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Abstract 

In this work, hydroxyapatite (HAp) thin films were fabricated using two different 

sputtering techniques: Radio frequency magnetron sputtering and ion beam sputtering. In 

the first case, the films were grown on Ti-6Al-4V substrates using a high-purity 

commercial HAp target, obtaining a thickness ~200 nm. For the second method, the film 

were grown on pure titanium substrates using a self-produced HAp target. This target was 

fabricated with powders (Ca/P = 1.628, sintered and crushed). Here, the thickness of the 

fabricated film was ~300 nm. The sintering tests for the target fabrication were carried 

out using two different heating regimens at a maximum temperature of 1200 °C (holding 

time of 2h and 4h) using various additives. As additives, water (H2O), polyvinyl alcohol 

(PVA) and polyethylene glycol (PEG) were used to improve the mechanical strength of 

the green discs. The as-deposited films were amorphous in both cases. Therefore, the 

films were annealed to increase the crystallinity. Annealing was performed in air for 2h 

at temperatures: 400, 600 and 800 °C for RF-magnetron sputter samples; 600 and 800 °C 

for ion beam sputter samples. The result of the films shows in both cases that the 

crystallinity of HAp was improved only for the annealed samples fabricated with ion 

beam sputtering at 800 °C. In both cases energy dispersive X-ray spectroscopy 

measurements show a decrease in Ca/P ratio with increasing the temperature. Hardness 

results revealed an increase in this with the increase in temperature possibly due to the 

formation of titanium oxide. The roughness for the fabricated films with the RF-

magnetron sputtering increases till an annealing temperature of 600 °C and then decreases 

till 800 °C, while the roughness for the fabricated films with ion beam sputtering is higher 

in the as-deposited samples and then this is reduced by increasing the annealing 

temperature.
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Kurzfassung 
 

In dieser Arbeit, wurden Hydroxyapatit (HAp) Schichten unter Verwendung von zwei 

verschiedenen Sputtertechniken hergestellt: Radiofrequenz Magnetronsputtern und 

Ionenstrahlsputtern. Im erste Fall wurden die Schichten auf Ti-6Al-4V-Substraten unter 

Verwendung eines hochreinen kommerziellen HAp-Targets gewachsen, wobei eine 

Dicke von 200 nm erhalten wurde. Für die zweite Herstellungsmethode wurden die 

Schichten auf reinen Titansubstraten unter Verwendung eines selbst hergestellten HAp-

Targets abgeschieden. Dieses wurde aus einem Pulver (Ca/P = 1,628, gesintert und 

zerkleinert) hergestellt. Die Schichtdicke war hier, nach dem Ionenstrahlsputtern 300 nm. 

Die Sinterversuche für die Targetherstellung wurde unter Verwendung von zwei 

verschiedenen Heizregimen bei einer maximalen Temperatur von 1200 °C (Haltezeit von 

2h und 4h) unter Verwendung von verschiedenen Additiven durchgeführt. Als Additive 

kamen Wasser (H2O), Polyvinylalkohol (PVA) und Polyethylenglykol (PEG) zum 

Einsatz, um dis mechanische Festigkeit der Grünkörper zu verbessern. Die erhaltenen 

Schichten war in beiden Fällen nach dem Sputtern amorph. Daher wurden auch die 

Schichten in einem Nachbehandlungsschritt erneut getempert, um die Kristallinität zu 

erhöhen. Das Tempern wurde in Luftatmosphäre für 2 Stunden bei verschiedenen 

Temperaturen durchgeführt: 400, 600 und 800 °C für RF-Magnetron-Sputterproben; 600 

und 800 °C für Ionenstrahlsputternproben. Das Ergebnis für die Schichten zeigt in beiden 

Fällen, dass die Kristallinität von HAp nur für die mit Ionenstrahlsputtern hergestellten 

getemperten Proben bei 800 ºC verbessert wurde. In beiden Fällen zeigen die 

energiedispersiven Röntgenspektroskopie-Messungen eine Verringerung des Ca/P-

Verhältnisses mit steigender Temperatur. Die Messung der Härte ergab eine Zunahme 

dieser mit dem Anstieg der Temperatur möglicherweise aufgrund der Bildung von 

Titanoxid. Die Rauheit für die mit dem RF-Magnetron-Sputtern hergestellten Schichten 

steigt bis 600 °C  an und sinkt dann bis 800 °C, während die Rauheit für die mit 

Ionenstrahlsputtern hergestellten Schichten in den abgeschiedenen Proben höher ist und 

dann mit steigender Tempertemperatur abnimmt.  
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Resumen 

 

En este trabajo se fabricaron películas delgadas de hidroxiapatita (HAp) utilizando dos 

técnicas diferentes: Pulverización con radiofrecuencia y magnetrón y pulverización por 

haz de iones. En el primer caso, las películas se fabricaron sobre sustratos de Ti-6Al-4V 

usando un blanco de HAp comercial de alta pureza, obteniéndose un espesor de ~200 nm. 

Para el segundo caso, las películas se fabricaron sobre sustratos de titanio puro usando un 

blanco de HAp fabricado con polvos (Ca/P = 1,628). En este caso, el espesor de la película 

fue ~300 nm. La fabricación del blanco se llevó a cabo usando dos regímenes de 

calentamiento a una temperatura máxima de 1200 °C (a 2h y 4h) usando diversos aditivos: 

Agua (H2O), alcohol polivinílico (PVA) y polietilenglicol (PEG), para mejorar la 

resistencia mecánica de los discos. Las películas delgadas obtenidas resultaron amorfas. 

Por lo tanto, se realizó un recocido para aumentar la cristalinidad. El recocido se realizó 

en aire por 2h: 400, 600 y 800 °C para muestras de pulverización con radiofrecuencia y 

magnetrón; 600 y 800 °C para muestras de pulverización por haz de iones. La 

cristalinidad de HAp solo mejoró en las muestras fabricadas por pulverización por haz de 

iones, recocidas a 800 °C. En ambos casos, las mediciones con espectrometría de rayos x 

muestran una disminución en la relación Ca/P con el aumento de la temperatura. La 

dureza aumenta con la temperatura de recocido, debido a la formación de cristal de óxido 

de titanio. La rugosidad de las películas fabricadas con pulverización con radiofrecuencia 

y magnetrón aumenta hasta una temperatura de recocido de 600 °C y luego disminuye 

hasta 800 °C, mientras que la rugosidad de las películas fabricadas con pulverización por 

haz de iones es mayor en las muestras depositadas y luego esto se reduce al aumentar la 

temperatura de recocido.  
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1. Introduction

Calcium phosphate based ceramics (CPCs) have proved to be attractive materials for 

biological applications [1–5]. There are several families of CPCs which are identified by 

their Ca/P ratio, crystalline structure and degree of solubility in water [4, 5]. Among these 

bioceramics, particular attention has been given to hydroxyapatite (HAp), due to its 

bioactive nature which arises from its chemical similarity with the inorganic phase of 

natural bone [6–9]. 

HAp is commonly used in the form of dense sintered parts or powder [10]. Some works 

have been devoted to the sintering mechanisms of HAp parts [11, 12]. The understanding 

of sintering is of prime importance as this allows the identification of the influencing 

parameters and therefore the control of the grain growth and the microstructural design 

of the ceramics [13]. Other works refer to the preparation of coatings over different 

substrates (polymer or metal) and to their physico-chemical and biological 

characterizations as medical implants [14–16].  

The bone is a highly hierarchical organic-inorganic material composed of hardened 

collagen fibers with HAp nanocrystals (thin plate-shaped, approximately 50 nm long, 

25 nm wide, and 2 nm thick) [3]. Its basic composition is HAp (~60–70 wt%), collagen 

(~20–30 wt%) and water (up to 10 wt%) [6, 17]. Being HAp the largest constituent, it can 

be considered as best candidate to coat the implants. 

In this context, in recent years, great efforts have been made to develop new technologies 

regarding the production of coatings, to improve the clinical response of implants in the 

bone regeneration processes. 

Plasma spray deposition technique has been widely used for fabricating HAp on metallic 

implants due to its rapid deposition rate and relative low cost [18]. However, as this 

technique requires high temperature, films with high roughness [19], alterations in HAp 

structure [20, 21] and low adhesion between the coatings and metallic substrates [19] 

were reported. 
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Due to the know the problems arising from the plasma-spraying process, numerous 

experimental deposition process have been investigated, including thermal spraying [18–

24], sputter coating [25–29], pulsed laser ablation [30, 31], sol–gel [32–34] and 

electrodeposition [35–39]. Among them, sputtering techniques have proven to be very 

attractive due to the uniform coating thickness produced on flat substrates, dense coating, 

Ca/P ratios well conformed to the theoretical HAp stoichiometry (1.667) and good 

stimulation of the cell growth in vitro [40]. 

 

The main objective of the present work is to obtain HAp thin films on titanium substrates 

with sputtering techniques. Titanium provides the required mechanical strength to 

simulate bone tissue in load applications (maximum load, flexure, and fatigue strength). 

HAp provides a bioactive interface between bone and implant, which stimulates the 

growth of the tissue. Both materials together provide the mechanical and biological 

properties that allow a firm connection with the bone. In order to reach this objective, 

sputter targets of HAp were fabricated using a pressureless sintering process. These 

targets were fabricated with the assistance of Yesenia Sauñi, who used the targets for her 

thesis “Synthesis of hydroxyapatite thin films on PMMA 3D printed substrates”. 

 

Two different sputter techniques were used: Ion beam sputtering (IBS) and radio 

frequency (RF) magnetron sputtering, analyzing the physical and chemical properties of 

the HAp films deposited by both techniques. 

 

To characterize the powder, the sintered targets and the obtained films, a structural 

analysis with X-ray diffraction was carried out in order to determine the predominant 

crystalline phases. Scanning electron microscopy was used to characterize the 

morphology of the produced targets and films. In addition, the composition was measured 

with energy dispersive X-ray spectroscopy. Roughness measurements were performed in 

order to interpret the roughness effect on implant/bone adhesion and hardness 

measurements were determined in order to evaluate the resistance of the HAp films during 

load application. 
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2. Theoretical Background 

 

Nowadays, CPCs with clinical applications constitute an interesting field of research and 

development in the production of biomedical implants, exhibiting excellent 

biocompatibility with the living body when replacing hard tissue. 

 

CPCs have a varied Ca/P ratio, chemical composition and water solubility as shown in 

Table 1. Understanding the solubility allows to know the behavior of the CPCs in the 

body environment. In addition, CPCs can degrade and transform into even more soluble 

phases, due to their sensibility to high temperatures [6, 41]. 

 
Table 1: Existing CPCs showing their Ca/P ratio, chemical composition and water solubility [41]. 

Ca/P Compound Formula Solubility at 
25 °C (g/L) 

0.5 Monocalcium phosphate 
monohydrate (MCPM) Ca(H2PO4)2·H2O ~18 

0.5 Monocalcium phosphate 
anhydrous (MCPA) Ca(H2PO4)2 ~17 

1.0 Dicalcium phosphate dihydrate 
(DCPD); brushite CaHPO4·2H2O ~0.088 

1.0 Dicalcium phosphate anhydrous 
(DCPA); monetite CaHPO4 ~0.048 

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4·5H2O ~0.0081 

1.5 α-Tricalcium phosphate (α-TCP) α-Ca3(PO4)2 ~0.0025 

1.5 β-Tricalcium phosphate (β-TCP) β-Ca3(PO4)2 ~0.0005 

1.2–2.2 Amorphous calcium phosphates 
(ACP) 

CaxHy(PO4)z·nH2O 
n = 3 - 4.5; 15 - 20% H2O    ------ 

1.5–1.67 Calcium-deficient hydroxyapatite 
(CDHA) 

Ca10-x(HPO4)x(PO4)6-x(OH)2-x  
(0< x < 1) ~0.0094 

1.67 Hydroxyapatite (HAp) Ca10(PO4)6(OH)2 ~0.0003 

1.67 Fluorapatite (FAp) Ca10(PO4)6F2 ~0.0002 

1.67 Oxyapatite (OAp) Ca10(PO4)6O ~0.087 

2.0 Tetracalcium phosphate (TTCP), 
hilgenstockite Ca4(PO4)2O ~0.0007 
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The atomic arrangement of CPCs is based on a network of orthophosphate (PO4) groups, 

which gives stability to the entire structure [6, 42]. A phase diagram CaO–P2O5 at 

temperatures between 200 and 2200 °C is shown in Figure 1. The majority of CPCs are 

slightly soluble in water; however, all of them are easily soluble in acids but insoluble in 

alkaline solutions [6, 42].  

 

Given these properties, the CPCs are used for various applications: For example, brushite 

(DCPD) and monetite (DCPA) are commonly used in the preparation of cements in 

biological applications due to the high dissolution in the physiological environment, being 

very useful for repairing of the bone and stimulating its growth [43–45]. On the other 

hand, tricalcium phosphate (TCP) and hydroxyapatite (HAp) used as coatings due to their 

low dissolution rate and good chemical stability, which allow the cells growth and 

promote the osseointegration when interacting with human hard tissue [22–39, 46–48]. 

 

 
Figure 1: Phase diagram of the system CaO–P2O5 (C = CaO, P = P2O5). Here: C2P3 means 2CaO.3P2O5; 
the same way for other abbreviations [6].  
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2.1 Hydroxyapatite 
 

Hydroxyapatite (HAp), with the chemical formula Ca10(PO4)6(OH)2 and a Ca/P molar 

ratio of 1.67 [49–51], is widely accepted as a biocompatible material similar to the 

mineral component of the bones and teeth. Nevertheless, this is only an oversimplification 

of the bone mineral [52]. Actually, it is considered as a complex substance, also doped 

with cations (Na, K, Mg, Zn, Fe, etc.) and carbonate ions [52, 53]. The generic chemical 

formula suggested by Hench, L.L. [10] for this crystalline phase is: 

 

Ca8.3(PO4)4.3(HPO4, CO3)1.7(OH, CO3)0.3 

 

HAp crystallizes in two systems: the hexagonal system (a0 = 0.943 nm, c0 = 0.689 nm at 

300 °K, space group P63/m) and the monoclinic system (a0 = 0.984 nm, b0 = 2a0, 

c0 = 0.688 nm at 300 °K, space group P21/b) [54–57]. It was experimentally proven that 

the first is less stable but it is the most representative phase in bones and teeth [8]. The 

hexagonal HAp is usually formed by precipitation from supersaturated solutions at 25–

100 °C, while the monoclinic HAp is primarily formed by heating the hexagonal form at 

850 °C in air and subsequent cooling to room temperature [9]. The crystalline structure 

of both systems are shown in Figure 2. 

 

 
Figure 2: Crystalline structure of HAp: a) Hexagonal (P63/m) and b) monoclinic P21/b [58]. 

 

According to Champion, E. [59], the PO4 tetrahedra are hold together by Ca ions 

interspersed among them. In the P63/m form, the unit cells of HAp are arranged along the 

c-axis. Therefore, a preferred orientation along the c-axis and a needle-like morphology 

is common. Regarding the structural aspect, the difference between the monoclinic and 

hexagonal HAp is the orientations of hydroxyl groups (OH-) [59]. In monoclinic HAp, all 

of OHs in a given column are oriented in the same direction, and the direction reverses in 
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the next column, while in hexagonal HAp the adjacent OHs point in opposite directions 

[59]. 

It is generally considered that Ca9(PO4)6 clusters, the so-called Posner’s clusters, are the 

growth unit of HAp crystals [60–62], since the atomic configurations of Ca2+ and (PO4)3- 

is very close to the HAp structure. A representation of the Posner’s cluster is shown in 

Figure 3. This arrangement is analogous to that existing in several other crystalline 

phosphates, such as apatites and β-Tricalcium phosphate (β-TCP) [63]. 

Another relative specie is the calcium deficient hydroxyapatite (CDHA), with a Ca/P ratio 

between 1.67 and 1.5 [1, 6, 42]. It is referred to a hydroxyapatite structure with cation 

vacancies (Ca2+) and anion (OH–) vacancies. The sites occupied solely by phosphate 

anions in stoichiometric hydroxyapatite, are occupied by phosphate or hydrogen 

phosphate (HPO4
2–) anions [1, 6, 42].  

Figure 3: Representation of Posner’s cluster [63], which is also the core of the actual structural model of 
amorphous calcium phosphate [62]. 
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2.2 Biomedical applications 
 
The bones have the ability of self-repairing due to a process of continuous remodeling, 

formation and resorption (Wolff’s Law) [64, 65], but this ability is limited as it depends 

on how severe the suffered damage is. Severe damage from accidents and degenerative 

diseases (e.g. osteoporosis) affects millions of persons every year, who need a long-term 

solution to improve their life quality. 

 

Implants are used in case of a severe injury, where the replacement of a damaged bone is 

required. The implants can be made of certain metals, ceramics, polymers or composites. 

This group of materials used to replace a part or a function of the human body are called 

biomaterials [66]. 

 

A biomaterial is defined by Williams, D.F [67] as a substance that has been engineered 

to take a form which, alone or as part of a complex system, is used to direct the course of 

any therapeutic or diagnostic procedure, in human or veterinary medicine, by the control 

of interactions with components of living systems. 

 

In addition, as referred by Sykaras, N. [68], biomaterials can be classified based on the 

type of biologic response they show when implanted and the long-term interaction that 

they develops with the host tissue. Three major types of biodynamic activity have been 

reported: (1) biotolerant, (2) bioinert, and (3) bioactive [68]. The different levels of 

biocompatibility emphasize the fact that no material is completely accepted by the 

biologic environment [68]. 

 

Metals for implants have been selected based on a number of factors: their biomechanical 

properties; previous experience with processing, treating, machining, and finishing; and 

suitability for common sterilization procedures [68]. Among them, it is an undeniable fact 

that titanium and its alloys have gained a significant place among the most used metal as 

bone and dental implants due to the excellent balance between their mechanical, 

physicochemical and biofunctional properties [69]. 
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This material has an excellent corrosion resistance as the surface of the titanium is rapidly 

oxidized inside of the body, generating a finely and thermodynamically stable oxide 

layers [70]. These oxides are characterized by being impermeable (therefore protective) 

and inert, which gives them excellent biocompatibility [70]. 

 

Mechanically, titanium based implants have properties closer to those for bones, 

compared to those for implants made of stainless steels and cobalt alloys. Its Young 

modulus is 110 GPa [71], compared to 200 GPa [72] and 220 GPa [73] for stainless steels 

and cobalt alloys, respectively. Being the maximum elastic modulus of the bone 13.8 GPa 

[6], it is clear that the titanium is more compatible with the natural tissue. 

 

The ASTM Designation: F67 – 13 classifies titanium into four grades, defined by the 

content of further elements, as shown in Table 2. 

 
Table 2: Chemical Requirements of titanium implants [74]. 

Element 
Composition (%) 

Grade 1 Grade 2 Grade 3 Grade 4 

Nitrogen, max 0.030 0.030 0.050 0.050 

Carbon, max 0.080 0.080 0.080 0.080 

Hydrogen, max 0.015 0.015 0.015 0.015 

Iron, max 0.200 0.300 0.300 0.500 

Oxygen, max 0.180 0.250 0.350 0.400 

Titanium balance balance balance balance 

 
 
In the titanium alloys group, the most commonly used is the Ti–6Al–4V [29, 39, 69] due 

to its enhanced biocompatibility, acceptable elastic modulus (110 GPa), and superior 

strain-controlled and notch fatigue resistance (290 MPa) [69]. 

 

However, despite their excellent performance, these materials present important 

limitations: 

 Low osteoconductivity, which results in the encapsulation of the implant with 

fibrous tissue (osteoblasts cells activity) and delays the healing time [75]. 
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 Stress shielding, or the reduction in bone density as a result of removal of typical 

stress from the bone by an implant [76–78]. The load transfer at the implant/bone 

interface is strongly affected by the differences in modulus of elasticity and 

mechanical strength [76–78]. 

 The mechanical misalignment produces bone resorption (osteoclasts cells 

activity) due to the reduction of stress on the bone tissue [76–78]. This 

phenomenon may result in loosening of the implant, as well as fracture of bone 

and/or titanium. 

 

To control these limitations, the surface is coated with HAp, as it resembles the properties 

of bone and teeth. The HAp coating would reduce the release of metallic ions by acting 

as a barrier [75], enhance the bone bioactivity by virtue of its chemical constituents [3, 9, 

75], and promotes the adhesion and proliferation of cell [79, 80], allowing the bone to 

grow. 

 

Recently, there has been an increasing interest in hydroxyapatite nanoparticles for its 

similarity to crystal bone phase and enhanced biomedical properties [75]. There are 

studies [81, 82] that support the significant improvement in mechanical properties and 

cellular interactions through the synthesis of nano-crystals of hydroxyapatite (nHAp).  

 

Balassundaram G. et al [83] evaluated the biological response in synthesizing micro- and 

nanocrystalline HAp surfaces. They found a large difference between the surface area 

(8 m2/g for mHAp and 160 m2/g for nHAp) which results in a higher interaction with the 

surrounding cells. 

 

The main limitation of the HAp is that it is brittle and weak, so its applications are limited 

as orthopedic and dental implants [75]. The most attractive approaches to solve this 

problem is the incorporation of certain inorganic materials to improve the cellular 

interaction of osteoblasts with the implant, as well as to increase the resistance [84]. 

Several metal elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), 

silicon (Si), silver (Ag), and yttrium (Y) play an important role in bone formation and 

also affect the mineral characteristics as well as mechanical properties [84]. 
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2.3 Sintering 
 

Sintering is a heat treatment process in which a powder or porous material, already formed 

into a specific shape, is converted to a useful solid [85]. Variables such as temperature, 

particle size, applied pressure, particle packing, composition and sintering atmosphere 

influence the microstructure that is produced. 

 

As stated by Champion, E. [59], sintering of a ceramic powder requires suitable 

thermodynamic and kinetic conditions. He summarized its fundamentals and physico-

chemistry as follow [59]:  

 

 Sintering will occur only when the driving force is sufficiently high. It is possible 

if the total Gibbs free energy (G) of the system is minimized (dG < 0) by 

decreasing the solid–gas surface area Asg(-dAsg < 0) of high energy (γsg), which is 

replaced by a solid–solid surface area Ass (dAss > 0) of lower energy (γss) [59]: 

 

dG = dA𝑠𝑠γ𝑠𝑠 + dA𝑠𝑔γ𝑠𝑔 Equation 1 

 

 A reduction in surface energy due to a reduction in the internal surface of the 

system provide the driving force for sintering [59]. Diffusion is thermally 

activated, and the effective pathway depends on the chemical and physical 

properties of the material, and composition of the gaseous atmosphere [59].  

 

 For solid-state pressureless sintering, the phenomena is generally divided in three 

sequential stages [59]: 

a) First, the inter-particle neck forms and grows. In this stage, a relative density 

of ~65% of the theoretical density can be obtain [59], as shown in Figure 4a. 

b) Second, the densification occurs, due to the shrinking of the pores [59]. Pores 

remain open and constitute a continuous phase. This stage covers the major 

part of sintering and corresponds to an increase in relative density to ~90% 

[59], as shown in Figure 4b. 
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c) The isolated pores may disappear altogether, leaving a nearly fully dense 

ceramic. Then, during cooling to room temperature, the sample retracts in 

accordance with the expansion coefficient of the sintered ceramic [59], as 

shown in Figure 4c. 

 

 
Figure 4: Spherical particles model: a) formation of necks between grains; b) densification and pores 
shrinkage; c) coalescence and grain growth [59]. 
 

 For liquid-state sintering, the intervention of a liquid phase assists the 

densification and prevents the grain growth [59]. In general, this process follows 

a sequence: Melting of the additives and redistribution, rearrangement of the 

majority solid phases and densification of the solid phase [59]. 

 

 

2.3.1 Sintering of HAp 

 

Different studies were carried out with the aim of improving the mechanical properties of 

HAp by applying appropriate sintering additives or heat treatment to sinter dense samples 

[85–88]. Among them, pressureless sintering of HAp in the solid-state regime under 

surface or volume diffusion control is considered the most efficient process, due to its 

very high levels of purity and uniformity in starting materials, good control of grain size 

during the input stages and easy handling of equipment [1, 6, 85]. 

 

Pressureless sintering is the sintering of a powder to obtain a compact material without 

applying pressure. Depending on the material, this process can reach a maximum 

temperature between 0.5 and 0.9 of its melting point [89]. This avoids density variations 

in the final composition, which might occur using more traditional hot pressing methods 

[90]. 
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Physical and chemical stability plays an important role during sintering. As summarized 

by Champion, E. [59], pressureless sintering of HAp is generally performed in the 

temperature range of 1100–1250 °C. In this domain, densification occurs without the 

formation of any liquid phase.  

Investigations focused on structure have confirmed that no secondary phases, neither 

crystalline nor amorphous, are formed [59]. Indeed, HAp remains stable up to ~1350–

1450 °C in ambient air [59]. Only partial dehydration of HAp into oxyhydroxyapatite 

may occur according to a reversible reaction [59]: 

Ca10(PO4)6(OH)2↔ Ca10(PO4)6(OH)2−2y + yH2O(g) Equation 2 

At the microscopic scale, solid-state diffusion in crystalline solids requires the presence 

of point defects within the crystal structure [59]. The matter transfer may proceed through 

several different diffusion pathways involving superficial, volume or grain boundary 

diffusion.  

It is important to mention that during sintering numerous phenomena occur [85, 91]: 

a) Increasing the temperature produces irreversible physico-chemical 

transformations that modify the chemical and crystalline structure.

b) The pieces also undergo temporary modifications, among which the expansion

due to the heating is the most important. If the variations do not occur regularly

during the sintering, the pieces will exhibit a lack of uniformity and residual

stresses.

c) The surface heats faster than the interior. This temperature gradient results in a

faster external contraction, causing cracks in the product.

The sintering curve should be set in accordance to the characteristics of the HAp. 

Therefore, it is necessary to control the heating rate since a rapid shrinkage can lead to 

stresses and breakage. The sintering curve is called heating regime. The heating regime 

can be simple, as in isothermal sintering, or have a complex temperature-time 

relationship, as in rate-controlled sintering [89]. 
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2.3.2 Heating regime 

 

A general heating regime for ceramics powders is shown in Figure 5. De Jonghe, L.C. & 

Rahaman, M.N [89] summarized its general scheme, which includes the conversion and 

burnout of additives and removal of volatiles such water as follows: 

 Stage 1 is a few hundred degrees centigrade. The heat-up rate should be carefully 

controlled, because the rapid heating causes boiling and evaporation of organic 

additives, leading to specimen bloating or even shattering. The absorbed water is 

burned. 

 Stage 2 can be included to promote chemical homogenization, reaction of powder 

components or burning of additives, if that is the case.  

 Stage 3 represents the heating up to the isothermal sintering stage 4, during which 

the majority of the densification and microstructure development takes place. 

Stage 4 is then followed by a cool-down.  

 An additional hold stage 5, prior to the final cool-down of stage 6, may also be 

included to relieve internal stresses or to allow precipitation or other phases. 

 

 
Figure 5: Generalized heating regime for ceramics powders (adapted from [89]). 

 

According to the thermo-gravimetric analysis (TGA) realized by Ashok, M. et al. [92], 

shown in Figure 6, HAp platy-shaped crystals presents a two-stage weight loss at the 

temperature range of 30–140 and 250–410 °C. In the first stage, a sharp 5% weight loss 

is observed, indicating the evaporation of adsorbed water [92].  
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The second stage presents a 2% weight losses due to the adsorbed and lattice water [92]. 

No further weight loss is observed on heating the material up to 1200 °C, indicating the 

high thermal stability of the HAp [92].  

 

Polymer materials used as additives, such as polyvinyl alcohol (PVA) and polyethylene 

glycol (PEG), have boiling points < 250 °C (228 and 238 °C respectively). Depending on 

the amount added, the hold time for stage 2, which is usually between 300 and 400 °C, 

should be increased [93]. 

 

 
Figure 6: TGA graph of platy crystals of hydroxyapatite (27x2 μm) [92]. 

 

The control of the sintering atmosphere is also important. The precise control of the gas 

partial pressure as a function of temperature may be beneficial [59]. Insoluble gases 

trapped in closed pores may obstruct final stages of densification, in these cases, a change 

of the sintering atmosphere or vacuum sintering is indicated [89]. Most commonly, the 

sintering might take place in vacuum [94], inert gas (N2, Ar) [95, 96] or moist air [96]. 

Generally, moisture was introduced in the sintering atmosphere to prevent 

dehydroxylation [59], as shown in Equation 2. 

 

Dehydroxylation is delayed by increasing the partial pressure of water vapor [59]. 

Therefore, moisture may also affect the grain growth by promoting grain coalescence at 

low temperatures, e.g. 400 ˚C, when superficial diffusion is active [59].  
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2.4 Film deposition techniques applied to the biomedical field 
 

Nowadays, several deposition techniques have been used to fabricate crystalline thin 

films of HAp, well adherent to the substrate and with a controlled morphology for 

biomedical application. However, due to the large CPCs family and the structural 

complexity of the HAp, the production of thin films with these characteristics is still a 

challenge. Some of the techniques include: 

 Dry deposition techniques: (plasma spraying, sputter coating, pulsed laser 

deposition). 

 Wet deposition techniques (sol–gel deposition). 

 Electro-mechanic techniques (electrospray deposition). 

 

Among them, those of the first group have wider distribution as they provide higher 

deposition rates as well as the possibility of covering large areas [48]. Table 3 

summarizes the characteristics of different of coating techniques, including their 

advantages and limitations. 

 
Table 3: Different techniques to deposit HAp coatings [48]. 

Technique Thickness Advantages Disadvantages 

Plasma spraying 30-200 µm High deposition rates; low cost Line of sight technique; high 
temperatures induce 
decomposition; rapid cooling 
produces amorphous coatings 

Sputter coating 0.5-3 µm Uniform coating thickness on flat 
substrates; dense coating 

Line of sight technique; 
expensive time consuming; 
produces amorphous coatings 

Pulsed laser 
deposition 

0.05-5 µm Coating with crystalline and 
amorphous; materials as well as 
dense and porous 

Line of sight technique 

Sol-gel < 1 µm Can coat complex shapes; low 
processing temperatures; 
relatively cheap as coatings are 
very thin 

Some processes require 
controlled atmosphere 
processing; expensive raw 
materials 

Electro deposition 0.1-2 mm Uniform coating thickness; high 
deposition rates; can coat 
complex substrates 

Difficult to produce crack-free 
coatings; requires high 
sintering temperatures 
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2.4.1 Plasma spray technique 

 

Plasma spraying is nowadays the main commercial technique for the deposition of CPCs, 

it is used to cover titanium implants due to its high deposition rates and practicality [18].  

 

The technique consists in creating a high temperature plasma jet generated by an electric 

arc or discharge at high frequency [97]. The plasma usually contains a primary heavy gas 

(Ar or N2) for the mass flow and a secondary gas (H2, He) to improve the heat transfer 

[97, 98]. The main temperatures obtained are in the range of 5000-8000 K for diatomic 

gases, and 10000-20000 K for monatomic gases (Ar, He) [98]. Such higher temperatures 

are significantly above the melting point of any known material, as it is necessary to 

compensate the energy loss of the hot particles (mainly radiative loss to the surroundings). 

Another reason is the short exposure time of the particle in the hot jet (milliseconds) for 

reaching their melting temperature. Further details can be found in reference [99]. Once 

the plasma has been created, the powder material that is to be melted and deposited on a 

surface of interest is injected [98]. 

 

The common properties of the obtained HAp films have: high thermal stability, chemical 

stability, high hardness, low fracture strength, low adhesion to the substrates, low heat 

conduction and high porosity [48, 97]. HAp coatings produced by plasma spraying at high 

temperatures usually have secondary crystalline phases such as TCP and CaO [17, 24]. 

The Figure 7 shows a schematic of plasma spray deposition technique. 

 

 
Figure 7: Scheme of plasma spray deposition [100].  
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2.4.2 Sol–gel technique 
 

Ceramic syntheses by sol–gel have been widely used in recent years for the purpose of 

depositing CPCs on metal substrates due to their practicality and stoichiometric control 

[32–34, 101]. The technique of sol–gel consists in the polymerization of an 

organometallic precursor in an alcohol or water based solution (sol) with an acidic or 

basic solvent (gel) in order to produce the ceramic. As shown in Figure 8, for the 

fabrication of HAp coatings, Ca and P precursors are transformed into a solution and then 

deposited on a substrate, after a fast evaporation of the solvent and subsequent 

condensation reaction, a gel-shaped film is formed. The solid material is obtained after 

drying and calcination [102].  

 

As stated by Liu, D.-M. et al. [103], this technique offers a molecular-level mixing of the 

calcium and phosphorus precursors, improving the chemical homogeneity of the resulting 

HAp to a significant extent, in comparison to conventional methods such as solid state 

reactions or wet precipitation. But it is known that, generally, this technique leave thick, 

cracked and porous coatings with low adhesion between the substrate and the coating, all 

of which are amorphous at room temperature [32–34, 101–103]. 

 

 
Figure 8: Scheme of sol–gel deposition: a) common reactants are added; b) reactants are mixed with H2O 
or H2O/EtOH solution; c) solution is aged (gelation); d) spin coated; e) dried and annealed.  
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2.4.3 Electrodeposition technique 

Electrodeposition is the process that allows the preparation of solid deposits on the surface 

of conductive materials [104].  

This technique is commonly used to apply thin films of material to the surface of an object 

to change its external properties such as to increase corrosion protection, increase 

abrasion resistance, improve decorative quality, or simply to deposit a layer which is part 

of a more complicated device [104–106]. Due to the use of an electric field, 

electrodeposition is particularly suited for the formation of uniform films on substrates of 

complicated shape, impregnation of porous substrates, and deposition on selected areas 

of the substrates [104, 105]. 

Two electrodeposition processes have been developed for CPCs films: electrolytic 

deposition (ELD, from a saline solution) and electrophoretic deposition (EPD, from a 

solution of CPCs particles in suspension), as shown in Figure 9. As summarized by 

Zhitomirsky, I. [107], the features of both processes are shown in Table 4. 

Figure 9: Scheme of electrodeposition by (a) electrolyte and (b) electrophoresis (adapted from [107]). 
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Table 4: Main features of electrophoretic and electrolytic deposition for ceramics [107]. 

Characteristic Electrophoretic Deposition Electrolytic Deposition 

Medium Suspension Solution 

Moving species Particles Ions or complexes 

Electrode reactions None Electrogeneration of OH- and 
neutralization of cationic species 

Preferred liquid Organic solvent Mixed solvent (water-organic) 

Required conductivity 
of liquid 

Low High 

Deposition rate 1-103 mm/min 10-3-1 mm/min 

Deposit thickness 1-103 mm  10-3-10 mm 

Deposit uniformity Limited by size of particles On nm scale 

Deposit stoichiometry Controlled by stoichiometry 
of powders used for 
deposition 

Can be controlled by use of 
precursors 

 

One important characteristic of these HAp coatings is low processing temperature, 

covering a range from ambient temperature [108, 109] to below 100 °C [109, 110]. Other 

characteristics include: Rigid control of the thickness (micrometric coatings > 100 μm) 

and good microstructure control [35–39]. On the other hand, the formation of cracks and 

pores, as well as non-stoichiometric and amorphous films were reported [48, 104]. 

 

 

2.4.4 Sputtering coating technique 

 

The sputtering technique has been extensively developed for the production of high 

quality HAp films for biomedical applications [48, 111].  

 

In this technique, ions formed in a plasma (ionized state of matter) are accelerated 

applying an electric field towards the material to be deposited (target), located at the 

cathode. The plasma usually is ionized gas (from Ar, N2 or O2). The voltage between the 

cathode and the anode causes the plasma ions to strike the target surface with high energy 

and transfer some of its energy to the target atoms (collision cascade) [48, 111].  
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The multiple collisions induced by the energetic particles of the plasma excites some of 

the atoms in the material with sufficient energy to leave the surface, reach the substrate 

and adhere to it. Most of the energy provided by the incident ions is converted into heat, 

which is dissipated by a cooling circuit which prevents overheating of the cathode [48, 

111]. Figure 10 illustrates the basic components of a sputtering chamber. 

 

 
Figure 10: Schematic diagram of the sputtering mechanism (adapted from [111]). 

 

This technique allows to coat large areas on flat substrates more uniformly than any of 

the other techniques mentioned before. Dense coating can be produced, without high 

temperature. But, like the HAp coatings produced using the plasma spraying technique, 

alteration in coating properties have been observed with the sputtering process [112–114]. 

 

Another important disadvantage of this technique is the low deposition rate. To increase 

the deposition rate, an increase of the ionization rate of the process gas is necessary [48, 

111]. This is achieved by the application of magnetic fields perpendicular to the electric 

field. In this way, the secondary electrons generated during the bombardment are confined 

in a region close to the surface of the cathode [48, 111, 115]. This modification is referred 

to the magnetron sputtering technique, as shown in Figure 11. 
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Figure 11: Schematic diagram of the typical RF magnetron sputtering facility with Ar+ plasma [115]. 

 

The addition of the magnetic field significantly increases the ion density near to the target, 

therefore the amount of process gas can be reduced [48]. As a result, this allows sputtering 

at lower pressures (10-3 mbar commonly, compared to 10-2 mbar) and voltages 

(commonly 500 V, compared to 2 – 3 kV) [48]. This bombardment does not cause damage 

to the thin films formed on the substrate and maintains the stoichiometry and thickness 

uniformity of the deposited thin film [115].  

 

The fabricated HAp films offer good adhesion to the substrate [115, 116]. It is important 

to note that the thickness of the film depends on the discharge power and the deposition 

time. As the discharge power increases, the energy of the ions in the plasma increases, 

promoting a higher erosive effect on the target as well as a deposition in less time [117, 

118]. 

 

Despite its excellent performance, this process also has disadvantages: 

a) The process is more difficult to combine with a lithography process (e.g. lift-off 

for structuring the film) as the diffuse transport, which is characteristic for 
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sputtering, makes a full shadow impossible. Thus, one cannot fully restrict where 

the atoms go, which can lead to contamination problems [116]. 

b) The magnetic field erodes the target non-uniformly, wasting much of the material

as the sputtering is more intense where the lines of magnetic field are parallel to

the surface of the cathode. The erosion profile of the target takes a particular V-

shape, as shown in Figure 12 [118].

Figure 12: Wear zones in the target. Where the electrons are trapped, gas will be ionized and sputter target 
material. Below this intense plasma, the target erosion will be prominent [118]. 

2.4.5 Ion beam sputter technique 

The fabrication of CPCs thin films by ion beam sputtering (IBS) has gained wide 

acceptance due to the homogeneous structure and high phase stability [119]. 

In this technique, the coatings are produced in a vacuum chamber. IBS utilizes an ion 

source to generate a relatively focused ion beam directed at the target to be sputtered 

[120]. The ion source consists of a cathode and anode with a common central axis [120]. 

Applying a high voltage field (2-10 kV) to the anode creates an electrostatic field inside 

the ion source, confining electrons around a saddle point in the center of the source [120]. 

When gas (usually Ar) is injected into the ion source, the high electric field causes the 

gas to ionize, creating a plasma inside the source region [120]. The ions are then 

accelerated from the anode region to the exit aperture (cathode) creating a collimated ion 

beam [120]. The resulting ion beam impinges upon a target material and, via momentum 
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transfer between the ion and the target, sputters this material onto the substrate [120]. A 

schematics of the IBS process is shown in Figure 13. 

 

The as–deposited HAp films are characterized by having a high bond strength (~38 MPa) 

in comparison to those produced by plasma spray (~6 MPa) [122], which results in a 

better adhesion. 

 

Other characteristics include: low deposition rate, which allows a better control in the 

uniformity and density of the film, being more stable and mechanically durable. In 

addition, as a sputter technic, the films obtained are completely amorphous [121, 122].   

 

 
Figure 13: Schematic representation of ion beam sputter deposition (adapted from [121]). 

 

 

2.4.6 Annealing of HAp films fabricated by sputter techniques 
 

The success or failure of an implant also depends on the crystallinity of the HAp film. In 

general, amorphous HAp films exhibit high dissolution rates [122], resorb too rapidly to 

provide in vivo implant–bone bonding [123] and show a higher inflammatory cell 

response compared to crystalline HAp [124]. Sputtering coating using multi-component 

ceramic targets such as HAp and other CPCs materials would produce coatings whose 

chemistry was different upon deposition than the bulk target Ca/P ratio from 1.6 to 2.6 

[112–114]. 
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As stated by Ong, J.L. & Lucas, L.C [112], the difference in the Ca/P ratio between the 

HAp target and the sputtered coatings has been attributed to the preferential deposition of 

Ca ions and a possible significant loss of P ions, which may be pumped away before 

reaching the substrate. Other investigations suggest the loss of phosphorus ions, due to a 

weaker bonding of P ions to the growing film; they are thus more readily sputtered away 

by incoming ions or electrons [113]. 

 

According to different works [29, 112–114, 125, 126], the as–sputtered coatings were 

confirmed to be amorphous by X-ray diffraction analysis. 

 

As suggested by Van Dijk et al. [126], a heat treatment (annealing) after sputtering is a 

good alternative to convert the amorphous HAp films into a crystalline form. Generally, 

for thin films, annealing is supposed to occur in two steps: recrystallization and grain 

growth. In the recrystallization process time and temperature are related [126]. The effect 

of increasing the temperature reduces the time needed to finish recrystallization [123].  

 

An increase in coating crystallinity after annealing was reported in the range of 400 °C to 

800 °C [128, 129]. In addition, the annealing time varies between 30 min and 4h [122, 

125] and the heating rates ranges from 5 °C/min to 12 °C/min [127, 129]. Annealing 

involves many complex phenomena, such as formation of specific structural phases, 

nucleation and crystal growth, which modifies stress/strain generated during fabrication 

of thin film and affects the bonding between the film and the substrate [112–114, 121–

129]. 
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3. Experimental Methods 
 

This chapter includes a description of the HAp target and the HAp thin films fabricated. 

Only the target used in Ilmenau was fabricated with HAp powders. The target used in 

Lima was a commercially bought one. The characterization techniques used to investigate 

the structure, densification and linear shrinkage, morphology, composition, hardness and 

roughness of the samples are described in each case. 

 

 

3.1 Powders compressing and sintering 
 

HAp powders (MEDICOAT, sintered and crushed powders, particle size between 45 and 

130 μm) were initially compressed in a cylindrical die (φ = 40 mm) using a manual 

uniaxial molding press (Weber-Pressen) at room temperature. Once the pressure for the 

different experiments was reached, as shown in Table 5, eight minutes were added as 

maintenance time at this pressure.  

 
Table 5: Sintered conditions for the green discs. The compressing pressures were applied before sintering. 

Regime HAp weight (g) Additives Pressure (MPa) 

2h, 1200 °C, air 
(first test) 

15.0 H2O (3 %wt) 24 

5.0 H2O (3 %wt) 24 

3.5 H2O (3 %wt) 24 

4h, 1200 °C, air 
(second test) 

2.3 H2O (3 %wt) 40 

2.3 H2O (3 %wt) 56 

2.3 H2O (3 %wt) 72 

2.3 H2O (3 %wt) 80 

2h, 1200 °C, air 
(third test) 

2.3 H2O (3 %wt) 72 

2.3 PEG (2 %wt) + PVA (1 %wt) 72 

4h, 1200 °C, air 
(third test) 

2.3 H2O (3 %wt) 72 

2.3 PEG (2 %wt) + PVA (1 %wt) 72 

 

 

The precision etching and coating system (PECS) equipment requires a target with the 

follow dimensions: Diameter of 19 mm and thickness between 0.9 and 1.1 mm. Therefore, 

3 tests were performed in order to obtain a suitable thickness: 
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 The first test was performed varying the weights of HAp, as shown in Table 5, 

using 24 MPa and H2O as a binder. The thickness after sintering of discs with 15, 

5 and 3.5 g was 7.65 mm, 2.45 mm and 1.78 mm respectively. For the next test, 

the weight was reduced to 2.3 g, the sintering time and the pressure was increased. 

 The second test was performed with 2.3 g and 4h at different pressures, as shown 

in Table 5, observing the behavior. The values of thickness can be found in 

chapter 4, Table 10. The thickness of the sintered discs were in the suitable range. 

The disc sintering at 72 MPa was selected due to a better distribution of the 

material (good surface finishing and no cracks). 

 The third test was conducted with 2.3 g at 72 MPa, using a sintering time of 2h 

and 4h, using H2O as a binder and a mixture of additives in order to improve the 

mechanical strength of the green discs, as polyvinyl alcohol (PVA 13000, 50wt% 

in aqueous solution) as binders and polyethylene glycol (PEG 600, 30wt% in 

aqueous solution) as a plasticizer. The amount added are shown in Table 5. The 

values of thickness can be found in chapter 4, Table 11. The thickness of the 

sintered discs were in the suitable range. The fabricated discs were selected for 

obtaining the HAp targets. 

 

The green produced discs were measured (thickness and diameter) before and after 

sintering to calculate linear shrinkage. In addition, the final weight was also measured to 

calculate the densification. The values can be found in chapter 4, Table 8, Table 9, Table 

10 and Table 11. 

 

After the compression of powders, the HAp discs were sintered at 1200°C in air 

atmosphere with 5 °C/min using an oven Nabertherm with manual controller for 

programing the thermal cycle. As mentioned before, pressureless sintering of HAp is 

generally performed in the temperature range 1100–1250 °C [59], due to its high thermal 

stability [92].  

 

Two different heating regimes (HR) were programed in the oven, as shown in Figure 14. 

The difference between them was the maintaining time at 1200 °C. 
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Figure 14: Heating regime (HR) programs used in the sintering of HAp powders. 

 

In order to obtain a suitable diameter, the discs fabricated with 2.3 g at 72 MPa and 

1200 °C (2h, 4h / PEG+PVA, H2O) were cut with 3D-Micromac's microSTRUCT C laser, 

using a PicoBlade (Lumentum) laser source. The power used was 5 W with a wavelength 

of 355 nm in a pulse length of less than 10 picoseconds. The final product wa the HAp 

target, with a diameter of 19 mm. 

 

 

3.2 Sputtering coating 

 

HAp thin films were grown using two different sputtering process, in order to compare 

the properties of the fabricated HAp films: Radio frequency (RF) magnetron sputtering 

and ion beam sputtering. The coating process in each case is described as follows: 

 

 

3.2.1 RF-magnetron sputtering 

 

The films were grown using a sputtering chamber “home-made” at PUCP in Lima. 

Rectangular shaped (4 mm x 3 mm) titanium alloy pieces (Ti–6Al–4V; ASTM F1108 

grade 5 specification) were used as substrates. A HAp sputtering target (2 in. x 3 mm, 
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99.9% pure; Stanford Advanced Materials) was fixed on the chamber with a face-down 

mode.  

 

The substrates were etched with HCl-30% at 80 °C for 20 minutes, in order to clean the 

surface and thus remove the titanium oxide (pickling). The base pressure was 1x10-5 mbar 

and the working atmosphere was a mixture of Ar (20 sccm) and O2 (5 sccm). The gas 

mixture contained oxygen in order to compensate the oxygen pumped away during the 

sputtering process, as referred by Van Dijk, K. et al. [26]. The working pressure was 

around 6.7x10-3 mbar. The magnetron power was 100 W and the sputter time was 5h. The 

film obtained had a thickness of ~200 nm. A schematic of the RF-magnetron sputtering 

used in Lima is shown in Figure 15. 

 

 
Figure 15: Side view of the RF-magnetron sputtering. The HAp target was fixed in one of the three 
magnetrons.  
 

 

3.2.2 Ion beam sputtering 

 

HAp thin films were grown from the HAp target fabricated with 72 MPa at 1200 °C (4h 

/ PEG+PVA) on titanium disks (1 in. x 0.02 in.; ASTM-B-265/ASME-SB-265 grade 2 

specification) substrates by ion beam sputtering (IBS) process using a Gatan Model 682 

Precision etching and coating system (PECS). 
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A different substrate was used to see if there is an influence on the topography of the 

fabricated films. The substrates were etched with HCl-30% at 80 °C for 20 minutes, in 

order to clean the surface and thus remove the titanium oxide (pickling). The ion 

production was carried out using argon flow at 6.5 bar with two Penning ion guns (PIG) 

at 300 μA and energy beam of 4.5 keV. The substrate was rotated at 30 rpm, in order to 

produce a uniform film. The work pressure was 8x10-3 Pa. For the film production, a total 

of 10 cycles were taken, each cycle of 30 minutes (20 minutes of deposition and 10 

minutes of cooling) resulting in a total time of 5 hours per sample. The deposition rate 

was 1.5 nm/min, therefore, the final thickness was ~300 nm. A schematic of the IBS 

process used in Ilmenau is shown in Figure 16. 

 

 
Figure 16: Schematic of the PECS system. Both Penning ion guns (PIG) were used at 300 μA, increasing 
the rate deposition. The etching gun was not used during the process. The inlet of the vacuum system is 
located on the back wall of the chamber. 

 

After the deposition, both groups of samples were annealed in order to increase de 

crystallinity. Minimal crystallinity required for proper performance of HAp films is 62% 

[48]. The annealing was carried out in air atmosphere for 2h using a Carbolite CWF 11/13 

laboratory chamber furnace with 4 °C/min at different temperatures: 400, 600 and 800°C 

for RF-magnetron sputtering samples; 600 and 800 °C for IBS samples.   
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3.3 Characterization techniques 
 

3.3.1 X-ray diffraction characterization 

 

The X-ray diffraction experiments were performed using Bruker D5000 Theta-Theta X-

ray diffractometer, equipped with a Cu K𝛼 (𝜆= 0.15418 nm) radiation source used at 

40 kV and 40 mA and a Goebel mirror, which converts the X-ray beam coming from the 

X-ray tube into a parallel or focused beam and additionally monochromatizes it. Two 

configurations were performed depending on the sample analyzed: 

a) Bragg-Brentano diffraction was performed to measure the diffraction intensity of 

the sintered disks. X-ray experiments were carried out using a time per step of 2 s, 

a step-size of 0.03°/step and a diffraction angle (2𝜃) covering the range from 5 to 

70°. 

b) Grazing incidence diffraction at an incident angle of 3° was performed to measure 

the diffraction intensity of the films deposited and annealed. X-ray experiments 

were carried out using a time per step of 2 s, a step-size of 0.03°/step and a 

diffraction angle (2𝜃) covering the range from 5 to 70°. 

 

The peaks in an X-ray diffraction pattern are also directly related to the crystal size and 

crystallinity (fraction of crystalline phase) in the samples. The crystal size (τ) is calculated 

according to the Scherrer equation [130]: 

 

 𝜏 =
𝐾 · 𝜆

𝛽ℎ𝑘𝑙 𝑐𝑜𝑠𝜃
 Equation 3 

 

Where K is the Scherrer constant and its actual value depends on at least three things: the 

width of the diffraction maximum measured at a height half-way between background 

and peak, the crystallite shape and the crystallite-size distribution; normally defined as 

0.9 [130]; 𝜆 represents the X-ray wavelength used for the measurement, βhkl is the line 

width of full width half maximum (FWHM) in radians and 𝜃 is the Bragg angle. As a 

rough measure of β, half the difference between the two extreme angles at which the 

intensity is zero, can be taken [130]. 
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The crystallinity refers to the degree of structural order in a solid (arrangement of atoms 

or molecules). Therefore, it has a big influence on material properties such as diffusion, 

hardness or density. It can be determined from the XRD with the following equation 

[131]: 

 

 𝑋𝐶 = (
0.24

𝛽ℎ𝑘𝑙 
)
3

 Equation 4 

 

Where XC is the crystallinity and βhkl is the FWHM of selected reflection peaks, 

respectively. As suggested by Ilinsky, A.G. et al. [132] this parameter is determined by 

the height of the first maximum of the structure factor which is linearly dependent on a 

volume part of crystalline phase. Based on studies carried out by Landi, E. et al. [133], 

this FWHM correspond to the (002) reflection for HAp. 

 

 

3.3.2 Densification and linear shrinkage 

 

Densification is by far the most widely used measurement to characterize the sintering of 

a compacted particles based solid [85]. The progress of sintering is often determined from 

the density or the linear shrinkage of the compacted powder as a function of time or 

temperature during the heat treatment [85]. The bulk density is defined as the mass 

divided by the external volume of the body. A better parameter is the relative density (ρ), 

defined as the bulk density divided by the theoretical density of the solid [85], in the case 

of HAp, the theoretical density value is 3.156 g/cm3 [9]. The following equation relates 

the relative density and porosity (P) [85]: 

 

 𝜌 = 1 − P Equation 5 

 

The linear shrinkage is defined as [85]: 

 

 𝐿𝑖𝑛𝑒𝑎𝑟 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 = (
L0 − L

L0
) Equation 6 

 

Were L0 is the original length and L is the length at a given time or temperature [85].  
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3.3.3 Scanning electron microscopy and energy dispersive X-ray spectroscopy 

 

Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy 

(EDX) using a FIB-SEM Crossbeam AURIGA (ZEISS) was used to observe the 

morphology and chemical composition of samples.  

 

For imaging, an acceleration voltage (EHT) of 5keV was used. For EDX analysis, the 

EHT is generally set to about 2.5–4.0 times the energy of the edge analyzed. Considering 

the Kα edge of calcium (~3.7 keV), the voltage set was 10 keV. 

 

The working distance was 8.5 mm in all the cases. Carbon conductive tape, double sided 

coated, was used to make disks conductive for the SEM-EDX investigations. 

 

 

3.3.4 Hardness measurements 
 

The microhardness test was performed according to ISO 14577-1 [134]. The experiments 

were carried out using the Fischer Picodentor HM 500. The indentation tests were 

performed using 0.2 mN as maximum load and 20 s of maximum load application time. 

 

The ratio between the indentation depth and film thickness was in the range of 1/10−1/20, 

in order to eliminate the influence of the substrate and guarantee its accuracy [135]. The 

maximum indentation depth was 0.02 μm for RF-magnetron sputtering samples and 

0.03 μm for IBS samples. 

 

Martens hardness (HM) is calculated commonly using the Oliver and Pharr method [136]. 

In this method, the hardness is given by: 
 

 𝐻𝑀 =
𝑃𝑚𝑎𝑥
𝐴𝐶

 Equation 7 

 

Where 𝑃𝑚𝑎𝑥 and 𝐴𝑐 are denoted as the maximum identation load and the projected contact 

area, respectively.  
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3.3.5 Roughness measurements 
 

Surface roughness of the HAp films was measured by profilometry using a UBM 

Microfocus type 1080 profilometer with a source illuminator Cold Light Source Schott 

KL 1500 electronic. Each sample was measured to obtain the arithmetical mean 

roughness value (Ra), which is defined as the arithmetic mean of the values of the 

roughness profile within the individual measuring distance (lr). It represents the average 

deviation of the profile from the middle line, as shown in Figure 17 and is represented 

by: 

 

 𝑅𝑎 =
1

𝑙𝑟
∫ |𝑧(𝑥)|
𝑙𝑟

0

𝑑𝑥 Equation 8 

 

 
Figure 17: Schematic representation of the arithmetical mean roughness value (Ra) [137]. 

 

The value of Ra is calculated within the evaluation length (ln), which generally consists 

of five sampling lengths (lr). In addition, the stylus travel (lt) is defined as the evaluation 

length plus start and finish lengths. These setups for roughness measurement are defined 

by DIN EN ISO 4287 and summarized in Table 6: 

 
Table 6: Measurement conditions for roughness measurements [138]. 

Sampling lengths (mm) Evaluation length (mm) Stylus travel (mm)  

0.08 0.40 0.48 

0.25 1.25 1.50 

0.80 4.00 4.80 

2.50 12.50 15.00 

8.00 40.00 48.00 
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This standard defines other roughness parameters, which are represented in Figure 18. 

 

 The average roughness depth (Rz) is the sum of the height of the largest profile 

peak and the depth of the deepest profile valley within a single measurement 

section (lr). Usually, Rz results from averaging the results of 5 lr.  

 The maximum individual depth (Rmax) is the largest individual depth (Rz).  

 The roughness depth (Rt) is the vertical difference of the deepest valley and the 

highest peak within the total measuring distance.  

 

 
Figure 18: Schematic representation of roughness parameters [137].  

 

Three individual measurements were made for each sample. The evaluation length was 

3 mm and 10 mm for the samples fabricated with RF-magnetron sputtering and IBS 

respectively. The measurement speed was 0.13 mm/s and the frequency was 130 points/s.  
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4. Results and discussion 
 

This chapter is divided in three main sections. The first section shows the results of the 

HAp powders and HAp discs used for IBS deposition. The second and third sections show 

the results of HAp thin films produced by RF-magnetron sputtering and IBS respectively. 

 

 

4.1 Sintered HAp discs and targets 
 

4.1.1 X-ray diffraction 

 

The XRD pattern of the HAp powders and discs showed a structure very similar to the 

monoclinic hydroxyapatite given by standard ICDD PDF #89-4405, with lattice 

dimensions of a0 = 0.943 nm, b0 = 1.886 nm, c0 = 0.687 nm. No impurity was observed 

in the XRD pattern, indicating that the achieved inorganic phase is crystalline HAp. The 

patterns are shown in Figure 19, Figure 20 and Figure 21 for the first, second and third 

test, respectively (Table 5).  

 

 
Figure 19: XRD of HAp powders and discs with 3.5g, 5g and 15g and 24 MPa at 1200 °C (4h / H2O). The 
weight were measured before sintering. The pressures were applied before sintering. It can be observed that 
decreasing the weight does not affect the crystalline HAp pattern. 
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Figure 20: XRD of HAp discs fabricated with 40, 56, 72 and 80 MPa at 1200 °C (4h / H2O). The pressures 
were applied before sintering. 

 

 

 
Figure 21: XRD of HAp discs fabricated with 72 MPa at 1200 °C (2h, 4h / PEG+PVA, H2O). The pressure 
was applied before sintering. 
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At this point it can be said that the heating regime used for the sintering of the HAp is 

suitable for producing HAp sintered discs. The crystalline structure is preserved in all 

cases. It can be seen in the Figure 22 that the pattern is maintained after laser cut, so this 

process does not alter the structure of the targets.  

 
 

 
Figure 22: XRD of HAp cut targets with 72 MPa at 1200 °C (2h, 4h / PEG+PVA, H2O). The pressure 

was applied before sintering. 

 

 

The HAp discs fabricated with 2.3 g at 40, 56, 72 and 80 MPa and 1200 °C (4h / H2O) 

and the HAp targets fabricated at 72 MPa and 1200 °C (2h, 4h / H2O, PEG+PVA) after 

laser cut were taken in order to evaluate: Crystal size, to know what mechanism 

(densification or grain growth) predominates during sintering [89]; and crystallinity, to 

identify how this varies in the target and the films. 

 

For calculating the crystal size, the first maximum peak (intensity) was taken, to avoid 

the effect of the noise. For calculating the crystallinity, the peak suggested by Landi, E. 

et al. [4] was taken. In both cases, the chosen peak corresponds to the plane (002). Using 

Equation 3 and Equation 4, a plot was constructed and shown in Figure 23. In the case 

of the powders, the crystal size is 257.9 Å and XC = 39%. Here, the particle size refers to 
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the size of the micro powders, while the crystal size refers to the size of the crystal 

contained in the micro powder particles. Therefore, a HAp particle can contain several 

crystals. It can be seen in all cases that the crystal size in the sintered discs is higher than 

the powder, due to the sintering temperature in the last stage. There is no clear trend 

between the variation of crystal size and crystallinity with the pressure used. 

 

 
Figure 23: Variation of crystal size (black curve) and crystallinity (blue curve) vs. compaction pressure for 
the sintering discs with 40, 56, 72 and 80 MPa at 1200 °C (4h / H2O). 
  

The Table 7 shows the crystal size of the target obtained after cutting. In all the cases the 

crystal size is higher than the same of the powders, while the crystallinity is the practically 

same. Increasing the time from 2h to 4h in the last holding stage (1200 °C), an increase 

in the crystal size and crystallinity is observed. This results confirm the influence of the 

holding time at high temperature on the crystal grown. Therefore, the addition of H2O is 

more favorable for the crystal growth than the addition of PEG+PVA. 

 
Table 7: Variation of crystal size and crystallinity of the HAp targets with 72 MPa at 1200 °C (2h, 4h / 
H2O, PEG+PVA). 

Target Crystal size (Å) Crystallinity (%) 

2h, PVA+PEG 264.1 39 

4h, PVA+PEG 276.4 40 

2h, H2O 265.5 40 

4h, H2O 281.1 41 
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4.1.2 Densification and linear shrinkage 

 

As shown in Table 8, for HAp discs fabricated with 40, 56, 72 and 80 MPa at 1200 °C 

(4h / H2O), increasing the pressure produces an increment in green density. A comparison 

between both the green and sintered density shows an increment of 28% ± 1% in all the 

cases. As shown in Figure 24, the density depends linearly on the compression pressure.  

 
Table 8: Density behavior for HAp discs fabricated with 40, 56, 72 and 80 MPa at 1200 °C (4h / H2O). 

Pressure (MPa) Green density (g/cm3) Sintered density (g/cm3) Variation (%) ρ (%) 

40 1.29 1.64 27 52 

56 1.31 1.68 28 53 

72 1.33 1.69 27 54 

80 1.34 1.73 29 55 

 

 

 
Figure 24: Variation of green density and sintered density vs. compaction pressure for HAp discs fabricated 
with 40, 56, 72 and 80 MPa at 1200 °C (4h / H2O).  
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In the case of the HAp discs targets with 72 MPa at 1200 °C (2h, 4h / PEG+PVA, H2O), 

the variation in density is shown in Table 9. Increasing the time from 2h to 4h in the last 

holding stage (1200 °C), an increase in the sintered density is observed. The higher values 

are obtained with the targets fabricated using PVA and PEG, especially with 4h. 

 
Table 9: Density behavior for HAp discs fabricated with 72 MPa at 1200 °C (2h, 4h / H2O, PEG+PVA). 

Pressure (MPa) Green density (g/cm3) Sintered density (g/cm3) Variation (%) ρ (%) 

2h, PEG+PVA 1.34 1.70 27 54 

4h, PEG+PVA 1.34 1.78 33 56 

2h, H2O 1.33 1.61 21 51 

4h, H2O 1.33 1.69 27 54 

 

 

It can be noticed that the sintered density is much lower than the theoretical density of 

HAp (3.156 g/cm3) with values of relative density (ρ) a little bit higher than 50%. This 

can be explained by the characteristics of the powders sintered. In general, powder 

obtained by sintering and crushing are less dense than those obtained from hydrothermal 

or sol–gel process due to its high porosity [139, 140]. 

 

The porosity has a high impact on densification. As referred by De Jonghe, L.C. & 

Rahaman, M.N [89], sintering involves a competition between coarsening and 

densification. For example, the vapor transport and surface diffusion compete with the 

densifying mechanism [89]. They lead to coarsening of the microstructure and a reduction 

of the driving force for sintering. Therefore, a significant reduction in the densification 

rate can result [89]. High porosity means more routes for the vapor to flow, which keeps 

the pore open and hinders the densification. 

 

In other words, the production of ceramics with high density would require choosing 

sintering conditions so that the non-densifying mechanisms are inactive, for example the 

application of pressure, the adequate sintering atmosphere or the suitable heating regime 

[89]. When coarsening mechanisms dominate, the production of a highly porous solids is 

favored [89]. 
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The Table 10 shows the linear shrinkage for the discs with 40, 56, 72 and 80 MPa at 

1200 °C (4h / H2O). No significant trend with increasing the load was observed. It can be 

suggested that it is possible to further increase the pressure.  

 

Table 10: Linear shrinkage variation for targets with 40, 56, 72 and 80 MPa at 1200 °C (4h / H2O). 
Pressure (MPa) Green thickness (mm) Sintered thickness (mm) Variation (%) 

40 1.42 1.12 21 

56 1.40 1.10 21 

72 1.38 1.10 20 

80 1.37 1.09 20 

 

 

The Table 11 shows the linear shrinkage for the discs with 72 MPa at 1200 °C (2h, 4h / 

H2O, PEG+PVA). Increasing the time from 2h to 4h in the last holding stage (1200 °C), 

produces an increase in the linear shrinkage. 

 
Table 11: Linear shrinkage variation for targets with 72 MPa at 1200 °C (2h, 4h / H2O, PEG+PVA). 

Pressure (MPa) Green thickness (mm) Sintered thickness (mm) Variation (%) 

2h, PEG+PVA 1.37 1.08 21 

4h, PEG+PVA 1.37 1.04 24 

2h, H2O 1.38 1.15 17 

4h, H2O 1.38 1.10 20 

 

  



 

47 
 

4.1.3 Scanning electron microscopy and energy dispersive X-ray spectroscopy 

 

The morphology and particle size of HAp powders are shown in Figure 25. The size of 

the powder particles is 85 ± 25 μm. Particles exhibit an angular morphology, which is 

common on powders fabricated by sintering and crushing. 

 

 
Figure 25: SEM micrographs of the HAp powders showing an angular morphology. 

 

At lower magnification, Figure 26, the rough and porous surface can be seen. 

Furthermore, in Figure 27, the grain boundary and grain size, as well as the pore size 

(1.55 ± 0.44 μm) can be seen. Then, it is expected that agglomerates will not be 

completely crushed after pressing. In this situation, the densifying mechanisms during the 

sintering steps are not favored. 

 

 



 

48 
 

 
Figure 26: SEM micrographs of the HAp powders showing grainy porous surface. 

 

 

 
Figure 27: SEM micrographs of the HAp powders showing the grain limit and pores. 
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The chemical composition of the HAp powders obtained by EDX is shown in Table 12. 

The experimental ratios were calculated by dividing the at% in each case. In addition, the 

EDX spectrum is shown in Figure 28. 
 

Table 12: Chemical composition of HAp powders and ratios. 
Element Wt% At% Error (%) 

C 2.99 6.15 1.13 
O 32.35 50.05 0.29 

Mg 0.28 0.28 5.16 
P 20.73 16.56 0.26 

Ca 43.65 26.96 0.26 
Ratios Theoretical Powder  

Ca/P 1.667 1.628 0.368 
O/Ca 2.600 1.856 0.389 

O/P 4.333 3.022 0.389 
 

 

 
Figure 28: EDX spectrum of the HAp powders composed by C, O, Mg, P and Ca. 

 

It can be seen that the ratios are lower in all the cases, this results suggest that the powders 

correspond to a sub-stoichiometric hydroxyapatite or other amorphous impurities.  
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In the first case, as stated by Landi, E. et al. [4], the presence of calcium-deficient 

hydroxyapatite (CDHA), usually expressed as Ca10-x(PO4)6-x(HPO4)x(OH)2-x, can be 

inferred as responsible of the reduction of the Ca/P ratio (1.50–1.67). On the other hand, 

Wang, H. et al. [141] suggest the presence of tricalcium phosphate (TCP) and summarized 

the variation in Ca/P ratios as a function of the volume percentage of TCP or CaO, as 

shown in Figure 29. 

 

 
Figure 29: Volumetric percentage of TCP and CaO in HAp vs. Ca/P ratios (adapted from [141]).  

 

Traces of other elements such as Mg and C can also be observed. If TCP exists in the 

powders, the presence of Mg can be attributed to the wide solid solution it has. The ideal 

β-TCP structure contains calcium ion vacancies that are too small to accommodate 

calcium ions, but allow the inclusion of magnesium ions, which thereby stabilize the 

structures [142]. Incorporation of a limited amount of Mg (0.4 wt%) was reported in 

synthetic apatites from aqueous systems [143]. Mg was shown to inhibit the crystal 

growth of synthetic apatite, even promoting the formation of amorphous calcium 

phosphate (ACP) at high concentration [143]. 

 

SEM was applied to evaluate the surface topography of the cross section of the targets. 

The SEM investigation of HAp targets sintered with 72 MPa and 1200 °C (2h, 4h / 

PEG+PVA, H2O) after laser cut is shown in Figure 30. 
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Figure 30: SEM micrographs for HAp targets sintered with 72 MPa and 1200 °C: a) & b) 2h, PEG+PVA; 
c) & d) 4h, PEG+PVA; e) & f) 2h, H2O; g) & h) 4h, H2O. Magnification: left images at 2.00 kX and right 
images at 5.00 kX. SEM images were taken after laser cutting. 
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The SEM evaluation reveals a grainy morphology at the surface. The grains boundaries 

are surrounded by several pores in the vicinity, as shown in the low magnification images. 

Furthermore, it can be seen in the targets fabricated with PEG+PVA that the grains look 

bigger and expanded. Smaller grains absorb thermal energy and fuse together to form 

bigger grains; therefore, the grain boundaries tend to disappear, making the targets denser. 

This confirm the results obtained for densification and linear shrinkage. 

 

After increasing the magnification of the SEM images, the near-spherical agglomerates 

could clearly be seen. These irregular agglomerates were mainly composed by Ca, P and 

O as confirmed by the EDX analysis, as shown in Figure 31. 

 

 
Figure 31: EDX spectrum for HAp sintered targets with 72 MPa at 1200 °C (2h, 4h / H2O, PEG+PVA). 

 

The Table 13 and Table 14 show the chemical composition and ratios of the targets 

fabricated with PEG+PVA and H2O, respectively. It can be seen that the Ca/P ratio is 

lower than the theoretical for the target sintered at 1200 °C for 4h with additives 

(PVA+PEG) and higher in the other cases. In all the cases, the Ca/P ratio is higher than 

the HAp powders. 
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Table 13: Composition of HAp sintered targets with 72 MPa at 1200 °C (2h, 4h / PEG+PVA). 
Element (At%) 2h, PEG+PVA Error (%) 4h, PEG+PVA Error (%) 

C 5.36 1.27 5.55 1.20 
O 48.47 0.31 50.05 0.29 

Mg 0.35 4.54 0.30 4.94 
P 16.92 0.27 16.71 0.26 

Ca 28.90 0.26 27.39 0.26 

Ratio     
Ca/P 1.708 0.375 1.639 0.368 
O/Ca 1.677 0.405 1.827 0.389 
O/P 2.865 0.411 2.995 0.389 

 

Table 14: Composition of HAp sintered targets with 72 MPa at 1200 °C (2h, 4h / H2O). 
Element (At%) 2h, H2O Error (%) 4h, H2O Error (%) 

C 4.82 1.49 5.23 1.39 
O 46.83 0.36 48.3 0.34 

Mg 0.00 0.00 0.04 45.63 
P 16.86 0.30 16.58 0.29 

Ca 31.49 0.28 29.86 0.28 

Ratio     
Ca/P 1.868 0.410 1.801 0.403 
O/Ca 1.487 0.456 1.618 0.440 
O/P 2.778 0.469 2.913 0.447 

 

 

As suggested by Pattanayak, D.K. et al. [144], this results indicated that at higher sintering 

temperature, the Ca/P ratios increases possibly due to a loss of phosphorous, which react 

simultaneously with oxygen.  

 

At higher temperatures (1100 – 1400 °C) further decomposition may occur according to 

the reaction presented in Equation 9 [145]. The extent of the reaction is very much 

dependent on the initial stoichiometry of the HAp [146]. Calcium-deficient 

hydroxyapatite (CDHA) shows high degradation tendency, while in case of 

stoichiometric HAp some loss of OH- groups takes place [146]. Phosphorus pentoxide 

(P2O5), is the responsible for losing P and also O, as shown in Equation 10 [145]. 

 

 Ca10(PO4)6(OH)2
               
→    3β­TCP + Ca4(PO4)2O + H2O Equation 9 

 Ca4(PO4)2O
               
→    4CaO + P2O5 ↑ Equation 10 

 



 

54 
 

In addition, the Ca/P ratio is reduced when increasing the time from 2h to 4h at 1200 °C 

in both cases, as shown in Figure 32, which means that more phosphorous is diffusing 

out of the sintered target as the time increases.  

 

 
Figure 32: Comparison in ratios of the HAp targets with 72 MPa at 1200 °C (2h, 4h / H2O, PEG+PVA). 
Theoretical and powder ratios were added for a better view. 

 

From these results, the target with 72 MPa at 1200 °C (4h / PEG+PVA) has been chosen 

to fabricate the films with the ion beam sputter process, because: 

 According to XRD results, its structure is the most similar to that for HAp. 

 It is the target with the highest sintered density. 

 The ratios are very similar to the starting powders.  
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4.2 HAp thin films deposited by RF-magnetron sputtering 

 

After the deposition, the samples were annealed in order to increase de crystallinity. The 

annealed was carried out in air atmosphere for 2h using a Carbolite CWF 11/13 laboratory 

chamber furnace with 4 °C/min at 400, 600 and 800°C. 

 

4.2.1 X-ray diffraction 

 

XRD pattern of the films as-deposited and annealed are shown in Figure 33. It can be 

seen that at annealing temperatures lower than 600 °C the patterns only show the 

substrate. The peaks are in accordance to the hexagonal titanium given by the standard 

ICDD PDF #89-4405, with lattice dimensions of a0 = 0.295 nm and c0 = 0.468 nm. 

 

The titanium peaks are shifted because to the substrate is Ti–6Al–4V, and the inclusion 

of these elements tends to deform the structure. At 800 °C the formation of tetragonal 

rutile (TiO2) is observed, with lattice dimensions of a0 = 0.459 nm and c0 = 0.296 nm in 

accordance to the standard ICDD PDF #21-2176. No HAp peaks can be seen, which 

means an amorphous structure of the films or a possible reaction and loss of P and Ca. 

 

 
Figure 33: XRD of the films fabricated with the high purity HAp target using the RF-magnetron sputtering.  



 

56 
 

4.2.2 Scanning electron microscopy and energy dispersive X-ray spectroscopy 

 

The Figure 34a and Figure 34b show the morphology of the as-deposited films. An 

irregular topography formed by a peculiar network of pits at the micro-scale level can be 

seen, possibly due to the previous acid pickling. 

 

The Figure 34c and Figure 34d show the morphology of the films annealed at 800 °C 

for 2h in air atmosphere. It can be seen a more uniform topography formed by a dispersion 

of needle-like crystals, with length of 1.32 ± 0.24 μm. 

 

 
Figure 34: SEM micrographs of the films fabricated with the high purity HAp target using the RF-
magnetron sputtering: a) & b) as-deposited; c) & d) annealed at 800 °C for 2h in air atmosphere. 
Magnification: left images at 2.00 kX and right images at 5.00 kX. 

 

The chemical composition of both films is shown in Table 15. The high contents of Al 

and Ti is due to the acceleration voltage (ETH = 10 keV) used. High ETH results in most 

primary electrons traveling deeper within the sample, making it possible to detect the 

signal from the substrate. 
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Table 15: Composition of the films fabricated with the high purity HAp target using the RF-magnetron 
sputtering. 

Element (At%) As-deposited Annealed 800 °C 
C 9.30 2.85 
O 32.66 55.10 

Mg 0.28 0.33 
Al 5.83 33.02 
P 0.64 0.07 

Ca 3.67 0.35 
Ti 47.63 8.28 

Ratio   
Ca/P 5.734 0.500 
O/Ca 8..899 157.428 
O/P 51.031 787.142 

 

 

There is a high increase in the oxygen content, probably due to the oxygen of the 

environment was taken during the annealing process. As summarized by Kofstad, P. 

[147], at and below 1200°C, in air or oxygen at atmospheric pressure, the oxidation of 

titanium involves a simultaneous dissolution of oxygen in the metal and oxide scale 

formation (generally TiO2). 

 

In addition, the Ca/P ratio decrease with increasing the temperature. As stated by 

Berezhnaya, A.Yu. et al. [148], the Ca/P ratio increase with the annealing temperature 

(T), due to the loss of P by chemical reaction: 

 

 Ca10(PO4)6(OH)2 + Ti 
       𝑇        
→     Ca𝑘P𝑙O𝑚H𝑛 + TiO2 Equation 11 

 Ca𝑘P𝑙O𝑚H𝑛
       𝑇        
→     P2O5 ↑ +H2O ↑ Equation 12 

 CaO +  TiO2  
       𝑇        
→     CaTiO3 Equation 13 

 

Where CakPlOmHn stands for various compounds of Ca and P [148]. As referred by Ooi, 

C.Y. et al. [149], it is unclear the decline in the Ca/P ratio between 400 and 1000 °C. It 

can be suggested that possibly that Ca diffusion is activated in the titanium substrate at 

this temperature range. Further investigations of diffusion of Ca on Ti must be conducted. 
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4.2.3 Hardness 

 

The Figure 35 shows the variation of hardness with the annealing temperature. The pure 

Ti–6Al–4V substrates have a hardness of ~1750 N/mm2. The as-deposited films are 

composed of amorphous calcium phosphate phase and have a hardness ~2400 N/mm2, 

which is lower than the hardness obtained of amorphous HAp (~4400 N/mm2) and a 

single HAp crystal (~7060 N/mm2) [150]. 

 

The increment in hardness with the annealing temperature is correlated to the morphology 

shown in Figure 34. The annealed films exhibits a hardness of ~2500 N/mm2 at 400 °C, 

~2900 N/mm2 at 600 °C and ~3500 N/mm2 at 800 °C, which is still lower compared to 

amorphous HAp or single HAp crystal. 

 

The hardness increases with the annealing temperature. The sintering conditions selected 

(temperature range between 400 °C and 800 °C and air atmosphere) allowed the 

formation of TiO2, which is thermodynamically more stable. In addition, this oxide layer 

is confirmed to be crystalline by XRD analysis, therefore it is understandable the higher 

value of hardness at 800 °C.  

 

 
Figure 35: Hardness results of the films fabricated with the high purity HAp target using the RF-magnetron 
sputtering.  
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4.2.4 Roughness 

 

The Figure 36 shows the variation of surface roughness (Ra) with the annealing 

temperature. The pure Ti–6Al–4V substrates have a roughness of ~1.117 μm. The as-

deposited thin film have a roughness ~1.153 μm. At temperatures of 400 ºC and 600 ºC 

the roughness was increased (~1.300 μm and ~1.537 μm respectively) and decreased to 

~0.783 μm at 800 ºC. It is known that the variation of surface roughness in a thermal 

treatment is associated to the grain growth and the phase transformation [151]. 

 

The grain growth describes the increase in the average grain size, in this case, of the film 

[89]. At high temperatures, the grain boundaries move faster by diffusion of atoms (or 

ions) from one side of the boundary to the other, causing the growth of one grain at the 

expense of its neighbor and reducing the roughness [89]. 

 

As summarized by Surmeneva, M.A. et al. [152], the surface topography for HAp thin 

films in the range of Rа = 0.32–0.80 μm are suitable for the adhesion and proliferation of 

osteoblasts.  

 

 
Figure 36: Surface roughness vs. annealing temperature of the films fabricated with the high purity HAp 
target using the RF-magnetron sputtering. 
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4.3 HAp thin films deposited by ion beam sputtering 

 

After the deposition, the samples were annealed in order to increase de crystallinity. The 

annealed was carried out in air atmosphere for 2h using a Carbolite CWF 11/13 laboratory 

chamber furnace with 4 °C/min at 600 and 800°C. 

 

4.3.1 X-ray diffraction 
 

XRD pattern of the films as-deposited and annealed are shown in Figure 37. The XRD 

measurement of the as-deposited film shows only the peaks of the hexagonal titanium 

given by the standard ICDD PDF #44-1294 of the substrate, with lattice dimensions of 

a0 = 0.295 nm and c0 = 0.468 nm, which means that the film is amorphous. At 600 °C a 

transition from titanium to rutile can be observed. At 800 °C can be observed: Small peaks 

of monoclinic hydroxyapatite, with lattice dimensions of a0 = 0.943 nm, b0 = 1.886 nm, 

c0 = 0.687 nm (standard ICDD PDF #89-4405); tetragonal rutile (TiO2), with lattice 

dimensions of a0 = 0.459 nm and c0 = 0.296 nm (standard ICDD PDF #21-2176) and 

small peaks of orthorhombic CaTiO3, with lattice dimensions of a0 = 0.5442 nm, 

b0 = 0.764 nm, c0 = 0.538 nm (standard ICDD PDF #42-0423). 

 

 
Figure 37: XRD of the films fabricated with the HAp target with 72 MPa at 1200 °C (4h / PEG+PVA) 
using the PECS. 
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4.3.2 Scanning electron microscopy 

 

The Figure 38a and Figure 38b show the morphology of the as-deposited films. It can 

be seen a rough and porous topography. If these shapes can be appreciated, it means that 

the thickness of the film is not thick enough. 

 

The Figure 38c and Figure 38d show the morphology of the films annealed at 600 °C 

for 2h in air atmosphere. The rough and porous topography is still observed, but there is 

an important difference, the formation of nanocrystals with length of 0.75 ± 0.16 μm. 

 

 
Figure 38: SEM micrographs of the films fabricated with the HAp target with 72 MPa at 1200 °C (4h / 
PEG+PVA) using the PECS: a) & b) as-deposited; c) & d) annealed at 600 °C; e) & f) annealed at 800 °C 
for 2h in air atmosphere. Magnification: left images at 5.00 kX and right images at 10.00 kX. 
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The Figure 38e and Figure 38f show the morphology of the films annealed at 800 °C for 

2h in air atmosphere. The topography is more uniform and it can be observed several 

nanocrystals with length of 0.82 ± 0.14 μm. 

 

The chemical composition of both films is shown in Table 16. There is an important 

amount of different elements detected with the EDX, due to contamination of the samples 

inside the chamber during the sputter process. The PECS equipment is used for etching 

silicon samples, and probably the steel target holder was sputtered during the process, 

which can explain the contamination. In addition, an increase in the oxygen content was 

detected, probably due to the oxygen of the environment was taken during the annealing 

process.  

 

It can be observed that the Ca/P ratio decreases with increasing the temperature. As 

mentioned before, this can suggest the loss of a little amount of P by chemical reaction 

and a loss of Ca probably due to diffusion on Ti substrate. In addition, at 800 °C, the 

presence of HAp and CaTiO3 is observed from Figure 37, which suggests that the Ca is 

shared by both species. The amount of Ti is higher than the same obtained for the samples 

fabricated with RF-magnetron sputtering. This means that more Ti is reacting with the O 

from the environment due to its high activity at elevated temperatures [147].  

 

Table 16: Composition of the films fabricated with the HAp target with 72 MPa at 1200 °C (4h / 
PEG+PVA) using the PECS. 

Element (at%) As-deposited Annealed 600 °C Annealed 800 °C 
C 5.98 3.24 2.51 
O 52.22 58.77 63.55 
Fe 2.46 2.09 0.58 
Ni 0.44 0.39 0.09 
Mg 0.00 0.19 0.13 
Al 0.57 0.73 0.38 
Si 3.35 4.04 0.28 
P 4.15 4.49 0.74 

Ca 12.80 13.16 1.36 
Ti 17.07 11.82 30.21 
Cr 0.95 1.08 0.17 

Ratio    
Ca/P 3.084 2.931 1.838 
O/Ca 4.079 4.466 46.728 
O/P 12.583 13.089 85.878 
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4.3.3 Hardness 

 

In this case, the evolution of films hardness is more noticeable. The Figure 39 shows the 

variation of hardness with the annealing temperature. The increment in hardness with the 

temperature is correlated with the morphology of the films, shown in Figure 38. The 

Martens hardness of the substrates was ~3300 N/mm2.  

 

It can be seen that at 800 °C there is a considerable increase in hardness (~12500 N/mm2) 

probably due to the formation of TiO2 nanocrystals. This hardness value is close to the 

theoretical hardness value of TiO2 (~15000 N/mm2) [153]. In addition, this oxide layer is 

confirmed to be crystalline by XRD analysis, therefore it is understandable the higher 

value of hardness at 800 °C.  

 

 
Figure 39: Hardness results of the films fabricated with the HAp target with 72 MPa at 1200 °C (4h / 
PEG+PVA) using the PECS. 
 
 

4.3.3 Roughness 
 

The Figure 40 shows the variation of surface roughness (Ra) with the annealing 

temperature. The pure titanium substrates exhibit a roughness of ~0.630 μm. The as-

deposited thin film has a roughness ~1.123 μm. At temperatures of 600 ºC and 800 ºC the 

roughness decreases to ~1.033 μm and ~0.800 μm respectively. As stated before, this is 

due to the grain growth and the phase transformation during heat treatment. 
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Figure 40: Surface roughness vs. annealing temperature of the films fabricated with the HAp target with 
72 MPa at 1200 °C (4h / PEG+PVA) using the PECS.  
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5. Conclusions 
 

Hydroxyapatite (HAp) is considered as biomaterial of importance in the field of biology 

and medicine due to their abundance in the living organism. In this work, HAp thin films 

were fabricated using two different sputter techniques: Radio frequency (RF) magnetron 

sputtering and ion beam sputtering (IBS). The films were grown on Ti–6Al–4V and pure 

titanium substrates respectively. Only the target used in TU-Ilmenau was fabricated with 

HAp powders in air atmosphere at different conditions: 3.5g, 5g and 15g and 24 MPa at 

1200 °C (4h / H2O); 72 MPa at 1200 °C (2h, 4h / PEG+PVA, H2O); 72 MPa at 1200 °C 

(2h, 4h / PEG+PVA, H2O). The pressures were applied before sintering. The target used 

in PUCP-Lima was a commercially bought one.  

 

The results for the sintered HAp discs shows that the fabricated target for the IBS process 

using 72 MPa before sintering, at 1200 °C for 4h using a mixing of PEG and PVA in 

aqueous solution presents structural and chemical characteristics very similar to the 

powders, with a sintered density of 1.78 g/cm3, which represent the 56% of the theoretical 

density (3.156 g/cm3) of HAp. Therefore, the addition of PEG and PVA promotes the 

densification mechanisms. 

 

The as-deposited thin films obtained with both techniques were amorphous. In the case 

of the films fabricated with RF-magnetron sputtering, the crystallinity of HAp was not 

improved using annealing at 400, 600 and 800 °C. In the case of the films fabricated with 

IBS, the XRD results shows the formation of crystalline HAp and CaTiO3. In both cases, 

the evolution in crystallinity of the titanium oxide formed due to the high-temperature 

oxidation is appreciated. 

 

The SEM analysis shows a rough topography in the as-deposited, annealed at 400 and 

600 °C (RF-magnetron sputtering) and 600 °C (IBS). For the samples annealed at 800 °C, 

an uniform topography formed by a dispersion of needle-like crystals in the case of RF-

magnetron sputtering samples and nanocrystals in the case of IBS samples can be seen.  

 

In both cases the EDX measurements show a decrease in Ca/P ratio with increasing the 

temperature, probably due the loss of a little amount of P by chemical reaction and a loss 
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of Ca probably due to diffusion on Ti substrate. For the samples fabricated with IBS and 

annealed at 800 °C, the Ca/P ratio was 1.838 and the presence of HAp and CaTiO3 was 

confirmed by XRD. It can be suggested that the Ca is shared by both species, in which 

case the Ca/P ratio of the HAp formed can be more close to the theoretical. 

 

In addition, the presence of Ti and O is observed, which means that this heat treatment 

was not properly controlled. The high content of oxygen can suggest a chemical reaction 

of substrates with the environment obtaining TiO2 as oxidation product. Therefore, 

annealing treatment in inert atmospheres as N2 or Ar must be recommended. 

 

Hardness results shows that the hardness increases with the annealing temperature in both 

cases, due to the formation of titanium oxide crystals. 

 

The roughness for the fabricated films with RF-magnetron sputtering increases at 600 °C, 

then its decrease at 800 °C. The roughness for the fabricated films with IBS decreases 

with increasing the annealing temperature. In both cases, due to the formation of crystals. 

 

Future work should focus on performing the annealing treatment in an inert atmosphere 

such as N2 or Ar in order to improve the crystallinity of the films. A proper heat treatment 

study through the control of annealing temperature must be performed in order to produce 

crystalline HAp films. In addition, the relation between thickness and crystal growth must 

be determinate. Thus, the major goal in HAp coating research must be the improvement 

of the crystallinity 

 

In order to fulfill the biological requirements, culture bone cell test must be performed. 

Roughness has an important influence in the bone-implant interface shear strength. 

Therefore, mechanical shear test could be suggested for a better correlation with the 

obtained properties.  
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