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Abstract

We consider the application of the wavelet transform for solving sparse matrix systems and partial

differential equations. The first part is devoted to the theory and algorithms of wavelets. The

second part is concerned with the sparse representation of matrices and well-known operators.

The third part is directed to the application of wavelets to partial differential equations, and to

sparse linear systems resulting from differential equations. We present several numerical examples

and simulations for the above cases.
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1. Introduction

Wavelets are as indicated by the name ”small waves” that allow represention of functions in

time-frequency domain. Nowadays, due to its advantages over the classical Fourier analysis, they

have enjoyed a considerable success in many areas of science such as applied mathematics, pure

mathematics, physics, and signal processing.

The first informal appearance of a wavelet according to its history was in 1910 in the thesis of

Alfred Haar in which he produced a complete orthonormal basis for a Hilbert space. However the

formal introduction of this subject began in the early 1980s with Jean Morlet’s work, a French

geophysicist. He used the French word ondelette, meaning ”small wave”. Soon it was transferred

to English by translating ”onde” into ”wave”, giving ”wavelet”.

In 1986 and 1987 respectively, wavelets have undergone remarkable advances due to the work of

S.Mallat and Y.Meyer, who have shown that the orthonormal wavelet basis could be constructed

systematically from a general formalism. This led to the invention of multiresolution analysis,

by Ingrid Daubechies as well as her construction of orthonormal wavelets with compact support

having some degree of smoothness. Note that nowadays the construction of wavelets differ

according to the situation.

For some purposes, the wavelet ψ is chosen to belong either to the space L1 ∩ L2, or to the

space of r-regular functions such that the dilated and translated function defined by ψj,k(t) =

2−
j
2ψ(2−jt− k) form a complete orthonormal base of L2(R). Such a base is well suited for the

study of Calderón-Zygmund operators and is as well an unconditional base of Lp(R), 1 < p <

+∞, Hardy space H1, Sobolev space W s,p, s ∈ R, and Besov space in particular (see [24]).

Wavelet methods provide efficient algorithms to solve partial differential equations in the sense

that the set of approximations to which the computed solution belongs must be close to the exact

solution u, and the computation of the solution needs to be fast, that is , less time-consuming.

Indeed, the good localization properties that wavelets display both in space and frequency are

important to build such an algorithm. The vanishing moments property that wavelets possess

is also very important for the numerical solution of PDE’s, since only few wavelet coefficients

are needed to represent the solution in a smooth region unlike the non smooth region, where a

1
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significant number of wavelet coefficients are used.

The numerical methods applied for solving differential equations such as the finite difference or

the finite element method lead generally to a sparse matrix with a large condition number which

is not acceptable since it requires several iterations to obtain the solution. This happens if one

uses an iterative method or a significant number of operations if one use the direct method

(matrix-vector multiplication). We recall that the condition number controls the rate of conver-

gence of a number of iterative algorithms for solving linear systems. However, it has been shown

in [2] that by projecting the linear systems into the wavelet domain and rescaling it by a diagonal

preconditioned matrix, we are guaranteed to obtain a small condition number, hence the solution

is obtained in just a few iterations. For example, the number of iterations used to solve a linear

system by the conjugate gradient method is proportional to O(
√

κ−1√
κ+1

), where κ is the condition

number of the corresponding matrix. In wavelet bases, the inverse of the matrix obtained after

discretization is sparse unlike in the ordinary domain. Therefore, we may take advantage of this,

to construct it numerically.

The next chapter provides a brief introduction to wavelets with emphasis on compactly supported

wavelets due to its relevency to our future discussion. In Chapter 3, we consider the representa-

tions of operators in bases of compactly supported wavelets. For wide classes of operators, namely

Calderón-Zygmund and pseudo-differential operators, it has been shown that they admit a sparse

representation. The representation of these operators in wavelet bases is accomplished by the

so-called non-standard form or the standard form [3]. The remarkable feature of the non-standard

form is the uncoupling achieved among the scales, which results in a more sparse representation

of the operator. On the other hand, the representation using the standard form results in a

”finger-like” pattern, which is a consequence of the interaction between scales. We represent

the differential operator and the operator function in the wavelet domain using the non-standard

form. Chapter 4 is dedicated to the application of wavelets in linear algebra. As mentioned

earlier, by projecting the sparse linear systems obtained after discretizing the partial differential

equations and applying the diagonal preconditioner produces a well-conditioned system. Hence,

wavelet bases may be viewed as fast solvers for PDE’s. Our main focus in Chapters 5 and 6 is to

use wavelet bases to solve differential equations. In Chapters 5, we are particularly interessted in

ordinary differential equations. We begin with Galerkin’s method developed by Amaratunga et al.
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[29] for solving differential equations of the Helmhotz type, where the dilates and translates of the

scaling function ϕ is chosen to be the test function. In [29], the original problem is transformed

to a convolution problem so that the transformation from the wavelet space to the physical space

(or vice versa) may be easily accomplished using the FFT (Fast Fourier Transform). Next, we

discuss wavelet collocation method as described in [1] for the equation of the form Lu = f ,

where L is a linear differential operator. In this case, the authors have used the autocorrelation

function φ generated by the scaling function ϕ as the basis function to approximate the solution.

Chapter 6 is focused on the numerical solution of the evolution equations where Beylkin et al.

method is adopted.



2. Introduction to Wavelets

2.1 Function spaces and other preliminaries

We recall some spaces that are important in this thesis.

Let L2 be the Hilbert space of square-integrable functions defined by

L2(R) =

{
f : R → R measurable : ||f ||22 =

∫
R
|f(t)|2dt < +∞

}
with the inner-product

〈f, g〉 =

∫
R
f(t)g(t)dt,

where the symbol − denotes the complex conjugate. It is a complete and separable space.

Likewise, the sequence space l2(Z) is definied by

l2(Z) =

{
c : Z → Z : ||c||22 =

∑
n∈Z

|cn|2 < +∞

}

Then we have some relevant inequalities that might be useful.

The Cauchy-Schwartz ’s inequality is given by

|〈f, g〉| ≤ ||f ||2||g||2,

and the triangle inequality is defined as

||f + g||2 ≤ ||f ||2 + ||g||2.

In an analogous manner we define L2(0, 1).

We say two functions f, g are orthogonal, and write f⊥g when 〈f, g〉 = 0.

A sequence of functions {fn}n∈N is an orthonormal sequence if 〈fm, fn〉 = δm,n, where δ is the

symbol of Kronecker delta defined by

δi,j =

1 if i = j,

0 otherwise.

4
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Let F(f) = f̂ denote the Fourier transform of a function f ∈ L1(R) defined by

f̂(ξ) =

∫
R
f(t)e−iξtdt, ξ ∈ R,

then the inversion formula can be written as

f(t) =
1

2π

∫
R
f̂(ξ)eiξtdξ.

We therefore have the following property

F(f(t− n)) = e−iξnf̂(ξ). (2.1)

If f ∈ L1(R) ∩ L2(R) then f̂ ∈ L2(R) and Plancherel’s formula∫
R
|f(t)|2dt =

1

2π

∫
R
|f̂(ξ)|2dξ (2.2)

is valid.

The Plancherel’s formula (2.2) implies Parseval’s formula∫
R
f(t)g(t)dt =

1

2π

∫
R
f̂(ξ)ĝ(ξ)dξ, f, g ∈ L2(R). (2.3)

2.2 Multiresolution analysis

Multiresolution analysis as introduced by Meyer and Mallat [22] , is the decomposition of a

function in L2(R) into different scales. Following the convention of decreasing subspaces by

Daubechies and Mallat [16], we now give the definition of the multiresolution analysis.

Definition 2.1. A sequence (Vj)j∈Z of subspaces of L2(R) is a MRA1 if:

1. For all j ∈ Z, Vj ⊂ Vj−1

2.
⋂
j∈Z
Vj = lim

j→+∞
Vj = {0}

3.
⋃
j∈Z
Vj = lim

j→−∞
Vj = L2(R)

1Multiresolution analysis
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4. For any f ∈ L2(R) and any k ∈ Z, f(t) ∈ V0 if and only if f(t− k) ∈ V0

5. For any f ∈ L2(R) and any j ∈ Z, f(t) ∈ Vj if and only if f(2t) ∈ Vj−1

6. There exits a function ϕ ∈ V0 called the scaling function, such that the system

{ϕ(t− k)}k∈Z is a Riesz basis of V0.

Notation:
∑
k∈Z

will be denoted by
∑
k

in the future

Before making an observation related to the Definition 2.1, let us recall that a family of functions

{ϕ(t− k), k ∈ Z} is a Riesz basis of V0, if there exits A and B, B ≥ A > 0 that satisfy

A
∑

k

|sk|2 ≤
∫

R

∣∣∣∣∣∑
k

skϕk

∣∣∣∣∣
2

dt ≤ B
∑

k

|sk|2,

and span{ϕ(t− k), k ∈ Z} = V0.

Remark 2.1. If A = B = 1, we obtain an orthonormal basis.

Conditions 1 to 3 mean that every function in L2(R) can be well approximated by elements of

the subspaces Vj, and as j approaches −∞, the precision of approximation increases. Condition

4 expresses the invariance of the subspace V0 with respect to the translation.

Let the dilated and translated function ϕj,k be defined by

ϕj,k(t) = 2−
j
2ϕ(2−jt− k). (2.4)

Then according to Definition 2.1, the system {ϕj,k, k ∈ Z} is an orthonormal basis of Vj.

Since ϕ ∈ V0 ⊂ V−1, and the ϕ−1,k are an orthonormal basis in V−1, there exists a sequence

(hk)k∈Z ∈ l2(Z) called filter coefficients such that the scaling function satisfies

ϕ(t) =
√

2
∑

k

hkϕ(2t− k), (2.5)

which is the well known dilation equation or refinement equation, and∫
R
ϕ(t)dt = 1. (2.6)

Let Wj be the orthogonal complement of Vj in Vj−1 i.e.

Vj−1 = Vj ⊕Wj (2.7)
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where ⊕ denotes a direct sum.Then there exists a function ψ ∈ W0 ⊂ V−1 called the mother

wavelet defined by

ψ(t) =
√

2
∑

k

gkϕ(2t− k), where gk = (−1)kh1−k, (2.8)

and satisfying ∫
R
ψ(t)dt = 0. (2.9)

Similarly, the system {ψj,k(t) = 2−
j
2ψ(2−jt− k), k ∈ Z} is an orthonormal basis of Wj.

Noting that for every j ∈ Z, Wj ⊂ Vj−1 we get

L2(R) =
⊕
j∈Z

Wj, (2.10)

and if there is the coarsest scale n, then (2.10) is replaced by

L2(R) = Vn

⊕
j≤n

Wj. (2.11)

Let Pj and Qj denote the orthogonal projection operators onto Vj and Wj, respectively. Then

any function f ∈ L2(R) projected onto Vj−1 may be expressed as (see 2.7)

Pj−1f = Pjf +Qjf, (2.12)

where

Pjf =
∑

k

〈f, ϕj,k〉ϕj,k =
∑

k

sj
kϕj,k, (2.13)

and

Qjf =
∑

k

〈f, ψj,k〉ψj,k =
∑

k

dj
kψj,k (2.14)

are respectively the approximation and the error of f at the resolution level j.

Thus if our coarse subspace is V0 then according to (2.11), f can be written as

f(t) =
∑

k

s0
kϕ(t− k) +

∑
j

∑
k

2−j/2dj
kψ(2−jt− k). (2.15)

Lemma 2.1. [16] For all continuous functions f ∈ L2(R),

lim
j−→−∞

||Pj(f)− f ||L2 = 0, (2.16)

and

lim
j−→+∞

||Pj(f)||L2 = 0.
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Proof. Since
⋃
j∈Z
Vj is dense in L2(R), then for ε > 0 there exists k ∈ Z and u(t) ∈ Vk such that

||f − u||L2 < ε/2. By Definition 2.1(1), u(t) ∈ Vj and Pju(t) = u(t) for all k ≥ j. Thus by the

triangle inequality we have

||f − Pjf ||L2 = ||f − u+ Pju− Pjf ||L2 ,

≤ ||f − u||L2 + ||Pj(f − u)||L2 ,

= 2||f − u||L2 < ε, (f − u) ∈ Wk ⊂ Vj.

Hence,

||f − Pjf ||L2 < ε.

Since this inequality holds for all k ≥ j, we get lim
j−→−∞

||Pj(f)− f ||L2 = 0.

Notation: supp(f) denotes support of f .

We now prove the second equality. Let us suppose that supp(f) ⊂ [−R,R] and let ε > 0.

As {ϕj,k}k∈Z is an orthonormal basis in Vj, we have by applying the Cauchy-Schwartz inequality

||Pjf ||2L2 =
∑

k

|〈Pjf, ϕj,k〉|2

=
∑

k

|〈f, ϕj,k〉|2

=
∑

k

∣∣∣∣∫ R

−R

f(t)2−j/2ϕ(2−jt− k)dt

∣∣∣∣2 ,
≤

∑
k

(∫ R

−R

|f(t)|2dt
)

2−j

(∫ R

−R

|ϕ(2−jt− k)|2dt
)
,

= ||f ||2L2

∑
k

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx.

Observe that there exists a j0 ∈ Z such that for j > j0 we have 2−jR < 1
2
. Therefore

∑
k

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx ≤
∑

k

∫ 1
2
−k

− 1
2
−k

|ϕ(x)|2dx.

If we choose K so large then

∑
|k|>K

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx ≤
∑
|k|>K

∫ 1
2
−k

− 1
2
−k

|ϕ(x)|2dx =

∫
|x|≥K− 1

2

|ϕ(x)|2dx ≤ ε.
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Since for each k ∈ Z, we have

lim
j→∞

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx = 0.

Hence

lim
j→∞

||Pjf ||2L2 ≤ ||f ||2L2 lim
j→∞

∑
k

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx,

= ||f ||2L2 lim
j→∞

∑
|k|≤K

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx+
∑
|k|>K

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx

 ,

≤ ||f ||2L2 lim
j→∞

∑
|k|>K

∫ 2−jR−k

−2−jR−k

|ϕ(x)|2dx

 ,

= ||f ||2L2ε.

Since ε > 0 was arbitrary, the result follows.

Note that Lemma 2.1 shows that condition 2 and 3 of the Definition 2.1 hold.

Example 2.1. (Haar Multiresolution)

The approximation of a function f ∈ L2(R) by a piecewise constant function on the dyadic

interval [2jk, 2j(k + 1)) is achieved by the MRA

Vj = {g ∈ L2(R) : ∀k ∈ Z, g|
[2jk,2j(k+1))

= constant}, (2.17)

where the symbol |[2jk,2j(k+1)) denotes the restriction of g on the interval [2jk, 2j(k + 1)).

The scaling function is defined by

ϕ(t) =

1 t ∈ [0, 1),

0 elsewhere,

(2.18)

and the mother wavelet by

ψ(t) =


1 t ∈ [0, 1

2
),

−1 t ∈ [1
2
, 1),

0 elsewhere.
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It is clear that ∫
R
ψ(t)dt = 0,

and has the compact support [0, 1].

The only disadvantage of the Haar wavelet is the discontinuities at the points {0, 1
2
, 1}, and in

addition in practice we often deal with smooth functions ( particularly in image compressing),

therefore we require a smooth wavelet, so the Haar wavelet is not appropriate in such a case.

Figure 2.1 illustrates the Haar scaling function and mother wavelet.

Figure 2.1: Haar scaling function and mother wavelet.

Example 2.2. To illustrate Lemma 2.1, we consider a smooth function defined by

f : [0, 1] −→ R

t 7−→ sin(2πt).

Using the multiresolution (2.17), we project f(t) into the subspace Vj, that is

fj = Pj(f) =
2−j−1∑
k=0

sj
kϕj,k,

where ϕ is defined in (2.18).

We now compute the coefficients sj
k defined by

sj
k =

∫
R
f(t)ϕj,k(t)dt. (2.19)
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Since ϕj,k = 2−j/2 on [2jk, 2j(k + 1)), (2.19) becomes

sj
k =

∫
R
f(t)ϕj,k(t)dt,

= 2−j/2

∫ 2j(k+1)

2jk

sin(2πt)dt,

= −2−j/2 1

2π
cos(2πt)

∣∣∣2j(k+1)

2jk
.

Hence

sj
k = 2−j/2 1

2π

[
sin
(
2jπ(2k + 1)

)
sin(2jπ)

]
, j = 0,−1,−2, · · · .

In Figure 2.2, we display the plot of the norm of the error (2.16). One can notice, as we decrease

the resolution, that is j tends to −∞, the norm of the error tends to zero which means that the

approximation becomes better and better. Figure 2.3 shows the projection of the function f at

different scales j.

Figure 2.2: The norm of the error
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Figure 2.3: The function sin(2πt) on the top left and its projections into the subspaces V−1, V−4,

V−5 and V−8.
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Remark 2.2. Note that we can adopt two ways of looking at a MRA.

• We take the subspaces (Vj)j∈Z as our basic, given objects. They have to satisfy certain

conditions which usually are rather easy to check. Then we need to find a scaling function

satisfying (2.5). This is usually not so obvious.

• We start with the function ϕ. We define V0 as span{ϕ(t− k)}k∈Z and the other spaces Vj are

defined by condition 5. Thereafter we need to check conditions 1-3 and 4 of the Definition 2.1.

Remark 2.3. We assume throughout this thesis that the mother wavelet ψ is M times differen-

tiable and that its derivatives are continuous and rapidly decreasing. That is, ψ satisfies

|ψ(k)(t)| ≤ Cpk(1 + |t|)−p, k = 0, 1, . . . ,M − 1, p ∈ Z, t ∈ R,

where Cp,k is a constant that depends on p and k.

2.2.1 Compactly supported wavelets

Here we introduce briefly I. Daubechies’approach [16] for the construction of orthonormal wavelets

having compact support and some degree of smoothness. Indeed, this approach consists of seeking

the filter coefficients {hk} having compact support, that is

hk = 0, for k /∈ {0, 1, . . . , 2M − 1} (2.20)

such that the orthonormality condition is satisfied (see (2.24) below).

So (2.5) and (2.8) may be rewritten as

ϕ(t) =
√

2
L−1∑
k=0

hkϕ(2t− k),

ψ(t) =
√

2
L−1∑
k=0

gkϕ(2t− k),

with L = 2M and

gk = (−1)khL−k−1, k = 0, 1, . . . , L− 1. (2.21)

In addition, we require that the wavelet ψ has M vanishing moments, that is∫
R
tmψ(t)dt = 0, m = 0, 1, . . . ,M − 1. (2.22)
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The vanishing moments imply that every polynomial of degree M − 1 may be represented as the

linear combination of the scaling function in the subspace V0.

Since ϕ(t) and ϕ(t− j) are orthonormal in V0, and by Parseval’s formula (2.3) and using (2.1),

we have

δj,0 =

∫ ∞

−∞
ϕ(t)ϕ(t− j)dt =

∫ ∞

−∞
ϕ(t)ϕ(t− j)dt, (2.23)

=
1

2π

∫ ∞

−∞
ϕ̂(ξ)eiξjϕ̂(ξ)dξ,

=
1

2π

∫ +∞

−∞
|ϕ̂(ξ)|2eiξjdξ,

=
1

2π

∫ 2π

0

∑
k

|ϕ̂(ξ + 2πk)|2eiξjdξ,

=
1

2π

∫ 2π

0

∑
k

|ϕ̂(ξ + 2πk)|2eiξjdξ.

Hence the orthonormality condition in the frequency domain is given by∑
k

|ϕ̂(ξ + 2πk)|2 = 1, (2.24)

or in terms of the filter coefficients, (2.23) implies

δj,0 =
L−1∑
k=0

hkhk−2j, where j ∈ Z, (2.25)

with
L−1∑
k=0

hk =
√

2.

Furthermore, transforming (2.5) into the Fourier domain, we have

ϕ̂(ξ) =
√

2
∑

k

hk

∫
R
ϕ(2t− k)e−itξdt,

=
1√
2

∑
k

hk

∫
R
ϕ(u)e−iξ(u+k

2
)du.

Hence

ϕ̂(ξ) = m0(ξ/2)ϕ̂(ξ/2), (2.26)

where m0 is the function with period 2π defined by

m0(ξ) =
1√
2

L−1∑
k=0

hke
−ikξ. (2.27)
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Equations (2.26), (2.27) and (2.24) imply

|m0(ξ)|2 + |m0(ξ + π)|2 = 1. (2.28)

We state the following result without proof.

Proposition 2.1. A trigonometric polynomial m0 of the form [16]

m0(ξ) =

(
1 + e−iξ

2

)M

L(ξ) (2.29)

satisfies (2.28) if and only if L(ξ) = |L(ξ)|2 can be written as

L(ξ) = P (sin2ξ/2),

with

P (y) = PM(y) + yMR(
1

2
− y),

where

PM(y) =
M−1∑
k=0

(
M − 1 + k

k

)
yk

and R is an odd polynomial chosen such that P (y) ≥ 0 for y ∈ [0, 1].

Example 2.3. In this example we compute the filter coefficients for M = 2.

From Proposition 2.1, we have that

P (y) = 1 + 2y,

P (sin2ξ/2) = 2− cos(ξ). (2.30)

We seek a trigonometric polynomial L of the form

L(ξ) = a+ be−iξ, a, b ∈ R. (2.31)

We obtain

|L(ξ)|2 = (a+ be−iξ)(a+ beiξ),

= (a2 + b2) + 2ab cos(ξ). (2.32)

By matching coefficients in (2.32) and (2.30),

a2 + b2 = 2 and 2ab = −1,
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so that

(a+ b)2 = a2 + b2 + 2ab = 1 and (a− b)2 = a2 + b2 − 2ab = 3.

Equations (2.26), (2.29) and Lemma 2.2 imply m0(0) = L(0) = a+ b = 1, so we have the linear

system  a+ b = 1

a− b = ±
√

3.
(2.33)

Solving (2.33) gives either

a =
1 +

√
3

2
, b =

1−
√

3

2
,

or vice versa.

Substituting the values of a and b in (2.31), and matching coefficients of (2.27) and (2.29),

we have

h0 =
1 +

√
3

4
√

2
, h1 =

3 +
√

3

4
√

2
, h2 =

3−
√

3

4
√

2
, h3 =

1−
√

3

4
√

2
.

In many cases there is no explicit expression for the scaling function ϕ (Daubechies wavelets), and

therefore instead of working with the scaling function itself, we often use the filter coefficients

hk. However, the evaluation of ϕ may be accomplished by some well known approaches.

We may use the iteration approach which starts with the function ϕ0(t) defined by

ϕ0(t) =

1 t ∈ [0, 1),

0 elsewhere,

and iteratively define

ϕn+1(t) =
√

2
∑

k

hkϕ
n(2t− k), n ∈ N.

If the iteration converges, the solution will be given by

lim
n→∞

ϕn(t).

This is known as the cascade algorithm.

Figure 2.4 is obtained by the above iteration method with n = 7, M = 2.



Section 2.2. Multiresolution analysis Page 17

Figure 2.4: Daubechies scaling function and mother wavelet.

Lemma 2.2. Let ϕ be a scaling function of an MRA.Then

1. ϕ̂(2πn) = 0 for all integers n 6= 0 and ϕ̂(0) = 1,

2.
∑
k

ϕ(t− k) = 1.

Proof. Taking the Fourier transform of ϕ, setting ξ = 0 and using (2.6), we have

ϕ̂(0) = 1. (2.34)

By setting again ξ = 0 in (2.24), we have∑
n

|ϕ̂(2πn)|2 = 1.

Since (2.34) is valid, we must have ∑
n6=0

|ϕ̂(2πn)|2 = 0.

Hence, ϕ̂(2πn) = 0 for n 6= 0.

2. Let ϕ̃(t) =
∑
n

ϕ(t − n). ϕ̃ is periodic with period equal to 1, then we may write it in terms

of a Fourier series expansion as

ϕ̃(t) =
∑

k

cke
i2πkt,
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where

ck =

∫ 1

0

ϕ̃(t)e−i2πktdt,

=

∫ 1

0

(∑
n

ϕ(t− n)

)
e−i2πktdt,

=
∑

n

∫ 1−n

−n

ϕ(t)e−i2πktdt,

=

∫ ∞

−∞
ϕ(t)e−i2πktdt = ϕ̂(2πk).

Hence by using the previous results we have∑
n

ϕ(t− n) = c0 = 1.

2.2.2 Decomposition algorithm

The properties of the scaling function together with the dilation equation enables us to construct

a simple algorithm that relates the coefficients of a given function at different scales.

To this end, let f ∈ L2(R), such that its coefficients are given by

sj
k =

∫
R
f(t)ϕj,k(t)dt, and dj

k =

∫
R
f(t)ψj,k(t)dt. (2.35)

Using (2.5) and (2.4) we get

sj
k =

∫
R
f(t)

∑
l

hl2
−(j−1)/2ϕ(2−(j−1)t− (2k + l))dt,

=
∑

l

hl

∫
R
f(t)2−(j−1)/2ϕ(2−(j−1)t− (2k + l))dt,

=
∑

l

hls
j−1
2k+l.

Thus we obtain

sj
k =

∑
l

hls
j−1
2k+l. (2.36)
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Similarly, using relation (2.8) we have

dj
k =

∫
R
f(t)

∑
l

gl2
−(j−1)/2ϕ(2−(j−1)t− (2k + l))dt,

=
∑

l

gl

∫
R
f(t)2−(j−1)/2ϕ(2−(j−1)t− (2k + l))dt,

=
∑

l

gls
j−1
2k+l.

Hence

dj
k =

∑
l

gls
j−1
2k+l. (2.37)

The figure below represents graphically the procedure for the wavelet decomposition algorithm.

. . . d1
k d2

k d3
k d4

k . . .

. . . s0
k

=={{{{{{{{
// s1

k

@@�������
// s2

k

@@�������
// s3

k

=={{{{{{{{
// s4

k . . .

Figure 2.5: The wavelet decomposition algorithm.

The components of the projection of f ∈ V0 onto V1 is given by s1
k (2.13) and the error is given

by the components d1
k of the projection of f on W1 (2.14).

2.2.3 Reconstruction algorithm

f ∈ L2(R), and let Pjf = fj =
∑
k

sj
kϕj,k be its projection on Vj. Refering to (2.12), there exists

functions fj+1 ∈ Vj+1 and gj+1 ∈ Wj+1 such that

fj = fj+1 + gj+1.

Using the dilation equation (2.5) and the wavelet equation (2.8), we have∑
k

sj
kϕj,k =

∑
k

sj+1
k ϕj+1,k +

∑
k

dj+1
k ψj+1,k,

=
∑

k

sj+1
k

∑
l

hlϕj,2k+l +
∑

k

dj+1
k

∑
l

glϕj,2k+l,

=
∑

k

sj+1
k

∑
l

hl−2kϕj,l +
∑

k

dj+1
k

∑
l

gl−2kϕj,l,
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=
∑

l

(∑
k

sj+1
k hl−2k +

∑
k

dj+1
k gl−2k

)
ϕj,l,

where we obtain

sj
l =

∑
k

sj+1
k hl−2k +

∑
k

dj+1
k gl−2k

which is the reconstruction algorithm.

The figure below represents graphically the procedure for the wavelet reconstruction algorithm.

. . . d1
k

}}{{
{{

{{
{{

d2
k

����
��

��
��

dk
3

����
��

��
��

d4
k . . .

}}{{{{{{{{

. . . s0
k s1

k
oo s2

k
oo s3

k
oo s4

k . . .
oo

Figure 2.6: The wavelet reconstruction algorithm.

For example, Figure 2.6 illustrates the reconstruction of the coefficients s0
k from s1

k and d1
k.

Definition 2.2. Let n ∈ Z and n ≤ α < n + 1. A function is said to be uniformly Lipschitz if

there exits a constant K such that for all x, y ∈ R we have

|fn(x)− fn(y)| ≤ K|x− y|α−n

Theorem 2.1. Let 0 < α < n be a real number that is not an integer. Let f(t) ∈ L2(R) and

[a, b] be an interval. The function f(t) is uniformly Lipschitz of order α over the interval [a, b] if

and only if for any n ∈ Z such that 2−jn ∈ (a, b),

|dj
n| = |〈f, ψj,n〉| = O(2(−α+1/2)j).

The proof of this Theorem can be found in Meyer’s book [24].

This result shows that the decay of the wavelet coefficients depends on the local smoothness of

the function in a window determined by the choice of the resolution j. The larger the constant

α, the faster the decay of the wavelet coefficients. By examining the coefficient of a function’s

wavelet transform, we then have a powerful method to investigate a function’s local behaviour.

Figure 2.7 demonstrates such localized predominance of wavelet coefficients near the singularities.

Therefore this automatic localisation is extremely useful in solving differential equations.
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Example 2.4. (Decomposition algorithm) Let us consider the function f defined by

f(t) =



1
2
t2 t ∈ [0, 1),

1
2
(−2t2 + 6t− 3) t ∈ [1, 2),

1
2
(3− t)2 t ∈ [2, 3),

0 t ∈ R− [0, 3),

and the Lagrange projector defined by

Ljf :=
∑

k

2j/2f(2jk)ϕj,k (2.38)

to approximate the function at any level-j.

The function f is finitely supported, and possesses discontinuities in the second derivative at

x ∈ {0, 1, 2, 3}.

We use (2.38) to project the function f at level N = −10 of resolution where the coefficients

are given by

SN
k = 2N/2f(2Nk).

Together with the decomposition algorithm (2.36), (2.37) based on the Daubechies wavelet of

order 4, we show how wavelets detect efficiently the singularities in the second derivatives f
′′

at

t ∈ {0, 1, 2, 3}.

Observe from Figure 2.7 that the discontinuity in the second derivative f
′′

is not visible to the

human eye. However, the wavelets ”see” it according to Theorem 2.1.
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Figure 2.7: The coefficients {sj
k : k ∈ Z} and {dj

k : k ∈ Z} at level j = −9

2.3 Wavelets in two dimensions

To obtain an orthogonal basis of L2(R2) from an orthogonal basis (ei)i∈I of L2(R), one can use

the tensorial approach which is defined by

ei ⊗ ej(x, y) = ei(x)ej(y),

where ⊗ denotes the tensor product. Thus (ei ⊗ ej)(i,j)∈I2 is an orthogonal basis of L2(R2).

Since Wj is the orthogonal complement of Vj in Vj−1, we have

Vj−1 ⊗ Vj−1 = (Vj ⊕Wj)⊗ (Vj ⊕Wj),

= (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj),

and we repeat with Vj ⊗ Vj. Hence we obtain a decomposition of L2(R2) given by

L2(R2) =
⊕
j∈Z

((Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj)) ,
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with the basis functions of Vj ⊗Wj, Wj ⊗ Vj, and Wj ⊗Wj given respectively by
ψ1(x, y) = ϕ(x)ψ(y),

ψ2(x, y) = ψ(x)ϕ(y),

ψ3(x, y) = ψ(x)ψ(y).

(2.39)

2.4 Biorthogonal wavelets

The biorthogonal wavelets are the dual Riesz basis of wavelets defined by

ϕ̃(t) =
√

2
∑

k

h̃kϕ̃(2t− k),

ψ̃(t) =
√

2
∑

k

g̃kϕ̃(2t− k).

They form a multiresolution analysis, that is

· · · , Ṽ2 ⊂ Ṽ1 ⊂ Ṽ0 ⊂ Ṽ−1 ⊂ Ṽ−2 · · · ⊂ L2(R),

with

Ṽj−1 = Ṽj ⊕ W̃j.

They also satisfy the following relations∫
R
ϕ(t)ϕ̃(t− k) = δk,0,∫

R
ϕ(t)ψ̃(t− k) = 0,∫

R
ψ(t)ϕ̃(t− k) = 0,∫

R
ψ(t)ψ̃(t− k) = δk,0.

The projections of a function f onto the subspace Vj and the subspace Wj are given by

Pjf(t) =
∑

k

〈f(t), ϕ̃j,k〉ϕj,k(t),

Qjf(t) =
∑

k

〈f(t), ψ̃j,k〉ψj,k(t).
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Remark 2.4. In the case of orthogonal wavelets we have h̃k = hk, and g̃k = gk.

Hence

ϕ̃(t) = ϕ(t) ⇒ Ṽj = Vj,

ψ̃(t) = ψ(t) ⇒ W̃j = Wj.

2.5 Multiresolution on the interval

When the analyzed function is defined on an interval on the finite interval or if it is periodic,

special techniques are developed to handle such a case.

One of these techniques is to periodize the basis function by adding the left-overs from one

boundary to the other side [12].

This is done by picking a basis function ϕj,k whose support intersects the unit interval and adding

to it, its integer translates. Formally, we construct the sum

ϕ̃j,k(t) =
∑

p

ϕj,k(t+ p) = 2−j/2
∑

p

ϕ(2−jt+ 2−jp− k), j ≤ 0, k ∈ Z, (2.40)

and restrict it to [0, 1]. If ϕj,k is fully supported in the unit interval, then it is the only term that

contributes to ϕ̃j,k. If the supp(ϕj,k) contains 0 but not 1, then

ϕ̃j,k = ϕj,k + ϕj,k+p

and in the opposite situation

ϕ̃j,k = ϕj,k + ϕj,k−p.

For j = 0, only one basis function is generated since

ϕ̃0,k(t) =
∑

p

ϕ(t+ p− k) = 1. (2.41)

Note that the 1-periodicity of ϕ̃j,k can be verified as

ϕ̃j,k(t+ 1) = ϕ̃j,k(t).

By doing so, we then obtain a MRA Ṽj as the span of all ϕ̃j,k, and the wavelet space W̃j spanned

by ψ̃j,k which are obtained from ψj,k in the same manner as ϕ̃j,k.
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The above procedure preserves all the nice properties of the wavelet over the real line that is the

orthogonality of the basis function and the vanishing moment property.

These periodic wavelets are useful when dealing with problems with periodic boundary conditions,

or with two-point boundary value problems.



3. Representation of operators in

wavelet basis

In this chapter we consider the representation of operators in the bases of compactly supported

wavelets, as discussed in [14]. We begin with the standard form (S-form) in Section 3.1, and

proceed to the Non-standard form (NS-form) in Section 3.2. In Section 3.3, we construct the

NS-form of the differential operator, followed by the NS-form of operator functions of ∂x. Finally,

we give some examples of representation of well-known operators.

3.1 The standard form

We are concerned with the representation of Calderón-Zygmund and pseudo-differential operators

defined below

Definition 3.1. A bounded integral operator L defined [17] by

(Lf)(x) =

∫
K(x, y)f(y)dy (3.1)

is called Calderón-Zygmund if the kernel satisfies

|K(x, y)| ≤ C

|x− y|∣∣∣∣ ∂M

∂xM
K(x, y) +

∂M

∂yM
K(x, y)

∣∣∣∣ ≤ C

|x− y|M+1

for some M ∈ N.

A pseudo-differential operator L is a generalization of a differential operator and is defined by a

formula of the form

(Lf)(x) =
1

2π

∫
eixξσ(x, ξ)f̂(ξ)dξ,

where σ(x, ξ) the symbol of L, is a polynomial in ξ whose coefficients are functions in x.

A pseudo-differential operator is in fact a Calderón-Zygmund operator under certain boundedness

26
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conditions on the symbol σ(x, ξ), as given in [20].

The standard form is obtained by expanding the operator L in a telescopic series that is

L =
∑

j

(
QjLQj +

∑
j′≥j+1

(Qj′LQj +QjLQj′)

)
. (3.2)

To get the components of the expansion (6.2), we proceed by projecting the kernel K(x, y) onto

a basis generated by the tensor product of wavelets (Subsection 2.3)

K(x, y) =
∑
j,k

∑
j′,k′

αj,j′

k,k′ψj,k(x)ψj′,k′(y), (3.3)

where

αj,j′

k,k′ = 〈K(x, y), ψj,k(x)ψj′,k′(y)〉 =

∫
R

∫
R
ψj,k(x)K(x, y)ψj′,k′(y)dxdy.

Using (2.10), any function f ∈ L2(R) may be written as

f(y) =
∑
m,l

fm,lψm,l(y). (3.4)

Therefore, substituting (3.3) and (3.4) in (3.1), and assuming that the interchanges of summation

and integration are justified ([10],[14]), we have

Lf(x) =

∫
R

∑
j,k

∑
j′,k′

αj,j′

k,k′ψj,k(x)ψj′,k′(y)
∑
m,l

fm,lψm,l(y)dy,

=
∑
m,l

∑
j,k

∑
j′,k′

αj,j′

k,k′fm,lψj,k(x)

∫
R
ψj′,k′(y)ψm,l(y)dy,

=
∑
m,l

∑
j,k

∑
j′,k′

αj,j′

k,k′fm,lψj,k(x)δj′k′,ml,

=
∑
j,k

∑
j′,k′

αj,j′

k,k′fj′,k′ψj,k(x),

where

δik,jl =

1 if i = j and k = l,

0 otherwise.

On the other hand, the projection of f onto subspaces Wp is given by Qpf(y) =
∑
l

fp,lψp,l(y).

Thus

L(Qpf)(x) =

∫
R

∑
j,k

∑
j′,k′

αj,j′

k,k′ψj,k(x)ψj′,k′(y)
∑

l

fp,lψp,l(y)dy,
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=
∑

l

∑
j,k

∑
j′,k′

αj,j′

k,k′fp,lψj,k(x)

∫
R
ψj′,k′(y)ψp,l(y)dy,

=
∑

l

∑
j,k

∑
j′,k′

αj,j′

k,k′fp,lψj,k(x)δj′k′,pl,

=
∑
j,k

∑
k′

αj,p
k,k′fp,k′ψj,k(x). (3.5)

Projecting the result (3.5) onto Wp again gives [10]

Qp(LQpf)(x) =
∑

n

〈L(Qpf)(y), ψp,n(y)〉ψp,n(x), (3.6)

=
∑

n

∫
R

(∑
j,k

∑
k′

αj,p
k,k′fp,k′ψj,k(y)

)
ψp,n(y)dyψp,n(x), (3.7)

=
∑

n

∑
j,k

∑
k′

αj,p
k,k′fp,k′ψp,n(x)

∫
R
ψj,k(y)ψp,n(y)dy, (3.8)

=
∑

n

∑
k′

αp,p
n,k′fp,k′ψp,n(x). (3.9)

Hence

Qj(LQjf)(x) =
∑

k

(∑
k′

αj
k,k′fj,k′

)
ψj,k(x),

with

αj
k,k′ := αjj

k,k′ =

∫
R

∫
R
ψj,k(x)K(x, y)ψj,k′(y)dxdy. (3.10)

Similarly, we find

Qj(LQj′f)(x) =
∑

k

(∑
k′

βj,j′

k,k′fj′,k′

)
ψj,k(x),

Qj′(LQjf)(x) =
∑

k

(∑
k′

γj′,j
k,k′fj,k′

)
ψj′,k(x),

where

βj,j′

k,k′ =

∫
R

∫
R
ψj,k(x)K(x, y)ψj′,k′(y)dxdy, (3.11)

and

γj′,j
k,k′ =

∫
R

∫
R
ψj′,k(x)K(x, y)ψj,k′(y)dxdy. (3.12)

Let the operators Aj, B
j′

j , and Γj′

j be defined by

Aj = QjLQj : Wj → Wj, (3.13)
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Bj′

j = QjLQj′ : Wj′ → Wj, (3.14)

Γj′

j = Qj′LQj : Wj → Wj′ , (3.15)

and be represented respectively by the matrices αj, βj,j′ , and γj,j′ for j = 1, 2, · · · , n and j′ =

j + 1, · · · , n.

The standard form (S-form) is the representation of an operator L in the wavelet bases by the

set of operators

L = {Aj, {Bj′

j }j′≥j+1, {Γj′

j }j′≥j+1}j∈Z. (3.16)

If there is a coarsest scale j = n and a finest scale j = 0, then instead of (3.16) we have

L ≈ L0 = {Aj, {Bj′

j }
j′=n
j′=j+1, {Γ

j′

j }
j′=n
j′=j+1, B

n+1
j ,Γn+1

j , Ln}j=1,··· ,n, (3.17)

with L0=P0LP0, and Ln = PnLPn is represented by the matrix sn with entries defined by

sn
k,k′ =

∫
R

∫
R
ϕn,k(x)K(x, y)ϕn,k′(y)dxdy. (3.18)

The standard form can be obtained by applying the one-dimensional discrete wavelet trans-

form (2.36) and (2.37) to each column (row) of the discrete version of the operator L in the

ordinary domain and then to each row (column) of the result (see Figure 3.1).

Note that the S-form has several ’finger’ bands which correspond to the interaction between

different scales (see Figure 3.5 Page 42).
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Figure 3.1: Organization of a matrix in the standard form.

3.2 The Non-standard form

The Non-standard form (NS-form) is a tool developed by Beylkin, Coifman and Rokhlin [14] which

aims at preserving as much structure as possible by ’almost’ doing a full wavelet decomposition

of an operator.

Let L be an operator

L : L2(R) → L2(R)

and Lj=PjLPj denote its projection onto Vj.

The NS-form is a representation of the operator L as a chain of triplets

L = {Aj, Bj, Cj}j∈Z (3.19)

acting on the subspaces Vj and Wj, where Aj = QjLQj, Bj = QjLPj and Cj = PjLQj are

obtained by expanding L in a telescopic series, that is,

L =
∑
j∈Z

Pj−1LPj−1 − PjLPj,

=
∑
j∈Z

(Pj−1 − Pj)L(Pj−1 − Pj) + (Pj−1 − Pj)LPj + PjL(Pj−1 − Pj).
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Since Pj−1 − Pj = Qj we have

L =
∑
j∈Z

QjLQj +QjLPj + PjLQj,

=
∑
j∈Z

Aj +Bj + Cj,

with

Aj = QjLQj : Wj → Wj, (3.20)

Bj = QjLPj : Vj → Wj, (3.21)

Cj = PjLQj : Wj → Vj. (3.22)

For numerical purposes, we define a finest scale j = 0, and a coarsest scale j = n, such that we

have

L ≈ L0 = {{Aj, Bj, Cj}j=1,2,... ,n, Ln} (3.23)

with L0=P0LP0, and Ln=PnLPn.

Another way to understand the NS-form is an analogy with the two-dimensional MRA, where the

wavelet basis is given in (2.3). Therefore, the decomposition of an operator in this wavelet basis

yields the NS-form (see Figure 3.2).

In fact, the decomposition of Lj in Wj is Aj +Bj + Cj while the projection onto Vj .

The operators Aj, Bj, Cj and Lj are represented respectively by the matrices αj, βj, γj and

sj, with entries given by

αj
k,k′ =

∫
R

∫
R
ψj,k(x)K(x, y)ψj,k′(y)dxdy,

βj
k,k′ =

∫
R

∫
R
ψj,k(x)K(x, y)ϕj,k′(y)dxdy,

γj
k,k′ =

∫
R

∫
R
ϕj,k(x)K(x, y)ψj,k′(y)dxdy,

sj
k,k′ =

∫
R

∫
R
ϕj,k(x)K(x, y)ϕj,k′(y)dxdy. (3.24)
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Using (2.5) in (3.24), we have

sj
k,k′ =

∫
R

∫
R

L−1∑
l=0

hlϕj−1,2k+l(x)K(x, y)
L−1∑
l′=0

hl′ϕj−1,2k′+l′(y)dxdy,

=
L−1∑
l=0

L−1∑
l′=0

hlhl′

∫
R

∫
R
ϕj−1,2k+l(x)K(x, y)ϕj−1,2k′+l′(y)dxdy,

=
L−1∑
l=0

L−1∑
l′=0

hlhl′s
j−1
2k+l,2k′+l′ .

Similarly, we obtain

αj
k,k′ =

L−1∑
l=0

L−1∑
l′=0

glgl′s
j−1
2k+l,2k′+l′ ,

βj
k,k′ =

L−1∑
l=0

L−1∑
l′=0

glhl′s
j−1
2k+l,2k′+l′ ,

γj
k,k′ =

L−1∑
l=0

L−1∑
l′=0

hlgl′s
j−1
2k+l,2k′+l′ .

Figure 3.2: Organization of the non-standard form of a matrix. Blanks denote zero entries.
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3.3 Non-Standard form representation of the operator dp

dxp

Let us consider a differential operator of the form L= dp

dxp . The process of determining the repre-

sentation is slightly different, but the end result is as mentioned previously, where dp

dxpϕj,k(x) =

ϕ
(p)
j,k(x).

For Pjf(x) =
∑
k

sj
kϕj,k, we have

LPjf(x) =
dp

dxp
Pjf(x) =

∑
k′

sj
k′ϕ

(p)
j,k′(x).

But dp

dxpϕj,k′(x) might not be in Vj, so we project again

PjLPjf(x) =
∑

k

〈∑
k′

sj
k′ϕ

(p)
j,k′(x), ϕj,k(x)

〉
ϕj,k,

=
∑

k

(∑
k′

sj
k′r

j
k,k′

)
ϕj,k,

where

rj
k,k′ =

∫
R
ϕj,k(x)ϕ

(p)
j,k′(x)dx. (3.25)

Similarly, we have

αj
k,k′ =

∫
R
ψj,k(x)ψ

(p)
j,k′(x)dx,

βj
k,k′ =

∫
R
ψj,k(x)ϕ

(p)
j,k′(x)dx,

γj
k,k′ =

∫
R
ϕj,k(x)ψ

(p)
j,k′(x)dx.

The rj
k,k′ may be simplified as

rj
k,k′ =

∫
R

2
−j
2 ϕ(2−jx− k)

dp

dxp

(
2
−j
2 ϕ(2−jx− k′)

)
dx,

= 2−jp

∫
R
ϕ(x′ − (k − k′))ϕ(p)(x′)dx′, (x′ = 2−jx− k′),

= 2−jpr0
k−k′,0,

= 2−jpr0
l , (l = k − k′, and r0

l := r0
l,0)

where

r0
l =

∫
R
ϕ(x− l)ϕ(p)(x)dx. (3.26)
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Similarly, with l = k − k′

αj
k,k′ = 2−jpα0

l ,

βj
k,k′ = 2−jpβ0

l ,

γj
k,k′ = 2−jpγ0

l ,

where

α0
l =

∫
R
ψ(x− l)ψ(p)(x)dx,

β0
l =

∫
R
ψ(x− l)ϕ(p)(x)dx,

γ0
l =

∫
R
ϕ(x− l)ψ(p)(x)dx.

Using (2.5) in (3.26), we have

r0
l =

∫
R

(
√

2
L−1∑
k=0

hkϕ(2x− 2l − k)

)
dp

dxp

(
√

2
L−1∑
k′=0

hk′ϕ(2x− k′)

)
dx,

= 2p

L−1∑
k=0

L−1∑
k′=0

hkhk′

∫
R
ϕ(x′ − (2l + k − k′))ϕ(p)(x′)dx′, (x′ = 2x− k′)

= 2p

L−1∑
k=0

L−1∑
k′=0

hkhk′r
0
2l+k−k′ . (3.27)

Similarly for α0
l , β

0
l and γ0

l

α0
l = 2p

L−1∑
k=0

L−1∑
k′=0

gkgk′r
0
2l+k−k′ ,

β0
l = 2p

L−1∑
k=0

L−1∑
k′=0

gkhk′r
0
2l+k−k′ ,

γ0
l = 2p

L−1∑
k=0

L−1∑
k′=0

hkgk′r
0
2l+k−k′ .

Using Parseval’s relation (2.3) r0
l satisfies

r0
l = 〈ϕ0,l, ϕ

(p)〉,

=
1

2π
〈ϕ̂0,l, ϕ̂

(p)〉,

= (−1)pr0
−l.
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We notice that the NS-form of the operator dp

dxp is completely determined by its coefficients r0
l

of its projection in the subspace V0. Therefore we are led to compute the coefficients r0
l which

becomes a problem of solving for connection coefficients denoted by

Λd1,d2

l =

∫
ϕ(d1)(x− l)ϕ(d2)(x)dx.

Remark 3.1. If d1 = 0 and d2 = p, we have Λ0,p
l ≡ r0

l .

Substituting n = k − k′ in (3.27) we get

r0
l = 2p

L−1∑
k=0

k∑
n=k−L+1

hkhk−nr
0
2l+n,

= 2p

−1∑
n=−L+1

n+L−1∑
k=0

hkhk−nr
0
2l+n + 2p

L−1∑
k=0

h2
kr

0
2l + 2p

L−1∑
n=1

L−1∑
k=n

hkhk−nr
0
2l+n,

= 2p

−1∑
n=−L+1

r0
2l+n

n+L−1∑
k=0

hkhk−n + 2pr0
2l

L−1∑
k=0

h2
k + 2p

L−1∑
n=1

r0
2l+n

L−1∑
k=n

hkhk−n. (3.28)

Additionally we have the autocorrelation coefficients defined by

am = 2
L−1−m∑

i=0

hihi+m, m = 1, · · · , L− 1.

For m = 2k, it can be shown that ([4],[5]) a2k = 0, k = 1, · · · , L/2− 1.

So, for 2− L ≤ l ≤ L− 2 and using (2.25)
L−1∑
k=0

h2
k = 1, equation (3.28) becomes

r0
l = 2p

−1∑
n=−L+1

r0
2l+n

1

2
a−n + 2pr0

2l

L−1∑
k=0

h2
k + 2p

L−1∑
n=1

r0
2l+n

1

2
an,

= 2p−1

−1∑
k=−L/2

r0
2l+2k+1a−2k−1 + 2p−1

−1∑
k=−(L−2)/2

r0
2l+2ka−2k + 2pr0

2l

L−1∑
k=0

h2
k

+ 2p−1

L/2∑
k=1

r0
2l+2k−1a2k−1 + 2p−1

L−2/2∑
k=1

r0
2l+2ka2k,

= 2pr0
2l + 2p−1

L/2∑
k=1

a2k−1(r
0
2l−2k+1 + r0

2l+2k−1). (3.29)

The result (3.29) does not guarantee a unique solution, therefore we need a normalization con-

dition.
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To this end, we use the moment of scaling function defined by

Mϕ
l =

∫
R
ϕ(x)xldx, l = 1, 2, · · · ,m.

It can be shown according to [3] that

∑
k

kmϕ(x− k) = xm +
m∑

l=1

(−1)l

(
m

l

)
Mϕ

l x
m−l,

and a suitable normalization condition is

L−2∑
l=2−L

lpr0
l = (−1)pp!. (3.30)

Remark 3.2. For p=1, the coefficients r0
l are found in [3].

3.4 The NS-form of operator functions

In this section, we consider the NS-form of the analytic function of the differential operator ∂x,

that is,

f(∂x) = e∆tL (3.31)

where L = ∂p
x .

The representation of this operator in the wavelet basis is of prime importance because it appears

in the solution of partial differential equations using the semigroup approach.

There are two approaches for computing the NS-forms of operator functions. Both are valid due

to the analyticity of the function f :

(i) compute the projection of the operator function on V0,

P0f(∂x)P0, (3.32)

or,

(ii) compute the function of the projection of the operator,

f(P0∂xP0). (3.33)



Section 3.4. The NS-form of operator functions Page 37

First we consider the representation given by (3.32). We must find rj
k,k′ of the form

rj
k,k′ =

∫
R
ϕj,k(x)f(∂x)ϕj,k′(x)dx. (3.34)

For f analytic and f, g ∈ L2(R), the relation F(f(∂x)g(x))(ξ) = f(iξ)ĝ(ξ) holds (see [8]).

Hence

F(f(∂x)(ϕ(2−jx− k′)))(ξ) = f(iξ)

∫
R
ϕ(2−jx− k′)e−ixξdx,

= 2jf(iξ)

∫
R
ϕ(x′)e−iξ2j(x′+k′)dx′, (x′ = 2−jx− k),

= 2jf(iξ)e−iξ2jk′
∫

R
ϕ(x′)e−iξ2jx′dx′,

= 2jf(iξ)e−iξ2jk′ϕ̂(ξ2j).

Taking the inverse Fourier transform, we have

f(∂x)(ϕ(2−jx− k′)) =
1

2π

∫
R

2jf(iξ)e−iξ2jk′ϕ̂(ξ2j)eixξdξ.

Therefore (3.34) may be rewriten as

rj
k,k′ =

1

2π

∫
R
ϕ(2−jx− k)

∫
R
f(iξ)e−iξ2jk′ϕ̂(ξ2j)eixξdξdx,

=
2−j

2π

∫
R
ϕ(2−jx− k)

∫
R
f(i2−jρ)e−iρk′ϕ̂(ρ)eix2−jρdρdx, (ρ = 2jξ),

=
1

2π

∫
R

∫
R
ϕ(x′)ϕ̂(ρ)e−iρk′eiρ(x′+k)dx′f(i2−jρ)dρ,

=
1

2π

∫
R

(∫
R
ϕ(x′)eiρx′dx′

)
ϕ̂(ρ)eiρ(k−k′)f(i2−jρ)dρ,

=
1

2π

∫
R
ϕ̂(ρ)ϕ̂(ρ)eiρ(k−k′)f(i2−jρ)dρ.

Setting l = k − k′ we have

rj
l =

1

2π

∫
R
f(i2−jρ)|ϕ̂(ρ)|2eiρldρ,

=
1

2π

∑
k∈Z

∫ 2π(k+1)

2πk

f(i2−jρ)|ϕ̂(ρ)|2eiρldρ,

=
1

2π

∫ 2π

0

∑
k∈Z

f(i2−j(ρ′ + 2πk))|ϕ̂(ρ′ + 2πk)|2eil(ρ′+2πk)dρ′, (ρ′ = ρ− 2πk)

=

∫ 2π

0

g(ρ′)eilρ′dρ′,



Section 3.4. The NS-form of operator functions Page 38

where we define g(ρ) to be

g(ρ) =
1

2π

∑
k∈Z

f(i2−j(ρ+ 2πk))|ϕ̂(ρ+ 2πk)|2. (3.35)

Now the Riemann-Lebesgue lemma states that if f ∈ L1(R), then its Fourier transform tends

to zero as ξ tends to infinity. Using this lemma, we have for every ε > 0 there exists K > 0,

such that |ϕ̂(ρ)|2 < ε for |ρ| > K. Hence we may use |ϕ̂(ρ)|2 as a cutoff function, to get an

approximation ga of g

ga(ρ) =
1

2π

K∑
k=−K

f(i2−j(ρ+ 2πk))|ϕ̂(ρ+ 2πk)|2. (3.36)

We then have

rj
l =

1

N

N−1∑
n=0

ga(ρn)eilρn , where ρn =
2πn

N − 1
.

Here N is the number of quadrature points used in approximating the integral.

The coefficients rj
l are computed by applying the DFT1 to the sequence {ga(ρn)}. Before

proceeding to compute the NS-form of an operator function by (3.33), we recall the discrete

Fourier transform for a vector of length N is defined by

(Ff)n = f̂n =
N−1∑
j=0

fje
−i2πnj/N , n = 0, 1, . . . , N − 1,

(F−1f)j = fj =
1

N

N−1∑
n=0

f̂ne
i2πnj/N , j = 0, 1, . . . , N − 1,

where the subscript denotes components.

The NS-form of (3.33) is computed by projecting the operator ∂x into the finest subspace V0 of

dimension 2n. That is, ∂x ≈ P0∂xP0, we therefore have f(∂x) ≈ f(P0∂xP0).

Let M be a bi-infinite Toeplitz matrix representing the operator P0∂xP0 with entries

Mi,j = r0
i−j.

Using the DFT, we diagonalize M that is,

M = FΛF−1,

1Discrete Fourier Transform
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where (F)k,j = e−i2πkj/N , (F−1)k,j =
1

N
ei2πkj/N , and Λ is the diagonal matrix with entries given

by

λk = r0
0 +

L−2∑
j=1

(r0
j e

2iπkj/(2L−3) + r0
−je

−2iπkj/(2L−3)), k = 1, · · · , 2L− 3, (3.37)

corresponding to the eigenvalues of the matrix M .

For an analytic function f in a neighborhood of the spectrum of M , we have

f(M) = Ff(Λ)F−1. (3.38)

We now proceed by computing the RHS2 of (3.38).

For any vector w of length N = 2L− 3, we have (see [10])

(
Ff(Λ)F−1w

)
m

=
L−2∑

j=2−L

wj
1

N

L−2∑
k=2−L

f(λk)e
i2πk(j−m)/N , m = 2− L, . . . , L− 2. (3.39)

Hence the entries of the matrix f(M) are given by

r0
l =

1

N

L−2∑
k=2−L

f(λk)e
i2πkl/N . (3.40)

Thus we have developed two approaches for computing the coefficient r0
l of the matrix f(M)

given by (3.33) or (3.32).

3.5 Examples of Representation of operators

Example 3.1. Consider the operator L= d2

dx2 . We represent this operator in the wavelet domain

using the NS-form. We use Daubechies wavelet with 6 vanishing moments and set to zero all

entries whose absolute values are smaller than 10−8 (see Figure 3.3).

2right hand side



Section 3.5. Examples of Representation of operators Page 40

Figure 3.3: The non-standard form of d2

dx2 .
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Example 3.2. Let us consider the Calderón-Zygmund operator defined by its matrix which is

smooth with entries decreasing in magnitude away from the diagonal

Ai,j =


1

i− j
i 6= j,

0 i = j.

By projecting it into wavelet bases in NS-form and S-form with Daubechies wavelet having six

vanishing moments, we obtain Figure 3.4 or Figure 3.5 after setting to zero all entries whose

absolute values are smaller than 10−7.

Figure 3.4: The Non-standard form of the Example 3.2
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Example 3.3. Consider the matrix

Ai,j =


1 |i− j| = 1 or N − 1,

−2 i = j,

0 elsewhere.

We project this operator which corresponds to the periodized version of the second derivative

operator into the wavelet domain using the NS-form. We use again Daubechies wavelet with six

vanishing moments and setting to zero all entries whose absolute values are smaller than 10−8

(see Figure 3.6).

Figure 3.5: The standard form of the Example 3.2
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Figure 3.6: The Non-standard form of the Example 3.3



4. Wavelets in Linear Algebra

4.1 The Inverse Operator in Wavelet Basis

In this Chapter we discuss the implications of wavelets in linear algebra. In fact, a wavelet basis

in this case plays the role of a fast solver, since it reduces considerably the condition numbers [2].

To illustrate this, we consider the two-point boundary value problem

Lu(x) = f(x),

u(0) = u(1) = 0,

(4.1)

where

Lu =
d

dx

(
a(x)

du

dx

)
− b(x)u,

and a(x), b(x) are sufficiently smooth functions.

We use the finite difference method to discretize the operator L and denote the result by L̂,

where

L̂ui =
ai+1/2ui+1 − (ai+1/2 + ai−1/2)ui + ai−1/2ui−1

h2
− biui. (4.2)

Here xi = ih, h = 1
N
, and ai±1/2 = a(xi±1/2), ui = u(xi), i = 0, 1, · · · , N − 1, and we have

used the central difference approximation with spacing h to approximate the derivative.

Thus, the problem (4.1) is equivalent to solving a linear system of the form

Lu = f, (4.3)

where L is a sparse matrix defined by

L = tridiag
(
ai−1/2,−(ai+1/2 + ai−1/2 + h2bi), ai+1/2

)
,

u = (u0, u1, · · · , uN−1)
T , f = h2(f0, f1, · · · , fN−1)

T , and tridiag(·, ·, ·) denotes a tridiagonal

matrix.

So computing the solution of (4.3) by a direct method (matrix-vector multiplication) is propor-

tional to O(N2) operations, since for small N the matrix L−1 is dense.

Therefore, due to the complexity of solving (4.3), we are led to seek a new basis in which the

44
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number of operations to solve the corresponding sparse linear systems may be reduced.

It turns out that a wavelet basis is well suited for a such case because we may take advantage

of certain properties that wavelets possess. These properties are the sparse representation of the

Green’s function (L−1), and the reduction of the condition number. Then we project (4.3) into

the wavelet domain. The matrix L−1 is sparse in the wavelet basis and has only O(N) entries,

so solving (4.3) may require less computational effort or few number of iterative steps when an

iterative method is used.

Hence, we focus on the construction of the matrix L−1, and consequently we shall obtain an

O(N) procedure for solving (4.3). We observe that, if the entries of the vector f are values

of a smooth and nonoscillatory function then the wavelet transform of the vector f is sparse.

Therefore, the complexity is proportional to the number of the entries of the vector f.

We consider the periodized version of the matrix L in order to use the diagonal preconditioning

available in the wavelet basis, that is

Lp = L + A, (4.4)

where u−1 = uN−1, uN = u0, and

A =



0 0 0 · · · 0 0 a−1/2

0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0

aN−1/2 0 0 · · · 0 0 0


Using the preconditioned matrix P we require (see[2]) κ(P L P) < κ(L), where κ denotes the

condition number and it is defined by κ(L) = ||L||2 ||L−1||2. In other words, κ is a measure of

the difficulty of solving a linear system in the sense that systems with small condition numbers

are easy to solve.

Note that in the ordinary domain the condition number of the periodized matrix Lp grows as N2

(Figure 4.1), and its inverse L−1
p is dense (O(N2) significant entries).

However, by projecting Lp into the wavelet domain, and using the periodized wavelets and the

diagonal preconditioning, we obtain a small condition number which is independent of the size of
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the matrix (Figure 4.1), and moreover, it is bounded. Therefore, we may take advantage of this

to construct numerically the generalized inverse in O(N) operations by an iterative algorithm.

The projection into the wavelet domain is achieved either by the NS-form or S-form (see Chap-

ter 3). In our case, we use the S-form obtained by constructing the matrix W of the discrete

wavelet transform. The matrix W satisfies W−1 = WT .

The one level discrete wavelet transform matrix is defined by

W1
N =



h0 h1 . . . . . . hk−1 hk−2

h0 h1 . . . . . . hk−1 hk−2

. . . . . . . . . . . . . . . . . .

h0 h1 . . . . . . hk−1 hk−2

hk−2 hk−1 h0 h1 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . hk−2 hk−1 h0 h1

g0 g1 . . . . . . gk−1 gk−2

g0 g1 . . . . . . gk−1 gk−2

. . . . . . . . . . . . . . . . . .

g0 g1 . . . . . . gk−1 gk−2

gk−2 gk−1 g0 g1 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . gk−2 gk−1 g0 g1


Where hj and gj are filter coefficients defined respectively in (2.20) and (2.21).

More generally, the level j of the discrete wavelet transform is

Wj
N =

 IN−N/2j−1 0

0 W1
N/2j−1


with IN−N/2j−1 an identity matrix of size N −N/2j−1.

Finally, the wavelet transform matrix at level J is obtained by taking the product of Wj
N at

different levels j that is

W = WJ
NWJ−1

N . . .W2
NW1

N

So the S-form of a given matrix C is obtained by computing WCWT .

We consider the case where b(x) = 0 and we apply the discrete wavelet transform matrix W to
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the matrix L, that is,

Lw = Lw
p − Aw (4.5)

where

Lw
p = WLpWT and Aw = WAWT .

We obtain in the last column of Lw
p a zero column, since the sum of the entries in the rows of

Lp are identically zero. Thus the construction of (Lw
p )−1 is reduced to finding the matrix B−1 of

the sparse matrix B of size (N − 1)× (N − 1) (Figure 4.2, 4.3)

Lw
p =

B 0

cT 0


where cT is a vector of length (N − 1) [2].

Since the matrix W is orthogonal the condition number does not change after transformation.

We then apply preconditioning to the matrix B in order to use a fast algorithm to compute its

inverse.

The preconditioner that we use is a diagonal matrix of size N = 2n with powers of 2 on the

diagonal, that is,

P = diag(2, . . . , 2︸ ︷︷ ︸
2n−1

, 22, . . . , 22︸ ︷︷ ︸
2n−2

, . . . , 2i, . . . , 2i︸ ︷︷ ︸
2n−i

, . . . , 2n−2, 2n−2, 2n−2, 2n−2︸ ︷︷ ︸
22

, 2n−1, 2n−1︸ ︷︷ ︸
2

, 2n, 2n︸ ︷︷ ︸
2

).

For simplicity we consider two cases, where a(x) = 1 and b(x) = 0 in (0, 1) so that L =
d2

dx2
,

then we have

Lp =



−2 1 0 · · · 0 0 1

1 −2 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −2 1

1 0 0 · · · 0 1 −2


(4.6)

and a(x) = 25, b(x) = x so that L = 25
d2

dx2
− xu and

Lp = tridiag
(
25,−(50 + h2xi), 25

)
.
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Figure 4.1: Condition numbers of the periodized matrix Lp. ”db6” denotes Daubechies wavelet

with six vanishing moments.
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4.2 Numerical examples

The following table shows the condition numbers of the periodized operator with and without

preconditioning (κ and κp, respectively). Daubechies wavelets of order 3, 4, 6, 8 are used. The

size of the matrix is denoted by N . We see from the table that, when preconditioning is applied

to the periodized operator, we obtain a small condition number which is independent of the size

of the matrix.

L =
d2

dx2
L = 25

d2

dx2
− xu

N Wavelet κ κp κ κp

db3 104.08686892 8.02083290291 104.043240437 8.02211483606

32 db4 104.08686892 6.30798342451 104.043240437 6.30956620515

db6 104.08686892 5.20017272015 104.043240437 5.20241213794

db8 104.08686892 4.97423356654 104.043240437 4.97675725287

db3 415.345062232 9.08587054849 415.169154784 9.08709099872

64 db4 415.345062232 6.69757750831 415.169154784 6.6988678163

db6 415.345062232 5.26102790865 415.169154784 5.26339375318

db8 415.345062232 4.99211875275 415.169154784 4.9942571985

db3 1660.37964629 10.0190304761 1659.67411095 10.0201509574

128 db4 1660.37964629 6.99091581394 1659.67411095 6.99200803315

db6 1660.37964629 5.2896859456 1659.67411095 5.29207547968

db8 1660.37964629 4.99713668702 1659.67411095 4.9991808665

db3 6640.51843456 10.8406237476 6637.693347357 10.8416248698

256 db4 6640.51843456 7.21876831239 6637.693347357 7.2197103613

db6 6640.51843456 5.30351150757 6637.693347357 5.30587982655

db8 6640.51843456 4.99850930464 6637.693347357 5.00055167315

The following proposition enables us to construct the inverse of matrices.

Proposition 4.1. Consider the sequence of matricesXk, Xk+1 = 2Xk−XkAXk withX0 = αA∗,

where A∗ is the adjoint matrix and α is chosen so that the largest eigenvalue of A∗A is less than

two . Then the sequence Xk converges to the generalized inverse A†(see [4]).
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Using the Proposition 4.1, we compute the inverse of the matrix Bp = PBP rescaled by a diago-

nal matrix P which is done in O(N log κ) operations. We perform the computation of the inverse

until the condition ||BpXk − I|| < ε is satisfied, thus B−1 is obtained by computing PB−1
p P.

L =
d2

dx2
, ε = 10−9 and db3

N B−1
p B−1 L−1

31 10 17 21

63 10 21 25

127 11 25 29

255 11 29 33

The above table shows the number of iterations needed for computing respectively the inverses

B−1
p , B−1 and L−1. By using wavelets of higher order, we can reduce the number of iterations

needed for computing the inverse B−1
p .

Note from (4.5), we have

(Lw)−1 = (I − (Lw
p )−1Aw)−1(Lw

p )−1. (4.7)

The relation (4.7) can be computed using the Proposition 4.1.

We illustrate how a wavelet basis can be used for solving an evolution equation.

Consider the heat equation on the unit interval

ut = νuxx, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (4.8)

for ν > 0, with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (4.9)

and the periodic boundary condition u(0, t) = u(1, t).

Due to stability concerns, we choose an implicit finite difference method, where there is no re-

striction on the time step.

Using the method of lines, we discretize the spatial domain according to xi = ih, i = 1, . . . , N, h =
1

N
and we also approximate the second derivative at xj by

uxx|xj
' uj+1 − 2uj + uj−1

h2
.
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Figure 4.2: Sparsity pattern of the matrix B obtained by using ’db3’ and setting to zero entries

with the absolute value less than 10−14.

Thus (4.8) is approximated by a system of ordinary differential equations

du

dt
= ν

1

h2
Lu, (4.10)

where u = (u1, u2, . . . , uN)T and ui = u(xi, t) and L is a matrix identical to Lp in (4.6).

Applying the trapezoidal rule to (4.10) in time , we obtain the Crank-Nicholson method that is

u(n+1) − u(n) = ν
ht

2h2
(Lu(n+1) + Lu(n)),

where ht is the time step. Rearranging we have

(I− ν
ht

2h2
L)u(n+1) = (I + ν

ht

2h2
L)u(n). (4.11)

Observe that, the solution of (4.11) in the ordinary domain is obtained by solving at each time

the tridiagonal system. As mentioned earlier the inverse of the tridiagonal matrices are dense.

However we may avoid this situation by projecting the equation into the wavelet domain.



Section 4.2. Numerical examples Page 52

Figure 4.3: Sparsity pattern of the matrix B−1 computing via the iterative algorithm, entries with

the absolute value greater than 10−9 are shown in blue.

We denote by A and B the tridiagonal matrices given by

A = tridiag

(
−ν ht

2h2
, 1 + ν

ht

h2
,−ν ht

2h2

)
and

B = tridiag

(
ν
ht

2h2
, 1− ν

ht

h2
, ν

ht

2h2

)
.

Then the wavelet bases equation (4.11) becomes

û(n+1) = Cû(n), where û = Wu,

and

C = (WAWT )−1WBWT . (4.12)

Thus the implicit scheme (4.11) is converted to an easier scheme (4.12), which is an advantage

because we do not need to solve a linear system at each time. Moreover, solving (4.12) requires
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Figure 4.4: Sparsity pattern of the matrix (Lw)−1 computing via the iterative algorithm, entries

with the absolute value greater than 10−8 are shown in blue.

only O(N) operations.

We may also use the preconditioned matrix defined above to reduce number of operations.

Remark 4.1. The sparsity pattern of the matrix C is similar to the sparsity pattern of the matrix

B given in Figure 4.2.



5. Ordinary Differential Equations

In this section we describe the wavelets efficiency to solve ordinary differential equations. The

wavelet method in numerical analysis offers several advantages. One of these advantages is the

representation of the solution at different scales. Before our discussion on the application of

wavelets to PDE’s, let us recall briefly the weighted residuals method.

5.1 The Weighted Residuals Method

Consider the following problem

Lu(x) = f(x) (5.1)

with boundary conditions u(a) = a1 and u(b) = b1, where L is a linear differential operator

An approximation of the solution u of (5.1) can be expanded in terms of basis functions φj as

ũ(x) =
K∑

j=0

cjφj(x), (5.2)

where cj’s are constants.

Substituting (5.2) in (5.1), we form the residual

R(x, c) = Lũ− f, (5.3)

which is generally not equal to zero and R depends on the cj’s which are represented by the

vector c in (5.3). We are then led to select the undetermined coefficients cj in such a way that

the residual is forced to be zero in some average sense. This can be accomplished by selecting a

set of test functions wj and setting the inner product of the residual R(x, c) to be zero, that is

〈wj, R〉 =

∫ b

a

wj(x)R(x, c)dx = 0, j = 0, 1, · · · , K. (5.4)

Depending on the choice of the weight functions wj we have two methods which we elaborate

on next.

54
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5.1.1 Galerkin’s Method

Here the test functions are chosen to be the basis functions, that is , wj = φj, we then have

〈φj, R〉 =

∫ b

a

φj(x)(Lũ− f)dx,

=
∑

k

ck

∫ b

a

(φj(x)Lφk(x)− f(x)φj(x)) dx.

Since equation (5.4) is satisfied, we get∑
k

ck

∫ b

a

φj(x)Lφk(x)dx =

∫ b

a

f(x)φj(x)dx, (5.5)

which can be written in matrix form as

Ac = b,

with

Aj,k =

∫ b

a

φj(x)Lφk(x)dx, and bj =

∫ b

a

f(x)φj(x)dx.

5.1.2 The Collocation Method

Here the test function is chosen to be the shifted Dirac delta function

wj(x) = δ(x− xj), (5.6)

where the shifted Dirac delta function satisfies

δ(x− xj) =

1 x = xj,

0 otherwise,

(5.7)

and has the property ∫
f(x)δ(x− xj)dx = f(xj)

and xj denotes a point in [a, b].

Substituting (5.6) in (5.4) yields

〈δ(x− xj), R〉 =

∫ b

a

δ(x− xj)(Lũ− f)dx,

=
∑

k

ck

∫ b

a

(δ(x− xj)Lφk(x)− f(x)δ(x− xj)) dx.
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So we obtain ∑
k

ck

∫ b

a

δ(x− xj)Lφk(x)dx =

∫ b

a

f(x)δ(x− xj)dx,∑
k

ckLφk(xj) = f(xj).

5.2 Wavelet Galerkin Method

We follow Amaratunga et al.’s method for solving differential equations as described in [29], but

we use the convention of decreasing subspaces of I. Daubechies and S. Mallat (see [16]).

We consider problem (5.1) with some slight changes. We assume that u and f are both periodic

with period d, that is

u(0) = u(d),

f(0) = f(d).

The wavelet-Galerkin approximation to the solution u(x) at scale m is

u(x) = 2−m/2

2−md−1∑
k=0

c̃kϕ(2−mx− k), (5.8)

where c̃k = 〈u, ϕm,k〉.

In order to perform the computation, one idea is to express the approximate solution as a convo-

lution of two vectors, therefore the transformation from wavelet space to physical space is then

accomplished by the FFT.

We begin by making the substitution y = 2−mx. We have

U(y) = u(x) =
2−md−1∑

k=0

ckϕ(y − k), with ck = 2−m/2c̃k. (5.9)

Since u is periodic with period d, it implies U(y) is also periodic with period 2−md ∈ Z. Likewise

ck has period 2−md.

Now, by letting y take only integer values, we are ensured to have all the values of u(x) at the
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dyadic points x = 2my. We discretize U(y), that is,

Ui = U(i) =
2−md−1∑

k=0

ckϕ(i− k),

=
2−md−1∑

k=0

ckϕi−k, i = 0, 1, 2, · · · , 2−md− 1,

where we use the notation ϕi−k := ϕ(i− k).

We therefore express U as a convolution, i.e.

U = Kϕ ∗ c, (5.10)

where Kϕ is the first column of a matrix having entries ϕi−k, and c = (c0, c1, · · · , c2−md−1)
T .

Since the Fourier transform of a convolution of two vectors is a multiplication component by

component of the discrete Fourier transform of the vectors, equation (5.10) may be written as

Û = K̂ϕ · ĉ, (5.11)

where · denotes pointwise multiplication.

Similarly, we define

F (y) = f(x) =
2−md−1∑

k=0

gkϕ(y − k), gk = 2−m/2g̃k, (5.12)

where gk is also periodic.

Discretizing F (y) we then rewrite (5.12) as

Fi =
2−md−1∑

k=0

gkϕi−k. (5.13)

Equation (5.13) is written as a convolution

F = Kϕ ∗ g,

with g = (g0, g1, · · · , g2−md−1)
T .

Taking the Fourier transform of both sides of (5.2), we get

F̂ = K̂ϕ · ĝ. (5.14)
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Now applying Galerkin’s method (5.5), we get

2−md−1∑
k=0

ck

∫
R
ϕ(y − j)Lϕ(y − k)dy =

2−md−1∑
k=0

gk

∫
R
ϕ(y − k)ϕ(y − j)dy,

2−md−1∑
k=0

ck

∫
R
ϕ(y′ − (j − k))Lϕ(y′)dy′ =

2−md−1∑
k=0

gkδk,j, (y′ = y − k)

2−md−1∑
k=0

ckrj−k = gj, j = 0, 1, · · · , 2−md− 1, (5.15)

where rj−k is the same as defined in (3.25) in Chapter 3.

Equation (5.15) can be written as a convolution

Kr ∗ c = g. (5.16)

Taking the Fourier transform of (5.16), we have

K̂r · ĉ = ĝ. (5.17)

We can then solve the problem by combining (5.14), (5.17) and (5.11) to get

Û = F̂ /K̂r, (5.18)

where / denotes a pointwise division.

Remark 5.1. rj−k = 0 for j − k /∈ [2− L,L− 2].

A usual problem in solving differential equations involves how to incorporate the boundary when

dealing with arbitrary boundary conditions. There are several techniques to handle this situation.

One can either use Lagrange multipliers or the capacitance matrix [28]. In our case we focus on

the latter method.

We consider problem (5.1) again with 0 < a < b < d, d ∈ Z, and u(x), f(x) functions of period

d. Let u(x) = v(x) + w(x), such thatLv(x) = f(x), x ∈ (a, b),

v(0) = v(d),

(5.19)
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and Lw(x) = 0, x ∈ (a, b),

Lw(x) = X(x), x ∈ (0, d),

(5.20)

where

X(x) = Xaδ(x− a) +Xbδ(x− b)

and δ(x) is the Dirac delta function. We must find constants Xa and Xb such that the boundary

conditions for u are satisfied at a and b.

To this end, we introduce the Green’s function G(x) of the differential equation which is given

by LG(x) = δ(x),

G(0) = G(d).

(5.21)

Also (see [29])

w(x) = XaG(x− a) +XbG(x− b). (5.22)

Since (5.19) and (5.21) are periodic boundary problems, we solve them easily by following the

procedure outlined above for periodic boundary conditions. It remains just to find Xa and Xb

given by

w(a) = XaG(0) +XbG(a− b) = a1 − v(a),

w(b) = XaG(b− a) +XbG(0) = b1 − v(b),

so  G(0) G(a− b)

G(b− a) G(0)

 Xa

Xb

 =

 a1 − v(a)

b1 − v(b)

 (5.23)

Hence we get the solution u by adding the solution w obtained after solving (5.23) and (5.19).

Due to the fact that the Dirac delta function and the scaling function have the same compact

support in the wavelet domain, solving (5.21) may present some problems which can be avoided

by introducing offset boundary sources.

Let s be the offset. We have

α = a− s, β = b+ s,

where L/2−m < s < max(a, d− b). Then

X(x) = Xaδ(x− α) +Xbδ(x− β)
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and Xa and Xb are determined from G(a− α) G(a− β)

G(b− α) G(b− β)

 Xa

Xb

 =

 a1 − v(a)

b1 − v(b)

 (5.24)

By transforming the problem (5.1) to a convolution problem (5.16), and using the FFT enables

us to obtain the solution in O(Nlog2N) operations.

5.3 Wavelet Collocation Method

Here, we follow Bertoluzza and Naldi’s approach [1] for solving problem (5.1). This approach is

based on the use of the autocorrelation function θ of Debauchie’s compactly supported wavelets.

We define the autocorrelation function θ as

θ(x) =

∫
R
ϕ(y)ϕ(y − x)dy, (5.25)

Due to the orthonormality property of the set {ϕ(x − k), k ∈ Z}, the autocorrelation function

θ satisfies the interpolation property

θ(n) =

1 if n = 0,

0 otherwise.

(5.26)

It can be shown by integration by parts for integers l and s satisfying 0 ≤ l ≤ s, that we have

θ(s)(x) = (−1)s−l

∫
R
ϕ(l)(y)ϕ(s−l)(y − x)dy. (5.27)

In the same manner as the scaling function, the autocorrelation function generates also a MRA,

unfortunately which is non-orthonormal.

We denote by V̌j the subspace spanned by {θj,k(x) = 2−j/2θ(2−jx− k), k ∈ Z}.

To solve problem (5.1), the approximate solution uj ∈ V̌j is written in terms of its values at the

dyadic points xk = k2j, i.e.

uj(x) =
2−j∑
k=0

uj(k2
j)θ(2−jx− k), (5.28)
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and

uj(0) = a, uj(1) = b.

To handle the situation at the boundary points, two methods are available.

First, we may introduce the following functions

θ̃j,0 =
0∑

k=−∞

θj,k, θ̃j,2−j =
+∞∑

k=2−j

θj,k. (5.29)

Then (5.28) and (5.29) imply

uj(x) = uj(0)θ̃j,0 +
2−j−1∑
k=1

uj(k2
j)θ(2−jx− k) + uj(1)θ̃j,2−j , (5.30)

which satisfy the boundary conditions.

Referring to subsection 5.1.2, problem (5.1) may be written as

Luj(xn) = f(xn), n = 1, . . . , 2−j − 1, (5.31)

where xn = n2j.

Although this method is the easier one, it produces an error O(2j/2), which is computationally

prohibitive.

The second method is to define the approximate solution uj by

uj(x) =
2−j+L−1∑
k=−L+1

αkθj,k. (5.32)

Therefore, we require 2−j + 2L− 1 collocation points. As we already have 2−j + 1 dyadic points

xk = k2j, k = 0, . . . , 2−j, the additional 2L− 2 points are placed near the boundary. For the

left boundary these points are given by xk = (2k + 1)2j+1, k = 0, . . . , L− 2 and for the right

boundary they are given by xk = 1− (2k + 1)2j+1, k = 0, . . . , L− 2. Hence we improve the

convergence near the boundary points.

Remark 5.2. Given the definition of θ in (5.25) and (5.27), the matrix corresponding to the

linear system (5.31) is the same if we use Galerkin’s method to solve the problem. Therefore, we

may reduce the complexity of solving(5.31) by projecting it into the wavelet domain and use the

diagonal preconditioning available for Galerkin’s method.



Section 5.4. Numerical Results Page 62

5.4 Numerical Results

5.4.1 Amaratunga et al. Method

Consider the following ordinary differential equationuxx + π2

4
u = π2

4
, 0 ≤ x ≤ 1

u(0) = 1, u(1) = 0.

(5.33)

The exact solution is

u(x) = 1− sin
(πx

2

)
. (5.34)

We solve the problem using Amaratunga et al. method described in Section 5.2 and we compare

it with the finite difference method.

In Figure 5.2(a), we display the plot of the exact and approximate solution obtained by Ama-

ratunga et al. method at level m = −6, d = 3, and using Daubechies wavelets of order 3.

Figure 5.2(b) shows the exact and approximate solution obtained by the finite difference method

(FDM) with N = 2−m (the number of points of discretization). We observe in Figure 5.1 that

Amaratunga et al. method gives a better approximation than the finite difference method.

Figure 5.1: log2 of norm-2 error of Amaratunga method and FDM.
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(a) Amarantunga’method for problem (5.33) (b) Finite Difference Method for the same problem

Figure 5.2: Exact and approximate solution

5.4.2 Collocation Method (Bertoluzza’s Method)

To show the efficiency of the method, we consider the following problemuxx − u = ex, 0 ≤ x ≤ 1

u(0) = 1, u(1) = 0.

(5.35)

The exact solution is

− e2

2(e2 − 1)
ex +

e2

2(e2 − 1)
e−x +

1

2
xex. (5.36)

We compare the collocation method with the finite difference method again .

Figure 5.3(a) shows the approximate solution computed at level m = −6 using Daubechies

wavelet of order 3 and the exact solution. Figure 5.3(b) is the plot of the same problem computed

using the finite difference method. The norm of the error is shown in Figure 5.3(c).
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(a) Collocation Method for problem (5.35) (b) Finite Difference Method for the same problem

(c) log2 norm-2 error of Collocation and Finite Differ-

ence Method

Figure 5.3: Exact and approximate solution

Let us consider −εuxx + ux = 1, 0 ≤ x ≤ 1

u(0) = 1, u(1) = 0.

(5.37)
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The exact solution is

−ε

(
−1

ε
x+

1

ε(1− e
1
ε )
− 1

ε(1− e
1
ε )
e

1
ε
x

)
. (5.38)

We use problem (5.37) to compare the accuracy of the three methods, Bertoluzza, Amarantunga

and finite difference method. For this purpose, we choose ε = 0.1, and we use Daubechies

wavelet having three vanishing moments.

For ε = 0.1, Figure 5.4 shows the plots of the exact and approximate solution of the three meth-

ods. In Figure 5.4(d) Daubechies wavelet of order 6 is used. We clearly notice that Amaratunga’s

method is the most accurate

(a) Amaratunga’s method (b) Bertoluzza’s method
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(c) finite difference method (d) Amaratunga’s method

Figure 5.4: The exact and the approximate solution computed at scale m = −4



6. Partial Differential equations

In this section, we are solving the evolution equation
ut = Lu+Nu,

u(0, t) = u(1, t), t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [0, 1],

(6.1)

where the operators L and N are time independent, and they represent the linear part and the

nonlinear part of the equation respectively.

We Follow Beylkin’s approach ([8], [7], [21]). We solve problem (6.1) using the semigroup

approach. The semigroup method enables us to convert a partial differential equation to a

nonlinear integral equation given by

u(x, t) = etLu0(x) +

∫ t

0

e(t−τ)LNu(x, τ)dτ. (6.2)

6.1 Numerical Quadrature

A more general form of (6.2) is given by

u(x, t) = e(t−η)Lu(x, η) +

∫ t

0

e(t−τ)LNu(x, τ)dτ, (6.3)

where 0 ≤ η ≤ t.

Discretizing equation (6.3) for a fixed time mesh of width ∆t and taking η = tn+1−l gives the

numerical quadrature for the integral equation (6.3)

un+1 = el∆tLun+1−l + ∆t

(
γNn+1 +

M−1∑
m=0

βmNn−m

)
, (6.4)

where tn = n∆t, un ≡ u(x, tn), Nn ≡ Nu(x, tn), l ≤M , M is the number of time steps used

in the approximation of the integral, and γ = γ(l,∆L) and βm = βm(l,∆L) are the operator

coefficients dependent on l.

Thus, if γ = 0 the algorithm (6.4) is explicit and it is implicit otherwise. This family of schemes

67
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is referred to as the Exact Linear Part (ELP) [9].

Now we focus our discussion on how to find the coefficients γ and βm of (6.4). We start by

expanding un+1 in the Taylor series at the time level tn+1−l

un+1 =
∞∑

k=0

u
(k)
n+1−l

(l∆t)k

k!
, (6.5)

where

u
(k)
n+1−l =

∂k

∂tk
u(t)

∣∣∣∣
t=tn+1−l

.

By (6.1) we have

u(1) = Lu+N,

u(2) = Lu(1) +N (1) = L2u+ LN +N (1),

u(3) = L2u(1) + LN (1) +N (2) = L3u+ L2N + LN (1) +N (2),

· · · (6.6)

u(k) = Lku+
k−1∑
j=0

N (j)Lk−1−j. (6.7)

Substituting (6.7) into (6.5), we have

un+1 =
∞∑

k=0

(l∆t)k

k!

(
Lkun+1−l +

k−1∑
j=0

Lk−1−jN
(j)
n+1−l

)
,

=
∞∑

k=0

Lkun+1−l
(l∆t)k

k!
+

∞∑
k=0

k−1∑
j=0

Lk−1−jN
(j)
n+1−l

(l∆t)k

k!
, (6.8)

= el∆tLun+1−l +
∞∑

k=0

k∑
j=0

Lk−jN
(j)
n+1−l

(l∆t)k+1

(k + 1)!
. (6.9)

Changing the order of summation of the second term in (6.9), we obtain

∞∑
k=0

k∑
j=0

Lk−jN
(j)
n+1−l

(l∆t)k+1

(k + 1)!
=

∞∑
j=0

N
(j)
n+1−l

∞∑
k=j

Lk−j (l∆t)k+1

(k + 1)!
,

=
∞∑

j=0

N
(j)
n+1−l(l∆t)

j+1

(
1

(l∆tL)j+1

∞∑
k=j+1

(l∆tL)k

k!

)
,

=
∞∑

j=0

N
(j)
n+1−l(l∆t)

j+1Qj+1(l∆tL), (6.10)
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where

Qj(x) :=
ex − Ej(x)

xj
(6.11)

and

Ej(x) :=

j−1∑
k=0

xk

k!
. (6.12)

Substituting (6.10) into (6.9), we have

un+1 = el∆tLun+1−l + ∆t
∞∑

j=0

N
(j)
n+1−ll

j+1(∆t)jQj+1(l∆tL). (6.13)

Back to (6.4), we expand Nn+1 and Nn−m in the Taylor series at the time level tn+1−l

Nn+1 =
∞∑

j=0

N
(j)
n+1−l

(l∆t)j

j!
, (6.14)

Nn−m =
∞∑

k=0

N
(j)
n+1−l

((l −m− 1)∆t)j

j!
. (6.15)

Substituting into (6.4), we have

un+1 = el∆tLun+1−l + ∆t

(
γ

∞∑
j=0

N
(j)
n+1−l

(l∆t)j

j!
+

M−1∑
m=0

βm

∞∑
j=0

N
(j)
n+1−l

((l −m− 1)∆t)j

j!

)
,

= el∆tLun+1−l + ∆t

[
∞∑

j=0

N
(j)
n+1−l

∆tj

j!

(
ljγ +

M−1∑
m=0

βm(l −m− 1)j

)]
. (6.16)

Comparing equations (6.16) and (6.13) shows

Qj+1(l∆tL) =
1

lj+1j!

(
ljγ +

M−1∑
m=0

βm(l −m− 1)j

)
(6.17)

which holds for j = 0, 1, . . . ,M in the implicit case, and j = 0, 1, . . . ,M − 1 in the explicit

case.

As an example, if we choose l = 1 and M = 3, then

Qj+1(∆tL) =
1

j!

(
γ + (−1)j

2∑
m=0

βmm
j

)
. (6.18)

For j = 0, 1, 2, 3, we have

Q1(∆tL) = γ +
2∑

m=0

βm, (6.19)

Q2(∆tL) = γ − 1
2∑

m=0

βmm, (6.20)
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Q3(∆tL) =
1

2

(
γ +

2∑
m=0

βmm
2

)
, (6.21)

Q4(∆tL) =
1

6

(
γ −

2∑
m=0

βmm
3

)
(6.22)

Solving (6.19) to (6.22) we get

γ = Q2(∆tL)/3 +Q3(∆tL) +Q4(∆tL)

β0 = Q1(∆tL) +Q2(∆tL)/2− 2Q3(∆tL)− 3Q4(∆tL)

β1 = −Q2(∆tL) +Q3(∆tL) + 3Q4(∆tL)

β2 = Q2(∆tL)/6−Q4(∆tL)

Since the coefficients of the ELP schemes are obtained in terms of the operator Qj(l∆tL), it is

therefore necessary to perform accurately its computation and hence avoid the computation of

(l∆tL)−1 . In [9], the authors used the method of scaling and squaring. They first observed that

Q0(2x) = Q2
0(x), (6.23)

and thereafter they performed the computation of Q0(2
−nl∆tL) using the Taylor expansion where

n is an integer chosen so that the largest singular value of 2−nl∆tL is less than one. Finally, the

matrix obtained from the Taylor expansion is then squared n times to get the desired result. The

same method may be applied to compute Qj(l∆tL), j = 1, 2, . . . ,for any finite j.

6.2 Evaluating Functions in Wavelet Bases

In this section, we assume thatNu ≡ N f(u). Therefore we are concerned with the representation

of the function f(u) into the wavelet domain, where f is an analytic function. If u and f(u) ∈ V0,

we may write

u(x) =
∑

k

s0
kϕ(x− k), (6.24)

and

f(u) =
∑

k

f(s0
k)ϕ(x− k), (6.25)
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with an additional assumption that the scaling function is interpolating so that

s0
k = u(k). (6.26)

In what follows we show how to evaluate f(u) without considering the assumption that the scaling

function is interpolating. We begin to represent f(u) = u2, and then extend to general f(u).

Let Pju and Qju be the orthogonal projections of u into the subspaces Vj and Wj for j =

0, 1, 2, . . . , J ≤ n, respectively. Let jf be the finest scale for which u has significant wavelet

coefficients (i.e., coefficients greater than some ε in the l∞-norm). Then the projection of u may

be expressed as

(P0u)ε(x) =
J∑

j=jf

∑
{k:|dj

k|>ε}

dj
kψj,k(x) +

∑
k∈F

2n−J

sJ
kϕJ,k(x), (6.27)

where F2n−J = {0, 1, . . . , 2n−J − 1}.

The expansion of ((P0u)ε)
2 in a ’telescopic’ series is given by

((P0u)ε)
2 − (PJu)

2 =
J∑

j=jf

(Pj−1u)
2 − (Pju)

2. (6.28)

Using the fact that Pj−1 = Pj +Qj we have

((P0u)ε)
2 = (PJu)

2 +
J∑

j=jf

2(Pju)(Qju) + (Qju)
2. (6.29)

To evaluate (6.29), one needs to compute (Pju)(Qju), (Qju)
2, and (PJu)

2. However, the

computation of these terms may present a difficulty due to the fact that they may not necessarily

belong to the same subspace as their respective multiplicands. Therefore, we may handle this

situation by using the definition of Vj and Wj, and consider Pju ∈ Vj ⊂ Vj−j0 and Qju ∈

Wj ⊂ Vj−j0 for some j0 ≥ 1. Hence, for a given accuracy ε and an appropriately chosen j0,

(PJu)
2, (Pju)(Qju), and (Qju)

2 belong to the same subspace Vj−j0 , and are evaluated using

(6.25) for finite k. In order to determine j0, we consider the case j = 0 and assume that
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u ∈ V0 ⊂ V−j0 . Then we have

s−j0
l = 2j0/2

∫
R
u(x)ϕ(2j0x− l)dx,

=
2j0/2

2π

∫
R
û(2j0ξ)ϕ̂(ξ)eiξldξ,

=
2j0/2

2π

∑
k∈Z

∫ π

−π

û(2j0(ξ + 2πk))ϕ̂(ξ + 2πk)eiξldξ. (6.30)

Since u ∈ V0, for any ε > 0 there is a j0 such that the infinte sum in (6.30) may be approximated

to within ε by k = 0 term

s−j0
l =

2j0/2

2π

∫ π

−π

û(2j0ξ)ϕ̂(ξ)eiξldξ. (6.31)

Before evaluating (6.31), we recall that a scaling function ϕ(x) has M shifted vanishing moments

if and only if
∫

R(x − α)mϕ(x)dx = 0, where α =
∫

R xϕ(x)dx [16]. Using (2.1) and taking the

mth partial derivative with respect to ξ, we can write

∂m

∂ξm
e−iξαϕ̂(ξ) =

∂m

∂ξm

(∫
R
ϕ(x)eiξ(x−α)dx

)
,

= (i)me−iξα

∫
R
(x− α)mϕ(x)eiξxdx. (6.32)

Evaluating (6.32) at ξ = 0, we have∫
R
(x− α)mϕ(x)dx =

1

(i)m

∂m

∂ξm
e−iαξϕ̂(ξ)

∣∣∣∣
ξ=0

= 0,

so
1

(i)m

∂m

∂ξm
ϕ̂(ξ)e−iαξ

∣∣∣∣
ξ=0

= 0, (6.33)

and (see Lemma 2.2)

ϕ̂(ξ)e−iαξ
∣∣∣
ξ=0

= 1, (6.34)

for m = 1, 2, . . . ,M .

Expanding ϕ̂(ξ)e−iαξ in a Taylor series about ξ = 0 gives according to (6.34) and (6.33)

ϕ̂(ξ)e−iαξ = 1 +
ξM+1

(M + 1)!

∂M+1

∂ξM+1
ϕ̂(ξ)e−iαξ

∣∣∣∣
ξ=z

, (6.35)

for some z ∈ (0, ξ). Substituting (6.35) in (6.31) yields

s−j0
l =

2j0/2

2π

∫ π

−π

û(2j0ξ)eiξ(l+α)dξ + EM,j0 ,
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where

EM,j0 =
2j0/2

2π

∫ π

−π

û(2j0ξ)eiξ(l+α)ξM+1 ∂
M+1

∂ξM+1

(
ϕ̂(ξ)e−iαξ

)∣∣∣∣
ξ=z

dξ. (6.36)

Clearly, the error EM,j0 of the Taylor expansion is dependent on the choice of j0.

It remains to compute (PJu)
2, (Pju)(Qju), and (Qju)

2 in Vj−j0 . To this end, we define the

reconstruction (representation) operators Rv and Rw respectively by

Rj,j0
v : Vj → Vj−j0 ,

Rj,j0
w : Wj → Vj−j0 ,

We may then compute the projections

(Pj−j0u)
2 = 2(Rj,j0

v (Pju))(Rj,j0
w (Qju)) + (Rj,j0

w (Qju))
2, (6.37)

for j = jf , jf + 1, . . . , J − 1, and on scale J we compute

(Pj−j0u)
2 = (Rj,j0

v (PJu))
2 + 2(Rj,j0

v (PJu))(Rj,j0
w (QJu)) + (Rj,j0

w (QJu))
2. (6.38)

We evaluate the right-hand sides of (6.37) and (6.38) in Vj−j0 to obtain the values of Pj−j0u
2,

and then project this result back into the wavelet basis, for j = jf , jf + 1, . . . , J .

For more a general analytic function f(u) we may apply the above procedure with the assumption

that f(P0u) ∈ V0, and use the ’telescopic’ series

f(P0u)− f(PJu) =
J∑

j=1

f(Pj−1u)− f(Pju). (6.39)

Using Pj−1 = Pj +Qj and the Taylor expansion for an analytic function gives

f(Pju+Qju) =
N∑

n=0

f (n)(Pju)

n!
(Qju)

n + Ej,N(f, u), (6.40)

and hence

f(P0u) = f(PJu) +
J∑

j=1

N∑
n=0

f (n)(Pju)

n!
(Qju)

n + Ej,N(f, u). (6.41)

For a given accuracy ε one can find N such that |Ej,N(f, u)| < ε.
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6.3 Numerical Results

We consider the heat equation given byut = νuxx 0 ≤ x ≤ 1,

u(0, t) = u(1, t) 0 ≤ t ≤ 1,

(6.42)

for ν > 0, with the initial condition

u(x, 0) = u0(x) =

x, 0 ≤ x ≤ 1/2,

1− x, 1/2 ≤ x ≤ 1.

(6.43)

We solve the problem using the Crank-Nicolson scheme (see (4.11) Chapter 4) and the wavelet

method described above with ν = 1. As we can see in Figure 6.1, due to the irreguralities at the

points {0, 1/2, 1} in the initial condition, the Crank-Nicolson scheme generates a slow decay peak

at these points rather than reproduce the smooth behaviour of the solution as seen in Figure 6.2

using wavelets (Daubechies wavelets of order 6).

Figure 6.1: The solution of problem (6.42) with initial condition given in (6.43) computed using

Crank-Nicolson scheme for several values of time t where ∆t = 2−8
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Figure 6.2: The solution of problem (6.42) with initial condition given in (6.43) computed in the

wavelet domain for several values of time t where ∆t = 2−8.

We consider again problem (6.42) with initial condition given by

u(x, 0) = u0(x) = sin(2πx). (6.44)

The exact solution of problem (6.42) and (6.44) is

u(x, t) = u0(x)e
−4π2t. (6.45)

The solution computed in the wavelet domain is shown in Figure 6.3.

We compare the norm-2 of the error for the Crank-Nicolson scheme in Figure 6.4(a) and the

wavelet method in Figure 6.4(b).
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Figure 6.3: The solution of the problem (6.42) with u0(x) given in (6.44) computed in the wavelet

domain for several values of time t where ∆t = 2−8.

(a) Crank-Nicolson scheme (b) The wavelet method

Figure 6.4: The norm-2 of the error.
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We consider the Burger’s equation given byut = νuxx − uux 0 ≤ x ≤ 1,

u(0, t) = u(1, t) 0 ≤ t ≤ 1,

(6.46)

for ν > 0, with the initial condition

u(x, 0) = u0(x) = sin(2πx). (6.47)

We solve the non-linear problem (6.46) in the wavelet domain (see Figure 6.5), where ν = 0.001,

∆t = 0.001, n = 10, J = 5 and ε = 10−6. In Figure 6.5(a), the solution is computed from t = 0

to t = 22/1000, and the initial condition is represented by red dash. The Gibbs phenomena is

manifested in Figure 6.5(b), where the time interval is [0, 30/1000].

(a) (b)

Figure 6.5: Solution of the problem (6.46) computed at every four time step.



7. Conclusion

In this thesis we have focused on the study of wavelets according to the following broad categories.

We have given an overview of wavelet theory with emphasis on compactly supported wavelets, in

particular the Haar wavelets and Daubechies wavelets. Thereafter, we have proceeded to the pro-

jection of some matrices and well-known operators using the standard form and the non-standard

form.

Finally, we have discussed some application of wavelets to linear algebra and to differential equa-

tions. In linear algebra, our main interest is to use wavelet bases for solving sparse linear systems.

We have shown that wavelet bases produce a well-conditioned system and also permit the nu-

merical construction of the Green function, since it admits a sparse representation in this domain.

Concerning differential equations, we have used wavelet bases to approximate the solution of dif-

ferential equations by following two approaches which are the wavelet Galerkin method developed

by Amaratunga et al. and the wavelet collocation discussed by Bertoluzza et al., in which the

autocorrelation functions generated by the scaling functions have been used to approximate the

solution. In the wavelet Galerkin method, the authors have implemented their method only to

equations of the Helmholtz type, but we have attempted to apply their method to equations of

the form Lu = f , where L is a linear differential operator. For the evolution equations, we have

followed Beylkin et al.’s approach, where the differential equation is transformed to an integral

equation so that we may represent the exponential operator in the wavelet domain.

For the future work, we will investigate the use of wavelets defined on the interval in the numerical

solution of partial differential equations.
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1991.

[26] J.H. Bramble, J.E. Pasciak and J. Xu. Parallel multilevel preconditioners. Math. Comput.,

55(191):1–22, 1990.

[27] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations.

Springer-Verlag, 1983.

[28] W. Proskurowski and O. Widlund. On the numerical solution of Helmhotz’s equation by the

capacitance matrix method. Mat. Comp., 30(135):433–468, 1976.

[29] K. Amaratunga, J.R. Williams, S. Qian and J. Weiss. Wavelet-galerkin solutions for one-

dimensional partial difierential equations. International Journal for Numerical Methods in

Engineering, 37, 1994.

[30] M. Rasajski. Preconditionning in a wavelet basis and its application to some boundary

problems. pages 64–85. Pub.Elektrotehn. Fak., Univ. Beograd, Ser. Mat. (14)2003.

[31] A. Latto, H.L. Resnikoff and E. Tenenbaum. The evaluation of connection coefficients of

compactly supported wavelets. In Proceedings of the French-USA. Workshop on Wavelets

and Turbulence. Springer-Verlag, 1992, Princeton Univ, June 1991.

[32] R.L. Schult and H.W. Wyld. Using wavelets to solve the burgers equation: A comparative

study. Phys. Rev. A, 46(12):7953–7958, Dec 1992.


