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Abstract

Model predictive control (MPC) has been, since its introduction in the late 70’s, a
well accepted control technique, especially for industrial processes, which are typically
slow and allow for on-line calculation of the control inputs. Its greatest advantage is
its ability to consider constraints, on both inputs and states, directly and naturally.
More recently, the improvements in processor speed have allowed its use in a wider
range of problems, many involving faster dynamics. Nevertheless, implementation of
MPC algorithms on embedded systems with resources, size, power consumption and
cost constraints remains a challenge.
In this thesis, High-Level Synthesis (HLS) is used to implement implicit MPC algo-

rithms for linear (LMPC) and nonlinear (NMPC) plant models, considering constraints
on both control inputs and states of the system. The algorithms are implemented in
the Zynqr -7000 All Programmable System-on-a-Chip (AP SoC) ZC706 Evaluation
Kit, targeting Xilinx’s Zynqr-7000 AP SoC which contains a general purpose Field
Programmable Gate Array (FPGA). In order to solve the optimization problem at each
sampling instant, an Interior-Point Method (IPM) is used. The main computation cost
of this method is the solution of a system of linear equations. A minimum residual
(MINRES) algorithm is used for the solution of this system of equations taking into
consideration its special structure in order to make it computationally efficient. A
library was created for the linear algebra operations required for the IPM and MINRES
algorithms.
The implementation is tested on trajectory tracking case studies. Results for the

linear case show good performance and implementation metrics, as well as computation
times within the considered sampling periods. For the nonlinear case, although a high
computation time was needed, the algorithm performed well on the case study presented.
Because of resources constraints, implementation of the nonlinear algorithm on higher
order systems was precluded.
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Kurzfassung

Modellprädiktive Regelung (engl: Model Predictive Control (MPC) ist, seit der Einfüh-
rung in den späten 70er Jahren, eine gut angenommene Regelungstechnik, insbesondere
für industrielle Prozesse, die typischerweise langsam sind und die online Steuergröße
Berechnung ermöglichen. Ihr größter Vorteil ist die Fähigkeit, Beschränkungen bezüg-
lich der Steuergrößen und der Regelgrößen zu berücksichtigen. In letzter Zeit hat die
Verbesserung der Geschwindigkeit der Prozessoren den Einsatz in einer breitere Pro-
blemreichweite mit einer schnelleren Dynamik ermöglicht. Allerdings bleibt die MPC
Algorithmus-Implementierung in eingebetteten Systeme mit beschränkte Ressourcen,
Größe, Energieverbrauch und Kosten eine Herausforderung.
In dieser Arbeit wird die High-Level Synthesis (HLS) benutzt, um implizit MPC

Algorithmen für lineare (LMPC) und nichtlineare (NMPC) Regelstrecken zu implemen-
tieren, wobei Steuergröße- und Regelgrößenbeschränkungen berücksichtigt werden. Die
Algorithmen sind im Zynqr-7000 AP SoC ZC706 Auswertungskit implementiert, wobei
auf der Xilinxs Zynqr-7000 AP SoC, der ein allgemeiner Zweck FPGA enthält, abgezielt
wird. Ein innere-Punkte Verfahren (engl: Interior-Point Method (IPM)) wird für die
Lösung des Optimierungsproblems in jedem Sampling benutzt. Die größte Berechnungs-
komplexität bei dem IPM ist die Lösung eines linearen Gleichungssystems. Ein minimaler
Residuum-Algorithmus (MINRES) wird für die Lösung dieses Gleichungssystem benutzt,
wobei die spezielle Struktur berücksichtigt wird, um das Verfahren recheneffizient zu
machen. Es wurde eine Bibliothek mit Funktionen für die benötigten linearen Algebra
Operationen in den IPM und MINRES Verfahren entwickelt.
Die Implementierung wird in Trajektorieverfolgung Fallstudien getestet. Die Ergeb-

nisse für den linearen Fall zeigen gute Leistungen und Metriken, sowie Rechenzeiten
innerhalb des berücksichtigten Taktzeiten. Für den nichtlinearen Fall wurde eine ho-
he Rechenzeit benötigt. Trotzdem hat der Algorithmus für die vorgestellte Fallstudie
gut funktioniert. Infolge der Ressourcenbeschränkungen war die Implementierung des
nichtlinearen Algorithmus für Systeme höherer Ordnung verhindert.
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Chapter 1

Introduction

1.1 Motivation

Embedded control is necessary to adequately fulfill the functionality of an embedded
system. This control strategy has to be implemented on the chosen processor, satisfying
any resources constraints and performance requirements, like for example area constraints,
computation time, which is vital for real time applications, and power consumption
requirements. Embedded control is ubiquitous, for example in the automotive and
aircraft industries for applications like autonomous driving, in robotics or even in more
simple systems like household appliances.

Typical processors for embedded applications include CPUs, Graphics Processor Units
(GPUs) and Digital Signal Processors (DSPs). These processors execute instructions
in a sequential way. Multi core processors can be used to achieve parallelism, as is, in
fact, the case for GPUs which contain a large number of programmable cores; however,
despite the improvements in performance, these processors continue to possess a fixed
hardware architecture. On the other hand, hardware-customizable integrated circuits,
namely Field Programmable Gate Arrays (FPGAs), are much more flexible and a wide
level of parallelism can be achieved, allowing to trade off resource usage for higher
throughput and lower latency in order to meet resource constraints, while achieving a
higher power efficiency [14], which is an important issue since most fast autonomous
systems are battery driven. In this context, the use of hardware implementations on
FPGAs is of great interest and the main topic of this thesis.
Hardware programming is traditionally performed based on Hardware Description

Languages (HDLs) like VHDL or Verilog, targeting Application-Specific Integrated
Circuits (ASICs) or FPGAs. The latter require less design time, effort and costs,
and offer the capability of being reprogrammed at the expense of a lower achievable
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1 Introduction

performance. The design and verification of embedded systems with this approach
demands a lot of time compared with pure software implementations. In order to
increase productivity, lot of effort has been put into the development of High-Level
Synthesis (HLS) tools, which allow the user to specify the behavior of the algorithm
at a higher level of abstraction, commonly using C/C++ language. Implementing the
algorithms at this higher level of abstraction permits more complex algorithms to be
accelerated in hardware without any knowledge of HDLs being required. This reduces
significantly the design time, at the expense of a lower control over the final synthesized
design.
Real systems may have constraints on both control inputs and states. For example,

in the injection system of a car, the valves have a maximum opening gap and due to
consumption matters, the flow through the valves may be restricted to be between
certain values; this would represent respectively constraints on a control input and a
state for this particular system. Classical control techniques, namely PID control, fail
to take these constraints into consideration and therefore operate the plant far from
the constraints in order to allow for disturbances to take place, making the operation
inefficient [45]. Model Predictive Control (MPC) is one of the few advanced control
techniques that has had an important and widespread impact on industrial process
engineering, precisely because of its ability to naturally take the constraints of the
system into consideration, as well as being easily applied to MIMO systems.
Implicit MPC requires the control input to be calculated at every sampling instant,

which initially confined its implementation to systems with slow dynamics, especially in
the chemical industry. With the growing improvements in processor speed and growing
transistor count, MPC is in recent years being applied to systems with faster dynamics.
This poses the challenge of calculating the control input to be applied to the system
within a shorter period of time.

MPC involves the solution at every sampling period of an optimization problem. This
problem resulting from the control formulation possesses a well defined structure, which
can be used to tailor the algorithms for the solution in order to improve the efficiency
and speed, while reducing memory requirements.

1.2 Problem Statement

The on-line computation of the MPC problem solution demands a high computational
effort and must be obtained within the sampling period of the system under consideration.
For fast dynamic systems, this is usually in the order of milliseconds. For the case
of embedded control, this solution must be also computed in an efficient way so that
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1.3 Objectives

timing, resource, and power consumption requirements are met. An FPGA is chosen to
accelerate the most computationally demanding tasks of the MPC problem solution.

1.3 Objectives

This thesis aims to design a high performance embedded MPC implementation accom-
plishing the following objectives:

• To study FPGAs hardware architecture for efficient implementations.

• To study the use of HLS tools on modern FPGA hardware.

• To design a high-level performance implementation of an MPC scheme for the
embedded control of fast autonomous systems.

• To validate the viability of the implementation through case studies and real-time
MPC control of systems with fast dynamics.

1.4 Thesis Organization

The content of this thesis is organized as follows:

• Chapter 2 starts with a brief overview of the different processor types available
for embedded control. It gives then an introduction to FPGAs and the ways they
can be programmed, namely using HDLs or HLS, expatiating on the use of the
latter as an important topic of this work.

• Chapter 3 presents the principle of MPC and the formulations for Linear Model
Predictive Control (LMPC) and Nonlinear Model Predictive Control (NMPC)
considered in this thesis. Special care is taken in describing the structure of the
corresponding Quadratic Programming (QP) and Nonlinear Programming (NLP)
problems that result from the approach chosen for the formulation.

• Chapter 4 describes the primal-dual Interior-Point Method (IPM) for the solution of
QP and NLP problems, and the special structure arising from the control approach,
which is exploited to improve computation time and memory requirements.

• Chapter 5 describes in detail the implementation of the IPM solvers. The chapter
starts with an overview of the related work done regarding hardware MPC im-
plementations. Then, a description of the compressed storage formats used for
memory utilization reduction is given, the employed hardware and software tools

Master Thesis Antonio Araujo Barrientos 3



1 Introduction

are then introduced. Next, LMPC and NMPC algorithm implementations are
described step by step. An explanation of the optimization directives used for
exploiting parallelization in the FPGA is then given. This chapter ends with a
description of how the solvers implemented using HLS are integrated on a design
targeting a Zynqr All Programmable System-on-a-Chip (AP SoC).

• Chapter 6 presents a description of the models considered for the case studies.
Trajectory tracking problems were solved and the results obtained are shown and
described, together with performance and utilization metrics.

• Chapter 7 concludes this thesis with a summary of the work done and the obtained
results, as well as possible future research directions.

4



Chapter 2

High-Level Synthesis

ASICs and FPGAs are the most popular hardware programming technologies. They are
traditionally programmed with Hardware Description Languages (HDLs) like VHDL or
Verilog, which make the design process long and require expertise. Another approach is
the use of HLS tools. This chapter introduces the use of HLS for FPGA programming.

2.1 Embedded Systems Processors

This section provides a brief overview of the processor choice for embedded systems,
based on the description by Vahid and Givargis presented in [64].
An embedded system is any computer system different from a PC with constrained

features like size, cost, performance and power consumption designed to perform a
single task. Its most important part is the processor, which performs the required
computations and manages the entire operation. Depending on the architecture used
for the desired functionality it can be one of the following:

• General-purpose processor, suits a wide range of applications, which reduces
design time and related costs at the expense of achievable performance. Reduced
instruction set computing (RISC) processors, like those with the ARM architecture
widely used in embedded applications, are an example of this category.

• Single-purpose processor, is customized for a single specific functionality. Is
also called accelerator and will be considered in this thesis for the hardware
implementation. This type of processor allows for fast performance and small size
and power consumption, at the expense of higher development costs and lower
flexibility.

Master Thesis Antonio Araujo Barrientos 5



2 High-Level Synthesis

• Application-specific processor, developed for a particular type of applications that
have similar characteristics. Properties of this processor type can be placed in-
between the previous two types. An important example of an application-specific
processor are DSPs, which allow math intensive operations to be executed on
digital signals, like video and audio.

Beside the processor technology previously described, the Integrated Circuit (IC)
technology also plays an important role in determining how the digital gate-level
implementation is mapped to the IC. Bottom layers on an IC form transistor-based
logic gates and top layers connect these gates through wires. Three different technologies
are to be considered:

• In full-custom IC technology, all layers are optimized for a particular implemen-
tation. Excellent performance can be achieved while retaining a small size and
power consumption at the expense of elevated development costs and design time.
Only economically viable for large production volumes, like commercially available
microprocessors.

• Semi-custom, for this case lower layers are fully or partially built, remaining the
upper layers for the developer to finish. Present good performance and size, with
smaller costs as full-custom ICs. ASICs are an example of this technology.

• In programmable logic devices all layers already exist, circuits are programmed by
creating or destroying connections between gate-connecting wires. FPGAs are the
most popular devices of this type. As an important topic of this thesis, they will
be treated separately in section 2.2.

Any type of processor technology can be implemented on any type of IC technology,
for this thesis, a hardware accelerator was implemented on an FPGA.

2.2 Field Programmable Gate Array (FPGA)

An FPGA is a semiconductor device, namely an IC, that can be programmed after
fabrication and can be dynamically reconfigured for different tasks. This distinguishes
them from ASICs, which are more application-specific [72]. The fabrication cost of an
ASIC for a given application is still very high, making it economically viable only for
applications demanding a lot of units, sometimes in the range of millions.
On normal processors, instructions are executed in a sequential manner. Initial

attempts to improve execution runtime for a given application relied on the increase
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2.2 Field Programmable Gate Array (FPGA)

in the processor clock frequency so that instructions would execute faster. Afterwards,
attempts considering specialized processors like DSPs or GPUs became popular. The
problem with these approaches is that regardless of a growing processor speed the memory
accesses are limited by a fixed unified memory space. This led to the introduction of
multi core processors and parallel execution which are preferred today. Unlike processors,
FPGAs don’t execute programs as a sequence of instructions, they allow for parallel
implementation of an algorithm without the restriction of cache and a fixed memory
space, FPGAs are therefore ideal for implementing hardware accelerators to improve
algorithm performance [74].
FPGAs give the designer the opportunity to obtain the power consumption savings

and the performance of a custom implementation without the cost and complexity of
developing an ASIC. In addition, reprogrammability and the increasing logic density,
consisting up to two million logic cells on modern devices allows for the implementation
of complex algorithms while exploiting the inherently parallel nature of a custom circuit
[74]. All these properties make FPGAs a good choice for numerous applications in
different markets like aerospace, military and defense, audio and video processing,
automotive, medical, communications and industrial applications [18, 72].

In this thesis, a Xilinxr device is utilized for the implementation of an MPC algorithm.
Using Xilinxr-specific terms, general purpose FPGA logic fabric is composed basically
of slices, Configurable Logic Blocks (CLBs) and Input/Output Blocks (IOBs) as well as
special resources like DSP48E1 and Block RAMs (BRAMs). Figure 2.1 shows the basic
architecture of the Programmable Logic (PL) part for the Zynqr device used for this
work. Next, a brief explanation extracted from [21] is given:

• Lookup Table (LUT): Resource capable of implementing simple logic functions,
small ROM, small RAM or a shift register. LUTs can be combined to form larger
units.

• Slice: Unit that contains resources for implementing combinatorial and sequential
logic circuits. Composed basically by LUTs and Flip-Flops (FFs).

• CLB: Each CLB contains two logic slices and is positioned next to a switch matrix,
which makes possible the connection between elements within a CLB and from
one CLB to other resources.

• IOB: Are the interface between the FPGA resources and the physical pads of the
device. Each IOB can handle a 1-bit input or output signal.

• BRAM: This special purpose component is thought for dense memory requirements.
Can implement RAM, ROM, and FIFO buffers. Using BRAMs allows a large
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2 High-Level Synthesis

amount of data (up to 36Kb for Zynqr devices) to be stored in a small physical
space on the device. The alternative, implemented only with LUTs is called
distributed memory.

• DSP48E1 Are dedicated silicon resources for implementing high-speed arith-
metic on signals with medium to long arithmetic word lengths. Comprise a
pre-adder/subtractor, a multiplier, and a post-adder/subtractor with a logic unit.

Figure 2.1 – Logic fabric on the Zynq 7000 AP SoC[21]

2.3 Traditional FPGA Programming Languages

VHDL and Verilog are the most widely used HDLs, both are IEEE standards and are
supported by synthesis tools for ASICs and FPGAs [17]. VHDL was developed in the
70’s and 80’s by the U.S. Department of Defense and was proposed as an IEEE standard
in 1986, being adopted one year later [55]. Verilog was adopted as a standard in 1995
[65].

Hardware description involves two major aspects: behavior and structure. Behavioral
description requires a language which allows the behavior or functionality to be declared

8



2.4 High-Level Synthesis (HLS)

independent of structural or design aspects. The description of structure requires the
language to express this hardware structure irrespective of the behavioral models that
might be applied to it [48]. HDLs allow the design to be portable and independent of
technology, allowing the engineer to focus on functionality. After an HDL design is
completed it allows for simulation, synthesis, place and route procedures and finally
it can be simulated again to verify results as well as timing and design constraints
fulfillment [55].

2.4 High-Level Synthesis (HLS)

A great disadvantage of FPGA programming using the languages described in section
2.3 is the long design and implementation times when compared to alternative fixed
architectures like GPUs or DSPs which are programmed only in software using lan-
guages with a higher level of abstraction. The continuously increasing complexity of
functionalities and applications implemented, and the additional complexity as the result
of intending to meet design constraints make necessary the use of tools that increase
design productivity [20]. In this context, HLS tools have been developed to ease and
accelerate the hardware design process and have started gaining acceptance since the
2000’s. A detailed study on HLS history and the reasons why early attempts failed
to gain acceptance is presented in [46], a review of its benefits is presented in [20]. A
detailed overview of the HLS tools available up to 2011 can be found in [47]. For the
work presented in this thesis, Xilinxr hardware was used, consequently, Vivador HLS
software was employed for generating a Register Transfer Level (RTL) model which was
later programmed in the FPGA. For a detailed description of the tool used for this work
refer to [76]. Following, a brief introduction to HLS extracted from [76] is presented.

Vivador HLS transforms a description specified in C, C++ or System C into an RTL
implementation. This higher level of abstraction programming allows both software
and hardware programmers to benefit from both domains easing the design process and
increasing productivity.
The HLS process consists basically of scheduling and binding operations. During

scheduling, it is defined in which clock cycle each operation will be performed and
during binding hardware resources to implement the scheduled operations are assigned.
This process is done taking into consideration the target device, timing constraints and
any optimization directive specified. Optimization directives give the programmer the
possibility to influence the final RTL implementation in the desired way to improve the
results. Unlike in HDLs where the interface of the design has to be explicitly specified
by the programmer, in designs specified with HLS it is inferred from the arguments and
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2 High-Level Synthesis

return variables of the function to be synthesized, also called top function, so care must
be taken in the programming style.
Vivador HLS uses three metrics to measure the performance of a design:

• Area: Quantifies the resources (BRAMs, DSP48Es, FFs and LUTs) required for
the implementation considering the target device.

• Latency: Number of clock cycles required for the function to compute all output
values.

• Initiation Interval (II): Number of clock cycles before new data can be input to
the function.

When designing with Vivador HLS special care must be taken as not all C/C++
constructs are supported for synthesis; for example, no memory allocation is permitted,
so all memory requirements must be known at compile time.
After developing the code with the desired functionality, it can be simulated to

verify correctness. The first step is to perform a C simulation. For this purpose, an
appropriate test bench written also in a high-level language is required, which should
provide inputs to the top function and compare the outputs with known solutions to
verify the operations are correctly performed. Once the functionality has been verified
the C synthesis is performed. In this step, all user-defined optimization directives are
considered and different solutions can be created to facilitate the comparison process. C
synthesis outputs an RTL design which can again be verified during C/RTL cosimulation.
A great advantage of HLS is that the same test bench used for C simulation is used in
this step, which reduces significantly the verification time [47]. Finally, the design can
be exported as an Intellectual Property (IP) block for its integration in a more complex
design using Xilinxr’s IP Integrator.
Apart from the metrics used by Vivado HLS presented previously in this section,

there are also three important concepts to take into consideration [74]:

• Clock Frequency: Is defined as the longest time it takes a signal to travel from a
source register to a sink register.

• Throughput: Expresses the rate at which data can be passed through the system.

• Pipelining: Is the process of inserting registers between computation blocks in
order to get smaller segments and allow for concurrent operation execution. Can
increase latency in absolute number of clock cycles but increases performance by
allowing a higher clock frequency and improving throughput. The latency caused
by pipelining is a trade-off to consider during FPGA design.

10



2.5 Summary

2.5 Summary

This chapter presented a brief description of the processor choice on embedded appli-
cations focusing on the architecture and the IC technology. A description of FPGA
technology and why it is a good choice for parallel computing was given. HDLs were
briefly described, giving more emphasis on HLS as a productivity oriented alternative
for hardware programming.
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Chapter 3

Model Predictive Control (MPC)

MPC is a model-based control technique which determines the optimal control inputs,
based on the current measurement (or estimation) of the states, such that a desired
reference is reached or followed. This is accomplished by predicting the system’s future
response and minimizing a cost function, while having the constraints on the states and
control inputs under consideration.
MPC was originally developed in the petrochemical industry. The first description

of MPC applications was presented in 1976 by Richalet et al. at a conference and
then summarized in 1978 in an Automatica paper [60]. The software proposed was
called IDCOM, an acronym for Identification and Command. Later, at the 1979
National AIChE meeting, engineers of Shell Oil presented their MPC technology named
dynamic matrix control (DMC) [57]. In recent years the scope of applications has
increased drastically, covering areas including chemicals, food processing, automotive
and aerospace applications; a detailed overview of MPC and industrial applications can
be found in [56, 57].

3.1 Principle of MPC

MPC has had a widespread impact on industrial process control and is recently being
adopted for a much wider range of applications, made possible by the constant increase
in computing speed and power [45]. Its main advantage over other control techniques
is the ability to naturally handle the constraints on states and control inputs of the
system, allowing for a more efficient operation. It is also easily extended to multivariable
systems.

The principle of MPC consists in finding, at each sampling instant, the optimal control
inputs along a predefined time horizon, often called prediction horizon, in order to follow
the desired reference. This is achieved by predicting the future outputs based on an
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explicit model while minimizing a cost function and having constraints on the system
under consideration. Once the optimal control inputs for the current prediction horizon
have been computed, only the inputs corresponding to the first interval of the prediction
horizon are applied to the system. The process is repeated on every sampling instant
shifting the prediction horizon accordingly, an approach known as receding horizon
strategy [45]. At every sampling instant, the new measurement available, or estimation
if not all states are measured, is used as input for the optimization problem.

3.2 Linear Model Predictive Control (LMPC)

In case the system to be controlled is linear—or a linearization around an operating
point is considered—, the cost function is quadratic, and both the states and control
inputs constraints are linear, then the MPC problem is an LMPC problem. The last two
conditions are normally easily satisfied since the cost function is chosen to be quadratic
and the constraints on the system typically appear as box constraints (simple bounds).
The advantage of this formulation is that the optimization problem can be formulated
as a QP problem, which is convex and therefore assures a global minimum can be found
[52].

3.2.1 LMPC Formulation

Consider the following linear time-varying discrete system:

xk+1 = Akxk +Bkuk ,

yk = Cxk ,
(3.1)

where xk ∈ Rn, uk ∈ Rm and yk ∈ Rp represent the states, inputs, and outputs of the
system, respectively. Throughout this thesis, the notation xk = x(k) = x(t = kTs), for
k = 0, 1, 2, ... and Ts representing the sampling period will be considered.

The LMPC algorithm will compute the optimal control inputs u∗ over a predefined
control horizon (Nu), required to follow the desired reference, and use the model in
(3.1) to predict the future states over the prediction horizon (Np). Applied inputs to
the system are considered to be piecewise constant over the sampling period. Nu is
normally chosen to be less than or equal to Np, in the following, they will be considered
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to be equal and will be denoted with the letter N . In order to find the optimal solution,
the following cost function is to be minimized at each sampling instant k:

J(k) = 1
2

(
N∑
i=1
‖x(k + i|k)− xr(k + i|k)‖2Qi

+
N−1∑
i=0
‖u(k + i|k)− ur(k + i|k)‖2Ri

)
(3.2)

where xr and ur denote the reference vectors for the states and control inputs respectively.
The expression ‖x‖2Q represents the quadratic form xTQx and x(k + i|k) denotes the
values predicted for the states at the instant k + i using the measurement or estimation
available at instant k, the same applies for inputs u. It may be preferable to consider the
change in the control input ∆u instead of the control input itself; in that case, the cost
function (3.2) can be easily modified. Considering the dynamics of the system and the
constraints the following optimization problem is solved every time a new measurement
is available:

minimize
u,x

J(k) = 1
2

N∑
i=1
‖x(k + i|k)− xr(k + i|k)‖2Qi

+

1
2

N−1∑
i=0
‖u(k + i|k)− ur(k + i|k)‖2Ri

,

(3.3a)

subject to:

x(k|k) = x0 , (3.3b)

x(k + i+ 1|k) = Aix(k + i|k) +Biu(k + i|k) , i = 0, 1, .., N − 1 , (3.3c)

Dix(k + i|k) 6 di , i = 1, 2, ...N , (3.3d)

Fiu(k + i|k) 6 fi , i = 0, 1, ...N − 1 . (3.3e)

Equation (3.3c) considers the general case of a linear time-varying system, where the
subindex in the matrices A and B indicates their value at instant i in the prediction
horizon, starting from the actual sampling period k. Equations (3.3d) and (3.3e) impose
constraints on the states and control inputs respectively, they appear usually as box
constraints (min ≤ var ≤ max) and can be formulated with the matrices and vectors
shown in equation (3.4). In case a given state or input is not constrained then the
corresponding terms in the matrices and vectors in (3.4) are simply set to zero without
altering the problem structure.
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Di =
[
I

−I

]
, di =

[
xmax

−xmin

]
, (3.4a)

Fi =
[
I

−I

]
, fi =

[
umax

−umin

]
. (3.4b)

For the case of LMPC the optimization problem to solve at each sampling interval
can be formulated as a QP problem of the form:

minimize
ξ

J(k) = 1
2ξ

TQξ + qT ξ , (3.5a)

subject to:

Aξ = b , (3.5b)

Cξ 6 d . (3.5c)

Where the vector ξ represents the optimization variables and its structure depends
on the solution approach. For the problem to be convex, matrix Q must be positive
semidefinite [52].

3.2.2 Explicit LMPC

From the LMPC formulation (3.3) is clear that when considering a time-invariant system
and assuming constraints and references remain constant, only the initial state will
change at every sampling instant. In explicit LMPC the optimization problem (3.3) is
solved off-line for a number of initial states of interest in order to obtain an explicit
dependence between the control action u and the states x of the system [8]. This
approach alleviates the on-line computational cost of MPC allowing for faster systems
to be considered; nevertheless, the memory requirements increase with the size of the
problem. It is, therefore, more appropriate for small problems.

3.2.3 Implicit LMPC

Implicit LMPC requires the solution of (3.3) to be computed on-line on every sampling
instant, which demands a significant computational effort. For many years, this led MPC
to be applied only to slow processes which allowed this computation to be performed
within the sampling period [28]. In recent years, the application range of MPC has
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widened as the computational capacity of controllers improved. Two approaches for the
formulation of (3.5) will be considered next.

3.2.3.1 Dense Approach

In the dense approach, only the control inputs over the prediction horizon are considered
as optimization variables, and the states have to be expressed as a function of the former
and the initial state. This decision for ξ results in a QP problem with dense matrices Q,
A and C (refer to (3.5)), with the advantage of a reduced order as in comparison with
the case when both the control inputs and the states are considered for the optimization
as explained next. For a detailed description of this approach refer to [51].

3.2.3.2 Sparse Approach

In the sparse approach, the states are considered together with the control inputs as
optimization variables. This leads to a bigger optimization problem, but with the
advantage of having sparse matrices. This sparsity and the well defined structure of the
problem can be easily exploited to develop tailored algorithms for its solution in order
to improve efficiency and reduce memory requirements, as presented in [28, 58].

The vector of optimization variables ξ can be selected as follows

ξ =



u(k|k)
x(k + 1|k)
u(k + 1|k)
x(k + 2|k)

...
x(k +N − 1|k)
u(k +N − 1|k)
x(k +N |k)


. (3.6)

With this selection, formulation (3.5) results in matrices and vectors of the following
dimensions: Q ∈ RNOV ×NOV , A ∈ RNEC×NOV , C ∈ RNIC×NOV , q ∈ RNOV , b ∈ RNEC

andQ ∈ RNIC , whereNOV , NEC andNIC represent the number of optimization variables,
number of equality constraints and number of inequality constraints respectively and
are defined in (3.7).
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NOV = N(n+m) , (3.7a)

NEC = Nn , (3.7b)

NIC = 2N(n+m) . (3.7c)

The initial state vector x(k|k) is not considered as optimization variable because it is
known at every sampling instant and is regarded as an input. In order to have equation
(3.3) in the form of (3.5), considering the optimization variables in the order previously
presented, the problem has to be reformulated. The cost function (3.3a) can be put in
the form (3.8), where the linear terms appear in case the desired reference is different to
zero. The weight matrices are usually held constant over the prediction horizon, except
for the penalty on the states deviation at the end of it; the cost function is therefore
written with the penalty terms at the end of the horizon isolated and their weight matrix
and vector represented by P and p respectively.

minimize
u,x

J(k) =
N−1∑
i=1

(1
2‖x(k + i|k)‖2Qi

+ qTi x(k + i|k)
)

+

N−1∑
i=0

(1
2‖u(k + i|k)‖2Ri

+ rTi u(k + i|k)
)

+

1
2‖x(k +N |k)‖2P + pTx(k +N |k) .

(3.8)

In the following the matrices and vectors for the equation (3.5) are derived.

Cost Function

Expanding the cost function in (3.8) gives:

J(k) = 1
2u

T
0 R0u0 + rT0 u0+

1
2x

T
1 Q1x1 + 1

2u
T
1 R1u1 + qT1 x1 + rT1 u1+

1
2x

T
2 Q2x2 + 1

2u
T
2 R2u2 + qT2 x2 + rT2 u2+

...
1
2x

T
N−1QN−1xN−1 + 1

2u
T
N−1RN−1uN−1 + qTN−1xN−1 + rTN−1uN−1+

1
2x

T
NPxN + pTxN ,
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where xi and ui represent x(k + i|k) and u(k + i|k) respectively.
This equation can be rearranged and put in the quadratic form 1

2ξ
TQξ + qT ξ with

matrix Q and vector q as expressed in (3.9) and (3.10).

Q =



R0

Q1

R1

Q2
. . .

QN−1

RN−1

P


, (3.9)

q =
[
rT0 qT1 rT1 qT2 . . . qTN−1 rTN−1 pT

]T
. (3.10)

Equality Constraints

Expanding the equality constraints (3.3c) corresponding to the dynamics of the plant:

x(k + 1|k) = A0x(k|k) +B0u(k|k) ,

x(k + 2|k) = A1x(k + 1|k) +B1u(k + 1|k) ,
...

x(k +N − 1|k) = AN−2x(k +N − 2|k) +BN−2u(k +N − 2|k) ,

x(k +N |k) = AN−1x(k +N − 1|k) +BN−1u(k +N − 1|k) .

This equations can be rearranged and put in the form of a system of linear equations
Ax = b with matrix A and vector b as expressed in (3.11) and (3.12).

A =



−B0 I

−A1 −B1 I

−A2 −B2 I
. . . . . . . . .
−AN−2 −BN−2 I

−AN−1 −BN−1 I


, (3.11)
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b =


A0x(k|k)

0
...
0

 . (3.12)

Inequality Constraints

The inequality constraints on states and control inputs appear as box constraints of the
form xmin ≤ x ≤ xmax. Considering equation (3.4) the matrix and vector for Cx ≤ d
can be formed.

C =



F0

D1

F1

D2
. . .

DN−1

FN−1

DN


, (3.13)

d =



f0

d1

f1

d2
...

dN−1

fN−1

dN


. (3.14)

3.3 Nonlinear Model Predictive Control (NMPC)

The LMPC technique described previously in this chapter relies on a linear model of the
system; however, most real systems are nonlinear. As increasingly higher performance
specifications and constraints imposed not only by the system itself but also by environ-
mental regulations and economical considerations are considered, systems are required
to operate closer to the constraints, precluding an approach based on a linearization to
be applied, making the use of a nonlinear approach, namely NMPC necessary to achieve
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the desired performance [23]. In addition to nonlinear dynamics, NMPC considers the
general case of nonlinear constraints and a non-quadratic objective function. As in the
case of LMPC, an optimization problem must be solved on every sampling interval, but
with the important difference that in this case the problem may be non convex and
stability and robustness are not easy to study. For a more detailed study on NMPC
refer to [2, 23, 25] and the references therein.

3.3.1 NMPC Formulation

Consider the following nonlinear system:

ẋ = f(x(t), u(t), t) , (3.15)

where x(t) ∈ Rn and u(t) ∈ Rm represent the states and inputs of the system respectively.
The main idea, as in the linear case, is to obtain the optimal control inputs required to
follow a desired trajectory while minimizing a scalar valued cost function, having the
constraints on inputs and states under consideration and following the receding horizon
strategy. As a result, the following Optimal Control Problem (OCP) is to be solved on
every sampling interval:

minimize
u(t)

J(t) = φ(x(tk +NTs), tk +NTs) +
∫ tk+NTs

tk

f0(x(t), u(t), t)dt (3.16a)

subject to:

x(tk) = x0 , (3.16b)

ẋ = f(x(t), u(t), t) , t ∈ [tk, tk +NTs] , (3.16c)

g(x(t), u(t), t) ≤ 0 , t ∈ [tk, tk +NTs] . (3.16d)

Equation (3.16c) represents the nonlinear dynamics of the plant over the prediction
horizon N and (3.16d) represents the inequality constraints on both states and inputs
of the system. Function φ is a function of the state vector at the end of the prediction
horizon. This continuous-time OCP can be solved using dynamic programming [7, 9],
direct or indirect methods [11]. A survey of different numerical methods for the solution
of OCPs can be found in [10]. Direct methods are preferred as they allow for larger
problems to be solved and can easily deal with inequality constraints.

Direct methods solve problem (3.16) by discretizing it over the considered time interval,
in this case, the prediction horizon. This step can be done using any discretization
approach. The main task is the discretization of the system dynamics (3.16c), which

Master Thesis Antonio Araujo Barrientos 21



3 Model Predictive Control (MPC)

together with the initial state (3.16b) form an Initial Value Problem (IVP). The
solution of this IVP can be obtained through one-step methods like Euler, Runge-Kutta
or collocation methods, or through multi-step methods like Backward Differentiation
Formula (BDF) [22]. The method chosen has a direct influence on the performance
of the controlled system. The Euler explicit method, for example, is the simplest to
implement but requires a smaller step size to achieve a good performance as compared
with other methods which may preclude its usage as this increases the computation
requirements. As a result of discretization, problem (3.16) is turned into the Nonlinear
Programming (NLP) problem shown in equation (3.17).

minimize
ξ

f(ξ) , (3.17a)

subject to:

CE(ξ) = 0 , (3.17b)

G(ξ) ≤ 0 . (3.17c)

As in the LMPC formulation, vector ξ can be chosen to consider only the control
inputs over the prediction horizon (sequential approach) or to consider both inputs and
states, which is called simultaneous approach. The latter approach is used in this thesis,
which leads to a vector of optimization variables of the form (3.6). Vectors CE and G
are formed by scalar functions and have dimensions NEC and NIC respectively as shown
in (3.7). The cost function f is normally chosen to be quadratic, of the form (3.8) which
can be put in the form of (3.5a). The function CE will depend on the discretization
approach chosen as previously mentioned. For this thesis, inequality constraints will be
considered as in the LMPC formulation, arising from box constraints on the inputs and
the states.

3.4 Summary

This chapter presented the basic MPC formulation and its advantages. This control
technique has a wide range of applications, mostly on industrial processes. In recent years,
however, systems with faster dynamics are being also considered for its implementation
and computationally efficient solvers are therefore needed to deal with faster sampling
rates. Sparse formulations where described in detail for both LMPC and NMPC
approaches. The solution approach for both the QP and the NLP problems formulated
in this chapter will be explained in chapter 4.
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Chapter 4

Interior-Point Method (IPM)

The term interior-point method was introduced in the 1980s as new methods were devel-
oped for solving large linear optimization problems efficiently, which were characterized
for requiring the inequality constraints to be strictly satisfied on all iterates. In the
early 1990s a subclass of these methods, the primal-dual methods, appeared as the most
efficient practical approaches. IPMs are characterized for presenting computationally
expensive iterations while making significant progress toward the solution [52]. A more
detailed description of the origins and impact of IPMs can be found in [69]. As men-
tioned before, IPMs generate iterates that lie strictly inside the region described by the
inequality constraints. If the constraints are satisfied throughout all the iterations then
the method is considered feasible, whereas infeasible IPMs only guarantee constraints
satisfaction at the solution [27].

As explained in chapter 3, an LMPC problem can be formulated as a typical QP
problem to be solved at every sampling instant. The two most used approaches to solve a
QP problem when inequality constraints are present are Active-Set Method (ASM) and
IPM. A description of both methods for solving QP problems can be found in [52, 70]. In
general, for a small number of variables and constraints ASM has lower complexity and
converges faster than IPM; however, IPM performs better for larger problems [37]. This
is due to the mathematical complexity of ASMs growing exponentially with the problem
size, as opposed to IPMs which present a polynomial complexity [27]. Additionally, for
the case of ASM, the size of the linear system of equations to be solved at each iteration
changes depending on which constraints are active (inequality constraints satisfied as
equalities, which define the active set on each iteration), which is not the case for IPM
where the problem structure is fixed. For embedded FPGA-based implementations,
IPMs are therefore a better choice since the algorithm needs to be executed on a fixed
architecture.
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An NMPC problem, considering the solution using direct methods, has to be formu-
lated as an NLP problem through discretization. The two main solution approaches for
NLP problems are Sequential Quadratic Programming (SQP) and IPM for NLP [52].
SQP methods solve a QP problem at each iteration for the step direction search and
then a merit function is used for the step length. The QP problem is usually solved
using active-set methods; therefore, IPM for NLP was implemented in this thesis as it
better suits the FPGA platform as previously explained.

4.1 Primal-Dual IPM for QP

The formulation of primal-dual IPM as presented in [52, 70] is considered in this section.
Consider the following QP problem with both equality and inequality constraints (same
as (3.5)):

minimize
ξ

J(k) = 1
2ξ

TQξ + qT ξ , (4.1a)

subject to:

Aξ = b , (4.1b)

Cξ 6 d . (4.1c)

The Lagrange function of this QP problem is:

L = 1
2ξ

TQξ + qT ξ + λ(Aξ − b) + v(Cξ − d) , (4.2)

where λ ∈ RNEC and v ∈ RNIC represent the Lagrange multipliers for the equality
and inequality constraints respectively. Assuming Q is positive semidefinite and the
constraints are linear, then the Karush-Kuhn-Tucker (KKT) conditions are sufficient
conditions for finding a global minimum:

Qξ + q +ATλ+ CT v = 0 , (4.3a)

Aξ − b = 0 , (4.3b)

Cξ − d+ s = 0 , (4.3c)

visi = 0 , i = 1, ..., NIC , (4.3d)

(v, s) ≥ 0 , (4.3e)
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where s ∈ RNIC represents a vector of slack variables and NIC corresponds to the
number of inequality constraints. Newton-like methods are used to compute the solution
to Equations (4.3a) to (4.3d), and a line search is then applied to adjust the step length
such that equation (4.3e) is satisfied. Applying Newton method to the equality KKT
conditions equation (4.4) is obtained, where e is a vector of ones, V and S are diagonal
matrices formed from vectors v and s respectively.


Q AT CT 0
A 0 0 0
C 0 0 I

0 0 S V




∆ξ
∆λ
∆v
∆s

 =


−Qξ − q −ATλ− CT v

−Aξ + b

−Cξ + d− s
−V Se

 , (4.4a)

(v, s) ≥ 0 . (4.4b)

It should be noticed that the restriction (4.4b) makes this a nonlinear system of
equations. Additionally, in the system matrix, only the terms on the last row change
within iterations. Terms in the vector on the right side are updated on every iteration.
The solution of equation (4.4a) gives a search direction for the next step; usually, taking
a full step in this direction would violate the condition (4.4b), so a step length along
this direction must be calculated. Only small steps can be achieved before violating
(4.4b), which makes this approach impractical. For this reason, primal-dual methods
use a Newton-like approach by making (4.3d) equal to a small number instead of equal
to zero [52], such that:

V Se = σµe , (4.5)

where the reduction factor σ, and the complementarity measure µ defined in equation
(4.8) are scalar values. Making this change and eliminating ∆s from (4.4a) we obtain:


Q AT CT

A 0 0
C 0 −V −1S




∆ξ
∆λ
∆v

 =


−rd
−rp

−rc+ s− σµV −1e

 , (4.6a)

(v, s) > 0 , (4.6b)

∆s = −s− V −1S∆v + σµV −1e , (4.6c)

where rd, rp and rc are defined as:
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rd = Qξ + q +ATλ+ CT v , (4.7a)

rp = Aξ − b , (4.7b)

rc = Cξ − d+ s . (4.7c)

µ = vT s

NIC
. (4.8)

The system can be further simplified by eliminating ∆v from (4.6a):

[
Q+ CTS−1V C AT

A 0

] [
∆ξ
∆λ

]
=
[
−rn
−rp

]
, (4.9a)

(v, s) > 0 , (4.9b)

∆v = S−1V
[
C∆ξ + rc− s+ σµV −1e

]
, (4.9c)

∆s = −s− V −1S∆v + σµV −1e . (4.9d)

With rn defined as:

rn = rd+ CTS−1V rc− CT v + σµCTS−1e . (4.10)

The main computational task in IPMs is solving the linear system of equations (4.6a)
or (4.9a). Notice that the system matrices on both cases are symmetric, indefinite and
sparse, which is important for choosing the right solver. A widely used algorithm for
solving a linear system of equations when the matrix has these properties is the minimum
residual (MINRES) algorithm presented in Algorithm 1 [24]. The MINRES algorithm is
a Krylov subspace method for iteratively solving a linear system of equations when the
system matrix is symmetric, presenting advantages especially if it is also large and sparse.
For the solution of a system of the general form Jχ = y, the objective is to iteratively
minimize the residual r = y − Jχ. The symmetry of the system allows the solution
to be performed recursively, being only two previous steps required on each iteration.
The iterative nature of this method makes it possible to stop the algorithm at a fixed
number of iterations to improve computation time, although a trade-off with precision is
to be considered. This method uses only vectors resulting from matrix-vector products
with the system matrix J , regarding it as an operator [54], this will be exploited as
matrix-vector products are easily parallelized.
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The IPM algorithm for the solution of system of equations (4.9) is presented in
Algorithm 2 [52].

Algorithm 1: MINRES algorithm for solution of Ax = b [24]
input :A, b, x0, N_iter
output : x_sol
/* Initialization: */

n← 1, N ← length(x0);
v(k) ← zeros(N, 1), v̂(k) ← b−Ax0, β(k) ← ||v̂(k)||;
γ(k) ← 1, γ(k−1) ← 1, σ(k) ← 0, σ(k−1) ← 0;
ω(k) ← zeros(N, 1), ω(k−1) ← ω(k);
η ← β(k), x← x0;
while n ≤ N_iter do

Lanczos:
v(k−1) ← v(k), v(k) ← v̂(k)

β(k) ;

α(k) ← v(k)TAv(k);
v̂(k) ← Av(k) − α(k)v(k) − β(k)v(k−1);
β(k−1) ← β(k), β(k) ← ||v̂(k)||;
QR Factorization:
γ(k−2) ← γ(k−1), γ(k−1) ← γ(k) ;
σ(k−2) ← σ(k−1), σ(k−1) ← σ(k) ;
r̂1 ← γ(k−1)α− γ(k−2)σ(k−1)β(k−1) ;

r1 ←
√
r̂2

1 + β(k)2 ;
r2 ← σ(k−1)α+ γ(k−2)γ(k−1)β(k−1) ;
r3 ← σ(k−2)β(k−1);
Givens rotation:
γ(k) ← r̂1

r1
;

σ(k) ← β(k)

r1
;

Update:
ω(k−2) ← ω(k−1), ω(k−1) ← ω(k) ;
ω(k) ← v(k)−r3ω(k−2)−r2ω(k−1)

r1
;

x← x+ γ(k)ηω(k);
η ← −σ(k)η;
n← n+ 1;

end
x_sol← x
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Algorithm 2: IPM algorithm for QP problem solution [52]
input :Feasible initial vectors ξ(0), λ(0), v(0), s(0), such that (v(0), s(0)) > 0
output : Solution ξ
/* Initialization: */

µ(0) ← s(0)T
v(0)

mc , k ← 0;
repeat

choose σ(k) ∈ (0, 1) ;
solve for ∆ξ(k) and ∆λ(k):Q+ CTS(k)−1

V (k)C A(k)T

A(k) 0

[∆ξ(k)

∆λ(k)

]
=
[
−rn(k)

−rp(k)

]
;

get ∆v(k):
∆v(k) ← S(k)−1

V (k)
[
C∆ξ(k) + rc(k) − s(k) + σ(k)µ(k)V (k)−1

e
]
;

get ∆s(k):
∆s(k) ← −s(k) − V (k)−1

S(k)∆v(k) + σ(k)µ(k)V (k)−1
e;

find α(k) such that (v(k+1), s(k+1)) > 0 ;
update vectors:

(ξ(k+1), λ(k+1), v(k+1), s(k+1))←
(ξ(k), λ(k), v(k), s(k)) + α(k)(∆ξ(k),∆λ(k),∆v(k),∆s(k));
update complementarity measure µ(k);
set k ← k + 1;

until stopping criteria satisfied;

4.2 Primal-Dual IPM for NLP

The formulation of IPM considering the continuation approach as presented in [52] is
considered in this section. The NLP problem shown in (4.11) is considered, which differs
from (3.17) only in the inequality constraints. The form considered here will be useful
for the implementation.

The Lagrange function is given in equation (4.12) and the KKT conditions in (4.13),
where λ ∈ RNEC and v ∈ RNIC represent the Lagrange multipliers for the equality and
inequality constraints respectively, s ∈ RNIC represents a vector of slack variables, e is a
vector of ones, V and S are diagonal matrices formed from vectors v and s respectively.
AE(ξ) and AI(ξ) represent the Jacobian matrices of CE(ξ) and CI(ξ) respectively. In
this case, the KKT conditions are necessary conditions only. For equation (4.13d), the
original condition of being equal to zero (µ = 0) is perturbed and this leads to the
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4.2 Primal-Dual IPM for NLP

inequality (4.13e) being strictly satisfied. The continuation approach is to solve the
perturbed system (4.13) for a sequence of positive scalar parameters µk, also called
barrier parameters, that converges to zero [52].

minimize
ξ

f(ξ) , (4.11a)

subject to:

CE(ξ) = 0 , (4.11b)

CI(ξ) ≤ d . (4.11c)

L(ξ, λ, v) = f(ξ) + λCE(ξ) + v(CI(ξ)− d) . (4.12)

∇f(ξ) +ATE(ξ)λ+ATI (ξ)v = 0 , (4.13a)

CE(ξ) = 0 , (4.13b)

CI(ξ)− d+ s = 0 , (4.13c)

V Se = µe , µ > 0 , (4.13d)

(v, s) > 0 . (4.13e)

Newton method is used to compute the solution to Equations (4.13a) to (4.13d), and
a line search is then applied to adjust the step length such that equation (4.13e) is
satisfied. Applying Newton method to the equality KKT conditions, equation (4.14) is
obtained.


∇2
ξξL ATE(ξ) ATI (ξ) 0

AE(ξ) 0 0 0
AI(ξ) 0 0 I

0 0 S V




∆ξ
∆λ
∆v
∆s

 =


−∇f(ξ)−ATE(ξ)λ−ATI (ξ)v

−CE(ξ)
−CI(ξ) + d− s
−V Se+ µe

 , (4.14a)

(v, s) > 0 . (4.14b)

Eliminating ∆v and ∆s system (4.15) is obtained, with rd, rp and rn defined in (4.16).
It should be noticed that matrix ATI (ξ)S−1V AI(ξ) will be diagonal if the inequality
constraints are in the form of box constraints.
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[
∇2
ξξL+ATI (ξ)S−1V AI(ξ) ATE(ξ)

AE(ξ) 0

] [
∆ξ
∆λ

]
=
[
−rn
−rp

]
, (4.15a)

(v, s) > 0 , (4.15b)

∆v = S−1V
[
AI(ξ)∆ξ + CI(ξ)− d+ µV −1e

]
, (4.15c)

∆s = −s− V −1S∆v + µV −1e , (4.15d)

rd = ∇f(ξ) +ATE(ξ)λ+ATI (ξ)v , (4.16a)

rp = CE(ξ) , (4.16b)

rn = rd+ATI (ξ)S−1V (CI(ξ)− d) + µATI (ξ)S−1e . (4.16c)

As in the IPM for QP, the main computational task is solving the linear system of
equations (4.15a). A MINRES algorithm will also be used for its solution. Once the
step direction has been found the step length must be found such that condition (4.15b)
is satisfied. A basic IPM algorithm for NLP is presented in algorithm 3[52].

It should be noticed that derivative information of both equality and inequality
constraints functions, as well as the Hessian of the Lagrange function, must be available
for the solution of the NLP problem, and that this information must be updated on
every iteration of the algorithm.

As a consequence of the problem having non-convexities and nonlinearities additional
modifications to algorithm 3 are required; for example, the addition of line search and
control features for the decrease rate in slack variables and Lagrange multipliers, a
detailed description can be found in [52].

4.3 Summary

This chapter presented the primal-dual IPM for the solution of QP and NLP problems.
The KKT conditions and the Newton-like solution approach to solve the linear system
of equations was detailed for both cases. This linear system will be solved using the
iterative MINRES method because of the characteristics of the primal-dual system.
Iterative methods additionally allow to trade off accuracy for computation time by
reducing the required number of iterations.
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Algorithm 3: Basic IPM algorithm for NLP problem solution [52]
input :Feasible initial vectors ξ(0), λ(0), v(0), s(0), such that (v(0), s(0)) > 0
output : Solution ξ
/* Initialization: */

Select µ(0) > 0, and σ ∈ (0, 1) ;
k ← 0;
repeat

solve (4.15a) for ∆ξ(k) and ∆λ(k);
get ∆v(k) from (4.15c);
get ∆s(k) from (4.15d);
find αv(k) and αs(k) such that:
v(k) + αv(k)∆v(k) > 0 ,
s(k) + αs(k)∆s(k) > 0 ;

update vectors:
ξ(k+1) ← ξ(k) + αs(k)∆ξ(k) ,
λ(k+1) ← λ(k) + αv(k)∆λ(k) ,
v(k+1) ← v(k) + αv(k)∆v(k) ,
s(k+1) ⇐ s(k) + αs(k)∆s(k);

update µ :
µk+1 ← σµk;

set k ← k + 1;
until stopping criteria for problem (4.11) satisfied;
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Chapter 5

Implementation of Embedded MPC Al-
gorithms on FPGA Using HLS

An MPC problem can be expressed as a QP problem for LMPC and as anNLP problem
for NMPC as explained in chapter 3. For both cases the primal-dual IPM was chosen
because it better suits FPGA-based implementations when compared with the ASM,
as described in chapter 4. The main computational effort in IPM algorithm resides
in the solution of the linear system of equations resulting from the KKT conditions;
based on the symmetry and indefiniteness of the system matrix the MINRES algorithm
was chosen for its solution. The MINRES algorithm implemented was tailored to the
corresponding approach (LMPC or NMPC) in order to reduce computation time and
allow for implementation on fast dynamics systems.

5.1 Related Work

A lot of research has been made regarding hardware implementations of MPC. Explicit
piecewise-linear MPC was implemented on an ASIC in [32], reporting sampling intervals
in the order of milliseconds and pointing out the increasing memory requirements
as the problem dimension grows. Feasibility of QP solver implementation on FPGA
using primal-dual IPM was demonstrated in [41] with an aircraft example; a sequential
Handel-C model obtained from MATLABr code was used, achieving 20MHz clock
frequency. This work was improved in [40] using parallel computation and solving
the linear system of equations with Gaussian elimination, achieving 25MHz operation
frequency. A comparison between implementation of Mehrotra’s IPM algorithm on
a GPU using CUDAr and on FPGA using both single precision floating-point and
32 bits fixed-point is presented in [39], analyzing the trade-offs between these number
representation formats. 88.2MHz and 56.7MHz were reported for floating-point and
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fixed-point implementations respectively, obtaining 11x speed-ups on the FPGA for
small size problems when compared with the GPU. A soft processor, i.e. a processor
implemented using the FPGA’s logic fabric, running a C/C++ model of the MPC
algorithm at 150MHz was used in [15], considering dual IPM for the QP solver.

A mix of software and hardware implementation was considered in [12], achieving
25MHz clock frequency on a Verilog based design. This work was further improved
in [66] using logarithmic number systems arithmetic for the co-processor, running the
accelerator at 50MHz. Another mixed software/hardware implementation was reported
in [80], where the intensive floating-point operations were performed in software while
remaining operations were accelerated in hardware. Verilog was used as input language
for the hardware accelerator running at 100MHz.

Non-standard numerical representation for MPC was studied in [16] considering a
hybrid fixed-point floating-point architecture, and in [6] using only fixed-point repre-
sentation. Implementation of the Lanczos algorithm used in iterative methods like
MINRES was proposed in [29, 30] using fixed-point arithmetic, where a preconditioner
was proposed to guarantee overflow errors will not occur. Additionally, [34] showed that
the discretization method employed is critical for guaranteeing good numerical behavior
with low-precision number representation. In [44], a method to include auxiliary decision
variables for the solution of QP problems with low-precision arithmetic was proposed,
employing delta-domain formulation as discretization method for numerical stability.

Very fast computation times were achieved in [67] using primal barrier IPM and
reduced precision floating-point arithmetic, allowing systems with sampling rates of
200 µs to be controlled. A dual active-set algorithm was used in [68] achieving similar
computation time results. Both designs achieved 70MHz clock frequency. Sparse
formulation of LMPC for FPGA implementation using primal-dual IPM and MINRES
algorithm was presented in [28], where inherent parallelism and problem structure in
IPM was exploited to achieve high throughput and a reduction in memory requirements
of up to 75%, achieving clock frequencies above 150MHz. Custom architectures for first-
order optimization methods were proposed in [31] for the solution of constrained MPC
problems, achieving good performance for sampling periods beyond 1MHz, running
the FPGA at 400MHz. The latter two works were further detailed in [27]. A system-
on-a-chip MPC system considering also the sparse approach and primal-dual IPM as
well as an additional fast gradient QP solver for steady state target calculation was
presented in [26]. A soft processor was used to communicate the two custom QP solvers
implemented, running the whole system at 250MHz. Single precision floating-point
Cholesky factorization was employed in [43] for the predictor-corrector IPM algorithm
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reporting also frequencies up to 250MHz. VHDL programming was used for the last
six works cited.

Implementations of NMPC on FPGAs have also been reported. SQP algorithm was
used in [35] to solve the optimization problem and QR factorization was used for the
linear solver; however, no performance results were reported. A vector-MPC approach
was used in [38] for the control of permanent magnet synchronous motors with interior
magnets for electric vehicles, achieving control cycle times in the range of µs. MATLABr

Simulinkr and Xilinxr System Generator were used to program the FPGA. Particle
swarm optimization (PSO) algorithm on fixed-point arithmetic was used in [79] to deal
with the nonlinear optimization problem, because of its naturally parallel capabilities.
HLS tools were used for the implementation, achieving 40MHz clock frequency.

For this thesis, primal-dual IPM algorithms for the solution of QP and NLP problems
were implemented on an FPGA using HLS with C++. The remaining operations for
the LMPC and NMPC algorithms were implemented on an ARM processor using C
descriptions.

5.2 Compressed Storage Formats

As explained in chapter 3, the sparse or simultaneous approach for the formulation
of the MPC problem was considered, which leads to sparse matrices. Therefore it is
not memory and computationally efficient to store their non-zero values and perform
operations on them. Four compressed storage formats were considered: Compressed
Row Storage (CRS), Compressed Column Storage (CCS), Compressed Diagonal Storage
(CDS) and left-shift storage.

Compressed Row Storage

This compressed storage approach makes no assumptions on the matrix structure. Only
the non-zero values are stored in a vector, scanning the original matrix from one row to
the next, from left to right. Two more vectors are required, one for the column indexes
of each non-zero value and one for specifying the number of non-zero values up to each
row, starting with zero. This way of storing the matrix is not very efficient because of a
required indirect access to the vectors for operations like matrix-vector multiplication
[5]. An example of this storage format:
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M =


1 5 −2 0 0 0 1
−8 0 0 0 4 −2 0
0 0 9 −1 0 0 2

 ,
CRS format:

val =
[
1 5 −2 1 −8 4 −2 9 −1 2

]
,

col_ind =
[
0 1 2 6 0 4 5 2 3 6

]
,

row_ptr =
[
0 4 7 10

]
.

Compressed Column Storage

This compressed storage approach makes no assumptions on the matrix structure. Only
the non-zero values are stored in a vector, scanning the original matrix from one column
to the next, from top to bottom starting at the column on the left. Two more vectors
are required, one for the row indexes of each non-zero value and one for specifying the
number of non-zero values up to each column, starting with zero. This format equals
the CRS representation of the transpose of the considered matrix [5]. An example of
this storage format:

M =


1 5 −2 0 0 0 1
−8 0 0 0 4 −2 0
0 0 9 −1 0 0 2

 ,
CCS format:

val =
[
1 −8 5 −2 9 −1 4 −2 1 2

]
,

row_ind =
[
0 1 0 0 2 2 1 1 0 2

]
,

col_ptr =
[
0 2 3 5 6 7 8 10

]
.

Compressed Diagonal Storage

This format is appropriate for banded matrices. It represents the original matrix with
one smaller matrix and one vector. The matrix stores the sub-diagonals, considering
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leading zeros for those corresponding to the lower triangular part and trailing zeros for
the upper triangular part. This means some unnecessary zeros are stored, however, this
format allows for a more efficient matrix-vector multiplication than the CRS format. The
vector stores the columns indexes of the sub-diagonals, considering the main diagonal
as zero-indexed [5][13]. For symmetric matrices, only the upper (or lower) triangular
part may be stored. An example of this storage format:

M =



1 5 −2 0 0 0 0
5 7 1 0 0 0 0
−2 1 −2 0 4 0 0
0 0 0 1 0 0 0
0 0 4 0 −7 0 3
0 0 0 0 0 8 −1
0 0 0 0 3 −1 9


,

CDS format:

val =



1 5 −2
7 1 0
−2 0 4
1 0 0
−7 0 3
8 −1 0
9 0 0


,

col_ind =
[
0 1 2

]
.

Left-Shift Storage

Having matrix-vector multiplication as target operation to be performed on a block
structured banded matrix like Âip (refer to (5.8) on page 41), as will be the case for the
implemented MINRES algorithm, a better approach is to store the blocks on the band
of the matrix in a left-shifted manner. In this case, non-useful zeros are stored but has
the advantage that all elements in each row remain in the same row and in the same
order in the new reduced matrix. Additionally, a vector is required to specify the offset
for each row, that is the number of zeros on the left of the band suppressed during the
left-shift operation.
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5.3 Hardware and Software

The algorithms were implemented on a Zynqr -7000 AP SoC ZC706 Evaluation Kit,
developed by Xilinxr, which contains an XC7Z045 FFG900 -2 AP SoC with charac-
teristics as shown in table 5.1, for more detailed information refer to [78]. Zynqr

devices possess two main sections: the Processing System (PS) and the Programmable
Logic (PL), which can be used independently or together. The PS contains a dual-
core ARMr Cortexr-A9 processor and associated resources that form an Application
Processing Unit (APU), together with peripheral and memory interfaces, interconnects
and clock generation circuitry. Figure 5.1 shows a diagram of the basic structure of
the PS. The PL is basically a general purpose FPGA (refer to section 2.2). Commu-
nication between PS and PL can be done with the use of the Advanced eXtensible
Interface (AXI) standard through AXI interconnects and interfaces or with Extended
Multiplexed Input/Output (EMIO) interfaces [21].

The RTL design for the PL was obtained using Vivador HLS [76] and then exported to
a design in the Vivador IDE [77] for its integration on a Zynqr-based design. Synthesis,
implementation, and bitstream generation were also run in the Vivador IDE and then
exported to Xilinxr SDK environment as a hardware platform for the development of a
bare metal application for the PS. Both PS and PL were programmed from Xilinxr

SDK.

Table 5.1 – XC7Z045 FFG900 -2 AP SoC characteristics [78], upper characteristics
correspond to the PS and lower to the PL

Characteristic Description
Device Name Z-7045
Part Number XC7Z045
Processor Core Dual-Core ARMr Cortexr-A9 MP-

Core Up to 1GHz
On-Chip Memory 256KB
Peripherals 2x UART, 2x CAN 2.0B, 2x I2C, 2x

SPI, 4x 32b GPIO
PS to PL Interface Ports
(Primary Interfaces &
Interrupts Only)

2x AXI 32b Master, 2x AXI 32b
Slave, 4x AXI 64b/32b Memory, AXI
64b ACP , 16 Interrupts

7 Series PL Equivalent Kintexr-7
Logic Cells 350K
Look-Up Tables (LUTs) 218,600
Flip-Flops 437,200
Total Block RAM (36Kb) 19.1Mb
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Figure 5.1 – Block diagram for Zynqr PS [21]

5.4 LMPC Algorithm Implementation

5.4.1 Block Structure and Sparsity

Matrices Q, A and C in equation (3.5) are sparse and have a well defined structure
when using the implicit sparse approach as described in section 3.2.3.2. This can be
easily exploited as proposed in [28] and [70]. Using the primal-dual IPM for solving this
problem equation 4.9 is obtained, a MINRES algorithm was implemented to solve system
(4.9a) iteratively. Regarding this linear system of equations, also called primal-dual
system, let’s denote the system matrix as Aip.

Aip =
[
Q+ CTS−1V C AT

A 0

]
=
[
H AT

A 0

]
. (5.4)

Within an LMPC iteration, only the term CTS−1V C changes from iteration to
iteration of the MINRES algorithm. As matrices S and V are diagonal matrices formed
from vectors s (slack variables) and v (Lagrange multipliers for inequality constraints)
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respectively, this term has diagonal components only. This leads to the important fact
that only the diagonal components of Aip need to be updated when solving (4.9a). For
the case of a time-invariant system, this remains so for all iterations of the LMPC
problem. If the system is time-varying, then matrix A needs to be updated for the
next LMPC iteration. The constant part of matrix Aip is denoted as Â, and has the
structure shown in (5.5).

Â =
[
Q AT

A 0

]
,

Â =



R0 −BT
0

Q1 I −AT1
. . . −BT

1
. . . I

. . . −ATN−1
RN−1 −BT

N−1
PN I

−B0 I 0 . . . . . . 0

−A1 −B1 I
... . . . ...

. . . ... . . . ...
−AN−1 −BN−1 I 0 . . . . . . 0



. (5.5)

Matrix Â is symmetric and sparse, but not banded. Through row and column
reordering it was made banded to ease calculations and reduce memory requirements
[27, 28, 58]. After reordering, the system of linear equations is the following:

Âip∆ξ,λ = b̂ip , (5.6)

where matrix Âip, which is banded and remains symmetric, was obtained by reordering
the vector of optimization variables and Lagrange multipliers for the equality constraints
from the system (4.9a), such that vector ∆ξ,λ and matrix Âip have the structure presented
in equation (5.7) and (5.8) respectively.

As can be seen from (5.8) the elements in the band maintain the order along the
prediction horizon. The terms in CTS−1V C must still be added to Âip for the MINRES
algorithm, and have the same distribution as those in matrix Q, along Âip diagonal.
This means that the terms Ri and Qi in Âip are replaced by the corresponding terms
of H. Vector b̂ip was constructed from vectors rn and rp as shown in equation (5.9),
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where the notation rn(xi) refers to the terms in vector rn that correspond to vector x
on the prediction horizon interval defined by subindex i.

∆ξ,λ =



∆u0

∆λ0

∆x1

∆u1

∆λ1

∆x2
...

∆uN−1

∆λN−1

∆xN



, (5.7)

Âip =



R0 −BT
0

−B0 0 I

I Q1 0 −AT1
0 R1 −BT

1
−A1 −B1 0 I

. . .
I QN−1 0 −ATN−1

0 RN−1 −BT
N−1

−AN−1 −BN−1 0 I

I PN



, (5.8)

bip =



−rn(u0)
−rn(x1)
−rn(u1)
−rn(x2)

...
−rn(uN−1)
−rn(xN )
−rp(λ0)
−rp(λ1)

...
−rp(λN−1)



, reordered : b̂ip =



−rn(u0)
−rp(λ0)
−rn(x1)
−rn(u1)
−rp(λ1)
−rn(x2)

...
−rn(uN−1)
−rp(λN−1)
−rn(xN )



. (5.9)
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As mentioned in section 5.2, the left-shift format is more appropriate for matrix-vector
operations on banded matrices. Matrix Âip is shown in this storage format in equation
(5.10), where n is the system order, m is the number of inputs and NR is the number
of rows of Âip, which equals N(2n+m). The number of columns of the reduced matrix
V alAiph is 3n+m.

V alAiph =



R0 −BT
0

−B0 0 I

I Q1 0 −AT1
R1 −BT

1
−A1 −B1 0 I

...
I QN−1 0 −ATN−1

RN−1 −BT
N−1

−AN−1 −BN−1 0 I

I PN



, col_indAiph =



0
0
m

2n+m

n+m
...

NR− (4n+m)
NR− (2n+m)
NR− (3n+m)

NR− 2n



.

(5.10)

5.4.2 LMPC Formulation

The implemented LMPC algorithm solves the QP problem (3.5) that results from
formulating problem (3.3) using the implicit sparse approach, i.e. considering both
the system states and control inputs over the corresponding prediction horizon as
optimization variables, as presented in section 3.2.3.2. This approach results in sparse
matrices and vectors of a well defined structure of which advantage was taken to reduce
memory requirements and computation time.

Because of the wide dynamic range required for the solution of the IPM algorithm single
precision floating-point representation (32 bits) was preferred for the implementation
[34][30]. Despite modern FPGAs present double precision support, the use of single
precision arithmetic allows a reduction in resources utilization and therefore lower power
consumption. Although single precision was preferred for the reasons mentioned above,
for some study cases it was necessary to use double precision as the dynamic range
precluded the use of the former. Algorithm 4 presents a general LMPC formulation.
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Algorithm 4: LMPC algorithm
input :Prediction horizon N , sampling period Ts, plant model, constraints
foreach Sampling instant do

Measure or estimate plant states at current sampling instant;
Formulate QP problem;
Solve QP problem to get optimal solution ξ∗ for the optimization variables;
Apply first optimal input(s) u∗ to the plant, corresponding to the first interval
of the prediction horizon;

end

For this work, trajectory tracking study cases were considered and therefore the
implementation was tailored to this kind of application. The considered models were
nonlinear, so they were linearized in order to apply LMPC. As a consequence, putting
problem (3.3) in the form of (3.5) resulted in the matrices and vectors of the QP problem
having the following characteristics:

• Matrix Q: This matrix was considered to be constant, that is the differences
between the variables considered in the cost function and the desired references
were equally penalized on each sampling period over the corresponding prediction
horizon (does not mean that within the prediction horizon the weight matrices were
the same for every time interval). This matrix may be block diagonal, for example
in case linear combinations of the states or inputs are penalized in the cost function;
therefore, to allow the implemented design to take this case into consideration,
this matrix was stored in CDS format using on-chip memory. Diagonal matrices
were considered for the case studies.

• Matrix A: Is a constant matrix for the special case of a time-invariant system;
however, for a model linearized along different operation points, it does not remain
constant for different sampling instants. Due to its well defined block structure,
all operations with this matrix were performed only storing the corresponding
system matrices A(k + i|k) and B(k + i|k) (abbreviated as Ai, Bi) from the state
space representation along the prediction horizon.

• Matrix C: This matrix, which only contains 1 and −1 as non-zero values, was
considered to be constant, i.e. the constrained variables remain the same for every
instant. This allowed to desist from storing this matrix as all operations were
translated into code. For implementation it was assumed that all control inputs
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are constrained, and a vector (Cp) indicating which states are constrained must
be specified before synthesis.

• vector q: This vector depends on the reference trajectory, is zero in case all states
and inputs have desired value zero, as was the case for the LMPC case studies.
Was stored using on-chip memory.

• vector b: Updates at every sampling instant with a new states measurement/esti-
mation (x0).

• vector d: Changes only if the constraints change or if the operation point for a
linearized model changes.

5.4.3 Primal-dual IPM implementation

Primal-dual IPM was used for the solution of problem (3.5) as presented in section 4.1,
considering the solution of the nonlinear system of equations (4.9). A function named
QP_Solver was created for the solution of the QP problem. As described previously,
constant vectors and parameters were stored using on-chip memories. Instead of the
sparse matrix A, information about the system model was given through input matrices
AdN and BdN , which contain the matrices Ai and Bi for the whole prediction horizon,
i = 0, 1, 2..., N as presented in equation (5.11); it was considered that these matrices
would change within the prediction horizon because of a nonlinear model being linearized.
Information about constraints was given through vector d. The current measured or
estimated state x(k|k) abbreviated as x0 was also input to the solver. Figure 5.2 shows
a block diagram of function QP_Solver. The inputs and outputs shown were chosen to
be streamed in and out using AXI4-Stream [71] protocol for communication with other
IP blocks, for this purpose a top function was created with input and output streams as
arguments such that they are automatically implemented as data ports for the RTL
design during synthesis by Vivador HLS.

Figure 5.2 – Block diagram for QP_Solver function
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AdN =


A0

A1
...
AN

 , BdN =


B0

B1
...
BN

 . (5.11)

Next, the implemented function QP_Solver is explained in detail:

• The system order, number of inputs, prediction horizon and number of iterations
for the IPM and MINRES algorithms are specified for each particular case study
before synthesis.

• Matrix Q (in CDS format as matrix Qcds and vector col_indQ) and vectors q, Cp
and col_indAiph (refer to (5.10)) are stored using ROMs during the implementa-
tion of the synthesized design. Vector Cp indicates which states are constrained
with a non-zero value (1) in the corresponding position of the states vector.

• Matrix V alAiph (from Âip in left-shift format) is obtained from matrices AdN ,
BdN and Q, see equation (5.10).

• Even though matrix A can be formed from matrices AdN and BdN (see equation
(3.11)), it is not necessary as operations on this matrix can be performed without
reconstructing it, taking only its structure into consideration.

• Vector b is calculated from the initial state condition x0, see equation (3.12).

• Near to optimal solution is found with IPM, as explained below.

Once the steps explained above are completed, the nearly optimal solution is found
with the primal-dual IPM. For this purpose, a function IP_algorithm was implemented,
figure 5.3 shows the block diagram of the function inputs and outputs.
Next, the implemented function IP_algorithm is explained in detail:

• Vectors ξ (feasible), λ, v and s are initialized, the latter two element-wise positive.

• The reduction factor σ and constant β (for the step length computation) are
specified in the interval (0, 1).

• The complementarity measure µ is computed (refer to equation (4.8)).

• Main loop of IPM algorithm. A fixed number of iterations was chosen as stopping
criteria for the IPM algorithm, since the real-time nature of the implementation
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Figure 5.3 – Block diagram for IP_algorithm function

favors a deterministic timing; it also allows to trade off accuracy for computation
time [62] [27]. This approach does not guarantee that an optimal solution will
be found; in order to obtain a good behavior, the minimum number of iterations
required was determined with off-line simulations. Next, the operations in this
step are detailed.

– The first step is to compute vectors rd, rp and rc (refer to equation (4.7)).
For computation of rd, three matrix-vector multiplications are required:

∗ Qξ is performed with a function that implements an algorithm for
multiplication of a symmetric matrix in CDS format with a vector as
shown in algorithm 5.

∗ ATλ requires a function that performs the operation on matrix A using
matrices AdN and BdN as shown in algorithm 7.

∗ CT v uses the vector Cp instead of matrix C as shown in algorithm 6

– For computation of rp, matrix A has to be multiplied with the optimization
variables vector ξ and then vector b has to be subtracted. A function was
implemented for this purpose as shown in algorithm 8 in page 52.

– For computation of rc, matrix C has to be multiplied with the optimization
variables vector ξ and then vectors d and s have to be subtracted and added
respectively. The function shown in algorithm 9 in page 53 was implemented
for this purpose.

– For the computation of rn (refer to equation (4.10)), matrices V and S are
not computed; instead, only vectors v and s are employed. For the term
CTS−1e, algorithm 6 in page 50 is used with a vector formed by the inverse
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of each term of s as input. For the term CTS−1V a similar algorithm is
used, but considering that instead of a matrix-vector multiplication it is a
matrix-matrix multiplication, where the matrix on the right is diagonal, with
the diagonal formed by the terms v[i]/s[i].

– Only the terms in the diagonal of Matrix H (refer to equation (5.4)) vary
from iteration to iteration of the IPM, and therefore only these terms are
calculated and stored in a vector Hdiag. Algorithm 11 shown on page 54 was
used for the implementation.

– Terms in the diagonal of Âip are updated with the calculated terms of
Hdiag. This is done taking the compressed structure in equation (5.10) under
consideration. Hdiag will replace the corresponding terms of Q.

– Vector b̂ip is formed from vectors rn and rp (refer to equation (5.9)).

– As explained before, at each IPM iteration a linear system of equations is
solved using MINRES algorithm, which is sensitive to the condition number
of the system matrix. As the solution is approached this matrix becomes
ill-conditioned and inaccuracies appear, leading to wrong solutions even when
increasing the number of MINRES iterations [26, 27]. The complementary
nature of S and V in Âip results in very large and very small values inH, which
may additionally exceed single precision [59]. In this context, preconditioning
is required in order to accelerate convergence and reduce the error on the
solution. Linearization of the systems regarded on the case studies along
the given reference trajectory leads to a time-varying model, therefore only
on-line preconditioning was implemented. The approach considered in [34]
and [26] was adopted, where a diagonal precondition matrix M is used such
that:

Mii = 1√∑Z
j=1 |V alAiphij

|
, for i = 0, 1, . . . , N(2n+m)− 1 , (5.12)

where Z is the number of columns in V alAiph and equals 3n+m. As M is a
diagonal matrix, only the diagonal terms are stored in vector Mdiag. This
vector is used to form the new preconditioned system of linear equations:

Ãipy = b̃ip , (5.13)
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where Ãip and b̃ip are defined as:

Ãip = MÂipM , (5.14a)

b̃ip = Mb̂ip . (5.14b)

For the case of b̃ip, it is computed by multiplying vectors Mdiag and b̂ip in an
element-wise manner. Algorithm 10, shown on page 53 , was implemented
considering the left-shift compressed format for computation of Ãip.

– Preconditioned system (5.13) is solved using MINRES algorithm 1 (refer to
page 27). The implementation will be explained later in this chapter.

– Once the linear system is solved, the solution for the system before precondi-
tioning is obtained multiplying y with Mdiag element-wise, such that:

∆ξλ = My . (5.15)

– Vectors ∆ξ and ∆λ are obtained from ∆ξλ (refer to equation (5.7)).

– Vectors ∆v and ∆s are computed (refer to equations (4.9c) and (4.9d)).
For the computation of these vectors, the same considerations are taken on
matrices C, V and S as explained in previous steps.

– The step size or step length α is found following the criteria presented in [52]
and [70]. The step length is chosen such that the dual feasibility constraint
(4.9b) from the KKT conditions is satisfied, this allows the evaluation to be
reduced to the terms in ∆v and ∆s that are negative as shown in equation
(5.16), where β is a constant to guarantee the constraint is strictly satisfied
and ς represents elements in vectors v and s.

α = min(−βς∆ς , 1) , for ∆ς negative . (5.16)

– Vectors ξ, λ, v and s are updated, each in its respective search direction
computed previously, considering the same step length for all vectors.

– Finally, the complementarity measure µ is updated (refer to equation (4.8)).

Figure 5.4 shows a scheme of the implemented primal-dual IPM algorithm.
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ξ0, λ0, v0, s0, µ0, σ, β

Compute: rd, rp, rc Refer to (4.7)

Compute: rn,
diagonal values of H Refer to (4.10) and (5.4)

Update diagonal of Âip
Compute b̂ip

Refer to (5.8) and (5.9)

Compute: diagonal values of
precondition matrix M , b̃ip, Ãip

Refer to (5.12) and (5.14)

Solve system: Ãipy = b̃ip Solve with MINRES algorithm 1

Recover solution from y:
∆ξλ = My

Compute: ∆ξ, ∆λ refer to (5.7) and (3.6)

Compute: ∆v, ∆s Refer to (4.9c) and (4.9d)

Compute step length α Refer to : (5.16)

Update: (ξ, λ, v ,s) in search direction
(∆ξ, ∆λ, ∆v, ∆s) with step length α

Compute µ Refer to (4.8)

Figure 5.4 – Scheme for the implementation of IPM for solution of a QP problem.
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Algorithm 5: Symmetric CDSmatrix-vector multiplication
input :V al, col_ind, vect
output : out
for i=0 to sizeof(vect)-1 do

aux← 0;
irow ← i;
icol ← 0;
for j=0 to sizeof(col_ind)-1 do

if i+col_ind[j] < sizeof(vect) then
aux← aux+ V al[i][j]vect[i+ col_ind[j]];

end
if irow > 0 and irow > i - (sizeof(col_ind)-1) then

aux← aux+ V al[irow − 1][icol + 1]vect[irow − 1];
irow ← irow − 1;
icol ← icol + 1;

end
endfor
out[i]← aux;

endfor

Algorithm 6: Transpose of C matrix-vector multiplication
input :Cp, vect
output : out
/* N, n and m are prediction horizon, system order and number of

inputs respectively */

for i=0 to N-1 do
for j=0 to m-1 do

out[i(n+m) + j]← vect[2i(n+m) + j]− vect[2i(n+m) +m+ j];
endfor
for j=0 to n-1 do

out[i(n+m) +m+ j]←
Cp[j](vect[2i(n+m) + 2m+ j]− vect[2i(n+m) + 2m+ n+ j]);

endfor
endfor
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Algorithm 7: Transpose of A matrix-vector multiplication
input :AdN , BdN , vect
output : out
/* N, n, m, NOV and NEC are prediction horizon, system order,

number of inputs, number of optimization variables and number of

equality constraints respectively */

/* Initial block: */

for i=0 to m-1 do
sum← 0;
for j=0 to n-1 do

sum← sum−BdN [j][i]vect[j];
endfor
out[i]← sum;

endfor
/* Repetitive block: */

for ite=0 to N-2 do
for i=0 to n-1 do

sum← 0;
for j=0 to n-1 do

sum← sum−AdN [(ite+ 1)n+ j][i]vect[(ite+ 1)n+ j];
endfor
out[m+ ite(m+ n) + i]← vect[ite(n) + i] + sum;

endfor
for i=0 to m-1 do

sum← 0;
for j=0 to n-1 do

sum← sum−BdN [(ite+ 1)n+ j][i] ∗ vect[(ite+ 1)n+ j];
endfor
out[(ite+ 1)(m+ n) + i]← sum;

endfor
endfor
/* Final block: */

for i=0 to n-1 do
out[NOV − n+ i]← vect[NEC − n+ i];

endfor

Master Thesis Antonio Araujo Barrientos 51



5 Implementation of Embedded MPC Algorithms on FPGA Using HLS

Algorithm 8: Aξ − b implementation
input :AdN , BdN , ξ, b
output : rp
/* N, n, m are prediction horizon, system order and number of

inputs respectively */

/* Initial block: */

for i=0 to n-1 do
sum← 0;
for j=0 to m-1 do

sum← sum−BdN [j][i]ξ[j];
endfor
rp[i]← sum+ ξ[i+m]− b[i];

endfor
/* Repetitive block: */

for ite=0 to N-2 do
for i=0 to n-1 do

sum← 0;
for j=0 to n-1 do

sum← sum−AdN [(ite+ 1)n+ i][j]ξ[m+ ite(m+ n) + j];
endfor
for j=0 to m-1 do

sum← sum−BdN [(ite+ 1)n+ i][j]ξ[(ite+ 1)(m+ n) + j];
endfor
rp[(ite+ 1)n+ i]← x[(ite+ 1)(m+ n) +m+ i] + sum− b[(ite+ 1)n+ i];

endfor
endfor
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Algorithm 9: Computation of vector rc
input :Cp, ξ, d, s
output : rc
/* N, n and m are prediction horizon, system order and number of

inputs respectively */

for i=0 to N-1 do
for j=0 to m-1 do

rc[2i(m+ n) + j]← ξ[i(m+ n) + j]− d[2i(m+ n) + j] + s[2i(m+ n) + j];
rc[2i(m+n)+j+m]← s[2i(m+n)+j+m]−ξ[i(m+n)+j]−d[2i(m+n)+j+m];

endfor
for j=0 to n-1 do

rc[2i(m+ n) + j + 2m]←
Cp[j](ξ[i(m+n) + j +m])− d[2i(m+n) + j + 2m] + s[2i(m+n) + j + 2m];
rc[2i(m+ n) + j + 2m+ n]←
s[2i(m+n)+j+2m+n]−Cp[j](ξ[i(m+n)+j+m])−d[2i(m+n)+j+2m+n];

endfor
endfor

Algorithm 10: Computation of vector Ãip
input :V alAiph, col_indAiph, Mdiag

output :V alAtilde
/* n, rows and cols are the system order and number of rows and

columns in V alAiph respectively */

for i=0 to rows-1 do
for j=0 to cols-1 do

if i < rows-n or j < 2n then
V alAtilde[i][j]← V alAiph[i][j]Mdiag[i]Mdiag[j + col_indAiph[i]];

end
endfor

endfor
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Algorithm 11: Computation of vector Hdiag

input :Cp, Qcds, v, s
output :Hdiag

/* n, m and NOV are system order, number of inputs and number of

optimization variables respectively */

for i=0 to NOV -1 do
j ← modulo(i, n+m);
k ← j −m;
if j < m then

Hdiag[i]← Qcds[i][0] + v[2i− j]/s[2i− j] + v[2i− j +m]/s[2i− j +m];
else if Cp[j-m] != 0 then

Hdiag[i]← Qcds[i][0] + v[2i− k]/s[2i− k] + v[2i− k + n]/s[2i− k + n];
else

Hdiag[i]← Qcds[i][0];
end

endfor

5.4.4 MINRES Algorithm Implementation for QP

As explained in chapter 4 the most computationally demanding part of the IPM algorithm
is the solution of a linear system of equations, which was chosen to be solved using
MINRES method. For this reason, special care was taken for the implementation of the
MINRES algorithm for the solution of the preconditioned system (5.13).

Figure (5.5) shows a block diagram of the inputs and outputs of the implemented algo-
rithm. Next, an explanation of the most important facts of algorithm 1 implementation
is given:

• The termination criteria was set to a fixed number of iterations for the same
reason as in the IPM. The fact that this is a Krylov subspace method and that
preconditioning was considered suggests a similarity with the conjugate gradient
method may apply, where the required number of iterations is fixed for a well
conditioned problem. This was confirmed through trial and error, such that the
number of iterations chosen equals the order of the system matrix Ãip.

• The main operation in the algorithm is matrix-vector multiplication regarding the
system matrix. As this matrix is in left-shift format a function was implemented
for this operation as shown in algorithm 12, where matrix V al and vector col_ind
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represent the system matrix. For this algorithm to work properly, the input
vector has to be padded with m zeros at the end. This allows the operation to be
performed without the need of a conditional statement, improving latency.

• On each iteration, the previous solution vector is used as input for the solver, as
initial guess, to improve convergence.

Figure 5.5 – Block diagram for MINRES_algorithm function

Algorithm 12: Matrix-vector multiplication for matrix in left-shift format
input :V al, col_ind, vect
output : out
/* rows and cols are the number of rows and columns in V al

respectively */

for i=0 to rows-1 do
sum← 0;
for j=0 to cols-1 do

sum← sum+ V al[i][j]vect[col_ind[i] + j];
endfor
out[i]← sum;

endfor

5.5 NMPC Algorithm Implementation

5.5.1 Block Structure and Sparsity

The NLP problem (4.11) was considered for the implementation. The same cost function
in the form (4.1a) as for the linear case was used, which eases the computations as
the gradient and Hessian are Qξ + q and Q respectively. It was considered that only
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box constraints appear on the system, therefore inequality (4.1c) was employed, which
means the terms CI(ξ) and AI(ξ) in the NLP IPM formulation in section 4.2 can be
replaced by Cξ and C respectively. This leaves the difference between the LMPC and
NMPC formulations to the equality constraints only. The solution of the primal-dual
system of equations (4.15a) must be found on every sampling instant. The system
matrix, which will be referred to as Aip, has a similar structure as in the linear case,
but differs in the following terms:

• AE(ξ), this term corresponds to the Jacobian matrix of the vector of equality
constraints CE(ξ)

• ∇2
ξξL, this term corresponds to the Hessian matrix of the Lagrange function (4.12)

and equals: Q+∇ξ(ATE(ξ)λ)

The fourth order Runge-Kutta method was employed to solve the IVP for the dis-
cretization of the equality constraints along the prediction horizon, which results in
function CE . This function must be evaluated, on each iteration of the IPM, on the
current optimization variables vector ξ and the initial state x0 measured at the current
sampling instant. The same applies for the Jacobian and the Hessian matrices AE(ξ)
and ∇ξ(ATE(ξ)λ); the latter requires additionally the current multipliers vector λ. These
matrices and vector are obtained using the tool CasADi [3], which outputs C code
functions for this purpose. As these matrices are sparse, CasADi uses the CCS format
and outputs only the non-zero values vector for each matrix, as the row and column
indexes vectors remain constant because of the fixed structure of the problem.

As the data previously mentioned is available in CCS format the same storage format
was used for the whole system matrix Aip. The fixed structure of this matrix allows for
off-line computation of row and column indexes vectors and only the non-zero values
are computed on-line. Using this compressed storage format, bandedness of the matrix
is not relevant, therefore the structure in (4.15a) was not modified.

5.5.2 NMPC Formulation

The implemented NMPC algorithm solves NLP problem (4.11) that results from the
simultaneous approach, i.e., considering both the system states and control inputs
as optimization variables. This approach results in sparse matrices and vectors of a
well defined structure, which allows the algorithms to be tailored to reduce memory
requirements and computation time.
The compressed storage format used for the primal-dual system matrix precluded

the use of the preconditioner used in the linear case. Double precision floating-point

56



5.5 NMPC Algorithm Implementation

representation (64 bits) was used for the implementation due to the wide dynamic range
required for the solution of the IPM algorithm. Algorithm 13 presents a general NMPC
formulation.

Algorithm 13: NMPC algorithm
input :Prediction horizon N , sampling period Ts, nonlinear plant model,

constraints
foreach prediction horizon do

Measure or estimate plant states at current sampling instant;
Formulate NLP problem;
Solve NLP problem to get optimal solution ξ∗ for the optimization variables;
Apply first optimal input(s) u∗ to the plant, corresponding to the first interval
of the prediction horizon;

end

Trajectory tracking was also considered for this approach and therefore the imple-
mentation was tailored to this kind of application. Matrices and vectors of the NLP
problem (4.11) have the following characteristics:

• Matrix Q: Was assumed to be a constant diagonal matrix, only the diagonal
values were stored in the FPGA.

• Matrix C: This matrix as in the linear case was assumed to be constant and that
all control inputs were constrained. Only a vector (Cp) indicating which states
are constrained was specified before synthesis, all operation on this matrix were
translated into code considering its special structure.

• vector q: This vector depends on the reference trajectory, was considered an input
to the solver.

• vector d: As constraints were assumed constant this vector is also constant and
was stored in the FPGA.

• vector CE(ξ): this vector was implemented as a function, the input parameters are
the current optimization variables vector ξ which updates at every iteration of the
IPM algorithm and the initial state x0 measured or estimated at each sampling
instant.
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5.5.3 Primal-dual IPM implementation for NLP

Primal-dual IPM was used for the solution of problem (4.11), considering the solution of
the nonlinear system of equations (4.15a). A function named NLP_Solver was created
for the solution of the NLP problem. As described previously, constant vectors and
parameters were stored using on-chip memories. Information about the desired reference
trajectory was given through input vector q, the current state measurement or estimation
x0 is also input to the solver. Figure 5.6 shows a block diagram of function NLP_-
Solver. The inputs and outputs shown were chosen to be streamed in and out using
AXI4-Stream [71] protocol for communication with other IP blocks, for this purpose a
top function was created with input and output streams as arguments such that they
are automatically implemented as data ports for the RTL design during synthesis by
Vivador HLS as was done for the linear case. As previously explained, the structure
of the primal-dual matrix Aip allows, in addition to matrix Q (only diagonal terms)
and vector d, the following vectors to be computed off-line and stored using on-chip
memories: row index and column pointer vectors considering the CCS storage format
for AE(ξ), ATE(ξ), ∇ξ(ATEλ), and Aip.

Figure 5.6 – Block diagram for NLP_Solver function

Once the steps explained above have been completed the near to optimal solution
is found with the primal-dual IPM. For this purpose, function IP_algorithm was
implemented. Figure 5.7 shows the block diagram of the function inputs and outputs,
where the input matrices indicated refer only to the row index and column pointer
vectors for CCS format as previously explained. The non-zero values vectors for this
matrices are updated on every iteration of the algorithm as local variables.
Next, the implemented function IP_algorithm is explained in detail:

• Vectors ξ (feasible), λ, v and s are initialized, the latter two element-wise positive.

• The reduction factor σ and constant β (for the step length computation) are
specified in the interval (0, 1).

• Main loop of IPM algorithm. A fixed number of iterations was chosen as stopping
criteria for the IPM algorithm since the real-time nature of the implementation
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Figure 5.7 – Block diagram for IP_algorithm function for NLP

favors a deterministic timing; it also allows to trade off accuracy for computation
time [62] [27].

– The first step is to compute vectors rd and rp (refer to equation (4.16)). For
computation of rd there are three matrix-vector multiplications required:

∗ Qξ is performed element-wise, between vector Qdiag and ξ.

∗ ATE(ξ)λ, for this operation the transpose of the Jacobian of the equality
constraints function must be evaluated at the current value of ξ and x0,
this is done using a function obtained with CasADi. The multiplication
of this matrix with vector λ is performed with a function that performs
matrix-vector multiplication in CCS format as shown in algorithm 14.

∗ CT v uses the vector Cp instead of matrix C as shown in algorithm 6

– For computation of rp, a function obtained with CasADi was employed to
evaluate the function of equality constraints at the current value of ξ and x0.

– Matrix C has to be multiplied with the optimization variables vector ξ. A
function similar to the one shown in algorithm 9 was implemented for this
purpose, without considering the operations on vectors d and s.

– Computation of rn (refer to equation (4.16c)) is performed in a similar way as
for the linear case, recall that AI(ξ) is simply replaced by matrix C because
of the assumptions made for the inequality constraints.

– Matrix AE(ξ) is computed with a function generated with CasADi tool, with
the current value of ξ and x0 as inputs. Matrix ∇ξ(ATE(ξ)λ) is also computed
in a similar way, requiring ξ, x0 and λ as inputs.

– Vector bip (right side vector of primal-dual system (4.15a)) is formed from
vectors rn and rp.
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– Matrix ATI (ξ)S−1V AI(ξ) has diagonal terms only, these terms are stored in
a vector using an algorithm similar to algorithm 11, without considering the
terms in Q.

– Non-zero values of matrix Aip are computed from vector Qdiag, matrix
∇ξ(ATE(ξ)λ), the vector computed in the previous step and the Jacobian
matrix AE(ξ). This step is done considering the special structure of this
matrices in the CCS format.

– System (4.15a) is solved using MINRES algorithm 1. The actual implemen-
tation will be explained later in this chapter.

– Vectors ∆ξ and ∆λ are obtained from the solution of the primal-dual system.

– Vectors ∆v and ∆s are computed (refer to equations (4.15c) and (4.15d)).
For the computation of these vectors, the same considerations are taken on
matrices C, V and S as explained in previous steps.

– The step size or step length α is found following the criteria presented in [52].
The step length is chosen such that the dual feasibility constraint (4.15b)
from the KKT conditions is satisfied, this allows the evaluation to be reduced
to the terms in ∆v and ∆s that are negative. In this case two step lengths
were considered, one for the primal variables and one for the dual variables as
shown in equation (5.17), where β is a constant to guarantee the constraint
is strictly satisfied.

αv = min(−βv∆v , 1) , for ∆v negative (5.17a)

αs = min(−βs∆s , 1) , for ∆s negative (5.17b)

– Vectors ξ, λ, v and s are updated, each in its respective search direction
computed previously, considering step length αs for vectors ξ and s and αv
for vectors λ and v.

– Finally, the barrier parameter µ is updated, refer to algorithm 3.

5.5.4 MINRES Algorithm Implementation for NLP

Figure (5.8) shows a block diagram of the inputs and outputs of the implemented algo-
rithm. Next, an explanation of the most important components of the implementation
is given:
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• The termination criteria was set to a fixed number of iterations for the same reason
as in the IPM; the number of iterations chosen equals the order of the system
matrix Aip.

• The main operation in the algorithm is matrix-vector multiplication regarding the
system matrix. As the input matrix is in CCS format a function was implemented
for this operation as shown in algorithm 14, where vectors val, row_ind and
col_ptr represent the system matrix.

• The previous solution vector is used as input for the solver, as an initial guess, to
improve convergence. This implies that the solution vector must be initialized a
feasible starting point before the first iteration is performed.

Figure 5.8 – Block diagram for MINRES_algorithm function for NLP

Algorithm 14: Matrix-vector multiplication in CCS format
input : val, row_ind, col_ptr, vect
output : out
/* rows and cols are the dimensions of the input matrix. maxit is the

maximum difference between two adjacent values in col_ptr */

for i=0 to rows-1 do
out[i]← 0;

endfor
for i=0 to cols-1 do

for k=0 to maxit-1 do
if k < (col_ptr[i+1]-col_ptr[i]) then

out[row_ind[k + col_ptr[i]]]←
out[row_ind[k + col_ptr[i]]] + val[k + col_ptr[i]]vect[i];

end
endfor

endfor
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5.6 Optimization Directives

The use of HLS for FPGA programming allows the programmer to influence the way a
design is synthesized through the use of optimization directives in the form of pragmas
directly inserted in the C-code. For the current implementation, the following directives
provided by Vivador HLS were used:

• Loop Unrolling: This directive allows for parallel execution of operations in a
loop by creating copies of the loop body such that operations corresponding to
different loop indexes are performed in parallel, this means multiple hardware
implementations of the loop body are created trading off resources utilization for
higher throughput and performance. The unrolling can be full or partial, with
the desired factor specified by the programmer [75]. Loop unrolling was used
mainly on operations involving vectors in the MINRES_algorithm function, as
these operations do not present data dependencies.

• Loop Pipelining: This directive allows for the concurrent implementation of the
code, such that operations are not forced to occur in a sequential manner. It was
used in most for-loops as it allows operations corresponding to the next iteration
of the loop to begin prior the completion of the current iteration [75]. For nested
loops, this directive automatically unrolls loops underneath the loop where it is
applied. So care must be taken as this can significantly increase the resources
utilization.

• Array Partition: Special attention was given to array handling as they can cause
performance bottlenecks. Arrays are implemented as RAMs, ROMs or FIFO
memories using either BRAMs, LUTs or registers [76]. If BRAMs are used,
memory accesses in each clock cycle are limited by the number of ports of the
block (maximum 2) and can, therefore, preclude parallel execution of operations.
To solve this issue arrays can be partitioned on three different forms: cyclic,
block or complete. Cyclic partition was employed on the vectors in MINRES
implementation, to be able to take advantage of the loop unrolling.

• Inline: When applied to a function, this directive eliminates the function call
replacing it with a copy of the function body. This allows optimizations with
surrounding operations to occur more effectively and can, therefore, improve
latency [73], while maintaining the original function-based C code.

• Interface: This directive allows the programmer to specify how the RTL ports will
be created. It was used to specify the I/O ports of the QP_Solver and NLP_Solver
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functions to be implemented using an AXI4-Stream interface for AXI4-Stream
protocol [71].

5.7 Integration in Vivado IDE

As mentioned in sections 5.4.3 and 5.5.3 the functions QP_Solver and NLP_Solver
were implemented in Vivador HLS. After the RTL design was obtained during the
synthesis stage it was exported as an IP block so it could be integrated into a more
complex design using the software Vivador IDE. During RTL export, VHDL was
chosen as target language. As explained previously the interface for these functions was
implemented for the use of AXI4-Stream protocol, therefore the AXI4-Stream interface
was used. Figure 5.9 shows the symbolic representation of the exported IP when used
in the Vivador IP integrator, which corresponds to the hardware accelerator for the
solution of the QP problem. Matrices AdN , BdN and vectors d and x0 are streamed in
through IN_STREAM input; the output ξsol is streamed out through OUT_STREAM.
Data is streamed in and out for the hardware accelerator for the NLP problem in a
similar way. As mentioned previously, Vivador HLS automatically synthesizes the
top-level function parameters as data ports; additionally, the top-level function itself is
also implemented with an input/output protocol that allows for operation start and
indicates when the operations have been completed and new input data can be accepted
[21]. These control ports are represented by the input s_axi_CONTROL_BUS in figure
5.9 and are managed by the PS.

Figure 5.9 – Block diagram for MINRES_algorithm function

For the case studies regarding LMPC, the linearization of the models along the
reference trajectory leads to a time-varying system, the operating points were obtained
off-line for the given trajectory, and were stored in flash memory on the Zynqr ZC706
Evaluation Kit. The process of reading the flash memory for the corresponding prediction
horizon on each sampling period to form matrices AdN and BdN , as well as updating
vector d and providing vector x0 to the accelerator is carried out in the PS part of
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the Zynqr -7000 AP SoC, as the computation cost for these operations is very low
compared with that of the solution of the QP. For the nonlinear case, the reference
trajectory is also stored in flash memory and vector q is updated in the PS before being
streamed to the accelerator. Therefore, a communication between the PS and the PL is
required as data must be streamed into the accelerator from the PS and then streamed
out from the accelerator to the PS.
The PS communicates with the PL using the AXI4 protocol, designed for memory-

mapped links, which means that an address in the processor memory space must be
specified by the master for read or write operations [21]. On the other hand, the IP
core corresponding to the hardware accelerator was implemented using AXI4-Stream
interfaces, which allow high-speed point-to-point data transfer between two cores on the
PL using a producer-consumer model by streaming data, that is without the need for
addressing (not memory-mapped) [4]. As the protocols used are different, the Xilinxr

IP core AXI DMA was used to allow for high-bandwidth direct memory access between
the memory on the PS and the accelerator via an AXI4-Stream interface [4]. The
Accelerator Coherency Port (ACP) on the PS was used to achieve coherency between
the caches on the PS and the elements in the PL, providing a low latency path for
the communication to take place [21]. Figure 5.10 shows a simplified scheme of the
implementation. A representation of the block diagram design considering interface
connections only for the LMPC implementation is shown in figure 5.11, where letters
M and S at the beginning of the port names mean Master and Slave port respectively,
AXIS means AXI4-Stream interface, MM2S means memory-mapped to stream and
S2MM means stream to memory-mapped. For the NMPC implementation, only the
hardware accelerator block must be replaced by the corresponding solver.

Figure 5.10 – Block diagram for PS-PL communication [4]
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Figure 5.11 – Block design in Vivado IDE

After completion of the block design on the IP Integrator, the following steps were
executed using Vivador IDE: output products generation, HDL wrapper creation,
synthesis, implementation and bitstream generation. After this, the created hardware
platform and bitstream were exported to Vivador SDK where the PS was programmed
to read the flash memory, stream data in and out the PL and communicate through a
serial interface for sending back the computed results of the simulation to a desktop
computer. Both the ARMr processor and the FPGA were programmed using the
Vivador SDK environment.

5.8 Summary

This chapter described in detail the implementation as hardware accelerators of the
primal-dual IPM solvers for the solution of the QP and the NLP problems arising
from the LMPC and the NMPC formulation respectively. Special considerations and
assumptions, as well as how the structure of the problem was exploited were detailed.
Optimization directives employed to take advantage of the parallelization capabilities of
the FPGA were also explained. The integration of the accelerator in a design targeting
the Zynqr device to take advantage of the system-on-a-chip architecture was also
detailed.
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Chapter 6

Case Studies

The implemented MPC is coded in the C++ language using HLS to obtain an RTL
model for its implementation on a Zynqr device, which contains an FPGA along with an
ARMr processor, as explained in chapter 5. Trajectory tracking problems were chosen
as case studies to test the performance and computational cost of the implemented
design.
Trajectory tracking is a common problem presented in mobile robot applications

and autonomous vehicles. The fast dynamics of these systems make the embedded
application of MPC a challenge regarding computation time. Furthermore, these systems
are always nonlinear, which implies that a linearization along the trajectory must be
considered in order to apply LMPC as presented in [19, 36, 50, 53].

6.1 Case Studies for LMPC

6.1.1 Linearization Along Trajectories

Assume the following nonlinear continuous-time model of the system to be controlled:

ẋ = f(x, u) , (6.1)

where x ∈ Rn represents the system states and u ∈ Rm the controlled inputs, both
time dependent. From this model, a virtual system is considered to obtain the desired
reference states and inputs along the desired trajectory. Considering this reference points
the nonlinear system (6.1) is successively linearized using first order Taylor expansion
at each operating point (xref , uref ):

f(x, u) = f(xref , uref ) + Jf (xref , uref )
[
∆x
∆u

]
, (6.2)
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where Jf (xref , uref ) represents the Jacobian of the function f evaluated at the operating
point and ∆x = x − xref . Reordering the terms into the standard linear state space
formulation yields

∆ẋ = Alc∆x+Blc∆u . (6.3)

For the LMPC problem formulation, a discrete-time model is required, the following
system will be considered after model discretization:

∆xk+1 = Ad∆xk +Bd∆uk . (6.4)

Since the operation point will vary along the reference trajectory, a time-varying
system is obtained. For the sake of coherency with the description in chapter 3, the
following simplified notation can be adopted for equation (6.4) (see equation (3.1)):

xk+1 = Akxk +Bkuk . (6.5)

Matrices Ak and Bk for a corresponding prediction horizon are stored in matrices
AdN and BdN , respectively, for the IPM algorithm as explained in chapter 5.

6.1.2 Three-state Bicycle Model

The car-like mobile vehicle model treated in this section considers kinematic relationships
and a two dimensional movement only, neglecting slip. The name bicycle model arises
from the fact that the wheels on both rear and front axles are merged so that only
one wheel is considered for each axle. For the two dimensional case, because of the
number of actuators being less than three, it is a non-holonomic system and not all
trajectories are possible as the vehicle moves along the direction determined by the
heading wheels and the longitudinal orientation [81]. The model considered in [42] is
presented in figure 6.1, with rear wheel traction and front wheel steering. The nonlinear
model equations are presented in equation (6.6)[42], where x and y are the vehicle’s
position, θ is the orientation with respect to the X axis, v is the longitudinal velocity
and ϕ is the steering angle with respect to the vehicle’s longitudinal axis. Both v and ϕ
are considered inputs to the system.

ẋ = vcos(θ) ,

ẏ = vsin(θ) ,

θ̇ = v

l
tan(ϕ) .

(6.6)
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Figure 6.1 – Three-state bicycle model [42]

Linearizing the model near an arbitrary operating point leads to the system in equation
(6.7), with x̃ and ũ as presented in (6.8).

˙̃x =


0 0 −vrefsin(θref )
0 0 vrefcos(θref )
0 0 0

 x̃+


cos(θref ) 0
sin(θref ) 0

1
l tan(ϕref ) vref

l (1 + tan(ϕref )2)

 ũ , (6.7)

x̃ =


x− xref
y − yref
θ − θref

 , ũ =
[
v − vref
ϕ− ϕref

]
. (6.8)

After discretization using forward Euler method also called forward rectangular method,
the following model is obtained:

x̃k+1 =


1 0 −Tsvrefsin(θref )
0 1 Tsvrefcos(θref )
0 0 1

 x̃k +


Tscos(θref ) 0
Tssin(θref ) 0
Ts
l tan(ϕref ) Tsvref

l (1 + tan(ϕref )2)

 ũk ,
(6.9)

where Ts is the sampling period. For the implementation, the parameters presented in
table 6.1 are considered. Weighting matrices were chosen as given in (6.10). As can
be seen, differences in the vehicle’s position with respect to the desired reference are
strongly penalized.
The reference trajectory is shown in dotted red line and the calculated trajectory

in solid blue in figure 6.2. Figure 6.3 shows the calculated control inputs as well as
their constraints, it can be seen that the constraints are respected. Figure 6.4 shows
the computation time required for prediction horizon values of: N = 5, 6, 7, 8, 9, 10;
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as expected, the computation time increases with the value of the prediction horizon
and for 10 or more it surpasses the sampling period for this particular problem. This
means that the implemented MPC is not able to control the system in real-time if the
prediction horizon considers 10 or more sampling instants.

Table 6.1 – Parameters for LMPC implementation of bicycle like model

Parameter Value
l 0.2 m
Sampling period (Ts) 0.01 s
Prediction horizon (N) 5
IPM iterations 12
State constraints −π ≤ θ ≤ π [rad]
Input constraints −1.5 ≤ v ≤ 1.5 [m/s]

−0.65 ≤ ϕ ≤ 0.65 [rad]
Initial state x0 = [−1 − 1 0]T
Initial reference state x0 = [0 0 π/2]T

Qi =


10 0 0
0 10 0
0 0 0.5

 , for i = 1, 2, ..., N − 1 ,

Ri =
[
1 0
0 1

]
, for i = 0, 1, ..., N − 1 ,

P = 20Q1 .

(6.10)
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y
[m

]
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Position

Figure 6.2 – Trajectory in the X-Y plane followed by the three-state vehicle model
for parameters as shown in table 6.1
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Figure 6.3 – Control inputs for the three-state vehicle model considering parame-
ters given in table 6.1
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Figure 6.4 – Computation times for the bicycle model 1 problem.

Resource utilization, timing achieved after implementation, power consumption and
the computation time for the solution of the LMPC problem are summarized in table
6.2, where latency and initiation interval (II) are given in number of clock cycles.
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Table 6.2 – Metrics for three-state bicycle-like model after implementation, N = 5

Metric Value
Clock Period 10 ns
Max. Latency 318767
Max. II 318768
Computation Time 3.2ms
BRAM (%) 9
DSP48E (%) 26
FF (%) 16
LUT (%) 34
LUTRAM (%) 7
Total On-Chip Power 4045W

6.1.3 Five-state Bicycle Model

A better kinematic model for a car-like mobile vehicle takes into consideration roll,
pitch and yaw movements in a three-dimensional plane as shown in figure 6.5a. For this
case study a simplified kinematic lateral bicycle model is considered, neglecting roll,
pitch and tire slip angle as presented in [1] and used in [19, 53]. The model considered
is presented in figure 6.5b. The nonlinear model is presented in equation (6.11) [1],
with state and input vectors as shown in equation (6.12), where β is the vehicle side
slip angle, ψ is the yaw angle, ψ̇ is the yaw rate, xp and yp are the coordinates of the
vehicle’s center of gravity (CG) in an inertial frame, vx is the velocity component along
the vehicle’s longitudinal axis and δf is the front tire steering angle. The parameters
used for the model and their values are presented in table 6.3 [1].

(a) Roll, pitch and yaw movements (b) Bicycle model

Figure 6.5 – Five-states bicycle model
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β̇ = 2
Mvx

(
Cf (δf − β −

lf ψ̇

vx
) + Cr(−β + lrψ̇

vx
)
)
− ψ̇ ,

ψ̇ = ψ̇ ,

ψ̈ = 2
Iz

(
lfCf (δf − β −

lf ψ̇

vx
)− lrCr(−β + lrψ̇

vx
)
)
,

ẋp = vxcos(ψ)− vxtan(β)sin(ψ) ,

ẏp = vxsin(ψ) + vxtan(β)cos(ψ) .

(6.11)

x =



β

ψ

ψ̇

xp

yp


, u =

[
vx

δf

]
, (6.12)

Table 6.3 – Parameters for five-state bicycle-like model [1]

Parameter Value Description

Cf 66 900N/rad Cornering stiffness considering lat-
eral force in the front tire

Cr 62 700N/rad Cornering stiffness considering lat-
eral force in the rear tire

lf 1.232m Longitude from CG to front tire
lr 1.468m Longitude from CG to rear tire
Iz 4175 kgm2 Yaw moment of inertia
M 1723 kg Vehicle mass

Linearizing the model near an arbitrary operating point leads to the system and input
matrices presented in equation (6.13), where the values of the variables at the operating
point are designated with a p subscript, s, c and ta mean sine, cosine and tangent
functions respectively, Crlr − Cf lf has been replaced with b and Crl2r + Cf l

2
f has been

replaced with d. After discretization using forward Euler method, the model matrices
in (6.14) are obtained, where Tsvxp has been replaced with ap. For the implementation,
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parameters as presented in table 6.4 were considered. Weighting matrices were chosen
as shown in equation (6.15).

Alc =



−2
Mvxp

(Cf + Cr) 0 2b
Mv2

xp
− 1 0 0

0 0 1 0 0
2b
Iz

0 −2d
Izvxp

0 0
−vxps(ψp)(1 + ta(βp)2) −vxp(s(ψp) + ta(βp)c(ψp)) 0 0 0
vxpc(ψp)(1 + ta(βp)2) vxp(c(ψp)− ta(βp)s(ψp)) 0 0 0


,

Blc =



2
M v

−2
xp (2Cf lf ψ̇pv−1

xp − 2Crlrψ̇pv−1
xp + Cf (βp − δfp) + Crβp) 2Cf

Mvxp

0 0
2
Iz

(Cf l2f ψ̇pv−2
xp + Crl

2
r ψ̇pv

−2
xp ) 2

Iz
Cf lf

c(ψp)− ta(βp)s(ψp) 0
s(ψp) + ta(βp)c(ψp) 0


.

(6.13)

Ad =



1− 2Ts
Mvxp

(Cf + Cr) 0 Ts( 2b
Mv2

xp
− 1) 0 0

0 1 Ts 0 0
2bTs
Iz

0 1− 2dTs
Izvxp

0 0
−aps(ψp)(1 + ta(βp)2) −ap(s(ψp) + ta(βp)c(ψp)) 0 1 0
apc(ψp)(1 + ta(βp)2) ap(c(ψp)− ta(βp)s(ψp)) 0 0 1


,

Bd =



2Ts
M v−2

xp (2Cf lf ψ̇pv−1
xp − 2Crlrψ̇pv−1

xp + Cf (βp − δfp) + Crβp) 2TsCf

Mvxp

0 0
2Ts
Iz

(Cf l2f ψ̇pv−2
xp + Crl

2
r ψ̇pv

−2
xp ) 2Ts

Iz
Cf lf

Ts(c(ψp)− ta(βp)s(ψp)) 0
Ts(s(ψp) + ta(βp)c(ψp)) 0


.

(6.14)

Qi =



0.01 0 0 0 0
0 0.01 0 0 0
0 0 0.01 0 0
0 0 0 1 0
0 0 0 0 1


, for i = 1, 2, ..., N − 1 ,

Ri =
[
0.01 0

0 0.01

]
, for i = 0, 1, ..., N − 1 ,

P = 10Q1 .

(6.15)
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Table 6.4 – Parameters for LMPC implementation of five-state bicycle-like model

Parameter Value
Sampling period (Ts) 0.01 s
Prediction horizon (N) 5
IPM iterations 12
State constraints −0.3 ≤ β ≤ 0.3 [rad]

−2π ≤ ψ ≤ 2π [rad]
Input constraints −3 ≤ vx ≤ 3 [m/s]

−0.3 ≤ δf ≤ 0.3 [rad]
Initial state x0 = [0 0 0 15 29]T
Initial reference state x0 = [0 0 0 20 30]T

The reference trajectory is shown in dotted red line and the calculated trajectory in
solid blue in figure 6.6. Figures 6.7 and 6.8 show the calculated control inputs for the
desired trajectory, which adequately respect the constraints.
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Figure 6.6 – Trajectory in the X-Y plane followed by the five-state vehicle model
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Figure 6.7 – Velocity considering parameters given in table 6.4

Master Thesis Antonio Araujo Barrientos 75



6 Case Studies

0 10 20 30 40

−0.2

0

0.2

t [s]

St
ee

rin
g

A
ng

le
[ra

d]

Figure 6.8 – Steering angle considering parameters given in table 6.4

Figure 6.9 shows the computation time required for prediction horizon values of:
N = 3, 5, 6, 8, 10. The computation time for this case exceeds the sampling period,
that is real-time is not guaranteed, for prediction horizon values greater than 5.
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Figure 6.9 – Computation times for the five-state bicycle model problem.

Resource utilization, timing, power consumption and the computation time for the
solution of the LMPC problem achieved after implementation are summarized in table
6.5, where latency and II are given in number of clock cycles. Figure 6.10 shows the
effect of the size of the linear system of equations to solve, namely system (4.9a), on
the computation time of the implemented LMPC algorithm. The size of this system
depends on the prediction horizon (N) chosen, and the number of control inputs (m)
and states (n) of the model and equals N(2n+m). This is important because even if
the number of optimization variables (N(n+m)) is the same for two different problems,
the number of states plays an important role and can make the computation time for
these systems differ. This is because the sparse approach was considered as explained
in section 3.2.3.2.
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Table 6.5 – Metrics for five-state bicycle-like model after implementation, N = 5

Metric Value
Clock Period 10 ns
Max. Latency 555950
Max. II 555951
Computation Time 5.6ms
BRAM (%) 8
DSP48E (%) 26
FF (%) 19
LUT (%) 44
LUTRAM (%) 13
Total On-Chip Power 4233W
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Figure 6.10 – Computation time for different orders of matrix Âip, refer to equa-
tion (5.8), for prediction horizon N = 3, 5, 6, 8, 10

As can be observed in figures 6.7 and 6.8, the rate of change of the calculated control
inputs is high for some sections of the trajectory, which may not be physically realizable
on a real system. To overcome this inconvenient, constraints must be also set on the
change in the control inputs. As the implementation only considers box constraints on
the optimization variables, the changes in the inputs must be considered as new input
signals. For this purpose, the order of the system was augmented such that the original
control inputs are treated as states and their variation is considered as a control input.
The new state and input vectors are as shown:

x =
[
βk ψk ψ̇k xpk

ypk
vxk−1 δfk−1

]T
, (6.16)

Master Thesis Antonio Araujo Barrientos 77



6 Case Studies

u =
[
∆vxk

∆δfk

]T
, (6.17)

where the change in the original inputs, denoted with operator ∆, means the difference
between their current and previous values. The parameters as given in table 6.6 were
considered, all other parameters were set as given in table 6.4. The results obtained are
shown in figure 6.11, obtaining a smoother curve.

Table 6.6 – Parameters for augmented five-state bicycle-like model

Parameter Value
Prediction horizon (N) 3
Input constr. −0.2 ≤ ∆vx ≤ 0.2 [m/s]

−0.1 ≤ ∆δf ≤ 0.1 [rad]
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Figure 6.11 – Control inputs for the augmented five-state vehicle model consider-
ing parameters given in table 6.6

6.1.4 Satellite Model

A nonlinear model for an asymmetric, tumbling spacecraft is considered, as in [33] and
[19]; a similar model is also considered in [61] and [63]. The dynamics of the system
are presented in equation (6.18), where the states β1, β2, β3, β4 represent the Euler
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parameters for the orientation description and ω1, ω2, ω3 represent the angular velocities
of the satellite’s frame relative to an inertial reference frame. The inputs T1, T2, T3

represent the components of the control torque and I1, I2, I3 represent the principal
moments of Inertia.

β̇1 = 1
2 (ω1β4 − ω2β3 + ω3β2)) ,

β̇2 = 1
2 (ω1β3 + ω2β4 − ω3β1)) ,

β̇3 = 1
2 (−ω1β2 + ω2β1 + ω3β4)) ,

β̇4 = −1
2 (ω1β1 + ω2β2 + ω3β3)) ,

ω̇1 = (I2 − I3)ω2ω3 + T1
I1

,

ω̇2 = (I3 − I1)ω1ω3 + T2
I2

,

ω̇3 = (I1 − I2)ω1ω2 + T3
I3

.

(6.18)

Linearizing the model near an arbitrary operating point leads to the system and input
matrices presented in equation (6.19), where the variable values at the operating point
are designated with a p subscript.

Alc =



0 1
2(ω3p) −1

2(ω2p) 1
2(ω1p) 1

2(β4p) −1
2(β3p) 1

2(β2p)
−1

2(ω3p) 0 1
2(ω1p) 1

2(ω2p) 1
2(β3p) 1

2(β4p) −1
2(β1p)

1
2(ω2p) −1

2(ω1p) 0 1
2(ω3p) −1

2(β2p) 1
2(β1p) 1

2(β4p)
−1

2(ω1p) −1
2(ω2p) −1

2(ω3p) 0 −1
2(β1p) −1

2(β2p) −1
2(β3p)

0 0 0 0 0 (I2−I3)ω3p

I1

(I2−I3)ω2p

I1

0 0 0 0 (I3−I1)ω3p

I2
0 (I3−I1)ω1p

I2

0 0 0 0 (I1−I2)ω2p

I3

(I1−I2)ω1p

I3
0


,

Blc =



0 0 0
0 0 0
0 0 0
0 0 0
1
I1

0 0
0 1

I2
0

0 0 1
I3


.

(6.19)
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After discretization using forward Euler method, the model matrices shown in (6.20)
are obtained.

Ad =



1 Ts
2 (ω3p) −Ts

2 (ω2p) Ts
2 (ω1p) Ts

2 (β4p) −Ts
2 (β3p) Ts

2 (β2p)
−Ts

2 (ω3p) 1 Ts
2 (ω1p) Ts

2 (ω2p) Ts
2 (β3p) Ts

2 (β4p) −Ts
2 (β1p)

Ts
2 (ω2p) −Ts

2 (ω1p) 1 Ts
2 (ω3p) −Ts

2 (β2p) Ts
2 (β1p) Ts

2 (β4p)
−Ts

2 (ω1p) −Ts
2 (ω2p) −Ts

2 (ω3p) 1 −Ts
2 (β1p) −Ts

2 (β2p) −Ts
2 (β3p)

0 0 0 0 1 Ts(I2−I3)ω3p

I1

Ts(I2−I3)ω2p

I1

0 0 0 0 Ts(I3−I1)ω3p

I2
1 Ts(I3−I1)ω1p

I2

0 0 0 0 Ts(I1−I2)ω2p

I3

Ts(I1−I2)ω1p

I3
1


,

Bd =



0 0 0
0 0 0
0 0 0
0 0 0
Ts
I1

0 0
0 Ts

I2
0

0 0 Ts
I3


.

(6.20)

In the references mentioned above, this model is used for the solution of a nonlinear
optimal control problem, where the required torques are to be found in order to drive
the system to a desired final state in a given period of time. For this thesis, however, a
reference tracking problem is considered, as the implemented algorithm corresponds to
an LMPC formulation. Furthermore, the discretization over the specified period of time
required for the solution of the nonlinear optimal control problem increases significantly
the number of optimization variables, precluding an FPGA implementation because of
the resources that would be required.

The parameters’ values used for the implementation are shown in table 6.7. For the
implementation, parameters as presented in table 6.8 are considered. Weighting matrices
were chosen as shown in equation (6.21). As can be seen from the weighting matrices,
the difference between the actual angular velocities and the reference is highly penalized,
as the considered desired behavior is the satellite to move with the specified velocities.
On the other hand, deviation on the Euler parameters is not strongly penalized. For
the control inputs, as an initial point different from that of the reference trajectory is
considered, the weights on the matrix Ri are given a very small value; even if these values
could be zero, a penalization value of 10−6 is considered as this leads to a smoother

80



6.1 Case Studies for LMPC

response. The very high difference on the values in matrices Qi and Ri is due to the
high ratio between applied torque and angular velocity variations obtained.

Table 6.7 – Parameters for satellite model [33]

Parameter Value
I1 1× 106 kgm2

I2 833 333 kgm2

I2 916 667 kgm2

Table 6.8 – Parameters for LMPC implementation of satellite model

Parameter Value
Sampling period (Ts) 0.05 s
Prediction horizon (N) 4
IPM iterations 20
State constraints −1 ≤ ω1 ≤ 1 [rad/s]

−1 ≤ ω2 ≤ 1 [rad/s]
−1 ≤ ω3 ≤ 1 [rad/s]

Input constraints −300 ≤ T1 ≤ 300 [Nm]
−800 ≤ T2 ≤ 800 [Nm]
−50 ≤ T3 ≤ 50 [Nm]

Initial state x0 = [0 0 0 1 0.009 0 0.00120]T
Initial reference state x0 = [0 0 0 1 0.01 0.005 0.001]T

Qi =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 106 0 0
0 0 0 0 0 106 0
0 0 0 0 0 0 106


, for i = 1, 2, ..., N − 1 ,

Ri =


10−6 0 0

0 10−6 0
0 0 10−6

 , for i = 0, 1, ..., N − 1 ,

P = 10Q1 .

(6.21)

The desired references for the angular velocities are shown in dotted red line and the
calculated states after running the simulation on the FPGA in solid blue in figure 6.12.
Calculated inputs are shown in figure 6.13, which adequately respect the constraints.
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Figure 6.12 – Desired and computed angular velocities for the satellite model
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Figure 6.13 – Input torques for the satellite model
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For this case study, the LMPC algorithm was implemented using double precision
floating-point representation, as the on-line preconditioning employed was not sufficient
to obtain satisfactory results using single precision. Figure 6.14 shows the computation
time required for prediction horizon values of: N = 3, 4, 6, 8. The computation time
for this case exceeds the sampling period for prediction horizon values greater than 6.
Resource utilization, timing and power consumption achieved after implementation, for
both single and double precision floating-point are summarized in table 6.9 for N = 4,
where latency and Initiation Interval (II) are given in number of clock cycles. This table
shows that the considered performance metrics are almost twice for double as for single
precision. As mentioned previously good results are obtained with double precision only.
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Figure 6.14 – Computation times for the satellite model problem.

Table 6.9 – Metrics for satellite model after implementation, N = 4

Metric Value (double) Value (float)
Clock Period 10 ns 10 ns
Max. Latency 2157119 1186388
Max. II 2157120 1186389
Computation Time 21.6ms 11.9ms
BRAM (%) 22 10
DSP48E (%) 56 27
FF (%) 40 21
LUT (%) 74 50
LUTRAM (%) 8 15
Total On-Chip Power 7531W 4634W
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6.1.5 Comparison Between FPGA and Pure Software Implementation

The IPM solvers implemented as hardware accelerators on the PL part of the Zynqr

device run at 100MHz, at a clock speed of 10 ns. The same C code used for the
implementation in Vivado HLS was then compiled and tested on a laptop computer
running Windowsr, with an Intelr CoreTM i7-5500U processor running up to 2.4GHz,
with 8GB of RAM. A comparison of the time required for an IPM iteration for different
prediction horizons for the case studies considered is shown in figure 6.15, where bike
1 and bike 2 refer to the three-state and five-state models respectively. These results
show that the time the hardware accelerator requires to complete an IPM iteration is
approximately twice the time required by the laptop computer; considering that the
computer is running at more than 20 times the frequency of the FPGA, the degree of
parallelization achieved can be considered to be approximately 10 times. The lower
frequency implies a lower power consumption [49], which is significant for embedded
applications, especially for battery driven systems.
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Figure 6.15 – Comparison of computation times on FPGA and a PC.

The implemented LMPC algorithm was also tailored to run entirely on the PS of the
Zynqr device, namely on the ARMr Cortexr -A9 processor which can run up to 1GHz.
Figure 6.16 shows the computation times for each IPM iteration for the implementation
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of the three-states bicycle model case study when targeting a laptop PC, the FPGA and
the ARMr processor. As can be seen, the computation time for the ARMr processor
is much higher, approximately 8 times higher than that for the FPGA, which shows the
achieved parallelization and the advantage of the hardware implementation versus a
pure software implementation.
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Figure 6.16 – Computation times for three-state bicycle model problem imple-
mented on FPGA, PC and ARMr processor.

6.2 Case Studies for NMPC

For the case of NMPC, no linearization is required and therefore only the reference
trajectory corresponding to the states is necessary.

6.2.1 Three-state Bicycle Model

The same three-state bicycle model presented in section 6.1.2 was considered, with
nonlinear equations (6.6). The use of fourth order Runge-Kutta method for the solution
of the IVP for generation of the NLP problem allows to increment the sampling period
from 0.01 to 0.05 seconds, as this method is more accurate than the Euler method.
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Parameters used for the simulation are as shown in table 6.10. Weight matrices shown
in (6.22) were considered.

Table 6.10 – Parameters for NMPC implementation of bicycle like model

Parameter Value
l 0.2 m
Ts 0.05 s
Prediction horizon (N) 3
IPM iterations 14
State constraints −π ≤ θ ≤ π [rad]
Input constraints −1.5 ≤ v ≤ 1.5 [m/s]

−0.65 ≤ ϕ ≤ 0.65 [rad]
Initial state x0 = [−1 − 1 0]T
Initial reference state x0 = [0 0 π/2]T

Qi =


15 0 0
0 15 0
0 0 1

 , for i = 1, 2, ..., N − 1 ,

Ri =
[
0.5 0
0 0.5

]
, for i = 0, 1, ..., N − 1 ,

P = 20Q1 .

(6.22)

The same trajectory is used as in the LMPC case for comparison purposes. Figure
6.17 shows the reference trajectory in dotted red line, the calculated trajectory in
solid blue and the trajectory obtained for the LMPC approach in green for comparison.
Resource utilization, timing, computation time and power consumption achieved after
implementation are summarized in table 6.11, where latency and II are given in number
of clock cycles. Computation time for this case is six times higher than the one achieved
for LMPC when considering the same prediction horizon. The results obtained after
synthesis in Vivado HLS for N = 5 are also shown in table 6.11, as can be seen, the
resources of the target FPGA are not sufficient and in fact four times more LUTs would
be required in comparison with the case when N = 3; this precluded the implementation
and therefore only the metrics after synthesis are shown for this case. This high
increment in resources utilization is due to the number of operations required for the
calculation of the Jacobian and Hessian matrices to be evaluated at every iteration of
the IPM algorithm, which increases with the size of the problem. Attempts to introduce
optimization directives to the functions obtained with CasADi increased the minimal
achievable clock period significantly, forcing a sequential execution of these functions,
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6.3 Summary

which is not efficient in an FPGA implementation as the achievable clock frequency is
much lower than in traditional processors.
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Figure 6.17 – Trajectory in the X-Y plane followed by the vehicle model

Table 6.11 – Metrics for satellite model after implementation (N=3) and after
synthesis (N=5)

Metric Value (N = 3) Value (N = 5)
Clock Period 10 ns 11 ns
Max. Latency 1203277 3060077
Max. II 1203278 3060078
Avg. Computation Time 9ms -
BRAM (%) 12 26
DSP48E (%) 46 97
FF (%) 20 39
LUT (%) 53 209
LUTRAM (%) 6 -
Total On-Chip Power 5301W -

6.3 Summary

This chapter presented the results obtained with the implemented algorithms for LMPC
and NMPC tested on trajectory tracking problems for mobile vehicle systems. This
application requires the desired trajectory to be known a priori or be calculated on-line for
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6 Case Studies

the corresponding prediction horizon. The linearization approach has the disadvantage
that not only the reference states but also the reference inputs must be given, but
require less computation time for the solution and resources and power consumption
are significantly lower. Highly nonlinear systems may require an NMPC approach,
the results obtained show that the current implementation fails to deal with problems
bigger than that considered for this thesis, so further research is needed to improve
computation time and area utilization.
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Chapter 7

Conclusions and Future Work

This thesis focuses on the implementation of MPC algorithms using high-level synthesis
on an FPGA for hardware acceleration. Computational burden is significant for the
on-line implementation of MPC. When systems with high sampling rates are considered
the problem must be solved efficiently within the available time and additionally meeting
any given resource, cost, and power consumption constraints. The optimization problem
that arises from the MPC formulation is usually solved with IPMs or ASMs. The main
advantage of IPM, as opposed to ASM, is the little variations in the problem structure,
which is important for a priori FPGA resource allocation.

For the case of LMPC, a primal-dual IPM algorithm was tailored for the solution of the
QP that arises as a result of the sparse formulation. Sparsity and the fixed well defined
structure of the QP matrices were exploited to reduce memory requirements and improve
computation time. For the implementation, a linear algebra library was implemented
with the compressed matrix storage formats. Parallelization of the operations is achieved
through the use of pragmas available with the Vivador HLS tool. The algorithm was
tested on three trajectory tracking case studies. Results show that the use of HLS for
FPGA programming of an IPM solver gives promising results, obtaining the solutions
within the sampling period considered. However, computation time grows with the
problem size and, because of area limitations on the FPGA, further parallelization to
reduce latency is not possible. The choice of setting the number of iterations for both
the IPM and MINRES algorithms to a fixed number proved good results, having a
significant impact on the computation time. These values must be determined through an
off-line implementation. Numerical precision also plays an important role in embedded
applications as a reduced demand for precision (number of bits) implies a reduction in
computation time, resources utilization, and power consumption. The linear system
of equations solved at every MINRES iteration gets ill-conditioned as the solution
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is approached, and therefore a wide dynamic range is required; however, the use of
preconditioning allows for single precision to be considered as shown in two study cases.
For the case of NMPC, a primal-dual IPM algorithm is also implemented for the

solution of the NLP problem using the simultaneous approach. The algorithm was
tailored to the trajectory tracking case study, assuming the same cost function and
inequality constraints as in the linear case. Only the equality constraints introduce
nonlinearities to the optimization problem. A fourth-order Runge-Kutta method was
used to turn the OCP problem into an NLP problem. Jacobian and Hessian matrices
required for the IPM were obtained from functions generated by CasADi tool. A CCS
format was considered for the primal-dual system to be solved by the MINRES algorithm.
Results showed that a much greater computation time and resources utilization is required
for the solution of the NLP as compared to the QP problem, in great part because of the
computation of derivative information at each iteration of the IPM. Further research is
needed to improve the current implementation for its use in a wider range of problems.
Results presented in this work proved that LMPC can be successfully implemented

on FPGA-based systems. However, further improvements can still be made on the
implemented design to improve computation time and reduce resources utilization and
energy consumption. One important factor, for example, is the use of low-precision
data representation, e.g. based on fixed-point arithmetic, for the solution of the QP
problem. Another important factor which has a great influence on the quality of the
results is the use of on-line and off-line preconditioning. Some works have already been
made regarding these topics but further research is still needed. Further research is also
needed for efficient implementation of NMPC on FPGA-based systems.

Regarding the work on this thesis, communication between PL and PS on the Zynqr

device should be further studied to allow for 64 bits data streaming. This would
allow to exploit the architecture of the Zynqr device for the NMPC problem, in order
to accelerate only the MINRES algorithm on hardware, which represents the main
computational burden, leaving the other operations to the ARMr controller and in this
way to improve latency.

Parallelization of the algorithm itself, dividing the operations on parallel solvers
running on the FPGA as well as exploring new multi-core hardware accelerator architec-
tures can also be topics of further research. The use of OpenCL framework appears as
a good possibility, using a CPU as host and one or more FPGAs or other accelerators
like GPUs or DSPs for task parallelism.

90



List of Acronyms

ACP Accelerator Coherency Port

AP SoC All Programmable System-on-a-Chip

APU Application Processing Unit

ASIC Application-Specific Integrated Circuit

ASM Active-Set Method

AXI Advanced eXtensible Interface

BDF Backward Differentiation Formula

BRAM Block RAM

CCS Compressed Column Storage

CDS Compressed Diagonal Storage

CLB Configurable Logic Block

CRS Compressed Row Storage

DMA Direct Memory Access

DSP Digital Signal Processor

EMIO Extended Multiplexed Input/Output

FF Flip-Flop

FIFO First In, First Out

FPGA Field Programmable Gate Array

GPU Graphics Processor Unit

Master Thesis Antonio Araujo Barrientos 91



7 Conclusions and Future Work

HDL Hardware Description Language

HLS High-Level Synthesis

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

II Initiation Interval

IOB Input/Output Block

IP Intellectual Property

IPM Interior-Point Method

IVP Initial Value Problem

KKT Karush-Kuhn-Tucker

LMPC Linear Model Predictive Control

LUT Lookup Table

MIMO Multiple-Input-Multiple-Output

MINRES MINimum RESidual

MPC Model Predictive Control

NLP Nonlinear Programming

NMPC Nonlinear Model Predictive Control

OCP Optimal Control Problem

PL Programmable Logic

PS Processing System

QP Quadratic Programming

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read-only Memory

RTL Register Transfer Level

SQP Sequential Quadratic Programming

92



List of Figures

2.1 Logic fabric on the Zynq 7000 AP SoC[21] . . . . . . . . . . . . . . . . . 8

5.1 Block diagram for Zynqr PS [21] . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Block diagram for QP_Solver function . . . . . . . . . . . . . . . . . . . 44
5.3 Block diagram for IP_algorithm function . . . . . . . . . . . . . . . . . 46
5.4 Scheme for the implementation of IPM for solution of a QP problem. . . 49
5.5 Block diagram for MINRES_algorithm function . . . . . . . . . . . . . 55
5.6 Block diagram for NLP_Solver function . . . . . . . . . . . . . . . . . . 58
5.7 Block diagram for IP_algorithm function for NLP . . . . . . . . . . . . 59
5.8 Block diagram for MINRES_algorithm function for NLP . . . . . . . . 61
5.9 Block diagram for MINRES_algorithm function . . . . . . . . . . . . . 63
5.10 Block diagram for PS-PL communication [4] . . . . . . . . . . . . . . . . 64
5.11 Block design in Vivado IDE . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Three-state bicycle model [42] . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Trajectory in the X-Y plane followed by the three-state vehicle model for

parameters as shown in table 6.1 . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Control inputs for the three-state vehicle model considering parameters

given in table 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Computation times for the bicycle model 1 problem. . . . . . . . . . . . 71
6.5 Five-states bicycle model . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.6 Trajectory in the X-Y plane followed by the five-state vehicle model . . 75
6.7 Velocity considering parameters given in table 6.4 . . . . . . . . . . . . . 75
6.8 Steering angle considering parameters given in table 6.4 . . . . . . . . . 76
6.9 Computation times for the five-state bicycle model problem. . . . . . . . 76
6.10 Computation time for different orders of matrix Âip, refer to equation
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