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 ASSESSMENT OF THE CHEMICAL CHANGE IN HEAT TREATED 

PINE WOOD BY NEAR INFRARED SPECTROSCOPY 

Zuzana Vidholdová – Anna Sandak – Jakub Sandak 

ABSTRACT 

 Fourier-transform near-infrared spectroscopy (FT-NIR) was used as none-destructive 

method to determinate changes in the chemical structure of heat-treated wood. For this purpose, 

pine sapwood (Pinus sylvestris L.) was treated at different temperatures (from 100 °C to 240 °C) 

and for three durations (1, 3 or 5 hours). The effects of chemical changes on the FT-NIR spectra 

are linked to absorbance changes of functional groups (–OH, –CH, –CO and –CH2) of lignin, 

hemicelluloses and cellulose. Gradual degradation of amorphous portion of cellulose was 

caused by high temperature, while crystalline and semi-crystalline portions of cellulose 

seem to be less affected by the thermal treatment. The effect of various intensities of heat 

treatment on chemical changes of wood polymers varied depending on temperature and 

duration. Presentation of spectra in the form of the xylograms shows clear tendency of 

degradation kinetic. Evaluation of thermal stability of selected wood component and/or 

comparison of the influence of modification process parameters can be carried out.  

Key words: pine, heat treatment, xylograms, FT-NIR. 

INTRODUCTION  

Heat-treated wood has become an established commercial product possessing a 

number of advantages over the natural wood. Heat-treated wood is considered an eco-

friendly alternative to chemically impregnated wood materials. This treatment reduces the 

hydrophilic behaviour of the wood by modifying the chemical structure of its components 

(hemicelluloses, cellulose and lignin) which results in changes of their properties. Some 

previous studies (GÉRARDIN 2016, KUČEROVÁ et al. 2016, SANDBERG & KUTNAR 2016, 

ČABALOVÁ et al. 2014, REINPRECHT & VIDHOLDOVÁ 2011, HILL 2007, WELZBACHER et al. 

2007) have reported that treatment temperature and its duration affect the chemical 

decomposition of wood. The most important positive effects of heat treatment of wood are: 

enhancement of resistance to biodegradation (ŠUŠTERŠIC et al. 2010, WELZBACHER & RAPP 

2007, HAKKOU et al. 2006) improvement of the overall dimensional stability (VIITANIEMI et 

al. 1997, HILLIS 1984) and reduction of the heat transfer coefficient (MILITZ 2002). Heat 

treatment is lowering wood equilibrium moisture content (ALTGEN et al. 2016) and enhance 

the surface quality (PRIADI & HIZIROGLU 2013) in addition to bulk discoloration having 

attractive dark colour (TODOROVIC et al. 2012). High temperatures and long time of heat 

treatment decrease most of the mechanical properties of wood (YILDIZ et al. 2011). Thermal 

modification decreases the heat release rate and propensity for fire propagation in the 

flashover phase of some species (MARTINKA et al. 2016). 
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Fourier transform near-infrared spectroscopy (FT-NIR) is an efficient method for 

high-throughput non-destructive screening of chemical characteristics of different materials 

including the wood and wood based products. Energy of infrared light stimulates vibrations 

of -CO, -OH, -CH and -NH functional groups giving overtones and combination bands 

depending on the molecular structure, chemical composition or physical properties of the 

measured sample. A state of the art of the FT-NIR applications in wood and paper research 

has been published by TSUCHIKAWA & KOBORI (2015). Quality assessment of thermally 

treated wood by means of NIR was previously investigated by several researches (POPESCU 

et al. 2018, SANDAK et al. 2015, 2016, BÄCHLE et al. 2010, MEHROTRA et al. 2010, ESTEVES 

& PEREIRA 2008). NIR spectra can be pre-processes mathematically and evaluated by means 

of multivariate data analysis to obtain precise quantitative and qualitative information of 

physical-chemical nature of material. 

In this study, the chemical changes due to heat treatment intensity were evaluated in 

pinewood by non-destructive FT-NIR spectroscopy. The chemical fingerprint of thermally 

modified wood is visualized by means of xylograms.  

MATERIALS AND METHODS 

Material and wood treatment 

The defect-free pine sapwood (Pinus sylvestris L.) without cracks, knots or other growth 

inhomogeneity were used as experimental samples. The density in oven dry state ranged 

from 431 to 639 kg·m-3 with an average value of 506 kg·m-3. Specimens were heat treated 

under atmospheric pressure in the laboratory heating oven (Memmert UFB 500, Germany) 

at Department of Mechanical Wood Technology, FWST at Technical University in Zvolen, 

as shown in Table 1.  

The heat treatment started by putting the samples at ambient temperature in oven with 

subsequent increasing of the temperature and without forced air circulation. The period to 

reach expected temperature varied from 15 minutes (for 100 °C) up to 60 minutes (for 240 

°C). Duration of the heat treatment at fixed temperature was 1, 3 or 5 hours.  Extensively 

treated wood was prepared at the temperature 240 °C during 8 hours. At the end of each 

treatment, samples were cooled down in desiccators in dry environment. 

 
Tab. 1 Thermal modification set-up, treatment parameters, set size. 

Species Dimensions 

(R × L × T) 

(mm) 

Treatment 

temperature  

(°C) 

Treatment 

duration 

(h) 

Number of 

replica 

Pine – sapwood 

 

25 × 25 × 3 

 

100 

150 

160 

200 

220 

240  

1 

3 

5 

 8* 

4 

Note: * The treatment duration of 8 hours was only used for preparation of extensively treated wood. 

Wood degradation was monitored by measuring the mass loss (ML) and the CIE 

L*a*b* colour coordinates. Mass loss percentage was determined on the representative 

samples set by means of their dry-weight change before and after heat treatment, determined 

after oven drying at 103 ± 2 °C to constant weight.  

Colour of heat treated samples expressed in CIE L*a*b* system was measured on 

samples conditioned at room temperature of 20 ± 2 °C and relative humidity of 60 ± 5 %. 
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Colour was measured using the Colour Reader CR-10 (Konica Minolta, Japan), with the 

illuminate type D65 light source and observer angle of 8 ° and approx. ϕ 8 mm measuring 

area. 

FT-NIR measurements 

The FT-NIR spectrometer (VECTOR 22-N) produced by Bruker Optics GmbH (Germany) 

equipped with a fibre-optic probe was used for spectra collection. FT-NIR measurements 

were performed in a climatic chamber (20 °C, 60 % relative humidity), on the radial face of 

samples. The spectral range was between 4000 cm−1 and 12 000 cm−1 (2500 nm - 833 nm) 

and the resolution was set to 8 cm−1. Each spectrum was collected from 32 internal scans in 

the absorbance mode. Four measurements were performed on each sample and resulting 

spectra were averaged. All measurements and subsequent data evaluation were performed at 

Trees and Timber Institute CNR-IVALSA in San Michele all Adige (Italy). 

Data evaluation 

Opus QUANT 6.5 (Bruker), PLS toolbox (Eigenvector) and LabVIEW 17 (National 

Instruments) software packages were used for spectral pre-processing and data mining. For 

the needs of this research, different evaluation methods were applied on pre-processed data 

(Table 2). Spectral bands (Table 3) were assigned according to SCHWANNINGER et al. (2011). 

 
Tab. 2 Applied methods during FT – NIR measurements and evaluation. 

Sample presentation Acquisition mode Regression method Spectral pre-treatment Attributes  

Intact, manual 

around the surface 

absorbance PLS EMSC 

DT2nd 

SNV 

selected 

components 

Abbreviations: PLS = Partial Last Squares, EMSC = Extended Multiplicative Scatter Correction,  

                        DT2nd = second derivatives, SNV = Standard Normal Variate 
 

Generation of xylogram 

Dedicated software for creation of xylograms was developed in LabVIEW. The spectral pre-

processing included computation of second derivatives for all treated samples. The 

degradation coefficient of thermal treatment cdeg. TT was calculated according to modified 

formula which has been published in SANDAK et al. (2016) as equation (1). 

 
   
   




MAXMIN

TTMIN

TT
ss

ss
c




.deg         (1) 

where: sMIN – the value of DT2nd absorbance spectra of reference (untreated) wood at selected 

wavelength,  

 sTT – the value of DT2nd absorbance spectra of treated wood at selected wavelength,  

sMAX – the value of DT2nd absorbance spectra of extensively treated wood (240 °C, 8 

hours) at selected wavelength, 

λ – the wavelength of the infrared light corresponding to the particular functional 

group. 

 

The outer perimeter corresponds to cdeg. TT = 0 and indicates negligible changes to the 

NIR spectra. All the results plotted within the central part of the xylogram indicate 

significant changes to the NIR spectra and extensive degradation of the corresponding 

component/functional group. A value of cdeg. TT = 1 indicates a fully degraded chemical 

component. The expected degradation pattern is that the cdeg. TT values gradually change from 

the outer to the inner part of the xylogram, following the acquired thermal treatment dose. It 
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was intended that the reference points were sorted according to wavenumber value but were 

not grouped according to chemical component and functional group.  

RESULTS AND CONCLUSION 

Various intensity of heat treatment leads to mass loss and colour change due to 

modification process. The ML of wood during treatment is a key characteristic and it is often 

used for expressing the changes in the treated wood properties. The ML reflects the heat 

treatment process intensity as are shown in Figure 1. The ML varied from 0.0 % (100 °C, 

1 h) to 35.8 % (240 °C, 5 h). ML depended on the temperature and duration what is in 

accordance with the state-of-the-art knowledge. Similar results were reported by ESTEVES et 

al. (2008a), who determined that mass loss varies between 0.2 % (170 °C, 1 h) up to 12.0  % 

(200 °C, 12 h). It was found that different coupled process parameters had comparable ML, 

for example: ML of ~ 6 % can be achieved when treat wood in 200 °C for 5 h or in 220 °C 

for 1 h. It has to be mentioned that wood degradation is more intense in the presence of 

atmospheric air due to extensive oxidation reactions. Moreover, acetic acid produced in such 

process acts as an additional depolymerisation catalyst. It was previously reported that there 

is a higher content of acetic acid released during wood thermal treatment in the oxidizing 

environment (ESTEVES et al. 2008a, 2007, STAMM 1956). 

 

 

Fig. 1 Mass loss (%) of pine wood during its thermal treatment from 100 °C till 240 °C  

for 1, 3 and 5 hours. 

 

The appearance and the average value of colour parameters (CIE L*, CIE a* and 

CIE b*) of heat treated wood are shown in Figures 3, 4, 5 - parts II and III. The CIE L* was 

the most sensitive parameter clearly related to the treatment intensity. There was a clear 

tendency of darkening with increasing of heat treatment temperature and time. In contrary, 

CIE a* and CIE b* parameters changed relatively slightly, when compare to CIE L*. The 

same tendency of CIE L*, CIE a* and CIE b* variations due to thermal treatment was reported 

by TOKER et al. (2016), KAMPERIDOU et al. (2013), AKSOU et al. (2011) and BEKHTA & 

NIEMZ (2003). Colour is an essential wood property for the final consumer. Particularly, it 

is the determining factor for the selection of a specific wood product for the decorative/visual 

function ESTEVES et al. (2008b). 

Figure 2 presents the second derivative of an averaged near infrared absorbance spectra 

for thermally treated and reference (untreated) wood. The range of variations is limited only 

to spectral bands that can be interpreted and associated with well-defined functional groups, 

which are listed in table 3. Independently to applied thermal treatment (from 100 °C for 1 

hour to 240 °C for 5 hours), the spectra present similar trends with typical broad vibration 
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bands associated to the chemical components of wood. Consequently this trend was figured 

upon their range, which was determined as the minimum (Figure 2 - green line) and 

maximum (Figure 2 - red line) value. There was clean tendency of decreasing or increasing 

of absorbance at various bands. These spectral changes caused by heat treatment were well 

corresponding to previous reports for heated pine (RIDLEY-ELLIS et al. 2014), larch (YANG et 

al. 2018) and spruce (POPESCU et al. 2018, BÄCHLE et al. 2010).  
 

 

Fig. 2 The range of 2ND derivative of absorbance of FT-NIR spectra on thermally treated and reference 

samples (Note: used bands 1-20 correspond to components listed in Table 3). 

 

The thermal modification of pine sapwood results in changes of the chemical 

composition of wood. Closer examination of the xylograms together with changes of 

absorbance peaks provides additional information regarding kinetics of chemical changes 

due to treatment temperature and duration (Figures 3, 4, 5 - parts IV. and V.). The most 

evident variations in NIR spectra, being consequence of changes in chemical composition 

of functional groups, were observed for the treatments with temperature over 200 °C. On the 

other hand, cdeg. TT had small values when heating wood at 100 °C or other mild treatment 

temperatures (150 °C and 160 °C). 

The absorption band at 4202 cm1 (band 1 in Table 3 and Figures 3, 4, 5 - part V.) is 

assigned to the second overtone of –OH deformation of holocellulose. A gradual decrease 

of the absorbance occurred for all treatment durations; however, the changes were more 

intense for 3 and 5 hours heat treatment. 

Hemicelluloses are polysaccharide with lower degree of polymerization than cellulose. 

The absorption bands present at the wavenumber 4403 cm-1 (3), 5882 cm-1 (12) and 5802 

cm-1 (11) assigned to furanose/pyranose are due to –CH2 stretching and deformation and –

CH stretching. A shift in the peak position towards the higher wavelength region occurred 

with increase of the temperature. This confirms that the physical-chemical structure of the 

hemicelluloses changes rapidly and its content decreases with the temperature increase 

(YILDIZ & GÜMÜŞKAYA 2007, SANDAK et al. 2016).  

In wood, cellulose has a strong interaction with water due to three hydroxyl groups 

attached to the glucopyranose ring. The absorption bands assigned to the first overtone of 

the fundamental –OH stretching mode were identified at wavenumber 4403 cm-1 (3), 

4748 cm-1 (6), 6140 cm1 (14), 6490 cm1 (16), 6622 cm1 (17), 6789 cm1 (18). The 

absorption band at wavenumber 7005 cm1 (19), assigned to -OH groups of amorphous 

regions of cellulose and water shows clear tendencies of its decrease with augmented 

temperature. The lower degradation intensity was observed for semi-crystalline (4806 cm1 
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(7), 5463 cm1 (9), 5590 cm1 (10)) and crystalline (6290 cm1 (15)), regions of cellulose. 

Similar tendency of degradation kinetic was recorded previously in KAČÍK et al. (2015) and 

SIVONEN et al. (2002). 

Lignin in wood is chemically and physically bonded to cellulose and hemicelluloses 

forming a three-dimensional polymer complex that contains acetal, α-phenyl-β-ether, 

phenyl-β-glucosidic and hydrogen bonds. The absorbance of the functional groups 

associated to lignin (4561 cm-1 (4) and 5982 cm-1 (13)) as well as assigned to lignin and 

extractives at 4679 cm-1 (5) was reduced in all investigated treatment configurations 

indicating continue lignin degradation and/or condensation.  

The sorption and desorption of water is an important phenomenon which highly affects 

mechanical and physical properties of wood (e.g. dimensional stability, shrinkage and 

swelling). The NIR absorption bands at 5220 cm1 (8) and at 7005 cm1 (19) are assigned to 

combination of –OH stretching and –OH bending vibration modes in water. As expected, 

clear changes in both absorbance bands (8 and 19) were observed when the treatment 

temperature increased from 100 °C to 240 °C. 

 

Tab. 3 Band assignments of selected wood components after thermal modification (according to 

SCHWANNINGER et al. 2011). 

Band Wavenumber 

 (cm1) 

Chemical component; Bond vibration 

1 4202 Holocellulose; O–H deformations (second overtone) 

2 4282 Cellulose; C–H stretching, C–H2 deformation 

3 4403 Cellulose, hemicellulose; C–H2 stretching, C–H2 deformation,  

4 4561 Lignin C–H stretching, C=O stretching 

5 4679 Lignin/extractives C–H stretching, C=C stretching 

6 4748 Cellulose; O–H deformation, O–H stretching 

7 4806 Cellulose semicrystalline and crystalline regions, O–H stretching, C–H 

deformations 

8 5220 Water; O–H stretching, O–H deformations 

9 5463 Cellulose semicrystalline and crystalline regions; O–H stretching, C–O stretching 

(second overtone) 

10 5590 Cellulose semicrystalline and crystalline regions; C–H stretching (first overtone) 

11 5802 Hemicellulose (furanose/pyranose); C–H stretching (first overtone) 

12 5882 Hemicellulose; C–H stretching (first overtone) 

13 5982 Lignin; C–H stretching (first overtone) 

14 6140 Cellulose; O–H, stretching (first overtone) 

15 6290 cellulose crystalline regions; O–H stretching (first overtone) 

16 6490 Cellulose; O–H stretching (first overtone) 

17 6622 Cellulose; O–H stretching (first overtone) 

18 6789 Cellulose; O–H stretching (first overtone) 

19 7005 Amorphous cellulose/water; O–H stretching (first overtone) 

20 7315 Cellulose; C–H stretching (first overtone), C–H deformations 
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  1 hour treatment 

I.  100 °C 150 °C 160 °C 200 °C 220 °C 240 °C 

II.  

 

 L* 82.13 79.08 73.84 57.91 43.82 32.75 

III. a*   4.30   5.51   5.79 10.68 12.31   9.07 

 b* 20.86 23.16 23.67 25.77 20.00 12.18 

IV. 

 

V. 

 
 

 

Note:  I. Temperature of heat treatment, II. Appearance of heat treated wood, III. Colour of heat treated wood 

(colour coordinates after heat treatment – CIE L*, CIE a* and CIE b*), IV. Xylograms, V. Peak shift 

Fig. 3 Summary results for 1 hour heat treatment of pine sapwood. 
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  3 hours treatment 

I.  100 °C 150 °C 160 °C 200 °C 220 °C 240 °C 

II.  

 

 L* 81.82 75.09 73.81 47.45 34.61 30.26 

III. a*  4.45  6.05  6.00 10.16  9.05  5.00 

 b* 22.11 24.73 23.97 22.13 13.27 5.36 

IV. 

 

V. 

 
 

 
Note:  I. Temperature of heat treatment, II. Appearance of heat treated wood, III. Colour of heat treated wood 

(colour coordinates after heat treatment – CIE L*, CIE a* and CIE b*), IV. Xylograms, V. Peak shift 

Fig. 4 Summary results for 3 hours heat treatment of pine sapwood. 
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  5 hours treatment 

I.  100 °C 150 °C 160 °C 200 °C 220 °C 240 °C 

II.  

 

 L* 80.66 75.92 73.65 44.71 31.59 28.31 

III. a*   4.83   6.09   7.15 10.08   8.38   3.83 

 b* 21.72 25.46 25.52 20.68 10.97   1.21 

IV. 

 

V. 

 
 

 
Note:  I. Temperature of heat treatment, II. Appearance of heat treated wood, III. Colour of heat treated wood 

(colour coordinates after heat treatment – CIE L*, CIE a* and CIE b*), IV. Xylograms, V. Peak shift 

Fig. 5 Summary results for 5 hours heat treatment of pine sapwood. 
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CONCLUSSIONS 

Treatment duration and temperature, beside of the oxygen concentration, are principal 

factors that affect wood chemical change and its final appearance due to thermal 

modification. The analyses of FT-NIR spectra provided essential information about 

chemical changes of wood components after that process. It was confirmed that heat-

treatment of wood at elevated temperatures (over 200 °C) caused extensive destruction of 

hemicelluloses. Some extent of semi-crystalline cellulose and lignin degradation was also 

noticed but in a smaller degree. Therefore, the number of sorption sites available to link 

water with wood was dramatically reduced due to thermal treatment.  

Profound understanding of chemical changes might be helpful for further optimization of 

the thermal treatment procedures at industrial scale. For that reason, xylograms are identified 

as a simple and illustrative method that might be highly suitable for visualization how 

thermal treatment effects on the chemical composition of wood. The same method may be 

implemented for studies on alternative modification/degradation processes of wood and 

other lignocellulosic materials.  
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