
Relieving the Cognitive Load of Constructing Molecular Biological
Ontology Based Queries by means of Visual Aids

by

Kieran O’Neill

BSc (University of Natal) 2003
BSc(Hons) (University of KwaZulu-Natal) 2004

A dissertation submitted in fulfilment of the

requirements for the degree of

Masters

in

Computer Science

in the

School of Computer Science

of the

UNIVERSITY OF KWAZULU-NATAL

Supervisor:
Professor Hugh Murrell

Co-Supervisors:
Mister Daniel Jacobson

Doctor Alexander Garcia-Castro

2007

Preface

Submitted in fulfilment of the academic requirements for the degree of Master of Science

(M.Sc.) in the School of Computer Science, University of KwaZulu-Natal, Pietermaritzburg

Campus.

This thesis represents original work by the author and has not been submitted in part or

whole to this or any other university.

Most of this work was carried out at the Central Node of the National Bionformatics Net-

work under the supervision of Alexander Garcia and Dan Jacobson.

Some of this work has been presented at bioinformatics conferences and appears in confer-

ence proceedings. This is summarised in Appendix I. Any use of the work of others has

been suitably referenced.

URLs to pages demonstrating the software developed are provided in the text. The software

has currently only been tested on the freely available Firefox web browser, and may not

function on other web browsers.

Kieran O’Neill (Candidate)

Professor Hugh Murrell (Supervisor)

1

Abstract

The domain of molecular biology is complex and vast. Bio-ontologies and information

visualisation have arisen in recent years as means to assist biologists in making sense of

this information. Ontologies can enable the construction of conceptual queries, but existing

systems to do this are too technical for most biologists. OntoDas, the software developed as

part of this thesis work, demonstrates how the application of techniques from information

visualisation and human computer interaction can result in software which enables biologists

to construct conceptual queries.

2

Acknowledgments

I would like to thank Alexander Garcia Castro, Anita Schwegmann, Hugh Murrell, Dan

Jacobson and Rafael Jiménez Doménech for their contributions towards finishing this thesis.

Alex, thank-you for sage guidance, advice and constructive criticism. I’ve learned a lot this

past year.

Anita, thank-you for being an incredibly helpful and accommodating domain expert, and

for providing biological context for OntoDas. I look forward to (hopefully) working with

you in the future.

Rafa, thank-you for your help with integrating Dasty, friendship and free Chinese food from

Panda’s.

Hugh and Dan, thank-you for handling the NBN-UKZN collaboration, providing support

and sorting out political hiccoughs.

This work was funded by the National Research Foundation in the form of a Prestigious

Award for Masters study. Additional funding and extensive logistical support was provided

by the National Bioinformatics Network. Thanks go out to both organisations.

i

Contents

List of Figures iv

List of Tables v

1 Introduction and Problem Statement 1
1.1 Biological information integration . 1
1.2 Problem statement . 2
1.3 Thesis outline . 2

2 Literature Review 4
2.1 The problem of semantic heterogeneity of biological information 4
2.2 Bio-ontologies . 6
2.3 Knowledge bases and inference . 8
2.4 Inferring functional relationships among genes 9
2.5 The need for cognitive support in biological information integration 12
2.6 Information visualisation . 13
2.7 DAS and Dasty2 . 19

2.7.1 Distributed Annotation System . 19
2.7.2 Dasty2: An example of cognitive support for biological information

integration . 19
2.8 Discussion . 19

3 Survey of the State of the Art 21
3.1 Introduction . 21
3.2 Methodologies for designing IV systems . 21

3.2.1 Introduction . 21
3.2.2 Participatory design for the biological domain 22

3.3 Ontology visualization . 23
3.4 Software for constructing ontology-based queries 24

3.4.1 Introduction . 24
3.4.2 Criteria used for comparison . 24
3.4.3 AmiGO . 25
3.4.4 MartView and BioMart: . 26
3.4.5 GViewer . 29

ii

3.4.6 Drug Ontology Project for Elsevier (DOPE) 31
3.4.7 Flamenco . 34
3.4.8 Trends in the comparison . 37
3.4.9 Conclusions . 39

4 Design 42
4.1 Biological scenarios . 43

4.1.1 Genes with potentially fatal knockout effects in knockout mice . . . 43
4.1.2 Finding blood coagulation related protease inhibitors 44
4.1.3 A relationship between the integrin-mediated signalling pathway and

phagocyte maturation . 45
4.2 The use case: construct query . 46

4.2.1 Construct query from gene product annotations 46
4.2.2 Construct query de novo . 48
4.2.3 Add term . 48
4.2.4 Substitute or remove term . 48
4.2.5 View results . 48

4.3 Natural language query representation . 49
4.4 Screens and views . 49

4.4.1 Dasty2 ontology terms view extension 49
4.4.2 The main OntoDas view . 52
4.4.3 Substitute/remove term panel . 52
4.4.4 Add term panel . 54
4.4.5 Results panel . 54

4.5 Conclusion . 56

5 Implementation 58
5.1 System architecture . 58

5.1.1 Ajax front end . 59
5.1.2 TurboGears as middleware . 60
5.1.3 Query execution – Python and MySQL 61

5.2 Final appearance of the user interface . 62
5.2.1 Viewing details of a gene product . 63
5.2.2 Substituting a term . 64
5.2.3 Adding a term . 66
5.2.4 The results view . 67

5.3 Performance and size . 68
5.3.1 Size of system . 68
5.3.2 Performance . 68

5.4 Conclusions . 69

6 Discussion 70
6.1 Comparison with existing tools . 70
6.2 Application of IV and HCI techniques . 73
6.3 Participatory design . 73

iii

6.4 Limitations of OntoDas . 74
6.4.1 Performance and scalability . 74
6.4.2 Unsupported cases . 75
6.4.3 Unimplemented features . 76

6.5 Conclusions . 76

7 Future Work 77
7.1 Improvements suggested by existing analysis 77
7.2 Evaluation of usability . 78
7.3 Application to broader contexts . 79

8 Conclusions 80

A Publications resulting from this work 81
A.1 Conference papers . 81
A.2 Conference posters . 81

Bibliography 82

iv

List of Figures

2.1 An example query . 10
2.2 An example of raw data: DAS XML . 16
2.3 Dasty: An example of cognitive support in action. 17
2.4 Dasty2: Improved cognitive support over Dasty. 18

3.1 Screen shot of AmiGO . 27
3.2 Screen shot of MartView . 30
3.3 Screen shot of GViewer . 32
3.4 Screen shot of the DOPE browser . 35
3.5 Screen shot of Flamenco . 38

4.1 State diagram of query construction . 47
4.2 Views and flow between them . 50
4.3 Dasty2 ontology view – paper prototype . 51
4.4 Main OntoDas view – paper prototype . 53
4.5 Substitute/remove term view – paper prototype 55
4.6 Add term panel – paper prototype . 56
4.7 Results panel – paper prototype . 57

5.1 System architecture . 60
5.2 Dasty2 ontology view – screen shot . 63
5.3 The modify term view – screen shot . 64
5.4 Popup definitions – screen shot . 65
5.5 The add term view – screen shot . 66
5.6 The results view – screen shot . 67

v

List of Tables

2.1 How visualisation can support cognition . 15

3.1 Comparison of tools facilitating Ontology-Based Queries 41

4.1 Summary of steps in the use case . 48

6.1 Comparison of tools with OntoDas included 72

1

Chapter 1

Introduction and Problem

Statement

1.1 Biological information integration

Biological information is highly nested, interconnected, distributed and also het-

erogeneous both semantically and syntactically. In recent years, formal bio-ontologies have

arisen and been used to annotate biological databases, in an effort to aid information inte-

gration across them. In parallel, research from the field of information visualisation, which

aims to provide cognitive support to users working with abstract information, has begun to

be applied to the biological domain. Both of these efforts aim to assist biologists in finding

information within their knowledge domain pertaining to their specific sphere of interest,

to guide them in choosing the directions of their research.

The Gene Ontology (GO), among others, has been widely used to annotate gene

products in terms of their functions. When a set of gene products shares GO annotations,

this suggests that they may be functionally related. Furthermore, finding gene products

having specific functions that are of interest to a biologist may help them in choosing

targets for further study. Although tools exist for executing the kinds of queries against

GO that could produce this information, they tend to have complicated, highly technical

user interfaces, often using custom query languages, which most biologists do not have the

time or inclination to learn. Masking the complexity of the process of constructing such

queries, so as to make them more available to biologists, remains an open challenge.

2

1.2 Problem statement

“Although the standard usage of ontologies within molecular biology provides a

basis for the construction of conceptual queries within the domain by the domain experts,

no visual tool exists to enable them to do this.”

Software currently exists to enable the construction of conceptual, ontology-based

queries within the molecular biology domain. However, this software incurs high cognitive

load when using it, making it inaccessible to most molecular biologists and other potential

users. A key factor when solving this problem is to provide a software tool with a user inter-

face which relieves the cognitive load incurred when constructing ontology-based molecular

biological queries.

1.3 Thesis outline

This thesis describes the development of OntoDas, a visual, web-based tool which

facilitates the construction of ontology-based molecular biological queries. The thesis com-

mences in chapter 2 with a broad review of the literature pertaining to information inte-

gration, particularly in the context of the biological domain. The kinds of queries which

can be facilitated by ontologies are presented with reference to the literature, as well as the

desirability of relieving cognitive load. The suitability of human computer interaction and

information visualisation techniques for relieving cognitive load is presented. This is fol-

lowed by chapter 3, containing a survey and comparison of specific techniques and software

tools related to the problem. In particular this chapter shows other methods of constructing

similar queries; this survey is used later as a contrast to OntoDas. The process of designing

OntoDas is described in chapter 4, which shows how specific scenarios were developed into

a generic use case, and thence into paper prototypes suggesting functionality and screen

layout for the final tool, all of which was carried out with the participation of a biologist.

Chapter 5 discusses the technical issues involved in implementing OntoDas, and illustrates

the final appearance of the system. Technical limitations and performance are also briefly

presented. Chapter 6 compares and contrasts OntoDas with the systems surveyed in chap-

ter 3 to show how it contributes new functionality. An argument from the literature is

presented that the use information visualisation and participatory design in OntoDas have

enabled it to solve the central problem of this thesis. The limitations of OntoDas and of

3

the process used to create it are discussed as a prelude to the proposal of future work.

The future work itself is presented in chapter 7. Further functionality which might improve

OntoDas’ ability to relieve cognitive load is discussed. Options for a more comprehensive

usability study and a participatory design approach are proposed. Finally, the applicability

of OntoDas to new domains and ontologies is discussed. The thesis ends with a restatement

of the conclusions drawn and the contributions made in chapter 8.

4

Chapter 2

Literature Review: Ontologies and

Information Visualisation for

Biological Information Integration

2.1 The problem of semantic heterogeneity of biological in-

formation

Within the biological domain, there has been a shift from hypothesis-driven re-

search, wherein data is collected purely to answer a scientific question, to data-driven re-

search, wherein large data sets are collected and made publicly available for analysis and

interpretation [90]. This has resulted in an explosion in the amount of molecular biological

data that is publicly available. This data is stored in at least 858 databases [35], using

differing formats, schemata and query software [109]. To enable biologists to fully leverage

this data, and the information it contains, the integration of data from disparate sources is

essential.

The syntactic, or ‘low level’ [90] integration of data is a problem that has been

addressed by systems such as Sequence Retrieval Service (SRS)[31], Entrez [88], Distributed

Annotation System (DAS) [27] and others which overcome heterogeneity in the structure

and representation of data [37]. In the case of sequence data, for instance, the sequence itself

is unambiguous and can be analysed and searched mathematically and computationally

once it has been extracted from the database or file in which it has been stored [13].

5

However, biological databases also store knowledge about the data they contain, in the

form of inferences made by researchers about the data. This knowledge is represented in a

wide variety of lexical forms [13] – researchers often have different systems of representation,

which may or may not be easy for other researchers to understand – raising a need for the

further integration of the knowledge and meaning assigned to biological data. This is usually

called semantic [37] or ‘higher level’ [90] data integration.

To understand this further, it is important to define what is meant by “knowledge”.

Davenport and Prusak suggest the following working definition:

Definition 1. “Knowledge is a mix of framed experience, values, contextual information,

expert insight and grounded intuition that provides an environment and framework for eval-

uating and incorporating new experiences and information. It originates and is applied in

the minds of knowers. In organisations, it often becomes embedded not only in documents

or repositories but also in organisational routines, processes, practices and norms.” [26]

This definition arises from the field of knowledge management (KM), which is a

subdivision of business management concerned with supporting knowledge transfer within

business organisations [99], but can be extended to broader knowledge-sharing communi-

ties: Lave and Wenger have named these “communities of practice” [64]. A community

of practice is a group which shares a sense of joint enterprise (a collective understanding

of the community’s goals), mutuality (social and formal interactions between community

members) and a shared repertoire of communal resources, such as language, techniques and

artifacts [106]. The “shared repertoire” referred to here closely resembles the definition

provided above for knowledge: Communities of practice are held together in part by their

common knowledge.

Biological researchers form a community of practice: They have a joint enterprise

in their research, formal and social interactions in the form of conferences, research col-

laborations and informal friendships, and a shared repertoire of knowledge, in the form

of research techniques, terminology, the scientific literature and more recently in the nu-

merous and diverse publicly available databases mentioned above. Within this community,

there are numerous sub-communities defined by specialised conferences, journals and fields

of research, due to the high level of complexity of biological systems. Consequently, the

repertoire of biological knowledge and information is enormous and highly semantically

complicated. Despite the divisions and specialisations of the field, the systems studied

6

by biological sub-communities interact in reality. As an illustration, the DNA studied by

molecular geneticists encodes and influences the concentrations of the proteins studied by

biochemists, and these in turn are responsible for the metabolic processes of individual

cells, which affect the overall physiology of the organism they are a part of (in the case

of multi-cellular organisms). A shift towards more integrative or “systems thinking” ap-

proaches to biological research has begun a drive towards semantic information integration

in the biological domain [90]. For this to occur, biological knowledge must be captured in a

standardised form which can be understood by both humans and computer software. This

in turn has led to a recent trend of creating and using bio-ontologies [13].

2.2 Bio-ontologies

Ontologies provide a means to facilitate semantic integration by providing a com-

mon lexicon for the representation of knowledge [13]; by acting as formalisations of knowl-

edge, ontologies support knowledge sharing and reuse [37]. Definitions of ontology differ

slightly among experts from different fields, even within bioinformatics [40]. The term orig-

inated in the field of philosophy, wherein an ontology is considered to be “a conception

of reality or simply reality itself” [13], or in the sense of formal ontology, “theories of the

different types of entities (objects, processes, relations) existing in a given domain” [94].

Information scientists on the other hand, tend to view ontologies as being terminologies

with associated axioms and definitions, structured so as to support software applications

[94], or in more detail, as “vocabularies of representational terms, classes, relations, func-

tions and object constants with agreed-upon definitions in the form of human-readable text

and machine-enforceable, declarative constraints on their well-formed use” [43]. Ontology

development in the biomedical domain, however, has tended to focus on capturing of bio-

logical concepts as rapidly as possible, at the expense of some of the formalisms considered

necessary by information scientists for them to be considered true ontologies [94] [13]. Con-

sequently, a spectrum of knowledge formalisms exist in the domain of biological research

with the purpose of helping researchers understand that domain, ranging from unstruc-

tured controlled vocabularies of terms (ie. lexica without defined relations between terms),

to controlled vocabularies with inheritance relations (but no other relations), to fully formal

ontologies in the information science sense [13]. The bio-ontologies relevant to the work of

this thesis are primarily controlled vocabularies of biological terms describing biological con-

7

cepts, with inheritance relationships between pairs of terms, forming either directed acyclic

graph (DAG) or tree structures. Although not strictly ontologies [13], they will be called

such for the purposes of this thesis.

Definition 2. Bio-ontologies are taxonomic representations of knowledge about biology,

which organise concepts within specialisation hierarchies that provide for inheritance of at-

tributes (after [90]).

Gene Ontology (GO) [6] is probably the best-known, most widely used and ac-

cepted of the bio-ontologies [40]. GO captures the functions of gene products in terms of

their involvement in biological processes, the cellular component they function in, and their

molecular function. GO has been used to annotate genes across multiple organisms, and thus

can aid in cross-organism semantic integration. In addition to GO, many model organism

genome projects, such as the mouse (Mus musculus)[11], fly (family Drosophilidae)[28] and

worm (Coenhorabdtis elegans) [89], have created their own domain ontologies for capturing

knowledge about their organism, such as anatomy ontologies for capturing the location of

gene expression, and phenotype ontologies for capturing the effects of gene knockout [95].

Other bio-ontologies include those intended to provide uniform means to describe exper-

imental results, such as the Microarray Gene Expression Data Ontology (MGED), which

captures terms describing microarray experiments [96]. An ontology with a slightly differ-

ent purpose is the TAMBIS (transparent access to multiple biological information sources)

ontology [41], which serves as a global schema over multiple heterogeneous resources, and

provided the semantic underpinnings of the TAMBIS query interface.

The importance to biological research and the acceptance of ontologies within the

domain of knowledge is clear: A total of 64 community-developed biomedical ontologies are

currently openly available in a common, openly defined syntax (the OBO file format) at the

Open Biomedical Ontologies (OBO) repository [78]. Moreover, in 2006, a National Institute

for Biomedical Ontology was established in the United States with the specific purpose of

creating and maintaining bio-ontologies, software tools to aid ontology creation and software

tools which leverage the power of ontologies [85]. Thus far in biology, ontologies have been

used primarily to deliver vocabularies for describing data. In the future, however, it is likely

that the increasing formality of bio-ontologies will result in greater analysis of data [13].

8

2.3 Knowledge bases and inference

Knowledge bases (KB) are collections of facts modelling some part of the world

[71], and provide a means of capturing the information repertoire for a domain. Bio-

ontologies are seen as being able to provide rich, hi-fidelity models of biology, and thereby a

means of forming knowledge bases [13], such as EcoCyc [57] and RiboWeb [5]. Knowledge

bases differ from conventional databases in that both abstract and concrete knowledge are

stored in a common schema, whereas in databases these are kept separate [72], such as in

relational databases, wherein the database schema, representing entities and their possible

relationships, is kept separate from the instances of those entities, the data records [23].

This aids the purpose of building KBs: to realise some of the problem-solving, or inference

capabilities possessed by domain experts (or community of practice members) [98].

To carry out this inference, knowledge bases may be created within knowledge base

management systems which provide a reasoner (a set of algorithms implementing inference

operations), such a RACER [44]. Reasoners require the knowledge they work with to be

formally represented. Common formalisms include description logics, such as the SHIQ DL

used by RACER [48] and the frames paradigm used by Protégé [77]. These formalisms are

class-based (concept-based), and thus provide a means of representing ontologies, with the

additional capability of enabling inference operations [47]. A Description Logic knowledge

base consists of a set of axioms asserting, for example, that one class is a subclass of

another, or that an individual is an instance of a particular class [47]. An example of an

inference operation is the deduction of these subsumption relations based on the sets of

instances of classes [44]: For example, if all instances of the class “human” also belong to

the class “animal”, then human is a subclass of animal [47]. More complex inference can

include reasoning with numbers: If a “seriously ill human” is defined to be a human with a

temperature greater than 40.5◦C and a “human with fever” is defined to be a human with a

temperature greater than 38.5◦C, then the reasoner may be able to deduce that “seriously

ill human” is a subclass of “human with fever” [45]. Description logics are discussed in more

detail, in the context of GO, in the next section.

9

2.4 Inferring functional relationships among genes

A potentially useful task in molecular biology is the discovery of functionally re-

lated genes or proteins. One means to discover such sets is by their common annotation

with ontology terms describing their function.

In this section, a series of inference operations, or queries, are described which can

aid in the discovery of genes or proteins sharing ontology annotations, and hence likely to

be functionally related.

The inheritance relations in the DAG ontologies considered in this thesis are tran-

sitive:

Definition 3. A relation R defined on a set S is transitive provided that:

∀x, y, z ∈ S, xRy
∧

yRz ⇒ xRz

[105]

For example, considering the GO terms “transcription factor binding”, “DNA

binding” and “nucleic acid binding”: transcription factor binding is a type of DNA binding

and DNA binding is a type of nucleic acid binding, thus transcription factor binding is a

type of nucleic acid binding.

10

Figure 2.1: An illustration of the structure and annotations of the ontologies for an example query.

11

One of the more useful queries over ontologies, taking advantage of this transitivity,

is the successor set query [101]. This query retrieves all terms which derive from a given

term (via transitive inheritance relations such as is a and part of). For example, a researcher

interested in proteins involved in nucleic acid binding would not just be interested in those

proteins annotated by the GO term “nucleic acid binding”, but also in those annotated

by the immediate children of that term, their children, their children’s children, and so

on [101]. Using the example shown in Figure 2.1, the successor set of the term response

to wounding would be {wound healing, blood coagulation, regulation of blood coagulation}.

The successor set can be formally defined:

Definition 4. Given an ontology defined as a digraph consisting of a set of terms T and a

set of edges representing the transitive inheritance relation I on T , the successor set St ⊆ T

for any given t ∈ T is defined:

st ∈ St ⇔ tIst

However, a researcher’s goal is less likely to be finding all the subfunctions of nucleic

acid binding, in other words terms in GO (although these may be of interest), but rather in

the proteins annotated by these. Proteins annotated with GO terms can be considered to

be instances of the functionality described by the terms. Thus, for instance, in Figure 2.1,

the set of instances of the term extracellular region part is {F10, Tfpi2, Serpina5, Agc1},

since the first three are annotated with extracellular space, Tfpi2 and Agc1 are annotated

with proteinaceous extracellular matrix, and these two terms are successors of extracellular

region part. Finding the instances of a term can be defined:

Definition 5. Given a successor set St for a given term t, and given a set of instances, C

of T , related by an instance relation R on C × T , the instance set Ct ⊆ C of t is defined:

c ∈ Ct ⇔ ∃st ∈ St; cRst

Also of great interest in ontologies are the relations between and among terms that

are not formally captured in the ontology, but are implicitly defined [12]. One way in which

these might be implied is if the related terms share a set of common instances.

For example, the GO molecular function term “protease inhibitor activity”, the GO

biological process term “blood coagulation” and the GO cellular location term “extracellular

space” share a set of genes which they annotate. This implies that some part of the process

12

of blood coagulation occurs in the extracellular space, and that this part involves protease

inhibition. Furthermore, the common set of gene instances would contain the gene or genes

responsible for this functional relationship. Finding commonly annotated sets of genes can

be defined:

Definition 6. Given a set of ontology terms {t1, t2, · · · }, and their respective instance sets,

Ct1, Ct2, · · · , the set of common instances, Cc for those terms is:

Ct1 ∩ Ct2 ∩ · · ·

Figure 2.1 illustrates all of these operations using a small subset of GO and a few

genes from the GO annotation database. The query is to find products related to the terms

blood coagulation, extracellular space and proteinase inhibitor activity. The gene products

returned are Tfpi2 (tissue factor protein 2) and Serpina5 (serine protease inhibitor, clade

A, member 5). Serpina5 is annotated with the term serine-type endopeptidase inhibitor

activity, which is a descendent term of the query term protease inhibitor activity, and

is included in the results due to the transitivity of the inheritance relations within the

ontology. If the former were substituted for the latter to make the query more specific,

only Serpina5 would be returned, as Tfpi2 is not annotated to the more specific term. In

a similar way, if the term extracellular space were replaced with proteinaceous extracellular

matrix, only Tfpi2 would be returned. Note that F10 (blood coagulation factor X) is not

included in the results, as it is only annotated with 2 out of the 3 query terms. However, if

protease inhibitor activity were removed, F10 would become part of the result set. Finally,

the orthogonality of the ontologies is illustrated: No relations exist between terms from

different ontologies. Implicit relations can, however, be inferred via the annotation of genes

with terms from orthogonal ontologies.

These kinds of queries can be executed using scripts, tools such as spreadsheets,

and in a few cases visual tools [92]. This can be an arduous and difficult process, however.

2.5 The need for cognitive support in biological information

integration

As this chapter has so far illustrated, the integration of biological information

presents a serious and difficult problem to the field of molecular biology. Much effort has

13

been made to tackle this problem, and systems and structures have been created to facilitate

the integration of heterogeneous biological information. However, many of these systems

have extremely verbose, difficult to use interfaces, often involving custom query languages or

requiring programming skills, and return highly complex and verbose result sets. Mentally

processing the amount of information required to construct such queries, and the amount

of information returned from their execution is usually more than a human being is capable

of, due to cognitive limitations such as the relatively small size of our working memory [20].

A need therefore exists for tools which provide cognitive support to users trying to make

effective use of biological information integration systems.

Cognitive support (sometimes called external or distributed cognition) is the aug-

mentation of human cognition using artifacts external to the human mind. A trivial example

is the use of a pencil and paper to aid a person in working out long multiplication [20]. Stor-

ing the numbers externally from the calculator’s mind (on the paper) relieves the cognitive

load on their short-term memory. The use of external artifacts to aid cognition is pervasive

in everyday life for most people [75]. In the case of biological information integration, users

are dealing primarily with abstract data (data which is non-numerical and has no obvious

spatial mapping, such as that encoded by ontologies.) The field of information visualisation

specifically aims to provide cognitive support when dealing with this kind of information.

2.6 Information visualisation

Information visualisation (IV) has been defined as “the use of computer-supported,

interactive, visual representations of abstract data to amplify cognition” [20]. This is accom-

plished by visually organising data, using its information structure, so as to take advantage

of the human brain’s capacity for rapid, subconscious visual processing. Details on some

ways in which information visualisation provides cognitive support are summarised in Table

2.1. The essence of all these techniques is that information visualisations aim to provide

cognitive support by transferring to the computer some of the cognitive load of dealing with

abstract data.

In the context of biological information integration, and specifically of finding

functional relationships among genes and proteins, users need to be able to discover and

select the terms used to execute the query, and to explain and understand the results. The

goal of IV is to facilitate the gaining of insight, specifically in these very tasks of discovery,

14

decision making and explanation [20].

15

Method Description

Increased Resources

Parallel processing Parallel processing by the visual system can increase the bandwidth of information extraction from the
data.

Offload work to the perceptual system With an appropriate visualisation, some tasks can be done using simple perceptual operations.

External memory Visualisations are external data representations that can reduce demands on human memory.

Increased storage and accessibility Visualisations can store large amounts of information in an easily accessible form.

Reduced Search

Grouping Visualisations can group related information for easy search and access.

High data density Visualisations can represent a large quantity of data in a small space.

Structure Imposing structure on data and tasks can reduce task complexity.

Enhanced Recognition

Recognition instead of recall Recognising information presented visually can be easer than recalling information.

Abstraction and aggregation Selective omission and aggregation of data can allow higher level patterns to be recognised.

Perceptual Monitoring Using pre-attentive visual characteristics allows monitoring of a large number of potential events.

Manipulable Medium Visualisations can allow interactive exploration through manipulation of parameter values.

Organisation Manipulating the structural organisation of data can allow different patterns to be recognised.

Table 2.1: Ways in which visualisation can support cognition. After [100], summarised from [20].

16

<?xml version=’1.0’ standalone=’no’ ?>

<!DOCTYPE DASGFF SYSTEM ’dasgff.dtd’ >

<DASGFF>

<GFF version="1.0" href="http://www.ebi.ac.uk/das-srv/uniprot/das/aristotle/features?segment=Q24488">

<SEGMENT id="Q24488" version="0ed4aef73895159f394610331d72b006" start="1" stop="685">

<FEATURE id="Q24488" label="Q24488">

<TYPE id="description" category="">description</TYPE>

<METHOD id="description">description</METHOD>

<START>0</START>

<END>0</END>

<SCORE>-</SCORE>

<ORIENTATION>0</ORIENTATION>

<PHASE>-</PHASE>

<NOTE>Tyrosine-protein kinase transmembrane receptor Ror precursor (EC 2.7.10.1) (dRor).</NOTE>

<LINK href="http://www.ebi.uniprot.org/uniprot-srv/uniProtView.do?proteinAc=Q24488">http://www.ebi.uniprot.

org/uniprot-srv/uniProtView.do?proteinAc=Q24488</LINK>

</FEATURE>

<FEATURE id="ROR1_DROME_SIGNAL_1_24" label="ROR1_DROME_SIGNAL_1_24">

<TYPE id="SIGNAL" category="Molecule Processing">SIGNAL</TYPE>

<METHOD id="UniProt">UniProt</METHOD>

<START>1</START>

<END>24</END>

<SCORE>-</SCORE>

<ORIENTATION>0</ORIENTATION>

<PHASE>-</PHASE>

</FEATURE>

<FEATURE id="PRO_0000024462" label="ROR1_DROME_CHAIN_25_685">

<TYPE id="CHAIN" category="Molecule Processing">CHAIN</TYPE>

<METHOD id="UniProt">UniProt</METHOD>

<START>25</START>

<END>685</END>

<SCORE>-</SCORE>

<ORIENTATION>0</ORIENTATION>

<PHASE>-</PHASE>

<NOTE>Tyrosine-protein kinase transmembrane receptor Ror/FTId=PRO_0000024462</NOTE>

</FEATURE>

<FEATURE id="ROR1_DROME_TOPO_DOM_25_317" label="ROR1_DROME_TOPO_DOM_25_317">

<TYPE id="TOPO_DOM" category="Regions">TOPO_DOM</TYPE>

<METHOD id="UniProt">UniProt</METHOD>

<START>25</START>

<END>317</END>

<SCORE>-</SCORE>

<ORIENTATION>0</ORIENTATION>

<PHASE>-</PHASE>

<NOTE>Extracellular</NOTE>

</FEATURE>

Figure 2.2: A portion of the DAS XML representation of the annotations for protein with
UniProt ID Q24488, from the UniProt database. The file is a total of 621 lines long.

17

Figure 2.3: A screen shot of Dasty [55], a tool for visualising DAS output. This view is much easier for a user to handle than
raw XML.

18

Figure 2.4: A screen shot of Dasty2, the next generation of Dasty. Tasks such as sorting all annotations (from all servers) by
type are now supported, whereas in Dasty a user would have to compile this list themselves.

19

2.7 DAS and Dasty2

2.7.1 Distributed Annotation System

DAS (distributed annotation system) is a system to enable transparent access

to multiple repositories of annotations to biological sequences [27]. DAS uses an XML

(extensible markup language) representation to deliver data from heterogeneous sources in

a homogeneous way. This representation, although easy to parse for computers, is highly

verbose and difficult for humans to read, as illustrated in Figure 2.2. The file is much longer

than what is shown, and DAS queries usually result in several such files, creating data sets

far beyond human cognitive capacity to comprehend in their raw form.

2.7.2 Dasty2: An example of cognitive support for biological information

integration

To help biologists make use of this information effectively, clients such as Dasty

have been developed [55]. As shown in Figure 2.3, Dasty represents features as bars along a

common axis representing the whole sequence, with colours to distinguish different feature

types, and a separate view showing which part of the sequence a selected annotation corre-

sponds to. Dasty thus provides support by representing a large amount of information in a

small space, and by providing some grouping functionality to aid finding related features,

and is clearly an improvement over the raw XML view.

However, Dasty presents some issues: For example, the annotations are always

grouped by server. While it is possible to group annotations by type, this can only be done

within each server grouping. If a user wants to find all features of a given type, regardless

of server, they either have to remember the features of that type from each server as they

view them, or use some other external aid, such as a paper and pencil or text editor to

compile such a list. Dasty2 [54], the next generation of Dasty, includes this capability, thus

providing improved cognitive support over Dasty, as shown in Figure 2.4.

2.8 Discussion

In the biological research domain, syntactic and semantic information integration

are problems with existing solutions. Federated systems such as DAS and data warehouses

20

such as Ensembl and the NCBI database provide syntactically normalised access to infor-

mation from diverse sources [109]. Bio-ontologies and the tools which make use of them

help to overcome semantic discrepancies among diverse information sources, and to provide

easy access to biological knowledge. However, the biologist who is the user of these systems

has often been overlooked in their design and creation. The human-computer interface be-

tween the domain expert and the information integration system can be considered to be a

third facet to information integration. The creation of tools which provide biologists with

the cognitive support they need to make effective use of information integration systems

is a problem which has been poorly addressed in bioinformatics. The careful application

of insights and methodologies from the field of information visualisation, and its related

fields, could help to provide usable, supportive tools which enable biologists to effectively

integrate biological information.

21

Chapter 3

The State of the Art in Facilitating

Ontology-Based Query

Construction

3.1 Introduction

As argued in the previous chapter, the construction of ontology-based queries can

be facilitated by the use of information visualisation. A range of methodologies exist for

the design of human-computer interaction systems in general, with varying degrees of direct

and indirect applicability to information visualisation. These are surveyed and compared

in section 3.2. The following section, 3.3 briefly discusses existing methods for visualising

ontologies, and explains why these provide a poor basis for solving the problem tackled by

this thesis. Finally, section 3.4 provides an alternative source of insight into the problem in

the form of a survey of software tools which do enable the execution of queries of the kind

described in section 2.4.

3.2 Methodologies for designing IV systems

3.2.1 Introduction

To date, a comprehensive methodology specifically for designing IV systems has

not been proposed, although work has begun on components of such a methodology. In the

22

related fields of human-computer interaction (HCI) and software engineering (SE), however,

comprehensive methodologies exist:

Within HCI, the widely accepted User-Centred Design (UCD) paradigm [76] places

focus on involving users in the design of the system as much as possible. Methodolo-

gies within UCD include Nielsen’s usability engineering (UE) [73] and the Scandinavian-

originated participatory design (PD) [68], [15]. The primary difference between the two is

in the way users are involved: Within UE, users are viewed as a source for requirements

gathering and as test subjects for usability testing [1]. By contrast, PD methods tend to

involve users actively in the process of developing software. Neither are prescriptive, how-

ever, and there is room for crossover, such as the incorporation of PD as a first phase of

UE [79].

Within SE, the iterative and incremental development model is accepted as a

best practice [62]. This model emphasises a software life cycle of iterative releases, with

evolutionary advancement occurring between releases [63]. Examples of methodologies using

this model include the detailed but somewhat heavy-weight unified process (UP) [51] and

the lighter, more “agile” [22] extreme programming (XP) [8]. These methodologies have

a similar view of user involvement: Requirements are gathered from users in the form of

user stories (in XP), or use cases (in UP), which constitute specific stories of using the

system, and abstractions distilled from these stories, respectively [50]. The overall focus,

however, is on developing the software as a whole, and the usability of the interface is often

neglected [91]. This is illustrated in a recent development, the proposal of design patterns

(general repeatable solutions to a commonly occurring problem in software design [36]) for

information visualisation [2]: The patterns presented focus almost exclusively on designing

the software implementation underlying an information visualisation rather than on the

visualisation itself.

3.2.2 Participatory design for the biological domain

Given the complexity and uniqueness of the biological domain, discussed in 2.1, a

methodology which focuses on ensuring that software fits biologists’ way of working is likely

to be an advantageous choice for developing bioinformatics software. Of the methodologies

outlined above, only participatory design focuses specifically on ensuring that the software

developed fits the needs and work practices of the users [15]. This makes PD a good

23

potential candidate methodology for developing bioinformatics software.

PD has been used both in the context of designing information visualisation sys-

tems and in the context of bioinformatics. In IV, PD has been employed to develop a risk

management visualisation system at IBM [10]. Additionally, a study has been conducted in

which users engaged in PD exercises to design digital library web interfaces incorporating IV

techniques [112]. Within bioinformatics, PD has been used as the basis for “participatory

programming” tools to support biologists in carrying out basic programming tasks [66]. It

has also been successfully used to develop bio-ontologies [38].

3.3 Ontology visualization

A plethora of techniques exist for visualising ontologies, many of which have been

recently reviewed in [59]. These range from techniques such as focus and context [61] and

treemap [7] to exotic three dimensional “information landscapes” [32]. However, despite the

great efforts undertaken to create diversity in the suite of techniques, evaluation of their

suitability to specific tasks has been widely overlooked [59, 21]. Furthermore, very few of

the tools created specifically to visualise ontologies provide support for reasoning over the

ontologies [59], which is an essential requirement for the execution of the types of queries

detailed in section 2.4. Indeed, the information visualisation reviews tend to overlook visual

tools specifically aimed at assisting users when constructing ontology-based queries, such

as the Drug Ontology Project for Elsevier (DOPE) [34],[17] and Flamenco [111], neither of

which are mentioned in the otherwise comprehensive review by Katifori et al [59]. More

comprehensive evaluations of these techniques are in progress [3], but final results have yet

to be published. In some studies which have been undertaken, the “baseline” visualisation

technique for ontologies, a collapsible tree such as found in file explorers, has been shown

to outperform more sophisticated techniques for assisting users to find terms [81]. In that

specific study, “information scent” (the (imperfect) perception of the value, cost, or access

path of information sources obtained from proximal cues [80]) was shown to have a greater

effect on search times than the choice of visualisation. In conclusion, a review of existing

tools which enable the construction of ontology-based queries is likely to be more applicable

to the central problem of this thesis.

24

3.4 Software for constructing ontology-based queries

3.4.1 Introduction

As in the broader domain of ontology visualisation, within the context of bio-

ontologies the focus when developing tools for visualising ontologies has been on those

which facilitate the browsing of ontologies, such as AmiGO 1 and those which display gene

expression information, such as FatiGO [4] and GOMiner [113]. A few broader information

integration tools, such as BioMart [58] and its web interface, MartView [46] provide the

functionality for constructing ontology-based queries, although this is not their primary

focus. One tool, GViewer [92], enables the construction of ontology-based queries over the

information in the rat (Rattus norvegicus) genome database [103]. Outside of the biological

domain, visual tools specifically aimed at constructing ontology-based queries have been

created, including the Drug Ontology Project for Elsevier (DOPE) [34],[17] created by

Aduna software and Flamenco [111]. No tool exists specifically for visually facilitating the

construction of ontology based queries within molecular biology.

Five tools representative of the spectrum of tools facilitating the construction

of ontology-based queries have been chosen for comparison in this section: AmiGO, the

MartView interface to BioMart, GViewer, DOPE and Flamenco. AmiGO has been chosen

as a baseline tool, as it is the standard viewer for the Gene Ontology, and likely to be

familiar to most biologists interested in GO. BioMart and GViewer have been included in

the comparison because they enable the execution of ontology based queries specifically

within the domain of molecular biology, although they provide very little visual support

for this process. DOPE and Flamenco have been included because they provide visual

support for the query construction process, although the ontologies they have been used

for lie outside the domain of molecular biology. The relative strengths of these tools, when

discovered by comparison, can suggest features desirable in a tool for visually facilitating

the construction of ontology based queries within molecular biology.

3.4.2 Criteria used for comparison

1. Problem domains: This specifies the domains of knowledge to which the tool has

been applied. This description includes a brief description of the ontologies used to

1AmiGO – http://amigo.geneontology.org/

25

formalise the knowledge domain, as well as the objects they annotate.

2. Types of queries: This criterion specifies the types and natures of the queries the

tool enables the execution of, specifically the operators allowed, the operands that can

be used, and any partial restrictions on these.

3. Support for initial term finding: This criterion specifies whether and if so, how

the tool supports the user when finding terms to begin query construction.

4. Support for combining terms: This criterion specifies any techniques used to

facilitate the finding of valid combinations of terms.

5. Display of results: This criterion is used to describe how result sets are displayed,

including the links that are provided to other data sources.

6. User involvement in development: This criterion is used to assess the extent

to which domain experts (end users of the system) were involved in the design or

evaluation of the system. Where users were involved, the nature and extent of the

involvement has been specified.

7. Technologies: This criterion specifies which programming languages, software li-

braries and platforms the tool is based upon.

3.4.3 AmiGO

AmiGO is the official searching and browsing tool for the Gene Ontology database.

As such its primary focus is on finding individual terms and gene products, and it is not

intended to facilitate the construction of ontology-based queries. Regardless, it can be

used as an aid to their construction, if complete gene annotation sets for each term in a

query are retrieved and the query itself executed in a third-party application, such as a

spreadsheet. In this analysis, AmiGO is considered in conjunction with a spreadsheet as a

tool for facilitating ontology-based query construction. A screen shot of the AmiGO results

view is shown in figure 3.1.

1. Problem domains: AmiGO is applied to the domain of gene function, using the

Gene Ontology (approximately 25 000 terms). This includes all species’ genes in the

core GO database (approximately 2 000 000). It has also been applied to the Plant

26

Ontology [52], with approximately 1100 terms annotating approximately 15 000 gene

products. For the purpose of this review, only the GO application will be considered.

2. Types of queries: AmiGO facilitates the finding of individual terms, individual gene

products, and sets of gene products annotated with a given term and its descendants.

Additionally, these sets of gene products can be narrowed down by annotations type

and by species. Queries involving set operators are not enabled by the interface, but

can be carried out, somewhat laboriously, using a spreadsheet.

3. Support for initial term finding: AmiGO provides a basic, form-based interface

for finding individual terms, as well as a tree browser for navigating up and down the

polyarchy. The results page of the search shows hits for the search keywords, and

displays their definitions on demand.

4. Support for combining terms: AmiGO does not enable the execution of multiple-

term queries.

5. Display of results: AmiGO provides a tabular results view, with paging (showing

50 result per page). The symbol, name and species are provided for each result, as

well as the evidence code, source and reference for the annotation. Links are provided

to a BLAST search with the gene product sequence for some gene products. Links

are provided to view all the annotations for a single gene product, which can be used

to construct new queries.

6. User involvement in development: There is no evidence in the literature or

AmiGO documentation of user involvement of any sort in the development of AmiGO.

However, there is a suggestions form on the AmiGO site, and the interface is occa-

sionally discussed on the public Gene Ontology mailing list.

7. Technologies: AmiGO is web-based, written in the Perl programming language, and

makes use of a MySQL database as a back end.

3.4.4 MartView and BioMart:

BioMart , is described as “a generic data warehousing solution for fast and flexible

querying of large biological data sets” [58] or ”a simple, federated query system designed

27

Figure 3.1: Screen shot of AmiGO, showing the results view. The query can be narrowed
by species, evidence code and data source, but not by further ontology terms. Links to
other databases and further detail on specific gene products returned are made available.
(Image used under the terms of the Artistic License 3)

28

specifically for use with large datasets” [29]. It has been used by a wide range of genome

and other biological databases, most notably Ensembl, an automated genome annotation

database [49]. The query process involves three explicit steps: start, filter and output.

During the start step, a database is chosen. During the filter step, results can be restricted

to genes that have been mapped to a particular external id set. Among the external id sets

which can be queried are Gene Ontology terms. Since queries can be narrowed by specific

combinations of GO terms, the construction of ontology-based queries is possible using this

interface, although that is not its primary purpose. For the purposes of this analysis, the

“filter by GO terms” feature is focused on, in the context of the Ensembl implementation

of BioMart/MartView. A screen shot of MartView, showing this feature, is in figure 3.2

1. Problem domains: Although BioMart has been applied to a wide range of domains

for information integration, in terms of its use of ontologies it has only been applied

to Gene Ontology annotations of the information it integrates. This includes all of

the gene products in the Ensembl database, as well as several others.

2. Types of queries: BioMart enables the building of queries across multiple ontology

terms. However, the MartView interface restricts these to one term per ontology (of

the three ontologies within GO). The query can be narrowed by evidence code, but

only one evidence code may be used per ontology term. In the Ensembl case, only

one species may be chosen for querying. Interestingly, Ensembl allows users to query

for genes orthologous to those annotated, in addition to the genes themselves.

3. Support for initial term finding: All terms in MartView are entered into a form-

based interface. Only the GO accession number of the term is accepted. A button to

a browsing facility is provided next to the term input box, which pops up a window

containing the QuickGO 4, [19] interface, displaying the root term of the ontology.

This interface allows the ontology to be browsed and keyword searched, although the

keyword search interface is not immediately visible. However, once a term is found,

the user must manually copy and paste the accession number back into the MartView

interface.

4. Support for combining terms: Entering of multiple terms in MartView is car-

ried out simultaneously in a single step, and no support is provided for finding valid

4QuickGO – http://www.ebi.ac.uk/ego/

29

combinations of terms.

5. Display of results: By default, only the gene and transcript ID numbers are dis-

played in the results table. More information can be displayed by manually configur-

ing this view, however. MartView also provides functionality for exporting results to

formats compatible with third-party software, such as spreadsheets.

6. User involvement in development: There is no evidence in the literature or

documentation for MartView that users were involved in the development.

7. Technologies: MartView was created in the Perl programming language, is web-

based and makes use of the biomart-perl library. BioMart is used as a back end

system.

3.4.5 GViewer

GViewer [92], is a tool designed for and hosted by the rat genome database [103].

It was specifically designed to facilitate the construction of ontology-based queries, and

displays the locations of the resulting genes on a representation of the rat chromosomes. A

screen shot of the query interface for GViewer is shown in figure 3.3

1. Problem domains: GViewer is applied specifically to the domain of rat genomic

information. The information annotated includes genes producing gene products and

quantitative trait loci (QTLs), (regions of DNA that associated with a particular trait,

but possibly larger than the actual genes known to be associated with the trait.) Sev-

eral ontologies are queriable, including the Gene Ontology [6], Mammalian Phenotype

Ontology [95], a Disease Ontology adapted from the Medical Subject Headings (MeSH)

[67] and an in-house Pathway Ontology.

2. Types of queries: GViewer enables the execution of queries across up to three

ontology terms from six different ontologies (since GO contains three), using “OR”,

“AND” and “AND NOT” operators. Evidence codes cannot be used to narrow the

query, and the data set queriable covers only one species.

3. Facilitation of initial term finding: The query construction interface is a simple

form-based one, in which term names are entered. No support is provided to the user

30

Figure 3.2: Screen shot of MartView, showing how a filter can be specified to create an
ontology-based query. Only one term from each of the GO ontologies can be used, and only
one evidence code per term. The “browse” button pops up the QuickGO browser, but a
term, once found in that browser, has to be manually copied into the field. (Image used
under the terms of the Lesser GNU Public License 6)

31

in finding the first term: It is up to them to guess (or use third party tools to discover)

correct term names.

4. Facilitation of term combination finding: No support is provided for the finding

of valid combinations of terms. When an invalid combination is entered and the query

executed, a screen stating that no results were returned is displayed. This same screen

is displayed if no results were returned due to a mis-spelled or non-existent term being

entered.

5. Display of results: Results are displayed as a Scalable Vector Graphics (SVG)

image, requiring the download of a third-party plugin for users of Microsoft Internet

Explorer. For users of Mozilla Firefox and other browsers which provide built-in SVG

support, the results page simply refuses to display the SVG, due to a JavaScript check

which requires the presence of the plugin. In addition to the SVG graphic, a link is

provided to download the results as a proprietary-format Microsoft Excel spreadsheet

file. The results are not viewable as a table, and the only links to further information

are more detailed views of the chromosomes. Although these chromosome displays

claimed to contain links for each gene to further information within the RGD, they

were not working at the time of testing.

6. User involvement in development: There is no evidence to suggest that users were

involved, or that any form of usability engineering was carried out in the development

of GViewer. A general mailing list does exist for the whole database, but the only

mention of GViewer is the announcement that it was released. There is no evidence

of further community interaction or further development of the tool.

7. Technologies used: GViewer is web-based, written in the Java programming lan-

guage, and makes use of the Java Server Pages technology, as well as Scalable Vector

Graphics (SVG) to display results. A custom infrastructure written in the Oracle

PL/SQL language and running on an Oracle 9i database serve as the back end.

3.4.6 Drug Ontology Project for Elsevier (DOPE)

DOPE was created as a collaboration between Aduna Software, HCI and Semantic

Web researchers at the Vrije Universiteit Amsterdam, a medical informaticist at Erasmus

32

Figure 3.3: Screen shot of GViewer, showing the query construction interface. Term key-
words are entered into the fields, and the ontology can be specified. No option is given to
choose among terms matching the keywords, however, and no support is given for finding
keywords that will actually match terms. Up to three terms can be combined using the
operators “AND”, “OR” and “NOT”, but no support is given for finding valid combinations
of terms. (Image used with permission.)

33

University and several members of the academic publisher, Elsevier. The purpose of the

project was to develop a thesaurus based browser for accessing heterogeneous and dis-

tributed data, based on the RDF (Resource Description Framework) data model [17]. A

notable feature of DOPE is the emphasis on enabling exploration of result sets by the user,

to assist them in restructuring their query. This was enabled by the use of a custom visu-

alisation known as ClusterMap. A screen shot of the DOPE integrated results/query view

is shown in figure 3.4

1. Problem domains: DOPE was applied to a document repository consisting of the

full content of Elsevier’s Science Direct database, in addition to the previous ten year’s

worth of the Medline database (10 million entries in all). These were indexed against

EMTREE, a life sciences controlled vocabulary developed by Elsevier consisting of

around 50 000 terms.

2. Types of queries: In DOPE, a term is initially chosen to define the result set space,

then further querying is done within the documents defined by that term. Within that

space, AND queries consisting of an arbitrary number of terms can be constructed.

3. Facilitation of initial term finding: DOPE provides a form for the user to search

for the first term. A list of formal terms that can be related to this string is suggested.

(For example, the list of suggestions for the query “aspirin” contains the term “acetyl-

salicylic acid”, the chemical name corresponding to the brand name.) Functionality is

also provided allowing the user to navigate through the thesaurus in search of a term.

4. Facilitation of term combination finding: Once a term has been selected, a list of

the top 500 co-occurring terms is displayed, in a tree form according to the inheritance

structure of the thesaurus. Multiple terms can be selected, and all documents co-

occurring among any combination of the selected terms (and, implicitly, the initial

term) are shown. Although this facilitates the finding of combinations between the

initial term and those displayed in the list, the only help provided for finding the third

term is the display of combinations if the user serendipitously selects terms which are

further combinable.

5. Display of results: Results are displayed using the highly visual ClusterMap tool.

This shows the number of documents associated with each term selected, as well

34

as combinations of terms where terms are co-occurring, in a view similar to a Venn

diagram. A problem identified by user testing of this interface was that the complexity

increases rapidly after more than three terms are applied, making the visualisation

difficult to deal with [97].

6. User involvement in development: The creators of the EMTREE ontology at

Elsevier were involved in the development of DOPE. However, it does not appear that

actual end users were involved in the development. Regardless, a usability evaluation

was carried out with ten users after the system was developed, and the results included

in one of the publications [97]. Users indicated that they felt that the tool helped

greatly in exploring an unfamiliar information space, but that it was inadequate for

concrete and specific search tasks.

7. Technologies used: DOPE is written in the Java programming language and is

designed to run on the desktop with access to the Internet. The user interface makes

use of the ClusterMap library developed by Aduna software 7 The back end uses the

Sesame RDF storage and querying architecture [18], also developed by Aduna.

3.4.7 Flamenco

Flamenco (FLexible Access to MEtadata in NOvel COmbinations) is an interface

designed specifically for image searching using hierarchical metadata describing the images

[30]. The designers made extensive use of pre-existing studies of image retrieval tools, as

well as HCI methodologies. Additionally, the HCI technique of query previewing was made

use of [83]. A screen shot of Flamenco’s integrated results/query view is shown in figure

3.5.

1. Problem domains: Flamenco has been applied to three image databases, containing

architectural, fine arts and Nobel Prize winners image sets. The two larger databases

contained 35000 and 36000 images respectively, and were indexed using thesauri con-

taining around 4000 terms. The thesauri were automatically generated and were di-

vided into around 10 orthogonal categories, which the authors chose to call “facets”.

7Aduna ClusterMap – http://www.aduna-software.org/projects/display/CLUSTERMAP/Home

35

Figure 3.4: Screen shot of the DOPE browser, showing the results/query construction view.
In this case, the term “acetylsalicylic acid” has been selected as the first term, or “facet”.
Terms related to this term by co-annotation are provided as a list on the left, and relations
among the terms selected are displayed on the right. When more than three terms are
selected, the visualisation can become overly complex. (Image used with permission.)

36

2. Types of queries: Flamenco facilitates the construction of AND queries across

any number of terms which produce a result. However, the controlled vocabularies

used do not allow multiple inheritance, so only one term may be used per facet. No

additional factors are available to further constrain the query, and only the AND

operator is allowed. Raw keyword searching through the text annotating the image

can be combined with a term-based query.

3. Facilitation of initial term finding: Flamenco shows the terms at the top level

of each facet, as well providing a keyword-based search form. As additional aids, the

number of images associated with each term is displayed next to the term, and the

next level of terms down from the term can be previewed as a tool tip by hovering

the mouse pointer over them.

4. Facilitation of term combination finding: Once the first term has been selected,

results are displayed, and a revised view of the facets is generated, displaying only

those terms which are combinable with the existing query, in compliance with the

concept of query previews [83]. This eliminates zero-result queries, and provides

substantial support to the user when trying to find combinable terms.

5. Display of results: Results are displayed as page-able thumbnails, grouped by a

chosen facet. When grouped, the top level of terms within the chosen facet are used

to visually cluster the results. Each thumbnail provides a link to the complete record

for the image, including all of the terms used to annotate it and brief description text.

This interface can also be used to construct a new query, using a combination of the

terms used for the image being viewed.

6. User involvement in development: The initial step in designing Flamenco was

an ethnographic study of how architects search for and use images. This was followed

by a cycle of low-fidelity prototyping, informal usability testing and redesign. Finally,

two cycles of development and usability testing were carried out. Finally, a usability

study was conducted to compare Flamenco with a “baseline” image search interface,

which incorporated features from popular image search tools such as Google Image

Search. Flamenco came out favourably in this test [111].

7. Technologies used: Flamenco is web based and written primarily in the Python

programming language. The WebWare library is used within Python, and MySQL is

37

used as the back end. Full-text search is optional, requiring the Java-based Lucene

library.

3.4.8 Trends in the comparison

Table 3.1 summarises the individual evaluations. Certain trends emerged:

Most tools were web-based

With the exception of DOPE, all the tools were web-based. All the bioinformatics

specific tools were web-based. A possible reason for this is that most bioinformatics infor-

mation is available via the web [37] , so that a web browser enables users to rapidly access

information related to the results they obtain from the tool.

The bioinformatics tools reviewed showed little to no evidence of the use of

HCI methodologies

A notable difference between the bioinformatics-specific tools and DOPE and Fla-

menco lies in the use of HCI methodologies in their development. In the case of Flamenco,

a complete usability engineering process was worked through, right from ethnographic stud-

ies through to iterative design based on usability testing [111]. By contrast, there is little

mention of users being taken into consideration in the engineering of the bioinformatics

tools reviewed here, or, indeed, in the broader bioinformatics literature. Furthermore, there

is little to no mention of the use of pre-existing concepts from the literature in the design

of the bioinformatics interfaces, whereas both Flamenco and DOPE make extensive use of

pre-existing HCI, information visualisation and information retrieval theory as a conceptual

framework for their initial designs. Since HCI methods have been shown to be extremely

important to the usability of an interface [73], it is likely that their greater application

within bioinformatics would result in more usable software. The application of existing

theory from related fields would most likely be beneficial, too.

The bioinformatics tools tended not to support complex query construction or

results exploration

Where the bioinformatics tools provided the ability to construct complex queries,

they did not provide support to the user for finding valid combinations of terms. This

38

Figure 3.5: Screen shot of Flamenco, showing the Fine Arts application. In this view,
drawings in the collection which were produced in Austria have been selected, and grouped
by artist. The mouse cursor hovers over the term “Clothing” under the “objects” facet,
showing the subcategories of that term. Each image can be clicked on to bring up details
and all its annotations, which can be used to construct a new query. (Image used under
the terms of the BSD license 9.)

39

can lead to the finding of many zero-hit queries or queries producing large numbers of

results for users to have to browse [83]. Furthermore, in both MartView and GViewer, no

distinction is made between queries that return zero results due to an invalid term name and

those which return zero results due to a combination of terms which are simply unrelated.

By contrast, both Flamenco and DOPE provide support for finding combinations of terms,

although the visual techniques used in DOPE have been shown not to scale well. A problem

with the Flamenco interface, however, was that it used a relatively small dataset, and used

controlled vocabularies that only allowed single inheritance. The complete GO core dataset

indexed by AmiGO contains two orders of magnitude more entries and an ontology five

times larger, which includes multiple inheritance. It is uncertain whether the Flamenco

approach would work on such a data set. Regardless, both Flamenco and DOPE provide

substantially better cognitive support to users when constructing complex ontology-based

queries; it is likely that this resulted from the application of pre-existing theory and the use

of HCI methodologies involving users.

Form-based interfaces did not use real-time query expansion

Real-time query expansion (RTQE) is an interface mechanism whereby candidate

expansion terms are presented to the user as they enter a search query [107]. This has been

shown to improve the quality of initial queries, and does not obstruct the normal use of a

form based query interface [107]. Within the context of bio-ontologies, such an interface for

finding ontology terms has been implemented, in the form of the Ontology Lookup Service

(OLS) [24]. Regardless, none of the interfaces reviewed, within or without the biological

domain, implemented this functionality. It is likely that this would assist greatly in the

finding of initial terms in an ontology-based query interface.

3.4.9 Conclusions

Although the back end technology for executing complex ontology-based queries

within the biological domain does exist, there is yet to be an interface which provides sub-

stantial cognitive support to users when constructing such queries. Such interfaces have

been created outside of the biological domain, but these have had issues of scalability, and

their direct application to the domain may not be feasible. A new interface for constructing

ontology-based queries, with a design based on existing theory and refined by user involve-

40

ment, applied to the biological domain, would be a useful and novel addition to the suite

of bioinformatics software available to biologists.

41

Criterion AmiGO MartView GViewer DOPE Flamenco

1.Problem domains: Gene Ontology (25K
terms) to multi-species
gene DB (2M entries)

Gene Ontology (25K
terms), individual
species gene DBs (30K
entries each)

Gene Ontology (25K
terms), several others
(5K each); rat gene and
QTL data (9K entries)

EMTREE ontology
(50K terms), custom
literature DB (10M
entries)

image metadata the-
sauri (4K terms each);
image databases (35K
entries each)

2.Types of queries: single term only; nar-
rowing by evidence
code, species.

multiple terms, only
one term, evidence code
per ontology. Only one
species per query

AND, OR, NOT over
several ontologies; no
species / evidence code
narrowing

AND queries of any
number of terms; no
narrowing criteria

AND queries across
any number of terms;
only one term per
orthogonal ontology;
supplementation with
keyword search

3.Initial term finding: forms, tree navigation QuickGO browse,
search, but no tie-
in with MartView
interface

no support Form with intelligent
term suggestion; tree
navigation

keyword search, dy-
namic tree navigation

4.Combination finding: no support no support no support valid combinations with
first term shown, but
limited support for 3 or
more

all valid combinations
with current query dis-
played, also size of re-
sult set (query preview-
ing)

5.Display of results: paged table, links to de-
tail on each query, links
to external information.

simplistic but config-
urable to be richer;
spreadsheet export

highly visual SVG; no
table but proprietary
spreadsheet export

interactive, visual clus-
ter map; problems with
scalability

page-able table, links
to detail on each en-
try, ability to construct
new queries from anno-
tations of entry

6.User involvement: minimal, though possi-
bly via mailing list

no evidence of any no evidence of any usability evaluation
post-development

multiple cycles of test-
ing, re-development,
evaluated against a
baseline

7.Technologies: web-based: Perl,
MySQL

web-based: Perl,
BioMart

web-based: Java JSP
and Oracle 9i PL/SQL

Desktop-based: Java
/ Swing, ClusterMap,
Sesame RDF store

Web-based: Python
WebWare, MySQL,
Java / Lucene optional

Table 3.1: A comparison of five tools for facilitating the construction of ontology based queries, according to the criteria specified
earlier in the chapter.

42

Chapter 4

Design

A series of interviews were conducted with a domain expert in the field of molec-

ular immunology (henceforth the DE). The domain expert was chosen because she was a

molecular biologist with extensive wet lab research experience, but also prior experience in

using boolean ontology queries to aid her research. Specifically, she used the Mouse Genome

Informatics web site to obtain sets of genes for individual terms, then used a spreadsheet,

Microsoft Excel, to perform set operations on these results. This prior experience made

her ideally suited to suggest biological cases in which ontology based queries would prove

useful, and to suggest ways in which a user interface could support the query construction

process.

The interviews had three major goals: firstly, to obtain biological scenarios to drive

design and development, secondly, to cooperatively design the user interface of OntoDas,

and thirdly, to cooperatively refine OntoDas as it was developed.

In the context of software engineering, a scenario, also known as a use case instance,

is defined to be a description of a specific sequence of actions, in which specific persons

replace actors, and only one path is taken through the use case’s possible basic and alternate

flows. [108]. Less formally, it is a particular story of using a system [62]. A collection of

scenarios is used to define a use case, which is a complete task of a system that provides a

measurable result of value for an actor [108], [62]. The first phase of interviews focused on

eliciting biological scenarios to compose into the overall use case for OntoDas. In order to

do this, and to gain insight into the work process of biologists, the process of constructing

queries was simulated using existing online tools and a script library using the GO MySQL

database. This helped in gathering the scenarios, in agreeing (with the DE) on the structure

43

of the general use case for OntoDas and in setting the scene for cooperative design of the

user interface of OntoDas.

The design of system screens was carried out cooperatively with the domain expert,

in a system similar to cooperative prototyping [16]. This was carried out in the form of pen

mock-ups of screens, shown later in this chapter. These mock-ups, their accompanying notes

taken by the system designer, and the use case developed from them were used to develop

the user interface for OntoDas. The requirements and design of OntoDas were further

refined based on the outcomes of evaluations by the domain expert during the development

cycle.

This chapter begins by describing the scenarios that were elicited. It then describes

how these scenarios were used to derive an overarching use case, and the steps of which it

is composed. The chapter then shows the design of OntoDas, with reference to the paper

mock-ups developed in cooperation with the DE. Technical aspects of the implementation

are left for the next chapter.

4.1 Biological scenarios

As a result of the work with the DE, three scenarios were created to be used as

use case instances. One of these, discussed in 4.1.3, was explored in greater detail, using

a working copy of the system itself. It was felt, by agreement between the DE and the

designer, that these were representative of what users would want when using the system.

This section provides some of the biological background to the scenarios and mentions both

the queries produced and the steps taken to get to them.

4.1.1 Genes with potentially fatal knockout effects in knockout mice

Mice are often used to model both hereditary and infectious diseases. In the

context of infectious diseases, genes, especially those known or suspected to be involved

in the immune system, are sometimes silenced to discover their effect on the pathology

of a particular disease. (Mice that have had a gene silenced in this way are referred to

as “knockout mice”.) However, as many genes are multifunctional, the gene silenced may

prove to be essential during embryonic development, and its silencing may result in mice

that die in utero or are born with anatomical abnormalities. Predicting genes with this

44

potential, so that other genes may be chosen as the focus of research, would be extremely

helpful to immunologists.

The query thus constructed is:

Find genes that play a role in embryonic development and that play a role in

immune response.

4.1.2 Finding blood coagulation related protease inhibitors

Background

Blood coagulation is a vital part of haemostasis (the arrest of bleeding from an

injured blood vessel) [9]. It is a complex process, involving a series of enzymes which each

activate the next enzyme in a cascade, terminating with the activation and cross-linking of

the protein fibrin. Disorders in blood coagulation can result in the pathological formation

of thrombi (blood clots) in veins, arteries or the chambers of the heart, with potentially

fatal effects [9]. A researcher interested in thrombotic disorders may attain insight into the

disorders by finding proteins known to be involved in the process, and by investigating the

other roles these proteins play.

Scenario

1. The DE views the ontology terms used to annotate a known coagulation factor, Co-

agulation factor VII (FA7). Three terms are shown: coagulation factor VIIa activity,

blood coagulation and extracellular region. The DE chooses all three terms to begin a

query with.

2. The DE views the results of this query. Only one gene product (FA7) is found.

The DE realises that the term coagulation factor VIIa activity is too specific, and

substitutes it with its parent term, serine-type endopeptidase activity.

3. The DE views the results of this query, and is interested in seeing what other terms

can be combined with the query. The term apoptosis is chosen to add to the query, as

the DE had been unaware of a connection between this process and blood coagulation.

4. The DE views the results for this query and sees that only around three gene prod-

ucts of the nine results returned are non-redundant. (The remainder are primarily

45

orthologues of protein C, one of the results, in different organisms.) At this stage, the

DE wants to obtain more information on the results from external data sources.

4.1.3 A relationship between the integrin-mediated signalling pathway

and phagocyte maturation

Background

The disease listeriosis is caused by the ubiquitous food-borne bacterium Listeria

monocytogenes [87], and is of particular risk to immunocompromised individuals, such as

those with HIV/AIDS or undergoing chemotherapy [56]. The bacterium invades host cells

via phagocytosis (being enclosed in a membrane-bound vesicle called a phagosome). In

phagocytes, cells of the immune system, the phagosome usually fuses with a lysosome

(another vesicle containing digestive enzymes) after phagocytosis. This causes the pathogen

within the phagosome to be broken down by the enzymes. Listeria, however, prevents the

maturation of phagosomes to a state where they can fuse with lysosomes, thereby preventing

its being killed by the host phagocyte [25].

This has been shown to occur by the prevention of the activation of a protein

encoded by Rab5A [84]. This protein becomes active by binding to guanidine triphosphate

(GTP). In carrying out its activity, it removes a phosphate from the GTP, converting it to

guanidine diphosphate (GDP). Guanidine exchange factors then replace the GDP with a

GTP to reactivate the protein. In Listeria, it was found that the Rab5A protein remained

in its GDP-bound form, and was thus not reactivated [84]. The mechanism by which this

might happen is of some interest to the DE.

Scenario

1. The DE found the terms phagocytic vesicle and GTPase activator activity. She started

a query with phagocytic vesicle. Searching through the combinable terms (of over

1000), however, she could not find the other term.

2. The DE decided to rather begin the query with GTPase activator activity. Searching

through the combinable terms for “phagocytosis”, she found the terms phagocytosis

and phagocytosis, engulfment.

3. The DE decided to add phagocytosis to the query. This query produced 4 genes,

46

and had a much smaller set of combinable terms. From these terms, oxidoreductase

activity caught her eye, as it is involved in the production of toxic molecules.

4. The DE added oxidoreductase activity to the query, producing only 1 gene. This gene

was DOCK1 human, human dedicator of cytokinesis protein 1.

5. The DE viewed the annotations to DOCK1 human. In this list was the term integrin-

mediated signalling pathway. This interested the DE, as she had not known of a link

between this pathway and phagocytosis. She chose to research this gene further in

the literature.

4.2 The use case: construct query

From the scenarios gathered from the DE, the general flow of query construction

was extracted. This is illustrated in figure 4.1. This flow was then formalised into a use

case, which was given the name “construct query”. The steps are as follows: There are two

alternate first steps which can be taken in the use case. The first is to construct the query

de novo, and build it up term by term. The second is to examine a known gene product of

interest, and create a query from some or all of the terms used to annotate the gene. Once

the query has been created (ie. once it contains at least one term), the user would want to

choose from removing a term, substituting a term with a related term, adding a new term,

and viewing the final result set. These steps are outlined in more detail, illustrated and

summarised in this section.

4.2.1 Construct query from gene product annotations

Gene products in the GO database tend to be annotated with several ontology

terms each. Combinations of these terms can be used as the foundation of a query. An

example of this is shown in section 4.1.2. To support this functionality, OntoDas must

enable users to select some or all of the terms used to annotate a gene product, and execute

a query using the terms chosen.

47

Figure 4.1: Query construction from the user’s point of view. This is represented as a state
diagram (boxes represent states and arrows represent transitions from one state to another).
The design that was suggested by this system is elaborated on in table 4.1 and in figure 4.2.

48

Step Description

4.2.1 Construct query from annota-
tions

View terms used to annotate a gene product. Select one or more to form into
a query.

4.2.2 Construct query de novo Select one term to be the first in query construction.

4.2.3 Add term View terms which are combinable with the current query. Select a term to add.

4.2.4 Substitute/remove term View details of a term in the current query. Substitute the term with another,
related term. Remove the term from the query.

4.2.5 View results View the results of the query. View and be able to follow links to entries on
the results in other databases. Export results to a spreadsheet.

Table 4.1: A summary of the steps making up the use case, showing brief details on each
step. Complete details are given in the text. The numbers refer to the section in which the
step is described.

4.2.2 Construct query de novo

To enable a user to build a query step by step, it is necessary to provide them

with the ability to find the first term to build their query from.

4.2.3 Add term

Once a query has begun to be constructed, it is necessary to refine the query by

adding terms as constraints. To allow this, users must be provided with the ability to find

terms to add to the query, and add them.

4.2.4 Substitute or remove term

During the process of refining a query, users often wish to remove a term, or replace

it with another term. Users need to be able to select terms within the query they have built,

and find replacement terms, or remove terms.

4.2.5 View results

When the user is finally satisfied with the query, and in order to determine whether

they are satisfied, the user must be able to view the results of the query. Users also indicated

that they would like to be able to export these results to a spreadsheet, and be provided

with links to other databases containing more information on specific gene products.

49

4.3 Natural language query representation

It was decided to provide users with a natural language representation of the

queries they were constructing, in the hope that this would easier to understand than a more

mathematical representation. In creating the rules for this representation, phrases were

used based upon the formal relations laid out by Smith et al [93]. The phrase “participate

in” is used to refer to terms from the biological process ontology, to express the relation

“has participant”. The phrase “are located in” refers to terms from the cellular component

ontology, in order to express the relation “has location”. For terms from the molecular

function ontology, since no relation has been agreed on, the phrase “have” is used, expressing

a simple, non-specific property relation. An example of a query represented in this way is:

Find genes that participate in blood coagulation and that are located in the

extracellular region and have serine-type endopeptidase activity.

4.4 Screens and views

The use case described above was used, in collaboration with the DE, to design

the user interface for OntoDas. The main views designed and the panels making them up

designed, as well as the transitions between them, are illustrated in figure 4.2. This section

outlines the initial design, showing the paper prototypes used, and detailing additional

information that was elicited during the process about the design.

4.4.1 Dasty2 ontology terms view extension

It was decided that Dasty2, described in section 2.7.2, would be used to view

details of individual gene products. This involved adding a panel to Dasty2 which would

display the ontology annotations of a gene product and allow queries to be constructed, to

fulfill the “construct query from annotations” step in the use case.

The paper prototype is illustrated and explained in figure 4.3. The ontology terms

are listed, with check boxes next to them. The number of gene products annotated by each

ontology term is displayed next to the term. As the query is built by selecting terms, a

natural language representation is updated below. It was desired that the ability to filter

the query by species and evidence code (as is possible in AmiGO – see section 3.4.3) be

included.

50

Figure 4.2: Views designed for query construction. Arrows indicate changes in the state of
the information being displayed. The “query details” (aka “main query”) view is shown with
the panels that make it up. Actions from the “query term details” and “combinable terms”
panels produce a change in the state of the query (by adding, removing or substituting a
term), returning the user to the query details view, with the new query. The two starting
points for constructing queries are shown.

51

Figure 4.3: Paper prototype of the Dasty2 extension.

52

4.4.2 The main OntoDas view

The main OntoDas view, shown in figure 4.2, was designed to provide the “view

query” central state in query construction shown in figure 4.1. An overview of the query is

provided, consisting of a natural language representation of the query, and a summary of the

results. Three additional panels, each providing specific functionality, and being collapsible,

are provided as part of this view. These enable the user to view, replace or remove a term

already in the query, add another term to the query, and view the results respectively. The

relationships among these panels and the main view are shown in figure 4.2.

The design sketch for the main view, with all panels collapsed, is shown in figure

4.4. The query summary, in natural language, is shown at the top. Below this are panels for

each of the query terms, providing the “substitute or remove term” functionality, followed

by a panel showing combinable terms, providing the “add term” functionality. Finally, the

results are shown, providing the “view results” functionality. More details are provided in

figures 4.5, 4.6 and 4.7.

4.4.3 Substitute/remove term panel

This panel implements the “substitute or remove term” functionality. One panel

is displayed for each term used in the query. The requirements for this panel were that it

displayed details for the term in question, provided a link to remove the term and provided

query previews for all the terms related to the term in question which could be substituted

for it in the query to produce a new, valid, non-zero result set query. Specifically, it was

required that parent terms (terms which the one in question is related to by the is a or

part of relation), neighbouring terms (terms that share a common parent with the term

in question), child terms (terms which the term in question is a parent of) and lexically

similar terms (terms whose names are textually similar to that of the term in question) be

displayed, with links to the new queries to be produced. Additionally, the size of the new

queries would need to be displayed next to each term.

Details of the design are illustrated in figure 4.5. The panel was designed to contain

three sub-panels: The first would display details on the term, including its definition and

synonyms, and a link to view genes annotated to this term only. The second would display

related terms which could be substituted for the term in question to produce valid queries,

specifically parents, neighbours (terms with a common parent), children, and lexically sim-

53

Figure 4.4: Paper prototype of the main OntoDas view. This began as a design for the
substitute/remove term panel, but became a design for the view as a whole. (The detailed
design for the substitute/remove panel is shown in figure 4.5.)

54

ilar terms. Finally, a link to remove the term was desired. An additional requirement was

that definitions of the candidate terms to be substituted be provided via pop-ups. The DE

suggested the use of a “book” icon to indicate this functionality.

4.4.4 Add term panel

This panel was designed to provide the “add term” functionality. The panel needs

to display all the terms that can be combined with a given query. Since this is likely to be

a long list, tools such as keyword search, sorting and grouping of the list were suggested.

Details of the design are explained in figure 4.6. It was desired that the results

be displayed as a list, with options to group by ontology and by first letter, and to sort

alphabetically and by number of results for the new queries. Additionally, a keyword search

interface was suggested. All of these controls would be found above the list. Within the list

itself, the terms were designed to be displayed similarly to those in the “substitute/remove

term” panel, with the term name, result set size and a link to a pop-up of the term def-

inition being provided. A final proposal for this panel was to display the terms on a tree

representation of the ontology.

4.4.5 Results panel

This panel was designed to provide the “view results” functionality. This involves

displaying the gene products resulting from a query. The suggestion was to display these

as a list, with paging for result sets larger than 100, and the ability to export into the

CSV (comma-separated value) format, understandable by spreadsheets. Links out to other

sources of information were desired, as well as a link back to the Dasty view for each gene

product.

The design of the results panel is shown in figure 4.7. The design suggests display-

ing the results as a paged list, with 100 results per page, ordered alphabetically. Switches

for other orderings were also suggested. Important information on each gene product is

provided, including its name, symbol and species. Links out to other data sources were

suggested to be provided to the right of the key information. An extensive list of data

sources was suggested, including cross-references to genomic databases, sequence informa-

tion (nucleotide, peptide, cDNA and primer), lists of orthologues, functional domains and

expression information. It was agreed, however, that most of these functionalities could

55

Figure 4.5: Paper prototype of the “substitute/remove term” panel.

56

Figure 4.6: Paper prototype of the “add term” panel.

be provided using a relatively small number of links to other databases that specialised in

providing some or all of this information.

4.5 Conclusion

By working collaboratively with a domain expert, a descriptive design for the

user interface was developed, which greatly assisted the process of implementing OntoDas.

During implementation, contact was maintained with the DE, in order to guide the process.

The use of participatory design techniques proved to be extremely useful in creating a design

that fit with the DE’s way of thinking, and in gaining a better idea of how the DE works.

Furthermore, it became clear that the use of ontologies both as an aid to construct queries

and as a means of finding new information was feasible and genuinely useful to biologists.

57

Figure 4.7: Paper prototype of the results panel.

58

Chapter 5

Implementation

Once the initial design had been created, development began. Implementation

was constrained in part by technological factors. This chapter describes the technical con-

sideration taken during the implementation of OntoDas. First, the overall architecture of

OntoDas is introduced. Following this, the technologies used in creating OntoDas, and how

they were used, are discussed. (This section includes a discussion of web services which are

used by OntoDas.) The chapter concludes with a presentation of the final appearance of

the user interface to OntoDas, by means of a scenario played out through screen shots.

5.1 System architecture

It was decided to make OntoDas web-based. In addition, the Ajax (Asynchronous

JavaScript and XML) approach to web application architecture [39] was chosen. One reason

for this choice was that it would ease integration with Dasty2, which was also Ajax based

[54]. The Gene Ontology database was chosen as a model, and the MySQL database dump

of that database 1 was chosen, prescribing MySQL 2 as the choice of back end database

engine. As middleware between the JavaScript and MySQL, the Python web framework

TurboGears 3 was chosen. The system architecture is illustrated in figure 5.1, and explained

in more detail below.

1GO archive – http://archive.geneontology.org/
2MySQL – http://www.mysql.com/
3TurboGears – http://turbogears.org/

59

5.1.1 Ajax front end

The Ajax approach is to run an Ajax engine, written in JavaScript, within the

client’s browser. The engine handles locally the responses to user actions that don’t require

server round trips, and asynchronously handles those that do, so that the user’s interaction

with the application isn’t stalled. Since system responsiveness is important for usability

[73], this improves the usability of the system. Furthermore, network traffic is reduced, as

the page can be updated without requiring a new copy of the entire page to be delivered to

the user’s browser by the web server.

OntoDas uses an Ajax engine to allow the user to obtain many different views

of the available query terms and results, without delays due to server round trips. The

OntoDasController JavaScript component (the Ajax engine) running in the DE’s browser

makes calls to functions provided by the TurboGears server. The functions are called using

web services following the representational state transfer (REST) architecture [33]: Function

names are specified using URLs, and arguments are passed as the arguments in an http GET

request. The response from the server is delivered as a plain text web page, encoded in

JavaScript Object Notation (JSON) 4. The results of function calls are transformed into

JavaScript objects, which are processed by the working code of the JavaScript component,

and used to update the view by manipulating the browser’s document object model (DOM)

[110].

Full page refreshes occur whenever a new query is executed. This ensures that

every query has a unique URL, which can be stored (for instance as a bookmark) and used

to access the query again later. Ajax calls are used to populate the main query view with

information as it returns from the server. This information included details on the query

terms, options for substitution of the query terms, the set of terms which can be combined

with the query, and the set of results. Since some of these sets can take several seconds for

the server to compute, by displaying those that arrive, the user is not left waiting with a

blank screen, but is provided with some information to interact with. Ajax is also used in

the Dasty query construction view, to dynamically retrieve the size of the result set for the

query being built as new terms are added.

For DOM manipulations, Ajax calls and JSON decoding, functions from the

MochiKit JavaScript library 5 were used. (Numerous free Ajax libraries exist for JavaScript,

4JSON – http://www.json.org/
5MochiKit – http://mochikit.com/

60

Figure 5.1: The system architecture of OntoDas. Platforms and the components running
on them are shown, as well as the protocols used for encoding data.

with largely similar functionality and performance. MochiKit was chosen due to the au-

thor’s preference, and because it is the standard library distributed with TurboGears). For

rendering the popup windows, a library by Brian Gosselin was used 6. Panels were rendered

using code in Dasty2 7. All other JavaScript functionality was created by the author.

5.1.2 TurboGears as middleware

TurboGears is a lightweight web framework that follows and reinforces the Model-

View-Controller software design pattern [60]. In this paradigm, the application is split

into three components: The model component is the domain-specific implementation of

the application’s central structure. Views deal with everything graphical, requesting data

from the model and displaying it. Controllers mediate between input from outside of the

application, the views and the model. In TurboGears, the view component consists either of

dynamic web pages whose content can be altered using a templating language, or an Ajax

6Popup Windows – http://scriptasylum.com/misc/popup/popup.html
7Dasty2 – http://www.ebi.ac.uk/dasty/

61

interface. Controllers consist of Python functions that pass results from the model on to the

templates, or, with a small change in code, to JavaScript code as JSON web services. The

model consists of an object relational framework, SQLObject 8, which provides access to a

database, which can be MySQL. Any custom Python code can also be used as the model.

TurboGears provides the advantage that creating JSON web services and connecting them

to a database back-end can be done relatively quickly and easily.

A TurboGears controller was created to provide the JSON web service to the Ajax

component of OntoDas. For simpler queries to the GO MySQL database, SQLObject was

used. For more complex queries involving multiple joins, queries in raw SQL, with some

Python, were used. The code for these queries is discussed in more detail in the next section.

5.1.3 Query execution – Python and MySQL

The gene ontology was chosen as a model against which OntoDas was developed

primarily because, as mentioned in chapter 2, it is the best known and most popular bio-

ontology. It was also chosen because the DE was interested in information represented by

GO (although she was also interested in several other ontologies, particularly those used to

represent mouse genome information). Finally, GO is freely and easily available, in the form

of a MySQL database dump containing all GO terms, the gene products they annotate, and

extensive metadata. The availability of a dump which could be easily loaded into MySQL

made the GO MySQL database an ideal candidate for creating OntoDas against.

The GO MySQL database was constructed with the transitive closure of the graph

precomputed and stored in a table, so as to speed up the task of finding all the descendants

of a term. Initially, this was used to execute queries, but it proved to be quite slow. (Queries

took longer than one minute to execute in some cases.) Although the transitive closure had

been computed, this only extended as far as the ontology terms themselves, but did not

include associations with gene products. As an additional optimisation, two tables were

created for storing the complete transitive closure, by directly storing the relationships

between each term in the ontologies and every gene product that term and its descendants

was associated to. A script was created to pre-compute these values to store them in the

database, and OntoDas was altered to make use of them. This enabled an approximate

tenfold increase in speed of queries, and hence an increase in the responsiveness of the

8SQLObject – http://www.sqlobject.org/

62

interface.

In the query engine, queries are executed using a combination of MySQL and

Python. Multiple-term queries are executed by retrieving the set of all the gene products

associated with each term, then using Python’s built-in set library to determine the in-

tersection of these sets. Substitutable terms are found using simple MySQL queries, then

filtered by executing each possible new query, and removing those that produce no results.

Combinable terms are found by finding every term associated with every gene product pro-

duced as a result of the given query. Each potential new query is then executed to determine

the size of the result set.

To find terms lexically similar to query terms, Ontology lookup service (OLS) [24]

was used. OLS is an ontology text search engine which regularly downloads all of the OBO

ontologies, and indexes them using the powerful Lucene text search engine 9. Although OLS

runs stand-alone, it makes use of (and provides to third party users) a set of simple object

access protocol (SOAP) web services to it functionality. This has the benefit that third

party applications can make use of OLS in a language-agnostic manner. Thus, although

OLS is written in Java, and OntoDas is written in Python, OntoDas can and does make

use of OLS.

The OLS SOAP services are accessed by the OntoDas query execution engine,

using the ZSI (Zolera SOAP Infrastructure) library 10. There were two reasons for choosing

to call OLS from within the web server, rather than directly from JavaScript: Firstly,

JavaScript code is usually run in “sandbox” mode, and can only access web services from

within the same domain as the one the script was served from [42], so would be unable

to access OLS directly. Secondly, it was desired that the OLS results be filtered to only

include those producing non-empty queries, which required the query execution engine. By

providing a proxy to the OLS web service, OntoDas implements the REST-Based Model

View Controller Pattern [42]; Dasty2 uses a similar architecture [54].

5.2 Final appearance of the user interface

The final screens implemented the core functionality laid out in the design de-

scribed in the previous chapter. Not all of the initially designed features were implemented,

9Apache Lucene – http://lucene.apache.org/
10Zolera – http://pywebsvcs.sourceforge.net/

63

Figure 5.2: A screen shot of Dasty2, showing the ontology term viewer extension, based
on the design shown in figure 4.3, and showing the first step in the scenario presented in
section 4.1.2. This screen can be viewed at http://ontodas.nbn.ac.za/static/dasty.

html?q=P08709

due to time constrains, but features agreed to be critical to the success of the system were

implemented. To illustrate these features, the scenario laid out in section 4.1.2 is played

out in the following sections using screen shots from OntoDas.

5.2.1 Viewing details of a gene product

In the first step, the DE views the sequence and ontology annotations for Coagu-

lation Factor VII (UniProt accession P08709) in Dasty2. The Dasty view is shown in figure

5.2, with panels collapsed so that the ontology annotations panel is highlighted. The query

constructed by the DE is shown, with all three ontology terms selected using the check

boxes, and the natural language query displayed below. A detailed instruction message is

64

Figure 5.3: A screen shot of the “modify term” panel. As described in section 4.4.3, the
panel contains three sub-panels. The first, providing a description of the term, is shown
here collapsed. The third, providing the “remove term” functionality, is further down on
the screen. The focus here is on the “substitute term” sub-panel. This screen can be viewed
at http://ontodas.nbn.ac.za/static/ontodas.html?terms=GO:0003802,GO:0007596,
GO:0005576

provided, as suggested by the design with the DE. The query can be executed by clicking

on the prominent “Click here to execute.” link. Clicking this link takes the DE to the main

OntoDas view for the query.

5.2.2 Substituting a term

In the second step, the DE begins by viewing the results of the query. The query

summary indicates that only one gene product was returned. They decide to examine

the term coagulation factor VIIa activity by opening the corresponding panel, as shown in

figure 5.3. Under “parents”, they see the term serine-type endopeptidase activity, which,

65

Figure 5.4: A screen shot of the “modify term” panel, showing the popup window displaying
term definitions and other details.

66

Figure 5.5: A screen shot of the “add term” panel. Various options are provided for grouping
the list of terms. Sorting is automatically done by name, but other sorting options were not
implemented. The proposed tree view was also not implemented. This screen can be viewed
at http://ontodas.nbn.ac.za/static/ontodas.html?terms=GO:0004252,GO:0007596,
GO:0005576

if substituted, would produce a query containing 26 gene products. They decide to view

details of this term by clicking on the “book” icon, to confirm that it is what they are

looking for. This pops up the window shown in figure 5.4, showing the accession, ontology,

synonyms and definition of the term. Satisfied that the term is the one they want, the DE

closes the popup window and clicks on the “substitute” link to execute the new query.

5.2.3 Adding a term

In the third step, the DE chooses to examine the terms that are combinable with

the query they have just constructed. As shown in figure 5.5, they view the terms grouped

by ontology. The term apoptosis catches their eye; this term would, if added, produce a

67

Figure 5.6: A screen shot of the “results” panel. Links out to other databases, as well as
back to Dasty2, are provided. This screen can be viewed at http://ontodas.nbn.ac.za/
static/ontodas.html?terms=GO:0006915,GO:0004252,GO:0007596,GO:0005576

query returning 9 gene products. The DE clicks on the “add to query” link to execute the

new query.

5.2.4 The results view

In the final step, the DE views the results, and is particularly interested in protein

C. They open several new browser windows using the links provided, to view details of

the gene product in other databases. They also open some Dasty2 windows, to retrieve

sequence annotations for the gene product.

68

5.3 Performance and size

5.3.1 Size of system

In terms of the size of OntoDas two aspects are worth noting: the size of the

codebase (both the server-side Python and the client-side JavaScript) and the size of the

database, both in terms of number of records and disk space usage.

In terms of the JavaScript code, which actually gets delivered to the client’s web

browser, the core OntoDas code is only approximately 29Kb, with the MochiKit and popup

libraries it depends upon taking up 111Kb and 13Kb respectively. Dasty2, which also gets

delivered when it is used, contains 273Kb of JavaScript, along with 411Kb of supporting

libraries.

In terms of database size, the gene ontology itself contains approximately 25 000

terms. However, the greater part of the database used was taken up by the two million

gene products contained therein, many of which also have sequence information stored. As

a consequence, the dump itself is a 1.0Gb gzipped file, which decompresses to approximately

2.5Gb of text. Once loaded into MySQL, with all the indices and metadata generated, this

uses up to 5Gb of actual disk space.

5.3.2 Performance

Two key aspects affect the performance (and hence usability) of OntoDas: perfor-

mance of the client’s web browser when executing the JavaScript, and performance of the

Python server when executing web service requests.

Most operations within the browser executed in less than one second. Notable

exceptions were the population of the combinable terms and results list when these lists

contained more than a few hundred entries. When the combinable terms lists contained a

thousand or more terms, the code to group these could take around ten seconds to execute,

locking up the browser in the process. (more cases?)

Like the browser code, most of the web services responded in less than one second.

The slowest, however, were the functions to find combinable terms, and to find the size of the

result sets of these. In particular, the latter had to compute the entire result sets for every

new combination of terms. Consequently, queries with one thousand combinable terms or

so could take between 10 and 30 seconds to execute. To improve user experience, OntoDas

69

was designed to first load the combinable terms themselves (a relatively fast operation),

then make a second request to find the sizes of the new queries. (more cases? 2000+?)

5.4 Conclusions

OntoDas makes extensive use of free open source software libraries and applica-

tions to deliver the functionality specified in the previous chapter. By following software

engineering best practices for designing software architecture, OntoDas was built to be

responsive and supportive of the target users, domain experts in molecular biology.

70

Chapter 6

Discussion

This thesis set out with the purpose of solving the problem of providing concep-

tual querying functionality to biologists. The approach taken was to develop a software

tool that employed standard HCI and IV techniques and was created following the partic-

ipatory design methodology, with the intended purpose of providing this functionality. In

demonstrating that the development of OntoDas has solved the problem, OntoDas is first

compared with the existing systems that were reviewed in chapter 3. In this comparison,

it is shown how OntoDas addresses the shortcomings of these tools and combines their

strengths into a solution to the specific problem at hand. In the following section, an argu-

ment is posed from the literature that the use of HCI, IV and PD techniques has resulted in

a tool which provides cognitive support and hence relieves cognitive load when constructing

conceptual molecular biological queries. The chapter concludes with a discussion of the

shortcomings of both OntoDas itself and of the methodology used to create it, which forms

a basis for the subsequent chapter proposing future work.

6.1 Comparison with existing tools

In determining whether OntoDas overcomes the shortcomings of similar existing

software, the criteria used to assess these tools have been used below to assess OntoDas. This

is followed by a new version of table 3.1, expanded to include the assessment of OntoDas.

1. Problem domains: OntoDas was applied to the same domain as AmiGO: That of

gene function, using the 25 000 term gene ontology, and a database of approximately

2 000 000 gene products from a wide variety of different species of organisms.

71

2. Types of queries: OntoDas allows the finding of gene products commonly annotated

with any number of given query terms, with the only restriction being that the terms

must actually have gene products in common. Of the other tools, only Flamenco

provides this functionality, and on a significantly smaller data set.

3. Support for initial term finding: OntoDas does not specifically support initial

term finding although the Dasty2 component can assist this. A real-time query ex-

pansion [107] interface for finding initial ontology terms, based on ontology lookup

service would be a candidate solution to this.

4. Support for combining terms: OntoDas provides extensive support for finding

combinations of terms: Firstly, the Dasty2 interface enables the execution of queries

using the annotations from a gene product. Secondly, OntoDas incorporates a specific

“combinable terms” panel, showing for the given query all the terms which can be

combined with it to produce valid new queries. Finally, OntoDas enables fine tuning

of the query by providing valid choices for substituting terms in the query with other,

related terms. Like Flamenco, OntoDas provides query previews by displaying the

size of the result sets of potential new queries, and by restricting the set of options

presented to the DE to those that produce non-empty result sets.

5. Display of results: OntoDas displays results as a list, without options for paging.

Links are provided to external databases, and back to Dasty2 for each gene product.

Although requested in design, CSV output of results has not been implemented. Pag-

ing, sorting and CSV output would be good directions for future work on OntoDas.

6. User involvement in development: Participatory design involving one wet lab

biologist was used extensively in the design and development of OntoDas.

7. Technologies: OntoDas is primarily Ajax based, with MySQL and web services form-

ing the back end, and the TurboGears web framework forming middleware between

these.

72

Criterion AmiGO MartView GViewer DOPE Flamenco OntoDas

1.Problem domains: Gene Ontology (25K
terms) to multi-species
gene DB (2M entries)

Gene Ontology (25K
terms), individual
species gene DBs (30K
entries each)

Gene Ontology (25K
terms), several others
(5K each); rat gene
and QTL data (9K en-
tries)

EMTREE ontology
(50K terms), custom
literature DB (10M
entries)

image metadata the-
sauri (4K terms each);
image databases (35K
entries each)

Gene Ontology (25K
terms) to multi-species
gene DB (2M entries)

2.Types of queries: single term only; nar-
rowing by evidence
code, species.

multiple terms, only
one term, evidence
code per ontology.
Only one species per
query

AND, OR, NOT over
several ontologies; no
species / evidence code
narrowing

AND queries of any
number of terms; no
narrowing criteria

AND queries across
any number of terms;
only one term per
orthogonal ontology;
supplementation with
keyword search

AND queries across
any number of terms

3.Initial term finding: forms, tree navigation QuickGO browse,
search, but no tie-
in with MartView
interface

no support Form with intelligent
term suggestion; tree
navigation

keyword search, dy-
namic tree navigation

not yet implemented

4.Combination finding: no support no support no support valid combinations
with first term shown,
but limited support
for 3 or more

all valid combinations
with current query dis-
played, also size of re-
sult set (query pre-
viewing)

extensive; all valid
combinations dis-
played, as well as size
of result set (query
previewing)

5.Display of results: paged table, links to
detail on each query,
links to external infor-
mation.

simplistic but config-
urable to be richer;
spreadsheet export

highly visual SVG; no
table but proprietary
spreadsheet export

interactive, visual
cluster map; problems
with scalability

page-able table, links
to detail on each entry,
ability to construct
new queries from
annotations of entry

table with links out;
paging and CSV down-
load not yet imple-
mented

6.User involvement: minimal, though possi-
bly via mailing list

no evidence of any no evidence of any usability evaluation
post-development

multiple cycles of test-
ing, re-development,
evaluated against a
baseline

extensive participatory
design throughout the
life cycle

7.Technologies: web-based: Perl,
MySQL

web-based: Perl,
BioMart

web-based: Java JSP
and Oracle 9i PL/SQL

Desktop-based: Java
/ Swing, ClusterMap,
Sesame RDF store

Web-based: Python
WebWare, MySQL,
Java / Lucene optional

Web-based: Ajax
(MochiKit and others),
Python TurboGears,
MySQL, web services

Table 6.1: A comparison of five tools for facilitating the construction of ontology based queries with OntoDas, according to the
criteria specified in chapter 3.

73

6.2 Application of IV and HCI techniques

As detailed in chapter 2, the application of HCI and IV techniques can provide

cognitive support to users. OntoDas differs from similar tools targeted at the biological

domain in that it takes into account techniques from information visualisation and HCI.

Firstly, as in Flamenco, query previews [83] are provided, ensuring that DEs will never

encounter a zero-result query. This provides cognitive support by reducing the query space

which DEs must search to find queries of interest, thereby reducing the load on their short-

term memory [20]. Secondly, “information scent” (the (imperfect) perception of the value,

cost, or access path of information sources obtained from proximal cues [80]) is provided

to guide users to queries of interest, in the form of query previews and the provision of

term details via popup windows. Thirdly, a natural language representation of the query

can be far easier for users to understand than a more technical representation [73] – by

using best practices established by convention within the bio-ontologies community [93], it

was possible to provide this in OntoDas. Lastly, additional grouping and sorting features

assist users in finding terms of interest in the sets of combinable terms offered to them.

In conclusion, by employing techniques these techniques, the development of OntoDas has

delivered a tool that relieves cognitive load when constructing ontology based queries within

molecular biology.

6.3 Participatory design

As is described in chapter 2, the biological domain is a highly complex one. Un-

derstanding the domain and the challenges facing researchers within it can be difficult for

designers of bioinformatics software. Even with the powerful techniques available, designing

software that matches the way biologists work presents an additional obstacle [65]. When

designing OntoDas, participatory design provided a “third space” between the domains of

the software designer (the author) and the domain expert, as is described in the literature

[69, 14]. As a result, ideas were produced and a system designed which neither the designer

nor the DE could have achieved alone, and which the DE expressed satisfaction with.

However, a flaw in the PD methodology used is that the number of domain experts

involved in the design was only one. Although no explicit study of the importance of group

size has been carried out within the PD literature, implicitly most papers recommend sizes

74

of at least two to ten; examples include [68, 102, 16]. A difficulty with small group size is

that it may make the final product too specific for more general use [1, 70]. For the technique

used, cooperative prototyping, more DEs, at least five in total [16] should ideally have been

involved. Better still would have been to involve DEs from a variety of different laboratories

who were working on different areas within molecular biology. This could form the basis for

further design work, provided DEs could be found to assist. The creation of new scenarios

besides the ones presented in chapter 3 could also be of benefit, as the scenarios themselves

could be too specific due to the small number of DEs they were gathered from. Regardless,

it is almost certain that the final tool produced is better suited to biologists in general than

if the developer had undertaken the design single-handedly.

6.4 Limitations of OntoDas

6.4.1 Performance and scalability

As mentioned in the previous chapter, queries which have large sets of combinable

terms (1000 or more) result in poor performance. On the browser side, grouping and sorting

can take up to ten seconds to complete, locking the browser in the process. From a usability

perspective, this is highly undesirable [73]. On the server side, the computation of both the

set itself, then of the size of the prospective new result sets, can take up to 30 seconds or

more. A danger exists that such a delay could disrupt a user’s flow of query construction.

Both of these issues could be addressed to make OntoDas a better system.

It is possible to ameliorate these issues without needing to seriously redesign On-

toDas. To improve browser responsiveness, sorting and grouping could be shifted to the

server side, with web services providing result sets already grouped and sorted. To acceler-

ate the finding of combinable terms, measures have already been taken by pre-caching the

result sets for individual terms. Further optimisations, such as executing the complete query

natively within MySQL using stored procedures, could make improvements. However, an

obvious solution would be to implement lazy loading in the user interface – only retrieving

particular subsets of combinable terms when a user opens the relevant panel. Further in

this vein, rather than displaying long lists of terms (which are difficult for a user to search

through and make sense of [20], apart from the performance overheads), results could be

displayed as lazily-loaded, paged lists. To supplement this functionality, text search could

75

be implemented within the results – this functionality was in fact suggested by the DE in

the design, but not implemented. Another fairly simple measure would be to use the new

curator-approved only download of the database, which was made available after OntoDas

was created. This version contains one tenth the number of gene products (approximately

two hundred thousand compared to two million). Since only these links are currently used in

OntoDas anyway, this could substantially reduce the number of options MySQL would have

to search to find results. Together, all of these features could improve the responsiveness,

and hence usability, of OntoDas.

6.4.2 Unsupported cases

Although OntoDas supports most combinations of terms, two general cases exist

that are not supported. The first is that where a single term is given which is extremely

general. Examples include the terms binding, cytoplasm and metabolic process, which return

43 293, 48 828 and 56 334 gene products respectively. Although the exact number of terms

combinable with each of these is not known due to the extremely high cost of computing

that, it is likely that the set of terms included most of the gene ontology. Apart from being

incapable of computing such a large set of combinable terms on the server side before the

browser times out the connection, if the result set were sent to the browser, it is likely that

it would crash. Thus, OntoDas does not support extremely general single term queries.

However, such queries are unlikely to be of interest, as they are extremely general

and do not assist biologists in isolating specific gene products of interest. They are also

quite simple, and thus not the types of queries OntoDas aims to support. Nevertheless, it

is possible that users may wish to use such terms as a starting points for a query. This

is a possibility which could be investigated in future PD work. It is also possible that the

performance improvements suggested in the previous section will ameliorate this problem.

If not, then it would provide for interesting future work to investigate how best to represent

queries in these cases.

The second case is where a term is so specific that it has not yet been used

to annotate any gene products, and hence will never be involved in an OntoDas query.

Examples include larval burrowing behavior and 3-galactosyl-N-acetylglucosaminide 4-alpha-

L-fucosyltransferase activity. However, this is unlikely to be immediately problematic to

OntoDas’ overall usefulness, since the purpose of using query previews within OntoDas is

76

specifically to avoid encountering such queries. Nevertheless, a possibility does exist that a

user may wish to know when a term has no gene products associated, and may wish to use

that term as a starting point for a query (for instance, when its parents or siblings do have

gene products associated). Again, this is a case which could be brought up in future PD

work, and act as a driver for future development.

6.4.3 Unimplemented features

Several features were suggested by work with the DE in chapter 3 which were not

implemented in OntoDas. As the previous paragraph mentions, both text search and paging

through long list of items are two. Also requested was the ability to begin constructing a

query with a single ontology term. Such functionality could be readily adapted from OLS,

which is open source [24]. A small, but easy to implement feature is the export of result

sets in a spreadsheet-compatible format, such as comma separated value (CSV). Finally,

the implementation of pop-up help windows next to difficult terms to understand (such as

“siblings”) could make OntoDas easier to use without training. All of these are suggested

in the following chapter as future work.

6.5 Conclusions

By employing techniques from HCI and IV, OntoDas provides biologists with cog-

nitive support when constructing conceptual queries in ways that previous tools have not.

By using PD, it was possible to adapt these techniques to the way in which a biologist works,

thereby ensuring that they were not misapplied. Shortcomings remain, both in terms of

unfulfilled features requested by the biologist, and in terms of there being only one domain

expert involved in the PD process. Nevertheless, OntoDas is a tool which relieves cognitive

load when constructing ontology-based molecular biological queries, and hence provides a

solution to the problem posed by this thesis.

77

Chapter 7

Future Work

OntoDas, in its current state, represents a working software system that solves the

problem proposed by this thesis. The development carried out thus far can be regarded as

one or two iterations in an iterative software development cycle: The core functionality has

been implemented, but, as mentioned in section 6.4.3 there are lower priority requirements

that were suggested during design that have yet to be fulfilled. Furthermore, there are

performance issues, as detailed in section 6.4.1, which suggest solutions through further

development. Finally, it is clear that the participatory design work carried out could have

substantially benefited from the involvement of more domain experts, while a longitudinal

usability study could ensure that OntoDas truly does match the needs of biologists.

This chapter proposes plans for the future development and wider application of

OntoDas. The chapter commences with a series of proposals for addressing the issues already

raised in the discussion chapter through the development of new features. This is followed

by a proposal for a usability study for evaluating OntoDas in order to provide insights for

further development. The chapter concludes with suggestions for applying OntoDas to new

contexts.

7.1 Improvements suggested by existing analysis

Section 6.4 details numerous shortcomings in the existing implementation of Onto-

Das. These limitations have give rise to several possible directions for future development,

which are outlined below:

• Implement an interface, based on OLS, for finding a single term to begin constructing

78

a query with.

• Enable downloading of results in CSV format.

• Include pop-up contextual help windows for portions of the interface.

• Shift the grouping and sorting of combinable terms to the server.

• Implement lazy loading in the user interface. (Only load the contents of a panel when

it is opened, rather than loading the contents of all panels on page load.)

• Implement paging of results and combinable terms.

• Implement keyword search through results and combinable terms.

• Use the curator-approved only version of the GO database.

• Optimise the execution of queries, possible using MySQL stored procedures.

However, it is important to note that biologists may desire features not listed here,

and that any further extension process should ideally occur in tandem with a participatory

design process to ensure that development effort is not wasted on undesired features [62].

7.2 Evaluation of usability

Evaluation of an information visualisation system [82] and even of HCI systems

in general [73], is hard. The technique of heuristic evaluation, wherein usability experts

evaluate an interface according to established best practices [74], can be used. However,

this technique tends to catch a relatively low proportion of usability problems in a system

[53], so is best suited to very rudimentary initial evaluation to inform early design work

[73]. Usability testing, wherein users carry out routine tasks using an interface and the

results observed [73], could provide an alternative. Yet, even task-based analysis has been

criticised in the context of IV systems [82, 21], since the systems are often designed to allow

unfettered exploration, making specific use case instances difficult to predict. A potential

solution to this problem has been proposed in the form of “insight-based evaluation” [86];

this methodology recognises that the goal of an IV system is to promote the reaching

of insights, and uses a task-free system for evaluating the discovery of insights. Some

disadvantages of this system are in that it requires greater effort to capture and code

79

results – in particular it is recommended that highly skilled domain experts are recruited

to assist in this process. In summary, a series of options exist for evaluating the usability of

OntoDas, with increasing efficacy but also increasing difficulty in performing. This suggests

a potential methodology:

1. Evaluate OntoDas using several usability experts, according to established usability

guidelines, to identify fundamental problems with usability. (To some extent this has

occurred already through the analysis carried out in chapter 6.)

2. Gather new scenarios of use from a broader group of users, in a participatory manner.

3. Test OntoDas with these and other users, using the new (and existing) scenarios.

4. Ideally, recruit domain experts to assist in coding the results from an insight-based

evaluation, then carry out this evaluation, allowing users to freely explore OntoDas

and coding the results of their exploration.

All of these steps could be extremely useful in informing future development on

OntoDas.

7.3 Application to broader contexts

OntoDas at present only works with the gene ontology. It could be beneficial

to apply it to a broader set of ontologies used to annotate gene products, as was GViewer

[92]. Some examples of interesting ontologies which could be loaded include the mammalian

phenotype and anatomy ontologies used to annotate the mouse [11] and rat [104] genome

databases, as well as the Medical Subject Headings (MeSH) [67] used to annotate PubMed.

A possible means to do integrate this data into OntoDas would be to use the loading scripts

provided by the GO consortium, which enable any ontology in the OBO file format to

be loaded into the GO MySQL schema. Additional scripts would be needed to load the

relations between the ontology terms and the gene products. In this way, OntoDas could

be applied to a new and broader set of data, to potentially provide insight into it.

80

Chapter 8

Conclusions

The goal of this thesis was to solve the problem that “‘Although the standard us-

age of ontologies within molecular biology provides a basis for the construction of conceptual

queries within the domain by the domain experts, no visual tool exists to enable them to do

this.” In doing so, techniques from human computer interaction and information visual-

isation techniques were applied to create such an interface, and participatory design was

applied to ensure that the interface was applicable to the domain of molecular biology:

1. By using techniques including query previews, provision of information scent and nat-

ural language query representation, OntoDas provides cognitive support to biologists,

to make the functionality it provides accessible to them.

2. By involving a biologist through interviews and cooperative prototyping exercises, as

well as via correspondence, OntoDas was developed so as to fit into the domain of

molecular biology.

3. By supporting biologists in a way that is compatible with their way of working, Onto-

Das enables them to construct conceptual queries using ontologies within the domain

of molecular biology.

81

Appendix A

Publications resulting from this

work

A.1 Conference papers

1. O’Neill, K.M.; Garcia-Castro, A. and Jacobson, D. (2007) Knowledge Driven User

Interfaces for Complex Biological Queries, Proceedings of the First Southern African

Bioinformatics Workshop

2. O’Neill, K.; Schwegmann, A.; Jimenez, R.; Jacobson, D. and Garcia, A.. (2007)

OntoDas – integrating DAS with ontology-based queries, Joint AFP - BioSapiens Spe-

cial Interest Group, 15th Annual International Conference on Intelligent Systems in

Molecular Biology

3. O’Neill, K.; Schwegmann, A.; Jimenez, R.; Jacobson, D. and Garcia, A.. (2007)

OntoDas – integrating DAS with ontology-based queries, Bio-ontologies Special Inter-

est Group, 15th Annual International Conference on Intelligent Systems in Molecular

Biology

A.2 Conference posters

1. O’Neill, K.M.; Garcia-Castro, A. and Jacobson, D. (2007) Visually enabling the con-

struction of ontology-based cross-database queries, 15th Annual International Confer-

ence on Intelligent Systems in Molecular Biology

82

Bibliography

[1] C. Abras, D. Maloney-Krichmar, and J. Preece. Berkshire Encyclopedia of Human-

Computer Interaction, chapter 3: User-Centered Design. Berkshire Publishing Group,

2004.

[2] M. Agrawala. Software design patterns for information visualization. IEEE Trans-

actions on Visualization and Computer Graphics, 12(5):853–860, 2006. Student

Member-Jeffrey Heer.

[3] K. Akrivi, T. Elena, H. Constantin, L. Georgios, and V. Costas. A comparative study

of four ontology visualization techniques in protege: Experiment setup and prelimi-

nary results. In IV ’06: Proceedings of the conference on Information Visualization,

pages 417–423, Washington, DC, USA, 2006. IEEE Computer Society.

[4] F. Al-Shahrour et al. FatiGO: a web tool for finding significant associations of Gene

Ontology terms with groups of genes. Bioinformatics, 20(4):578–580, 2004.

[5] R.B. Altman, M. Buda, X.J. Chai, M.W. Carillo, R.O. Chen, and N.F. Abernethy.

RiboWeb: An ontology-based system for collaborative molecularbiology. Intelligent

Systems and Their Applications, IEEE, 14(5):68–76, 1999.

[6] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P.

Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver,

A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and

G. Sherlock. Gene Ontology: Tool for the unification of biology. Nature Genetics,

25(1):25–29, May 2000.

[7] E. Baehrecke, N. Dang, K. Babaria, and B. Shneiderman. Visualization and analysis

83

of microarray and gene ontology data with treemaps. BMC Bioinformatics, 5(1):84,

2004.

[8] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Pro-

fessional, 2000.

[9] M.H. Beers, R. Berkow, et al. The Merck manual of diagnosis and therapy. Merck

Research Laboratories, 1999.

[10] R.K.E. Bellamy, T. Erickson, B. Fuller, WA Kellogg, R. Rosenbaum, J.C. Thomas,

and T.V. Wolf. Seeing is believing: Designing visualizations for managing risk and

compliance. IBM Systems Journal, 46(2), 2007.

[11] J.A. Blake, J.T. Eppig, C.J. Bult, J.A. Kadin, J.E. Richardson, et al. The Mouse

Genome Database (MGD): updates and enhancements. Nucleic Acids Research,

34(Database Issue), 2006.

[12] C. Blaschke, L. Hirschman, and A. Valencia. Information extraction in molecular

biology. Briefings in Bioinformatics, 3(2):154, 2002.

[13] O. Bodenreider and R. Stevens. Bio-ontologies: current trends and future directions.

Briefings in Bioinformatics, 7(3):256–274, 2006.

[14] S. Bødker. Scenarios in user-centred design–setting the stage for reflection and action.

Interacting with Computers, 13(1):61–75, 2000.

[15] S. Bødker, P. Ehn, D. Sjögren, and Y. Sundblad. Co-operative Design - perspectives

on 20 years with the Scandinavian IT Design Model. In Proceedings of NordiCHI

2000, pages 22–24, 2000.

[16] S. Bødker and K. Grønbæk. Cooperative prototyping. International Journal of Man-

Machine Studies, 34(3), 1991.

[17] J. Broekstra, C. Fluit, A. Kampman, F. van Harmelen, H. Stuckenschmidt, R.Bhogal,

A.Scerri, A. de Waard, and E. van Mulligen. The Drug Ontology Project for Elsevier.

In Proceedings of the WWW’04 workshop on Application Design, Development and

Implementation Issues in the Semantic Web, pages xxx–xxx, New York, May 2004

2004.

84

[18] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. First International Semantic Web

Conference, 2342:54–68, 2002.

[19] E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen, D. Binns,

N. Harte, R. Lopez, R. Apweiler, et al. The Gene Ontology Annotation(GOA)

Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Re-

search, 32(90001):262–266, 2004.

[20] S.K. Card, J. Mackinlay, and B. Shneiderman. Readings in Information Visualization:

Using Vision to Think. Morgan Kaufmann, 1999.

[21] C. Chen. Information Visualization: Beyond the Horizon. Springer, 2004.

[22] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.

[23] E. F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, June 1970.

[24] R.G. Côté, P. Jones, R. Apweiler, and H. Hermjakob. The ontology lookup service, a

lightweight cross-platform tool for controlled vocabulary queries. BMC Bioinformat-

ics, 2006(7):97, 2006.

[25] W. J. Dai. Impaired macrophage listericidal and cytokine activities are responsible

for the rapid death of Listeria monocytogenes-infected IFN-gamma receptor-deficient

mice. The Journal of Immunology, 158(11):5297–5304, 1997.

[26] T. H. Davenport and L. Prusak. Working Knowledge: How organisations manage

what they know. Havard Business School Press, Boston, Massachusetts, 1998.

[27] R.D. Dowell, R. M. Jokerst, A. Day, S. R. Eddy, and L. Stein. The Distributed

Annotation System. BMC Bioinformatics, 2:7, 2001.

[28] R.A. Drysdale, M.A. Crosby, W. Gelbart, K. Campbell, D. Emmert, et al. Flybase:

genes and gene models. Nucleic Acids Research, 33:390–395, 2005.

[29] S. Durinck, Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor, A. Brazma, and W. Hu-

ber. BioMart and Bioconductor: a powerful link between biological databases and

microarray data analysis. Bioinformatics, 21(16):3439–3440, 2005.

85

[30] A. Elliott. Flamenco image browser: using metadata to improve image search during

architectural design. In CHI ’01 extended abstracts on Human factors in computing

systems, pages 69–70, New York, NY, USA, 2001. ACM Press.

[31] T. Etzold and P. Argos. SRS–an indexing and retrieval tool for flat file data libraries.

Bioinformatics, 9:49–57, 1992.

[32] M. Eyl. The Harmony Information Landscape Interactive, Three-Dimensional Navi-

gation Through an Information Space. Master’s thesis, Graz University of Technology,

Austria, 1995.

[33] R.T. Fielding and R.N. Taylor. Principled design of the modern web architecture.

ACM Transactions on Internet Technology, 2(2):115–150, 2002.

[34] C. Fluit, M. Sabou, and F. van Harmelen. Visualising the Semantic Web, chapter

Chapter 3. Ontology-based Information Visualisation. Springer Verlag, 2002.

[35] M.Y. Galperin. The molecular biology database collection: 2006 update. Nucleic

Acids Research, 34:D3–D5, 2006.

[36] E. Gamma, R. Helm, R. Johnsson, and J. Vlissides. Design Patterns - Elements of

Reusable Object-Oriented Software. Addison Wesley, 1995.

[37] A. Garcia, Y.P.P. Chen, and M.A. Ragan. Information integration in molecular bio-

science. Applied Bioinformatics, 4(3):157–173, 2005.

[38] Alexander Garcia-Castro, Angela Norena, Andres Betancourt, and Mark A. Ragan.

Cognitive support for an argumentative structure during the ontology development

process. In 9th International Protégé Conference, 2006.

[39] J.J. Garrett. Ajax: A new approach to web applications.

http://www.adaptivepath.com/publications/essays/archives/000385.php, 2005.

[40] C. Goble and C. Wroe. The montagues and the capulets. Comparative and Functional

Genomics, 5(8):623–632, 2004.

[41] C.A. Goble, R. Stevens, G. Ng, S. Bechhofer, N.W. Paton, P.G. Baker, M. Peim, and

A. Brass. Transparent access to multiple bioinformatics information sources. IBM

Systems Journal, 40(2):532–551, 2001.

86

[42] C. Gross. Ajax Patterns and Best Practices. Apress, 2006.

[43] T.R. Gruber. The role of common ontology in achieving sharable, reusable knowledge

bases. In Principles of Knowledge Representation and Reasoning: Proceedings of the

Second International Conference, Cambridge, MA, pages 601–602, 1991.

[44] V. Haarslev and R. Moller. RACER system description. Proceedings of the Interna-

tional Joint Conference on Automated Reasoning, 2001.

[45] V. Haarslev, R. Möller, and M. Wessel. RACER User’s Guide and Reference Manual

Version 1.7.19, 2004.

[46] S. Haider, R. Holland, D. Smedley, and A. Kaspryzk. Martview, a web interface to

biomart, 2007.

[47] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to

OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–26,

2003.

[48] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description

logic shiq. Arxiv preprint cs.LO/0005017, 2000.

[49] T.J.P. Hubbard, B.L. Aken, K.. Beal, B. Ballester, M. Caccamo, Y. Chen, L. Clarke,

G. Coates, F. Cunningham, T. Cutts, et al. Ensembl 2007. Nucleic Acids Research,

35(Database issue):D610, 2007.

[50] M. Imaz and D. Benyon. How stories capture interactions. In Proceedings of Human-

Computer Interaction-INTERACT, volume 99, 1999.

[51] I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development process.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1999.

[52] P. Jaiswal, S. Avraham, K. Ilic, E.A. Kellogg, S. McCouch, A. Pujar, L. Reiser, S.Y.

Rhee, M.M. Sachs, M. Schaeffer, et al. Plant Ontology (PO): a controlled vocabulary

of plant structures and growth stages. Comparative and Functional Genomics, 6(7-

8):388–397, 2005.

[53] R. Jeffries and H. Desurvire. Usability testing vs. heuristic evaluation: was there a

contest? SIGCHI Bull., 24(4):39–41, 1992.

87

[54] R. C. Jimenez, A. F. Quinn, A. Labarga, K. O’Neill, A. Garcia, and H. Hermjakob.

Dasty2, a web client for visualizing protein sequence features. Poster, Joint AFP

Biosapiens meeting, ISMB 2007, July 2007.

[55] P. Jones, N. Vinod, T. Down, A. Hackmann, A. Kahari, E. Kretschmann, A. Quinn,

D. Wieser, H. Hermjakob, and R. Apweiler. Dasty and UniProt DAS: a perfect pair

for protein feature visualization. Bioinformatics, 21(14):3198–3199, 2005.

[56] R.L. Jurado, M.M. Farley, E. Pereira, R.C. Harvey, A. Schuchat, J.D. Wenger, and

D.S. Stephens. Increased risk of meningitis and bacteremia due to listeria monocy-

togenes in patients with human immunodeficiency virus infection. Clinical Infectious

Diseases, 17(2):224–7, 1993.

[57] P.D. Karp, M. Riley, M. Saier, I.T. Paulsen, J. Collado-Vides, S.M. Paley,

A. Pellegrini-Toole, C. Bonavides, and S. Gama-Castro. The EcoCyc Database. Nu-

cleic Acids Research, 30(1):56–58, 2002.

[58] A. Kasprzyk, D. Keefe, D. Smedley, D. London, W. Spooner, C. Melsopp, M. Ham-

mond, P. Rocca-Serra, T. Cox, and E. Birney. EnsMart: a generic system for fast

and flexible access to biological data. Genome Research, 14:160–169, 2004.

[59] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Giannopoulou. Ontology

visualization methodsa survey. ACM Comput. Surv., 39(4):10, 2007.

[60] G.E. Krasner and S.T. Pope. A Description of the Model-View-Controller User In-

terface Paradigm in the Smalltalk-80 System. Technical report, ParcPlace Systems,

Inc, 1988.

[61] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic

geometry for visualizing large hierarchies. In CHI ’95: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 401–408, New York, NY,

USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[62] C. Larman. Applying UML and Patterns. China Machine Press,, 2004.

[63] C. Larman and VR Basili. Iterative and incremental developments. a brief history.

Computer, 36(6):47–56, 2003.

88

[64] J. Lave and E. Wenger. Communities of Practice. Cambridge, 1991.

[65] C. Letondal. Interaction et programmation - Conception d’applications programmables

avec des non-informaticiens. PhD thesis, Universit de Paris-Sud, 2001.

[66] C. Letondal. A web interface generator for molecular biology programs in unix. Bioin-

formatics, 17(1):73–82, 2001.

[67] C.E. Lipscomb. Medical subject headings (mesh). Bull Med Libr Assoc, 88(3):265–

266, 2000.

[68] M.J. Muller. PICTIVE: an exploration in participatory design. In CHI ’91: Pro-

ceedings of the SIGCHI conference on Human factors in computing systems, pages

225–231, New York, NY, USA, 1991. ACM Press.

[69] M.J. Muller. The human-computer interaction handbook: fundamentals, evolving tech-

nologies and emerging applications, chapter Participatory Design: The Third Space

in HCI, pages 1051–1068. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 2002.

[70] M.J. Muller and S. Kuhn. Participatory design. Communications of the ACM,

36(6):24–28, 1993.

[71] J. Mylopoulos. An overview of knowledge representation. In Proceedings of the 1980

workshop on Data abstraction, databases and conceptual modeling, pages 5–12, New

York, NY, USA, 1980. ACM Press.

[72] J. Mylopoulos. Tutorial on artificial intelligence research. In M.L. Brodie and S.N.

Zilles, editors, Proceedings of the Workshop on Data Abstraction, Databases and Con-

ceptual Modelling, volume 11, pages 13–18. ACM Press, 1980.

[73] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.

[74] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In CHI ’90: Pro-

ceedings of the SIGCHI conference on Human factors in computing systems, pages

249–256, New York, NY, USA, 1990. ACM Press.

[75] D.A. Norman. The Psychology of Everyday Things. Basic Books New York, 1988.

89

[76] D.A. Norman and S.W. Draper. User Centered System Design; New Perspectives

on Human-Computer Interaction. Lawrence Erlbaum Associates, Inc. Mahwah, NJ,

USA, 1986.

[77] N.F. Noy, R.W. Fergerson, and M.A. Musen. The knowledge model of protege-2000:

Combining interoperability and flexibility. Proceedings of the 12th European Workshop

on Knowledge Acquisition, Modeling and Management, pages 17–32, 2000.

[78] Open biomedical ontologies. http://obo.sourceforge.net, 2007.

[79] G.M. Olson and J.S. Olson. Human-computer interaction: Psychological aspects of

the human use of computing. Annual Review of Psychology, pages 491–517, 2003.

[80] P. Pirolli and S.K. Card. Information foraging. Psychological Review, 106(4):643–675,

1999.

[81] Peter Pirolli, Stuart K. Card, and Mija M. Van Der Wege. The effects of information

scent on visual search in the hyperbolic tree browser. ACM Trans. Comput.-Hum.

Interact., 10(1):20–53, 2003.

[82] C. Plaisant. The challenge of information visualization evaluation. In AVI ’04: Pro-

ceedings of the working conference on Advanced visual interfaces, pages 109–116, New

York, NY, USA, 2004. ACM Press.

[83] C. Plaisant, B. Shneiderman, K. Doan, and T. Bruns. Interface and data architecture

for query preview in networked information systems. ACM Transactions on Informa-

tion Systems, 17(3):320–341, 1999.

[84] A. Prada-Delgado, E. Carrasco-Marin, C. Pena-Macarro, E. del Cerro-Vadillo,

M. Fresno-Escudero, F. Leyva-Cobian, and C. Alvarez-Dominguez. Inhibition of Rab

5 a exchange activity is a key step for Listeria monocytogenes survival. Traffic,

6(3):252–265, 2005.

[85] D.L. Rubin, S.E. Lewis, C.J. Mungall, S. Misra, M. Westerfield, M. Ashburner, I. Sim,

C.G. Chute, H. Solbrig, M.A. Storey, et al. The national center for biomedical ontol-

ogy: Advancing biomedicine through structured organization of scientific knowledge.

OMICS A Journal of Integrative Biology, 10(2):185–198, 2006.

90

[86] P. Saraiya, C. North, and K. Duca. An insight-based methodology for evaluating bioin-

formatics visualizations. IEEE Transactions on Visualization and Computer Graphics,

11:443–456, 2005.

[87] W.F. Schlech III. Foodborne listeriosis. Clinical Infectious Diseases, 31(3):770–775,

2000.

[88] G.D. Schuler, J.A. Epstein, H. Ohkawa, and J.A. Kans. Entrez: molecular biology

database and retrieval system. Methods in Enzymology, 266:141–62, 1996.

[89] E.M. Schwarz, I. Antoshechkin, C. Bastiani, T. Bieri, D. Blasiar, P. Canaran, J. Chan,

N. Chen, W.J. Chen, P. Davis, et al. Wormbase: better software, richer content.

Nucleic Acids Research, 2006.

[90] D.B. Searls. Data integration: challenges for drug discovery. Nature Reviews in Drug

Discovery, 4(1):45–58, 2005.

[91] A. Seffah and E. Metzker. The obstacles and myths of usability and software engi-

neering. Communications of the ACM, 47(12):71–76, 2004.

[92] M. Shimoyama, V. Petri, D. Pasko, S. Bromberg, W. Wu, J. Chen, N. Nenasheva,

A. Kwitek, S. Twigger, and H. Jacob. Using multiple ontologies to integrate complex

biological data. Comparative and Functional Genomics, 6(7-8):373–378, 2005.

[93] B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C. Mungall,

F. Neuhaus, A.L. Rector, and C. Rosse. Relations in biomedical ontologies. Genome

Biology, 6:R46, 2005.

[94] B. Smith, J. Williams, and S. Schulze-Kremer. The ontology of the gene ontology.

Proceedings of the American Medical Informatics Association Annual Symposium,

2003:609–613, 2003.

[95] C.L. Smith, C.A.W. Goldsmith, and J.T. Eppig. The mammalian phenotype ontology

as a tool for annotating, analyzing and comparing phenotypic information. Genome

Biology, 6(1):R7, 2005.

[96] C.J. Stoeckert and H. Parkinson. The mged ontology: a framework for describing

functional genomics experiments. Comparative and Functional Genomics, 4(1):127–

132, 2003.

91

[97] H. Stuckenschmidt, A. de Waard, R. Bhogal, C. Fluit, A. Kampman, J. van Buel,

E. van Mulligen, J. Broekstra, I. Crowlesmith, F. van Harmelen, et al. A topic-based

browser for large online resources. In Proceedings of the 14th International Conference

on Knowledge Engineering and Knowledge Management (EKAW04), Lecture Notes

in Artificial Intelligence. Springer, 2004.

[98] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles and

methods. Data Knowledge Engineering, 25(1-2):161–197, 1998.

[99] Y. Sure. Methodology, Tools and Case Studies for Ontology Based Knowledge Man-

agement. PhD thesis, Universitt Karlsruhe, 2003.

[100] M. Tory and T. Moller. Human factors in visualization research. IEEE Transactions

on Visualization and Computer Graphics, 10(1):72–84, 2004.

[101] S. Trissl and U. Leser. Querying ontologies in relational database systems. In 2nd

Conference on Data Integration in the Life Sciences (DILS05). Springer, 2005.

[102] L. G. Tudor, M. J. Muller, and T. Dayton. A C.A.R.D. game for participatory task

analysis and redesign: macroscopic complement to PICTIVE. In CHI ’93: INTER-

ACT ’93 and CHI ’93 conference companion on Human factors in computing systems,

pages 51–52, New York, NY, USA, 1993. ACM Press.

[103] S. Twigger, J. Lu, M. Shimoyama, D. Chen, D. Pasko, H. Long, J. Ginster, C.F.

Chen, R. Nigam, A. Kwitek, et al. Rat genome database (rgd): mapping disease onto

the genome. Nucleic Acids Research, 30(1):125–128, 2002.

[104] S.N. Twigger, M. Shimoyama, S. Bromberg, A.E. Kwitek, and H.J. Jacob. The Rat

Genome Database, update 2007–Easing the path from disease to data and back again.

Nucleic Acids Research, 35(Database issue):D658, 2007.

[105] E. W. Weisstein. Transitive. From MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram.com/Transitive.html.

[106] E. Wenger. Communities of practice and social learning systems. Organization,

7(2):225, 2000.

92

[107] R. W. White and G. Marchionini. A study of real-time query expansion effectiveness.

In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 715–716, New York, NY,

USA, 2006. ACM Press.

[108] G. Winters. Use case terminology. Software, IEEE, 22(2):67–67, 2005.

[109] L. Wong. Technologies for integrating biological data. Briefings in Bioinformatics,

3(4):389–404, 2002.

[110] L. Wood, V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A.L. Hors,

G. Nicol, J. Robie, P. Sharpe, B. Smith, J. Sorensen, R. Whitmer, R. Sutor, C. Wil-

son, et al. Document Object Model (DOM) Level 1 Specification. World Wide Web

Consortium Recommendation http://www.w3.org/TR/REC-DOM-Level-1/, 1998.

[111] K.P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search

and browsing. Proceedings of the conference on Human factors in computing systems,

pages 401–408, 2003.

[112] P. Zaphiris, K. Gill, T. Hoi-Yan Ma, S. Wilson, and H. Petrie. Participatory design

of information visualisation interfaces for digital libraries. In World Conference on

Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA), 2004.

[113] B.R. Zeeberg, H. Qin, S. Narasimhan, M. Sunshine, H. Cao, D.W. Kane, M. Reimers,

R.M. Stephens, D. Bryant, S.K. Burt, et al. High-Throughput GoMiner, an

‘industrial-strength’ integrative gene ontology tool for interpretation of multiple-

microarray experiments, with application to studies of Common Variable Immune

Deficiency (CVID). BMC Bioinformatics, 6(1):168, 2005.

