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Abstract

This thesis contains an investigation of bounds on distance measures, in
particular, radius and diameter in terms of other graph parameters.

In a graph G, the distance between two vertices is the length of a shortest
path between them. The eccentricity of a vertex v is the maximum distance
from v to any vertex in GG. The radius of G is the minimum eccentricity of a
vertex, and the diameter of GG is the maximum eccentricity of a vertex.

Vizing established an upper bound on the size of a graph of given order
and radius. In Chapter 2, we establish similar sharp bounds on the size of a
bipartite graph of given order and radius.

The inverse degree r(G) of a graph G is defined as r(G) = > ¢y Klgv. In
Chapter 3, we prove that, if GG is connected and of order n, then the diameter
of G is less than (3r 42+ 0(1))7‘(G)blg°l%. This improves a bound given by
Erdos et al. by a factor of approximately 2.

A graph G is a minimal claw-free graph if it contains no K 3 as an induced
subgraph and if, for each edge e of GG, G — e contains an induced claw. In
Chapter 4, we establish an upper bound on the diameter of a minimal claw-
free graph of given order.
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Chapter 1

Introduction

The purpose of this chapter is to define the most important terms that will be
used in this thesis and to present motivation for our study as well as provide
relevant background. Terms not defined in this chapter will be defined in
subsequent chapters as the need arises.

1.1 Graph Theory Terminology

A graph G = (V(G), E(G)) consists of a finite non-empty set V(G) of ele-
ments called vertices and a (possibly empty) set E(G) of 2-element subsets
of V(G) called edges. The number of elements in V(G) is called the or-
der and the number of elements in F(G) is called the size of G. If G has
only one vertex then we say that G is trivial; otherwise G is non-trivial. If
e = {u,v} € E(G), then we say that u and v are adjacent, while e is incident
with v and v. We also say that e joins u and v. We often write e = uw
instead of {u,v}.

The degree dega(v) of a vertex v of G is the number of edges incident with
v. A vertex of degree 1 is called an end-verter. The minimum degree §(G)
and the mazimum degree A(G) are defined as the minimum and maximum,
respectively, of the degrees of vertices in G. The neighbourhood Ng(v) of a
vertex v € V(G) is the set of all vertices adjacent to v in G; while the closed
neighbourhood Ng[v] is the union of {v} and its neighbourhood. If there is no
ambiguity, we may omit the subscript or argument G in the above notations.
The inverse degree, r(G), of G is defined as the sum of the inverses of the

degrees of the vertices of G, that is r(G) = X ,cv(q) @.



A walk W in a graph G is an alternating sequence
W g, e1,v1, .., Vg1, €g, Uk

of vertices and edges such that e; = v;_jv; for i = 1,2,..., k. A walk that
starts from vy and ends at v; in a graph is referred to as a vy — v; walk.
Since the vertices that appear in a walk determine the edges in the walk, we
can omit the edges in the description of a walk, and denote the walk W by
vovy ... vg. We call k the length of the walk, and write (W) = k. A path
is a walk in which no vertex is repeated. A path vgv; ... v, that begins at
vertex vy and ends at vertex vy is called a vy — vg path. A cycle of length k
is a walk vov; ... v in which k > 3, vg = vy, and the vertices {vy, v ..., vx}
are distinct. A cycle of length k is referred to as a k—cycle. A graph which
contains no cycles and in which there is a walk from each vertex to every
other vertex in the graph is called a tree.

For given sets S and T, S C T means that S is a subset of T, and S C T
means that S is a proper subset of T, that is, S C T and S # T. A graph
H=(V(H),E(H))isasubgraph of Git V(H) C V(G) and E(H) C E(G). If
V(H) =V(G), then H is a spanning subgraph of G. If a spanning subgraph
G' of a graph G is a tree, then G’ is called a spanning tree of G. The
complement G of a graph G is the graph with V(G) = V(G), and such that
wv is an edge of G if and only if uv is not an edge of G. The cardinality
of a set S is denoted by |S|. If S C V(G) is non-empty, then the subgraph
induced by S is the maximal subgraph of G with vertex set S, and is denoted
by (S)¢. For two subsets S and T of V(G), [S, T| denotes the set of all edges
which join a vertex in S to a vertex in 7.

A graph G is connected, if for any two vertices v and v, there is a u — v
path in G. A component of a graph GG is a maximal connected subgraph of
G. For a subset S of V(G), G — S is the graph obtained from G by deleting
every vertex in S and all edges incident with it; if S = {v}, then we write
G—S=G—v. Asubset S C V(G) is called a cutset if its deletion increases
the number of components in G, and a vertex v whose deletion increases the
number of components is called a cut-vertex, and a non-cut vertex or ncv
otherwise. For a subset F' of E(G), G — F is the graph obtained from G by
deleting all edges of F’; if F' = {e}, then we simply write G — F =G —e. A
subset F' C E(G) whose deletion increases the number of components of a
graph G is an edge-cut. The edge-connectivity \(G) of a connected non-trivial
graph G is the minimum cardinality of an edge-cut of G. If G is disconnected



or trivial, then we define \(G) = 0. We say that G is k-edge-connected if
k< \G).

A block B of a graph G is a maximal connected subgraph of G that has
no cut-vertices. Hence, for any cut-vertex v of G, B — v lies entirely in one
component of G — v. A vertex x is said to be separated from a vertex y
by a vertex v if v lies on every = — y path (i.e., if z and y are in different
components of G — v).

The union G7U G5 of two graphs G and Gy is the graph with vertex set
V<G1 U GQ) = V(Gl) U V(G2> and edge set E(Gl U Gg) = E(G1> U E(Gg)
The union of k disjoint copies of G is denoted by kG. The join Gy + G2 of
two vertex disjoint graphs GG; and G4 is the graph consisting of the union
G1 U G, together with all edges of the type zy, where z € V(G;) and
y € V(G3). For k > 3 vertex disjoint graphs Gy, G, ..., Gy, the sequential
join G1+Gy+. ..+ Gy is the graph (G14+G2)U(Gy+G3)U. . .U (Gr_1+Gk).
The sequential join of k disjoint copies of G will be denoted by [k]G, while
k1G14 ko] Ga+k3G3 will denote the sequential join k1 G14+Ga+. . .+Go+ksGs.

A complete graph K, of order n is the graph in which each vertex is
adjacent to all the other n — 1 vertices of K,,. A graph G is bipartite if it can
be partitioned into two (non-empty) subsets V; and V3 such that every edge
of G joins a vertex of V;j to a vertex of V5. If each vertex of Vj is joined to
every vertex of V5, then G is called a complete bipartite graph, and is denoted
by K, m, where n = |Vi| and m = |V4|, or vice versa. A path-complete graph
PK, ,, of order n and size m is the graph obtained by joining one end-vertex
of a (possibly trivial) path to at least one vertex of a complete graph. For
convenience, we define PK; g = K. Swart [47] showed in 1996 that for any
n€ Nand m € {n—1,n,...,(%)}, PK, s unique up to isomorphism,
where, for r € Rand k € N () = T(T*l)kw

The graph K, is called a star. We refer to the star K3 as a claw with
the vertex of degree 3 as its centre. For any graphs G and H, G is said
to be H-free if it does not contain H as an induced subgraph. Let G be a
non-empty claw-free graph. If the removal of any edge of GG produces a graph
which is not claw-free, then G is a minimal claw-free graph, briefly denoted
as an m.c.f. graph or m.c.f.g.



1.2 Distance Concepts

All graphs considered henceforth are connected and non-trivial, unless oth-
erwise specified. Let G be a given graph of order n. The distance dg(u,v)
between two vertices u,v € V(G) is the length of a shortest u — v path in
G. The eccentricity eq(v) of a vertex v € V(G) is the distance from v to
a vertex farthest from it in G. The radius of G, rad(G), is the minimum
eccentricity of a vertex in G, that is, rad(G) = minyey(g) e(v). The diam-
eter of G, diam(G), is the maximum eccentricity of a vertex in G, that is
diam(G) = max,ey(q) e(v). If {u,v} C V(G) is a pair of vertices of G' with
da(u,v) = diam(G), then {u, v} is referred to as a diametral pair of vertices.
Any shortest path joining two diametral vertices is called a diametral path.

A vertex c of G is called central if eq(c) = rad(G). The centre C(G) is the
set of all central vertices in G. An eccentric vertex of a vertex v is a vertex
farthest away from v. If there is only one such vertex u, then w is called the
unique eccentric point (or uep) of v. A conjugate verter v* of a vertex v is
a central vertex which has v as its uep. (So a vertex might have more than
one conjugate vertex, or none.) A conjugate pair is a pair of central vertices,
each of which is the uep of the other.

The distance of v in GG is defined as

o(v,G) = Z dg(v,u),

ueV(G)

and the distance of G as

@)= ¥ dg(v,u):; Y o0, G).

{u,w}CV(G) veV(G)

The average distance u(G) of a graph G of order n > 2 is the average of
the distances between all unordered pairs of vertices of GG. In other words,

20(G)

wG) = m

One sees that p(G) is the arithmetic mean of all non-zero distances in
G. This ensures that 1 < pu(G) with equality if and only if G is a complete
graph.

The i-th distance layer N;(v) of a vertex v € V(G) is the set of vertices
at distance i from v. (So Nij(v) = N(v)). N<;(v) is the set of vertices at
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distance at most ¢ from v, that is
N<i(v) ={u e V(G)|dg(v,u) < i}.

Similarly, N>;(v) = {u € V(G)|dg(v,u) > i}.

For non-empty subsets V;,V, C V(G), the distance between V; and V5,
d(V1,V4), is defined as the minimum value of dg(a, b) taken over all vertices
a € V1,b € V,. Hence d(Vi,V2) = 0 means that V; NV, # 0. If V) = {a} has
a single vertex, we write d(a, V3) instead of d(V7, V5).

A subgraph H of G is said to be distance-preserving from a vertex v in
G if dg(v,u) = dg(v,u) for all w € V(H). A spanning tree T of G is said to
be radius-preserving if rad(G) =rad(T).

We define a non-trivial graph G to be vertez-radius-decreasing if rad(G —
v) < rad(G) for every ncv v of G.

We say that G is radius-critical if rad(G — u) # rad(G) for every vertex
u e V(G).

1.3 Literature Review

1.3.1 Motivation and Background

The purpose of this subsection is to give some motivation for our research
and to provide background for relevant results. Proofs of some of the results
will be given in the next subsection.

Since discrete structures are naturally modelled by graphs, this provides
a motivation for studying distances in graphs, both theoretically and its
applications. In fact, the distance between two vertices is one of the most
thoroughly studied concepts in graph theory, and a book devoted to this
subject was written by Buckley and Harary [3].

An important motivation to study distance concepts is the application of
distance parameters in analyzing transportation networks. Consider a trans-
port network consisting of locations (cities, computer processes or telephone
receivers for instance) and transportation links (railway links, links for data
transport or telephone lines for instance). A graph may conveniently model
such a network, where vertices correspond to locations and edges correspond
to the transportation links between the locations. Often the travel time be-
tween two locations, is proportional to the distance between the correspond-
ing vertices in the graph. In such a network, decision problems involving the



optimal selection of one or more sites to locate emergency facilities arises.
If one wishes to place, say, an emergency facility like a hospital or a fire
station, then a primary concern in choosing such a location is that the travel
time/distance from the emergency facility to a location farthest from it is as
small as possible. If the best location for the emergency facility is chosen,
then the radius of the graph is a measure that indicates the travel time from
the emergency facility to a location farthest away. Thus the radius of a graph
is an important measure of centrality. The travel time between two locations
which are farthest apart in the network, that is, the maximum travel time be-
tween any two locations, is proportional to the diameter of the corresponding
graph. If any two locations are chosen at random, then on average, the travel
time between them is proportional to the average distance of the graph.

Such network applications are not solely limited to transportation sys-
tems, and in fact occur in many diverse areas such as metabolic and gene
regulation networks in cells (see [51]), ecology and economic interactions.

The central vertices in a network are of particular interest because they
may play the role of organization hubs. In addition to mathematicians,
many biologists, sociologists, historians and geographers (see [45], [51] for
references) have been interested in the concept of centrality.

Using Dikjstra’s algorithm, which determines the distance from a vertex
of the graph to every other vertex in the graph, we can for a given graph com-
pute the radius, diameter and average distance in polynomial time. However,
if the graph is not given but we know some of its properties, like size, order,
or minimum degree, or we know, say, that the graph is bipartite or claw-free,
then we may be interested in knowing bounds on the parameters radius, di-
ameter and average distance in terms of some of the known properties of the
graph. In Chapter 4, we determine an upper bound on the diameter of a
m.c.f.g. given its order. In the remainder of this subsection, we give other
examples of such bounds.

1.3.2 Radius and Diameter

It is well-known and easily proved that for a graph G, we have
rad(G) < diam(G) < 2rad(G).

In 1973, Ostrand [41] showed that this is the only restriction on the
diameter in terms of radius. He also showed that for any given r,d € N,



with r < d < 2r — 2, there exists a graph with radius r» and diameter d.
The minimum order of such a graph is r + d and moreover, there are exactly
[%J +1 non-isomorphic graphs of order r+d, radius r and diameter d. Each
graph consists of two paths wgu; ... ugs and us(= vo)vive ... VU s(= ;)
with only the vertices u, and u,,, in common, where 0 < s < L%j

Erdos, Pach, Pollack and Tuza [18] proved that if G is a graph of order

n and minimum degree §, then

diam(G) < b?flJ -1
The bound on diameter was also proved by several authors ([1], [29], [32]
and [36]).
Erdos, Pach, Pollack and Tuza [18] proved that if G is a connected graph
of order n and minimum degree 6(G) > 2, then

w

rad(G) < (n—3)

So6an ™

and also constructed graphs that, apart from the additive constant, attain
the bound and, moreover, they gave improved bounds for Kj3-free and Cy-free
graphs. Using different methods, Dankelmann, Dlamini and Swart [9, 10, 15]
obtained the slightly stronger bound

3/, n
rad(G) < §<5+ 1) + 1.

Dankelmann, Mukwembi and Swart [37] proved that if G is a 3—edge-
connected graph of order n, then

1 17
d(G) < = -
rad( )_3n+3,

and also constructed graphs to show that the bound is sharp apart from the
additive constant.

Many conjectures of the computer programme GRAFFITI [22, 23] led to
the discovery of relations between parameters that seemed to have no obvious
inter-dependence. GRAFFITI conjectured that the radius of a graph is not
more than its independence number. This was successfully proved by various
authors (e.g. [25]) and a slightly stronger result can be found in [20]. Let G be
a connected graph. Recall that G is radius-critical if rad(G —u) # rad(G) for

7



every vertex u € V(G). Gliviak [27], among others, gives a survey of results
on critical graphs. Whilst the deletion of an edge from G never decreases
the radius of G and the addition of an edge of the complement of G to G
never increases the radius of G, the inequality rad(G —u) > rad(G) for every
vertex u of G is not always true. Segawa [44] proved that if G is a connected
graph and F is a subset of E(G) for which G — F' is connected, then

Ml

rad(G — F) < (|F| + Drad(G) 5

Fajtlowicz [21] characterized r-critical graphs, which are an important
special class of critical graphs. A graph G is r-critical if G has radius r and
every proper induced connected subgraph of G has radius strictly smaller
than r. Fajtlowicz [21] defines certain graphs of radius r > 2 called r-ciliates,
as follows. Let C,, be a graph obtained from p disjoint copies of the path
P, 11 of order ¢g+1 by linking together one end vertex of each P, in a p-cycle
Cp. An r-ciliate is the graph Ch,, 7 — ¢, and Fatjlowicz proved that a graph
G or radius r > 2 is r-critical if and only if G is an r-ciliate.

A graph G is called edge-radius-decreasing or erd if rad(G + e) < rad(G)
for every e € E(G). For example, any cycle of even order is erd, while no path
is (since its endpoints can be joined to form a cycle of the same radius.) Erd
graphs have been studied by Nishanov [39, 40], Harary and Thomassen [31]
and Glivak, Knor and Soltés [28], but no simple characterizaton is known.
Vizing [49] considered a special class of erd graphs - viz., those graphs of given
order and radius with the maximum possible number of edges (see Theorem
3). This proof was further refined in [47]. In Chapter 2, we establish a similar
sharp upper bound on the size of a connected, bipartite graph of given radius
and order (see Theorem 4).

1.3.3 Average Distance

The concept of the distance of a graph was first introduced in 1947, by
Wiener [50], a chemist and is thus often referred to as the Wiener index. Since
then there have been numerous papers in chemistry dealing with applications
of the average distance (see, for example, [43].) In organic chemistry, the
vertices of a graph might represent carbon atoms in a molecule and the
edges represent the chemical bonds between them. Wiener himself observed
that the melting point of certain hydro-carbons is directly proportional to
the Wiener index of the corresponding graph.

8



One might expect the average distance of a graph to be dependent on the
radius or the diameter of the graph, but this is not the case. Plesnik [42]
showed that apart from the obvious bound

1 < u(G) < diam(G),

the average distance of a graph is essentially independent of its radius and
diameter. Specifically, Plesnik showed that for any given r,d € N and t,¢ €
R, where r < d < 2r,1 <t < d, and € > 0, there exists a graph G with
rad(G) = r, diam(G) = d and |pu(G) —t] < e.

Many conjectures of the computer program GRAFFITI [22, 23| involve
average distance. A well known example is the inequality u(G) < a(G),
where (@) is the independence number of G. This was proved by Chung [7]
and improved by Dankelmann [8]. A GRAFFITI conjecture involving two
distance parameters, rad(G) < pu(G) + r(G), was disproved by Dankelmann,
Oellermann and Swart [13]. The, less unexpected, GRAFFITI conjecture
w(G) < n/o(G), where 6(G) is the minimum degree of G, generated consid-
erable interest. Asymptotically stronger inequalities were proved by Kouider
and Winkler [33] and Dankelmann and Entringer [11]. The GRAFFITT con-
jecture was finally settled by Beezer et al. [2], which improved the result in
(33].

GRAFFITI also made the attractive conjecture u(G) < r(G) (see [22,
23]). This conjecture, however, turned out not to be true as Erdos, Pach and
Spencer [19] disproved it by constructing an infinite class of graphs with av-

erage distance at least (3 LT(??)J +0o(1)) 1o§’ign and diameter at least (2 L@J +

o(1)) log’ign. Furthermore, they proved the upper bound, diam(G) < (6r(G)+

2+ 0(1))10§ign. In Chapter 3, we improve upon the upper bound by Erdos,

Pach and Spencer by a factor of two. We show that

1
diam(G) < (37‘(G) +2+ o(l))b;i;l,

and thus p(G) < (3T(G) +24 0<1)) logn

loglogn”

1.3.4 Survey of Important Results

In this subsection, we survey some important results that are related to
distance concepts. Some of these results will be used as lemmas in subsequent



chapters, while others are included because they provide interesting bounds
on distance parameters. We give proofs of those results whose proofs are
neither long nor obvious. Some of these results have already been mentioned
in the previous subsection. Most of these results can be found in most Graph
Theory textbooks (see, for example [3] and [5]).

Proposition 1 Fvery connected non-trivial graph contains at least two ncv’s,
and the only graphs containing exactly two ncv’s are paths.

Proposition 2 For any connected graph G, the centre C(G) is contained in
one block of G.

The next three results deal with trees.

Proposition 3 Let T be a tree of radius r. Then either diam(T) = 2r and
C(T) contains ezactly one vertex, or diam(T) = 2r — 1 and C(T') consists of
two adjacent vertices.

Proposition 4 In a tree, no vertex can be equidistant from two adjacent
vertices.

Proposition 5 Let G be any connected graph, and v any vertex in G. Then
G contains a spanning tree which is distance-preserving from v.

Such a tree can be found using the breadth-first-search algorithm with v
as root (see, for example, [3]). We will usually denote it by T,.
The next results deal with spanning trees.

Proposition 6 If T is a radius-preserving spanning tree of a graph G then

O(T) C C(@).

Proof Let ¢ be any central vertex of T'. Since removing edges cannot
decrease the eccentricity of any vertex, eg(c) < er(c) =rad(T") = rad(G). It
follows that eg(c) = rad(G); i.e., that ¢ € C(G). |

Note that if a spanning tree T" of a graph G is not radius-preserving, then
C(T') is not necessarily contained on C(G).

Proposition 7 Let c be any central vertex of a connected graph G, and let T,
be a spanning tree of G which is distance-preserving from c¢. Then c € C(T.),

and rad(T,.) = rad(QG).

10



Proof Since T, is distance-preserving from ¢, rad(7;.) < er.(c) = eg(c) =
rad(G). Since removing edges cannot decrease the eccentricity of any vertex,
it follows that rad(7,) =rad(G) and that ¢ € C(T¢). |

Not all radius-preserving spanning trees, however, are distance-preserving
from some vertex. Proposition 7 has another useful consequence:

Proposition 8 For any connected graph G of order n and radius r,

1
r< {nJ .
2
Proof Let ¢ be any central vertex of GG, and let T, be a spanning tree of
G which is distance-preserving from c¢. By Proposition 7, rad(T,) = r, and
hence diam(7,) = 2r or 2r — 1. Now let P be any diametral path of 7., and

note that P has diam(7,.)+1 > 2r vertices. It follows that n > 2r, and hence
that » < [3n]. |

It is tedious but not difficult to show that equality holds if and only if
(1) G is a path or cycle, or
(2) n is odd and G consists of a path or cycle of order 2r, a vertex w, and
one, two or three edges joining w to vertices which are at most distance 2
apart in G — w.

Theorem 1 [20] Let G be a connected graph of order n and minimum degree
6 >2. Then

(i) diam(G) < 5?1 1
(71) rad(G) < _sn +95
—20+1)

Furthermore, (i) and (ii) are tight apart from the exact value of the ad-
ditive constants, and for every 6 > 5 equality can hold in (i) for infinitely
many values of n.

Proof (i) Denote diam(G) by d and let v be a vertex of G such that
eqg(v) = d. By the condition on minimum degree, |N;_1(v)| + |N;(v)| +

11



|INit1(v)] > 0 + 1 for all integers i with 0 < ¢ < d, where N_;(v) = () =
Ngy1(v). Define the integer k by d = 2k + r,r € {0, 1,2}. Hence,

E+1

k
N’L N'L NZ Z — .
; 3i-1(V)] + [ N3i(v)] + [ N3iq1(v)]) 51

Rearranging and using k = 5~ > d3 yields (i).

(ii) Let z be a fixed central vertex of G and denote rad(G) by r. Form
a spanning tree T' of G that is distance-preserving from z. Since N,(z) # 0,
let 2, be a fixed vertex in N,(z). For y € V(G) denote a z — y shortest
path in T by T'(z,y). Then it can be shown, (see [20], for example) that
there exists a vertex y € Ng(z), where s > r — 5, for which no two vertices
u € (V(T(z,y)) N N>5(2)) and v € (V(T(z,2,)) N N>5(z)) are such that
da(u,v) < 2. Forany i, let N] = {x € N;(2)|da(z, V(T(z,2,))NN>5(2)) < 1}
and N/ = {z € N;(2)|da(z, V(T(z,y)) N N>5) < 1}. It follows that

T

(UN)In(UnN) =0
i=4 i=4
and by the condition on minimum degree, we have |N/_; |[+|N/|+|N/,;| > 0+1
for all integers ¢ with 5 < ¢ < r, and [N/ ;| + |N/| + |N/.;| > ¢ + 1 for all
integers ¢ with 5 < i < s. Bounding n from below yields

s+1

n > |Nxs(z |+Z|N’| +Z|N”| > (2r —10)(6 + 1) + 3,

and we arrive at (ii).

To show that (i) and (ii) are tight apart from the exact value of the
additive constants, consider the following graph. Given integers n, k,d with
k>10>5andn=*k(60+1)+2, let G5 =Go+ G1 + - + Gzj_1, where

K if 1 =0 mod 3 or i = 2 mod 3,
Gi=1{ Ks ifi=1,3k — 2,
Ks_1 otherwise.

Clearly, G}, 5 has minimum degree 9, n vertices, diam(G,, 5) = 3 (”—*2) —1

and rad(G, ) = ﬁ((’;j)) - ﬂ |

The trivial sharp restriction 1 < p(G) on the average distance of an
arbitrary graph G can be greatly improved for a graph of given order and
size.
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Theorem 2 [17] Let G be a graph of order n > 2 and size m. Then
o(G) >n(n—1) —m,
with equality if and only if diam(G) < 2.

Proof There are (§) ordered pairs of vertices of which m are at dis-
tance 1 apart and () — m are at distance at least two apart. It follows that
o(G) > m+2((5) —m) = n(n—1) —m, with equality if and only if there are
no pairs of vertices at distance 3 or more apart, that is, if diam(G) < 2.

Corollary 1 Let G be a graph of order n > 2 and size m. Then

2m
n(n—1)
with equality if and only if diam(G) < 2.

uG) =2 -

Clearly, the lower bound provided in Corollary 1 is sharp for A-edge-
connected and k-vertex-connected graphs, as complete graphs attain the
bound. The same corollary also implies that the average distance of a graph
GG is minimized if G' has maximum size and diameter at most 2. This leads
to the following corollary, which is found in [42].

Corollary 2 [42] Let G be a graph of order n > 2. Then we have the fol-
lowing sharp lower bounds on u(G):

(a) 1, for arbitrary G (see [16] and [17]);

(b) 2— 2 if G is a tree (see [17] and [35]);

(c) 2 — S(’;’_lf), if G is planar and n > 3 (see [42]);

(d) 2 — nth:?)’ if G is outerplanar (see [42]);

(e) % — Q(Tl_l), if n is even and G is triangle-free or bipartite (see [42]);

(f) 3 — 5=, if nis odd and G is triangle-free or bipartite (see [42]);

on’

() (T i), where T, i, is the k-partite Turdn graph (see [48]).
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Proof By Corollary 1, (a), (¢) and (d) follow from the fact that m < (%)
for all graphs, m < 3n — 6 for planar graphs and m < 2n — 3 for outplanar
graphs while (b) follows from that the fact that m = n — 1 for every tree;
(e), (f) and (g) are obtained from the well-known Turdn Theorem (see [34]).1

Cerf, Cowan, Mullin and Stanton [4] gave lower bounds on the distance
of regular graphs whereas Plesik [42] gave lower bounds on distance in terms
of the order and diameter of a graph.

The techniques for constructing spanning tree developed by Dankelmann
and Entringer in [11] are generalized in [15].

Lemma 1 [15] Let G be a graph of order n, and let i > 1 be a given integer.
Suppose that |N<;(v)| > f > 1 holds for every vertex v € V(G). Then G

contains a spanning tree T with u(T) < % + %. Moreover,

(i) diam(G) < Qi;rln -1

(i) rad(G) < 2§f1n+i.

Setting ¢ to be 1 above gives |N(v)| > 0 + 1 which implies the following
corollary:

Corollary 3 [15] If G is a connected graph of order n and minimum degree
0, then

(i) diam(G) < 2o — 1,

— 4+1
(i) rad(G) < 54y + 1.

The next theorem is due to Vizing [49], where he considered a special
class of erd graphs - viz., those graphs of given order and radius with the
maximum possible number of edges.

Theorem 3 [49] Let n and r be any natural numbers such that n > 2r > 2.
Define f(n,r) to be the mazimum possible number of edges in a graph of
order n and radius v, and C(n,r) to be the set of all graphs with order n,
radius v and f(n,r) edges.

For any natural numbers n and r such thatn > 2r > 2,
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@) f(n1) = bnfn— 1)
b) f(n,2) = gn(n —1) — [3n] = |gn(n — 2)]
¢) f(n,r) = 3(n* —4rn+5n+4r? — 6r) forn > 2r > 6.

N =

Proof The graph with radius 1 and the maximum possible number of
edges is the complete graph. C(n,2) consists of all graphs obtained from K,
by removing [3n] edges covering V(K,). Graphs in C(n,r), n > 2r > 6,
consist of a complete graph K,,_,, and a cycle Cs,., where every vertex of the
K, _», is joined to the same three consecutive vertices of Cs,.

We use double induction on n and r to show that f(n,r) < (n? —4rn+
5n + 4r? — 6r) for n > 2r > 6. Let G be any graph in C(n,r) and if G is not
a vertex-radius-decreasing graph - i.e., G contains a ncv v such that rad(G —
v) > r, then the result follows easily using the induction hypothesis. So, G
must then be a vertex-radius-decreasing graph and Vizing, then, considers if
G contains at least one cut vertex. If G does, then the result follows easily
using the induction hypothesis. If G has no cut vertices, then by Menger’s
Theorem, each pair of vertices of GG is contained on a cycle of length at least
2r. Let M be a shortest cycle of length at least 27 in G and let M have length
[. Tt can be shown that M is an induced cycle of G and that no vertex in
V(G)— V(M) can have more than three neighbours on M. Since n > [ > 2r,

fln,r) = |E(G = M)| + [E(M)] + |[V(G = M), V(M)]
(n*l)(;*lfl) +1+3(n—1)

5(n® — 4rn + 5n + 4r? — 6r).

INIA I
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Chapter 2

The Number of Edges in a
Bipartite Graph of Given
Order and Radius

2.1 Introduction

As remarked in Chapter 1, a graph G is called edge-radius-decreasing if
rad(G + e) < rad(G) for every e ¢ E(G). Vizing [49] considered a special
class of erd graphs - viz., those graphs of given order and radius with the
maximum possible number of edges (see Theorem 3).

Similarly, in this chapter, we establish a similar sharp upper bound on the
size of a connected, bipartite graph of given radius and order (see Theorem
4).

We will make frequent use of the following definitions. A vertex v is called
a cut-vertex if {v} is a cutset, and a non-cut-vertex or ncv otherwise. An
eccentric vertex of a vertex v is a vertex farthest away from v. If there is
only one such vertex u, then u is called the unique eccentric point (or uep)
of v. A conjugate vertex v* of a vertex v is a central vertex which has v as
its uep. (So a vertex might have more than one conjugate vertex, or none.)
A conjugate pair is a pair of central vertices, each of which is the uep of
the other. We define a non-trivial graph G to be vertex-radius-decreasing if
rad(G — v) < rad(G) for every nev v of G.
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2.2 Preliminary Results

Figure 2.1: An example of a graph in B.

Definition 1 The set B(n,r) consists of all graphs G obtained from Cs,
with three consecutive vertices replaced by aK,,0Ky,cKy, where a + ¢ =
(=23 p = |22 | or a4 c = |EE| b = =243 We shall use
the notation V{(G) = V(aK; UcKy) and V3(G) = V(bK,). (See Figure 2.1).

Let h(n,r) = {”ZQJ —nr+1r%+2n—2r forn > 2r > 8.
In the proof of Lemma 2, we denote, for a vertex v of G, the star (Ng[v])a
by S¢(v).

Lemma 2 Let G be a connected bipartite graph of order n and radius at least
r>4. Ifu,v € V(G) with d(u,v) # 2, then deg u + deg v <n —2r +4. If
deg u + deg v = n—2r+4 then m(G) < h(n,r). Ifdeg u + degv = n—2r+4
and m(G) = h(n,r), then G is one of the graphs in the family B(n,r).

Proof Let F be the union of the two stars Sg(u) and Sg(v). Since u
and v have no common neighbours, F' contains no cycle. Hence there exists
a spanning tree 1" of G containing F'. Let P be a diametral path of 7. By
rad(7) > rad(G) > r, we have diam(7) > 2r — 1; so P has at least 2r
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vertices. Since P contains at most two neighbours of v and v, respectively,
we have

(V(T) = V(P)| > degp(u) + degp(v) —4 = degg(u) + degg(v) — 4.

Hence
dega(u) + degn(v) <n—|V(P)|+4<n-—2r+4,
as desired.
Now assume that deg v + deg v = n — 2r + 4. Then P has exactly 2r
vertices, say, P = wp,wi,...wy_1, rad(T) = r, and v and v are internal

vertices of P, say u = w, and v = wy; where (say) a < b. Moreover, T has
the following properties:

(a) each vertex not on a diametral path is an end-vertex of 7" and adjacent
to u or to v,

(b) all vertices other than u or v have degree at most 2 in 7.

To see that these two properties hold observe that, if one of them is
violated, then a diametral path of 7" misses more than degg(u) + degg(v) —4
vertices, and thus has fewer than 2r vertices, hence T has radius less than r,
a contradiction.

It is clear that every spanning tree of G containing F' has properties (a)
and (b). We can choose T to also have the property of preserving the distance
between u and v. This can be achieved by considering the union F’ of F’ and
a u — v geodesic in G. Clearly F’ is a (not necessarily spanning) subtree of
G, so there exists a spanning tree T of GG containing F” which has the desired
property.

We now consider which edges G can contain, in addition to those of T
We show that, if e € F(G) — E(T), then either
(i) e = wowg,_1, or
(ii) e joins a vertex in N(u) to a vertex in N(v), or
(iii) e = xwqyo O € = TW,_5 for some vertex x € N(w,) — V(P), or
(iv) e = zwpyo O € = Twy_o for some vertex z € N(w,) — V(P).

Note that the indices are taken modulo 2r, so if a = 2r — 2 then a vertex
x € N(w,) can be joined to wy.

First assume that e joins two vertices of P. Suppose that e = w;w; with
w;w; # wowsz,—1. Then at least one of the end points of e, say w;, has degree
at least 3 in T+ e. Let w; be such a vertex. Clearly, e is not incident with
u or v since v and v have the same degree in G and in T, so w; # wg, wy.

18



Consider the union of three stars Sg(u), Sg(v) and Spye(w;), which we
denote by Fi. First we show that I} contains a cycle. Suppose to the contrary
that F} is a forest. Then there exists a spanning tree 77 of G containing F7.
In T}, vertices u and v have degree degs(u) + degg(v), respectively, but v;
has degree at least 3, so T} does not have property (b), a contradiction. This
shows that I} contains a cycle C. Clearly, C| must contain w; and either
w, and its two neighbours on P or wj, and its two neighbours on P. Without
loss of generality we assume the former, so C contains w,, wqy1, Wi, We_1. SO
t=a+2and e = w, Wei20ri=a—2and e = wy_oWey1. If € = w4 1W4i0
consider the tree 7" =T — w, 1 1Wa12 + Wa_1Way2. Clearly, u and v have full
degree in 7", but w,_; has degree 3, contradicting property (b). Similarly, if
€ = Wyq_oWay1 thetree T = T —w,_ow,_1 +w,_ w411 does not have property
(b), a contradiction. Hence wows,_1 is the only edge between two vertices of
P present in G but not in 7.

Now let e € E(G)—E(T) be an edge joining a vertex z € N(w,)—V (P) to
a vertex w; on P. Suppose that e is not of type (iii), i.e., that i # a —2,a+2.
Then either i > a +4 or i < a —4. (Note that in this part of the proof,
subscripts are not taken modulo 2r.)

CASE 1: w; is not a neighbour of w, on P.

Soit #b—1,b+1. If i > a+ 3 consider the graph T + zw;, which
has the unique cycle w,w,1weis ..., w;zw,. Clearly, all edges in the set
E' = A{we1Waro, WaioWays, ..., w;_ow;_1 } are on this cycle, so T+xw;—e' =:
T(e') is a spanning tree of G for all ¢/ € E’. Since vertex w; has degree 3
in T'(¢'), and vertex w, has full degree, property (b) implies that in T'(¢’)
vertex w, does not have full degree. So each edge in E’ is incident with
vertex wy,. Since only two edges of E’ can be incident with wj,, we have
E' = {ws1wWaro, Waiowers} and wy, = weyo. But then w, and w, are at
distance 2, contradicting our hypothesis. If © < a — 3 then similar arguments
lead to the same conclusion.

CASE 2: w; is a neighbour of w;, on P.

Soi=b—1ori=b+ 1. Then w,zw;w, is a (w, — wy)-path of length
3, so w, and wy are at distance 1 or 3 in 7" (and in G). First consider the
case that w, and w, are at distance 1, so b =a+ 1. Then i = b+ 1 (since
i =b— 1= ais not possible) and thus i = a + 2; so e = Tw,,2, as desired.
Now consider the case that w, and w, are at distance 3; hence b = a + 3.
But theni € {b—1,b+ 1} = {a+2,a+4}. If i = a+ 2 then e = 2w,
so e is of type (iii). That leaves the case i = b+ 1 = a + 4. We show that
a+4=2r—1,1ie., that w,.4 is an end-vertex of P. Suppose to the contrary
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that 2r — 1 > a + 4. In the tree T — Wy 1Weyo + TWerg =: T', vertices u
and v have full degree and vertex w, 4 has three neighbours, contradicting
property (b). Hence a +4 = 2r — 1.

We now show that not all vertices in N(wj) are adjacent to a vertex in
N(w,). Suppose to the contrary that each vertex y € N(wj) has a neighbour
y' € N(w,). Then we can reduce the distance from w, to the end-vertices in
Np(w,) as follows. Consider the tree

T" =T — {ywy|y € Np(ws),y # we—r} +{yy'ly € Np(ws),y # wy—1}.

Since every end-vertex of T, except possibly wy, is within distance 3 of w,,
the distance from wy to any end-vertex of T" is at most dpn(wg, wy) + 3 =
2r —2, while any two end-vertices of T”, other than wy, are within distance at
most 5. Hence the diameter of 7" is at most 2r — 1, which implies rad(7") <
r — 1, a contradiction to rad(G) > r. This proves that there exist a vertex
y € Ng(wp) not adjacent to any vertex in Ng(w,). Hence, we can obtain, if
necessary by renaming y and wy,_1, that no vertex in Ng(w,) is adjacent to
to vertex w,14. Hence property (iv) holds.

We now show that in addition to properties (i)-(iv) the following holds:
(v) if z € N(w,), then at most one of the edges xw,_o, Tw,12 is present in
G,

(vi) if y € N(wp), then at most one of the edges zw,_o, xwy o is present in
G,

(vii) if zy € E(G) for some z € N(w,), y € N(wp), then b = a + 1 or
b=a+ 3.

To prove (v), suppose that a vertex x € N(a) is adjacent to w, o and
t0 Wayo. Then the tree 77 := T — {wy_oWq—1, War1War2} + {TW4_2, TW4 12}
preserves the degrees of w, and wy,, but has another vertex, namely x of
degree 3. This contradicts property (b), and so (v) holds. Similarly, (vi)
holds. Property (vii) follows directly from the fact that T preserves the
distance between w, and w, in G.

Now the bound on the size of G follows easily. In addition to the edges of
T, G can only have edges satisfying (i)-(vii). There is only one edge satisfying
(i), namely the edge wows,—1. The graph G has at most (deg w, — 2)(deg
wy — 2) < LWJ edges of the form zy, where z € N(w,) — V(P) and
y € N(wpy) — V(P), that are not in 7. Finally, each vertex not on P has at
most one edge, not in 7" joining it to a vertex on P. Hence
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m(Q) m(T) +1 j: (deg w, — 2)(deg wp — 2) 4+ (n — [V (P)])
n+ |22 ) - 2r

h(n,r),

A IA

as desired.

From the above proof it follows that, if m(G) = h(n,r), then ((N(w,) —
V(P) and N(w,)—V (P)]) is a balanced, complete bipartite graph of order n—
2r, wowy,—1 € E(G) and every vertex in N(w,)—V (P) (or in N(wp)—V (P))
is adjacent to either w, o or w,_o (or to either w,_o or wy, s, respectively.)

We show next that if x € N(w,) — V(P) and y € N(w,) — V(P), then
it is impossible that both xw, o and yw,,2 are edges in GG. Suppose to the
contrary that xw,_o, ywpre € E(G). Then b = a+ 3 as otherwise rad(G) < r
and consider the spanning tree 7" of GG, where

" .
T =1T-— {wb+1wb+2> Wa41Wa42, wa—lwa—2} + {ywb+2, ry, xwa—2}-

In T" the vertices w, and wj, have full degree, while x and y are both of
degree 3, which contradicts (b). Consequently, it follows that G € B(n,r).R

We now present propositions that will be needed in the proof of our main
result.

Proposition 9 [49] For any connected graph G of order n, A(G) < n —
2rad(G) + 2.

Proof Let v be a vertex of maximum degree in G, and let T, be
a distance-preserving spanning tree of G with v as root, so degy (v) =
degg(v) = A(G).

Let P be a diametral path of T,; then P has length diam(7},) > 2 rad(7,)—
1 > 2rad(G) — 1. So P contains at least 2 rad(G) vertices, at most two of
which can be neighbours of v (since if P contained three neighbours of v, we
would have a cycle in 7). Hence, there must be at least A(G) — 2 neighbours
of v which are not on P. It follows that n > 2 rad(G) + A(G) — 2. u

Definition 2 Given integers n,d with 3 < d < n, define the path-complete
bipartite graph as follows:

Gln,d) = [d—1— 1K, + V%HJ . PL—dH

5 5 le + [t] K7,

where 1 <t <d— 2.
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Proposition 10 [15] Let G be a bipartite graph of order n and diameter

d>3. Then

m(G)< ﬁ_nid+37n+dj_g_z
1 4 2 2 4 2 4]

and a path-complete bipartite graph G(n,d) attains the bound.

Proposition 11 [21] Let {v,v*} be any conjugate pair in a graph G 2 K.
If G — {v,v*} is connected, then removing v and v* from G cannot decrease
the radius.

Proof Let ¢ be a central vertex of G — {v,v*}, and let w be an eccentric
vertex of ¢ in G. Then dg(c,w) > rad(G). Since v and v* are within distance
rad(G)—1 from all vertices in G except each other, w cannot be v or v*. Since
removing v and v* cannot decrease the distance between ¢ and w, it follows
that eq_(v0-1(c) > dg(c,w), and hence that rad(G — {v,v*}) > rad(G). ®

Proposition 12 [26, 21| Let G be a graph containing an ncv v. Then
rad(G — v) < rad(G) if and only if v has a conjugate vertex, and in this
case rad(G —v) = rad(G) — 1.

Proof Let rad(G —v) < rad(G), and let ¢ be any central vertex of G —v.
So eg_y(c) =rad(G —v) <rad(G)—1 < eg(c) — 1. Since removing v cannot
decrease the distance between any of the remaining vertices, it follows that
v is the uep of ¢ in G. Furthermore, since c is still at distance eg(c) — 1 from
the neighbours of v, rad(G — v) = eg_,(c) > eg(c) — 1 > rad(G) — 1. It
follows that ¢ is a central vertex of G and that rad(G — v) = rad(G) — 1.

Conversely, let v be the uep of some central vertex ¢ in G. Then removing
v cannot increase the distance between ¢ and any other vertex w since v
cannot lie on a shortest ¢ — w path. It follows that eq_,(c) < eg(c), and

hence that rad(G — v) < rad(G). |

Proposition 13 [21] Let G be a vertez-radius-decreasing graph, and v a ncv
of G. If v is not central, then all its conjugate vertices are cut-vertices. If v
is central, then it has exactly one conjugate vertex v*, and v* is a ncv (so v
and v* form a conjugate pair).

Proof By Proposition 12, v has a conjugate vertex v*. If v* is also a
ncv of GG, then, since G is vertex-radius-decreasing, v* must have a conjugate
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vertex v**. Hence dg(v*,v**) = rad(G) - but the only vertex at distance
rad(G) from v* is v. It follows that v must be central, and v** must be v.

This proves firstly that if v is not central, then all its conjugate vertices are
cut-vertices, and secondly that v cannot have two conjugate vertices which
are ncv’s. (Otherwise both would need to have v as a conjugate vertex; i.e.,
both would need to be the unique eccentric point of v.)

If v* is a cut-vertex, let w be any vertex separated from v by v*. Then
eq(v) > dg(v,w) = dg(v,v*) + dg(v*, w) > rad(G) + 1; i.e., v is non-central.
It follows that if v is central, then it has a unique conjugate vertex v* and
v* is a ncv. [ |

Proposition 14 [26, 21] A graph G of order n is a vertez-radius-decreasing
block if and only if G is self-centered, n is even, and V(G) can be partitioned
mto conjugate pairs.

Proof This follows as a direct consequence of Propositions 12 and 13. B

Proposition 15 [21] In any vertez-radius-decreasing graph containing at
least one cut-vertex, every ncv has degree 1.

Proof Let G be a vertex-radius-decreasing graph containing a ncv v of
degree at least 2, and let x and y be any neighbours of v. We will prove that
then G has no cut-vertices.

By Proposition 12, v has a conjugate vertex v* such that dg(v*,v) =
rad(G) and dg(v*,u) < rad(G) — 1 for every u € V(G) — {v}. Hence,
dg(v*, ) =rad(G) — 1.

It follows that, if u is any vertex in V(G) —{v, 2}, then no shortest v* —u
path can contain x. In particular, G — x contains a v* — y path and hence a
v* — v path. So G — z is connected.

Since x € N(v) was chosen arbitrarily, it follows that no neighbour of v
is a cut-vertex. Since every neighbour of v has degree at least 2 (otherwise
v would have been a cut-vertex), it follows in the same way that no vertex
distance 2 apart from v is a cut-vertex, and so on. Hence, G contains no
cut-vertices. [ |

Proposition 16 Let G be a bipartite graph and let v be a vertex in a partite
set Vi,i=1,2. Then degv < |V5_;| —rad(G) + 2.
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Proof Let T, be a distance-preserving spanning tree of G with v as its
root; so degy, (v) = degg(v). Let P be a diametral path of T, Then P has
length diam(7,) > 2 rad(7},) — 1 > 2 rad(G) — 1. So P contains at least
2 rad(G) vertices, with at least rad(G) of them in V5_;. Moreover, at most
two of them can be neighbours of v on P. So there are at least degv — 2
neighbours of v which are not on P. So

|V5_;| > rad(G) + deg v — 2,

and Proposition 16 follows. [ |

2.3 The Main Result

In this section we shall obtain a bound on the size of a bipartite graph of
order n and radius r.
The following lemma deals with the case r = 4 of our main theorem.

Lemma 3 Let G be a bipartite graph of order n and radius 4. Then

2

m(G) < {ZJ —2n+ 8 for n > 8.

2

Moreover, if m(G) = VZJ —2n+ 38, then G € B(n,4).

Proof Since rad(G) = 4, there exists a vertex x € V(G) such that
e(r) = 4. Moreover, there is a vertex x4 € V(G) such that d(x,z4) = 4,
having xxixox374 as a shortest © — x4 path in G. For 1 < i < 4, let N;
be the ith distance layer of z. So x; € N; for 1 < i < 4. Since e(z;) > 4,
there is a vertex 7; € V(G) such that d(x1,Z;) = 4. Thus Z; € N3 and
x9Ty ¢ E(G). But T; must have a neighbour in Ny, say xf, where z}, # x5
and z125 ¢ E(G). Moreover, z, must have a neighbour in N; that is not x,
say o}. Since e(zy) > 4, there is a vertex Ty € V(G) such that d(zs, 7o) = 4,
where Ty & {x, x4}.

Suppose, without loss of generality, that = € Vi. Then certainly {x, x4}
and {zy, T2} are disjoint pairs of vertices in V;j that are distance 4 apart.
Since e(z}) > 4, there is a vertex 7} € V3 such that d(z],7]) = 4, where
) ¢ {x1,71}. Then certainly {x;,z,} and {z,z]} are disjoint pairs of
vertices in V5 that are distance 4 apart.
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So there exist four disjoint pairs of vertices, say w; and v;, such that
d(ug,v;) = 4 for 1 < i < 4, where u;,v; € Vi for i = 1,2 and w;,v; € V5 for
i = 3,4. Denote by G, the bipartite complement of G; that is the graph with
bipartition (V;,V2) such that for u € Vi, v € V, wv € E(G) if and only if
w ¢ E(G). Let V] = Vi — {uy, v1,ug, vo} and Vi = Vo — {us, vs, uq, v4}.

We show that m(G) > 2n — 8.

For each vertex w € V5, there exist edges e;(w) and es(w) joining w to a
vertex in {uy, vy} and {us, v9}, respectively, in G since otherwise dg(uy,vy) =
2. Similarly, for each vertex w € Vi, there exist edges e3(w) and e4(w) joining

w to a vertex in {us,vs} and {uy,vs}. Clearly, the subsets
A={e(w)w e Va} U{es(w)lw € Va},

B = {es(w)|w € V{} U {es(w)lw € V/'}
of F(G) are disjoint. Hence,

m(G) = |A[ + |B| = 2|Va| +2(V1] —4) = 2n. — 8.

We have m(G) + m(G) < VZQJ since the maximum size of a complete

bipartite graph is {%QJ Hence

as required.

We shall now show that if m(G) = V;J —2n + 8, then G € B(n,4).

Suppose that m(G) = [%QJ —2n + 8. Then, m(G) = 2n — 8, and hence,

m(G) = |A| + |B| = 2|Va| + 2(]V4| — 4). Hence, in G, every vertex in V; is
adjacent to exactly one vertex in {uy,v;} and exactly one vertex in {us, vs},
and every vertex in V{. Every vertex in V/ is adjacent to exactly one vertex in
{us,v3} and exactly one vertex in {u4,v4}. Let x,y be an arbitrary adjacent
pair of vertices in V/UV;. Then degg(x)+ dega(y) = |Vi|—2+|V2|—-2 = n—4.
Hence, by Lemma 2, the result follows. [ |

We now present our main theorem.

Theorem 4 For natural numbers n and r such that n > 2r > 2, the maxi-
mum number of edges in a bipartite graph of order n and radius at least r is
b(n,r), where
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a) b(n,1) =n—1,

2

b) bn,2) = |2,

2

¢) b(n,3) = | %] - |2].

d) b(n,r) = M—QJ —nr+r2+2(n—7r) forn>2r>8.

The bipartite graph with radius 1 and the mazimum number of edges is
the star Ky ,—1. The bipartite graph with radius 2 and the mazimum number
of edges is the complete bipartite graph Kfﬂ-| 2] The bipartite graph with

2 1°L2
radius 3 and maximum number of edges is obtained from the complete graph
K["} ERE by the remowval of a minimum edge cover. If G is a bipartite graph

2 °L2
with radius 4 and the maximum number of edges, then G € B(n,r).

Proof a) The only bipartite graph with radius 1 and order n is the star
K -1, which has n — 1 edges.

b) The bipartite graph with radius 2 and the maximum number of edges
is the complete bipartite graph K[ 112 which has [%1 PJ = [%J edges.

z 2
2 2
c¢) Let G be a bipartite graph of order n, radius 3 and partite sets V; and
V,. Since rad(G) = 3, every vertex in Vi must be non-adjacent to at least

one vertex in V3, and vice versa. Thus, m(G) > [5], and since the maximum

n? Val

size of a complete bipartite graph is L”;j, we have m(G) < [%-] —m(G), and
thus m(G) <[] — [ 2].

d) Let G be a bipartite graph of order n, radius at least r and maximum
size with partite sets V7 and V5.

By double induction, we prove that if G has order n and rad(G) > r,
then m(G) < b(n,r) for n > 2r > 8, and m(G) = b(n,r) if and only if
G € B(n,r).

We first show the inequality for the case n = 2r, i.e., we show that
m(G) < b(2r,r) for r > 4.

Let G be a graph of radius r and order 2r. By Proposition 9, A(G) <
n—2r+2 = 2. It follows that m(G) < $nA(G) < n = 2r = b(2r,7).
Moreover, G must be a cycle of length 2r and thus G € B(2r,r).

For the case r = 4, it has been shown in Lemma 3 that, for n > 8§,
m(G) < b(n,4) and if m(G) = b(n,4), G € B(n,4).

Now let n and r be natural numbers such that » > 5 and n > 2r + 1 and
assume validity of the theorem for all bipartite graphs of order n” and radius
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at least v/, where either 4 < <r —1lorelser” =rand 2r <n’ <n—1.
Let GG be any bipartite graph of order n and radius at least r.

Claim 1 If {z,a2*} is a conjugate pair of vertices in G, and the graph G —
{z,z*} is disconnected, then m(G) < b(n,r) and if m(G) = b(n,r), then
G € B(n,r).

Let S = {x,2*}. Let G1,Gs,...,G} be the components of G — S. Let
Gy = (V(G1) U S)g and G, = (V(G2) U... UV (Gg) U S)e. Note that G,
is connected for otherwise either x or z* is not central. Suppose n(G,) =t
and thus n(G,) = n —t+ 2. Moreover diam(G,), diam(G,) > r and thus
r+1<t<n-—r+1. Moreover by Proposition 10,

[S]

m(Gy) +m(Gy) %—%+%+%+§—%—2r+§—ﬂ
2—nr+ri42n—2r+ 3t —r—1)(t—n+r—1)]

n,r)

I
I
b

IA I IA

—~

since r +1 <t <n—r+ 1 and therefore 5(t —r —1)(t —n+r—1) <0.

If m(G) = b(n,r), then equality holds throughout the above inequalities,
and it follows that G, and G, are both graphs of diameter r and maximum
size, given their orders.

Moreover, t = r+1 ort = n—r+1. Without loss of generality, say n(G,) =
n —r 4+ 1 and thus n(G,) = r + 1. Since diam(G,) = r and by Proposition
10, G, =2 G(n—r+1,r) = [r—2]K; + [ *2=2| K, + [*2=2]1K, + K;. So G,
contains partite sets X and Y where |X| = [§]—r+1,and |Y| = | 3] —r+1,
where every vertex in X has degree |5| —r+14+1= |5] —7+2, and every
vertex in Y has degree [§] —7r+1+1= [§] —r+2. So G contains adjacent
vertices, x € X and y € Y, such that deg x + deg y = n — 2r + 4. It follows
from Lemma 2 that G € B(n,r).

Claim 2 If G contains a conjugate pair of vertices then m(G) < b(n,r). If
m(G) = b(n,r), then G € B(n,r).

Let {z,z*} be a conjugate pair of vertices in G. By Claim 1, we may
assume that G* = G — {z,2*} is connected. Then by Proposition 11,
rad(G*) > r. By Lemma 2, we need only consider the case where deg x +
deg x* < n — 2r + 4. Moreover, by the induction hypothesis, we know that
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m(G*) < b(n —2,7). Hence,
m(G) < m(G*)+ degx + deg z*

< bn—2,r)+n—2r+3
- {(”;)1 —(n=2r+r*+2n—2—-7)+n—2r+3

= {”IQJ —nr+7%+2n—2r

= b(n,r),

as required.

If m(G) = b(n, ), then we have equality throughout i.e., m(G*) = b(n —
2,r) and deg = + deg * = n — 2r + 3. Without loss of generality, say deg
r > deg x*. Then, deg x > |5 —r + 2.

By the induction hypothesis, G* € B(n — 2,r) and so in G*, |V/(G*)|
23] = 2] g T and [VJ(GF)] = [2255050 ) = 2]~ or [V{(CY)
2] V(G = 3] —r+ 1

Since n(G*) > 2r and n(G*) +2 =n, n > 2r + 2. Thus

2r + 2

dengBJ—r+22{ J—r+2:3.

Note that x can be adjacent to at most 2 vertices in V(G*)—(V{(G*)UVS(G™))
as otherwise rad(G) < r. However, as rad(G) > r, it then follows that
x cannot be adjacent to a vertex in V{(G*) U V;(G*) and to two vertices
in V(G*) — (V{(G*) U VJ(G*)). So x is adjacent to at most one vertex in
V(G*) — (V{(G*) U V4(G¥)), and thus z is adjacent to at least || —r +
2—1=[5] —r+1 vertices in V](G*) U V;(G*), i.e., = is adjacent to every
vertex in V/(G*) or x is adjacent to every vertex in VJ(G*). Moreover, deg
r= %] —r+2, and thus deg 2* = [§] —r + 1.

Since rad(G) > 5, dg(z,2*) > 5 and thus * cannot be adjacent to any
vertex in V/ U Vj as otherwise rad(G) < r, and thus deggz* = 2. Hence,
n = 2r +2since [§] —7+1 =2 and n > 2r + 2. Moreover, n(G*) = 2r and
so G* = (,. Hence, deg x = L#J —r+2 = 3, and thus z must be adjacent
to three vertices on G* = (Y., which is a contradiction as then rad(G) < r.

Hence, equality cannot be attained in this case.

28



Claim 3 If G is a vertex-radius-decreasing graph then m(G) < b(n,r), and
if m(G) = b(n,r) then G € B(n,r).

By Claim 2, we need only consider the case where G has no conjugate
pairs. Then, by Proposition 14, G must contain at least one cut-vertex and by
Proposition 15, any ncv of G must have degree 1. Hence, G contains two end
vertices 21 and xy. Let G’ = G — {x1, x5}, and note that if rad(G') < r — 2,
then any central vertex ¢ of G’ is within distance r — 2 from every vertex
in V(G) — {21, 22}, including the neighbours of x; and x,. But then c is
within distance r — 1 from z; and xs, contradicting rad(G) = r. Hence
rad(G') > r — 1. So, by the induction hypothesis, m(G’) < b(n — 2,7 — 1).
Hence,

m(G) = 2+ m(G)
2+b(n—2,r—1)

b(n,r),

If m(G) = b(n, ), we have equality throughout. So m(G’) = b(n—2,r—1)
and thus by our induction hypothesis, G' € B(n — 2,7 — 1).

If [V/(G)| > 3 or |VJ(G)| > 2, then G is not a vertex-radius-decreasing
graph; thus |V/(G)| = 2 and |V5(G)| = 1. Hence, n — 2r + 3 = 3, and
thus n = 2r which is a contradiction as n > 2r. Hence, equality cannot be
attained in this case.

IA -l

Claim 4 If v is a ncv of G with rad(G — v) > r and degv < {%J —r+2,
then m(G) < b(n,r). If m(G) = b(n,r), then G € B(n,r).

By the induction hypothesis, m(G —v) < b(n — 1,7), and hence,
m(G) = m(G—v)+degv

< bn—1r)+ |3 -r+2

- V";UQJ—(n—l)r+r2+2(n—1—r)+{%J—7“+2

{%QJ —nr+7r?42n—2r

= b(”? T) ’
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as required.

If m(G) = b(n,r), we have equality throughout; so m(G —v) = b(n—1,7)
and deg v = [§| — r + 2. By the induction hypothesis, G —v € B(n — 1,7).

If n(G —v) = 2r, then G — v is a cycle of length 2r, and moreover every
vertex in G — v has degree 2. Hence, any neighbour of v in G, say z, has
degree 3 and thus G contains adjacent vertices v and z such that degg(z)+
dega(z) =5 =n —2r +4. Hence G € B(n,r) by Lemma 2.

Since n(G —v) > 2r +1 and n = n(G —v) — 1, n > 2r + 2. Hence
degg(v) = [2] —r+2> [%2] —r +2 > 3. Note that v can be adjacent
to at most one vertex in G — {v} — (V{/(G —v) U V5 (G — v)) as otherwise
rad(G) < r. Thus v is adjacent to at least [§] —r+2—1= |5] —r+1
vertices in V(G —v) UVJ(G — v).

Let w € V/(G —v),i = 1,2 such that vw € E(G), and let y € VJ_,(G —v)
such that wy € E(G —v). Then

degg,(w) +degg,(y) = [VI(G — )| + [V3(G —v)[ + 1,
and thus
degg(w) +degs(y) = |[V{(G—0)|+|V5(G—v) |42 = (n—1)—2r+3+2 = n—2r+4,
and hence G € B(n,r) by Lemma 2.

Claim 5 If w is a ncv of G with 2 < deg w < | 5] — 742 and rad(G —w) <
r — 1, then every neighbour of w is a ncv.

By Proposition 12, w has a conjugate vertex w* such that dg(w*, w) =r
and dg(w*,u) <r—1 for every u € V(G) — {w}. Let s and t be neighbours
of w. It follows that if u is any vertex in V(G) — {w, s}, then no shortest
w* — u path can contain s. In particular, G — s contains a w* — t path and
hence a w* — w path. So G — s is connected. Since s € N(w) was chosen
arbitrarily, it follows that no neighbour of w is a cut-vertex.

Claim 6 If v is a ncv of G with rad(G —v) > r and deg v > |5] —r + 2,
then m(G) < b(n,r). If m(G) = b(n,r), then G € B(n,r).

We shall first show that v has a neighbour that is a ncv.

Suppose to the contrary that every neighbour of v is a cut-vertex. Let T,
be a distance-preserving spanning tree of G’ with v as its root; so degy, (v) =
dege(v). Let P be a diametral path of T,,. Then P has length

diam(7,) > 2rad(7,) — 1 > 2rad(G) — 1.
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So P contains at least 2 rad(G) vertices. Moreover, the (degv—2) neighbours
of v not on P cannot be end vertices because they are cut-vertices, and so they
must be adjacent to a vertex that is non-adjacent to every other neighbour
of v. Hence, since degy, (v) > |5] — 7+ 3,

n > 2r+2(degy (v) —2)
> or+2(|3|-r+3)—4

= 2|2 +2,

which is a contradiction.
Thus, v must have a neighbour, say x, which is a ncv. If degx > {%J —r+

3, then deg v + deg xz > 2 {%J — 2r+6, which is a contradiction by Lemma 2.

Hence, degx < {%J —r+2. Moreover, since x is a ncv, rad(G—z) < r—1 by
Claim 4. By Proposition 12, x has a conjugate vertex, say =. If rad(G —7) <
r—1, then {z,Z} would form a conjugate pair and the result follows by Claim
2. Sorad(G — ) > r and since d(T,v) # 2, degT < {%J —r + 2 by Lemma
2. Hence, T must be a cut-vertex by Claim 4, and so G — {Z} has at least
two components, say G and Gs.

Assume without loss of generality that v,z € V(Gy). Let 27 be a neigh-
bour of T of degree at least 2 in V(G).

Since d(v,x1) # 2, degg(z1) < [§] — 7+ 2 by Lemma 2. Suppose 1 is a
ncv. Then, by Claim 4, rad(G — z;1) < r — 1. Applying Claim 5 to x; now
yields that 7 is not a cut-vertex, which is a contradiction. Hence, z; is a
cut-vertex. Let H be the component of G — z; containing T and denote by
N/ the ith distance layer of z; in H.

Since x; is a cut-vertex; it follows that every vertex in Nj is an end-
vertex or a cut-vertex. By the same argument, if every vertex in N/, i > 1, is
an end-vertex or a cut-vertex, then so is every vertex in N/, (if any exists).
Hence, by induction, each vertex in H is either an end-vertex or a cut-vertex.

Consider a distance preserving spanning tree T of (V(H) U {z}). Then
either T is a path or T' contains at least two end-vertices distinct from xy.
In the former case, let x be the end-vertex of T', x # x1, and y the neighbour
of x, and in the latter case, let x and y be two end-vertices distinct from
x. In both cases G' =: G — x — y has n — 2 vertices, rad(G’) > r — 1 and
m(G") = m(G) — 2. Hence, by induction,
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m(G) m(G') +2
b(n—2,r—1)+2

b(n,r).

If m(G) = b(n,r), we have equality throughout; so m(G’) = b(n—2,r—1).
By the induction hypothesis, G’ € B(n—2,r—1). Hence G’ contains vertices
w, v such that de/ (w, v) # 2 and deger (w) + deger (v) = (n—2)—2(r—1)+4 =
n —2r + 4. By Lemma 2, G € B(n,r).

Al

Claim 7 If v is a ncv of G with rad(G — v) > r, then m(G) < b(n,r). If
m(G) = b(n,r), then G € B(n,r).

This follows from Claims 4 and 6. [ |
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Chapter 3

Diameter and Inverse Degree

3.1 Introduction

This chapter is motivated by the GRAFFITI conjecture u(G) < r(G) (see

22, 23]). Since 7(G) = 5, where 6* is the harmonic mean of the degrees

of the vertices of G, and since 0* > §, we have r(G) < %. Hence, this con-
n

jecture is a strengthening of the conjecture y(G) < %. Unfortunately, the

conjecture turned out not to be true. Erdés, Pach and Spencer [19] disproved
it by constructing an infinite class of graphs with average distance at least

(2119 +0(1))101g°§)gn and diameter at least (2| % | +0(1))10§i7g‘n. Further-

more, they proved the upper bound, diam(G) < (6r(G) + 2 + 0(1))loglgogn,
which is also an upper bound on the average distance since p(G) < diam(G).
In this chapter, we improve upon the upper bound by Erdos, Pach and

Spencer by a factor of two. We show that

1
diam(G) < (3r(G) + 2+ 0(1))&,

and thus pu(G) < (37"(G) +2+ 0(1))1;;1%.
To enhance the readability of our inequalities, we will repeatedly use

inequality chains like a < b > ¢, which are to be read as a < b and b > c.
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3.2 Results

Theorem 5 Let G be a connected graph of order n with r(G) < r. Then,
for constant r and large n,
. logn

Proof Let x € V(G) be a fixed vertex of eccentricity d := diam(G). The
ith distance layer N;(z) of x is the set of all vertices at distance i from x. Let
|IN;(z)] :=mn; for 0 < i <d,and n_; := ngy; := 0. Define f(7) := P ——
for 0 < ¢ < d. Since for any y € N;, where 0 <4 < d, the neighbourhood of
y is contained in N;_y U N; U N;,1, we have degy < n;_1 + n; + n;y1, and

1 1
thus Tegy ~ mivEnai Therefore,

1 d
r(G) = Z > Zf(z)
yevic) degy 5
If ng=nq_1 = ... =ny = ng, then each distance layer has cardinality 1 and

G is a path. Since, in this case, G has diameter n — 1 and inverse degree
r(G) = 1+ 3, the statement of the theorem holds. So we exclude this case
from here onwards.

We now define two disjoint sets J and K. Let

J:{i]1§i§d—1andni,1<ni2ni+1},

K:{z|1§z§d—1andnz,12nl<nz+1}

The elements of J and K can be considered peaks and troughs of the sequence
nog, N1,y...,Nq.

We now show that the elements of J U K alternate, i.e., for every s €
K(s € J), there exists t € JU {d}(t € K U{d}), with t > s+ 2 and
s+1,...,t—1¢ JUK. Let s € K for 0 < s < d and thus by the definition
of K, ng < ngy1. Let t be the first element following s such that n; > ngy ;.
Then ¢t € J U {d}. Note that such an element ¢ exists since ngy; = 0 and
thus ng > 0 = ngyq. It is immediate from the definitions of J and K that
s+1,...,t—1¢ JU K. The proof for the case s € J is similar.

From the above proof it is clear that for any two consecutive elements
s,t of JU K, the sequence ng,ngy1,...,n; is monotonic. Moreover, if s is
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the smallest and t is the largest element of J U K, then also ng,ny,...,n
and n4, nyt1, ..., ng are monotonic. Hence we refer to sets {s,s + 1,...,t},
with s,t € JUK U{0,d} and s+ 1,s+2,...,t —1 ¢ JU K, as monotonic
intervals. The length of such an interval is defined as t — s.

Clearly, there exists a monotonic interval of length at least W, the
average length of the monotonic intervals. The main part of this proof is
devoted to improving this bound and to expressing it in terms of d and r.
For this aim we first partition J into two disjoint subsets A and B.

For 0 < i < d, consider the values of 7 that belong to J. We now partition
J further into two disjoint subsets, A and B, where

A:{i€J|ni_ggni_1<ni2ni+12ni+2} and B=J-— A.

So an element ¢ € J is in B if and only if n;,_; < n; > n;4; and, in addition,
Nj—2 > MNj—1 OF N1 < 142.

We note that each ¢ € B is an end point of a monotonic interval of length
1. Indeed, for i € B we have n;_; < n; > n;y1 and, in addition, n;_o > n;_1,
in which case © — 1 € K, or n;y 1 < njo, in which case i +1 € K.

Since J and K alternate, no monotonic interval has both its end points
in B. Hence there exists at least |B| monotonic intervals of length 1, while
the remaining |.J| 4+ |K| — | B| + 1 monotonic intervals have length at least 1.

If « € J, then 2n; > n;_1 + n;;1, and thus

T

1
1) = > — forallieJ.
1) Nni—1+n; +nip1 3

We now show that

f(j—1)+f(j)+f(j+1)>§ for all j € A.

. _L:nj,1+nj+nj+1
For j € A let a = 7 "
(@ —1)n; =nj1 + nji1,
n;_1

-1 = ;

nj—2 + nj—1 + n;
nj—1

and thus, a < 3 since 1 = f(j) >

(1_

wl=

f
By n;—o S nj—1 and

Z - J -
anfl + n;

(a—1)n;
(2a —2)nj_1 + (a — 1)n;
(a—1)n;
(2a = Dnj1 +nj
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Similarly, by n,40 < njq and (@ — 1)n; = n;_1 + nji1,

(@ —1)njp
(2& — 1)nj+1 + nj—1 '

fG+1) >

Hence, in total,

(@ —1)n;y 1 (@ —1)njp

fG-D+fU)+fG+1) = TR

(2a—1)nj—1+n41 a  (2a—1)nj +nj
(0= Dty +ny) 1

2a(nj-1 +nj41) a
a+1

2a

Thus, by a < 3 we have f(j — 1)+ f(j) + f(j +1) > 2 for all j € A, as
desired.

Now r > r(G) > X%, f(i). Since the sets J and K alternate, J does not
contain two consecutive integers. Hence {i — 1,4,7+ 1} and {j} are disjoint
for all i € A and j € B. From the definition of A it is easy to see that
i+2¢ Aif i € A. Hence also the sets {i — 1,4, + 1}, i € A, are disjoint.
Therefore,

> (flE—= 1)+ fE)+ fE+1)+ D F() §|A|+;|B|,

€A jEB

or, equivalently,

2|A| + |B| < 3r.
We have |J| 4+ |K| + 1 monotonic intervals of total length d. At least |B|
intervals have length 1, so the remaining |J| + |K| + 1 — |B| = |A| + |K| +

d—|B . .
EE] Hence there exists a monotonic

1 intervals have average length AR

interval of at least this length.
We now bound the average length in terms of d and r. Since J and K
alternate, we have |K| < |J| + 1. Hence,

A+ |K|+1<2|J|+2—|B| =2|A|+ |B| + 2.
Hence there exists a monotonic interval of length at least

-B __d-|B d
A+ |K|+1 ~ 2|Al+|B|+2 ~ 2|A|+|B|+2
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Let {a,a+1,a+2,...,b} besuch an interval. By 2|A|+|B| < 3r, the interval
has length

b—a> -
T 3r+2
We assume that n; is monotone increasing on {a,a + 1,...,b} (if n; is de-
creasing the proof is analogous). Then f(i) = n__l+Z?+n,+1 > 37?_:1, and

hence,

b—1 n;

<3 bz_‘i f(@) < 3r.

i=at1 "Vit1 i=a+1
Note that, for S, z; > 0, the product [] z; is maximized subject to > ;c;z; <
icl
S if x; = S/|I| for all ;. So,

b—1
1 3r b—ae1
— < (—— :
ot (i:a+1 ”z‘+1)nb <b —a- 1) "
Hence,
3r(3r + 2)\ (d—6r—4)/(3r+2)
1<ng < |(———F .
= Tlat <d — 6r — 4> "
Now let r be constant and let z; = dgf_’;;‘. If z;1 < 3r/e, ie., if d <
W + 6r + 4, then the inequality of the theorem is satisfied for large

n. So we can assume z; > 3r/e. Let g(z) = (2)* = ev(leedr—los®)  Then
g'(x) = (2)"(log3r —logaz — 1). If 2 > 3*, then ¢'(z) < 0, and hence g is
decreasing. It is shown in the previous page that b —a — 1 > x; and that
Nat1 < ng(b—a —1). This implies 1 < ng(x;). Define zy by g(zo) = 1/n.
Thus,

()" =

Observe that, in each case under consideration, we regard r as fixed,
whereas n grows beyond all bounds if and only if xy does. Hence, logn =
rolog(52), and so loglogn = log 2 + loglog(52). Thus,

logn rglog £2

loglogn - log 29 4 loglog 52

Hence,
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. _(logxg—i-loglog%)( logn )
7 \Ulogag — log3r /\loglogn/’

and thus,

. _(logafo—log?)r+log3r+loglog§—g)( logn )
0 log xg — log 3r log %2 loglogn’’
3r

Hence 1 = (%)xon, or equivalently (g—g)% = n3r, has the solution zo =
(1 +0(1))1o§ign- Since z¢ = (1 +0(1))1o§ign > 3r/e and g(xg) < fg(x1), we

have r; < xy. Hence,

1
d—6r—4=3r+2)z; < Br+2)(1+ 0(1))10;%:;”,

which yields the statement of the theorem. [ |
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Chapter 4

Diameter in Minimal Claw-free
Graphs

4.1 Introduction

Graphs that do not contain a star on four vertices (claw) as an induced
subgraph have received much attention, especially since the publication of
the excellent survey paper [24] in 1997. This class of graphs includes, among
others, line graphs, interval graphs, middle graphs, inflations of graphs and
graphs with independence number equal to 2. Recently, Chudnovsky and
Seymour found a structural characterization of claw-free graphs; that is, they
defined certain classes of “basic” claw-free graphs and then showed that all
claw-free graphs can be obtained by applying certain “expansion” operations.

See [6].

Definition 3 The graph K, is called a star. We refer to the star K3 as
a claw with the vertex of degree 3 as its centre.

In [12], Dankelmann et. al considered graphs that are (edge-) minimal
with respect to the property of being claw-free. This was motivated by
questions about cycles in claw-free graphs, but has interest in its own right.

Definition 4 Let G be a claw-free graph without isolated vertices. If the
removal of any edge of G produces a graph that is not claw-free, then G is a
minimal claw-free graph, briefly denoted as an m.c.f.g..
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That not every claw-free graph contains an m.c.f.g. as a subgraph may
be seen, for example, by considering the line graph of Kj: it is obviously
claw-free but one can repeatedly remove its edges until an empty graph is
obtained without creating a claw. On the other hand, the line graph of K33
(equivalent to the cartesian product K3 x K3) is an m.c.f.g.

In [12], Dankelmann et. al examined bounds on the minimum, average
and maximum degrees of an m.c.f.g. and looked at the relationship between
m.c.f.g.s and line graphs. For example, a 4-regular graph is m.c.f. if and only
if it is the line graph of a (K4 — e)-free cubic graph.

We mention that a closely related concept, minimal line graphs, was con-
sidered by Sumner [46]. A graph is a minimal line graph if it is a line graph,
but removal of any edge results in a graph that is not a line graph. Sumner
proved that a graph G is a minimal line graph if and only if the following
four conditions hold:

(i) every edge of G lies in a triangle,

(ii) every vertex of G has degree at least 3,

(iii) if an edge e lies on a triangle whose vertices have an even
degree sum, then e lies on another triangle,

(iv) each 4-clique of G has at least two vertices adjacent to vertices
outside the 4-clique.

Condition (i) clearly holds for m.c.f.g.s, and we will see that condition (ii)
also holds for m.c.f.g.s.

An example of an m.c.f.g. is the 5-regular icosahedron on 12 vertices.
Indeed, if we delete one, two or three vertices from the same triangle, then
the result is still an m.c.f.g. The latter is depicted in Figure 4.1. (This is not
a line graph.) An exhaustive computer search has shown that the smallest
order of an m.c.f.g. is 9; apart from the above graph there are two others,
namely the line graphs of the two cubic graphs of order 6.

In this chapter, we examine the diameter of m.c.f.g.s. We prove that the
diameter diam(G) of an m.c.f.g. G of order n satisfies

4
diam(G) < §(n —20) + 7.

Moreover, we demonstrate that this bound is best possible.
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Figure 4.1: The m.c.f.g Iy.

4.2 Preliminary Results

We will need the following concept.

Figure 4.2: The near-claw NC(zy,c,t).

Definition 5 A near-claw NC(zy,c,t) is a graph obtained by removing from
a complete graph Ky, with vertex set {x,y,c,t}, the edges xt and yt. The
vertices ¢ and t are called the centre and tail of the near-claw NC(zxy,c,t),
respectively.
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It is immediately obvious that G is an m.c.f.g. if and only if every edge
xy in G lies in a near-claw NC(zy, ¢, t) as shown in Figure 4.2. Hence every
edge of an m.c.f.g. is contained in a triangle. If ({a,b,c,d}) denotes a claw,
it will be assumed that a is the centre of the claw.

Lemma 4 [12] Let G be an m.c.f.g. Then G has mazimum degree A(G) <
n(G) — 3.

Proof Consider any vertex x. Let y be a neighbour of . Then there
exists a near-claw NC(zy,c,t) with ¢ non-adjacent to = but adjacent to c.
Further, there exists a near-claw NC(xc, d,t'), where ¢’ is non-adjacent to x
and c. Hence there are at least two vertices non-adjacent to z. It follows
that A(G) <n—3. |

One can obtain an infinite family of m.c.f. graphs with A = n — 3 by
duplicating u as follows. The duplication of a vertex w in G, means the
addition to G of a new vertex v, adjacent to u and all vertices in Ng(u) (so
that N[u] = N[v]). Clearly, G is claw-free if and only if G’ is claw-free.

Lemma 5 [12] Let G be a claw-free graph and suppose G' is formed by du-
plicating u to v. Then G’ is an m.c.f.g. if and only if G is an m.c.f.g.

Proof Assume G’ is an m.c.f.g.

Let e = ab € E(G); then G’ contains a near-claw NC(ab,c,t) and v ¢
{a,b}. If NC(ab,c,t) is contained in G, then G — e contains a claw.

Otherwise, suppose vertex v is in NC(ab, ¢, t); hence v € {c,t}. If v =
¢, then u ¢ {a,b}, since otherwise, if u = a, then vt € E(G’) and ut ¢
E(G"), contradicting the assumption that N[u] = Nv]. Hence if v = ¢,
then NC'(ab,u,t) is contained in G. On the other hand, if v = ¢, then, as
N[u] = N[v], NC(ab,c,u) is contained in G. Hence G is an m.c.f.g.

Assume G is an m.c.f.g.

Clearly the removal of any edge of G’ not incident with v produces a claw.
So we need only to consider the edges incident with v. Let v € V(G’) such
that v € N(v) but v/ # u, and let ey = vv' € E(G’). So there exists the
edge uv’ € F(G) contained in, say, the near-claw NC(uv',w,z) in G; then
vv' is contained in the near-claw NC(vv',w,x) in G’, whence removal of vv’
creates a claw.

Consider the edge e = uv € V(G’). By Lemma 4, there exists a vertex,
say w € V(G') — NJu|, that is adjacent to some vertex in N(u), say v’
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Then wv ¢ E(G') and v' € N(v). Moreover, since wv’, vv',v'w € E(G’) and
uw,vw ¢ E(G"), {v',u,v,w} induces a claw in G’ — e5. Hence G’ is m.c.f. A

Lemma 6 [12] Let G be an m.c.f.g. Then G has minimum degree 6(G) > 3.

Proof Since every edge of G lies in a triangle, §(G) > 2. Now suppose
that G contains a vertex vy of degree 2, adjacent to v, and vy, where vivy €
E(G). Let B = (N(v1) N N(v2)) — {wo} and for i = 1,2 A; = N(v;) — (BU
{vo,v3_;}). Since v; and vy are not centres of claws, A; U B and Ay U B
induce complete subgraphs of G.

The edge vgv; is contained in a near-claw with v as centre, say NC(vovy,
v, v3), and vyvy is contained in a near-claw NC(vgvq, v, V4); SO Vav3, V1U4 €
E(G) and vyv3,v9v4 ¢ E(G) and thus v € Ay and vy € A;. The edge v1v9
is contained in a near-claw NC(vjvq, v, vg), where vivs, vov; € E(G) and
0106, V20s & E(G); so vs € B, vg ¢ N(v1) U N(vg).

Let x € Ay, y € Ay; then since ({vs, vy, x,v6}) is not a claw and vy, vivg ¢
E(G), it follows that zvs € F(G); similarly as ({vs, va,y,v6}) is not a claw,
it follows that yvs € E(G). Hence vg is adjacent to every vertex in A; U As.
By the same argument it follows that

if we N(B) — (N[v1] U Nuvg]) then w is adjacent to all of A; U Ay, (%)

The edge vsvg is contained in a near-claw NC(vsvg, ¢, t), say. If ¢ € N(vq),
then as v is adjacent to every vertex in (N (v1)UN (vq)) —{wo}, it follows that
t ¢ N(vi)UN(vy); hence as (N (vy) —{vo, v1}) is complete, vot ¢ E(G). Also,
v9vg, Vst ¢ E(G) while ¢ is adjacent to ve, vg and t; so ({¢, ve, ve,t}) = K 3,
which is a contradiction. So ¢ ¢ N(vq). It follows similarly that ¢ ¢ N(vy).

So ¢ = v; and t = wvg, where v; ¢ N[vi] U N[vg], and wvsvr, vgv; €
E(G), while vsvs,vgvs ¢ E(G). Note that, vvs ¢ E(G), since otherwise
({v1,v0,v5,v8}) = K3, and, similarly, vovs ¢ E(G). By (%), vr is adjacent
to every vertex in Ay U As.

That for z € Ay, xvg ¢ E(G) follows from the observation that ({z, ve, ve,
vg}) is not a claw. So vg is non-adjacent to each vertex in A and, similarly
in A;. Furthermore, zy € E(G) for © € Ay, y € Ay, since ({v7,x,y,vs}) is
not a claw. (See Figure 4.3.)

In conjunction with the fact that A; and A, induce complete graphs, we
obtain that

(A1 U Ay U B) is complete. (1)
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Figure 4.3: An induced subgraph.

The edge vyvs is contained in a near claw, say, NC(vqvs, vg,t). Clearly,
vg ¢ B, since otherwise v3 and ¢ would be adjacent by (x). Hence vg € As.
Consider t. Since t is not adjacent to vz but adjacent to vy, we have
t ¢ Nvi|UN|[ve] U{vg,v7,vs}, say, t = vig with vgvyg € E(G), vsvig ¢ E(G).
By (1), vavg € E(G). Hence vyv19 € E(G) since otherwise ({vg, va, vy,
’U10}> = K1’3 is claw. But then <{U4,U1,’U3,U10}> = K1737 which is a contra-
diction. [ |
By Lemma 6, we have the following corollary.

Corollary 4 [12] Let G be an m.c.f.g. Then the vertices of degree 3 form an
independent set.

Proof Suppose that u and v are vertices of degree 3 in GG such that
w € E(G).

If N[u] = N[v], let G' = G — {v}. Then G’ is m.c.f., but has a vertex of
degree 2, which contradicts Lemma 6.

If the vertices u and v have different neighbourhoods, then since every
edge lies in a triangle, N (u)U N (v) induces the graph K; + Py, where v and v
are the interior vertices on P;. Let G’ be the graph obtained by adding a
vertex w adjacent only to v and v. Then G’ is claw-free. The removal of
the edge uw produces a claw centred at v, and the removal of the edge vw
produces a claw centred at u and G’ — e contains an induced claw for each
e € E(G). So G’ is a minimal claw-free graph with a vertex of degree 2,
which contradicts Lemma 6.

Hence uv ¢ E(G) and the result follows. |

The following is an immediate consequence of Lemma 6 and Corollary 4.
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Corollary 5 [12] Let G be an m.c.f.g.. Then A(G) > 4.

We now look at the minimum number of edges in an m.c.f.g. We will need
the following results.

Lemma 7 [12] If an m.c.f.g. G contains a vertex v of degree 3, then v has
a neighbour of degree at least 5.

Proof Suppose to the contrary that no neighbour of v has degree exceed-
ing 4. Then it follows from Lemma 6 and Corollary 4 that the neighbours of
v, say v, Vs, v3, all have degree 4. The edge vv; is contained in a near-claw,
say NC(vvy,vg,t1), so that t; € V(G) — N|v], tive € E(G) and t1v, ¢ E(G).
A near-claw NC(vaty, co,ta) exists in G; here either ¢o = v3 or ¢ is a new
vertex.

If ¢y = v3, then vy, t1v3 € E(G) and ts is a new vertex such that vsty €
E(G), but wvgts, tite ¢ E(G). Since deguvs = 4, it follows that vsv, ¢ E(G).
A near-claw NC(vvs, c3,t3) exists in G, where ¢3 = vo. But deg ve = 4, so
ts € {t1,v1}, a contradiction, as vvy,vst; € E(G). Hence ¢y # v3.

Thus ¢s is a new vertex. Then vyco, t1co € E(G) and N(vq) = {v, vy, t1, c2};
hence the centre c3 of a near-claw NC'(vvs, c3,t3) must be v; and so vjv3 €
E(G). A near-claw NC(vvg,cq,ty4) exists in G, where ¢4 € {v,c}. If
c4 = v, then t; = w3, a contradiction, as vjvg € F(G). Hence ¢4 = ¢
and vica € E(G). A near-claw NC(vva, ¢35, t5) exists in G, where ¢; = vy and
ts € {vs, 2}, which yields a contradiction as vvz, vecy € E(G).

It follows that at least one neighbour of v is of degree exceeding 4. [ |

Lemma 8 [12] Let G be an m.c.f.g. If v is a vertex of degree 3 in G with
only one neighbour of degree at least 5, say vs, then vy has no other neighbour
of degree 3.

Proof Suppose that the neighbours of v are vertices vy, v and vs, with
degv; = deg vy = 4. We show first that viv3, vz € E(G) and v1v9 ¢ E(G).

The edge vos is contained in a near-claw, with say vy as centre, NC'(vvs, vy,
t1), where t; # vy, and so viv3 € E(G). Suppose vivy € E(G); then the edge
vty is contained in a near-claw which must have centre vy because degv, = 4,
say NC(v1ty,vq,t5) where to # {v,v3}, so that ¢, is a new vertex. However,
({ve,v,t1,t2}) = K, 3, a contradiction, and so vjve ¢ E(G). Since vvy is con-
tained in a near-claw which must have centre vs, it follows that vevs € E(G).
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Further, consider this near-claw NC'(vvy, v3,x1). Since vs is not the centre
of a claw, it follows that vyz; € E(G). Similarly, there is a vertex xy such
that vews, v3xe € E(G) but vize ¢ E(G). Again because vs is not the centre
of a claw, it follows that x1xs € E(G). That is, the set W = {v, v, 21, 22,02}
induces a 5H-cycle.

Now suppose vs has another neighbour z of degree 3. If z ¢ W, then
it has only two neighbours in W, and thus is part of a claw centered at vs.
If z € W, say z = x1, then v; has no other neighbour, by the lack of claw
centered at v;. But then v; has degree 3, a contradiction of Corollary 4. H

Lemma 9 [12] The size of an m.c.f.g. of order n is at least 2n.

Proof Let G be an m.c.f.g. of order n, T" the set of vertices of degree
3 and let U denote the set of vertices of degree at least 5. Define H as the
bipartite subgraph of G' with vertex set T'U U whose edge set consists of all
those edges with one end in 7" and one end in U.

By Lemma 7, in H every vertex of T" has degree at least 1. Let A denote
the vertices of T" with degree 1 in H. By Lemma 8, the neighbours of A
have degree 1 in H. Let X = N(A). So every vertex in T'— A has degree at
least 2 in H. On the other hand, since 7" is independent in G (by Corollary 4)
and G is claw-free, every vertex in U — X has degree at most 2 in H. Thus
T — A| < |U —X| and so |T]| <|U].

Now, let d; denote the number of vertices of degree ¢ in GG. Then

> idi=4n+ Y (i—4)d; > dn+ |U| — |T| > 4n,

7

as required. ]

4.3 The Main Result

Theorem 6 Let G be an m.c.f.g. of order n and diameter diam(G). Then

diam(G) < —(n —20) + 7.

O >

Moreover, this bound is sharp.

Proof Let P : zox; ...x4 be a diametral path in G. Fori € {0,...,d—1},
x;x;, 1 is contained in a near-claw NC'(x;x;41, ¢, t;).
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Claim 8 ¢; ¢ V(P) for all i.

Suppose ¢; € V(P). Then ¢; = z;. Clearly, j #i,i+ 1 andso j <i—1
or j >4+ 2. If j >4+ 2, then x;z; is shorter than ;x;;; ... x;, which is a
contradiction. If j <4 —1, then x;z;4, is shorter than z;...z;x;1, which is
a contradiction.

Claim 9 t; ¢ V(P) for all i.

Suppose t; € V(P). Then t; = z;. Clearly, j <i—2or j > i+ 3 since
xit;, xit; € E(G). If j >4+ 3, then z;c;x; is shorter than z;2; 1 %42 . . . 25,
which is a contradiction. If j < i — 2, then we have x;c;x;1; shorter than
Tj...Ti—17;Tiy1, Which is a contradiction.

Claim 10 Ifk>i+2 and 0<i<d—1thenc; # ¢, and if 1 <i<d—2,
then ¢; # ciyq.

That ¢; # ¢ if k > i+ 2 is obvious since otherwise x;c;(= c¢x)xpy1 18
shorter than x;z;11 ... TxTgy1.

Suppose ¢; = ¢;41 and 1 < d — 2. Hence, c¢;x;, ¢;witq, cixivs € E(G). The
near-claw NC(z;x;41,¢;,t;) exists in G where, by Claim 9, t; # z; for any
J, and clearly ¢; # t;. So t; is a new vertex in G such that ¢t; € E(G)
and x;t;, x;1t; ¢ E(G). Since P is a diametral path, z;z,10 ¢ E(G) and
thus t;z,42 € E(G) as otherwise ({¢;,t;,x;,xi12}) = Ki3. The near-claw
NC(2i41%it2, ¢i, tiy1) exists in G where by Claim 9, t;41 # z; for any j, and
clearly ¢; # t;+1. Moreover, since t;z,10 € E(G), t; # t;+1 and hence t;,; is a
new vertex in G such that ¢;t;11 € E(G) and x;41ti41, Tiotiy1 € E(G). Then
tisiz; € E(G) as otherwise ({¢;, i, Tito,tiv1}) = K13 and t;t;11 € E(G) as
otherwise <{Ci7 ti, ti+1> $i+1}> = Kl?g. Since P is a diametral path, Li+1Li+3 ¢
E(G) and thus t;x;13 € E(G) as otherwise ({Tii2,ti, Tivs, Tiv1}) = Kia.
Since P is a diametral path, x;_12;1; ¢ E(G), and thus t;112;-1 € E(G) as
otherwise ({z;,tit1,Tio1, Tis1}) = Ky 3. But then x;_1t;41t;7,43 is a shorter
path than x; jx;x; 11210713, (see Figure 4.4) which is a contradiction.

Claim 11 Ift;=cj, thenj=1—2o0rj=1+2 for4 <i<d—5.
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Figure 4.4: x;_1t;11t;x,13 is a shorter path than z; 2;x; 1201071 3.

If t; = ¢;, then clearly j # . Moreover, since ¢;_12;, ¢;1241 € E(G) and
tixi,tiwi1 ¢ E(G),j#i—1and j#i+1. Soj<i—2andorj>i+2.
If j > i+ 3, then z;citi(= ¢j)z;41 is shorter than x;2,1240%i13 . .. 241,
which is a contradiction. If j < i — 3, then z;c;(= t;)c;z;41 is shorter than
Tj...Ti—oT;—1%;Ti11, which is a contradiction. Thus, j =7 —2or j =1+ 2.

Let N; ={v € V(G) : d(xg,v) =i} for 0 <i < d. Then z; € N; for all i.
Claim 12 C; GNZUNZ_H fOTOSZSd—l

Since z; € N; and ¢;z; € E(G), ¢; € N; where j < i+1. Since z;41 € Ny
and ¢;z;41 € E(G), ¢; € N; where j > 4, and thus the result follows.

LetAi:NiUNiHUNHQUNHg) fOI‘OSZSd—?)
Claim 13 For3<i<d—6, |A;]>8.

Since Tiy Tig1, Tito, Tiy3 € Ai, and by Claim 12, C; € NZ @) Ni—l—laci—i—l S
Nit1 U Nijo, and ¢j10 € Niyo U Ny, |A;| > 7. For 3 <i < d — 6, the near-
claw NC(; 41242, Civ1,tir1) exists in G where by Claim 11, ;11 € {¢;—1, ¢iy3}
or t;11 is a new vertex in A;. If we have the latter case, then |A;| > 8; so
we need only consider the former case. If t;;1 = ¢;_1, then ¢;_1¢;41 € E(QG)
and, by Claim 12, ¢;_; € N; and ¢;y1 € N;;1 and thus ¢;_; € A;, and hence
|A;| > 8. Similarly, if t;11 = ¢;43, then ¢;43 € N;;3 and hence |A4;] > 8.
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Claim 14 If |A;| =8, then ¢;_1 € N;_1 and ¢iy3 € Nipy for 3<i < d—6.

By Claim 13, |A;| > 8. Soif |A;| = 8, then as shown in the proof of Claim
13, we have exactly one of the following three possibilities:

. _ 1) _
(i) tiv1 = c;i—1 and A} = {@i, Tit1, Tita, Tits, Cio1, Cis Cit1, Cita
(id) tisr = c; d A® = {2, 2; . 13, Ciy Cin1, Cisa, Cigs )}
1) Tiy1 = Ci43 AN i = Wiy Tit1, Tit2, Ti43, Ciy Cit1, Ci42, Ci43 ¢,

(ZZZ) ti+1 ¢ Al(l) U AZ(Q) and Ci—1,Ci+3 ¢ Az

We shall show that cases (i) and (ii) cannot occur:

Suppose t; 11 = ¢;_1; then ¢;11 € N;y1 and Agl) ={z, ip1, Tiv2, Tits, Cio1,
Ciy Cit1, Civa }. Suppose, furthermore, that ¢;_; ¢ Agl); then ¢;_, € N,_; and
thus t;_1¢;41 ¢ E(G). But then ({¢;—1,zi-1,ti—1,¢i41}) = Ky 3, which is a
contradiction. Hence, t;,_1 € Agl) and, by Claims 9 and 11, ¢;_; = ¢;11. Thus
ziciv1 ¢ E(G). The near-claw NC(¢;—1¢i41, Cq, ta) exists where ¢, € N;UN; ;.
Thus ¢, = ¢;, and so ¢;_1¢;,¢icip1 € E(G). So xi414t, € E(G) as otherwise
({cistascic, i1 }) = Ky 3 and ait, € E(G) as otherwise ({¢;, ta, i, Cip1}) =
K173. Sot, € N;U Ni+1 and thus t, € Az So t, = Cit+2, but then by Claim
12, t, € Nj1o U N3, which is a contradiction.

So t;11 # ¢;_1, and similarly ;.1 # ¢;13. Thus ;1 is a new vertex in A;.
So ¢;_1,¢iv3 ¢ A;, and thus the result follows.

Claim 15 ]f |Az| =9 and c;_1 € N;, then Cit3 € Ni+4.

Suppose to the contrary that ¢;13 € Nyy3; then A; = {x;, Tip1, Tivo, Tivs,
Ci—1,Ciy Cit1, Cit2, Ciys f. Suppose tir3 ¢ A; and let z be a neighbour of ¢; 3
in Niyo. Then ({cits,tits, 2, Tiya}) = Ki3, a contradiction. So t;43 € A;,
and thus by Claims 9 and 11, t;;3 = ¢;41. Hence ¢iy1¢03 € E(G) and
Cit1T43 ¢ E(G) SO7 by Claim 12, Ci+1 € Ni+2. Since ¢;_1 € N;, Ci—1Ci+1 ¢
E(G). The near-claw NC(x;11%iy9,Cir1,ti11) exists where ;41 = ¢;13, and
SO TiyaCivs ¢ E(G). The near-claw NC(c;y1¢it3, Ca,ta) exists where ¢, €
Nito U Njps and ¢, # Zipa. S0 ¢ = Cipo. Thus ¢i11¢i49, ¢iyacing € E(G).
Moreover, t, € A;, as otherwise ({¢iia, Tita,Ciys,ta}) = K13 and t, = ¢;.
So ¢iciro € E(G), ciciv1 ¢ E(G) and ¢; € Ny by Claim 12. But then
({ciya, ¢, Civ1, Tirs}) = K13, a contradiction. So ¢;13 € Nyyq.
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Claim 16 If d > 11 and |Ay| > 9 for every i € {1,2,...,%}, where t =
AT then |Ag| + |As] + -+ + [Ama] + |Al] > 2t; otherwise |As| + |As| +
s A A > %t — 1.

If for every 4i such that i € {1,2,...,%}, |Ay| > 9, then since we have
terms |Ay;|, each of size at least 9, the result follows.

If for some j € {4,8,...,t —4,t}, |[A;| = 8 but for every k € {4,...,j —
43U{j+4,...,t}, |Ay] > 9, then we have (£ — 1) terms |Ay] of size at least
9 together with one of size 8, and the result follows.

So we need consider the case where we have at least two values of ¢ in
{4,8,...,%} for which A; is of size 8. Let j be the first value in {4,8,...,¢t—
4,t} such that |A;| = 8 and let j + k be the first value in {j +4,...,t —4,t}
such that |A; x| = 8. If for any zin {j +4,...,5 +k — 4}, |A,| > 10, then
we are done, and so for every z in {j +4,...,j + k — 4}, |A,| = 9. By
Claim 14, ¢jy3 € Njy4 since |A;| = 8 and thus by Claim 15, ¢j17 € Njys.
Thus, for any y in {j +4,...,j +k — 4}, |[4,] = 9 and ¢,.1 € N,, and
thus by Claim 15, ¢y43 € Nyy4. In particular, cjir—1 € Njy,. But since
|Ajik] = 8,¢j4k—1 € Njyp—1 by Claim 14, which is a contradiction, and so
the result follows.

Claim 17 If c3 € Ny, then |Ag| > 10.
Suppose to the contrary that |Ag| < 10. We consider two cases:

CASE 1l ¢y =¢

So ¢g € Ny. The near-claw NC(xox1,co,ty) exists where tg € Ny and
tors € E(Q) as otherwise ({co, o, T2, to}) = K1 3. The near-claw NC(z1x2, ¢,
t1) exists where t1x¢ € E(G) as otherwise ({cg, o, T2, t1}) = Ky 3. Sot; € Ny.
Then tot; € E(G) as otherwise ({co,t1,t0,21}) = Ky, and tozz € E(QG)
as otherwise ({wo,x1,23,t0}) = Ki3. (See Figure 4.5.) The near-claw
NC(zocy, Ca, ts) exists where ¢, € Ny and t, € Ny. Thus t, is a new ver-
tex in Ny. Let S = {zg,x1, 22, T3, Co, to, 11,1, } and S C Ag; so |Ag| > 8 at
this stage.

Now either ¢, ¢ S or ¢, € S, in which case (since ¢, is adjacent to ¢q and

$0) Cq € {t1,l‘1}.

SUBCASE 1.1 Suppose ¢, = x1; then z1t, € E(G).
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Figure 4.5: An induced subgraph.

Thus z9t, € E(G) as otherwise ({1, zo, tq, x2}) = K 3, and x3t, € E(G)
as otherwise ({x9,,,co,23}) = Ki3, and hence tot, € E(G) as otherwise
<{LE3, to, ta, I‘4}> = Kl’g.

The near-claw NC'(toco, ¢y, tp) exists in G where ¢, € Ny U Ny, and thus
t, € Ap. Since every vertex in S is adjacent to ¢ or tg while coty, toty, ¢ E(G),
it follows that ¢, ¢ S and is thus a new vertex in Ay, Ag = S U {t,}, and
|Ag| = 9. The near-claw NC(cox2, ¢, t.) exists where t. € Ay, and thus t. = t,
as every vertex in S is adjacent to ¢y or zo and |Ag| = 9. So t,xe ¢ E(G).
Now, ¢, = t; since no vertex in Ay — {t1} is adjacent to ¢y, and to t,. So
tity € E(G), and thus ¢, € Ny as otherwise ({t1,t,t0,70}) = Ki3. The
near-claw NC'(x1t,, cq, tq) exists where t; € Ag and so ty = t;, or 1. However,
no vertex in Ap is adjacent to xi,t, and t,; so ty # t,, and thus t; = t;
and cq = t, as t;, is the only possible vertex in Ay adjacent to x1,t, and t;.
Thus t1t, ¢ E(G) and z1ty, t.t, € E(G). The near-claw NC'(t1ty, e, t.) exists
where ¢, = ¢, but t. does not exist, a contradiction. So z1t, ¢ E(G).

SUBCASE 1.2 Suppose ¢, = t1; then t1t, € E(G).

Then cot, ¢ E(G), tot, € E(G) as otherwise ({ti1,t0,ta,20}) = Kig3,
tors € E(G) as otherwise ({to,x3,co,t.}) = K13 and x9t, € E(G) as oth-
erwise ({3, 22,0, x4}) = Ky 3. The near-claw NC(coto, cp, tp) exists where
t, € Ap, and thus, as every vertex in S is adjacent to ¢ and tg, t, is a new ver-
tex in Ag such that coty, toty, ¢ E(G). Hence Ag = SU{t,}, and thus |A4y| = 9.
The near-claw NC(tit,, ¢, t.) exists where t. € Ay, and so t. = {t,, x1} but
t. # tp, as no vertex in Aq is adjacent to ty,t, and t;, so t. = x1 and c. = t.
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So tty, tity, T1ty € E(G). The near-claw NC(z1ty, cq, tq) exists where t3 = tg
or x3, and thus ¢y = x9. So txe € E(G). The near-claw NC(coza, ce, te)
exists where t, € Ay, but no vertex in Ay — {cp, zo} is non-adjacent to both
co and xg; so t. does not exist, which is a contradiction. So t1t, ¢ E(G).

SUBCASE 1.3 Suppose ¢, ¢ S; so ¢, is a new vertex in Vq,

Hence |Ag| = 9 since Ay = S U {c,}. Then c,cp, coxo,cata € E(G). The
near-claw NC(coto, ¢, tp) exists where ¢, € NyUN,, and thus ¢, € Ag. So t, =
tq, and thus tot, ¢ E(G). Thus ¢ty ¢ E(G) as otherwise ({c,,to,ta, 0}) =
K3 and t.t; ¢ E(G) as otherwise ({t,t,,t0,20}) = Ki3. So ¢, = 2 and
thus z9t, € E(G). So t,x3 € E(G) as otherwise ({2, x3,¢o,t.}) = K13, but
then ({x3,to,tq, x4}) = K 3, which is a contradiction.

We therefore conclude that if ¢35 € Ny and ¢y = ¢, then |Ag| > 10.
CASE 2: ¢y # ¢;.
So xg, 1, T2, v3 € Ag, and ¢y and ¢y are distinct vertices in Ag. Since c3 €

Ny, c3 # t1 by Claim 11, and thus ¢, is a new vertex (not in {xzg, 1, z2, x3, ¢, €1 })
in Ag. So |Ag| > 7. We proceed by first proving five propositions:

Proposition 17 tic3 ¢ E(G) and so tyx3,c1x3 ¢ E(G).

Figure 4.6: An induced subgraph.

Suppose to the contrary that t;c3 € E(G). Then since t; € Ay, it follows
that t; € N3. Moreover, ¢; € Ny, and thus xoc; € E(G). Since ¢y is a
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distinct vertex in NoU N3, |Ag| > 8. By Lemma 6, deg xg > 3, there is a new
vertex in Ny, say z and thus |Ag| = 9. So, ty = ¢y, and thus ¢z € E(G),
109 ¢ E(G) and ¢3 € Ny. See Figure 4.6.

Suppose ¢;z3 € E(G). Then c¢i1cy € E(G) as otherwise ({x3, ¢y, ¢, 24}) =
Ky 3,tic0 € E(Q) as otherwise ({c1,x1,t1,c0}) = Ky 3,t123 € E(G) as other-
wise ({co, t1, 23, c0}) = Ky 3, and coxe € E(G) as otherwise ({ca, co, 22,11 }) =
Ky3. Thus ty = 2, and so 232 ¢ E(G) and ¢z € E(G). But then
({ca, 2,29, t1}) = K 3, which is a contradiction. So ¢iz3 ¢ E(G).

The near-claw NC(xoco, ¢q,t,) exists where t, € Ny. So t, = ¢ or
to = xo. If cozo € E(G), then t, = ¢1, and thus ¢yc; ¢ E(G). But then
({wa, co, 1, w3}) = Kj 3, which is a contradiction. So coze ¢ E(G). More-
over, coc; ¢ E(G) as otherwise ({c1,co,22,t1}) = K3 and ¢1c2 ¢ E(G) as
otherwise ({ca, co, c1,23}) = Kj 3. The near-claw NC(cyt1, ¢y, tp) exists where
¢y € Ny U N3, but no such vertex exists.

Thus t1c5 ¢ E(G). Then tyz3 ¢ E(G) as otherwise ({z3,22,t1,c3}) =
K3, and ciz3 ¢ E(G) as otherwise ({c1, x1,x3,11}) = K 3.

Proposition 18 cyxs ¢ E(G)

Suppose to the contrary that coxe € E(G). Then cyey € E(G) as oth-
erwise ({x2,co,c1,23}) = Ky 3, and ty # t1, as otherwise ({co, zo, xa2,t1}) =
K 3; so tg is a new vertex in Ny, and thus |Ay| > 8. Furthermore, xoty €
E(G) as otherwise ({co, o, T2,t0}) = Ki3, and x3tg € E(G), as otherwise
<{J}2, $1,$3,t0}> = K173.

Suppose zoc; ¢ FE(G). Then ¢, € N,, and ¢ty € E(G) as other-
wise ({co,c1,to,x0}) = Kis, tito € E(G) as otherwise ({c1,x1,t1,t0}) =
Ky 3,ct1 € E(G) as otherwise ({to,co,t1,23}) = K3, and t; € N; as oth-
erwise ({co, T2, t1,20}) = Ki3. The near-claw NC(xqco, c,,t,) exists where
ta € No. Thus t, is a new vertex in N, and thus |Ag| = 9. The near-claw
NC'(coxa, cp, ty) exists in G where t, = t,, and thus zot, ¢ E(G). The near-
claw NC'(coto, ce, te) exists where t. = t,, and thus fot,, cot, ¢ E(G). More-
over, t,x1 ¢ E(G) as otherwise ({x1, 1., x2, x0}) = K13, and thus t,t; ¢ E(G)
as otherwise ({t1,%p,tq,z0}) = K 3. But this is a contradiction as ¢, must
have a neighbour in /NVy.

So zgc; € E(G). So ¢; € Ny and t; € N; as otherwise ({¢1,t1, xo, 22}) =
Ki 3. The near-claw NC(xgco, cq,tq) exists where t; € Ny; thus ¢4 is a
new vertex in Ny with tycy ¢ FE(G) and thus |Ag] = 9. The near-claw
NC(cixa, ce,t.) exists where t, € Ag and thus t. = t4 and so tyza,tec1 ¢
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E(G). Thus z1tq ¢ E(G) as otherwise ({z1,tq,22,20}) = K;3, and thus
tat1 € E(G) since ty must have a neighbour in N;. The near-claw NC (¢4t1, ¢y,
tr) exists where ¢y = ¢y, and thus t4to, t1tg € E(G). The near-claw NC'(coto, cg,
ty) exists where t;, € Ay but ¢, does not exist which is a contradiction.

So CoTo ¢ E(G)

Proposition 19 zyc; ¢ E(G) and thus ¢; € Ns.

Suppose to the contrary that xqc; € E(G). Then t; € N; as otherwise
({c1,t1, 0, 22 }) = Ky 3, and so ty ¢ {xo, 1, T2, X3, Co, ¢1, 11} and so |Ag] > 8.

Suppose ¢ty € E(G). Then tgzy € E(G) as otherwise ({¢1, xg, T2, to}) =
K3, toxs € E(Q) as otherwise ({x2, 1, x3,t0}) = K13, c0c1 € E(G) as other-
wise ({to, o, c1,23}) = K 3, and cot; € E(G) as otherwise ({c1, ¢, 11, 22}) =
K 5. The near-claw NC(c120, cq,t,) exists where ¢, € Ny and t, ¢ {to, z2}
and so t, is a new vertex in No. So |Ag| =9, and ¢1t, ¢ E(G). The near-claw
NC(cixa, cp, tp) exists where t, = t,, and thus z9t, ¢ E(G). Furthermore,
x1t, ¢ E(G) as otherwise ({1, tq, 22, 70}) = Ky 3, and t,x3 ¢ E(G) as other-
wise ({x3, %o, tq, xa}) = Ki3. But deg t, > 3, and so cot,, tite, tota € E(G).
The near-claw NC'(coto, ¢, t.) exists; however, no vertex t. exists which is
non-adjacent to both ¢y and ¢y, which is a contradiction.

So ity ¢ E(G).

Suppose coc; € E(G). Then ¢ty € E(G) as otherwise ({cy, co, t1,22}) =
K 3. The near-claw NC(ci22,cq,tq) exists. Suppose ¢g = w1, then ¢4 is a
new vertex in Ay, and thus |Ag| = 9. So tyz1 € E(G), c1tq, xoty ¢ E(G) and
furthermore, t; € N; as otherwise ({x1, xo, z2,tq}) = K 3. Thus ¢ = ¢, and
S0 Taty, 3ty € E(G). The near-claw NC(coxy, ¢, t.) exists where t, = x3, but
no ¢, exists as cg € Ny, which is a contradiction. Hence ¢y # 1, and thus ¢4 is
a new vertex, |Ag| = 9 and thus ty = tg. So xacy, c1¢q4, cgto € E(G) and zoty ¢
E(G). Thus ¢; = ¢4, and so tgrs € E(G) as otherwise ({c4, x3,t0, c1}) = K 3.
But then ({x3,%9, x2,24}) = K 3, which is a contradiction.

So cocq ¢ E(G).

Suppose cot; € E(G). Then t1ty € E(G) as otherwise ({co,t1,t0,21}) =
K 3. The near-claw NC(coxq, ¢y, t5) exists. Suppose ¢ is a new vertex in Ap;
then |Ay| = 9 and ¢ocy, z1¢; € E(G). Thus ty = x5 and hence, ¢y € N,. Now,
crrs € E(G) and x9cr € E(G) as otherwise ({x3, ¢r, w0, 24}) = Ky 3; ticy ¢
E(G) as otherwise ({cf,t1,21,23}) = K3 and ¢icp ¢ E(G) as otherwise
({cr,c1,c0,23}) = Ky 3. The near-claw NC(tic1, ¢y, t,) exists where ¢, = zg
but no ¢, exists, which is a contradiction. So ¢y is not a new vertex and thus
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cy = xo with ty a new vertex in N;. So |Ag| = 9 and coty, 21ty ¢ E(G).
Then ¢y = ty, and thus wzaty, 23ty € E(G). Now, oty ¢ E(G) as otherwise
({wa, ty, 1, 23}) = Ky 3 and toty ¢ E(G) as otherwise ({to, ¢, co, 23}) = K 3.
By Lemma 6, deg ty > 3; so ticy, 1ty € E(G). The near-claw NC(cit1, cp, th)
exists where ¢, = x3 but no ¢, exists, which is a contradiction.

So Cotl ¢ E(G)

Suppose tity € E(G). Then toxs ¢ E(G) as otherwise ({to, 1, co,x3}) =
K, 3, and xoty ¢ E(G) as otherwise ({xo,x1,t0,23}) = Ki3. Thus ¢ is a
new vertex in Ay and so |Ag] = 9 and cexs, cor3 € E(G). The near-claw
NC'(coto, ciyt;) exists where ¢; = co and S0 coc, toca € E(G). The near-
claw NC'(t1to, cj, t;) exists where ¢; = co, and so tjco € E(G). But then
({ca, co, t1, 23}) = K5 3, which is a contradiction.

So titg ¢ E(G). By Lemma 6, deg ty > 3, so t, must be adjacent to
at least one of xo and zs. If tgzy € E(G), then tyz3 € E(G) as otherwise
<{I2,t0,1‘3,$1}> = Kl’g, and if tyz3 € E(G), then tgzy € E(G) as otherwise
({ws, w2, to, x4}) = Ky 3. So toxa, tors € E(G). The near-claw NC(coto, ¢k, ty)
exists where ¢y, is a new vertex in Ay, and so |Ag| = 9. Also, cocg, tock € E(G).

Suppose cxc; € E(G). The near-claw NC(xgcy, ¢, t;) exists where ¢, = 1.
So ¢; = ¢, and thus ¢, € Ny. The near-claw NC(cgcq, G, b)) exists where
tm = x3 and thus ¢,, = x9; 0 ¢xxs € E(G). The near-claw NC(cxzo, cn, ty)
exists where t, € Ny, but no such vertex exists, which is a contradiction.
So cxey ¢ E(G). So ty = t1, and thus ¢t; € E(G). The near-claw
NC(xocq, ¢y, t,,) exists where ¢, € {cy, to} and ¢, € {t1,21} and thus ¢, = ¢
as tot1,tor1 ¢ E(G). So ¢ € Ny. The near-claw NC(cxty, ¢y, t,) exists but
no ¢, exists which is a contradiction.

So zocy ¢ E(G), and thus ¢; € No.

Proposition 20 cyc; ¢ E(G)

Suppose to the contrary that coc; € E(G). Then ¢yt; € E(G) as otherwise
<{01,CO,1’2,751}> = K1,3-

Suppose zot; ¢ FE(G). Then t; € N,. Moreover ¢; must be a new
vertex in No U N3. By Lemma 6, deg zy > 3; hence there is a new vertex
in Ny, say z, and so Ag = {xg, 21, T2, X3, Co, C1, Co, t1, 2} and |Ag] = 9. The
near-claw NC'(zxg, ¢, t,) exists where ¢, = ¢ or ¢, = 7 and thus z must
be adjacent to at least one of these vertices. The near-claw NC(cox1, ¢y, tp)
exists where t, = ¢ or t, = x3. Suppose t, = x3, then ¢, = co,c0 € Ny
and cocz, z1c2 € E(G). The near-claw NC(coco, ., t.) exists where t. = z,
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and so cpz,c0z ¢ E(G), ¢, # ¢, and thus ¢, = z; and so zz; € E(G).
Now, zxe € E(G) as otherwise ({z1, 2, c0,22}) = Ky 3 and t1c2 € E(G) as
otherwise ({co, t1, 2, 20}) = Ki 3. The near-claw NC(z1cq,cq,tq) exists, but
no such vertex t; exists which is a contradiction.

So t, = ¢, and thus coco, 2100 ¢ E(G).

Suppose cico € E(G). Then tico € E(G) as otherwise ({1, ¢, 1,11 }) =
K 5. The near-claw NC(cocy, ¢, te) exists where t. = {z, x3}. Ift, = x5, then
ce € N3 but no ¢, exists and so t. = z. So cpz,c12 ¢ E(G) and zx; € E(Q)
since ¢, = x1. The near-claw NC(zz1,cy,ty) exists where ¢y = x5 and so
zxy € E(G). But then ({zg,c1, 2z, 23}) = K 3, which is a contradiction.

So cico ¢ E(G) and thus ¢, = z. So c¢oz, 212,002 € E(G) and so ¢y €
N,. Now, zc; ¢ E(G) as otherwise ({z,c¢1,¢2,20}) = K; 3. The near-claw
NC(coeq, cg,ty) exists where t, = {co, 23} and ¢, = {t1,21}. But 2, is non-
adjacent to ¢ and x3; so ¢, = t1,t, = 2 and t1c; € E(G). Hence, t, = ¢
and thus ¢, = t;. Moreover, t1c; € E(G) and zt; € E(G) as otherwise
({c2, 2, t1,23}) = Ki 3. The near-claw NC(x12,cp,t)) exists where ¢, = x3
and ¢, = xq, and so zzy € E(G). But then ({x9,x3,2,¢1}) = K 3, which is
a contradiction.

So zot; € E(G), and thus t; € Nj. So tp is a new vertex in Ay with
Cot() € E(G),Iltg ¢ E(G) and t(] S NQ. I\IOVV7 Clto c E(G) as otherwise
({co, c1,t, 0}) = Ky 3, and tity € E(G) as otherwise ({co, t1,to, z1}) = K1 3.
At this stage, {xg, z1, T2, T3, Co, C1, to, 11} C Ag. The near-claw NC(xzot1, ¢;, t;)
exists where t; € N»; so t; is a new vertex in Ay, or t; = x».

Suppose t; = xo. Then ¢; is a new vertex in N7 and so |Ag| = 9. Then
xoCi, t1ci, xec; € E(G). Now c¢i¢; € FE(G) as otherwise ({xq, ¢, ¢q,x3}) =
K3, and ¢;x; € E(G) as otherwise ({z2, 21, ¢;, x3}) = K; 3. The near-claw
NC(coz1, cj, t;) exists where t; = x3, but no vertex ¢; exists which is adjacent
to cp, r1 and x3, a contradiction.

So t; # x9, and so t; is a new vertex in Ny with ¢;¢; ¢ E(G). Thus
|Ag] = 9, and so ¢; = ¢, and thus ¢ot; € E(G). Then zit; € E(G) as
otherwise ({co, 1,8, t1}) = Ky 3,titg € E(G) as otherwise ({co, t;, to, zo}) =
Ki3,c1t; € E(G) as otherwise ({co,t;,c1,20}) = Ki3, and xot; € E(G)
as otherwise ({z1,xo,22,%;}) = Ki3. The near-claw NC(cox1, cx, b)) exists
where ¢, = z3 and ¢ = t;. So t;xs € E(G). The near-claw NC(cot;, ¢, ;)
exists but no t; exists which is a contradiction.

So CoC1 ¢ E(G)

Proposition 21 z¢t; ¢ E(G).
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Proof Suppose to the contrary that zot; € E(G). Then tg is a new vertex
in Ny and {xg, 1, x2, 23, Co, €1, t0, L1} € Ap. The near-claw NC(coto, Ca,ta)
exists where ¢, is a new vertex in Ay, or ¢, = t;.

Suppose ¢, = t1. So coty, t1tg € E(G) and thus ¢1tg € E(G) as otherwise
({t1,c1,t0,20}) = Ky13. Then t, is a new vertex and so |Ag| = 9, with
tat1 € E(G) and coty, tot, ¢ E(G). The near-claw NC(zoty, cp,tp) exists
where t, € Ny and so t, = x5. Then ¢, = t,, and so t, € Ny and x9t, €
E(G). Now x1t, € E(G) as otherwise ({xq, x1,t,,x3}) = K; 3. The near-claw
NC'(cox1, ce, te) exists where . = x3 but no ¢, exists, which is a contradiction.

So ¢, is a new vertex and thus |Ag] = 9. So cocy,tocs € E(G). The
near-claw NC'(coxy, cq,ty) exists where ty = t; or t; = x3.

Suppose tq = x3, and thus ¢; = ¢,. So ¢, € No, and c,x1, c,x3 € E(G).
Then c,c1 ¢ E(G) as otherwise ({c,,co,c1,23}) = K3 and x9¢, € E(G)
as otherwise ({z1,c., 2, 20}) = Ki3. The near-claw NC(c,z1,ce,te) €x-
ists where t, = t; and ¢, = ¢g and so cot; € FE(G),cot1 ¢ E(G). Now
tito € E(G) as otherwise ({co,t1,%0,71}) = Ki3,c1t9 € E(G) as otherwise
({t1,c1,t0, 20 }) = Ky 3 and tgzs ¢ E(G) as otherwise ({tg, co, c1,23}) = K 3.
But then ({c,, 21,0, x3}) = K 3, which is a contradiction.

So tq = t1, and thus cot; ¢ E(G).

The near-claw NC(zotq,cy,ty) exists where ¢; = ¢, and so ¢, € Ny and
cot1 € E(G). Thus co = t, and so oty x5ty € E(G). Moreover, t1ty ¢ E(G)
as otherwise ({to,t1,co,23}) = Ki3. The near-claw NC(ticq,¢q,t,) exists
where ¢, = ¢,; thus ¢,c € E(G). Moreover, toc; € E(G) as otherwise
({ca to, c1,0}) = Ky 3. But then ({c1,%0,t1,21}) = Ky 3, which is a contra-
diction.

So [Eotl ¢ E(G)

To continue with the proof of Claim 17 for the case in which ¢y # ¢y,
we note that we have shown thus far that Ay contains the distinct vertices
X0, T1, Ta, Te, Cg, €1, t1, while E({Ap)) contains the edges in the induced path
ToX1Tox3 as well as ToCp, T1Co, T1C1,T2Cq, t101 while t1€3, tll'g, C1T3, CoT2, ToCq,
coC1, Toty, T1t1, Taty, cors & E(G).

By Lemma 6, deg zy > 3, there is a new vertex in Ny, say z, and ¢, is a
new vertex in Ay. Thus |Ay| = 9. See Figure 4.7.

The near-claw NC'(zxo, ¢4, t,) exists where ¢, € N;. So z is adjacent to
at least one of the vertices ¢y and 7. The near-claw NC'(cox1, cp, tp) exists
where ¢, = {ca, 2, 20}. If ¢, = g, then t, = z which is a contradiction as z is
adjacent to at least one of the vertices in {co, z1}.
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Figure 4.7: An induced subgraph.

Suppose ¢, = ¢3. Then cyea, x105 € E(G) and c¢ico € E(G) as other-
wise ({x1,c1,¢0,0}) = Ki3. But then ({cg,co,c1,23}) = Ki3, which is a
contradiction.

So ¢, = z, and thus ¢z, 212 € E(G).

Suppose cot; € E(G), and thus ¢, = ¢a. So zey € E(G), z1¢9,coc2 ¢ E(G)
and ¢ € Ny. The near-claw NC(coty, ¢, t.) exists where ¢, = z and so
tiz € E(G). Thus tic; € E(G) as otherwise ({z,z0,t1,c2}) = Ki3. So
te = w9 and so zxy € E(G). The near-claw NC(zzy,cq,tq) exists but no t4
exists which is a contradiction.

So cot1 ¢ E(G).

Hence, ty = co; thus cocy € E(G),x102 ¢ Ny and ¢y € E(G). Moreover,
ety ¢ E(G) as otherwise ({cz, ¢, t1,x2}) = K1 3. But then deg t; < 3, which
is a contradiction by Lemma 8.

So |Ap| > 10.

Claim 18 [f Cq—4 € Nd,4, then |Ad,3’ > 10.
It follows similarly from Claim 17.
Claim 19 If c3 € N3, then |Ap| > 11.

Suppose to the contrary that |Ag| < 11. We consider two cases:

CASE 1 ¢y =0

Since xg, 71, T2, T3, Cy, c3 € Ag, it follows that |Ag| > 6. We note that ¢,
is a new vertex in Ay with coty € E(G) and xotg, 21tg ¢ E(G). Moreover,
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Figure 4.8: An induced subgraph.

tory € E(G) as otherwise ({co, o, %2,t0}) = Ki3; so t1 is a new vertex in
Ay, with ¢ty € E(G) and z1ty,29t1 ¢ E(G). tizg € E(G) as otherwise
({co, t1, o, xa}) = Ky 3,t1tg € E(G) as otherwise ({co, to, t1,21}) = K; 3 and
tors € E(G) as otherwise ({xq,x1,t0,23}) = Ki3. So |Ag] > 8. See Figure
4.8.

If t3 ¢ Ao, then ({cs, 5,24, 2}) = K; 3, where z is a neighbour of ¢; in
Ny, which is a contradiction. So t3 € Ny U N3, and is thus a new vertex in
Ay, and so |Ag| > 9.

If t; € N3, then tyt3 ¢ E(G) as otherwise <{t0,t1,$3,t3}> = Kl’g, and
xots ¢ E(G) as otherwise ({2, 21,23,t3}) = Kjy3. Since t3 must have
a neighbour in z in N,, z is a new vertex in Ny such that zt; € FE(G).
Thus Ay = {zo, 21,22, T3, Co, 3, to, 11,13, 2} and |Ag] = 10. The near-claw
NC(zoco, Ca, ta) exists where t, = z and so coz ¢ E(G); zx3 ¢ E(G) as
otherwise ({z,t3,x3,y}) = K3, where y is a neighbour of z in N;, and
r9z ¢ FE(G) as otherwise ({xq,co,2,23}) = Ki3, toz ¢ E(G) as otherwise
({to, co, w3, 2}) = Ki3,.t12 ¢ E(G) as otherwise ({t1,%0,2,20}) = K;3 and
112 ¢ E(G) as otherwise ({z1, 22, 2, 20}) = K 3. But then ¢, does not exist
which is a contradiction.

So t3 S NQ.

Suppose coty € E(G). Then tot3 € E(G) as otherwise ({co, xo, to,t3}) =
Ky 3,t319 € E(G) as otherwise ({co, o, x2,t3}) = K 3,t1t3 € E(G) as other-
wise ({to,t1,t3,23}) = Ky 3 and 21t3 € E(G) as otherwise ({2, 21,3, 23}) =
K, 5. But then ({t3,t1, 21, c3}) = K3, which is a contradiction.
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So ¢ty ¢ E(G), and so xoty ¢ FE(G) as otherwise ({xs,co,ts,x3}) =
K 3,tots ¢ E(G) as otherwise ({to, co, x3,t3}) = Ki3,t1t5 ¢ E(G) as other-
wise ({t1,xo,t0,t3}) = Ky 3 and 21t3 ¢ E(G) as otherwise ({1, zo, 2,t0}) =
K;3. By Lemma 6, deg t3 > 3, and so t3 must be adjacent to at least
two more vertices in Ag — {xg, T1, T2, X3, Co, t1, to} since csts € E(G). Hence,

CASE 2 ¢ # ¢;.

Since xg,x1, T2, X3, Co, C1,Ca, c3 are all distinct vertices in Ay, it follows
that |Ag| > 8. Note that if t3 & Ay, then ({cs, 2,t3,24}) = K 3, where z is a
neighbour of ¢3 in Ny, which is a contradiction. So t3 € Aj.

Proposition 22 xyc; ¢ E(G), and thus ¢; € Ns.

Figure 4.9: An induced subgraph.

Suppose to the contrary that zoc; € E(G). Then ¢; € Ny and zot; €
E(G) as otherwise ({c1, %o, o, t1}) = K3, and thus t; € Ny. So t; is a new
vertex in Ny, and so |Ag| > 9. Further t3 € Ay and thus must be a new
vertex in Ny U N3, and so |Ap| = 10. See Figure 4.9.

Suppose t3 € N3. Then xot3 ¢ E(G) as otherwise <{[E2,JZ1, xs3, t3}> = K173,
and since t3 needs a neighbour in Ny, t3¢s € E(G), ¢ € Ny and Ny = {29, 2}
So ty = ¢g, and so ¢pc2 € E(G). But then ({¢2, co, t3, x3}) = K 3, which is a
contradiction.

So t3 € NQ.

Suppose ¢ty € E(G). Then zot3 € E(G) as otherwise ({c1, xa,t3,20}) =
K3, z1ts € E(G) as otherwise ({xo, 1, 73,t3}) = Ki3 and t1t3 ¢ E(G) as
otherwise ({ts,t1,21,¢3}) = Ky 3. So typ = o, and thus ¢ycz € E(G), z1c0 ¢
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E(G) and ¢y € Ny. The near-claw NC(csts, cq,t,) exists where ¢, € Ny U N3,
and thus ¢, = x5 or ¢, = ¢s.

Suppose ¢, = x3. Then cz3zy € F(G). Now, cocs3 € E(G) as otherwise
<{LL’2,JI1,CQ,03}> = Kl’g. So t, = Co, and so cyry € E(G) and cots ¢ E(G)
but then ({2, co, t3,23}) = K3, which is a contradiction.

So ¢, = ¢y and thus t3co,c300 € E(G) and ¢ty € E(G) as other-
wise ({c2,co,x3,t3}) = Ki3. Thus t, = t;, and so ety € E(G) but then
({ca, t1, w3, t3}) = K 3, which is a contradiction.

So ¢ty ¢ E(G) and so zoty ¢ E(G) as otherwise ({xo,cy,t3,23}) =
K, 3 and z1t3 ¢ E(G) as otherwise ({x1, zo, z2,t3}) = Ki3. The near-claw
NC'(tzcs, cp, ty) exists where ¢, € No U N3. So ¢, = co and thus t3ce, c3co €
E(G), z1co ¢ E(G) as otherwise ({c2,x1,t3,23}) = Ky 3 and ¢y ¢ E(G)
as otherwise ({co,c1,t3,23}) = Ki3. The near-claw NC(cix2, ¢, t.) exists
where ¢, = ¢g or zj.

Suppose ¢. = c¢g, and thus cocq,cor2 € E(G). Hence t. = t3 and so
cots € E(G) but then ({co, x2,t3,x0}) = K3, which is a contradiction.

So ¢. = x1, and thus t. = ¢y and so cocy, cors ¢ E(G). The near-
claw NC(ticy,cq,tq) exists where ¢ = o and thus t; = ¢y. Hence, cot; ¢
E(G). Now, xacs ¢ E(G) as otherwise ({cs,xa,t3,24}) = Ki 3 and coco ¢
E(G) as otherwise ({cq,co,x2,¢3}) = Ki3. Thus ty = t3 and so ¢t €
E(G). The near-claw NC(cots, ce, t.) exists, but no vertex c, exists which is

a contradiction.
Thus zoc; ¢ E(G).

Proposition 23 c¢yzy ¢ E(G).

Suppose to the contrary that cozy € E(G).

Recall by Claim 11 that ¢, = ¢; implies j =4 — 2 or j = i + 2. Suppose
to = 2. Then cocy € E(G),x100 ¢ E(G) and co € Ny. Thus ¢y is a new
vertex in Ap and so |Ag| > 9, cote € E(G) and woty, x5ty ¢ E(G). Now,
cote € E(G) as otherwise ({ca, co, t2, 23}) = K 3, and so t5 € N; as otherwise
({co, o, wa, ta}) = Ky 3.

Now suppose coc; ¢ E(G). Then, we have ¢jz3 € E(G) as otherwise
({wa, co, c1,w3}) = Ky 3 and so t3 # ¢;. Furthermore, ¢1cy € E(G) as other-
wise ({z3,c1,co,24}) = Ky 3. Now t3 € Ap and since ty € Ny, t3 # to, and so
t3 is a new vertex in NoU N3, and thus |Ag| = 10, t3¢3 € E(G) and t3xs, t3x4 ¢
E(G). Moreover, t; # ty as otherwise ({c1, 1, x3,t2}) = K13 and t; # t3 as
otherwise ({c1,z1,t3,23}) = Ki3, and so t; = ¢3. Hence cic3 € E(G) and
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xacs ¢ E(G) and thus cycs € E(G) as otherwise ({c1, 21, ¢2,¢3}) = K; 3. But
then ({cq,t2, 72, c3}) = K3, which is a contradiction.

So ¢oc; € E(G) and thus c¢jeo € E(G) as otherwise ({co, c1, ¢, 20}) =
K 5. The near-claw NC(zocy, ¢q,t,) exists where t, € Ny, and so t, is a new
vertex in Ny such that cot, ¢ E(G). Hence, |Ay| = 10.

Suppose ¢, = ty. Then tyt, € E(G) and cot, € E(G) as otherwise
({ta,ta, co,x0}) = Ky, w3ty € E(G) as otherwise ({c,tq,c0,23}) = Ky
and xot, € E(G) as otherwise ({z3,22,%0,24}) = K;3. The near-claw
NC(coxa, cp, tp) exists where t, = c3 and so xec; ¢ E(G). The near-claw
NC'(coca, e, t.) exists where t. = c3 and so cocg ¢ E(G). Moreover, ¢. = ¢;
and so cic3 € E(G). But then ({1, 21, 2, ¢3}) = K 3, which is a contradic-
tion.

So ¢, = x, and thus x1t, € E(G) and t,zo € E(G) as otherwise
({x1, 29, ta, x0}) = Ky, tors € E(G) as otherwise ({x9,co,te,23}) = Ki3
and thus ct, € F(G) as otherwise ({3, co,tq, 4}) = Ky 3. The near-claw
NC'(coxa, cq,tq) exists where t; = c3, and thus zoc3 ¢ E(G). The near-claw
NC'(coea, ce, te) exists where t. = c3 and so coc3 ¢ F(G). Now ¢, = ¢, and
so cic3 € E(G) but then ({c1,x1, 2, c3}) = K 3, which is a contradiction.

So tyg # cq, and so ty is a new vertex in Ny, and thus |Ag| > 9. By Lemma
6, deg zo > 3; hence there is a new vertex z in Ny, and so |Ag| = 10; zaty €
E(G) as otherwise ({co,zo,to,x2}) = K; 3 and thus tgz3 € E(G) as other-
wise ({x2,21,t0,23}) = Ki3. Since t3 € Ay, t3 = c1, and so cic3 € E(G)
and cyz3 ¢ E(G). Moreover, c¢oc; € E(G) as otherwise ({za,co,c1,23}) =
Ky 3,tgc1 € E(G) as otherwise ({co, %o, c1,20}) = K3 and c3ty € E(G) as
otherwise ({c1,71,¢3,t0}) = K3 . The near-claw NC(xco,cy,ty) exists
where t; = ¢3. So ¢a € Ny and ¢oc ¢ E(G); ta = 2z and so ez € E(G)
and zzy ¢ E(G). Moreover, t; # z as otherwise ({c1,21,2,¢3}) = K3
and so t; = c¢3. Thus xec3 ¢ E(G), and so ¢z ¢ FE(G) as otherwise
({c1,2,29,¢c3}) = K3, toz ¢ E(G) as otherwise ({fto,2,%2,c3}) = Ki3.
The near-claw NC(zcg, ¢y, t,) exists where ¢, = x1, and so cox1, 221 € E(G).
Then c¢icy € E(G) as otherwise ({x1, 1,02, 20}) = K13 and cocs € E(G) as
otherwise ({c1, c2,¢3,¢0}) = K 3. So t, = ¢o and thus ¢pz ¢ E(G). But then
deg z = 3 and deg z¢y = 3, which is a contradiction as the vertices of degree
3 form an independent set by Lemma 4

So coxe ¢ E(G).

Proposition 24 ¢yc; ¢ E(G).

Suppose to the contrary that coc; € E(G).
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Then t; # c3 as otherwise ({c1, o, 22, c3}) = K3, and thus ¢; is a new
vertex in Ag. So ¢ty € E(G) as otherwise ({c1, co, 2,11 }) = K 3.

Suppose ¢iz3 € E(G). Then t1z3 € E(G) as otherwise ({c1, x1, 23,61 }) =
K, 3, and so t; € Ny. But then ({x3,11, 22, 24}) = K 3, which is a contradic-
tion.

So c1x3 ¢ E(G).

Now t1z3 ¢ E(G), otherwise t; € Ny, and then ({zs, 29,11, 24}) = Ky 3,
which is a contradiction.

Suppose z1¢y € E(G). Then ¢y € Ny and thus ¢ice € E(G) as otherwise
<{J]1, Zo, C1, CQ}> = K173 and thQ ¢ E(G) as otherwise <{CQ,JZ1, xs3, t1}> = K173.

Suppose ty is a new vertex in Ay, and so zaty, 23ty ¢ E(G), coty € E(G)
and |Ag| = 10. Then z1ty € E(G) as otherwise ({co, 1, x3,t2}) = K3
and to € Ny as otherwise ({x1,x¢,%2,t2}) = Ki3. So tp = t; and thus
t1 € Ny. Moreover, cyce ¢ E(G) as otherwise ({co, zo,c2,t1}) = Ki3. The
near-claw NC'(cor1,¢q,t,) exists where ¢, € {c1, 0,12} and thus ¢, = ¢,
and so ¢, = ¢ since ¢, € No. cic5 € E(G), 293¢5 € E(G) as otherwise
({c1, 0,72, ¢c3}) = Ky 3 and tics € E(G) as otherwise ({1, 21, ¢3,t1}) =2 Ky 5.
But then ({cs, za,t1,24}) = Ky 3.

So tg = ¢g. Thus cocy € E(G) and ¢, € N; as otherwise ({co, o, c2,t1}) =
Ki3. So ty is a new vertex in Ny and thus |Ag] = 10. Therefore, oty €
E(G) as otherwise ({co,c2,t0,70}) = Ki3, and tors € E(G) as otherwise
({ca, 21, 23,t0}) = Ki3. Now t3 # ¢; as otherwise ({c1,t1,21,¢3}) = Ky
and since t3 € Ao, t3 = to which is a contradiction as tgzs € E(G).

So z1¢c9 ¢ E(G).

Suppose zoc3 € E(G). Thus cac; € E(G) as otherwise ({x2, ¢, c3,21}) =
K3, tics ¢ E(G) as otherwise ({cs,t1, 22, 24}) = Ky 3 and cic3 ¢ E(G) as
otherwise ({c1,t1, 21, ¢c3}) = Ki 5. Thus t3 is a new vertex in Ny U N3, and so
|Ap| = 10. By Lemma 6, deg zo > 3,t; € Ny and so xot3 € E(G) as otherwise
({cs3, wa, g, t3}) = K3 and 21t3 € E(G) as otherwise ({2, 21, x3,13}) =
K 3. So tg = co, and thus ¢yce € E(G) and ¢2 € Ny. Moreover, et € E(G)
as otherwise ({cs,ca,t3,24}) = Ki3. The near-claw NC(coc, cp, tp) exists,
but no vertex t;, exists which is a contradiction.

So x9c3 ¢ E(G). Thus cie3 ¢ E(G) as otherwise ({c1, ¢, 2, c3}) = K 3.

Suppose tic3 ¢ E(G). Then tg is a new vertex in NyUN3, and so |Ag| = 10.
By Lemma 6, deg xo > 3, and hence t; € N;. The near-claw NC(xot1, ¢, t.)
exists where c. = ¢g. Now, ¢, # ¢y as otherwise coco € E(G),t1c2 ¢ E(G) and
({co,t1,co,m1}) = Ky 3. Thus t. = t3 and so cots € E(G),t1ts ¢ E(G) and
ts € Ny. Then c¢1t3 € E(G) as otherwise ({co,c1,t3,20}) = K3 and xat3 €
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E(G) as otherwise ({c1, 1,3, 22}) = K 3. But then ({ts, co, x2,c3}) = K 3,
which is a contradiction.

So tic3 € F(G) and thus t; € Ny. By Lemma 6, deg zo > 3; so there
is a new vertex z in Ny, and so |Ag| = 10. The near-claw NC(tics, cq,ta)
exists where ¢q = co. Thus t1c9, c3c2 € E(G). Now coea ¢ E(G) as otherwise
<{02, Co, L2, 03}> = K173.

Suppose c¢i¢ce € E(G). The near-claw NC(cico, e, te) exists where ¢, =
t1,2 Or Xo.

Suppose ¢, = T3, then t, = z. So zxy € E(G) and zc; ¢ E(G), but then
({x2, z,c1,23}) = K 3, which is a contradiction.

Suppose ¢, = ty, then t. = 2. So t1z € E(G) and z¢; ¢ E(G), but then
({t1, 2z, c1,c3}) = K 3, which is a contradiction.

So ¢. = z, and so0 ¢1z,002 € E(G). Then zt; € E(G) as otherwise
({co, t1, z,23}) = Ky 3 and zxo € E(G) as otherwise ({co, 22, 2, c3}) = K 3.
The near-claw NC(zxo, cs,ty) exists where t; € Ny but no such vertex exists.

So ci1c0 ¢ E(G).

The near-claw NC(coz1, ¢4, t,) exists where ¢, = z or ¢;. So ¢, = 2, as oth-
erwise if ¢, = ¢, then no ¢, exists. Moreover t, = ¢y, and thus x;2, coz, zcs €
E(G) and ¢y € Ny. Now zxg € E(G) as otherwise ({ca, 2, 22, ¢3}) = K 3 and
2ty € E(G) as otherwise ({¢2, 2, t1, 23}) = K; 3. The near-claw NC'(zx, cp, ty)
exists where t, € Ny. Thus ¢, = ¢; and so z¢; ¢ E(G). But this is a contra-
diction since ({x9, z,¢1,23}) = K 3.

So cocr ¢ E(G).

Proposition 25 z,c; ¢ E(G).

Suppose to the contrary that xico € E(G), and so ¢y € No.

Now cico € E(G) as otherwise ({1, 2o, c1,co}) = Ki3 and thus {j is a
new vertex in No. By Lemma 6, deg xy > 3; so there is a new vertex z in Ny
and so |Ag| = 10. The near-claw NC(coto, cq,t,) exists where ¢, = ¢ or z.

Suppose ¢, = z. Then zcy, ztg € E(G) and t, € Ny. But then ({z, o, to,
to.}) = K3, which is a contradiction.

So ¢, = . Then cyeo, tocs € E(G). Now, toxs € E(G) as otherwise
({2, z1,t0, 23}) = K 3 and c1xs € E(G) as otherwise ({ca, co, 1, 23}) = K 3.
Now, t3 € Ny U N3, but no such vertex t3 exists which is a contradiction.

So z1¢c ¢ E(G).

Proposition 26 c¢,z3 ¢ E(G).
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Suppose to the contrary that c;x3 € E(G). Therefore, t3 is a new vertex
in Ny U N3 such that csts € E(G) and z3t3, z4t3 ¢ E(G). By Lemma 6, deg
xo > 3; hence there is a new vertex z in Ny and thus |4,| = 10.

Suppose ¢1c2 ¢ E(G). Then coxy € E(G) as otherwise ({x3, ¢y, ¢, 24}) =
K 3, and thus co € N3. So cocy ¢ E(G) and thus ty = t3 and so ¢ot3 € E(G)
and z1t3 ¢ F(G). The near-claw NC(cox1,cq,t,) exists where ¢, = xg or
co = z. The near-claw NC(zoz, ¢y, tp) exists where ¢, = 1 or ¢y, and thus
z is adjacent to at least one of the vertices in {x1,¢y}. So, if ¢, = ¢, then
t, = z, which is a contradiction. Thus ¢, = z, and so t, € Ny but then no ¢,
exists which is a contradiction.

So cico € E(G). The near-claw NC(cox1, ¢, te) exists where ¢. = z or
Ce = tg.

Suppose ¢. = z. Then ¢yz,z12 € E(G). The near-claw NC(x1c1,cq,tq)
exists where t; = t3 or t; = c3.

Suppose tg = c3, and so cic3 ¢ E(G). Thus t; = t3, but then ({¢1, 21, x3,
t3}) = K 3, which is a contradiction.

So ty = t3, and so cit3, xits ¢ E(G). So xatz3 ¢ E(G) as otherwise
({xo,t3,21,23}) = Ki3, and thus ¢4 = z. Therefore ¢12,t32 € E(G) and
ts € No, but then ({z,x¢,c1,t3}) = K 3, which is a contradiction.

So ¢, = t3 and thus cots, x1t3 € E(G) and t3 € No. Then tg = c3 and so
cocy € E(G) and ¢o € Ny. Then t3c; € E(G) as otherwise ({x1, xg, ¢1,t3}) =
K 5,t319 € E(G) as otherwise ({x1, xo, 22, t3}) = K3, cots € E(G) as other-
wise ({co, zo, C2,t3}) = K3 and cic3 € E(G) as otherwise ({ts, co, c1,¢3}) =
K, 5. The near-claw NC(cix1, ¢, t.) exists where t. = z and ¢4 = t3 or zs.
If cq = t3, then ({t3,21,2,c3}) = Ky 3 and if ¢q = @9, then ({xq, 21, 2, 23}) =
K, 3, both of which are contradictions.

So c1x3 ¢ E(G).

Proposition 27 xsc3 ¢ E(G).

Suppose to the contrary that zyc3 € E(G). Then t; # c3, and so t; ¢
{ziyc; © i = 0,1,2,3}; hence ¢; is a new vertex in Ay and cyc3 € E(Q)
as otherwise ({z2,21,c2,c3}) = Ki3. The near-claw NC(coxy,cq,t,) exists
where ¢, = zg or where ¢, is a new vertex in Ay.

Suppose ¢, = xg. Then t, € Ny and thus t, = t; or is a new vertex in /Vy.
If ¢, is a new vertex in Ny, then the near-claw NC'(t,x¢, ¢, tp) exists where
¢, =t and so t; € Ny, and if ¢, = t;, then the near-claw NC(t;x, ¢, t.)
exists where ¢, is a new vertex in Nj. In either case, t; € Ny and |Ag| = 10
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and so t3 = ¢;. Thus ¢ic3 € E(G), but then ({c1, x1,t1,¢3}) = K 3, which is
a contradiction.

So ¢, is a new vertex in Ay such that cyc,, 1¢, € E(G), and so |Ag| = 10.

Suppose cic3 € E(G). Then tic3 € E(G) as otherwise ({c1, 21,61, ¢3}) =
K, 3 and t1z4 € E(G) as otherwise ({cs, z2,t1,24}) = Ky 3. Hence, t; € N3;
thus tg = c2 and so cycs € E(G). By Lemma 6, deg xg > 3,¢, € N; and so
t, € N5 but then t, does not exist, which is a contradiction.

So cic3 ¢ E(G) and thus t3 # t; as otherwise ({cs,t1, 29, 24}) = K 3.
So t3 = ¢, and thus czc, € E(G),c, € Ny and z3¢, ¢ E(G). By Lemma 6,
deg zp > 3, s0 t; € Ni. Thus ty = ¢o, and so ¢pca € E(G) and ¢ € Ns.
The near-claw NC'(zot1,cq,tq) exists where ¢; = ¢o and thus cot; € E(G).
Then t1co € E(G) as otherwise ({cp,x1,t1,¢2}) = K3 and ¢ic2 € E(G) as
otherwise ({t1,c1,co,20}) = Ki13. The near-claw NC/(coca, ce,t.) exists but
no vertex t, exists which is a contradiction.

So T9Cs ¢ E(G)
Proposition 28 cyzy ¢ E(G).

Suppose to the contrary that coxy € E(G). Then ¢y € N3, and thus £ is
a new vertex in Ny. By Lemma 6, deg zy > 3; so there exists a new vertex
z in Ny and so |Ag| = 10. The near-claw NC(cox1, cq,t,) exists where ¢, = z
or ¢, = xg. The near-claw NC(xgz, ¢y, tp) exists where ¢, = x1 or ¢, = co.
Thus z is adjacent to at least one of the vertices in {x1,c}. So, if ¢, = o,
then ¢, = z, which is a contradiction. Hence, ¢, = z. But then ¢, does not
exist, which is a contradiction.

So coxy ¢ E(G).

To continue with the proof of Claim 19 for the case in which ¢y # ¢
and c3 € N3, we note that we have shown thus far that Ay contains the
distinct vertices xg, 1, Ta, T, Co, €1, C2, c3, While E({Ap)) contains the edges
in the induced path zgziz923 as well as xgcy, r1¢o, x1C1, ToC1, ToCo, T3Ca, , T3C3
while zgcq, oz, cocr, T1C2, 123, ToCs, Coy, o3 & E(G).

The near-claw NC(coz1, Cq, to) exists where ¢, = xq or ¢, is a new vertex
in A().

Suppose ¢, = xg. Then t, € Ny, and so t, is a new vertex in Ay with
taCo, tar1 € E(G). The near-claw NC(t,xo, cg,t5) exists where ¢z € Ny, and
is thus a new vertex in N;. Hence, |Ag| = 10. Since t3 € Ny U N3, t5 = ¢1.
The near-claw NC(cics, ¢y, t,) exists where ¢, = ¢o; thus cics, cocs € E(G).
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Then c1t, ¢ E(G) as otherwise ({c1, 21,4, c3}) = Ky 3 and z9t, ¢ E(G) as
otherwise ({x2,21,t4,23}) = K1 3. Now, by Lemma 6, deg t, > 3, and thus
cota € E(G). But then ({co, ¢1,ta, 23}) = K 3, which is a contradiction.

So ¢, # ¢ and so ¢, is a new vertex in N; U Ny such that cyc,, x1c, €
E(G), and so |Ag| > 9.

Suppose ¢, € No. By Lemma 6, deg zy > 3, there exists a new ver-
tex z in Ny and so, |Ag] = 10. Now, ty = ¢ and thus cocs € E(G),
c2 € Na, cacy € E(Q) as otherwise ({co, ca, c2,20}) = K13 and coc1 € E(G)
as otherwise ({x1,cq,c1,20}) = Ki3. Moreover, c,rs ¢ E(G) as other-
wise ({cq,co,c1,23}) = Ky 3 and thus t, = ¢3 and so coc3 € E(G). Hence,
cics € E(G) as otherwise ({cq, co,c1,¢3}) = K3, c2c3 € E(G) as otherwise
({cas 2, c3,21}) = K; 3 and ¢ic0 € E(G) as otherwise ({c3, ¢a, ¢1,24}) =2 K 5.
But then ({co, co, c1,23}) = K 3, which is a contradiction.

So ¢, € Ny. Then t, = ¢y or t, is a new vertex in Ag.

Suppose t, = ¢o. Then c,co € E(G),coca ¢ E(G) and ¢g € Ny. Then,
to # co and tg is a new vertex in Ny, and hence |Ag| = 10. The near-claw
NC(coto, cs,t5) exists where cs = ¢, and so cotg € E(G). But then, since
ts € No, we have ({ca, %o, t0,t5}) = K13 which is a contradiction.

So t, is new vertex in Ay with ¢,t, € E(G) and coty, x1ts ¢ E(G). Hence,
|Ag| = 10. Then ¢y = ¢, and so coco € E(G) and ¢g € Ny. The near-claw
NC'(coca, ¢, t.) exists where ¢, = ¢, and 80 ¢ 2 € E(G). Then t, e € E(G)
as otherwise ({ca,ta,21,c2}) = Ky 3. So te = ¢1, and thus ¢,¢; € E(G) and
cico ¢ E(G). But then ({c4, xo, c1,c2}) = K; 3 which is a contradiction.

So |Ap| > 11.

Claim 20 ]f Cq—4 € Ndfg, then |Ad,4’ > 11.

This claim follows similarly.

Proof (of Theorem 6) Consider the vertex c¢;. By Claim 12, ¢3 €
N3 @) N4.

Suppose ¢3 € N3. By Claim 19, |Ap| > 11. By Claim 12, ¢4y € Ng_4 U
Ng4—3, and thus by Claims 18 and 20, |A4_4| > 10. By Claim 16, |A4|+ |As| +
s 4 [Ay_a| + |Ay| > 5t — 1. Hence

no = [Ao| + [Ad] + [As] + -+ [Apea] + [Ad + [Ag-a]
d—7
> 149~ —] +10
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d—17
> 20+9LTJ.

So the result holds if ¢3 € Nj.

Now suppose c3 € Ny, and suppose to the contrary that the result does

not hold. So g7
n < 20+ 9L%J,

and by Claims 16, 17 and 18,

n=19+ 9Luj
4
Thus |A0| = |Ad_4| = 10 and |A4| + |A8| + ...+ |At_4| + |At| = %t —1. So
for some j € {4,8,...,t —4,t}, |A;| = 8 but for every k € {4,...,j —4} U
{j+4,...,t},|Ax] = 9. We shall now derive a contradiction.

Consider A;. By Claim 14, ¢;_; € N;_;. Since |A;_4] = 9 and by Claim
15, ¢j_5 € Nj_s. Similarly, since |A;_g| = 9,¢j_9 € N,_g. Continuing on we
see that we must then have c3 € N3, which is a contradiction.

So the result holds for c¢3 € N,.

Figure 4.10: An induced subgraph.

To show sharpness, we consider the following family of graphs consisting
of a copy of the graph in Figure 4.10, ¢ copies of the graph in Figure 4.11
and a copy of the graph in Figure 4.12, where 1 < ¢ < ¢ and vertices to be
identified are labelled on the figures.
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X,

4i-1 'x;i+3

Figure 4.11: An induced subgraph.

443

Figure 4.12: An induced subgraph.
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