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Abstract

One of the most interesting features of fragmentation models is a possibility to breach
the mass conservation principle through ‘shattering’; that is, the formation of a dust of
‘zero-size’ particles. A similar phenomenon may occur in the evolution of the number
of particles in the system which, to some extent, is intertwined with the evolution of
its total mass. To investigate these phenomena we consider the fragmentation equation
in the space of densities yielding both a finite number of particles and a finite mass of
the ensemble, and show, in particular, that in a non-shattering fragmentation typically
one can control the total number of particles in the system. On the other hand, in
the shattering fragmentation both mass and particles can disappear from the system.
A possible explanation of such cases is that the fragmentation equation alone does not
offer the full description of the dynamics of the problem.

We extend existing results on coagulation-fragmentation to some models with fragmen-
tation rate unbounded at 0 and growing faster than the size x at infinity. We investigate
the dynamical behavior of coagulation - multiple fragmentation processes in biological
populations. In particular, we prove existence and uniqueness of conservative solutions
for general b(x|y), (where b(x|y) is a non-negative measurable function describing the
distribution of particles of size x spawned by the fragmentation of a particle of size y)
and arbitrary fragmentation rate a.

A kinetic-type nonlinear integro-differential equation describing the evolution of ag-
gregates of phytoplankton is analyzed. For single cells growth rate (b(x0) > 0), the
McKendrick-von Foerster renewal boundary condition is prescribed to incorporate the
effects of cell division. We make use of substochastic semigroup perturbations techniques
and semilinear abstract Cauchy problems theory to determine the existence of a strong
solution to the evolution equation. In particular, we provide sufficient conditions for
honesty of the model.

An initial-value problem describing multiple fragmentation processes, where the frag-
mentation rate is size-position dependent and new particles are spatially randomly dis-
tributed according to some probability density is investigated by means of substochastic
semigroup theory and approximation techniques. The existence of a semigroup is estab-
lished and, under natural conditions on certain coefficients, the generator of this semi-
group is identified. In particular we prove the existence and uniqueness of nonnegative
mass-conserving solutions and provide sufficient conditions for honesty.
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Chapter 1

Introduction

In many ramifications of applied sciences, the evolution of a dynamical system is de-
scribed by a concentration function (t, ξ) → u(t, ξ), where t is the time and ξ is an
element of some state space Ω which identifies an individual uniquely. The function u is
then interpreted as the probability (density) of finding an individual which at the time
t enjoys the property ξ. An intrinsic property of the dynamical process is that all the
particles must be accounted for or, in other words:

∫

Ω

u(t, ξ)dµξ =

∫

Ω

u(0, ξ)dµξ, (1.1)

for any time t, where dµξ is an appropriate measure in the state space. Therefore from
the physical point of view, the natural spaces for studying such problems are L1 spaces.
In fragmentation-coagulation theory, ξ could be for example the mass of a particle, its
spatial location or a combination of the above. In this chapter we introduce several
mathematical models that we intend to examine via the theory of semigroups of linear
operators and the theory of evolution systems.

1.1 Pure fragmentation

Fragmentation processes can be observed in natural sciences and engineering. To pro-
vide just a few examples we mention the study of stellar fragments in astrophysics, rock
fracture, degradation of large polymer chains, DNA fragmentation, evolution of phy-
toplankton aggregates, liquid droplet breakup or breakup of solid drugs in organisms.
Though mathematical study of fragmentation processes can be traced back to papers by
Melzak [44] (from the analytical point of view) and Filippov [33] (from the probabilistic
one), it was not until the 1980s that a systematic investigation of them was undertaken,
mainly by Ziff and his students, e.g. [55, 56], who provided explicit solutions to a large
class of fragmentation equations of the form

∂

∂t
u(t, x) = −a(x)u(t, x) +

∫ ∞

x

a(y)b(x|y)u(t, y)dy, x ≥ 0, t > 0, (1.2)

1
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with power law fragmentation rates a(x) = xα, α ∈ R and where b(x|y), the distribution
of particle masses x spawned by the fragmentation of a particle of mass y > x, also was
given by a power law

b(x|y) = (ν + 2)
xν

yν+1
, (1.3)

with ν ∈ (−2, 0] (see also [41] for a more detailed discussion of this case). Here u(t, x) is
the density of particles having mass x at time t.

Later a comprehensive probabilistic theory of fragmentation processes was developed
by Bertoin and Haas, see e.g. [22, 23, 24, 35, 36], while a development of functional-
analytic methods and, in particular, of the semigroup theory, helped to put many earlier
phenomenological results on a firm mathematical ground, see e.g. [16, 10, 11, 15, 19, 26,
43].

Fragmentation processes are difficult to analyze as they involve evolution of two inter-
twined quantities: the distribution of mass among the particles in the ensemble and
the number of particles in it. That is why, though linear, they display nonlinear fea-
tures such as phase transition which, in this case, is called shattering and consists in
the formation of a ‘dust’ of particles of zero size carrying, nevertheless, a non-zero mass.
Quantitatively we can identify this process by disappearance of mass from the system
even though it is conserved in each fragmentation event. Probabilistically, shattering
is an example of an explosive, or dishonest Markov process, see e.g. [6, 45] and from
this point of view it has been exhaustively analyzed in [22, 23, 24, 33, 35, 36, 54]. In
natural sciences shattering was rediscovered in [57] where the loss of mass was noticed
by analyzing explicit solutions of fragmentation equations with power-law fragmentation
rates. In a general case shattering was explained analytically in [16, 13, 10, 11] by linking
it to the characterization of the generator of the dynamical system associated with the
fragmentation process; these results were compared with the probabilistic approach in
[15].

If u is a solution to (1.2), the total mass of the ensemble at a time t is given by the first

moment of u; that is, M(t) =

∫ ∞

0

xu(t, x)dx. From the physical point of view the total

mass of fragmenting particles cannot increase, thus fragmentation equations are usually
investigated in the space

X1 := L1(R+, xdx) =

{
u;

∫ ∞

0

|u(x)|xdx < +∞
}

. (1.4)

The reason for this is that the process in this space should be dissipative which typically
results in simpler analysis. However, as we mentioned earlier, fragmentation events result
in an increase of number of particles in the system, which is not tracked by the norm
in X1. Apart from an inherent interest in knowing how the number of particles evolves,
there is also a practical angle to this question: fragmentation events are often coupled
with, in some sense reverse to, coagulation processes which are most easily analyzed in
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the finite number of particles space:

X0 := L1(R+, dx) =

{
u;

∫ ∞

0

|u(x)|dx < +∞
}

. (1.5)

Hence, analysis of the combined fragmentation-coagulation equation requires well posed-
ness of the fragmentation equation in

X0,1 := L1(R+, (1 + x)dx) =

{
u;

∫ ∞

0

|u(x)|(1 + x)dx < +∞
}

. (1.6)

Nonlocal fragmentation models are investigated in detail in Chapter 6. A special empha-
sis is placed on the honesty of these models. We recover some fundamental properties
from local fragmentation models.

1.2 Coagulation fragmentation equations (CFE)

Coagulation-fragmentation processes describe the evolution of systems in which particles
react in either fusing together or breaking apart. The first pure coagulation equation was
derived in the early part of the twentieth century by Smoluchowski [52, 53] who applied
the theory of Brownian motion to the problem of the collision of hard, non-interacting
spheres which are thermally agitated in a continuum. The problem was considered as
a diffusion process and the approach resulted in a discrete model involving an infinite
set of non-linear differential equations. In the late 1920s, Muller extended the results of
Smoluchowski by considering a continuous mass density function. As a result, this was
probably the first instance in which the pure coagulation was considered as a continuous
problem and modelled as an integro-differential equation.

The fragmentation equation was introduced into the models of evolving systems in the
1950s. The coagulation-fragmentation equation was first derived by Melzak [44] in 1957.
The equation was formulated in such a way as to ensure that mass was a conserved
quantity. The equation had the form

∂

∂t
u(t, x) =− u(t, x)

∫ x

0

y

x
γ(x, y)dy +

∫ ∞

x

γ(y, x)u(t, y)dy

+
1

2

∫ x

0

k(x− y, y)u(t, x− y)u(t, y)dy,

− u(t, x)

∫ ∞

0

k(x, y)u(t, y)dy,

(1.7)

where u(t, x) represented the density of particles of mass x at time t. We recall that
in the continuous version it is assumed that the number of particles is large enough to
justify the use of a density function u(t, x). The product u(t, x)dx is then the average
number of particles with mass in the interval (x, x + dx) at time t. The fragmentation
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kernel, γ(x, y), describes the rate at which particles of mass y are produced from the
fragmentation of particles of size x and the coagulation kernel, k(x, y), describes the
rate at which particles of mass x coalesce with particles of mass y. The fragmentation
kernel γ, introduced above, is often referred to as the multiple fragmentation kernel as
this model allows for particles to split into many pieces at each fragmentation process.
In his work, Melzak assumed that

(i) k(x, y) is a continuous, symmetric, non-negative, bounded function;

(ii) γ(x, y) is a continuous, non-negative, bounded function.

Furthermore, solutions u(t, x) to the coagulation-fragmentation equation were sought in
the form

u(t, x) =
∞∑

n=0

an(x)tn, (1.8)

for some sequence of functions an, n = 0, 1, .... Under these assumptions, global
existence and uniqueness of continuous, non-negative, bounded solutions to (1.7) were
established. Melzak also obtained results on the solution of the coagulation fragmenta-
tion equation for the case in which the kernels, γ and k, are time-dependent. Various
results on the existence, uniqueness and asymptotic behavior of solutions have been
established under appropriate hypothesis on the kernels and many distinct approaches
have been used to obtain them. The case where the fragmentation and coagulation ker-
nels are both constant has been analyzed via semigroup techniques by Aizenman and
Bak [5]. Asymptotic analysis of coagulation-fragmentation equations may be found in
[29], [39] and [51]. In [39], Philippe Laurençot investigated a model for the dynamics of
a system of particles undergoing simultaneously coalescence and break-up. The equa-
tion describing his model was similar to (1.7). He showed existence of solutions to the
corresponding evolution integral partial differential equation for product-type coagula-
tion kernels with a weak fragmentation. Further information on the development of the
coagulation-fragmentation equation may be found in the comprehensive review article
by Drake [28]. Although fragmentation equations are often studied in a form involv-
ing a single multiple fragmentation kernel, it is also possible to write the fragmentation
operator in terms of rate functions. We define the rate functions a and b, via

a(x) :=

∫ x

0

y

x
γ(x, y)dy (1.9)

and

b(x|y) :=
γ(y, x)

a(y)
(1.10)

respectively where (1.9) describes the overall rate of break-up of an x-particle and (1.10)
denotes the distribution of particles of size x formed during the break-up of larger par-
ticles of size y. This formulation coincides with the fragmentation problem derived by
McGrady and Ziff [55, 56, 57] and will be used in the thesis. Note that b(x|y) = 0 for
y < x as it is not physically possible for a solid of size x > y to be produced during the
break-up of a y-sized solid.
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1.3 Phytoplankton aggregates

Phytoplankton is a generic name for a great variety of micro-organisms (algae) that
live in the ocean and in lakes. Phytoplankton populations are large contributors to the
production in the ocean. They are, in particular, the main food available to the early
larval stages of many fish species, including the anchovy. An important observation is
that phytoplankton cells tend to form aggregates; that is, groups of cells living together.
In phytoplankton dynamics, a system of particles called TEP (Transparent Exopolymer
Particles) play a major role. They are a by-product of the growth of phytoplankton and
their stickiness causes that cells will remain together upon contact [27, 47]. On the other
hand, the low level of concentration of TEP results in fragmentation of the aggregate
due to external causes, like currents or turbulence on one hand, and internal unspecified
forces of biotic nature on the other. The distribution of aggregates can be studied at
different levels. Individual-based models, which can be thought of as providing ‘micro-
scopic’ properties, track the random motion and division of individual particles [50]. A
‘macroscopic’ description known to ecologists by advection-diffusion -reaction equations
works with approximations of densities by empirical concentrations of particles [40] and
is heavily used in simulations [4]. The model which we study in this thesis was consid-
ered by O. Arino and R. Rudnicki in [14]. It can be looked at as lying somewhere in
between, on a ‘mesoscopic’ scale, in that it describes the role played by the phytoplank-
ton aggregates of cells which are treated as individual building blocks of the system. The
aggregates are structured by size and the phytoplankton consists of aggregates of all pos-
sible sizes. The aggregate size can change due to splitting, death, growth or combining
of aggregates into bigger ones. To include the effects of cell division, we incorporate the
McKendrick-von Foerster renewal condition. The resulting model consists of a partial
differential equation with two integral terms responsible for the fragmentation and co-
agulation processes, the McKendrick-von Foerster renewal boundary condition and the
initial condition.

1.4 Outline of thesis

The purpose of this thesis is to develop and expand existing results on various problems
related to the coagulation-fragmentation equation. This work has been carried out using
techniques from functional analysis and the theory of semigroups of operators. In spite of
the fact that many of the methods which we apply are relatively well known, our analysis
often required some possibly less familiar results. Hence, in Chapter 2 a discussion of
these subsidiary results is given.

The aim of Chapter 3 is to examine (1.2) in the space X0,1 for arbitrary fragmentation
rate a and a class of separable b(x|y) which is more general than (1.3). Of particular
interest is honesty of the process in X0,1; that is, whether the evolution of the mass and
number of particles, given by the solution u to (1.2), coincides with the one predicted
by the local laws (3.6) and (3.7), used to construct (1.2). One of the main results is



CHAPTER 1. INTRODUCTION 6

that (1.2) is well-posed and honest in X0,1 for fragmentation rate a bounded at 0 and
with b yielding a finite number of daughter particles at 0. On the other hand, shattering
fragmentation (corresponding, roughly speaking, to a unbounded at 0) is associated with
an accelerating infinite cascade of fragmentation events of smaller and smaller particles
leading to the creation of dust. Hence, intuitively, in shattering fragmentation we should
observe the appearance of an infinite number of particles. We shall demonstrate that
this intuition is not necessarily correct. Another counterintuitive result observed in this
chapter is related to the case when the number of daughter particles produced in each
fragmentation event is infinite and, at the same time, the fragmentation is strongly
shattering (e.g. if ν ∈ (−2, 1] and α < −1 in the power law case). Despite this, we
observe that we still have evolution in X0,1 (at least for a class of initial densities).

Under the assumption that the fragmentation rate is linearly bounded, an existence
result for the fragmentation-coagulation model was obtained by Lamb, McBride and
McLaughlin in their paper [42]. In Chapter 4, we make use of the analysis performed
in Chapter 3 for a separable kernel b(x|y) = β(x)γ(y) to expand this result to general
fragmentation rates. In the real world there is always a lowest size of objects beyond
which a particle cannot reach without encountering quantum effects. As a result, it is
realistic to assume that in some populations the individual size is in the range (x0,∞)
for some x0 > 0. With this assumption, the work done in Chapter 3 for the separable
kernel b(x|y) can be extended to arbitrary b(x|y) including b(x|y) = y−1h(x/y) for some
suitable function h. In particular, we prove existence and uniqueness of conservative
solutions for the coagulation-fragmentation equation.

In Chapter 5, we present a theoretical model for phytoplankton dynamics. It consists of
a kinetic-type nonlinear integro-differential equation with two integral terms responsible
for the ‘multiple’ fragmentation and coagulation processes, the McKendrick-von Foerster
renewal boundary condition and the initial condition. In the derivation of the model, a
new coagulation kernel is formulated. We make use of substochastic semigroup meth-
ods, perturbations techniques and semilinear abstract Cauchy problems theory to show
the existence of a strong solution to the evolution equation. In particular, we provide
sufficient conditions for honesty of the model.

Chapter 6 revolves around nonlocal fragmentation models. The work contained in this
chapter is noteworthy as no previous results are known to exist for ‘honesty’ in nonlocal
fragmentation models. Newborn particles are spatially randomly distributed according
to some probability density function and the fragmentation rate depends on the size of
the particle and its spatial location. The existence of a semigroup is established and,
under natural conditions on the kernels, the generator of this semigroup is identified.
In particular we prove the existence and uniqueness of nonnegative mass-conserving
solutions and provide sufficient conditions for honesty.



Chapter 2

Preliminary and Auxiliary Results

In this chapter, we gather results, definitions and theorems which will be used in our
later analysis. For much of this thesis we shall apply techniques from the calculus of
vector-valued functions and so we begin by giving a brief introduction to some functional
analysis concepts which will be used in subsequent chapters.

2.1 Calculus of vector-valued functions and Banach

lattices

2.1.1 Spaces and opeartors

Definition 2.1.1.

A vector-valued function u from some abstract set I to a Banach space X is a mapping
t → u(t) from I into X, where to each point t ∈ I there corresponds a unique vector
u(t) ∈ X.

In the case where the Banach space is the space of bounded linear operators from X into
Y , denoted by L(X,Y ) with norm ‖ · ‖L(X,Y ), we call the function an operator valued
function. (When X = Y we write L(X) with norm ‖ · ‖L(X).)

Definition 2.1.2. (Strong Derivative)

Let X be a Banach space with norm ‖·‖X and let the function u be an X-valued function

of t ∈ [0,∞). Then the strong derivative
du(t)

dt
of u at t > 0 is defined to be an element

u(t) such that
lim
h→0

‖h−1[u(t + h)− u(t)]− u(t)‖X = 0 (2.1)

provided that the limit exists.

7
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Definition 2.1.3.

Let Π denote any partition a = t0 < t1 < t2... < tn = b of the closed interval [a, b]
together with the arbitrary points sk ∈ [tς−1, tς ], ς = 1, 2, ..., n and let the norm |Π| =
max

ς
(tς − tς−1). If, for a vector-valued function u : [a, b] → X, there exists v ∈ X

(independently of the manner in which |Π| → 0+) such that

lim
|Π|→0+

∥∥∥∥∥
n∑

ς=1

u(sς)(tς − tς−1)− v

∥∥∥∥∥
X

= 0,

then v is the strong Riemann integral and is denoted by

∫ b

a

u(t)dt.

Theorem 2.1.4.

If u is a strongly continuous vector-valued function on [a, b] to X, then the strong Rie-
mann integral over [a, b] exists. Moreover, if A : X ⊇ D(A) → Y is a closed linear
operator, u(t) ∈ D(A) for each t ∈ [a, b] and if Au is strongly continuous on [a, b], then

A

[∫ b

a

u(t)dt

]
=

∫ b

a

[Au](t)dt.

Proof. [34, Theorem 3.3.2].

Definition 2.1.5.

A Banach space X is of type L if it consists of equivalence classes of numerically-valued
functions defined on a set Ω and if it has the following two properties:

(i) If u is a continuous X-valued function defined on I = [α, β], then there exists a
function ψ measurable on the product I × Ω such that u(t) = φ(t, ·) for each t ∈ [α, β].
Note u(t) = ψ(t, ·) means equality in X.

(ii) If u is continuous on I = [α, β] and ψ is any function that is measurable on I ×Ω
and satisfies u(t) = ψ(t, ·) for each t ∈ [α, β], then

[∫ β

α

u(t)dt

]
(·) =

∫ β

α

ψ(t, ·)dt, (2.2)

where the integral on the left-hand side is the abstract Riemann integral and the integral
on the right-hand side is the Lebesgue integral of numerically-valued functions.

Theorem 2.1.6. Any space Lp(Ω), 1 ≤ p < ∞ is of type L.

Proof. [16, Theorem 2.39].
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Theorem 2.1.7.

Let X be a Banach space of type L. If u is a vector-valued function on I = [a, b] to X and
if u is n-times continuously strongly differentiable, then there exists a numerically-valued
function v measurable on I × Ω such that

(i) for 0 ≤ s ≤ n− 1,
∂s

∂ts
v(t, x) is absolutely continuous for each x ∈ Ω and

∂s

∂ts
v(t, ·) =

[
ds

dts
u(t)

]
(·)

for each t ∈ I;

(ii)
∂n

∂tn
v(t, x) exists almost everywhere in I × Ω and

∂n

∂tn
v(t, ·) =

[
dn

dtn
u(t)

]
(·)

for almost all t ∈ I.

Proof. See [34, Theorem 3.4.2].

Note that in case the Banach space X is a space of numerically-valued functions de-

fined on some abstract set Ω, the relation between the differential equation
d

dt
u(t) =

g(t, u(t)) (in strong sense) and the partial differential equation
∂

∂t
u(t, x) = g(t, u(t, x))

depends on the nature of X.

Theorem 2.1.8.

Let {ψn} be a Cauchy sequence in Lp(Ω) that converges strongly to ψ. Then there exists
a subsequence {ψnς} that converges pointwise almost everywhere on Ω to a limit function
ψ.

Proof. See [48, Corollary 5.11].

Theorem 2.1.9.

Let {ψn} be a sequence of Lebesgue-integrable functions over Ω ⊆ Rn such that

(i) {ψn} increases almost everywhere on Ω;

(ii) limn→∞
∫
Ω

ψn(x)dx exists.

Then {ψn} converges almost everywhere to a limit function ψ ∈ L1(Ω) and

lim
n→∞

∫

Ω

ψn(x)dx =

∫

Ω

ψ(x)dx.

Proof. See [7, Theorem 10.24].
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2.1.2 Banach lattices and positive operators

Definition 2.1.10.

Let X be an arbitrary set. A partial order (or simply, an order) on X is a binary relation,
denoted here by ‘ ≥’, which is reflexive, transitive, and antisymmetric, that is,

(1) x ≥ x for each x ∈ X;

(2) x ≥ y and y ≥ x imply x = y for any x, y ∈ X;

(3) x ≥ y and y ≥ z imply x ≥ z for any x, y, z ∈ X.

Definition 2.1.11.

An ordered vector space is a vector space X equipped with partial order which is compatible
with its vector structure in the sense that

(4) x ≥ y implies x + z ≥ y + z for all x, y, z ∈ X;

(5) x ≥ y implies αx ≥ αy for any x, y ∈ X and α ≥ 0.

The set X+ = {x ∈ X; x ≥ 0} is referred to as the positive cone of X.

We say that X is a lattice if every pair of elements (and so every finite collection of
them) has both supremum and infimum.

If an ordered vector space X is also a lattice, then it is called a vector lattice or a Riesz
space. Typical examples of Riesz spaces are provided by spaces of functions. If X is a
vector space of real-valued functions on a set Ω, then we can introduce a pointwise order
in X by saying that f ≤ g in X if f(x) ≤ g(x) for any x ∈ S. Equipped with such
an order, X becomes an ordered vector space. We recall that if Ω is a measure space,
then all above considerations are valid when the pointwise order is replaced by f ≤ g if
f(x) ≤ g(x) almost everywhere. With this understanding, L0(Ω) and Lp(Ω) spaces with
1 ≤ p ≤ ∞ become function spaces and are thus Riesz spaces.

For an element x in a Riesz space X we can define its positive and negative part, and
its absolute value, respectively, by

x+ = sup{x, 0}, x− = sup{−x, 0}, |x| = sup{x,−x}.
Proposition 2.1.12.

If x is an element of a Riesz space, then

x = x+ − x−, |x| = x+ + x−

Thus, in particular, the positive cone in a Riesz space is generating.

Proof. See [16, Proposition 2.46].

In the next step, we investigate the relation between the lattice structure and the norm
when X is both a normed and an ordered vector space.
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Definition 2.1.13.

A norm on a vector lattice X is called a lattice norm if

|x| ≤ |y| implies ‖x‖ ≤ ‖y‖. (2.3)

A Riesz space X complete under a lattice norm is called a Banach lattice.

Property (2.3) gives the important identity:

‖x‖ = ‖|x|‖, x ∈ X. (2.4)

Proposition 2.1.14.

If X is a normed lattice, then all lattice operations are uniformly continuous in the norm
of X with respect to all variables involved.

Proof. [16, Proposition 2.55].

2.1.3 Positive operators

Definition 2.1.15.

A linear operator A from a Banach lattice X into a Banach lattice Y is called positive,
denoted by A ≥ 0, if Ax ≥ 0 for any x ≥ 0.

Positive operators are fully determined by their behaviour on the positive cone. Precisely
speaking, we have the following theorem.

Theorem 2.1.16.

If A : X+ → Y+ is additive, then A extends uniquely to a positive linear operator from
X to Y . Keeping the notation A for the extension, we have, for each x ∈ X,

Ax = Ax+ − Ax−. (2.5)

Proof. [16, Theorem 2.64]

We point out here an easy and often used result on positive operators.

Proposition 2.1.17.

If A is positive, then
‖A‖ = sup

x≥0, ‖x‖≤1

‖Ax‖. (2.6)

Proof. [16, Theorem 2.67]
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Definition 2.1.18.

We say that a Banach lattice X is a KB-space (Kantorovic Banach space) if every
increasing norm bounded sequence of elements of X+ converges in norm in X.

The next theorem characterizes the KB-spaces and is very useful in applications.

Theorem 2.1.19.

Assume that X is a weakly sequentially complete Banach lattice. If (xn)n∈N is increasing
and (‖xn‖)n∈N is bounded, then there is x ∈ X such that

lim
n→∞

xn = x (2.7)

in X. In other words, weakly sequentially complete and, in particular, reflexive Banach
lattices are KB-spaces.

Proof. [16, Theorem 2.82].

2.2 Linear semigroups

In this section we deal with methods of finding solutions of a Cauchy problem.

Definition 2.2.1.

Given a Banach space X and a linear operator A with domain D(A) and range ImA
contained in X and also given an element u0 ∈ X, find a function u(t) = u(t, u0) such
that

(1) u(t) is continuous on [0,∞) and continuously differentiable on (0,∞),

(2) for each t > 0, u(t) ∈ D(A) and

du

dt
(t) = Au(t), t > 0, (2.8)

(3)
lim
t→0

u(t) = u0 (2.9)

in the norm of X.

A function satisfying all conditions above is called the classical (or strict) solution of
(2.8), (2.9).

Definition 2.2.2.

A family (S(t))t≥0 of bounded linear operators on X is called a C0-semigroup, or a
strongly continuous semigroup, if

(i) S(0) = I;
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(ii) S(t + s) = S(t)S(s) for all t, s ≥ 0;

(iii) limt→0+ S(t)x = x for any x ∈ X.

A linear operator A is called the (infinitesimal) generator of (S(t))t≥0 if

Ax = lim
h→0+

S(h)x− x

h
, (2.10)

where the domain of A, D(A), is defined as the set of all x ∈ X for which this limit
exists. Typically the semigroup generated by A is denoted by (SA(t))t≥0.

Note that if A is the generator of (S(t))t≥0, then for x ∈ D(A) the function t → S(t)x is
a classical solution of the following Cauchy problem,

du

dt
(t) = A(u(t))

lim
t→0+

u(t) = x
t ≥ 0 (2.11)

For x ∈ X \D(A), however, the function u(t) = S(t)x is continuous but, in general, not
differentiable, nor D(A)-valued, and, therefore, not a classical solution. Nevertheless,
the integral v(t) =

∫ t

0
u(s)ds ∈ D(A) and it is a strict solution of the integrated version

of (2.11):
dv

dt
(t) = A(v(t)) + x

lim
t→0+

v(t) = 0
t ≥ 0 (2.12)

or equivalently,

u(t) = A

∫ t

0

u(s)ds + x. (2.13)

We say that a function u satisfying (2.12) (or, equivalently, (2.13)) is a mild solution or
integral solution of (2.11).

Proposition 2.2.3.

Let (S(t))t≥0 be the semigroup generated by (A,D(A)). Then t → S(t)x, x ∈ D(A),
is the only solution of (2.11) taking values in D(A). Similarly, for x ∈ X, the function
t → S(t)x is the only mild solution to (2.11).

Proof. [16, Proposition 3.4]

Thus, if we have a semigroup, we can identify the Cauchy problem of which it is a
solution. Usually, however, we are interested in the reverse question, that is, in finding
the semigroup for a given equation. The answer is given by the Hille-Yosida theorem.
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Theorem 2.2.4. (Hille-Yosida Theorem)

A ∈ G(M,ω) if and only if

(a) A is closed and densely defined,

(b) there exist M > 0, ω ∈ R such that (ω,∞) ∈ ρ(A) and for all n ≥ 1, λ > ω,

‖(λI − A)−n‖ ≤ M

(λ− ω)n
. (2.14)

where ρ(A) is the resolvent set of the operator A and is defined as follow:

ρ(A) = {λ ∈ R; λI − A : D(A) → X is invertible and (λI − A)−1 ∈ L(X)}. (2.15)

Proof. [16, Theorem 3.5]

Theorem 2.2.5.

Assume that the closure (A,D(A)) of an operator (A,D(A)) generates a C0-semigroup in
X. If (B,D(B)) is also a generator, such that B|D(A) = A, then (B,D(B)) = (A,D(A)).

Proof. [16, Proposition 3.8]

The Lumer-Phillips Theorem gives an alternative characterization of the infinitesimal
generator of a C0-semigroup of contractions. Before stating the theorem we define the
term dissipative.

Definition 2.2.6.

Let A be a linear operator with dense domain D(A) in X. The operator A is dissipative
if ‖(λI −A)ψ‖X ≥ λ‖ψ‖X for all ψ ∈ D(A) and λ > 0.

Theorem 2.2.7. (Lumer-Phillips)

Let A be a linear operator with dense domain D(A) in X.

(i) If A is dissipative and if there exists λ0 ∈ C such that the range Im(λ0I − A) of
λ0I − A is X, then A is the infinitesimal generator of a C0-semigroup of contractions
on X.

(ii) If A is the infinitesimal generator of a C0-semigroup of contractions on X then A
is dissipative and for all λ > 0, Im(λI −A) = X.

Proof. [46, Theorem 4.3, p14].

It is not always necessary to know the infinitesimal generator on its whole domain.

Definition 2.2.8. Let A be a closed operator in a Banach space X. A core of A is a
dense subspace D of X such that A is the closure of its restriction to D i.e. A|D = A.
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Theorem 2.2.9. (Core) Let A be the generator of the semigroup (SA(t))t≥0 on a Banach
space X and let D be a dense set contained within the domain of A, i.e. D ⊂ D(A). If
the set D is invariant under the semigroup (SA(t))t≥0, then D is a core for A.

Proof. [41, Theorem 2.1.1].

Next we consider a case of restrictions of (S(t))t≥0, acting in a Banach space X, to a
subspace Y which is continuously embedded in X and which is invariant under (S(t))t≥0.
The restriction (SY (t))t≥0 of (S(t))t≥0 to Y is obviously a semigroup but not necessarily
a C0-semigroup. If, however, it is strongly continuous, then we can identify the generator
of (SY (t))t≥0 as the part in Y of the generator A of (S(t))t≥0.

Proposition 2.2.10.

Let (A,D(A)) generate a C0-semigroup (S(t))t≥0 in a Banach space X and let Y be
a subspace continuously embedded in X, invariant under (S(t))t≥0. If the restricted
semigroup (SY (t))t≥0 is strongly continuous in Y then its generator is the part AY of A
in Y . Moreover, if Y is closed in X, then (SY (t))t≥0 is automatically strongly continuous
and AY is the restriction of A to the domain D(A) ∩ Y .

Proof. [16, Proposition 3.12]

Next we consider resolvent positive operators.

Definition 2.2.11.

Let X be a Banach lattice. We say that the semigroup (S(t))t≥0 on X is positive if for
any x ∈ X+ and t ≥ 0,

S(t)x ≥ 0.

We say that an operator (A,D(A)) is resolvent positive if there is ω such that (ω,∞) ⊂
ρ(A) and R(λ,A) ≥ 0 for all λ > ω.

Note that a strongly continuous semigroup is positive if and only if its generator is
resolvent positive.

Let A be a resolvent positive operator. We introduce the following notation:

s(A) = inf{ω ∈ R : (ω,∞) ⊂ ρ(A) and R(λ,A) ≥ 0 for all λ > ω},
where ρ(A) is the resolvent set of A.

Theorem 2.2.12. (Arendt-Robinson-Batty)

Let A be a densely defined resolvent positive operator. If there exist λ0 > s(A), c > 0
such that for all ψ ≥ 0,

‖R(λ0, A)ψ‖ ≥ c‖ψ‖, (2.16)

then A generates a positive semigroup (SA(t))t≥0 on X and s(A) = ω0(SA), where ω0(SA)
is the uniform growth bound of the semigroup (SA(t))t≥0.

Proof. [16, Theorem 3.39]
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2.3 Some classical perturbation results

Let (A,D(A)) be a generator of a C0-semigroup on a Banach space X and (B,D(B))
be another operator in X. The purpose of the perturbation theory is to find conditions
that ensure that there is an extension G of A + B that generates a C0-semigroup on X
and characterize this extension.

2.3.1 Bounded perturbation theorem

The simplest and possibly the most often used perturbation result can be obtained if the
operator B is bounded. The following theorem holds.

Theorem 2.3.1. (Bounded perturbation)

Let (A,D(A)) ∈ G(M, ω); that is, it generates a C0-semigroup (SA(t))t≥0 satisfying
‖SA(t)‖ ≤ Meωt for some ω ∈ R and M ≥ 1. If B ∈ L(X), then

(A + B, D(A)) ∈ G(M,ω + M‖B‖).

Proof. [16, Theorem 4.9]

2.3.2 Kato-Voigt perturbations

The Kato-Voigt theorem is useful in the sense that it allows us to establish the existence
of a smallest substochastic semigroup associated with a specific Cauchy problem. We
begin with the definition of the terms stochastic and substochastic semigroups.

Definition 2.3.2. The strongly continuous semigroup of operators (S(t))t≥0 on the Ba-
nach space X = L1(Ω, µ) is said to be

(i) substochastic if S(t) ≥ 0 and ‖S(t)‖ ≤ 1 for all t ≥ 0,

(ii) stochastic if, in addition, it satisfies ‖S(t)ψ‖ = ‖ψ‖ for all non-negative ψ ∈ X.

Theorem 2.3.3. Let A be the generator of a C0-semigroup in X = L1(Ω) and let
B ∈ L(D(A), X) be a positive operator. If for some λ > s(A) the operator λI − A − B
is resolvent positive, then (A + B, D(A)) generates a positive C0-semigroup on X.

Proof. [16, Theorem 5.13]

Corollary 2.3.4. Let (S(t))t≥0 be the semigroup generated by (A + B,D(A)). Then
(S(t))t≥0 satisfies the Duhamel equation

S(t)x = SA(t)x +

∫ t

0

S(t− s)BSA(s)xds, x ∈ D(A). (2.17)
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Proof. [16, Corollary 5.15]

Theorem 2.3.5. Let X = L1(Ω) and suppose that the operators A and B satisfy:

(1) (A,D(A)) generates a substochastic semigroup (SA(t))t≥0;

(2) D(B) ⊃ D(A) and Bu ≥ 0 for u ∈ D(B)+;

(3) For all u ∈ D(A)+, ∫

Ω

(Au + Bu)dµ ≤ 0. (2.18)

Then there exists a smallest substochastic semigroup, (SG(t))t≥0, generated by an exten-
sion, G, of A + B. Moreover, G is characterized by

(I −G)−1ψ =
∞∑

n=0

(I − A)−1[B(I − A)−1]nψ, ∀ψ ∈ X. (2.19)

Proof. [16, Corollary 5.17]

Proposition 2.3.6. Let D be a core of A. If (S(t))t≥0 is another semigroup generated
by an extension of (A + B,D), then S(t) ≥ SG(t).

Proof. [16, Proposition 5.7]

2.4 Semilinear semigroups

The success of linear semigroup theory in solving linear evolution equations has stimu-
lated extensions of the linear ideas, which provide opportunity for examination of semi-
linear problems. Unlike the linear case, semilinear semigroup theory is not complete, yet
it remains a useful and powerful method of analyzing more difficult evolution equations.

Definition 2.4.1. (Semilinear Abstract Cauchy Problem)

Let X be a Banach space and let (G,D(G)) be an operator in X with associated semigroup
(SG(t))t≥0. Furthermore, let N be a nonlinear operator which maps a subset D of X into
X where D(G) ∩D is not empty. Then the abstract problem

du

dt
(t) = Gu(t) + Nu(t), (t > 0); u(0) = u0 ∈ D(G) ∩D, (2.20)

is called a semilinear abstract Cauchy problem (ACP).

Definition 2.4.2.

A function u is said to be a strong solution to the semilinear ACP (2.20) on [0, t0) if u
is continuous on [0, t0), differentiable on (0, t0) and is such that u(t) ∈ D(G)∩D for all
t ∈ [0, t0) and u satisfies (2.20).
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Proposition 2.4.3.

Let u be a strong solution on [0, t0) of the semilinear ACP (2.20). Then u satisfies the
integral equation

u(t) = SG(t)u0 +

∫ t

0

SG(t− s)N(u(s))ds, 0 ≤ t < t0, (2.21)

where (SG(t))t≥0 is the semigroup associated with the linear operator G.

Proof. [21, p. 108].

Definition 2.4.4.

u : [0, t0) → X is said to be a mild solution to the semilinear ACP (2.20) if

1. u is continuous on [0, t0),

2. u(t) ∈ D for all t ∈ [0, t0),

3. u satisfies (2.21).

We now introduce some definitions which are required in the theorems which follow.

Definition 2.4.5. (Local Lipschitz Condition)

An operator N on a Banach space X is said to satisfy a local Lipschitz condition if for
any given u0 ∈ X, there exists a closed ball,

B(u0, r) = {f ∈ X : ‖f − u0‖ ≤ r},

such that ‖Nf −Ng‖ ≤ C‖f − g‖ for all f, g ∈ B(u0, r) where C depends on u0 and r.

Definition 2.4.6. (Fréchet Derivative)

If a linear operator Nf ∈ L(X) exists such that N(f + δ) = Nf + Nfδ +H(f, δ) where
H satisfies

lim
δ→0

(‖H(f, δ)‖
‖δ‖

)
= 0,

then N is Fréchet differentiable at f and Nf is the Fréchet derivative.

Theorem 2.4.7.

Let (G,D(G)) be the generator of the strongly continuous semigroup (SG(t))t≥0 on X, let
N be a nonlinear operator and let X be a Banach space. If N satisfies a local Lipschitz
condition on X, then the semilinear ACP has a unique, local in time, mild solution.

Proof. [21, Theorem 3.20, p. 119].
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Theorem 2.4.8.

Let (G,D(G)) generate the strongly continuous semigroup (SG(t))t≥0 on X and let N
satisfy the local Lipschitz condition

‖N(f)−N(g)‖ ≤ κ‖f − g‖

for all f, g in the closed ball B(u0, r) ⊆ D = D(N). If

1. N is Fréchet differentiable at any f ∈ B(u0, r) and the Fréchet derivative Nf is
such that ‖Nfg‖ ≤ κ1‖g‖ for all f ∈ B(u0, r), g ∈ X where κ1 is a positive constant
independent of f and g,

2. the Fréchet derivative is continuous with respect to f ∈ B(u0, r) such that

‖Nfg −Nf1g‖ → 0 as ‖f − f1‖ → 0 where f, f1 ∈ B(u0, r),

for any given g ∈ X,

3. u0 ∈ D(G),

then there exists t1 > 0 such that the continuous solution on [0, t1) of (2.21) is strongly
differentiable on [0, t1) and satisfies the equation (2.20).

Proof. [21, Theorems 3.30 and 3.32].



Chapter 3

Particles Control in Fragmentation
Equations

3.1 Preliminaries

As we mentioned in the introduction, we are concerned with the initial value problem
for the kinetic type rate equation

∂

∂t
u(t, x) = −a(x)u(t, x) +

∫ ∞

x

a(y)b(x|y)u(t, y)dy,

u(0, x) = u0(x),

x, t > 0 (3.1)

which describes the evolution of the density u of particles having mass x at time t;
the particles undergo fragmentation at a rate a. We assume that a is a positive and
continuous function on (0,∞). Further, b describes the distribution of daughter particles
masses x spawned by the fragmentation of a parent particle of mass y > x. In absence
of any other mechanism, the mass of all daughter particles must be equal to the mass of
the parent. This ‘local’ conservation mass principle mathematically is expressed by

∫ y

0

xb(x|y)dx = y. (3.2)

Similarly, the expected number of particles produced by a particle of mass y is given by

n(y) =

∫ y

0

b(x|y)dx. (3.3)

We note that n(y) may be infinite. For a comprehensive discussion of the physical
background of the model as well as the properties of the function b we refer the reader to
[57, 10] and [16, Section 8.2]. Solvability of (3.1) in X1 has been established by means of
the substochastic semigroup theory, [16, Chapters 5 and 8]. Let us recall that a semigroup
is called substochastic if it is a semigroup of positive contractions. To formulate the result

20
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we introduce some additional notation used also in the remaining part of the thesis. By
A we denote the pointwise multiplication φ(x) → −a(x)φ(x) defined on a set of, say,
measurable functions. Similarly, by B we denote the expression

[Bφ](x) =

∫ ∞

x

a(y)b(x|y)φ(y)dy, (3.4)

defined first on all positive measurable functions for which the above integral is finite
almost everywhere and then extended by linearity to a suitable linear subspace of mea-
surable functions. The formal expressions A and B may define various operators. We
start with A defined by Au = Au on D(A) = {u ∈ X1; Au ∈ X1}; B restricted to
D(A) is a well-defined positive operator, denoted by B. Then (3.1) can be written as an
abstract Cauchy problem in X1:

d

dt
u = Au + Bu, t > 0

u(0) = u0. (3.5)

Unfortunately, (A+B, D(A)) does not necessarily generate a semigroup on X1. However,
the substochastic semigroup theory (Theorem 2.3.5) yields the existence of a smallest
substochastic semigroup (SG(t))t≥0 generated by an extension G of A + B.

The semigroup (SG(t))t≥0 can be obtained as the strong limit in X1 of semigroups
(SGr(t))t≥0 generated by (A + rB, D(A)) as r ↗ 1−; the limit is monotonic on non-
negative data. The fact that, in general, G is a proper extension of A + B has far
reaching consequences which we explain below.

Local conservation principles (3.2) and (3.3) render formal conservation principles by
integration of (3.1):

d

dt
M(t) =

∫ ∞

0

∂

∂t
u(t, x)xdx = 0, (3.6)

d

dt
N(t) =

∫ ∞

0

∂

∂t
u(t, x)dx =

∫ ∞

0

a(x)(n(x)− 1)u(t, x)dx. (3.7)

If the equations (3.6), (3.7) or (3.6, 3.7) are satisfied by all nonnegative solutions to
(3.1), then the process is called honest (in the respective space X1, X0 or X0,1). However,
validity of either equation depends on properties of u, namely whether each term on the
right hand side of the integro-differential equation in (3.1) can be separately integrated
with respect to the prescribed measure. Since the solution semigroup is generated by an
extension of A + B, the right hand side of (3.5) should be treated as a single operator G
and thus such separation of integrals is not always possible. Hence the global conservation
principles are not always satisfied, in which instance the process is called dishonest.

Honesty of fragmentation processes in X1 has been extensively studied. Here we recall
the main results specified to the particular form of the function b which is also our choice
for analysis in this chapter. Namely, we assume that b can be written as

b(x|y) = β(x)γ(y) (3.8)
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where, to satisfy the local principle of mass conservation,

γ(y) =
y∫ y

0
sβ(s)ds

. (3.9)

We assume that β is a non-negative continuous function on (0,∞). Eq. (3.8) is a natural
generalization of the power law b described in (1.3) and has the advantage of allowing
the number of daughter particles

n(y) =
y

∫ y

0
β(s)ds∫ y

0
sβ(s)ds

, (3.10)

to vary with the parent size y, [10]. An important role in the analysis is played by the
function

b(x|x) = β(x)γ(x) =
xβ(x)∫ x

0
sβ(s)ds

=
d

dx
ln

∫ x

0

sβ(s)ds. (3.11)

Honesty in X1 (that is, the validity of the global mass conservation principle (3.6)) turns
out to be equivalent to G being equal to the closure of A + B, G = A + B. When b is
given by (3.8), the following theorem settles this question.

Theorem 3.1.1. Assume that lim
x→0+

a(x) exists (finite or infinite). Then G = A + B if

and only if there exists δ > 0 such that b(x|x)/a(x) /∈ L1([0, δ]).

Proof. See [10].

Let us turn our attention to the space X0,1. We cannot, however, expect the process
in X0,1 to be dissipative as the number of particles grows rapidly, see (3.7), and thus
we shall not be able to employ the substochastic semigroup theory. Instead, we use the
theory of resolvent positive operators. The starting point is to find the resolvent of the
generator.

3.2 Resolvent in X1

To find the formula for the resolvent of the generator G, first we consider the Miyadera
perturbation of A + rB of A, as in [16, Theorem 5.2]. Defining Gr = A + rB with
0 < r < 1 we know, by op.cit., that (Gr, D(A)) generates a positive semigroup of
contractions and thus the resolvent R(λ,Gr) = (λI −A− rB)−1 exists for all λ > 0. Let
us define Qrλ := λI − A− rB. To find the formula for R(λ,Gr), we start by solving

f(x) = λur(x) + a(x)ur(x)− r

∫ ∞

x

a(y)b(x|y)ur(y)dy, 0 < r < 1.
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Choosing the constant in the general solution so as to have solutions converging to zero
for x → +∞ (at least for regular f), we obtain

[Rr(λ)f ](x) = ur(x) =
f(x)

λ + a(x)
+

rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(s)γ(s)

λ + a(s)
eξr(s)f(s)ds, (3.12)

where

ξr(x) = r

∫ x

1

a(s)γ(s)β(s)

λ + a(s)
ds.

This formula can be derived by using calculations similar to [16, Page 217-218] and
actually describes the resolvent R(λ,Gr). To prove this, we re-write (3.12) in a more
convenient form. Define

Bλ(x) =
b(x|x)

λ + a(x)
, λ > 0. (3.13)

By (3.11)

ξr(x) = r

(∫ x

1

b(s|s)ds− λ

∫ x

1

Bλ(s)ds

)

= r

(
ln

∫ x

0

sβ(s)ds− ln

∫ 1

0

sβ(s)ds− λ

∫ x

1

Bλ(s)ds

)
, (3.14)

and

eξr(x) = e−C

(∫ x

0

sβ(s)ds

)r

e−λr
R x
1 Bλ(z)dz,

where C = r ln
∫ 1

0
sβ(s)ds. Thus

ur(x) = [Rr(λ)f ](x) =
f(x)

λ + a(x)
+

rBλ(x)

x
Γ(x)1−rerλ

R x
1 Bλ(s)ds

∫ ∞

x

sa(s)f(s)

λ + a(s)
Γ(s)r−1e−rλ

R s
1 Bλ(z)dzds, (3.15)

where Γ(x) =
∫ x

0
sβ(s)ds is a positive and increasing function. We start with the follow-

ing estimate.

Lemma 3.2.1. For any f ∈ D(A), x > 0, 0 ≤ r < 1
∫ ∞

x

a(s)γ(s)eξr(s)|f(s)|ds < ∞.

Proof. Since for f ∈ D(A) and x > 0
∫ ∞

x

a(s)γ(s)eξr(s)|f(s)|ds =

∫ ∞

x

(sa(s)|f(s)|)γ(s)

s
eξr(s)ds,

it is enough to show that γ(s)
s

eξr(s) is bounded at ∞. For r > 0, s ≥ 1 we have

eξr(s) = e−CΓr(s)e−λr
R s
1 Bλ(z)dz ≤ e−CΓr(s),
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and for r = 0 it is bounded by 1. Using (3.9), properties of Γ(s) and r < 1, we obtain

γ(s)

s
eξr(s) ≤ e−CΓr−1(s) ≤ e−CΓr−1(1).

Proposition 3.2.2. Let 0 < r < 1, λ > 0. Then

R(λ, A + rB) = Rr(λ).

Proof. Consider (3.15). The first term on the right hand side, f → f/(λ + a), clearly
defines a bounded operator provided λ > 0. Let f ≥ 0 and consider the norm of the
second term:

E2 =

∫ ∞

0

(
rBλ(x)

x
Γ(x)1−rerλ

R x
1 Bλ(r)dr

∫ ∞

x

sa(s)f(s)

λ + a(s)
Γ(s)r−1e−rλ

R s
1 Bλ(z)dzds

)
xdx

= r

∫ ∞

0

(
sf(s)

a(s)

λ + a(s)
Γ(s)r−1e−rλ

R s
1 Bλ(z)dz

∫ s

0

Bλ(x)Γ(x)1−rerλ
R x
1 Bλ(z)dzdx

)
ds

≤ r

∫ ∞

0

(
sf(s)

a(s)

λ + a(s)
e−rλ

R s
1 Bλ(z)dz

∫ s

0

Bλ(x)erλ
R x
1 Bλ(z)dzdx

)
ds

=
1

λ

∫ ∞

0

sf(s)
a(s)

λ + a(s)
e−rλ

R s
1 Bλ(z)dz

∫ s

0

(
d

dx
erλ

R x
1 Bλ(z)dz

)
dxds

=
1

λ

∫ ∞

0

sf(s)
a(s)

λ + a(s)
e−rλ

R s
1 Bλ(z)dz

(
erλ

R s
1 Bλ(z)dz − lim

ε→0+
e−rλ

R 1
ε Bλ(z)dz

)
ds, (3.16)

where we used Γ(x)1−r ≤ Γ(s)1−r for 0 ≤ x ≤ s and r ≤ 1. Now, Bλ is a positive
function, so

∫ s

0
Bλ(z)dz always exists and can be either finite or +∞. In either case

e−rλ
R s
1 Bλ(z)dz

(
erλ

R s
1 Bλ(z)dz − lim

ε→0+
e−rλ

R 1
ε Bλ(z)dz

)
≤ 1.

and E2 ≤ λ−1‖f‖, thus Rr(λ) is a bounded operator on X1. Since we know that R(λ,Gr)
exists, to show that R(λ,Gr) = Rr(λ) it is enough to prove that Rr(λ) is the left inverse
of Qrλ = λI − A− rB. For 0 ≤ f ∈ D(A) we have

([Rr(λ)Qrλ]f)(x) =
[Qrλf ](x)

λ + a(x)
+

rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(s)γ(s)

λ + a(s)
eξr(s)[Qrλf ](s)ds

=: I1(x) + I2(x),

where we used the fact that each term in Rr(λ) is a bounded operator. Then

I1(x) =
(λ + a(x))f(x)− r

∫∞
x

a(y)b(x|y)f(y)dy

λ + a(x)

= f(x)− r

λ + a(x)

∫ ∞

x

a(y)b(x|y)f(y)dy,
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and

I2(x) =
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(s)γ(s)

λ + a(s)
eξr(s)[Qrλf ](s)ds

=
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(s)γ(s)

λ + a(s)
eξr(s) [(λ + a(s))f(s)

−r

∫ ∞

s

a(y)b(s|y)f(y)dy] ds

=
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(s)γ(s)eξr(s)f(s)ds

− rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

r
a(s)γ(s)

λ + a(s)
eξr(s)

(∫ ∞

s

a(y)b(s|y)f(y)dy

)
ds

=: J1(x)− J2(x),

where we could split the integral thanks to the integrability of the first term ensured by
Lemma 3.2.1. Changing the order of integration by the Fubini theorem, we get that

J2(x) =
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

r
a(s)γ(s)

λ + a(s)
eξr(s)

(∫ ∞

s

a(y)b(s|y)f(y)dy

)
ds

=
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

rβ(s)
a(s)γ(s)

λ + a(s)
eξr(s)

(∫ ∞

s

a(y)γ(y)f(y)dy

)
ds

=
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(y)γ(y)f(y)

(∫ y

x

r
a(s)γ(s)β(s)

λ + a(s)
eξr(s)ds

)
dy

=
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(y)γ(y)f(y)
(
eξr(y) − eξr(x)

)
dy

=
rβ(x)

λ + a(x)
e−ξr(x)

∫ ∞

x

a(y)γ(y)eξr(y)f(y)dy − rβ(x)

λ + a(x)

∫ ∞

x

a(y)γ(y)f(y)dy,

where again we used Lemma 3.2.1 to split the integral in the penultimate line. It follows
that

I2(x) = J1(x)− J2(x) =
rβ(x)

λ + a(x)

∫ ∞

x

a(y)γ(y)f(y)dy.

Thus, for 0 ≤ f ∈ D(A),

([Rr(λ)Qrλ]f)(x) = I1(x) + I2(x) =

f(x)− r

λ + a(x)

∫ ∞

x

a(y)b(x|y)f(y)dy +
rβ(x)

λ + a(x)

∫ ∞

x

a(y)γ(y)f(y)dy = f(x).

Since D(A) is a weighted L1 space, an arbitrary f ∈ D(A) can be written as f = f+−f−
where f+, f− ∈ D(A) are non-negative and the above equality extends to D(A), thus
proving the proposition.

Let us introduce the formal expression

[R(λ)f ](x) =
f(x)

λ + a(x)
+

Bλ(x)

x
eλ
R x
1 Bλ(s)ds

∫ ∞

x

sa(s)f(s)

λ + a(s)
e−λ

R s
1 Bλ(r)drds. (3.17)
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Theorem 3.2.3. Under assumptions of this section, the resolvent R(λ,G) of the gener-
ator G in X1 is given by

[R(λ,G)f ](x) = [R(λ)f ](x) (3.18)

Proof. We use the fact that R(λ,G) is the strong limit in X1 of the family (R(λ, Gr))0<r<1

as r ↗ 1−, see [16, Theorem 5.2].

Denote the right hand side of (3.17) by R(λ). First, using the same argument as in
(3.16) with Γ(x) = 1, we see that R(λ) defines a bounded operator on X1. Next, from
Proposition 3.2.2 we know that Rr(λ) = R(λ,A+rB) is the resolvent of A+rB. Consider
now limr↗1 ur(x). It is clear that

lim
r↗1

rBλ(x)

x
Γ(x)1−rerλ

R x
1 Bλ(s)ds =

Bλ(x)

x
eλ
R x
1 Bλ(s)ds.

Further, taking f with suppf ⊂ [x0,M ] where x0 > 0 we have

∫ ∞

x0

sa(s)f(s)

λ + a(s)
Γ(s)r−1e−rλ

R s
1 Bλ(z)dzds =

∫ M

x0

sa(s)f(s)

Γ(s)(λ + a(s))

(
Γ(s)

eλ
R s
1 Bλ(z)dz

)r

ds

and the integrand is bounded by a constant which is integrable on this interval. Thus,
we can pass to the limit for any x > 0 getting

lim
r↗1

[R(λ, A + rB)f ](x) = [R(λ)f ](x)

=
f(x)

λ + a(x)
+

Bλ(x)

x
eλ
R x
1 Bλ(s)ds

∫ ∞

x

sa(s)f(s)

λ + a(s)
e−λ

R s
1 Bλ(r)drds,

for f ≥ 0 with bounded support and, by linearity, for any function with bounded support.
Thus R(λ)f = R(λ, G)f on a dense subset of X1 and, since the expression for R(λ)
defines a bounded positive operator on X1, the representation (3.17) extends to the
whole space.

3.3 Resolvent in X0,1

Our aim is to prove the existence of solutions to the fragmentation equation (3.1) in
X0,1 = L1(R+, (1 + x)dx) = X0 ∩X1 = L1(R+, dx) ∩ L1(R+, xdx). Since X0,1 ⊂ X1 the
resolvent, if it exists, again must be given by (3.17). Define

∆λ(x) = e−λ
R 1

x Bλ(s)ds. (3.19)

Theorem 3.3.1. The expression R(λ), λ > 0, defines an operator on X0,1 if and only if

Ξλ(x) :=
xa(x)

λ + a(x)
∆−1

λ (x)

∫ x

0

Bλ(s)(1 + s)

s
∆λ(s)ds is bounded at 0. (3.20)
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Proof. First we observe that a necessary condition for (3.20) to hold is that the inner
integral be finite; that is,

∫

0+

Bλ(x)

x
∆λ(x)dx =

1

λ

∫

0+

1

x

d

dx
∆λ(x)dx < +∞. (3.21)

Since X0,1 inherits the lattice structure from X1, R(λ) : X0,1 → X0,1 if and only if
‖R(λ)f‖0,1 < +∞ for any 0 ≤ f ∈ X0,1. Since in this case R(λ)f is a sum of two
positive terms, for 0 ≤ f ∈ X0,1 we have

∫ ∞

0

[R(λ)f ](x)(1 + x)dx =

∫ ∞

0

f(x)(1 + x)

(
1

λ + a(x)
+ (3.22)

a(x)

λ + a(x)

x

1 + x
e−λ

R x
1 Bλ(s)ds

∫ x

0

Bλ(s)(1 + s)

s
eλ
R s
1 Bλ(r)drds

)
dx.

Since 1/(λ + a(x)) is bounded, the first term is finite and ‖R(λ)f‖0,1 < +∞ if and only
if the second term is bounded on R. Hence, if ‖R(λ)f‖0,1 < +∞ then, in particular,
(3.20) is satisfied (as the behaviour of x/(1+x) is the same as that of x as x → 0). This,
moreover, yields (3.21).

To prove the opposite implication, assume (3.20). Then (3.21) is also satisfied. Consider
the behaviour of the second term in (3.22), which equals (1 + x)−1Ξλ(x), as x → ∞.
First observe that, by (3.21),

∫∞
α

Bλ(x)(1 + x)x−1∆λ(x)dx either exists or does not exist
irrespectively of α ≥ 0 and

∫ x

1

Bλ(s)(1 + s)

s
∆λ(s)ds ≤ 2

λ
(∆λ(x)− 1).

If the improper integral exists, then (1 + x)−1Ξλ(x) is bounded at infinity on account of
the boundedness of ∆λ(x)−1. If the integral is infinite then, by the above, ∆λ(x) tends
to infinity as x →∞ and hence ∆λ(x)−1 tends to 0. Then we can use the l’Hospital rule
getting

lim
x→∞

e−λ
R x
1 Bλ(s)ds

∫ x

0

Bλ(s)(1 + s)

s
eλ
R s
1 Bλ(r)drds = lim

x→∞
Bλ(x)(1 + x)∆λ(x)

λxBλ(x)∆λ(x)
=

1

λ
.

Since the other two multipliers are bounded, (1 + x)−1Ξ(x) is bounded as x → ∞ and
hence (3.20) alone ensures finiteness of ‖R(λ)f‖0,1.

Corollary 3.3.2. If there is λ0 > 0 such that (3.20) is satisfied for all λ > λ0, then
R(λ) defines a positive resolvent of an operator G0,1 which is the part of G in X0,1.

Proof. Since R̃(λ) := R(λ)|X0,1 is a pseudo-resolvent (see [46, Theorem 9.3]), we can
define the operator

G̃f = λf − R̃(λ)−1f
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for f ∈ D(G̃) := RangeR̃(λ). Recall that the part G0,1 is defined as the restriction of G

to D(G0,1) = {f ∈ D(G) ∩X0,1; Gf ∈ X0,1}. If f ∈ D(G̃) ⊂ X0,1, then clearly f is in

the range of R(λ,G) = D(G). Hence f ∈ D(G0,1) and, since R(λ,G)−1f = R̃(λ)−1f and

G̃f = G0,1f , we have G̃ ⊂ G0,1. On the other hand, if f ∈ D(G0,1), then f = R(λ,G)g =
R(λ)g for some g ∈ X and f ∈ X0,1. Then

X0,1 3 Gf = λR(λ,G)g − g = λf − g,

thus g ∈ X0,1 and f is in the range of R̃(λ), which is D(G̃), and

G0,1f = λf −R(λ,G)−1f = λf − R̃(λ)−1f = G̃f.

Due to the interplay of possible singularities in Bλ and ∆λ, it seems to be difficult to give
more explicit necessary and sufficient conditions ensuring that R(λ) defines an operator
in X0,1. We can, however, provide a set of easy to check sufficient conditions which cover
most standard cases.

Corollary 3.3.3. Let one of the conditions be satisfied:

1.
lim

x→0+
xBλ(x) = Lλ (3.23)

with 1 < λLλ < +∞ and xB(x), extended by continuity to x = 0, be Hölder
continuous, or

2.
lim

x→0+
Bλ(x) = 0 (3.24)

and Bλ(x), extended by continuity to 0, is Hölder continuous, or

3.
lim

x→0+
xBλ(x) = ∞. (3.25)

with M1/x
β ≤ xBλ(x) ≤ M2/x

α close to x = 0, where α, β > 0 and may depend
on λ and M1,M2 > 0 may depend on β and α, respectively.

Then condition (3.20) is satisfied.

Proof. First we consider (3.23) so that |xBλ(x)−Lλ| ≤ Mxα for some α > 0. We have

e−λ
R 1

x Bλ(s)ds = e−λLλ

R 1
x

1
s
dse

−λ
R 1

x

“
Bλ(s)−Lλ

s

”
ds

(3.26)

with ∫ 1

x

∣∣∣∣Bλ(s)− Lλ

s

∣∣∣∣ ds ≤ M

∫ 1

x

sα−1ds (3.27)
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bounded as x → 0+. On the other hand, e−λLλ

R 1
x

1
s
ds = xλLλ and, by the above,

∫ x

0

Bλ(s)

s
∆λ(s)ds ≤ M ′

(
Lλ

∫ x

0

sλLλ−2ds +

∫ x

0

|sBλ(s)− Lλ|sλLλ−2ds

)
< +∞

provided λLλ > 1. This gives (3.21).

Further, in this case, ∆−1
λ (x) tends to infinity as x−λLλ since the second factor in (3.26) is

also bounded from below by (3.27), and thus x∆−1
λ also tends to infinity since λLλ > 1.

Hence, by the l’Hospital rule

lim
x→0+

x∆−1
λ (x)

∫ x

0

Bλ(s)(1 + s)

s
∆λ(s)ds = lim

x→0+

x(1 + x)Bλ(x)

λxBλ(x)− 1
=

Lλ

λLλ − 1
< ∞. (3.28)

Assume now (3.24) is satisfied. Then, by Hölder continuity of Bλ, Bλ(x)/x (and also
Bλ(x)) are integrable at 0 and both conditions (3.21) and (3.20) are satisfied.

Finally, let (3.25) be satisfied. In this case we have

Cαe−
C′α
xα ≤ ∆λ(x) ≤ Cβe−

C′β
xβ (3.29)

for some constants Cα, C ′
α, Cβ, C ′

β and

Bλ(x)

x
∆λ(x) ≤ M2Cβ

1

x1+α
e−

C′β
xβ → 0

for x → 0+. Eqn. (3.29) also ensures that ∆−1
λ (x) ≥ CβeC′β/xβ

and thus x∆−1
λ (x) → ∞

for x → 0+. Hence, applying the l’Hospital rule as in the first part of the proof gives

lim
x→0+

x∆−1
λ (x)

∫ x

0

Bλ(s)(1 + s)

s
∆λ(s)ds = lim

x→0+

x(1 + x)Bλ(x)

λxBλ(x)− 1
=

1

λ
, (3.30)

on account of xBλ(x) →∞.

In what follows we shall work with the additional assumption

lim
x→0+

a(x) = a0 ∈ [0,∞]. (3.31)

We note that this assumption is mostly technical and several results below can be proved
without it. This, however, would require a more detailed analysis of particular cases.

Lemma 3.3.4. Assume (3.31). If any of the conditions (3.23), (3.24) or (3.25) holds
for some λ0 > 0, then it holds for any λ ≥ λ0.

Proof. First consider (3.23). Then from

xb(x|x)

λ + a(x)
− xb(x|x)

µ + a(x)
=

(µ− λ)xb(x|x)

(λ + a(x))(µ + a(x))
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we see that if the limit exists for some λ > 0 then it exists for any λ > 0. Let a0 < ∞.
Then

λLλ =
λ limx→0+ xb(x|x)

λ + a0

is an increasing function of λ so that if λLλ > 1 for some λ0 then it is true for any
λ > λ0. If a0 = ∞, then

λLλ = λ lim
x→0

xb(x|x)

a(x)
,

which is also monotonic in λ. Moving to (3.24) we see that

0 ≤ Bµ(x) ≤ Bλ(x)

for µ > λ > 0 and the lemma holds true. If (3.25) holds, then either xb(x|x) → ∞
if a0 < +∞ or xb(x|x)/a(x) → +∞ if a0 = ∞ and in either case the condition is
independent of λ.

Corollary 3.3.5. Under assumption (3.31), if any of the conditions (3.23) - (3.25) holds
for some λ0 > 0, then R(λ) for λ ≥ λ0 is the resolvent of G0,1.

Proposition 3.3.6. Assume that (3.31) holds and let either (3.23), or (3.25) with the
additional condition: a(x) ≤ x−κ as x → 0+ for some κ > 0, be satisfied. Then β(x)
is integrable on [0, M ], M < ∞, and thus the number of particles produced in each
fragmentation event is finite.

Proof. Let us fix some λ for which (3.23) holds. First assume that (3.23) is satisfied
and a(x) → a0 < ∞ as x → 0+. Then

lim
x→0+

xb(x|x) = Lλ(λ + a0) ≥ λLλ > 1

and xb(x|x) ≥ L > 1 for x sufficiently close to zero. This yields

xβ(x)∫ x

0
sβ(s)ds

≥ L

x

which, upon integration from x > 0 to some sufficiently small α, gives

ln

∫ α

0
sβ(s)ds∫ x

0
sβ(s)ds

≥ ln
(α

x

)L

, (3.32)

which can be written as
∫ x

0
sβ(s)ds ≤ CαxL, for some constant Cα and small x > 0.

Since

β(x) = xb(x|x)
1

x2

∫ x

0

sβ(s)ds, (3.33)

β(x) behaves as xL−2 which is integrable at 0. Let now a0 = ∞. We can write

xBλ(x) =
x2

a(x)

b(x|x)

1 + λ/a(x)
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so that

lim
x→0+

λx2b(x|x)

a(x)
= λLλ > 1.

Let us take α > 0 such a(x) > λ and

xβ(x)∫ x

0
sβ(s)ds

≥ La(x)

λx

for some L > 1 for x ∈ (0, α). As before, this gives

ln

∫ α

0
sβ(s)ds∫ x

0
sβ(s)ds

≥ L

λ

∫ α

x

a(s)

s
ds ≥ L

∫ α

x

ds

s
= ln

(α

x

)L

which is the same as (3.32).

In the last case we have
xβ(x)∫ x

0
sβ(s)ds

≥ M1(λ + a(x))

xβ+1

and, following the steps of the previous cases, we obtain
∫ x

0
sβ(s)ds ≤ C1e

−C2x−β
for

some constants C1 and C2, which, by (3.33), yields

β(x) ≤ C1xb(x|x)x−2e−C2x−β ≤ Mx−κ−α−2e−C2x−β

,

for some M . It is now clear that β(x) → 0 as x → 0+.

Remark 1. In general, (3.24) does not yield the result of the above proposition. Indeed,
taking a(x) = x−2 and b(x|y) = 2−1y1/2x−3/2, we see that Bλ(x) = 1/(2x(λ + x−2)) =
x/2(λx2 + 1) → 0. However, β(x) = x−3/2 is not integrable and hence the expected
number of particles in each fragmentation event is infinite.

3.4 Dynamics in X0,1

Theorem 3.4.1.

Let the assumptions of Proposition 3.3.6 be satisfied. Then (G0,1, D(G0,1)) generates a
positive semigroup in X0,1.

Proof. First we prove that G0,1 is densely defined. We note that C∞
0 (R+) ⊂ D(A) ∩

X0,1 ⊂ D(G) ∩X0,1 and thus, for φ ∈ C∞
0 (R+) with support in [m,M ]

Gφ = Aφ + Bφ.
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It is clear that Aφ ∈ X0,1 and

∫ ∞

0

[Bφ](x)(1 + x)dx =

∫ ∞

0

(∫ M

x

a(y)b(x|y)φ(y)dy

)
(1 + x)dx

=

∫ M

m

a(y)φ(y)γ(y)

(∫ x

0

β(x)(1 + x)dx

)
dy

=

∫ M

m

a(y)φ(y)(y + n(y))dy < ∞,

where n(y) is given by (3.10).

Let us return to the expression (3.22) for the norm of the resolvent in X0,1 for f ≥ 0:

∫ ∞

0

[R(λ,G0,1)f ](x)(1 + x)dx =

∫ ∞

0

f(x)(1 + x)

(
1

λ + a(x)
(3.34)

+
a(x)

λ + a(x)

x

1 + x
e−λ

R x
1 Bλ(s)ds

∫ x

0

Bλ(s)(1 + s)

s
eλ
R s
1 Bλ(r)drds

)
dx.

The term within the brackets is a sum of two terms which are positive on (0,∞). Let
us first discuss the behavior of it as x → ∞. We note that a(x) may have no limit as
x →∞. Our analysis is valid irrespective of the behavior of a(x) as x →∞. Let s ≥ 1,
we have 1 ≤ 1 + s−1 ≤ 2. It follows that

1

λ
(∆λ(x)− 1) ≤

∫ x

1

Bλ(s)(1 + s)

s
∆λ(s)ds ≤ 2

λ
(∆λ(x)− 1).

We recall that the limit of ∆λ(x) as x →∞ always exists (finite or infinite). If ∆λ(x) is
finite as x →∞, then the improper integral exists and is non zero. If ∆λ(x) is infinite,
then ∆λ(x)−1 → 0 and, by the above,

∫ x

1
Bλ(s)∆λ(s)(1 + s)s−1ds tends to infinity as

x →∞. Hence we can use the l’Hospital rule obtaining

lim
x→∞

e−λ
R x
1 Bλ(s)ds

∫ x

0

Bλ(s)(1 + s)

s
eλ
R s
1 Bλ(r)drds = lim

x→∞
Bλ(x)(1 + x)∆λ(x)

λxBλ(x)∆λ(x)
=

1

λ
.

Therefore at infinity
x

1 + x
e−λ

R x
1 Bλ(s)ds

∫ x

0

Bλ(s)(1 + s)

s
eλ
R s
1 Bλ(r)drds is bounded away

from zero. As a result the expression within the brackets in (3.34) is greater than the

expression 1
λ+a(x)

+ α a(x)
λ+a(x)

as x approaches infinity, for some constant α > 0. Further-
more

1

λ + a(x)
+ α

a(x)

λ + a(x)
≥ min

(
1

λ
, α

)[
λ

λ + a(x)
+

a(x)

λ + a(x)

]
= min

(
1

λ
, α

)
.

Consequently the expression within the brackets in (3.34) is bounded away from zero for
large x.
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Next we discuss the behavior of the expression within the brackets in (3.34) as x → 0.
If a(x) is bounded as x → 0, then a(x) → a0 < ∞ and 1

λ+a0
> 0. It follows that 1

λ+a(x)

is bounded away from 0 as x approaches 0.
Now assume a(x) becomes infinite as x → 0. If (3.23) holds then, as in (3.28), ∆−1

λ (x)
tends to infinity as x−λLλ and

lim
x→0+

x∆−1
λ (x)

∫ x

0

Bλ(s)(1 + s)

s
∆λ(s)ds =

Lλ

λLλ − 1
,

which is finite and non-zero by (3.23). Finally, if (3.25) is satisfied then, again following
the proof of Corollary 3.3.3 and (3.30), we obtain

lim
x→0+

x∆−1
λ (x)

∫ x

0

Bλ(s)(1 + s)

s
∆λ(s)ds =

1

λ
> 0.

Therefore, there is c > 0 such that for any x ∈ [0,∞)

1

λ + a(x)
+

a(x)

λ + a(x)

x

1 + x
e−λ

R x
1 Bλ(s)ds

∫ x

0

Bλ(s)(1 + s)

s
eλ
R s
1 Bλ(r)drds ≥ c (3.35)

yielding
‖R(λ,G0,1)f‖0,1 ≥ c‖f‖0,1

for λ > λ0 and f ≥ 0 and by the Arendt-Robinson-Batty theorem, see e.g. [8, Theorem
2.5], G0,1 generates a positive semigroup.

Remark 2. An important role in the application of Arendt-Batty-Robinson in the pre-
vious theorem is played by the density of the domain of G0,1 in X0,1. We observe that,
in general, it is far from obvious. Let us take a model with infinite n(y); that is, with
non-integrable β. If a function 0 6= φ ≥ 0 belongs to D(G0,1), then X0,1 3 G0,1φ = Gφ.
If φ has support in [m,M ], then

G0,1φ = Gφ = Aφ + Bφ.

The function [Aφ](x) = a(x)φ(x) has compact support hence it belongs to X0,1. Thus,
for φ ∈ D(G0,1), Bφ also must be in X0,1. However,

[Bφ](x) = β(x)

∫ M

x

a(y)γ(y)φ(y)dy

and close to zero
∫ M

x
a(y)γ(y)φ(y)dy =

∫ M

m
a(y)γ(y)φ(y)dy is finite and independent of

x, hence Bφ is integrable close to 0 if and only if β has the same property. Hence in this
case positive compactly supported functions are not in D(G0,1) and, at present, we do
not know whether G0,1 with non-integrable β is densely defined in X0,1.

Also, in general, (3.24) does not allow the estimate (3.35) which was instrumental in
getting the generation result. However, it follows that we still have some nontrivial
dynamics in this case.
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Corollary 3.4.2. Let assumption (3.24) be satisfied. Then (G0,1, D(G0,1)) generates a
once integrated positive semigroup X0,1 if D(G0,1) is dense in X0,1 and twice integrated
semigroup if D(G0,1) is not dense in X0,1. Consequently, the problem (3.1) has classi-

cal solutions for u0 ∈ D(G2
1,0) in the first case and if G2

1,0u0 ∈ D(G0,1)
X0,1

(hence, in
particular, u0 ∈ D(G3

0,1)), in the second.

Proof. The proof is a direct consequence of [9, Corollary 4.5, Proposition 5.5]. In par-
ticular, the second part follows from the fact that if G0,1 is a resolvent positive operator

with a non-dense domain, then its part in D(G0,1)
X0,1

generates there a once-integrated
semigroup and the argument from the first part can be applied for this restriction.

Theorem 3.4.3. Assume that either (3.23) or (3.25) are satisfied and n(y) is bounded
as y → 0, (then, in particular, β is integrable close to 0). Then

G0,1 = (A + B)|X0,1

X0,1
. (3.36)

Moreover, if a(x) → a0 < +∞ as x → 0+, then for any 0 ≤ u0 ∈ D(G0,1)

d

dt
‖SG0,1(t) u0‖0,1 =

∫ ∞

0

a(x)(n(x)− 1)[SG0,1(t) u0](x)dx

so that the semigroup is honest in X0,1.

Proof. To prove the first part, we use [16, Theorem 4.3]. Let us define A0,1 to be the
part of A in X0,1 which, since X0,1 ⊂ X1, is the restriction of multiplication by a to

D(A0,1) = {u ∈ X0,1, au ∈ X0,1}.
Next we observe that boundedness of n(y) at zero implies that n(y)/(1 + y) is bounded
on [0,∞). Indeed, let n(y) ≤ N1 for y ≤ 1. Then for y > 1 we get

n(y)

y
=

∫ y

0
β(s)ds∫ y

0
sβ(s)ds

=
C1 +

∫ y

1
β(s)ds

C2 +
∫ y

1
sβ(s)ds

≤ C1 +
∫ y

1
β(s)ds

C2 +
∫ y

1
β(s)ds

≤ C

for some constant C. If B denotes the integral expression (3.4), then for 0 ≤ u ∈ D(A0,1)
we have

‖Bu‖0,1 =

∫ ∞

0

a(y)(y + n(y))u(y)dy ≤ sup
y∈R+

y + n(y)

1 + y

∫ ∞

0

a(y)u(y)(1 + y)dy < ∞

hence we can define B0,1 by restricting B to D(A0,1). Let u ∈ D(A0,1) ⊂ D(A) ∩X0,1 ⊂
D(G) ∩X0,1. But then

X0,1 3 (A0,1 + B0,1)u = Au + Bu = Gu,

hence u ∈ D(G0,1) and G0,1 ⊃ A0,1 +B0,1. Since both G0,1 and A0,1 generate semigroups

on X0,1, we can use Theorem 4.3 of [16], which states that G0,1 = (A + B)|X0,1

X0,1
if and
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only if 1 is not an eigenvalue of (B0,1R(λ,A0,1))
∗, in the same way as in the proof of

Theorem 8.13 in op. cit. (see also [10],[16, Corollary 6.15] ).

We identify the dual to X0,1 with X∞ := L∞,(1+x)−1(R+) so that the duality pairing is the
same as between L1 and L∞. Thanks to the considerations in the previous paragraph,
the operator B0,1R(λ,A0,1) is bounded and, as in op. cit., we find that the adjoint is
given by the expression

[(B0,1R(λ,A0,1))
∗ g] (y) =

a(y)γ(y)

λ + a(y)

∫ y

0

β(x)g(x)dx =
a(y)b(y|y)

β(y)(λ + a(y))

∫ y

0

β(x)g(x)dx.

Thus, assume 1 is an eigenvalue of (B0,1R(λ,A0,1))
∗; that is, there is 0 6= h ∈ X∞

satisfying

β(y)h(y)− a(y)b(y|y)

λ + a(y)

∫ y

0

β(x)h(x)dx = 0. (3.37)

Denoting

ϕ(y) =

∫ y

0

β(x)h(x)dx (3.38)

we find from (3.37) that ϕ is differentiable on (0,∞) and the equation can be converted
to

ϕ′(y) =
a(y)b(y|y)

λ + a(y)
ϕ(y).

It has a solution
ϕ(y) = e

R y
1

a(s)b(s|s)
λ+a(s)

ds. (3.39)

Differentiating and using b(s|s) = sβ(s)/
∫ s

0
rβ(r)dr and (3.14), we obtain

h(y) =
ϕ′(y)

β(y)
=

1

β(y)

a(y)b(y|y)

λ + a(y)
e
R y
1

a(s)b(s|s)
λ+a(s)

ds

=
1

β(y)

yβ(y)a(y)

(λ + a(y))
∫ y

0
sβ(s)ds

e
R y
1 b(s|s)dse−λ

R y
1

b(s|s)
λ+a(s)

ds = C
ya(y)

λ + a(y)
eλ
R 1

y

sBλ(s)

s
ds,

where C = 1/ ln
∫ 1

0
β(s)ds. Assume that (3.23) is satisfied. Then λsBλ(s) → λLλ > 1

as s → 0 and thus λsBλ(s) ≥ L > 1 on (0, α) for sufficiently small α.

Hence

eλ
R 1

y

sBλ(s)

s
ds = eλ

R α
y

sBλ(s)

s
dseλ

R 1
α

sBλ(s)

s
ds ≥ C ′

ααLy−L = Cαy−L.

Thus

h(y) ≥ a(y)y1−L

λ + a(y)

close to zero and clearly h is not bounded at 0 if a(y) → a0 > 0 (including a0 = ∞) as
y → 0 contradicting the assumption that h ∈ X∞. If a0 = 0, then we have two cases
to consider: either a(y)y1−L is unbounded which, leads to the previous conclusion, or
a(y)y1−L is bounded. Then the exponent in (3.39) can be written as

∫ y

1

a(s)b(s|s)
λ + a(s)

ds =

∫ y

1

a(s)s1−L

s2−L

sb(s|s)
λ + a(s)

ds
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which means that

ϕ(0) = e
−

∫ 1

0

a(s)b(s|s)
λ + a(s) 6= 0

contrary to the construction (3.38).

If we assume (3.25), then in a similar way we obtain that

h(y) ≥ C1
a(y)y

λ + a(y)
e

C2
yβ

close to zero, where C1 and C2 are constants. As before, as long as a0 > 0 then h(y)
is unbounded at zero since yeC2/yβ

is unbounded. If a0 = 0, then the numerator may
be unbounded in which case the previous argument applies. Otherwise, we have a(y) ≤
Cy−1e−C2/yβ

and
a(s)b(s|s)
λ + a(s)

≤ CM2
e−C2/sβ

sα+2

with the right hand side tending to zero as s → 0. This yields integrability on (0, 1) of
the exponent in (3.39) and ϕ(0) 6= 0, contradicting (3.38).

To prove the second part, first we note that {SG0,1(t)}t≥0 is the restriction of the
semigroup {SG(t)}t≥0, generated by G on X1, to X0,1. This follows from the resol-
vent formula for semigroups and the analogous statement for the generators. There-
fore {SG0,1(t)}t≥0 leaves the spaces L1([0,M ], (1 + x)dx), M > 0, invariant (these are
isometric to L1([0,M ], dx)). Clearly, if we take u ≥ 0 with supp u ⊂ [0,M ], then
SG0,1(t)u ∈ D(A0,1) and, by direct integration,

d

dt
‖SG0,1(t)u‖0,1 =

∫ ∞

0

(n(x)− 1)a(x)[SG0,1(t)u](x)dx. (3.40)

It will be more convenient to work with the integrated version of (3.40):

‖SG0,1(t)]u‖0,1 = ‖u‖0,1 +

∫ ∞

0

(n(x)− 1)a(x)

(∫ t

0

[SG0,1(s)u](x)ds

)
dx, (3.41)

where the change of the order of integration is justified by positivity.

Now, given 0 ≤ u0 ∈ X0,1, we approximate it by un := χ[0,n]u0 ↗ u0 in X0,1. Then, for
any t ≥ 0, we have

SG0,1(t)un ↗ SG0,1(t)u0.

Consider

S(t)un =

∫ t

0

SG0,1(s)unds.

By the dominated convergence (or monotonic as well), we have

S(t)un ↗ S(t)u0



CHAPTER 3. PARTICLES CONTROL IN FRAGMENTATION EQUATIONS 37

in X0,1 for any t ≥ 0. Rewriting (3.41) for un, we see

‖SG0,1(t)un‖0,1 = ‖un‖0,1 +

∫ ∞

0

(n(x)− 1)a(x)

(∫ t

0

[SG0,1(s)un](x)ds

)
dx, (3.42)

we see that the convergence of the norm terms imply convergence of the integral and,
since the multiplication by a(x) does not change monotonicity of the sequence we obtain

‖SG0,1(t)u0‖0,1 = ‖u0‖0,1 +

∫ ∞

0

(n(x)− 1)a(x)

(∫ t

0

[SG0,1(s)u0](x)ds

)
dx, (3.43)

Because X0,1 is an L-space, see [16, Theorem 2.39], we can represent [SG0,1(s)u0](x) as a
measurable function of two variables φ(x, s) and the strong integral with respect to s as
the Lebesgue integral with respect to one variable s. Multiplication by (n(x) − 1)a(x)
does not change the measurability hence, by Fubini theorem, we get

‖SG0,1(t)u0‖0,1 = ‖u0‖0,1 +

∫ ∞

0

(n(x)− 1)a(x)

(∫ t

0

[SG0,1(s)u0](x)ds

)
dx

= ‖u0‖0,1 +

∫ ∞

0

(n(x)− 1)a(x)

(∫ t

0

φ(x, s)ds

)
dx

= ‖u0‖0,1 +

∫ t

0

(∫ ∞

0

(n(x)− 1)a(x)φ(x, s)dx

)
ds

= ‖u0‖0,1 +

∫ t

0

(∫ ∞

0

(n(x)− 1)a(x)[SG0,1(s)u0](x)dx

)
ds.

If u0 ∈ D(G0,1), then the left hand side is differentiable and, since the inner integral in
the last line is clearly integrable with respect to s, the derivative of the right hand side
is this integrand (at least almost everywhere); that is

d

dt
‖SG0,1(t)u0‖0,1 =

∫ ∞

0

(n(x)− 1)a(x)[SG0,1(t)u0](x)dx, a.e.

This, however, shows that t →
∫ ∞

0

(n(x) − 1)a(x)[SG0,1(t)u0](x)dx is continuous, and

thus the above extends to all t.

We note that while the theory for the non-shattering case has been developed up to a
reasonably complete level, the shattering case and the case with infinite production of
daughter particles still contain gaps and open problems. Therefore we present the results
pertaining to the latter rather in the form of examples and comments; the research to
fill the gaps and answer the open questions is ongoing.
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3.5 Examples

Conditions (3.23)-(3.25) seem to be quite technical but they prove to be sharp for a large,
and best understood, class of fragmentation processes governed by power laws; that is,
for

a(x) = xα, b(x|y) = (ν + 2)
xν

yν+1
. (3.44)

Here, α ∈ R; we exclude, however, the case α = 0 which yields boundedness of all
involved operators. On the other hand, the range of the parameter ν is restricted to
ν ∈ (−2, 0]. The reason for this is that for ν > 0 the expected number of daughter
particles after each fragmentation event is smaller than 2, which is nonphysical. On the
other hand, if ν ≤ −2, then

∫ y

0
xb(x|y)dx = ∞, yielding an infinite mass of daughter

particles after each split.

We note that in the power law case the expected number of daughter particles in each
fragmentation event does not depend on the size y of the parent and equals

n(y) =
ν + 2

ν + 1
, ν > −1. (3.45)

In this framework we have

Bλ(x) =
b(x|x)

λ + a(x)
=

ν + 2

x(λ + xα)

and (3.23) corresponds to α > 0 and −1 < ν ≤ 0, whereas (3.24) is yielded by α < −1
with arbitrary ν ∈ (−2, 0]. The case (3.25) cannot be realized in the present framework,
that is, for power law kernels.

We can state the following.

Corollary 3.5.1. Let α > 0 and −1 < ν ≤ 0. Then G0,1 generates a positive semigroup
{SG0,1(t)}t≥0 on X0,1 which, moreover, is honest; that is, for any 0 ≤ u0 ∈ D(G0,1)

d

dt
‖SG0,1(t) u0‖0,1 =

1

ν + 1

∫ ∞

0

xα[SG0,1(t) u0](x)dx.

Furthermore, G0,1 = (A + B)|X0,1

X0,1
.

A more interesting result is contained in the next corollary. Usually shattering is asso-
ciated with an infinite cascade of fragmentation events creating a dust of dimensionless
particles which, however, carry some mass. Implicit in this interpretation is that we
should have an infinite number of particles. The following result shows that such an
interpretation is, in general, erroneous.

Corollary 3.5.2. Let α < −1.
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1. If −1 < ν ≤ 0, then G0,1 generates a once integrated semigroup in X0,1 and
therefore ‖G0,1(t)u0‖0,1 < +∞ for all t ≥ 0 and u0 ∈ D(G2

0,1) (e.g. with compact
support).

2. If −2 < ν ≤ −1, then G0,1 generates a twice integrated semigroup in X0,1 and thus
‖SG0,1(t)u0‖0,1 < +∞ for all t ≥ 0 and u0 ∈ D(G3

0,1).

Thus, in both cases there are (many) trajectories along which the number of particles in
the system remains finite for all times.

The fact that for α < −1 and ν < −1 we may have a finite number of particles in the
system despite the expected number of particles in each split being infinite was noticed
in [32] where the authors commented that

...a finite fraction of the total mass would be transferred to a finite number
of particles with zero or infinitesimal mass! We conclude that a physically
acceptable situation corresponds to α > −1.

Our interpretation of this case is different: in our opinion the fragmentation equation
(3.1) ‘sees’ only a part of the system where only a finite number of ‘physical’ particles
remains, while the mass is carried away by the dust which is beyond the resolution of
(3.1).

The statement in Corollary 3.5.2.1 is rather due to our failure to prove the existence
of the semigroup. However, it is possible to show the existence of a semigroup. For
illustration, the next subsection provides a detail analysis of a binary fragmentation
model with α = −2. We shall prove that in this example G0,1 generates a strongly
continuous semigroup in X0,1.

3.5.1 Binary fragmentation with α = −2

The method we employ is similar to the analysis performed in [15, Example 6.5] and was
used successfully to prove the generation of a semigroup for the binary fragmentation
model with α = −1. The aim of this subsection is to prove a similar result for a case
with α < −1, and we have focused on α = −2 in detail.

We consider the binary fragmentation equation

∂

∂t
u(t, x) = −x−2u(t, x) + 2

∫ ∞

x

y−3u(t, y)dy. (3.46)

The formula for a solution of this equation [55] is,

u(t, x) = e−
t

x2 u0(x) + 2t

∫ ∞

x

y−3e
− t

y2 u0(y)dy, (3.47)

where u0 represents the initial condition.
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Proposition 3.5.3. If t → u(t, ·) is a continuous L1([0,∞), xdx)-valued function which
satisfies pointwise the integrated version of (3.46):

u(t, x) = u0(x)− x−2

∫ t

0

u(s, x)ds + 2

∫ ∞

x

y−3

(∫ t

0

u(s, y)ds

)
dy,

then u is a mild solution of (3.46) defined on its maximal domain and therefore must be
given by the semigroup (SG(t))t≥0.

Proof. See ([15, Theorem 4.1])

Lemma 3.5.4. For any t ≥ 0 and y ∈ R+, we have that

ty−2e−ty−2 ≤ e−1. (3.48)

Proof. For any z ∈ R+, we have

0 ≤ ze−z ≤ e−1 (3.49)

since (ze−z)′ = e−z − ze−z = e−z(1− z). Setting z = ty−2, the thesis follows.

Proposition 3.5.5. The semigroup (SG(t))t≥0 is given by

SG(t)u0(x) = e−
t

x2 u0(x) + 2t

∫ ∞

x

y−3e
− t

y2 u0(y)dy (3.50)

for any t ≥ 0 and any initial condition u0 ∈ D(G).

Proof. The proof is based on Proposition 3.5.3. We start by showing that t → u(t, ·) is
a continuous L1([0,∞), xdx)-valued function, where u(t, ·) is defined via (3.47). Clearly,

‖u(t, ·)− u(t0, ·)‖1 =

∫ ∞

0

x| [u(t, ·)− u(t0, ·)](x)| dx =

∫ ∞

0

x|u(t, x)− u(t0, x)| dx.

— If t0 = 0, by the Fubini theorem,

∫ ∞

0

x|u(t, x)− u(0, x)| dx

≤
∫ ∞

0

x
∣∣∣e− t

x2 − 1
∣∣∣ |u0(x)| dx + 2t

∫ ∞

0

∫ ∞

x

xy−3e
− t

y2 |u0(y)|dy dx

=

∫ ∞

0

x
(
1− e−

t
x2

)
|u0(x)| dx +

∫ ∞

0

ty−2e
− t

y2 (y|u0(y)|)dy.

As a result lim
t→0

‖u(t, ·)−u(0, ·)‖1 = 0, where we used the dominated convergence theorem.
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— If t0 6= 0, by the Fubini theorem,∫ ∞

0

x|u(t, x)− u(t0, x)| dx

≤
∫ ∞

0

x
∣∣∣e− t

x2 − e−
t0
x2

∣∣∣ |u0(x)| dx + 2|t− t0|
∫ ∞

0

∫ ∞

x

xy−3e
− t

y2 |u0(y)|dy dx

+2t0

∫ ∞

0

∫ ∞

x

xy−3
∣∣∣e−

t
y2 − e

− t0
y2

∣∣∣ |u0(y)|dy dx

≤
∫ ∞

0

∣∣∣e− t
x2 − e−

t0
x2

∣∣∣ (x|u0(x)|) dx +
|t− t0|

t
e−1‖u0‖1

+t0

∫ ∞

0

y−2
∣∣∣e−

t
y2 − e

− t0
y2

∣∣∣ (y|u0(y)|)dy

= S1(t) + S2(t) + S3(t),

where we used (3.48). Because 0 ≤ e
− t

y2 ≤ 1 for any positive t, we have that∣∣∣e−
t

y2 − e
− t0

y2

∣∣∣ ≤ 1. By the dominated convergence theorem, lim
t→t0

S1(t) = 0. Also since

t0 6= 0, we have lim
t→t0

S2(t) = lim
t→t0

|t− t0|
t

e−1‖u0‖1 = 0. To complete the proof, we notice

that for any t ∈ [
t0
2

,
3t0
2

], we have that
∣∣∣e−

t
y2 − e

− t0
y2

∣∣∣ ≤ max
(
e
− t

y2 , e
− t0

y2

)
≤ e

− t
3y2 . Thus

∫ ∞

0

y−2
∣∣∣e−

t
y2 − e

− t0
y2

∣∣∣ (y|u0(y)|)dy ≤ 6

t0

∫ ∞

0

t

3y2
e
− t

3y2 (y|u0(y)|)dy ≤ 6

t0
e−1‖u0‖1,

where we used the fact that t ≥ t0
2

and (3.49) (with z = t
3y2 ) respectively. Once again

by the dominated convergence theorem, limt→t0 S3(t) = 0. Therefore t → u(t, ·) is a
continuous L1([0,∞), xdx)-valued function. It remains to show that

u(t, x) = u0(x)− x−2

∫ t

0

u(s, x)ds + 2

∫ ∞

x

y−3

(∫ t

0

u(s, y)ds

)
dy.

By Fubini theorem,
∫ t

0

u(s, x)ds = u0(x)

∫ t

0

e−sx−2

ds + 2

∫ ∞

x

z−3u0(z)

(∫ t

0

se−sz−2

ds

)
dz

= x2
(
1− e−tx−2

)
u0(x)

+2

∫ ∞

x

z−3u0(z)
(
−tz2e−tz−2 − z4e−tz−2

+ z4
)

dz

and ∫ ∞

x

y−3

∫ ∞

y

z−3u0(z)
(
−tz2e−tz−2 − z4e−tz−2

+ z4
)

dzdy

=

∫ ∞

x

∫ z

x

y−3z−3u0(z)
(
−tz2e−tz−2 − z4e−tz−2

+ z4
)

dydz

=

∫ ∞

x

z−3u0(z)
(
−tz2e−tz−2 − z4e−tz−2

+ z4
) (

x−2

2
− z−2

2

)
dz.
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It follows that

u0(x)− x−2

∫ t

0

u(s, x)ds

= u0(x)e−tx−2 − 2x−2

∫ ∞

x

z−3u0(z)
(
−tz2e−tz−2 − z4e−tz−2

+ z4
)

dz

and ∫ ∞

x

y−3

(∫ t

0

u(s, y)ds

)
dy

=

∫ ∞

x

y−1
(
1− e−ty−2

)
u0(y)dy

+

∫ ∞

x

z−3u0(z)
(
−tz2e−tz−2 − z4e−tz−2

+ z4
) (

x−2 − z−2
)
dz.

Thus

u0(x)− x−2

∫ t

0

u(s, x)ds + 2

∫ ∞

x

y−3

(∫ t

0

u(s, y)ds

)
dy

= u0(x)e−tx−2

+ 2

∫ ∞

x

y−1
(
1− e−ty−2

)
u0(y)dy

−2

∫ ∞

x

z−5u0(z)
(
−tz2e−tz−2 − z4e−tz−2

+ z4
)

dz

= u(t, x).

Therefore u(t, x) = e−
t

x2 u0(x) + 2t
∫∞

x
y−3e

− t
y2 u0(y)dy satisfies pointwise the integrated

version of (3.46).

Lemma 3.5.6. For any f ∈ X0,1, the inequality below is satisfied:

t

∫ 1

0

(∫ ∞

x

y−3e
− t

y2 |f(y)|dy

)
dx ≤ (t + e−1)‖f‖0. (3.51)

Proof. Let f ∈ X0,1. By the Fubini theorem, we have
∫ 1

0

(∫ ∞

x

y−3e
− t

y2 |f(y)|dy

)
dx

=

∫ 1

0

(∫ y

0

y−3e
− t

y2 |f(y)|dx

)
dy +

∫ ∞

1

(∫ 1

0

y−3e
− t

y2 |f(y)|dx

)
dy

≤
∫ 1

0

y−2e
− t

y2 |f(y)|dy +

∫ ∞

0

|f(y)|dy,

since 0 ≤ y−3e
− t

y2 ≤ y−3 ≤ 1 when y > 1. It follows that

t

∫ 1

0

(∫ ∞

x

y−3e
− t

y2 |f(y)|dy

)
dx ≤ (t + e−1)‖f‖0

where we used (3.48).
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Proposition 3.5.7. The Banach space X0,1 is an invariant subspace of (SG(t))t≥0.

Proof. Let t ≥ 0 and f ∈ X0,1, we have

‖SG(t)f‖0 ≤ ‖SG(t)f‖1 +

∫ 1

0

∣∣∣∣e−
t

x2 f(x) + 2t

∫ ∞

x

y−3e
− t

y2 f(y)dy

∣∣∣∣ dx

≤ ‖SG(t)f‖1 +

∫ 1

0

e−
t

x2 |f(x)|dx + 2t

∫ 1

0

(∫ ∞

x

y−3e
− t

y2 |f(y)|dy

)
dx

≤ ‖SG(t)f‖1 +

∫ 1

0

|f(x)|dx + 2(t + e−1)‖f‖0 by (3.51)

≤ ‖SG(t)f‖1 + (1 + 2e−1 + 2t)‖f‖0.

Since (SG(t))t≥0 is a substochastic semigroup in X1, we have ‖SG(t)f‖1 ≤ ‖f‖1. It follows
that

‖SG(t)f‖0,1 ≤ ‖SG(t)f‖0 + ‖SG(t)f‖1

≤ 2‖SG(t)f‖1 + (1 + 2e−1 + 2t)‖f‖0

≤ 2‖f‖1 + (1 + 2e−1 + 2t)‖f‖0

= (2 + 2e−1 + 2t)‖f‖0,1

≤ 3et‖f‖0,1.

Proposition 3.5.8. The restriction (SG0,1(t))t≥0 of the semigroup (SG(t))t≥0 to the Ba-
nach Space X0,1 is a strongly continuous semigroup of bounded operators.

Proof. Note that the restriction of the semigroup (SG(t))t≥0 to the space X0,1 is a semi-
group since X0,1 is an invariant subspace of (SG(t))t≥0. Thus it is enough to show that
(SG(t))t≥0 is strongly continuous at t = 0 in X0,1. Let f ∈ X0,1, we have

‖SG(t)f − f‖0,1 = ‖SG(t)f − f‖0 + ‖SG(t)f − f‖1

≤ 2‖SG(t)f − f‖1 +

∫ 1

0

∣∣∣∣
(

e−
t

x2 f(x) + 2t

∫ ∞

x

y−3e
− t

y2 f(y)dy

)
− f(x)

∣∣∣∣ dx

≤ 2‖SG(t)f − f‖1 +

∫ 1

0

(1− e−
t

x2 )|f(x)| dx + 2t

∫ 1

0

(∫ ∞

x

y−3e
− t

y2 |f(y)|dy

)
dx

→ 0 as t → 0+.

Indeed, since (SG(t))t≥0 is a substochastic semigroup in X1, we have limt→0+ ‖SG(t)f −
f‖1 = 0. Furthermore, at any time t ≥ 0, we have that (1−e−

t
x2 ) ≤ 1. Because f ∈ X0,1,

the dominated convergence theorem yields lim
t→0+

∫ 1

0

(1− e−
t

x2 )|f(x)| dx = 0. In the same

way, by Lemma 3.5.6 and the dominated convergence theorem,

lim
t→0+

t

∫ 1

0

(∫ ∞

x

y−3e
− t

y2 |f(y)|dy

)
dx = 0.
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It follows that lim
t→0+

‖SG(t)f − f‖0,1 = 0.

Hence the solution (3.47) of the fragmentation equation (3.46) is given by the semigroup
SG0,1(t))t≥0 generated by G0,1 in the space X0,1. Therefore for some specific models with
α < −1, the once integrated semigroup generated by G0,1 and described in Corollary
3.5.1 is a strongly continuous semigroup of bounded linear operators.

So far we have not discussed the case when α ∈ [−1, 0) and ν ∈ (−2, 0] or α > 0 and
ν ∈ (−2,−1]. This is done in the last subsection.

3.5.2 Case α ∈ [−1, 0) and ν ∈ (−2, 0] or α > 0 and ν ∈ (−2,−1]

It is easy to see that in both cases

lim
x→0

λxBλ(x) = lim
x→0

λ(ν + 2)

λ + xα
≤ 1

(0 in the first case and ν + 2 < 1 in the second one) and, at the same time,

lim
x→0

Bλ(x) = ∞

so this case is not covered by Corollary 3.3.3. It turns out that there is a reason for this
since the integral condition (3.21) reads now

∫ ε

0

Bλ(x)

x
∆λ(x)dx =(ν + 2)

∫ ε

0

e−λ(ν+2)
R 1

x
ds

s(λ+sα)
dx

x2(λ + xα)
. (3.52)

Direct integration shows that

∫ 1

x

ds

s(λ + sα)
= − ln

[
x

1
λ (λ + 1)

1
αλ

(λ + xα)
1

αλ

]
, where we used the

method of substitution with w = sα. It follows that the integrand on the right-hand

side of (3.52) is equal to (λ + 1)
ν+2

α xν(λ + xα)−(1+ ν+2
α

). As a result, it behaves as xν for
α > 0 and as x−α−2 for α < 0. Hence (3.21) is not satisfied in either case discussed in
this remark and therefore R(λ)X0,1 * X0,1. Therefore the restriction of G to X0,1 cannot
generate any reasonable dynamics there.

This is supported by the following example. The case with α = −1 and ν = 0 gives the
equation

∂

∂t
u(x, t) = −x−1u(x, t) + 2

∫ ∞

x

y−2u(y, t)dy,

for which we have

Bλ(x) =
2

x(λ + x−1)
→ 2 6= 0

and

xBλ(x) =
2

λ + x−2
→ 0 < 1.
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By [15, Example 6.5], the X1-semigroup is represented by

u(x, t) = e−
t
x u0(x) + 2t

∫ ∞

x

e−
t
y

y2
e−

t
y u0(y)dy + t2

∫ ∞

x

e−
t
y

y2

(
1

x
− 1

y

)
u0(y)dy.

For u0 ≥ 0, each term is nonnegative. Taking the X0 norm of the last term we obtain

2t2
∫ ∞

0

e−
t
y

y2
u0(y)

(∫ y

0

(
1

x
− 1

y

)
dx

)
dy = ∞ (3.53)

for any nonzero u0 ≥ 0 and any t > 0, irrespectively whether ‖u0‖0 < ∞ or not. Hence,
the number of particles in this case immediately becomes infinite and stays infinite for
all times.



Chapter 4

Coagulation-Fragmentation models

4.1 Preliminaries

The dynamical behaviour of a system of particles that can combine to form larger parti-
cles or break up to produce smaller particles is given by the integro-differential equation

∂

∂t
u(t, x) =− a(x)u(t, x) +

∫ ∞

x+x0

a(y)b(x|y)u(t, y)dy

+
χ

U
(x)

2

∫ x−x0

x0

k(x− y, y)u(t, x− y)u(t, y)dy,

− u(t, x)

∫ ∞

x0

k(x, y)u(t, y)dy,

(4.1)

where χ
U

is the characteristic function of the interval U = [2x0,∞). In this equation
u is the particle mass distribution function, a is the fragmentation rate and b(x|y) is
the distribution of particle masses x spawned by the fragmentation of a particle of mass
y. The coagulation kernel k(x, y) is the rate at which particles of mass x coalesce with
particles of mass y. The characteristic function χ

U
ensures no particle of mass x < 2x0

can emerge as a result of coagulation.

The terms on the right side of (4.1) describe, from left to right, the reduction in the
number of particles in the mass range (x; x+dx) due to the fragmentation of particles in
the same range, the increase in the number of particles in the range due to fragmentation
of larger particles, the increase in the number of particles of mass x ≥ 2x0 as the result
of particles of mass x− y and mass y (x0 ≤ y ≤ x− x0) merging to form a particle of
mass x and the last term accounts for the loss of particles of mass x because they have
coalesced with particles of mass y, y ≥ x0. Note that the factor 1/2 takes into account
that either a particle of mass x− y coalesces with one of mass y or vice versa.

The main purpose of this chapter is to make use of substochastic semigroup theory and
semilinear ACP techniques to analyze the coagulation-fragmentation equation in the

46
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space X1 = L1([x0,∞), xdx) =

{
ψ : ‖ψ‖1 :=

∫ ∞

x0

x|ψ(x)| dx < ∞
}

. This has been

done in the past only in the space X0,1 = L1([x0,∞), (1+x)dx) since the fragmentation
equation is known to behave well in the space X1 and the coagulation operator in the
space X0 = L1([x0,∞), dx). We shall prove existence and uniqueness of conservative
solutions for the coagulation-fragmentation equation in a biological population. Another
important aspect of this chapter covers the case x0 = 0. We extend some existing results
on coagulation-fragmentation to some models with fragmentation rate unbounded at 0
and growing faster than x at infinity.

Before proceeding to the abstract setting of (4.1), we provide some assumptions that
we use throughout the rest of this chapter. We assume that the fragmentation rate a is
essentially bounded on compact subintervals of (x0,∞); ie

a ∈ L∞, loc((x0,∞)). (4.2)

Particles of sizes less than 2x0 do not fragment since the minimum size of a particle is
x0. Therefore we assume that

a(x) = 0 for x < 2x0, (4.3)

and
b(x|y) = 0 for y < x + x0. (4.4)

Normally it is expected that the total mass in the system is a conserved quantity during
fragmentation, and hence b is usually assumed to satisfy the condition

∫ y−x0

x0

xb(x|y)dx = y, for each y > 2x0. (4.5)

We assume as well that the coagulation kernel k is a nonnegative function in L∞((x0,∞)×
(x0,∞)) with

k0 := ess sup{k(x, y); (x, y) ∈ (x0,∞)× (x0,∞)}. (4.6)

4.1.1 Abstract reformulation

The idea is to analyze the problem by rephrasing it in abstract form (ACP) as an ordinary
differential equation. Let A, B denote the first expressions appearing on the right-hand
side of (4.1); that is

(Au)(x) = −a(x)u(x), (4.7)

(Bu)(x) =

∫ ∞

x+x0

a(y)b(x|y)u(y) dy. (4.8)

With the expressions of A, B we associate operators A and B in X1 defined by

[Au](x) = [Au](x), [Bu](x) = [Bu](x).
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The operator A is defined on D(A) = {u ∈ X1; au ∈ X1}. Direct integration shows that
for 0 ≤ u ∈ D(A), Bu ∈ X1, so that we can take D(B) = D(A) and (A + B, D(A)) is
well-defined.

Accordingly, we define the coagulation operator K on X1 by

(Kψ)(x) :=
χ

U
(x)

2

∫ x−x0

x0

k(x− y, y)ψ(x− y)ψ(y)dy − ψ(x)

∫ ∞

x0

k(x, y)ψ(y)dy

= K1[ψ, ψ](x)−K2[ψ, ψ](x)

= K[ψ, ψ](x),

where for ψ, φ ∈ X1,

K1[ψ, φ](x) =
χ

U
(x)

2

∫ x−x0

x0

k(x− y, y)ψ(x− y)φ(y)dy

K2[ψ, φ](x) = ψ(x)

∫ ∞

x0

k(x, y)φ(y)dy.

Theorem 4.1.1. There exists a smallest substochastic semigroup (SG(t))t≥0 on X1 gen-
erated by an extension G of (A + B, D(A)).

Proof. The proof is based on Kato-Voigt Perturbation theorem. It is obvious that A
generates a substochastic semigroup in X1. We also have that Bu ≥ 0 for u ∈ D(B)+.
Furthermore

∫∞
x0

[Au+Bu](x)xdx ≤ 0 for any u ∈ D(A)+. In fact by the Fubini theorem,

∫ ∞

x0

[Bu](x)xdx =

∫ ∞

x0

(∫ ∞

x+x0

a(y)b(x|y)u(y) dy

)
xdx

=

∫ ∞

2x0

a(y)u(y)

(∫ y−x0

x0

xb(x|y) dx

)
dy

=

∫ ∞

2x0

ya(y)u(y)dy,

where we made use of (4.5). The desired result follows from (4.3) and Theorem 2.3.5.

Theorem 4.1.2. The semigroup (SG(t))t≥0 is honest.

Proof. The argument we use is similar to the one used in the proof of [16, Theorem 8.5].

Note that for any u ∈ D(A)+ we have that

∫ ∞

x0

[Au + Bu](x)xdx = 0. By [16, Theorem

6.22], it is enough to prove that for any ψ ∈ X1+ such that −aψ + Bψ ∈ X1, we have
the inequality ∫ ∞

x0

[−aψ + Bψ](x)xdx ≥ 0.
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By (4.2), the function aψ satisfies aψ ∈ L1([x0, R], xdx) for any x0 < R < ∞, therefore
the same is true for Bψ. Thus

∫ ∞

x0

[−aψ + Bψ](x)xdx

= lim
R→∞

(
−

∫ R

x0

a(x)ψ(x)xdx +

∫ R

x0

(∫ ∞

x+x0

a(y)b(x|y)ψ(y) dy

)
xdx

)
.

Next, by (4.5) and the Fubini theorem,

∫ R

x0

(∫ ∞

x+x0

a(y)b(x|y)ψ(y) dy

)
xdx

=

∫ R+x0

2x0

a(y)ψ(y)

(∫ y−x0

x0

xb(x|y) dx

)
dy +

∫ ∞

R+x0

a(y)ψ(y)

(∫ R

x0

xb(x|y) dx

)
dy

= ZR +

∫ R

2x0

ya(y)ψ(y)dy,

where

ZR =

∫ ∞

R+x0

a(y)ψ(y)

(∫ R

x0

xb(x|y) dx

)
dy +

∫ R+x0

R

ya(y)ψ(y)dy ≥ 0.

Combining we see that
∫ ∞

x0

[−aψ + Bψ](x)xdx = lim
R→∞

ZR ≥ 0,

where we used (4.3). The thesis follows from [16, Theorem 6.13 and Theorem 6.22].

4.2 Analysis of the evolution equation for x0 6= 0

In this section, we intend to analyze the semi-linear problem

du

dt
(t) = G[ u(t)] + K[ u(t)] , t > 0, u(0) = u0 , (4.9)

within the framework of the Banach space X1. This approach is new in the sense that
previous investigations of the coagulation-fragmentation equation using semilinear ACP
theory have been carried out in the space X0,1. The main difference is that thanks to
x0 6= 0 we are able to prove global existence of the solutions without assuming that the
fragmentation rate is linearly bounded.

Remark 3. In the previous chapter, the generation of a semigroup by the fragmentation
operator in the space X0,1 was proved for the separable kernel b(x|y) = β(x)γ(y). This
can be extended to the case x0 6= 0 with arbitrary kernel b, including b(x|y) = y−1h(x/y)
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for some suitable function h. This result simply follows from the fact that the space X1

is topologically equivalent to the space X0,1. It ensures that the semigroup (SG(t))t≥0

introduced in Theorem 4.1.1 is a strongly continuous semigroup generated by G in the
space X0,1.

Next we explore the properties of the coagulation operator K.

Proposition 4.2.1. K(X1) ⊂ X1 with ‖Kψ‖1 ≤ 2 k0

x0
‖ψ‖2

1 for all ψ ∈ X1.

Proof. Let ψ, φ ∈ X1, we have

∫ ∞

x0

∫ x−x0

x0

x|ψ(x− y)φ(y)| dy dx

=

∫ ∞

x0

∫ ∞

y+x0

x|ψ(x− y)φ(y)| dx dy

=

∫ ∞

x0

∫ ∞

x0

(z + y)|ψ(z)φ(y)| dz dy,

where x > 2x0. It follows that

‖K1[ψ, φ]‖1 ≤
∫ ∞

x0

x
χ

U
(x)

2

∫ x−x0

x0

k(x− y, y)|ψ(x− y)φ(y)| dy dx

≤ k0

2

∫ ∞

x0

∫ x−x0

x0

x|ψ(x− y)φ(y)| dy dx

≤ k0

x0

(∫ ∞

x0

∫ ∞

x0

zy|ψ(z)φ(y)| dz dy

)

=
k0

x0

‖ψ‖1‖φ‖1.

Furthermore,

‖K2[ψ, φ]‖1 ≤
∫ ∞

x0

∫ ∞

x0

xk(x, y)|ψ(x)φ(y)|dy dx

≤ k0

∫ ∞

x0

∫ ∞

x0

x|ψ(x)φ(y)|dy dx

≤ k0

x0

‖ψ‖1‖φ‖1.

The result follows.

Proposition 4.2.2. K is locally Lipschitz on X1.
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Proof. Let u0 ∈ X1 and ψ, φ ∈ B(u0, ρ) := {h ∈ X1 : ‖h− u0‖1 ≤ ρ}, then

‖Kψ −Kφ‖1 = ‖K[ψ, ψ]−K[φ, φ]‖1

= ‖K[ψ − φ, ψ]−K[φ, ψ − φ]‖1

≤ 2
k0

x0

(‖ψ − φ‖1‖ψ‖1 + ‖φ‖1‖ψ − φ‖1)

= 2
k0

x0

‖ψ − φ‖1(‖ψ‖1 + ‖φ‖1)

≤ %ρ,u0‖ψ − φ‖1,

where

%ρ,u0 = 4
k0

x0

(ρ + ‖u0‖1), (4.10)

and so K is locally Lipschitz on X1.

Proposition 4.2.3. K is Fréchet differentiable on X1 and for any ψ ∈ X1, the Fréchet
derivative Kψ is expressed by

Kψφ := K[ψ, φ] +K[φ, ψ], ∀ φ ∈ X1.

Moreover the Fréchet derivative is continuous with respect to ψ.

Proof. Let ψ, δ ∈ X1. The bilinearity of K leads to

K(ψ + φ) = K[ψ + φ, ψ + φ]

= K[ψ, ψ] +K[ψ, φ] +K[φ, ψ] +K[φ, φ].

For fixed ψ , K[ψ, ·] +K[·, ψ] is a bounded operator on X1 with

|| K[ψ, δ] +K[δ, ψ] ||1 ≤ 4
k0

x0

||ψ||1 ||δ||1 ∀δ ∈ X1 .

Also ||Kδ||1
||δ||1 ≤ 2

k0

x0

||δ||1 → 0 as ||δ||1 → 0 .

Hence K is Fréchet differentiable at each ψ ∈ X1 and the Fréchet derivative Kψ at ψ is
given by

Kψφ := K[ψ, φ] +K[φ, ψ] ∀φ ∈ X1 .

Consequently,
‖Kψφ‖1 ≤ %ρ,u0‖φ‖1, ∀ φ ∈ X1, ψ ∈ B(u0, ρ).

Also, for ψ1, ψ2, φ ∈ X1,

‖Kψ1φ−Kψ2φ‖1 = ‖K[ψ1, φ] +K[φ, ψ1]−K[ψ2, φ]−K[φ, ψ2]‖1

= ‖K[ψ1 − ψ2, φ] +K[φ, ψ1 − ψ2]‖1

≤ 4
k0

x0

‖φ‖1‖ψ1 − ψ2‖1 → 0 as ‖ψ1 − ψ2‖1 → 0.

Hence, the Fréchet derivative is continuous with respect to ψ.
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4.2.1 Local existence

Theorem 4.2.4. Local existence of a solution
There exist positive constants ρ0, t0 and a strongly differentiable function

u : [0, t0) → B(u0, ρ0) := {h ∈ X1 : ‖h− u0‖1 < ρ0}
such that

du

dt
(t) = G[u(t)] + K[u(t)], 0 < t < t0; u(0) = u0 ∈ D(G) ∩X1+, (4.11)

where X1+ = {ψ ∈ X1 : ψ ≥ 0 a.e. on (x0,∞)}.

Proof. Considering the properties of the nonlinear operator K and the fact that G is the
generator of a strongly continuous semigroup, the theorem follows from standard results
on semilinear ACPs.

To show that this local (in time) solution is in X1+ for all t ∈ [0, t0), we adopt the
argument used in [20, Chapter 8]. This was applied to coagulation models by Banasiak
and Lamb in their recent paper [18]. First we note that the solution u of (4.11) is also
the unique strongly differentiable solution of

du

dt
(t) = (G[u(t)]− αu(t)) + (αu(t) + K[u(t)]) (4.12)

for any α ∈ R. Hence u is the unique solution of the integral equation

u(t) = e−αtSG(t)u0 +

∫ t

0

e−α(t−s)SG(t− s)Kα[u(s)]ds, 0 ≤ t < t0, (4.13)

where Kα := K + αI.

Lemma 4.2.5. Let α ≥ k0

x0
(‖u0‖1 + ρ0). Then Kαψ ∈ X1+ for all ψ ∈ B(u0, ρ0) ∩X1+.

Proof. By definition, we have

Kαψ = αψ +K1[ψ, ψ]−K2[ψ, ψ].

Clearly K1[ψ, ψ] ∈ X1+ for all ψ ∈ X1+. Also, for ψ ∈ B(u0, ρ0) ∩X1+,

ψ(x)

∫ ∞

x0

k(x, y)ψ(y)dy ≤ k0

x0

ψ(x)‖ψ‖1

≤ k0

x0

(‖u0‖1 + ρ0)ψ(x).

Hence

αψ(x)−K2[ψ, ψ](x) ≥ αψ(x)− k0

x0

(‖u0‖1 + ρ0)ψ(x)

≥ 0 provided that α ≥ k0

x0

(‖u0‖1 + ρ0).
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Theorem 4.2.6. Let u0 ∈ D(G)∩X1+ and let u : [0, t0) → B(u0, ρ0) be the unique strict
solution of (4.11). Then there exists t1 ∈ (0, t0] such that u(t) ∈ X1+ for all t ∈ [0, t1).

Proof. Let Y := C([0, t1], X) with norm ‖v‖Y := max{‖v(t)‖1 : 0 ≤ t ≤ t1}. Moreover,
let

Ψ := {v ∈ Y : v(t) ∈ B(u0, ρ1) ∩X1+ ∀t ∈ [0, t1]}
where 0 < ρ1 < ρ0, and define

(Qv)(t) := e−αtSG(t)u0 +

∫ t

0

e−α(t−s)SG(t− s)Kα[v(s)]ds, 0 ≤ t ≤ t1,

D(Q) := Ψ,

with α ≥ k0

x0
(‖u0‖1 + ρ0). Then Q(Ψ) ⊂ Y and (Qv)(t) ∈ X1+ for all t ∈ [0, t1]. Also,

for all v, w ∈ Ψ,

‖(Qv)(t)− (Qw)(t)‖1 ≤
∫ t

0

e−α(t−s)‖SG(t− s)‖L(X1)‖Kα[v(s)]−Kα[w(s)]‖1 ds

≤
∫ t

0

e(−α)(t−s)‖Kα[v(s)]−Kα[w(s)]‖1 ds

≤ (%ρ0,u0 + α)

∫ t

0

e(−α)(t−s)‖v(s)− w(s)‖1 ds,

where %ρ0,u0 is defined via (4.10), L(X1) is the set of bounded linear operator on X1

and we used the fact that the semigroup (SG(t))t≥0 is substochastic, see Theorem 4.1.1.
Hence

‖Qv −Qw‖Y ≤ (%ρ0,u0 + α)t1‖v − w‖Y .

Similarly,

‖(Qv)(t)− u0‖1

≤ ‖e−αtSG(t)u0 − u0‖1 +

∫ t

0

e−α(t−s)‖SG(t− s)Kα[v(s)]‖1 ds

≤ ‖e−αtSG(t)u0 − u0‖1 +

∫ t

0

e(−α)(t−s)‖Kα[v(s)]‖1 ds. (4.14)

Now

‖Kα[v(s)]‖1 = ‖Kα[v(s)]−Kαu0 + Kαu0‖1

≤ ‖Kα[v(s)]−Kαu0‖1 + ‖Kαu0‖1

≤ (%ρ0,u0 + α)‖v(s)− u0‖1 + ‖Ku0‖1 + α‖u0‖1

≤ (%ρ0,u0 + α)ρ1 + ‖Ku0‖1 + α‖u0‖1.

Hence the expression in (4.14) is bounded above by

‖e−αtSG(t)u0 − u0‖1 + ((%ρ0,u0 + α)ρ1 + ‖Ku0‖1 + α‖u0‖1)t1.
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If we now define

ζ(t1) :=
1

ρ1

max
0≤t≤t1

{‖e−αtSG(t)u0 − u0‖1}+
1

ρ1

((%ρ0,u0 + α)ρ1 + ‖Ku0‖1 + α‖u0‖1)t1,

then it follows that

‖(Qv)(t)− u0‖1 ≤ ρ1ζ(t1), ∀ ∈ [0, t1] and

‖Qv −Qw‖Y ≤ ζ(t1)‖v − w‖Y , ∀v, w ∈ Ψ.

Since ζ(t1) → 0+ as t1 → 0+, we can choose t1 so that 0 < ζ(t1) < 1, in which case
Q(Ψ) ⊂ Ψ. Hence there exists a unique solution u ∈ Ψ of u = Qu and so the integral
equation (4.13) has a unique solution u ∈ C([0, t1], X1+).

Corollary 4.2.7. Let the maximal interval of existence of the strict solution u of (4.11)
be [0, τ̂). Then u(t) ∈ X1+ for all t ∈ [0, τ̂) whenever f ∈ D(G) ∩X1+.

Proof. Let τ0 ∈ (0, τ̂) be arbitrarily fixed and define

τmax := sup{0 < τ < τ0 : u(t) ∈ X1+ for all t ∈ [0, τ ]}.
Suppose that τmax < τ0 and consider the semi-linear problem

dv

dt
(t) = G[v(t)] + K[v(t)], t > 0; v(0) = u(τmax). (4.15)

The solution of (4.15) on [0, τ0−τmax] is v(t) = u(t+τmax). Since X1+ is closed, u(τmax) ∈
X1+ and the previous analysis shows that u(t+ τmax) ∈ X1+ for sufficiently small t. This
contradicts the definition of τmax and therefore u(t) ∈ X1+ for all t ∈ [0, τ0].

4.2.2 Global existence

To prove the global (in time) existence of a strict non-negative solution to (4.11) we shall
establish that the local solution cannot blow up in finite time [46].

Lemma 4.2.8. If ψ ∈ D(G) ∩X1+ then

∫ ∞

x0

x(Gψ)(x)dx = 0 (4.16)

Proof. The result follows directly from the honesty of the semigroup (SG(t))t≥0 generated
by the operator G, see Theorem 4.1.2.

Lemma 4.2.9. If ψ ∈ X1+, then
∫ ∞

x0

x(Kψ)(x)dx = 0.
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Proof. Let ψ ∈ X1+. We have

∫ ∞

x0

∫ x−x0

x0

xk(x− y, y)ψ(x− y)ψ(y)χ
U
(x)dydx

=

∫ ∞

x0

∫ ∞

y+x0

xk(x− y, y)ψ(x− y)ψ(y)dxdy

=

∫ ∞

x0

∫ ∞

x0

(z + y)k(z, y)ψ(z)ψ(y)dzdy

= 2

∫ ∞

x0

∫ ∞

x0

xk(x, y)ψ(x)ψ(y)dydx,

where we used the fact that k(x, y) = k(y, x). It follows that

∫ ∞

x0

x(Kψ)(x)dx =
1

2

∫ ∞

x0

(∫ x−x0

x0

xk(x− y, y)ψ(x− y)ψ(y)χ
U (x)dy

)
dx

−
∫ ∞

x0

∫ ∞

x0

xk(x, y)ψ(x)ψ(y)dydx

=0.

(4.17)

Theorem 4.2.10. The abstract Cauchy problem (4.11) has a unique, global, non-negative
conservative solution u for each u0 ∈ D(G) ∩X1+.

Proof. Because the local solution u is a non-negative solution of (4.11), it follows from
the previous two lemmas that

d

dt
‖u(t)‖ =

∫ ∞

x0

x(G[u(t)])(x)dx +

∫ ∞

x0

x(K[u(t)])(x)dx = 0

for 0 ≤ t < τ̂ . Therefore ‖u(t)‖1 = ‖u0‖1 for all t ∈ [0, τ̂). Consequently u does not blow
up in finite time. The result follows.

4.3 Analysis of the evolution equation for x0 = 0

In this section, we assume that we have a separable distribution rate kernel b(x|y) =
β(x)γ(y). By Theorem 4.1.1, the fragmentation operator G defined in X1 generates a
C0-semigroup. From the analysis performed in the previous chapter, the part G0,1 of
the fragmentation operator G on the space X0,1 generates a strongly continuous semi-
group (SG0,1(t))t≥0. This result shall be used to expand the work of Lamb, McBride and
McLaughlin [42] on coagulation-fragmentation models with linearly bounded fragmen-
tation rates to some models with arbitrary fragmentation rates.
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With some abuse of notation, the part K0,1 of the coagulation operator K in X0,1 will
still be denoted K. Note that because x0 = 0, the coagulation operator does not behave
well in the space X1 . As a result, it is necessary to analyze the semi-linear problem

du

dt
(t) = G0,1[ u(t)] + K[ u(t)] , t > 0, u(0) = u0 , (4.18)

within the framework of the Banach space X0,1. In this view, the following lemma is
important.

Lemma 4.3.1. The operator K : X0,1 ×X0,1 → X0,1 is bilinear and

|| K[ψ, φ] ||0,1 ≤ 2k0 ||ψ||0,1 ||φ||0,1 ∀ψ, φ ∈ X0,1 . (4.19)

Proof. The operator K is clearly bilinear. Let ψ, φ ∈ X,

‖K1[ψ, φ]‖0,1 ≤ k0

2

∫ ∞

0

∫ x

0

(1 + x)|ψ(x− y)φ(y)| dy dx

=
k0

2

∫ ∞

0

∫ ∞

y

(1 + x)|ψ(x− y)φ(y)| dx dy

=
k0

2

∫ ∞

0

∫ ∞

0

(1 + z + y)|ψ(z)| |φ(y)| dz dy

≤ k0

2

(∫ ∞

0

∫ ∞

0

(1 + z)(1 + y)|ψ(z)| |φ(y)| dz dy

)

=
k0

2
‖ψ‖0,1‖φ‖0,1.

Similarly,

‖K2[ψ, φ]‖0,1 ≤
∫ ∞

0

∫ ∞

0

(1 + x)k(x, y)|ψ(x)φ(y)|dy dx

≤ k0

∫ ∞

0

∫ ∞

0

(1 + x)|ψ(x)φ(y)|dy dx

≤ k0‖ψ‖0,1‖φ‖0,1.

The result follows.

Theorem 4.3.2.

(i) K : X0,1 → X0,1 ;

(ii) K is locally Lipschitz on X0,1 ;

(iii) K is Fréchet differentiable on X0,1 and the Fréchet derivative Kψ is such that

‖Kψφ‖0,1 ≤ %‖φ‖0,1, ∀ φ ∈ X0,1, ψ ∈ B(u0, r),

where % is a positive constant.
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(iv) The Fréchet derivative is continuous with respect to ψ ∈ B(u0, r) in the sense that

‖Kψ1φ−Kψ2φ‖0,1 → 0 as ‖ψ1 − ψ2‖0,1 → 0 where ψ1, ψ2 ∈ B(u0, r),

for any given φ ∈ X0,1.

Proof. (i), (ii). On applying Lemma 4.3.1, we obtain

||Kψ||0,1 = || K[ψ, ψ] ||0,1 ≤ 2k0 ||ψ||20,1 ∀ψ ∈ X0,1

and

||Kψ −Kφ||0,1 = || K[ψ, ψ]−K[φ, φ] ||0,1

= || K[ψ − φ, ψ] +K[φ, ψ − φ] ||0,1

≤ 2k0 ||ψ − φ||0,1 ( ||ψ||0,1 + ||φ||0,1 ) .

Consequently, if u0 ∈ X0,1 is fixed then

||Kψ −Kφ||0,1 ≤ %(r, u0) ||ψ − φ||0,1 ∀ψ, φ ∈ B̄(u0, r) ,

where

B̄(u0, r) := { f ∈ X0,1 : ||f − u0 ||0,1 ≤ r } , and

%(r, u0) := 4k0 ( r + ||u0||0,1 ) . (4.20)

(iii) Let ψ, δ ∈ X0,1. Then

K[ψ + δ] = Kψ +K[ψ, δ] +K[δ, ψ] + Kδ .

For fixed ψ , K[ψ, ·] +K[·, ψ] is a bounded operator in X0,1 with

|| K[ψ, δ] +K[δ, ψ] ||0,1 ≤ 4k0 ||ψ||0,1 ||δ||0,1 ∀δ ∈ X0,1 .

Also ||Kδ||0,1

||δ||0,1

≤ 2k0 ||δ||0,1 → 0 as ||δ||0,1 → 0 .

Hence K is Fréchet differentiable at each ψ ∈ X0,1 and the Fréchet derivative Kψ at ψ
is given by

Kψφ := K[ψ, φ] +K[φ, ψ] ∀φ ∈ X0,1 .

Consequently,

‖Kψφ‖0,1 ≤ %(r, u0)‖φ‖0,1, ∀ φ ∈ X0,1, ψ ∈ B(u0, r).

(iv) Let ψ1, ψ2, φ ∈ X0,1,

‖Kψ1φ−Kψ2φ‖0,1 = ‖K[ψ1, φ] +K[φ, ψ1]−K[ψ2, φ]−K[φ, ψ2]‖0,1

= ‖K[ψ1 − ψ2, φ] +K[φ, ψ1 − ψ2]‖0,1

≤ 4k0‖φ‖0,1‖ψ1 − ψ2‖0,1 → 0 as ‖ψ1 − ψ2‖0,1 → 0.

Hence, the Fréchet derivative is continuous with respect to ψ.
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4.3.1 Local existence

Theorem 4.3.3. Local existence
There exist positive constants r, t0 and a strongly differentiable positive function

u : [0, t0) → B(u0, r) := {ψ ∈ X0,1 : ‖ψ − u0‖0,1 < r}

such that

du

dt
(t) = G0,1[u(t)] + K[u(t)], 0 < t < t0; u0 ∈ D(G0,1) ∩X0,1+, (4.21)

where G0,1 is the part of G in X0,1.

Proof. Similar to the proof for the existence of a local solution developed in the previous
section for x0 6= 0.

4.3.2 Global existence

Global existence of the solution can be proved easily under the assumption that the
fragmentation rate is linearly bounded by playing with Gronwall’s inequality. This has
been done by several authors and the method is quite standard. In this section our aim
was to extend the investigation to general fragmentation kernels. Making use of the
analysis performed in the previous chapter, we have been able to prove the existence of
a local (in time) solution in various situations including fragmentation rate unbounded
at 0 and growing faster than x at infinity. Global existence however seems difficult to
prove due to the fact that the Gronwall’s inequality does not help in showing that the
local solution does not blow up in a finite time. A possibility to avoid this problem is
to analyze the evolution equation in the space X1. We have done this successfully in
the previous section thanks to the topological equivalence of the spaces X1 and X0,1 as
x0 6= 0. The problem in adopting this idea in this framework is that since x0 = 0, the
coagulation operator behaves very badly in the space X1.



Chapter 5

Phytoplankton Dynamics

5.1 Introduction

In phytoplankton dynamics, a system of particles called TEP (Transparent Exopolymer
Particles) plays a major role. They are by-product of the growth of phytoplankton and
their stickiness causes cells to remain together upon contact [27, 47]. On the other
hand, the low level of concentration of TEP results in fragmentation of the aggregate
due to external causes, like currents or turbulence on one hand, and internal unspecified
forces of biotic nature on the other. A conservative model describing the influence of
the TEP on the phytoplankton population was derived and introduced by O. Arino
and R. Rudnicki in [14]. To include the effects of cell division, the McKendrick-von
Foerster renewal condition is incorporated. The aggregates are structured by size and
the phytoplankton consists of aggregates of all possible sizes. The aggregate size can
change due to splitting, death, growth or combining of aggregates into bigger ones.
The resulting model consists of a kinetic-type nonlinear integro-differential equation
with two integral terms responsible for the fragmentation and coagulation processes,
the McKendrick-von Foerster renewal boundary condition and the initial condition. We
make use of substochastic semigroup perturbations techniques and semilinear abstract
Cauchy problems theory to show the existence of a strong solution to the evolution
equation. In particular, we provide sufficient conditions for honesty of the model.

5.2 Description of the model and assumptions

We describe the dynamics of phytoplankton using the aggregate density function u(t, x).
Here x ∈ [x0,∞) is a variable that represents the size of the aggregate, x0 ≥ 0 is the
minimum single cell size, the variable t represents time and u(t, x) is the concentration
of aggregates of size x at time t. We assume that for each t ≥ 0 the function x 7→ u(t, x)
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is from the space

X1 = L1([x0,∞), xdx) =

{
ψ : ‖ψ‖1 :=

∫ ∞

x0

x|ψ(x)| dx < ∞
}

. (5.1)

The space is X1 chosen in a natural way because
∫∞

x0
x|ψ(x)| dx is the total number of

cells in the population.

5.2.1 Growth and mortality

We assume that both processes depend on the size of the aggregate. Phytoplankton cells
may die, for example, by sinking to the seabed, or whatever cause. We denote by d the
death rate. We assume that it is a non-negative function and

d ∈ L∞((x0,∞)). (5.2)

Aggregates grow as a result of divisions of phytoplankton cells. The growth rate is
denoted by r. We assume that r is a non-negative function, differentiable at x0 and

r ∈ AC((x0,∞)) ∩X∞, (5.3)

where X∞ is the dual space of X1 and r ∈ AC((x0,∞)) means that r is absolutely
continuous in the standard sense on each compact subinterval of (x0,∞). We denote by
‖ · ‖∞ the norm of X∞ and we recall that

‖ψ‖∞ = ess supx0≤x<∞
|ψ(x)|

x
,

and the duality pairing is the normal integral

< ψ, ω >=

∫ ∞

x0

ψ(x)ω(x)dx.

If growth and mortality were the only processes taking place, the equation for the dy-
namics would read

∂

∂t
u(t, x) = −∂x[r(x)u(t, x)]− d(x)u(t, x).

5.2.2 Fragmentation

During a small time interval ∆t, a fraction a(x)∆t of the aggregates of size x are un-
dergoing breakup, i.e. a is the fragmentation rate. We assume that it is a non-negative
function and

a ∈ L∞, loc((x0,∞)). (5.4)
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The size distribution of daughter particles after fragmentation is denoted by b. We
assume that ∫ y−x0

x0

xb(x|y)dx = y, y > 2x0 (5.5)

which accounts for mass conservation after any fragmentation event. If the dynamics
were just the result of fragmentation, the equation would read:

∂

∂t
u(t, x) = −a(x)u(t, x) +

∫ ∞

x+x0

a(y)b(x|y)u(t, y) dy.

5.2.3 Coagulation equation

The classical coagulation kernel k(x, y) used in the previous chapter is defined as the
rate at which particles of mass x coalesce with particles of mass y. This kernel is derived
by assuming that the average number of coalescences between particles having mass in
(x; x + dx) and those having mass in (y; y + dy) is k(x, y)u(t, x)u(t, y)dxdydt during the
time interval (t; t+dt). In this chapter, we use a different coagulation model. This model
is suitable for populations where an individual is viewed as a collection of joined cells.
In what follows we provide a full description.

Following [14], we assume that only a part of the aggregates has the competence to
join. This could for example be due to the fact that only cells of some species have
the necessary devices to glue or to attach to others. The coefficient of competence is a
function g(x). We assume that g is a positive and bounded function,

g ∈ L∞((x0,∞)). (5.6)

The number of cells in all aggregates that, at time t, are implicated in the coagulation
process is given by:

J(t) :=

∫ ∞

x0

zg(z)u(t, z) dz,

and

j(t, x) :=
xg(x)u(t, x)

J(t)

is the fraction of cells in size-x aggregates competent for the coagulation process with
respect to the total population of cells in aggregates prone to join. In terms of the
quantities introduced so far, we can express the time rate of cells forming aggregates of
size x:

J(t)χ
U
(x)

∫ x−x0

x0

j(t, x− y)j(t, y) dy,

where χ
U

is the characteristic function of the interval U = [2x0,∞).

Again, if coagulation were the only process, the equation would read:

∂

∂t
xu(t, x) = J(t)χ

U
(x)

∫ x−x0

x0

j(t, x− y)j(t, y)dy − xg(x)u(t, x),
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which, after obvious algebra, leads to:

∂

∂t
u(t, x) =χ

U
(x)

∫ x−x0

x0
yg(y)u(t, y)(x− y)g(x− y)u(t, x− y)dy

x
∫∞

x0
zg(z)u(t, z)dz

− g(x)u(t, x).

(5.7)

Proposition 5.2.1. The coagulation model described by (5.7) is formally conservative.

Proof. Our purpose is to show that

d

dt
M(t) =

d

dt

∫ ∞

x0

xu(t, x) dx =

∫ ∞

x0

x
∂

∂t
u(t, x) dx = 0.

Because g ∈ L∞((x0,∞)), it is enough to prove that
∫ ∞

x0

χ
U
(x)

∫ x−x0

x0

yg(y)u(t, y)(x− y)g(x− y)u(t, x− y) dy dx

=

∫ ∞

x0

xg(x)u(t, x) dx ·
∫ ∞

x0

zg(z)u(t, z) dz.

(5.8)

By the Fubini integration theorem,
∫ ∞

x0

(
χ

U
(x)

∫ x−x0

x0

yg(y)u(t, y)(x− y)g(x− y)u(t, x− y) dy

)
dx

=

∫ ∞

2x0

(∫ x−x0

x0

yg(y)u(t, y)(x− y)g(x− y)u(t, x− y) dy

)
dx

=

∫ ∞

x0

yg(y)u(t, y)

(∫ ∞

y+x0

(x− y)g(x− y)u(t, x− y) dx

)
dy

=

∫ ∞

x0

yg(y)u(t, y)

(∫ ∞

x0

zg(z)u(t, z) dz

)
dy

=

∫ ∞

x0

zg(z)u(t, z) dz ×
∫ ∞

x0

yg(y)u(t, y) dy.

5.2.4 Boundary conditions

The McKendrick-von Foerster renewal condition reads

lim
x→x+

0

r(x)u(t, x) =

∫ ∞

x0

β(y)u(t, y) dy,

where β ∈ X∞. The function β(y) describes the number of single cells that fall off
an aggregate of size y and join the single cell population [1]. The boundary condition
represents the addition of newborn single cells to the single cell population.
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5.2.5 The whole model

The model of the phytoplankton dynamics should incorporate the afore-mentioned pro-
cesses, thus it has the following form:

∂

∂t
u(t, x) =− ∂

∂x
[r(x)u(t, x)]− d(x)u(t, x)− g(x)u(t, x)

− a(x)u(t, x) +

∫ ∞

x+x0

a(y)b(x|y)u(t, y) dy

+ χ
U
(x)

∫ x−x0

x0
yg(y)u(t, y)(x− y)g(x− y)u(t, x− y)dy

x
∫∞

x0
zg(z)u(t, z) dz

,

(5.9)

where χ
U

is the characteristic function of the interval U = [2x0,∞), x0 ≥ 0. The
nonlinear integro-differential equation is supplemented with the initial condition

u(0, x) = u0(x), (5.10)

where u0 ∈ X1 and with the McKendrick-von Foerster renewal boundary condition [3, 2]:

lim
x→x+

0

r(x)u(t, x) =

∫ ∞

x0

β(y)u(t, y) dy. (5.11)

5.2.6 Abstract reformulation

The analysis is performed in the space X1. In what follows we denote by T , B and N
the expressions appearing on the right-hand side of the equations (5.9); that is,

[T ψ](x) = − d

dx
[r(x)ψ(x)]− q(x)ψ(x) (5.12)

where q = a + d + g,

[Bψ](x) =

∫ ∞

x+x0

a(y)b(x|y)ψ(y)dy, (5.13)

and

[Nψ](x) = χ
U
(x)

∫ x

x0
yg(y)ψ(y)(x− y)g(x− y)ψ(x− y)dy

x
∫∞

x0
zg(z)ψ(z)dz

, (5.14)

for non-zero positive ψ and N 0 = 0. T ,B and N are defined on measurable and finite
almost everywhere functions ψ for which they make pointwise (almost everywhere) sense.

For each fixed t ≥ 0, we define a function u(t) : (x0,∞) → R of the “mass” variable x
by

u(t)(x) = u(t, x), for a.e. x > x0, t ≥ 0. (5.15)

Hence u is the function from [0,∞) into the space X1. Since X1 is a Banach space

of type L,
∂u

∂t
can be thought of as the derivative with respect to t of the function
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u : [0,∞) → X1 defined by (5.15). For fixed t > 0, we can write the right-hand side of
(5.9) as (T + B + N )u(t) defined on its maximal domain. The initial condition (5.10)
becomes u(0) = u0.

A vital role in the analysis of the model is played by the integrability of 1/r(x) at x0.
Indeed if 1/r(x) is integrable at x0, the characteristics do reach the line x = x0 and
therefore the boundary condition becomes crucial for the uniqueness investigation. If
not, the characteristics do not reach the line x = x0 and the prescription of a boundary
condition is of no use. Therefore, we consider two cases according to the integrability of
1/r(x).

5.3 Case of r−1 non-integrable at x0

5.3.1 The streaming semigroup

With respect to the above, the transport problem reads:

du

dt
(t) = Tu(t)

u(0) = u0,

where T is the realization of T (defined via (5.12)) on X1. It turns out that direct
estimates of the resolvent of T are not easy. For this reason, we start with the operator
F expressed by

[Fψ](x) := − d

dx
[r(x)ψ(x)], x ∈ (x0,∞), (5.16)

on the domain

D(F ) = {ψ ∈ X1; rψ ∈ AC((x0,∞)) and (rψ)x ∈ X1}.

We denote by R a fixed antiderivative of 1/r, say

R(x) =

∫ x

x0+ε

ds

r(s)
,

where ε > 0 is a given positive number. We see, due to r ∈ X∞ and the non-integrability
of r−1 at x0, that

lim
x→∞

R(x) = ∞ and lim
x→x0

R(x) = −∞. (5.17)

Since R is a strictly increasing function, it follows that R is globally invertible on R.
Hence if we define

Y (t, x) := R−1(R(x)− t), x > x0, t ∈ R,
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we can prove as in [16, Theorem 9.4] that (F, D(F )) generates a C0-semigroup (SF (t))t≥0

expressed by

[SF (t)u0](x) =
r(Y (t, x))u0(Y (t, x))

r(x)
, t ≥ 0, x > x0,

where u0 is any fixed element of D(F ). In particular, we have

‖SF (t)u0‖1 ≤
∫ ∞

x0

r(Y (t, x))u0(Y (t, x))

r(x)
xdx

=

∫ ∞

x0

u0(z)Y (−t, z)dz

≤ e‖r‖∞t‖u0‖1,

where we used the change of variables z = Y (t, x) so that

dz

r(z)
=

dx

r(x)
and Y (t, x0) = x0, Y (t,∞) = ∞ by (5.17).

The last estimate follows due to the fact that x(t) = Y (−t, z) is the solution to the
Cauchy problem

dx

dt
= r(x), x(0) = z,

so that

x(t) = z +

∫ t

0

r(x(s))ds ≤ z +

∫ t

0

‖r‖∞x(s)ds

and, by Gronwall’s lemma, we obtain

Y (−t, z) ≤ ze‖r‖∞t.

In particular, by the Hille-Yosida theorem, we obtain for ψ ∈ X1 and λ > ‖r‖∞,

‖R(λ, F )ψ‖1 ≤ 1

λ− ‖r‖∞‖ψ‖1. (5.18)

Let us denote by T the operator realization of T (defined via (5.12)) on the maximal
domain :

D(T ) = {ψ ∈ X1; qψ ∈ X1, rψ ∈ AC((x0,∞)) and (rψ)x ∈ X1}.

With the above, we can prove the following result for the semigroup solving (5.16).

Theorem 5.3.1. The operator T defined above generates a positive semigroup, say
(ST (t))t≥0, satisfying for any ψ ∈ X1:

‖ST (t)ψ‖1 ≤ e‖r‖∞t‖ψ‖1. (5.19)
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Furthermore for any λ > ‖r‖∞, the resolvent R(λ, T ) of the operator T is expressed as
follows:

[R(λ, T )ψ](x) =
e−λR(x)−Q(x)

r(x)

∫ x

x0

eλR(y)+Q(y)ψ(y)dy, (5.20)

where λR + Q is a fixed antiderivative of (λ + q(s))/r(s), say

R(x) =

∫ x

x0+ε

ds

r(s)
and Q(x) =

∫ x

x0+ε

q(s)

r(s)
ds, ε > 0.

Proof. We consider the resolvent equation of T . Making use of the method of variation
of constants, we see that a good candidate for the resolvent of T is a solution of the
equation

λu(x) +
d

dx
[r(x)u(x)] + q(x)u(x) = ψ(x), (5.21)

given by

[Rλψ](x) =
e−λR(x)−Q(x)

r(x)

∫ x

x0

eλR(y)+Q(y)ψ(y)dy. (5.22)

By the Fubini theorem,

∫ ∞

x0

|[Rλψ](x)|x dx ≤
∫ ∞

x0

e−λR(x)−Q(x)

r(x)

(∫ x

x0

eλR(y)+Q(y)|ψ(y)| dy

)
x dx

=

∫ ∞

x0

|ψ(y)|eλR(y)+Q(y)

(∫ ∞

y

e−λR(x)−Q(x)

r(x)
x dx

)
dy

≤ (λ− ‖r‖∞)−1

∫ ∞

x0

|ψ(y)|y dy,

where we made use of (5.18) and the monotonicity of e−Q(x). Since

xq(x)

r(x)
e−λR(x)−Q(x) ≤ x(λ + q(x))

r(x)
e−λR(x)−Q(x)

= e−λR(x)−Q(x) − d

dx

(
xe−λR(x)−Q(x)

)

we have

‖qRλψ‖1 ≤
∫ ∞

x0

(
eλR(y)+Q(y)

y

∫ ∞

y

xq(x)e−λR(x)−Q(x)

r(x)
dx

)
|ψ(y)|y dy

≤
∫ ∞

x0

(
1 +

eλR(y)+Q(y)

y

∫ ∞

y

e−λR(x)−Q(x) dx

)
|ψ(y)|y dy

≤ (1 + (λ− ‖r‖∞)−1)‖ψ‖1,

where again we used (5.18) and the fact that e−Q(x) is non-increasing.
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Next we notice that for ψ ∈ X1,

r(x)[Rλψ](x) = e−λR(x)−Q(x)

∫ x

x0

eλR(y)+Q(y)ψ(y) dy,

and both e−λR(x)−Q(x) and the integral (as a function of its upper limit) are absolutely
continuous and bounded over any fixed interval [α, β] ⊂ (x0,∞). Hence it follows that the
product is absolutely continuous on [α, β] and therefore r[Rλψ] is absolutely continuous
there.

Furthermore

(r(x)[Rλψ](x))x = −λ + q(x)

r(x)
e−λR(x)−Q(x)

∫ x

x0

eλR(y)+Q(y)ψ(y) dy + ψ(x)

= −(λ + q(x))[Rλψ](x) + ψ(x) ∈ X,

therefore Rλ(X1) ⊂ D(T ).

In addition, direct substitution shows that [(λI − T )Rλ]ψ = ψ.

In order to show that Rλ is the resolvent of T , it remains to show that λI − T is
injective on D(T ). It is clear that the only solution (up to a multiplicative constant) of
λu(x) + q(x)u(x) + (r(x)u(x))x = 0 is

Rλ(0) =
e−λR(x)−Q(x)

r(x)
,

By contradiction let us assume that the multiplicative constant is different from 0.

If x0 6= 0, we have

‖Rλ(0)‖1 =

∫ ∞

x0

e−λR(x)−Q(x)

r(x)
x dx

≥
∫ x0+ε

x0

e−λR(x)−Q(x)

r(x)
x dx

≥ x0

∫ x0+ε

x0

dx

r(x)
= ∞

where we used the fact that −λR(x) − Q(x) ≥ 0 in the interval (x0, x0 + ε) and the
non-integrability of r−1 at x0.

If x0 = 0, we first notice that for x ∈ (0, ε),

e−λR(x) = exp

(
λ

∫ ε

x

ds

r(s)

)
≥ exp

(
λ

‖r‖∞

∫ ε

x

ds

s

)
=

( ε

x

)λ/‖r‖∞
.
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It follows that

‖Rλ(0)‖1 =

∫ ∞

0

e−λR(x)−Q(x)

r(x)
x dx

≥
∫ ε

0

e−λR(x)

r(x)
x dx

≥ 1

‖r‖∞

∫ ε

0

( ε

x

)λ/‖r‖∞
dx = ∞

for any λ > ‖r‖∞. This is impossible since Rλ(0) ∈ X. Therefore λI − T is injective.
Hence the resolvent R(λ, T ) of the operator T is equal to Rλ. Since the resolvent is a
positive operator, by the Hille-Yosida theorem, (T, D(T )) generates a positive semigroup
satisfying (5.19).

Theorem 5.3.1 implies that the operator

((T̃ , D(T )) = (T − ‖r‖∞I, D(T ))) (5.23)

generates a positive semigroup of contractions expressed by

S eT (t)ψ = e−‖r‖∞tST (t)ψ. (5.24)

As a result, to prove the existence of a semigroup solving the growth-fragmentation
equation, we can make use of the Kato-Voigt perturbation theorem.

5.3.2 Growth-fragmentation equation

Let us define B as the realization of B (see (5.13)) on the domain

D(B) = D(T ) = {ψ ∈ X1; qψ ∈ X1, rψ ∈ AC((x0,∞)) and (rψ)x ∈ X1}. (5.25)

The corresponding Cauchy problem reads:

du

dt
(t) = [T + B]u(t) t > 0

u(0) = u0,
(5.26)

where

[(T + B)ψ](x) = − d

dx
[r(x)ψ(x)]− q(x)ψ(x) +

∫ ∞

x+x0

a(y)b(x|y)ψ(y) dy.

Lemma 5.3.2. For any ψ ∈ D(T )+ we have

∫ ∞

x0

[Tψ + Bψ](x) x dx =

∫ ∞

x0

r(x)ψ(x) dx−
∫ ∞

x0

[d + g](x)ψ(x)x dx. (5.27)
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Proof. Thanks to the Fubini theorem (see proof of Theorem 4.1.1), it is clear that

∫ ∞

x0

[−qψ + Bψ](x) x dx = −
∫ ∞

x0

[d + g](x)ψ(x)x dx

for any ψ ∈ D(T ). It remains to show that

∫ ∞

x0

[Fψ](x) x dx =

∫ ∞

x0

r(x)ψ(x) dx, where

F is the operator described by (5.16). The approach we consider is similar to the analysis
performed in the proof of [16, Lemma 9.7] for the model of fragmentation with decay.

Let λ > ‖r‖∞ and ψ ∈ D(T )+. Then ψ = R(λ, T )φ for some φ ∈ X1. Direct calculation
shows that

[FR(λ, T )φ](x) = −φ(x) + (λ + q(x))[R(λ, T )φ](x). (5.28)

Now
∫ ∞

x0

((λ + q(x))[R(λ, T )φ](x)) xdx

=

∫ ∞

x0

eλR(y)+Q(y)φ(y)

(∫ ∞

y

x(λ + q(x))

r(x)
e−λR(x)−Q(x)dx

)
dy.

(5.29)

Also for any y > x0, we have

∫ ∞

y

x(λ + q(x))

r(x)
e−λR(x)−Q(x)dx = −

∫ ∞

y

x

(
d

dx
e−λR(x)−Q(x)

)
dx

=

∫ ∞

y

e−λR(x)−Q(x)dx + ye−λR(y)−Q(y) − lim
x→∞

xe−λR(x)−Q(x),

where we used integration by parts. Note that lim
x→∞

xe−λR(x)−Q(x) = 0. In fact

0 ≤ xe−λR(x)−Q(x) ≤ xe−λR(x) ≤ x exp

(
−λ

∫ x

x0+ε

ds

r(s)

)
≤

∣∣∣∣
x0 + ε

x

∣∣∣∣
λ

‖r‖∞ → 0

as x →∞, where we used r(x) ≤ ‖r‖∞ x and λ > ‖r‖∞ respectively. Hence

∫ ∞

x0

[Fψ](x) x dx =

∫ ∞

x0

[FR(λ, T )φ](x) x dx

=

∫ ∞

x0

eλR(y)+Q(y)φ(y)

(∫ ∞

y

e−λR(x)−Q(x)dx

)
dy

=

∫ ∞

x0

e−λR(x)−Q(x)

(∫ x

x0

eλR(y)+Q(y)φ(y)dy

)
dx

=

∫ ∞

x0

r(x)ψ(x)dx.
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Proposition 5.3.3. There is an extension G̃ of the operator T̃ + B that generates a
substochastic semigroup (S eG(t))t≥0 of bounded linear operators on X1. This semigroup,

for arbitrary ψ ∈ D(G̃) and t > 0, satisfies:

d

dt
S eG(t)ψ = G̃S eG(t)ψ (5.30)

(S eG(t))t≥0 can be obtained as a strong limit in X1 of semigroups (Sr(t))t≥0 generated by

(T̃ + rB, D(T̃ )) as r → 1−; if ψ ∈ X1+, then the limit is monotonic.

The generator G̃ of (S eG(t))t≥0 is characterized by:

(λI − G̃)−1ψ =
∞∑

n=0

(λI − T̃ )−1[B(λI − T̃ )−1]nψ (5.31)

for ψ ∈ X1.

Proof. By (5.23), the operator (T̃ , D(T̃ )) generates a substochastic semigroup (SeT (t))t≥0.

We obviously have that Bψ ≥ 0 for any ψ ∈ D(T̃ )+. Also by (5.27),

∫ ∞

x0

(T̃ψ + Bψ)x dx ≤−
∫ ∞

x0

(‖r‖∞x− r(x))ψ(x) dx

−
∫ ∞

x0

[d + g](x)ψ(x)x dx

≤0.

Consequently the assumptions of Theorem 2.3.5 are satisfied.

Theorem 5.3.4. There is an extension G of the operator T + B given by

(G,D(G)) = (G̃ + ‖r‖∞I, D(G̃))

which generates a positive semigroup (SG(t))t≥0 = (e‖r‖∞tS eG(t))t≥0 in X1. Moreover, the
generator G is characterized by:

(λI −G)−1ψ =
∞∑

n=0

(λI − T )−1[B(λI − T )−1]nψ (5.32)

for ψ ∈ X1 and λ > ‖r‖∞.

Proof. The argument used follows similar lines to that used in [16, Proposition 9.29]. For-

mula (5.32) is obtained directly from (5.31). In fact since λI−G = (λ−‖r‖∞)I−G̃, it is

clear that R(λ, G) = R(λ′, G̃) for λ > ‖r‖∞, where λ′ = λ−‖r‖∞. To prove the first part

of the theorem, we note that operator T̃ was constructed from T by the substraction of
the bounded operator ‖r‖∞I. Also the approximating semigroups (Sr(t))t≥0 mentioned
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in the previous proposition are generated by (T − ‖r‖∞I + rB, D(T )), 0 < r < 1. In
addition,

lim
r→1−

Sr(t)ψ = S eG(t)ψ (5.33)

in X1, uniformly in t on bounded intervals. We introduce the semigroups (S ′r(t))t≥0 :=
(e‖r‖∞tSr(t))t≥0 generated by T + rB. Since multiplication by e‖r‖∞t does not affect con-
vergence, (5.33) implies that (S ′r(t))t≥0 converges strongly to the semigroup (SG(t))t≥0 =

(e‖r‖∞tS eG(t))t≥0 generated by G = G̃ + ‖r‖∞I.

5.4 Case of r−1 integrable at x0

The approach in this section is analogous to the work of [18] where the abstract space
X0,1 was used and the linear boundedness of the fragmentation rate assumed. Working
in the bigger space X1, we can extend the work of [18] to general fragmentation rate
kernels.

5.4.1 Transport semigroup

The transport problem reads:

du

dt
(t) = Tu(t)

lim
x→x+

0

r(x)[u(t)(x)] =

∫ ∞

x0

β(y)[u(t)(y)] dy, (5.34)

u(0) = u0

The first step is to restrict the operator T to a domain in which the boundary condition
is satisfied. In this respect we introduce Tβ as T restricted to

D(Tβ) =

{
ψ ∈ D(T ) : lim

x→x+
0

r(x)ψ(x) =

∫ ∞

x0

β(y)ψ(y) dy

}
. (5.35)

The general solution of the resolvent equation

λu(x) +
d

dx
[r(x)u(x)] + q(x)u(x) = ψ(x),

is in the form

u(x) = [R̃λψ](x) + c
e−λ eR(x)− eQ(x)

r(x)
, (5.36)

where c is a suitable scalar and

[R̃λψ](x) =
e−λ eR(x)− eQ(x)

r(x)

∫ x

x0

eλ eR(y)+ eQ(y)ψ(y) dy, (5.37)
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where

R̃(x) =

∫ x

x0

ds

r(s)
, and Q̃(x) =

∫ x

x0

q(s)

r(s)
ds. (5.38)

In the following lemma, we collect some identities and estimates that appear throughout
this chapter.

Lemma 5.4.1. Let λ > ‖r‖∞. Then

(a) For any x0 ≤ x ≤ x′′ < ∞,

I(x, x′′) :=

∫ x′′

x

e−λ eR(s)

r(s)
s ds ≤ 1

λ− ‖r‖∞ xe−λ eR(x); (5.39)

(b) ∫ ∞

x0

e−λ eR(s)− eQ(s)ds ≤
∫ ∞

x0

e−λ eR(s) ds < ∞; (5.40)

(c) For any x0 ≤ x ≤ x′′ < ∞,

J(x, x′′) :=

∫ x′′

x

(λ + q(s))e−λ eR(s)− eQ(s)

r(s)
s ds

= xe−λ eR(x)− eQ(x) − x′′e−λ eR(x′′)− eQ(x′′) +

∫ x′′

x

e−λ eR(s)− eQ(s) ds; (5.41)

(d) In particular,
J(x0,∞) < ∞. (5.42)

Proof. [18, Lemma 2.1].

We denote by T0 the operator T with zero boundary conditions.

Lemma 5.4.2. Under the adopted assumptions, if λ > ‖r‖∞, then R(λ, T0) = R̃λ defines
the resolvent of (T0, D(T0)) and satisfies the estimate

‖R(λ, T0)‖1 ≤ 1

λ− ‖r‖∞ . (5.43)

Proof. [18, Lemma 2.2].

Next we turn our attention to the problem with β 6= 0 and we set

κ := x0‖β‖∞ + ‖r‖∞. (5.44)
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Lemma 5.4.3. For any λ > κ, the resolvent R(λ, Tβ) of the operator (Tβ, D(Tβ)) satis-
fies

R(λ, Tβ) = R(λ, T0) + Φλ,βR(λ, T0), (5.45)

where

Φλ,βψ =
ελ

r

< β, ψ >

(1− < β, r−1ελ >)
and ελ(x) := e−λ eR(x)− eQ(x).

Furthermore the resolvent R(λ, Tβ) satisfies the estimate

‖R(λ, Tβ)‖1 ≤ 1

λ− κ
. (5.46)

Proof. [18, Lemma 2.4].

5.4.2 Growth-fragmentation equation

The growth-fragmentation equation reads:

du

dt
(t) = [Tβ + B]u(t) t > 0

u(0) = u0,
(5.47)

Note that if a ∈ L∞((x0,∞)), the operator B is bounded. There is a semigroup
(STβ+B(t))t≥0 on X1 associated with (5.47) generated by (Tβ + B,D(Tβ)). In their
article [18], the authors proved a similar result under the assumption that the frag-
mentation rate is linearly bounded. In this section we extend this result to general case
a ∈ L∞, loc((x0,∞)), but for the coagulation term of the form (5.7).

Lemma 5.4.4.
D(Tβ) ⊆ D(B). (5.48)

Proof. Indeed let ψ ∈ D(Tβ), then by definition of D(Tβ), it is clear that aψ ∈ X1. It
follows that

‖Bψ‖1 =

∫ ∞

x0

∣∣∣∣
∫ ∞

x

a(y)b(x|y)ψ(y) dy

∣∣∣∣ x dx

≤
∫ ∞

x0

|ψ(y)|a(y)

(∫ y

x0

b(x|y)x dx

)
dy

≤
∫ ∞

x0

|ψ(y)|a(y)y dy = ‖aψ‖1 < ∞,

where we used (5.5). Therefore ψ ∈ D(B).

Let us define
(T̃β, D(Tβ)) := (Tβ − κI, D(Tβ)). (5.49)
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Lemma 5.4.5. For any ψ ∈ D(Tβ)+, the operator T̃β + B := Tβ − κI + B satisfies∫ ∞

x0

[(T̃β + B)(ψ)](x)x dx ≤ 0.

Proof. Let ψ ∈ D(Tβ)+. Integrating by parts, we have
∫ x′′

x′

d

dx
[r(x)ψ(x)] x dx = x′′r(x′′)ψ(x′′)− x′r(x′)ψ(x′)−

∫ x′′

x′
r(x)ψ(x) dx,

for any x0 < x′ < x′′ < ∞.

Because (rψ)x ∈ X1, the left hand side converges to

∫ ∞

x0

∂x[r(x)ψ(x)]x dx and

x′r(x′)ψ(x′) → x0

∫ ∞

x0

β(x)ψ(x)dx as x′ → x0 and x′′ → ∞. Since r ∈ X∞, rψ

is integrable on (x0,∞) and so the last integral on the right hand side converges to∫ ∞

x0

r(x)u(x)dx. It follows that x′′r(x′′)ψ(x′′) converges to a limit l as x′′ →∞. Follow-

ing [18, Lemma 2.5] we suppose that l 6= 0. Then r(x)ψ(x) ≥ νx−1 for some ν > 0 and
for large enough x, which contradicts the integrability of rψ. Thus

lim
x′′→∞

x′′r(x′′)ψ(x′′) = 0. (5.50)

Therefore ∫ ∞

0

(Tβψ + Bψ)x dx = x0

∫ ∞

x0

β(x)ψ(x) dx +

∫ ∞

x0

r(x)ψ(x) dx

−
∫ ∞

x0

[d + g](x)ψ(x)x dx. (5.51)

Hence ∫ ∞

x0

(T̃βψ + Bψ)x dx ≤−
∫ ∞

x0

(κx− x0β(x)− r(x))ψ(x) dx

−
∫ ∞

x0

[d + g](x)ψ(x)x dx ≤ 0.

Theorem 5.4.6. There is an extension Gβ of Tβ + B given by

(Gβ, D(Gβ)) = (G̃β + κI,D(G̃β))

that generates a positive semigroup (SGβ
(t))t≥0 = (eκtS eGβ

(t))t≥0. Moreover, the generator

Gβ is characterized by:

(λI −Gβ)−1ψ =
∞∑

n=0

(λI − Tβ)−1[B(λI − Tβ)−1]nψ (5.52)

for ψ ∈ X1 and λ > κ.

Proof. Similar to the proof of Theorem 5.3.4.
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5.5 Honesty

The theory of honesty of substochastic semigroup was developed in [11, 12, 16, 13, 17].
This section provides some applications of this concept to our model. The purpose of this
section is to provide sufficient conditions for honesty of the semigroups (SG(t))t≥0 and
(SGβ

(t))t≥0 defined via Theorem 5.3.4 and Theorem 5.4.6 respectively. We shall expand
the analysis of honesty developed in [12] to populations with x0 6= 0 as we analyze
honesty for (SG(t))t≥0. Furthermore we shall prove honesty of the semigroup (SGβ

(t))t≥0

without assuming linear boundedness of the fragmentation and imposing finite number
of daughter particles as in [18] thanks to the fact that we work in the space X1. However
the ideas and calculations for honesty of (SG(t))t≥0 and (SGβ

(t))t≥0 are analogous to the
analysis in [12] and [18] respectively. In this view we require the theory of extensions of
operators.

Define by E the set of measurable functions that are defined on (x0,∞) and take values
in R ∪ {−∞,∞}, and , by E, the subspace of E consisting of functions that are finite
almost everywhere. The space E is a vector lattice with respect to the usual relation “≤
almost everywhere”. Moreover, X1 ⊂ E ⊂ E with X1 and E being sublattices of E .

We consider the operator T (given by (5.12)) on the domain

D(T ) = {ψ ∈ X1; rψ ∈ AC((x0,∞)) and ∂x[rψ] + qψ ∈ E},

and the restriction Tβ of T in the domain

D(Tβ) = {ψ ∈ D(T ); lim
x→x+

0

r(x)ψ(x) =

∫ ∞

x0

β(y)ψ(y) dy}.

Similarly, we denote by B the operator defined by the expression (5.13) on D(B) = {ψ ∈
X1; Bψ ∈ E}. Using these concepts, we can define operators that can be thought of as
the maximal extension of T + B and Tβ + B in X1 as follow:

[Gψ](x) := [T ψ](x) + [Bψ](x), [Gβψ](x) := [Tβψ](x) + [Bψ](x),

defined on the domain D(G) = {ψ ∈ D(T ) ∩D(B); x → [Gψ](x) ∈ X1} and D(Gβ) =
{ψ ∈ D(Tβ) ∩ D(B); x → [Gβψ](x) ∈ X1} respectively. Accordingly we consider
the operators R(λ) and Rβ(λ) extending R(λ, T ) for λ > r̃ and R(λ, Tβ) for λ > κ
respectively and defined by the following expressions:

[R(λ)ψ](x) =
e−λR(x)−Q(x)

r(x)

∫ x

x0

eλR(y)+Q(y)ψ(y) dy, (5.53)

on the domain D(R(λ)) = {ψ ∈ E ; x → [R(λ)ψ](x) ∈ E} and

Rβ(λ)ψ = R0(λ)ψ +
ελ

r

< β,R0(λ)ψ >

1− < β, r−1ελ >
(5.54)
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on D(Rβ(λ)) = {ψ ∈ E ; x → [Rβ(λ)ψ](x) ∈ E}, where

[R0(λ)ψ](x) =
e−λ eR(x)− eQ(x)

r(x)

∫ x

x0

eλ eR(y)+ eQ(y)ψ(y) dy.

Note that since the kernels of B, R(λ) and Rβ(λ) are nonnegative, the existence of the
respective integrals is equivalent to the existence of the positive and negative parts of
the integrands. It can be shown as in [16, Section 9.3] that G ⊂ G and Gβ ⊂ Gβ, so that
the extensions are defined correctly.

The usefulness of the concept of extensions is illustrated by the following observation.

Proposition 5.5.1. (i) Any function ψ ∈ D(G) is continuous on (x0,∞).
(ii) Any function ψ ∈ D(Gβ) is continuous on (x0,∞).

Proof. Similar to the proof of [12, Proposition 5.2].

5.5.1 Honesty of the semigroup (SG(t))t≥0

A vital role in the following considerations is played by the following lemma.

Lemma 5.5.2. Let B and R(λ) be the extensions introduced above. If for some ψ ∈
D(R(λ))+, both ψ and BR(λ)ψ belong to L1([α, η], xdx), where x0 ≤ α < η ≤ ∞, then:

∫ η

α

(−ψ(x) + [BR(λ)ψ](x) + λ[R(λ)ψ](x))x dx

=− ηr(η)[R(λ)ψ](η) +

∫ ∞

η

a(y)[R(λ)ψ](y)

(∫ η

α

b(x|y)x dx

)
dy

+

∫ η

α

r(x)[R(λ)ψ](x) dx−
∫ η

α

d(x)[R(λ)ψ](x)x dx

−
∫ η

α

g(x)[R(λ)ψ](x)x dx + αb(α)[R(λ)ψ](α)

−
∫ η

α

a(y)[R(λ)ψ](y)

(∫ α

x0

xb(x|y) dx

)
dy.

(5.55)

Proof. The method we use is analogous to the proof of [16, Lemma 9.12] for fragmen-
tation with mass loss. Changing the order of integration by the Fubini theorem we
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obtain
∫ η

α

[BR(λ)ψ](x)xdx

=

∫ η

α

a(y)[R(λ)ψ](y)

(∫ y

α

xb(x|y)dx

)
dy +

∫ ∞

η

a(y)[R(λ)ψ](y)

(∫ η

α

xb(x|y)dx

)
dy

=

∫ η

α

a(y)[R(λ)ψ](y))ydy +

∫ ∞

η

a(y)[R(λ)ψ](y)

(∫ η

α

xb(x|y)dx

)
dy

−
∫ η

α

a(y)[R(λ)ψ](y))

(∫ α

x0

xb(x|y)dx

)
dy.

Thus we can write
∫ η

α

[BR(λ)ψ](x)xdx

=

∫ η

α

(λ + a(y))[R(λ)ψ](y)ydy − λ

∫ η

α

[R(λ)ψ](y)ydy −
∫ η

α

a(y)[R(λ)ψ](y)ydy

+

∫ η

α

a(y)[R(λ)ψ](y)ydy +

∫ ∞

η

a(y)[R(λ)ψ](y)

(∫ η

α

xb(x|y)dx

)
dy

−
∫ η

α

a(y)[R(λ)ψ](y))

(∫ α

x0

xb(x|y)dx

)
dy

= I1 − I2 − I3 + I4 + I5 − I6. (5.56)

Next,

I1 =

∫ η

α

(
(λ + a(y))e−λR(y)−Q(y)

r(y)

∫ y

x0

eλR(s)+Q(s)ψ(s)ds

)
y dy

=

∫ η

α

eλR(s)+Q(s)ψ(s)

(∫ s

η

y
d

dy
e−λR(y)−Q(y)dy

)
ds

+

∫ α

x0

eλR(s)+Q(s)ψ(s)

(∫ α

η

y
d

dy
e−λR(y)−Q(y)dy

)
ds

=

∫ η

α

eλR(s)+Q(s)ψ(s)

(
se−λR(s)−Q(s) − ηe−λR(η)−Q(η) +

∫ η

s

e−λR(y)−Q(y)dy

)
ds

+

∫ α

x0

eλR(s)+Q(s)ψ(s)

(
αe−λR(α)−Q(α) − ηe−λR(η)−Q(η) +

∫ η

α

e−λR(y)−Q(y)dy

)
ds.
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It follows that

I1 =

∫ η

α

ψ(s)sds− ηe−λR(η)−Q(η)

∫ η

x0

eλR(s)+Q(s)ψ(s)ds

+

∫ η

α

eλR(s)+Q(s)ψ(s)

(∫ η

s

e−λR(y)−Q(y)dy

)
ds

+αe−λR(α)−Q(α)

∫ α

x0

eλR(s)+Q(s)ψ(s)ds

+

∫ α

x0

eλR(s)+Q(s)ψ(s)

(∫ η

α

e−λR(y)−Q(y)dy

)
ds

=

∫ η

α

ψ(s)sds− ηr(η)[R(λ)ψ](η) + αr(α)[R(λ)ψ](α) +

∫ η

α

r(s)[R(λ)ψ](s)ds,

since
∫ η

α

r(y)[R(λ)ψ](y)dy =

∫ η

α

(
e−λR(y)−Q(y)

∫ y

x0

eλR(s)+Q(s)ψ(s)ds

)
dy

=

∫ η

α

eλR(s)+Q(s)ψ(s)

(∫ η

s

e−λR(y)−Q(y)dy

)
ds

+

∫ α

x0

eλR(s)+Q(s)ψ(s)

(∫ η

α

e−λR(y)−Q(y)dy

)
ds.

Combining with (5.56), we obtain
∫ η

α

(−ψ(x) + [FR(λ)ψ](x) + λ[R(λ)ψ](x))xdx

= αb(α)[R(λ)ψ](α)− ηb(η)[R(λ)ψ](η) +

∫ ∞

η

a(y)[R(λ)ψ](y)

(∫ η

α

b(x|y)xdx

)
dy

+

∫ η

x0

r(x)[R(λ)ψ](x)dx−
∫ η

x0

q(x)[R(λ)ψ](x)xdx +

∫ η

x0

a(x)[R(λ)ψ](x)xdx

−
∫ η

α

a(y)[R(λ)ψ](y))

(∫ α

x0

xb(x|y)dx

)
dy.

Theorem 5.5.3. If u ∈ D(G), then there are sequences αk → x+
0 and ηk → ∞ as

k →∞ such that:
∫ ∞

x0

[Gu](x)x dx = lim
k→∞

(
−

∫ ηk

αk

a(y)u(y)

(∫ αk

x0

xb(x|y) dx

)
dy

+

∫ ∞

ηk

a(y)u(y)

(∫ ηk

αk

b(x|y)x dx

)
dy

)
(5.57)

+

∫ ∞

x0

r(x)u(x) dx−
∫ ∞

x0

d(x)u(x) dx−
∫ ∞

x0

g(x)u(x) dx.
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Proof. By using the previous lemma, this result can be proved as in [12, Theorem 5.1].

We recall that G is defined via Theorem 5.3.4. Using the above the following result can
be established.

Theorem 5.5.4.

If lim
x→x0

q(x) = lim
x→x0

a(x) + d(x) + g(x) < +∞, then G = T + F , thus the semigroup

(SG(t))t≥0 is honest.

Proof. Similar to the proof of [12, Theorem 5.2].

5.5.2 Honesty of the semigroup (SGβ
(t))t≥0

The following lemma plays an important role in the proof of the next theorem.

Lemma 5.5.5. (a) If ψ ∈ D(Rβ(λ)), then

(i) ψ ∈ L1((x0, η)) for any η < ∞;

(ii) Rβ(λ)ψ is continuous on (x0,∞);

(iii)

lim
x→x+

0

r(x)[Rβ(λ)ψ](x) =

∫ ∞

x0

β(x)[Rβ(λ)ψ](x) dx. (5.58)

(b) r−1ελ ∈ D(A) := {ψ ∈ X1; aψ ∈ X1}.

Proof. [18, Lemma 2.6].

We recall that SGβ
is defined via Theorem 5.4.6.

Theorem 5.5.6.

Assume q = a + d + g is bounded at x0, then

Gβ = Tβ + F .

Proof. We make use of the theory of substochastic semigroup. By (5.51) and [16, Theo-
rem 6.13], it is enough to check that

∫ ∞

x0

[Gβu](x)x dx ≥
∫ ∞

x0

r(x)u(x) dx−
∫ ∞

x0

d(x)u(x)x dx

−
∫ ∞

x0

g(x)u(x)x dx + x0

∫ ∞

x0

β(x)u(x) dx,
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on elements of the form u = R(λ,Gβ)ψ, ψ ∈ X1+, λ > ‖r‖∞. We recall (see [16, Remark
6.21]) that if u = R(λ,Gβ)ψ, ψ ∈ X1+, then there exists ω ∈ E+ such that u = Rβ(λ)ω
and Gβu = λRβ(λ)ω−ω+FRβ(λ)ω. Now, if X1 3 u = Rβ(λ)ω, then ω ∈ D(Rβ(λ)) and,
by Lemma 5.5.5 (a)(i), ω ∈ L1((x0, η), xdx) and therefore FRβ(λ)ω ∈ L1((x0, η), xdx)
as all other terms of the equality above are integrable. Next, consider the decomposition

Rβ(λ)ω = R0(λ)ω +R′
βω = R0(λ)ω +

ελ

r

< β,R0(λ)ω >

1− < β, r−1ελ >
.

By Lemma 5.5.5(b), FR′
βω = FR′

βω ∈ X1 and therefore R0(λ)ω ∈ L1((x0, η), xdx).
Hence we can write

Gβu = λR0(λ)ω − ω + FR0(λ)ω + λR′
βω + FR′

βω,

where each of the first three terms on the right-hand side is in L1((x0, η), xdx) and the
last two are both in X1. Since Gβu ∈ X1, we can write

∫ ∞

x0

[Gβu](x)x dx = lim
η→∞

∫ η

x0

[Gβu](x)x dx

= lim
η→∞

∫ η

x0

(λ[R0(λ)ω](x)− ω(x) + [FR0(λ)ω](x))x dx

+

∫ η

x0

(λ[R′
βω](x) + [FR′

βω](x))x dx (5.59)

where the limit on the right-hand side exists. Since the integral over (x0, η) of each term
within this limit exists, we can evaluate

∫ η

x0

[FR0(λ)ω](x)x dx =

∫ η

x0

(∫ ∞

x

a(y)b(x|y)[R0(λ)ω](y) dy

)
x dx

=

∫ η

x0

(λ + q(y))[R0(λ)ω](y)y dy − λ

∫ η

x0

[R0(λ)ω](y)y dy −
∫ η

x0

q(y)[R0(λ)ω](y)y dy

+

∫ η

x0

a(y)[R0(λ)ω](y)y dy +

∫ ∞

η

a(y)[R0(λ)ω](y)

(∫ η

x0

xb(x|y) dx

)
dy

= I1 − I2 − I3 + I4 + I5.

Using (5.41), we evaluate

I1 =

∫ η

x0

(
(λ + q(y))e−λ eR(y)− eQ(y)

r(y)

∫ y

x0

eλ eR(s)+ eQ(s)ω(s) ds

)
y dy

=

∫ η

x0

eλ eR(s)+ eQ(s)ω(s)J(s, η) ds

=

∫ η

x0

eλ eR(s)+ eQ(s)ω(s)

(
se−λ eR(s)− eQ(s) − ηe−λ eR(η)− eQ(η) +

∫ η

s

e−λ eR(y)− eQ(y) dy

)
ds

=

∫ η

x0

ω(s)s ds− ηr(η)[R0(λ)ω](η) +

∫ η

x0

r(y)[R0(λ)ω](y) dy.
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It follows that∫ η

x0

(−ω(x) + [FR0(λ)ω](x) + λ[R0(λ)ω](x))x dx

= −ηr(η)[R0(λ)ω](η)−
∫ η

x0

q(y)[R0(λ)ω](y)y dy +

∫ η

x0

a(y)[R0(λ)ω](y)y dy

+

∫ η

x0

r(y)[R0(λ)ω](y) dy +

∫ ∞

η

a(y)[R0(λ)ω](y)

(∫ η

x0

xb(x|y) dx

)
dy.

Let u0 := [R0(λ)ω]. Since u0 = u − const(r−1ελ), we see that u0 ∈ X1. Thus ru0 ∈
L1((x0,∞)) and both du0, gu0 are in X. Furthermore, there exists a sequence ηk →∞
as k → ∞ for which ηkr(ηk)u0(ηk) → 0. Indeed, otherwise xr(x)u0(x) ≥ ε > 0 for
some ε and all sufficient large x. But then r(x)u0(x) ≥ εx−1 which would contradict the
integrability of ru0. Hence

lim
k→∞

∫ ηk

x0

(−ω(x) + [Bu0](x) + λu0(x))x dx

= −
∫ ∞

x0

q(y)u0(y)y dy +

∫ ∞

x0

a(y)u0(y)y dy

+

∫ ∞

x0

r(y)u0(y) dy + lim
k→∞

∫ ∞

ηk

a(y)u0(y)

(∫ ηk

x0

xb(x|y) dx

)
dy.

To deal with the last two terms in (5.59), we note that ω enters the expression through
a constant scalar multiplier and hence first evaluate

∫ ∞

x0

(∫ ∞

x

a(y)b(x|y)
e−λ eR(y)− eQ(y)

r(y)
dy

)
x dx + λ

∫ ∞

x0

e−λ eR(y)− eQ(y)

r(y)
y dy

=

∫ ∞

x0

a(y)
e−λ eR(y)− eQ(y)

r(y)
y dy + λ

∫ ∞

x0

e−λ eR(y)− eQ(y)

r(y)
y dy

= J(x0,∞)−
∫ ∞

x0

q(y)
e−λ eR(y)− eQ(y)

a(y)
y dy +

∫ ∞

x0

a(y)
e−λ eR(y)− eQ(y)

r(y)
y dy

= x0 +

∫ ∞

x0

e−λ eR(y)− eQ(y) dy −
∫ ∞

x0

[q − a](y)
e−λ eR(y)− eQ(y)

r(y)
y dy,

where we used (5.41) with (5.50). Hence we obtain
∫ ∞

x0

(λ[R′
βω](x) + [BR′

βω](x))x dx

=

∫ ∞

x0

(λ + q(y))[R′
βω](y)y dy −

∫ ∞

x0

q(y)[R′
βω](y)y dy +

∫ ∞

x0

a(y)[R′
βω](y)y dy

= x0 < β,Rβ(λ)ω > +

∫ ∞

x0

r(y)[R′
βω](y) dy −

∫ ∞

x0

q(y)[R′
βω](y)y dy

+

∫ ∞

x0

a(y)[R′
βω](y)y dy,
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where we used

< β,Rβ(λ)ω >=
< β,R0(λ)ω >

1− < β, r−1ελ >
.

Combining the above results, we see that there is a sequence (ηk)k∈N such that

∫ ∞

x0

[Gβu](x)x dx = lim
η→∞

∫ η

x0

[Gβu](x)x dx

= x0

∫ ∞

x0

β(x)u(x) dx +

∫ ∞

x0

r(x)u(x) dx−
∫ ∞

x0

q(x)u(x)x dx

+

∫ ∞

x0

a(x)u(x)x dx + lim
k→∞

∫ ∞

ηk

a(y)u0(y)

(∫ ηk

x0

xb(x|y) dx

)
dy

≥ x0

∫ ∞

x0

β(x)u(x) dx +

∫ ∞

x0

r(x)u(x) dx−
∫ ∞

x0

[g + d](x)u(x)x dx

which proves the thesis.

5.6 Global solution for the evolution equation

The combined mortality, coagulation and mass-growth fragmentation equation reads as:

du

dt
(t) = [T + B + N ]u(t)

u(0) = u0,

where N defined on the set X1+ = {ψ ∈ X1 : ψ ≥ 0} is the realization of the operator N
(defined via (5.14)) on the space X1. We recall that N(0) = 0 and for any ψ ∈ X1+\{0},
we have

(Nψ)(x) := χ
U
(x)

∫ x−x0

x0
yg(y)ψ(y)(x− y)g(x− y)ψ(x− y) dy

x
∫∞

x0
zg(z)ψ(z) dz

, (5.60)

where χ
U

is the characteristic function of the interval U = [2x0,∞).

Lemma 5.6.1. The operator N satisfies a global Lipschitz condition on the set X1+.

Proof. The proof is similar to the analysis performed in the appendix of [14]. Adopting
the notation

Θφ(x) = xg(x)φ(x) and α(φ) =

∫ ∞

x0

Θφ(x) dx,

the operator N can be expressed as Nφ(x) = χ
U
(x)

(Θφ ∗Θφ)(x)

xα(φ)
, where φ ∈ X1+ \ {0}

and

(Θφ ∗Θφ)(x) :=

∫ x−x0

x0

Θφ(y)Θφ(x− y) dy.
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Fix a function ψ0 ∈ X1+ \ {0}, set c := ess sup{g(x) : x0 < x < ∞} and ε := α(ψ0)c
−1.

Let ψ be any function from X1+ \ {0} such that ‖ψ − ψ0‖ ≤ ε. Then

α(ψ) = α(ψ0) + α(ψ − ψ0) ≤ 2α(ψ0). (5.61)

Note that

Nψ(x)−Nψ0(x)

= χ
U
(x)

[(Θψ ∗Θψ)(x)]α(ψ0 − ψ)

xα(ψ0)α(ψ)
+ χ

U
(x)

(Θψ ∗Θψ)(x)

xα(ψ0)
+ χ

U
(x)

(Θψ0 ∗Θψ0)(x)

xα(ψ0)

= χ
U
(x)

[(Θψ ∗Θψ)(x)]α(ψ0 − ψ)

xα(ψ0)α(ψ)
+ χ

U
(x)

[Θ(ψ + ψ0) ∗Θ(ψ − ψ0)](x)

xα(ψ0)
,

where we used linearity of α and properties of the convolution. It follows that

‖Nψ −Nψ0‖1 ≤
α(|ψ0 − ψ|)

∫ ∞

x0

(Θψ ∗Θψ)(x) dx

α(ψ0)α(ψ)

+

∫ ∞

x0

[Θ(ψ + ψ0) ∗ |Θ(ψ − ψ0)| ](x) dx

α(ψ0)
. (5.62)

Because ∫ ∞

x0

(Θψ ∗Θψ)(x) dx =

[∫ ∞

x0

(Θψ)(x) dx

]2

= [α(ψ)]2

and ∫ ∞

x0

[Θ(ψ + ψ0) ∗ |Θ(ψ − ψ0)|](x)dx = α(ψ + ψ0)α(|ψ − ψ0|),

the previous inequality yields

‖Nψ −Nψ0‖1 ≤ α(ψ)α(|ψ0 − ψ|)
α(ψ0)

+
α(ψ + ψ0)α(|ψ − ψ0|)

α(ψ0)

≤ 5α(|ψ − ψ0|)
≤ 5c‖ψ − ψ0‖1, (5.63)

where we used linearity of α and applied (5.61).

Now we check this inequality for all φ, ψ ∈ X1+ \ {0}. Fix φ, ψ ∈ X1+ \ {0} and let
φt = (1− t)φ+ tψ for t ∈ [0, 1]. Since the function t 7→ α(φt) is continuous and α(φt) > 0
for each t ∈ [0, 1] we have inft α(φt) > 0. Let ε = c−1 inft α(φt). Then (5.63) implies that

‖Nφs −Nφt‖1 ≤ 5c‖φs − φt‖1 provided that ‖φs − φt‖1 ≤ ε.



CHAPTER 5. PHYTOPLANKTON DYNAMICS 84

Let n be an integer such that n ≥ ‖φ − ψ‖1/ε and let ti = i/n for i = 0, 1, ..., n. Then
‖φti − φti−1

‖1 ≤ ε and consequently:

‖Nφ−Nψ‖1 ≤
n∑

i=1

‖Nφti −Nφti−1
‖1

≤ 5c
n∑

i=1

‖φti − φti−1
‖1

= 5c‖φ− ψ‖1,

(5.64)

where we used the fact that φti − φti−1
=

ψ − φ

n
for any i = 0, 1, ..., n. Furthermore by

(5.8), ‖Nψ‖1 ≤
∫ ∞

x0

xg(x)ψ(x) dx ≤ c‖ψ‖1 for any ψ ∈ X1+. As a result the operator N

is continuous at 0. Therefore inequality (5.64) passes to the limit at φ = 0 or ψ = 0.

Theorem 5.6.2. (i) Let u0 ∈ D(G) ∩ X1+. Subject to the initial condition u(0) = u0,
the equation

du

dt
(t) = G[u(t)] + N [u(t)] (5.65)

has a global unique solution.

Proof. First we recall that the solution u of (5.65) is the unique solution of the integral
equation

u(t) = SG(t)u0 +

∫ t

0

SG(t− s)N [u(s)] ds, t ≥ 0, (5.66)

where (SG(t))t≥0 is the semigroup generated by the operator G.

Let
Y := C([0, t1], X1+)

with norm
‖v‖Y := max{‖v(t)‖1 : 0 ≤ t ≤ t1}.

Moreover, let
Υ := {v ∈ Y : v(t) ∈ B(u0, r1) ∩X1+ ∀t ∈ [0, t1]},

where r1 is a non-negative real number.

Define the mapping Q on Υ as follow:

(Qv)(t) := SG(t)f +

∫ t

0

SG(t− s)N [v(s)] ds, 0 ≤ t ≤ t1.

Then Q(Υ) ⊂ Y and (Qv)(t) ∈ X1+ for all t ∈ [0, t1]. The proof of the existence
of a unique solution u ∈ Υ to the equation u = Qu is similar to the calculations
performed in Theorem 4.2.6. Consequently the integral equation (5.66) has a unique
solution u ∈ C([0, t1], X1+). Since N is globally Lipschitz, the existence of a global
strong solution to problem (5.65) follows.
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Theorem 5.6.3. Subject to the initial condition u(0) = u0 ∈ D(Gβ)∩X1+, the equation

du

dt
(t) = Gβ[u(t)] + N [u(t)] (5.67)

has a global unique solution.

Proof. The proof is similar to the analysis above with the operator G.



Chapter 6

Nonlocal Continuous Fragmentation
Processes

6.1 Introduction

An initial-value integro-differential problem describing multiple fragmentation processes,
where the fragmentation rate is size and position dependent and new particles are spa-
tially randomly distributed according to some probability density is investigated by
means of substochastic semigroup theory and approximation techniques. The existence of
a semigroup is established and, under natural conditions on certain coefficients, the gen-
erator of this semigroup is identified. In particular we prove the existence and uniqueness
of a nonnegative mass-conserving solution and provide sufficient conditions for honesty.

6.2 Description of the model and assumptions

We focus on continuous models; that is, we assume that the mass of a particle can be
an arbitrary positive real number. The starting point is to describe the state variable of
the problem. The state at a given time t is the repartition at that time of all aggregates
according to their size m and their position x. In terms of m and x, the state of
the system is characterized at any moment t by the particle-mass-position distribution
u = u(t,m, x), (u is also called the density or concentration of particles), where u :
R+ × R+ × R3 → R+. Thus,

∫ p

n

∫

R3

u(t,m, x)dxdm

is the number of particles having mass between n and p and

∫ p

n

∫

R3

u(t, m, x)mdxdm

86
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is the mass contained in particles in R3 having mass within this range.

Definition 6.2.1. The fragmentation rate a = a(m,x) describes the ability of aggregates
of size m and position x to break into smaller particles.

During the unit time, a fraction a(m,x) of aggregates of size m and located at x are
undergoing breakup. We assume that

a ∈ L∞, loc(R+ × R3). (6.1)

Once an aggregate of mass s and position x breaks, the expected number of daughter
particles of size m is a non-negative measurable function b(m, s, x) defined on R×R×R3

with support in the set

{(m, s) ∈ R+ × R+ : m < s} × R3.

After the fragmentation of a mass s particle, the sum of masses of all daughter particles
should again be s, hence it follows that for any s > 0, x ∈ R3

∫ s

0

nb(n, s, x)dn = s. (6.2)

Furthermore the expected number of daughter particles produced by fragmentation of a
mass s particle (with position x) is, by definition, given by

∫ s

0

b(n, s, x)dn. (6.3)

In case of binary fragmentation [14, 38], it is straightforward that for a.a x ∈ R3,
b(m, s, x) = b(s−m, s, x) for all m, s, s > m, and

∫ s

0

b(m, s, x)dm = 2 for all s > 0. (6.4)

After cluster fragmentation new originating clusters have different centers distributed
according to a given probabilistic law b̃(· ,m, s, y). This is the probability density that
after a break up of an (s)- aggregate (with the center at y), the new formed m-aggregate
will be located at x. Therefore

∫

R3

b̃(x,m, s, y)dx = 1. (6.5)

The equation describing the evolution of the particle-mass-size distribution function for
a continuous system undergoing fragmentation can be derived by balancing loss and gain
of particles of mass m (with position x) over a short period of time. From the definitions,
at any time t, the loss term is a(m,x)u(t, m, x) and the gain term

∫ ∞

m

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)u(t, s, y)dyds.
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Therefore the whole equation reads

∂u

∂t
(t,m, x) =− a(m,x)u(t,m, x)

+

∫ ∞

m

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)u(t, s, y)dyds.
(6.6)

The total mass of the ensemble at time t is the quantity

∫ ∞

0

∫

R3

u(t,m, x)mdxdm, (6.7)

thus the natural space for analysis is

X = L1(R+ × R3,mdxdm). (6.8)

In order to make use of the semigroup theory of linear operators we need to complement
(6.6) with the initial mass-position distribution

u(0,m, x) = u0(m,x), a.e (m,x) ∈ R+ × R3, (6.9)

where u0 ∈ X.

In what follows we denote by A and B the expressions appearing on the right-hand side
of the equations (6.6); that is,

[Aψ](m,x) = −a(m,x)ψ(m,x), (6.10)

and

[Bψ](m,x) =

∫ ∞

m

∫

R3

a(s, y)b(m, s, y)̃b(x, m, s, y)ψ(s, y)dyds, (6.11)

defined on all measurable and finite almost everywhere functions ψ for which they make
pointwise (almost everywhere) sense.

6.3 Analysis

We introduce operators A and B in X defined by

[Au](m,x) = [Au](m,x), [Bu](m,x) = [Bu](m,x) (6.12)

and set D(A) = {ψ ∈ X; aψ ∈ X}.
Lemma 6.3.1. (A + B, D(A)) is a well defined operator.
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Proof. In order to prove the first part of the theorem, we need to show that BD(A) ⊂ X.
Let u ∈ D(A)+, changing the order of integration by the Fubini theorem, we obtain

∫ ∞

0

∫

R3

Bu(m, x)mdxdm

=

∫

R3

∫ ∞

0

[∫ ∞

m

a(s, y)b(m, s, y)

(∫

R3

b̃(x,m, s, y)dx

)
u(s, y)ds

]
mdmdy

=

∫

R3

(∫ ∞

0

∫ ∞

m

ma(s, y)b(m, s, y)u(s, y)dsdm

)
dy

=

∫

R3

(∫ ∞

0

∫ s

0

ma(s, y)b(m, s, y)u(s, y)dmds

)
dy

=

∫ ∞

0

∫

R3

a(s, y)u(s, y)sdyds,

where we used (6.5) and (6.2) respectively. Because u ∈ D(A)+ it follows that
∫ ∞

0

∫

R3

Bu(m, x)mdxdm < +∞.

The result follows from the fact that any arbitrary element u of D(A) can be written in
the form u = u+ − u−, where u+, u− ∈ D(A)+.

Theorem 6.3.2. There is an extension G of A + B that generates a positive semigroup
of contractions (SG(t))t≥0 on X. Moreover, for each u0 ∈ D(G) there is a measurable
representation u(t,m, x) of SG(t)u0 which is absolutely continuous with respect to t ≥ 0
for almost any (m,x) and such that (6.6) is satisfied almost everywhere.

Proof. We claim that (A, D(A)) generates a positive semigroup of contractions. In fact
because the operator A is a multiplication operator on X induced by the measurable
function a, it is closed and densely defined [31]. Also for any λ > 0, it is obvious that
λI − A is bijective and the resolvent R(λ, A) of A satisfies the estimate

‖R(λ, A)ψ‖ ≤ 1

λ
‖ψ‖ (6.13)

for any ψ ∈ X. Furthermore for any positive λ, the operator R(λ, A) is nonnegative.
Therefore (A, D(A)) generates a positive semigroup of contractions.

It is clear that (B, D(B)) is positive. Furthermore for any u ∈ D(A), by the calculations
in the previous lemma, we have

∫ ∞

0

∫

R3

(Au + Bu)(m,x)mdxdm

=

∫ ∞

0

∫

R3

[Au](m, x)mdxdm +

∫ ∞

0

∫

R3

[Bu](m,x)mdxdm

=

∫ ∞

0

∫

R3

−a(m,x)u(m,x)mdxdm +

∫ ∞

0

∫

R3

a(s, y)u(s, y)sdyds = 0.
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Thus the assumptions of Theorem 2.3.5 are satisfied. Therefore there is an extension G
of A + B generating a substochastic semigroup (SG(t))t≥0. Also for any u0 ∈ D(G), the
function

t → SG(t)u0

is a C1-function in the norm of X and satisfies the equation

d

dt
SG(t)u0 = GSG(t)u0, (6.14)

where the equality holds for any t > 0 in the sense of equality in X. The initial condition
is satisfied in the following sense

lim
t→0+

SG(t)u0 = u0, (6.15)

where the convergence is in the X-norm.

In order to prove the second part of this theorem we make use of the theory of extensions
and the theory of L spaces [16]. Let E be the set of finite almost everywhere measurable
functions defined on (0,∞)×R3. We recall that E is a lattice with respect to the usual
relation (≤ almost everywhere), X ⊂ E and X is a sublattice of E. We denote by X+ and
E+ the positive cones of X and E respectively. Also we introduce the operator B defined
such that for any nondecreasing sequence (ψn)n∈N in X+ with supn∈N ψn = ψ ∈ E+,

Bψ := sup
n∈N

Bψn. (6.16)

Since B is an integral operator with positive kernel, Lebesgue’s monotone convergence
theorem yields that B = B. Thus, [16, Theorem 6.20] yields

G ⊂ A+ B.

Hence SG(t)u0 satisfies
[

d

dt
SG(t)u0

]
(m, x) = [ASG(t)u0](m, x) + [BSG(t)u0](m,x), (6.17)

for each fixed t > 0, where the right hand side does not depend (in the sense of equality
almost everywhere) on what representation of the solution SG(t)u0 is considered.

Making use of the fact that X is an L-space, from Theorem 2.1.7, we have that since the
function SG(t)u0 is strongly differentiable, there is a representation u(t,m, x) of SG(t)u0

that is absolutely continuous with respect to t ≥ 0 for almost any (m,x) ∈ R+×R3, and
that satisfies

∂

∂t
u(t, m, x) =

[
d

dt
SG(t)u0

]
(m, x)

for any t ≥ and almost any (m, x). Hence, taking this representation, we obtain that

∂u

∂t
(t,m, x) = −a(m,x)u(t, m, x) (6.18)

+

∫ ∞

m

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)u(t, s, y)dyds
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holds almost everywhere on R+×R3. Moreover, the continuity of u(t,m, x) with respect
to t for almost every (m,x) shows that

lim
t→0+

u(t,m, x) = u(m,x)

exists almost everywhere. From (6.15) we see that there is a sequence (tn)n∈N converging
to 0 such that

lim
n→∞

u(tn,m, x) = u0(m,x),

for almost every (m,x). Here we can use the same representation as above because we
are dealing with a (countable) sequence. Indeed, changing the representation on a set
of measure zero for each n and further taking the union of all these sets still produces a
set of measure zero. Thus u0 = u almost everywhere.

On account of this result we use the same notation for the abstract X-valued functions
of t and their representations as scalar functions of several variables, bearing in mind
that we select a ‘proper’ representation. Thus, for example, for u(t) = SG(t)u0 (with
u0 ∈ D(G)), by u(t, m, x) we mean the representation satisfying (6.18).

In general, the function SG(t)u0 is not differentiable if u0 ∈ X\D(G). Therefore it
cannot be a classical solution of the Cauchy problem (6.14), (6.15). However it is a mild
solution, that is, it is a continuous function such that

∫ t

0

u(τ)dτ∈D(G) for any t ≥ 0,

satisfying the integrated version of (6.14), (6.15):

u(t) = u0 + G

∫ t

0

u(τ)dτ. (6.19)

Corollary 6.3.3. If u0 ∈ X\D(G), then u(t,m, x) = [SG(t)u0](m,x) satisfies the equa-
tion

u(t, m, x) = u0(m,x)− a(m,x)

∫ t

0

u(τ, m, x)dτ + (6.20)

∫ ∞

m

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)

(∫ t

0

u(τ, s, y)dτ

)
dyds.

Proof. Because u is continuous in the norm of X, we can use (2.2) to claim that
a(m,x)

∫ t

0
u(τ, m, x)dτ is defined for almost any (m, x) and any t, and hence we can

write
[
(A+ B)

∫ t

0

u(τ)dτ

]
(m,x) = −a(m,x)

∫ t

0

u(τ, m, x)dτ (6.21)

+

∫ ∞

0

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)

(∫ t

0

u(τ, s, y)dτ

)
dyds.
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Thus, combining the result used in the previous theorem that G ⊂ A+B with (6.19) we
obtain (6.20).

Next we provide a fairly general condition for honesty of (SG(t))t≥0.

6.4 Honesty

In the physical processes modeled by the fragmentation equation the total mass of the
system is expected to remain constant throughout the evolution. It is formally expressed
by (6.6) as the mass rate equation can be found by multiplying (6.6) by m and integrating
over (0,∞)× R3. Thus by (6.2) and (6.7) we obtain

d

dt

∫ ∞

0

∫

R3

mu(t,m, x)dxdm = 0, (6.22)

which agrees with the physics of the process as fragmentation should simply rearrange
the distribution of masses of the particles without altering the total mass of the system.

However, the validity of (6.22) depends on certain properties of the solution u that we
tacitly assumed during the integration and which are far from obvious. In fact, by
analyzing models with specific coefficients, several authors have observed that the local
version of (6.22) is not valid [57]. In other words, there occurs an unexpected mass loss in
the system. In local fragmentation, the unaccounted for mass loss was termed shattering
fragmentation and was attributed to the phase transition in which a dust of particles with
zero size and nonzero mass is formed. The presence of x in (6.22) suggests that honesty
in nonlocal fragmentation depends also on the spatial properties of the fragmentation
kernels. In this section we provide sufficient conditions for the fragmentation semigroup
to be honest for general coefficients.

Lemma 6.4.1. Assume that for any g ∈ X+ such that −ag + Bg ∈ X we have the
inequality ∫ ∞

0

∫

R3

(−a(m,x)g(m,x) + [Bg](m, x))mdxdm ≥ 0, (6.23)

then G = A + B. Thus the solution u(t) = SG(t)u0 satisfies

d

dt

∫ ∞

0

∫

R3

SG(t)u0(m,x)mdxdm =
d

dt
‖SG(t)u0‖ = 0

and for any 0 ≤ u0 ∈ D(G).

Proof. The method we employ is analogous to that used in [16, Theorem 8.5]. Assume
that for any g ∈ X+ such that −ag + Bg ∈ X the inequality (6.23) holds. By ([16],
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Theorem 6.13 and Theorem 6.22), it is enough to show that for any h ∈ F+ such that
−h + BLh ∈ X the following inequality holds,

∫ ∞

0

∫

R3

[Lh](m,x)mdxdm +

∫ ∞

0

∫

R3

(−h(m,x) + [BLh](m,x))mdxdm ≥ 0,

where F := {h ∈ E ; (1+a)−1h ∈ X}, L : F+ → X is defined such that Lh := (1+a)−1h
and B is defined via (6.16). We recall that Bψ = Bψ for any ψ ∈ D(B). Now let h ∈ F+

such that −h + BLh ∈ X, let us set g := Lh, it is clear that g ∈ X+. Furthermore

−ag + Bg = −aLh + BLh = Lh + (−h + BLh) ∈ X.

Since g satisfies the assumption, we have that
∫ ∞

0

∫

R3

[Lh](m,x)mdxdm +

∫ ∞

0

∫

R3

(−h(m,x) + [BLh](m,x))mdxdm

=

∫ ∞

0

∫

R3

(g(m,x)− (1 + a(m,x))g(m,x) + [Bg](m,x))mdxdm

=

∫ ∞

0

∫

R3

(−a(m, x)g(m,x) + [Bg](m,x))mdxdm ≥ 0.

Theorem 6.4.2. Assume that there exists a real-valued function ã = ã(m) ∈ L∞, loc(R+)
such that a(m,x) ≤ ã(m) for almost all (m,x) ∈ R+×R3, then the semigroup (SG(t))t≥0

is honest.

Proof. Making use of the previous lemma, it is enough to prove that for any g ∈ X+

such that −ag + Bg ∈ X, the inequality
∫ ∞

0

∫

R3

(−a(m,x)g(m,x) + [Bg](m,x))mdxdm ≥ 0

is satisfied. We have∫ ∞

0

∫

R3

(−a(m,x)g(m,x) + [Bg](m,x))mdxdm

= lim
R→∞

(∫ R

0

∫

R3

−a(m, x)g(m,x)mdxdm +

∫ R

0

∫

R3

[Bg](m,x)mdxdm

)
.

Also by (6.5),

∫ R

0

∫

R3

[Bg](m,x)mdxdm

=

∫ R

0

∫ ∞

m

∫

R3

a(s, y)b(m, s, y)

(∫

R3

b̃(m,x, s, y)dx

)
g(s, y)mdy ds dm

=

∫

R3

(∫ R

0

∫ ∞

m

ma(s, y)b(m, s, y)g(s, y)dsdm

)
dy.
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Furthermore by (6.2),

∫ R

0

∫ ∞

m

ma(s, y)b(m, s, y)g(s, y)dsdm

= WR(y) +

∫ R

0

∫ s

0

ma(s, y)b(m, s, y)g(s, y)dmds

= WR(y) +

∫ R

0

sa(s, y)g(s, y)ds,

where for any y ≥ 0, WR(y) =

∫ ∞

R

∫ R

0

ma(s, y)b(m, s, y)g(s, y)dmds ≥ 0. Combining,

for any R > 0 we have

∫ R

0

∫

R3

(−a(m,x)g(m, x) + [Bg](m,x))mdxdm

=

∫ R

0

∫

R3

(−[ag](m, x)mdxdm +

∫

R3

(
WR(y) +

∫ R

0

s[ag](s, y)ds

)
dy

=

∫

R3

WR(y)dy ≥ 0.

Therefore
∫ ∞

0

∫

R3

(−a(m,x)g(m,x) + [Bg](m,x))mdxdm

= lim
R→∞

∫

R3

WR(y)dy ≥ 0.

The previous theorem shows that the spatial distribution of the particles does not in-
fluence conservativeness of the system when the fragmentation rate is bounded by a
size only dependent function. In other words nonlocal models with fragmentation rate
a(m,x) bounded as |x| approaches infinity behave like local models, therefore are conser-
vative provided that the fragmentation rate is bounded as m approaches zero. A major
problem arises when the fragmentation rate a(m,x) becomes infinite as |x| is close to
infinity. The next theorem gives a sufficient condition for honesty in that case.

Theorem 6.4.3. Assume that

a ∈ L∞, loc(R+ × R3) (6.24)

and there exists C > 0 such that

a(s, y)

∫

|x|>|y|
b̃(m,x, s, y)dx < C (6.25)

for almost any m, s, y ∈ R3, then the semigroup (SG(t))t≥0 is honest.
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Proof. Considering (6.24), for any 0 < R1, R2 < ∞ we have that ag ∈ L1([0, R1] ×
B(O, R2), mdxdm), where B(O, R2) = {x ∈ R3; |x| ≤ R2}. Since −ag + Bg ∈ X, it
follows that Bg ∈ L1([0, R1]×B(O, R2), mdxdm). In this respect,

∫ ∞

0

∫

R3

(−a(m, x)g(m,x) + [Bg](m,x))mdxdm =

lim
R1,R2→∞

(∫ R1

0

∫

B(O,R2)

−a(m,x)g(m,x)mdxdm +

∫ R1

0

∫

B(O,R2)

[Bg](m, x)mdxdm

)
.

We have
∫ R1

0

∫

B(O,R2)

[Bg](m,x)mdxdm

=

∫ R1

0

∫

B(O,R2)

(∫ ∞

m

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)g(s, y)dyds

)
mdxdm

= H(R1, R2) +

∫ R1

0

∫

R3

∫ s

0

∫

B(O,R2)

a(s, y)b(m, s, y)̃b(x,m, s, y)g(s, y)mdxdmdyds,

where

H(R1, R2) =

∫ ∞

R1

∫

R3

∫ R1

0

∫

B(O,R2)

a(s, y)b(m, s, y)̃b(x,m, s, y)g(s, y)mdxdmdyds ≥ 0.

It follows that
∫ R1

0

∫

B(O,R2)

[Bg](m,x)mdxdm

≥
∫ R1

0

∫

R3

a(s, y)g(s, y)

(∫ s

0

∫

B(O,R2)

b(m, s, y)̃b(x,m, s, y)mdxdm

)
dyds

≥
∫ R1

0

∫

B(O,R2)

a(s, y)g(s, y)

(∫ s

0

∫

B(O,R2)

b(m, s, y)̃b(x, m, s, y)mdxdm

)
dyds.

Thus
∫ R1

0

∫

B(O,R2)

[Bg](m,x)mdxdm ≥
∫ R1

0

∫

B(O,R2)

a(s, y)g(s, y)sdyds

−
∫ R1

0

∫

B(O,R2)

a(s, y)g(s, y)

(∫ s

0

∫

|x|>R2

b(m, s, y)̃b(x,m, s, y)mdxdm

)
dyds.

Hence
∫ R1

0

∫

B(O,R2)

−a(m,x)g(m, x)mdxdm +

∫ R1

0

∫

B(O,R2)

[Bg](m,x)mdxdm

≥ −
∫ R1

0

∫

B(O,R2)

a(s, y)g(s, y)

(∫ s

0

∫

|x|>R2

b(m, s, y)̃b(x,m, s, y)mdxdm

)
dyds.



CHAPTER 6. NONLOCAL CONTINUOUS FRAGMENTATION PROCESSES 96

By the assumption, for any y ∈ B(O,R2), we have

a(s, y)

∫

|x|>R2

b̃(m,x, s, y)dx ≤ a(s, y)

∫

|x|>|y|
b̃(m,x, s, y)dx < C.

This implies that
∫ ∞

0

∫

B(O,R2)

a(s, y)g(s, y)

(∫ s

0

∫

|x|>R2

b(m, s, y)̃b(x,m, s, y)mdxdm

)
dyds

≤ C

∫ ∞

0

∫

R3

g(s, y)

(∫ s

0

mb(m, s, y)dm

)
dyds

≤ C

∫ ∞

0

∫

R3

sg(s, y)dyds < ∞.

By the dominated convergence theorem,

lim
R1,R2→∞

∫ R1

0

∫

B(O,R2)

a(s, y)g(s, y)

(∫ s

0

∫

|x|>R2

b(m, s, y)̃b(x,m, s, y)mdxdm

)
dyds

=

∫ ∞

0

∫

R3

∫ s

0

ma(s, y)g(s, y)b(m, s, y)

(
1− lim

R2→∞

∫

B(O,R2)

b̃(x,m, s, y)dx

)
dmdyds

= 0.

Therefore ∫ ∞

0

∫

R3

(−a(m,x)g(m,x) + [Bg](m,x))mdxdm ≥ 0.

This theorem demonstrates that the process is honest if at infinity daughter particles
tend to move back into the system with a high probability described by the inequality
(6.25). Note that the analysis developed in this thesis in the space R3 is also valid in one
- and two- dimensional spaces R and R2. We shall illustrate the usefulness of Theorem
6.4.3 by the following examples in the physical space R:

• In the first example daughter particles from the position y > 0 are uniformly
distributed in the unit ball centered at y+γ(y)− 1

2
and daughter particles from the

position y < 0 are uniformly distributed in the unit ball centered at y − γ(y) + 1
2
,

where 0 ≤ γ(y) ≤ 1 is a function. The fragmentation rate a is a position only
dependent function. By Theorem 6.4.3 the existence of a constant γ̃ such that
γ(y) ≤ eγ

a(y)
(for almost any y ∈ R) guarantees honesty of the model.

• We consider the model a(x) = |x|n, n > 0 and b̃(x, y) = |y|
2

exp(−|xy|). It is
obvious that a(x) →∞ as |x| approaches infinity. We have

lim
y→∞

|y|n
∫

|x|>|y|

|y|
2

exp(−|xy|)dx = lim
y→∞

|y|n exp(−y2) = 0.

Therefore the assumptions of Theorem 6.4.3 are satisfied.
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Throughout the rest of the thesis, we assume there exists a real-valued function ã =
ã(m) ∈ L∞, loc(R+) such that a(m,x) ≤ ã(m) for almost all (m,x) ∈ R+ × R3. This
obviously implies that for any N ∈ N there exists a positive ΛN such that

ess sup
(0,N)×R3

a(m,x) ≤ ΛN . (6.26)

6.5 Approximation techniques

The strategy used in this section is analogous to that employed in [16, Subsection 8.3.2]
for the local fragmentation model. The idea of this method is to approximate the solution
of (6.6) by a sequence of solutions of cut-off problems of a similar form.

6.5.1 The truncated problem

For any given N ∈ N we introduce the projection operator defined for a function ψ ∈
X = L1(R+ × R3,mdxdm) by

(PNψ)(m,x) =

{
ψ(m,x) if 0 < m < N, and x ∈ R3,

0 otherwise.
(6.27)

The projection PN acts onto the closed subspace

XN = {φ ∈ X : φ(m,x) ≡ 0 on (N,∞)× R3} (6.28)

of X. The truncated problem consists of finding a solution to the truncated ACP

du

dt
(t) = KPNu(t), t > 0,

u(0) = u0,
(6.29)

where K is the realization of A+ B in X (see (6.10, 6.11)). We set

AN = APN , BN = BPN and KN = KPN .

6.5.2 The limit semigroup

The technique we employ is based on a modified version of an old method of Reuter and
Lederman [25, 49] for solving Kolmogorov equations. It has been used lately for local
fragmentation [16].

With some abuse of notation we consider AN and BN both in XN and X.

Lemma 6.5.1. For each N , KN generates a positive uniformly continuous semigroup of
contractions on XN , say (SN(t))t≥0, which is conservative on XN,+. Moreover, for any
M ≥ N and t ≥ 0,

PNSM(t)PN = SN(t).
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Proof. The operator AN is bounded by (6.26). Changing the order of integration by the
Fubini theorem and making use of (6.5), we get

‖BNu‖XN
=

∫ N

0

∫

R3

m|BPNu(m,x)|dxdm

≤
∫ N

0

∫

R3

a(s, y)|u(s, y)|sdyds

≤ ΛN‖u‖XN
,

so that BN is also bounded. Hence KN generates a uniformly continuous semigroup.
We denote this semigroup by (SN(t))t≥0. Clearly, AN generates a positive semigroup of
contractions and BN is a positive operator. Moreover, by similar calculations as above,

∫ N

0

∫

R3

(∫ N

m

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)u(t, s, y)dyds

)
mdxdm

=

∫ N

0

∫

R3

a(s, y)u(t, s, y)

(∫ s

0

mb(m, s, y)dm

)
dyds

=

∫ N

0

∫

R3

a(s, y)u(t, s, y)sdyds;

thus the assumptions of Theorem 2.3.5 hold. Therefore there is an extension K ′
N of

KN which generates a substochastic semigroup. Because a(m,x) is bounded in (0, N)×
R3, this substochastic semigroup is honest, it follows that K ′

N = KN , where KN is
the closure of KN . Since KN generates a uniformly (and hence strongly) continuous
semigroup, KN is a closed operator. Therefore we have that K ′

N = KN , consequently, the
uniformly continuous semigroup (SN(t))t≥0 is a positive strongly continuous semigroup
of contractions, furthermore (SN(t))t≥0 is honest.

To prove the last statement we notice first that since

BPNu(m, x) =

∫ N

m

∫

R3

a(s, y)b(m, s, y)̃b(x,m, s, y)u(t, s, y)dyds

for 0 ≤ m ≤ N and BPNu = 0 for m > N , we have that BPNu = PNBPNu on
[0, N ]×B(0R3 , N). Furthermore, it is clear that APNu = PNAPNu, hence we have also

(A + B)PN = APN + BPN = PNAPN + PNBPN = AN + BN = KN .

Next, by PNPM = PMPN = PN we have

PNKMPN = PNPMKPMPN = PNKPN = KN

and, by induction, if we assume that PN(KM)n−1PN = (KN)n−1, then

PN(KM)nPN = PN(KM)n−1KMPN

= PN(KM)n−1PMKPMPN

= PN(KM)n−1PMPNKPN

= PN(KM)n−1PNKN

= (KN)n.
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Owing to the fact that KM is a bounded operator, the semigroup generated by KM is
given by the exponential formula

PNSM(t)PN =
∞∑

n=0

tnPN(KM)nPN

n!

=
∞∑

n=0

tn(KN)n

n!

= SN(t),

and the Lemma is proved.

Theorem 6.5.2. The truncated problem (6.29) has a unique, strongly continuously dif-
ferentiable, positive, mass-conserving solution for all initial data u0 ∈ XN . The solution
is given by u(t) = SN(t)u0, t ≥ 0.

Proof. This follows immediately by Lemma 6.5.1 and Proposition 2.2.3.

The family (SN(t))t≥0 defined in lemma 6.5.1 can be extended to the uniformly contin-
uous family of operators defined on X by

SN(t) = PNSN(t)PN .

Note that SN(0) 6= IX , therefore SN(t) is no longer a semigroup. On the other hand, the
operator KN , as a bounded operator on X, generates a uniformly continuous semigroup,
denoted by (SKN

(t))t≥0. As the restriction of KN to the complement of XN is the zero
operator, it generates there a constant semigroup and we have

SKN
(t) = PNSN(t)PN + (IX − PN), (6.30)

where IX is the identity on X. Thus

SKN
(t)PNu = SN(t)u.

Proposition 6.5.3. The families (SKN
(t))t≥0 and (SN(t))t≥0 have the following proper-

ties.

1. For any fixed t the family (SN(t))t≥0 is increasing with N ;

2. There is a positive C0-semigroup of contractions, say (S(t))t≥0, such that for u ∈ X,
and t ≥ 0

S(t)u = lim
N→∞

SN(t)u = lim
N→∞

SKN
(t)u in X; (6.31)
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3. Both limits in (6.31) are uniform in t on bounded intervals. In particular, for
u0 ∈ XN ,

S(t)u0 = PMSM(t)PMu0 for any M ≥ N. (6.32)

Proof. (1 ) Let u ≥ 0 and define

uN(t) = PNSN(t)PNu = SN(t)u ≥ 0.

By the monotonicity of the projection operators we have

(PN+1 − PN)uN+1(t) ≥ 0.

On the other hand, because
d

dt
uN+1 = KN+1uN+1,

we obtain

d

dt
PNuN+1 = PNKN+1PNuN+1 + PNKN+1(PN+1 − PN)uN+1.

However, PNKN+1PN = KN and PNAN+1 = PNAN so that

PNKN+1(PN+1 − PN)uN+1 = PNAN(PN+1 − PN)uN+1 + PNBN+1(PN+1 − PN)uN+1

= PNBN+1(PN+1 − PN)uN+1 ≥ 0,

and
PNuN+1(0) = PNu = uN(0).

Thus, by the Duhamel formula in XN ,

PNuN+1(t) = SN(t)PNu +

∫ t

0

SN(t− τ)PNBN+1(PN+1 − PN)uN+1(τ)dτ

≥ SN(t)PNu

and
PNuN+1(t) = PNPNuN+1(t) ≥ PNSN(t)PNu = SN(t)u.

Combining the estimates, we get

SN+1(t)u = uN+1(t) = PN+1uN+1(t) ≥ PNuN+1(t) ≥ SN(t)u.

The result follows.

(2 ) The family (SKN
(t))t≥0 is not increasing with N ; we have, however, SKN

≥ SN .

Because the space X is a KB-space and the sequence (SN(t))t≥0 is increasing with

‖SN(t)u‖X = ‖SN(t)u‖XN
= ‖PNu‖XN

≤ ‖u‖X
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provided u ≥ 0, we can define

S(t)u = lim
N→∞

SN(t)u, t ≥ 0 u ≥ 0,

and by linearity this definition can be extended to arbitrary u ∈ X. Moreover by (6.30)
we get

SKN
(t)− SN(t) = (IX − PN)

and because
lim

N→∞
(IX − PN)u = 0

for any fixed u, we obtain

S(t)u = lim
N→∞

SKN
(t)u, t ≥ 0 for any u ∈ X.

Therefore, (S(t))t≥0 is the strong limit of a sequence of uniformly bounded positive semi-
group of contractions. We need to show that (S(t))t≥0 is a positive strongly continuous
semigroup of contractions. The semigroup relation S(t + s)u = S(t)S(s)u is just the
limit relation for (SKN

(t))t≥0. For any u ∈ X, we set uN = PNu for some fixed N ; Then
for M > N we have

SKM
(t)u = SM(t)u

and for such M , as t → 0+,

‖S(t)uN − uN‖ ≤ ‖S(t)uN − SM(t)uN‖+ ‖SM(t)uN − uN‖
= ‖S(t)uN‖ − ‖SM(t)uN‖+ ‖SM(t)uN − uN‖
≤ ‖uN‖ − ‖SKM

(t)uN‖+ ‖SKM
(t)uN − uN‖ → 0.

For arbitrary u we make use of the density of compactly supported functions in X and
the boundedness of (S(t))t≥0.

(3 ) The uniform convergence of (SN(t))t≥0 follows by the classical argument of Dini, as
in ([37], Lemma 4). To prove this statement for (SKN

(t))t≥0 it is enough to note that
the difference between (SKN

(t))t≥0 and (SN(t))t≥0 is independent of t. Equation (6.32)
follows directly from the last statement of theorem 6.5.1.

6.6 Uniqueness

The following lemma proves the minimality of (S(t))t≥0 and this is crucial for the unique-
ness investigations.

Lemma 6.6.1. Let (t,m, x) → u(t,m, x) be a function integrable on

[0, T ]× (0, N)× R3
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with respect to the measure mdtdmdx for any N, T > 0 and assume that u satisfies for
almost all (t,m, x) the integral version of (6.6):

u(t,m, x) = u0(m,x)−
∫ t

0

a(m,x)u(τ, m, x)dτ +

∫ t

0

[Bu](τ,m, x)dτ, (6.33)

where u0 ∈ X. Then for all t > 0 and almost all (m, x),

u(t,m, x) ≥ (S(t)u0)(m,x). (6.34)

Proof. We first observe that [Bu](t,m, x) is finite for almost every t and (m,x). Next,
integrating both side of (6.33), we obtain that for any 0 ≤ N < ∞ and 0 ≤ t ≤ T < ∞

∫ N

0

∫

R3

∫ t

0

| − a(m,x)u(τ,m, x) + [Bu](τ, m, x)|mdτdxdm < +∞.

In fact, by integrability assumption on u and (6.26) we have

∫ N

0

∫

R3

(∫ t

0

a(m,x)|u|(τ, m, x)dτ

)
mdxdm =

∫ t

0

(∫ N

0

∫

R3

a(m,x)|u|(τ, m, x)mdxdm

)
dτ < +∞,

hence also
∫ N

0

∫

R3

(∫ t

0

|Bu|(τ,m, x)dτ

)
mdxdm

≤
∫ t

0

(∫ N

0

∫

R3

a(m, x)|u|(τ,m, x)mdxdm

)
dτ (6.35)

< +∞
where in both cases the change of order of integration is justified by the positivity of the
integrands and the Fubini theorem. In particular, this shows that

−au + Bu ∈ L1([0, T ]× (0, N)× R3,mdtdmdx). (6.36)

Defining uN = PNu, from the fact that

PNBu = PNB(PN + I − PN)u

= PNBPNPNu + PNB(I − PN)u

= BNuN + PNB(I − PN)u

we see that uN satisfies

uN(t,m, x) =PNu0(m,x) +

∫ t

0

−a(m,x)uN(τ, m, x)dτ

+

∫ t

0

g(τ,m, x)dτ +

∫ t

0

[BNuN ](τ, m, x)dτ,

(6.37)
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where

g(τ,m, x) =

{
B(I − PN)u(τ, m, x) if (m,x) ∈ (0, N)× R3

0 if not.
(6.38)

By (6.35) we have

∫ N

0

∫

R3

(∫ T

0

|g(τ,m, x)|dτ

)
mdxdm

=

∫ N

0

∫

R3

(∫ T

0

|B(I − PN)u(τ, m, x)| dτ

)
mdxdm

≤
∫ N

0

∫

R3

(∫ T

0

|Bu|(τ,m, x)dτ

)
mdxdm

< +∞.

hence g ∈ L1( [0, T ], L1(R+ × R3, mdxdm)). Now, considering

‖uN(t + ς)− uN(t)‖X ≤
∫ t+ς

t

∫ N

0

∫

R3

| − au(s,m, x) + [Bu](s,m, x)|mdxdmdτ

we see that because −au + Bu ∈ L1([0, T ] × (0, N) × R3, mdtdxdm) and the measure
of [t, t+ ς]× (0, N)×R3 goes to 0 as ς → 0, the function t → uN(t) is an XN continuous
function for any N < ∞. Hence (6.37) can be written as

uN(t) = PNu0 +

∫ t

0

(AN + BN)uN(τ)dτ +

∫ t

0

g(τ)dτ, (6.39)

where g, given by (6.38), is an L1([0, T ], X) function. Because AN + BN is a bounded
operator, uN is a mild solution to the Cauchy problem

duN

dt
= (AN + BN)uN + g, uN(0) = PNu0

and must therefore be given by the Duhamel formula

uN(t) = SN(t)PNu0 +

∫ t

0

SN(t− τ)g(τ)dτ.

Thus, for any N , uN(t,m, x) ≥ (SN(t)PNu0)(m,x). As (SN(t)PNu0) converges to S(t)u0

and uN converges to u, we get (6.34).

The following Proposition shows that the semigroup (S(t))t≥0 constructed in Proposition
6.5.3 coincides with the semigroup (SG(t))t≥0 of Theorem 6.3.2.

Proposition 6.6.2. Under the assumptions of this section

SG(t)u0 = S(t)u0, t ≥ 0, u0 ∈ X.
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Proof. In the first step we make use of Proposition 2.3.6. Clearly, because a satisfies
(6.26), the subspace X0 :=

⋃∞
N=0 XN of all functions of X that have bounded support is

a core for the multiplication operator A. From (6.32) it follows that X0 is a subset of the
domain of the generator of (S(t))t≥0 because S(t)|XN

= SN(t) is a uniformly bounded
semigroup and therefore differentiable on the whole space. Thus Proposition 2.3.6 yields

S(t)u0 ≥ SG(t)u0 for any u0 ∈ X+.

On the other hand, taking u0 ∈ D(A)+ ⊆ D(G) and integrating (6.18) with respect to
t, we see that [SG(t)u0](m,x) satisfies (6.33) and therefore by (6.34),

S(t)u0 ≤ SG(t)u0.

Hence, for u0 ∈ D(A)+, we obtain

S(t)u0 = SG(t)u0.

Since any element in D(A) can be expressed as a difference of two nonnegative elements,
we can extend this equality to D(A) and, by density, to X.

Theorem 6.6.3. Assume u(t,m, x) is a nonnegative function integrable in [0, T ] ×
(0,∞)× R3, T < ∞ with respect to the measure mdtdxdm, that satisfies

u(t,m, x) = u0(m,x)−
∫ t

0

a(m,x)u(τ,m, x)dτ +

∫ t

0

[Bu](τ, m, x)dτ, (6.40)

where u0 ∈ X+, and
∫ ∞

0

∫

R3

u(t,m, x)mdmdx =

∫ ∞

0

∫

R3

u0(m,x)mdmdx (6.41)

for any t > 0, then
u(t, m, x) = [SG(t)u0](m,x) (6.42)

for any t > 0 and almost any (m,x) ∈ (0,∞)× R3.

Proof. By Lemma 6.6.1 and Proposition 6.6.2 we have

u(t,m, x) ≥ [S(t)u0](m,x) = [SG(t)u0](m,x).

On the other hand, for any t > 0,
∫ ∞

0

∫

R3

(u(t,m, x)− [SG(t)u0](m, x))mdxdm

=

∫ ∞

0

∫

R3

u(t,m, x)mdxdm−
∫ ∞

0

∫

R3

[SG(t)u0](m,x)mdxdm

=

∫ ∞

0

∫

R3

u0(m, x)mdxdm−
∫ ∞

0

∫

R3

u0(m,x)mdxdm = 0.

From Theorem 6.4.2 and because the integrand on the left-hand side is nonnegative, we
obtain (6.42).



Chapter 7

Conclusion

The main aim of this work was to extend existing results related to the coagulation-
fragmentation equation. This has been achieved in various ways.

In the first chapters of the thesis, we analyzed the fragmentation equation (1.2) in the
space X0,1 for arbitrary fragmentation kernels a and b(x|y). Our main focus was on
the formation of a ‘dust’ of particles of zero size carrying, nevertheless, a non-zero mass.
Shattering fragmentation (corresponding, roughly speaking, to a unbounded at 0) is asso-
ciated with an accelerating infinite cascade of fragmentation events of smaller and smaller
particles leading to the creation of dust. Hence, intuitively, in shattering fragmentation
we should observe the appearance of an infinite number of particles. We demonstrated
that this intuition is not necessarily correct – for sufficiently fast fragmentation of small
particles (e.g., for α < −1 and ν ∈ (−1, 0) in the power law case) the total number of
them remains finite (though we do not know whether the process is honest in X0,1). We
note that this phenomenon was noticed in [32] for power law rates by analyzing explicit
solutions and in [24] for homogeneous fragmentation using probabilistic methods. To
explain this phenomenon one could conjecture that a full description of the dynamics
in the shattering regime requires two compartments: one for the ‘physical’ particles,
which are visible within the model governed by (1.2), and one for the ‘dust’. In this
interpretation shattering would be a flow of particles from the former to the latter with
the speed related to the fragmentation rate a close to zero. If a close to zero is just
large enough for shattering to occur, we may observe an accumulation of small particles
in the ‘physical’ compartment and, if a becomes larger, the flow between compartments
becomes fast enough to keep the number of physical particles finite for all times. This
approach is a subject of current research. Another counterintuitive result observed is re-
lated to the case when the number of daughter particles produced in each fragmentation
event is infinite and, at the same time, the fragmentation is strongly shattering (e.g. if
ν ∈ (−2, 1] and α < −1 in the power law case). Despite this, we observed that we still
have evolution in X0,1 (at least for a class of initial densities). This phenomenon also
could be explained by the conjecture discussed in the previous paragraph.

We note that while the theory for the non-shattering case has been developed up to
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a reasonably complete level and as such is presented here, the shattering case and the
case with infinite production of daughter particles still contain gaps and open problems.
Therefore we decided to present the results pertaining to the latter rather in the form of
examples and comments; the research to fill the gaps and answer the open questions is
ongoing.

In chapter 5, the semigroup approach allowed us to extend existing results on phyto-
plankton dynamics. We included unbounded fragmentation rates, growth rate r ∈ X∞
(where X∞ is the dual space of X1)and to account for birth of particles through the
McKendrick-von Foerster renewal boundary condition. We established the existence of
non-negative solutions to the evolution equation derived by O. Arino and R. Rudnicki
[14].

An integro-differential equation describing multiple fragmentation processes in the 3−D
space was considered in chapter 6. New particles were spatially randomly distributed
according to some probability density. By means of substochastic semigroup theory
and approximation techniques, we recovered some main results known for local frag-
mentation. In particular, if the fragmentation rate is bounded by a locally integrable
size-dependent function, we were able to prove the existence and uniqueness of nonneg-
ative mass-conserving solutions. Another crucial aspect developed in this chapter covers
the notion of shattering in nonlocal fragmentation. We showed that if the fragmenta-
tion rate a is bounded by a size only dependent function, the spatial distribution of the
particles does not influence conservativeness of the system. Also we provided a general
condition for honesty of nonlocal fragmentation system.

Although we have made some advances in the use of semigroups techniques, there are still
areas in which further analysis could prove fruitful. In particular, it would be interesting
to follow up the investigation of ‘shattering’ in nonlocal fragmentation and to provide in
this context a reasonable physical interpretation.
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