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Abstract

This thesis contains an investigation of bounds on distance measures, in
particular, radius and diameter in terms of other graph parameters.

In a graph G, the distance between two vertices is the length of a shortest
path between them. The eccentricity of a vertex v is the maximum distance
from v to any vertex in G. The radius of G is the minimum eccentricity of a
vertex, and the diameter of G is the maximum eccentricity of a vertex.

Vizing established an upper bound on the size of a graph of given order
and radius. In Chapter 2, we establish similar sharp bounds on the size of a
bipartite graph of given order and radius.

The inverse degree r(G) of a graph G is defined as r(G) =
∑

v∈V
1

degv
. In

Chapter 3, we prove that, if G is connected and of order n, then the diameter
of G is less than (3r + 2 + o(1))r(G) log n

log log n
. This improves a bound given by

Erdös et al. by a factor of approximately 2.
A graph G is a minimal claw-free graph if it contains no K1,3 as an induced

subgraph and if, for each edge e of G, G − e contains an induced claw. In
Chapter 4, we establish an upper bound on the diameter of a minimal claw-
free graph of given order.
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Chapter 1

Introduction

The purpose of this chapter is to define the most important terms that will be
used in this thesis and to present motivation for our study as well as provide
relevant background. Terms not defined in this chapter will be defined in
subsequent chapters as the need arises.

1.1 Graph Theory Terminology

A graph G = (V (G), E(G)) consists of a finite non-empty set V (G) of ele-
ments called vertices and a (possibly empty) set E(G) of 2-element subsets
of V (G) called edges. The number of elements in V (G) is called the or-
der and the number of elements in E(G) is called the size of G. If G has
only one vertex then we say that G is trivial ; otherwise G is non-trivial. If
e = {u, v} ∈ E(G), then we say that u and v are adjacent, while e is incident
with u and v. We also say that e joins u and v. We often write e = uv
instead of {u, v}.

The degree degG(v) of a vertex v of G is the number of edges incident with
v. A vertex of degree 1 is called an end-vertex. The minimum degree δ(G)
and the maximum degree ∆(G) are defined as the minimum and maximum,
respectively, of the degrees of vertices in G. The neighbourhood NG(v) of a
vertex v ∈ V (G) is the set of all vertices adjacent to v in G; while the closed
neighbourhood NG[v] is the union of {v} and its neighbourhood. If there is no
ambiguity, we may omit the subscript or argument G in the above notations.
The inverse degree, r(G), of G is defined as the sum of the inverses of the
degrees of the vertices of G, that is r(G) =

∑
v∈V (G)

1
degv

.
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A walk W in a graph G is an alternating sequence

W : v0, e1, v1, . . . , vk−1, ek, vk

of vertices and edges such that ei = vi−1vi for i = 1, 2, . . . , k. A walk that
starts from v0 and ends at vi in a graph is referred to as a v0 − vi walk.
Since the vertices that appear in a walk determine the edges in the walk, we
can omit the edges in the description of a walk, and denote the walk W by
v0v1 . . . vk. We call k the length of the walk, and write l(W ) = k. A path
is a walk in which no vertex is repeated. A path v0v1 . . . vk that begins at
vertex v0 and ends at vertex vk is called a v0 − vk path. A cycle of length k
is a walk v0v1 . . . vk in which k ≥ 3, v0 = vk and the vertices {v1, v2 . . . , vk}
are distinct. A cycle of length k is referred to as a k−cycle. A graph which
contains no cycles and in which there is a walk from each vertex to every
other vertex in the graph is called a tree.

For given sets S and T , S ⊆ T means that S is a subset of T , and S ⊂ T
means that S is a proper subset of T , that is, S ⊆ T and S 6= T . A graph
H = (V (H), E(H)) is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If
V (H) = V (G), then H is a spanning subgraph of G. If a spanning subgraph
G′ of a graph G is a tree, then G′ is called a spanning tree of G. The
complement G of a graph G is the graph with V (G) = V (G), and such that
uv is an edge of G if and only if uv is not an edge of G. The cardinality
of a set S is denoted by |S|. If S ⊆ V (G) is non-empty, then the subgraph
induced by S is the maximal subgraph of G with vertex set S, and is denoted
by 〈S〉G. For two subsets S and T of V (G), [S, T ] denotes the set of all edges
which join a vertex in S to a vertex in T .

A graph G is connected, if for any two vertices u and v, there is a u − v
path in G. A component of a graph G is a maximal connected subgraph of
G. For a subset S of V (G), G− S is the graph obtained from G by deleting
every vertex in S and all edges incident with it; if S = {v}, then we write
G−S = G− v. A subset S ⊂ V (G) is called a cutset if its deletion increases
the number of components in G, and a vertex v whose deletion increases the
number of components is called a cut-vertex, and a non-cut vertex or ncv
otherwise. For a subset F of E(G), G− F is the graph obtained from G by
deleting all edges of F ; if F = {e}, then we simply write G− F = G− e. A
subset F ⊂ E(G) whose deletion increases the number of components of a
graph G is an edge-cut. The edge-connectivity λ(G) of a connected non-trivial
graph G is the minimum cardinality of an edge-cut of G. If G is disconnected
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or trivial, then we define λ(G) = 0. We say that G is k-edge-connected if
k ≤ λ(G).

A block B of a graph G is a maximal connected subgraph of G that has
no cut-vertices. Hence, for any cut-vertex v of G, B − v lies entirely in one
component of G − v. A vertex x is said to be separated from a vertex y
by a vertex v if v lies on every x − y path (i.e., if x and y are in different
components of G− v).

The union G1 ∪G2 of two graphs G1 and G2 is the graph with vertex set
V (G1 ∪ G2) = V (G1) ∪ V (G2) and edge set E(G1 ∪ G2) = E(G1) ∪ E(G2).
The union of k disjoint copies of G is denoted by kG. The join G1 + G2 of
two vertex disjoint graphs G1 and G2 is the graph consisting of the union
G1 ∪ G2, together with all edges of the type xy, where x ∈ V (G1) and
y ∈ V (G2). For k ≥ 3 vertex disjoint graphs G1, G2, . . . , Gk, the sequential
join G1 +G2 + . . .+Gk is the graph (G1 +G2)∪(G2 +G3)∪ . . .∪(Gk−1 +Gk).
The sequential join of k disjoint copies of G will be denoted by [k]G, while
k1G1+[k2]G2+k3G3 will denote the sequential join k1G1+G2+. . .+G2+k3G3.

A complete graph Kn of order n is the graph in which each vertex is
adjacent to all the other n− 1 vertices of Kn. A graph G is bipartite if it can
be partitioned into two (non-empty) subsets V1 and V2 such that every edge
of G joins a vertex of V1 to a vertex of V2. If each vertex of V1 is joined to
every vertex of V2, then G is called a complete bipartite graph, and is denoted
by Kn,m, where n = |V1| and m = |V2|, or vice versa. A path-complete graph
PKn,m of order n and size m is the graph obtained by joining one end-vertex
of a (possibly trivial) path to at least one vertex of a complete graph. For
convenience, we define PK1,0

∼= K1. Swart [47] showed in 1996 that for any
n ∈ N and m ∈ {n − 1, n, . . . , (n

2 )}, PKn,mis unique up to isomorphism,

where, for r ∈ R and k ∈ N (r
k) = r(r−1)...(r−k+1)

k!
.

The graph K1,n is called a star. We refer to the star K1,3 as a claw with
the vertex of degree 3 as its centre. For any graphs G and H, G is said
to be H-free if it does not contain H as an induced subgraph. Let G be a
non-empty claw-free graph. If the removal of any edge of G produces a graph
which is not claw-free, then G is a minimal claw-free graph, briefly denoted
as an m.c.f. graph or m.c.f.g.
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1.2 Distance Concepts

All graphs considered henceforth are connected and non-trivial, unless oth-
erwise specified. Let G be a given graph of order n. The distance dG(u, v)
between two vertices u, v ∈ V (G) is the length of a shortest u − v path in
G. The eccentricity eG(v) of a vertex v ∈ V (G) is the distance from v to
a vertex farthest from it in G. The radius of G, rad(G), is the minimum
eccentricity of a vertex in G, that is, rad(G) = minv∈V (G) e(v). The diam-
eter of G, diam(G), is the maximum eccentricity of a vertex in G, that is
diam(G) = maxv∈V (G) e(v). If {u, v} ⊆ V (G) is a pair of vertices of G with
dG(u, v) = diam(G), then {u, v} is referred to as a diametral pair of vertices.
Any shortest path joining two diametral vertices is called a diametral path.

A vertex c of G is called central if eG(c) = rad(G). The centre C(G) is the
set of all central vertices in G. An eccentric vertex of a vertex v is a vertex
farthest away from v. If there is only one such vertex u, then u is called the
unique eccentric point (or uep) of v. A conjugate vertex v∗ of a vertex v is
a central vertex which has v as its uep. (So a vertex might have more than
one conjugate vertex, or none.) A conjugate pair is a pair of central vertices,
each of which is the uep of the other.

The distance of v in G is defined as

σ(v, G) =
∑

u∈V (G)

dG(v, u),

and the distance of G as

σ(G) =
∑

{u,v}⊆V (G)

dG(v, u) =
1

2

∑
v∈V (G)

σ(v, G).

The average distance µ(G) of a graph G of order n ≥ 2 is the average of
the distances between all unordered pairs of vertices of G. In other words,

µ(G) =
2σ(G)

n(n− 1)
.

One sees that µ(G) is the arithmetic mean of all non-zero distances in
G. This ensures that 1 ≤ µ(G) with equality if and only if G is a complete
graph.

The i-th distance layer Ni(v) of a vertex v ∈ V (G) is the set of vertices
at distance i from v. (So N1(v) = N(v)). N≤i(v) is the set of vertices at
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distance at most i from v, that is

N≤i(v) = {u ∈ V (G)|dG(v, u) ≤ i}.

Similarly, N≥i(v) = {u ∈ V (G)|dG(v, u) ≥ i}.
For non-empty subsets V1, V2 ⊆ V (G), the distance between V1 and V2,

d(V1, V2), is defined as the minimum value of dG(a, b) taken over all vertices
a ∈ V1, b ∈ V2. Hence d(V1, V2) = 0 means that V1 ∩ V2 6= ∅. If V1 = {a} has
a single vertex, we write d(a, V2) instead of d(V1, V2).

A subgraph H of G is said to be distance-preserving from a vertex v in
G if dH(v, u) = dG(v, u) for all u ∈ V (H). A spanning tree T of G is said to
be radius-preserving if rad(G) =rad(T ).

We define a non-trivial graph G to be vertex-radius-decreasing if rad(G−
v) < rad(G) for every ncv v of G.

We say that G is radius-critical if rad(G − u) 6= rad(G) for every vertex
u ∈ V (G).

1.3 Literature Review

1.3.1 Motivation and Background

The purpose of this subsection is to give some motivation for our research
and to provide background for relevant results. Proofs of some of the results
will be given in the next subsection.

Since discrete structures are naturally modelled by graphs, this provides
a motivation for studying distances in graphs, both theoretically and its
applications. In fact, the distance between two vertices is one of the most
thoroughly studied concepts in graph theory, and a book devoted to this
subject was written by Buckley and Harary [3].

An important motivation to study distance concepts is the application of
distance parameters in analyzing transportation networks. Consider a trans-
port network consisting of locations (cities, computer processes or telephone
receivers for instance) and transportation links (railway links, links for data
transport or telephone lines for instance). A graph may conveniently model
such a network, where vertices correspond to locations and edges correspond
to the transportation links between the locations. Often the travel time be-
tween two locations, is proportional to the distance between the correspond-
ing vertices in the graph. In such a network, decision problems involving the
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optimal selection of one or more sites to locate emergency facilities arises.
If one wishes to place, say, an emergency facility like a hospital or a fire
station, then a primary concern in choosing such a location is that the travel
time/distance from the emergency facility to a location farthest from it is as
small as possible. If the best location for the emergency facility is chosen,
then the radius of the graph is a measure that indicates the travel time from
the emergency facility to a location farthest away. Thus the radius of a graph
is an important measure of centrality. The travel time between two locations
which are farthest apart in the network, that is, the maximum travel time be-
tween any two locations, is proportional to the diameter of the corresponding
graph. If any two locations are chosen at random, then on average, the travel
time between them is proportional to the average distance of the graph.

Such network applications are not solely limited to transportation sys-
tems, and in fact occur in many diverse areas such as metabolic and gene
regulation networks in cells (see [51]), ecology and economic interactions.

The central vertices in a network are of particular interest because they
may play the role of organization hubs. In addition to mathematicians,
many biologists, sociologists, historians and geographers (see [45], [51] for
references) have been interested in the concept of centrality.

Using Dikjstra’s algorithm, which determines the distance from a vertex
of the graph to every other vertex in the graph, we can for a given graph com-
pute the radius, diameter and average distance in polynomial time. However,
if the graph is not given but we know some of its properties, like size, order,
or minimum degree, or we know, say, that the graph is bipartite or claw-free,
then we may be interested in knowing bounds on the parameters radius, di-
ameter and average distance in terms of some of the known properties of the
graph. In Chapter 4, we determine an upper bound on the diameter of a
m.c.f.g. given its order. In the remainder of this subsection, we give other
examples of such bounds.

1.3.2 Radius and Diameter

It is well-known and easily proved that for a graph G, we have

rad(G) ≤ diam(G) ≤ 2rad(G).

In 1973, Ostrand [41] showed that this is the only restriction on the
diameter in terms of radius. He also showed that for any given r, d ∈ N ,
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with r ≤ d ≤ 2r − 2, there exists a graph with radius r and diameter d.
The minimum order of such a graph is r + d and moreover, there are exactly
bd−r

2
c+1 non-isomorphic graphs of order r+d, radius r and diameter d. Each

graph consists of two paths u0u1 . . . ud and us(= v0)v1v2 . . . vr−1ur+s(= vr)
with only the vertices us and ur+s in common, where 0 ≤ s ≤ bd−r

2
c.

Erdös, Pach, Pollack and Tuza [18] proved that if G is a graph of order
n and minimum degree δ, then

diam(G) ≤
⌊

3n

δ + 1

⌋
− 1.

The bound on diameter was also proved by several authors ([1], [29], [32]
and [36]).

Erdös, Pach, Pollack and Tuza [18] proved that if G is a connected graph
of order n and minimum degree δ(G) ≥ 2, then

rad(G) ≤ 3(n− 3)

2(δ + 1)
+ 5,

and also constructed graphs that, apart from the additive constant, attain
the bound and, moreover, they gave improved bounds for K3-free and C4-free
graphs. Using different methods, Dankelmann, Dlamini and Swart [9, 10, 15]
obtained the slightly stronger bound

rad(G) ≤ 3

2

( n

δ + 1

)
+ 1.

Dankelmann, Mukwembi and Swart [37] proved that if G is a 3−edge-
connected graph of order n, then

rad(G) ≤ 1

3
n +

17

3
,

and also constructed graphs to show that the bound is sharp apart from the
additive constant.

Many conjectures of the computer programme GRAFFITI [22, 23] led to
the discovery of relations between parameters that seemed to have no obvious
inter-dependence. GRAFFITI conjectured that the radius of a graph is not
more than its independence number. This was successfully proved by various
authors (e.g. [25]) and a slightly stronger result can be found in [20]. Let G be
a connected graph. Recall that G is radius-critical if rad(G−u) 6= rad(G) for

7



every vertex u ∈ V (G). Gliviak [27], among others, gives a survey of results
on critical graphs. Whilst the deletion of an edge from G never decreases
the radius of G and the addition of an edge of the complement of G to G
never increases the radius of G, the inequality rad(G−u) ≥ rad(G) for every
vertex u of G is not always true. Segawa [44] proved that if G is a connected
graph and F is a subset of E(G) for which G− F is connected, then

rad(G− F ) ≤ (|F |+ 1)rad(G)− |F |
2

.

Fajtlowicz [21] characterized r-critical graphs, which are an important
special class of critical graphs. A graph G is r-critical if G has radius r and
every proper induced connected subgraph of G has radius strictly smaller
than r. Fajtlowicz [21] defines certain graphs of radius r ≥ 2 called r-ciliates,
as follows. Let Cp,q be a graph obtained from p disjoint copies of the path
Pq+1 of order q+1 by linking together one end vertex of each Pq+1 in a p-cycle
Cp. An r-ciliate is the graph C2q, r − q, and Fatjlowicz proved that a graph
G or radius r ≥ 2 is r-critical if and only if G is an r-ciliate.

A graph G is called edge-radius-decreasing or erd if rad(G + e) < rad(G)
for every e ∈ E(G). For example, any cycle of even order is erd, while no path
is (since its endpoints can be joined to form a cycle of the same radius.) Erd
graphs have been studied by Nishanov [39, 40], Harary and Thomassen [31]
and Glivak, Knor and Soltés [28], but no simple characterizaton is known.
Vizing [49] considered a special class of erd graphs - viz., those graphs of given
order and radius with the maximum possible number of edges (see Theorem
3). This proof was further refined in [47]. In Chapter 2, we establish a similar
sharp upper bound on the size of a connected, bipartite graph of given radius
and order (see Theorem 4).

1.3.3 Average Distance

The concept of the distance of a graph was first introduced in 1947, by
Wiener [50], a chemist and is thus often referred to as the Wiener index. Since
then there have been numerous papers in chemistry dealing with applications
of the average distance (see, for example, [43].) In organic chemistry, the
vertices of a graph might represent carbon atoms in a molecule and the
edges represent the chemical bonds between them. Wiener himself observed
that the melting point of certain hydro-carbons is directly proportional to
the Wiener index of the corresponding graph.
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One might expect the average distance of a graph to be dependent on the
radius or the diameter of the graph, but this is not the case. Plesńık [42]
showed that apart from the obvious bound

1 ≤ µ(G) ≤ diam(G),

the average distance of a graph is essentially independent of its radius and
diameter. Specifically, Plesńık showed that for any given r, d ∈ N and t, ε ∈
R, where r ≤ d ≤ 2r, 1 ≤ t ≤ d, and ε > 0, there exists a graph G with
rad(G) = r, diam(G) = d and |µ(G)− t| < ε.

Many conjectures of the computer program GRAFFITI [22, 23] involve
average distance. A well known example is the inequality µ(G) ≤ α(G),
where α(G) is the independence number of G. This was proved by Chung [7]
and improved by Dankelmann [8]. A GRAFFITI conjecture involving two
distance parameters, rad(G) ≤ µ(G) + r(G), was disproved by Dankelmann,
Oellermann and Swart [13]. The, less unexpected, GRAFFITI conjecture
µ(G) ≤ n/δ(G), where δ(G) is the minimum degree of G, generated consid-
erable interest. Asymptotically stronger inequalities were proved by Kouider
and Winkler [33] and Dankelmann and Entringer [11]. The GRAFFITI con-
jecture was finally settled by Beezer et al. [2], which improved the result in
[33].

GRAFFITI also made the attractive conjecture µ(G) ≤ r(G) (see [22,
23]). This conjecture, however, turned out not to be true as Erdös, Pach and
Spencer [19] disproved it by constructing an infinite class of graphs with av-

erage distance at least (2
3
b r(G)

3
c+o(1)) log n

log log n
and diameter at least (2b r(G)

3
c+

o(1)) log n
log log n

. Furthermore, they proved the upper bound, diam(G) ≤ (6r(G)+

2 + o(1)) log n
log log n

. In Chapter 3, we improve upon the upper bound by Erdös,
Pach and Spencer by a factor of two. We show that

diam(G) ≤
(
3r(G) + 2 + o(1)

) log n

log log n
,

and thus µ(G) ≤
(
3r(G) + 2 + o(1)

)
log n

log log n
.

1.3.4 Survey of Important Results

In this subsection, we survey some important results that are related to
distance concepts. Some of these results will be used as lemmas in subsequent
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chapters, while others are included because they provide interesting bounds
on distance parameters. We give proofs of those results whose proofs are
neither long nor obvious. Some of these results have already been mentioned
in the previous subsection. Most of these results can be found in most Graph
Theory textbooks (see, for example [3] and [5]).

Proposition 1 Every connected non-trivial graph contains at least two ncv’s,
and the only graphs containing exactly two ncv’s are paths.

Proposition 2 For any connected graph G, the centre C(G) is contained in
one block of G.

The next three results deal with trees.

Proposition 3 Let T be a tree of radius r. Then either diam(T ) = 2r and
C(T ) contains exactly one vertex, or diam(T ) = 2r− 1 and C(T ) consists of
two adjacent vertices.

Proposition 4 In a tree, no vertex can be equidistant from two adjacent
vertices.

Proposition 5 Let G be any connected graph, and v any vertex in G. Then
G contains a spanning tree which is distance-preserving from v.

Such a tree can be found using the breadth-first-search algorithm with v
as root (see, for example, [3]). We will usually denote it by Tv.

The next results deal with spanning trees.

Proposition 6 If T is a radius-preserving spanning tree of a graph G then
C(T ) ⊆ C(G).

Proof Let c be any central vertex of T . Since removing edges cannot
decrease the eccentricity of any vertex, eG(c) ≤ eT (c) = rad(T ) = rad(G). It
follows that eG(c) = rad(G); i.e., that c ∈ C(G).

Note that if a spanning tree T of a graph G is not radius-preserving, then
C(T ) is not necessarily contained on C(G).

Proposition 7 Let c be any central vertex of a connected graph G, and let Tc

be a spanning tree of G which is distance-preserving from c. Then c ∈ C(Tc),
and rad(Tc) = rad(G).
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Proof Since Tc is distance-preserving from c, rad(Tc) ≤ eTc(c) = eG(c) =
rad(G). Since removing edges cannot decrease the eccentricity of any vertex,
it follows that rad(Tc) =rad(G) and that c ∈ C(Tc).

Not all radius-preserving spanning trees, however, are distance-preserving
from some vertex. Proposition 7 has another useful consequence:

Proposition 8 For any connected graph G of order n and radius r,

r ≤
⌊
1

2
n

⌋
.

Proof Let c be any central vertex of G, and let Tc be a spanning tree of
G which is distance-preserving from c. By Proposition 7, rad(Tc) = r, and
hence diam(Tc) = 2r or 2r − 1. Now let P be any diametral path of Tc, and
note that P has diam(Tc)+1 ≥ 2r vertices. It follows that n ≥ 2r, and hence
that r ≤ b1

2
nc.

It is tedious but not difficult to show that equality holds if and only if
(1) G is a path or cycle, or
(2) n is odd and G consists of a path or cycle of order 2r, a vertex w, and
one, two or three edges joining w to vertices which are at most distance 2
apart in G− w.

Theorem 1 [20] Let G be a connected graph of order n and minimum degree
δ ≥ 2. Then

(i) diam(G) ≤ 3n

δ + 1
− 1;

(ii) rad(G) ≤ 3n

2(δ + 1)
+ 5.

Furthermore, (i) and (ii) are tight apart from the exact value of the ad-
ditive constants, and for every δ > 5 equality can hold in (i) for infinitely
many values of n.

Proof (i) Denote diam(G) by d and let v be a vertex of G such that
eG(v) = d. By the condition on minimum degree, |Ni−1(v)| + |Ni(v)| +

11



|Ni+1(v)| ≥ δ + 1 for all integers i with 0 ≤ i ≤ d, where N−1(v) = ∅ =
Nd+1(v). Define the integer k by d = 2k + r, r ∈ {0, 1, 2}. Hence,

n ≥
k∑

i=1

(|(N3i−1(v)|+ |N3i(v)|+ |N3i+1(v)|) ≥ k + 1

δ + 1
.

Rearranging and using k = d−r
3

≥ d−2
3

yields (i).
(ii) Let z be a fixed central vertex of G and denote rad(G) by r. Form

a spanning tree T of G that is distance-preserving from z. Since Nr(z) 6= ∅,
let zr be a fixed vertex in Nr(z). For y ∈ V (G) denote a z − y shortest
path in T by T (z, y). Then it can be shown, (see [20], for example) that
there exists a vertex y ∈ Ns(z), where s ≥ r − 5, for which no two vertices
u ∈ (V (T (z, y)) ∩ N≥5(z)) and v ∈ (V (T (z, zr)) ∩ N≥5(z)) are such that
dG(u, v) ≤ 2. For any i, let N ′

i = {x ∈ Ni(z)|dG(x, V (T (z, zr))∩N≥5(z)) ≤ 1}
and N ′′

i = {x ∈ Ni(z)|dG(z, V (T (z, y)) ∩N≥5) ≤ 1}. It follows that

(
r⋃

i=4

N ′
i) ∩ (

r⋃
i=4

N ′′
i ) = ∅

and by the condition on minimum degree, we have |N ′
i−1|+|N ′

i |+|N ′
i+1| ≥ δ+1

for all integers i with 5 ≤ i ≤ r, and |N ′′
i−1| + |N ′′

i | + |N ′′
i+1| ≥ δ + 1 for all

integers i with 5 ≤ i ≤ s. Bounding n from below yields

n ≥ |N≥3(z)|+
r∑

i=4

|N ′
i |+

s+1∑
i=4

|N ′′
i | ≥

1

3
(2r − 10)(δ + 1) + 3,

and we arrive at (ii).
To show that (i) and (ii) are tight apart from the exact value of the

additive constants, consider the following graph. Given integers n, k, δ with
k > 1, δ > 5 and n = k(δ + 1) + 2, let Gn,δ = G0 + G1 + · · ·+ G3k−1, where

Gi =


K1 if i ≡ 0 mod 3 or i ≡ 2 mod 3,
Kδ if i = 1, 3k − 2,
Kδ−1 otherwise.

Clearly, Gn,δ has minimum degree δ, n vertices, diam(Gn,δ) = 3
(

n−2
δ+1

)
−1

and rad(Gn,δ) =
⌈

3(n−2)
2(δ+1)

− 1
2

⌉
.

The trivial sharp restriction 1 ≤ µ(G) on the average distance of an
arbitrary graph G can be greatly improved for a graph of given order and
size.

12



Theorem 2 [17] Let G be a graph of order n ≥ 2 and size m. Then

σ(G) ≥ n(n− 1)−m,

with equality if and only if diam(G) ≤ 2.

Proof There are (n
2 ) ordered pairs of vertices of which m are at dis-

tance 1 apart and (n
2 )−m are at distance at least two apart. It follows that

σ(G) ≥ m+2((n
2 )−m) = n(n− 1)−m, with equality if and only if there are

no pairs of vertices at distance 3 or more apart, that is, if diam(G) ≤ 2.

Corollary 1 Let G be a graph of order n ≥ 2 and size m. Then

µ(G) ≥ 2− 2m

n(n− 1)
,

with equality if and only if diam(G) ≤ 2.

Clearly, the lower bound provided in Corollary 1 is sharp for λ-edge-
connected and k-vertex-connected graphs, as complete graphs attain the
bound. The same corollary also implies that the average distance of a graph
G is minimized if G has maximum size and diameter at most 2. This leads
to the following corollary, which is found in [42].

Corollary 2 [42] Let G be a graph of order n ≥ 2. Then we have the fol-
lowing sharp lower bounds on µ(G):

(a) 1, for arbitrary G (see [16] and [17]);

(b) 2− 2
n

if G is a tree (see [17] and [35]);

(c) 2− 6n−12
n(n−1)

, if G is planar and n ≥ 3 (see [42]);

(d) 2− 4n−6
n(n−1)

, if G is outerplanar (see [42]);

(e) 3
2
− 1

2(n−1)
, if n is even and G is triangle-free or bipartite (see [42]);

(f) 3
2
− 1

2n
, if n is odd and G is triangle-free or bipartite (see [42]);

(g) µ(Tn,k), where Tn,k is the k-partite Turán graph (see [48]).

13



Proof By Corollary 1, (a), (c) and (d) follow from the fact that m ≤ (n
2 )

for all graphs, m ≤ 3n − 6 for planar graphs and m ≤ 2n − 3 for outplanar
graphs while (b) follows from that the fact that m = n − 1 for every tree;
(e), (f) and (g) are obtained from the well-known Turán Theorem (see [34]).

Cerf, Cowan, Mullin and Stanton [4] gave lower bounds on the distance
of regular graphs whereas Pleśık [42] gave lower bounds on distance in terms
of the order and diameter of a graph.

The techniques for constructing spanning tree developed by Dankelmann
and Entringer in [11] are generalized in [15].

Lemma 1 [15] Let G be a graph of order n, and let i ≥ 1 be a given integer.
Suppose that |N≤i(v)| ≥ f ≥ 1 holds for every vertex v ∈ V (G). Then G

contains a spanning tree T with µ(T ) ≤ (2i+1)n
3f

+ 14i+1
3

. Moreover,

(i) diam(G) ≤ 2i+1
f

n− 1;

(ii) rad(G) ≤ 2i+1
2f

n + i.

Setting i to be 1 above gives |N(v)| ≥ δ + 1 which implies the following
corollary:

Corollary 3 [15] If G is a connected graph of order n and minimum degree
δ, then

(i) diam(G) ≤ 3n
δ+1

− 1,

(ii) rad(G) ≤ 3n
2(δ+1)

+ 1.

The next theorem is due to Vizing [49], where he considered a special
class of erd graphs - viz., those graphs of given order and radius with the
maximum possible number of edges.

Theorem 3 [49] Let n and r be any natural numbers such that n ≥ 2r ≥ 2.
Define f(n, r) to be the maximum possible number of edges in a graph of
order n and radius r, and C(n, r) to be the set of all graphs with order n,
radius r and f(n, r) edges.

For any natural numbers n and r such that n ≥ 2r ≥ 2,

14



a) f(n, 1) = 1
2
n(n− 1)

b) f(n, 2) = 1
2
n(n− 1)− d1

2
ne = b1

2
n(n− 2)c

c) f(n, r) = 1
2
(n2 − 4rn + 5n + 4r2 − 6r) for n ≥ 2r ≥ 6.

Proof The graph with radius 1 and the maximum possible number of
edges is the complete graph. C(n, 2) consists of all graphs obtained from Kn

by removing d1
2
ne edges covering V (Kn). Graphs in C(n, r), n ≥ 2r ≥ 6,

consist of a complete graph Kn−2r and a cycle C2r, where every vertex of the
Kn−2r is joined to the same three consecutive vertices of C2r.

We use double induction on n and r to show that f(n, r) ≤ 1
2
(n2 − 4rn +

5n + 4r2 − 6r) for n ≥ 2r ≥ 6. Let G be any graph in C(n, r) and if G is not
a vertex-radius-decreasing graph - i.e., G contains a ncv v such that rad(G−
v) ≥ r, then the result follows easily using the induction hypothesis. So, G
must then be a vertex-radius-decreasing graph and Vizing, then, considers if
G contains at least one cut vertex. If G does, then the result follows easily
using the induction hypothesis. If G has no cut vertices, then by Menger’s
Theorem, each pair of vertices of G is contained on a cycle of length at least
2r. Let M be a shortest cycle of length at least 2r in G and let M have length
l. It can be shown that M is an induced cycle of G and that no vertex in
V (G)−V (M) can have more than three neighbours on M . Since n ≥ l ≥ 2r,

f(n, r) = |E(G−M)|+ |E(M)|+ |[V (G−M), V (M)]|
≤ (n−l)(n−l−1)

2
+ l + 3(n− l)

≤ 1
2
(n2 − 4rn + 5n + 4r2 − 6r).

15



Chapter 2

The Number of Edges in a
Bipartite Graph of Given
Order and Radius

2.1 Introduction

As remarked in Chapter 1, a graph G is called edge-radius-decreasing if
rad(G + e) < rad(G) for every e /∈ E(G). Vizing [49] considered a special
class of erd graphs - viz., those graphs of given order and radius with the
maximum possible number of edges (see Theorem 3).

Similarly, in this chapter, we establish a similar sharp upper bound on the
size of a connected, bipartite graph of given radius and order (see Theorem
4).

We will make frequent use of the following definitions. A vertex v is called
a cut-vertex if {v} is a cutset, and a non-cut-vertex or ncv otherwise. An
eccentric vertex of a vertex v is a vertex farthest away from v. If there is
only one such vertex u, then u is called the unique eccentric point (or uep)
of v. A conjugate vertex v∗ of a vertex v is a central vertex which has v as
its uep. (So a vertex might have more than one conjugate vertex, or none.)
A conjugate pair is a pair of central vertices, each of which is the uep of
the other. We define a non-trivial graph G to be vertex-radius-decreasing if
rad(G− v) < rad(G) for every ncv v of G.
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2.2 Preliminary Results

Figure 2.1: An example of a graph in B.

Definition 1 The set B(n, r) consists of all graphs G obtained from C2r

with three consecutive vertices replaced by aK1, bK1, cK1, where a + c =
dn−2r+3

2
e, b = bn−2r+3

2
c, or a + c = bn−2r+3

2
c, b = dn−2r+3

2
e. We shall use

the notation V ′
1(G) = V (aK1 ∪ cK1) and V ′

2(G) = V (bK1). (See Figure 2.1).

Let h(n, r) :=
⌊

n2

4

⌋
− nr + r2 + 2n− 2r for n ≥ 2r ≥ 8.

In the proof of Lemma 2, we denote, for a vertex v of G, the star 〈NG[v]〉G
by SG(v).

Lemma 2 Let G be a connected bipartite graph of order n and radius at least
r ≥ 4. If u, v ∈ V (G) with d(u, v) 6= 2, then deg u + deg v ≤ n− 2r + 4. If
deg u + deg v = n−2r+4 then m(G) ≤ h(n, r). If deg u + deg v = n−2r+4
and m(G) = h(n, r), then G is one of the graphs in the family B(n, r).

Proof Let F be the union of the two stars SG(u) and SG(v). Since u
and v have no common neighbours, F contains no cycle. Hence there exists
a spanning tree T of G containing F . Let P be a diametral path of T . By
rad(T ) ≥ rad(G) ≥ r, we have diam(T ) ≥ 2r − 1; so P has at least 2r
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vertices. Since P contains at most two neighbours of u and v, respectively,
we have

|V (T )− V (P )| ≥ degT (u) + degT (v)− 4 = degG(u) + degG(v)− 4.

Hence
degG(u) + degG(v) ≤ n− |V (P )|+ 4 ≤ n− 2r + 4,

as desired.
Now assume that deg u + deg v = n − 2r + 4. Then P has exactly 2r

vertices, say, P = w0, w1, . . . w2r−1, rad(T ) = r, and u and v are internal
vertices of P , say u = wa and v = wb; where (say) a < b. Moreover, T has
the following properties:
(a) each vertex not on a diametral path is an end-vertex of T and adjacent
to u or to v,
(b) all vertices other than u or v have degree at most 2 in T .

To see that these two properties hold observe that, if one of them is
violated, then a diametral path of T misses more than degG(u) + degG(v)−4
vertices, and thus has fewer than 2r vertices, hence T has radius less than r,
a contradiction.

It is clear that every spanning tree of G containing F has properties (a)
and (b). We can choose T to also have the property of preserving the distance
between u and v. This can be achieved by considering the union F ′ of F and
a u − v geodesic in G. Clearly F ′ is a (not necessarily spanning) subtree of
G, so there exists a spanning tree T of G containing F ′ which has the desired
property.

We now consider which edges G can contain, in addition to those of T .
We show that, if e ∈ E(G)− E(T ), then either
(i) e = w0w2r−1, or
(ii) e joins a vertex in N(u) to a vertex in N(v), or
(iii) e = xwa+2 or e = xwa−2 for some vertex x ∈ N(wa)− V (P ), or
(iv) e = xwb+2 or e = xwb−2 for some vertex x ∈ N(wb)− V (P ).
Note that the indices are taken modulo 2r, so if a = 2r − 2 then a vertex
x ∈ N(wa) can be joined to w0.

First assume that e joins two vertices of P . Suppose that e = wiwj with
wiwj 6= w0w2r−1. Then at least one of the end points of e, say wi, has degree
at least 3 in T + e. Let wi be such a vertex. Clearly, e is not incident with
u or v since u and v have the same degree in G and in T , so wi 6= wa, wb.
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Consider the union of three stars SG(u), SG(v) and ST+e(wi), which we
denote by F1. First we show that F1 contains a cycle. Suppose to the contrary
that F1 is a forest. Then there exists a spanning tree T1 of G containing F1.
In T1, vertices u and v have degree degG(u) + degG(v), respectively, but vi

has degree at least 3, so T1 does not have property (b), a contradiction. This
shows that F1 contains a cycle C1. Clearly, C1 must contain wi and either
wa and its two neighbours on P or wb and its two neighbours on P . Without
loss of generality we assume the former, so C1 contains wa, wa+1, wi, wa−1. So
i = a + 2 and e = wa−1wa+2 or i = a− 2 and e = wa−2wa+1. If e = wa−1wa+2

consider the tree T ′ = T − wa+1wa+2 + wa−1wa+2. Clearly, u and v have full
degree in T ′, but wa−1 has degree 3, contradicting property (b). Similarly, if
e = wa−2wa+1 the tree T ′′ = T−wa−2wa−1+wa−2wa+1 does not have property
(b), a contradiction. Hence w0w2r−1 is the only edge between two vertices of
P present in G but not in T .

Now let e ∈ E(G)−E(T ) be an edge joining a vertex x ∈ N(wa)−V (P ) to
a vertex wi on P . Suppose that e is not of type (iii), i.e., that i 6= a−2, a+2.
Then either i ≥ a + 4 or i ≤ a − 4. (Note that in this part of the proof,
subscripts are not taken modulo 2r.)

Case 1: wi is not a neighbour of wb on P .
So i 6= b − 1, b + 1. If i ≥ a + 3 consider the graph T + xwi, which

has the unique cycle wawa+1wa+2 . . . , wixwa. Clearly, all edges in the set
E ′ := {wa+1wa+2, wa+2wa+3, . . . , wi−2wi−1} are on this cycle, so T+xwi−e′ =:
T (e′) is a spanning tree of G for all e′ ∈ E ′. Since vertex wi has degree 3
in T (e′), and vertex wa has full degree, property (b) implies that in T (e′)
vertex wb does not have full degree. So each edge in E ′ is incident with
vertex wb. Since only two edges of E ′ can be incident with wb, we have
E ′ = {wa+1wa+2, wa+2wa+3} and wb = wa+2. But then wa and wb are at
distance 2, contradicting our hypothesis. If i ≤ a− 3 then similar arguments
lead to the same conclusion.

Case 2: wi is a neighbour of wb on P .
So i = b − 1 or i = b + 1. Then waxwiwb is a (wa − wb)-path of length

3, so wa and wb are at distance 1 or 3 in T (and in G). First consider the
case that wa and wb are at distance 1, so b = a + 1. Then i = b + 1 (since
i = b − 1 = a is not possible) and thus i = a + 2; so e = xwa+2, as desired.
Now consider the case that wa and wb are at distance 3; hence b = a + 3.
But then i ∈ {b − 1, b + 1} = {a + 2, a + 4}. If i = a + 2 then e = xwa+2,
so e is of type (iii). That leaves the case i = b + 1 = a + 4. We show that
a+4 = 2r− 1, i.e., that wa+4 is an end-vertex of P . Suppose to the contrary
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that 2r − 1 > a + 4. In the tree T − wa+1wa+2 + xwa+4 =: T ′, vertices u
and v have full degree and vertex wa+4 has three neighbours, contradicting
property (b). Hence a + 4 = 2r − 1.

We now show that not all vertices in N(wb) are adjacent to a vertex in
N(wa). Suppose to the contrary that each vertex y ∈ N(wb) has a neighbour
y′ ∈ N(wa). Then we can reduce the distance from wa to the end-vertices in
NT (wb) as follows. Consider the tree

T ′′ = T − {ywb|y ∈ NT (wb), y 6= wb−1}+ {yy′|y ∈ NT (wb), y 6= wb−1}.

Since every end-vertex of T ′′, except possibly w0, is within distance 3 of wa,
the distance from w0 to any end-vertex of T ′′ is at most dT ′′(w0, wa) + 3 =
2r−2, while any two end-vertices of T ′′, other than w0, are within distance at
most 5. Hence the diameter of T ′′ is at most 2r−1, which implies rad(T ′′) ≤
r − 1, a contradiction to rad(G) ≥ r. This proves that there exist a vertex
y ∈ NG(wb) not adjacent to any vertex in NG(wa). Hence, we can obtain, if
necessary by renaming y and w2r−1, that no vertex in NG(wa) is adjacent to
to vertex wa+4. Hence property (iv) holds.

We now show that in addition to properties (i)-(iv) the following holds:
(v) if x ∈ N(wa), then at most one of the edges xwa−2, xwa+2 is present in
G,
(vi) if y ∈ N(wb), then at most one of the edges xwb−2, xwb+2 is present in
G,
(vii) if xy ∈ E(G) for some x ∈ N(wa), y ∈ N(wb), then b = a + 1 or
b = a + 3.

To prove (v), suppose that a vertex x ∈ N(a) is adjacent to wa−2 and
to wa+2. Then the tree T ′ := T − {wa−2wa−1, wa+1wa+2} + {xwa−2, xwa+2}
preserves the degrees of wa and wb, but has another vertex, namely x of
degree 3. This contradicts property (b), and so (v) holds. Similarly, (vi)
holds. Property (vii) follows directly from the fact that T preserves the
distance between wa and wb in G.

Now the bound on the size of G follows easily. In addition to the edges of
T , G can only have edges satisfying (i)-(vii). There is only one edge satisfying
(i), namely the edge w0w2r−1. The graph G has at most (deg wa − 2)(deg

wb − 2) ≤ b (n−2r)2

4
c edges of the form xy, where x ∈ N(wa) − V (P ) and

y ∈ N(wb) − V (P ), that are not in T . Finally, each vertex not on P has at
most one edge, not in T joining it to a vertex on P . Hence
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m(G) ≤ m(T ) + 1 + (deg wa − 2)(deg wb − 2) + (n− |V (P )|)
≤ n + b (n−2r)2

4
c+ n− 2r

= h(n, r) ,

as desired.
From the above proof it follows that, if m(G) = h(n, r), then 〈[N(wa) −

V (P ) and N(wb)−V (P )]〉 is a balanced, complete bipartite graph of order n−
2r, w0w2r−1 ∈ E(G) and every vertex in N(wa)−V (P ) (or in N(wb)−V (P ))
is adjacent to either wa+2 or wa−2 (or to either wb−2 or wb+2, respectively.)

We show next that if x ∈ N(wa) − V (P ) and y ∈ N(wb) − V (P ), then
it is impossible that both xwa−2 and ywb+2 are edges in G. Suppose to the
contrary that xwa−2, ywb+2 ∈ E(G). Then b = a+3 as otherwise rad(G) < r
and consider the spanning tree T ′′′ of G, where

T ′′′ =: T − {wb+1wb+2, wa+1wa+2, wa−1wa−2}+ {ywb+2, xy, xwa−2}.

In T ′′′ the vertices wa and wb have full degree, while x and y are both of
degree 3, which contradicts (b). Consequently, it follows that G ∈ B(n, r).

We now present propositions that will be needed in the proof of our main
result.

Proposition 9 [49] For any connected graph G of order n, ∆(G) ≤ n −
2 rad(G) + 2.

Proof Let v be a vertex of maximum degree in G, and let Tv be
a distance-preserving spanning tree of G with v as root, so degTv

(v) =
degG(v) = ∆(G).

Let P be a diametral path of Tv; then P has length diam(Tv) ≥ 2 rad(Tv)−
1 ≥ 2 rad(G) − 1. So P contains at least 2 rad(G) vertices, at most two of
which can be neighbours of v (since if P contained three neighbours of v, we
would have a cycle in T ). Hence, there must be at least ∆(G)−2 neighbours
of v which are not on P . It follows that n ≥ 2 rad(G) + ∆(G)− 2.

Definition 2 Given integers n, d with 3 ≤ d ≤ n, define the path-complete
bipartite graph as follows:

G(n, d) = [d− 1− t]K1 +

⌊
n− d + 1

2

⌋
K1 +

⌈
n− d + 1

2

⌉
K1 + [t]K1,

where 1 ≤ t ≤ d− 2.
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Proposition 10 [15] Let G be a bipartite graph of order n and diameter
d ≥ 3. Then

m(G) ≤
⌊
n2

4
− nd

2
+

3n

2
+

d2

4
− d

2
− 7

4

⌋
,

and a path-complete bipartite graph G(n, d) attains the bound.

Proposition 11 [21] Let {v, v∗} be any conjugate pair in a graph G 6∼= K2.
If G− {v, v∗} is connected, then removing v and v∗ from G cannot decrease
the radius.

Proof Let c be a central vertex of G−{v, v∗}, and let w be an eccentric
vertex of c in G. Then dG(c, w) ≥ rad(G). Since v and v∗ are within distance
rad(G)−1 from all vertices in G except each other, w cannot be v or v∗. Since
removing v and v∗ cannot decrease the distance between c and w, it follows
that eG−{v,v∗}(c) ≥ dG(c, w), and hence that rad(G− {v, v∗}) ≥ rad(G).

Proposition 12 [26, 21] Let G be a graph containing an ncv v. Then
rad(G − v) < rad(G) if and only if v has a conjugate vertex, and in this
case rad(G− v) = rad(G)− 1.

Proof Let rad(G−v) < rad(G), and let c be any central vertex of G−v.
So eG−v(c) = rad(G− v) ≤ rad(G)− 1 ≤ eG(c)− 1. Since removing v cannot
decrease the distance between any of the remaining vertices, it follows that
v is the uep of c in G. Furthermore, since c is still at distance eG(c)− 1 from
the neighbours of v, rad(G − v) = eG−v(c) ≥ eG(c) − 1 ≥ rad(G) − 1. It
follows that c is a central vertex of G and that rad(G− v) = rad(G)− 1.

Conversely, let v be the uep of some central vertex c in G. Then removing
v cannot increase the distance between c and any other vertex w since v
cannot lie on a shortest c − w path. It follows that eG−v(c) < eG(c), and
hence that rad(G− v) < rad(G).

Proposition 13 [21] Let G be a vertex-radius-decreasing graph, and v a ncv
of G. If v is not central, then all its conjugate vertices are cut-vertices. If v
is central, then it has exactly one conjugate vertex v∗, and v∗ is a ncv (so v
and v∗ form a conjugate pair).

Proof By Proposition 12, v has a conjugate vertex v∗. If v∗ is also a
ncv of G, then, since G is vertex-radius-decreasing, v∗ must have a conjugate
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vertex v∗∗. Hence dG(v∗, v∗∗) = rad(G) - but the only vertex at distance
rad(G) from v∗ is v. It follows that v must be central, and v∗∗ must be v.

This proves firstly that if v is not central, then all its conjugate vertices are
cut-vertices, and secondly that v cannot have two conjugate vertices which
are ncv’s. (Otherwise both would need to have v as a conjugate vertex; i.e.,
both would need to be the unique eccentric point of v.)

If v∗ is a cut-vertex, let w be any vertex separated from v by v∗. Then
eG(v) ≥ dG(v, w) = dG(v, v∗) + dG(v∗, w) ≥ rad(G) + 1; i.e., v is non-central.
It follows that if v is central, then it has a unique conjugate vertex v∗ and
v∗ is a ncv.

Proposition 14 [26, 21] A graph G of order n is a vertex-radius-decreasing
block if and only if G is self-centered, n is even, and V (G) can be partitioned
into conjugate pairs.

Proof This follows as a direct consequence of Propositions 12 and 13.

Proposition 15 [21] In any vertex-radius-decreasing graph containing at
least one cut-vertex, every ncv has degree 1.

Proof Let G be a vertex-radius-decreasing graph containing a ncv v of
degree at least 2, and let x and y be any neighbours of v. We will prove that
then G has no cut-vertices.

By Proposition 12, v has a conjugate vertex v∗ such that dG(v∗, v) =
rad(G) and dG(v∗, u) ≤ rad(G) − 1 for every u ∈ V (G) − {v}. Hence,
dG(v∗, x) = rad(G)− 1.

It follows that, if u is any vertex in V (G)−{v, x}, then no shortest v∗−u
path can contain x. In particular, G− x contains a v∗ − y path and hence a
v∗ − v path. So G− x is connected.

Since x ∈ N(v) was chosen arbitrarily, it follows that no neighbour of v
is a cut-vertex. Since every neighbour of v has degree at least 2 (otherwise
v would have been a cut-vertex), it follows in the same way that no vertex
distance 2 apart from v is a cut-vertex, and so on. Hence, G contains no
cut-vertices.

Proposition 16 Let G be a bipartite graph and let v be a vertex in a partite
set Vi, i = 1, 2. Then deg v ≤ |V3−i| − rad(G) + 2.

23



Proof Let Tv be a distance-preserving spanning tree of G with v as its
root; so degTv

(v) = degG(v). Let P be a diametral path of Tv. Then P has
length diam(Tv) ≥ 2 rad(Tv) − 1 ≥ 2 rad(G) − 1. So P contains at least
2 rad(G) vertices, with at least rad(G) of them in V3−i. Moreover, at most
two of them can be neighbours of v on P . So there are at least deg v − 2
neighbours of v which are not on P . So

|V3−i| ≥ rad(G) + deg v − 2,

and Proposition 16 follows.

2.3 The Main Result

In this section we shall obtain a bound on the size of a bipartite graph of
order n and radius r.

The following lemma deals with the case r = 4 of our main theorem.

Lemma 3 Let G be a bipartite graph of order n and radius 4. Then

m(G) ≤
⌊
n2

4

⌋
− 2n + 8 for n ≥ 8.

Moreover, if m(G) =
⌊

n2

4

⌋
− 2n + 8, then G ∈ B(n, 4).

Proof Since rad(G) = 4, there exists a vertex x ∈ V (G) such that
e(x) = 4. Moreover, there is a vertex x4 ∈ V (G) such that d(x, x4) = 4,
having xx1x2x3x4 as a shortest x − x4 path in G. For 1 ≤ i ≤ 4, let Ni

be the ith distance layer of x. So xi ∈ Ni for 1 ≤ i ≤ 4. Since e(x1) ≥ 4,
there is a vertex x̄1 ∈ V (G) such that d(x1, x̄1) = 4. Thus x̄1 ∈ N3 and
x2x̄1 /∈ E(G). But x̄1 must have a neighbour in N2, say x′2, where x′2 6= x2

and x1x
′
2 /∈ E(G). Moreover, x′2 must have a neighbour in N1 that is not x1,

say x′1. Since e(x2) ≥ 4, there is a vertex x̄2 ∈ V (G) such that d(x2, x̄2) = 4,
where x̄2 /∈ {x, x4}.

Suppose, without loss of generality, that x ∈ V1. Then certainly {x, x4}
and {x2, x̄2} are disjoint pairs of vertices in V1 that are distance 4 apart.
Since e(x′1) ≥ 4, there is a vertex x̄′1 ∈ V2 such that d(x′1, x̄

′
1) = 4, where

x̄′1 /∈ {x1, x̄1}. Then certainly {x1, x̄1} and {x′1, x̄′1} are disjoint pairs of
vertices in V2 that are distance 4 apart.
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So there exist four disjoint pairs of vertices, say ui and vi, such that
d(ui, vi) = 4 for 1 ≤ i ≤ 4, where ui, vi ∈ V1 for i = 1, 2 and ui, vi ∈ V2 for
i = 3, 4. Denote by G, the bipartite complement of G; that is the graph with
bipartition (V1, V2) such that for u ∈ V1, v ∈ V2, uv ∈ E(G) if and only if
uv /∈ E(G). Let V ′

1 = V1 − {u1, v1, u2, v2} and V ′
2 = V2 − {u3, v3, u4, v4}.

We show that m(G) ≥ 2n− 8.
For each vertex w ∈ V2, there exist edges e1(w) and e2(w) joining w to a

vertex in {u1, v1} and {u2, v2}, respectively, in G since otherwise dG(u1, v1) =
2. Similarly, for each vertex w ∈ V1, there exist edges e3(w) and e4(w) joining
w to a vertex in {u3, v3} and {u4, v4}. Clearly, the subsets

A = {e1(w)|w ∈ V2} ∪ {e2(w)|w ∈ V2},

B = {e3(w)|w ∈ V ′
1} ∪ {e4(w)|w ∈ V ′

1}
of E(G) are disjoint. Hence,

m(G) ≥ |A|+ |B| = 2|V2|+ 2(|V1| − 4) = 2n− 8.

We have m(G) + m(G) ≤
⌊

n2

4

⌋
since the maximum size of a complete

bipartite graph is
⌊

n2

4

⌋
. Hence

m(G) ≤
⌊
n2

4

⌋
−m(G) ≤

⌊
n2

4

⌋
− 2n + 8,

as required.
We shall now show that if m(G) =

⌊
n2

4

⌋
− 2n + 8, then G ∈ B(n, 4).

Suppose that m(G) =
⌊

n2

4

⌋
− 2n + 8. Then, m(G) = 2n − 8, and hence,

m(G) = |A| + |B| = 2|V2| + 2(|V1| − 4). Hence, in G, every vertex in V2 is
adjacent to exactly one vertex in {u1, v1} and exactly one vertex in {u2, v2},
and every vertex in V ′

1 . Every vertex in V ′
1 is adjacent to exactly one vertex in

{u3, v3} and exactly one vertex in {u4, v4}. Let x, y be an arbitrary adjacent
pair of vertices in V ′

1∪V ′
2 . Then degG(x)+ degG(y) = |V1|−2+|V2|−2 = n−4.

Hence, by Lemma 2, the result follows.

We now present our main theorem.

Theorem 4 For natural numbers n and r such that n ≥ 2r ≥ 2, the maxi-
mum number of edges in a bipartite graph of order n and radius at least r is
b(n, r), where
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a) b(n, 1) = n− 1,

b) b(n, 2) =
⌊

n2

4

⌋
,

c) b(n, 3) =
⌊

n2

4

⌋
−

⌊
n
2

⌋
,

d) b(n, r) =
⌊

n2

4

⌋
− nr + r2 + 2(n− r) for n ≥ 2r ≥ 8.

The bipartite graph with radius 1 and the maximum number of edges is
the star K1,n−1. The bipartite graph with radius 2 and the maximum number
of edges is the complete bipartite graph Kdn

2 e,bn
2 c The bipartite graph with

radius 3 and maximum number of edges is obtained from the complete graph
Kdn

2 e,bn
2 c, by the removal of a minimum edge cover. If G is a bipartite graph

with radius 4 and the maximum number of edges, then G ∈ B(n, r).

Proof a) The only bipartite graph with radius 1 and order n is the star
K1,n−1, which has n− 1 edges.

b) The bipartite graph with radius 2 and the maximum number of edges

is the complete bipartite graph Kdn
2 e,bn

2 c which has
⌈

n
2

⌉ ⌊
n
2

⌋
=

⌊
n2

4

⌋
edges.

c) Let G be a bipartite graph of order n, radius 3 and partite sets V1 and
V2. Since rad(G) = 3, every vertex in V1 must be non-adjacent to at least
one vertex in V2, and vice versa. Thus, m(G) ≥ dn

2
e, and since the maximum

size of a complete bipartite graph is bn2

4
c, we have m(G) ≤ bn2

4
c−m(G), and

thus m(G) ≤ bn2

4
c − bn

2
c.

d) Let G be a bipartite graph of order n, radius at least r and maximum
size with partite sets V1 and V2.

By double induction, we prove that if G has order n and rad(G) ≥ r,
then m(G) ≤ b(n, r) for n ≥ 2r ≥ 8, and m(G) = b(n, r) if and only if
G ∈ B(n, r).

We first show the inequality for the case n = 2r, i.e., we show that
m(G) ≤ b(2r, r) for r ≥ 4.

Let G be a graph of radius r and order 2r. By Proposition 9, ∆(G) ≤
n − 2r + 2 = 2. It follows that m(G) ≤ 1

2
n∆(G) ≤ n = 2r = b(2r, r).

Moreover, G must be a cycle of length 2r and thus G ∈ B(2r, r).
For the case r = 4, it has been shown in Lemma 3 that, for n ≥ 8,

m(G) ≤ b(n, 4) and if m(G) = b(n, 4), G ∈ B(n, 4).
Now let n and r be natural numbers such that r ≥ 5 and n ≥ 2r + 1 and

assume validity of the theorem for all bipartite graphs of order n′ and radius

26



at least r′, where either 4 ≤ r′ ≤ r − 1 or else r′ = r and 2r ≤ n′ ≤ n − 1.
Let G be any bipartite graph of order n and radius at least r.

Claim 1 If {x, x∗} is a conjugate pair of vertices in G, and the graph G −
{x, x∗} is disconnected, then m(G) ≤ b(n, r) and if m(G) = b(n, r), then
G ∈ B(n, r).

Let S = {x, x∗}. Let G1, G2, . . . , Gk be the components of G − S. Let
Gx = 〈V (G1) ∪ S〉G and Gy = 〈V (G2) ∪ . . . ∪ V (Gk) ∪ S〉G. Note that Gy

is connected for otherwise either x or x∗ is not central. Suppose n(Gx) = t
and thus n(Gy) = n − t + 2. Moreover diam(Gx), diam(Gy) ≥ r and thus
r + 1 ≤ t ≤ n− r + 1. Moreover by Proposition 10,

m(Gx) + m(Gy) ≤ bn2

4
− nt

2
+ 5n

2
+ 1

2
+ t2

2
− nr

2
− 2r + r2

2
− tc

= bn2

4
− nr + r2 + 2n− 2r + 1

2
(t− r − 1)(t− n + r − 1)c

≤ b(n, r)

since r + 1 ≤ t ≤ n− r + 1 and therefore 1
2
(t− r − 1)(t− n + r − 1) ≤ 0.

If m(G) = b(n, r), then equality holds throughout the above inequalities,
and it follows that Gx and Gy are both graphs of diameter r and maximum
size, given their orders.

Moreover, t = r+1 or t = n−r+1. Without loss of generality, say n(Gx) =
n − r + 1 and thus n(Gy) = r + 1. Since diam(Gx) = r and by Proposition
10, Gx

∼= G(n−r+1, r) = [r−2]K1 +bn−2r−2
2

cK1 +dn−2r−2
2

eK1 +K1. So Gx

contains partite sets X and Y where |X| = dn
2
e−r+1, and |Y | = bn

2
c−r+1,

where every vertex in X has degree bn
2
c− r + 1 + 1 = bn

2
c− r + 2, and every

vertex in Y has degree dn
2
e− r +1+1 = dn

2
e− r +2. So G contains adjacent

vertices, x ∈ X and y ∈ Y , such that deg x + deg y = n− 2r + 4. It follows
from Lemma 2 that G ∈ B(n, r).

Claim 2 If G contains a conjugate pair of vertices then m(G) ≤ b(n, r). If
m(G) = b(n, r), then G ∈ B(n, r).

Let {x, x∗} be a conjugate pair of vertices in G. By Claim 1, we may
assume that G∗ = G − {x, x∗} is connected. Then by Proposition 11,
rad(G∗) ≥ r. By Lemma 2, we need only consider the case where deg x +
deg x∗ < n − 2r + 4. Moreover, by the induction hypothesis, we know that
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m(G∗) ≤ b(n− 2, r). Hence,

m(G) ≤ m(G∗) + deg x + deg x∗

≤ b(n− 2, r) + n− 2r + 3

=
⌊(

n−2
2

)2
⌋
− (n− 2)r + r2 + 2(n− 2− r) + n− 2r + 3

=
⌊

n2

4

⌋
− nr + r2 + 2n− 2r

= b(n, r) ,

as required.
If m(G) = b(n, r), then we have equality throughout i.e., m(G∗) = b(n−

2, r) and deg x + deg x∗ = n − 2r + 3. Without loss of generality, say deg
x ≥ deg x∗. Then, deg x ≥ bn

2
c − r + 2.

By the induction hypothesis, G∗ ∈ B(n − 2, r) and so in G∗, |V ′
1(G

∗)| =
dn−2−2r+3

2
e = bn

2
c− r +1 and |V ′

2(G
∗)| = bn−2−2r+3

2
c = dn

2
e− r or |V ′

1(G
∗)| =

dn
2
e − r, |V ′

2(G
∗)| = bn

2
c − r + 1.

Since n(G∗) ≥ 2r and n(G∗) + 2 = n, n ≥ 2r + 2. Thus

degx ≥
⌊
n

2

⌋
− r + 2 ≥

⌊
2r + 2

2

⌋
− r + 2 = 3.

Note that x can be adjacent to at most 2 vertices in V (G∗)−(V ′
1(G

∗)∪V ′
2(G

∗))
as otherwise rad(G) < r. However, as rad(G) ≥ r, it then follows that
x cannot be adjacent to a vertex in V ′

1(G
∗) ∪ V ′

2(G
∗) and to two vertices

in V (G∗) − (V ′
1(G

∗) ∪ V ′
2(G

∗)). So x is adjacent to at most one vertex in
V (G∗) − (V ′

1(G
∗) ∪ V ′

2(G
∗)), and thus x is adjacent to at least bn

2
c − r +

2 − 1 = bn
2
c − r + 1 vertices in V ′

1(G
∗) ∪ V ′

2(G
∗), i.e., x is adjacent to every

vertex in V ′
1(G

∗) or x is adjacent to every vertex in V ′
2(G

∗). Moreover, deg
x = bn

2
c − r + 2, and thus deg x∗ = dn

2
e − r + 1.

Since rad(G) ≥ 5, dG(x, x∗) ≥ 5 and thus x∗ cannot be adjacent to any
vertex in V ′

1 ∪ V ′
2 as otherwise rad(G) < r, and thus degGx∗ = 2. Hence,

n = 2r + 2 since dn
2
e − r + 1 = 2 and n ≥ 2r + 2. Moreover, n(G∗) = 2r and

so G∗ ∼= C2r. Hence, deg x = b2r+2
2
c−r+2 = 3, and thus x must be adjacent

to three vertices on G∗ ∼= C2r, which is a contradiction as then rad(G) < r.
Hence, equality cannot be attained in this case.
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Claim 3 If G is a vertex-radius-decreasing graph then m(G) ≤ b(n, r), and
if m(G) = b(n, r) then G ∈ B(n, r).

By Claim 2, we need only consider the case where G has no conjugate
pairs. Then, by Proposition 14, G must contain at least one cut-vertex and by
Proposition 15, any ncv of G must have degree 1. Hence, G contains two end
vertices x1 and x2. Let G′ = G− {x1, x2}, and note that if rad(G′) ≤ r − 2,
then any central vertex c of G′ is within distance r − 2 from every vertex
in V (G) − {x1, x2}, including the neighbours of x1 and x2. But then c is
within distance r − 1 from x1 and x2, contradicting rad(G) = r. Hence
rad(G′) ≥ r − 1. So, by the induction hypothesis, m(G′) ≤ b(n − 2, r − 1).
Hence,

m(G) = 2 + m(G′)
≤ 2 + b(n− 2, r − 1)
= b(n, r),

If m(G) = b(n, r), we have equality throughout. So m(G′) = b(n−2, r−1)
and thus by our induction hypothesis, G′ ∈ B(n− 2, r − 1).

If |V ′
1(G)| ≥ 3 or |V ′

2(G)| ≥ 2, then G is not a vertex-radius-decreasing
graph; thus |V ′

1(G)| = 2 and |V ′
2(G)| = 1. Hence, n − 2r + 3 = 3, and

thus n = 2r which is a contradiction as n > 2r. Hence, equality cannot be
attained in this case.

Claim 4 If v is a ncv of G with rad(G − v) ≥ r and deg v ≤
⌊

n
2

⌋
− r + 2,

then m(G) ≤ b(n, r). If m(G) = b(n, r), then G ∈ B(n, r).

By the induction hypothesis, m(G− v) ≤ b(n− 1, r), and hence,

m(G) = m(G− v) + deg v

≤ b(n− 1, r) +
⌊

n
2

⌋
− r + 2

=
⌊

(n−1)2

4

⌋
− (n− 1)r + r2 + 2(n− 1− r) +

⌊
n
2

⌋
− r + 2

=
⌊

n2

4

⌋
− nr + r2 + 2n− 2r

= b(n, r) ,
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as required.
If m(G) = b(n, r), we have equality throughout; so m(G−v) = b(n−1, r)

and deg v = bn
2
c − r + 2. By the induction hypothesis, G− v ∈ B(n− 1, r).

If n(G− v) = 2r, then G− v is a cycle of length 2r, and moreover every
vertex in G − v has degree 2. Hence, any neighbour of v in G, say z, has
degree 3 and thus G contains adjacent vertices v and z such that degG(z)+
degG(x) = 5 = n− 2r + 4. Hence G ∈ B(n, r) by Lemma 2.

Since n(G − v) ≥ 2r + 1 and n = n(G − v) − 1, n ≥ 2r + 2. Hence
degG(v) = bn

2
c − r + 2 ≥ b2r+2

2
c − r + 2 ≥ 3. Note that v can be adjacent

to at most one vertex in G − {v} − (V ′
1(G − v) ∪ V ′

2(G − v)) as otherwise
rad(G) < r. Thus v is adjacent to at least bn

2
c − r + 2 − 1 = bn

2
c − r + 1

vertices in V ′
1(G− v) ∪ V ′

2(G− v).
Let w ∈ V ′

i (G− v), i = 1, 2 such that vw ∈ E(G), and let y ∈ V ′
3−i(G− v)

such that wy ∈ E(G− v). Then

degG−v(w) + degG−v(y) = |V ′
1(G− v)|+ |V ′

2(G− v)|+ 1,

and thus

degG(w) +degG(y) = |V ′
1(G−v)|+|V ′

2(G−v)|+2 = (n−1)−2r+3+2 = n−2r+4,

and hence G ∈ B(n, r) by Lemma 2.

Claim 5 If w is a ncv of G with 2 ≤ deg w ≤ bn
2
c− r +2 and rad(G−w) ≤

r − 1, then every neighbour of w is a ncv.

By Proposition 12, w has a conjugate vertex w∗ such that dG(w∗, w) = r
and dG(w∗, u) ≤ r − 1 for every u ∈ V (G)− {w}. Let s and t be neighbours
of w. It follows that if u is any vertex in V (G) − {w, s}, then no shortest
w∗ − u path can contain s. In particular, G − s contains a w∗ − t path and
hence a w∗ − w path. So G − s is connected. Since s ∈ N(w) was chosen
arbitrarily, it follows that no neighbour of w is a cut-vertex.

Claim 6 If v is a ncv of G with rad(G − v) ≥ r and deg v > bn
2
c − r + 2,

then m(G) ≤ b(n, r). If m(G) = b(n, r), then G ∈ B(n, r).

We shall first show that v has a neighbour that is a ncv.
Suppose to the contrary that every neighbour of v is a cut-vertex. Let Tv

be a distance-preserving spanning tree of G with v as its root; so degTv
(v) =

degG(v). Let P be a diametral path of Tv. Then P has length

diam(Tv) ≥ 2rad(Tv)− 1 ≥ 2rad(G)− 1.
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So P contains at least 2 rad(G) vertices. Moreover, the (deg v−2) neighbours
of v not on P cannot be end vertices because they are cut-vertices, and so they
must be adjacent to a vertex that is non-adjacent to every other neighbour
of v. Hence, since degTv(v) ≥ bn

2
c − r + 3,

n ≥ 2r + 2(degTv
(v)− 2)

≥ 2r + 2
(⌊

n
2

⌋
− r + 3

)
− 4

= 2
⌊

n
2

⌋
+ 2 ,

which is a contradiction.
Thus, v must have a neighbour, say x, which is a ncv. If deg x ≥

⌊
n
2

⌋
−r+

3, then deg v + deg x ≥ 2
⌊

n
2

⌋
−2r+6, which is a contradiction by Lemma 2.

Hence, deg x ≤
⌊

n
2

⌋
−r+2. Moreover, since x is a ncv, rad(G−x) ≤ r−1 by

Claim 4. By Proposition 12, x has a conjugate vertex, say x. If rad(G−x) ≤
r−1, then {x, x} would form a conjugate pair and the result follows by Claim

2. So rad(G − x) ≥ r and since d(x, v) 6= 2, deg x ≤
⌊

n
2

⌋
− r + 2 by Lemma

2. Hence, x must be a cut-vertex by Claim 4, and so G − {x} has at least
two components, say G1 and G2.

Assume without loss of generality that v, x ∈ V (G1). Let x1 be a neigh-
bour of x of degree at least 2 in V (G1).

Since d(v, x1) 6= 2, degG(x1) ≤ bn
2
c − r + 2 by Lemma 2. Suppose x1 is a

ncv. Then, by Claim 4, rad(G − x1) ≤ r − 1. Applying Claim 5 to x1 now
yields that x is not a cut-vertex, which is a contradiction. Hence, x1 is a
cut-vertex. Let H be the component of G − x1 containing x and denote by
N ′

i the ith distance layer of x1 in H.
Since x1 is a cut-vertex; it follows that every vertex in N ′

1 is an end-
vertex or a cut-vertex. By the same argument, if every vertex in N ′

i , i ≥ 1, is
an end-vertex or a cut-vertex, then so is every vertex in N ′

i+1 (if any exists).
Hence, by induction, each vertex in H is either an end-vertex or a cut-vertex.

Consider a distance preserving spanning tree T of 〈V (H) ∪ {x}〉. Then
either T is a path or T contains at least two end-vertices distinct from x1.
In the former case, let x be the end-vertex of T , x 6= x1, and y the neighbour
of x, and in the latter case, let x and y be two end-vertices distinct from
x. In both cases G′ =: G − x − y has n − 2 vertices, rad(G′) ≥ r − 1 and
m(G′) = m(G)− 2. Hence, by induction,
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m(G) = m(G′) + 2
≤ b(n− 2, r − 1) + 2
= b(n, r).

If m(G) = b(n, r), we have equality throughout; so m(G′) = b(n−2, r−1).
By the induction hypothesis, G′ ∈ B(n−2, r−1). Hence G′ contains vertices
w, v such that dG′(w, v) 6= 2 and degG′(w) + degG′(v) = (n−2)−2(r−1)+4 =
n− 2r + 4. By Lemma 2, G ∈ B(n, r).

Claim 7 If v is a ncv of G with rad(G − v) ≥ r, then m(G) ≤ b(n, r). If
m(G) = b(n, r), then G ∈ B(n, r).

This follows from Claims 4 and 6.
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Chapter 3

Diameter and Inverse Degree

3.1 Introduction

This chapter is motivated by the GRAFFITI conjecture µ(G) ≤ r(G) (see
[22, 23]). Since r(G) = n

δ∗
, where δ∗ is the harmonic mean of the degrees

of the vertices of G, and since δ∗ ≥ δ, we have r(G) ≤ n
δ
. Hence, this con-

jecture is a strengthening of the conjecture µ(G) ≤ n
δ
. Unfortunately, the

conjecture turned out not to be true. Erdös, Pach and Spencer [19] disproved
it by constructing an infinite class of graphs with average distance at least
(2

3
b r(G)

3
c+ o(1)) log n

log log n
and diameter at least (2b r(G)

3
c+ o(1)) log n

log log n
. Further-

more, they proved the upper bound, diam(G) ≤ (6r(G) + 2 + o(1)) log n
log log n

,

which is also an upper bound on the average distance since µ(G) ≤ diam(G).
In this chapter, we improve upon the upper bound by Erdös, Pach and

Spencer by a factor of two. We show that

diam(G) ≤
(
3r(G) + 2 + o(1)

) log n

log log n
,

and thus µ(G) ≤
(
3r(G) + 2 + o(1)

)
log n

log log n
.

To enhance the readability of our inequalities, we will repeatedly use
inequality chains like a < b ≥ c, which are to be read as a < b and b ≥ c.
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3.2 Results

Theorem 5 Let G be a connected graph of order n with r(G) ≤ r. Then,
for constant r and large n,

diam(G) ≤
(
3r + 2 + o(1)

) log n

log log n
.

Proof Let x ∈ V (G) be a fixed vertex of eccentricity d := diam(G). The
ith distance layer Ni(x) of x is the set of all vertices at distance i from x. Let
|Ni(x)| := ni for 0 ≤ i ≤ d, and n−1 := nd+1 := 0. Define f(i) := ni

ni−1+ni+ni+1

for 0 ≤ i ≤ d. Since for any y ∈ Ni, where 0 ≤ i ≤ d, the neighbourhood of
y is contained in Ni−1 ∪Ni ∪Ni+1, we have degy < ni−1 + ni + ni+1, and
thus 1

degy
> 1

ni−1+ni+ni+1
. Therefore,

r(G) =
∑

y∈V (G)

1

degy
>

d∑
i=0

f(i).

If nd = nd−1 = . . . = n1 = n0, then each distance layer has cardinality 1 and
G is a path. Since, in this case, G has diameter n − 1 and inverse degree
r(G) = 1 + n

2
, the statement of the theorem holds. So we exclude this case

from here onwards.
We now define two disjoint sets J and K. Let

J = {i | 1 ≤ i ≤ d− 1 and ni−1 < ni ≥ ni+1},

K = {i | 1 ≤ i ≤ d− 1 and ni−1 ≥ ni < ni+1}.

The elements of J and K can be considered peaks and troughs of the sequence
n0, n1, . . . , nd.

We now show that the elements of J ∪ K alternate, i.e., for every s ∈
K(s ∈ J), there exists t ∈ J ∪ {d}(t ∈ K ∪ {d}), with t ≥ s + 2 and
s + 1, . . . , t− 1 /∈ J ∪K. Let s ∈ K for 0 < s < d and thus by the definition
of K, ns < ns+1. Let t be the first element following s such that nt ≥ nt+1.
Then t ∈ J ∪ {d}. Note that such an element t exists since nd+1 = 0 and
thus nd > 0 = nd+1. It is immediate from the definitions of J and K that
s + 1, . . . , t− 1 /∈ J ∪K. The proof for the case s ∈ J is similar.

From the above proof it is clear that for any two consecutive elements
s, t of J ∪ K, the sequence ns, ns+1, . . . , nt is monotonic. Moreover, if s is
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the smallest and t is the largest element of J ∪ K, then also n0, n1, . . . , ns

and nt, nt+1, . . . , nd are monotonic. Hence we refer to sets {s, s + 1, . . . , t},
with s, t ∈ J ∪ K ∪ {0, d} and s + 1, s + 2, . . . , t − 1 /∈ J ∪ K, as monotonic
intervals. The length of such an interval is defined as t− s.

Clearly, there exists a monotonic interval of length at least d
|J |+|K|+1

, the
average length of the monotonic intervals. The main part of this proof is
devoted to improving this bound and to expressing it in terms of d and r.
For this aim we first partition J into two disjoint subsets A and B.

For 0 < i < d, consider the values of i that belong to J . We now partition
J further into two disjoint subsets, A and B, where

A = {i ∈ J | ni−2 ≤ ni−1 < ni ≥ ni+1 ≥ ni+2} and B = J − A.

So an element i ∈ J is in B if and only if ni−1 < ni ≥ ni+1 and, in addition,
ni−2 > ni−1 or ni+1 < ni+2.

We note that each i ∈ B is an end point of a monotonic interval of length
1. Indeed, for i ∈ B we have ni−1 < ni ≥ ni+1 and, in addition, ni−2 > ni−1,
in which case i− 1 ∈ K, or ni+1 < ni+2, in which case i + 1 ∈ K.

Since J and K alternate, no monotonic interval has both its end points
in B. Hence there exists at least |B| monotonic intervals of length 1, while
the remaining |J |+ |K| − |B|+ 1 monotonic intervals have length at least 1.

If i ∈ J , then 2ni > ni−1 + ni+1, and thus

f(i) =
ni

ni−1 + ni + ni+1

>
1

3
for all i ∈ J.

We now show that

f(j − 1) + f(j) + f(j + 1) >
2

3
for all j ∈ A.

For j ∈ A, let a = 1
f(j)

= nj−1 + nj + nj+1

nj
and thus, a < 3 since 1

a
= f(j) > 1

3
.

By nj−2 ≤ nj−1 and (a− 1)nj = nj−1 + nj+1,

f(j − 1) =
nj−1

nj−2 + nj−1 + nj

≥ nj−1

2nj−1 + nj

=
(a− 1)nj−1

(2a− 2)nj−1 + (a− 1)nj

=
(a− 1)nj−1

(2a− 1)nj−1 + nj+1

.
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Similarly, by nj+2 ≤ nj+1 and (a− 1)nj = nj−1 + nj+1,

f(j + 1) ≥ (a− 1)nj+1

(2a− 1)nj+1 + nj−1

.

Hence, in total,

f(j − 1) + f(j) + f(j + 1) ≥ (a− 1)nj−1

(2a− 1)nj−1 + nj+1

+
1

a
+

(a− 1)nj+1

(2a− 1)nj+1 + nj−1

≥ (a− 1)(nj−1 + nj+1)

2a(nj−1 + nj+1)
+

1

a

=
a + 1

2a
.

Thus, by a < 3 we have f(j − 1) + f(j) + f(j + 1) > 2
3

for all j ∈ A, as
desired.

Now r ≥ r(G) >
∑d

i=0 f(i). Since the sets J and K alternate, J does not
contain two consecutive integers. Hence {i− 1, i, i + 1} and {j} are disjoint
for all i ∈ A and j ∈ B. From the definition of A it is easy to see that
i + 2 /∈ A if i ∈ A. Hence also the sets {i − 1, i, i + 1}, i ∈ A, are disjoint.
Therefore,

r >
∑
i∈A

(f(i− 1) + f(i) + f(i + 1)) +
∑
j∈B

f(j) >
2

3
|A|+ 1

3
|B|,

or, equivalently,
2|A|+ |B| < 3r.

We have |J | + |K| + 1 monotonic intervals of total length d. At least |B|
intervals have length 1, so the remaining |J | + |K| + 1 − |B| = |A| + |K| +
1 intervals have average length d−|B|

|A|+|K|+1
. Hence there exists a monotonic

interval of at least this length.
We now bound the average length in terms of d and r. Since J and K

alternate, we have |K| ≤ |J |+ 1. Hence,

|A|+ |K|+ 1 ≤ 2|J |+ 2− |B| = 2|A|+ |B|+ 2.

Hence there exists a monotonic interval of length at least

d− |B|
|A|+ |K|+ 1

≥ d− |B|
2|A|+ |B|+ 2

≥ d

2|A|+ |B|+ 2
− 1.
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Let {a, a+1, a+2, . . . , b} be such an interval. By 2|A|+|B| < 3r, the interval
has length

b− a ≥ d

3r + 2
− 1.

We assume that ni is monotone increasing on {a, a + 1, . . . , b} (if ni is de-
creasing the proof is analogous). Then f(i) = ni

ni−1+ni+ni+1
≥ ni

3ni+1
, and

hence,
b−1∑

i=a+1

ni

ni+1

≤ 3
b−1∑

i=a+1

f(i) < 3r.

Note that, for S, xi > 0, the product
∏
i∈I

xi is maximized subject to
∑

i∈I xi ≤

S if xi = S/|I| for all xi. So,

na+1 = (
b−1∏

i=a+1

ni

ni+1

)nb < (
3r

b− a− 1
)b−a−1nb.

Hence,

1 ≤ na+1 <
(3r(3r + 2)

d− 6r − 4

)(d−6r−4)/(3r+2)
n.

Now let r be constant and let x1 = d−6r−4
3r+2

. If x1 ≤ 3r/e, i.e., if d ≤
3r(3r+2)

e
+ 6r + 4, then the inequality of the theorem is satisfied for large

n. So we can assume x1 > 3r/e. Let g(x) = (3r
x
)x = ex(log 3r−log x). Then

g′(x) = (3r
x
)x(log 3r − log x − 1). If x > 3r

e
, then g′(x) < 0, and hence g is

decreasing. It is shown in the previous page that b − a − 1 ≥ x1 and that
na+1 < ng(b − a − 1). This implies 1 < ng(x1). Define x0 by g(x0) = 1/n.
Thus, (x0

3r

)x0

= n.

Observe that, in each case under consideration, we regard r as fixed,
whereas n grows beyond all bounds if and only if x0 does. Hence, log n =
x0 log(x0

3r
), and so log log n = log x0 + log log(x0

3r
). Thus,

log n

log log n
=

x0 log x0

3r

log x0 + log log x0

3r

.

Hence,
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x0 =
( log x0 + log log x0

3r

log x0 − log 3r

)( log n

log log n

)
,

and thus,

x0 =
( log x0 − log 3r

log x0 − log 3r
+

log 3r + log log x0

3r

log x0

3r

)( log n

log log n

)
,

Hence 1 = ( 3r
x0

)x0n, or equivalently (x0

3r
)

x0
3r = n

1
3r , has the solution x0 =

(1 + o(1)) log n
log log n

. Since x0 = (1 + o(1)) log n
log log n

> 3r/e and g(x0) < fg(x1), we
have x1 < x0. Hence,

d− 6r − 4 = (3r + 2)x1 < (3r + 2)(1 + o(1))
log n

log log n
,

which yields the statement of the theorem.
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Chapter 4

Diameter in Minimal Claw-free
Graphs

4.1 Introduction

Graphs that do not contain a star on four vertices (claw) as an induced
subgraph have received much attention, especially since the publication of
the excellent survey paper [24] in 1997. This class of graphs includes, among
others, line graphs, interval graphs, middle graphs, inflations of graphs and
graphs with independence number equal to 2. Recently, Chudnovsky and
Seymour found a structural characterization of claw-free graphs; that is, they
defined certain classes of “basic” claw-free graphs and then showed that all
claw-free graphs can be obtained by applying certain “expansion” operations.
See [6].

Definition 3 The graph K1,n is called a star. We refer to the star K1,3 as
a claw with the vertex of degree 3 as its centre.

In [12], Dankelmann et. al considered graphs that are (edge-) minimal
with respect to the property of being claw-free. This was motivated by
questions about cycles in claw-free graphs, but has interest in its own right.

Definition 4 Let G be a claw-free graph without isolated vertices. If the
removal of any edge of G produces a graph that is not claw-free, then G is a
minimal claw-free graph, briefly denoted as an m.c.f.g..
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That not every claw-free graph contains an m.c.f.g. as a subgraph may
be seen, for example, by considering the line graph of K4: it is obviously
claw-free but one can repeatedly remove its edges until an empty graph is
obtained without creating a claw. On the other hand, the line graph of K3,3

(equivalent to the cartesian product K3 ×K3) is an m.c.f.g.
In [12], Dankelmann et. al examined bounds on the minimum, average

and maximum degrees of an m.c.f.g. and looked at the relationship between
m.c.f.g.s and line graphs. For example, a 4-regular graph is m.c.f. if and only
if it is the line graph of a (K4 − e)-free cubic graph.

We mention that a closely related concept, minimal line graphs, was con-
sidered by Sumner [46]. A graph is a minimal line graph if it is a line graph,
but removal of any edge results in a graph that is not a line graph. Sumner
proved that a graph G is a minimal line graph if and only if the following
four conditions hold:

(i) every edge of G lies in a triangle,
(ii) every vertex of G has degree at least 3,
(iii) if an edge e lies on a triangle whose vertices have an even
degree sum, then e lies on another triangle,
(iv) each 4-clique of G has at least two vertices adjacent to vertices
outside the 4-clique.

Condition (i) clearly holds for m.c.f.g.s, and we will see that condition (ii)
also holds for m.c.f.g.s.

An example of an m.c.f.g. is the 5-regular icosahedron on 12 vertices.
Indeed, if we delete one, two or three vertices from the same triangle, then
the result is still an m.c.f.g. The latter is depicted in Figure 4.1. (This is not
a line graph.) An exhaustive computer search has shown that the smallest
order of an m.c.f.g. is 9; apart from the above graph there are two others,
namely the line graphs of the two cubic graphs of order 6.

In this chapter, we examine the diameter of m.c.f.g.s. We prove that the
diameter diam(G) of an m.c.f.g. G of order n satisfies

diam(G) ≤ 4

9
(n− 20) + 7.

Moreover, we demonstrate that this bound is best possible.
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Figure 4.1: The m.c.f.g I9.

4.2 Preliminary Results

We will need the following concept.

Figure 4.2: The near-claw NC (xy, c, t).

Definition 5 A near-claw NC(xy, c, t) is a graph obtained by removing from
a complete graph K4, with vertex set {x, y, c, t}, the edges xt and yt. The
vertices c and t are called the centre and tail of the near-claw NC(xy, c, t),
respectively.
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It is immediately obvious that G is an m.c.f.g. if and only if every edge
xy in G lies in a near-claw NC(xy, c, t) as shown in Figure 4.2. Hence every
edge of an m.c.f.g. is contained in a triangle. If 〈{a, b, c, d}〉 denotes a claw,
it will be assumed that a is the centre of the claw.

Lemma 4 [12] Let G be an m.c.f.g. Then G has maximum degree ∆(G) ≤
n(G)− 3.

Proof Consider any vertex x. Let y be a neighbour of x. Then there
exists a near-claw NC (xy, c, t) with t non-adjacent to x but adjacent to c.
Further, there exists a near-claw NC (xc, c′, t′), where t′ is non-adjacent to x
and c. Hence there are at least two vertices non-adjacent to x. It follows
that ∆(G) ≤ n− 3.

One can obtain an infinite family of m.c.f. graphs with ∆ = n − 3 by
duplicating u as follows. The duplication of a vertex u in G, means the
addition to G of a new vertex v, adjacent to u and all vertices in NG(u) (so
that N [u] = N [v]). Clearly, G is claw-free if and only if G′ is claw-free.

Lemma 5 [12] Let G be a claw-free graph and suppose G′ is formed by du-
plicating u to v. Then G′ is an m.c.f.g. if and only if G is an m.c.f.g.

Proof Assume G′ is an m.c.f.g.
Let e = ab ∈ E(G); then G′ contains a near-claw NC (ab, c, t) and v /∈

{a, b}. If NC (ab, c, t) is contained in G, then G− e contains a claw.
Otherwise, suppose vertex v is in NC (ab, c, t); hence v ∈ {c, t}. If v =

c, then u /∈ {a, b}, since otherwise, if u = a, then vt ∈ E(G′) and ut /∈
E(G′), contradicting the assumption that N [u] = N [v]. Hence if v = c,
then NC (ab, u, t) is contained in G. On the other hand, if v = t, then, as
N [u] = N [v], NC (ab, c, u) is contained in G. Hence G is an m.c.f.g.

Assume G is an m.c.f.g.
Clearly the removal of any edge of G′ not incident with v produces a claw.

So we need only to consider the edges incident with v. Let v′ ∈ V (G′) such
that v′ ∈ N(v) but v′ 6= u, and let e1 = vv′ ∈ E(G′). So there exists the
edge uv′ ∈ E(G) contained in, say, the near-claw NC (uv′, w, x) in G; then
vv′ is contained in the near-claw NC (vv′, w, x) in G′, whence removal of vv′

creates a claw.
Consider the edge e2 = uv ∈ V (G′). By Lemma 4, there exists a vertex,

say w ∈ V (G′) − N [u], that is adjacent to some vertex in N(u), say v′.
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Then wv /∈ E(G′) and v′ ∈ N(v). Moreover, since uv′, vv′, v′w ∈ E(G′) and
uw, vw /∈ E(G′), {v′, u, v, w} induces a claw in G′ − e2. Hence G′ is m.c.f.

Lemma 6 [12] Let G be an m.c.f.g. Then G has minimum degree δ(G) ≥ 3.

Proof Since every edge of G lies in a triangle, δ(G) ≥ 2. Now suppose
that G contains a vertex v0 of degree 2, adjacent to v1 and v2, where v1v2 ∈
E(G). Let B = (N(v1) ∩ N(v2)) − {v0} and for i = 1, 2 Ai = N(vi) − (B ∪
{v0, v3−i}). Since v1 and v2 are not centres of claws, A1 ∪ B and A2 ∪ B
induce complete subgraphs of G.

The edge v0v1 is contained in a near-claw with v2 as centre, say NC (v0v1,
v2, v3), and v0v2 is contained in a near-claw NC (v0v2, v1, v4); so v2v3, v1v4 ∈
E(G) and v1v3, v2v4 /∈ E(G) and thus v3 ∈ A2 and v4 ∈ A1. The edge v1v2

is contained in a near-claw NC (v1v2, v5, v6), where v1v5, v2v5 ∈ E(G) and
v1v6, v2v6 /∈ E(G); so v5 ∈ B, v6 /∈ N(v1) ∪N(v2).

Let x ∈ A2, y ∈ A1; then since 〈{v5, v1, x, v6}〉 is not a claw and v1x, v1v6 /∈
E(G), it follows that xv6 ∈ E(G); similarly as 〈{v5, v2, y, v6}〉 is not a claw,
it follows that yv6 ∈ E(G). Hence v6 is adjacent to every vertex in A1 ∪ A2.
By the same argument it follows that

if w ∈ N(B)− (N [v1] ∪N [v2]) then w is adjacent to all of A1 ∪ A2. (∗)

The edge v5v6 is contained in a near-claw NC (v5v6, c, t), say. If c ∈ N(v2),
then as v5 is adjacent to every vertex in (N(v1)∪N(v2))−{v0}, it follows that
t /∈ N(v1)∪N(v2); hence as 〈N(v2)−{v0, v1}〉 is complete, v2t /∈ E(G). Also,
v2v6, v6t /∈ E(G) while c is adjacent to v2, v6 and t; so 〈{c, v2, v6, t}〉 ∼= K1,3,
which is a contradiction. So c /∈ N(v2). It follows similarly that c /∈ N(v1).

So c = v7 and t = v8, where v7 /∈ N [v1] ∪ N [v2], and v5v7, v6v7 ∈
E(G), while v5v8, v6v8 /∈ E(G). Note that, v1v8 /∈ E(G), since otherwise
〈{v1, v0, v5, v8}〉 ∼= K1,3, and, similarly, v2v8 /∈ E(G). By (∗), v7 is adjacent
to every vertex in A1 ∪ A2.

That for x ∈ A2, xv8 /∈ E(G) follows from the observation that 〈{x, v2, v6,
v8}〉 is not a claw. So v8 is non-adjacent to each vertex in A2 and, similarly
in A1. Furthermore, xy ∈ E(G) for x ∈ A2, y ∈ A1, since 〈{v7, x, y, v8}〉 is
not a claw. (See Figure 4.3.)

In conjunction with the fact that A1 and A2 induce complete graphs, we
obtain that

〈A1 ∪ A2 ∪B〉 is complete. (†)

43



Figure 4.3: An induced subgraph.

The edge v2v3 is contained in a near claw, say, NC (v2v3, v9, t). Clearly,
v9 /∈ B, since otherwise v3 and t would be adjacent by (∗). Hence v9 ∈ A2.

Consider t. Since t is not adjacent to v3 but adjacent to v9, we have
t /∈ N [v1]∪N [v2]∪{v6, v7, v8}, say, t = v10 with v9v10 ∈ E(G), v3v10 /∈ E(G).

By (†), v4v9 ∈ E(G). Hence v4v10 ∈ E(G) since otherwise 〈{v9, v2, v4,
v10}〉 ∼= K1,3 is claw. But then 〈{v4, v1, v3, v10}〉 ∼= K1,3, which is a contra-
diction.

By Lemma 6, we have the following corollary.

Corollary 4 [12] Let G be an m.c.f.g. Then the vertices of degree 3 form an
independent set.

Proof Suppose that u and v are vertices of degree 3 in G such that
uv ∈ E(G).

If N [u] = N [v], let G′ = G − {v}. Then G′ is m.c.f., but has a vertex of
degree 2, which contradicts Lemma 6.

If the vertices u and v have different neighbourhoods, then since every
edge lies in a triangle, N(u)∪N(v) induces the graph K1 +P4, where u and v
are the interior vertices on P4. Let G′ be the graph obtained by adding a
vertex w adjacent only to u and v. Then G′ is claw-free. The removal of
the edge uw produces a claw centred at v, and the removal of the edge vw
produces a claw centred at u and G′ − e contains an induced claw for each
e ∈ E(G). So G′ is a minimal claw-free graph with a vertex of degree 2,
which contradicts Lemma 6.

Hence uv /∈ E(G) and the result follows.
The following is an immediate consequence of Lemma 6 and Corollary 4.
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Corollary 5 [12] Let G be an m.c.f.g.. Then ∆(G) ≥ 4.

We now look at the minimum number of edges in an m.c.f.g. We will need
the following results.

Lemma 7 [12] If an m.c.f.g. G contains a vertex v of degree 3, then v has
a neighbour of degree at least 5.

Proof Suppose to the contrary that no neighbour of v has degree exceed-
ing 4. Then it follows from Lemma 6 and Corollary 4 that the neighbours of
v, say v1, v2, v3, all have degree 4. The edge vv1 is contained in a near-claw,
say NC (vv1, v2, t1), so that t1 ∈ V (G)−N [v], t1v2 ∈ E(G) and t1v1 /∈ E(G).
A near-claw NC (v2t1, c2, t2) exists in G; here either c2 = v3 or c2 is a new
vertex.

If c2 = v3, then v2v3, t1v3 ∈ E(G) and t2 is a new vertex such that v3t2 ∈
E(G), but v2t2, t1t2 /∈ E(G). Since deg v3 = 4, it follows that v3v1 /∈ E(G).
A near-claw NC (vv3, c3, t3) exists in G, where c3 = v2. But deg v2 = 4, so
t3 ∈ {t1, v1}, a contradiction, as vv1, v3t1 ∈ E(G). Hence c2 6= v3.

Thus c2 is a new vertex. Then v2c2, t1c2 ∈ E(G) and N(v2) = {v, v1, t1, c2};
hence the centre c3 of a near-claw NC (vv3, c3, t3) must be v1 and so v1v3 ∈
E(G). A near-claw NC (v1v2, c4, t4) exists in G, where c4 ∈ {v, c2}. If
c4 = v, then t4 = v3, a contradiction, as v1v3 ∈ E(G). Hence c4 = c2

and v1c2 ∈ E(G). A near-claw NC (vv2, c5, t5) exists in G, where c5 = v1 and
t5 ∈ {v3, c2}, which yields a contradiction as vv3, v2c2 ∈ E(G).

It follows that at least one neighbour of v is of degree exceeding 4.

Lemma 8 [12] Let G be an m.c.f.g. If v is a vertex of degree 3 in G with
only one neighbour of degree at least 5, say v3, then v3 has no other neighbour
of degree 3.

Proof Suppose that the neighbours of v are vertices v1, v2 and v3, with
deg v1 = deg v2 = 4. We show first that v1v3, v2v3 ∈ E(G) and v1v2 /∈ E(G).

The edge vv3 is contained in a near-claw, with say v1 as centre, NC (vv3, v1,
t1), where t1 6= v2, and so v1v3 ∈ E(G). Suppose v1v2 ∈ E(G); then the edge
v1t1 is contained in a near-claw which must have centre v2 because deg v1 = 4,
say NC (v1t1, v2, t2) where t2 6= {v, v3}, so that t2 is a new vertex. However,
〈{v2, v, t1, t2}〉 ∼= K1,3, a contradiction, and so v1v2 /∈ E(G). Since vv2 is con-
tained in a near-claw which must have centre v3, it follows that v2v3 ∈ E(G).
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Further, consider this near-claw NC (vv2, v3, x1). Since v3 is not the centre
of a claw, it follows that v1x1 ∈ E(G). Similarly, there is a vertex x2 such
that v2x2, v3x2 ∈ E(G) but v1x2 /∈ E(G). Again because v3 is not the centre
of a claw, it follows that x1x2 ∈ E(G). That is, the set W = {v, v1, x1, x2, v2}
induces a 5-cycle.

Now suppose v3 has another neighbour z of degree 3. If z /∈ W , then
it has only two neighbours in W , and thus is part of a claw centered at v3.
If z ∈ W , say z = x1, then v1 has no other neighbour, by the lack of claw
centered at v1. But then v1 has degree 3, a contradiction of Corollary 4.

Lemma 9 [12] The size of an m.c.f.g. of order n is at least 2n.

Proof Let G be an m.c.f.g. of order n, T the set of vertices of degree
3 and let U denote the set of vertices of degree at least 5. Define H as the
bipartite subgraph of G with vertex set T ∪ U whose edge set consists of all
those edges with one end in T and one end in U .

By Lemma 7, in H every vertex of T has degree at least 1. Let A denote
the vertices of T with degree 1 in H. By Lemma 8, the neighbours of A
have degree 1 in H. Let X = N(A). So every vertex in T −A has degree at
least 2 in H. On the other hand, since T is independent in G (by Corollary 4)
and G is claw-free, every vertex in U − X has degree at most 2 in H. Thus
|T − A| ≤ |U −X| and so |T | ≤ |U |.

Now, let di denote the number of vertices of degree i in G. Then∑
i

idi = 4n +
∑

i

(i− 4)di ≥ 4n + |U | − |T | ≥ 4n,

as required.

4.3 The Main Result

Theorem 6 Let G be an m.c.f.g. of order n and diameter diam(G). Then

diam(G) ≤ 4

9
(n− 20) + 7.

Moreover, this bound is sharp.

Proof Let P : x0x1 . . . xd be a diametral path in G. For i ∈ {0, . . . , d−1},
xixi+1 is contained in a near-claw NC (xixi+1, ci, ti).
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Claim 8 ci /∈ V (P ) for all i.

Suppose ci ∈ V (P ). Then ci = xj. Clearly, j 6= i, i + 1 and so j ≤ i − 1
or j ≥ i + 2. If j ≥ i + 2, then xixj is shorter than xixi+1 . . . xj, which is a
contradiction. If j ≤ i− 1, then xjxi+1 is shorter than xj . . . xixi+1, which is
a contradiction.

Claim 9 ti /∈ V (P ) for all i.

Suppose ti ∈ V (P ). Then ti = xj. Clearly, j ≤ i − 2 or j ≥ i + 3 since
xiti, xi+1ti /∈ E(G). If j ≥ i + 3, then xicixj is shorter than xixi+1xi+2 . . . xj,
which is a contradiction. If j ≤ i − 2, then we have xjcixi+1 shorter than
xj . . . xi−1xixi+1, which is a contradiction.

Claim 10 If k ≥ i + 2 and 0 ≤ i ≤ d− 1 then ci 6= ck, and if 1 ≤ i ≤ d− 2,
then ci 6= ci+1.

That ci 6= ck if k ≥ i + 2 is obvious since otherwise xici(= ck)xk+1 is
shorter than xixi+1 . . . xkxk+1.

Suppose ci = ci+1 and 1 ≤ d− 2. Hence, cixi, cixi+1, cixi+2 ∈ E(G). The
near-claw NC (xixi+1, ci, ti) exists in G where, by Claim 9, ti 6= xj for any
j, and clearly ci 6= ti. So ti is a new vertex in G such that citi ∈ E(G)
and xiti, xi+1ti /∈ E(G). Since P is a diametral path, xixi+2 /∈ E(G) and
thus tixi+2 ∈ E(G) as otherwise 〈{ci, ti, xi, xi+2}〉 ∼= K1,3. The near-claw
NC (xi+1xi+2, ci, ti+1) exists in G where by Claim 9, ti+1 6= xj for any j, and
clearly ci 6= ti+1. Moreover, since tixi+2 ∈ E(G), ti 6= ti+1 and hence ti+1 is a
new vertex in G such that citi+1 ∈ E(G) and xi+1ti+1, xi+2ti+1 /∈ E(G). Then
ti+1xi ∈ E(G) as otherwise 〈{ci, xi, xi+2, ti+1}〉 ∼= K1,3 and titi+1 ∈ E(G) as
otherwise 〈{ci, ti, ti+1, xi+1}〉 ∼= K1,3. Since P is a diametral path, xi+1xi+3 /∈
E(G) and thus tixi+3 ∈ E(G) as otherwise 〈{xi+2, ti, xi+3, xi+1}〉 ∼= K1,3.
Since P is a diametral path, xi−1xi+1 /∈ E(G), and thus ti+1xi−1 ∈ E(G) as
otherwise 〈{xi, ti+1, xi−1, xi+1}〉 ∼= K1,3. But then xi−1ti+1tixi+3 is a shorter
path than xi−1xixi+1xi+2xi+3, (see Figure 4.4) which is a contradiction.

Claim 11 If ti = cj, then j = i− 2 or j = i + 2 for 4 ≤ i ≤ d− 5.
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Figure 4.4: xi−1ti+1tixi+3 is a shorter path than xi−1xixi+1xi+2xi+3.

If ti = cj, then clearly j 6= i. Moreover, since ci−1xi, ci+1xi+1 ∈ E(G) and
tixi, tixi+1 /∈ E(G), j 6= i − 1 and j 6= i + 1. So j ≤ i − 2 and or j ≥ i + 2.
If j ≥ i + 3, then xiciti(= cj)xj+1 is shorter than xixi+1xi+2xi+3 . . . xj+1,
which is a contradiction. If j ≤ i − 3, then xjcj(= ti)cixi+1 is shorter than
xj . . . xi−2xi−1xixi+1, which is a contradiction. Thus, j = i− 2 or j = i + 2.

Let Ni = {v ∈ V (G) : d(x0, v) = i} for 0 ≤ i ≤ d. Then xi ∈ Ni for all i.

Claim 12 ci ∈ Ni ∪Ni+1 for 0 ≤ i ≤ d− 1.

Since xi ∈ Ni and cixi ∈ E(G), ci ∈ Nj where j ≤ i+1. Since xi+1 ∈ Ni+1

and cixi+1 ∈ E(G), ci ∈ Nj where j ≥ i, and thus the result follows.

Let Ai = Ni ∪Ni+1 ∪Ni+2 ∪Ni+3 for 0 ≤ i ≤ d− 3.

Claim 13 For 3 ≤ i ≤ d− 6, |Ai| ≥ 8.

Since xi, xi+1, xi+2, xi+3 ∈ Ai, and by Claim 12, ci ∈ Ni ∪ Ni+1, ci+1 ∈
Ni+1 ∪ Ni+2, and ci+2 ∈ Ni+2 ∪ Ni+3, |Ai| ≥ 7. For 3 ≤ i ≤ d − 6, the near-
claw NC (xi+1xi+2, ci+1, ti+1) exists in G where by Claim 11, ti+1 ∈ {ci−1, ci+3}
or ti+1 is a new vertex in Ai. If we have the latter case, then |Ai| ≥ 8; so
we need only consider the former case. If ti+1 = ci−1, then ci−1ci+1 ∈ E(G)
and, by Claim 12, ci−1 ∈ Ni and ci+1 ∈ Ni+1 and thus ci−1 ∈ Ai, and hence
|Ai| ≥ 8. Similarly, if ti+1 = ci+3, then ci+3 ∈ Ni+3 and hence |Ai| ≥ 8.
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Claim 14 If |Ai| = 8, then ci−1 ∈ Ni−1 and ci+3 ∈ Ni+4 for 3 ≤ i ≤ d− 6.

By Claim 13, |Ai| ≥ 8. So if |Ai| = 8, then as shown in the proof of Claim
13, we have exactly one of the following three possibilities:

(i) ti+1 = ci−1 and A
(1)
i = {xi, xi+1, xi+2, xi+3, ci−1, ci, ci+1, ci+2},

(ii) ti+1 = ci+3 and A
(2)
i = {xi, xi+1, xi+2, xi+3, ci, ci+1, ci+2, ci+3},

(iii) ti+1 /∈ A
(1)
i ∪ A

(2)
i and ci−1, ci+3 /∈ Ai.

We shall show that cases (i) and (ii) cannot occur:

Suppose ti+1 = ci−1; then ci+1 ∈ Ni+1 and A
(1)
i = {xi, xi+1, xi+2, xi+3, ci−1,

ci, ci+1, ci+2}. Suppose, furthermore, that ti−1 /∈ A
(1)
i ; then ti−1 ∈ Ni−1 and

thus ti−1ci+1 /∈ E(G). But then 〈{ci−1, xi−1, ti−1, ci+1}〉 ∼= K1,3, which is a

contradiction. Hence, ti−1 ∈ A
(1)
i and, by Claims 9 and 11, ti−1 = ci+1. Thus

xici+1 /∈ E(G). The near-claw NC (ci−1ci+1, ca, ta) exists where ca ∈ Ni∪Ni+1.
Thus ca = ci, and so ci−1ci, cici+1 ∈ E(G). So xi+1ta ∈ E(G) as otherwise
〈{ci, ta, ci−1, xi+1}〉 ∼= K1,3 and xita ∈ E(G) as otherwise 〈{ci, ta, xi, ci+1}〉 ∼=
K1,3. So ta ∈ Ni ∪ Ni+1 and thus ta ∈ Ai. So ta = ci+2, but then by Claim
12, ta ∈ Ni+2 ∪Ni+3, which is a contradiction.

So ti+1 6= ci−1, and similarly ti+1 6= ci+3. Thus ti+1 is a new vertex in Ai.
So ci−1, ci+3 /∈ Ai, and thus the result follows.

Claim 15 If |Ai| = 9 and ci−1 ∈ Ni, then ci+3 ∈ Ni+4.

Suppose to the contrary that ci+3 ∈ Ni+3; then Ai = {xi, xi+1, xi+2, xi+3,
ci−1, ci, ci+1, ci+2, ci+3}. Suppose ti+3 /∈ Ai and let z be a neighbour of ci+3

in Ni+2. Then 〈{ci+3, ti+3, z, xi+4}〉 ∼= K1,3, a contradiction. So ti+3 ∈ Ai,
and thus by Claims 9 and 11, ti+3 = ci+1. Hence ci+1ci+3 ∈ E(G) and
ci+1xi+3 /∈ E(G). So, by Claim 12, ci+1 ∈ Ni+2. Since ci−1 ∈ Ni, ci−1ci+1 /∈
E(G). The near-claw NC (xi+1xi+2, ci+1, ti+1) exists where ti+1 = ci+3, and
so xi+2ci+3 /∈ E(G). The near-claw NC (ci+1ci+3, ca, ta) exists where ca ∈
Ni+2 ∪ Ni+3 and ca 6= xi+2. So ca = ci+2. Thus ci+1ci+2, ci+2ci+3 ∈ E(G).
Moreover, ta ∈ Ai, as otherwise 〈{ci+2, xi+2, ci+3, ta}〉 ∼= K1,3 and ta = ci.
So cici+2 ∈ E(G), cici+1 /∈ E(G) and ci ∈ Ni+1 by Claim 12. But then
〈{ci+2, ci, ci+1, xi+3}〉 ∼= K1,3, a contradiction. So ci+3 ∈ Ni+4.
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Claim 16 If d ≥ 11 and |A4i| ≥ 9 for every i ∈ {1, 2, . . . , t
4
}, where t =

4bd−7
4
c, then |A4| + |A8| + · · · + |At−4| + |At| ≥ 9

4
t; otherwise |A4| + |A8| +

· · ·+ |At−4|+ |At| ≥ 9
4
t− 1.

If for every 4i such that i ∈ {1, 2, . . . , t
4
}, |A4i| ≥ 9, then since we have t

4

terms |A4i|, each of size at least 9, the result follows.
If for some j ∈ {4, 8, . . . , t − 4, t}, |Aj| = 8 but for every k ∈ {4, . . . , j −

4} ∪ {j + 4, . . . , t}, |Ak| ≥ 9, then we have ( t
4
− 1) terms |A4i| of size at least

9 together with one of size 8, and the result follows.
So we need consider the case where we have at least two values of i in

{4, 8, . . . , t
4
} for which Ai is of size 8. Let j be the first value in {4, 8, . . . , t−

4, t} such that |Aj| = 8 and let j + k be the first value in {j + 4, . . . , t− 4, t}
such that |Aj+k| = 8. If for any z in {j + 4, . . . , j + k − 4}, |Az| ≥ 10, then
we are done, and so for every z in {j + 4, . . . , j + k − 4}, |Az| = 9. By
Claim 14, cj+3 ∈ Nj+4 since |Aj| = 8 and thus by Claim 15, cj+7 ∈ Nj+8.
Thus, for any y in {j + 4, . . . , j + k − 4}, |Ay| = 9 and cy−1 ∈ Ny, and
thus by Claim 15, cy+3 ∈ Ny+4. In particular, cj+k−1 ∈ Nj+k. But since
|Aj+k| = 8, cj+k−1 ∈ Nj+k−1 by Claim 14, which is a contradiction, and so
the result follows.

Claim 17 If c3 ∈ N4, then |A0| ≥ 10.

Suppose to the contrary that |A0| < 10. We consider two cases:

Case 1 c0 = c1

So c0 ∈ N1. The near-claw NC (x0x1, c0, t0) exists where t0 ∈ N2 and
t0x2 ∈ E(G) as otherwise 〈{c0, x0, x2, t0}〉 ∼= K1,3. The near-claw NC (x1x2, c0,
t1) exists where t1x0 ∈ E(G) as otherwise 〈{c0, x0, x2, t1}〉 ∼= K1,3. So t1 ∈ N1.
Then t0t1 ∈ E(G) as otherwise 〈{c0, t1, t0, x1}〉 ∼= K1,3, and t0x3 ∈ E(G)
as otherwise 〈{x2, x1, x3, t0}〉 ∼= K1,3. (See Figure 4.5.) The near-claw
NC (x0c0, ca, ta) exists where ca ∈ N1 and ta ∈ N2. Thus ta is a new ver-
tex in N2. Let S = {x0, x1, x2, x3, c0, t0, t1, ta} and S ⊆ A0; so |A0| ≥ 8 at
this stage.

Now either ca /∈ S or ca ∈ S, in which case (since ca is adjacent to c0 and
x0) ca ∈ {t1, x1}.

Subcase 1.1 Suppose ca = x1; then x1ta ∈ E(G).
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Figure 4.5: An induced subgraph.

Thus x2ta ∈ E(G) as otherwise 〈{x1, x0, ta, x2}〉 ∼= K1,3, and x3ta ∈ E(G)
as otherwise 〈{x2, ta, c0, x3}〉 ∼= K1,3, and hence t0ta ∈ E(G) as otherwise
〈{x3, t0, ta, x4}〉 ∼= K1,3.

The near-claw NC (t0c0, cb, tb) exists in G where cb ∈ N1 ∪ N2, and thus
tb ∈ A0. Since every vertex in S is adjacent to c0 or t0 while c0tb, t0tb /∈ E(G),
it follows that tb /∈ S and is thus a new vertex in A0, A0 = S ∪ {tb}, and
|A0| = 9. The near-claw NC (c0x2, cc, tc) exists where tc ∈ A0, and thus tc = tb
as every vertex in S is adjacent to c0 or x2 and |A0| = 9. So tbx2 /∈ E(G).
Now, cb = t1 since no vertex in A0 − {t1} is adjacent to c0, and to tb. So
t1tb ∈ E(G), and thus tb ∈ N1 as otherwise 〈{t1, tb, t0, x0}〉 ∼= K1,3. The
near-claw NC (x1ta, cd, td) exists where td ∈ A0 and so td = tb or t1. However,
no vertex in A0 is adjacent to x1, ta and tb; so td 6= tb, and thus td = t1
and cd = tb as tb is the only possible vertex in A0 adjacent to x1, ta and t1.
Thus t1ta /∈ E(G) and x1tb, tatb ∈ E(G). The near-claw NC (t1tb, ce, te) exists
where ce = x0, but te does not exist, a contradiction. So x1ta /∈ E(G).

Subcase 1.2 Suppose ca = t1; then t1ta ∈ E(G).
Then c0ta /∈ E(G), t0ta ∈ E(G) as otherwise 〈{t1, t0, ta, x0}〉 ∼= K1,3,

tax3 ∈ E(G) as otherwise 〈{t0, x3, c0, ta}〉 ∼= K1,3 and x2ta ∈ E(G) as oth-
erwise 〈{x3, x2, ta, x4}〉 ∼= K1,3. The near-claw NC (c0t0, cb, tb) exists where
tb ∈ A0, and thus, as every vertex in S is adjacent to c0 and t0, tb is a new ver-
tex in A0 such that c0tb, t0tb /∈ E(G). Hence A0 = S∪{tb}, and thus |A0| = 9.
The near-claw NC (t1ta, cc, tc) exists where tc ∈ A0, and so tc = {tb, x1} but
tc 6= tb, as no vertex in A0 is adjacent to t1, ta and tb, so tc = x1 and cc = tb.
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So tatb, t1tb, x1tb ∈ E(G). The near-claw NC (x1tb, cd, td) exists where td = t0
or x3, and thus cd = x2. So tbx2 ∈ E(G). The near-claw NC (c0x2, ce, te)
exists where te ∈ A0, but no vertex in A0 − {c0, x0} is non-adjacent to both
c0 and x0; so te does not exist, which is a contradiction. So t1ta /∈ E(G).

Subcase 1.3 Suppose ca /∈ S; so ca is a new vertex in N1,
Hence |A0| = 9 since A0 = S ∪ {ca}. Then cac0, cax0,cata ∈ E(G). The

near-claw NC (c0t0, cb, tb) exists where cb ∈ N1∪N2, and thus tb ∈ A0. So tb =
ta, and thus t0ta /∈ E(G). Thus cat0 /∈ E(G) as otherwise 〈{ca, t0, ta, x0}〉 ∼=
K1,3 and tat1 /∈ E(G) as otherwise 〈{t!, ta, t0, x0}〉 ∼= K1,3. So cb = x2 and
thus x2ta ∈ E(G). So tax3 ∈ E(G) as otherwise 〈{x2, x3, c0, ta}〉 ∼= K1,3, but
then 〈{x3, t0, ta, x4}〉 ∼= K1,3, which is a contradiction.

We therefore conclude that if c3 ∈ N4 and c0 = c1, then |A0| ≥ 10.

Case 2: c0 6= c1.
So x0, x1, x2, x3 ∈ A0, and c0 and c1 are distinct vertices in A0. Since c3 ∈

N4, c3 6= t1 by Claim 11, and thus t1 is a new vertex (not in {x0, x1, x2, x3, c0, c1})
in A0. So |A0| ≥ 7. We proceed by first proving five propositions:

Proposition 17 t1c3 /∈ E(G) and so t1x3, c1x3 /∈ E(G).

Figure 4.6: An induced subgraph.

Suppose to the contrary that t1c3 ∈ E(G). Then since t1 ∈ A0, it follows
that t1 ∈ N3. Moreover, c1 ∈ N2, and thus x0c1 /∈ E(G). Since c2 is a
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distinct vertex in N2∪N3, |A0| ≥ 8. By Lemma 6, deg x0 ≥ 3, there is a new
vertex in N1, say z and thus |A0| = 9. So, t0 = c2, and thus c0c2 ∈ E(G),
x1c2 /∈ E(G) and c2 ∈ N2. See Figure 4.6.

Suppose c1x3 ∈ E(G). Then c1c2 ∈ E(G) as otherwise 〈{x3, c1, c2, x4}〉 ∼=
K1,3, t1c2 ∈ E(G) as otherwise 〈{c1, x1, t1, c2}〉 ∼= K1,3, t1x3 ∈ E(G) as other-
wise 〈{c2, t1, x3, c0}〉 ∼= K1,3, and c0x2 ∈ E(G) as otherwise 〈{c2, c0, x2, t1}〉 ∼=
K1,3. Thus t2 = z, and so x2z /∈ E(G) and c2z ∈ E(G). But then
〈{c2, z, x2, t1}〉 ∼= K1,3, which is a contradiction. So c1x3 /∈ E(G).

The near-claw NC (x0c0, ca, ta) exists where ta ∈ N2. So ta = c1 or
ta = x2. If c0x2 ∈ E(G), then ta = c1, and thus c0c1 /∈ E(G). But then
〈{x2, c0, c1, x3}〉 ∼= K1,3, which is a contradiction. So c0x2 /∈ E(G). More-
over, c0c1 /∈ E(G) as otherwise 〈{c1, c0, x2, t1}〉 ∼= K1,3 and c1c2 /∈ E(G) as
otherwise 〈{c2, c0, c1, x3}〉 ∼= K1,3.The near-claw NC (c1t1, cb, tb) exists where
cb ∈ N2 ∪N3, but no such vertex exists.

Thus t1c3 /∈ E(G). Then t1x3 /∈ E(G) as otherwise 〈{x3, x2, t1, c3}〉 ∼=
K1,3, and c1x3 /∈ E(G) as otherwise 〈{c1, x1, x3, t1}〉 ∼= K1,3.

Proposition 18 c0x2 /∈ E(G)

Suppose to the contrary that c0x2 ∈ E(G). Then c0c1 ∈ E(G) as oth-
erwise 〈{x2, c0, c1, x3}〉 ∼= K1,3, and t0 6= t1, as otherwise 〈{c0, x0, x2, t1}〉 ∼=
K1,3; so t0 is a new vertex in N2, and thus |A0| ≥ 8. Furthermore, x2t0 ∈
E(G) as otherwise 〈{c0, x0, x2, t0}〉 ∼= K1,3, and x3t0 ∈ E(G), as otherwise
〈{x2, x1, x3, t0}〉 ∼= K1,3.

Suppose x0c1 /∈ E(G). Then c1 ∈ N2, and c1t0 ∈ E(G) as other-
wise 〈{c0, c1, t0, x0}〉 ∼= K1,3, t1t0 ∈ E(G) as otherwise 〈{c1, x1, t1, t0}〉 ∼=
K1,3, c0t1 ∈ E(G) as otherwise 〈{t0, c0, t1, x3}〉 ∼= K1,3, and t1 ∈ N1 as oth-
erwise 〈{c0, x2, t1, x0}〉 ∼= K1,3. The near-claw NC (x0c0, ca, ta) exists where
ta ∈ N2. Thus ta is a new vertex in N2, and thus |A0| = 9. The near-claw
NC (c0x2, cb, tb) exists in G where tb = ta, and thus x2ta /∈ E(G). The near-
claw NC (c0t0, cc, tc) exists where tc = ta, and thus t0ta, c0ta /∈ E(G). More-
over, tax1 /∈ E(G) as otherwise 〈{x1, ta, x2, x0}〉 ∼= K1,3, and thus tat1 /∈ E(G)
as otherwise 〈{t1, t0, ta, x0}〉 ∼= K1,3. But this is a contradiction as ta must
have a neighbour in N1.

So x0c1 ∈ E(G). So c1 ∈ N1 and t1 ∈ N1 as otherwise 〈{c1, t1, x0, x2}〉 ∼=
K1,3. The near-claw NC (x0c0, cd, td) exists where td ∈ N2; thus td is a
new vertex in N2 with tdc0 /∈ E(G) and thus |A0| = 9. The near-claw
NC (c1x2, ce, te) exists where te ∈ A0 and thus te = td and so tdx2, tdc1 /∈
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E(G). Thus x1td /∈ E(G) as otherwise 〈{x1, td, x2, x0}〉 ∼= K1,3, and thus
tdt1 ∈ E(G) since td must have a neighbour in N1. The near-claw NC (tdt1, cf ,
tf ) exists where cf = t0, and thus tdt0, t1t0 ∈ E(G). The near-claw NC (c0t0, cg,
tg) exists where tg ∈ A0 but tg does not exist which is a contradiction.

So c0x2 /∈ E(G).

Proposition 19 x0c1 /∈ E(G) and thus c1 ∈ N2.

Suppose to the contrary that x0c1 ∈ E(G). Then t1 ∈ N1 as otherwise
〈{c1, t1, x0, x2}〉 ∼= K1,3, and so t0 /∈ {x0, x1, x2, x3, c0, c1, t1} and so |A0| ≥ 8.

Suppose c1t0 ∈ E(G). Then t0x2 ∈ E(G) as otherwise 〈{c1, x0, x2, t0}〉 ∼=
K1,3, t0x3 ∈ E(G) as otherwise 〈{x2, x1, x3, t0}〉 ∼= K1,3, c0c1 ∈ E(G) as other-
wise 〈{t0, c0, c1, x3}〉 ∼= K1,3, and c0t1 ∈ E(G) as otherwise 〈{c1, c0, t1, x2}〉 ∼=
K1,3. The near-claw NC (c1x0, ca, ta) exists where ta ∈ N2 and ta /∈ {t0, x2}
and so ta is a new vertex in N2. So |A0| = 9, and c1ta /∈ E(G). The near-claw
NC (c1x2, cb, tb) exists where tb = ta, and thus x2ta /∈ E(G). Furthermore,
x1ta /∈ E(G) as otherwise 〈{x1, ta, x2, x0}〉 ∼= K1,3, and tax3 /∈ E(G) as other-
wise 〈{x3, x2, ta, x4}〉 ∼= K1,3. But deg ta ≥ 3, and so c0ta, t1ta, t0ta ∈ E(G).
The near-claw NC (c0t0, cc, tc) exists; however, no vertex tc exists which is
non-adjacent to both c0 and t0, which is a contradiction.

So c1t0 /∈ E(G).
Suppose c0c1 ∈ E(G). Then c0t1 ∈ E(G) as otherwise 〈{c1, c0, t1, x2}〉 ∼=

K1,3. The near-claw NC (c1x2, cd, td) exists. Suppose cd = x1, then td is a
new vertex in A0, and thus |A0| = 9. So tdx1 ∈ E(G), c1td, x2td /∈ E(G) and
furthermore, td ∈ N1 as otherwise 〈{x1, x0, x2, td}〉 ∼= K1,3. Thus c2 = t0, and
so x2t0, x3t0 ∈ E(G). The near-claw NC (c0x1, ce, te) exists where te = x3, but
no ce exists as c3 ∈ N2, which is a contradiction. Hence cd 6= x1, and thus cd is
a new vertex, |A0| = 9 and thus td = t0. So x2cd, c1cd, cdt0 ∈ E(G) and x2t0 /∈
E(G). Thus c2 = cd, and so t0x3 ∈ E(G) as otherwise 〈{cd, x3, t0, c1}〉 ∼= K1,3.
But then 〈{x3, t0, x2, x4}〉 ∼= K1,3, which is a contradiction.

So c0c1 /∈ E(G).
Suppose c0t1 ∈ E(G). Then t1t0 ∈ E(G) as otherwise 〈{c0, t1, t0, x1}〉 ∼=

K1,3. The near-claw NC (c0x1, cf , tf ) exists. Suppose cf is a new vertex in A0;
then |A0| = 9 and c0cf , x1cf ∈ E(G). Thus tf = x3 and hence, cf ∈ N2. Now,
cfx3 ∈ E(G) and x2cf ∈ E(G) as otherwise 〈{x3, cf , x2, x4}〉 ∼= K1,3; t1cf /∈
E(G) as otherwise 〈{cf , t1, x1, x3}〉 ∼= K1,3 and c1cf /∈ E(G) as otherwise
〈{cf , c1, c0, x3}〉 ∼= K1,3. The near-claw NC (t1c1, cg, tg) exists where cg = x0

but no tg exists, which is a contradiction. So cf is not a new vertex and thus
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cf = x0 with tf a new vertex in N1. So |A0| = 9 and c0tf , x1tf /∈ E(G).
Then c2 = t0, and thus x2t0, x3t0 ∈ E(G). Now, x2tf /∈ E(G) as otherwise
〈{x2, tf , x1, x3}〉 ∼= K1,3 and t0tf /∈ E(G) as otherwise 〈{t0, tf , c0, x3}〉 ∼= K1,3.
By Lemma 6, deg tf ≥ 3; so t1cf , c1tf ∈ E(G). The near-claw NC (c1t1, ch, th)
exists where th = x3 but no ch exists, which is a contradiction.

So c0t1 /∈ E(G).
Suppose t1t0 ∈ E(G). Then t0x3 /∈ E(G) as otherwise 〈{t0, t1, c0, x3}〉 ∼=

K1,3, and x2t0 /∈ E(G) as otherwise 〈{x2, x1, t0, x3}〉 ∼= K1,3. Thus c2 is a
new vertex in A0 and so |A0| = 9 and c2x2, c2x3 ∈ E(G). The near-claw
NC (c0t0, ci, ti) exists where ci = c2 and so c0c2, t0c2 ∈ E(G). The near-
claw NC (t1t0, cj, tj) exists where cj = c2, and so t1c2 ∈ E(G). But then
〈{c2, c0, t1, x3}〉 ∼= K1,3, which is a contradiction.

So t1t0 /∈ E(G). By Lemma 6, deg t0 ≥ 3, so t0 must be adjacent to
at least one of x2 and x3. If t0x2 ∈ E(G), then t0x3 ∈ E(G) as otherwise
〈{x2, t0, x3, x1}〉 ∼= K1,3, and if t0x3 ∈ E(G), then t0x2 ∈ E(G) as otherwise
〈{x3, x2, t0, x4}〉 ∼= K1,3. So t0x2, t0x3 ∈ E(G). The near-claw NC (c0t0, ck, tk)
exists where ck is a new vertex in A0, and so |A0| = 9. Also, c0ck, t0ck ∈ E(G).

Suppose ckc1 ∈ E(G). The near-claw NC (x0c1, cl, tl) exists where tl = t0.
So cl = ck, and thus ck ∈ N1. The near-claw NC (ckc1, cm, tm) exists where
tm = x3 and thus cm = x2; so ckx2 ∈ E(G). The near-claw NC (ckx0, cn, tn)
exists where tn ∈ N2, but no such vertex exists, which is a contradiction.
So ckc1 /∈ E(G). So tk = t1, and thus ckt1 ∈ E(G). The near-claw
NC (x0c1, cp, tp) exists where tp ∈ {ck, t0} and cp ∈ {t1, x1} and thus tp = ck

as t0t1, t0x1 /∈ E(G). So ck ∈ N2. The near-claw NC (ckt1, cq, tq) exists but
no cq exists which is a contradiction.

So x0c1 /∈ E(G), and thus c1 ∈ N2.

Proposition 20 c0c1 /∈ E(G)

Suppose to the contrary that c0c1 ∈ E(G). Then c0t1 ∈ E(G) as otherwise
〈{c1, c0, x2, t1}〉 ∼= K1,3.

Suppose x0t1 /∈ E(G). Then t1 ∈ N2. Moreover c2 must be a new
vertex in N2 ∪ N3. By Lemma 6, deg x0 ≥ 3; hence there is a new vertex
in N1, say z, and so A0 = {x0, x1, x2, x3, c0, c1, c2, t1, z} and |A0| = 9. The
near-claw NC (zx0, ca, ta) exists where ca = c0 or ca = x1 and thus z must
be adjacent to at least one of these vertices. The near-claw NC (c0x1, cb, tb)
exists where tb = c2 or tb = x3. Suppose tb = x3, then cb = c2, c2 ∈ N2

and c0c2, x1c2 ∈ E(G). The near-claw NC (c0c2, cc, tc) exists where tc = z,
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and so c0z, c2z /∈ E(G), ca 6= c0, and thus ca = x1 and so zx1 ∈ E(G).
Now, zx2 ∈ E(G) as otherwise 〈{x1, z, c0, x2}〉 ∼= K1,3 and t1c2 ∈ E(G) as
otherwise 〈{c0, t1, c2, x0}〉 ∼= K1,3. The near-claw NC (x1c2, cd, td) exists, but
no such vertex td exists which is a contradiction.

So tb = c2, and thus c0c2, x1c2 /∈ E(G).
Suppose c1c2 ∈ E(G). Then t1c2 ∈ E(G) as otherwise 〈{c1, c2, x1, t1}〉 ∼=

K1,3. The near-claw NC (c0c1, ce, te) exists where te = {z, x3}. If te = x3, then
ce ∈ N2 but no ce exists and so te = z. So c0z, c1z /∈ E(G) and zx1 ∈ E(G)
since ca = x1. The near-claw NC (zx1, cf , tf ) exists where cf = x2 and so
zx2 ∈ E(G). But then 〈{x2, c1, z, x3}〉 ∼= K1,3, which is a contradiction.

So c1c2 /∈ E(G) and thus cb = z. So c0z, x1z, c2z ∈ E(G) and so c2 ∈
N2. Now, zc1 /∈ E(G) as otherwise 〈{z, c1, c2, x0}〉 ∼= K1,3. The near-claw
NC (c0c1, cg, tg) exists where tg = {c2, x3} and cg = {t1, x1}. But x1 is non-
adjacent to c2 and x3; so cg = t1, tg = c2 and t1c2 ∈ E(G). Hence, tg = c2

and thus cg = t1. Moreover, t1c2 ∈ E(G) and zt1 ∈ E(G) as otherwise
〈{c2, z, t1, x3}〉 ∼= K1,3. The near-claw NC (x1z, ch, th) exists where th = x3

and ch = x2, and so zx2 ∈ E(G). But then 〈{x2, x3, z, c1}〉 ∼= K1,3, which is
a contradiction.

So x0t1 ∈ E(G), and thus t1 ∈ N1. So t0 is a new vertex in A0 with
c0t0 ∈ E(G), x1t0 /∈ E(G) and t0 ∈ N2. Now, c1t0 ∈ E(G) as otherwise
〈{c0, c1, t0, x0}〉 ∼= K1,3, and t1t0 ∈ E(G) as otherwise 〈{c0, t1, t0, x1}〉 ∼= K1,3.
At this stage, {x0, x1, x2, x3, c0, c1, t0, t1} ⊆ A0. The near-claw NC (x0t1, ci, ti)
exists where ti ∈ N2; so ti is a new vertex in A0, or ti = x2.

Suppose ti = x2. Then ci is a new vertex in N1 and so |A0| = 9. Then
x0ci, t1ci, x2ci ∈ E(G). Now c1ci ∈ E(G) as otherwise 〈{x2, ci, c1, x3}〉 ∼=
K1,3, and cix1 ∈ E(G) as otherwise 〈{x2, x1, ci, x3}〉 ∼= K1,3. The near-claw
NC (c0x1, cj, tj) exists where tj = x3, but no vertex cj exists which is adjacent
to c0, x1 and x3, a contradiction.

So ti 6= x2, and so ti is a new vertex in N2 with t1ti /∈ E(G). Thus
|A0| = 9, and so ci = c0, and thus c0ti ∈ E(G). Then x1ti ∈ E(G) as
otherwise 〈{c0, x1, ti, t1}〉 ∼= K1,3, tit0 ∈ E(G) as otherwise 〈{c0, ti, t0, x0}〉 ∼=
K1,3, c1ti ∈ E(G) as otherwise 〈{c0, ti, c1, x0}〉 ∼= K1,3, and x2ti ∈ E(G)
as otherwise 〈{x1, x0, x2, ti}〉 ∼= K1,3. The near-claw NC (c0x1, ck, tk) exists
where tk = x3 and ck = ti. So tix3 ∈ E(G). The near-claw NC (c0ti, cl, tl)
exists but no tl exists which is a contradiction.

So c0c1 /∈ E(G).

Proposition 21 x0t1 /∈ E(G).
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Proof Suppose to the contrary that x0t1 ∈ E(G). Then t0 is a new vertex
in N2 and {x0, x1, x2, x3, c0, c1, t0, t1} ⊆ A0. The near-claw NC (c0t0, ca, ta)
exists where ca is a new vertex in A0, or ca = t1.

Suppose ca = t1. So c0t1, t1t0 ∈ E(G) and thus c1t0 ∈ E(G) as otherwise
〈{t1, c1, t0, x0}〉 ∼= K1,3. Then ta is a new vertex and so |A0| = 9, with
tat1 ∈ E(G) and c0ta, t0ta /∈ E(G). The near-claw NC (x0t1, cb, tb) exists
where tb ∈ N2 and so tb = x2. Then cb = ta, and so ta ∈ N1 and x2ta ∈
E(G). Now x1ta ∈ E(G) as otherwise 〈{x2, x1, ta, x3}〉 ∼= K1,3. The near-claw
NC (c0x1, cc, tc) exists where tc = x3 but no cc exists, which is a contradiction.

So ca is a new vertex and thus |A0| = 9. So c0ca, t0ca ∈ E(G). The
near-claw NC (c0x1, cd, td) exists where td = t1 or td = x3.

Suppose td = x3, and thus cd = ca. So ca ∈ N2, and cax1, cax3 ∈ E(G).
Then cac1 /∈ E(G) as otherwise 〈{ca, c0, c1, x3}〉 ∼= K1,3 and x2ca ∈ E(G)
as otherwise 〈{x1, ca, x2, x0}〉 ∼= K1,3. The near-claw NC (cax1, ce, te) ex-
ists where te = t1 and ce = c0 and so c0t1 ∈ E(G), cat1 /∈ E(G). Now
t1t0 ∈ E(G) as otherwise 〈{c0, t1, t0, x1}〉 ∼= K1,3, c1t0 ∈ E(G) as otherwise
〈{t1, c1, t0, x0}〉 ∼= K1,3 and t0x3 /∈ E(G) as otherwise 〈{t0, c0, c1, x3}〉 ∼= K1,3.
But then 〈{ca, x1, t0, x3}〉 ∼= K1,3, which is a contradiction.

So td = t1, and thus c0t1 /∈ E(G).
The near-claw NC (x0t1, cf , tf ) exists where cf = ca and so ca ∈ N1 and

cat1 ∈ E(G). Thus c2 = t0, and so x2t0, x3t0 ∈ E(G). Moreover, t1t0 /∈ E(G)
as otherwise 〈{t0, t1, c0, x3}〉 ∼= K1,3. The near-claw NC (t1c1, cg, tg) exists
where cg = ca; thus cac1 ∈ E(G). Moreover, t0c1 ∈ E(G) as otherwise
〈{ca, t0, c1, x0}〉 ∼= K1,3. But then 〈{c1, t0, t1, x1}〉 ∼= K1,3, which is a contra-
diction.

So x0t1 /∈ E(G).

To continue with the proof of Claim 17 for the case in which c0 6= c1,
we note that we have shown thus far that A0 contains the distinct vertices
x0, x1, x2, x2, c0, c1, t1, while E(〈A0〉) contains the edges in the induced path
x0x1x2x3 as well as x0c0, x1c0, x1c1, x2c1, t1c1 while t1c3, t1x3, c1x3, c0x2, x0c1,
c0c1, x0t1, x1t1, x2t1, c0x3 /∈ E(G).

By Lemma 6, deg x0 ≥ 3, there is a new vertex in N1, say z, and c2 is a
new vertex in A0. Thus |A0| = 9. See Figure 4.7.

The near-claw NC (zx0, ca, ta) exists where ca ∈ N1. So z is adjacent to
at least one of the vertices c0 and x1. The near-claw NC (c0x1, cb, tb) exists
where cb = {c2, z, x0}. If cb = x0, then tb = z which is a contradiction as z is
adjacent to at least one of the vertices in {c0, x1}.
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Figure 4.7: An induced subgraph.

Suppose cb = c2. Then c0c2, x1c2 ∈ E(G) and c1c2 ∈ E(G) as other-
wise 〈{x1, c1, c2, x0}〉 ∼= K1,3. But then 〈{c2, c0, c1, x3}〉 ∼= K1,3, which is a
contradiction.

So cb = z, and thus c0z, x1z ∈ E(G).
Suppose c0t1 ∈ E(G), and thus tb = c2. So zc2 ∈ E(G), x1c2, c0c2 /∈ E(G)

and c2 ∈ N2. The near-claw NC (c0t1, cc, tc) exists where cc = z and so
t1z ∈ E(G). Thus t1c2 ∈ E(G) as otherwise 〈{z, x0, t1, c2}〉 ∼= K1,3. So
tc = x2 and so zx2 ∈ E(G). The near-claw NC (zx2, cd, td) exists but no td
exists which is a contradiction.

So c0t1 /∈ E(G).
Hence, t0 = c2; thus c0c2 ∈ E(G), x1c2 /∈ N2 and c2 ∈ E(G). Moreover,

c2t1 /∈ E(G) as otherwise 〈{c2, c0, t1, x2}〉 ∼= K1,3. But then deg t1 < 3, which
is a contradiction by Lemma 8.

So |A0| ≥ 10.

Claim 18 If cd−4 ∈ Nd−4, then |Ad−3| ≥ 10.

It follows similarly from Claim 17.

Claim 19 If c3 ∈ N3, then |A0| ≥ 11.

Suppose to the contrary that |A0| < 11. We consider two cases:

Case 1 c0 = c1

Since x0, x1, x2, x3, c0, c3 ∈ A0, it follows that |A0| ≥ 6. We note that t0
is a new vertex in A0 with c0t0 ∈ E(G) and x0t0, x1t0 /∈ E(G). Moreover,
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Figure 4.8: An induced subgraph.

t0x2 ∈ E(G) as otherwise 〈{c0, x0, x2, t0}〉 ∼= K1,3; so t1 is a new vertex in
A0, with c0t1 ∈ E(G) and x1t1, x2t1 /∈ E(G). t1x0 ∈ E(G) as otherwise
〈{c0, t1, x0, x2}〉 ∼= K1,3, t1t0 ∈ E(G) as otherwise 〈{c0, t0, t1, x1}〉 ∼= K1,3 and
t0x3 ∈ E(G) as otherwise 〈{x2, x1, t0, x3}〉 ∼= K1,3. So |A0| ≥ 8. See Figure
4.8.

If t3 /∈ A0, then 〈{c3, t3, x4, z}〉 ∼= K1,3, where z is a neighbour of c3 in
N2, which is a contradiction. So t3 ∈ N2 ∪ N3, and is thus a new vertex in
A0, and so |A0| ≥ 9.

If t3 ∈ N3, then t0t3 /∈ E(G) as otherwise 〈{t0, t1, x3, t3}〉 ∼= K1,3, and
x2t3 /∈ E(G) as otherwise 〈{x2, x1, x3, t3}〉 ∼= K1,3. Since t3 must have
a neighbour in z in N2, z is a new vertex in N2 such that zt3 ∈ E(G).
Thus A0 = {x0, x1, x2, x3, c0, c3, t0, t1, t3, z} and |A0| = 10. The near-claw
NC (x0c0, ca, ta) exists where ta = z and so c0z /∈ E(G); zx3 /∈ E(G) as
otherwise 〈{z, t3, x3, y}〉 ∼= K1,3, where y is a neighbour of z in N1, and
x2z /∈ E(G) as otherwise 〈{x2, c0, z, x3}〉 ∼= K1,3, t0z /∈ E(G) as otherwise
〈{t0, c0, x3, z}〉 ∼= K1,3, t1z /∈ E(G) as otherwise 〈{t1, t0, z, x0}〉 ∼= K1,3 and
x1z /∈ E(G) as otherwise 〈{x1, x2, z, x0}〉 ∼= K1,3. But then ca does not exist
which is a contradiction.

So t3 ∈ N2.
Suppose c0t3 ∈ E(G). Then t0t3 ∈ E(G) as otherwise 〈{c0, x0, t0, t3}〉 ∼=

K1,3, t3x2 ∈ E(G) as otherwise 〈{c0, x0, x2, t3}〉 ∼= K1,3, t1t3 ∈ E(G) as other-
wise 〈{t0, t1, t3, x3}〉 ∼= K1,3 and x1t3 ∈ E(G) as otherwise 〈{x2, x1, t3, x3}〉 ∼=
K1,3. But then 〈{t3, t1, x1, c3}〉 ∼= K1,3, which is a contradiction.
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So c0t3 /∈ E(G), and so x2t3 /∈ E(G) as otherwise 〈{x2, c0, t3, x3}〉 ∼=
K1,3, t0t3 /∈ E(G) as otherwise 〈{t0, c0, x3, t3}〉 ∼= K1,3, t1t3 /∈ E(G) as other-
wise 〈{t1, x0, t0, t3}〉 ∼= K1,3 and x1t3 /∈ E(G) as otherwise 〈{x1, x0, x2, t0}〉 ∼=
K1,3. By Lemma 6, deg t3 ≥ 3, and so t3 must be adjacent to at least
two more vertices in A0 − {x0, x1, x2, x3, c0, t1, t0} since c3t3 ∈ E(G). Hence,
|A0| ≥ 7 + 4 = 11.

Case 2 c0 6= c1.
Since x0, x1, x2, x3, c0, c1, c2, c3 are all distinct vertices in A0, it follows

that |A0| ≥ 8. Note that if t3 /∈ A0, then 〈{c3, z, t3, x4}〉 ∼= K1,3, where z is a
neighbour of c3 in N2, which is a contradiction. So t3 ∈ A0.

Proposition 22 x0c1 /∈ E(G), and thus c1 ∈ N2.

Figure 4.9: An induced subgraph.

Suppose to the contrary that x0c1 ∈ E(G). Then c1 ∈ N1 and x0t1 ∈
E(G) as otherwise 〈{c1, x0, x2, t1}〉 ∼= K1,3, and thus t1 ∈ N1. So t1 is a new
vertex in N1, and so |A0| ≥ 9. Further t3 ∈ A0 and thus must be a new
vertex in N2 ∪N3, and so |A0| = 10. See Figure 4.9.

Suppose t3 ∈ N3. Then x2t3 /∈ E(G) as otherwise 〈{x2, x1, x3, t3}〉 ∼= K1,3,
and since t3 needs a neighbour in N2, t3c2 ∈ E(G), c2 ∈ N2 and N2 = {x2, c2}.
So t0 = c2, and so c0c2 ∈ E(G). But then 〈{c2, c0, t3, x3}〉 ∼= K1,3, which is a
contradiction.

So t3 ∈ N2.
Suppose c1t3 ∈ E(G). Then x2t3 ∈ E(G) as otherwise 〈{c1, x2, t3, x0}〉 ∼=

K1,3, x1t3 ∈ E(G) as otherwise 〈{x2, x1, x3, t3}〉 ∼= K1,3 and t1t3 /∈ E(G) as
otherwise 〈{t3, t1, x1, c3}〉 ∼= K1,3. So t0 = c2, and thus c0c2 ∈ E(G), x1c2 /∈
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E(G) and c2 ∈ N2. The near-claw NC (c3t3, ca, ta) exists where ca ∈ N2∪N3,
and thus ca = x2 or ca = c2.

Suppose ca = x2. Then c3x2 ∈ E(G). Now, c2c3 ∈ E(G) as otherwise
〈{x2, x1, c2, c3}〉 ∼= K1,3. So ta = c0, and so c0x2 ∈ E(G) and c0t3 /∈ E(G)
but then 〈{x2, c0, t3, x3}〉 ∼= K1,3, which is a contradiction.

So ca = c2 and thus t3c2, c3c2 ∈ E(G) and c0t3 ∈ E(G) as other-
wise 〈{c2, c0, x3, t3}〉 ∼= K1,3. Thus ta = t1, and so c2t1 ∈ E(G) but then
〈{c2, t1, x3, t3}〉 ∼= K1,3, which is a contradiction.

So c1t3 /∈ E(G) and so x2t3 /∈ E(G) as otherwise 〈{x2, c1, t3, x3}〉 ∼=
K1,3 and x1t3 /∈ E(G) as otherwise 〈{x1, x0, x2, t3}〉 ∼= K1,3. The near-claw
NC (t3c3, cb, tb) exists where cb ∈ N2 ∪ N3. So cb = c2 and thus t3c2, c3c2 ∈
E(G), x1c2 /∈ E(G) as otherwise 〈{c2, x1, t3, x3}〉 ∼= K1,3 and c2c1 /∈ E(G)
as otherwise 〈{c2, c1, t3, x3}〉 ∼= K1,3. The near-claw NC (c1x2, cc, tc) exists
where cc = c0 or x1.

Suppose cc = c0, and thus c0c1, c0x2 ∈ E(G). Hence tc = t3 and so
c0t3 ∈ E(G) but then 〈{c0, x2, t3, x0}〉 ∼= K1,3, which is a contradiction.

So cc = x1, and thus tc = c0 and so c0c1, c0x2 /∈ E(G). The near-
claw NC (t1c1, cd, td) exists where cd = x0 and thus td = c0. Hence, c0t1 /∈
E(G). Now, x2c3 /∈ E(G) as otherwise 〈{c3, x2, t3, x4}〉 ∼= K1,3 and c0c2 /∈
E(G) as otherwise 〈{c2, c0, x2, c3}〉 ∼= K1,3. Thus t0 = t3 and so c0t3 ∈
E(G). The near-claw NC (c0t3, ce, te) exists, but no vertex ce exists which is
a contradiction.

Thus x0c1 /∈ E(G).

Proposition 23 c0x2 /∈ E(G).

Suppose to the contrary that c0x2 ∈ E(G).
Recall by Claim 11 that ti = cj implies j = i − 2 or j = i + 2. Suppose

t0 = c2. Then c0c2 ∈ E(G), x1c2 /∈ E(G) and c2 ∈ N2. Thus t2 is a new
vertex in A0 and so |A0| ≥ 9, c2t2 ∈ E(G) and x2t2, x3t2 /∈ E(G). Now,
c0t2 ∈ E(G) as otherwise 〈{c2, c0, t2, x3}〉 ∼= K1,3, and so t2 ∈ N1 as otherwise
〈{c0, x0, x2, t2}〉 ∼= K1,3.

Now suppose c0c1 /∈ E(G). Then, we have c1x3 ∈ E(G) as otherwise
〈{x2, c0, c1, x3}〉 ∼= K1,3 and so t3 6= c1. Furthermore, c1c2 ∈ E(G) as other-
wise 〈{x3, c1, c2, x4}〉 ∼= K1,3. Now t3 ∈ A0 and since t2 ∈ N1, t3 6= t2, and so
t3 is a new vertex in N2∪N3, and thus |A0| = 10, t3c3 ∈ E(G) and t3x3, t3x4 /∈
E(G). Moreover, t1 6= t2 as otherwise 〈{c1, x1, x3, t2}〉 ∼= K1,3 and t1 6= t3 as
otherwise 〈{c1, x1, t3, x3}〉 ∼= K1,3, and so t1 = c3. Hence c1c3 ∈ E(G) and
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x2c3 /∈ E(G) and thus c2c3 ∈ E(G) as otherwise 〈{c1, x1, c2, c3}〉 ∼= K1,3. But
then 〈{c2, t2, x2, c3}〉 ∼= K1,3, which is a contradiction.

So c0c1 ∈ E(G) and thus c1c2 ∈ E(G) as otherwise 〈{c0, c1, c2, x0}〉 ∼=
K1,3. The near-claw NC (x0c0, ca, ta) exists where ta ∈ N2, and so ta is a new
vertex in N2 such that c0ta /∈ E(G). Hence, |A0| = 10.

Suppose ca = t2. Then t2ta ∈ E(G) and c2ta ∈ E(G) as otherwise
〈{t2, ta, c2, x0}〉 ∼= K1,3, x3ta ∈ E(G) as otherwise 〈{c2, ta, c0, x3}〉 ∼= K1,3

and x2ta ∈ E(G) as otherwise 〈{x3, x2, t0, x4}〉 ∼= K1,3. The near-claw
NC (c0x2, cb, tb) exists where tb = c3 and so x2c3 /∈ E(G). The near-claw
NC (c0c2, cc, tc) exists where tc = c3 and so c2c3 /∈ E(G). Moreover, cc = c1

and so c1c3 ∈ E(G). But then 〈{c1, x1, c2, c3}〉 ∼= K1,3, which is a contradic-
tion.

So ca = x1, and thus x1ta ∈ E(G) and tax2 ∈ E(G) as otherwise
〈{x1, x2, ta, x0}〉 ∼= K1,3, tax3 ∈ E(G) as otherwise 〈{x2, c0, ta, x3}〉 ∼= K1,3

and thus c2ta ∈ E(G) as otherwise 〈{x3, c2, ta, x4}〉 ∼= K1,3. The near-claw
NC (c0x2, cd, td) exists where td = c3, and thus x2c3 /∈ E(G). The near-claw
NC (c0c2, ce, te) exists where te = c3 and so c2c3 /∈ E(G). Now ce = c1, and
so c1c3 ∈ E(G) but then 〈{c1, x1, c2, c3}〉 ∼= K1,3, which is a contradiction.

So t0 6= c2, and so t0 is a new vertex in N2, and thus |A0| ≥ 9. By Lemma
6, deg x0 ≥ 3; hence there is a new vertex z in N1, and so |A0| = 10; x2t0 ∈
E(G) as otherwise 〈{c0, x0, t0, x2}〉 ∼= K1,3 and thus t0x3 ∈ E(G) as other-
wise 〈{x2, x1, t0, x3}〉 ∼= K1,3. Since t3 ∈ A0, t3 = c1, and so c1c3 ∈ E(G)
and c1x3 /∈ E(G). Moreover, c0c1 ∈ E(G) as otherwise 〈{x2, c0, c1, x3}〉 ∼=
K1,3, t0c1 ∈ E(G) as otherwise 〈{c0, t0, c1, x0}〉 ∼= K1,3 and c3t0 ∈ E(G) as
otherwise 〈{c1, x1, c3, t0}〉 ∼= K1,3 . The near-claw NC (x0c0, cf , tf ) exists
where tf = c2. So c2 ∈ N2 and c0c2 /∈ E(G); t2 = z and so c2z ∈ E(G)
and zx2 /∈ E(G). Moreover, t1 6= z as otherwise 〈{c1, x1, z, c3}〉 ∼= K1,3

and so t1 = c3. Thus x2c3 /∈ E(G), and so c1z /∈ E(G) as otherwise
〈{c1, z, x2, c3}〉 ∼= K1,3, t0z /∈ E(G) as otherwise 〈{t0, z, x2, c3}〉 ∼= K1,3.
The near-claw NC (zc2, cg, tg) exists where cg = x1, and so c2x1, zx1 ∈ E(G).
Then c1c2 ∈ E(G) as otherwise 〈{x1, c1, c2, x0}〉 ∼= K1,3 and c2c3 ∈ E(G) as
otherwise 〈{c1, c2, c3, c0}〉 ∼= K1,3. So tg = c0 and thus c0z /∈ E(G). But then
deg z = 3 and deg x0 = 3, which is a contradiction as the vertices of degree
3 form an independent set by Lemma 4

So c0x2 /∈ E(G).

Proposition 24 c0c1 /∈ E(G).

Suppose to the contrary that c0c1 ∈ E(G).
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Then t1 6= c3 as otherwise 〈{c1, c0, x2, c3}〉 ∼= K1,3, and thus t1 is a new
vertex in A0. So c0t1 ∈ E(G) as otherwise 〈{c1, c0, x2, t1}〉 ∼= K1,3.

Suppose c1x3 ∈ E(G). Then t1x3 ∈ E(G) as otherwise 〈{c1, x1, x3, t1}〉 ∼=
K1,3, and so t1 ∈ N2. But then 〈{x3, t1, x2, x4}〉 ∼= K1,3, which is a contradic-
tion.

So c1x3 /∈ E(G).
Now t1x3 /∈ E(G), otherwise t1 ∈ N2, and then 〈{x3, x2, t1, x4}〉 ∼= K1,3,

which is a contradiction.
Suppose x1c2 ∈ E(G). Then c2 ∈ N2 and thus c1c2 ∈ E(G) as otherwise

〈{x1, x0, c1, c2}〉 ∼= K1,3 and t1c2 /∈ E(G) as otherwise 〈{c2, x1, x3, t1}〉 ∼= K1,3.
Suppose t2 is a new vertex in A0, and so x2t2, x3t2 /∈ E(G), c2t2 ∈ E(G)

and |A0| = 10. Then x1t2 ∈ E(G) as otherwise 〈{c2, x1, x3, t2}〉 ∼= K1,3

and t2 ∈ N1 as otherwise 〈{x1, x0, x2, t2}〉 ∼= K1,3. So t0 = t1 and thus
t1 ∈ N2. Moreover, c0c2 /∈ E(G) as otherwise 〈{c0, x0, c2, t1}〉 ∼= K1,3. The
near-claw NC (c0x1, ca, ta) exists where ca ∈ {c1, x0, t2} and thus ta = c3,
and so ca = c1 since ca ∈ N2. c1c3 ∈ E(G), x2c3 ∈ E(G) as otherwise
〈{c1, c0, x2, c3}〉 ∼= K1,3 and t1c3 ∈ E(G) as otherwise 〈{c1, x1, c3, t1}〉 ∼= K1,3.
But then 〈{c3, x2, t1, x4}〉 ∼= K1,3.

So t2 = c0. Thus c0c2 ∈ E(G) and t1 ∈ N1 as otherwise 〈{c0, x0, c2, t1}〉 ∼=
K1,3. So t0 is a new vertex in N2 and thus |A0| = 10. Therefore, c2t0 ∈
E(G) as otherwise 〈{c0, c2, t0, x0}〉 ∼= K1,3, and t0x3 ∈ E(G) as otherwise
〈{c2, x1, x3, t0}〉 ∼= K1,3. Now t3 6= c1 as otherwise 〈{c1, t1, x1, c3}〉 ∼= K1,3

and since t3 ∈ A0, t3 = t0 which is a contradiction as t0x3 ∈ E(G).
So x1c2 /∈ E(G).
Suppose x2c3 ∈ E(G). Thus c2c3 ∈ E(G) as otherwise 〈{x2, c2, c3, x1}〉 ∼=

K1,3, t1c3 /∈ E(G) as otherwise 〈{c3, t1, x2, x4}〉 ∼= K1,3 and c1c3 /∈ E(G) as
otherwise 〈{c1, t1, x1, c3}〉 ∼= K1,3. Thus t3 is a new vertex in N2 ∪N3, and so
|A0| = 10. By Lemma 6, deg x0 ≥ 3, t1 ∈ N1 and so x2t3 ∈ E(G) as otherwise
〈{c3, x2, x4, t3}〉 ∼= K1,3 and x1t3 ∈ E(G) as otherwise 〈{x2, x1, x3, t3}〉 ∼=
K1,3. So t0 = c2, and thus c0c2 ∈ E(G) and c2 ∈ N2. Moreover, c2t3 ∈ E(G)
as otherwise 〈{c3, c2, t3, x4}〉 ∼= K1,3. The near-claw NC (c0c2, cb, tb) exists,
but no vertex tb exists which is a contradiction.

So x2c3 /∈ E(G). Thus c1c3 /∈ E(G) as otherwise 〈{c1, c0, x2, c3}〉 ∼= K1,3.
Suppose t1c3 /∈ E(G). Then t3 is a new vertex in N2∪N3, and so |A0| = 10.

By Lemma 6, deg x0 ≥ 3, and hence t1 ∈ N1. The near-claw NC (x0t1, cc, tc)
exists where cc = c0. Now, tc 6= c2 as otherwise c0c2 ∈ E(G), t1c2 /∈ E(G) and
〈{c0, t1, c2, x1}〉 ∼= K1,3. Thus tc = t3 and so c0t3 ∈ E(G), t1t3 /∈ E(G) and
t3 ∈ N2. Then c1t3 ∈ E(G) as otherwise 〈{c0, c1, t3, x0}〉 ∼= K1,3 and x2t3 ∈
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E(G) as otherwise 〈{c1, t1, t3, x2}〉 ∼= K1,3. But then 〈{t3, c0, x2, c3}〉 ∼= K1,3,
which is a contradiction.

So t1c3 ∈ E(G) and thus t1 ∈ N2. By Lemma 6, deg x0 ≥ 3; so there
is a new vertex z in N1, and so |A0| = 10. The near-claw NC (t1c3, cd, td)
exists where cd = c2. Thus t1c2, c3c2 ∈ E(G). Now c0c2 /∈ E(G) as otherwise
〈{c2, c0, x2, c3}〉 ∼= K1,3.

Suppose c1c2 ∈ E(G). The near-claw NC (c1c2, ce, te) exists where ce =
t1, z or x2.

Suppose ce = x2, then te = z. So zx2 ∈ E(G) and zc1 /∈ E(G), but then
〈{x2, z, c1, x3}〉 ∼= K1,3, which is a contradiction.

Suppose ce = t1, then te = z. So t1z ∈ E(G) and zc1 /∈ E(G), but then
〈{t1, z, c1, c3}〉 ∼= K1,3, which is a contradiction.

So ce = z, and so c1z, c2z ∈ E(G). Then zt1 ∈ E(G) as otherwise
〈{c2, t1, z, x3}〉 ∼= K1,3 and zx2 ∈ E(G) as otherwise 〈{c2, x2, z, c3}〉 ∼= K1,3.
The near-claw NC (zx0, cf , tf ) exists where tf ∈ N2 but no such vertex exists.

So c1c2 /∈ E(G).
The near-claw NC (c0x1, cg, tg) exists where cg = z or c1. So cg = z, as oth-

erwise if cg = c1, then no tg exists. Moreover tg = c2, and thus x1z, c0z, zc2 ∈
E(G) and c2 ∈ N2. Now zx2 ∈ E(G) as otherwise 〈{c2, z, x2, c3}〉 ∼= K1,3 and
zt1 ∈ E(G) as otherwise 〈{c2, z, t1, x3}〉 ∼= K1,3. The near-claw NC (zx0, ch, th)
exists where th ∈ N2. Thus th = c1 and so zc1 /∈ E(G). But this is a contra-
diction since 〈{x2, z, c1, x3}〉 ∼= K1,3.

So c0c1 /∈ E(G).

Proposition 25 x1c2 /∈ E(G).

Suppose to the contrary that x1c2 ∈ E(G), and so c2 ∈ N2.
Now c1c2 ∈ E(G) as otherwise 〈{x1, x0, c1, c2}〉 ∼= K1,3 and thus t0 is a

new vertex in N2. By Lemma 6, deg x0 ≥ 3; so there is a new vertex z in N1

and so |A0| = 10. The near-claw NC (c0t0, ca, ta) exists where ca = c2 or z.
Suppose ca = z. Then zc0, zt0 ∈ E(G) and ta ∈ N2. But then 〈{z, x0, t0,

ta}〉 ∼= K1,3, which is a contradiction.
So ca = c2. Then c0c2, t0c2 ∈ E(G). Now, t0x3 ∈ E(G) as otherwise

〈{c2, x1, t0, x3}〉 ∼= K1,3 and c1x3 ∈ E(G) as otherwise 〈{c2, c0, c1, x3}〉 ∼= K1,3.
Now, t3 ∈ N2 ∪N3, but no such vertex t3 exists which is a contradiction.

So x1c2 /∈ E(G).

Proposition 26 c1x3 /∈ E(G).
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Suppose to the contrary that c1x3 ∈ E(G). Therefore, t3 is a new vertex
in N2 ∪ N3 such that c3t3 ∈ E(G) and x3t3, x4t3 /∈ E(G). By Lemma 6, deg
x0 ≥ 3; hence there is a new vertex z in N1 and thus |A0| = 10.

Suppose c1c2 /∈ E(G). Then c2x4 ∈ E(G) as otherwise 〈{x3, c1, c2, x4}〉 ∼=
K1,3, and thus c2 ∈ N3. So c0c2 /∈ E(G) and thus t0 = t3 and so c0t3 ∈ E(G)
and x1t3 /∈ E(G). The near-claw NC (c0x1, ca, ta) exists where ca = x0 or
ca = z. The near-claw NC (x0z, cb, tb) exists where cb = x1 or cbc0, and thus
z is adjacent to at least one of the vertices in {x1, c0}. So, if ca = x0, then
ta = z, which is a contradiction. Thus ca = z, and so ta ∈ N2 but then no ta
exists which is a contradiction.

So c1c2 ∈ E(G). The near-claw NC (c0x1, cc, tc) exists where cc = z or
cc = t3.

Suppose cc = z. Then c0z, x1z ∈ E(G). The near-claw NC (x1c1, cd, td)
exists where td = t3 or td = c3.

Suppose td = c3, and so c1c3 /∈ E(G). Thus t1 = t3, but then 〈{c1, x1, x3,
t3}〉 ∼= K1,3, which is a contradiction.

So td = t3, and so c1t3, x1t3 /∈ E(G). So x2t3 /∈ E(G) as otherwise
〈{x2, t3, x1, x3}〉 ∼= K1,3, and thus cd = z. Therefore c1z, t3z ∈ E(G) and
t3 ∈ N2, but then 〈{z, x0, c1, t3}〉 ∼= K1,3, which is a contradiction.

So cc = t3 and thus c0t3, x1t3 ∈ E(G) and t3 ∈ N2. Then t0 = c2 and so
c0c2 ∈ E(G) and c2 ∈ N2. Then t3c1 ∈ E(G) as otherwise 〈{x1, x0, c1, t3}〉 ∼=
K1,3, t3x2 ∈ E(G) as otherwise 〈{x1, x0, x2, t3}〉 ∼= K1,3, c2t3 ∈ E(G) as other-
wise 〈{c0, x0, c2, t3}〉 ∼= K1,3 and c1c3 ∈ E(G) as otherwise 〈{t3, c0, c1, c3}〉 ∼=
K1,3. The near-claw NC (c1x1, ce, te) exists where te = z and cd = t3 or x2.
If cd = t3, then 〈{t3, x1, z, c3}〉 ∼= K1,3 and if cd = x2, then 〈{x2, x1, z, x3}〉 ∼=
K1,3, both of which are contradictions.

So c1x3 /∈ E(G).

Proposition 27 x2c3 /∈ E(G).

Suppose to the contrary that x2c3 ∈ E(G). Then t1 6= c3, and so t1 /∈
{xi, ci : i = 0, 1, 2, 3}; hence t1 is a new vertex in A0 and c2c3 ∈ E(G)
as otherwise 〈{x2, x1, c2, c3}〉 ∼= K1,3. The near-claw NC (c0x1, ca, ta) exists
where ca = x0 or where ca is a new vertex in A0.

Suppose ca = x0. Then ta ∈ N1 and thus ta = t1 or is a new vertex in N1.
If ta is a new vertex in N1, then the near-claw NC (tax0, cb, tb) exists where
cb = t1 and so t1 ∈ N1, and if ta = t1, then the near-claw NC (t1x0, cc, tc)
exists where cc is a new vertex in N1. In either case, t1 ∈ N1 and |A0| = 10
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and so t3 = c1. Thus c1c3 ∈ E(G), but then 〈{c1, x1, t1, c3}〉 ∼= K1,3, which is
a contradiction.

So ca is a new vertex in A0 such that c0ca, x1ca ∈ E(G), and so |A0| = 10.
Suppose c1c3 ∈ E(G). Then t1c3 ∈ E(G) as otherwise 〈{c1, x1, t1, c3}〉 ∼=

K1,3 and t1x4 ∈ E(G) as otherwise 〈{c3, x2, t1, x4}〉 ∼= K1,3. Hence, t1 ∈ N3;
thus t0 = c2 and so c0c2 ∈ E(G). By Lemma 6, deg x0 ≥ 3, ca ∈ N1 and so
ta ∈ N2 but then ta does not exist, which is a contradiction.

So c1c3 /∈ E(G) and thus t3 6= t1 as otherwise 〈{c3, t1, x2, x4}〉 ∼= K1,3.
So t3 = ca and thus c3ca ∈ E(G), ca ∈ N2 and x3ca /∈ E(G). By Lemma 6,
deg x0 ≥ 3, so t1 ∈ N1. Thus t0 = c2, and so c0c2 ∈ E(G) and c2 ∈ N2.
The near-claw NC (x0t1, cd, td) exists where cd = c0 and thus c0t1 ∈ E(G).
Then t1c2 ∈ E(G) as otherwise 〈{c0, x1, t1, c2}〉 ∼= K1,3 and c1c2 ∈ E(G) as
otherwise 〈{t1, c1, c2, x0}〉 ∼= K1,3. The near-claw NC (c0c2, ce, te) exists but
no vertex te exists which is a contradiction.

So x2c3 /∈ E(G).

Proposition 28 c2x4 /∈ E(G).

Suppose to the contrary that c2x4 ∈ E(G). Then c2 ∈ N3, and thus t0 is
a new vertex in N2. By Lemma 6, deg x0 ≥ 3; so there exists a new vertex
z in N1 and so |A0| = 10. The near-claw NC (c0x1, ca, ta) exists where ca = z
or ca = x0. The near-claw NC (x0z, cb, tb) exists where cb = x1 or cb = c0.
Thus z is adjacent to at least one of the vertices in {x1, c0}. So, if ca = x0,
then ta = z, which is a contradiction. Hence, ca = z. But then ta does not
exist, which is a contradiction.

So c2x4 /∈ E(G).

To continue with the proof of Claim 19 for the case in which c0 6= c1

and c3 ∈ N3, we note that we have shown thus far that A0 contains the
distinct vertices x0, x1, x2, x2, c0, c1, c2, c3, while E(〈A0〉) contains the edges
in the induced path x0x1x2x3 as well as x0c0, x1c0, x1c1, x2c1, x2c2, x3c2, , x3c3

while x0c1, c0x2, c0c1, x1c2, c1x3, x2c3, c2x4, c0c3 /∈ E(G).
The near-claw NC (c0x1, cα, tα) exists where cα = x0 or cα is a new vertex

in A0.
Suppose cα = x0. Then tα ∈ N1, and so tα is a new vertex in A0 with

tαc0, tαx1 /∈ E(G). The near-claw NC (tαx0, cβ, tβ) exists where cβ ∈ N1, and
is thus a new vertex in N1. Hence, |A0| = 10. Since t3 ∈ N2 ∪ N3, t3 = c1.
The near-claw NC (c1c3, cγ, tγ) exists where cγ = c2; thus c1c2, c2c3 ∈ E(G).
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Then c1tα /∈ E(G) as otherwise 〈{c1, x1, tα, c3}〉 ∼= K1,3 and x2tα /∈ E(G) as
otherwise 〈{x2, x1, tα, x3}〉 ∼= K1,3. Now, by Lemma 6, deg tα ≥ 3, and thus
c2tα ∈ E(G). But then 〈{c2, c1, tα, x3}〉 ∼= K1,3, which is a contradiction.

So cα 6= x0 and so cα is a new vertex in N1 ∪ N2 such that c0cα, x1cα ∈
E(G), and so |A0| ≥ 9.

Suppose cα ∈ N2. By Lemma 6, deg x0 ≥ 3, there exists a new ver-
tex z in N1 and so, |A0| = 10. Now, t0 = c2 and thus c0c2 ∈ E(G),
c2 ∈ N2, c2cα ∈ E(G) as otherwise 〈{c0, cα, c2, x0}〉 ∼= K1,3 and cαc1 ∈ E(G)
as otherwise 〈{x1, cα, c1, x0}〉 ∼= K1,3. Moreover, cαx3 /∈ E(G) as other-
wise 〈{cα, c0, c1, x3}〉 ∼= K1,3 and thus tα = c3 and so cαc3 ∈ E(G). Hence,
c1c3 ∈ E(G) as otherwise 〈{cα, c0, c1, c3}〉 ∼= K1,3, c2c3 ∈ E(G) as otherwise
〈{cα, c2, c3, x1}〉 ∼= K1,3 and c1c2 ∈ E(G) as otherwise 〈{c3, c2, c1, x4}〉 ∼= K1,3.
But then 〈{c2, c0, c1, x3}〉 ∼= K1,3, which is a contradiction.

So cα ∈ N1. Then tα = c2 or tα is a new vertex in A0.
Suppose tα = c2. Then cαc2 ∈ E(G), c0c2 /∈ E(G) and c2 ∈ N2. Then,

t0 6= c2 and t0 is a new vertex in N2, and hence |A0| = 10. The near-claw
NC (c0t0, cδ, tδ) exists where cδ = cα and so cαt0 ∈ E(G). But then, since
tδ ∈ N2, we have 〈{cα, x0, t0, tδ}〉 ∼= K1,3 which is a contradiction.

So tα is new vertex in A0 with cαtα ∈ E(G) and c0tα, x1tα /∈ E(G). Hence,
|A0| = 10. Then t0 = c2, and so c0c2 ∈ E(G) and c2 ∈ N2. The near-claw
NC (c0c2, cε, tε) exists where cε = cα, and so cαc2 ∈ E(G). Then tαc2 ∈ E(G)
as otherwise 〈{cα, tα, x1, c2}〉 ∼= K1,3. So tε = c1, and thus cαc1 ∈ E(G) and
c1c2 /∈ E(G). But then 〈{cα, x0, c1, c2}〉 ∼= K1,3 which is a contradiction.

So |A0| ≥ 11.

Claim 20 If cd−4 ∈ Nd−3, then |Ad−4| ≥ 11.

This claim follows similarly.

Proof (of Theorem 6) Consider the vertex c3. By Claim 12, c3 ∈
N3 ∪N4.

Suppose c3 ∈ N3. By Claim 19, |A0| ≥ 11. By Claim 12, cd−4 ∈ Nd−4 ∪
Nd−3, and thus by Claims 18 and 20, |Ad−4| ≥ 10. By Claim 16, |A4|+ |A8|+
· · ·+ |At−4|+ |At| ≥ 9

4
t− 1. Hence

n ≥ |A0|+ |A4|+ |A8|+ · · ·+ |At−4|+ |At|+ |Ad−4|

≥ 11 + 9bd− 7

4
c+ 10
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> 20 + 9bd− 7

4
c.

So the result holds if c3 ∈ N3.
Now suppose c3 ∈ N4, and suppose to the contrary that the result does

not hold. So

n < 20 + 9bd− 7

4
c,

and by Claims 16, 17 and 18,

n = 19 + 9bd− 7

4
c.

Thus |A0| = |Ad−4| = 10 and |A4| + |A8| + . . . + |At−4| + |At| = 9
4
t − 1. So

for some j ∈ {4, 8, . . . , t − 4, t}, |Ai| = 8 but for every k ∈ {4, . . . , j − 4} ∪
{j + 4, . . . , t}, |Ak| = 9. We shall now derive a contradiction.

Consider Aj. By Claim 14, cj−1 ∈ Nj−1. Since |Aj−4| = 9 and by Claim
15, cj−5 ∈ Nj−5. Similarly, since |Aj−8| = 9, cj−9 ∈ Nj−9. Continuing on we
see that we must then have c3 ∈ N3, which is a contradiction.

So the result holds for c3 ∈ N4.

Figure 4.10: An induced subgraph.

To show sharpness, we consider the following family of graphs consisting
of a copy of the graph in Figure 4.10, t copies of the graph in Figure 4.11
and a copy of the graph in Figure 4.12, where 1 ≤ i ≤ t and vertices to be
identified are labelled on the figures.
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Figure 4.11: An induced subgraph.

Figure 4.12: An induced subgraph.
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Discrete Math. 164 (1997), 87-147.

71



[25] O. Favaron, Radius and independence of a graph. Preprint (1986).

[26] F. Gliviak, On radially critical graphs. Recent Advances in Graph The-
ory (Proc. Sympos. Prague 1974), Academia Praha, Prague (1975), 207-
221.

[27] F. Gliviak, On radially extremal graphs and digraph, a survey. Math.
Bohem. 2 (2000), 215-225.

[28] F. Gliviak, M. Knor and L. Soltes, On radially maximal graphs.
Australas. J. Combin. 9 (1994), 275-284.

[29] D. Goldsmith, B. Manvel and V. Farber, A lower bound for the order
of a graph in terms of diameter and minimum degree. J. Combin. Inform.
Systen Sciences 6 (1981), 315-319.

[30] F. Harary, Status and contrastatus. Sociometry 22 (1959), 23-43.

[31] F Harary and C. Thomassen, Anticritical graphs. Math. Proc. Cam-
bridge Philos. Soc. 79 (1976), 11-18.

[32] V. Klee and H. Quaife, Minimum graphs of specified diameter, con-
nectivity and valence. I. Math. Oper. Research 1 (1976), 28-31.

[33] M. Kouider, and P. Winkler, Mean distance and minimum degree. J.
Graph Theory 25 (1997), 95-99.
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