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Abstract

BLAST reports can be complicated. Viewing them graphically helps to understand

them better, especially when the reports are long. At present ”Web BLAST” and

the stand-alone ”wwwBLAST” versions, distributed by the NCBI, include graph-

ical viewers for BLAST results. An alternative approach is ”BLAST Graphic

Viewer” developed by GMOD as part of the BioPerl library. It provides a more

aesthetically pleasing and informative graphical visualization to represent BLAST

results. All the strategies mentioned above are based on the use of bitmap graph-

ics and dependent on JavaScript code embedded in HTML. We present Vector

Graphic BLAST (VEGRA) a Python object orientated library based on BioPy-

thon to yield graphical visualization of results from BLAST utilizing vector graph-

ics. Graphics produced by VEGRA are better than bitmaps for illustration, more

flexible because they can be resized and stretched, require less memory, and their

interactivity is more effective as it is independent of tertiary technologies due to

its integration into the graphic. In addition, the library facilitates a definition

of any layout for the different components of the graphic, as well as adjustment

of size and colour properties. This dissertation studies previous alternatives and

improves them by making use of vector graphics and thus allowing more effective

presentation of results. VEGRA is not just an improvement for BLAST visualiza-

tion but a model that illustrates how other visualization tools could make use of

vector graphics. VEGRA currently works with BLAST, nevertheless the library

has been written to be extended to other visualization problems.
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Glossary of acronyms

API: Application Programming Interface

BGV: BLAST Graphic Viewer

BLAST: Basic Local Alignment Search Tool

CIAT: International Center for Tropical Agriculture

CSS: Cascading Style Sheets

CVS: Concurrent Versions System

DHTML: Dynamic Hypertext Markup Language

DNA: Deoxyribonucleic acid

DOM: Document Object Model

EBI: European Bioinformatics Institute

EPS: File format is used to transfer PostScript language artwork between appli-

cations and is supported by most illustration and page-layout programs

FASTA: File format used as input for DNA and Protein sequences

FLA: A Macromedia Flash source document

FTP: File Transfer Protocol

GI: Gene Info identifiers

GMOD: Generic Model Organism Database

GNU: Recursive acronym for ”GNU’s Not Unix”

HSP: High-scoring segment pair

HTML: Hypertext Markup Language
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Glossary of acronyms

LGPL: The GNU Lesser General Public License

LXR: Linux Cross-Reference

NCBI: National Centre for Biotechnology Information

OBF: Open Bioinformatics Foundation

PDF: Portable Document Format

RNA: ribonucleic acid

SVG: Scalable Vector Graphics

SWF: Graphic file format (a version of the Macromedia Flash Player vector-based

graphics format)

UML: Unified Modelling Language

URL: Uniform Resource Locators

W3C: World Wide Web Consortium

WU-BLAST (WuBLAST): Washington University Basic Local Alignment Search

Tool

WWW: world wide web
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Chapter 1

Problem statement

The BLAST package tool does not always provide a graphical representation

for results. When one is available its visual design and usability is measurably

poor. Graphic configuration or customization of the representation is almost non-

existent. Documentation about the structure of the code is missing, and even in the

case where documentation is present, attempts to improve the tool by re-coding

would be a step in the wrong direction in the development of BLAST graphics

since it would not use the best file format for this type of representation.

Inspired by the idea of optimizing BLAST graphics, this dissertation reports on

the development of a graphic library that enables representation and visualization

of Blast results by means of vector graphics. The problem has been addressed in

three specific and well-scoped tasks:

1. To improve the graphic design of BLAST graphics using usability and graphic

design concepts, taking into consideration previous graphic representation

models for BLAST.

4



2. To develop a library based on object-oriented programming syntax and

methodology to create vector graphics to represent BLAST results.

3. To make the graphic customizable by allowing the user to define the prop-

erties of the graphic via a simple configuration file.
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Chapter 2

Introduction

Design is a set of fields for problem-solving that employs user-centric approaches

to understand user needs to create successful solutions that solve real problems

[38]. Within the context of computer graphics a graphical user interface (GUI) is a

particular type of user interface provided to the user in order to enable interaction

with the system. GUIs might be graphical, text-based, or a combination of both

[27]. To some extent users gain access to the functionalities provided by the

software via a GUI. As graphical user interfaces are communication systems, visual

design should play an important role when solving problems related to and with

the use of GUIs. Both, aesthetics and functionality should be considered when

designing GUIs [38].

Bioinformatics is the application of computer science and technology to the

management of biological information [39]. Quite often bioinformatics software is

text-based, where letters and numbers are displayed in order to represent molecular

sequences [37]. Scientific visualization and computer graphics methods can assist

with the visual display of this information [37]. Although information visualization
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techniques provide possible solutions to the problem of managing and analysing

an overwhelming amount of biological information, the visualization of biological

information still presents many challenges [37] [39].

This dissertation examines visual representations for BLAST, a bioinformatics

tool widely used to search protein and nucleotide databases for sequences similar

to a search sequence [26]. It presents a study of the fundamental techniques of

visual design, demonstrates their application when designing a graphical inter-

face and proposes alternatives to enhance its visual quality and usability. It also

provides a review of suitable graphic technologies that could be used instead to

efficiently create this kind of representation. Finally, based on these analyses, this

dissertation describes a graphical library that allows the generation of a new visual

representation; thus enhancing the visual quality of the graphical user interface for

BLAST outputs.

As this dissertation brings together concepts and paradigms from computer

science, graphical design, and biology applied to a specific Bioinformatics applica-

tion it might be considered to be highly interdisciplinary. This raises the challenge

of how to present this work in a way in which the reader will not get lost. This

has been addressed by providing the necessary biological and computer science

background in the initial chapters. The importance of BLAST and the context

in which it is being used are both explained in chapter three. Basic biological

concepts such as DNA, the genetic code and molecular evolution, as well as com-

puter graphics concepts such as bitmaps and vector graphics are also included in

chapter three. In chapter four we briefly review the state of the art in the visu-

alization of BLAST outputs focusing our study on graphical representations. In

chapter five we continue with a critical review, analyzing specific problems in the
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GUI design of the existing approach to visualizing BLAST outputs. In chapter

six we define the methodology used in this dissertation to create a graphic library

for BLAST graphic representations. In chapter seven we describe the structure,

content and functionality of the graphic library we propose as a solution. Finally

the dissertation concludes with chapter eight which discusses the achievements and

contributions of this work.
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Chapter 3

Background

3.1 A glimpse of the genetic code

Figure 3.1: RNA codons [18]

An organism’s genome carries genetic infor-

mation that can contain tens of thousands of

genes. Most genes serve as a recipe for build-

ing a protein molecule. Proteins perform im-

portant tasks within cells or serve as build-

ing blocks for intra-cellular and extra-cellular

components. The flow of information from the

genes determines the protein composition and

thereby the functions of the cell.

Translation is a step along the way to con-

struct proteins from DNA. It is the synthesis of

proteins directed by an intermediary template

to the DNA called mRNA.
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The sequence of mRNA and DNA is composed of four different nucleotides

whereas a protein is built up of 20 amino acids. To allow the four nucleotides to

specify 20 different amino acids, the nucleotide sequence is interpreted in groups

of three nucleotides known as codons [see figure: 3.1]. Thus, each codon specifies

one amino acid. This is referred to as the genetic code [see figure: 3.4].

Because codons are three nucleotides long, DNA can be translated in three

different reading frames. Since DNA is double stranded, there are really six reading

frames for every piece of DNA. Thus every reading frame has the potential to

produce a radically different amino acid sequence.

3.1.1 Representation of the genetic code on a computer

Figure 3.2: Nucleic Acid Code

As shown in the genetic code ta-

ble [see figure: 3.4], nucleotides

and amino-acids are represented by

a specific letter in the alphabet.

Sequences of genes and proteins

are represented by these alphabetic

characters and computers can be

used to read, compare and analyse

them.

This abstraction and the rules

applied to each of these symbols

provides a relatively simple compu-

tational model which can be used
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to read and interpret DNA and protein sequences.

The nucleotide alphabet is quite simple, consisting of just four nucleotides:

adenosine, cytidine, guanosine and thymidine (uridine in case of RNA). For sim-

plicity sake, they are usually abbreviated as A, C, G, and T (U). Amino acids

from the building blocks for proteins and the 20 amino acids are represented by

the symbols, A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y [14].

In addition, with the aim of describing ambiguities in the nucleotide and protein

alphabets, the code can be broadened by the addition of more characters. The

overall content of this code is defined by the standard IUB/IUPAC nucleic acid

codes [see figure: 3.2] and amino acid code [see figure: 3.3].

3.2 Molecular evolution

Evolution refers to changes in the gene pool resulting in the progressive adapta-

tion of populations to their environment [15]. Evolution occurs because genetic

variation exists in populations and because there is a natural selection favoring

organisms that are best adapted to their environment [15].

Genetic sequences basically change over time due to three forces: mutation,

natural selection, and genetic drift.

3.2.1 Mutation

A mutation is simply a change in a DNA sequence. It can be due to errors in the

replication of the DNA or damage caused by mutagenic agents [30].
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Figure 3.3: Amino Acid Code
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Figure 3.4: Genetic code table
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3.2.2 Natural selection

The basic concept of natural selection is that “nature” (the physical and biological

environment) “selects” for variations (as caused by mutations) in characteristics

or traits which improve individual survival and reproduction (adaptive traits) and

selects against unfavourable traits which burden individuals (maladaptive traits)

[12].

3.2.3 Genetic drift

Genetic drift is the term used in population genetics to refer to the statistical

drift over time of allele 1 frequencies in a population due to random effects in the

formation of successive generations [30]. It means that a neutral allele may be

expected to increase or decrease in any given generation with equal probability.

The DNA of a specific species contain signs of its evolutionary history. Two

species that share a similar DNA sequence (and thus also the specific protein

coded) probably have a common ancestor. Usually the DNA sequence will be

slightly different between the two, as each species will have accumulated different

mutations once they separate from one another. The number of mutations can

be used to indicate how closely the species are related. It can also be used as an

indication of how long ago they became separate species. The history of the DNA

of each species manifests itself in its genetic code.

1In genetics, an allele is any one of a number of viable DNA codings occupying a given locus
(position) on a chromosome.
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3.3 The importance of similarity searches

Recent advances in molecular biology, particularly high throughput sequencing

techniques, have provided researchers with fast, cheap, and simple sequencing

techniques so that large genomes can now be determined in relatively short periods

of time. In fact, to date, many bacterial genomes, as well as those of some simple

and complex eukaryotes have been fully sequenced.

Figure 3.5: Sequenced genomes in the last twelve years [4]

In total 422 genome projects have been completed with all the results being

publicly available. Figure 3.5 [25] illustrates the number of completed genomes

sequenced for the last ten years. Although the technology we have at hand fa-

cilitates data production, it also makes it increasingly hard to organize, manage

and analyze all the data being produced. Ultimately we would like to extract

knowledge from this data.

One of the most powerful methods for inferring the biological function of a gene
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(or the protein that it encodes) is sequence similarity searching on protein and

DNA sequence databases [21]. Similarity searches provide the most informative

and reliable method for inferring the biological function of an anonymous gene

[22].

Moreover, prediction of sequence homology by identifying statistically signifi-

cant sequence similarity can be used to infer common ancestors, assign functions in

metabolic pathways, estimate evolutionary distance in phylogeny reconstruction,

determine the active sites of enzymes, construct novel mutations and characterize

alleles of genetic diseases, to name just a few uses. The degree to which change

in sequences follow functional or random paths depends on natural selection and

neutral evolution [21].

Several computer programs have been developed to check and analyse sim-

ilarities among sequences and genomes and the most widely used in sequence

comparison is called BLAST [22]

3.4 What is BLAST?

BLAST (Basic Local Alignment Search Tool) is a set of similarity search programs

designed to explore all of the available sequence databases regardless of whether

the query is a protein (amino acid) or DNA (nucleotide) sequence. The BLAST

programs have been designed for speed, with a minimal sacrifice of sensitivity to

distant sequence relationships. The scores assigned in a BLAST search have a

well-defined statistical interpretation, making biologically relevant matches easier

to distinguish from random background hits. BLAST uses a heuristic algorithm

that seeks local alignments and is therefore able to detect relationships among
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sequences that share only isolated regions of similarity [2].

BLAST has become one of the most important pieces of software in the field

of computational biology. There are several reasons for this. First, sequence simi-

larity is a powerful tool for inferring function and relationships to novel molecular

sequences. Second, BLAST is fast. The number of sequences available is large (over

100 Gigabases) and growing rapidly [4], so speed is important. Third, BLAST is

reliable, from both a rigorous statistical standpoint and a software development

point of view. Fourth, BLAST is flexible and can be adapted to many sequence

analysis scenarios. Finally, BLAST is entrenched in the bioinformatics culture

to the extent that the word ”BLAST” is often used as a verb. There are other

BLAST-like algorithms with some useful features, but the historical momentum

of BLAST maintains its popularity above all others [22].

3.4.1 An overview of the BLAST programs

There are many different types of BLAST programs available from the main

BLAST package. Choosing the right one depends on the type of query (long,

short; nucleotide or protein), and the searched database. A BLAST search has

four components: query, database, program, and search purpose/goal.

Databases

To discuss effective BLAST program selection, we first need to know what databases

are available and what sequences these databases contain. According to their con-

tent, they are grouped into nucleotide and protein databases. These databases

and their detailed compositions can be found in the annual paper review called:
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The Molecular Biology Database Collection [11].

BLAST Programs

The appropriate selection of a BLAST program for a given search is influenced by

the following three factors:

1. the nature of the query

2. the purpose of the search

3. the database intended as the target of the search and its availability

List of the main BLAST programs:

Nucleotide BLAST. Nucleotide BLAST searches take nucleotide sequences as

input and compare these against other nucleotide sequences [26].

Standard nucleotide-nucleotide BLAST. This program takes nucleotide

sequences in FASTA format 2, GenBank Accession numbers or GI num-

bers and compares them against nucleotide databases.

Protein BLAST. Protein BLAST takes protein (amino acid) sequences and com-

pares these against other protein sequences [26].

Standard protein-protein BLAST. This program takes protein (amino

acid sequences) sequences in FASTA format, GenBank Accession num-

bers or GI numbers and compares them against protein databases [22].

2FASTA format is a text-based format for representing either nucleic acid sequences or peptide
sequences, in which base pairs or amino acids are represented using single-letter codes. The
format also allows for sequence names and comments to precede the sequences.
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Translating BLAST. This BLAST translates either query sequences or databases

from nucleotides to proteins (amino acids) so that protein to nucleotide

searches can be performed [26].

Translated query - Protein db BLASTx. Converts a nucleotide query

sequence into protein sequences in all six reading frames. The translated

protein products are then compared against the chosen protein database

[22].

Protein query - Translated db tBLASTn. Takes a protein query sequence

and compares it against a nucleotide database which has been trans-

lated in all six reading frames [22].

Translated query - Translated db tBLASTx. Converts a nucleotide query

sequence into protein sequences in all six reading frames and then com-

pares this to a nucleotide database which has been translated in all six

reading frames [22].

Other BLAST programs: These include several BLAST derivatives and BLAST

wrappers (scripts that run BLAST in a specialized way) with names such as

PSI-BLAST, PHI-BLAST, MegaBLAST, BLASTZ, XBLAST, MPIBLAST,

HT-BLAST, GENE-BLAST and WuBLAST [22].

3.4.2 How BLAST works

The BLAST algorithm uses heuristics to increase its speed. BLAST performs

”local” alignments [2]. Most proteins are modular in nature, with functional

domains often being repeated within the same protein as well as across different
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proteins from different species. The BLAST algorithm is tuned to find these

domains or shorter stretches of sequence similarity. The local alignment approach

also means that a mRNA can be aligned with a piece of genomic DNA, as is

frequently required in genome assembly and analysis. If instead BLAST started

out by attempting to align two sequences over their entire lengths (known as a

global alignment), fewer similarities would be detected, especially with respect to

domains and motifs.

When a query is submitted, the sequence, plus any other input information

such as the database to be searched, word size, expect value, and so on, are fed

to the algorithm on the BLAST server. BLAST works by first making a look-up

table of all the “words” (short subsequences, by default three letters for proteins

and eleven letters for nucleotides) and “neighbouring words”, i.e., similar words in

the query sequence. The sequence database is then scanned for these “hot spots”.

When a match is identified, it is used to initiate gap-free and gapped extensions

of the “word”. After the algorithm has looked up all possible “words” from the

query sequence and extended them maximally, it assembles the best alignment for

each query-sequence pair and writes this information to a BLAST result [22].

3.4.3 BLAST Scores and Statistics

Once BLAST has found a similar sequence to the query in the database, it is helpful

to have some idea of whether the alignment is “good” and whether it portrays a

possible biological relationship, or whether the similarity observed is attributable

to chance alone. BLAST uses statistical theory to produce a bit score and expect

value (E-value) for each alignment pair (query to hit) [33].
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The bit score gives an indication of how good the alignment is; the higher the

score, the better the alignment. In general terms, this score is calculated from a

formula that takes into account the alignment of similar or identical residues, as

well as any gaps introduced to align the sequences [33]. A key element in this

calculation is the “substitution matrix”, which assigns a score for aligning any

possible pair of residues. The BLOSUM62 matrix is the default for most BLAST

programs, the exception being BLASTn (the program that performs nucleotide

- nucleotide comparisons and hence does not use protein-specific matrices). Bit

scores are normalized, which means that the bit scores from different alignments

can be compared, even if different scoring matrices have been used [26].

The E-value gives an indication of the statistical significance of a given pairwise

alignment and reflects the size of the database and the scoring system used [33].

The lower the E-value, the more significant the hit. A sequence alignment that

has an E-value of 0.05 means that this similarity has a 5 in 100 (1 in 20) chance

of occurring by chance alone. Although a statistician might consider this to be

significant, it still may not represent a biologically meaningful result, and analysis

of the alignments is required to determine biological significance.

3.4.4 Basic BLAST report structure

A standard BLAST report is composed of four sections:

Header

The first line contains the name of the program, its version, and its build date.

This is for inclusion in error reports if BLAST crashes or exhibits some kind of
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unexpected behaviour. The next piece of information is a reference to the scientific

literature which should be cited in published research that employs BLAST. The

most important information in the header, the names of the query sequence and

the database, appear next. The last line is a progress meter that is updated during

the search.

One-line summaries

Each line indicates the name of the sequence, the highest scoring alignment found

and the lowest E-value for any High-scoring segment pair (HSP) or group of HSPs.

The one-line summaries are often hyperlinked to the alignments further below when

the output comes from a web page. These summaries are useful for quickly finding

out information such as the names of the top matches.

Alignments

The alignments usually make up the bulk of the report, which shows only one

alignment [see figure 3.6].

Figure 3.6: Alignment

22



Footer

The footer reports search parameters and various other statistics. The most im-

portant features are the word size (W), neighbourhood word threshold score (T),

Expect (E), and the scoring scheme (scoring matrix or match/mismatch values

and the gap costs) because these factors control the sensitivity and specificity of

a search. The footer labels these values clearly.

3.4.5 Alignment structure

The alignments and alignment statistics reported by BLAST differ slightly from

program to program (BLASTP, BLASTN, BLASTX, TBLASTN, and TBLASTX).

BLASTP alignment

BLASTP alignments are the simplest to understand. Figure 3.7 shows the anatomy

of a typical BLASTP alignment.

Figure 3.7: BLAST anatomy
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Score

This value is computed from the scoring matrix and gap penalties. A higher

score indicates greater similarity. The raw score is shown without units, and

the normalized score is followed by ”bits.” [33].

Database sequence

The complete FASTA definition line is reported here along with the length of

the sequence. All the alignments between the query and a specific database

sequence are collectively called a hit. The database in figure 3.7 has one

alignment.

Expect

The number of alignments expected at random given the size of the search

space, the scoring matrix, and the gap penalties [33]. The lower the E-value,

the less likely this is a random similarity.

Statistics lines

The Score, E-value, and percent identity always appear here. Depending

on the program, percent positive scoring, P-value, group, gaps, strand, and

reading frame may also be reported here.

Query and Sbjct

The query sequence is always listed first. The database sequence is abbrevi-

ated as Sbjct (subject).

Coordinates

The coordinates of each sequence are indicated at the beginning and ending
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of each line. The single alignment in figure 3.7 is long enough to be reported

on three separate lines.

Alignment line

Letters that are identical between two sequences are reported here. Those

that have positive scores in the scoring matrix are displayed with a plus sign.

Gaps and non-positive scores are blank.

BLASTN alignment

DNA is a double-stranded molecule, and genes may occur on either strand. This

fact makes BLASTN alignments a little more difficult to interpret than BLASTP

alignments. When a query sequence is searched against a database, both strands

of the query are examined. The plus strand is the sequence in the FASTA file.

The minus strand is the reverse complement of this sequence. If the similarity

between the query and subject sequences is on the same strand, both sequences

are labelled as being on the plus strand and the coordinates increase from left to

right [see figure 3.8] . Since BLAST just aligns letters and has no model of genes

or other features, it is impossible to determine on which strand a gene lies from a

BLASTN alignment. Even if an alignment is labelled as ”Plus/Plus,” the encoded

gene may be on the minus strand.

BLASTX alignment

Alignments from BLASTX are complicated by both strand and reading frame. The

query sequence is translated in three frames on both the plus and minus strands.

With three nucleotides per codon, the coordinates of the query sequence increase
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by threes [see figure 3.6]. On the plus strand, the reading frame is computed

relative to the start of the plus strand; reading frame 1 starts at position 1 and

reading frame 2 starts at position 2. On the minus strand, the reading frame is

calculated relative to the reverse complement of the plus strand; the last letter of

the FASTA file starts frame -1 and the second-to-last letter starts frame -2. Minus

strand matches invert the query coordinates.

TBLASTN alignment

TBLASTN alignments are very similar to BLASTX alignments, except that the

database and query are exchanged. Therefore, the database sequence increases in

threes, and the database sequence has flipped coordinates on the minus strand.

TBLASTX alignment

TBLASTX has more complicated alignments because both the query and the

database have strand and frame. One of the most confusing aspects of TBLASTX

alignments is that a number of different frames may represent the same region

from both the query and subject. A TBLASTX alignment between two genomic

Figure 3.8: BLASTn
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sequences often highlights shared coding sequences. However, the correct frame of

the encoded proteins can’t be determined from a TBLASTX report.

3.4.6 Graphical representations of BLAST reports

BLAST reports are complex. They are long reports composed of statistical and

biological data and as such are difficult to structure, organize and summarize in a

meaningful simple view. Viewing them graphically can help the user to understand

them better, especially when the reports are very long. At present just the web

BLAST version includes graphical representation for the output [see figure 3.9].

Figure 3.9: NCBI BLAST result

3.5 BioLibraries

Computational biology is a young science where data and methods to treat infor-

mation, expand and change constantly. As such, pre-packaged commercial suites
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become outdated in a short period of time, often not addressing the demands of

the scientist that continually needs to do better data analysis [28]. It was partly

this frustration with commercial suites that drove the creation of the BioGroups

for developing BioLibraries and other open source work [28].

The Open Bioinformatics Foundation or OBF is a non profit, volunteer or-

ganization which supports many open source projects (biolibraries among them)

for computational biology. BioLibraries are based on common standard languages

(Perl, Python, Java, Ruby, PHP, ...) that provide toolkits of functionality that

facilitate the creation of pipelines or analytical modules.

To enhance performance many of them can be linked to compiled libraries, for

instance graphic libraries in C++. All of them, in one way or another, facilitate

access to relational database management systems. They are multiplatform and

thus run on different versions of Unix, Linux, Windows and MacOS. All of them

are freely available and open source.

These bioprojects are often well supported by wikipages and mailing lists. One

impressive feature of these BioLibraries is the capacity they provide to generate

graphics of analytical outputs as well as graphical user interfaces that make it

easier for researches to access analytical resources [10] [8] [9].

OBF BioLibraries support several languages and can differ in structure and

intended solutions. Examples of some of these libraries include BioJava, BioPerl,

BioPython, BioRuby and BioPHP.
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3.5.1 An overview of BioPython

The BioPython Project is an international association of developers to create

freely available tools to address biological problems. The BioPython web site

[10] provides an online resource for modules, scripts, and web links for developers

of Python-based software for life science research.

The BioPython package (2.7 MB gzipped) contains about 60 classes. What it

covers in comparison with its siblings is easy and straightforward to follow, and it

provides a good base for further development. Installation of the complete package

along with all the dependencies involves separately downloading and installing

other components.

BioPython includes local and remote alignment resources as well as methods

for biological and regular expression pattern matching, providing code fragments

and scripts for doing this.

A big part of components included in BioPython have been conceived to parse

the many different formats used in computational biology. Rather than having to

write a completely new parser for each new format, BioPython relies on the Scan-

ner/Consumer methods that are the core of the Martel regular expression parsing

engine, which allows the user to make use of many current formats and easily

define others using a SAX-like approach. BioPython also allows easy creation and

manipulation of objects due to Python’s support for object oriented programming

[28].
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3.6 Visualization

Visualization is any technique for creating images, diagrams, or animations to

communicate a message. Visualization through visual imagery has historically

been an effective way to communicate both abstract and concrete ideas [5]. In

computer graphics, computers are utilized to generate visual images synthetically

and to integrate or alter visual and spatial information sampled from the real

world.

In computational biology the term visualization has become popular quite re-

cently, meaning anything from visual starting points for navigation through bio-

logical data to transformations of data into graphical representations of biological

results. There are an increasing number of tools being developed for both generic

use (rule, tree, map and other graphing visualisers) and for computational biolo-

gists (genome browsers, 3D viewers, sequence searching filters, etc) [39].

Images or graphics have been the main way to represent, simplify and make

understandable sequence annotation. Most genomes are considered as linear data

with other information along the DNA sequence, such as exon, intron, gene, cyto-

genetic bands and other annotations [see figure 3.10 [17]]. Genomes are usually

directly mapped to the linear representations in two dimensions of the visual space,

and different types of annotated information are presented as parallel tracks along

a DNA sequence [39]. In addition, various glyphs are utilized to give visual hints

about the property of information on the tracks.

Bioinformatics programs often follow the three main steps for implementing a

graphical representation, which include data acquisition, mapping and rendering

[5]. The first step is to acquire data and apply preprocessing operations so that
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the data is in a format ready to be mapped to visual spaces. The second step

is to map preprocessed data from the first step to visualisable geometric shapes

with appropriate attributes, such as location, colour and size. The last step is

to render final output images to a visible graphic view. For the purposes of this

dissertation it is worth mentioning two different approaches to rendering the final

output: bitmap graphics and vector graphics.

3.6.1 Bitmap graphics

Bitmap graphics are the most common graphic format in use on the web and,

indeed, on the computer . With the exception of Flash and SVG (scalable vector

graphic) format, every single graphic seen on the web is a bitmap [13]. As an

alternative Java applets, and plugins like Chime [16] have also been used to a

certain extent in bioinformatics to display vector graphics on the web. Bitmap

Figure 3.10: Linear representation of genome annotations by Ensembl [17] [17]
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graphics are composed of pixels, each of which contains specific colour informa-

tion. A pixel is minutely small; a single image may be composed of hundreds of

thousands of individual pixels. Much like cells revealed from a piece of tissue when

seen under a microscope, these pixels are only clearly and individually visible when

the image is magnified. A graphic composed entirely of pixels each with its own

colour properties is ideal for photographic images where there are thousands, even

millions of different colours [13]. Complex fills, shading and gradient effects can

easily be rendered.

In bitmap graphics, there is an immutable connection between pixels and the

image they compose. When a bitmap graphic is saved, the computer is really

saving an exact visual picture of the image: this pixel goes here and is this colour;

that pixel goes there and is that colour, etc. This connection is responsible for the

effects seen when resizing a bitmap graphic. Given three image sizes - the original,

one smaller, and one larger - each will naturally contain a different number of

pixels. Pixels do not change sizes, but the image does. It takes more pixels to fill

the area of a larger space, fewer to fit into a smaller space. Making an existing

bitmap graphic smaller is a process of reduction; pixels are removed from the image

until it fits the new size [23]. Computers are well equipped to perform this task.

An image can be sized smaller repeatedly and still maintain the same quality, up

until the point where there are not enough pixels available to reproduce the image

clearly. Increasing the size of a bitmap graphic is similar to pouring a drink from a

smaller glass to a larger one. For the drink to occupy the full volume of the larger

glass, we must add additional fluid. The original concoction is therefore diluted

and the flavour weakened. In the same way, the computer must add additional

information (pixels) to the original image to allow it to fill the new larger area.
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Since there is no source for this information, it must be interpolated from what is

currently available in the image. As such, bitmap images that have been scaled

larger are frequently blurry. After extreme size increases, individual pixels ”blocks”

are more apparent and the image is said to be pixellated [13].

3.6.2 Vector graphics

Rather than being composed of pixels, vector graphics consist of points, lines, and

curves which, when combined, can form complex objects [7]. These objects can

be filled with solid colours, gradients, and even patterns.

Vector graphics are mathematical creations. For this reason, the programs

that are used to create them save instructions on how the image should be drawn,

rather than how it looks. This is the key difference between the two types of

graphics. Because the computer has a description of how the image should look, it

can be redrawn at any size, in any position, without losing any quality. A vector

graphic resized to 5 times its original dimensions is simply reproduced, exactly, at

the new size. It can also be freely manipulated without losing coherence, like a

rubber band that can be stretched an infinite number of ways.

The price of this scaling flexibility is that vector images must remain relatively

simple in comparison to Bitmap images. It is impossible to render the nuances of a

photographic image in a vector editor; as a result, illustrative vector graphics have

a distinct look and feel, even when produced in detail [7]. The colouredHowever,

vector graphics are ideal for producing artwork which needs to be presented in

different sizes or colours with no loss of quality [23].
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Chapter 4

Review of the state of the art in

BLAST graphic representation

4.1 NCBI-BLAST and its BLAST graphic rep-

resentation

NCBI-BLAST is available from the National Center for Biotechnology Information

(NCBI). Pre-compiled binaries and source code are available for free and without

restrictions. The source code is in the public domain. This has made it easy

for other researches to generate other versions of the package. NCBI-BLAST is

currently available as a set of pre-compiled binaries for eleven operating system-

hardware combinations. The currently-maintained implementation of BLAST is

part of the NCBI ”C++” Toolkit. The algorithm core is written in ”c” and a

documented ”C++ ” API is available. A ”c” API that assures compatibility

with the ”c” toolkit is also available. The source code may be downloaded via
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anonymous FTP or by cvs 1. Cvsweb and LXR source browsers are also freely

accessible.

Three alternatives exist for BLAST searches:

BLAST web server: The BLAST web server [33], hosted by the NCBI, allows

anyone with a web browser to perform similarity searches against constantly

updated databases of proteins and DNA that include most of the newly

sequenced organisms. There are two alternative ways to access the BLAST

engine working within the web server:

BLASTcl3 network client: BLASTcl3 is a BLAST client software from NCBI

[26]. This program runs on a local machine and uses the BLAST web

server at NCBI to perform BLAST searches of the NCBI sequence

databases.

Script driven URL API: Users can use URL encoded commands to interact

with the NCBI BLAST server to perform searches through a browser

interface or directly through a script without the browser.

BLAST standalone: This application is for users who wish to run stand-alone

BLAST at their own computer or institution. One reason to do so might be

the desire to use private databases not available at the NCBI.

wwwBLAST: This refers to a set of stand-alone BLAST programs/web forms,

which, as well as performing BLAST alignments locally, uses web forms as a

graphical user interface (GUI) and offers better security (within a protected

environment) [22].

1More information at ”http://www.ncbi.nlm.nih.gov/BLAST/”
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Only the BLAST web server and the wwwBLAST program present graphics

with their result sets. The source code of these two types of BLAST differ slightly

from each other and thus there are some differences between the result sets that

they produce. By comparing the BLAST web server and the wwwBLAST graphic

representation we find that the former provides better and more elaborate graphics.

Although the NCBI BLAST web service is publicly available, the graphics tool

implemented in the BLAST server cannot be used outside of the NCBI servers

due to the unavailability of the code for the graphics. As such, it can be only used

from the NCBI servers.

When BLAST reports are long it is difficult to quickly grasp a general and

comprehensive view of the results. Viewing them graphically can help a user to

understand them better [Figure 3.9 shows the result from the NCBI web server].

The coloured bars in the graphic summarize the BLAST results. At the top is a

linear map of the query. Each bar drawn below the map represents a nucleotide

or protein sequence that matches the query sequence. The position of each bar

relative to the linear map of the query, allows the user to instantly see the extent

to which the database matches align with a single or multiple regions of the query.

The most similar hits are shown at the top in red. Pink, green, blue and black

bars follow, representing sequences in decreasing order of similarity. Hatched ar-

eas (when present) correspond to the non-similar sequence between two or more

distinct regions of similarity found within the same database entry. Moving the

mouse over the bars displays the name of the matching protein found in the textbox

above.

36



As an example we show a BLAST result where an EST (Expressed sequence

tags of cDNA clones) from Trichoderma virens 2 is compared against the protein

Genbank database using BLASTx in the BLAST web server.

Pink bars represent alignments for the last 300 nucleotides of the EST. The

similarity is measured by the score value. The values for the pink colour are

narrowed down from 80 to 200 units showing high similarity alignments with ”cell

wall glucanase” and ”hypothetical” proteins. Bars in black represent low similarity

regions [see figure 4.1].

Figure 4.1: EST gi:123226991. NCBI BLAST result

2gi—123226991—gb—EH628721.1—EH628721 EST00333 Trichoderma virens IMI 304061
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4.2 GMOD and its BLAST graphic representa-

tion

The Generic Model Organism Database (GMOD) Project is an open source project

that aims to develop a set of software tools for creating and administering a model

organism database. Components of this project include genome visualization and

editing tools, literature curation tools, a robust database schema, biological ontol-

ogy tools, and a set of standard operating procedures.

The BLAST Graphic Viewer (BGV) tool is a component of the GMOD software

for sequence alignment visualization. It provides a graphical visualization of the

regions contained within High-scoring segment pairs (HSPs) relative to the query

sequence to represent BLAST results [see figure 4.2]. This distribution includes

sample databases and a BLAST Search form.

Figure 4.2: Example of a BGV graphic representation

The BGV tool is a Perl library which can be used as an independent library or

as a part of the BioPerl library. It comes with two main packages supported by 18

small sub-packages. BGV makes use of the BioPerl library to parse and get results
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from the BLAST output. This information is then used to generate bitmap files

making use of the GD graphic library 3. BioPerl has different modules to work

with BLAST locally as well as remotely.

BGV doesn’t support most of the common BLAST programs mentioned in this

dissertation. It just provides graphic visualization for a specific version of BLAST

called WuBLAST.

3GD is an open source code library for the dynamic creation of bitmap images by program-
mers.
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Chapter 5

Critical review of existing

approaches

5.1 Visual design

NCBI BLAST graphics and BGV show an overview of all the HSP results in a

compact space using positional rectangular shapes of different length and colours

which depict the matching similarities. This overview makes the BLAST results

easier to understand, navigate and access. Although the conceptual design and the

graphics are good, they are not optimal. By better utilizing the rules of graphic

design and usability, BLAST graphics could be improved and made more readable,

interactive, appealing and usable.

Visualization is especially potent in promoting the intuition and insights that

lead to breakthroughs in understanding the relevant connections among salient

features [6] and effective presentation of results is critical to decision-making

[5]. In graphical user interfaces visual representations help users to make sense of
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complex data [32].

Graphic design is the first and the last part of the user interface observed by the

user [32]. Graphic design can significantly improve the communicative features of

the interface leading to increased usability. System usability has many components

including ease of learning, efficiency of use, memorability, reduced number of user

errors, and subjective satisfaction. A good graphic design can improve all these

attributes. [32].

Graphic design is the act of arranging text and visual elements to communicate

a message to the viewer. Graphic design facilitates the delivery of visual logic

and seeks an optimal balance between visual sensation and graphic information.

Without the visual impact of shape, colour, and contrast, pages are graphically

uninteresting and will not motivate the viewer. Visual and functional continuity in

content organization, graphic design, and typography are essential to convince the

audience that the system offers timely, accurate, and useful information [32]. A

careful, systematic approach to page design can simplify navigation, reduce user

errors, and make it easier for readers to take advantage of the information and

features of the site. Nonetheless achieving maximum leverage for each element

in a design requires a thorough understanding of the communication problem at

hand in addition to the design elements at the viewer’s disposal [32].

Mullet and Sano succeed in demonstrating that graphic design is not a black

art but a very engineering-like discipline with its own rules [32]. Also as in other

types of engineering, there are systematic steps that can be taken to improve the

visual design characteristics of an interface. In this section we aim to analyse some

graphic design concepts of the BLAST graphic representation applying some basic

GUI visual design techniques [32].

41



5.1.1 Colour and contrast

While the choice of colour is one of the most subjective decisions in graphic design,

it is still important to understand the theory behind why some sets of colours

should be chosen over others. The theory may not enable instant selection of a

colour scheme, but it certainly leads a designer towards good choices. The colour

theories of Chevreul, Bezold, Albers and Itten demonstrate how it affects design,

so a designer can use them to advantage, moving a viewer’s eye through a visual

design [31]. Colour can enhance communication, but only if it is used correctly

[34].

The limitation of a small colour palette have long been compounded by the

tendency to fill the colour table with colours that are easy to describe digitally.

This practice inevitably produces the familiar range of intense, over-saturated

colours that still predominates in many computers displays [32].

NCBI uses a limited colour palette [see figure: 5.1] not taking advantage of

higher standard colour resolutions in its interface. Five colours are used to repre-

sent different scores for the alignments, and, excluding the black, the rest of them

use an extreme value in the RGB colour palette. Moreover the graphic presents

absence of colour harmony which makes the graphic unappealing to the end user

[32]. This neglects visual balance and visual contrast between colour combinations

[32].

The relationship between a figure and its surrounding field portrays a level

of contrast; the more an object contrasts with its surrounds, the more visible it

becomes [38]. Contrast provides the basis for visual distinctions, which are the

building blocks of meaning in a visual message [19]. In the NCBI graphics the
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use of green and purple figures on a white background yields a graphic with poor

colour contrast [see figure 5.2]. Using a thin border around the shape would help

to create contrast between the background and the shape. Less extreme values in

the RGB range would help visibility and harmony on a light or white background.

The graphic delivered by BVG considers these concepts of colour and contrast

mentioned above, considerably improving the quality of colour harmony.

Colours, shades and lines in the background can create contrast to draw at-

Figure 5.1: NCBI hexadecimal colour values

Figure 5.2: Example of poor colour contrast
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tention to groups of related information as well as positioning them in the space.

Regular positional and grouping elements allow the viewer to more easily spot

areas of interest when making comparisons. In the NCBI display we cannot find

any such elements of contrast.

5.1.2 Organization, simplicity and clarity

Effective graphic design for communication purposes is about organizing and clas-

sifying content in a clear and simple way so that it can be easily found and read

or viewed [32]. The way the pieces are put together is usually as important as

the pieces themselves. In a simplistic way critical information should be near the

top of the site and information should be shown by level of importance [38].

In the case of NCBI graphics the layout of its components follows organizational

rules showing the alignments with less relevance at the bottom of the graphic.

However, as the legend contains additional and non critical information for the

user, the legend (which describes the qualitative meaning of the colours) should

be positioned at the bottom.

Simplicity is an issue of visual communication, considering how much detail it is

necessary to convey [38]. The necessary information should be available without

burdening the user with unnecessary information. This implies that redundant

information should be avoided and all information related to one topic should be

grouped together [38].

At first sight it seems NCBI graphics succeeds because it simply represents

HSPs using quantitative and qualitative rectangular bars as part of the graphic.

Nonetheless if the graphic is examined in depth and the meaning of alignments
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understood, it can be seen that this approach over-simplifies the representation.

It does not make effective visual distinctions among HSPs, grouping all together

in the same line and in the same figure if they overlap [see figure 5.3]. One

sequence can be aligned with different fragments of another sequence producing

several HSPs. It might confuse the user to see one rectangular bar when the

display should show two or more. The graphic should not exclude non redundant

information just because it overlaps. In this case HSP overlapping should be

displayed in a different line. BVG makes this distinction among HSPs and thus

improves the representation of BLAST alignments.

Figure 5.3: Two alignments found in different open reading frames for the same
sequence overlaping partially in the same region. On the right the NCBI graphic
representation doesn’t show there are two HSPs, instead it groups them in the
same line. On the left the same representation created by VEGRA shows two
HSPs.

Clarity is another important goal of effective communication. Clarity is not the

same as simplicity. Simple things are clear if the message is intended to be brief

and small, but often the message is about a complex relationship that can only be

presented with a necessarily large amount of data [32]. This complexity can be

made clear by means of effective organization of the resulting repressentation.

The NCBI aims for simplicity by avoiding text and references in its main dis-

play. Identification references for the sequence, the similarity value measuring the
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quality of the alignment and a brief description of the sequence can only be ac-

cessed in the NCBI tool by mousing over each sequence individually. At first sight

there is no way to know which protein or nucleotide sequences the graphic displays.

Lack of identifications for the linear representations makes the graphic difficult to

understand since the user cannot identify and compare the protein or nucleotide

alignments drawn in the main graphic [see figure 5.4]. Hence this approach does

not clearly convey the message to the user. In terms of usability the user would

save more time having an overview of all the important values and a short refer-

ence for each sequence representation at once. The simplified way adopted by the

NCBI graphics requires the user to memorize and find out information about the

alignments one by one.

5.2 Graphic format

Bitmap graphics are well differentiated from vector graphics. Vector graphics are

better for design and layout, typography, logos, technical illustrations, and data

representation while bitmap graphics are more suitable for retouching, photograph

processing, and artistic illustrations [7].

Vector-oriented images can be resized and stretched without any loss in quality

or distortion. Additionally, they look better on devices (monitors and printers)

with higher resolution. Another important characteristic of vector graphics is that

the representation of images often requires less memory than bit-mapped images.

The NCBI graphic representation has been using the bitmap graphic format

since its first release [26]. The BLAST web server displays the text BLAST results

at the bottom of the visible area with a graphical representation of the results at
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Figure 5.4: The NCBI graphic representation on the top doesn’t show identification
references nor similarity values. On the bottom: an example of VEGRA showing
these values for each line of alignments.
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the top. The image file is a bitmap using the GIF format.

BLAST graphics were originally designed for web browsers which did not sup-

port vector format graphics, and GIFs were the most appropriate solution for this

work. Developers were limited to a narrow set of web browser functionalities that

did not support vector graphics. However, due to the increasing popularity of

web-based applications during the last few years, improvements for browsers and

the web have provided powerful scripting and event support thus enabling the use

of vector graphics as a platform upon which to build graphically rich applications

and user interfaces.

5.3 Dynamic actions

In general, bitmap graphics do not provide dynamic actions by themselves; how-

ever, within the context of web technologies it is possible to add dynamic effects

to images using Dynamic HTML (DHTML). DHTML is a method for creating

interactive web sites using HTML, JavaScript, Cascading Style Sheets (CSS), and

the Document Object Model (DOM). BLAST graphics primarily use JavaScript

to perform two basic graphic dynamic actions. By moving the mouse over specific

colour bars the user can get direct access to information about the sequence such

as ID reference, description and E-value. If the user clicks on the bar instead the

graphic will redirect the user to the corresponding text alignment.

A disadvantage of DHTML is its difficulty to develop and debug; this is due

to the different degrees of support across different web browsers. The main draw-

back of this technology when applied to BLAST graphics, is that the definition of

dynamic actions are not in the graphic but in the code of the HTML page. This
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means that the image file by itself will not keep the interactive properties. The

dynamic effects will only persist while the graphic is used in its HTML as part of

the code.

In terms of usability the NCBI graphics do not show which parts are clickable

to users. The shapes representing information which contain actions (e.g. links

to other information) should be easy to notice when mouse-over actions are per-

formed. These shapes should be defined as buttons where the colour changes upon

mouse-over. Because BLAST graphics are bitmaps, those variations of colour in

the graphic would require a new request to the server in order to create a new

graphic. This would certainly slow down the communication with the user. BGV

follows the same disadvantageous approach in therms of usability.

5.4 Customizable graphics

BLAST graphics do not allow users to change basic properties of the graphic such

as the size and scale of the panel, colour of the background, the possibility to show

or hide some specific information in the graphic, etc. There is no other way to

achieve customization than by modifying the code itself. BGV similarly does not

support changes in the basic properties of the graphic.

5.5 Availability

The BLAST web server does not allow users to access the source code used to

generate graphics from BLAST results. The NCBI BLAST graphic representation

can only be accessed on-the-fly via the NCBI servers. As the NCBI databases
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are being updated on a daily-basis this might be considered to be a disadvantage

because it is not always possible to reproduce results and thus get the same graphic

representation at different points in time. This is also a concern for researchers

who want to work with private or local data since the only way to get this type of

representation would be to make their data publicly available.

wwwBLAST supports graphics and makes its code available. However its per-

formance is significantly worse than that of the NCBI BLAST server tool.

BGV improves visualization of BLAST results. However it only works with

WuBLAST, and not other BLAST programmes.

5.6 Documentation and structure of the code

The source code available for BLAST graphics is not sufficient. There are no UML

diagrams, guidelines or schemata to facilitate the understanding of the organization

and content of the code. The code has no clear unified methodology and does

not follow an object-oriented modelling approach. The same is true for BGV,

however, its scripting language makes it much more understandable and easier to

manipulate.
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Chapter 6

Materials and Methods

6.1 Vector graphics on the web

The World Wide Web’s enormous success has been achieved by marking Web

documents with a simple set of HTML tags to denote basic structural and layout

concepts such as bold headings, tables etc. Perhaps the most striking weakness

of today’s Web technology is the legacy of previous restrictions on the web. For

instance, all graphic material had to be expressed in one of three raster-based

formats (GIF, JPEG, PNG). Such formats distort badly at any scaling factor

other than 1:1, due to the pixel-by-pixel way in which the image data is stored.

Moreover, these formats are innately non-searchable and this is a severe limitation

given that a common use of graphics on the Web is for representation of annotated

maps and line diagrams, together with exotic characters and logotypes that lie

outside conventional character sets.

In recent years Macromedia’s Flash and its associated Shockwave format (SWF)

have achieved a degree of acceptance as a standard for displaying vector graphics
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on the Web. More recently the World Wide Web Consortium (W3C) adopted

a new standard named ”Scalable Vector Graphics” (SVG) as a technology for

deploying graphical content over the web.

Today there are three alternatives for visualizing vector graphics: SVG, Flash

and PDF. Nonetheless, since PDF was not designed for the word wide web, SVG

and Flash are the two main technologies used for vector graphics on the web.

6.1.1 Flash

Macromedia’s Flash format is currently the most widely used vector graphics and

animation format on the Web [35]. Flash graphics (and movies) are distributed as

SWF files, a compact binary file format that requires an additional browser plug-in

to be available in order for the graphic to be viewed. Objects in Flash graphics

are described by standard vector graphics primitives such as lines and curves.

Bitmap objects can be included in Flash files, all the objects may be animated,

user interactions can be specified and sound can be streamed into movies [35].

Flash files are created by using the Flash commercial editor available from

Macromedia, which generates files with a FLA extension. These files are editable

by Flash tools and the objects, images and animations can be altered. Flash

movies for Web distribution are turned into its final form by exporting them as

SWF files from within the editor. This format is not editable and is a compact

format suitable for Web distribution. The SWF format defines shapes, these are

then placed onto a stage by using a transformation matrix to scale and position

them. The transformation matrix can be altered from frame to frame to create

animation effects.
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6.1.2 SVG

Scalable Vector Graphics (SVG) is an XML markup language for describing two-

dimensional vector graphics, both static and animated (either declarative or scripted)

[7]. It is an open standard created by the World Wide Web Consortium, which is

also responsible for standards such as HTML and XHTML. The use of SVG on the

web gained support in recent years, but most browsers still require special plugins

and its performance is not as efficient as is Flash [23]. In order to view SVG

documents in a Web browser, a viewer needs to be installed. There are several

viewers available but the Adobe SVG Viewer is probably the most commonly used

and can be downloaded from the Adobe web site [24].

6.1.3 PDF

PDF was not primarily designed for the world wide web, yet it may be used

with the help of plugins [1]. Its viewer, Acrobat Reader, free courtesy of Adobe,

operates independently from the browser and it is available for multiple platforms.

6.1.4 Flash vs. SVG

Browser support

In most browsers a plugin is needed to view SVG content. The most widely avail-

able SVG plugin is from Adobe Systems (the Adobe SVG Viewer) which supports

most of the SVG 1.0/1.1 specification. Curiously, Adobe Systems, the first sup-

porter of the non-proprietary technology ”SVG”, acquired Macromedia and its

product portfolio (including Flash) in 2005 [36]. Flash is widely supported by
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most browsers and firmly established after 10 years of deployment on the Internet

[13].

Open standard formats

While SWF is not an open standard like SVG [35], Macromedia (now Adobe

Systems) does make it available to the public, and many commercial and open

source tools exist for generating and parsing SWF files. It can be easily created

from data described using XML syntax, or any other syntactic structure for that

matter, by using libSWF, Ming, FreeMovie, or even the freely available SWF C++

SDK from Macromedia [3].

Bandwidth efficiency

SWF can carry more encoded data than SVG using the same number of bytes

[23]. Compared to SWF, SVG is bandwidth intensive which is a concern in limited

bandwidth environments such as South Africa.

6.1.5 SWF and Ming

The Macromedia Flash File Format (SWF) has become the de facto standard for

vector graphics on the Internet [3]. Although there is considerable interest in SVG,

developers are still waiting for the tools to match the functionality offered by Flash

[3]. The SWF file format has been tested on the Internet over an extensive period,

while SVG is still a relatively young and less tested technology. Given these factors

in addition to the previous review we have chosen SWF as the preferred vector

format for this work.
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There are some freely available libraries which can be used to write SWF files

without the need to use any commercial tools like Macromedia Flash. The use of

such a library is a significant help in the development of a method to automatically

create SWF files from input data within a web server environment. We selected

Ming as the SWF library for this work as it is widely supported [40] and provides

complete documentation and many examples.

6.1.6 Ming

Ming is an open-source (LGPL) C library for generating SWF (”Flash”) format

movies, as well as a set of wrappers for using the library from C++ and popular

scripting languages such as PHP, Perl, Python and Ruby [40]. Ming was initially

written in 2001 and has been under continuous development ever since. Version

0.3 was released in February 2006 1. The Ming project provides a set of tools and a

library that has allowed the author to avoid using commercial authoring software

during the development of this research work [29].

6.2 Working with BLAST results

Several versions of BLAST are available and the resulting formats for each version

are slightly different. The BLAST graphic library presented here is independent

of the BLAST version used. BioLibraries such as BioPython and BioPerl provide

good solutions for result parsing as they have classes and functions that are up-

dated frequently to work with different formats and versions of many programs

used in computational biology, including BLAST.

1For more information ”http://ming.sourceforge.net/”
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6.3 Programming a BLAST graphic library, why

Python?

It is convenient to use the same programing language for retrieving information

from BLAST outputs and for creating the graphic files by using a graphic library.

Ming’s provision of several different language wrappers is appealing as it allows

for flexibility with a wide range of BioLibraries that are available in different

languages. PHP may seem to be a good alternative when seeking to integrate

the tool with a web application, however the Biolibrary in PHP is not as well

supported as are BioPython, BioPerl or BioJava. Java is another alternative, as

it is a consistent and reliable programming language, however the Java wrapper

module for Ming is still relatively immature. BioPython was chosen over other

BioLibraries due to its Object Oriented Model structure, BLAST support and

principally due to the author’s better understanding of the Python language.
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Chapter 7

Results

7.1 The Vegra library

VEGRA BLAST stands for VEctor GRAphics for BLAST. It is an Object Ori-

ented Python Library to create graphical representations from BLAST results. It

takes the output of BLAST programs as input and produces SWF files as output.

VEGRA uses BioPython to parse BLAST outputs and relies on Ming to create the

SWF files. The SWF files generated by VEGRA can be integrated in the HTML

body of the BLAST results together with the traditional BLAST bitmaps graphics

[see figure 7.1].

The VEGRA library is composed of a collection of Python files (as well named

modules). These files are organized into classes which provide modularity and

structure in the object-oriented program. The classes have been organized into

three groups according to level of abstraction and complexity. These groups are

”Components”, ”Layers” and ”Main class”.
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Figure 7.1: Vegra SWF graphic example
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Groups of classes in VEGRA BLAST [see figure 7.2]:

• The components group consists of a group of unspecialized classes which help

to define simple objects and perform basic functions that are often used in

the library.

• The layers group contains classes that define specific parts of the graphic.

These classes are responsible for creating the layout object of the graphic.

• The main class group consists of only one class which brings together all the

layout objects to create the final SWF output file.

• There is an extra module which is not classified in these groups. This is the

initialization file, responsible for starting VEGRA.

7.2 Groups of classes in the VEGRA library

7.2.1 Main class

BLASTGraph()

This is the only operational class capable of creating functional SWF files in VE-

GRA. It makes use of layer and component objects for setting the properties

and structure of the final BLAST graphic. The code for this class defines and

places the layer objects throughout the graphic panel distributing them from top

to bottom in the following order: boxinfoLayer, queryLayer, alignmentLayer and

legendLayer; and from left to right in the following order: ID frame, alignment

frame and E-value frame [see figure 7.3].
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Figure 7.2: UML class schema of Vegra and its interaction with the Ming library
and the BLAST classes from BioPython
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Figure 7.3: Distribution of graphic layers and frames in Vegra
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Figure 7.4: BLASTGraph class

This class contains functions that al-

low the hiding of different elements of the

panel except the alignmentLayer. All of

the frames can also be hidden, except for

the alignment frame. When a layer is

hidden, the BLASTGraph class skips the

creation of the object, rearranging the

position of the rest of the layer object.

If a frame is hidden, the BLASTGraph

class will create the layer objects giving

instructions to the layer class to hide this

frame. As such, the presence of a layer

is dependent on the BLASTGraph class

and the presence of the frames is depen-

dent on the layer classes.

It is possible to control the width of the panel which in turn will affect the

width of all the components inside the panel. However, it is not possible to define

its height as this value is dependent on the number of alignments in the graphic.

While the width is known in advance the height cannot be known until all the

information to create the graphic is generated.

Arguments given to the class:

• BioPython BLAST record object

Methods:
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• The ”setPanelBackground” function sets the background of the panel by

RGB format. Default: (R=0, G=0, B=0).

• The ”setPanelWidth” function sets the width of the panel in pixels. Default:

650.

• The ”setPanelMargin” function sets the panel margin in pixels. Default: 5.

• The ”showLegend” function determines if the Legend layer is going to be

shown (True) or not (False). Default: True.

• The ”showQuery” function controls the visibility of the Query layer. Default:

True.

• The ”showBoxinfo” function controls the boxinfoLayer visibility. Default:

True.

• The ”showId” function determines whether the ID frame is going to be

present or not. Default: True.

• The ”showEvalue” function determines whether the Evalue frame is going

to be present or not. Default: True.

• The ”setAlignmentWidth” function is used in the BLASTGraph class to

recalculate the width of the alignment layer considering the width of the

panel, the width of the margin, and the presence or absence of the ID and

Evalue frames.

• The ”getPanelSize” function helps to determine the size of the panel (width

and height) after executing the function that creates the graphic. This func-
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tion is useful for recovering size information of the SWF file which is necessary

in order to accommodate the graphic in HTML pages.

• The ”createGraph” function is the only compulsory function that must be

invoked to be able to create a SWF object. This function requires a name

for the SWF output file.

7.2.2 Layers

boxinfoLayer()

Figure 7.5: boxinfo-

Layer class

The boxinfoLayer class is responsible for creating a text

field on the top of the graphic to display information about

the HSPs. Once the graphic is displayed, mouse-over ac-

tions on the alignments representation cause the boxin-

foLayer object to show information about the alignments

selected.

Class overview:

Arguments given to the class:

• width

• evalue width

• alignment width

Methods:

• The ”getObject” must be invoked to create the object
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queryLayer()

Figure 7.6: query-

Layer class

The queryLayer class is responsible for creating the infor-

mation field and the positional values for the query se-

quence. It represents the query sequence with a red bar

along the horizontal edge of the header. If the query is a

nucleotide sequence it is represented by an arrow and if it

is a protein it is represented by a box. The code in this

class creates a scale of eight thin vertical lines under the

horizontal bar showing position values along the sequence.

The query information is retrieved through a BLAST

record BioPython object given as one of the default argu-

ments in this class. Other compulsory arguments are the presence or absence of

the ID frame and the E-value frame, the width of these two frames and the width

of the alignment frame. Like the previous class, it returns a sprite Ming object

and getObject must be called to create it.

Arguments given to the class:

• BioPython BLAST record object

• id

• evalue

• id width

• evalue width

• alignment width
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Methods:

• The ”getObject” must be invoked to create the object

alignmentLayer()

Figure 7.7: alignment-

Layer class

The alignmentLayer class deals with the aligment repre-

sentation. The alignments are represented by horizon-

tal bars relative to the linear map of the query. If the

alignments are nucleotide sequences the bars will be repre-

sented by a directional arrow; if they are protein sequences

they will be represented by a non-directional box [see fig-

ure 7.8]. For a nucleotide alignment, if the beginning of

the sequence aligned starts at the end of the alignment

the arrow will point to the left, otherwise it will point to

the right [see figure 7.8].

Figure 7.8: On the left an example of directional arrows representing nucleotide
alignments. On the right an example of rectangular bars representing peptide
alignments.

The query sequence can have more than one alignment with one sequence of

the database. A background (shade) of the same colour will indicate that the

alignments still belong to the same sequence. A change in the background colour

will indicate a new sequence alignment or group of alignments.
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The colours of the alignments indicate the degree of similarity based on the

Score of each alignment. The range of colours and their correlation with the Score

is shown at the bottom in the legend field. The most similar hits of each sequence

are shown at the top in red, followed by purple, green, blue and grey representing

sequences in decreasing order of similarity following the same colour pattern used

by the NCBI BLAST graphics. Moving the mouse over the bars displays the name

of the matching protein found in the boxinfo layer above the graphic.

If the E-value frame option is selected, the graphic will show the E-values for

each sequence. If the ID frame option is selected, the graphic will show in this

frame the ID number of every HSP match. A mouse click on the ID field will open

a web browser window which will display the full database entry corresponding to

this ID. The database queried in this case is the Genbank database [4].

Arguments given to the class:

• BioPython BLAST record object

• id

• evalue

• id width

• evalue width

• alignment width

• boxinfo

• top height
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Methods:

• The ”getObject” must be invoked to create the object

legendLayer()

Figure 7.9: legend-

Layer class

The legendLayer is responsible for creating a horizontal

layer of information which explains the significance of the

colours and the directions of the alignments (just if the

alignments are nucleotides) at the bottom of the graphic.

Arguments given to the class:

• id width

• evalue width

• alignment width

• BLAST program

Methods:

• The ”getObject” must be invoked to create the object

7.2.3 Components

Functions

Some components of these libraries were not complex enough to write classes and

the definition of a function was more than sufficient to perform the required task.
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These functions are classified in three groups (text, shadow and search). ”Text”

allows the definition of three kinds of Ming text object. ”Shadow” includes different

functions to define the shades of the graphic as well as functions to define the scale.

Search helps to parse text using regular expressions.

Figure 7.10: text

module

Text functions:

1. The ”setText” function returns a simple Ming object

which provides the text content, the text height and,

optionally, the colour in RGB format.

2. The ”setTextField” function is similar to the setText

function. However, it returns a text field object with

text content. It uses two arguments (shape and ID

name).

3. The ”setTextFieldButton” function is the same as

the setTextField function but with button effect.

The button action causes text to change its colour

on mouse-over and mouse-click actions. Moreover,

it optionally allows the embedding of specific mouse

events with ActionScript code.

Figure 7.11: shadow

module

Shadow functions:

1. The ”setShadow” function returns a Ming object

(shape object). This function takes as arguments the

width and height of the shape as well as its colour.
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2. The ”setShadowcolor” function is a loop function

that controls the background colour for each align-

ment. A pattern is repeated by alternating two

colours. By default these are grey and white.

3. The ”setSeparatorDistance” function calculates the

scale distance. It works by dividing the sequence

length among the numbers of bar lines shown. The

function converts the separation to a multiple of

10 by adjusting the differences in the last segment.

Multiples of 10 segments make it easier for the user

to locate positions.

4. The ”setSeparator” function returns a Ming shape

object representing a thin vertical line. It uses two

attributes (high value and a RGB colour format).

Figure 7.12: search module

Search functions:

1. The ”searchRegexInQuery” function enables

search by regular expression. It returns an ar-

ray or list of all the queries matched.

Classes

The components package includes two classes related

to the query and HSP representation.
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Figure 7.13: sequenceBox

class

sequenceBox(): The sequenceBox class includes

a collection of functions used to define and create a

Ming shape object to represent rectangular boxes.

There are two ways to define the colour of the

box:

1. setcolourByScore: set the colour of the Box by

score.

2. setcolour: sets the colour of the Box in RGB

format.

There are also two ways to define the border line of

the box:

1. setLineColor: sets a specific RGB colour.

2. setLineColorAutomatically: automatically sets

a RGB colour that is darker than the default

box colour.

The rest of the functions are:

1. setHeight: defines the height of the Box.

2. setInteractivity: allows the addition of ActionScript code to add interactivity

to the Box in case it is a button.

3. setActionType: sets the event triggering the interactive code. By default it

is ”mousedown”.
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4. changeColor: is used for the sequenceBox class for the setLineColorAuto-

matically function in order to help to get the new colour.

After all these functions above have been defined, one of the following functions

must be instantiated to create the Box object:

1. createBox: creates a simple box.

2. createButton: creates a button that could include different kinds of specific

actions.

Figure 7.14: sequenceBox-

ForBLAST class

sequenceBoxForBLAST(): This class facilitates

the creation of the sequence alignment representa-

tion of BLAST results. It extends the sequenceBox

class and allows the creation of button or box objects

within itself.

Arguments given to the class:

• sequenceSize

• BLASTScore

• sequenceDirection

• actionScript

• actionType

• sequenceHeight
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Methods:

• The ”Button” creates a button object

• The ”Box” creates a box object

7.2.4 The initialization file (see vegra.py)

The initialization module starts the BLAST Modules from the BioPython Library

and initializes VEGRA. It is also where the user defines the look and properties of

the graphic by customizing the options of the VEGRA library. In ”vegra.py” the

initialization file has been coded to define VEGRA options and create SWF files

using a command line interface. The properties and behaviour of VEGRA are set

by default, so user configuration is available but not necessary. The application

needs the user to define the name of the BLAST result file and the path where it

can be found.

Executing VEGRA with python

The VEGRA tool is executed from the command line using Python as follows:

”python vegra.py -i inputfile”. The command ”python vegra.py” line assists the

user of how get help to start VEGRA with all the options available [see figure:

7.15].

An example of the command line help displayed by executing ”python vegra.py

-h” [see figure: 7.16]
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Figure 7.15: Executing VEGRA on the command line

Figure 7.16: Command Line help for VEGRA
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Chapter 8

Conclusions

8.1 Achievements

VEGRA contributes by enabling a better visualization for BLAST outputs in four

different ways:

• by replacing bitmaps with convenient vector graphics.

• by improving the visual design and usability of the graphical application.

• by providing a structured library that is easy to understand and hence easy

to maintain and extend.

• by permitting easy personalization of the graphic configuration.

The problem stated in section one has been solved by developing VEGRA-

BLAST. This allows the generation of SWF files from BLAST output files. By

using vector graphics, BLAST results can be represented in a way that is scalable,

zoomable, searchable and interactive.
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The graphic design has been improved, following guidelines from graphic de-

sign; it is now possible to deliver graphics that are more appealing and with an

optimal balance between visual sensation and graphic information.

VEGRA has been programmed following Object-Orientated paradigms, and

UML methodologies. This makes it easier to share and reuse VEGRA’s code. The

library is quite versatile as classes could be easily extended to represent other types

of biological results.

VEGRA BLAST allows the configuration of the layout within the graphic. It is

also easy to adjust size and colour properties. It improves configuration usability

by providing a straight-forward method with which to define graphic options via

the command line interface.

8.2 Contributions

In general terms VEGRA is not just an improvement for BLAST for the manage-

ment of the BLAST output, but also an alternative way to use Python to manage

vector graphics when visualizing two-dimensional representations. VEGRA has

demonstrated that this is possible without extensive coding. Code that is well

structured and well documented facilitates reuse and fast improvements are pos-

sible.
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8.3 Comments about the methodology

8.3.1 About vector graphics

Looking at the improvements of SVG over the last years there is no doubt that

it will be as powerful and wide spread as flash and we hope that many other

developers will begin to use this open standard to create professional visualization

tools. In the meantime we have taken advantage of libraries like Ming to create

suitable visualization tools in SWF Flash.

8.3.2 About Visual Design

As shown in this dissertation, visual design is essential for effective communication.

Nonetheless, at the beginning of the process of developing graphical interfaces it is

not easy to discern visual design problems. Thus, the conscious practice of applying

visual design techniques would help developers to better understand and represent

visual phenomena. As a GUI developer gains experience the task of mentally

visualizing suitable designs for specific problems will likely improve. Software and

GUI developers in bioinformatics should apply the concepts of visual design and

become better trained in graphic design.

8.4 Further work

VEGRA BLAST fulfills its purpose by improving and presenting a tool to better

represent BLAST results. Although most of the work has been done to fulfill this

purpose we believe it can be improved:
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• The VEGRA BLAST code has been developed and tested only for the most

popular BLAST programs (BLASTn, BLASTp and BLASTx). When VE-

GRA was developed, BioPython was not capable of parsing outputs from

other BLAST programs. Further developments in BioPython would allow

the extension of the VEGRA functionality to other programs.

• VEGRA can create graphic representations from BLAST outputs and its

results can be integrated with the text in an HTML page. However, this

task has to be carried out manually by the user. A nice feature to develop

for VEGRA would be a web application (similar to ”wwwBLAST”) which

could deliver the BLAST text results with the VEGRA graphic file embedded

in an HTML file.

• Because the VEGRA graphic image is not embedded in the BLAST text

results there are no links between the graphic elements and their text equiv-

alent. If VEGRA-generated graphics were embedded in the BLAST output,

it would be an improvement that could allow the creation of links between

the graphic and the HSP text results.

• VEGRA results are vector format files and as such they can be used by other

computer vector graphic programs. However, currently the only way to ex-

port the SWF file to other readable vector format files is via the ”FLASH

editor”, which is commercial software. Some work should be done to allow

VEGRA to export its results to other formats. New ongoing research ap-

plications to convert SWF to SVG might provide a solution to this problem

[35].
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• It can be difficult to install VEGRA due to the difficulty of installing all its

dependencies. Some work could be done to create a self-extracting package

to easily install all of its necessary dependencies.
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Chapter 9

How to install VEGRA BLAST

VEGRA BLAST can be used in Linux, Macintosh and Windows. However, it

is much easier to install on one of the first two because its dependencies require

much more effort to deploy in Windows. Since VEGRA is a Python library it needs

Python and BioPython to be installed. To be able to create SWF files VEGRA

requires the Ming graphic library to be installed. Ming is a C library, so in order

to use it with python the user will have to install the Python wrapper which comes

with Ming version 0.3.0. Most internet browsers include the ”Flash player” plugin

which allows viewing and playing of SWF files. In case a user does not have it or

wants an independent viewer apart from the browser the free Macromedia ”Flash

Player” application from Adobe can be used.

VEGRA BLAST does not require any installation and can be executed any-

where on the file system where the user has permissions to create files inside the

VEGRA folder. VEGRA is accessible from ”http://www.nbn.ac.za/∼rafael/vegra/vegra.zip”.

The VEGRA library is open source and freely available. All the dependencies

utilized by VEGRA mentioned above are freely available.
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VEGRA BLAST can create graphic representations from any BLAST output

(BLASTn, BLASTp, BLASTx) whenever BioPython is capable of parsing the

BLAST output. VEGRA BLAST does not require the user to have the BLAST

stand-alone tool installed, however, we strongly recommend installing it for testing

the library. In case a user want to test VEGRA directly we provide a BLAST out-

put testing file at the following URL: ”http://www.nbn.ac.za/∼rafael/vegra/seqaa.out

VEGRA has been tested and deployed successfully with:

• Mac OS X 10.3.9

• Python 2.3

• BioPython 1.41

• Ming 0.3.0

• Macromedia Flash Player 8

• BLAST 2.2.10

The user can get more information about the dependencies used by VEGRA

as well as the downloading of files from the following URLs:

Python http://www.python.org/

BioPython http://biopython.org/

Ming http://ming.sourceforge.net

Flash Player http://www.adobe.com/shockwave/download/download.cgi

BLAST http://www.ncbi.nlm.nih.gov/Ftp/

VEGRA BLAST http://www.nbn.ac.za/∼rafael/vegra/vegra.zip
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