resulted in increased proline and glycine-betaine accumulation (Naidu et al., 

1990). Ronde et al. (2000) detected that with decreasing water content, there was a 

progressive increase in free proline in six cotton cultivars. Proline accumulation has a 

role in plant acclimation to water stress and, depending on plant and variety, it may 

be used as an index for drought stress tolerance. 

 

Presently, there is a debate on lack of clarity on the function of the drought-induced 

accumulation of proline. Hanson et al. (1977) hypothesised that proline accumulation 

could be a symptom of damage. Ibarra-Caballero et al. (1988) observed an increase 

in proline accumulation in maize varieties exposed to water stress; they concluded 

that proline accumulation was a symptom of drought and not an adequate 

characteristic for drought stress resistance. Positive roles for proline have been 

suggested, including stabilisation of macromolecules, a sink for excess reductants, 

and a store of carbon and nitrogen for use after relief of water stress (Smirnoff & 

Stewart, 1985; Smirnoff & Cumbes, 1989; Samaras et al., 1995). Verslues and Sharp 

(1999) suggested that because of high concentrations of proline often observed under 

stress, proline has a clear role as an osmoticum. 
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1.5 Mitigating Some Effects of Drought: Seed Primin g  

Good crop stand establishment is considered to be essential for the efficient use of 

resources like water and light (Monteith & Elston, 1983). In the rainfed semi-arid 

tropics, the balance between water supply and demand is critical (Jones, 1987). 

Uniform stand establishment is a pre-requisite for cropping success under adverse 

conditions in order to allow each plant maximum access to limited soil water.  

 

Similarly, vigorous early growth is often associated with better yields (Okonwo & 

Vanderlip, 1985; Austin, 1989; Carter et al., 1992). Harris (1992) demonstrated the 

importance of germination and emergence to be completed quickly in semi-arid 

environments. In 9 sowings, made under optimal conditions of soil moisture 

throughout the 1990-91 season, final emergence and seedling dry weight 25 days 

after sowing (DAS) varied widely with no discernible relation with date of sowing. The 

weather after each sowing was different, however, and establishment success varied 

with the degree of drought stress encountered during the post-sowing period, with 4 

out of 9 sowings resulting in poor establishment. Both final emergence and seedling 

dry matter 25 DAS were highly correlated with the rate of emergence (r=0.96 and 

r=0.93, respectively).  

 

A simple approach to speeding up germination is to enhance the genetic potential of 

seed by treating it in some way before sowing. Various seed treatments are well 

established, particularly in the horticultural industry and some techniques are quite 

complicated (Heydecker & Coolbear, 1977). One of the simplest techniques are the 
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soaking of seed in water for a short period of time prior to sowing (hydro-priming). 

This method, however, has not been tested systematically for small-grained cereals, 

although the practice is often used with maize e.g., in Malawi and Zimbabwe.  

 

In a series of controlled environment experiments Harris (1992) showed that the time 

taken for sorghum seeds to germinate at 30°C decrea sed as the soaking time 

increased from 0 to 10-12 hours, a treatment in which a 50% saving in time could be 

achieved. Emergence from soil at 30°C was significa ntly hastened by 23% when 

seeds were pre-soaked for 6 hours or longer. In four sowings in the field, soaking 

sorghum seed for twelve hours before sowing resulted in over 80% better emergence 

and plants, 25 days after sowing were nearly 60% larger with better developed root 

systems (Harris et al., 1992). The technique of hydro-priming has been used 

successfully in many other crops and could prove an answer to the problem of poor 

establishment caused by water stress. 
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1.6 Justification  

The importance of maize as a source of food is undoubted. Since the introduction of 

maize into southern Africa more than 100 years ago, maize landraces have been 

subjected to natural and farmer selection under different cultural and environmental 

conditions. As a result of this selection, many different types of varieties exist, 

possessing varying levels of adaptability to specific agro-ecological production.  

 

Presently, little or no formal attempts have been made to examine the impact of 

smallholder farmer selections on adapting maize to different environments or 

evaluating the current diversity that has resulted from over a hundred years of farmer 

and natural selection in southern Africa. According to Blum and Sullivan (1986), 

farmers’ local varieties may possess some unique physiological attributes that may 

not be present in germplasm not exposed to abiotic stress; making them a potential 

key genetic resource. 

 

A review of literature showed that current research leaned heavily on developing 

hybrids that are more drought-tolerant. Drought resistant hybrids and their composites 

are often more promising in dryland environments than local maize varieties (Obeng-

Antwi et al., 2002). As such, emphasis has been placed on characterizing hybrids to 

their level of tolerance for easy selection by farmers or farmer groups. Hence, most 

literature (if not all) describes the performance of hybrids or improved varieties 

growing in benign environments. 
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However, most landraces are grown on marginal lands under dryland conditions by 

farmers with little or no access to inputs. Under this system, drought through 

insufficient rainfall and poor rainfall distribution during crop growth is one of the most 

important stresses affecting production and is the most important source of variations 

in yield over time (Byrne et al., 1995). The physiological responses of landraces 

under these conditions are not well understood and, elucidation may offer 

opportunities for further crop improvement and better agronomic practices. 

 

Global climate change is now generally considered to be underway (Hillel & 

Rosenweig, 2002), and is expected to result in a long-term trend towards higher 

temperatures, greater evapotranspiration and an increased incidence of drought in 

specific regions. Rainfall is likely to be reduced by 5% to 10%, accompanied by a 

projected increase in temperatures of about 1°C to 3°C (Hassan, 2006). These 

trends, coupled with an expansion of cropping into marginal production areas, are 

generating increasingly drought-prone maize production environments. An 

understanding of water use of maize landraces could prove a vital key for sustainable 

future crop improvements. 

 

There is some debate on whether maize landraces should be classified as an under-

utilized crop or traditional crop. By definition, under-utilized crops are also under-

researched crops (Azam-Ali, 2009). The fact that there has been limited research on 

maize landraces qualifies it as an under-utilized crop. The mechanisms by which 

maize landraces perform in hostile environments are least understood and/or 

described. However, it is these mechanisms that are increasingly of relevance for all 
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agricultural crops that must operate in the vulnerable and volatile environments of the 

future (Azam-Ali, 2009). 

 

In addition, the fact that much focus has been placed on developing hybrids built for 

drought tolerance than on characterizing local maize landraces for drought tolerance 

creates a gap in literature to justify a study along these lines. Maize landraces are still 

very popular amongst traditional, subsistence farmers who still use it and keep it for 

consecutive planting seasons. Such a study would aid to the improvement of food 

security within this vulnerable group which has been left exposed due to their inability 

to cope with global warming and climate change. 

 

Furthermore, as scientists, we have a moral obligation to not only protect but to also 

develop indigenous and traditional natural resources such as maize landraces for the 

benefit of the traditional, rural farmers who still use them and for the preservation of 

genetic biodiversity. 

 

1.7 Aims and Objectives  

The aim of the study was to compare drought tolerance of landraces to two popular 

hybrids, SC701 and SR52, with respect to early establishment, physiological 

responses, growth and yield using both controlled environment and field experiments. 

The study also sought to look at the efficacy of seed enhancements in improving 

tolerance to drought in landraces. 
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1.7.1 Specific Objectives 

• To compare the popular cultivars and local germplasm with respect to 

emergence and early establishment performance under drought stress. 

• To observe and compare the physiological responses of landraces to drought 

at the establishment stage. 

• To measure and compare the effect of water stress under controlled conditions 

at different crop growth stages in the local maize germplasm and the popular 

cultivars. 

• To compare the effect on yield in the field achieved with the local maize 

germplasm and the popular cultivars under varying conditions of water stress 

imposed by planting at different times during the season. 

 

1.7.2 Hypothesis 

Landraces are more drought tolerant than the selected hybrids under both controlled 

and field conditions. 

 

References 

(See final reference section, pages 111-142) 

 



 22 

CHAPTER 2a 

EARLY ESTABLISHMENT PERFORMANCE OF LOCAL AND 

HYBRID MAIZE UNDER TWO WATER STRESS REGIMES 

 

Mabhaudhi, T.1* and Modi, A.T.1 

1Crop Science, School of Agricultural Sciences and Agribusiness, Faculty of Science 

and Agriculture, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, 

Pietermaritzburg. 

Email: tafadzwanashemabhaudhi@yahoo.com  (Accepted September 2009) 

             

 

Abstract 

Maize (Zea mays L.) is the major grain crop in South Africa where most subsistence 

farmers still plant landraces. The objective of this study was to compare two landrace 

selections of maize with two hybrids popular among small-scale farmers in KwaZulu-

Natal, for seed performance and water stress tolerance during seedling 

establishment. Two variations of a local landrace, white (Land A) and dark red (Land 

B), were compared to two hybrids, SC701 and SR52. Standard germination test and 

electrical conductivity were used to assess seed quality under laboratory conditions. 

Seedling emergence was performed in seedling trays using pine bark at 25% and 

75% field capacity (FC), respectively, over a period of 21 days. All seed types showed 

high germination capacity (>93%). There were highly significant differences (P<0.001) 

among seed types with respect to daily germination and germination velocity index 
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(GVI). Landraces germinated slower than the hybrids. Landraces showed a 20% 

better root length and 41% lower electrolyte leakage than hybrids. There were 

differences (P<0.001) in seedling emergence between 25% FC and 75% FC. Hybrids 

showed better emergence at 75% FC. At 25% FC seedling emergence was 

drastically reduced (<5% in all varieties). Hybrids emerged faster than the landraces 

in both water regimes. Landraces performed better than hybrids under stress 

conditions. This study showed that landraces may have the same viability as hybrids 

and a better tolerance to stress during early establishment of the crop. 

 

Keywords: Conductivity, emergence, germination, hybrids, landraces  

 *Author of correspondence 
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Introduction  

Many subsistence farmers in South Africa still use local varieties. Whereas these 

varieties have poorer yield than hybrids under optimum management conditions, they 

remain an important resource for germplasm improvement (Modi, 2004). Therefore, it 

is not surprising that many subsistence farmers in South Africa still use landraces. 

 

Drought stress is one of the most important limiting factors in rainfed agriculture and 

can significantly influence plant performance (Fischer et al., 1978; Ludlow & Muchow, 

1990; Turner, 1991). It determines time of germination (Ratcliffe, 1961; Prusinsiki & 

Khan, 1990; Braccini et al., 1996), influences growth rate and root:shoot ratios and 

can affect both the final level and rate of germination (Doneen & MacGillavray, 1943). 

Seedlots vary in their ability to overcome this stress (Guy, 1982) and emerge. 

 

The establishment stage of the crop consists of three parts: germination, emergence, 

and early seedling growth. When seeds are placed in soil, germination can only be 

observed as emergence, which may be affected by the water content of the soil 

(Katerji et al., 1994). Early emergence and stand establishment is considered to be 

one of the most important yield contributing factors. Crop establishment depends on 

an interaction between seedbed environment and seed quality (Khajeh-Hosseini et 

al., 2003). 

 

The quality of seed has a profound effect on crop production (Savage, 1995). There 

has been a wealth of papers reporting the result of differences in seed quality on 

seedling emergence and crop yield in a wide range of species, including maize 
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(Perry, 1972, 1976, 1980a, 1982; Powell et al., 1984; Powell, 1988; TeKrony & Egli, 

1991). Field emergence is the aspect of seed quality of concern to growers (Pieta 

Filho & Ellis, 1991). 

 

Seedling emergence is the result of an interaction between seed quality and the often 

hostile seedbed environment. Under these conditions, chances of successful seedling 

emergence are greatly influenced by seed quality. Components of seed quality 

include viability and potential performance (Coolbear & Hill, 1988). Any complete 

assessment of these should consider the capacity of the seed to produce normal 

seedlings, and expected field emergence and uniformity (vigour) (Hampton, 1995). 

Seed quality affects the ability of seeds to overcome the variable conditions 

experienced by seed during crop establishment. The pattern of seedling emergence 

resulting from an interaction between seed quality and the environment can be 

summarized by three parameters: 

i. the number of emerged seedlings (crop density), 

ii. the mean time of seedling emergence, and 

iii. the spread in time to emergence of individual seedlings (uniformity) (Savage, 

1995). 

 

Water stress has been reported to increase the accumulation of free radicals in 

plants. As a reaction to this, oxygen scavenging antioxidant enzymes can be 

produced to remove those active oxygen radicals (Wang et al., 2002; Sun et al., 

2003).  Catalase (CAT) is an antioxidant produced by higher plants in response to 

abiotic stress and metabolises hydrogen peroxide (H2O2) into H2O (Bowler et al., 
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1992; Noctor & Foyer, 1998). Studies have indicated that activities of antioxidant 

enzymes are correlated with plant tolerance to abiotic stresses. Drought induced 

damage was negatively correlated with the capacity of super-oxide dismutase (SOD) 

and CAT activities in mosses differing in drought tolerance (Dhindsa & Matowe, 

1981), rice (Dioniso-Sense & Tobita, 1998; Srivalli et al., 2003; Vaidyanathan et al., 

2003) and tomato (Mittova et al., 2003). Therefore, CAT activity is a key factor in 

understanding maize tolerance to water stress during crop establishment. 

 

Based on Zeven’s (1998) definition of a landrace, maize landraces may be described 

as crop genetic resources that have evolved continuously under natural and farmer 

selection practices rather than in the collection of gene banks or plant breeding 

programs. There is presently limited literature describing germination and 

establishment of maize landraces. If seedling emergence is poor, crop yield will be 

reduced, and in most situations no amount of effort and expense later in crop 

development can compensate for this effect. This study aimed to compare the early 

establishment performance of a local landrace to two popular hybrids under two 

different water stress regimes, with respect to viability, vigour and physiological 

responses. 

 

Material and Methods 

Seed from indigenous landraces was obtained from local farmers in KwaZulu-Natal. 

The seed was characterized according to difference in kernel colour. Two colours 

were selected for this study: white (Land A) and dark red (Land B). Local farmers do 

not differentiate between kernel colour when planting. However, seed colour has 
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been shown to have an effect on vigour (Modi, pers. comm.). Two hybrids, popular 

amongst the small-scale farmers were used: SR52 and SC701, both late maturing 

varieties with fairly good drought tolerance. Local maize landraces are known to be 

late maturing (Modi, pers. comm.). 

 

Standard Germination (SG) Test 

Four replicates of 25 seeds from each genotype were germinated between double 

layered paper towels. The rolled papers were put in sealed plastic bags to avoid 

moisture loss and incubated in a germination chamber at 25°C AOSA (1992) for 8 

days. Daily readings were based on defining germination as radicule protrusion. 

Observations for final germination percentage, based on normal seedlings, were 

made according to AOSA (1992) guidelines. Root (longest root) and shoot length, 

root:shoot ratio and dry matter were measured. 

 

Germination velocity index was calculated according to Maguire’s (1962) formulae:  

 

GVI = G1/N1 + G2/N2 +… + Gn/Nn 

Where: 

           GVI = germination velocity index                                                                           

G1, G2…Gn = number of germinated seeds in first, second… last count. 

N1, N2…Nn = number of sowing days at the first, second… last count. 

 

Mean time to germination (MGT) was calculated according to the formulae by Ellis 

and Roberts (1981): 



 28 

Dn
MGT

n
= ∑
∑

 

Where: 

MGT= mean germination time, 

      n= the number of seed which were germinated on day D, and 

      D= number of days counted from the beginning of germination. 

 

Electrolyte Leakage (EC) 

Electrolyte leakage was measured using the R&A CM100 Model Single Cell Analyzer. 

100 seeds from each genotype were individually weighed and put into cells, each 

filled with 2 ml pure water. Seed of SR52 and SC701 were first rinsed in ethanol to 

remove the seed coating before being weighed and put into the tray. Electrolyte 

leakage for each variety was then measured over a period of 24 hours. 

 

Seedling Emergence 

Three replicates of 20 seeds from each genotype were planted in seedling trays using 

pine bark at 25% and 75% field capacity, respectively, over a period of 22 days. The 

trays were weighed and watered at two-day intervals to maintain field capacity. Data 

collected included daily emergence for 21 days, seedling height and leaf number 

(measured once every week), leaf area, root and shoot mass (fresh and dry), and root 

and shoot length. 

 

Mean time to emergence was calculated using the formulae by Bewley and Black 

(1994): 
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Where MET= mean emergence time, 

                  f= number of newly germinating seeds at a given time (day), and 

                  x= number of days from date of sowing. 

 

Protein Electrophoresis and Blotting 

Shoots were ground to a fine powder in a pre-chilled mortar under liquid nitrogen (N2). 

Samples of 0.5 g were mixed in 5 mℓ Tris-HCl buffer (pH 7.4) containing 250 mM 

NaCl, 25 mM EDTA, 0.5% (w/v) SDS 10 mM β-mercaptoethanol and centrifuged 

(15000 rpm for 15 minutes) at 4°C. The supernatants  were collected and considered 

as leaf protein extract. Protein concentration was determined by absorbance at 595 

nm (Bradford, 1976) with bovine serum albumin as standard. The supernatant were 

separated using 10% SDS-PAGE (Laemmili, 1970) and gel electrophoresis was 

performed with same amount of protein. Western blot was performed with polyclonal 

catalase antibodies. 

 

Description of Statistical Analysis 

Data collected was analysed using GenStat® Version 11 statistical package. One-way 

ANOVA was used for SG-test and EC-test. Means were separated using LSD (P = 0.05). 
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Results 

Standard Germination Tests 

Table1. Performance of landraces (Land A and Land B) and hybrids (SC701 and 

SR52) during a standard germination test.  

Note: GVI = Germination velocity index; MGT = Mean germination time; EC = Electrical 

Conductivity. Values not sharing the same letter in the same column differ significantly at 

P<0.05. 

 

Results for the standard germination test (Table 1) showed no differences (LSD 

P>0.05) in final germination percentage, root length, root:shoot ratio (length) and dry 

mass. Landraces had, on average, a 35% higher root:shoot ratio than the hybrids. 

Landrace A and SR52 had the highest dry mass, respectively; while on average 

landraces had 5% more dry mass than the hybrids (Table 1). There were significant 

differences (P<0.05) in shoot length. Landrace B had the highest shoot length.  

Variety 

Final 

Germi-

nation 

(%) GVI 

MGT 

(days)  

EC 

(µS/g) 

Root 

length 

(mm) 

Shoot 

length 

(mm) 

Root: 

shoot 

Dry 

mass       

(g) 

Land A 98a 25.12d 5.075a 90b 91.8ab 53.4b 1.873a 0.3810a 

Land B 95a 28.54c 4.9b 117b 114.4a 87.0a 1.432ab 0.3260bc 

SC701 94a 31.38b 4.7c 384a 95.7ab 73.3a 1.293bc 0.2940c 

SR52 97a 38.12a 4.475d 119b 71.4b 83.7a 0.852c 0.3760ab 

LSD(P=0.05) 6.74 0.796 0.1162 123.5 27.97 16.77 0.5156 0.05721 
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Figure 1: Progress in daily germination percentages of landraces (Land A and Land 

B) and hybrids (SC701 and SR52) during the first six days of germination 

inside a germination chamber. 

 

However, there were highly significant differences (P<0.001) in daily germination (Fig 

1), germination velocity index (GVI) and mean germination time (MGT) (Table 1). 

Hybrids germinated 23% faster (Fig 1) and more uniformly than the landraces but, 

reached a constant peak quickly at 3 days (Fig 1). Whereas, the landraces 

germinated slower but continued doing so, with Landrace A ultimately exceeding the 

hybrids in final germination percentage (Table 1 & Fig 1). 
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Electrolyte Leakage (EC) 

There were highly significant differences (P<0.001) in electrolyte leakage (Table 1). 

Landrace A, Landrace B and SR52 were statistically not different, with SC701 having 

the highest and significant electrolyte leakage (Table 1).  

 

Seedling Emergence 

Results (Table 2) for seedling emergence showed a highly significant interaction 

(P<0.001) between genotype and field water capacity for most parameters measured. 

Under optimum conditions, 75% FC, SR52 had the highest emergence, while SC701 

and Landrace A had the same emergence (Table 2). On average, the hybrids had a 

10% distinctive advantage over the landraces, with respect to emergence. All 

genotypes emerged poorly at 25% FC, failing to reach 5% emergence. Landrace A, 

however not significant, showed better emergence compared to the other three 

genotypes (Table 2). 

 

Hybrids emerged faster than landraces under both optimum and water stress 

conditions (Table 2). Seedling height, leaf number, leaf area and root length were all 

significantly (P<0.001) reduced under water stress (Table 2). Root lengths of 

Landrace B, SC701 and SR52 decreased under water stress (Table 2). Landrace A 

was the only exception, with root length increasing under water stress (Table 2). 

Under optimum conditions, mean values of landraces for shoot length were 18% 

lower compared to hybrids. Water stress decreased shoot length of hybrids drastically 

while the decrease in landraces was not as severe, resulting in landraces, on 

average, having 39% longer shoots than the hybrids (Table 2). Overall, shoot length 
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decreased under water stress, by 24% in landraces and 62% in hybrids. There were 

significant differences (P<0.05) in root:shoot ratio (length) between field water 

capacities, with Landrace A and SR52 registering the highest increments (Table 2). 

Mean values of root:shoot ratio increased under water stress, with hybrids increasing 

by 45% and landraces by 29%. 
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Table 2:  Seedling emergence and parameters associated with growth of landrace (Land A and Land B) and hybrid 

(SC701 and SR52) in response to field water capacity (75% FC and 25% FC) 

 

 

 

 

 

 

 

 

 

 

 

Note: MET = mean emergence time; Values not sharing the same letter in the same column differ significantly at LSD (P=0.05) 

 

.  

Treatment Variety 

Emergence 

(%) 

MET 

(days) 

Seedling 

Height 

(mm) 

Leaf 

No. 

Leaf 

area 

(cm2) 

Root 

length 

(mm) 

Shoot 

Length 

(mm) 

Root: 

Shoot 

 Land A 76.7a 16.805c 121.7a 3a 32.8ab 44abc 154.7abc 0.292c 

75% FC Land B 60b 17.655b 81.3b 2b 29.6b 50a 168.7ab 0.295c 

 SC701 76.7a 16.815c 117.7a 3a 39.9ab 43.3abc 181.7ab 0.243c 

 SR52 80a 16.059c 125.7a 3a 48.5a 46.7ab 203.7a 0.232c 

 Land A 3.3c 20.309a 38c 1c 16.2c 56.4a 102.3cd 0.565a 

25% FC Land B 1.7c 20.381a 48.1c 0.999c 25bc 31.6c 147bc 0.236c 

 SC701 1.7c 19.637a 31.7c 0.201c 10.6cd 30.9c 80.8d 0.382bc 

 SR52 1.7c 19.982a 35.3c 0.801c 8.1d 33.7bc 71d 0.486ab 

LSD (P=0.05) 10.38 0.7672 18.66 0.9231 15.71 15.46 56.06 0.1613 



 35 

 

Figure 2: Comparison of protein and catalase expression between landraces (Land A 

and Land B) and hybrids (SC701 and SR52) in response to two water stress 

treatments (75% FC and 25% FC). 

 

Protein Electrophoresis and Blotting 

In all genotypes, protein was more expressed in the water stressed treatment (Fig 2). 

Landraces showed more expression than hybrids under both optimum and water 

stressed conditions. Landrace B, in particular, showed more expression compared to 

the rest. Blotting showed that catalase was expressed for all genotypes under stress 

conditions. 

 

Discussion 

Sensitivity to water stress adversely affects germination (Wilson et al., 1985) and 

seed germination is usually the most critical stage in seedling establishment 

(Almansouri et al., 2001). The standard germination test is used as a measure of 

viability (ISTA, 1985) with the ultimate objective of gaining information with respect to 
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field planting value of the seed. Basu (1995) defines seed viability as the property of 

the seed that enables it to germinate under favourable conditions, provided that any 

dormancy is removed prior to the germination test. The results showed no significant 

differences in viability between the landraces and hybrids. However, even when 

seeds of the same viability are sown at the same time and place, differences in 

seedling emergence occur (Heydecker, 1972; Perry, 1982). Numerous tests have 

shown that the SG test is a poor indicator of emergence when field conditions are 

less than optimal (Dornbos, 1995).  

 

Germination velocity index, according to Carvalho and Nakagawa (1980), indicates 

the relative strength of a seed lot. Therefore, this strength was limited to hybrids, with 

SR52 being the fastest. The ability of hybrids to germinate faster and more uniformly 

could be attributed to hybrid vigour. 

 

The conductivity test is a rapid and well established method of measuring seed 

quality. It has been developed into a routine vigour test to predict field emergence of 

garden pea (Pisum sativum L.), soybean (Phaseolus vulgaris L.) and mungbean 

(Phaseolus aureus Roxb) (ISTA, 1995). SC701 showed higher conductivity than the 

landraces and SR52. However, conductivity was a poor predictor of emergence in 

both optimum and water stress conditions. 

 

Seedling emergence is one stage of crop growth that is sensitive to water deficit 

(Bayoumi, et al., 2008). Emergence was significantly reduced by water stress in all 

genotypes. On average, the hybrids had higher emergence than the landraces under 
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optimum conditions, although Landrace A was similar to SC701. Emergence was 

severely inhibited by water stress in all genotypes. According to Stoskopf (1981), 

advantages of hybrids are more pronounced under favourable conditions than under 

non-optimum conditions. 

 

The rate and degree of seedling establishment are extremely important determinants 

of both crop yield and time of maturity (Rauf et al., 2007). Mean emergence time 

significantly increased under water stress in all genotypes, although hybrids still 

emerged faster than the landraces. In the field, the ability of hybrids to emerge faster 

could give them an advantage as they will be able to start photosynthesizing earlier. 

 

Under conditions of water stress, water uptake by plants is directly related to root 

growth (Hurd, 1974; Richard & Passioura, 1981) and root development is an 

important factor determining the adaptability of a plant to water stress conditions 

(Russell, 1959). Water stress significantly reduced root length in all genotypes, with 

hybrids being worst affected, decreasing by 33%, on average. Midaoui et al. (2003) 

observed that root length of sunflower was reduced by water stress. Loresto et al. 

(1989), working on rice, found that root length was positively and significantly 

correlated with drought resistance.  

 

Plant height was significantly reduced by water stress together with leaf area and leaf 

number. Hutcheon and Ranie (1960) noted that the occurrence of drought at the 

vegetative stage caused reduction in plant growth and leaf number. Under stress 

conditions, root and shoot lengths of hybrids decreased by an average of 47.5% 
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compared to 12.65% in landraces. Although root growth was affected by water stress 

for all genotypes, it was much less inhibited than shoot growth and concurred with the 

findings of Sharp et al. (1988). 

 

Water stress triggers the plant’s defense systems in order to resist oxygen damage 

caused by oxygen radicals (Ti-da et al., 2006). All genotypes expressed catalase 

under water stress, confirming that the response was triggered. Landrace B showed 

more CAT expression and might show a better response to oxidative damage caused 

by water stress. 

 

Conclusion 

Seed performance and seedling establishment are important determinants of crop 

germplasm performance. Although hybrids performed better, Landrace A sometimes 

did as well as SR52 and often better than SC701, while Landrace B was often similar 

to SC701. Overall, this study showed that landraces may have the same viability as 

hybrids and better tolerance to water stress than hybrids during early crop 

establishment, but it cannot be concluded that landraces would perform better than 

hybrids under field conditions. Strength of hybrids was mainly confined to its ability to 

germinate and emerge faster than landraces. Future studies will investigate 

performance of landraces and hybrids under a wide range of field conditions, 

including hydro-priming with a view to improving germination speed and emergence 

of landraces. It will also focus on identifying and qualifying the proteins expressed as 

well as the antioxidant capacity and proline accumulation. 
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Abstract 

Proline accumulation has been shown to be a widespread plant response to water 

stress. However, its accumulation in local maize landraces has not yet been studied. 

Two variations of a local germplasm, white (Land A) and dark red (Land B), were 

compared to two hybrids, SC701 and SR52. Maize seedlings were grown in seedling 

trays under controlled environment using pine bark at 25% and 75% field capacity 

(FC), respectively, over a period of 21 days. Proline accumulation was measured 

from seedling leaf samples. Results showed rapid proline accumulation in response 

to water stress. There were highly significant differences (P<0.001) between varieties. 

SC701 and SR52 had the highest proline accumulation, respectively, in response to 

water stress, compared to Landrace A and Landrace B. Based on previous work, it is 
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concluded that proline accumulation in leaves of maize seedlings may be a symptom 

of drought tolerance rather than resistance. We also concluded that the landraces are 

more tolerant to water stress at the seedling stage than the hybrids SC701 and SR52 

since they accumulated less proline, showing less damage. 

 

Keywords: Hybrids, landraces, proline, water stress 
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This short communication is a sequel to a previous study (Chapter 2) which 

investigated the early establishment performance of local maize landraces and 

hybrids in response to water stress. Water stress has been shown to induce a 

lowering in the osmotic potential of crops as a means of maintaining turgor (Jones et 

al., 1981). This is achieved by accumulation of solutes within the plant cell or by 

decreased cell volume; the former is referred to as osmoregulation. Proline has been 

shown to accumulate under conditions of water stress (Delauney & Verma, 1993) as 

a universal response by plants to water stress. Several authors have ascribed to it a 

role in osmoregulation (Shtreva et al., 2008; Samaras et al., 1995) and tolerance of 

water stress (Heuer, 1994). 

 

Several roles have been ascribed to proline, with most of them suggesting a positive 

role (Smirnoff & Stewart, 1985; Smirnoff & Cumbes, 1989; Delauney & Verna, 1993; 

Samaras et al., 1995; Hare et al., 1998). In contrast, others have considered proline 

accumulation to be a symptom of drought (Hanson et al., 1977; Ibarra-Caballero et 
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al., 1988).  However, there was a dearth of information on proline accumulation in 

seedlings of maize landraces. 

 

Refer to Chapter 2, Materials and Methods under Seedling Experiment for plant 

materials and experimental design. Proline content was determined using the method 

of Bates et al. (1973) with some modifications. Samples of 0.5 g freeze-dried leaf 

material were homogenized in 10 mℓ of 3% sulfosalycic acid (w/v). The homogenate 

was centrifuged at 11000 rpm for 10 min at 4°C. 2 m ℓ of the supernatant was reacted 

with 2 mℓ acid-ninhydrin and 2 mℓ of glacial acetic acid in a test tube for 1 hour at 

100°C, whereafter the reaction was terminated in an  ice bath. The reaction mixture 

was extracted with 4 mℓ toluene, and vortexed for 15-20 sec. The chromophere 

containing toluene was aspirated from the aqueous phase, warmed to room 

temperature and the absorbance read at 520 nm using toluene as a blank. The 

proline concentration was determined from a standard curve and calculated on a dry 

weight basis as follows: 

[(µg proline/ mℓ x mℓ toluene)/ (115µg/µmole)]/ [(g sample)/5] = µmoles proline/g of 

dry weight material. 

 

Data were analysed using GenStat® Version 11 and means were separated using 

LSD (P=0.05). 
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LSD (P=0.05) = 0.008362
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Figure 1: Proline accumulation in leaves of seedlings of landraces (Land A and Land 

B) and hybrids (SC701 and SR52) under water stress (25% FC) and non-

stress (75% FC) conditions. 
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Figure 2: Proline accumulation in leaves of maize seedlings under stress (25% FC) 

and non-stress conditions (75% FC). 
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There was a highly significant (P<0.001) interaction between field capacity and maize 

varieties (Fig 1). For all varieties, proline concentration significantly increased under 

water stress (Fig 2). Landrace B, SC701 and SR52 had the highest concentrations of 

proline, respectively, under both non-stress and water stress conditions (Fig 1). Under 

water stress, SC701 and SR52 had the highest concentrations of proline, 

respectively, compared to Landrace A and Landrace B. Proline concentration was 

shown to increase sharply in all varieties in response to water stress. Earlier work 

(Chapter 2) showed that SC701 and SR52 were more sensitive to stress at the 

seedling stage than the landraces. Thus, in this instance, proline accumulation may 

be regarded as a symptom of drought stress rather than as an indicator of tolerance 

to water stress. There have been similar reports showing proline accumulation in 

plants as a symptom of water stress and not an indicator of stress tolerance (Hanson 

et al., 1977; Aspinall & Paleg, 1981; Ilahi & Dorffling, 1982; Ibarra-Caballero et al., 

1988). These results concur with previous reports (Chapter 2) that landraces may 

have a better tolerance to water stress than hybrids (SC701 and SR52) at the 

establishment stage. 
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Abstract 

Drought stress is one of the most important abiotic stress factors. It affects plant 

growth parameters and has been shown to reduce photosynthesis, and ultimately 

reducing yield. The effect of drought stress on growth, photosynthesis and yield of 

local maize landraces has not been studied, although landraces still remain 

popular amongst local small-scale farmers. This study aimed to investigate the 

effect of drought on growth, photosynthesis and yield components of a local maize 

landrace in comparison to two popular hybrids (SC701 and SR52). The landraces 

were characterized into two separate colours, white (Land A) and dark red (Land 

B). The experiment was carried out in large pots filled with soil under controlled 

environment conditions with two water treatments, 25% and 75% field capacity, 
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respectively. Measurements of emergence, plant height, leaf number, chlorophyll 

fluorescence and yield components were taken. Results showed no significant 

differences (P>0.05) between field capacities in emergence, mean emergence 

time, leaf number, chlorophyll fluorescence, ear prolificacy and ear length. 

Drought had an effect (P<0.05) on ear mass, lines per ear, kernels per ear and 

total grain mass. While landraces had better emergence under water stress, the 

hybrids achieved a higher yield. We conclude that the effects of drought were 

more pronounced on yield components than during vegetative growth and that 

drought had no effect on photosynthesis. 

 

Keywords: Emergence, hybrids, landraces, chlorophyll fluorescence, yield 

*Author of correspondence 
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Introduction  

Drought is a worldwide problem and continues to pose a serious constraint to 

global crop production. Recent global climate change has made the situation more 

serious as the frequency and severity of droughts has increased (Pan et al., 2002; 

Halder & Burrage, 2004). Maize is the staple food crop of South Africa where 

maize landraces are still very much a part of the traditional cropping system in 

KwaZulu-Natal. The major reason for crop failure is usually drought through 

insufficient rainfall and poor distribution during growth. 

 

Effects of drought may vary depending on the growth stage at which drought 

occurs (Abo-El-Kheir & Mekki, 2007) and extreme water stress at different stages 

of crop development has been reported to reduce yield significantly (Dhillon et al. 

1995). Occurrence of drought stress at sowing reduces seedling germination and 

emergence (Anda & Pinter, 1994). The reduction in growth during the vegetative 

stage is mainly due to the influence of drought on leaf expansion (Kramer, 1983; 

Brar et al., 1990).  After emergence, plants respond to drought stress by reducing 

stomatal conductance, thus reducing water loss. Reduced leaf turgor inhibits leaf 

expansion. This, in turn, leads to an increase in assimilate supply to the roots and 

increased root growth at the expense of above ground growth. Khan et al. (2001) 

found that maize stem height, leaf number and area as well as yield were reduced 

by water stress. 

 

The reproductive stage of maize is particularly sensitive to water stress (Boyer, 

1992). Drought stress delays anthesis and maturation, thus increasing crop 
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duration (Donatelli et al., 1992; Khannachopra & Kumari, 1995). Previous studies 

have reported that stress during tasseling and silking was most harmful and that 

stress during grain filling was more drastic than stress during the vegetative stage 

(Grant et al., 1989). Other studies, however, showed that stress during early 

vegetative growth was more drastic than that during the grain filling stage (Ahmed 

& Mekki, 2005). In maize, total reproductive failure may result even from brief 

periods of drought stress at critical stages of plant development (Young & Long, 

2000). 

 

Grain yield is dependent on kernel set and the rate and duration of grain-filling 

(Maiti, 1996). Developing ovaries are weak sinks and may fail if there is 

insufficient new photosynthate for its growth (Schussler & Westgate, 1991; 

Bassetti & Westgate, 1993). Alternatively, water stress may prevent ovary 

fertilisation through reduced silk receptivity (Bassetti & Westgate, 1993), or low 

water potential may result in premature cessation of kernel growth (Grant et al., 

1989; Schussler & Westgate, 1991). Drought may also result in reduced 

assimilate for grain-filling (Young & Long, 2000) resulting in lighter kernels. Under 

such circumstances, yield can be very significantly low.  

 

Drought has been shown to reduce maize yield by reducing the efficiency with 

which absorbed photosynthetically active radiation (PAR) is used by the crop to 

produce new dry matter (radiation use efficiency, RUE) (Earl & Davis, 2003). For 

C4 species such as maize, chlorophyll fluorescence (CF) may be used to measure 

instantaneous leaf RUE under current PAR (Edwards & Baker, 1993; Earl & 
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Tollenar, 1998). In recent years, CF measurements have become ubiquitous in 

plant ecophysiology studies (Maxwell & Johnson, 2000). It has been shown that 

drought stress enhances inhibition of electron transport (Masojidek et al., 1991; 

Giardi et al., 1996; Lu et al., 2002). Vazan (2002) reported that drought stress 

reduces variable fluorescence (Fv), initiative fluorescence (Fo) and quantum yield 

(Fv/Fm) of photosynthesis. Early studies reported a sustained decrease in Fv/Fm of 

dark-adapted leaves together with an increase in Fo, indicating the occurrence of 

photoinhibitory damage in response to high temperature (Gamon & Pearcy, 1989) 

and water stress (Epron et al., 1992). Tollenaar and Aguilera (1992) confirmed the 

role of achieving high photosynthetic rates in crops by showing that observed 

differences in dry matter accumulation between old and new hybrids were due to 

higher photosynthetic rates after silking for newer hybrids. It has been noted that 

the degree of reduction in photosynthesis due to water stress is genotype specific 

(Sanchez et al., 1983; Dwyer et al., 1992; Aguilera et al., 1999). 

 

Landraces may have “acquired” drought tolerance through years of farmer 

selection in some of the most adverse of conditions. As water resources for 

agronomic uses become more limited (Wesley et al., 2002), landraces may be key 

to future crop production. However, little is known on the effects of drought on the 

growth, photosynthesis and yield of landraces. Thus, the first objective of this 

study was to observe the effect of water stress on several growth parameters and 

the photosynthetic system of the landraces. The second objective was to observe 

effect of water stress on yield components of landraces. Landraces were 
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compared to two hybrids, SC701 and SR52, under controlled environment 

conditions. 

 

Material and Methods 

Plant Materials 

Seeds from a local maize landrace were initially donated by local farmers in 

KwaZulu-Natal and multiplied at Ukulinga Farm in the year preceding this study. 

The multiplied seed was characterized into two kernel colours, white (Land A) and 

dark red (Land B). Two hybrids, SC701 and SR52, were selected for this study 

based on their popularity among local farmers.  

 

Controlled environment conditions 

The experiment was conducted in large (25 ℓ) pots in a temperature controlled 

(25°C) tunnel at the University of KwaZulu-Natal, S outh Africa. The experiment 

was conducted under simulated drought conditions where temperature, solar 

radiation (PAR) and relative humidity were monitored electronically using HOBO 

2K Loggers (Onset Computer Corporation, Bourne, USA). 

 

Experimental design, potting procedure and water stress treatments 

The experimental layout was a completely randomized design (CRD) with two 

factors: variety (four levels- Land A, Land B, SC701 and SR52) and water stress 

(25% and 75% field capacity, respectively), with three replicates. 24 large pots 

were each filled with 20 kg of soil whose field capacity had previously been 

determined by pot weighing. Three seeds were planted per pot (one in the middle 
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and one on either side) at a depth of 25 mm. Excess seedlings were thinned soon 

after emergence to only one plant per pot. After planting the seeds in the pots, and 

based on the soil’s field capacity, the pots were watered to 75% and 25% field 

capacities, respectively. Soil water content in the pots was monitored 

gravimetrically. Individual pots were placed on a balance and weighed at two-day 

intervals. Water was then added to the individual pots until the required soil water 

content of 75% and 25% FC was attained. In order to account and make 

corrections for plant mass when watering, a few extra pots with plants separate 

from the experiment were used to verify calculations and estimates. The 

experimental pots were randomly rotated at every watering interval. 

 

Fertilization and Pests & Disease Management 

Fertilizer application was based on a soil analysis report of the soil used in this 

study. The following fertilizers were applied; 15 g of 2:3:2 (22) per pot at planting 

and 26 g of UREA (46% N) per pot as top-dressing at 28 days after emergence. 

Maize was sprayed with Avigard (Malathion) at 15 mℓ/10 ℓ against aphid 8 weeks 

after planting.  

 

Chlorophyll Fluorescence (CF) 

CF was measured using the Plant Efficiency Analyzer (PEA) manufactured by 

Hansatech Instruments Ltd, Norfolk, England. Leaves were initially dark adapted 

(30 min) before measurements were taken. Measurements of Fv/Fm were 

recorded from PEA and used for analysis. 
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Description of statistical analysis 

GenStat® Version 11 was used to perform analyses of variance and means were 

separated using least significant differences (LSD (P = 0.05)). 

 

Results  

Emergence 

There were no differences (P>0.05) in final emergence with respect to variety and 

field capacity (Fig 1).  Under optimum conditions (75% FC), only SR52 managed 

to fully emerge (100%), followed by Landrace A (88.9%), SC701 (77.7%) and 

Landrace B (66.6%). The opposite was true under water stress (25% FC), with 

emergence increasing in the landraces, 100% for Landrace A in particular, while 

emergence declined for hybrids (Fig 1). On average, under optimum conditions, 

landraces emerged 9% less than the hybrids while at 25% FC they had a 25% 

advantage over hybrids. There were no significant differences (P>0.05) in mean 

emergence time (MET) (Fig 2). However, landraces emerged 2% slower than 

hybrids under optimum conditions while the difference under water stress was 

negligible (<1%). 

 

There were highly significant differences (P<0.001) in daily emergence with 

respect to variety and days after sowing (DAS) and field capacities (Fig 3a & b). 

There was no significant interaction (P>0.05) between field capacity, variety and 

DAS. Hybrids (SC701 and SR52) had faster and more uniform emergence under 

optimum conditions (75% FC) while landraces performed better under water 

stress (25% FC). 
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LSD (P= 0.05) = 16.1 
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Figure 1: Final percentage emergence of landraces (Land A and Land B) and 

hybrids (SC701 and SR52) under simulated drought conditions (75% FC 

and 25% FC). 
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LSD (P= 0.05) = 0.253
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Figure 2: Comparison of mean emergence times (MET) of landraces (Land A and 

Land B) and hybrids (SC701 and SR52) under simulated drought 

conditions (75% FC and 25% FC). 
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LSD (P= 0.05) = 28.48
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LSD (P=0.05) = 28.48
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Figures 3a and 3b: Progress in daily emergence of landraces (Land A and Land 

B) and hybrids (SC701 and SR52) during first ten (10) days of simulated 

drought at 75% FC (3a) and 25% FC (3b). 
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Plant Growth 

There was no significant interaction (P>0.05) between field capacity and variety 

with respect to plant height (Table 1). However, there were highly significant 

differences (P<0.001) between field capacities (Table 1 & Fig 4) with respect to 

plant height. Under optimum conditions, 75% FC, Landrace B had the tallest 

plants, followed by SR52 and SC701, respectively, with Landrace A having the 

shortest plants (Table 1).  Plant height for SC701, SR52 and Landrace A were, 

however, all statistically similar (Table 1). Water stress reduced plant height in all 

varieties. Landrace B still had the tallest plants, although all varieties were 

statistically similar (Table 1). Leaf number showed no significant interaction 

(P>0.05) between field capacity and variety. Landrace A and Landrace B 

increased leaf number under water stress while SC701 was unaffected, with SR52 

being the only variety to show a decline in leaf number (Table 1). 

 

Photosynthesis  

Photosynthetic efficiency, as measured by CF, showed no significant interaction 

(P>0.05) between variety and field capacity (Table 1). There were slight 

differences (P<0.05) in CF between field capacities (Table 1), with Fv/Fm being 

higher under water stress as compared to optimum conditions.  
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Table 1 : Plant growth parameters and photosynthetic efficiency of landrace (Land 

A and Land B) and hybrids (SC701 and SR52) in response to simulated drought.  

Treatment Variety 

Height 

(cm) Leaf No. 

CF 

(Fv/Fm) 

Land A 164c 15.67a 0.8303ab 

Land B 191.7c 15.29ab 0.835ab 

SC701 189c 14bc 0.8407a 

25
%

 F
C

 

SR52 187.7c 13.33c 0.806bc 

Land A 228b 14bc 0.811abc 

Land B 267.7a 15abc 0.793c 

SC701 238.3ab 14bc 0.8273ab 

75
%

 F
C

 

SR52 247ab 15abc 0.8103abc 

LSD(P=0.05) 34.65 1.757 0.03342 

Note: CF = chlorophyll fluorescence. Values in the same column not sharing the same 

letter differ significantly at LSD (P= 0.05). 

 

Under non-stress conditions, SC701 had the highest CF, while Landrace A and 

SR52 were the same; Landrace B had the lowest CF (Table 1). With the exception 

of SR52, CF increased in all other varieties in response to water stress. Under 

water stress, CF for SC701 remained the highest, while Landrace A and Landrace 

B were the same. 
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Table 2 : Yield components of landrace (Land A and Land B) and hybrids (SC701 and SR52) subjected to drought 

simulation (75%FC and 25%FC).  

 

Treatment  

 

Variety 

Ears/ 

plant 

Ear 

length 

(cm) 

Ear 

mass 

(g) 

Kernel 

rows/ 

ear 

Kernels/ 

ear 

Grain 

mass 

(g) 

Land A 0.67bc 3.5c 2.2c 0d 0b 0b 

Land B 0.67bc 6.33abc 9.5bc 1.33cd 17.7b 8.3b 

SC701 2.33a 11.72abc 15bc 1.17cd 6.7b 5b 

25
%

  F
C

 

SR52 1.33abc 9.75abc 23.3bc 3.83cd 15.7b 12.8b 

Land A 1bc 5.83abc 23.9bc 4.67c 48.2b 19.9b 

Land B 0.67bc 8.33abc 50.4b 6bc 75b 39.5b 

SC701 1.33abc 14.5a 118.2a 11a 164.3a 103.1a 

75
%

  F
C

 

SR52 2.33a 13.03ab 27.3c 1.83cd 21.1b 28.4b 

LSD(P=0.05)  1.178 8.329 46.31 4.863 82.69 46.79 

Note: Values in the same column not sharing the same letter differ significantly at LSD (P= 0.05). 
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Yield Components 

Results of yield components showed no significant interaction (P>0.05) between 

field capacity and variety with respect to ear prolificacy (ears/plant), ear length and 

kernel number per ear (KNE) (Table 2). Under non-stress conditions, SC701 and 

SR52 had the longest ears, respectively, with Landrace B and Landrace A trailing, 

in that order (Table 2).  For all varieties, ear length decreased in response to water 

stress. However, SC701 and SR52 still had the longest ears, respectively (Table 

2). Landrace A had the shortest ears under both non-stress and water stress 

conditions. Under non-stress conditions, 75% FC, SC701 had the highest KNE. 

Landrace A, Landrace B and SR52 were similar. KNE decreased under water 

stress conditions. Although all varieties were similar, Landrace A had no kernels 

under water stress (Table 2). 

 

There was a significant interaction (P<0.05) between variety and field capacity, 

with respect to cob mass and lines per cob (Table 2). SC701 had a significantly 

higher ear mass under non-stress conditions. Landrace B followed closely while 

Landrace A and SR52 were similar (Table 2). Ear weight under water stress for 

SR52 and SC701 was highest and Landrace A had the least ear weight (Table 2). 

Under non-stress and water stress conditions, mean ear weight of landraces was 

49% and 69% lower than hybrids, respectively. SC701 had the most kernel rows 

per ear, while Landrace A, Landrace B and SR52 were similar, although SR52 

had less than 2 lines/ear (Table 2). Mean values of landraces for kernel rows per 

cob were 16% and 73% lower compared to hybrids under non- and water-stress 

conditions, respectively. Grain mass followed a similar trend as ear mass, kernel 
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rows per ear and KNE. SC701 had the highest grain mass per plant, while 

Landrace A, Landrace B and SR52 were similar under non-stress conditions. 

Grain mass was reduced by water stress, with SR52 and Landrace B having the 

highest grain mass under water stress (Table 2). 

 

Discussion 

Advantages of hybrids are more expressed under optimum conditions than at sub-

optimum conditions (Stoskopf, 1981). Under sub-optimum conditions, landraces 

may perform better than hybrids because of adaptability and continued selection 

under such conditions (Zeven, 1998). This was evident as hybrids out-emerged 

landraces by 9% under optimum conditions but, however, were out-emerged by 

25% by landraces under water stress. Ability of landraces to emerge better than 

hybrids under water stress conditions may be as a result of adaptability brought 

about from being usually planted in dry seedbeds by communal farmers. 

 

The occurrence of drought at the vegetative stage is known to result in a reduction 

in plant growth and leaf number (Hutcheon & Ranie, 1960). Landraces, on 

average, had a 2% advantage over the hybrids under optimum conditions; the 

opposite was true under simulated drought, with the hybrids having a 5% 

advantage, with respect to plant height. Drought stress reduced plant height 

significantly, although all varieties grew very tall under both water stress regimes. 

Similar results showing a reduction in stem height due to water stress have been 

reported in other maize varieties (Hernandez, 1980; Porro & Cassel, 1986; Khan 

et al., 2001). Contrary to reports in literature (Ephrath & Hesketh, 1991; Abo-El-
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Kheir & Mekki, 2007), results (Table 2) showed that there were no differences 

(P>0.05) in plant leaf number. Drought, therefore, had no effect on leaf expansion. 

 

In a previously dark adapted leaf, Fv/Fm is representative of the quantum yield of 

photosynthesis in photosystem two (PSII). For non-stressed plants, this value has 

been shown to range from 0.75 to 0.85 (Baker & Hellon, 1987; Bolhar-

Nordenkampf et al., 1989) and to be correlated with net photosynthesis quantum 

yield in intact leaves (Demming & Bjorkmann, 1987; Comic & Briantais, 1991; 

Vazan 2002). Drought stress is expected to result in a declining slope for Fv/Fm 

(Scbreiber & Bilger, 1993; Angelopoulos et al., 1996). In contrast, results showed 

that photosynthesis was not affected by drought stress (Table 1). Instead, it 

increased under stress.  Under both water regimes, Fv/Fm values were above 0.75 

on a scale of 1.000, indicating that the photosynthetic capacity of the leaves 

remained intact under water stress for both landraces and hybrids. 

 

Another reason may be that maize carries out C4-photosynthesis which is 

saturated at CO2 partial pressure levels that are well below the ambient. As such, 

stomatal closure, caused by water stress, may occur without any significant 

impairment to the leaf’s photosynthetic capacity (Young & Long, 2000). Lal and 

Edwards (1996) suggested that there could be significant cycling of CO2 in 

drought stressed maize leaves, accounting for this phenomenon. Zulini et al. 

(2007) suggested that photosynthetic efficiency may only be affected at a 

relatively high intensity of drought. 
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The occurrence of drought at any growth stage has been found to reduce yield 

(Grant et al., 1989; Khan et al, 2001; Abo-El-Kheir & Mekki, 2007). For most yield 

components, landraces, in particular Landrace A, was more affected by water 

stress as compared to hybrids, whilst hybrids, and in some instances Landrace B, 

dominated under optimum conditions. Ear length for all varieties decreased under 

water stress by about 24% on average, while landraces still had smaller ears 

compared to hybrids under optimum conditions. Drought stress during tasseling 

and silking may have reduced ear length (Thelen, 2009). Interestingly, even 

though key yield determinants such as leaf number and photosynthesis were not 

affected by drought, there was a reduction in yield, with Landrace A, in particular, 

failing to develop any grains under water stress conditions. According to Nielson 

(2005), poor kernel set, (meaning an unacceptably low kernel number per ear), is 

not surprising under severe stress caused by drought. Poor kernel set may have 

been caused by ineffective pollination as a result of severe water stress (Nielson, 

2005). 

Conclusion 

Drought is an important source of stress which has been shown to reduce plant 

growth and thereby reduce yields significantly regardless of the time of its 

occurrence. This study showed that plants were more tolerant to water stress 

during the early vegetative stages, the landraces in particular. Landraces proved 

to be more resilient at the seedling stage as shown by its ability to emerge well 

under water stress. Growth parameters of plant height and leaf number were not 

affected by water stress. Landraces performed similar when compared to hybrids, 
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with the only exception being that landraces had more leaves under water stress. 

Photosynthesis was generally not affected by water stress; it increased under 

water stress, indicating no damage to the photosystem. However, despite an 

ability to maintain photosynthesis under water stress, the effect of drought on 

landraces was more pronounced on the yield components, with Landrace A 

rendered barren by water stress. Hybrids yielded better than the landraces under 

both optimum and water stress conditions. This study showed that although 

landraces may have a degree of water stress tolerance at the early establishment 

stage, it may not necessarily translate into a sustained advantage throughout 

growth leading up to yield. Further studies in the field will verify these findings. 
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Abstract 

Little is known on the response of maize landraces to water stress under dryland 

conditions. The objective of this study was to observe planting date effects in relation 

to changes in soil water content during the season on growth and yield components 

of a local maize landrace in comparison to two hybrids. Two colour variations of a 

landrace, white (Land A) and dark red (Land B) were selected and two hybrids, 

SC701 and SR52. The experimental layout was a complete randomised design 

(CRD) with three replications. Three trials were planted on three dates representative 

of early, optimum and late planting from August 2008 to January 2009. Planting date 

had highly significant effects (P<0.001) on emergence, plant height, leaf number and 

days to tasseling (DTT). Landraces emerged better than hybrids in all plantings; 
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highest emergence was in the early and late plantings. Maximum plant height and 

leaf number were attained in the optimum planting, with early planting having the 

least heights and leaf numbers. Hybrids were taller and had more leaves than 

landraces in all plantings. Early planting took the longest number of days to tassel 

(104 Days after Sowing). DTT decreased with successive plantings. There were no 

differences (P>0.005) between varieties. Planting date had a significant effect 

(P<0.05) on ear prolificacy (EP), kernels/ear (KNE) and 100 grain mass (GM). EP 

was highest in the optimum and early planting, respectively.  KNE was highest in the 

late planting while 100 GM decreased with successive plantings. Planting date had no 

effect on ear length and mass, kernel rows/ear, grain mass and yield. With the 

exception of EP, hybrids performed better than landraces, with respect to yield 

components. Landraces responded well to optimum and late planting. 

 

Keywords: Drought, hybrids, landraces, planting dates, yield components. 

 *Author of correspondence 
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Introduction 

Maize is the major grain crop in South Africa, being the major feed grain and staple 

food crop for the majority of the population. In KwaZulu-Natal, small-scale farmers still 

use traditional maize varieties, or landraces, since the cost of hybrid seed is 

unaffordable for most of them and they can easily recycle seed from the landraces. 

Their crop is rain-fed and is usually planted in late spring or early summer right 

through to January. Yields in dryland maize producing areas are constantly reduced 

by erratic seasonal rainfall distribution (Du Toit, 2002). 

 

Drought, either through low and erratic rainfall amounts or spatial variation is a major 

feature of the South African climate (SA Weather Services, 2008). As a result, there 

exists a lot of variation in dryland maize yields (Benhil, 2002). Drought results in water 

stress due to reduced soil water content and is one of the major causes of yield loss 

the world over. Maize has been reported to be very sensitive to drought (Farre et al., 

2000). Sensitivity to water stress varies according to development stage of the plant 

(Doorenbos & Kassam, 1979). Water stress occurring at different growth stages of 

maize may reduce final yield by varying degrees. Even minor drought during specific 

physiological stages can reduce maize yields substantially. The actual extent of yield 

reduction is dependent upon intensity of water stress as well as the developmental 

stage at which the stress occurs (Wilson, 1968; Claasen & Shaw, 1970; Heinegre, 

2000).  

 

The late spring crop is normally planted before the onset of the rainy season, thus, 

exposing it to water stress at the establishment stage. The occurrence of water stress 
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at this stage has been reported to reduce emergence (Mohammadkhani & Heidari, 

2008) and plant population. Yield is the collective of individual plant contributions. A 

low plant population means fewer plants to contribute to yield and thus reduced yield, 

even though individual plants in the remaining population may still perform well. 

 

The occurrence of drought at the vegetative stage reduces plant height and leaf size. 

Khan et al. (2001) reported reduced plant height in maize exposed to water stress. 

Short-term water stress immediately reduced the rate of expansion of growing maize 

leaves although the reduction was overcome following the relief of water stress 

(Acevedo et al., 1971). Impact on yield will thus be the result of reduction in leaf area 

available for photosynthesis (Heinegre, 2000). There is debate on the sensitivity of 

maize to water stress at the vegetative stage. Ahmed and Mekki (2005) recently 

argued that stress at the vegetative stage was more detrimental to yield than stress at 

the grain-filling stage. 

 

However, there seems to be general consensus that maize is less sensitive to water 

stress at the vegetative stage than during the reproductive stage (Grant et al., 1989; 

Dhillon et al., 1995). The onset of the reproductive stage is the most sensitive stage 

for drought stress. Water stress around flowering and pollination delays silking, 

reduces silk length, and inhibits embryo development after pollination. Drought stress 

may delay silk emergence until pollen shed is nearly or completely finished. Under 

such circumstances, severe yield reductions may occur due to incomplete pollination 

and loss of kernel number (Lauer, 2003). 
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There have also been several studies on the mechanisms responsible for yield loss 

under water stress conditions at various growth stages. If drought coincides with 

tasseling, it may reduce cob size and prolificacy (Heinegre, 2000).  Water stress after 

silking up to maturity affects kernel weight. Drought during the grain-filling period 

results in a shortened grain-fill period and lowers kernel weight. If soil water content is 

depleted during the “milk” and “dough” stages of grain-fill, grain abortion may occur 

(Coffman, 1998). Dry weather that starts early and covers several growth periods may 

have a compounding effect with severe reductions in maize yield (Heinegre, 2000).  

 

Maximum yields are therefore only attainable if there is sufficient soil water 

throughout the entire growing season. As a result of variations in yield due to 

seasonal variations in soil water content, there is need for an understanding of 

management practices that affect crop performance. Selection of planting dates has 

been shown to affect maize yield potential and stability (Norwood, 2001). The 

challenge is to find a narrow window where critical growth stages will coincide with 

favourable conditions in the field. Sheperd et al. (1991) reported that early planting 

could contribute significantly to higher yields. Otegui and Melon (1997) concurred by 

reporting that earlier planting tended to place the tasseling and silking period ahead of 

the risk of water stress and thus recommended earlier planting. They also reported 

that late planting resulted in less biomass production, reduced kernel set and low 

grain yield. Delayed plantings are generally accompanied by increased temperatures 

during the growing season which accelerate crop development and decrease 

accumulated solar radiation (Otegui & Melon, 1997). 
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The dependency of most local farmers on rainfed agriculture makes them extremely 

vulnerable to yield variations. Under field conditions, the variability of rainfall and 

consequently soil water content means that water stress can occur at any stage of the 

plant’s development and at varying degrees of intensity and length. While hybrids 

have been tested under varying conditions in the field, there have been no such 

studies for local maize landraces. Their responses to different planting dates and 

changing soil water content under field conditions are least understood. This study 

sought to understand the performance of landraces, in terms of growth parameters 

and yield components, to different planting dates in relation to changes in soil water 

content during the season. 

 

Material and Methods 

Planting material and field layout 

Three field experiments were planted at the University of KwaZulu-Natal Research 

Farm (Ukulinga) in Pietermaritzburg (29°37'S 30°16' E) under dryland conditions. The 

long-term mean rainfall and temperatures for Ukulinga are presented in Table 1. The 

experimental design was a completely randomised design (CRD) with two factors, 

planting date and variety, with three replications. Two colour variations of local maize 

landraces, white (Land A) and dark red (Land B) were used in the study, together with 

two hybrids, SC701 and SR52. There were three planting dates; 28 August 2008 

(early planting), 23 October 2008 (optimum planting) and 9 January 2009 (late 

planting). The plant population was 26 667 plants per hectare (0.75 x 0.5 m). 
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Table  1: Long-term climatic data (rainfall and temperature) for Ukulinga, Camp 

(1999). 

 

 

Growth parameters 

Plant height was measured from the soil surface to the base of the tassel. Leaf 

number was counted for leaves with at least 50% green area up till flowering. Days to 

tasseling (DTT) were counted as number of days from sowing to when 50% of the 

population had tasselled. Yield components were measured at harvest. 

 

Crop management 

Weeding was done mechanically. Fertiliser application was based on soil analysis 

recommendations; 20 kg phosphorus (P) per hectare and 180 kg nitrogen (N) per 

hectare. All of P was applied at planting in the form of a basal application, using 2:3:2 

(22). Plants were top-dressed with UREA (46% N) at 28 days after emergence (DAE). 

UREA was placed in shallow holes next to plants and covered-up immediately. 

Kemprin (Cypermethrin @ 12 mℓ/10 ℓ) was used to control aphids. 

 
 

 

 Annual  Jan Feb Mar Apr May  Jun Jul Aug  Sep Oct Nov  Dec 

Rainfall  

(mm) 738 116 98 92 48 27 10 10 30 51 67 90 99 

Temp 

(°C) 18.1 21.9 21.9 21.1 18.7 16 13.4 13.4 15.2 17.1 18.3 19.5 21.2 
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Weather and soil water content 

Weather data for the duration of the study (August 2008 to May 2009) was obtained 

from measurements collected by an automatic weather station (AWS) located about 

100m from the study site. Measurements shown are monthly averages compiled from 

hourly readings. Three samples for soil water content were taken weekly from the 

30cm profile throughout the duration of the study. Soil samples were weighed to 

obtain mass of wet soil and thereafter dried at 80°C until they had reached constant 

mass. Soil water content was then calculated using the following formula; 

Soil water content = [(wet soil – dry soil) /dry soil] % 

 

Data analysis 

The experiments were performed in a CRD with three replications. Statistical variance 

analysis was done using GenStat® Version 11. The ANOVA test was used and 

means were separated using least significant differences (LSD) at 5%. 

 

Results 

Emergence and Growth 

Planting date had a highly significant effect (p<0.001) on final emergence. While, 

over-all, there were significant differences (p<0.05) between varieties, there was no 

significant interaction (p>0.05) between planting date and variety (Table 2). Landrace 

A and Landrace B had the highest emergence in the early planting, respectively, with 

SC701 and SR52 being equal (Table 2). For all varieties, emergence decreased in 

the optimum planting (Table 2). Although emergence increased in the late planting, it 

was less than that attained in the early planting, with the exception of Landrace A 
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which equalled the early planting (Table 2). On average, for all varieties, emergence 

decreased by 48% and 5% in the optimum and late plantings, respectively, when 

compared to the early planting. For all three planting dates, landraces (Land A and B) 

emerged better than the hybrids (SC701 and SR52); on average, emergence of the 

hybrids was 6% and 17.86% lower than the landraces in the optimum and late 

planting, respectively. 

 

There were significant differences (p<0.001) between planting dates, with respect to 

both final plant height and leaf number (Table 2). With the exception of Landrace A, 

all other varieties attained maximum plant height in the optimum planting, followed by 

late and early planting, respectively (Table 2). Maximum leaf number was attained in 

the optimum planting, followed by early and late planting, respectively (Table 2). 

Although earlier planted crops were shorter than the late planted crops, they had 

more leaves (Table 2). There were no differences (p>0.05) between varieties as well 

as no significant interaction (p>0.05) between planting date and variety. 

 

DTT were significantly affected (p<0.001) by planting date (Table 2). There were no 

differences (p>0.05) between varieties, as well as no significant interaction (p>0.05) 

between planting date and variety (Table 2). Early planting took the longest number of 

days to tassel (≈104 DAS) (Table 2). Landrace A, SC 701 and SR52 tasselled at the 

same time while Landrace B tasselled earlier (Table 2). On average, the optimum and 

late plantings tasselled 22 days (≈82 DAS) and 26 days (≈40 DAS) earlier than the 

early planting. For both optimum and late planting, Landrace A, Landrace B and 

SC701 tasselled at the same time while SR52 took longer to tassel (Table 2).  



 73 

Table 2:  Growth of landrace (Land A and B) and hybrids (SC701 and SR52) for three 

different planting dates. 

Planting 

Date Variety 

Emergence 

(%) 

Plant Height 

(cm) 

Leaf 

Number 

DTT 

(DAS) 

Land A 93.3a 92.9e 11.88bc 105a 

Land B 86.7ab 88.1e 11.91bc 102.67a 

SC701 74.7bcd 99.3e 12.35bc 105a E
ar

ly
 

SR52 74.7bcd 168.4de 11.57bc 105a 

Mean 82.3a 97.2b 11.93b 104.42a 

Land A 40e 141.1bc 12.78ab 81.67b 

Land B 48e 143.6bc 12.67abc 81.67b 

SC701 38.7e 172.3a 12.89ab 84b 

O
pt

im
um

 

SR52 44e 163.9ab 13.67a 81.67b 

Mean 42.7c 155.2a 13a 82.25b 

Land A 93.3a 158.8ab 11.67bc 63d 

Land B 78.7bcd 130.4cd 10.74c 63d 

SC701 72cd 146.1ab 11.4c 67.67c La
te

 

SR52 69.3cd 142.7bc 10.83c 63d 

Mean 78.3b 144.5a 11.16a 64.17c 

LSD(P=0.05) P.Date 6.79 13.97 0.662 2.288 

LSD(P=0.05) PD x Var 13.58 27.95 1.324 4.575 

Note: DTT = days to tasseling; DAS = days after sowing. *Numbers with different letters in the 

same column differ at LSD (P=0.05). 
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Table 3 : Yield components of landrace (Land A and B) and hybrids (SC701 and SR52) for three different planting dates.  

Planting 

date Variety  Ears/Plant  

Ear 

length 

(cm) 

Ear 

mass 

(g) 

Kernel 

rows/ 

ear 

Kernels/  

ear 

Grain 

mass/ 

Plant (g) 

100 

Grain 

Mass (g) 

Grain 

Yield 

(t/ha) 

Land A 3.1a 14.05bc 122b 8.41bc 169cd 83.9bc 50.36cd 2.23b 
Land B 2.157a 11.29d 88.4bc 9.35b 153d 76.9bc 45.17d 2.07b 
SC701 1.2c 19.3a 278.5a 9.63b 294b 174.7ab 64.1a 4.67ab E

ar
ly

 

SR52 1.083c 19.03a 279.8a 10.28ab 354ab 210.5a 62.23ab 5.6a 
Mean 1.885a 15.92b 192.2a 9.42b 243a 136.5a 55.47a 3.64a 

Land A 3.333a 14.56bc 150.8b 9.38b 239bcd 121.9b 50.15cd 3.27ab 
Land B 1.611b 14.35bc 131.1b 10.04ab 281bc 112.3b 46.03d 3b 
SC701 1.444b 18.19ab 209.8ab 11.24a 337ab 170.4ab 55.78abc 4.57ab 

O
pt

im
um

 

SR52 1.167c 20.3a 220.3ab 10.27ab 345ab 191.3ab 53.83bc 5.07ab 
Mean 1.889a 16.85ab 178a 10.23ab 300ab 149a 51.45ab 3.98a 

Land A 1.067c 15.91bc 164.2b 10.07ab 306b 139.4b 44.62d 3.73ab 
Land B 1.229c 14.98bc 134.3b 9.27b 266bcd 129b 46.3d 3.47ab 
SC701 1c 20.74a 242.1a 12.13a 441a 190.5ab 45.6d 5.07ab La

te
 

SR52 1.111c 19.11a 223a 10.73ab 379ab 187.5ab 49.47cd 5ab 
Mean 1.102b 17.68a 190.9a 10.55a 348a 161.6a 46.5b 4.32a 

LSD(P=0.05) P.Date 0.4097 1.588 49.88 1.093 59.4 34.63 4.711 0.923 
LSD(P=0.05) PD x Var 0.8195 3.176 99.75 2.186 118.8 69.26 9.422 1.846 

Note: DAE = days after emergence. *Numbers with different letters in the same column differ at LSD (P=0.05) 
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Yield components 

With the exception of ear prolificacy (EP), there were no significant interactions 

(P>0.05) between planting date and variety for all other yield components measured 

(Table 3). Highly significant differences (P<0.001) between planting dates and 

varieties were observed with respect to ear prolificacy (Table 3). Landrace A and 

Landrace B had the highest number of ears per plant, respectively, in the early and 

optimum planting, with Landrace A having at least 3 ears per plant (Table 3). EP 

decreased in the late planting for landraces. For all three planting dates, landraces 

had the highest number of ears per plant when compared to the hybrids; on average 

landraces had at least 2 ears/plant compared to 1 ear/plant in the hybrids (Table 3). 

 

Ear length, for all varieties, increased by 5% and 11% in the optimum and late 

planting date, respectively, albeit not significantly (P>0.05) (Table 3). There were 

highly significant differences (P<0.001) for ear length between varieties. In all three 

plantings, ear lengths of SC701 and SR52 were significantly longer than ears of 

Landrace A and Landrace B. Ears of hybrids were 37% longer than ears of landraces. 

Although ear length of landraces increased in the successive plantings (14% and 

22% increments in the optimum and late plantings compared to the early planting), 

ears remained smaller than ears of hybrids (Table 3). 

 

Planting date had no effect (P>0.05) on ear mass (Table 3). However highly 

significant differences (P<0.001) occurred between varieties (Table 3). Ear mass of 

SC701 and SR52 was significantly higher to ear mass for landraces in the early and 

late planting (Table 3). The difference was more pronounced in the early planting; 
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ears of hybrids weighed, on average, a staggering 165% more than ears of 

landraces. The difference was reduced to an average of 54% more weight in the 

optimum and late plantings due to the weight gain recorded in ears of landraces; ears 

of landraces increased weight by 33% and 42%, on average, in the optimum and late 

plantings, respectively, compared to the early planting (Table 3). 

 

Although not significant (P>0.05), kernel rows per ear (KRE) increased with 

successive planting dates (Table 3). There were however, significant differences 

(P<0.05) between varieties. Landrace B was similar to SC701 in the early planting, 

while SR52 had the most KRE (Table 3). In the optimum planting, Landrace B was 

similar to SR52, with SC701 having the most number of lines per ear (Table 3). 

Landrace A improved in the late planting and was similar to SR52, while SC701 still 

had the most number of lines per ear (Table 3). Based on mean values, hybrids 

dominated landraces for all three planting dates; hybrids had an average of 11 KRE 

compared to 9 KRE in the landraces (Table 3). 

 

Kernel number per ear (KNE) differed significantly (P<0.05) between planting dates 

(Table 3). There were highly significant differences (P<0.001) between varieties and 

no significant interaction (P>0.05) between planting date and variety (Table 3) was 

recorded. For all three plantings, SC701 and SR52 had a much higher KNE than 

landraces. KNE increased with successive planting dates in the landraces and 

hybrids, with the exception of SR52 and Landrace B which decreased in the optimum 

and late planting, respectively (Table 3). Based on mean values, hybrids had a 

greater KNE (52%) than landraces. As with ear mass, this advantage of hybrids over 



 77 

landraces was more pronounced in the early planting date; KNE in hybrids was more 

than double (101%) landraces in the early planting (Table 3). 

 

Grain mass per plant was not significantly affected (P>0.05) by planting date, 

although it increased with successive planting dates, in line with increments recorded 

in KRE and KNE (Table 3). There were significant differences (P<0.001) between 

varieties. No significant interaction (P>0.05) between planting date and variety was 

observed. SR52 and SC701 had the highest grain yield per plant, respectively, in the 

early and optimum planting (Table 3). Grain yield increased with successive planting 

dates in Landrace A and Landrace B, although it still remained lower than SC701 and 

SR52 (Table 3). The greatest differences were observed in the early planting; 

average grain mass per plant of hybrids was more than double (140%) that of 

landraces (Table 3). 

 

Dry matter accumulation was measured as 100 grain mass (100 GM). There were 

significant differences (P<0.05) between planting dates and between varieties (Table 

3). There was no significant interaction (P>0.05) between planting date and variety. 

SC701 and SR52 had the highest 100 GM, respectively, in the early and optimum 

planting (Table 3). Landrace A was similar to SR52 in the optimum planting (Table 3). 

Landrace B increased with successive planting dates while Landrace A, SC701 and 

SR52 decreased with successive plantings (Table 3). Consequently, Landrace B had 

the second highest 100 GM in the late planting, while SR52 had the highest 100 GM 

(Table 3). Overall, compared to the early planting, 100 GM decreased with 
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successive planting dates, by 7% and 16% in the optimum and late planting dates, 

respectively.  

 

Results for total grain yield (t/ha) were consistent with results for yield components 

measured (ear length and mass, KRE and KNE) (Table 3). There were no differences 

(P>0.05) between planting dates, but highly significant (P<0.001) differences between 

varieties were observed (Table 3). The interaction between planting date and variety 

was not significant (P>0.05). For both Landrace A and Landrace B, grain yield 

increased with successive plantings, with highest grain yields being achieved in the 

late planting (Table 3); the opposite was true for SR52. SC701 achieved highest grain 

yield in the late planting (Table 3). SR52 was consistent in all three plantings (>5 t/ha) 

(Table 3). Over-all, hybrids out-yielded landraces by 69%. The greatest yield 

differences (139%) were recorded in the early planting, while the gap narrowed in 

successive plantings (54% and 40% in the optimum and late plantings, respectively).  

 

Weather and soil water content 

Average monthly rainfall amounts measured for the period September to December 

2008 showed less than 1mm of rainfall recorded (Fig 1). Monthly soil water content 

measured over the same period showed averages of less than 20% soil water content 

(Fig 2). Temperatures during this period were also low; September had the lowest 

average temperature of less than 10oC (Fig 1). This period coincided with the first and 

second planting dates. Both rainfall and soil water content increased considerably 

over the period January to May 2009 (Fig 1 & 2). 
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Figure 1: Monthly average rainfall and temperature (°C) recorded at Ukulinga during 

September 2008 to May 2009. 
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Figure 2: Soil water content measured at Ukulinga during September 2008 to May 

2009. 
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Discussion 

The objective of the study was to measure the effects of different planting dates on 

the growth and yield components of two selected landraces in relation to changes in 

soil water content during the growing season. The performance of landraces was 

compared to that of two popular hybrids under field conditions. The first planting was 

in late August (early planting) before the onset of the rains, with the second planting 

in late October, set at the onset of the rains (optimum), and the third in January 

towards the end of the season (late planting). 

 

Planting date was shown to affect emergence of all varieties significantly (Table 2). 

Contrary to reports that early planting usually results in reduced or poor and 

unsynchronised emergence due to a lack of soil water in the seedbed at planting 

(Mwale et al., 2003), the highest emergence was recorded in the early planting. 

Under conditions of low soil water content, Landrace A and Landrace B out-emerged 

the hybrids. However, the lack of soil water and low average temperatures resulted in 

all varieties emerging only 35 DAS in the early planting. The minimum temperature for 

germination in maize is 10°C, below which germinati on fails to occur (Arnon, 1972). 

Optimum planting resulted in the lowest emergence while emergence recovered 

again in the late planting. This was as a result of increased rainfall, soil water content 

(72%) and warmer temperatures (average temperature of 16°C). Germination and 

especially emergence is far more rapid and uniform at soil temperatures of 16-18°C 

(Arnon, 1972). On average, landraces emerged better compared to hybrids in all 

three plantings. 
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Plant height and leaf number are established growth parameters and indices of water 

stress tolerance. Reduction in leaf number under water deficits is a result of reduced 

leaf appearance rate and reduced plant height as well as accelerated leaf 

senescence (Carberry et al., 1993a, b; Belaygue et al., 1996; Marcelis et al., 1998; 

Gupta et al., 2001; Pic et al., 2002). Early planting resulted in the shortest plants with 

the least number of leaves since it coincided with the driest period. The vegetative 

stage of the optimum planting coincided with increasing soil water content and 

temperature, resulting in plants expressing their genetic potential. Plant height and 

leaf number decreased slightly in the late planting in response to decreasing soil 

water content and temperature. Aldrich et al. (1975)   associated late planting with a 

shortened season; this may have limited plant growth. Over-all, hybrids were taller 

than landraces, although they had similar leaf number with landraces. 

 

Early planting took the longest time to tassel followed by optimum and late planting, 

respectively. Early planting has been reported to enjoy a longer growing season when 

compared to optimum and late planting (Aldrich et al., 1975; 1986). Tasseling in the 

early and optimum planting coincided with increased rainfall and soil water content 

whilst the late planting coincided with decreasing temperatures, rainfall and soil water 

content. This pattern was consistent with that suggested by Otegui and Melon (1997). 

Both hybrids and landraces were similar, with respect to DTT, confirming that 

landraces were late maturing varieties. 

 

For yield components, planting date had no effect on ear length and mass, kernel 

rows per ear, grain mass per plant and yield. Planting date however, had an effect on 



 83 

ear prolificacy; KNE and 100 GM (Table 3). Ear prolificacy is genotype specific and is 

already determined at the onset of tasseling, together with ear size. Water stress at 

this point can reduce cob size and potential yield (Heinigre, 2000).  Such were the 

differences observed between hybrids and landraces. Landrace A and Landrace B 

had the highest number of ears, respectively, compared to SC701 and SR52 in all 

three planting dates.  Ear prolificacy was highest in the optimum and early planting 

because tasseling coincided with favourable conditions, allowing plants to fully 

express their genetic potential. Variation in planting date has been shown to influence 

kernel numbers per ear (Harris, 1984). Contrary to reports by Otegui and Melon 

(1997), results observed showed that kernel number was highest in the late planting. 

 

Rainfall and soil water content data showed that reproductive stages for both early 

and optimum planting coincided with the most favourable period in the growing 

season. In the late planting, the reproductive stage coincided with a progressive 

decrease in rainfall, soil water content and temperature. The optimum and late 

planting had shorter growing periods, compared to early planting. Consequently, 

there was more biomass accumulation (100GM) in the early planting when compared 

to the other two plantings. Taylor and Blackett (1982) reported that due to a shorter 

growing season, there may be a tendency for later planted crops to give lighter 

grains. These results are also consistent with those of Otegui and Melon, (1997). 

However, planting date had no effect on grain mass per plant and total yield. This is 

due to gains that were made elsewhere. Although, the optimum and late planting had 

a shorter growing period, hybrids and landraces were considerably taller with more 
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leaves. This meant hybrids and landraces’ capacity to photosynthesise was 

compensated for by these gains. 

 

According to Green et al. (1985), results of planting dates may vary and can be 

inconsistent between seasons and sites and that it is not unusual for late planted 

crops to out-yield the optimum planting. Hybrids had highest yield in the early and late 

plantings, respectively. Yield of landraces increased with successive planting dates, 

reaching its highest in the late planting.  

 

Conclusion 

Hybrids dominated the landraces in all, but one, aspect – ear prolificacy. Landraces 

had a greater number of ears per plant compared to hybrids. However, landraces’ 

advantage in ear prolificacy did not translate to other yield components as landraces 

had smaller ears with fewer rows and kernels compared to hybrids. Ultimately, 

hybrids achieved higher yields compared to landraces. Landraces increased in most 

yield components in the optimum and late plantings while the hybrids either 

decreased slightly or remained consistent. Early planting favoured a longer growing 

season with increased biomass accumulation and hybrids responded well to this. It 

also positioned the critical growth stages of maize away from stressful periods and in 

a sort of “optimum window”. Optimum planting experienced a shorter growing period; 

plants were able to compensate for this effect by increasing their height and leaf 

number. Late planting experienced the shortest growing period and would be 

recommended for short season variety hybrids. However, average yields achieved by 

the landraces in all plantings were higher than the 1.5t/ha attained by most farmers in 
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dryland farming. They also exhibited a degree of stress tolerance compared to 

hybrids as yield increased in the late planting. These results warrant further field 

trials. 
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Abstract 

Hydro-priming has recently been used to improve establishment in many crops but 

has not been studied for maize landraces. The aim of this study was to observe 

whether hydropriming can improve germination speed, vigour and seedling 

emergence of a local maize landrace under water stress conditions. Two variations of 

landraces, white (Land A) and dark red (Land B), together with two locally popular 

hybrids, SC701 and SR52, were either not primed (UP) or primed by soaking in water 

for 12 hours (P12) and 24 hours (P24), respectively. Seeds were incubated in a 

germination chamber at 25°C for 8 days. For seedlin g emergence, seeds were 

planted in seedling trays at 25% FC and 75% FC, respectively, in a temperature 

controlled glasshouse (25°C day; 15°C night; 60% RH ). Priming did not increase final 
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germination. Hybrids performed better than landraces when seeds were not primed. 

Priming landraces for 12 hours and 24 hours reduced mean germination time (MGT) 

by 9% and 7%, respectively, while priming seeds for 12 hours improved germination 

velocity index (GVI) by 40%. There was a highly significant interaction (P<0.001) 

between variety and priming for germination traits such as root and shoot lengths and 

fresh mass. There were no differences (P>0.05) in seedling emergence. Priming 

seeds for 24 hours improved emergence at 25% FC while priming for 12 hours 

improved emergence at 75% FC. There was a highly significant interaction (P<0.001) 

between priming and field capacity for mean emergence time (MET). Priming seeds 

for 24 hours reduced MET for all varieties. Priming seeds for 12 hours and 24 hours 

increased leaf area by 33.8% and 29%, respectively. Hydropriming improved 

germination speed, reduced MGT and improved emergence and vigour of landraces 

under water stress. 

 

Keywords: Emergence, germination, hydropriming, landraces, water stress 
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Introduction   

Good crop establishment is essential for the efficient use of water (Monteith & Elston, 

1983) and is a major constraint to crop production in the semi-arid tropics (Itabari et 

al., 1993; Harris et al., 1999; Matarira et al., 2004). This is particularly true for maize 

which does not tiller (Finch-Savage et al., 2004). Good germination and emergence 

are important for achieving good crop establishment and maximum possible plant 

populations in the field, more so under adverse growing conditions. As such, speed of 

germination and emergence is important for successful establishment (Harris, 1996). 

 

Technology that enhances germination and emergence is thus important in mitigating 

deleterious effects of poor crop establishment due to drought. Such technology would 

allow farmers to achieve good crop stands and ultimately good yields. Seed priming 

is one such technology which has been developed to enhance the germination 

characteristics of seeds (Foti et al., 2008). Its purpose is to partially hydrate the seeds 

to a point were germination processes are initiated but not completed (Heydecker et 

al., 1973; McDonald, 2000). Primed seeds exhibit rapid germination and emergence 

under field conditions (Ashraf & Foolad, 2005). 

 

There is a variety of methods that have been used to study the effect of seed priming 

on germination and growth rate of maize. These include osmo-priming (soaking 

seeds in osmotic solutions such as polyethylene glycol (PEG)), halo-priming (soaking 

seeds in salt solutions), hydro-priming (soaking seeds in water), hormonal-priming 

and matri-priming (Chiu et al., 2002; Kao et al., 2005; Windauer et al., 2007; 

Ghassemi-Golezani et al., 2008). Priming maize seed using PEG or potassium salts 
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(K
2
HPO

4 
or KNO

3
) accelerated germination in a chilling germinator (10°C) (Basra et 

al., 1989). Soaking maize seed in 2.5% potassium chloride (KCl) for 16 hours 

reduced coleoptile and radicule length, while seed soaked in 20 ppm GA
3 

for 30 min 

improved some germination traits (Subedi & Ma, 2005).  

 

Hydro-priming (henceforth referred to as priming) is a simple low-cost method of seed 

priming that requires no sophisticated equipment and gives results which are easy to 

see (Foti et al., 2008). Nagar et al. (1998) observed a significant improvement in field 

emergence and seedling characteristics after hydro-priming maize for 16 hours. In a 

series of experiments, Harris et al. (1999) showed that hydro-priming markedly 

improved establishment and early vigour of upland rice, maize and chickpea, and 

resulted in faster development, earlier flowering and maturity and higher yields. This 

simple, low-cost, low-risk intervention also had positive impacts on the wider farming 

system and livelihoods and proved highly popular with farmers (Harris et al., 1999, 

2001).  

 

The improvement in germination and emergence as a result of priming has been 

more recently linked to several biochemical changes that occur in the seed. There 

are reports of increased protein synthesis in response to priming (Capron et al., 2000; 

Gamboa-deBuen et al., 2006) as well as evidence of reduced metabolite leakage 

(Ruan et al., 2002; Giri & Schillinger, 2003; Basra et al., 2005; Farooq et al., 2006). 

Bailly et al. (2000) reported that antioxidant enzymes, including superoxide dismutase 

(SOD) and catalase (CAT), were expressed when seeds were primed. In addition to 
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reduced time to 50% emergence and improved final germination, Wahid et al. (2008) 

also observed increased protein synthesis and soluble sugars concentration in 

response to priming sunflower achenes. They concluded that priming-induced 

improvements in germination and seedling growth were associated with protein 

synthesis, membrane repair and greater substrate availability for germination. 

 

Maize landraces are still being grown by subsistence farmers in KwaZulu-Natal, 

South Africa under a rain-fed system; which according to Rowland (1993) is a risky 

environment. The risk is related to rainfall amount and distribution (Foti et al., 2007) 

during the time of planting. Farmers normally sow their maize either in late spring, 

before the onset of rain, or with the first rain. The former crop usually suffers from a 

dry seedbed, resulting in poor emergence. The latter crop may suffer from rains that 

usually peter out early. In either case, the result is poor crop establishment leading to 

poor yields due to reduced plant populations. 

 

The aim of this study was to observe whether priming can be used to improve 

germination speed and emergence of local maize landraces under water stress 

conditions.  The performance of landraces was compared to two popular hybrids, 

SC701 and SR52. 
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Material and Methods 

Planting Material 

Seed for the landrace was initially donated by local farmers in KwaZulu-Natal, South 

Africa, and multiplied at the University’s Ukulinga Farm in the previous year. The 

landraces were characterized according to kernel colour, two of which were selected 

for this study; white (Land A) and dark red (Land B). Two hybrids, SC701 and SR52, 

were used in this study for the purpose of comparing the landraces’ performance. 

 

Seed Priming Procedure 

Seeds of landraces and hybrids were soaked in distilled water for 0 hours (Unprimed 

or control), 12 hours (P12) and 24 hours (P24), respectively. After soaking, the seeds 

were surface dried.  

 

Laboratory Germination 

Three replicates of 25 seeds from each variety and priming treatment combination 

were germinated between double layered, moistened paper towels (ISTA, 2003). The 

paper towels were rolled, put into zip-lock bags and incubated in a germination 

chamber at 25°C (AOSA, 1992) for 8 days. Radicule p rotrusion was the criterion of 

germination. Observations for final germination percentage, based on normal 

seedlings, were made according to AOSA (1992) guidelines. Root and shoot length 

(mm), root:shoot ratio, fresh and dry mass (g) were measured. 

 

Mean time to germination (MGT) was calculated according to the formulae by Ellis 

and Roberts (1981): 
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Dn
MGT

n
= ∑
∑

 

Where: 

MGT= mean germination time, 

      n= the number of seed which were germinated on day D, and 

      D= number of days counted from the beginning of germination. 

 

Germination speed was calculated based on Maguire’s (1962) formulae:  

 

GVI = G1/N1 + G2/N2 +… + Gn/Nn 

Where: 

           GVI = germination velocity index                                                                           

G1, G2…Gn = number of germinated seeds in first, second… last count. 

N1, N2…Nn = number of sowing days at the first, second… last count. 

 

Seedling Emergence 

Three replicates of 10 seeds from each variety and priming treatment combination 

were planted in seedling trays using pine bark as growing media at 25% and 75% 

field capacity (FC), respectively, over a period of 22 days in a controlled environment 

(25°C day; 15°C night; 60% RH) glasshouse. The tray s were weighed and watered at 

two-day intervals to maintain field capacities. Data collected included daily 

emergence for 14 days, leaf area (cm2), root and shoot lengths and root and shoot 

mass (fresh and dry). 
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Mean time to emergence was calculated using the formulae by Bewley and Black 

(1994): 

( )
MET

fx

f
= ∑
∑

 

Where MET= mean emergence time, 

                  f= number of newly germinating seeds at a given time (day), and 

                  x= number of days from date of sowing. 

 

Statistical Analysis 

Data collected was analysed using GenStat® Version 11 statistical package. Means 

were separated using LSD (P = 0.05). 

 

Results  

Laboratory Germination 

Priming had a highly significant effect (P<0.001) on final germination. Results for final 

germination showed there was a significant interaction (P<0.05) between priming and 

variety (Table 1). With the exception of Landrace B, priming did not increase final 

germination in the other three varieties. Maximum germination (100% for Landrace A 

and 98.67% for both hybrid varieties) was achieved in the unprimed treatment. For 

both priming treatments (P12 and P24), final germination fell by an average 8% in the 

hybrids compared to 4% in landraces. Landrace B attained maximum germination 

(98.67%) when seeds were primed for 24 hours (P24). 
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Table 1 : Germination attributes of landraces (Land A and Land B) and hybrids (SC701 and SR52) for unprimed (UP), 12 hours 

(P12) and 24 hours (P24) seeds. 

 Variety Germination 

MGT 

(days) GVI 

Root length 

(mm) 

Shoot length 

(mm) Root:Shoot 

Fresh mass 

(g) 

Dry Mass 

(g) 

Land A 100a 4.7ab 32.99e 113d 89.5g 1.265abc 1.402c 0.314c 

Land B 97.33abc 4.7ab 34.63de 170.2ab 139.5b 1.227abcd 1.805a 0.304c 

SC701 98.67ab 4.767a 32.79e 135.5cd 102.8fg 1.345ab 1.498bc 0.242d 

U
np

ri
m

ed
 

SR52 98.67ab 4.5bc 38.46cd 132cd 106f 1.252abc 1.558bc 0.379a 

mean 98.67
a
 4.667

a
 34.72

b
 137.7

a
 109.5

b
 1.272

a
 1.566

b
 0.3097

b
 

Land A 93.33bc 4.3de 46.84a 114.5cd 163.5a 0.721e 1.895a 0.323bc 

Land B 92c 4.233e 48.35a 109.4d 111.4ef 0.983cde 1.601b 0.298c 

SC701 94.67abc 4.367d 44.43ab 191.7a 133.9bc 1.444a 1.934a 0.373ab P
12

 

SR52 86.67d 4.4cd 39.85bc 122.7cd 128.4bcd 0.974de 1.586bc 0.408a 

mean 91.67
c
 4.325

b
 44.87

a
 134.6

a
 134.3

a
 1.03

b
 1.754

a
 0.3503

a
 

Land A 93.33bc 4.367d 40.17bc 123cd 123.8cde 1.012cd 1.599bc 0.314c 

Land B 98.67ab 4.3de 49.12a 132.3cd 129.4bc 1.053cd 1.454bc 0.297cd 

SC701 97.33abc 4.3de 48.43a 147.7bc 135.8bc 1.09bcd 1.545bc 0.276cd P
24

 

SR52 82.67d 4.467cd 34.6de 129.3cd 113def 1.147bcd 1.489bc 0.4a 

mean 93
b
 4.358

b
 43.08

a
 133.1

a
 125.5

a
 1.076

b
 1.522

b
 0.3217

b
 

LSD (P= 0.05) Variety x Priming 

LSD (P= 0.05) Priming 

6.422 

3.211 

0.1206 

0.0603 

5.371 

2.685 

33.47 

16.74 

15.42 

7.71 

0.2847 

0.1424 

0.1988 

0.0994 

0.05503 

0.02751 

*Note: MGT = mean germination time; GVI = germination velocity index (germination speed). Numbers with different letters in the same 

column differs significantly at LSD (P=0.05). 
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Priming had a significant effect (P<0.001) on mean germination time (MGT), reducing 

it for all varieties. There was a highly significant interaction (P<0.001) between variety 

and priming in MGT (Table 1). Hybrids germinated faster than landraces when seeds 

were not primed. The effect of priming on MGT was more pronounced for landraces 

than hybrids. Priming landraces for 12 and 24 hours reduced MGT by 9% and 7%, 

respectively, compared to a reduction of 5% for hybrids in both cases.  

 

In addition, significantly increased germination velocity index (GVI) in all varieties. 

There was a highly significant interaction (P<0.001) between variety and priming with 

respect to GVI (Table 1). Hybrids germinated 5% faster than landraces when seeds 

were not primed. However, when seeds were primed for 12 and 24 hours, landraces 

germinated 11% and 7% faster than hybrids, respectively. Over-all, priming seeds for 

12 hours had the greatest effect on landraces, improving the GVI by 40% when 

compared to unprimed seeds. 

 

Furthermore, there was a highly significant interaction (P<0.001) between variety and 

priming for germination vigour traits such as root and shoot lengths and fresh mass 

(Table 1). Root length for landraces declined by 20% (P12) and 9% (P24) as 

compared to the maximum root length reached when seeds were not primed. 

Landrace B, in particular was negatively affected by priming. Root length of hybrids 

increased in response to priming. Roots of hybrids were 28% and 7% longer than 

landraces when seeds were primed for 12 and 24 hours, respectively. Priming 

increased shoot length for all varieties. Seeds of landraces, primed for 12 and 

24hours, respectively, had about 22% and 10% longer shoots than the unprimed 
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seeds. Primed seeds of hybrids were 25% (P12) and 19% (P24) longer than 

unprimed seeds. Overall, landraces responded better than hybrids to priming with 

regard to shoot length by 7% (P12) and 1.7% (P24). Lastly, priming had a significant 

effect (P<0.05) on dry mass. Landraces had a marginal increase (<1%) when seeds 

were primed for 12 hours. Hybrids showed an increase in dry mass of 25% and 8% 

when seeds were primed for 12 hours and 24 hours, respectively. 

 

Seedling Emergence 

There were no differences (P>0.05) in seedling emergence (Fig 1) with respect to 

variety, priming and field capacity. There was also no significant interaction (P>0.05) 

between the three treatment factors. SR52 was adversely affected when seeds were 

primed for 24hours. Emergence improved under water stress when seeds were 

primed for 24hours. There was no significant (P>0.05) three way interaction with 

respect to mean emergence time (MET) (Fig 2). However, there was a highly 

significant interaction (P<0.001) between priming and field capacity (Fig 2). MET was 

reduced when seeds were primed for 24 hours in all varieties (Fig 2). Priming seeds 

for 12 hours improved emergence under optimum conditions (75% FC) and not under 

water stress (25% FC). 
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Figure 1: Seedling emergence for landraces (Land A and Land B) and hybrids 

(SC701 and SR52) grown at 25% FC and 75% FC after seeds were either not 

primed (UP) or primed for 12 (P12) and 24 (P24) hours. 

 

Figure 2: Mean emergence time (MET) for landraces (Land A and Land B) and 

hybrids (SC701 and SR52) grown at 25% FC and 75% FC after seeds were 

either not primed (UP) or primed for 12 (P12) and 24 (P24) hours. 
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There was no significant three way interaction (P>0.05) between variety, priming and 

field capacity for all seedling characteristics (Table 2). With respect to root length, 

priming and field capacity both had significant effects (P<0.05) while the interaction 

was also significant (P<0.05) (Table 2). Under water stress conditions (25% FC), root 

length increased by 4% (P24) and 16% (P12) in response to priming. In particular, 

landraces increased root length under water stress by 4% (P24) and 21% (P12). 

Although the interaction between priming and field capacity had no effect (P>0.05) on 

shoot length (Table 2), priming, on its own, had a highly significant effect (P<0.001) 

on shoot length. There were no differences in root and shoot dry mass (Table 2). 

 

Leaf area development showed no significant three way interaction (P>0.05) between 

variety, priming and field capacity (Table 2). Field capacity had a highly significant 

effect (P<0.001) on leaf area (Table 2), reducing it by about 23% under water stress. 

Nonetheless, priming had a significant effect (P<0.001) on leaf area, leaf area 

increased by 33.8% and 29% in response to priming seeds for 12 hours and 24 

hours. Leaf area of landraces increased under water stress (25% FC) by 34% (P12) 

and 6.5% (P24) while leaf area of hybrids increased by 48.5% (P12) and 47% (P24), 

respectively.  
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Table 2 : Seedling characteristics of landraces (Land A and Land B) and hybrids 

(SC701 and SR52) at 25% and 75% field capacity, respectively.  

Treatment Variety 

Root 
Length 
(mm) 

Shoot 
length 
(mm) 

Root: 
Shoot 

Root DM 
(g) 

Shoot DM 
(g) 

Leaf 
area 
(cm 2) 

Land A 55.33cde 204.3d 0.276bcd 0.2733bcdefg 0.1367abcde 36.2def 

Land B 56cde 185d 0.304abc 0.2167fgh 0.1133bcde 35.8def 

SC701 65abcd 187d 0.4061a 0.3133abcde 0.0967cde 35.8def 

U
np

rim
ed

 

25
 F

C
 

SR52 45e 177.3d 0.2627bcd 0.3367abcd 0.0767e 29.2f 

Land A 66.67abc 261.7abcd 0.2547bcd 0.1767h 0.1533abcd 51.9bcde 

Land B 68.33ab 224.7cd 0.3033abc 0.21fgh 0.14abcde 45.8bcdef 

SC701 62.33bcd 259.3abcd 0.2416bcd 0.3967a 0.15abcd 49.2bcdef P
12

 

25
 F

C
 

SR52 60.67bcd 250.7abcd 0.243bcd 0.3467abc 0.14abcde 47.3bcdef 

Land A 53.33de 234.3bcd 0.2288bcd 0.2gh 0.1267bcde 43.3cdef 

Land B 62.67bcd 198.7d 0.3204ab 0.2567cdefgh 0.12bcde 33.4ef 

SC701 57.33bcd 294.7a 0.1942d 0.27bcdefgh 0.1467abcde 61abc P
24

 

25
 F

C
 

SR52 58.33bcd 206.3d 0.289abcd 0.36ab 0.0833de 34.6ef 

Land A 58.67bcd 215.7d 0.2721bcd 0.21fgh 0.1333abcde 44.3cdef 

Land B 63bcd 226.7cd 0.2783bcd 0.1967gh 0.1267bcde 37.5def 

SC701 62.67bcd 284.7ab 0.2243bcd 0.29bcdefgh 0.1367abcde 59.5abc 

U
np

rim
ed

 

75
 F

C
 

SR52 53.33cde 217cd 0.2459bcd 0.3267abcd 0.09de 41.7cdef 

Land A 65abcd 296.7a 0.2233bcd 0.2233efgh 0.18ab 59.9abc 

Land B 57.67bcd 199d 0.2941abcd 0.2467defgh 0.1133bcde 36.1def 

SC701 63.33bcd 250.7abcd 0.2555bcd 0.3033abcdef 0.1633abc 61.3abc P
12

 

75
 F

C
 

SR52 60.33bcd 300a 0.203cd 0.2933bcdefg 0.2033a 76.8a 

Land A 65.33bcd 249.7abcd 0.2834bcd 0.2833bcdefg 0.1533abcd 53.4bcde 

Land B 61.67bcd 258.7abcd 0.239bcd 0.23efgh 0.18ab 55.8bcd 

SC701 67abc 300.7a 0.2235bcd 0.2767bcdefg 0.1733ab 66.3ab P
24

 

75
 F

C
 

SR52 75.67a 273.3abc 0.2773bcd 0.2667bcdefgh 0.1733ab 65.4ab 

LSD(P=0.05)Var*Priming*FC 12.159 57.24 0.10798 0.09336 0.07179 20.68 

*Note: FC= Field Capacity; DM= Dry Mass. Numbers with different letters in the same column 
differ significantly at LSD (P=0.05)  
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Discussion  

Priming of seed has been effectively used to enhance the vigour and emergence of 

seedlings under both optimal (Demir & van de Venter, 1999; Farooq et al., 2006) and 

sub-optimal conditions (Wahid & Shabbir, 2005; Wahid et al., 2007). The objective of 

this study was to determine whether or not hydropriming can be used to improve 

vigour, with respect to germination attributes and seedling emergence under water 

stress, in landraces and thus improve crop establishment. 

 

Priming had a negative impact on final germination; final germination declined by an 

average 8% in hybrids and 4% in landraces for both priming periods. Rapid uptake of 

water during priming may have caused imbibition injury, resulting in failure of seeds 

to germinate. There are similar instances in literature reporting imbibitional injury in 

seeds, including maize (Pollock, 1969; Cal & Obendorf, 1972; Harrison, 1973; Powell 

& Mathews, 1978; reviewed by Taylor et al., 1992; Bedi & Basra, 1993). Although 

most of these reports show imbibitional damage at low temperatures, imbibitional 

damage at higher temperatures, although less severe, can also reduce germination 

(Finch-Savage et al., 2004).  

 

Priming significantly (P<0.001) improved germination speed and reduced MGT. 

Primed seeds germinated faster and more uniformly than unprimed seeds. Although 

priming reduced root lengths in landraces, it significantly (P<0.001) increased shoot 

lengths, fresh mass and dry mass; suggesting that a greater part of seed reserves 

were channelled to the shoots which is crucial for early establishment and 

photosynthesis. Priming improved seed vigour overall, with landraces performing well 
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when seeds were primed for 12 hours. These results are similar to others reported in 

literature (Harris et al., 1999) 

  

Successful crop establishment determines plant density, uniformity and management 

options (Cheng & Bradford, 1999) and depends not only on the rapid and uniform 

germination of the seed, but also on the capacity of the seed to emerge under water 

stress (Fischer & Turner, 1978). Alleviating the deleterious effect of water stress at 

this stage can increase chances for attaining a good crop (Ashraf & Rauf, 2001). 

 

Priming increased seedling emergence under both optimum and water stress 

conditions. Priming for 12 hours improved emergence of the landraces at 75% FC 

while priming for 24 hours resulted in better emergence for all varieties at 25% FC. 

Priming for 24 hours resulted in reduced MET under water stress. Priming also 

resulted in increased root and shoot lengths as well as increased leaf area in 

landraces. Therefore, priming resulted in improved crop establishment and healthier 

seedlings. Similar results have been reported in numerous other crops. Ghassemi-

Golezani et al. (2008) reported that hydro-priming improved seedling emergence rate 

and percent in lentil; Harris et al. (1999) reported enhanced seedling establishment 

and early vigour of upland rice, maize and chickpea after hydro-priming; Kibite and 

Harker (1991) reported that seed hydration improved uniformity of seedling 

emergence of wheat, barley and oat seeds. 
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Conclusion  

Good crop establishment is a prerequisite for successful crop production especially 

under water stress conditions. Priming had variable effects on germination and 

emergence of landraces. Seeds responded better to priming for 12 hours when 

conditions were optimum while priming for 24 hours improved emergence, reduced 

MET and improved seedling characteristics under water stress. Hydro-priming can be 

used to improve germination speed, vigour and seedling emergence of landraces 

under water stress. 
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GENERAL DISCUSSION 

 
Maize landraces have been around since the introduction of maize into southern 

Africa in the 16th century. Landraces have, through the years, survived under some of 

the most adverse of growing conditions. Landraces are credited for being the 

progenitors of conventional modern day hybrids (Zeven, 1998). However, due to 

increasing drought, research had over the past focussed on developing high yielding, 

drought tolerant varieties. 

 

To date, landraces have received limited research attention and little is known on its 

water use and agronomic requirements. The overall aim of this thesis was to study 

the responses of a local maize landrace to water stress under controlled and field 

conditions. The responses of landraces were compared to two locally popular hybrids, 

SC701 and SR52. 

 

Despite its popularity, maize is generally not a drought tolerant crop. South Africa, 

with its erratic rainfall, is however, prone to water scarcity or periods of drought at 

anytime during the plant’s growth. According to Weltzien and Srivastava (1981), a 

level of sensitivity to water stress exists at all stages of plant growth. In maize it 

appears that there are several critical stages of sensitivity. Such sensitivity varies and 

has varying effects on the final yield of the crop. Figure 6.1 shows the holistic 

approach of the study and the processes by which the study sought to understand the 

responses of the landraces to water stress at various phenological stages and 

physiological responses. 
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Figure 6.1: Hypothetical (representing activities of the present study and potential 

future studies) model showing the physiological and morphological aspects of 

maize growth that are affected by water stress. *Note:? represents an area 

that requires further study. 

 
The first phenological stage occurs at germination and emergence. Edmeades and 

Bolanos (1997) described a drought tolerant crop at this stage as one which 

germinates and establishes under dry soil, has a high root:shoot ratio and can 

actively accumulate solutes in its cells. The first study (Chapter 2) showed that water 

stress at this stage had serious deleterious effects on plant population. Although the 

landrace showed a degree of stress tolerance at this stage compared to the hybrids, 

its emergence was still greatly undermined by the occurrence of water stress at this 

stage.  
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Results (Chapter 2) showed that while landraces had the same viability as hybrids, 

they lacked in certain vigour characteristics. This resulted in them germinating and 

emerging slower than hybrids under both non-stress and water stress conditions. 

According to Perry (1978), vigour is important for successful seedling emergence. 

The study gave birth to the need for improving vigour of the landraces. This led to 

hydro-priming (Chapter 5) as a low cost alternative to improving vigour characteristics 

under water stress conditions. 

 

The use of hydro-priming to improve germination, emergence and vigour in crop 

plants has been successfully used in many other crops; maize, upland rice and 

chickpea (Harris et al., 1999). Hydro-priming landraces for different periods of time 

resulted in varying effects on germination and vigour traits under water stress. It 

resulted in 40% faster germination and improved emergence as well as leaf area and 

other vigour traits under water stress. However, this technique still requires further 

study to evaluate if the initial positive effects observed on the seedling stage translate 

into improved crop yield under field conditions. 

 

Recently, there has been evidence to support a link between certain biochemical 

characteristics and vigour (Randhir & Shetty, 2003). Traditional agronomic methods 

of seed vigour measurement have included germination percentage, shoot and root 

length, shoot and root mass. This study (Fig 6.1) explored the accumulation of 

antioxidants, specifically catalase, and secondary metabolites, specifically proline, in 

response to water stress (Chapter 2). Results showed that there exists evidence of 

both catalase and proline accumulation in leaves of landrace maize seedlings 
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exposed to water stress. Although there is debate on the exact role of proline, it is 

believed to be involved in osmoregulation. Accumulation of proline at the germination 

and emergence stage is in line with Bolanos and Edmeades’ (1997) description of a 

drought tolerant crop. Expression of catalase at germination and emergence 

explained in some way in explaining the level of water stress tolerance exhibited by 

landraces. 

 

The second stage of sensitivity to water stress exists at the vegetative stage. In 

maize, this stage covers the period between emergence up to and including tasseling. 

Effects of water stress at this stage may include reduction in plant height, reduced 

leaf number and leaf area and ultimately a reduction in photosynthesis (Fig 6.1). 

Available information relating water stress during the vegetative stage to yield and 

yield components shows that maize is less sensitive to water stress at this stage than 

in the later pollination and grain filling stage (Wilson, 1968; Classen & Shaw, 1970; 

Musik & Dusek, 1980). As a result, most studies have focussed on water stress 

occurring a few days or weeks before, during or after pollination (Shaw, 1974; Fray, 

1982; Coffman, 1998; Lauer, 2003). However, the attainment of maximum leaf area 

and plant height during the vegetative stage are essential if the plant is going to 

maximise on its photosynthetic capacity and produce enough assimilate for grain 

filling. 

 

In a controlled environment study (Chapter 3), water stress was imposed throughout 

the plants’ life cycle, from emergence to maturity. Results showed that water stress 

had no effect on leaf numbers. A decrease in plant height was observed under water 
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stress, albeit not significant. Furthermore, photosynthesis, as measured by 

chlorophyll fluorescence was not affected by water stress; landraces increased 

photosynthesis under water stress. However, yield components were severely 

affected by water stress; Landrace A was barren under water stress. This study 

showed that the effects of water stress were more pronounced on the yield 

components than during the vegetative stage. These results confirmed similar reports 

in the literature stating that the vegetative stage is less sensitive to water stress and 

that photosynthesis in C4 plants is generally desiccation tolerant, up to a certain level 

(Dhillon et al., 1995; Lal & Edwards, 1996; Blum, 1997; Young & Long, 2000). 

Heinigre (2000) stated that dry weather that starts early and covers several growth 

periods will have a compounding effect with severe reductions in maize yields. 

However, these results required further verification under field conditions as 

controlled experiments are not always reflective of field conditions with numerous 

variable factors involved. 

 

The effect of planting dates and soil water content on maize yield and yield 

components under field conditions were studied (Chapter 4). The aim was to not only 

explore the performance of the landrace under field conditions but moreover to 

quantify the effects of water stress occurring at different stages of growth on yield 

components. Of interest was the third sensitive stage of maize, the reproductive 

stage, which has been described as being the most sensitive to water stress 

(Doorenbos & Kassam, 1979). Edmeades and Bolanos (1997) described a drought 

tolerant plant at this stage as being characterised by rapid ear growth at flowering, 
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relatively short in stature, prolific under well-watered conditions but single-eared and 

not barren under water stress.  

 

Early planting produced plants that were shorter and with fewer leaves than in 

subsequent plantings. This was the result of a combination of low soil water content 

and low temperatures occurring during the vegetative stage. Maximum plant height 

and leaf number were observed in the optimum and late plantings when temperatures 

and soil water content had increased. 

 

Landraces improved, with respect to yield and yield components, in the optimum and 

late plantings, despite attaining its highest biomass accumulation (100 GM) in the 

early planting. This was possibly due to a longer growing period and favourable 

conditions around the sensitive period of flowering to maturity. Landraces achieved 

maximum yield in the late planting, despite the reproductive stages coinciding with a 

decline in soil water content and temperature. Unfortunately, all three plantings 

managed to flower when conditions of soil water content were favourable. As such we 

were unable to quantify the effect of water stress occurring during the reproductive 

stages under field conditions. Plants avoided such a scenario by either delaying 

tasseling (early planting) or tasseling early (optimum and late planting). This may be a 

mechanism of drought avoidance under field conditions. 
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CONCLUSIONS 

Maize landraces still remain an important genetic resource. Landraces emerged 

slower, were shorter and with fewer leaves, and ultimately yielded less than the 

hybrids. However, landraces demonstrated a degree of water stress tolerance at the 

establishment stage, and managed to out-emerge the hybrids under field conditions. 

There was evidence of catalase expression and proline accumulation at the 

germination and emergence stage. Under both controlled and field conditions, 

landraces performed in most instances similar to hybrids during the vegetative stage. 

Landraces were able to tolerate drought during the vegetative stage and were able to 

increase photosynthesis under water stress. Water stress severely affected yield of 

landraces under controlled conditions, and to a lesser extent under field conditions. In 

both scenarios, landraces yielded considerably less than hybrids. However, yield of 

landraces was greater than normally attained for dryland maize (1.5t/ha). Superior 

yields of hybrids may be a result of superior genetic makeup. Landraces were shown 

to be very prolific, although there was no evidence for yield compensation. Under field 

conditions, landraces showed a tendency to respond better to optimum and late 

planting dates than early planting.  

 

References 

(See final reference section, pages 111-142) 
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RECOMMENDATIONS 

The following recommendations may be made, based on observations made during 

the study; 

• Hydro-priming seeds for varying periods of time may be used as a low cost 

technology to enhance emergence and vigour of landraces under both 

optimum and water stress conditions. However, there is need for further 

research to see whether these initial benefits contribute to higher yields under 

water stress. 

• Under field conditions, water stress hardly acts alone but in combination with 

temperature. Therefore, it is imperative to study the effects of both water stress 

and temperature on emergence, growth and yield of landraces. 

• Plants were shown to be less sensitive to water stress at the vegetative stage. 

Thus, a separate study to observe the effects of water stress occurring at the 

reproductive stage would add to the knowledge of landraces. 

• Lastly, there is need for further research under field conditions. Data collected 

in this study and future studies may be of use to crop modellers. Crop 

modelling is an important research and policy making tool. Such a future study 

would be useful as a tool for policy formulation and identification of future 

research areas on landraces.  
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APPENDICES 

Appendix 1: List of ANOVAs for Early Establishment Trial 
 
Variate: %_Germ 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replicate stratum 3  125.00  41.67  1.57   
  
Replicate.*Units* stratum 
Genotype 3  4107.86  1369.29  51.56 <.001 
Day 6  132185.71  22030.95  829.62 <.001 
Variety*Day 18  14477.14  804.29  30.29 <.001 
Residual 81  2151.00  26.56     
  
Total 111  153046.71       
  
  
Variate: Root length (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Genotype 3  9328.3  3109.4  3.27  0.032 
Residual 36  34232.5  950.9     
Total 39  43560.8       
  
 
Variate: Shoot length (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Genotype 3  6874.5  2291.5  6.70  0.001 
Residual 36  12310.6  342.0     
Total 39  19185.1       
  
 
Variate: root:shoot 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Genotype 3  5.3092  1.7697  5.48  0.003 
Residual 36  11.6349  0.3232     
Total 39  16.9440       
  
 
Variate: Dry mass (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Genotype 3  0.052167  0.017389  4.37  0.010 
Residual 36  0.143210  0.003978     
Total 39  0.195378       
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Variate: EC 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Cell stratum 99  19751278.  199508.  1.01   
  
Cell.*Units* stratum 
Genotype 3  5743874.  1914625.  9.73 <.001 
Residual 297  58456850.  196824.     
Total    399  83952002.       
  
 
Variate: GVI 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replicate stratum 3  22.608  7.536  3.37   
  
Replicate.*Units* stratum 
Genotype 3  1784.103  594.701  265.62 <.001 
Day 6  12453.277  2075.546  927.04 <.001 
Variety*Day 18  306.235  17.013  7.60 <.001 
Residual 81  181.350  2.239     
Total        111     14747.573       
  
 
Variate: MGT(days) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 3  0.007500  0.002500  0.47   
  
Replication.*Units* stratum 
Genotype 3  0.802500  0.267500  50.68 <.001 
Residual 9  0.047500  0.005278     
Total         15     0.857500       
  
  
Variate: % Emerged 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  8.33  4.17  0.12   
  
Replication.*Units* stratum 
F.Capacity 1  30459.38  30459.38  867.32 <.001 
Genotype 3  386.46  128.82  3.67  0.039 
F. Capacity*Genotype 3  353.12  117.71  3.35  0.050 
Residual 14  491.67  35.12      
Total 23  31698.96       
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 Variate: MET(days) 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    2.2243  1.1122  7.04   
  
Rep.*Units* stratum 
Genotype 3    3.4105  1.1368  7.20  0.015 
F.Capacity 1    63.1370  63.1370  399.81 <.001 
Genotype*F.Capacity 3    1.4606  0.4869  3.08  0.099 
Residual 7 (7)  1.1054  0.1579      
Total 16 (7)  46.4065       
  
  
Variate: Root length (mm) 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    1349.46  674.73  9.34   
  
Rep.*Units* stratum 
Genotype 3    575.91  191.97  2.66  0.106 
F.Capacity 1    369.33  369.33  5.11  0.047 
Genotype*F.Capacity 3    855.23  285.08  3.95  0.043 
Residual 10 (4)  722.58  72.26      
Total 19 (4)  2929.80       
  
  
Variate: Shoot length (mm) 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    1178.9  589.5  0.62   
  
Rep.*Units* stratum 
Genotype 3    3163.8  1054.6  1.11  0.390 
F.Capacity 1    35468.3  35468.3  37.36 <.001 
Genotype*F.Capacity 3    11002.1  3667.4  3.86  0.045 
Residual 10 (4)  9494.1  949.4      
Total 19 (4)  56781.0       
  
  
Variate: root:shoot 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    0.076380  0.038190  4.86   
  
Rep.*Units* stratum 
Genotype 3    0.086706  0.028902  3.68  0.051 
F.Capacity 1    0.137993  0.137993  17.55  0.002 
Genotype*F.Capacity 3    0.103994  0.034665  4.41  0.032 
Residual 10 (4)  0.078608  0.007861      
Total 19 (4)  0.350470       
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Variate: Leaf area (cm2) 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    655.68  327.84  4.40   
  
Rep.*Units* stratum 
Genotype 3    56.67  18.89  0.25  0.857 
F.Capacity 1    3090.88  3090.88  41.44 <.001 
Genotype*F.Capacity 3    1085.90  361.97  4.85  0.025 
Residual 10 (4)  745.92  74.59      
Total 19 (4)  5493.30       
  
  
Variate: Plant height (cm) 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    625.24  312.62  3.35   
  
Rep.*Units* stratum 
Genotype 3    956.67  318.89  3.41  0.082 
F.Capacity 1    32273.14  32273.14  345.58 <.001 
Genotype*F.Capacity 3    3244.43  1081.48  11.58  0.004 
Residual 7 (7)  653.73  93.39      
Total 16 (7)  24208.94       
  
  
Variate: Leaf no. 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    0.6404  0.3202  1.40   
  
Rep.*Units* stratum 
Genotype 3    1.0222  0.3407  1.49  0.298 
F.Capacity 1    23.9963  23.9963  104.98 <.001 
Genotype*F.Capacity 3    2.5129  0.8376  3.66  0.071 
Residual 7 (7)  1.6000  0.2286      
Total 16 (7)  18.4706       
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Appendix 2: ANOVA for Proline Study 
 
Variate: Proline Concentration (µg/gDW) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.00250806  0.00125403  55.00   
  
Rep.*Units* stratum 
Variety 3  0.26501562  0.08833854  3874.24 <.001 
F.Capacity 1  3.22604267  3.22604267 1.415E+05 <.001 
Variety*F.Capacity 3  0.11387366  0.03795789  1664.71 <.001 
Residual 14  0.00031922  0.00002280      
Total         23  3.60775922 
 
 

Appendix 3: List of ANOVAs for Controlled Experiment Study 
 
Variate: Daily Emergence (%) 
  
Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Replication stratum 2  3371.9  1686.0  5.41   
  
Replication.*Units* stratum 
F.Capacity 1  783.7  783.7  2.51  0.115 
Variety 3  7540.4  2513.5  8.06 <.001 
DAS 9  323116.4  35901.8  115.12 <.001 
F. Capacity*Variety 3  3981.5  1327.2  4.26  0.006 
F. Capacity*DAS 9  1674.0  186.0  0.60  0.799 
Variety*DAS 27  9101.2  337.1  1.08  0.369 
F. Capacity*Variety*DAS 27  4872.4  180.5  0.58  0.952 
Residual 158  49275.6  311.9      
Total 239  403716.9       
  
 
Variate: Final Emergence (%) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  1204.6  602.3  1.78   
  
Replication.*Units* stratum 
Variety 3  3156.3  1052.1  3.11  0.060 
F.Capacity 1  185.9  185.9  0.55  0.471 
Variety*F. Capacity 3  1670.0  556.7  1.65  0.224 
Residual 14  4733.9  338.1      
Total 23  10950.8       
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Variate: MET (days) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  0.08120  0.04060  0.49   
  
Replication.*Units* stratum 
Variety 3  0.26616  0.08872  1.06  0.396 
F.Capacity 1  0.00135  0.00135  0.02  0.901 
Variety*F. Capacity 3  0.05503  0.01834  0.22  0.881 
Residual 14  1.16868  0.08348      
Total 23  1.57243       
  
  
 
Variate: Plant Height (cm) 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    292.3  146.1  1.07   
  
Rep.*Units* stratum 
FC 1    31600.9  31600.9  231.43 <.001 
Variety 3    4571.9  1524.0  11.16 <.001 
Week 7    705885.5  100840.8  738.51 <.001 
FC*Variety 3    139.2  46.4  0.34  0.797 
FC*Week 7    23439.0  3348.4  24.52 <.001 
Variety*Week 21    5317.5  253.2  1.85  0.020 
FC*Variety*Week 21    1881.6  89.6  0.66  0.868 
Residual 125 (1)  17068.2  136.5      
Total 190 (1)  780236.7       
  
  
Variate: Leaf No. 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    6.5820  3.2910  7.00   
  
Rep.*Units* stratum 
FC 1    42.3513  42.3513  90.08 <.001 
Variety 3    5.5157  1.8386  3.91  0.010 
Week 7    2374.1314  339.1616  721.35 <.001 
FC*Variety 3    3.6678  1.2226  2.60  0.055 
FC*Week 7    32.7333  4.6762  9.95 <.001 
Variety*Week 21    5.3969  0.2570  0.55  0.945 
FC*Variety*Week 21    16.5860  0.7898  1.68  0.042 
Residual 125 (1)  58.7717  0.4702      
Total 190 (1)  2505.3717       
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Variate: Fv/Fm 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    0.0016209  0.0008105  2.14   
  
Rep.*Units* stratum 
Variety 3    0.0035392  0.0011797  3.12  0.031 
FC 1    0.0012359  0.0012359  3.26  0.075 
DAP 4    0.0051029  0.0012757  3.37  0.014 
Variety*FC 3    0.0001057  0.0000352  0.09  0.964 
Variety*DAP 12    0.0021571  0.0001798  0.47  0.923 
FC.DAP 4    0.0025598  0.0006399  1.69  0.161 
Variety*FC*DAP 12    0.0056386  0.0004699  1.24  0.273 
Residual 74 (4)  0.0280233  0.0003787      
Total 115 (4)  0.0492717       
 
  
Variate: Final Plant Height (cm) 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    527.6  263.8  0.68   
  
Rep.*Units* stratum 
FC 1    23188.2  23188.2  60.08 <.001 
Variety 3    3483.3  1161.1  3.01  0.069 
FC*Variety 3    551.2  183.7  0.48  0.704 
Residual 13 (1)  5017.1  385.9      
Total 22 (1)  32299.8       
  
 
Variate: Final Leaf No. 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    4.9184  2.4592  2.48   
  
Rep.*Units* stratum 
FC 1    0.0306  0.0306  0.03  0.863 
Variety 3    5.2823  1.7608  1.77  0.202 
FC*Variety 3    8.4252  2.8084  2.83  0.080 
Residual 13 (1)  12.9048  0.9927      
Total 22 (1)  29.7391       
  
 
Variate: Final Fv/Fm 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    0.0011918  0.0005959  1.66   
  
Rep.*Units* stratum 
FC 1    0.0018525  0.0018525  5.16  0.041 
Variety 3    0.0022213  0.0007404  2.06  0.155 
FC*Variety 3    0.0016430  0.0005477  1.53  0.255 
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Residual 13 (1)  0.0046663  0.0003589      
Total 22 (1)  0.0109406       
  
 
Variate: No. of Ears 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  0.3333  0.1667  0.37   
  
Replication.*Units* stratum 
F.Capacity 1  0.0417  0.0417  0.09  0.766 
Variety 3  7.1250  2.3750  5.25  0.012 
F. Capacity*Variety 3  3.1250  1.0417  2.30  0.122 
Residual 14  6.3333  0.4524      
Total 23  16.9583       
  
 
Variate: Ear length (cm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  52.56  26.28  1.16   
  
Replication.*Units* stratum 
F.Capacity 1  40.51  40.51  1.79  0.202 
Variety 3  264.46  88.15  3.90  0.032 
F. Capacity*Variety 3  1.38  0.46  0.02  0.996 
Residual 14  316.67  22.62      
Total 23  675.58       
  
 
Variate: Ear mass (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  5214.0  2607.0  3.73   
  
Replication.*Units* stratum 
F.Capacity 1  10796.7  10796.7  15.44  0.002 
Variety 3  9550.1  3183.4  4.55  0.020 
F. Capacity*Variety 3  8411.9  2804.0  4.01  0.030 
Residual 14  9790.1  699.3     
 Total 23  43762.8       
  
 
Variate: Kernel rows/ear 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  43.896  21.948  2.85   
  
Replication.*Units* stratum 
F.Capacity 1  110.510  110.510  14.33  0.002 
Variety 3  49.781  16.594  2.15  0.139 
F. Capacity*Variety 3  105.865  35.288  4.58  0.020 
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Residual 14  107.938  7.710      
Total 23  417.990       
  
 
Variate: Kernel number/ear 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  15343.  7672.  3.44   
  
Replication.*Units* stratum 
F.Capacity 1  27032.  27032.  12.12  0.004 
Variety 3  16703.  5568.  2.50  0.102 
F. Capacity*Variety 3  18679.  6226.  2.79  0.079 
Residual 14  31216.  2230.      
Total 23  108973.       
  
 
Variate: Grain mass (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Replication stratum 2  2358.1  1179.0  1.65   
  
Replication.*Units* stratum 
F.Capacity 1  10203.6  10203.6  14.29  0.002 
Variety 3  6431.2  2143.7  3.00  0.066 
F. Capacity*Variety 3  6666.2  2222.1  3.11  0.060 
Residual 14  9994.4  713.9      
Total 23  35653.4       
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Appendix 4: List of ANOVAS for field trials 
 
Variate: % Emergence 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  174.22  87.11  1.35   
  
Rep.*Units* stratum 
Planting Date 2  11446.22  5723.11  88.97 <.001 
Variety 3  1203.56  401.19  6.24  0.003 
Planting Date*Variety 6  767.11  127.85  1.99  0.111 
Residual 22  1415.11  64.32      
Total 35  15006.22       
  
 
Variate: Leaf number 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  2.0889  1.0445  1.83   
  
Rep.*Units* stratum 
Planting Date 2  270.0779  135.0390  235.97 <.001 
Variety 3  2.2855  0.7618  1.33  0.269 
DAS 3  306.3088  102.1029  178.42 <.001 
Planting Date*Variety 6  8.6844  1.4474  2.53  0.026 
Planting Date*DAS 6  12.8535  2.1423  3.74  0.002 
Variety*DAS 9  3.7575  0.4175  0.73  0.681 
Planting Date*Variety*DAS  
 18  5.1731  0.2874  0.50  0.951 
Residual 94  53.7938  0.5723      
Total 143  665.0234       
  
  
Variate: Plant Height (cm) 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  1557.6  778.8  7.61   
  
Rep.*Units* stratum 
Planting Date 2  84919.0  42459.5  415.14 <.001 
Variety 3  2636.3  878.8  8.59 <.001 
DAS 3  136825.3  45608.4  445.93 <.001 
Planting Date*Variety 6  2920.9  486.8  4.76 <.001 
Planting Date*DAS 6  22497.0  3749.5  36.66 <.001 
Variety*DAS 9  478.2  53.1  0.52  0.857 
Planting Date*Variety*DAS  
 18  881.8  49.0  0.48  0.961 
Residual 94  9614.1  102.3      
Total 143  262330.1       
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Variate: Tasseling (DAS) 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  2.722  1.361  0.19   
  
Rep.*Units* stratum 
Planting Date 2  9753.722  4876.861  668.02 <.001 
Variety 3  49.000  16.333  2.24  0.112 
Planting Date*Variety 6  24.500  4.083  0.56  0.758 
Residual 22  160.611  7.301      
Total 35  9990.556       
  
 
Variate: Ears/plant 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.3802  0.1901  0.81   
  
Rep.*Units* stratum 
Planting Date 2  4.9344  2.4672  10.53 <.001 
Variety 3  10.7115  3.5705  15.25 <.001 
Planting Date*Variety 6  6.0057  1.0010  4.27  0.005 
Residual 22  5.1523  0.2342      
Total         35        27.1842 
 
 
Variate: Ear length (cm) 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  24.562  12.281  3.49   
  
Rep.*Units* stratum 
Planting Date 2  18.696  9.348  2.66  0.093 
Variety 3  256.030  85.343  24.26 <.001 
Planting Date*Variety 6  23.045  3.841  1.09  0.398 
Residual 22  77.397  3.518      
Total 35  399.729       
  
  
Variate: Ear mass (g) 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  14161.  7080.  2.04   
  
Rep.*Units* stratum 
Planting Date 2  1469.  734.  0.21  0.811 
Variety 3  113289.  37763.  10.88 <.001 
Planting Date*Variety 6  19097.  3183.  0.92  0.501 
Residual 22  76352.  3471.      
Total 35  224367.       
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Variate: Kernel rows/ear 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  15.000  7.500  4.50   
  
Rep.*Units* stratum 
Planting Date 2  8.172  4.086  2.45  0.109 
Variety 3  16.951  5.650  3.39  0.036 
Planting Date*Variety 6  7.093  1.182  0.71  0.646 
Residual 22  36.665  1.667      
Total 35  83.882       
  
 
Variate: Kernel number/ear 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  55943.  27971.  5.69   
  
Rep.*Units* stratum 
Planting Date 2  66879.  33440.  6.80  0.005 
Variety 3  135186.  45062.  9.16 <.001 
Planting Date*Variety 6  26870.  4478.  0.91  0.506 
Residual 22  108208.  4919.      
Total 35  393086.       
  
 
Variate: Grain mass/ear (g) 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  9079.  4539.  2.71   
  
Rep.*Units* stratum 
Planting Date 2  3782.  1891.  1.13  0.341 
Variety 3  55069.  18356.  10.97 <.001 
Planting Date*Variety 6  6887.  1148.  0.69  0.663 
Residual 22  36810.  1673.      
Total 35  111626.       
  
 
Variate: 100 grain mass (g) 
 
 Source of variation       d.f.  s.s.  m.s. v.r. F pr. 
  
Rep stratum 2  59.36  29.68  0.96   
  
Rep.*Units* stratum 
Planting Date 2  484.48  242.24  7.82  0.003 
Variety 3  613.84  204.61  6.61  0.002 
Planting Date*Variety 6  349.08  58.18  1.88  0.130 
Residual 22  681.13  30.96     
Total 35  2187.89       
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 Variate: Yield (t/ha) 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  6.597  3.299  2.78   
  
Rep.*Units* stratum 
Planting Date 2  2.734  1.367  1.15  0.335 
Variety 3  38.389  12.796  10.77 <.001 
Planting Date*Variety 6  4.919  0.820  0.69  0.660 
Residual 22  26.143  1.188      
Total 35  78.782       
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Appendix 5: List of ANOVAs for Hydro-priming Experiment 
 
Variate: Daily Germination (%) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  235.81  117.90  4.01   
  
Rep.*Units* stratum 
Variety 3  2022.86  674.29  22.92 <.001 
Treatment 2  1104.38  552.19  18.77 <.001 
Day 6  157372.32  26228.72  891.44 <.001 
Variety*Treatment 6  4804.95  800.83  27.22 <.001 
Variety*Day 18  1370.03  76.11  2.59 <.001 
Treatment*Day 12  16273.40  1356.12  46.09 <.001 
Variety*Treatment*Day 36  4519.49  125.54  4.27 <.001 
Residual 166  4884.19  29.42      
Total 251  192587.43       
  
 
Variate: Final Germination (%) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  46.22  23.11  1.61   
  
Rep.*Units* stratum 
Variety 3  321.78  107.26  7.46  0.001 
Treatment 2  331.56  165.78  11.53 <.001 
Variety*Treatment 6  272.89  45.48  3.16  0.022 
Residual 22  316.44  14.38      
Total 35  1288.89       
  
  
Variate: GVI 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  22.97  11.48  1.14   
  
Rep.*Units* stratum 
Variety 3  200.38  66.79  6.64  0.002 
Treatment 2  704.60  352.30  35.02 <.001 
Variety*Treatment 6  422.38  70.40  7.00 <.001 
Residual 22  221.30  10.06      
Total 35  1571.62       
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Variate: MGT (days) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.001667  0.000833  0.16   
  
Rep.*Units* stratum 
Variety 3  0.021111  0.007037  1.39  0.273 
Treatment 2  0.851667  0.425833  83.90 <.001 
Variety*Treatment 6  0.203889  0.033981  6.69 <.001 
Residual 22  0.111667  0.005076      
Total 35  1.190000       
  
  
Variate: Root length (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 9  21262.  2362.  1.66   
  
Rep.*Units* stratum 
Variety 3  27815.  9272.  6.52 <.001 
Treatment 2  440.  220.  0.15  0.857 
Variety*Treatment 6  36935.  6156.  4.33 <.001 
Residual 99  140867.  1423.      
Total 119  227320.       
  
 
Variate: Shoot length (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 9  11503.7  1278.2  4.23   
  
Rep.*Units* stratum 
Variety 3  2223.6  741.2  2.45  0.068 
Treatment 2  12700.9  6350.4  21.02 <.001 
Variety*Treatment 6  28272.3  4712.0  15.60 <.001 
Residual 99  29906.7  302.1      
Total 119  84607.2       
  
  
Variate: Root:shoot 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 9  1.5458  0.1718  1.67   
  
Rep.*Units* stratum 
Variety 3  1.3624  0.4541  4.41  0.006 
Treatment 2  1.3217  0.6608  6.42  0.002 
Variety*Treatment 6  1.5408  0.2568  2.49  0.027 
Residual 99  10.1910  0.1029     
Total 119  15.9618       
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Variate: Fresh Weight (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 9  0.67907  0.07545  1.50   
  
Rep.*Units* stratum 
Variety 3  0.21715  0.07238  1.44  0.235 
Treatment 2  1.21752  0.60876  12.13 <.001 
Variety*Treatment 6  1.83075  0.30512  6.08 <.001 
Residual 99  4.96815  0.05018      
Total 119  8.91264       
  
  
Variate: Dry Mass (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 9  0.023430  0.002603  0.68   
  
Rep.*Units* stratum 
Variety 3  0.193853  0.064618  16.80 <.001 
Treatment 2  0.035082  0.017541  4.56  0.013 
Variety*Treatment 6  0.062652  0.010442  2.72  0.017 
Residual 99  0.380730  0.003846     
Total 119  0.695747       
  
  
Variate: Final Emergence (%) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  100.00  50.00  2.23   
  
Rep.*Units* stratum 
Variety 3  159.72  53.24  2.37  0.083 
Treatment 2  8.33  4.17  0.19  0.831 
FC 1  12.50  12.50  0.56  0.459 
Variety*Treatment 6  136.11  22.69  1.01  0.431 
Variety*F.Capacity 3  15.28  5.09  0.23  0.877 
Treatment*F.Capacity 2  108.33  54.17  2.41  0.101 
Variety*Treatment*F.Capacity 6  13.89  2.31  0.10  0.996 
Residual 46  1033.33  22.46      
Total 71  1587.50       
  
  
Variate: Daily Emergence (%) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  566.87  283.43  4.26   
  
Rep.*Units* stratum 
Variety 3  5315.38  1771.79  26.64 <.001 
Treatment 2  16193.65  8096.83  121.73 <.001 
FC 1  52433.43  52433.43  788.27 <.001 
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Day 13  1610782.64  123906.36  1862.77 <.001 
Variety*Treatment 6  3820.63  636.77  9.57 <.001 
Variety*F.Capacity 3  2955.85  985.28  14.81 <.001 
Treatment*F.Capacity 2  26753.17  13376.59  201.10 <.001 
Variety*Day 39  6619.35  169.73  2.55 <.001 
Treatment*Day 26  54273.02  2087.42  31.38 <.001 
F.Capacity*Day 13  73376.29  5644.33  84.86 <.001 
Variety*Treatment*F.Capacity 6  1042.06  173.68  2.61  0.017 
Variety*Treatment*Day 78  6090.48  78.08  1.17  0.156 
Variety*F.Capacity*Day 39  4084.42  104.73  1.57  0.016 
Treatment*F.Capacity*Day 26  40224.60  1547.10  23.26 <.001 
Variety*Treatment*F.Capacity*Day  
 78  4846.83  62.14  0.93  0.638 
Residual 670  44566.47  66.52      
Total 1007  1953945.14       
  
  
Variate: MET(days) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.06591  0.03296  0.48   
  
Rep.*Units* stratum 
Variety 3  0.64293  0.21431  3.15  0.034 
Treatment 2  4.83383  2.41691  35.56 <.001 
FC 1  14.56047  14.56047  214.24 <.001 
Variety*Treatment 6  0.68322  0.11387  1.68  0.149 
Variety*F.Capacity 3  0.48966  0.16322  2.40  0.080 
Treatment*F.Capacity 2  6.70665  3.35333  49.34 <.001 
Variety*Treatment*F.Capacity 6  0.43693  0.07282  1.07  0.393 
Residual 46  3.12634  0.06796      
Total 71  31.54594       
  
  
Variate: Plant Height (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  11781.3  5890.6  9.20   
  
Rep.*Units* stratum 
Variety 3  9363.1  3121.0  4.87  0.003 
Treatment 2  24983.6  12491.8  19.51 <.001 
FC 1  56680.6  56680.6  88.51 <.001 
Week 2  1153857.9  576929.0  900.94 <.001 
Variety*Treatment 6  9875.3  1645.9  2.57  0.022 
Variety*F.Capacity 3  7536.4  2512.1  3.92  0.010 
Treatment*F.Capacity 2  2348.2  1174.1  1.83  0.164 
Variety*Week 6  8011.1  1335.2  2.09  0.059 
Treatment*Week 4  28691.5  7172.9  11.20 <.001 
F.Capacity*Week 2  8517.5  4258.7  6.65  0.002 
Variety*Treatment*F.Capacity 6  8819.6  1469.9  2.30  0.038 
Variety*Treatment*Week 12  5145.6  428.8  0.67  0.778 
Variety*F.Capacity*Week 6  2419.6  403.3  0.63  0.706 
Treatment*F.Capacity*Week 4  2590.3  647.6  1.01  0.404 
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Variety*Treatment*F.Capacity*Week  
 12  5295.7  441.3  0.69  0.760 
Residual 142  90932.0  640.4      
Total 215  1436849.3       
  
  
Variate: Leaf No. 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  3.1204  1.5602  6.35   
  
Rep.*Units* stratum 
Variety 3  0.0926  0.0309  0.13  0.945 
Treatment 2  6.5093  3.2546  13.25 <.001 
FC 1  21.4074  21.4074  87.15 <.001 
Week 2  147.2870  73.6435  299.81 <.001 
Variety*Treatment 6  0.8241  0.1373  0.56  0.762 
Variety*F.Capacity 3  1.1481  0.3827  1.56  0.202 
Treatment*F.Capacity 2  2.6759  1.3380  5.45  0.005 
Variety*Week 6  0.4907  0.0818  0.33  0.919 
Treatment*Week 4  3.2685  0.8171  3.33  0.012 
F.Capacity*Week 2  0.1759  0.0880  0.36  0.700 
Variety*Treatment*F.Capacity 6  3.1019  0.5170  2.10  0.056 
Variety*Treatment*Week 12  1.5093  0.1258  0.51  0.904 
Variety*F.Capacity*Week 6  1.6019  0.2670  1.09  0.373 
Treatment*F.Capacity*Week 4  2.4907  0.6227  2.54  0.043 
Variety*Treatment*F.Capacity*Week  
 12  1.3981  0.1165  0.47  0.927 
Residual 142  34.8796  0.2456      
Total 215  231.9815       
  
  
Variate: Root length (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
   
Rep stratum 2  286.36  143.18  2.62   
  
Rep.*Units* stratum 
Variety 3  155.17  51.72  0.95  0.427 
Treatment 2  482.03  241.01  4.40  0.018 
FC 1  227.56  227.56  4.16  0.047 
Variety*Treatment 6  795.42  132.57  2.42  0.041 
Variety*F.Capacity 3  232.33  77.44  1.41  0.250 
Treatment*F.Capacity 2  465.03  232.51  4.25  0.020 
Variety*Treatment*F.Capacity 6  262.42  43.74  0.80  0.576 
Residual 46  2517.64  54.73      
Total 71  5423.94       
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Variate: Shoot length (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  4401.  2201.  1.81   
  
Rep.*Units* stratum 
Variety 3  20604.  6868.  5.66  0.002 
Treatment 2  27658.  13829.  11.40 <.001 
FC 1  18883.  18883.  15.57 <.001 
Variety*Treatment 6  18806.  3134.  2.58  0.031 
Variety*F.Capacity 3  2587.  862.  0.71  0.550 
Treatment*F.Capacity 2  3891.  1945.  1.60  0.212 
Variety*Treatment*F.Capacity 6  13234.  2206.  1.82  0.116 
Residual 46  55797.  1213.      
Total 71  165861.       
  
  
Variate: Root:Shoot 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.002603  0.001302  0.30   
  
Rep.*Units* stratum 
Variety 3  0.015817  0.005272  1.22  0.313 
Treatment 2  0.013752  0.006876  1.59  0.214 
FC 1  0.011557  0.011557  2.68  0.109 
Variety*Treatment 6  0.036572  0.006095  1.41  0.231 
Variety*F.Capacity 3  0.007333  0.002444  0.57  0.640 
Treatment*F.Capacity 2  0.009681  0.004840  1.12  0.335 
Variety*Treatment*F.Capacity 6  0.042652  0.007109  1.65  0.156 
Residual 46  0.198572  0.004317      
Total 71  0.338539       
  
  
Variate: Root Fresh Weight (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.08694  0.04347  0.77   
  
Rep.*Units* stratum 
Variety 3  1.02556  0.34185  6.03  0.001 
Treatment 2  0.30528  0.15264  2.69  0.078 
FC 1  0.37556  0.37556  6.63  0.013 
Variety*Treatment 6  0.84028  0.14005  2.47  0.037 
Variety*F.Capacity 3  0.08778  0.02926  0.52  0.673 
Treatment*F.Capacity 2  0.00361  0.00181  0.03  0.969 
Variety*Treatment*F.Capacity 6  0.15972  0.02662  0.47  0.827 
Residual 46  2.60639  0.05666      
Total 71  5.49111       
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Variate: Shoot Fresh Weight (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.05861  0.02931  0.32   
  
Rep.*Units* stratum 
Variety 3  0.84500  0.28167  3.06  0.037 
Treatment 2  3.31444  1.65722  18.00 <.001 
FC 1  0.98000  0.98000  10.65  0.002 
Variety*Treatment 6  0.73667  0.12278  1.33  0.262 
Variety*F.Capacity 3  0.39444  0.13148  1.43  0.247 
Treatment*F.Capacity 2  0.30333  0.15167  1.65  0.204 
Variety*Treatment*F.Capacity 6  0.44556  0.07426  0.81  0.570 
Residual 46  4.23472  0.09206      
Total 71  11.31278       
  
  
Variate: Root Dry Mass (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.025103  0.012551  3.89   
  
Rep.*Units* stratum 
Variety 3  0.141193  0.047064  14.59 <.001 
Treatment 2  0.000544  0.000272  0.08  0.919 
FC 1  0.005513  0.005513  1.71  0.198 
Variety*Treatment 6  0.029544  0.004924  1.53  0.191 
Variety*F.Capacity 3  0.015082  0.005027  1.56  0.212 
Treatment*F.Capacity 2  0.001433  0.000717  0.22  0.802 
Variety*Treatment*F.Capacity 6  0.032789  0.005465  1.69  0.144 
Residual 46  0.148431  0.003227      
Total 71  0.399632       
  
  
Variate: Shoot Dry Mass (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.000758  0.000379  0.20   
  
Rep.*Units* stratum 
Variety 3  0.004760  0.001587  0.83  0.483 
Treatment 2  0.022433  0.011217  5.88  0.005 
FC 1  0.014735  0.014735  7.72  0.008 
Variety*Treatment 6  0.014411  0.002402  1.26  0.295 
Variety*F.Capacity 3  0.004693  0.001564  0.82  0.490 
Treatment*F.Capacity 2  0.004478  0.002239  1.17  0.318 
Variety*Treatment*F.Capacity 6  0.007144  0.001191  0.62  0.710 
Residual 46  0.087775  0.001908      
Total 71  0.161188       
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Variate: Leaf area (cm2) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  44.5  22.2  0.14   
  
Rep.*Units* stratum 
Variety 3  1975.8  658.6  4.16  0.011 
Treatment 2  2579.7  1289.9  8.15 <.001 
FC 1  2978.4  2978.4  18.81 <.001 
Variety*Treatment 6  1240.4  206.7  1.31  0.274 
Variety*F.Capacity 3  956.4  318.8  2.01  0.125 
Treatment*F.Capacity 2  171.1  85.5  0.54  0.586 
Variety*Treatment*F.Capacity 6  1201.5  200.3  1.27  0.292 
Residual 46  7281.9  158.3      
Total 71  18429.7       
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Appendix 6: Field Trial Layouts 
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Appendix 7: Proline Standard Curve 
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