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Abstract

This thesis evolves around a probabilistic concept called exchangeability and its gener-

alised forms. It is aimed at exploring connections between exchangeability and other

sub-areas in mathematical statistics. These connections include theoretical implica-

tions, generalisation of existing methodologies and applications to real-world data.

There are three topics of particular interest.

The first topic is related to the linkage between de Finetti’s representation theorem

(for exchangeable sequences) and existence conditions for Hausdorff moment problems

over k-dimensional simplexes. The equivalence of these two results are proved over the

most general case in finite spaces. This is a generalisation of existing theory and uses

an alternative approach to previous work in the literature. This connection, while the-

oretically interesting in its own right, may also lead to further cross-field applications,

such as distribution re-construction from finite moments or in the approximations to

finite exchangeable sequences and finite moment problems.

Secondly, we explore a currently popular topic, namely extreme value theory (EVT),

which has been widely applied to areas such as hydrology, earth sciences and finance.

Classical results from EVT assume that the data sequence is independent and iden-

tically distributed (IID). We generalise this assumption to exchangeable random se-

quences. This caters for more general approaches to EVT that allows for data depen-

dency. Resampling techniques are utilised for estimating the parameters’ prior distri-

butions. We utilise these new methods for Value-at-Risk (VaR) estimation in financial

stock returns. This is done for both cases with and without GARCH filters. These new

VaR models are also compared to existing models in the literature and shows promising

improvements.

For the final topic, exchangeability is applied to two-phase sampling with an auxiliary

variable. In particular, our focus is on a two-phase stratified sampling design, under the

assumption that readings for the study variable are exchangeable within stratum. This

will again provide a generalisation from the usual IID assumption in applications of

multiple-phase sampling. It is amalgamated with stationary bootstrapping at various

vi



ABSTRACT vii

levels of sampling to estimate within stratum and cross strata covariances. We show

that our approach provides a more conservative estimate for the sampling variance of

the two-phase estimator for the mean (i.e., the ratio estimator), as compared to the

conventional IID method by Rao (1973).
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• HMP - Hausdorff moment problem
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Chapter 1

Introduction

Imaging a coin is tossed 10 times and the outcome of each toss is recorded. Let T

denote the event of obtaining a “tail” and H is the event of obtaining a “head”. Given

that the sequence of outcomes is HHTHTHHHTH, what is the probability of ob-

taining a “tail” in the 11th toss? If we make the assumption that our inference on this

probability solely depends on the frequency of the outcomes (i.e., 7 heads and 3 tails),

and not on the order of them, then we are in fact lending ourselves to the judgment of

exchangeability.

Exchangeable sequences also arise naturally in Pólya’s urn scheme. Consider an urn

that initially contains w white balls and b black balls. In each trial, a ball is ran-

domly drawn from the urn and is then returned to the urn along with c new balls

of the same colour. If we define Xi as the colour of the ball drawn in the ith trial,

then {X1, X2, . . .} forms an exchangeable sequence. Simple random sampling without

replacement (SRSWOR) forms a special case of the above with c = −1.

Intuitively, it is easy to see that exchangeability is a generalisation from independent

and identically distributed (IID) sequences. The various forms of exchangeability can

be characterised by their corresponding representation theorems and they also preserve

important properties such as stationarity. These make exchangeability an attractive

notion to consider in applications, while the theoretical implications are interesting in

their own rights.

In this thesis, we provide a short review of exchangeability and study some special

topics related to the theory and applications of exchangeability. In particular, we

explore connections between exchangeability and three other areas of interest, namely

Hausdorff moment problems (HMPs), extreme value modelling for risk measures and

multi-phase sampling with auxiliary variables.

1



CHAPTER 1. INTRODUCTION 2

1.1 Literature Review on Exchangeability

Haag (1924) was the first to formally discuss the notion of exchangeable events (some-

times also referred to as permutable, interchangeable or symmetric events). He hinted

at a representation theorem but did not rigorously state or prove it. Independently,

de Finetti defined and characterised exchangeable random variables in the context of

personalistic probability specification (see for example de Finetti, 1930, 1974). In the

papers, de Finetti also gave his famous representation theorem for the 2-valued case,

which states that the joint distribution for any infinite sequence of 2-valued random

variables can be represented as a mixture of IID sequences. This was soon extended to

real-valued random variables (de Finetti, 1937).

De Finetti then generalised the concept of exchangeability to partial exchangeabil-

ity, which considers a sequence of several types being exchangeable within each type

(de Finetti, 1938). The natural refinements to separately and jointly exchangeable se-

quences were studied by Hoover (1979) and Aldous (1981). Definite treatments of de

Finetti-type results for more general spaces and related notions of symmetry are given

in Kallenberg (2005).

It is well known that de Finetti’s theorems do not in general hold for finite sequences of

exchangeable random variables. However, Diaconis (1977) and Diaconis & Freedman

(1980) were able to show that the results are asymptotically true for finite sequences of

exchangeable random variables that are extendable. They also provided an expression

for the variation distance between an extendable finite exchangeable sequence to the

closest mixture of IID random variables.

The symmetry (or homogeneity) possessed by exchangeability is central to its useful-

ness. As such, it is found in various areas of research, for both theory and applications.

These include economics, population genetics, psychology, graph theory, random net-

works, sampling theory, etc. Overview of these developments can be found in Kingman

(1978), McCall (1991) and Aldous (2010).

1.2 Objectives and Contributions

This study develops around exchangeability, its various generalised forms and the cor-

responding representation results. In particular, connections with other research fields

are drawn. These include theoretical implications, extending existing methodologies

and applications to real-world data. The objectives of this thesis can be summarised

into the following points:
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• To provide a brief review of exchangeability and the corresponding de Finetti-type

representation results.

• To generalise and formalise the connection between exchangeability and HMP to

the most general sense in finite countable spaces.

• To extend classical extreme value models to cater for exchangeable sequences and

utilise the results for financial risk modelling.

• To explore avenues to improve estimation of sampling variance, in a two-phase

design, by considering exchangeable sequences.

These bring various contributions to the present literature. In particular, the new

results provided by the last three points above may be valuable to the further advance-

ments in their related areas of research. These are summarised into the three topics

below:

• The first topic is related to the linkages between de Finettis representation theo-

rem (for exchangeable sequences) and existence conditions for HMP. The equiv-

alence of these two results, over k-dimensional simplexes, is proved. This is a

generalisation of existing theory and uses an alternative approach to previous

work in the literature. This connection, while theoretically interesting in its own

right, may also lead to further cross-field applications, such as in distribution

re-construction from finite moments or in representations of finite exchangeable

sequences.

• Secondly, we study a currently popular topic, namely extreme value theory (EVT),

which has been widely applied to areas such as hydrology, earth sciences and fi-

nance. Classical results from EVT assumes that the data sequence is IID. We

generalise this assumption to exchangeable random sequences. This caters for

more general approaches to EVT that allows for data dependency. We utilise

these new methods for Value-at-Risk (VaR) estimation in financial stock returns.

This is done for both with and without the generalised autoregressive conditional

heteroskedastic (GARCH) filters. These VaR models are also compared to exist-

ing models in the literature and shows promising improvements.

• For the final topic, exchangeability is applied to multiple-phase sampling. In par-

ticular, our focus is on a two-phase stratified sampling design, where observations

in the same stratum constitute an exchangeable sequence. This will again provide

a generalisation from the usual IID assumption in applications of multiple-phase

sampling. We show that our approach provides a more conservative estimate for
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the variance of sampling estimator (i.e., the ratio estimator) than the conventional

method.

1.3 Chapter Summaries

The rest of this thesis proceeds as follows:

Chapter 2 provides a review of the concept of exchangeability. In particular, exchange-

able events and random variables are formally defined. This is also extended to partially

exchangeable sequences. The corresponding de Finetti-type theorems are given.

The HMP is formulated in Chapter 3. This is stated for the case over a g-tuple of

k-dimensional simplexes and the corresponding set of existence conditions is derived.

Furthermore, the existence conditions are shown to be equivalent to the de Finetti’s

representation theorem for a g-fold partially exchangeable sequences taking on values

in {0, 1, . . . , k}.

In Chapter 4, classical EVT results are revisited and extended to cater for exchangeable

sequences. Resampling techniques are proposed to estimate the empirical prior distri-

butions of the EVT parameters. These are implemented for financial risk modelling. In

particular, daily forecasts of VaR for several market indices are calculated over a long

period of time and are backtested against real observations. These are also compared

to traditional approaches.

In estimating the population mean of a study variable y, we can often use a ratio-type

estimator when a related auxiliary variable x is available. This is reviewed in Chapter

5 under the situation where x is qualitative and a two-phase stratified sampling design

is utilised. Herein, the IID assumptions within each stratum is relaxed to the judgment

of exchangeability. This allows for dependencies within each stratum. A method is

proposed for estimating the variance of the ratio estimator under this scenario. An

example shows that this method provides a significantly more conservative estimate for

the sampling variance, as compared to the standard approach.

Chapter 6 gives an overall conclusion for this thesis. Suggestions for further research

is provided along with summary of results achieved in this study.

1.4 Miscellaneous Tools & Results

This section reviews some basic results from probability theory, EVT and financial risk

modelling that are related to discussions in the later chapters. These results, or tools,
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form some of the background foundations of the methodologies used. Readers may skip

and return to this section later if desired.

The two theorems below relate to the convergence of probability distributions and are

needed to derive the existence conditions of the HMP.

Theorem 1.1. (Helly’s theorem)

Every sequence {Fn : n = 1, 2, 3, . . .} of probability distributions in Rk possesses a

subsequence Fn1 , Fn2 , . . . that converges to a probability distribution F .

Proof. See Feller (1966). �

Theorem 1.2. (Helly-Bray theorem)

If {Fn} is a sequence of probability distributions over Rk with Fn → F , then∫
I
f(x)dFn(x)→

∫
I
f(x)dF (x) as n→∞ , (1.1)

where I = [a, b] is any bounded, closed interval in Rk whose boundaries contain no

discontinuities of F and f is any continuous function over I.

Proof. See Tucker (1967). �

There are two fundamental theorems in EVT that describe the limiting behaviours of

normalised block maxima and threshold exceedances. These are vital for the applica-

tion of EVT and are stated below.

Theorem 1.3. (Fisher-Tippett-Gnedenko theorem)

Let {X1, X2, . . .} be a sequence of IID random variables with an unknown common

distribution function F . Define Mn = max{X1, . . . , Xn} to be the (block) maximum

of a sample of size n. If there exist sequences of real constants an, bn > 0 and a

non-degenerate distribution function H such that

lim
n→∞

P
(
Mn − an

bn
≤ x

)
= H(x), (1.2)

i.e., F is in the maximum domain of attraction of H (written as F ∈ MDA(H)), then

H(x) =

{
exp{−[1 + ξx]−1/ξ} , if ξ 6= 0

exp[− exp(−x)] , if ξ = 0
, (1.3)

for some ξ. The three cases ξ < 0, ξ = 0 and ξ > 0 are referred to as the Weibull, the

Gumbel and the Fréchet distributions, respectively.
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Proof. See Fisher & Tippett (1928) and Gnedenko (1943). �

Theorem 1.4. (Pickands-Balkema-de Haan theorem)

For {X1, X2, . . .} as given above and xF as the right endpoint of F , define

Fu(x) = P(Xi − u ≤ x|X > u) , (1.4)

for 0 ≤ x ≤ xF − u, as the excess distribution above some threshold level u. Then,

F ∈ MDA(H) if, and only if,

lim
u→xF

sup
0≤x≤xF−u

|Fu(x)− FGPD(x)| = 0 , (1.5)

where FGPD is the generalised Pareto distribution (GPD) defined by

FGPD(x|ξ, β) =

{
1− (1 + ξx/β)−1/ξ , if ξ 6= 0

1− exp(−x/β) , if ξ = 0
, (1.6)

as u tends to xF . For this distribution, x > 0 when ξ ≥ 0, 0 ≤ x ≤ −β/ξ when ξ < 0,

and β > 0.

Proof. See Balkema & de Haan (1974) and Pickands (1975). �

In finance, there are several techniques for evaluating the adequacy of risk models. Two

of the popular tests for VaR are the Kupiec likelihood-ratio test (Kupiec, 1995) and the

Christoffersen’s conditional coverage test (Christoffersen, 1998). These are described

in the two remarks below.

Remark 1.5. (Kupiec likelihood-ratio unconditional coverage test)

The Kupiec test uses the fact that an adequate VaR model should have its proportion of

exceedances close to the pre-specified tail probability level (i.e., unconditional coverage).

Let xα be the number of times that a sequence of VaR estimates (at level α) is exceeded

by the corresponding observed values. The null hypothesis of the test is that the

expected proportion of exceedances is equal to α and the resulting test statistic is

given by

LRUC = 2 ln

((
xα

n

)xα (
1− xα

n

)n−xα)
− 2 ln

(
αx

α
(1− α)n−x

α)
, (1.7)

where n is the total number of VaR estimates in the sequence. This test statistic is

asymptotically distributed as a chi-square distribution with one degree of freedom.
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Remark 1.6. (Christoffersen’s conditional coverage test)

The Christoffersen’s test extends the Kupiec test to account for both unconditional cov-

erage and serial independence of VaR exceedances (i.e., clustering of violations). When

both of these conditions are satisfied, then the VaR model is said to have the correct

conditional coverage. Define α0 as the probability of observing a VaR exceedance in

the currently period, given an exceedance did not occur in the previous period, and α1

as the probability of observing a VaR exceedance in the currently period, given there

was also an exceedance in the previous period. Under the null hypothesis of this test,

we have α0 = α1 = α.

Given the observations, we may estimate α0 and α1 with α̂0 = x01/(x00 + x01) and

α̂1 = x11/(x10 + x11), respectively, where state 0 denotes a non-exceedance of VaR,

state 1 denotes an exceedance of VaR and xij denotes the number of periods for which

state i is followed by state j. Hence, the test statistic can be written as

LRCC = 2 ln

[
(1− α̂0)x

00
α̂0

x01(1− α̂1)x
10
α̂1

x11

(1− α)x00+x10αx01+x11

]
, (1.8)

which asymptotically follows a chi-square distribution with two degrees of freedom.



Chapter 2

Probabilistic Exchangeabiility

Exchangeability is a fundamental concept in the subjective approach to probability

modelling and replaces the IID concept of the objective theory. In essence, it captures

the notion that future samples behave like earlier ones. This is vital in specifying

a predictive model for a sequence of observations. It caters for the accumulation of

information, where the underlying dependencies are encapsulated through the structure

of the joint distribution of the sequence. At the same time, the probabilistic symmetries

defined by exchangeability can be characterised by the corresponding de Finetti-type

representation theorems. In this chapter, we review the definitions of the various forms

of exchangeability and their corresponding representations.

2.1 Exchangeable Events

Recall our coin tossing example mentioned at the beginning of the previous chapter. It

can be translated into the following formal definition:

Definition 2.1. (Exchangeable events)

A sequence of events {A1, A2, . . .} is said to be exchangeable if the probability that any

n of these events occur depends only on n and not on the particular events chosen. �

Now, instead of a single coin, suppose we toss g coins. Three different cases may arise:

(1) The coins are perfectly equal. This will generate an exchangeable sequence of

events (as in the above definition).

8



CHAPTER 2. PROBABILISTIC EXCHANGEABIILITY 9

(2) The coins are completely different. This means each of the g coins will gener-

ate a sequence of exchangeable events, with complete independence between the

sequences.

(3) Some coins are related, i.e. the outcomes of tosses with one coin may influence

probabilities with respect to tosses with other coins, but in a less direct manner

than in case (1).

In other words, case (3) produces g exchangeable sequences as in case (2), but with

some interdependence between the sequences. This leads to the definition of a partially

exchangeable sequence of events.

Definition 2.2. (Partially exchangeable events)

A sequence of events is said to be g-fold partially exchangeable if the events split

into g types and events of the same type are exchangeable, i.e. the probability that any

n1, n2, . . . , ng events of types 1, 2, . . . , g, respectively, occur depends only on n1, n2, . . . , ng

and not on the particular events chosen. �

It may be noted that cases (1) and (2) are just special cases of Definition 2.2. Hence,

partial exchangeability is a more general concept than that of exchangeability. It is also

easy to deduce from Definition 2.1 that the probability of a singular event occurring, in

an exchangeable sequence, is the same for all events in the sequence. This is similarly

true for events of the same type in a g-fold partially exchangeable sequence.

2.2 Exchangeable Random Variables

For a sequence of random variables {X1, X2, . . .}, the uncertainty relative to some

observable sequence of outcomes, {x1, ..., xn} say, in an experiment of size n, can be

determined by making use of the joint distribution function F (x1, . . . , xn). If we further

assume that the sequence {X1, X2, . . .} is IID, then F (x1, ..., xn) = F (x1) · · ·F (xn) and

it follows immediately that

F (xm+1, . . . , xn|x1, . . . , xm) = F (xm+1, . . . , xn), (2.1)

for any 1 ≤ m < n. In other words, the predictability of future observations is not

abetted by past information. This is clearly inappropriate for specifying a predictive

model where we believe that the accumulation of prior observations can provide ev-

idence for future events. Preferably, we would like the structure of the joint density

function to encapsulate some form of dependence within the random sequence. One



CHAPTER 2. PROBABILISTIC EXCHANGEABIILITY 10

class of possible subjective judgments is to continue allowing probabilistic symmetry

to exist among the random variables. As such we define the following:

Definition 2.3. (Finite exchangeability)

A finite sequence of random variables {X1, X2 . . . , Xn} is said to be exchangeable if

their joint distribution function F satisfies

F (x1, x2, . . . , xn) = F (xπ(1), xπ(2), . . . , xπ(n)) , (2.2)

for all π ∈ Π, the set of all finite permutations defined on [n] = {1, 2, . . . , n}. In terms

of the corresponding density or mass function, the condition reduces to

p(x1, x2, . . . , xn) = p(xπ(1), xπ(2), . . . , xπ(n)) , (2.3)

where p(·) is the joint density or mass function. �

Definition 2.4. (Infinite exchangeability)

An infinite sequence of random variables {X1, X2, . . .} is said to be exchangeable if all

its finite subsequences are exchangeable in the sense of Definition 2.3. �

The case of exchangeability is one where there is a complete symmetry between all the

random variables under consideration. However, in practice, one will often find this

not to be the case. Thus, exchangeability can only be considered as a limiting case and

a more general concept must be introduced, i.e. partial exchangeability.

Definition 2.5. (Finite partially exchangeable random variables)

A finite sequence of random variables, {Xij : i ∈ [g], j ∈ [ni]}, is said to be g-fold

partially exchangeable if the joint distribution of the n1, n2, . . . , ng random variables of

types 1, 2, . . . , g respectively, depends only on n1, n2, . . . , ng and not on the order of the

random variables within each type. �

Definition 2.6. (Infinite partially exchangeable random variables)

An infinite sequence of random variables, {Xij : i ∈ [g], j ∈ N}, is said to be g-

fold partially exchangeable if all its finite g-fold subsequences of random variables, i.e.

{Xij : i ∈ [g], j ∈ [ni]} where ni’s are finite, are partially exchangeable in the sense of

Definition 2.5. �

We have already mentioned that a sequence of exchangeable random variables can be

seen as the result of an experiment in drawing balls from an urn, i.e. an urn model.



CHAPTER 2. PROBABILISTIC EXCHANGEABIILITY 11

This concept can be easily extended to partially exchangeable random variables.

Suppose we have g urns labeled 1 to g, where the i-th urn contains ni balls, for all

i ∈ [g]. Let Xij denote the result of the j-th draw from urn i, then

(i) an infinite partially exchangeable sequence of random variables is formed by {Xij :

i ∈ [g], j ∈ N} when drawing with replacement from the urns.

(ii) a finite partially exchangeable sequence of random variables is formed by {Xij :

i ∈ [g], j ∈ [ni]} when drawing without replacement from the urns.

Remark 2.7. There exist other forms of exchangeability, such as joint exchangeability

and separate exchangeability (Hoover, 1979; Aldous, 1981), that are not studies in this

thesis. Whereas, other classes of probabilistic symmetry (e.g, rotatability, contractabi-

ity) are detailed in Kallenberg (2005).

2.3 De Finetti Theorems on Exchangeability

The various forms of infinite exchangeability are characterised by their corresponding

representation theorems. We start by stating the simplest case.

Theorem 2.8. (Representation theorem for {0, 1}-random variables)

An infinite sequence of random variables {X1, X2, . . .}, taking values in {0, 1}, is ex-

changeable if, and only if, there exists a distribution function F such that, ∀n ∈ N,

p(x1, x2, . . . , xn) =

∫ 1

0

n∏
i=1

θxi(1− θ)1−xidF (θ) , (2.4)

where θ is the probability of obtaining 1. In other words, the probability that k out of

the n random variables being equal to 1 is given by∫ 1

0

(
n

k

)
θk(1− θ)n−kdF (θ) . (2.5)

Proof. See Heath & Sudderth (1976). �

It is important to note that the above theorem implies that, given θ, the random

variables in an exchangeable sequence are judged to be IID (following the Bernoulli

distribution). Or, equivalently, they form a mixture of IID Bernoulli random variables.
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On the other hand, it is also easy to see that the set {0, 1} is chosen merely for con-

venience and the theorem applies to any two-valued space, i.e., {a, b}. We can in fact

extend the result to any finite countable space, in which the integrand would become a

multinomial expression (to be discussed in Chapter 3). However, de Finetti-type the-

orems are less intuitive in the continuous cases. We shall state the result for random

variables over the real line. Analogous results can be given to other cases.

Theorem 2.9. (Representation theorem for random variables over R)

An infinite sequence of random variables {X1, X2, . . .}, taking values in R, is exchange-

able if, and only if, there exists a probability measure Q over τ such that, ∀n ∈ N,

F (x1, x2, . . . , xn) =

∫
τ

n∏
i=1

G(xi)dQ(G) , (2.6)

where τ is the set of all distribution functions on R and Q(G) = limn→∞ P(Gn), with

Gn being the empirical distribution function defined by {X1, . . . , Xn}.

Proof. See Chow & Teicher (1988). �

Remark 2.10. The above theorem implies that the sequence is conditionally IID (given

G) and Q represents some prior belief of what the empirical distribution for G looks like

for large n. However, the task of describing such a function Q is not straightforward as

G is in effect an infinite dimensional parameter. In practice, one would often restrict

the result to a “nicer” space. Details of such examples can be found in Freedman

(1962) and Bernardo & Smith (1994). For our purposes in this thesis, we shall state

the result given in Bernardo (1996): The assumption of exchangeability is characterised

by a representation theorem which states that there exists a conditional model FX|θ(x|θ),
where θ ∈ Θ is the limit of some function of xi’s as n → ∞, and a distribution Fθ(θ)

such that

FX1,...,Xn(x1, . . . , xn) =

∫
Θ

n∏
i=1

FX|θ(xi|θ)dFθ(θ) , (2.7)

where Fθ(θ) represents some prior belief for θ.

2.4 De Finetti Theorems on Partial Exchangeability

We now generalise de Finetti’s results to partially exchangeable sequences. Again, let

us first consider the {0, 1} case.
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Theorem 2.11. (Representation for {0, 1}-partially exchangeable sequences)

An infinite sequence of random variables {Xij : i ∈ [g], j ∈ N}, taking values in {0, 1},
is g-fold partially exchangeable if, and only if, there exists a distribution function F

such that, the probability of obtaining mi 1’s from ni variables in the i-th within-type

sequence, for all i ∈ [g], is given by∫
[0,1]g

g∏
i=1

(
ni
mi

)
θmii (1− θi)ni−midF (θ1, . . . , θg) , (2.8)

where θi is the probability of obtaining 1 in the sequence {Xij : j ∈ N}.

Proof. See Bernardo & Smith (1994). �

The above theorem asserts that each of the g within-type sequences is conditionally

independent and Bernoulli distributed, i.e. for a fixed i, {Xij : j ∈ N} can be judged

to be independent Bernoulli random variables conditioned on some random variable θi.

The dependence structure across the g within-type sequences is captured by the joint

distribution F . Clearly, if the sequences are mutually independent, then we may write

dF (θ1, . . . , θg) = dF (θ1)dF (θ2) · · · dF (θg) ,

i.e., independent prior distributions.

Again, we extend the above representation to partially exchangeable sequences over

the real line. For notational simplicity, we define xi = (xi1, . . . , xini) for the result

below.

Theorem 2.12. (Representation for several sequences in R)

An infinite sequence of random variables {Xij : i ∈ [g], j ∈ N}, taking values in R, is

g-fold partially exchangeable if, and only if, there exists a probability measure Q over

τ g such that, for all ni in N, i ∈ [g],

F (x1,x2, . . . ,xg) =

∫
τg

g∏
i=1

ni∏
j=1

Gi(xij)dQ(G1, . . . , Gg) , (2.9)

where Q(G1, . . . , Gg) = limn1,...,ng→∞ P(Gn1 , . . . , Gng) and τ the set of all distribution

functions on R, with Gni being the empirical distribution functions of {Xij : j ∈ [ni]}
for each i = 1, . . . , g.

Proof. A direct generalisation of Theorem 2.9. �
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2.5 Further Properties of Exchangeability

The understanding and applicability of exchangeability is further enhanced by its sta-

tistical properties and comparisons to other standard probabilistic assumptions. We

list some of these in the following remarks.

Remark 2.13. It is easy to see that an IID sequence is also exchangeable. However, the

converse is not always true. This makes exchangeability is more general concept than

IID sequences. In fact, de Finetti’s theorem characterises an exchangeable sequence

as a mixture of IID seqeunces. Partial exchangeability is a further generalisation that

accounts for exchangeability as the extreme case in which all sequences are identically

distributed.

Remark 2.14. Random variables in an exchangeable sequence are clearly identically

distributed. For example, let us consider a 2-fold partially exchangeable sequence

{Xij : i ∈ [2], j ∈ N}. For each i ∈ [2], {Xij : j ∈ N} is an exchangeable sequence, and

hence, for any a, b ∈ R,

P(Xi1 ≤ a) = lim
b→∞

P(Xi1 ≤ a,Xij ≤ b)

= lim
b→∞

P(Xij ≤ a,Xi1 ≤ b)

= P(Xij ≤ a) .

i.e. {Xij : j ∈ N} are identically distributed. Similarly, one can easily show that an

exchangeable sequence is stationary.

Remark 2.15. Random variables in an exchangeable sequence are generally correlated.

For an infinite exchangeable sequence {X1, X2, . . .}, we have

Cov(Xi, Xj) = V (E(Xi|FX)) = V (E(Xi|θ)) ≥ 0 , (2.10)

for all i 6= j. The conditional expectations above are taken in the usual Bayesian sense,

where θ is the random parameter of the sampling distribution of X and FX is treated

as a function of θ. This allows for a more general treatment of many real world data,

as compared to the assumption of IID sequences.

Remark 2.16. Any subsequence of a finite exchangeable sequence can be shown to be

exchangeable. However, extensions to larger exchangeable sequences are not always

possible. For example, suppose we have three random variables X1, X2, X3 defined
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over {0, 1}, with

P(X1 = 0, X2 = 1, X3 = 1) = P(X1 = 1, X2 = 0, X3 = 1)

= P(X1 = 1, X2 = 1, X3 = 0)

= 1/3

and all other combinations of X1, X2, X3 have probability 0. These three random vari-

ables are clearly exchangeable. However, it is easy to show that the addition of a further

variable X4, over the same domain, would make the larger sequence not exchangeable.

Gnedin (1995) gave a criterion for extending a finite exchangeable sequence to an infi-

nite one.

Remark 2.17. All the de Finetti-type results discussed in this chapter applies to infinite

sequences and it is well-known that these representations may fail for finite sequences.

However, Diaconis (1977) and Diaconis & Freedman (1980) were able to show that the

results are asymptotically true for finite exchangeable sequences that are extendable to

larger exchangeable sequences. The bound on the variation distance between an extend-

able finite sequence and a mixture of IID sequences is dependent on the proportional

size between the original sequence and the extended sequence. Related applications on

count data may be found in, amongst others, Diaconis & Freedman (1993), Bowman

& George (1995), George & Kodell (1996) and Tan et al. (2010).



Chapter 3

Exchangeability and Moment

Problems

The connection between two classical problems, the HMP and de Finetti’s represen-

tation theorem for exchangeable random variables, is considered in this chapter. We

generalise these problems to a g-tuple of k-dimensional simplexes and infinite sequences

of g-fold partially exchangeable random variables in {0, 1, . . . , k}, respectively. The

equivalence between them is then formalised and proven. The main results contained

in this chapter are published in Huang (2014).

3.1 Introduction

Feller (1966), on page 229 of volume II, proved de Finetti’s representation theorem for

2-valued exchangeable sequences via the solution to the HMP over the unit interval.

He has also suggested that this method can be extended to a sequence that assumes a

finite number of values. These serve as a first motivation for the current work.

Various connections between these two theories may also be found in the literature.

For example, Dale (1983) gave a probabilistic proof of Hausdorff’s theorem for double

sequences using de Finetti’s result for partially exchangeable events and Peng et al.

(2010) showed that partial exchangeability can be characterised by rectangular com-

plete monotonicity. These relations clearly suggest some kind of equivalence between

the two theories and Gupta (1999b) established this link between finite HMP and fi-

nite symmetric probabilities. Further, Gupta (1999a) has established the equivalence

between the HMP over a standard k-dimensional simplex and an infinite sequence of

exchangeable random variables taking values in a discrete finite domain. However, to

16
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the best of our knowledge, equivalence over the infinite case for partially exchangeable

sequences has not been formally stated.

The main result of this chapter is to prove that solving the HMP over a g-tuple

of k-dimensional simplexes is equivalent to the representation theorem for an infi-

nite sequence of g-fold partially exchangeable random variables that take on values

in {0, 1, . . . , k}. We hope that this result serves as a starting point for further general-

isations to more complex domains and establishing additional cross-theoretical results.

The remainder of this chapter is structured as follows. In Section 3.2, we solve the

HMP over a g-tuple of k-dimensional simplexes by generalising the method of Dale

(1987). By following Aldous (1985) and Bernardo & Smith (1994), we give de Finetti’s

representation theorem for an infinite sequence of g-fold partially exchangeable random

variables, that take on values in {0, 1, . . . , k}, in Section 3.3. Section 3.4 provides the

main theorem that establishes the equivalence between the above results and Section

3.5 gives some discussion on further extension to general bounded domains. Conclusion

and discussion for further work are provided in Section 3.6.

3.2 Hausdorff Moment Problems

Suppose {µn : n = 0, 1, . . . } is a sequence of real numbers. The basic HMP is concerned

with the existence of a distribution function F such that

µn =

∫ 1

0
xn dF (x) , n = 0, 1, . . . , (3.1)

that is, {µn} is the sequence of moments of some random variable X with distribu-

tion function F . Hausdorff (1923) showed that a distribution function F exists, and

is unique, with the above property if, and only if, the sequence {µn} is completely

monotonic, that is

µn ≥ 0 , µ0 = 1 and ∆rµn ≥ 0 , n, r = 0, 1, . . . (3.2)

where ∆µn = µn−µn+1, ∆2µn = ∆∆µn = ∆µn−∆µn+1, etc. The conditions above are

called the Hausdorff conditions. In fact, Hausdorff showed that the conditions can be

extended to moment problems over any finite interval on the real line, i.e., for intervals

[a, b] such that −∞ < a < b <∞.

Various extensions and modifications of this problem have been published since the

above result. One paper of particular interest to us is by Dale (1987), where he extended

the problem to the standard triangle {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1} and solved it

by using Bernstein polynomials. We will generalise this method, with the addition of
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Helly-Bray theorem, to solve the HMP over a g-tuple of k-dimensional simplexes. Let

us define, for i = 1, 2, . . .,

xi = (xi1, . . . , xik) , ni = (ni1, . . . , nik) , xnii = xni1i1 · · ·x
nik
ik .

and

Ω = {(x1, . . . ,xg) : xij ≥ 0 and

k∑
j=1

xij ≤ 1} ,

which represents a g-tuple of k-dimensional simplexes. Subsequently, we have the fol-

lowing result.

Theorem 3.1. (HMP over a g-tuple of k-dimensional simplexes)

For any given sequence {ωn1,...,ng : ni ∈ [N0]k} of real numbers, there exists a distribu-

tion function F (x1, . . . ,xg) on Ω such that

ωn1,...,ng =

∫
Ω
xn1

1 · · ·x
ng
g dF (x1, . . . ,xg) , nij = 0, 1, . . . , (3.3)

if, and only if,

ω0,...,0 = 1 and δr11 · · · δ
rg
g ωn1,...,ng ≥ 0 for all ni ∈ [N0]k, ri = 0, 1, . . . , (3.4)

with δi defined by

δiωn1,...,ng = ωn1,...,ng −
k∑
j=1

ωn1,...,ni+1j ,...,ng , (3.5)

where 1j are k-dimensional vectors with 1 at the j-th position, 0 everywhere else, and

δrii ωn1,...,ng = δri−1
i ωn1,...,ng −

k∑
j=1

δri−1
i ωn1,...,ni+1j ,...,ng . (3.6)

Proof. (Sketches only)

(⇒) Simple.

(⇐) First, define the Bernstein polynomial Bf
m1,...,mg(x1, . . . ,xg) over g given k-dimen-

sional simplexes by

∑
Γ

f
( u1

m1
, . . . ,

ug
mg

) g∏
i=1

(
mi

ui1 · · ·uik

)
xui1i1 · · ·x

uik
ik (1− xi1 − · · · − xik)mi−ui1−···−uik

where Γ = {(u1, . . . ,ug) : uij ≥ 0,
∑k

j=1 uij ≤ mi} and f is any function defined and

bounded on Ω. Then we can show (similar to Dale, 1987) that, as m1, . . . ,mg →∞,

E(Bf
m1,...,mg)→ E(f) . (3.7)
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Now, let us consider

p
m1,...,mg
n1,...,ng =

[
g∏
i=1

(
mi

ni1 · · ·nik

)
δmi−ni1−···−niki

]
ωn1,...,ng

and hence ∑
Γ

g∏
i=1

k∏
j=1

(
uij
nij

)
p
m1,...,mg
u1,...,ug =

g∏
i=1

(
mi

ni1 · · ·nik

)
ωn1,...,ng .

By choosing nij = 0 for all i ∈ [g] and all j ∈ [k], we have∑
Γ

p
m1,...,mg
u1,...,ug = 1 .

Thus we may define random vectors X1,m1 , . . . ,Xg,mg , with p
m1,...,mg
n1,...,ng as the joint atomic

distribution, i.e.,

P
(
X1,m1 =

n1

m1
, . . . ,Xg,mg =

ng
mg

)
= p

m1,...,mg
n1,...,ng .

By applying result (3.7), Helly’s theorem (see Feller, 1966) and Helly-Bray theorem

(see Tucker, 1967) we obtain

ωn1,...,ng = E(Xn1
1 · · ·X

ng
g ) ,

where X1, . . . ,Xg are random vectors distributed according to the limit distribution

pn1,...,ng over Ω, when m1, . . . ,mg tend to infinity. This completes the proof of Theorem

3.1. �

It is easy to see that, for particular choices of g and k, the above theorem reduces to

HMP over the unit line, the unit square and the standard triangle. In fact, further

refinements of the above result are possible, which are discussed in section 3.5.

3.3 De Finetti’s Representation for Partially Exchange-

able Sequences over a Finite Domain

In the theorem below, we extended Theorem 2.11 to an infinite sequence of g-fold

partially exchangeable random variables that take on finitely many values. This ex-

tends the binomial expressions in the integrand to multinomials. In particular, we have

(k + 1) possible outcomes instead of just 2. Each sequence has a corresponding set of

probability parameters associated with the different possible outcomes.
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Theorem 3.2. (Representation for partially exchangeable sequences over a finite do-

main)

An infinite sequence of random variables {Xij : i ∈ [g], j ∈ N}, taking values in

{0, 1, . . . , k}, is g-fold partially exchangeable if, and only if, there exists a distribu-

tion function F such that the probability of observing ni1 1’s, ni2 2’s, . . . and nik k’s

out of mi variables in the i-th within-type sequence, for all i ∈ [g], is given by∫
Ω

g∏
i=1

(
mi

ni1 · · ·nik

)
xni1i1 · · ·x

nik
ik (1−

∑
j

xij)
mi−

∑
j nij dF (x1, . . . ,xg) (3.8)

where xij is the probability of observing j in the i-th within-type sequence, denoted by

{Xij : j ∈ N}, and Ω is defined as before.

Proof. The proof is a straightforward generalisation of the 2-valued result given in

Bernardo & Smith (1994), by considering g urns where each contains (k + 1) types of

items, out of the total of mi items in each urn. Subsequently, one can obtain a product

of multinomial expressions over the g urns. See also Aldous (1985).

It is also easy to note that the above theorem is independent of the choice of the set

{0, 1, . . . , k}, meaning we could have chosen any arbitrary set that contained (k + 1)

points.

3.4 Equivalence over a g-tuple of Simplexes

We now show that solving the HMP over a g-tuple of k-dimensional simplexes is equiv-

alent to a g-fold infinite sequence of random variables, that take on any (k+ 1) values,

being partially exchangeable (i.e., the representation theorem for infinite sequences of

partially exchangeable random variables). The proof given below is a further gener-

alisation of Gupta (1999a), with the added notion of partial exchangeability, but the

route we took is also easier in the sense that we do not introduce infinite product

probabilities, nor probability on a class of probabilities. Rather, we explore the simple

probabilistic implications of the given distribution.

Theorem 3.3. (Equivalence of HMP and exchangeability over k-dimensional sim-

plexes)

An infinite sequences of random variables {Xij : i ∈ [g], j ∈ N}, taking values in

{0, 1, . . . , k}, is g-fold partially exchangeable if, and only if, the corresponding HMP
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over a g-tuple of k-dimensional simplexes has a solution, i.e., there exists a distribu-

tion function F such that, for Ω defined as before and all nij ∈ N0, we have

ωn1,...,ng =

∫
Ω
xn1

1 · · ·x
ng
g dF (x1, . . . ,xg) , (3.9)

which is equal to the probability of observing 1 for the first ni1 terms, 2 for the next ni2

terms, . . . etc., and k for the last nik terms in {Xij : j ∈ N}, for each i ∈ [g].

Proof. (⇒) Let {Xij : i ∈ [g], j ∈ N} be a set of g-fold partially exchangeable

sequences of random variables taking values in {0, 1, . . . , k} and define pn1,...,ng ,m as the

probability that, for each i and some ni1 + · · · + nik ≤ mi, the first ni1 Xij ’s equal to

1, followed by ni2 2’s, . . . etc., and the last mi − ni1 − · · · − nik Xij ’s equal to 0. Also

define

ωn1,...,ng = pn1,...,ng ,n

for all nij = 0, 1, . . . , where n = (
∑

j n1j , . . . ,
∑

j ngj), and put ω0,...,0 = 1. Then we

get

pn1,...,ng ,n+11 = pn1,...,ng ,n − pn1+11,n2,...,ng ,n+11 − pn1+12,n2,...,ng ,n+11

− · · · − pn1+1k,n2,...,ng ,n+11

= ωn1,...,ng − ωn1+11,...,ng − · · · − ωn1+1k,...,ng

= δ1ωn1,...,ng ,

and similarly we can get pn1,...,ng ,n+1j = δjωn1,...,ng , for δj and 1j defined as in Theorem

3.1. Then, by induction, we get

pn1,...,ng ,n+r = δr11 δ
r2
2 · · · δ

rg
g ωn1,...,ng ,

which is obviously greater than or equal to zero for any r = (r1, . . . , rg) ∈ [N0]g, i.e.

{ωn1,...,ng} is a moment sequence (by Theorem 3.1) defined by a distribution F over Ω,

as defined in the theorem statement, such that

ωn1,...,ng =

∫
Ω
xn1

1 · · ·x
ng
g dF (x1, . . . ,xg) .

(⇐) Suppose that {ωn1,...,ng} is a moment sequence over a g-tuple of k-dimensional

simplexes, with distribution function F , then we have[
g∏
i=1

δmi−ni1−···−niki

]
ωn1,...,ng ≥ 0 ,

for all m ∈ [N0]g such that ni1 + · · ·+ nik ≤ mi, and we may show

∑
n1,...,ng∈Q

[
g∏
i=1

δmi−ni1−···−niki

(
mi

ni1 · · · nik

)]
ωn1,...,ng
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=
∑ ∫

Ω

[
g∏
i=1

(
mi

ni1 · · · nik

)
xni1i1 · · ·x

nik
ik (1−

∑
j

xij)
mi−

∑
j nij

]
dF

= 1

for Q = {(n1, . . . ,ng) : nij ≥ 0,
∑

j nij ≤ mi}. We may then define a set of sequences

{Xij : i ∈ [g], j ∈ N}, taking values in {0, 1, . . . , k}, such that

P

 for each i = 1, . . . , g, a particular choice of nij of Xij ’s

equal to j, for all j, from the total of mi Xij ’s


=

[
g∏
i=1

δmi−ni1−···−niki

]
ωn1,...,ng

and thus

P

 for each i = 1, . . . , g, any choice of nij of Xij ’s

equal to j, for all j, from the total of mi Xij ’s


=

[
g∏
i=1

δmi−ni1−···−niki

(
mi

ni1 · · · nik

)]
ωn1,...,ng .

Then, clearly, {Xij : i ∈ [g], j ∈ N} is g-fold partially exchangeable sequence. This

completes the proof for Theorem 3.3. �

The above result clearly covers all particular cases of infinite exchangeable, and par-

tially exchangeable, sequences of random variables that take on finitely many values.

Figure 3.1 provides a summary linking the different cases of HMP to the corresponding

equivalent cases in exchangeability.

3.5 Extensions to General Bounded Domains

Stockbridge (2003) provided the solutions to HMP over polytopes

B = {(θ1, . . . , θk) : ah1θ1 + · · ·+ ahkθk ≤ ah0, h = 1, . . . , g}

and more general bounded regions defined by

C = {(θ1, . . . , θk) : ah1θ
bh1
1 + · · ·+ ahkθ

bhk
k ≤ ah0, h = 1, . . . , g} .

We can deal with these cases through defining the increments and the p terms differ-

ently, then we may obtain the solutions in similar ways as in Theorem 3.3. For example,

in the basic case of the HMP over [0, b], we define the increments by

∆µn = bµn − µn+1
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Figure 3.1: Corresponding equivalent sub-cases between HMP and exchangeable se-

quences.

which will eventually lead to

n∑
k=0

(
n

k

)(
1

b

)n
∆n−kµk = 1 .

So we can define an exchangeable sequence X1, X2, . . . in {0, 1} by

P(k out of n Xi’s are equal to 1) =

(
n

k

)(
1

b

)n
∆n−kµk .

Conversely, define

pk,n = bnP(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0)

and

µn = pn,n = P(X1 = 1, . . . , Xn = 1)

then we get

pn−1,n = bpn−1,n−1 − pn,n = ∆µn−1

and hence

pn−2,n = bpn−2,n−1 − pn−1,n = ∆2µn−2 .

Therefore, by induction, we have for all k < n

pk,n = bpk,n−1 − pk+1,n = ∆n−kµk .

So, this means that we obtain the same result for HMP over [0, b] as for HMP over

[0, 1]. A similar approach can be applied to HMP over polytopes and more general

bounded regions defined above.
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3.6 Discussion and Further Research

Finite HMPs refer to cases where only a finite number of moments are available. Like-

wise, one may consider a sequence of only finitely many exchangeable random variables

taking values in a finite discrete domain. Equivalence under these cases was dealt with

by Gupta (1999b). In particular, he established the links between finite Hausdorff

moment problems and finite symmetric probabilities. However, a possible interest for

future research may be to look at translating the various approximation procedures for

finite moment problems (such as Talenti, 1987; Inglese, 1995) to finite exchangeable

sequences, and vice-versa.

Extensions to exchangeable sequences that take on values in a continuous domain are

much more complicated. This is due to the fact that the corresponding representation

theorem result in an integral defined over the set of all distribution functions in the

domain of interest and a probability measure over the set of all probability measures

in the same domain (see, for example, Aldous, 1985). Insights into the extensions for

such cases would be of interest for further exploration.

It is also somewhat obvious that we have been dealing with HMP over bounded regions

because we are, in essence, looking for distribution functions and probability measures

which are clearly bounded. In theory, one may consider general measures that need

not be bounded and this could relate to more general types of moment problems over

unbounded domains, for example, the Stieltjes moment problem over [0,∞) and the

Hamburger moment problem over (−∞,∞). It would be interesting to see how the two

concepts of exchangeability and moment problems may connect or disconnect under

these cases. These are left, perhaps, for future research.



Chapter 4

Exchangeability and Extreme

Value Theory

In this chapter, we propose new approaches to extreme value modelling for the forecast-

ing of VaR. In particular, the block maxima (BM) and the peaks-over-threshold (POT)

methods are generalised to cater for exchangeable random sequences. This caters for

the dependencies, such as serial autocorrelation, of financial returns observed empir-

ically. In addition, these approaches allow for parameter variations within each VaR

estimation window. Empirical prior distributions of the extreme value parameters are

attained by using resampling procedures. We compare the results of our VaR forecasts

to that of the unconditional EVT approach and the conditional GARCH-EVT model

for robust conclusions. As a further exploration, we also extend the GARCH-EVT

model under the assumption of exchangeable innovations. The content of this chapter

is included in the papers Huang et al. (2016a) and Huang et al. (2017).

4.1 Introduction

VaR is a commonly used benchmark for quantifying financial risk and is intended to

measure the maximum possible loss of a portfolio over a specified time horizon. VaR

has also prevailed as an important and widely used risk measure since the occurrence of

numerous noteworthy risk management failures in the early 1990s. Most computations

of VaR critically depend on an underlying distributional assumption and focus mainly

on the tail behaviours (Jorion, 2006). Consequently, the selection of an appropriate

distribution, or a related methodology, to accurately reflect the behaviour of financial

returns has become a vital topic of research over the past two decades.

25
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It has been well documented that empirical distribution of financial returns contradicts

the classical Gaussian assumptions. For instance, Fama (1965) showed that extreme

movements in financial returns emerge more frequently than estimated by Gaussian

models (i.e., they exhibits heavy-tails). Aas & Haff (2006) also showed that asset

returns data often exhibit skewness in distribution, with dissimilar tail behaviours.

Further stylised facts, such as volatility clustering and long range dependency, are

also discussed by Tsay (2010). Hence, the conjecture of a potential distribution for

financial returns must be able to capture such properties in order to obtain accurate

VaR estimates.

EVT has emerged as a suitable candidate for modelling VaR as it can account for both

heavy-tails and skewness. Consequently, it has been extensively applied to model tail

probabilities in financial returns. Koedijk et al. (1990) was among the first to apply

EVT to the financial framework, by using the methods to study fat-tail behaviours in

foreign exchange rate returns. Shortly thereafter, Jansen & de Vries (1991) used EVT

to generate robust probabilities for large returns on share prices. Ho et al. (2000) and

Longin (2000) estimated VaR using extreme value distributions, while McNeil & Frey

(2000) further combined EVT innovations with the GARCH models for evaluating VaR

and expected shortfall (ES). Recent work on financial applications of EVT to emerging

markets include, amongst others, those by Gencay & Selcuk (2004), Huang et al. (2014)

and Chinhamu et al. (2015).

The generalised extreme value distribution (GEVD) and the GPD arise as limiting

distributions of BM and threshold exceedances in a sequence of IID random variables,

respectively (Coles, 2001). However, the IID assumption for financial variables is largely

debatable, as may be traced back to earlier studies, such as King (1966). EVT have

subsequently been amalgamated with GARCH modelling in an attempt to overcome

such a shortfall. In particular, GARCH models can be utilised to filter out some

volatility dependence in the financial data and, subsequently, EVT can be applied

to the (near) IID residuals (see, for instance, McNeil & Frey, 2000; Byström, 2004;

Zhao et al., 2011). However, the appropriateness in assuming IID residuals is also

dependent on how well the data series is depicted by the GARCH model. Further

interesting approaches are proposed by Chavez-Demoulin et al. (2014) and de Haan

et al. (2016). The former proposed a nonparametric Bayesian smoothing approach for

allowing time-varying POT parameters while the latter studied the extreme value index

under β-mixing conditions.

As a different way to circumvent the assumption of IID, we propose to generalise

the EVT methods to exchangeable sequences. Some related theoretical aspects of

EVT on exchangeable sequences were dealt with in Galambos (1987). Hill (1994)
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also discussed the forecasting of extreme values in an exchangeable sequence using

a Bayesian approach, with a modified Hills estimator. However, to the best of our

knowledge, very limited applications of exchangeability exist for financial risk modelling

via EVT.

4.2 Extreme Value Models

The BM and the POT methods are two fundamental techniques for identifying extremes

in EVT. The former focuses on the distribution of block maxima, which can be modelled

by GEVD. The latter identifies realised exceedances, over a predefined high threshold,

which can be described by GPD (Coles, 2001). These results are reviewed below, with

discussions on how they are implemented in practice.

4.2.1 GEVD and BM

Let {X1, X2, . . .} be a sequence of IID random variables with common (but unknown)

distribution function F and let Mn denote the maximum of {X1, . . . , Xn}, for a sample

of size n. Intermediately, we can write down the distribution of Mn, in terms of F ,

FMn(x) = P(Mn ≤ x)

= P(X1 ≤ x, . . . ,Xn ≤ x)

= [F (x)]n . (4.1)

Naturally, this expression still depends on the unknown distribution function F . How-

ever, Fisher & Tippett (1928) and Gnedenko (1943) have shown that, regardless of

the form of F (as long as F ∈ MDA(H)), the asymptotic distribution of properly

normalised Mn, as n tends to infinity, is given by (see Theorem 1.3)

H(x) =

{
exp{−[1 + ξx]−1/ξ} , if ξ 6= 0

exp[− exp(−x)] , if ξ = 0
. (4.2)

In practice, one cannot identify the normalising constants, since F is unknown. Hence,

one can alternatively (see, for example, Longin, 1996; McNeil, 1998; Bali, 2003; Byström,

2004; Gilli & Këllezi, 2006; Faranda et al., 2011) fit the sequence of maxima to the 3-

parameter GEVD, given by

FGEVD(x|ξ, σ, µ) =

{
exp{−[1 + ξ(x−µσ )]−1/ξ} , if ξ 6= 0

exp[− exp(−x−µ
σ )] , if ξ = 0

, (4.3)

with σ > 0 and 1 + ξ(x − µ)/σ > 0, where µ is the location parameter, σ is the scale

parameter and ξ is the shape parameter. This is a unified representation of the heavy-

tailed Frechet distributions (ξ > 0), the short-tailed Weibull class of distributions (ξ <
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0) and the light-tailed Gumbel class of distributions (ξ = 0). In practical applications,

we would divide the data into non-overlapping blocks (of some pre-specified size) and

identify the maximum in each block. Subsequently, the series of BM is utilised in

maximum likelihood estimation (MLE) to find parameter estimates for µ, σ and ξ. This

is referred to as the BM method and enables one to approximate extreme statistics in

the sequence (Coles, 2001).

4.2.2 GPD and POT

For the POT method, we assume {X1, X2, . . .} as above, i.e., an IID sequence of random

variables with common distribution function F . Suppose u is some predetermined high

threshold value for F . Conditional on Xi being observed in excess of u, we can express

the probability of the magnitude of exceedance above u as

Fu(x) = P(Xi − u ≤ x|Xi > u)

=
F (x+ u)− F (u)

1− F (u)
. (4.4)

Balkema & de Haan (1974) and Pickands (1975) identifies Fu(x) asymptotically (see

Theorem 1.4) with GPD, i.e.,

FGPD(x|ξ, β) =

{
1− (1 + ξx/β)−1/ξ , if ξ 6= 0

1− exp(−x/β) , if ξ = 0
, (4.5)

as u tends to the right end point of Xi. For this distribution, x > 0 when ξ ≥ 0,

0 ≤ x ≤ −β/ξ when ξ < 0, and β > 0. To estimate the parameters, we first choose a

threshold level u, then identify those values that lie above u and calculate x − u, the

exceedances. Subsequently, MLE is implemented using these exceedances and estimates

for β, and ξ, are obtained (Coles, 2001).

4.3 EVT for Exchangeable Sequences

Now suppose we are interested in the maximum of a subset of an exchangeable sequence

and define Mn as before. According to Remark 2.10 and Remark 2.17, we can write

FMn(x) = P(Mn ≤ x)

= F (x, . . . , x)

=

∫
Θ

[FX|θ(x|θ)]ndFθ(θ) . (4.6)
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Given the fact that {X1|θ,X2|θ, . . .} are IID random variables (conditional on θ), it

is easily seen, using Lebesgue’s dominated convergence theorem and standard EVT

results, that

FMn(x) ≈ lim
n→∞

∫
Θ

[FX|θ(x|θ)]ndFθ(θ)

≈
∫
ξ,σ,µ

FGEVD(x|ξ, σ, µ)dFξ,σ,µ(ξ, σ, µ) , (4.7)

for large n and for some joint prior distribution Fξ,σ,µ(ξ, σ, µ) of ξ, σ and µ (as pa-

rameters of GEVD). Similarly, given the facts that exchangeability is preserved under

location shifts and any subsequence of an exchangeable sequence is also exchangeable,

we may express the distribution of exceedances above a large threshold u as

Fu(x) =

∫
Θ
P(X − u ≤ x|X > u, θ)dFθ(θ)

≈
∫
ξ,β
FGPD(x|ξ, β)dFξ,β(ξ, β) . (4.8)

where the POT method is applied to the sequence of exceedances Xi − u, which is IID

given θ.

These results imply that the distribution of BM and threshold exceedances, for an

exchangeable sequence, can be approximated by uncountable mixtures (or, compound

distributions) of the GEVD and GPD family, respectively. They also provide a moti-

vation for a conditional approach in estimating the distribution of BM and threshold

exceedances, where variations in the parameters are accounted for. The only hurdle

now is to specify our beliefs of the prior distributions Fξ,σ,µ(ξ, σ, µ) and Fξ,β(ξ, β).

4.4 Parameter Prior Distributions

To obtain the empirical prior distributions of GEVD and GPD parameters, we utilise

three different resampling procedures. In particular, we make use of the standard IID

bootstrapping (BS), stationary bootstrapping (SBS) and a jackknife (JK) procedure

adapted for extreme values.

The SBS, introduced by Politis & Romano (1994), is a generalisation of the standard

BS procedure. The method is as follows. A value p ∈ (0, 1] is predefined, which is

optimally taken to be c−1n−1/3 for a data set of size n1 . When deciding whether

1The SBS procedure described here is implemented by the R function tsbootstrap, which by default

defines c = 3.15. This value is obtained through Monte Carlo simulation. An automatic block-length

selection procedure has been suggested by Politis & White (2004) and Patton et al. (2009), which

can be implemented by the function b.star in the R package np. This has been executed over the
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an observation is to be included in a block, a number u is randomly drawn from the

UNIF (0, 1) distribution. If u is less than 1 − p, we include the observation into the

current block. If u is greater than 1 − p, then a new block is started. This algorithm

is continued until all the observations have been selected into blocks. Hence, the block

length is a random variable following a geometric distribution with parameter p (i.e.,

mean block length is 1/p = cn1/3). It also consequently renders the number of blocks

as a random variable. The blocks are then resampled with replacement to form new

samples. This procedure caters for dependency in the data set while also preserving

stationarity.

The classical JK procedure systematically leaves out an observation from the data set,

each time generating a resample of size one less than the original data set. However,

BM and POT methods are only concerned with data points that constitute an extreme

value. Hence, we propose and implement an adapted JK as follows. In the case of BM,

remove blocks, of the pre-specified size, one at a time. This effectively removes one

of the BM at a time and creates a series of resamples of size one-block less than the

original data. Similarly, for the POT method, we first identify observations that are

above the pre-specified threshold value, then remove these exceedances from the data

one at a time.

In each resampling process mentioned above, the EVT parameters are re-estimated for

each resample and an empirical distribution is subsequently constructed to approximate

the integrals in Equations 4.7 and 4.8. These calculations are then implemented in a

rolling window procedure, explained in the next two sections.

Dependencies between the parameters can be examined by computing a generalised

form of Hoeffdings D statistics, described in Hollander & Wolfe (1973), for every pair

of parameters. The value of this statistic ranges between -0.5 and 1. A statistic value

close to 1 indicates a strong dependency in the pair of variables, for a wide range of

alternatives to independence, such as non-monotonic relationships.

4.5 VaR and Backtesting

The magnitude of market risk capital, reserved by financial institutes as per the Basel

Accord, is directly related to the level of portfolio risk. VaR is a popular measure used

rolling periods of our data sets. For example, ALSI returns gave block lengths with a mean of 2.95

and a standard deviation of 2.72 (similar values were obtained for other data sets). These result in

similar values for c as set by default in tsbootstrap. In addition, considering the data sets are weakly

dependent, the efficiency on computing power and the fact that SBS is less sensitive to block size

selection (relative to other block bootstrap), we have implemented the above default value for c.
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to quantify this risk by computing the maximum possible loss for a portfolio over a

specified time period. Its calculations focus on the tails of a distribution.

Suppose X is a random variable with distribution function F . VaR over a specified

time period, for a given probability α, can be defined as the α-th upper quantile of F ,

i.e.,

VaRα = F−1(1− α) (4.9)

where F−1 is the corresponding quantile function. Under the unconditional EVT ap-

proach, we can estimate VaR using quantiles of the fitted model.

Let αext be the probability that a block maximum, observed over a period of n time

units, exceeds VaRα, i.e., P(Mn > VaRα). We then deduce the following from expres-

sion (4.1),

αext = P(Mn > VaRα)

= 1− P(X1 < VaRα, . . . , Xn < VaRα)

= 1− (1− α)n , (4.10)

given that the underlying sequence is IID. Subsequently, if we want to estimate VaR at

level α using the unconditional BM method, we can simply compute the corresponding

quantile from GEVD at αext. However, the above argument is not attainable for an

exchangeable sequence, since an exchangeable sequence is not necessarily IID. Alterna-

tively, by noting that an exchangeable sequence is strictly stationary, we can obtain a

generalised approximate form of the above, i.e.,

αext = P(Mn > VaRα)

= 1− FMn(x)

≈ 1− (1− α)nλ , (4.11)

where λ is a constant known as the extremal index (Smith & Weissman, 1994). For the

current work, we estimate λ by using the blocks method described in Embrechts et al.

(1997).

As for the POT method, we rearrange expression (4.4), and replace x with x − u, to

obtain

F (x) = (1− F (u))Fu(x− u) + F (u) . (4.12)

For a sufficiently high value of u, we can estimate F (u) by (1 − Nu/N), where N is

the total number of observations in the data and Nu is the number of observations

exceeding u. Further, Fu(x−u) can be estimated by a GPD, for the unconditional IID

case, or by expression (4.8), in the case of an exchangeable sequence. These methods

thus allow us to estimate the inverse probability F−1(1− α).
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The steps to estimate VaR for the next time point (say t + 1) in an exchangeable

sequence are summarised below:

(1) Consider a historic sequence of observations (up to the current time point t) as

an exchangeable sequence. Hence, resample (using BS, SBS or JK) from this

sequence for a large number of times and, each time, apply the BM or POT

method to the resample (for a pre-specified block size n or threshold level u,

respectively). This will form a range of values for the EVT parameters.

(2) Construct an empirical distribution for the EVT parameters, using the result from

above. For the BM method, estimate λ and search for an estimate for F−1
Mn

(α) in

expression (4.7). Similarly, use a search algorithm to find an estimate for F−1
u (α)

in expression (4.8) for the POT approach.

The above steps are implemented in a rolling window procedure to produce consecutive

estimates of VaR over a long period of time. We then backtest these VaR estimates,

against the realised values, with the widely used Kupiec likelihood-ratio test (see Re-

mark 1.5) and the Christoffersen’s conditional coverage test (see Remark 1.6).

In this work, we also compare our new methods against the classical unconditional

EVT approaches. Furthermore, we benchmark our results against the GARCH-EVT

framework introduced by McNeil & Frey (2000). This framework is a conditional

approach for VaR modelling, where POT is used for estimating the tail of the innovation

distribution of the GARCH model. This is described in the next section.

4.6 GARCH and VaR

Instead of modelling the distribution of X directly, let us now consider a conditional

model as follows. For a stationary sequence {X1, X2, . . .}, we assume

Xt = µt + σtZt (4.13)

where Zt are the innovations with marginal distribution FZ(z), while µt and σt are

assumed to be measurable with respect to Φt−1, the information about the process

available up to time t−1. Also, FX(x) denotes the marginal distribution of Xt. Hence,

we may write

FXt+1|Φt(x) = P (µt+1 + σt+1Zt+1 ≤ x|Φt)

= FZ

(x− µt+1

σt+1

)
(4.14)
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and define VaR for day t+ 1 simply as

VaRα(t+ 1) = µt+1 + σt+1zα (4.15)

where zα denotes the upper α-th quantile of Zt. To estimate this, we need to specify

a model for the dynamics of the conditional mean and volatility. This is typically

done using the GARCH(1,1) process for the volatility and the AR(1) model for the

conditional mean, i.e.,

σ2
t+1 = α0 + α1ε

2
t + βσ2

t and µt+1 = φXt , (4.16)

where εt = σtZt, α0 > 0, α1 > 0, β > 0, and φ is the AR(1) coefficient. It is also

commonly assumed that the GARCH model is fitted using MLE, where Zt follows a

standard normal (i.e., zα is simply a standard normal quantile), and µt+1 and σt+1 are

estimated using standard 1-day forecasts McNeil & Frey (2000).

McNeil & Frey (2000) also proposed amalgamating the GARCH model with the POT

method, to produce a conditional GARCH-EVT approach for estimating VaR. They

used a pseudo maximum likelihood (PML) procedure, to minimise assumptions about

the model innovations, when estimating the GARCH parameters. This procedure still

assumes normality for the likelihood construction, but uses robust standard errors for

inference and yields consistent estimators. They further estimated the innovation quan-

tile using POT. This is then combined with the forecasts for mean and volatility to

obtain an estimate for VaR. One possible drawback of the GARCH-EVT approach is

that the procedure assumes the model innovations are IID (since the classical POT

method is based on an IID sequence). We again propose to relax the IID assump-

tion by considering exchangeable sequences. We will use SBS for estimating the prior

distribution for the POT parameters.

We extend the steps described in Section 4.5 as below:

(1) Fit a GARCH model to a historic window of returns of size w, i.e., {xt−w+1, . . . , xt},
using the PML approach. Forecast µt+1 and σt+1, using the fitted model and ex-

tract the corresponding residuals (i.e., innovations).

(2) Consider the residuals as an exchangeable sequence. Hence, resample from this

sequence of residuals, a large number of times, using SBS and, each time, apply

the POT method to the bootstrapped sample (for a pre-specified threshold level

u). This will form a range of values for ξ̂ and β̂.

(3) Construct an empirical distribution F̂ξ,β for ξ and β, using the result from above.

Use a search algorithm to find an estimate for zα = F−1(1 − α) and, hence,

calculate VaRα(t+ 1).
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This procedure is again implemented in a rolling window to produce consecutive esti-

mates for VaR over a long period.

4.7 Empirical Results - Part I

To illustrate our methodology introduced from Section 4.5, and to compare model

performances across different markets, we have chosen data sets extracted from the

following indices: Standard & Poor 500 Index (S&P500), Financial Times Stock Ex-

change 100 Index (FTSE100), MSCI World Index (MSCI), Hang Seng Index (HSI) and

FTSE/JSE All-Share Index (ALSI). All data series are comprised of daily closing prices,

obtained from McGregor BFA. For daily stock prices {P1, P2, . . .}, the log-returns (or,

simply returns) are calculated as follows

Xi = ln(Pi)− ln(Pi−1) . (4.17)

The daily index prices for S&P500, FTSE100, MSCI and HSI were recorded from 21

November 1994 to 21 November 2014 (i.e., total of 5219 daily returns) and the prices

of ALSI were recorded from 30 June 1995 to 21 November 2014 (i.e., total of 4847 daily

returns).

Figures 4.1 to 4.5 present the time series plot of daily index prices and the time series

plot of daily returns for each return series, respectively. The data sets spread include

various important events in the financial history and are evidenced in the figures. For

example, extreme price movements (i.e., extreme observations in the return series) are

observable for the 1997 Asian Financial Crisis, Russian defaults in 1998, the economic

recession in the early 2000s and the 2007-2008 Global Financial Crisis. Overall, the

price of all indices significantly increased over the chosen time periods. The figures

further indicate presence of heteroscedasticity and volatility clustering for the return

series.

Figure 4.1: Time series plots for daily closing values (left) and returns (right) for

S&P500.

Table 4.1 provides the descriptive summaries for returns of the five indices. All return

series produced a slightly positive mean of returns. They are all characterised by
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Figure 4.2: Time series plots for daily closing values (left) and returns (right) for

FTSE100.

Figure 4.3: Time series plots for daily closing values (left) and returns (right) for MSCI.

Figure 4.4: Time series plots for daily closing values (left) and returns (right) for HSI.

Figure 4.5: Time series plots for daily closing values (left) and returns (right) for ALSI.

substantial skewness and high excess kurtosis. These are results of the leptokurtic and

asymmetric behaviours in the return series, as commonly suggested in the literature.

These non-Gaussian characteristics are also confirmed by rejections in the Anderson-

Darling normality test.

For the purpose of VaR modelling, our analyses are focused on extreme negative returns

in the data. Hence, for convenience and for ease of computation, we utilise the relation

min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn} and multiply each return series by -1. In

accordance with McNeil & Frey (2000), we also use a rolling window of 1000 days of

historical observations to predict VaR for the next day.

In the analyses to follow, block sizes of 5, 10 and 21 are selected for the BM method
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Table 4.1: Descriptive statistics for daily returns of the five indices.

Anderson-Darling

Std. Excess test statistic

Index Min Max Mean dev. Skewness Kurtosis (p-value)

S&P500 -0.0947 0.1096 0.0003 0.0120 -0.2503 8.5299 1966.15 (<0.0001)

FTSE100 -0.0927 0.0938 0.0001 0.0116 -0.1624 6.3388 1966.80 (<0.0001)

MSCI -0.0733 0.0910 0.0002 0.0098 -0.3734 7.9793 1974.75 (<0.0001)

HSI -0.1473 0.1725 0.0002 0.0163 0.0894 10.6296 1948.76 (<0.0001)

ALSI -0.1269 0.0742 0.0005 0.0124 -0.4741 6.2700 1822.66 (<0.0001)

(for both IID and exchangeable sequences), resulting in estimates for weekly, fortnightly

and monthly maxima series, respectively. On the other hand, threshold values at 80%,

90% and 95% sample quantiles (re-calculated for each window) are used for the POT

method (for both IID and exchangeable sequences). These choices of threshold level are

supported by examining the mean excess plot for each data set, where these quantiles lie

on a positive straight line (Coles, 2001). As for the GARCH-EVT approach, we follow

McNeil and Frey in selecting 90% quantile as the threshold level for the innovations

and the GARCH model is fitted using PML estimation.

Figure 4.6: Scatter plots of GEVD parameters for S&P500, with BS resampling and

block size 21.

Table 4.2: Hoeffding’s D Statistics for parameters estimated from fitting GEVD to

S&P500.

Jackknife Bootstrap

Distribution ξ vs σ σ vs µ µ vs ξ ξ vs σ σ vs µ µ vs ξ

GEVD5 0.21 0.52 0.33 0.03 0.09 0.03

GEVD10 0.25 0.50 0.35 0.00 0.06 0.02

GEVD21 0.26 0.56 0.39 0.00 0.06 0.01

For each window (when using the exchangeable EVT approach), 1000 resamples are

generated using BS, SBS and the adapted JK as described earlier. Parameter estima-

tion is then performed for each resample, which would generate empirical prior distri-

butions for the EVT parameters in each window. Dependencies between parameters
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Table 4.3: Hoeffding’s D Statistics for parameters estimated from fitting GPD to

S&P500.

Jackknife Bootstrap

Distribution ξ vs β ξ vs β

GPD80 0.71 0.11

GPD90 0.65 0.12

GPD95 0.62 0.10

were examined using pairwise scatterplots and the Hoeffdings D statistic. A sample of

these results for S&P500 are presented in Figure 4.6 and Tables 4.2 to 4.3. The results

provide very little evidence of strong dependencies between the parameters (although

some weak dependencies were observed). Similar results were obtained for all other

models and indices. This led us to treating the parameters as mutually independent.

The extremal index for the BM method on exchangeable sequences is also re-estimated

in every window. The search algorithm we shall use, for estimating F−1
u (1 − α) and

F−1
Mn

(1 − α), is a combination of golden search algorithm and successive parabolic in-

terpolation (Brent, 1973), as built in the R function optimize().

VaR estimation and backtesting are performed at two confidence levels, namely at 1%

and 2.5%, using the Kupiec likelihood ratio test and the Christoffersen conditional

coverage test. The results for various models and indices are recorded in Tables 4.6 to

4.10, given at the end of this section. To better compare the overall performance of

our new models with existing approaches, we further summarise the results in Tables

4.4 and 4.5.

Table 4.4 compares the new EVT approach for exchangeable sequences to the classical

unconditional EVT approach for IID sequences. This comparison is examined for both

BM and POT methods and at three different block sizes and threshold levels, respec-

tively. In 47 out of 60 cases for the BM method, one can improve the VaR adequacy

by switching to the BM method for exchangeable sequences. Whereas, the assumption

of exchangeability can improve only 35 out of 60 cases of VaR estimates when utilising

the POT method. The exchangeability assumption seems to be have a stronger effect

on the BM method. On a related note, prior research (see, for example, Gilli & Këllezi,

2006; Huang et al., 2014; Chinhamu et al., 2015) has often shown that GPD performs

better than GEVD in evaluating financial risk when using the classical unconditional

EVT approach. However, under the assumption of exchangeability, this is not always

the case. In particular, by comparing values across Tables 4.6 to 4.10, we may observe

numerous cases where GEVD, using our resampling approach, produced higher Kupiec
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Table 4.4: Indication of whether the exchangeable EVT approach do improve on the

classical unconditional EVT models, in terms of one-day-ahead VaR forecasting.

BM POT

Data Test Level n = 5 n = 10 n = 21 u = 0.8 u = 0.9 u = 0.95

S&P500

Kupiec
1% Y Y Y Y Y Y

2.5% Y Y Y Y Y Y

Christoffersen
1% Y Y Y N Y Y

2.5% Y Y Y Y Y Y

FTSE100

Kupiec
1% Y Y Y Y Y Y

2.5% N Y Y N Y Y

Christoffersen
1% Y Y Y N Y Y

2.5% Y Y Y N N N

MSCI

Kupiec
1% Y Y Y Y Y Y

2.5% Y Y Y Y Y Y

Christoffersen
1% N N N N N N

2.5% N N N Y N N

HSI

Kupiec
1% N Y Y Y Y N

2.5% N Y Y N Y Y

Christoffersen
1% N Y Y N Y Y

2.5% N N N N N Y

ALSI

Kupiec
1% Y Y Y N Y N

2.5% Y Y Y N Y N

Christoffersen
1% Y Y Y N N N

2.5% Y Y Y N Y N

Notes: This table provides a partial summary of results from Tables 4.6 to 4.10, in terms of whether the

exchangeable EVT approaches can improve on the classical unconditional EVT methods. In particular, this is

examined for each block size level of the BM method and for each threshold level of the POT method. Y = the

classical unconditional EVT method is outperformed by a corresponding exchangeable EVT method (highlighted

in grey); N = no improvement is observed by using the exchangeable EVT approaches (not highlighted).

or Christoffersen p-values than the corresponding GPD estimates. This is an indication

that, by accommodating for some prior belief in the parameter variations (in our case,

the empirical prior distributions), we have made the relative performances between BM

and POT methods more comparable with each other. When comparing across indices,

we find that MSCI and HIS have the least cases of VaR improvement when switched to

the exchangeability assumption (i.e. 11 out of 24 cases). Interestingly, MSCI deviates

the most from normality and HSI have the highest excess kurtosis (see Table 1). On

the other hand, ALSI is the closest to normality (relatively) with the smallest excess

kurtosis. This may be attributed to the fact that JSE is a relatively smaller market with

prudent fiscal and monetary policies, making it less affected by global events, relative

to its international counterparts. Consequently, the risk in ALSI seems better captured

by the various models, with its best performing models producing higher p-values, as

compared to other indices (especially for the Christoffersen conditional coverage test).
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Table 4.5: Model(s) with the most adequate VaR forecasts for various indices, at dif-

ferent VaR levels.

Kupiec Christoffersen

Data 1% 2.5% 1% 2.5%

S&P500 GPD90-SBS GPD90-SBS GPD80-IID GPD80-SBS

FTSE100 GEVD21-BS GPD95-SBS GPD95-SBS GEVD10-BS

MSCI GEVD10-BS GPD90-SBS - GPD80-SBS

HSI GPD80-SBS/GPD90-JK/ GEVD21-JK GEVD10-JK GARCH-EVT

GARCH-EVT

ALSI GEVD5-SBS GPD90-SBS GEVD21-JK GARCH-EVT

Notes: This table records the model(s) that produced the most adequate VaR forecasts for each index, at each of

two different VaR confidence levels, by comparing results obtained in Tables 4.6 to 4.10. GEVD5-SBS denotes

the BM method for exchangeable sequences with block size 5 and using SBS resampling, while GPD80-IID

denotes the classical unconditional POT method with threshold level at 80% sample quantile, etc. GARCH-

EVT represents the conditional approach proposed by McNeil and Frey (2000). No adequate model was observed

for MSCI at 1% VaR level when using the Christoffersen conditional coverage test.

Table 4.5 records the best performing model(s) for each index and for the two VaR

adequacy tests at 1% and 2.5% levels. It is observed that the best model involves

using SBS in 10 out of 20 cases. This is to some extent expected as SBS caters for

dependencies in the data set when resampling from each window. We also note that

the GARCH-EVT model only produced the best result in 3 out of the 20 cases, while

the best VaR estimates can be achieved by our new approaches in 16 out of 20 cases.

This is a strong evidence that our proposed new EVT approaches for exchangeable

sequences can produce superior forecasting performances as compared to the GARCH-

EVT model.
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Table 4.6: One-day-ahead out-of-sample test for VaR estimates of S&P500.

No. of exceedances Christoffersen

(expected) Kupiec p-value p-value

VaR levels 1% (42) 2.5% (105) 1% 2.5% 1% 2.5%

GEVD5-IID 62 141 0.0042 0.0009 0.0001 <0.0001

GEVD5-JK 78 150 <0.0001 <0.0001 <0.0001 <0.0001

GEVD5-BS 53 111 0.1077 0.5890 0.0048 0.0029

GEVD5-SBS 57 126 0.0296 0.0494 0.0004 0.0010

GEVD10-IID 68 165 0.0002 <0.0001 <0.0001 <0.0001

GEVD10-JK 75 130 <0.0001 0.0195 <0.0001 <0.0001

GEVD10-BS 47 99 0.4648 0.5189 0.0005 0.0004

GEVD10-SBS 57 124 0.0296 0.0754 0.0004 0.0011

GEVD21-IID 89 203 <0.0001 <0.0001 <0.0001 <0.0001

GEVD21-JK 58 126 0.0206 0.0494 <0.0001 <0.0001

GEVD21-BS 50 94 0.2403 0.2491 0.0057 0.0028

GEVD21-SBS 56 122 0.0419 0.1117 0.0005 0.0003

GPD80-IID 55 115 0.0583 0.3545 0.0073 0.0073

GPD80-JK 54 115 0.0799 0.3545 0.0043 0.0037

GPD80-BS 53 113 0.1077 0.4631 0.0048 0.0033

GPD80-SBS 53 116 0.1077 0.3069 0.0048 0.0377

GPD90-IID 57 121 0.0296 0.1345 0.0004 0.0003

GPD90-JK 55 119 0.0583 0.1911 0.0005 0.0003

GPD90-BS 51 112 0.1869 0.5240 0.0006 0.0008

GPD90-SBS 46 107 0.5612 0.8807 0.0052 0.0018

GPD95-IID 61 124 0.0064 0.0754 0.0002 0.0003

GPD95-JK 58 121 0.0206 0.1345 0.0003 0.0011

GPD95-BS 56 110 0.0419 0.6578 0.0004 0.0006

GPD95-SBS 52 101 0.1430 0.6568 0.0006 0.0007

GARCH-EVT 56 120 0.0419 0.1609 <0.0001 <0.0001

Notes: This table shows results for the testing of VaR estimates derived from the various methods discussed

in this section. The tests are performed at 1% and 2.5% VaR confidence levels for losses using the Kupiec

likelihood ratio test and the Christoffersen conditional coverage test. GEVD5-IID and GPD80-IID denotes the

classical unconditional EVT methods with block size 5 and threshold level at 80% sample quantile, respectively.

GEVD5-JK, GEVD5-BS and GEVD5-SBS denotes the BM method for exchangeable sequences, with block size

5, using JK, BS and SBS resampling, respectively. Similar notations analogously apply to other models and

GARCH-EVT refers to the approach proposed by McNeil and Frey (2000).
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Table 4.7: One-day-ahead out-of-sample test for VaR estimates of FTSE100.

No. of exceedances Christoffersen

(expected) Kupiec p-value p-value

VaR levels 1% (42) 2.5% (105) 1% 2.5% 1% 2.5%

GEVD5-IID 73 143 <0.0001 0.0004 <0.0001 <0.0001

GEVD5-JK 88 154 <0.0001 <0.0001 <0.0001 <0.0001

GEVD5-BS 59 117 0.0141 0.2639 0.0018 <0.0001

GEVD5-SBS 65 131 0.0011 0.0152 <0.0001 <0.0001

GEVD10-IID 79 161 <0.0001 <.0001 <0.0001 <0.0001

GEVD10-JK 75 142 <0.0001 0.0006 <0.0001 <0.0001

GEVD10-BS 53 101 0.1077 0.6568 0.0048 0.0007

GEVD10-SBS 68 130 0.0002 0.0195 <0.0001 <0.0001

GEVD21-IID 93 202 <0.0001 <0.0001 <0.0001 <0.0001

GEVD21-JK 72 145 <0.0001 0.0002 <0.0001 <0.0001

GEVD21-BS 44 89 0.7809 0.0952 0.0043 0.0001

GEVD21-SBS 67 128 0.0004 0.0315 <0.0001 <0.0001

GPD80-IID 66 127 0.0007 0.0396 <0.0001 <0.0001

GPD80-JK 66 127 0.0007 0.0396 <0.0001 <0.0001

GPD80-BS 66 127 0.0007 0.0396 <0.0001 <0.0001

GPD80-SBS 65 127 0.0011 0.0396 <0.0001 <0.0001

GPD90-IID 67 123 0.0004 0.0921 <0.0001 <0.0001

GPD90-JK 67 123 0.0004 0.0921 <0.0001 <0.0001

GPD90-BS 61 117 0.0064 0.2639 0.0011 <0.0001

GPD90-SBS 64 115 0.0017 0.3545 <0.0001 <0.0001

GPD95-IID 60 121 0.0096 0.1345 0.0014 <0.0001

GPD95-JK 60 121 0.0096 0.1345 0.0014 <0.0001

GPD95-BS 60 115 0.0096 0.3545 0.0014 <0.0001

GPD95-SBS 55 103 0.0583 0.8065 0.0202 <0.0001

GARCH-EVT 67 122 0.0004 0.1117 <0.0001 <0.0001

Notes: This table shows results for the testing of VaR estimates derived from the various methods discussed

in this section. The tests are performed at 1% and 2.5% VaR confidence levels for losses using the Kupiec

likelihood ratio test and the Christoffersen conditional coverage test. GEVD5-IID and GPD80-IID denotes the

classical unconditional EVT methods with block size 5 and threshold level at 80% sample quantile, respectively.

GEVD5-JK, GEVD5-BS and GEVD5-SBS denotes the BM method for exchangeable sequences, with block size

5, using JK, BS and SBS resampling, respectively. Similar notations analogously apply to other models and

GARCH-EVT refers to the approach proposed by McNeil and Frey (2000).
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Table 4.8: One-day-ahead out-of-sample test for VaR estimates of MSCI.

No. of exceedances Christoffersen

(expected) Kupiec p-value p-value

VaR levels 1% (42) 2.5% (105) 1% 2.5% 1% 2.5%

GEVD5-IID 73 151 <0.0001 <0.0001 <0.0001 <0.0001

GEVD5-JK 115 175 <0.0001 <0.0001 <0.0001 <0.0001

GEVD5-BS 51 103 0.1869 0.8065 <0.0001 <0.0001

GEVD5-SBS 61 124 0.0064 0.0754 <0.0001 <0.0001

GEVD10-IID 81 178 <0.0001 <0.0001 <0.0001 <0.0001

GEVD10-JK 60 130 0.0096 0.0195 <0.0001 <0.0001

GEVD10-BS 44 94 0.7809 0.2491 <0.0001 <0.0001

GEVD10-SBS 58 127 0.0206 0.0396 <0.0001 <0.0001

GEVD21-IID 90 209 <0.0001 <0.0001 <0.0001 <0.0001

GEVD21-JK 92 166 <0.0001 <0.0001 <0.0001 <0.0001

GEVD21-BS 40 85 0.7325 0.0368 <0.0001 <0.0001

GEVD21-SBS 56 123 0.0419 0.0921 <0.0001 <0.0001

GPD80-IID 58 123 0.0206 0.0921 <0.0001 <0.0001

GPD80-JK 57 122 0.0296 0.1117 <0.0001 <0.0001

GPD80-BS 51 108 0.1869 0.8041 <0.0001 <0.0001

GPD80-SBS 52 100 0.1430 0.5861 <0.0001 0.0102

GPD90-IID 58 119 0.0206 0.1911 <0.0001 <0.0001

GPD90-JK 53 114 0.1077 0.4066 <0.0001 <0.0001

GPD90-BS 55 113 0.0583 0.4631 <0.0001 <0.0001

GPD90-SBS 52 107 0.1430 0.8807 <0.0001 <0.0001

GPD95-IID 57 118 0.0296 0.2254 <0.0001 <0.0001

GPD95-JK 52 109 0.1430 0.7295 <0.0001 <0.0001

GPD95-BS 48 86 0.3790 0.0474 <0.0001 <0.0001

GPD95-SBS 49 86 0.3042 0.0474 <0.0001 <0.0001

GARCH-EVT 59 122 0.0141 0.1117 <0.0001 0.0003

Notes: This table shows results for the testing of VaR estimates derived from the various methods discussed

in this section. The tests are performed at 1% and 2.5% VaR confidence levels for losses using the Kupiec

likelihood ratio test and the Christoffersen conditional coverage test. GEVD5-IID and GPD80-IID denotes the

classical unconditional EVT methods with block size 5 and threshold level at 80% sample quantile, respectively.

GEVD5-JK, GEVD5-BS and GEVD5-SBS denotes the BM method for exchangeable sequences, with block size

5, using JK, BS and SBS resampling, respectively. Similar notations analogously apply to other models and

GARCH-EVT refers to the approach proposed by McNeil and Frey (2000).
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Table 4.9: One-day-ahead out-of-sample test for VaR estimates of HSI.

No. of exceedances Christoffersen

(expected) Kupiec p-value p-value

VaR levels 1% (42) 2.5% (105) 1% 2.5% 1% 2.5%

GEVD5-IID 40 111 0.7325 0.5890 0.0020 <0.0001

GEVD5-JK 32 85 0.0996 0.0368 0.0017 <0.0001

GEVD5-BS 34 79 0.1897 0.0063 0.0003 <0.0001

GEVD5-SBS 34 97 0.1897 0.3970 0.0003 <0.0001

GEVD10-IID 61 125 0.0064 0.0613 <0.0001 <0.0001

GEVD10-JK 43 83 0.9006 0.0214 0.0342 <0.0001

GEVD10-BS 37 70 0.4121 0.0002 0.0008 <0.0001

GEVD10-SBS 41 96 0.8532 0.3429 0.0026 <0.0001

GEVD21-IID 70 162 <0.0001 <0.0001 <0.0001 <0.0001

GEVD21-JK 52 101 0.1430 0.6568 <0.0001 <0.0001

GEVD21-BS 35 61 0.2517 <0.0001 0.0004 <0.0001

GEVD21-SBS 43 93 0.9006 0.2095 0.0003 <0.0001

GPD80-IID 41 88 0.8532 0.0762 0.0002 <0.0001

GPD80-JK 41 88 0.8532 0.0762 0.0002 <0.0001

GPD80-BS 41 87 0.8532 0.0604 0.0002 <0.0001

GPD80-SBS 42 88 0.9765 0.0762 0.0002 <0.0001

GPD90-IID 43 88 0.9006 0.0762 0.0003 <0.0001

GPD90-JK 42 88 0.9765 0.0762 0.0002 <0.0001

GPD90-BS 44 88 0.7809 0.0762 0.0004 <0.0001

GPD90-SBS 44 94 0.7809 0.2491 0.0004 <0.0001

GPD95-IID 43 91 0.9006 0.1440 0.0003 0.0002

GPD95-JK 43 92 0.9006 0.1745 0.0003 0.0003

GPD95-BS 41 87 0.8532 0.0604 0.0002 <0.0001

GPD95-SBS 44 91 0.7809 0.1440 0.0004 0.0002

GARCH-EVT 42 89 0.9765 0.0952 0.0002 0.0007

Notes: This table shows results for the testing of VaR estimates derived from the various methods discussed

in this section. The tests are performed at 1% and 2.5% VaR confidence levels for losses using the Kupiec

likelihood ratio test and the Christoffersen conditional coverage test. GEVD5-IID and GPD80-IID denotes the

classical unconditional EVT methods with block size 5 and threshold level at 80% sample quantile, respectively.

GEVD5-JK, GEVD5-BS and GEVD5-SBS denotes the BM method for exchangeable sequences, with block size

5, using JK, BS and SBS resampling, respectively. Similar notations analogously apply to other models and

GARCH-EVT refers to the approach proposed by McNeil and Frey (2000).
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Table 4.10: One-day-ahead out-of-sample test for VaR estimates of ALSI.

No. of exceedances Christoffersen

(expected) Kupiec p-value p-value

VaR levels 1% (42) 2.5% (105) 1% 2.5% 1% 2.5%

GEVD5-IID 41 102 0.6850 0.5513 0.5921 0.0015

GEVD5-JK 36 92 0.6858 0.6641 0.6557 0.0015

GEVD5-BS 33 78 0.3636 0.0524 0.4974 0.0033

GEVD5-SBS 37 94 0.8105 0.8216 <0.0001 0.0094

GEVD10-IID 46 128 0.2365 0.0017 0.2844 <0.0001

GEVD10-JK 23 75 0.0067 0.0230 0.0222 0.0047

GEVD10-BS 30 70 0.1534 0.0045 0.2851 0.0073

GEVD10-SBS 35 93 0.5680 0.7417 <0.0001 0.0300

GEVD21-IID 54 147 0.0177 <0.0001 0.0290 <0.0001

GEVD21-JK 41 104 0.6850 0.4250 0.7013 <0.0001

GEVD21-BS 27 65 0.0496 0.0006 0.1202 0.0021

GEVD21-SBS 34 91 0.4600 0.5898 <0.0001 0.0055

GPD80-IID 36 94 0.6858 0.8216 <0.0001 0.0094

GPD80-JK 36 94 0.6858 0.8216 <0.0001 0.0094

GPD80-BS 34 90 0.4600 0.5192 <0.0001 0.0045

GPD80-SBS 34 90 0.4600 0.5192 <0.0001 0.0045

GPD90-IID 35 94 0.5680 0.8216 <0.0001 0.0094

GPD90-JK 35 94 0.5680 0.8216 <0.0001 0.0094

GPD90-BS 35 94 0.5680 0.8216 <0.0001 0.0094

GPD90-SBS 36 96 0.6858 0.9858 <0.0001 0.0124

GPD95-IID 35 92 0.5680 0.6641 <0.0001 0.0067

GPD95-JK 35 92 0.5680 0.6641 <0.0001 0.0067

GPD95-BS 28 75 0.0746 0.0230 <0.0001 0.0002

GPD95-SBS 32 81 0.2803 0.1074 <0.0001 0.0004

GARCH-EVT 35 90 0.5680 0.5192 <0.0001 0.3980

Notes: This table shows results for the testing of VaR estimates derived from the various methods discussed

in this section. The tests are performed at 1% and 2.5% VaR confidence levels for losses using the Kupiec

likelihood ratio test and the Christoffersen conditional coverage test. GEVD5-IID and GPD80-IID denotes the

classical unconditional EVT methods with block size 5 and threshold level at 80% sample quantile, respectively.

GEVD5-JK, GEVD5-BS and GEVD5-SBS denotes the BM method for exchangeable sequences, with block size

5, using JK, BS and SBS resampling, respectively. Similar notations analogously apply to other models and

GARCH-EVT refers to the approach proposed by McNeil and Frey (2000).
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4.8 Empirical Results - Part II

We now extend our empirical analysis to include a GARCH filter for the negative

daily returns, as discussed in Section 4.6. However, we shall focus only on two indices:

FTSE100 and ALSI. As in McNeil & Frey (2000), we use a GARCH(1,1) filter (which

can be easily generalised to other GARCH-type models) and have the POT method

implemented with a threshold level at the 90% sample quantile. Only the SBS procedure

is considered for estimating the empirical distribution of the POT parameters. All other

variable are set as in the previous section.

For a preliminary investigation, we fit the GARCH model on rolling windows of 1000

daily returns and construct various autocorrelation function (ACF) and partial ACF

(PACF) plots of the corresponding innovations. As an illustration, the PACF plot of

FTSE100 residuals and the PACF plot of absolute values of ALSI residuals are shown in

Figure 4.7, for the window from observation 3001 to 4000 (which includes the 2008/2009

financial crisis period). Both plots show a slow (if any) decay of autocorrelation, indi-

cating possible long range dependency in the GARCH innovations (as one would also

get for the original return series). Similar results were obtained for a large number of

windows.

Figure 4.7: Partial ACF plots of GARCH residuals for FTSE100 and the absolute value

of GARCH residuals for ALSI.

Figures 4.8 and 4.9 indicate records of kurtosis and skewness of all rolling windows, for

both FTSE100 and ALSI. The black solid lines represent the kurtosis and skewness of

the original negative returns series, while the red dotted lines represent the correspond-

ing values for the model innovations. We note that the rolling residual kurtosis values

are significantly lower than the kurtosis of the original return series. This is expected

as the GARCH filters correct for some volatility clustering inherent in the returns.

However, the residual kurtosis, for each data set, still remains above 3, and often peaks

much higher than 3. This is consistent with a stylised fact that says financial returns

have conditional heavy tails (Cont, 2001). The presence of high residual kurtosis and



CHAPTER 4. EXCHANGEABILITY AND EXTREME VALUE THEORY 46

Figure 4.8: Kurtosis of GARCH residuals for rolling windows of 1000 daily returns.

Figure 4.9: Skewness of GARCH residuals for rolling windows of 1000 daily returns.

skewness recorded at various windows is also supportive of the choice of using an EVT

method for modelling the tails of the innovations. Although, it is interesting to note

how both ALSI kurtosis series significantly dropped down and seemed to stabilise as

the rolling window moved forward in time.

Figure 4.10: VaR estimates for negative FTSE100 returns using GARCH-EVT with

exchangable innovations (black line = daily returns; red line = 1% VaR estimates; blue

line = 2.5% VaR estimates).
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Figure 4.11: VaR estimates for negative ALSI returns using GARCH-EVT with ex-

changable innovations (black line = daily returns; red line = 1% VaR estimates; blue

line = 2.5% VaR estimates).

VaR estimates are calculated at both 2.5% and 1% VaR levels. Figures 4.10 and 4.11

present the negative daily returns of both data sets and the corresponding daily VaR

estimates calculated using our new approach. The graphs show that the VaR model

reacts consistently to market changes, especially during financial turmoil. For example,

the graphs depict the highest peak during the 2008/2009 financial crisis, with the VaR

estimates adjusting accordingly.

Table 4.11 shows the results of backtesting the VaR estimates against the corresponding

realised negative return values. We contrast the performance of our new approach

(denoted as GARCH-EVT-Exch) with the unconditional EVT approach (denoted as

uncond. EVT), the GARCH-norm approach (where GARCH is fitted using ML and

the innovation distribution is assumed to be standard normal) and the GARCH-EVT

approach by McNeil & Frey (2000). The unconditional EVT approach is the application

of the POT method on the original negative daily returns, without using a GARCH

filter. The number of violations of VaR, the corresponding Kupiec likelihood-ratio test

p-value and Chritoffersen conditional coverage test p-value are recorded for the various

models, at the two different VaR levels.

For FTSE100, it is quite clear that our new approach produced better VaR estimates

than the other three models. As is well-known, the GARCH-norm model tends to

underestimate the conditional heavy tails, resulting in excess amount of VaR viola-

tions. The unconditional EVT approach cannot respond quickly to changing volatility

and tends to record consecutive violations during a stress period. The GARCH-EVT

approach brings a slight improvement. However, its assumption of IID innovations

depended on how well the data set is depicted by the GARCH filter. In this scenario,

our model, which caters for residual dependencies, produced a significantly better VaR
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Table 4.11: Backtesting of VaR estimates for negative daily returns.

No. of Christoffersen

violations Kupiec test test

Data Method 2.5% 1% 2.5% 1% 2.5% 1%

FTSE100

Expected 105 42 - - - -

Uncond. EVT 123 67 0.0921 0.0004 <0.0001 <0.0001

GARCH-norm 154 74 <0.0001 <0.0001 <0.0001 <0.0001

GARCH-EVT 122 67 0.1117 0.0004 <0.0001 <0.0001

GARCH-EVT-Exch 107 44 0.8807 0.7809 0.7462 <0.0001

ALSI

Expected 96 38 - - - -

Uncond. EVT 94 35 0.8216 0.5680 0.0094 <0.0001

GARCH-norm 111 63 0.1349 0.0003 0.3249 <0.0001

GARCH-EVT 90 35 0.5192 0.5680 0.3980 <0.0001

GARCH-EVT-Exch 89 40 0.4531 0.8054 0.7540 <0.0001

model, evidenced by the superior results from both tests.

A more interesting set of results is revealed for ALSI. The GARCH filter did not bring

improvement to the unconditional EVT, in terms of the Kupiec test. We suggest this

may be due to the effect of the stabilising kurtosis, as we observed earlier. However,

GARCH-EVT produced a better result for the Christoffersen’s test at the 2.5% level.

Our new approach further improves on the result of this test at 2.5%. At the same time,

a higher Kupiec p-value was also recorded for 1% VaR. Given that the Christoffersen’s

test is a much stricter test (i.e., tests for both correct number of exceedances and

independence), we believe our new approach still produced a very competitive (if not

better) model for ALSI.

4.9 Discussion and Further Research

In this chapter, we considered the notion of exchangeability2 for EVT. We derived

corresponding expressions for the distribution of BM and threshold exceedances, of an

exchangeable sequence, and utilised them for financial risk valuation. Our prior belief in

distributions of the parameters were based on resampling using BS, SBS and an adapted

JK method for extreme observations. As such, we have shown that generalisations to

2Note that here exchangeability is viewed simply as a modelling assumption. In practice, an informed

judgment is required to establish this subjective view (approximately), with the use of graphical analysis

and other statistical tests related to properties of exchangeability. Like the assumption of IID, there is

no definite test of exchangeability and it is most likely that one can never be definitely certain of this

assumption. Nevertheless, exchangeability is a more general assumption than IID and is, in theory,

expected to produce more robust results.
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exchangeable sequences have the potential to improve EVT-based VaR estimation. In

particular, it was also observed that, by accounting for parameter variations through

exchangeability, the performance of BM and POT methods in estimating VaR have

improved in general. This is supported by the empirical results of our out-of-sample

VaR forecasts in five different indices. It is also worthwhile noting that the relative

performances between the BM and POT methods are more comparable under the

assumption of exchangeability. This is in contrast to the unconditional IID approach

where the POT method often outperforms the BM in financial risk modelling. We also

provided evidence that our new approaches can give superior forecasting performances

than the GARCH-EVT model proposed by McNeil & Frey (2000).

We further proposed an extension of the GARCH-EVT approach to VaR estimation by

catering for exchangeable innovations. This in turn allows for dependencies between

innovations. We tested our new GARCH-EVT-Exch approach against the uncondi-

tional EVT, the GARCH-norm and the GARCH-EVT procedures using negative daily

returns in FTSE100 and ALSI. GARCH-EVT-Exch produced convincingly the most ro-

bust model for FTSE100. However, the results are more mixed for ALSI, likely due to

its generally low (apart from the early periods in the data set) and stabilising kurtosis.

The results obtained in this chapter act as an initiation for further development of

the methodology proposed. For example, one could also use other subjective priors

for the GEVD and GPD parameters to specify different dependency structures of the

innovations. Further considerations of various partial exchangeability and probabilistic

symmetry assumptions for the model innovations are possible. On the other hand, a

fully Bayesian GARCH-EVT model may be considered, though estimation is difficult

due to large number of parameters. Generalisations to other GARCH-type families

requires further investigation, while comparison with the CaViaR method of Engel &

Manganelli (2004) and the aforementioned methods by Chavez-Demoulin et al. (2014)

and de Haan et al. (2016) may also be of interest.

Another potentially interesting matter is the choices of window size, block size and

threshold level for VaR estimation. We designated a window size of 1000 days, as

per the analysis of McNeil & Frey (2000). Block sizes were chosen as per practical

implications of weekly, fortnightly and monthly returns. Simulations in McNeil &

Frey (2000), Chavez-Demoulin et al. (2014) and de Haan et al. (2016) have suggested

that the 90% sample quantile may be a suitable threshold choice. Nevertheless, it

is not immediately obvious whether our new approach is sensitive to these choices.

This exploration will require advanced computing power and is also left for future

work. Finally, other prospective research could include: examining the exchangeability

assumption for peaks-over-random-threshold (PORT) and duration-based POT models
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(DPOT) (Santos et al., 2013); and utilising the new approaches for estimating ES

(another popular risk measure).

Computations in this Chapter were performed using facilities provided by the University

of Cape Town’s ICTS High Performance Computing Team.



Chapter 5

Exchangeability and Multi-phase

Sampling

This chapter investigates the use of exchangeability in multi-phase sampling. Consider

the problem of estimating the population mean of a study variable y, which is difficult to

measure, but a related auxiliary variable x, with improved accessibility, is available. We

can often apply a ratio-type estimator in this scenario. In cases where x is qualitative,

or may be categorised, and a double sampling plan is used, we may consider a two-phase

stratified sampling design. Traditionally, it is assumed that theN variables representing

the readings on y are IID within and across strata. In this chapter, we relax this

assumption to a judgment of exchangeable sequences within each stratum, while still

maintaining the assumption of independence across strata. This caters for the existence

of dependence structures for within-stratum readings. We propose a methodology for

estimating the variance of the ratio estimator under this scenario. Through an example,

we show that this method provides a significantly more conservative estimate for the

sampling variance, as compared to the standard approach. The results obtained are

published in Huang et al. (2016b).

5.1 Introduction

When considering the task of estimating the population mean of a study variable y,

it is often the case that information on an auxiliary variable x is readily available

for all units in the population. In such situations, it is common to utilise a ratio-

or regression- type estimator to improve the efficiency in estimation (Cochran, 1977).

However, when x is not known over the whole population, but still easier to obtain

than y, we may implement a two-phase, or double, sampling design. The value of x is

51
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observed for a large sample in phase 1 and y is subsequently recorded for a subsample in

phase 2. This can be generalised to cater for multiple auxiliary variables with varying

levels of accessibility and correlation, where several chain-type estimators are proposed

(Mukerjee et al., 1987; Singh et al., 1994; Ahmed, 1998; Bhushan et al., 2008; Hamad

et al., 2013).

As a way to measure how good a sampling estimator is, the estimator variance, or mean

square error in the case of biased estimators, needs to be estimated. These are usually

approximated by their corresponding asymptotic expressions, which commonly assumes

IID observations. A way to relax the IID condition is to take on the Bayesian approach

to finite population sampling, which assumes that the observations are exchangeable

(Ericson, 1969; Treder & Sedransk, 1996). However, this approach also requires for-

malisation of prior information and known sampling distributions (or at least estimates

of them).

In this chapter, we consider the case where x is a stratification variable, which is more

easily accessible, and observations for y are obtained through phase 2 sampling from

each stratum. We further assume the judgment of exchangeability within each stratum,

while strata are mutually independent. This corresponds to finite population sampling

without replacement. We propose a way to approximate the estimator variance under

this scenario, using SBS at different levels of the sampling process. An example is

considered which shows the standard procedure estimate underestimating the estimator

variance, while our method provides an improvement.

5.2 Multi-phase Stratified Sampling

Let U = {1, 2, . . . , N} be the index set of a finite population of size N and y be the

primary variable of interest. Suppose x is an auxiliary variable related to y, which is

less expensive or is easier to measure. In this situation, it is common to consider a

two-phase sampling design. In the first phase a large sample S′ ⊂ U of size n′ is drawn

using SRSWOR and the auxiliary variable x is observed. Subsequently, a subsample

S ⊂ S′ of size n is drawn, using SRSWOR, to observe y. One way of incorporating the

auxiliary information into the estimation of the population mean ȳU , is to use a ratio

estimator

t̄rat =
ȳn
x̄n
x̄n′ , (5.1)

where ȳn = n−1
∑

i∈S yi, x̄n = n−1
∑

i∈S xi and x̄n′ = (n′)−1∑
i∈S′ xi.

Often members of U can be cross-classified into groups based on the auxiliary variable;

either the variable is qualitative in nature (e.g. gender), or may be categorised (e.g.
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age). This scenario is classically associated with stratified sampling design, with un-

known population stratum sizes. Suppose that the stratification variable x ∈ {1, . . . ,H}
is only observed after phase 1 and samples Sh (of sizes mh) are subsequently drawn

from each stratum using SRSWOR . This results in an estimator for ȳU as

t̄str =
1

n′

H∑
h=1

nhȳh , (5.2)

where nh is the number of units in S with x = h and ȳh = m−1
h

∑
i∈Sh yi. The variance

for this estimator is given by

V (t̄str) =
(

1− n′

N

)S2
y

n′
+ E

[
H∑
h=1

(nh
n′

)2(
1− mh

nh

) s2
h
′

mh

]
, (5.3)

where S2
y is the population variance of y and s2

h
′

is the sample variance of y in stratum

h, from phase 1 if we observe them all. This can be estimated by

V̂ (t̄str) =
N − 1

N

H∑
h=1

(nh − 1

n′ − 1
− mh − 1

N − 1

)nh
n′

s2
h

mh

+
1

n′ − 1

(
1− n′

N

) H∑
h=1

nh
n′
(
ȳh − t̄str

)2
, (5.4)

where s2
h is the sample variance of y in stratum h from phase 2 (Rao, 1973).

5.3 Stratified Sampling Design with Partially Exchange-

able Sequences

Under the model-based approach to sampling, the variance and estimated variance of

t̄str are derived based on the underlying assumption of IID of the random sequence

{Y1, . . . , YN} (for which {y1, . . . , yN} is a particular realisation) within stratum and

between strata. We aim to explore situations where such assumptions may prove to be

too restrictive. Although, it may still often be the case that the order in which units

are chosen is not important. This leads to a natural generalisation to exchangeable

sequences.

We consider observations within the same stratum to be exchangeable and rewrite

Theorem 2.12 as follow: Suppose that we can categorise a sequence {Y1, Y2, . . .} into H

disjoint exchangeable subsequences and let Yh denote a finite subset of those Yi’s that

are in subsequence h (with the index subset denoted by Sh). Then, if yh is a realisation

of Yh, we have the following representation

fY1,...,YH (y1, . . . ,yH) =

∫
Θ

H∏
h=1

∏
i∈Sh

fY |θh(yi|θh)fθ1,...,θH (θ1, . . . , θH)dθ1 . . . dθH , (5.5)
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where θh is the set of underlying parameters associated with sequence h. If we further

set |Sh| = mh, then we have a scenario analogous to the two-phase stratified sampling

in Section 5.2. Here, we consider the sequence of observations in individual strata to be

exchangeable and dependencies across strata are characterised by the joint distribution

fθ1,...,θH (θ1, . . . , θH) of the underlying parameter sets.

Under the above assumptions, it remains mathematically feasible to use the estimator

t̄str for ȳU . However, the calculation and estimation of V (t̄str) may become more

cumbersome. Let Zi be the indicator variable on unit i being selected for the first

phase sample and Z = (Z1, . . . , ZN ). Consequently,

V (t̄str) = V (E[t̄str|Z]) + E(V [t̄str|Z])

= V (t̄(1)) + E

(
V

[
1

n′

H∑
h=1

nhȳh|Z

])

= V (t̄(1)) + E

(
H∑
h=1

(nh
n′

)2
V [ȳh|Z] + 2

∑
a<b

nanb
(n′)2

Cov(ȳa, ȳb|Z)

)
, (5.6)

where t̄(1) is the sample mean from phase 1, assuming we know yi for all i ∈ S′. The

first term is the variance resulted from phase 1 sampling and the second term is the

additional variance resulted from the subsampling in phase 2.

Now, assuming Y1, . . . , YN are still identically distributed with mean µ and variance

σ2, we can write the first term in expression (5.6) as

V (t̄(1)) = E
[
(t̄(1) − ȳU )2

]
= E

[( 1

n′

∑
i∈S′

Yi −
1

N

∑
i∈U

Yi

)2
]

= E

(( 1

n′
− 1

N

)∑
i∈S′

Yi −
1

N

∑
i/∈S′

Yi

)2

= E

(( 1

n′
− 1

N

)∑
i∈S′

Yi −
1

N

∑
i/∈S′

Yi −
( 1

n′
− 1

N

)
n′µ+

1

N
(N − n′)µ

)2

= E

[( 1

n′
− 1

N

)2
(∑
i∈S′

Yi − n′µ

)2

+
( 1

N

)2
(∑
i/∈S′

Yi − (N − n′)µ

)2

−2
( 1

n′
− 1

N

)( 1

N

)(∑
i∈S′

Yi − n′µ

)(∑
i/∈S′

Yi − (N − n′)µ

)]
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=
( 1

n′
− 1

N

)2[
n′σ2 + 2

∑
i,j∈S′,i<j

Cov(Yi, Yj)
]

+
( 1

N

)2[
(N − n′)σ2 + 2

∑
i,j /∈S′,i<j

Cov(Yi, Yj)
]

−2
( 1

n′
− 1

N

)( 1

N

) ∑
i∈S′,j /∈S′

Cov(Yi, Yj) . (5.7)

The subsequent problem is in estimating the covariance terms∑
i,j∈S′,i<j

Cov(Yi, Yj) ,
∑

i,j /∈S′,i<j

Cov(Yi, Yj) and
∑

i∈S′,j /∈S′

Cov(Yi, Yj) , (5.8)

which incorporates covariances between Yi’s from the same stratum and across stratum.

Now, for i and j in the same stratum, i.e., Yi and Yj are exchangeable, we may write

(see Remark 2.15)

ρh := Cov(Yi, Yj) ≈ V (E(Yi|θ)) = V (E(Yi|FYh
)) , (5.9)

where FYh
is the limiting empirical distribution of Yi’s in stratum h, if nh is large

and mh/nh is relatively small. We suggest estimating these within-stratum covariance

terms using SBS (Politis & Romano, 1994) in each stratum. This is a generalisation

to the standard BS, in which data are divided into blocks of random sizes (block sizes

following a geometric distribution) and the blocks are resampled to form new samples.

For simplicity, we also assume independence across strata (this can also be motivated

practically when one agrees that changes in one stratum does effect others, or when

such effects are considered minimal). Hence, Cov(Yi, Yj) = 0 for any pair i and j, from

different strata. This will result in∑
i,j∈S′,i<j

Cov(Yi, Yj) ≈
H∑
h=1

(
nh
2

)
ρh (5.10)

∑
i,j /∈S′,i<j

Cov(Yi, Yj) ≈
H∑
h=1

(
dnh(N/n− 1)e

2

)
ρh (5.11)

∑
i∈S′,j /∈S′

Cov(Yi, Yj) ≈
H∑
h=1

nh(dnh(N/n− 1)e)ρh (5.12)

where dnh(N/n − 1)e is used to approximate Nh − nh and given that individuals in

an exchangeable sequence behave similarly to each other (allowing us to approximate

out-of-sample covariances with in-sample ones). We will also estimate σ2 using the

sample variance of all observed y.

The second term in (5.6), given independence across strata, is equal to

τ := E

(
H∑
h=1

(nh
n′

)2
V [ȳh|Z]

)
. (5.13)
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This expectation is taken over all values of Z and cannot be evaluated given only

one sample. Consequently, we propose estimating this expression again by using SBS.

Although, the resampling here is taken over the union of Sh, i.e., mh may change

from resample to resample, and within each stratum of the resample (allowing the

estimations of V [ȳh|Z]). Within each resample, nh is also estimated by mhn
′/
∑
mh.

5.4 A Numerical Example

To implement our proposed methodology, we consider a practical example using the

Australian AIDS survival data set1. In all steps where SBS is required, we set the BS

parameter optimally to p = c−1(n∗)−1/3 (Politis & Romano, 1994), where n∗ is the

size of the sample we are resampling from and c is set to be 3.15 (as in the previous

chapter). The number of bootstrap samples is set to 1000.

The variable of interest y is the age (years) of patients at diagnosis. This is recorded

for 2843 patients across Australia. An auxiliary variable x is readily available, which

indicates the state of origin of each patient:

NSW = New South Wales,

QLD = Queensland,

VIC = Victoria,

Other = all other states.

For our purpose here, let us assume this is our population and we aim to estimate

ȳ, the average age of those in the study of interest. However, we do not know the

population stratum sizes Nh. Meanwhile, we undertake the judgment that {Y1, Y2, . . .}
are independent across strata (states) and are exchangeable within stratum (which may

not at all be an unreasonable judgment!)2

We draw a sample S′ using SRSWOR in phase 1 (and observe readings on x) and

subsamples Sh are drawn from each strata in phase 2 using SRSWOR (and observe

readings on y). A summary of the sample information is given in Table 5.1. The value

of the corresponding two-phase stratified design estimator is given as t̄str = 37.78714,

1Data by Australian National Centre in HIV Epidemiology and Clinical Research. Available in R

package “MASS”.
2Intuitively, this means we believe that there exist some kind of dependence amongst members in

the same stratum. However, the order in which the readings are observed are not meaningful, i.e.,

individual identifications are not important. This is certainly a more general assumption than IID and

is expected to give more conservative results by incorporating covariances amongst members in the

same stratum.
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which can be compared to the true population mean ȳ = 37.40907. Sample variances

seem to significantly vary across strata.

Table 5.1: Sample information for two-phase sampling on Australian AIDS survival

data.

N n′ h nh mh ȳh s2
h t̄str

2843 500

NSW 331 200 38.13 118.2142

37.78714
QLD 40 27 37.7037 218.755

VIC 101 68 37.29412 90.30026

Other 28 19 35.63158 89.80117

Table 5.2 records the estimated values for ρh and τ . The estimates for ρh are obtained

through resampling within each stratum. The value for τ is obtained by both resampling

the union of Sh and resampling within the resultant strata.

Table 5.2: Estimated variance and covariance using stationary bootstrapping.

h ρh τ

NSW 0.892956

0.3534294
QLD 3.464333

VIC 1.074241

Other 1.821655

Table 5.3: Comparing sampling variance for t̄str.

Method/Assumption Variance Std. Dev.

Rao 0.0006403 0.02530365

Simulated 0.9817275 0.9908216

Exchangeable 0.5336707 0.7391561

The value of V̂ (t̄str) (and the corresponding standard deviation), under three different

approaches, are presented in Table 5.3. The first estimate is obtained using the formula

by Rao (1973), as given in Section 5.2. The second value is obtained from the population

data, by re-calculating t̄str repeatedly using random samples of size 500 and randomised

phase 2 sampling ratio (all samples obtained using SRSWOR). This calculation is done

for 10000 iterations and the sample variance of t̄str across iterations is obtained. The

formula by Rao (1973) seems to underestimates the variance of t̄str, potentially due to

the assumption of IID observations. Meanwhile, our proposed approach, which caters

for within stratum dependencies, produced an improved estimate for the variance (closer
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to the simulated variance from the population data).

5.5 Discussion and Further Research

In this chapter, we considered a scenario of two-phase stratification sampling design,

where observations within strata are assumed to be exchangeable and strata are as-

sumed to be mutually independent. A method is proposed for estimating the variance

of the ratio estimator using SBS at various levels of the sampling procedure. An ex-

ample considered here demonstrates that the standard variance estimate significantly

overestimates the performance of the ratio estimator, while our method provided a

more conservative approximation.

There are several limitations to our approach that may be generalised or improved.

Firstly, we have implemented a very Bayesian-unlike approach, in the sense that we

did not specify a prior distribution for θ, nor a sampling distribution. More precisely,

our method tries to capture the varying effect of θ through the bootstrapped samples.

This is of course allowing the data to overtake any form of subjective prior information

we may have for y, apart from the observed x values. Secondly, we have assumed

independence across strata. Consequently, all covariances across strata were assumed

to be zero. Relaxing this would again relate to specifying or estimating the joint

behaviour between θh in expression (5.5). In addition, the example in Section 5.4 is

based on a singular sample we have taken3 and further simulation is required to observe

the overall performance of our method. Further work should be done to compare our

method to other general approaches to estimating variance in complex designs (Lohr,

2010).

3Although we did test the method on a few other samples and have observed similar results.



Chapter 6

Conclusions

This thesis has striven to explore several topics related to the concept of exchangeabil-

ity. These topics involved both theoretical derivations and practical implementations.

These ventures are essentially articulated in three main chapters of this thesis. They are

preluded by a short chapter providing a review of exchangeability. This encompassed

formal definitions, remarks on related characteristics and de Finetti’s representation

theorems for the various forms of exchangeability. Many of the concepts introduced

were used in later chapters. Then, the remainder of the thesis focused on three related

areas of study.

Firstly, connections between HMP and exchangeability were revisited. The existence

conditions for HMP were generalised to the case over a domain coupling a g tuple of k-

dimensional simplexes. This was aided by the use of a generalised Bernstein polynomial,

Helly’s theorem and Helly-Bray theorem. On the other hand, de Finetti’s theorem was

also extended to cater for a g-fold partially exchangeable sequence in {0, 1, . . . , k}. The

consideration of an urn scheme with g urns, having (k + 1) types of items in each

urn, was suggested for deriving this representation. The pinnacle of this chapter was

to formally state and prove the equivalence between the above two theories. This

provided an addition to existing literature, while the derivations used are also different

to previous work. This is an exciting mathematical outcome, but also provokes further

investigations into topics such as: cross-application between approximation methods

for finite moment problems and finite exchangeable sequences; and, relations between

unbounded moment problems and general symmetric measures, etc.

EVT has proven to be popular in various areas of application, such as hydrology,

earth sciences and structural engineering. This is due to recognitions of the several

advantages in implementing an EVT approach. These are comprised of its solitary

focus on extremes of the data set (hence minimising the bias caused by rest of the data),

59



CHAPTER 6. CONCLUSIONS 60

separate investigation of the two tails of the data set (hence catering for asymmetry)

and accommodation for heavy-tails. These also make extreme value models pragmatic

candidates for estimating financial risk measures. However, a potential drawback lies

in the fundamental assumption of IID sequences in the EVT theorems. In Chapter

4, we provided an alternative by extending the existing results (both the BM and the

POT methods) to cater for exchangeable sequences. We also constructed the empirical

prior distributions of the EVT parameters using resampling techniques (namely, BS,

SBS and JK procedures).

Our new approaches were implemented in a rolling window procedure to forecast daily

VaR figures. These were compared to existing models in the literature through back-

testing against actual observed data in S&P500, FTSE100, MSCI, HSI and ALSI neg-

ative daily returns. It was evidenced that the performances of both BM and POT

methods generally improved after catering for exchangeable sequences (although the

improvements were more pronounced for BM). Correspondingly, the relative perfor-

mances between the two methods became more comparable (as compared to classical

approaches).

In addition, we also amalgamated our new POT approach with the GARCH model.

This formed a direct extension to the popular GARCH-EVT model proposed by Mc-

Neil & Frey (2000). This again showed significant improvements as compared to other

competing models. Suggestions for further work included exploring different subjec-

tive priors for the EVT parameters (instead of an empirical one), combining partial

exchangeability with change-point analysis to cater for the regime switching nature of

the financial series and comparing with, or extending, further advanced EVT models

(such as the CAViAR, DPOT and PORT models).

The final topic of interest was on the multiple-phased sampling design with auxiliary

variables. In particular, we considered a two-phase sampling design, where the auxil-

iary variable is categorical. This is identified with a stratified sampling design, with

unknown population stratum sizes. It is assumed that the auxiliary (or stratification)

variable is observed from the phase 1 sample and readings for the study variable is

only drawn at phase 2. This resulted in an estimator for the population mean of the

study variable in the form of a generalised ratio estimator. This estimator is essentially

a weighted sum of ratio estimators from each stratum. Traditionally, the sampling

variance of this estimator is estimated by considering its corresponding asymptotic

expression that assumes IID observations.

We extended the above scenario by assuming exchangeability among observations from

a common stratum, while retaining independence across strata. The sampling vari-

ance is then expressed in terms of the various covariance terms (e.g., in-sample against
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out-of-sample, within stratum against crossing strata, etc.). SBS (which preserves the

stationarity property of an exchangeable sequence) was used at various levels of sam-

pling to estimate these covariance terms. An example utilising data from the Australian

National Centre in HIV Epidemiology and Clinical Research was considered. The em-

pirical results showed that the standard variance estimate significantly overestimate the

performance of the ratio estimator, while our new method provided a more conservative

approximation.

In conclusion, exchangeability is a powerful and elegant concept of probability that

permeates and unifies many real world processes. Its symmetric property, while sim-

plifying, provides a more general view-point than the over-elaborated IID concept.

In particular, the underlying framework allows for a more flexible modelling of com-

plex procedures by catering for prior information. Conceptually, the corresponding

de Finetti-type results also provide simple passages between the subjectivist and ob-

jectivist perceptions. These comments are key factors in the use of exchangeability,

for both theoretical studies and applications. We hope this thesis has embroidered

the concept and applicability of exchangeability. This was done with the aim to in-

spire new insights into topics involving exchangeabiity and provide stimulus for further

explorations in future research.
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de Saint-Flour XIII–1983, Lecture Notes in Mathematics, volume 1117 (pp. 1–198).

Berlin: Springer-Verlag.

Aldous, D. J. (2010). More uses of exchangeability: Representations of complex random

structures. In N. H. Bingham & C. M. Goldie (Eds.), Probability and Mathematical

Genetics: Papers in Honour of Sir John Kingman (pp. 35–63). Cambridge: Cam-

bridge University Press.

Bali, T. G. (2003). An extreme value approach to estimating volatility and value at

risk. The Journal of Business, 76(1), 83–108.

Balkema, A. & de Haan, L. (1974). Residual life time at great age. Annals of Probability,

2(5), 792–804.

Bernardo, J. M. (1996). The concept of exchangeability and its applications. Far East

Journal of Mathematical Sciences, Spec. II, 111–121.

Bernardo, J. M. & Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley.

Bhushan, S., Pandey, A., & Katara, S. (2008). A class of estimators in double sampling

using two auxiliary variables. Journal of Reliability and Statistical Studies, 1(1),

67–73.

64



BIBLIOGRAPHY 65

Bowman, D. & George, E. O. (1995). A saturated model for analyzing exchangeable

binary data: Applications to clinical and developmental toxicity studies. Journal of

the American Statistical Association, 90(431), 871–879.

Brent, R. (1973). Algorithms for Minimization without Derivatives. New Jersey:

Prentice-Hall.

Byström, H. N. E. (2004). Managing extreme risks in tranquil and volatile markets

using conditional extreme value theory. International Review of Financial Analysis,

13(2), 133–152.

Chavez-Demoulin, V., Embrechts, P., & Sardy, S. (2014). Extreme-quantile tracking

for financial time series. Journal of Econometrics, 181(1), 44–52.

Chinhamu, K., Huang, C.-K., Huang, C.-S., & Hammujuddy, M. J. (2015). Empirical

analyses of extreme value models for the South African Mining Index. South African

Journal of Economics, 83(1), 41–55.

Chow, Y. S. & Teicher, H. (1988). Probability Theory: Independence, Interchangeability,

Martingales. New York: Springer-Verlag.

Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic

Review, 39(4), 841–862.

Cochran, W. G. (1977). Sampling Techniques. 3rd edition. New York: Wiley.

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London:

Springer-Verlag.

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical

issues. Quantitative Finance, 1(2), 223–236.

Dale, A. I. (1983). A probabilistic proof of Hausdorff’s theorem for double sequences.
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