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Abstract

Component-based automatic face recognition has been of interest to a growing num-

ber of researchers in the past fifteen years. However, the main challenge remains the

automatic extraction of facial components for recognition in different face orienta-

tions without any human intervention; or any assumption on the location of these

components. In this work, we investigate a solution to this problem. Facial com-

ponents: eyes, nose, and mouth are firstly detected in different orientations of face.

To ensure that the components detected are appropriate for recognition, the Support

Vector Machine (SVM) classifier is applied to identify facial components that have

been accurately detected. Thereafter, features are extracted from the correctly de-

tected components by Gabor Filters and Zernike Moments combined. Gabor Filters

are used to extract the texture characteristics of the eyes and Zernike Moments are

applied to compute the shape characteristics of the nose and the mouth. The texture

and the shape features are concatenated and normalized to build the final feature vec-

tor of the input face image. Experiments show that our feature extraction strategy

is robust, it also provides a more compact representation of face images and achieves

an average recognition rate of 95% in different face orientations.

xiii



Acknowledgements

First and foremost, it couldn’t be possible to handle a topic in such a cutting edge

research field without excellent supervision. I would like to express my deep and

sincere gratitude to Prof. Jules-Raymond Tapamo for all the time he has spent to

look after what I was doing, to discuss possible and alternative solutions at each

phase of my project, to correct my manuscripts, and to provide me with advice and

encouragement. Your simplicity, your sense of endeavor, and your research skills have

inspired me forever.

The members of Image Processing, Computer Vision and Data Mining Research

Group for the stimulating environment they have provided me with while conducting

the research. It was always an ongoing pleasure for me to present my research reports

to you and receive your precious and constructive comments.

I am also grateful to my friends Zygmunt Szpak, Michael Da Silva, Wayne Chel-

liah, and Brendon Clyde McDonald for their friendship, co-operation in sharing ideas,

and help towards improving the quality of this work by making observations on the

manuscripts. Particular thanks go to Zygmunt Szpak, for sharing his deep knowledge

of our programming environments with me.

I am also indebted to my family members, particularly my wife Nyanine Chuele

Mawe Mpombo, my sisters and brothers Madeleine Meyou, Jeannette Youmbi, Irene

Domtchouang, Leacadie Eleonore Mabekam, Adeline Makougang, Valery Oscar Dzeukeng,

and Ines Isabelle Beukam for their patience support and encouragements during my

studies. Beside, I wish to express my gratitude to Ludovic Tongouo Tchatchouang

for his advice and assistance during my times of difficulty .

Finally, I am grateful to the School of Computer Science and its staff members,

for having provided me with a good work environment for my studies.

xiv



Chapter 1

Introduction

1.1 Motivation

The main security concern of governments and organizations all over the world nowa-

days is the fight against organized crime. This mobilisation reached a turning point

with the 11 September 2001 attack in the United States where terrorists have dis-

closed to the world, the weaknesses of all the security techniques that have been

implemented so far for identifying people at the entrance and the exit of sensitive

areas.

Traditionally, human beings are identified in several situations in their daily life;

either when using a key to open the door of their houses, log in a system via a pass-

word, or gain access to automated systems such as cell phone, online banking devices,

offices or secure spaces in certain buildings with a PIN code. However, these means of

identifying people have shown their limits. In fact, keys to open a door, as password

and PIN code can be lost or stolen. Particularly, password and PIN code can be

forgotten or neglected by their owners. These weaknesses make the security measures

based on such tools less reliable and inefficient nowadays. The direct consequence is

that, security mechanisms based on biometric technologies are gaining acceptance by

individuals, companies, organisations, and governments, as alternative security means

for protecting their systems. The advantage of biometric technologies over the tra-

ditional security means based on keys, passwords, and PIN codes is that a biometric

signature cannot be borrowed, stolen, or forgotten, and it is practically impossible to

forge it. Biometric technologies are being used in security banking systems, mobile

phones, immigration, health, authentication systems, and many other applications.

1
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Biometrics is the study of methods or techniques for uniquely identifying or rec-

ognizing a person, based on one or more physiological or behavioral traits. The phys-

iological traits are related to the shape of the human body, whereas the behavioral

traits refer to the human behavior. The widely used human physiological biometric

traits include: fingerprint, face, iris, retina, and gait. The main human behavioral

biometric traits are : dynamic signature, voice, Deoxyribo Nucleic Acid (DNA), and

keystroke. Basically, a human physiological or behavioral trait is used as a biometric

characteristic as long as it satisfies the following requirements [48]:

• Universality (Everyone should have it),

• Distinctiveness (No two should be the same),

• Permanence (It should be invariant over a given period of time) and

• Collectability (Could be collected easily).

In the real life applications, three additional factors should also be considered:

• Performance (accuracy, speed, resource requirements),

• Acceptability (it must be harmless to users) and

• Circumvention (it should be robust against various fraudulent method).

Although many researches in biometric recognition have demonstrated that the best

biometric solutions nowadays are those combining at least two biometric traits, also

called multimodal biometric systems [5, 32, 74, 78, 98], human face have been a

subject of interest to a growing number of researches in biometric recognition over

the recent years. The reasons being that, not only does the human face meet the above

criteria of a good human biometric trait, but also face recognition systems are useful

in many applications including: public security, law enforcement and commerce, such

as mug-shot database matching, identity authentication for credit card , passport

and driver license, access control, information security, and intelligent surveillance.

Furthermore, face recognition taken alone has a great advantage over other biometric

technologies in that it is non-intrusive and user-friendly [94]. In fact, face images can

be captured at a distance without any cooperation from the user. Therefore, face
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recognition technologies need an ongoing improvement in order to fit the needs of

their broad application domains.

1.2 Research Objectives

Many authors [94, 40] argue that the main problems with the existing face recog-

nition systems are that they are still highly sensitive to environmental factors such

as: variations in facial orientation, expression and lighting conditions during image

acquisition. It has been reported that designers of face recognition systems could

alleviate these problems by focusing their feature extraction algorithms on the facial

components instead of the whole face image [19, 38, 80, 93].

In this dissertation, we aim to:

1) Investigate how to detect accurately facial components (eyes, nose, and mouth),

given inputs gray scale face images taken in different orientations, for an ac-

curate face recognition and the most robust feature extraction algorithms that

could be applied on the facial components once detected, so that we could

represent more accurately and compactly each input face image.

2) Apply an efficient classification/recognition technique on the feature vectors

obtained in order to assess the feasibility of the implemented model.

3) Design and implement a robust face recognition system based on the key com-

ponents of the face.

4) Compare the performance of the implemented model with existing one.

1.3 Dissertation Outline

Chapter 2 presents the background on human biometric characteristics and the state

of the art in components-based face recognition. In chapter 3, feature extraction,

learning and classification methods are discussed. Basic image processing operations

are presented as well. Chapter 4 presents the overview of the face recognition system

and provides detailed information on its implementation. Experimental results and
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discussions are carried out in chapter 5. A conclusion and discussion of possible future

works are presented in chapter 6.

1.4 Original Contribution in the Dissertation

The original contributions in the dissertation are presented in Chapter 4 and include:

1. In Section 4.3, we propose an adaptive strategy for detecting facial components

(the eyes, the nose and the mouth) for an accurate face recognition. An input

gray scale face image is first binarized and the connected components of the

resulting image are computed. Thereafter, an iterative strategy is employed to

remove the irrelevant components. The iteration terminates when the remaining

components are most probably the targeted components. This work has been

published in the proceedings of IPCV’08 in July 2008 [25].

2. In Section 4.3, we investigate the validation of the facial components once de-

tected. The centroid of each detected facial component is computed. The angles

at the sides of the two first centroid with lower y-coordinates in the face space

are computed. The difference of these angles is further calculated. The two

angles and their difference are used to construct a triplet. Finally, the triplet is

used to classify the set of facial components detected into the class of correctly

detected facial components or the one of the wrongly detected facial compo-

nents. This work has been published in the proceedings of PRASA 2007 [24].

3. In Section 4.4, we propose a robust feature extraction framework for face recog-

nition. The textures of the eyes are extracted with Gabor Filters and the shapes

of the nose and the mouth are computed with Zernike Moments. The texture

features and the shape features are concatenated and normalized to build the

final biometric signature of the input face image. This work has been published

in the proceedings of ICITA 2008 [26].



Chapter 2

Literature Review

2.1 Introduction

Biometric field studies the identification of people based on their behavioral or phys-

iological characteristics. In this chapter, we provide a brief presentation of biometric

traits. Thereafter, we review the state of the art in components-based face recognition

in order to highlight the current challenges in the field.

2.2 Human Biometric Traits

2.2.1 Behavioral Traits

Voice/speaker

Speaker recognition or voice recognition is the task of recognizing people from their

voices. It has been proven that human speech contains information about the identity

of the speaker [8]. In [39] Kim et al. have classified this information into two cate-

gories: Low-level and high-level. High-level information include, the language spoken,

the speech pathologies, the physical and emotional state of the speaker. Referring

to the actual state of researches in the field, these features are currently only recog-

nized and analyzed by humans. Low-level information denote the information like

pitch period, rhythm, tone, spectral magnitude, frequencies, and bandwidths of an

individual’s voice. These features are used by automatic speaker recognition (ASR)

systems. The first work carried out in the area was done by Lawrence Kersta at

the Bell Labs [8] in the early 1960s. He used an electro-mechanical device to pro-

duce a speech template called voiceprint from a speech of a person. Modern speaker

recognition systems use a standard microphone to capture the speech signal. From

the speech signal captured, the voice feature is extracted and the speech modelling

is carried out. Once the modelling is done, the pattern classification is performed

5
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prior to the recognition [39]. In the literature, the most robust algorithms used for

feature extraction in speaker recognition are principal component analysis (PCA)and

independent component analysis (ICA) [39, 52, 47]. The main technique employed

for speech modelling is the Hidden Markov Models (HMM) [8, 39, 52]. The pattern

classification is based on pattern matching algorithms.

Typically, a speaker recognition system employs three styles of spoken input: text-

dependent, text-prompted, and text-independent [8, 47]. The text-dependent ap-

proach requires a user to pronounce the same text as the training data. In this case,

the text to be spoken is known since the enrollment and could be a fixed text or a

phrase. In text-prompted systems, the speaker is asked to speak a prompted text

which could be any kind of text. This type of speaker recognition systems involves a

much more elaborate recognition model than text-dependent systems where the text

is always the same. Text-independent approach requires little or no cooperation from

the user. In fact, the enrollment may happen without the user’s knowledge; some

recorded pieces of speech may suffice. This approach is more often used for speaker

identification, whereas the two previous approaches are more suitable for verification.

Text-independent is also completely language independent. However, since only gen-

eral speaker-specific properties of the speaker’s voice are used, the accuracy of the

recognition is reduced.

The advantage of voice/speaker recognition technology is that very affordable hard-

ware is needed. In fact, in most computers a soundcard and a microphone are im-

plemented. However, there are some disadvantages too. Firstly, the human voice is

variant in time, then the template needs to be reacquired after a certain time, which

is cumbersome practically. Secondly, the human voice could be influenced by factors

such as cold, hoarseness, stress, emotional states or puberty vocal change. Also, the

human voice is not as unique as strong biometric traits like fingerprint and iris [8].

Keystroke

Keystroke recognition also called keystroke dynamics by certain authors is the bio-

metric field that studies the identification of individuals based on the manner they

type on the keyboard of a computer. As almost all sensitive information of com-

panies and organizations are accessed online nowadays, keystroke recognition is the
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means of providing strong authentication protection against online fraud and theft

for access to networks, systems or internet based applications [54]. Keystroke feature

is extracted from the typing behavior of a person, based on parameters such as the

latencies between successive keystrokes, keystroke durations, finger placement and

the way fingers are pressed on the keys [31]. Once the features are extracted, they

are processed through an algorithm that compares the person’s typing behavior to a

sample collected in a previous session; the output of the comparison is a score, which,

when greater than a conveniently chosen threshold, leads to positive identification

or verification of a user [31, 54]. Algorithms used in keystroke dynamics encompass

K-means, Expectation Maximization on Gaussian Mixtures, Hidden Markov Model

(HMM), and probabilistic neural networks [53].

Over other biometrics solutions, keystroke dynamics has the advantages of being easy

to implement, affordable and user-friendly. In fact, it is software-based and does not

require additional hardware[54, 66]; thus, its cost is lower. Furthermore, users being

authenticated are not aware of any difference in their habits as the same keyboard and

the login process used before are used for authentication [31, 54]. The disadvantage

is that its use did not solve the problem of users having to remember their passwords

for any access. Furthermore, the technology is in its early stage and has not been

tested on a wide scale [66].

Gait

The way a living person walks can be used to determine his/her identity. This asser-

tion is supported in [9, 42, 56] where it is reported that the gait of a living person

contains certain parameters such as the body mass, the limb length, and the habit-

ual posture, that are unique to every individual. Computer vision community has

classified the gait as a biometric signature that can be used to automatically identify

people. The corresponding research area is called automated gait recognition. In re-

cent years, the topic has been very attractive judging from the number of papers that

are found in the literature. This effervescence is due to the fact that automated gait

recognition seems to be more suitable for passive surveillance than most biometric

technologies, as the gait can be measured at a distance without any cooperation from

the subject, even in low resolution video [4, 56].
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Practically, automated gait recognition consists of capturing the image of a walking

person, localize and extract the silhouette image. From the silhouette image, param-

eters such as the width of the outer contour and the optical flows are computed [99]

and techniques based on linear and stationary analysis of the gait marker trajecto-

ries [51] are applied in order to derive the gait signature. In [99], Rong et al. have

explained that the derived signature contains the temporal dynamics of the gait of

the subject, whereas the trajectories of the corresponding joint position reveal the

spatial-temporal history. Once the gait signature is obtained, it is used to compute

features such as knee stride width and knee elevation, ankle stride width and ankle

elevation, which will be used for classification and recognition. Only few algorithms

are found in the literature focusing on gait classification/recognition; they encompass

optical flow structure from motion approach [4], self-correlation, principal component

analysis [56], and Hidden Markov Model (HMM) [99].

The main problem in automated gait recognition that is also encountered in face

recognition, is that of the position of the subject during the image acquisition. In

fact, like with automated face recognition, the gait recognition performs very well

when the image of the subject is captured when he/she is placed in a frontal view.

However, the case where the subject appears in a side view remains a challenging

problem in the area.

Signature

Affixing his/her signature on a document is indubitably among the most habitual

administrative tasks every individual performs in his/her day to day activities, as it

is the commonly acceptable means to endorse his/her responsibility. In the biometric

research community, this type of signature also called off-line signature [50, 88] has

been an active subject of research in the past 30 years [50]. The identification process

was carried out by scanning a signature of a person from a paper, extract its shape

and exploit it to either accept or reject the claimed identity. However, the results

obtained were far from being perfect and do not provide the required accuracy for

many security problems; the reasons being the fact that a signature written on a

paper can be forged or mimicked by intruders to fool the system, and two successive

signatures of the same person can be different due to noise introduced by the scanning
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device or a difference in pen width. Nowadays, the research endeavors in the field

focus on the dynamic signature or on-line signature, encouraged by the emergence

of modern portable computers and personal digital assistants (PDAS) in business

environments, which employ handwritten input devices. In the literature [50, 88], it

is recognized that on-line signature is more unique and difficult to forge than off-line

signature. In fact, in addition to the shape information used in off-line signature,

dynamic features like speed, pressure and capture time of each point on the signature

trajectory are involved in the classification [50, 70, 88]. One important application

of on-line signature recognition today is its use in intrusion detection in computer

networks systems, that allows reducing the rate of fraud in online bank transactions

based on credit card and checks [88, 95].

In practice, the signature of a person is acquired using special equipment; the most

common is a digitalizing tablet [50]. Afterwards, parameters of the signature are ex-

tracted and compared to the templates signatures stored in the database to recognize

or reject the given signature.

The most popular algorithms used in dynamic signature or on-line signature recogni-

tion are Time Warping and Dynamic Matching (DTW)[50, 70, 88], Neural Networks

[50, 70], and Hidden Markov Model (HMM) [50, 70, 88].

The drawback of on-line signature is that, a human signature can change over time

and it is not nearly as unique or difficult to forge as iris patterns and fingerprint.

However, the signature’s widespread acceptance by the public makes it more suitable

for certain low-security authentication needs [88].

2.2.2 Physiological Traits

Ear

Ears are among the most visible human body traits. Investigations have concluded

that the shape and the appearance of the human ear are unique enough to each indi-

vidual and relatively remain unchanged from birth to old age [17, 96]. Furthermore,

by nature each individual has ears. These arguments are in favor of the use of ear

as a biometric signature. Some researchers have gone as far as comparing the ear to

the most popular used biometric trait which is the face; they have discovered that

ears have several advantages over complete faces: reduced spatial resolution, a more
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uniform distribution of color, and less variability with expressions and orientations of

the face[41].

Until now, only few applications have used ear in identifying people. The earlier ap-

plication of the ear in recognition has occurred in crime investigation,where earmarks

have been used as evidence in court[41]. An interesting application of ear recognition

in the near future, which will be useful for a large public, is the design and implemen-

tation of an ear recognition technology that will be incorporated in mobile phones to

identify callers.

As ear recognition is a recent subject in biometric recognition, there are only few

algorithms found in the literature about the subject. The most robust are: Princi-

pal Component Analysis, also called eigenear (PCA)[41], Force Filed Transformation

(FFT)[20], Iterative Closest Point (ICP)[96], neutral network, generic search, local

surface shape descriptor and edge-based. In [96], Ping Yan and Kevin W. Bowyer

conducted an empirical evaluation of these algorithms; from their experiments, they

deduced that the ICP algorithm yields the best performance.

Despite the fact that ear is recognized by biometric scientists as a potential biometric

signature, there still exists one major problem. In fact, ear recognition cannot be

used in passive recognition, that is, without the participation of the person to be

identified; the reason is that ears can be partially occluded by the hair or the hat,

in which case, it will be difficult to capture discretionally the ear of a person with a

camera. One solution to this problem is the use of the thermogram imagery to mask

out of the captured ear image, the hair or the hat [41].

Hand Geometry

Research efforts in identifying people based on hand geometry have been done since

a few decades. One result of these endeavours has been the use of hand geometry

systems in controlling and protecting the access of people in the Olympic village,

during the 1996 Olympic game. Moreover, one of the widely used application of the

hand geometry technology is its use for time and attendance purposes in association

with the time clocks by companies [82]. The common features used in hand geometry

recognition are the following geometrical characteristics of the hand: length, width,
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thickness, and the surface [3, 82, 86]. More often, the enrolment consists of capturing

both the top surface of the hand and its side using a camera and an angled mirror [82].

Images captured are then analyzed and measurements of the geometrical parameters

cited above are taken and stored as template. The verification of an identity consists

of acquiring a hand of an individual and processing a new set of geometrical param-

eters. Thereafter, the new parameters are compared to the corresponding template

parameters from the template database of hand characteristics. However, there is a

problem in using the geometrical characteristics of the hand in hand geometry recog-

nition. In fact, the measurement of the hand parameters is done by means of pegs;

which dictate how the hand should be placed and fixed on a plate. As a consequence,

the hand and the disposition of fingers are deformed at different instants [65]; which

can affect considerably the quality of the feature to be acquired and degrade the per-

formance of the hand verification. To overcome these drawbacks, techniques of hand

geometry recognition based on the contours of the hand [86] have been developed.

Iris

The iris is a muscle within the eye that regulates the size of the pupil, controlling the

amount of light that enters in the eye; it is the colored portion of the eye with coloring

based on the amount of melatonin pigment within the muscle [28]. As defined, the iris

is a complex organ with a great number of distinctive characteristics that make it a

rich source of biometric data. The automated recognition of individuals based on their

iris is a relatively young technique. In fact, the first iris recognition technology was

introduced in the market only in 1994 [28]. In the literature, it is widely acknowledged

that the iris recognition is becoming the best in term of efficiency and accuracy, when

compared to face and fingerprint recognition. The reason is that, although the irises

of a person are genetically identical, they are structurally distinct to each other and

are unique to every living person; which make the iris a best candidate for biometric

recognition [28, 57].

Practically, a subject being identified presents his/her eye to a high quality digital

camera at the entrance of a sensitive space. The image of the eye is then acquired.

Afterwards, the iris is located using landmark features. These landmark features and



12

the distinct shape of the iris allow imaging, feature isolation, and extraction [28]. The

recognition is then carried out by comparing the training features to the templates

stored in the database. Daugman’s technique and Wildes’ system are two of the

earliest and the best known iris recognition algorithms [57] found in the literature.

Despite the success of this technique, there are still two main problems associated

with it. The first one is the localization of the iris from an eye image acquired by

a camera. In fact, if the localization of the iris is done improperly, resulting noise

like eyelash, reflections, pupils, and eyelids may lead to poor performance [28]. The

second problem is related to the placement of the camera. In fact, the recognition

process works very well when the camera is placed indoor; however, the case where

the camera is located outdoor remains a challenging problem, as the glare from the

sun and the direction of the light can produce significant camera error rates [21].

Fingerprint

A fingerprint is a pattern of ridges and furrows located on the tip of each finger. It is

one of the oldest biometric traits used to identify people. The techniques for extract-

ing the patterns are continually being improved . Initially, patterns were extracted

by creating an inked impression of the fingertip on a paper. Thereafter, compact

sensors have been designed to produce digitalized images of patterns for automated

identification. Meanwhile, the repeated use of a sensor has revealed some practical

imperfections. In fact, the sensitivity and the reliability of a sensor can be reduced

due to the fact that its surface can become oily and cloudy after repeated use. Then,

solid state devices that sense the ridges of the fingerprint using electrical capacitance,

have been designed to overcome these technical difficulties [29].

In an operational point of view, the images extracted by the sensors are used by

the recognition module to compute the feature data that corresponds to the various

relevant points of the acquired fingerprint, called minutiae. Each minutiae is defined

by a position and an orientation in the feature data extracted. The recognition then

consists of matching the acquired minutiae patterns with the stored minutiae tem-

plate.

Fingerprint matching techniques can be grouped into two categories: minutiae-based
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[29] and correlation based [72]. Minutiae-based techniques first find minutiae points

and then map their relative placement on the finger. However, some difficulties arise

when using this approach. It is difficult to extract the minutiae points accurately

when the fingerprint is of low quality. Besides, this method does not take into ac-

count the global pattern of ridges and furrows. The correlation-based method is able

to overcome some of the difficulties of the minutiae-based approach. Even with this

technique, some imperfections persist. For instance, correlation-based techniques re-

quire the precise location of a registration point and are affected by image translation

and rotation [72].

2.3 Face Recognition

2.3.1 Background

The face is the natural way human beings use to recognize each other. People iden-

tification based on face has been a subject of attraction for centuries. The aim is to

find how a camera hidden somewhere in an open area or at the entrance of a build-

ing can capture a person’s face image and send it to a connected computer system

in order to identify the individual. This technique is simply called automated face

recognition. The pioneer research endeavor in that area was carried out by Francis

Galton in 1888. He proposed a face recognition technique consisting of collecting

facial profiles as curves of an individual, finding their norm and classified them us-

ing their deviations from the norm to identify the person [92]. Thereafter, series of

face recognition approaches that use normalized distances and ratio among features

points have been proposed to model and classify faces. The drawbacks of these ap-

proaches were revealed by Carey and Diamond [59] who demonstrated that, features

points and their relationships provide a lower identification performance with faces

of adult persons. Since 1990, computer graphics and machine vision, automated face

recognition has been of interest to a growing number of research groups [92]. As a

result, several automated face recognition applications have been developed and inte-

grated in public security, law enforcement and commerce, such as mug-shot database

matching, identity authentication for credit card, passport, and driver license, access
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control, information security, and intelligent surveillance [80]. Obviously, several al-

gorithms have been proposed for these applications and can be classified into three

categories:holistic methods, feature-based methods and hybrid methods [19, 38, 93].

Holistic methods are characterized by the use of the whole face image for recognition

and are all based on principal component analysis (PCA) decomposition, which aim

to reduce a higher dimensional training data set of face images to a lower dimen-

sional one, when preserving the key information contained in the data set. Several

face recognition algorithms fall in this category. The most popular of them are:

eigenfaces, probabilistic eigenfaces, fisherfaces, support vector machine (SVM), near-

est feature lines and independent component analysis (ICA) [38].

Feature-based approaches exploit the face regions/components such as nose, eyes or

mouth for recognition. Some algorithms of this category include pure geometry, dy-

namic link architecture, Hidden Markov Model [38], elastic bunch graph matching

and local feature analysis [80].Finally, the hybrid approach uses both local regions

and the whole face. Modular eigenfaces, hybrid local features, and shape-normalized

methods belong to this category [38].

2.3.2 Component-Based Face Recognition

Several previous studies show that feature-based approaches are faster and more ro-

bust against variation in face orientation and illumination than holistic techniques

[19, 38, 80, 93]. However, one of the main problems with the component-based face

recognition methods remains the automatic extraction and validation of face compo-

nents without human intervention as well as any assumptions on the location of faces

components.

In [11], a component based face detection system is presented. It uses two level

Support Vector Machines (SVM) to detect and validate facial components. Learned

face images are automatically extracted from 3-D head models that provide the ex-

pected positions of the components. These expected positions are used to match

the detected components to the geometrical configuration of the face. Loulia and

Veikko [34] propose a method for detecting facial landmarks. In their method, edge
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orientations are used to construct edge maps of the image. The estimation of the ori-

entation of local edges was done by means of a kernel with maximum response. The

local oriented edges were extracted and grouped into regions representing candidates

for facial landmarks. The detected candidates were further classified manually into

noise or facial landmark categories. In [13] and [15], facial components are used to

detect the face in an image. The components are either assumed to be the holes in

the detected facial regions, features computed in given color spaces, or the darkest

region of the face. A geometrical technique is used by Zoltan and Tamas [102] to

detect and extract facial components. They compute the facial symmetry axis and

use it to deduce the nose region based on the assumption that the region of the nose

is the most vertically detailed region on a face. Afterward, the positions of the eyes

and mouth are estimated from the chosen nose region. A facial segmentation method

based on dialation and erosion operations is presented in [91]. Facial symmetry and

relative positions among the facial features are used to locate the face contour, mouth,

nostrils and eyes. Tian and Bolle [84] present a method of detecting a neutral face.

In their approach, six facial points are chosen as being the most reliable that could be

extracted from a face. Thereafter, the normalized distances between them are com-

puted and used as discriminating features. Two preprocessing operations named Skin

Color Similarity Map (SCSM) and Hair Color Similarity Map (HCSM) are employed

in [97] to compute the coordinates of face and head regions. The SCSM is projected

onto the x-axis to determine the x-coordinate of the facial region. The y-coordinate

of the face and head regions are determined by projecting the SCSM and HCSM on to

the y-axis. Afterward, the positions and the sizes of the facial features are estimated

based on the computed coordinates of the face. In [12], a method of detecting facial

features such as eyebrows, eyes, nose, mouth, and ears is suggested. Facial features

are determined by searching for minima in the grey value relief of the segmented

facial region based on the assumption that each facial feature generates a minimum

in the projection of the grey value relief or pixel grey level and the expectation that

eyebrows, eyes, nostrils, mouth, and chin are ranked respectively as the first, second,

third, fourth, and fifth significant minimum on the horizontal relief. Furthermore, as

the number of minima is usually greater than the number of features, a geometri-

cal technique is employed to get clues about the relative positions of facial features.
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Heisele et al. [10] have proposed a method that enables to automatically learn face

components for detection and recognition. Initially, an object window of fixed size

is slid over the input image. Afterward, 14 referenced points are manually selected

in the object window based on their 3D correspondences from a morphable model.

The learning algorithm then iteratively grew small rectangles around the manually

preselected reference points. The detection of facial components was carried out by

searching for maximum output within the rectangular region around the expected

location of the component with component classifiers of linear SVM. In the successful

case, the result of the approach yields the detection of both eyes and the mouth.

The technique employed in [10] is used in [14] for face detection. Furthermore, the

coordinates of the position of the maximum output of each component classifier is

recorded along with the value at that position. Then, each detected component is

represented by a triplet formed from x and y coordinates as well as the value of the

related position. Thereafter, the set of triplets is used as input to the higher level

classifier for classification. The output of the upper-level classifier is recorded in the

final resulting image. The approach is further applied to detect eyes. The Haar algo-

rithm is applied on frontal faces in [7]. Each facial image is divided into five blocks

that are further used as feature vectors to a one-class SVM classification.

The above approaches either involve human intervention in detecting and extract-

ing facial components, employ geometrical considerations and/or assumptions about

the location of face components. Furthermore, most of these approaches perform only

with faces taken in frontal view. We further remark that, in some cases, components

are not detected accurately (detected region larger than the component, detected

region includes two components e.g. the eye region includes nose, the mouth region

includes nose, etc.) or the detection is limited to only certain components such as both

eyes and mouth as in [10] and eyes as in [14]. Also, the large number of techniques

employed to learn the location of facial components lead to expensive computational

time. An adaptive approach of detecting facial components in different orientations

of the face is proposed in chapter 4 as a solution to the above mentioned problems.
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2.4 Conclusion

In this chapter we have provided a comprehensive description of biometric recognition

based on the most popular human biometric traits. A great emphasis was placed on

the face characteristics, particularly on the state of the art of the component-based

face recognition. Pathways of our research have been presented with the identification

of the shortcomings of the previous works in component-based face recognition. In the

next chapter, we define and describe algorithms and techniques of image processing

and computer vision, that we have used in our investigation.



Chapter 3

Materials and Methods

3.1 Introduction

In general, face recognition involves three main steps: segmentation/detection of face

in a scene, feature extraction, and classification/recognition. This chapter presents

some key algorithms used in face recognition for feature extraction and classifica-

tion/recognition. The chapter commences by reviewing some common operations

performed in image processing and computer vision, that have been used in this

work.

3.2 Basic Operations and Entities

3.2.1 What is a Pixel ?

An image is a matrix of elements called pixels. A pixel is the smallest entity of an

image. Fig.3.1. shows a pixel in an image array. A pixel in an image is characterized

by two kinds of information: its position represented by its x and y coordinates in

the space spanned by the image, and its value or gray level. The coordinates and the

gray level of a pixel are called the feature of the pixel, meaning, the parameters that

characterize that pixel uniquely in the image.

3.2.2 Segmentation and Binarization

Segmenting an image is an important step in many image processing problems. The

segmentation is the process of partitioning a digital image in several regions or groups

of related pixels. The relationship amongst pixels of a region is defined by parameters

such as color, intensity, or texture of the region. The resulting image then provides

more meaningful information that is useful in analyzing the image. Several algorithms

18
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Figure 3.1: A Pixel in an Image Array.

and techniques have been developed for image segmentation. They can be classified

into three main groups: thresholding, edge-based, and region-based [35, 62].

The thresholding, also called binarization, separates an image into two parts: the

relevant part or foreground and the irrelevant part or background. It refers to setting

all the gray levels below a chosen threshold to zero and the gray levels above the

threshold to one. Mathematically, the thresholding or binarization transforms an

image f to an output binary image or segmented image g as follows [62]:

g(i, j) =





1 if f(i, j) ≥ T

0 otherwise,
(3.1)

where T is the threshold, g(i, j) = 1 for image elements of the foreground, and

g(i, j) = 0 for image elements of the background. Fig.3.2. shows an original image

along with the corresponding binarized version.

3.2.3 Connected Components

Within an image, a pixel (x, y) has four horizontal and vertical neighbors (x +

1, y), (x−1, y), (x, y+1), and (x, y−1). This group of pixels defines what is called the
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Figure 3.2: Exemple of Image Binarization:(a):Original Image; (b):Binarized Image.

4-connectivity of the pixel (x, y). The pixel (x, y) also has four diagonal neighbors

(x + 1, y + 1), (x + 1, y − 1), (x − 1, y + 1), and (x − 1, y − 1). The four diagonal

neighbors of the pixel (x, y) together with its four horizontal and vertical neighbors

define its 8-connectivity.

One can establish whether two pixels in an image are connected by determining if

they are adjacent, that is, they are 4 or 8-connected, and their gray levels satisfy a

predefined criterion of similarity. The criterion could be the equality of their gray

levels. Fig. 3.3. shows examples of 4 and 8-connectivity of a the center pixel.

Connectivity between pixels is an important concept in image processing. It is useful

in establishing objects boundaries and components of regions in an image [35]. Once

the regions are determined, they are further differentiated by assigning a unique la-

bel to pixels of each region. The labelling of regions builds what is called connected

components or regions with similar pixels in the image. A simple example of con-

nected component finding is shown in Fig.3.4. The application of 4-connectivity yields

four connected components, whereas the 8-connectivity yields one connected compo-

nent. The connected component algorithm is more often applied on binary images

but could also be applied to gray level images . Fig.3.5. depicts the result of the

connected component algorithm on a gray scale face image.
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Figure 3.3: Connected Components:(a):4-Connectivity of the Center Pixel; (b):8-
Connectivity of the Center Pixel.

3.2.4 Convex Hull

In certain situations when solving image processing problems, the shape of a set of

points in the image can give some clues about the step forward. Computing the

shape of a set of points in an image could be done by means of a Convex hull. The

convex hull of a set of points S in n dimensions is defined as the smallest convex

polygon containing S. A polygon is said to be convex if, for each couple of points A

and B belonging to the polygon, every point on the line segment connecting A and

B is in the polygon. Fig.3.6.(a) is an example of convex hull, whereas Fig.3.6.(b) is

not. In Fig.3.6.(b), all the points on the line segment connecting F and G are not

in the polygon ABCDE. Fig.3.7. shows the convex hull of the centroid of the facial

components: the two eyes, the nose and the mouth. It is a triangle with the vertices

situated at the side of the two eyes and the mouth.
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Figure 3.4: Practical Example of Finding Connected Components in an Im-
age:(a):Binary Image; (b):Four Connected Components found with 4-Connectivity;
(c):One Connected Component found with 8-Connectivity.

3.2.5 Similarity Measures

Pattern recognition tasks requires comparing features of sample patterns to be rec-

ognized with those of templates from the database. The common way to accom-

plish the comparison is the use of similarity measures between sample and template

features. The recognition could then be carried out by inspecting the distance ob-

tained. Three similarity measures are commonly used in pattern recognition: the

City − block or Manhattan distance, the Euclidian distance, and the Mahalanobis

distance [2, 61, 85, 87]. The first two are deduced from the Minkowski distance

of order p in an Euclidian space RN of dimension N. Let’s consider two vectors

X = (x1, x2, ..., xN) and Y = (y1, y2, ..., yN). The Minkowski distance of order p

denoted LP (X, Y ) is defined as follows:



23

Figure 3.5: Example of Connected Components of a Binary Image ; (a):Original
Image; (b):Binary Image;(c):Connected Components of the Binary Image.

Figure 3.6: Example of a Convex and Non-convex Polygon: (a):Convex Hull of the Set
of Points A,B,C,D,E; (b):Non-convex Hull Polygon of the Set of Points A,B,C,D,E.

d(X, Y ) = Lp(X, Y ) =
( N∑

i=1

|xi − yi|p
) 1

p
. (3.2)

From equation 3.2, most of the similarity measures used in pattern recognition
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Figure 3.7: Example of Convex Hull of the Centroid of Face Components: Eyes, Nose
and Mouth.

could be derived. For p = 1, the City − block or Manhattan distance is written as

follows:

d(X,Y ) = L1(X, Y ) =
N∑

i=1

|xi − yi| . (3.3)

.

For p = 2, one obtains the euclidian distance:

d(X,Y ) = L2(X, Y ) =

√√√√
N∑

i=1

(xi − yi)2 . (3.4)

.

The Euclidian measure assumes that all the components of the vectors X and Y

contribute equally to the similarity measure [2]. However, the performance of this

distance measure can be greatly improved if an expert knowledge about the nature of

the data is available. If it is known that some values in the features vector hold more

discriminatory information with respect to others, it is possible to assign proportion-

ally higher weights to such vector components in order to influence the final outcome

of the similarity measure [87]. Thus, the weighted Euclidian distance is defined as:
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d(X, Y ) = L2(X, Y ) =

√√√√
N∑

i=1

wi(xi − yi)2 , (3.5)

where wi is the weighting component for the ith vector component.

The Mahalanobis distance is defined as follows [68, 87]:

DM(X) =
√

(X − µ)T Σ−1(X − µ) , (3.6)

with mean µ = (µ1, µ2, ..., µp) and Σ the covariance matrix of the multivariate vector

X = (x1, x2, ..., xP ). The Mahalanobis distance is scale invariant and it takes into

account the correlations of the data set [2].

3.3 Feature Extraction Techniques

In this work, we automatically detect the key facial components that are: the eyes,

nose and mouth, from an input face image. Thereafter, the textures of the eyes and

the shapes of the nose and the mouth are extracted to characterize the individual.

The eyes textures and the shapes of the nose and the mouth are the feature data or

simply features, that will be used for recognition. The process carried out from the

acquisition of the face image to obtain the feature data is called feature extraction.

In biometric recognition, the feature extraction consists of applying algorithms on

image pixels to compute features that characterize the image. An image with a

feature vector computed by mean of principal component analysis (PCA) algorithm

is depicted in Fig.3.8.

3.3.1 Eigenface Decomposition

A considerable among of work has been done in face recognition using eigenface

decomposition. A comprehensive literature on this technique could be found in [59,

60, 61]. eigenface is the most popular dimensionality reduction technique used in face

recognition. It is often used for feature extraction and classification. Its principle
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Figure 3.8: Sample Feature Vector derived from the Matrix of Gray Levels of an
Image.

can be summarized as follows. The input to the algorithm is a training set of face

images, all centered and with the same size. Each image I is represented as an N×N

vector Γi obtained by concatenating the columns of the image matrix. Thereafter,

the average face Ψ is computed as:

Ψ =
1

M

M∑
i=1

Γi , (3.7)

where M is the number of face images in the training set. The mean face is used

to adjust or normalize each face as:

Φi = Γi −Ψ . (3.8)

The mean face images allow the computation of the covariance matrix C as:

C =
1

M

M∑
i=1

ΦiΦ
T
i = AAT , (3.9)

where A = [Φ1, Φ2...ΦM ].

eigenvectors ui and corresponding eigenvalues λi of the covariance matrix C can be

evaluated by using a Singular Decomposition method(SDM)[55]:



27

Cui = λiui . (3.10)

Because matrix C is usually very large (N2 × N2), evaluating eigenvectors and

eigenvalues is computationally very expensive. Instead, eigenvectors vi and corre-

sponding eigenvalues µi of the matrix AT A(M ×M) can be computed. After that,

ui can be deducted from vi as follows:

ui = Avi, j = 1, ..., M . (3.11)

The dimensionality reduction is done by selecting only a smaller number of eigen-

vectors K(K << M) corresponding to the largest eigenvalues. The selected eigen-

vectors form the eigenspace or face space. A new face image Γ, after subtracting the

mean (Φ = Γ−Ψ) can then be reconstructed in eigenspace by the formula:

Φ̃ =
K∑

i=1

wiui , (3.12)

where wi = uT
i Ψ are coefficients of the projection and can be considered as a new

representation of the original face in the eigenspace.

3.3.2 Gabor Filters

Gabor Filters are a powerful tool for texture analysis. They have been widely used

by many authors, for feature extraction in recent years. In fact, it has been proven

that the Gabor receptive field can extract the maximum information from local image

regions [37, 83] and that, when appropriately designed, Gabor features are invariant

against illumination, translation, rotation, and scale[71, 83, 100]. This makes it an

ideal technique for face recognition. Furthermore, Gabor filtering has been success-

fully deployed in many applications including texture analysis, character recognition,

fingerprint recognition, and face recognition [71]. The formulation of Gabor Filters

used in this dissertation is adopted from [37] and [100] . In the spatial domain, a

Gabor Filter is a complex exponential modulated by Gaussian function, which can

be defined as follows:
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Ψ(x, y, ω, θk) =
1

2πσ2
e−(x

′2+y
′2

2σ2 )[eiωx
′
− e−(ω2σ2

2
)] , (3.13)

where x
′
= x cos θk + y sin θk, y

′
= −x sin θk + y cos θk.

(x, y) denotes the pixel position in a face image, ω is the radial center frequency, θk

shows the orientation of Gabor Filter, and σ stands for the standard deviation of the

Gaussian function along the x- and y-axes. A rotation of the x− y plane by an angle

θk results in a Gabor Filter at orientation θk. θk is defined by:

θk =
π

n
(k − 1) k = 1, 2, ..., n , (3.14)

where n denotes the number of orientations. The maximum value of the frequency

used by many authors is ωmax = π/2 [37, 63, 100]. Then, the relationship defining

the different frequencies is given by the equation:

ωm = ωmaxλ
(m−1) , (3.15)

where m = 1, 2, ..., 5, and λ =
√

2 [37, 63, 83] is the spacing factor between different

frequencies. According to [37] and [100], the relationship between σ and ω is:

σ ≈ π/ω . (3.16)

3.3.3 Zernike Moments

Many feature extraction methods for image analysis based on moments have been

used in the recent years [6, 30, 81]. These methods encompass: Hu Moments, Legen-

dre Moments, and Zernike Moments [81]. The main characteristic of these moments

is that they are translation, scale, rotation invariant and are robust in the presence

of noise. Hence, they may be chosen for image analysis and pattern recognition ap-

plications. Zernike Moments are a class of orthogonal moments that are effective

in representing images, based on orthogonal Zernike radial polynomials. These mo-

ments are effectively used for pattern recognition since their rotational invariance can
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be easily obtained at an arbitrary order [81]. The algorithm of Zernike Moments

implemented in this work is adopted from [6]. For a discrete image function I(i, j)

with spatial dimension M × N , their Zernike Moments of order n with repetition l

are given by:

Anl =
n + 1

π

M−1∑
i=0

N−1∑
j=0

I(i, j).Rnl(rij).e
−ilθij , (3.17)

where the discrete polar coordinates rij and θij are respectively defined as follows:

rij =
√

x2
j + y2

i (3.18)

θij = arctan(
yi

xj

) . (3.19)

The Cartesian coordinates xj and yi are given by:

xj = c +
j.(d− c)

N − 1
0 ≤ j ≤ N − 1 (3.20)

yi = d− i.(d− c)

M − 1
0 ≤ i ≤ M − 1 , (3.21)

where c and d are real numbers chosen according to whether the image function is

mapped outside or inside a unit circle. Outside a circle c = −1 and d = 1. Inside

a circle, c = −1/
√

2 and d = 1/
√

2. The real values radial polynomials Rnl(r), are

given by:

Rnl(r) =

n−|l|
2∑

s=0

(−1)s (n− s)!

s!(n+|l|
2
− s)!(n−|l|

2
− s)!

, (3.22)

where |l| ≤ n and n− |l| is always even.
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3.4 Learning and Recognition

Learning in pattern recognition consists of extracting a priori knowledge or statisti-

cal information from patterns. The patterns to be classified or recognized are usually

groups of measurements or observations. Learning can be supervised or unsupervised.

A learning is said to be supervised if the different classes of patterns are known a

priori and if the learning task is guided by a supervisor. The supervisor means the

designer who indicates the label of the class to which each candidate pattern sample

belongs. For example, in our case, the learning in face recognition is a supervised

learning because patterns to be recognized are labelled features of acquired face im-

ages. Learning is unsupervised when there is no a priori labelling patterns given to

the system; instead, classes are established based on the statistical regularities of the

pattern. Several learning and recognition algorithms are used for face recognition.

We present in the following sections learning and recognition methods used in our

study.

3.4.1 Nearest-Neighbor

The nearest neighbor is a classification technique which is used in pattern recognition

to compare feature vectors of sample patterns to template vectors stored in a database.

The comparison is done by computing the distance between the sample patterns and

the templates from the database. Templates are grouped into classes of similar data.

Let C1, C2, ..., Ck be such classes of data in the database. The class Cj(j = 1, ..., k)

of a new sample X is found by measuring the distances d(X, Cj) between X and the

centers of all the template classes. The feature vector X is assigned to the class to

which it is more closer. This closest class is defined as:

Ck = arg min(Ci)i=1,...,k
d(X, Ci) . (3.23)

3.4.2 K-means Clustering

Clustering involves splitting a set of data into classes or clusters, such that, data

belonging to the same class are alike and those belonging to two different classes
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are different. Thus, clustering algorithms are appropriate for pattern classifica-

tion/recognition. Some clustering methods are: K-means, fuzzy C-means, hierarchi-

cal, and agglomerative algorithms [2, 46, 64, 73]. K-means method has been shown to

be effective in producing clustering results for many practical applications. Basically,

the K-means clustering algorithm starts with some known parameters as the data

set, the number of clusters, and the randomly chosen cluster centroids. Thereafter,

data points are iteratively assigned to clusters until reaching a predefined stopping

criterion. The stopping criterion could be the convergence point of the algorithm

or a predefined maximum number of iterations. At each iteration, new data points

are assigned to clusters based on the one nearest neighbor rule of the data points

to the cluster centroids, and the class centroids are updated based on the resulting

clusters. Mathematically, the K-means algorithm [2, 46, 64, 73] could be described as

follows. Let’s consider X = {x1, x2, ...xN}, a set of N patterns to be clustered. The

K-means algorithm aims to minimize an objective function J with variables U and C

by partitioning X into K clusters:

J(U,C) =
k∑

l=1

N∑
i=1

µild(xi, cl) (3.24)

subject to the condition

k∑

l=1

µil = 1, 1 ≤ i ≤ N , (3.25)

where

U is an N × K matrix and µil is a binary variable. Equation 3.34 indicates that

pattern i is in the cluster l.

C = {c1, c2, ..., ck} is a set of K prototypes representing the K clusters.

d(xi, cl) is a similarity measure (for example the Euclidean distance) between object

i and prototype l.

The above optimization problem is solved iteratively using the following algorithm:

First, set the number of clusters K.

Second, randomly initialize the cluster centroids ci for i = 1, ..., K.
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Third, assign the pattern x to the nearest cluster ci. µil = 1 if d(xi, cl) ≤ d(xi, ct)

for 1 ≤ t ≤ K; otherwise µil = 0 for t 6= l.

Fourth, update the centroids ci

cl =

∑N
i=1 µilxi∑N
i=1 µil

(3.26)

for 1 ≤ l ≤ K, and

Fifth, repeat steps 3 and 4 until the centroids do not change or the maximum number

of iterations have been reached.

The drawback of the K-means algorithm is that, it is sensitive to the initial con-

figuration. In fact, as every iteration of the algorithm improves on the previous con-

figuration, the solution depends on the initial configuration. However, it converges

quickly and is computationally efficient.

3.4.3 Support Vector Machine (SVM)

Support Vector Machine is a recent classification technique that is used more and

more for face recognition and has been recognized to be more powerful than pre-

vious approaches such as principal component analysis (PCA), neural network and

example-based learning [49, 90]. The idea of SVM is to separate geometrically a data

set (see Fig.3.9) into classes, using an optimal separating hyperplane (OSH), in the

input space. The OSH is the hyperplane that minimizes the upper bound on the

expected classification error [49] or the generalization error [90], thus providing the

best generalization capabilities. Each class is assigned a unique label. SVM of two

Figure 3.9: Sample Training Data Set. For example: Face and Non-face Components
Features Vectors (F+and F−).

data classes with opposite labels sign is widely used for classification. Moreover, the

data points are assumed to be linearly separable. The data set is defined as:
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(xi, yi) ∈ RN × {1,−1}, i = 1, 2, ..., l , (3.27)

where xi is a data point to be classified and yi the label of its potential class.

F - F +

y = wx + b = f(x)

Figure 3.10: Example of Hyperplanes Separating Two Classes of Feature Points.
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Figure 3.11: Optimal Separating Hyper-plane, Margin, Support Vectors.
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SVM technique searches for the OSH among the possible hyperplanes separating

the classes in the input space (see Fig.3.10). The equation of all possible hyperplanes

is given in equation 3.28.

f(x) = (w.x) + b, w ∈ R, b ∈ R . (3.28)

The classification of a new data point x is done based on the decision function:

f(x) = sgn((w.x) + b) . (3.29)

In other words, the sign of the function f determines the label of the class of the

new data point x. The OSH corresponds to f(x) = 0 as shown in Fig.3.11, that is:

(w.x) + b = 0 . (3.30)

The data points located on the hyperplane situated at the same distance from

the OSH are called support vectors (see Fig.3.11) [18, 33, 58]. These data points

are called support vectors because they are the data which provide more information

about the localization of data classes in the input space. The support vectors allow

computing what is called the margin. The margin (see Fig.3.11) is the perpendicular

distance between the OSH and the hyperplane through the support vectors. In other

words, the margin is the region between the hyperplane on both sides of the OSH

[18, 58]. The margin is defined as follows:

margin =
2

‖w‖ . (3.31)

The importance of the margin is that, it dictates the choice of the OSH. In fact,

the OSH is chosen such that the value of the corresponding margin is the maximum

among all possible margins. The classification of a new data point x then consists of

finding to which data class it belongs. This is done by calculating its distance from

the OSH. In [36], Bernd et al. have explained that, the reliability of the classification

depends on the length of that distance. In other words, the larger the distance
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between the new data point and the OSH, the more reliable the classification is.

When the data points are not linearly separable, a kernel function is used to map

them in a higher dimensional space called feature space [16, 18, 36, 49, 58, 67, 90].

The decison function in equation (3.28) is shown [67] to take the form:

f(x) = sgn(
m∑

i=1

αiyik(x, xi) + b) , (3.32)

where k(x, xi) is the kernel function. The coefficients αi and b are determined by

solving the quadratic programming problem:

max
α∈<m

w(α) =
l∑

i=1

αi − 1

2

∑
αiαjyiyjk(xi, xj) (3.33)

subject to the constraints:
l∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, for i = 1, ..., l.

The parameter C is called the regularization parameter and is selected by the user.

3.4.4 Recognition, Authentication and Identification

Basically, a biometric recognition system performs three main operations. These

include the acquisition of biometric data from an individual, extraction of feature from

the acquired data and comparison of the feature against the template in the database.

From an operational point of view, a biometric system may operate in two different

modes: the verification mode or the identification mode [1, 43, 77]. In the verification

mode, the identity of an individual is authenticated. The authentication is done by

comparing the individual’s features only with his/her template(s) in the database

[43]. In other words, the system conducts a one-to-one comparison to determine

whether the claimed identity is true or not. In the identification mode, the biometric

system recognizes a person by searching the entire template database; meaning that,

it conducts a one-to-many comparisons to establish the identity of an individual.

In general, it is more difficult to design an identification system than to design a

verification system [43]. In fact, only a one-to-one comparison provides a good speed

or response time of a verification system. Here, the major challenge remains the

accuracy of the system. On the other hand, both accuracy and speed are critical



36

for an identification system. The identification system needs to explore the entire

database to establish an identity. Thus, more requirements are imposed on the feature

extraction and matching techniques employed.

Some biometric approaches are more suitable for operating in the identification mode

than the others. For example, fingerprint is suitable for biometric verification, whereas

the face is appropriate for the identification [43]. Furthermore, it is feasible to design a

face recognition system operating in the identification mode, because face comparison

requires less expensive operations and there exist efficient indexing techniques that

the performance have been demonstrated [43].

3.5 Conclusion

Image processing methods and algorithms used in this research have been defined and

described. The various operational modes of a biometric system have been discussed.

The next chapter provides detailed information about their use for components-based

face recognition. The structure of the entire system and its sub-components are

presented as well.



Chapter 4

System Overview

4.1 Introduction

This chapter presents the design of our entire face recognition system. Furthermore,

it sequentially provides details about the implementation of the various modules of

the system. The first module of the system adaptively detects facial components:

eyes, nose and mouth. The detected components are further validated [24] to ensure

that they are the appropriate components required for recognition. Thereafter, Gabor

Filters are applied on the two eyes to extract their texture features. Similarly, the

shape of the nose and the mouth are computed by means of Zernike Moments. Both

partial feature vectors are further concatenated and normalized by the mean and the

standard deviation to produce the final feature vector of the input face image. The

chapter ends with the description of the identification technique.

4.2 Structure of the System

Our system is made of two main modules: feature extraction and classification/recognition.

Feature extraction is carried out in two steps. First, the facial components (the two

eyes, the nose and the mouth) are detected and validated. Thereafter, Gabor Filters

and Zernike Moments features are computed and fused to form the signature of the

input face image. In the training phase, the final feature vector obtained is stored in

the database. The recognition consists of comparing the feature vector of the can-

didate’s face to the features of known faces previously learned. Fig. 4.1 shows the

flowchart of the entire system. Details about each component of the flowchart are

provided in the subsequent sections.

37
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Figure 4.1: Flow Chart of the Entire Face Recognition System.

4.3 Adaptive Detection of Regions of Interest

Description of the System

The components detection and validation module consists of five sub-modules: facial

components detection, coordinates computation, bounding box extraction, convex

hull computation, and detected components validation. The flowchart of the complete

process is presented in Fig. 4.2.
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Figure 4.2: Flowchart of the Components Detection and Validation System.

The Binarization Method

The first step of our regions of interest detection is the binarization of the input face

image. The binarization process we use is based on the algorithm adopted from [76].

The standard deviation and the mean are used to compute a threshold that is used

to split the image into two parts: the foreground and the background.

An image Imn with m rows and n columns, is defined as:
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Imn =
{

(i, j , xij), xij ∈ {0, 1, 2, ..., 255}
0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1,

where n, m ∈ Z} . (4.1)

The mean of the image is defined as follows:

µ =
1

mn

m∑
i=1

n∑
j=1

xij . (4.2)

The standard deviation of the image is given by the formula:

σ =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(xij − µ)2 . (4.3)

Given σ and µ, the threshold is computed as follows:

τ = k1σ + k2µ . (4.4)

In [76], it is specified that the values of k1 and k2 should be chosen between 0

and 2, depending on the resolution quality needed. In our work, we achieved a good

binarization result with k1 = k2 = 0.5.

Using τ , the obtained binary image can be defined as:

Bmn = {Bij, where , 0 ≤ i ≤ m− 1

and 0 ≤ j ≤ n− 1} (4.5)

is extracted from the image Imn, where Bij is defined as follows:
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Figure 4.3: Step by Step Results of the Approach. a) Original Face Images, b) Binary
Images, c) Connected Components of Binary Images, d) Detected Region of Interest,
e) Detected Region of Interest with Rectangular Boundaries, f) Original Images with
the Detected Regions of Interest.

Bij =





255 if xij > τ

0 otherwise .
(4.6)

The face components then appear on the foreground of the binary image as shown

in Fig. 4. 3. b). Thereafter, the algorithm searches, detects and labels the connected

components [35],[62] of the binary image.

Connected Components Finding

Once an image has been binarized, both the components on the foreground and the

background could be viewed as a set of classes of connected and similar pixels. Us-

ing this idea, we applied the 4-connectivity to find the connected components of the

binary image Bmn into classes of related pixels. The pixels of each class are assigned

a unique label to differentiate classes. It entails grouping the binary image Bmn into

classes c0, c1, c2, ..., ck−1, where k is the number of connected components. Let’s call
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the resulting image Cmn. Cmn is defined as :

Cmn =
k−1⋃
i=0

ci , (4.7)

where

ci = {(l, k, i), for

0 ≤ l ≤ m− 1, 0 ≤ k ≤ n− 1} . (4.8)

Fig. 4.3. c) shows some examples of connected components of binary images. An

iterative strategy is used to remove the irrelevant components. First, our algorithm

searches all the components with pixels touching the outer border of the image. The

pixels corresponding to the labels of these components are set to the background.

Then, the remaining components situated in the inner face space are the most prob-

able face components. Thereafter, the size of each remaining component is computed

as its total number of pixels. Based on the fact that, in the interior face space, the

biggest components are most probably the eyes, the nose and the mouth, the number

of remaining components is tested. If this number is greater than the number of

targeted components (which is four in our work), we successively select the smallest

components and set the pixels corresponding to their labels to the background until

the threshold of four remaining components is reached. In the successful case, the

iteration stops when these remaining components are the two eyes, the nose, and the

mouth.

Representation of the Regions of Interest

Instead of using a geometrical estimation or an assumption about the location of face

components as done in previous works [12, 91, 102, 97, 84], our approach exploits the

pixel coordinates of each detected component to determine its location in the face.

In other words, our algorithm searches for the maximum x and y coordinates and the

minimum x and y coordinates belonging to the component, in the two dimensional
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space spanned by the image. Fig. 4.4. shows a geometrical representation of the

targeted coordinates around a detected component.

Figure 4.4: Coordinates of a Detected Region of Interest in the Face Image.

In Fig. 4.4, the coordinates Xmin, Xmax, Ymin, and Ymax are found and serve to

deduce the coordinates of the four points at the corners of the rectangular boundary

containing the component. Afterwards, these coordinates are used to identify the

rectangular boundary of the region containing the detected component as shown in

Fig. 4.3. e). The coordinates are later shifted to accurately represent the detected

regions of interest in the original image for the purpose of feature extraction. By

exploiting the coordinates of pixels in the detected components to determine their

location in the face, we made no assumption or geometrical estimation of the location

of components. Then, as shown in Fig. 4.5., our approach is able to detect face

components in different orientations perfectly.
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Figure 4.5: Facial Components Detected in Different Orientations.

Facial Component Validation Technique

The inputs to our validation model are the centroids of the detected facial components.

Consider the finite set of points, Sn.

Sn = {Pi, i = 1, .., n} , (4.9)

where n is the number of detected components, and Pi the centroid of the ith

detected component. The convex hull of Sn is defined as the smallest 2D convex

polygon Ω that contains Sn [69].

After testing our algorithm on the training set, we found that in the case where

components are successfully detected, their convex hull is a triangle with the vertices
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placed at the centroids of the two eyes and the mouth. It is also observed that

the magnitude of angles at the two eyes are most likely between 500 and 950 (See

Fig.4.7). Once the convex hull has been computed, we determine the triplet formed

by the angles on the two first centroids with the lowest y-coordinates and the absolute

value of their difference (Fig. 4.7). In successful cases, the two centroids with the

lowest y-coordinates are the two eyes. The set of triplets is further classified using

a two-class SVM, one class representing the class of the set of successful detections,

and the other the set of incorrect detections. For a component-based face recognition

system, this classification step is important as the earlier detection of incorrectly

detected facial components would increase the efficiency.

Figure 4.6: Examples of Face Images with Convex Hull of Detected Facial Compo-
nents.

Components Detection and Validation Algorithm

The algorithm could be briefly described as follows :

Given the connected components of the binarized image of the face.

1) Search through the image, detect each connected component with pixels region

touching the outer border of the image. Then, set the pixels corresponding to

the label of such components to the background.
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Figure 4.7: Examples of Face Images with the Angles (θ0, θ1) at the Side of the two
Centroids with Lowest y-coordinates (as describe in Fig 3). The Absolute Value
of the Difference of these Angles is ∆θ =| θ0 − θ1 | and the Triplet is defined
as: (θ0, θ1, ∆θ); (a) Face with successful detected Components; (b) Face with an
undetected Component.

2) Localize, compute and save the size of each remaining components along with

its label.

3) If the number of remaining components is greater than four (the number of

targeted components), successively choose the smallest size and set the pixels

of their corresponding components through the image to the background un-

til the four remaining components are reached. After this step, the remaining

components include the targeted face components.

In successful cases, the four remaining components are the two eyes, the nose

and the mouth.

Fig. 4.3. d) are examples of images with only the detected face components.

4) Compute the center of gravity of each detected components.

5) Apply the convex hull algorithm to the set of center points to extract the convex

hull of the centroids of the detected facial components.

6) Determine the triplet constituted by the angles at the site of the two first points
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with the minimum y-coordinates and the difference of these angles to obtain

the vector (θ0, θ1, ∆θ), where θ0, θ1, and ∆θ are defined as in Fig. 4.7.

7) Process the triplet for components validation.

4.4 Computation and Representation of Features

The flowchart of the computation and representation of features is given in Fig. 4.8.

The input to the module is an image with the detected and validated facial compo-

nents: the two eyes, the nose and the mouth. The two eyes are extracted and fed into

the Gabor feature extraction module that computes and outputs a partial features

vector that is the concatenation of the features from the two eyes. Similarly, the

nose and the mouth are fed into the Zernike Moments feature extraction module and

the corresponding partial features vector is obtained. Both partial features vectors

are further concatenated and normalized by the mean and the standard deviation to

produce the final feature vector of the input image.

4.4.1 Gabor Feature Extraction

Background and Related Works in Face Recognition

Over the recent years, Gabor Filters have been of interest to a growing number of

researches, for feature extraction in face recognition. In [89], Chen et al. proposed

a face recognition system where the feature extraction is done by combining Gabor

Filters with Local Binary Patterns (LBP). In their approach, each input face image

is convoluted with 40 Gabor filters (5 scales/frequencies and 8 orientations). Then,

40 Gabor magnitude maps and 40 Gabor phase maps, both of the same size as the

original face image, are obtained. Thereafter, the maps are processed by LBP respec-

tively to model the holistic distribution of local regions in the images, which results

in 80 LBP images of all the magnitude and phase maps. Spatial histograms are fur-

ther estimated from the LBP to form the final representation of the input image.

Gabor Filters of 6 scales and 8 orientations are applied in [23] on 20 detected facial

points of size 13x13 each for feature extraction. The feature vector of each point

is represented by the magnitude of the Gabor coefficients which leads to feature of

13x13x48=8112 dimensions. Consequently, an input face image is represented by a
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Figure 4.8: Flowchart of the Computation and Representation of Feature Module.

feature vector of 20x8112 dimensions. The dimensionality reduction is further done

by means of GentleBoost technique for classification. In [71], Lim et al. manually

select four landmark points on a face image (Center of the eyes, nose and mouth).

Gabor Filters of 4 frequencies and 8 orientations are used to encode each manually

selected landmark point(X,Y). Thus, 32 Gabor Filters responses are used to represent

a landmark point, and 32x4=128 Gabor Filters for an input face image. Thereafter,

Genetic Algorithm (GA) is applied for a more optimal encoding of the face landmark

point. Erik [27] presents a feature extraction based on the combination of Gabor

Filters and Gaussian weighting technique. Each input face image is first filtered with
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Gabor Filters of 3 scales and 8 orientations. Thereafter, the filtered image is convo-

luted with 2-D Gaussian to focus on the center of the face. To reduce the dimension

of the feature space, the Gabor Filtered and Gaussian weighted image is searched for

peaks, which are considered as the interesting feature points for face recognition. As

a result of the search, the four peaks found are the center of the eyes, the nose and the

chin. In [100], Gabor Filters of 3 frequencies and 8 orientations are applied on frontal

face images of size 64x64 each, which leads to feature vectors of 64x64x8x3=98304

dimensions. A sub-sampling strategy based on the Principal Component Analysis

(PCA) and the Direct fractional-Step Linear Discriminant Analysis (DF-LDA) is fur-

ther used for dimensionality reduction and recognition. In [101], Zhang represents

fiducial points of a face with Gabor coefficients. First, his approach manually selects

34 fiducial points on the input face image. Gabor Filters of 3 scales and 6 orientations

are applied at each manually preselected points to compute 18 Gabor coefficients. An

input face image is then encoded with a feature vector of 18x34=612 dimensions. In

[83], input face images of size 64x64 each, are convoluted with Gabor Filters of 5

frequencies and 8 orientations, for feature extraction. As the dimension of the re-

sulting feature vectors is very high (64x64x8x5=163840), a dimensionality reduction

strategy based on a conditional mutual information theory is used to select a set of in-

formative and non redundant Gabor features for face recognition. The set of selected

Gabor features is further subjected to generalized discriminant analysis (GDA) for

class enhancement. As a result, significant computation and memory efficiency have

been achieved since the dimension of features has been reduced from 163840 to 200

for 64x64 images. Den et al.[37] manually detect facial features points including eyes,

nose, and mouth, to normalize and fix the size of an input image to 128x96 pixels, for

feature extraction. Afterward, Gagor Filters of 5 scales and 8 orientations are applied

on the normalized image and a high dimensional feature vector of 128x96x40 = 491520

dimensions is obtained. To cope with the problem of dimension of the feature vector,

a dimensionality reduction strategy, based on the combination of PCA and LDA is

applied to select and compress the Gabor features for classification or recognition. In

[63], Zhou et al. present a feature extraction approach using Gabor wavelets and Ad-

aBoost. First, they manually measure the center of the two eyes for each face image.

The result of the measurement is used to normalize and set the size of the image to
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25x24 pixels. Thereafter, features of the normalized face image are extracted with

Gabor wavelets of 5 scales and 8 orientations. The dimensionality reduction is further

carried out by selecting a small set of significant feature with the Adaboost algorithm.

Most of the works presented above are based on Gabor Filters and the search for

features on or around the key facial components that are: the two eyes, the nose and

the mouth [23, 71, 63, 37]. However, none of these studies has attempted to detect

accurately and automatically these salient regions of the face as it is done in [24],

for feature extraction. Moreover, a lot of time is wasted in these previous works for

dimensionality reduction on the Gabor features vectors obtained, which could impact

negatively on the speed of the feature extraction. Furthermore, there is no guarantee

that the techniques used for dimensionality reduction are numerically stable to avoid

drastic changes of feature data.

In the next two sections, we present and apply Gabor Filters to extract the texture of

the detected eyes components. The dimensionality reduction on the Gabor features

is avoided by considering the mean and the standard deviation of the magnitude of

Gabor coefficients as the texture features of the eyes, instead of the high dimensional

feature of magnitude itself; which speeds-up the feature extraction, while preserving

the accuracy of the initial feature data.

Gabor Feature Represenation

Our Gabor feature extraction structure is explained in Fig. 4.9. First, the detected

and validated facial components are extracted from the input image. Afterward,

Gabor Filters are applied successively on the two eyes and their texture features

are extracted as vectors of 60 dimensions each. Both texture features are fused or

concatenated to form the sub-feature vector of the face based on the eyes only.

After the design of Gabor Filters, image features at different locations, frequencies,

and orientations can be extracted by convolving the image I(x, y) of size M ×N with

the filters. In this work, the image I(x, y) is an extracted eye as shown in Fig. 4.9.

Table 4.1 presents the dimensions of different eyes components detected from the

bank of images in Fig. 4.10, numbered from top to bottom. At each point (x, y) of
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Figure 4.9: The Framework of the Gabor Feature Extraction.

Table 4.1: Dimensions of Eyes Components detected in the Bank of Images in Fig.
4.10, numbered from Top to Bottom.

Number Detected Eyes Components Dimensions
left right

1 13x17 15x17
2 29x27 27x26
3 23x19 16x20

the image, the convolution is defined as follows [35]

Gmn(x, y) =
1

M ×N

M−1∑
m=0

N−1∑
n=0

I(x−m, y − n)ψ(m,n) , (4.10)

where ψ is the filter mask of size m× n and Gmn the matrix of Gabor coefficients of

the same size as the image I(x, y) . In practice, the mask is derived from equation

(3.13). A more compact representation of Gmn is :

Gmn(x, y) = I(x, y) ∗ ψ(m,n) , (4.11)

where * denotes the convolution operator. The result of the convolution should be

a complex representation of Gabor features. And the magnitude of those complex

vectors would be the basic feature for texture segmentation and recognition [100].

The complex representation of Gmn is given by the formula:
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Gmn(x, y) = Rmn(x, y) + iImn(x, y) , (4.12)

where Rmn and Imn are the real and imaginary parts of Gabor coefficients, respec-

tively. Fig. 4.10 shows some examples of imaginary parts of Gabor Filters for the two

eyes, at scales π/4 and π/2
√

2, and orientations 5π/8 and 3π/8. Then, the magnitude

|Gmn(x, y)| of Gmn is calculated as follows:

|Gmn(x, y)| =
√

Rmn(x, y)2 + Imn(x, y)2 . (4.13)

For each couple of frequency and orientation, the application of Gabor Filters

on an image produces a magnitude of Gabor coefficients as defined above, which is a

matrix of the same size as the input image. The sum of components of this magnitude

is called the energy of the filter [22] for the given scale and orientation. Let’s call

the energy of an image extracted with a mask of size m × n, E(m,n). Its value is

computed using the following formula:

E(m, n) =
∑

x

∑
y

|Gmn(x, y)| . (4.14)

Once the Gabor Filters have been applied on an image with different frequencies

and orientations, the result is an array of magnitudes. These magnitudes represent

the energy of the image at different scales and orientations and could therefore be used

to extract the texture properties of the image [22]. As the main purpose of texture-

based retrieval is to find images or regions with similar texture, the mean µmn and

standard deviation σmn of the magnitude of Gabor coefficients (See equations (4.15)

and (4.16)) at each scale and orientation could be used to represent the homogenous

texture feature of an image region [22].

µmn =
E(m,n)

M ×N
(4.15)

σmn =

√∑
x

∑
y(|Gmn(x, y)| − µmn)2

M ×N
(4.16)
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Figure 4.10: Examples of Imaginary Parts of Gabor Filters:(a):Input Images
with detected and validated Facial Components;(b):Extracted Facial Compo-
nents;(c,d):Original Image with Imaginary Parts of Gabor Filters at Scales π/4 and
π/2

√
2, and Orientations 5π/8 and 3π/8, respectively.

In our implementation, Gabor Filters of 5 scales and 6 orientations lead to the

feature vector f defined below for each detected eye region:

f = (µ00, σ00, µ01, σ01, ..., µ45, σ45) . (4.17)

f is a vector of 60 dimensions. Therefore, the two eyes are represented in our

work with a vector of 120 dimensions obtained by concatenating the Gabor features

from both eyes regions. An example of Gabor feature vector extracted from the left

eye of the top image in Fig. 4.10 is given in Table 4.2.

4.4.2 Zernike Moments Feature Extraction

Zernike Moments have been applied in face recognition in the recent years. Saradha

et al. [81], applied Zernike Moments at order 10 as feature extractor on input face

images along with other moment descriptors such as: Fourier descriptors, Legendre

Moments, and Hu Moments. Thereafter, a comparative study of these methods was
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Table 4.2: Example of a Gabor Feature Vector for the Left Eye of the Top Image in
Fig. 4.10.

Mean Standard Deviation
µ00 = 0.08181044091054135 σ00 = 1.3559866487381657
µ01 = 0.08337636259426681 σ01 = 0.6676369383831324
µ02 = 0.08152348198809901 σ02 = 1.2317149332260285
µ03 = 0.08491605886368899 σ03 = 0.23671802276324456
µ04 = 0.09014125256830944 σ04 = 0.374231236577378
µ05 = 0.08392206781246044 σ05 = 0.6838807554957311
µ10 = 0.08341801913017339 σ10 = 0.8492383112337858
µ11 = 0.0760509986845547 σ11 = 0.5809793367205929
µ12 = 0.08546242648601242 σ12 = 0.4155015960262604
µ13 = 0.06806158399022257 σ13 = 1.4646988953798364
µ14 = 0.08372040917422031 σ14 = 1.4157061109129838
µ15 = 0.08197309262939245 σ15 = 1.0989956761355177
µ20 = 0.0769797574020915 σ20 = 0.8821930359446563
µ21 = 0.07909270911226945 σ21 = 0.5553540028174903
µ22 = 0.07317591440046756 σ22 = 1.3202163797908408
µ23 = 0.070023340678377 σ23 = 0.883162900620407
µ24 = 0.0802667702163421 σ24 = 0.7949532950158003
µ25 = 0.0781800439204664 σ25 = 0.864711246941754
µ30 = 0.07897105152519596 σ30 = 0.8294916792905965
µ31 = 0.08055107952226649 σ31 = 0.2639497125572756
µ32 = 0.08279032564842433 σ32 = 0.7971833467788671
µ33 = 0.07928489826607043 σ33 = 0.8576380199533234
µ34 = 0.08352822002041937 σ34 = 1.1148694948746472
µ35 = 0.07798851717079486 σ35 = 0.7260414785864759
µ40 = 0.07722373498036806 σ40 = 0.4986908602924516
µ41 = 0.08137228696607556 σ41 = 0.9479364529554858
µ42 = 0.0810443339118555 σ42 = 0.8056562413945153
µ43 = 0.08701887868529849 σ43 = 0.7500911699666682
µ44 = 0.07422434349268941 σ44 = 0.8608944468329163
µ45 = 0.0800765682749293 σ45 = 0.9849069988001335

carried out. In [30], Pseudo Zernike Moments at order 10, and PCA are applied suc-

cessively to compute features of extracted elliptical shape face images. The resulting

feature vectors are further compared to show the classification performance. A similar

work was done in [45] based on Pseudo Zernike Moments, and Lengendre Moments.

Mohammed et al. [79], combines Zernike Moments and neural network to localize

a face in an image. Zernike Moments at order 10 with 5 repetitions are applied to

extract features of input face images. This resulting feature vector is further fed into

a neural network structure to learn the pixels at the contour of the face region.

The framework of our Zernike Moments feature extraction is given in Fig.4.11.

We defined Zernike moments in Chapter 3. For Zernike Moments of order n with l
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Figure 4.11: The Framework of the Zernike Moments Feature Extraction.

repetitions, the number of moments features could be computed as follows:

N moments =
n∑

k=0

{
bk
2
c+ 1

}
, (4.18)

where buc is the integer part of u. For a given order n, k = 0, ..., n and l = 0, ...,±n.

Let’s consider the case of n = 4. Table 4.3 shows the various repetitions associated.

Table 4.3: Repetitions of Zernike Moments of Order 4.

Order n Repetitions l

4 -4 -3 -2 -1 0 1 2 3 4

Once the order n and the l repetitions have been chosen, the Zernike Moments

algorithm is executed and the moments features are selected based on the following

basic conditions: |l| ≤ n and n − |l| is always even. As |l| = ±l, only the positive

values of l could be considered as repetitions. Table 4.4 shows the selected moments

feature for Zernike Moments at order 4. The number of moments features here is 9.

In practice, the Zernike Moments features Anl are complex numbers. Thus, their

magnitudes |Anl| should be taken as the final features values. Table 4.5 shows the

values of Zernike Moments features for orders 0 ≤ n ≤ 10.

The order 10 is commonly used in the literature [81, 44] to capture the details

shape information in images. We have applied it in our case to extract the shape
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Table 4.4: Zernike Moments Features at Order 4.
Order n Repetitions l

0 1 2 3 4
0 A00

1 A11

2 A20 A22

3 A31 A33

4 A40 A42 A44

Table 4.5: Number of Zernike Moments Features at Orders from 0 to 10.
Order n Numbers of Zernike Moments Features

0 1
1 2
2 4
3 6
4 9
5 12
6 16
7 20
8 25
9 30
10 36

of the detected nose and mouth facial components, which leads to a feature vector

of 36 dimensions for each component and a Zernike Moments feature vector of 72

dimensions for each face image, characterizing the shape of the nose and the mouth

only. The Zernike Moments features of the nose component of the top image in Fig.

4.10 is shown in Table 4.6.

4.5 Features Fusion and Normalization

We combine the texture of the eyes and the shapes of the nose and the mouth to

characterize a face. The high discriminative power of Gabor Filters in texture repre-

sentation and Zernike Moments in characterizing shapes, motivated their choice. Our

fusion framework is shown in Fig. 4.12.

The partial feature vector of the eyes texture of 120 dimensions, computed by 30

Gabor Filters, is fused with the partial feature vector of 72 dimensions, representing

the shapes of the nose and the mouth obtained by means of Zernike Moments at
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Table 4.6: Example of Nose Zernike Moment Features.
Number Features

0 9737.770515291975
1 12771.537273400585
2 29213.31154587586
3 443.8493306736061
4 25543.07454680117
5 14426.63377008863
6 48688.852576459794
7 739.7488844560106
8 13760.327525867187
9 38314.611820201724
10 21639.95065513294
11 4736.415372453778
12 68164.39360704363
13 1035.6484382384192
14 19264.458536214082
15 2554.322836635707
16 51086.14909360234
17 28853.26754017726
18 6315.22049660503
19 5233.515152875227
20 87639.93463762765
21 1331.5479920208165
22 24768.589546560976
23 3284.1293613887624
24 11040.633248353282
25 63857.686367002905
26 36066.58442522156
27 7894.0256207562925
28 6541.893941094035
29 11523.441051820959
30 107115.47566821153
31 1627.447545803227
32 30272.720556907807
33 4013.935886141819
34 13494.107303542896
35 799.6831617363044

order 10. The fusion consists of concatenating the two partial feature vectors into

a single vector of 120+72=192 dimensions, which is the final signature of the input

face image.

The scale of individual feature extracted with Gabor Filters and Zernike Moments

differ drastically. To address this problem, given a final feature vector f of p compo-

nents, where f is defined as:
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Figure 4.12: The Framework of the Feature Fusion Strategy.

f = (x1, x2, ..., xp) , (4.19)

we used a statistical method to normalize the vector. Each component xi is indepen-

dently transformed into its normalized value x̃i as follows:

x̃i =
xi − µ

σ
, (4.20)

where µ and σ are the mean and the standard deviation of f coordinates, respectively.

The normalization is applied both to the training and the test sets.

4.6 Classification/Recogntion

This module performs essentially two operations: storage of trained feature vectors

in the database and identification of a sample face images. Face recognition is fun-

damentally a pattern recognition problem. Solving such a problem generally involves

two phases: the training and the classification/recognition. In the training phase,

features of a subset of the population to be recognized are computed and stored in a



59

storage area called template database (See Fig. 4.13). The classification/recognition

phase extracts the feature of a new subject and matches it with those of known sub-

jects in the database. The correct match of the new feature yields the acceptance of

the claimed identity, whereas the incorrect match yields its rejection.

Figure 4.13: Framework of a Typical Face Recognition System.

4.6.1 Storage of Known Persons in the Database

First, we compute and store in a template database, feature vectors of the training

set. Each database record represents the centroid of a class of face images of the same

person.

4.6.2 Identification of a Candidate Face

The nearest neighbor rule is used to classify new face images. The identification is

done by computing the distance between the feature vector of the candidate face and

the templates from the database. The unknown face feature vector is extracted and
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compared with the feature vectors stored in the template database of known persons

using the formula given in (4.21).

D(k) =

√√√√
n∑

j=1

(fj(u)− fj(k))2 , (4.21)

where n and fj(u) are the number of features and the features of an unknown per-

son respectively, while fj(k) represents the features of the kth known person in the

database. Then the unknown person is identified as the kth person in the database if

the distance D(k) is the minimum amongst all the persons available in the database

and less than a conveniently chosen threshold.

4.7 Conclusion

We have presented the details of the implementation of the system. A literature

review has been carried out where appropriate, to support the aims of the imple-

mentation. Diagrams have been provided to make the structure of the system more

understandable. Resulting images and data tables illustrate the outputs of the im-

plementation. In the next chapter, the programming environment is described, the

results are further presented and discussed, and comparison with related works is

performed.



Chapter 5

Experimental Results and Discussion

5.1 Introduction

In this chapter, we present experiments and a comparison of our results with related

works. The programming environment and the data set are first described and the

experimental results are presented and discussed.

5.2 Programming Environment

The system is implemented in the form of plugins in ImageJ [75], a public domain

Java image processing program. Separate plugins have been developed for each image

processing operation (binarization, connected component, region of interest detection,

bounding box drawing, convex hull, Gabor Filters, Zernike Moments). These plug-

ins are sequenced such that the output image of one serves as input to another. A

statistical package R is used for SVM classification. The template database is imple-

mented in XML with the Java Document Object Model (DOM) package. The UML

class diagram, the description of the various plugins of the system, and some samples

outputs results are given in the Appendix.

5.3 Data Set

In our study, we assume that the image quality and the resolution is sufficient enough,

the illumination is uniform and the input images are gray scale images. However, we

made no restrictions on wearing glasses, make-up, hairstyle, beard, and the like.

The images we used to test our system are taken from the Yale database. This

database contains 575 face images of 20 persons with 92x112 pixels in size, taken in

different orientations.

61
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5.4 Experiment1: Components Extraction and Validation

We carried out our test with 46 images. Fig. 5.1 shows the chart of the detection

rate of face components in frontal, left, and right view.

In the frontal view, the detection rate of the nose and the right eye is nearly 100%,

the left eye 80%, and the mouth over 86%. In the left view, the detection rate of the

nose, the mouth, and the right eye is over 92% and that of the left eye is over 57%.

The right view presents a detection rate of 70% for the left eye, 90% for the right eye,

80% for the mouth, and nearly 100% for the nose.

The chart of detection rate in various orientations is shown in Fig. 5.2. It appears

that the detection rate is nearly 92% in frontal view, 85% in right view and over 83%

in left view.

Figure 5.1: Chart of Detection Rate of Face Components in Frontal, Left, and Right
View.

Table 5.3 compares our approach, in terms of the successfully detected key facial

components, against the top performing works in the field. The table shows that the

two eyes, the nose and the mouth, that are successfully detected, are the commonly
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Figure 5.2: Curves of Detection Rate of the System in Different Orientations.

targeted components in most of the previous works. We compare the success rate of

our approach at different orientations against related works in Table 5.4. Although

our approach doesn’t achieve the best result in frontal view, it detects more accu-

rately facial components in different orientations compared to previous works.

For validation purposes, the triplets extracted from the images of the training set

(See Fig. 4.7) were further classified. We have used two classifications techniques:

K-means clustering and SVM. The triplets extracted from both training and sample

images are given in Table 5.1.

We ran the K-means clustering with two classes; one class representing the class of

properly detected facial components and the other, the class of bad detected one.

A sample K-means classification of a new triplet is shown in Table 5.2. In this ta-

ble, the triplets corresponding to the bad detected components are classified in the

Cluster 0, whereas those of the correctly detected facial components are classified in

the Cluster 1. The row corresponding to the classified triplet appears in bold face in

the table.



64

Figure 5.3: Result of SVM Classification of Triplets extracted from the Sets of de-
tected Facial Components; the Top Left Feature Points form the Cluster of Triplets
extracted from Facial Components incorrectly detected and the Bottom Right Fea-
ture Points the Cluster of correctly detected Facial Components, as shown in Table
5.2.

The result of SVM classification is depicted in Fig. 5.3, where the class of the facial

components that are successfully detected and that of those which are wrongly de-

tected are clearly linearly separated. The width of the separating hyperplane between

the support vectors of both classes shows the power of the validation method.

Facial images with hair covering a portion of the eye, or with a beard are still slightly

inaccurately detected by our system. The detection problems come from the fact

that, these categories of face images merge more than one connected component by

establishing a link between them as shown in Fig. 5.4.

5.5 Experiment2: Feature Extraction and Identification

Our feature extraction model is tested with 40 images belonging to 10 data classes.

The 40 face images were taken in different orientations of the face. Fig. 5.5 shows the

histograms of recognition rate in frontal, left, and right view, as well as the average

recognition rate in different orientations of the face. Based on Fig. 5.5, our method
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Table 5.1: Triplets extracted from both Training and Sample Face Images.
θ1 θ2 ∆θ = |θ1 − θ2|

0 1.2066982233776784 1.2217952795067433 0.015097056129064867
1 1.2558891215135704 1.107717869696209 0.14817125181736146
2 1.2066982233776784 1.2217952795067433 0.015097056129064867
3 1.3191881245283303 1.0494351041851249 0.2697530203432055
4 1.378095568132511 1.023234090854899 0.3548614772776122
5 1.1902899496825319 1.1273479903751584 0.06294195930737345
6 1.3182420510168371 1.0691922726057759 0.24904977841106124
7 1.0780871346852774 1.2623783156924002 0.18429118100712283
8 1.3145941905370055 1.0182944968590164 0.29629969367798914
9 1.4016951007935197 1.0232340908548991 0.37846100993862053
10 1.347801808213736 1.0424907713701093 0.3053110368436267
11 1.1885137526161473 1.1878800101572655 6.337424588818141E-4
12 1.0460636784877178 1.3817287668823592 0.3356650883946415
13 1.3633001003596938 1.0074800653029286 0.3558200350567653
14 1.3137037188222356 1.0377738252217037 0.2759298936005319
15 1.1076744801010612 1.048542438968385 0.059132041132676116
16 1.012323802372425 1.6733967034009436 0.6610729010285186
17 0.9420000403794635 1.6571610432203796 0.7151610028409161
18 0.9716210038085896 1.6523225404044293 0.6807015365958397
19 1.0653862705510355 1.1228697600933195 0.057483489542283994
20 1.2627435457711202 1.1071487177940904 0.15559482797702984
21 1.2136794984046857 1.1640067094813542 0.04967278892333149
22 1.1226685359165174 1.3657963507913224 0.24312781487480506
23 1.3120254348311988 1.1071487177940904 0.2048767170371084
24 1.2924966677897851 1.0734536104480743 0.2190430573417108
25 1.2578950989145121 1.0612040619859706 0.1966910369285415
26 1.240498971965643 1.0734536104480743 0.16704536151756866
27 1.1807737365666067 1.0975438904299795 0.0832298461366272
28 1.383013136981797 0.8869074027985949 0.49610573418320214
29 0.9819299169548331 1.0579920516931367 0.07606213473830359
30 1.0985674039573494 0.8764321620659624 0.222135241891387
31 1.0206582486156377 1.1028691433501245 0.08221089473448684
32 1.2120256565243244 1.0776006698921967 0.13442498663212765
33 1.0759088843638223 1.3035372286389857 0.22762834427516343
34 1.2711902824587216 1.1080947913055836 0.16309549115313793
35 1.1583858851975095 1.1543577096033049 0.004028175594204653
36 1.139455683143694 1.1598306229354014 0.020374939791707458
37 1.1967457229728653 1.1157216859618786 0.0810240370109867
38 1.153281846253494 0.9015983053976788 0.2516835408558151
39 0.9154001117024694 1.2492522559798749 0.3338521442774055
40 0.24497866312686378 2.3561944901923453 2.1112158270654815
41 0.2687030246351712 2.4511461965351007 2.1824431718999295
42 0.029403288204001142 3.0566908601400713 3.0272875719360703
43 0.0024813844852987037 3.1381913061625824 3.1357099216772837
44 0.2635204939878902 2.5485353331933727 2.2850148392054823
45 0.24031226077257495 2.4901033341767036 2.2497910734041286

achieves 100% recognition rate in frontal and right view, and 85% recognition rate in
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Table 5.2: K-means Classification of a New Triplet from a Sample Face Image.
θ1 θ2 ∆θ = |θ1 − θ2|
—————– ———Cluster 0——– ——————-
0.24497866312686378 2.3561944901923453 2.1112158270654815
0.2687030246351712 2.4511461965351007 2.1824431718999295
0.029403288204001142 3.0566908601400713 3.0272875719360703
0.0024813844852987037 3.1381913061625824 3.1357099216772837
0.2635204939878902 2.5485353331933727 2.2850148392054823
0.24031226077257495 2.4901033341767036 2.2497910734041286
—————– ———Cluster 1——– ——————-
1.3182420510168371 1.0691922726057759 0.24904977841106124
1.0780871346852774 1.2623783156924002 0.18429118100712283
1.3145941905370055 1.0182944968590164 0.29629969367798914
1.4016951007935197 1.0232340908548991 0.37846100993862053
1.347801808213736 1.0424907713701093 0.3053110368436267
1.1885137526161473 1.1878800101572655 6.337424588818141E-4
1.0460636784877178 1.3817287668823592 0.3356650883946415
1.3633001003596938 1.0074800653029286 0.3558200350567653
1.3137037188222356 1.0377738252217037 0.2759298936005319
1.1076744801010612 1.048542438968385 0.059132041132676116
1.012323802372425 1.6733967034009436 0.6610729010285186
0.9420000403794635 1.6571610432203796 0.7151610028409161
0.9716210038085896 1.6523225404044293 0.6807015365958397
1.0653862705510355 1.1228697600933195 0.057483489542283994
1.2627435457711202 1.1071487177940904 0.15559482797702984
new 1.2136794984046857 1.1640067094813542 0.04967278892333149
1.1226685359165174 1.3657963507913224 0.24312781487480506
1.3120254348311988 1.1071487177940904 0.2048767170371084
1.2924966677897851 1.0734536104480743 0.2190430573417108
1.2578950989145121 1.0612040619859706 0.1966910369285415
1.240498971965643 1.0734536104480743 0.16704536151756866
1.1807737365666067 1.0975438904299795 0.0832298461366272
1.383013136981797 0.8869074027985949 0.49610573418320214
0.9819299169548331 1.0579920516931367 0.07606213473830359
1.0985674039573494 0.8764321620659624 0.222135241891387
1.0206582486156377 1.1028691433501245 0.08221089473448684
1.2120256565243244 1.0776006698921967 0.13442498663212765
1.0759088843638223 1.3035372286389857 0.22762834427516343
1.2711902824587216 1.1080947913055836 0.16309549115313793
1.1583858851975095 1.1543577096033049 0.004028175594204653
1.139455683143694 1.1598306229354014 0.020374939791707458
1.1967457229728653 1.1157216859618786 0.0810240370109867
1.153281846253494 0.9015983053976788 0.2516835408558151
0.9154001117024694 1.2492522559798749 0.3338521442774055

left view. The average recognition rate is 95%.

The low recognition rate in the left view is due to the fact that, face images that

were taken with angles greater than 45o were misclassified by our system. Table 5.5.

compares our feature extraction approach in terms of recognition rate against the top
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Figure 5.4: Examples of Challenging Face Images with Hair Covering a Portion of
the Eye and with Beard.

Table 5.3: Comparative Table of Facial Components Detected.
Methods Facial Components Detected Number

eyes nose mouth
(Loulia et al., 2005) x x x 3
(Selin et al., 2002) x x x 3
(Heisele et al., 2006) x x 2
Our approach x x x 3
(Bao et al., 2006) x x 2
(Wang et al., 1999) x x x 3

Table 5.4: Comparative Table of Components Detection Success Rate in Different
Orientation of Face.

Methods Face Orientation Success Rate
Frontal Right Left All

(Loulia et al., 2005) x 95%
(Selin et al., 2002) x 93.76%
(Heisele et al., 2006) x 89.25%
Our approach x 91.66%

x 85%
x 83.92%

x 86.82%
(Bao et al., 2006) x 90%
(Wang et al., 1999) x 90%

performing works in the field. From the table, our method performs better than any

studied previous work, in different orientations of face.
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Figure 5.5: Histograms of Recognition Rates of in Frontal, Left, and Right View, and
the Average Recognition Rate in different Orientations of Face.

Table 5.5: Comparative Table of Recognition Rate.
Methods Face Orientation Recognition Rate

Frontal Left Right All
(Deng et al., 2005) x 97.33%
(Mei et al., 2005) x 100%
Our approach x 100%

x 100%
x 85%

x 95%
(Shen et al., 2006) x 96.9%

5.6 Conclusion

This chapter presented and discussed experimental results of the system. Statistics

have been drawn to compare the system with related works. In the next chapter, the

summary of the work is done. The shortcomings of the system are reported and some

pathways for future works are specified. Finally, a conclusion ends the dissertation.



Chapter 6

Conclusion and Future Works

6.1 Summary of Work

In this work, a component-based face recognition system is implemented. We first

provided a comprehensive detailed review of the most popular used human biomet-

rics traits. Thereafter, the investigation on the state of the art in component-based

face recognition revealed some shortcomings of the previous works. For instance, we

identified that facial components were mainly chosen manually, many assumptions

were employed to locate facial components and components were detected using ge-

ometrical calculations on the face space.

Consequently, facial components were detected inaccurately. Some important com-

ponents were missing in certain cases, and most of the techniques used were compu-

tationally expensive. Our first endeavor has been to find the solutions to the above

problems. First of all, we applied simple image processing operations on facial im-

ages and attempted to detect automatically and more accurately facial components

without any geometrical consideration. We found that, connected components of

binary face images could provide clues about how to detect automatically the key

facial components: the eyes, the nose and the mouth. Then, we adopted an iterative

strategy to remove the irrelevant components from the connected components of an

input face image. As a result, our approach detects automatically and with a high

accuracy facial components in different orientation of the face.

The detected facial components were further validated by means of two-class SVM.

Thereafter, the correctly detected components were extracted and used for feature

extraction. The high discriminative power of Gabor Filters in texture representation

and Zernike Moments in characterizing the shape motivated their use as feature ex-

traction methods. Gabor Filters are applied to extract the texture features of the

two eyes, whereas Zernike Moments are used to compute the shape features of the

nose and the mouth. The texture and the shape features were further concatenated

69
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and normalized to build the final feature vector of the input face image. Experiments

were carried out on both components detection and feature extraction. Compared

to previous studies, they showed that components are more accurately detected in

different face orientations and the feature extraction achieves an average recognition

rate of 95%.

Although our research endeavors provided solutions to some of the current problems

in the component-based face recognition research field, there is still some room for

improvement. This aspect is discussed in the next few lines.

6.2 Limitations of the System, Recommendations and Future Work

One of the critical steps of a system development is the testing phase, during which

its shortcomings should be reported and eventually fixed. After testing our system,

we found some limitations that are described below.

• Sample Images: In this work, we use pixel gray levels of face images to detect

and extract facial components for recognition; which meant that, a bad illumina-

tion condition during the capture of sample face images could affect drastically

the performance of the system. As a solution to this problem, our approach

should not be used for passive surveillance. Instead it is suitable for biometric

identification where the capture time, the agreement of the participants, and

the parameters of the camera could be controlled efficiently.

• Component Detection: Some face images are still challenging to our system.

For instance, facial images partly covered by the hair and some bearded faces are

candidates in that category. The problem with such categories of face images

is that, more than one connected components are merged into one component,

which yield an automatic removal of one or more targeted facial components.

These particular cases could be solved by using geometric approaches.

• Classification/Recognition: We use one nearest neighbor classifier with sim-

ple distance measure to classify candidate face images. Other techniques as the

Radial Basic Function Neural network (RBF) and Support Vector Machines

(SVM) could be investigated.
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6.3 Conclusion

We have presented a component-based face recognition system. Facial components

are firstly detected and validated. The feature extraction is carried out by combining

the feature data computed by Gabor Filters and Zernike Moments. The identification

is done by matching the feature vector of a candidate face to the template features

of known persons in the database. A candidate face is accepted, if its minimum

distance from the template features is below a conveniently chosen threshold. In

terms of application, our system could be a solution to the new emergent biometric

recognition in passports, driving licenses, and identity books.
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Appendix A

UML Class Diagram of The System and Samples Outputs

Results
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Figure A.1: UML Class Diagram of the System.
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List and Roles of Plugins of the System

• Recognition: Accept or reject a claimed identity.

• Binarization: Binarize the input image.

• Connected Components: Construct the connected components of the binary

image.

• Detection of ROI: Detect iteratively facial components.

• Draw ROI Bounding Box: Draw bounding box around detected compo-

nents.

• Draw ROI on Original Image: Draw bounding box of detected components

on the original image.

• Compute Convex Hull: Compute convex hull of the centroids of detected

components.

• GaborFilter zernikeMomentsNew: Create temple database; compute fea-

ture vectors; classify/recognize.

NB: The space in the name of certain plugins correspond to the character under-

score in ImageJ naming rules.
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Figure A.2: Sample Output Results of Plugins; (a): Original Images; (b): Binary
Images; (c): Connected Components of Binary Images; (d): Detected Components;
(e): Detected Components with Bounding Box and Convex Hull; (f): Original Images
with Bounding Box of Detected Components; (g): Original Images with Bounding
Box and Convex Hull of Detected Components.
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Figure A.3: Sample Output Results of Plugins; (a): Input Images with Detected
and Validated Facial Components; (b): Extracted Facial Components; (c,d):Original
Images with Imaginary and Real Parts of Gabor Filters at Scale π/4 and Orientation
5π/8; (e,f):Original Images with Imaginary and Real Parts of Gabor Filters at Scale
π/2

√
2 and Orientation 3π/8.
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Figure A.4: Sample Output Results of Plugins; (a): Original Images; (b): Binary
Images; (c): Connected Components of Binary Images; (d): Detected Components;
(e): Detected Components with Bounding Box and Convex Hull; (f): Original Images
with Bounding Box of Detected Components; (g): Original Images with Bounding
Box and Convex Hull of Detected Components.
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Figure A.5: Sample Output Results of Plugins; (a): Input Images with Detected
and Validated Facial Components; (b): Extracted Facial Components; (c,d):Original
Images with Imaginary and Real Parts of Gabor Filters at Scale π/4 and Orientation
5π/8; (e,f):Original Images with Imaginary and Real Parts of Gabor Filters at Scale
π/2

√
2 and Orientation 3π/8.
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Figure A.6: Sample Output Results of Plugins; (a): Original Images; (b): Binary
Images; (c): Connected Components of Binary Images; (d): Detected Components;
(e): Detected Components with Bounding Box and Convex Hull; (f): Original Images
with Bounding Box of Detected Components; (g): Original Images with Bounding
Box and Convex Hull of Detected Components.
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Figure A.7: Sample Output Results of Plugins; (a): Input Images with Detected
and Validated Facial Components; (b): Extracted Facial Components; (c,d):Original
Images with Imaginary and Real Parts of Gabor Filters at Scale π/4 and Orientation
5π/8; (e,f):Original Images with Imaginary and Real Parts of Gabor Filters at Scale
π/2

√
2 and Orientation 3π/8.
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Figure A.8: Sample Output Results of Plugins; (a): Original Images; (b): Binary
Images; (c): Connected Components of Binary Images; (d): Detected Components;
(e): Detected Components with Bounding Box and Convex Hull; (f): Original Images
with Bounding Box of Detected Components; (g): Original Images with Bounding
Box and Convex Hull of Detected Components.
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Figure A.9: Sample Output Results of Plugins; (a): Input Images with Detected
and Validated Facial Components; (b): Extracted Facial Components; (c,d):Original
Images with Imaginary and Real Parts of Gabor Filters at Scale π/4 and Orientation
5π/8; (e,f):Original Images with Imaginary and Real Parts of Gabor Filters at Scale
π/2

√
2 and Orientation 3π/8.



91

Figure A.10: Sample Output Results of Plugins; (a): Original Images; (b): Binary
Images; (c): Connected Components of Binary Images; (d): Detected Components;
(e): Detected Components with Bounding Box and Convex Hull; (f): Original Images
with Bounding Box of Detected Components; (g): Original Images with Bounding
Box and Convex Hull of Detected Components.
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Figure A.11: Sample Output Results of Plugins; (a): Input Images with Detected
and Validated Facial Components; (b): Extracted Facial Components; (c,d):Original
Images with Imaginary and Real Parts of Gabor Filters at Scale π/4 and Orientation
5π/8; (e,f):Original Images with Imaginary and Real Parts of Gabor Filters at Scale
π/2

√
2 and Orientation 3π/8.


