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Abstract 

Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient 

computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the 

case of computer-based qualification for breast cancer diagnosis, the present article proposes two deep 

learning architectures to efficiently and effectively detect and classify mitosis in a histopathological 

tissue sample. 

The first method consisted of two parts, entailing a preprocessing of the digital histological image and 

a free-handcrafted-feature Convolutional Neural Network (CNN) used for binary classification. Results 

show that the methodology proposed can achieve 95% accuracy in testing with an F1-score of 94.35%, 

which is higher than the results from the literature using classical image processing techniques and also 

higher than the approaches using handcrafted features combined with CNNs. The second approach 

was an end-to-end methodology using semantic segmentation. Results showed that this algorithm can 

achieve an accuracy higher than 95% in testing and an average Dice index of 0.6 which is higher than 

the results from the literature using CNNs (0.9 F1-score). Additionally, due to the semantic properties 

of the deep learning approach, an end-to-end deep learning framework is viable to perform both tasks: 

detection and classification of mitosis. 

The results showed the potential of deep learning in the analysis of Whole Slide Images (WSI) and 

its integration to computer-aided systems. The extension of this work to whole slide images is also 

addressed in the last two chapters; as well as, some computational key points that are useful when 

constructing a computer-aided-system inspired by the described technology. 
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Chapter 1 

 

Computational Pathology and Image 

Analysis in Breast Cancer 

 
1.1 Breast Cancer: Overview of the problem 

 
Reports describing global patterns of cancer incidence, mortality rates, and trends still present breast 

cancer as the most frequently diagnosed cancer and the leading cause of cancer-related death among 

women, worldwide [1, 2]. 

Recent estimations by the World Health Organization (WHO) position breast cancer in the top 5 

killing types of cancer [3]. Only in the U.S, nearly 330 080 new cases of breast cancer (invasive and 

non-invasive) and 40 920 deaths in 2018 were reported in [4]. In addition, as of January 2018, there 

were more than 3.1 million women with a history of breast cancer [4]. 

Although statistics seem alarming, death rates have been decreasing since the early 2000s. In [1], A. 

Jemal, et al. reported a favorable mortality trend in the United States, the United Kingdom, Australia, 

and France due to a reduction in the use of menopausal hormone therapy, early detection through 

mammography and improved treatment. Unfortunately, this scenario was not the same in some Eastern 

European, Asian, Latin American, and African countries. The unfavorable mortality trend in several 

of these countries may have been exacerbated by poor survival because of lack of or limited access to 

early detection services and treatment, and disproportionately high prevalence of gene mutations (e.g. 

BRCA1 and BRCA2 mutations) in certain regions [1]. 

There seems to be no specific pattern for breast cancer rates and trends. Even if incidence rates 

follow an increasing or, in some regions, stable trend, differences in risk factors (e.g. reproductive 

patterns and obesity), access to early detection and timely treatment amongst countries will determine 

the best course of action when targeting this problematic in a specific population. In addition, histologic 

changes and hormonal influences on the breast should be taken into consideration in the different stages 

of women’s lives. 
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1.2 Breast Cancer Histology 

 
Remarkable technological advances in breast cancer imaging have position mammography as the non- 

invasive gold standard screening technique to detect breast cancer early. Nevertheless, histological 

examination of tissue specimens remains the cornerstone for the diagnosis and accurate evaluation of 

breast diseases [5]. 

According to the World Health Organization (WHO), there exist several classes for breast tumor 

classification at the cellular level [6]. The most common type of breast cancer, known as breast car- 

cinoma, is the one that arises from the epithelial cells of the breast. The histological classification of 

breast carcinoma is also extremely important considering the significant implications of the subtypes 

in the prognosis and treatment of the disease. The three most frequently subtypes, representing nearly 

75% of breast carcinomas, are: ductal carcinoma in situ (DCIS), invasive ductal carcinomas (IDC) and 

invasive lobular carcinoma (ILC) [7, 8]. 

 
1.2.1 Histopathology and tissue analysis procedure 

 
Histopathology refers to the study of microscopic structures of diseased or abnormal tissues. Generally, 

this examination is prescribed after observing physiological symptoms (e.g. tumors) in a patient. The 

process of this study starts by removing tissue samples from the breast by means of biopsy or surgical 

resection. Depending on certain factors such as location, size, or tumor composition (e.g. solid tumor 

or cyst) the doctor will determine whether to perform a Fine Needle Aspiration (FNA) or a Core Needle 

Biopsy. 

Once obtained, tissue samples are prepared for viewing under a microscope. To observe the tissue 

under a microscope, the sample is first sectioned into thin cross sections with a microtome. Then, 

fixation is used to stop the metabolic activities and stabilize the tissue to prevent decay and preserve 

the histological structure. The fixation is made either with a chemical fixative (e.g. formaldehyde) or 

frozen section procedure. The latter technique of preparation is faster and therefore principally used 

in the examination of tissue during surgery. However, the histological slides produced by the frozen 

section procedure are of lower quality [7, 9]. 

After fixation, the tissue sections are mounted on glass slides and stained with pigments (e.g. H&E, 

Saffron, or molecular biomarkers) to enhance the contrast and highlight specific cellular structures under 

the microscope. Hematoxylin-and-eosin (H&E) staining is used widely in a histopathological analysis. 

Hematoxylin stains the cell nuclei in a blue-purple shade, while eosin stains cytoplasm and stroma in 

various shades from reddish to a pinkish color, and collagen in a pale pink shade (see Figure 1). 

Finally, pathologists observe and evaluate the architecture of the tissue, the distribution and the 

morphology of the cells in very fine details, and determines the level of the severity of the disease. Due 

to different biological conditions of the organism, this process is time-consuming and requires highly 

skilled expertise. 

 
1.2.2 Breast cancer grading 

 
Histopathology plays an important part in determining the treatment strategy for patients with breast 

cancer. This strategy should also rely on an objective evaluation of the aggressiveness of the tumor. One 
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Figure 1: H&E staining effects digitized breast cancer tissue sample. (a) Complete digitized glass slide 

(0.5X magnification). (b) Different structures and its color properties in a region at 10X magnification. 

(c) Smaller structures and its color properties seen at 40X magnification. Images taken from [7]. 

 
of the most known and used systems is the Nottingham Histology Score, also refer as Scarff-Bloom- 

Richardson grading system [10]. The following descriptions summarize the criteria used to determine 

the Nottingham Histologic Score and the final grading of the tissue in more detail as seen in [11]. 



8 

Computational Pathology and Image Analysis in Breast Cancer 
 

 

 

• Glandular/Tubular Differentiation 

Score 1: ≥ 75% of tumor area forming glandular/tubular structures. 

Score 2: 10% to 75% of tumor area forming glandular/tubular structures. 

Score 3: ≤ 10% of tumor area forming glandular/tubular structures. 

• Nuclear Pleomorphism 

Score 1: Nuclei small with little increase in size in comparison with normal breast epithelial 

cells, regular outlines, uniform nuclear chromatin, little variation in size. 

Score 2: Cells larger than normal with open vesicular nuclei, visible nucleoli, and moderate 

variability in both size and shape. 

Score 3: Vesicular nuclei, often with prominent nucleoli, exhibiting marked variation in 

size and shape, occasionally with very large and bizarre forms. 

• Mitotic Count 

Score 1: less than or equal to 7 mitoses per 10 high power fields. 

Score 2: 8 − 14 mitoses per 10 high power fields. 

Score 3: equal to or greater than 15 mitoses per 10 high power fields. 

• Overall grade 

Grade 1: scores of 3, 4, or 5. 

Grade 2: scores of 6 or 7. 

Grade 3: scores of 8 or 9. 

 
The mitotic count score criteria is refer to a high power field (HPF) which is a parameter that varies 

according to the configuration of the microscope. On average, the diameter of a HPF is 0.55 mm [12]. 

 

1.3 Histopathological Image Analysis 

 
1.3.1 Digital Pathology 

 
Digital systems were introduced to the histopathological examination in order to deal with complex and 

huge amount of information obtained from tissue specimens. Digital images were originally generated 

by mounting a camera on the microscope.  The static images captured only reflected a small region  

of the glass slide,  and the reconstruction of the whole glass slide was not frequently attempted due  

to its complexity and time-consuming. However, precision in the development of mechanical systems 

has made possible the construction of devices such as whole slide digital scanners. The stored high- 

resolution images allow pathologists to view, manage, and analyzed the digitized tissue on a computer 

monitor in a similar manner as under an optical microscope. 

Whole slide imaging (WSI) technology, also referred to as virtual microscopy, have proven to be 

useful in a wide variety of applications in pathology (e.g. image archiving, telepathology, image analy- 

sis). In essence, a WSI scanner operation principle consists in moving the glass slide a small distance 
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every time a picture is taken in order to capture the entire tissue sample. Every WSI scanner has six 

components: (a) a microscope with lens objectives, (b) light source (bright field and/or fluorescent), (c) 

robotics to load and move glass slides around, (d) one or more digital cameras for capture, (e) a com- 

puter, and (f) software to manipulate, manage, and view digital slides [13]. The hardware and software 

used for these six components will determine the key features to analyze when choosing a scanner. In 

[13], N. Farahani, et al. compared 11 WSI scanners from different manufacturers regarding imaging 

modality, slide capacity, scan speed, image magnification, image resolution, digital slide format, mul- 

tilayer support, and special features their hardware and software may offer. This study showed that 

robotics and hardware used in a WSI scanner are currently state-of-the-art and almost standard in every 

device. Software, on the other hand, has some ground for further development. 

 
1.3.2 Whole Slide Image reconstruction 

 
The Digital Imaging and Communications in Medicine (DICOM) standard was adopted to store WSI 

digital slides into commercially available PACS (Picture Archiving and Communication System) and 

facilitate the transition to digital pathology in clinics and laboratories. Due to the WSI dimension and 

size, a new pyramidal approach for data organization and access was proposed by the DICOM Standards 

Committee in [14]. 

A typical digitalization of a 20mm 15mm sample using a resolution of 0.25µm/pixel, also referred 

to as 40   magnification, will generate an image of approximately 80000   60000 pixels. Considering 

a 24-bit color resolution, the digitized image size is about 15GB. Data size might even go one order 

of magnitude higher if the scanner is configured to a higher resolution (e.g.  80  ,  100  ),  Z planes  

are used or additional spectral bands are also digitized. In any case, conventional storage and access 

to these images will demand excessive computational resources to be implemented into commercial 

systems. Figure 2 describes the conventional approach (i.e. single frame organization) which stores the 

data in rows that extend across the entire image. 
 

Figure 2: Single frame organization of Whole Slide Images. Image taken from [14]. 
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Other types of organizations have also been studied. Figure 3 describes the storage of pixels in tiles, 

which decreases the computational time for visualization and manipulation of WSI by loading only the 

subset of pixels needed into memory. Although this approach allows faster access and rapid panning 

of the WSI, it fails when dealing with different magnifications of the images as it is the case in WSI 

scanners. Figure 4 depicts the issues with rapid zooming of WSI. Besides having to load a larger subset 

of pixels into memory, algorithms to perform the down-sampling of the image are time-consuming. At 

the limit, to render a low-resolution thumbnail of the entire image, all the data scanned must be accessed 

and down-sampled [14]. Stacking precomputed low-resolution versions of the original image was pro- 

posed in order to overcome the zooming problem. Figure 5 describes the pyramidal structure used to 

store different down-sampled versions of the original image. The bottom of the pyramid corresponds to 

the highest resolution and it goes up to the thumbnail (lowest resolution) image. For further efficiency, 

tiling and pyramidal methods are combined to facilitate rapid retrieval of arbitrary subregions of the 

image as well as access to different resolutions. In this combined approach, each image in the pyramid 

is stored as a series of tiles as shown in Figure 6. 
 

Figure 3: Tiled image organization of Whole Slide Images. Image taken from [14]. 

 

As mentioned in previous paragraphs, WSI can occupy several terabytes of memory due to the data 

structure. Depending on the application, lossless or lossy compression algorithms can be applied. Loss- 

less compression typically yields a 3X 5X reduction in size; meanwhile, lossy compression techniques 

such as JPEG and JPEG2000 can achieve from 15X 20X up to 30X 50X reduction respectively [14]. 

Due to no standardization of WSI files’ formats, scan manufacturers may also develop their own propri- 

etary compression algorithms based on JPEG and JPEG2000 standards. Commercial WSI formats have 

a mean default compression value ranging from 13X to 27X. Although the size of WSI files is consider- 

ably reduced, efficient data storage was not the main issue when designing WSI formats for more than 

10 years. In [15], H. Helin, et al. addressed this issue and proposed and optimization to the JPEG2000 

format which yields up to 176X compression. Although no computational time has been reported in 

the aforementioned study, this breakthrough allows for efficient transmission of data through systems 

relying on Internet communication protocols. 
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Figure 4: Rapid zooming issues using tiled image organization. Access to lower resolution versions 

imply large amount of data loaded into memory. Image taken from [14]. 
 

Figure 5: Pyramidal organization of Whole Slide Images. Image taken from [14]. 

 
1.3.3 Computational Pathology 

 
Computational pathology is a term which refers to the integration of WSI technology and image analy- 

sis tools in order to perform tasks that were too cumbersome or even impossible to undertake manually. 

Image processing algorithms have evolved yielding enough precision to be considered in clinical appli- 

cations. A few examples mentioned in [13] include morphological analysis to quantitatively measure 
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Figure 6: Integration of tiled image organization and pyramidal structure for Whole Slide Images. 

Image taken from [14]. 

 
histologic structures [16]; automated selection of regions of interest such as areas of most active pro- 

liferative rate [17]; and automated grading of tumors [18]. Moreover, educational activities have also 

benefited from the development of computational pathology. Virtual tutoring, online medical examina- 

tions, performance improvement programs, and even interactive illustrations in articles and books are 

being implemented thanks to this technology [13]. 

In order to validate a WSI scanner for clinical use, several tests are conducted following the guide- 

lines developed by the College of American Pathologists (CAP). On average, reported discrepancies 

between digital slides and glass slides are in the range of 1% to 5%. However, even glass-to-glass slide 

comparative studies can yield discrepancies due to observer variability and increasing case difficulty 

[13]. 

Although several studies in the medical community have reported using WSI scanners to perform 

the analysis of tissue samples, pathologists remain reluctant to adopt this technology in their daily 

practice. Lack of training, limiting technology, shortcomings to scan all materials, cost of equipment 

and regulatory barriers have been reported as the principal issues [13]. In fact, it was until early in 2017 

that the first WSI scanner was approved by the FDA and released to the market [19]. Nevertheless, WSI 

technology has the potential to enhance the practice of pathology by introducing new tools which help 

pathologists provide a more accurate diagnosis based on quantitative information. 

 

1.4 Motivation and objectives 

 
Besides its contribution to computer-aided diagnosis, computational pathology has opened up a new 

dimension in the study of complex diseases, by integrating innovative image analysis tools able to pro- 

vide new features exposing different characteristics of the disease, impossible to analyze using classical 

microscopy techniques. In breast cancer, for instance, it allows pathologists to perform a comprehen- 

sive study of the microscopic structures in the tumor, and grade the tissue samples to yield an accurate 

diagnosis. 
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Figure 7: Mitosis stages seen in an WSI. Image taken from [20]. 
 

Figure 8: Different shapes and sizes of mitosis seen in a WSI. 

 
As it was described in a previous section, grading of tissue samples is not only a key point for 

accurate diagnosis but also important in the selection of the patient’s treatment. Pathologists frequently 

use the Nottingham Grading System to obtain an overall grade of the tissue being analyzed.  From  

the three criteria evaluated by the NGS, mitotic counting is the most challenging tasks for doctors and 

image analysis algorithms. 

Mitosis occupies a portion of the cell cycle. It has 6 phases (i.e. interphase, prophase, prometaphase, 
metaphase, anaphase, and telophase) followed by a final stage, in which the cell physically separates, 

named cytokinesis (see Figure 9). In the digitized version of a glass slide at enough magnification, we 

can visualize some of the stages of mitosis. Figure 7 depicts four different patterns frequently observed 

when evaluating a tissue. These differences in visual aspects make the automatic detection of mitosis a 

very complicated task. 

As shown in Figure 8, there are some other characteristics which are also worth considering when 

developing a robust image analysis algorithm. In a WSI at 40X magnification we can find the following 

differences regarding mitosis: 
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• They do not appear with the same shape and size in the WSI. 

There exists considerable variations of intensity in the pixel surrounding and inside the nuclei. 

This is probably a direct effect of the staining process. 

Mitosis resemble other types of objects such as apoptosis, necrosis, dust particles, lymphocytes, 

among others. 

• The number of mitosis in a HPF is usually lower than 10. 

Regardless of the remarkable progress of digital pathology, the integration with image analysis 

techniques is still in its early beginnings. Therefore, the purpose of this thesis is to expand the research 

in computational pathology by introducing and comparing two deep learning approaches in order to 

automatically detect and classify mitosis in a whole slide image. In order to achieve this, several 

secondary objectives were also defined: 

 
Normalize images from different scanners in order to account for the differences in glass slide 

preparation, especially in the staining process. 

The methods studied should be robust and usable in clinical applications. Therefore, the method- 

ology proposed should not rely on classical image processing techniques due to its variability 

and dependency on hand-crafted features. The introduction of image analysis algorithms used in 

natural images (e.g. cars, pedestrian, etc.) will definitely motivate the generation of applications 

in computational pathology using state-of-the-art image analysis techniques. 

 

1.5 Overview of the document 

 
This thesis is structured in five chapters. 

 
Chapter 2: reviews the algorithms used in recent research regarding mitosis detection and classi- 

fication. It also introduces deep learning concepts of convolutional neural networks and semantic 

segmentation in order to fully understand the methodology proposed. 

Chapter 3: describes the methodology followed to detect and classify mitosis in frames taken 

from a WSI. The chapter describes all the preprocessing steps previous to the integration with 

two different deep learning approaches. 

Chapter 4: presents the results of the comparison between two deep learning approaches. It also 

discusses some key point regarding the implementation of the methodology, its robustness, and 

clinical applications. Finally, 

Chapter 5: presents the conclusions of the work and some perspectives for further research on 

the topic. 

• 

• 

• 

• 

• 

• 

• 

• 
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Figure 9: Mitosis stages. Image taken from [21]. 
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Chapter 2 

 

Review of Histopathological Image 

Analysis Methods 

 
Microscopy has evolved remarkably over the years by incorporating imaging processing techniques. 

In the last decade, it has also benefited from the integration of artificial intelligence (AI) algorithms 

which have been shown to improve diagnostic accuracy and provide quantitative metrics useful for 

pathologists. In fact, in 2018, researchers at Google AI Healthcare, reported the integration of modern 

AI into a standard microscope to detect metastatic breast cancer in sentinel lymph nodes and prostate 

cancer in prostatectomy specimens [22]. Efforts made in this field are frequently driven by the need 

to overcome financial and workflow barriers encounter when using whole slide imaging scanners (e.g. 

prices of WSI scanners, IT infrastructure, operating personnel, among other). However, due to the 

advantages the latter technology poses, several researchers have been studying different alternatives to 

integrate AI and image processing algorithms with WSI. The present chapter will focus on the literature 

concerning the medical problematic detailed in Chapter 1: mitosis analysis in breast cancer; as well as 

those methods which can be applied to WSI analysis. 

 

2.1 Detection and classification of cell nuclei in histological images 

 
Operator-bias in cancer grading is undoubtedly one of the most important problems of cancer diag- 

nosis and grading. In particular, nuclei analysis is the most cumbersome task for pathologists due its 

different properties and representations in a digital image. Regarding breast cancer and mitosis analy- 

sis, the image processing algorithms studied in the literature are categorized into two different groups: 

segmentation and classification. 

Detection and segmentation of mitosis have been extensively studied in the literature. In [20], the 

authors suggested two different subcategories for segmentation algorithms: region based cell segmenta- 

tion and boundary based cell segmentation. Among region-based approaches, X. Yang, et al. proposed 

a novel marker-controlled watershed algorithm which can effectively segment clustered cells with fewer 

over-segmentation [23]. A. Nedzved, et al. also applied morphological operations, and combined them 

with thinning algorithms to segment cells in histological images [24]. In order to improve robustness, 

different nuclear models using different morphological features were proposed and validated by G. 
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Lin, et al. in [25]. Moreover, in [20], authors proposed a segmentation controlled by the relative en- 

tropy between cells and background using opening and closing morphological operations.   Similarly, 

A. Chowdhury, et al. applied entropy thresholding to detect and segment monocyte cells in order to 

track them using bipartite graph matching algorithms [26]. Contextual information from objects in an 

image was also reported as a methodology for detection and segmentation of cell nuclei. M. Seyed- 

hosseini, et al. introduced a framework called multi-class multi-scale series contextual model, which 

uses contextual information from multiple objects and at different scales for learning discriminative 

models in a supervised setting [27]. Following the model of extracting information from several scales, 

Y. Al-Kofahi, et al. proposed an automatic segmentation algorithm using graph-based binarization and 

multi-scale Laplacian-of-Gaussian filtering [28]. On the other hand, regarding the second subcategory, 

level set methods are quite popular in the literature for boundary-based segmentation [29, 30, 31]. Ac- 

tive contour was also reported in [32] for automated segmentation of breast cancer nuclei. To sum up, 

most region-based methodologies assume a similarity in the size or region properties of different cells 

which is not the case for mitosis in breast cancer. Meanwhile, boundary-based algorithms are strongly 

dependent on the initial conditions and stopping criteria. Either way, all algorithms rely of prior knowl- 

edge for detection and segmentation which does not allow the development of fully automated systems. 

Literature for cell nuclei classification is also as extended as the one reported for segmentation. 

O. Sertel, et al. proposed pixel level likelihood functions and component-wise two-step thresholding 

for mitosis counting in digitized images. They reach an average sensitivity of 81.1% and 12.2 false 

positive detections [33]. Unsupervised clustering algorithms were also studied by V. Roullier,  et al.  
In [34],  authors proposed a graph-based multi-resolution approach which yielded a good sensitivity  

( 70%) for Grade 1 and Grade 3 breast cancer in WSI. Similarly, B. Weyn, et al. proposed a k-nearest 

neighbor classification approach combined with wavelets features for multiscale image analysis of iso- 

lated nuclei in invasive breast cancer tissue. Authors achieved a recognition score of 76%; however, 

the presence of false negative cases restricted the immediate practical application [35]. Other machine 

learning approaches were also considered in the literature. H. Irshad, et al. evaluated different clas- 

sifiers (decision tree, linear kernel SVM and non-linear kernel SVM) using color and texture features 

(e.g. blue ratio, Haralick, HMAX, and SIFT), and reached 76% in f-score [36]. Y. Tao, et al. also 

studied SVMs using 59 parameters combining geometric properties and intensity information. Results 

showed an 89.2% in accuracy using a specific subset of features [37]. An ensemble of cascade ad- 

aboosts [38] were also reported to yield significant improvement in mitosis classification. However, 

this method fails to demonstrate its robustness as region features used in the study may have signif- 

icant variations among various datasets. Genetic algorithms for mitosis classification were proposed 

by R. Nateghi, et al. in [39]. The authors used genetic optimization algorithms to eliminate potential 

non-mitosis from the histological image. Then, texture features were computed from the remaining 

potential cell nuclei and classify using SVMs. Results were promising (78.47% f-score); however, they 

do not make a considerable improvement in the machine-learning category for mitosis classification. 

Taking a step further, the authors in [40] proposed the first complete grading system of breast cancer 

using histological images. In particular, for mitosis detection, they proposed two Gaussian models for 

classification using geometric and intensity features. The results obtained were promising; however, the 

system’s scores tend to be slightly lower than pathologist’s scores. With the development of artificial 

intelligence algorithms for image analysis, a few studies were conducted regarding the mitosis classifi- 

cation task. In [41], authors proposed a deep max-pooling convolutional neural network approach for 

mitosis classification which achieved 0.72 f-score. Recently, M. Saha, et al. improve the performance 

of convolutional neural networks (CNN) by adding additional information from hand-crafted features 
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[42]. Results showed a promising 0.9 f-score which entails the out-performance of deep-neural-network 

approaches over classical machine-learning ones. T. Araujo, et al. also contributed to the study of CNN 

by proposing a methodology which uses the features obtained from the convolutional layers as inputs 

of a support vector machine (SVM) classifier. This method achieved an 83.3% accuracy and 95.6% 

sensitivity [43]. Although these last results suggest better ways to address the mitosis challenges in 

histological imaging, the lack of available ground-truth data is still a major issue for transferring the 

developments in deep learning to the biomedical imaging domain. S. Albarqouni, et al. evaluated a 

method combining crowd-sourcing for data annotation and convolutional neural networks for classifi- 

cation. However, this proposal needs further research as the results reported do not exceed 0.8 in f-score 

[44]. To sum up, Table I summarizes and categorizes the methodologies exposed in the last paragraphs 

according to the image analysis algorithms employed. 

Table I: Summary of the literature review. 

Tasks Categories Methods proposed 

 
Mitosis detection/segmentation 

Region-based algorithms Marker control watershed [23], 

Morphology [24, 25], Entropy 

thresholding [26], Contextual 

model [27], Graph binarization [28]. 

Boundary-based algorithms Level sets [29, 30, 31], Active con- 

tours [32]. 

 

Mitosis classification 
Image processing and analysis Pixel level likelihood [33], Un- 

supervised clustering [34], 

Wavelets [35],   Textural   fea- 

tures [36], Adaboosts [38]. 

Machine learning REMSS [20], SVM [37], Genetic al- 

gorithms [39],  AggNet [44],  Deep 

learning [45]. 

 
 

2.1.1 Challenges in mitosis detection and classification 

 
Since the development of WSI scanners, many researchers have stepped in contributing with state-of- 

the-art methodologies to improve and integrate this technology in clinical procedures. In the academic 

field, a few challenges have been organized to get the attention of the scientific community and to 

address one of the most important issues concerning this technology: access to public datasets for 

validation of proposed algorithms. Although its importance, there have been only a few of these events 

organized in the past 6 years. 

MITOS (Mitosis Detection in Breast Cancer) [46] was the first contest organized using WSI. It was 

presented at the International Conference on Pattern Recognition in 2012 (ICPR 2012). The dataset 

released was of relatively small size (5 WSI, 10 annotated HPFs per slide) and it did not account for 

the inter-subject variability in tissue appearance and staining. However, the methodologies presented 

helped expand the literature with promising results (0.782 f-score) [41]. To address the issues of the 

MITOS dataset, the AMIDA (Assessment of Mitosis Detection Algorithms) contest was released and 
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presented in the conference organized by the Medical Image Computing and Computer Assisted Inter- 

vention Society (MICCAI) in 2013. The dataset consisted of 23 subjects (12 for training and 11 for test- 

ing), with more than one thousand annotated mitotic figures by multiple observers. The top-performing 

method achieved a 0.611 f-score, and an error rate that is comparable to the inter-observer agreement 

among pathologists [47]. A year later, at ICPR 2014, the MITOS-ATYPIA-2014 contest was released. It 

was organized as a follow-up and an extension of the MITOS contest. The major improvements were 

the additional nuclear atypia scoring and annotations provided by two senior pathologists and three 

junior pathologists [48]. In 2015, the INEB (Institute of Biomedical Engineering) organized a grand 

challenge for its International Symposium in Applied Bioimaging (Bioimaging 2015). The objective 

of the competition was to classify WSI of tissue samples into four different categories: normal tissue; 

benign lesion; carcinoma in situ; or invasive carcinoma. This implies that besides the analysis of nuclei, 

the methodologies proposed should also be able to retrieve information about the overall tissue organi- 

zation. Results published in [43] showed the contribution of this challenge to the integration of deep 

learning algorithms into CAD systems for cancer diagnosis. Recently, in 2018, four different on-going 

challenges concerning nuclei analysis in WSI have been released. The BACH (Breast Cancer Histology 

Image) challenge was presented in the International Conference on Image Analysis and Recognition 

(ICIAR 2018) and it extended the Bioimaging 2015 challenge by incorporating a pixel-wise labeling 

task. Preliminary results showed an 87% accuracy for the nuclei classification [49]. The remaining 

challenges are organized by MICCAI. MoNuSeg [50], presented at MICCAI 2018, aims at segmenting 

nuclei from WSI of different patients and multiple organs. Meanwhile, in [51] the competition focuses 

on images extracted from a set of Glioblastoma and Lower Grade Glioma whole slide tissue images. 

Preliminary results in this challenge showed a 0.85 on the average of to dice coefficients. Finally, the 

challenge presented in [52] evaluates the performance of automated classification algorithms when in- 

formation from two types of imaging data (i.e radiology images and pathology images) is used. Whole 

slides images correspond to two subtypes of lower grade glioma tumor cases: Oligodendroglioma and 

Astrocytoma. No preliminary results have been reported. 

 

2.2 Deep learning background review 

 
Lately, applications using deep learning along classical image processing techniques have increased. 

In the medical field, a deep learning approach is often preferred over classical techniques due to its 

robustness when dealing with different image modalities (e.g. MRI, CT, X-ray, WSI). Its use, rela- 

tively new in medical applications, entails the study of different methodologies such as Artificial Neural 

Networks (ANNs), Convolutional Neural Networks (CNNs), Generative Models, among others. The 

present thesis focuses on two specific groups of deep learning algorithms: Convolutional Neural Net- 

works (CNNs), and Semantic Segmentation. A general description of each approach is provided as they 

will be compared in the following chapters. 

 
2.2.1 Convolutional Neural Networks 

 
Since the introduction of Convolutional Neural Networks by LeCun, et al. in [53] and further develop- 

ment in [54], CNNs have become the standard tool to analyze and process 2D signals. The design prin- 

ciples of CNNs are drawn from neuroscience following the study of neurophysiologists David Hubel 

and Torsten Wiesel. From a simplified point of view, CNNs resemble a part of the brain called V1, also 
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known as the primary visual cortex. In particular, a convolutional network layer is designed to capture 

three properties of V1: (a) it has a two-dimensional structure following the spatial map arrange of V1; 

(b) it has many detector units often characterized by linear functions mimicking simple cells found in 

V1; and (c) it has pooling units to mimic complex cells in V1 which are invariant to small shifts in the 

position of the feature [55]. These three properties are the basis for the three stages of a convolutional 

network layer which are shown in Figure 10. 
 

Figure 10: Three stages of a Convolutional Network layer. Image adapted from [55]. 
 

 

Convolution, defined by Equation 1, represents the mathematical relationship between an input 

x(t) and a kernel w(t) to generate an output often referred as feature map. These feature maps, 

which can be generalized to a tensor of any dimension (see Equation 2), represent particular 

characteristics found in a signal which allow the characterization of the inputs making the classi- 

fication possible. The convolution provides a means for working with inputs of variable sizes and 

it also leverages three key aspects of data organization: (a) sparse interactions, meaning most of 

the important features are located in and can be represented with a small amount of information 

(e.g. corner’s pixels in an image); (b) parameter sharing, referring to the set of parameters found 

in every location (e.g. every pixel of an image); and, (c) equivariant representations, meaning the 

learning process will be invariant due to translations of the input signals. Therefore, compared 

to previous machine learning approaches, convolution represents a dramatical improvement on 

computation and statistical efficiency (e.g. less memory requirement and parameter sharing) [55]. 

s(t) = (x ∗ w)(t) (1) 

S(i, j) = (I ∗ K)(i, j) = ∑∑I(m, n)K(i − m, j − m) (2) 
m   n 

Activation function, in an artificial neuron, computes the weighted sum of the feature map in 

order to determine the probability of the inputs representing a specific class. There are different 

• 

• 
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functions to select and they vary according to the application and the data being processed. The 

most frequently used function is the Rectified Linear Unit (ReLU), defined as max(0, x). It has 

the advantage of the non-linearity; high efficiency as nearly 50% of the neurons in a layer do 

not activate; and, low computational cost as it involves less complex mathematical operations as 

opposed to other functions such as sigmoid or tanh. This stage is sometimes called the detector 
stage [55]. 

Pooling functions are used to compute aggregated statistics of the activated neurons at various 

locations in a signal. It allows further modifications of the outputs (i.e. deeper network) and also 

invariance due to translations. The most common function used in this stage is the max pooling. 

 
In [56], Alex Krizhevsky, et al. proposed a deep convolutional neural network to classify 1.2 million 

images in the ImageNet dataset achieving a top-1 and top-5 error rate of 37.5% and 17%. This approach, 

currently known as the AlexNet, consists of five convolutional layers followed by max-pooling layers, 

three fully connected layers, and a final 1000-way softmax. The architecture used ReLU nonlinearity as 

activation functions and demonstrated that training error decreases slowly when using saturating neuron 

models such as the tanh. Figure 11 depicts the entire architecture and how it was implemented into two 

GPU in order to reduce computational training time. 
 

Figure 11: An illustration of the architecture of our CNN, explicitly showing the delineation of respon- 

sibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other 

runs the layer-parts at the bottom. The GPUs communicate only at certain layers. Image taken from 

[56]. 

Although in 2014, GoogLeNet [57] was introduced and reported certain improvements in the clas- 

sification of the ImageNet dataset, the AlexNet remains a valid architecture to start developing image 

processing applications, especially when dealing with small datasets. 

 
2.2.2 Semantic Segmentation 

 
For certain applications in computer vision (e.g. surveillance, precision agriculture, self-driving cars, 

Geo-sensing, biomedical image processing) a better understanding of the image context is sometimes 

needed. Therefore, several methodologies regarding pixel-wise classification (i.e. outputs including 

localization) have been reported, starting from patch classification [45] (i.e. each pixel is given a class 

label based on its neighborhood), fully convolutional neural networks [58], up to more complex archi- 

tectures such as the ones presented in [59] and [60]. 

• 
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For neural networks to work properly, a great amount of input data is necessary. Semantic neural 

networks and CNN are frequently trained using large datasets such as ImageNet, Pascal VOC or COCO 

datasets. These datasets correspond to natural images and do not contain relevant information to work in 

biomedical applications. However, in 2012, O. Ronneberger, et al. proposed a novel architecture build 

upon the fully convolutional network [61]. The U-net, depict in Figure 12, has 23 convolutional layers 

and none fully connected layers. Due to the very little training data available they used elastic trans- 

formations to augment the data which also allow the network to learn invariance to such deformations. 

Authors used stochastic gradient descend for training and ReLU functions as activations. They trained 

in two datasets achieving 92% and 77.5% intersection over the union (IOU), which was significantly 

higher than the state-of-the-art (83% and 46% respectively) [61]. This breakthrough in deep learning 

architectures clearly set the basis for semantic segmentation in biomedical applications. 
 

Figure 12: U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box 

corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The 

x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The 

arrows denote the different operations. Image taken from [61]. 
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Chapter 3 

 

Mitosis detection in WSI using deep 

learning 

 
Two different deep learning approaches were described in the previous chapter. We build upon these 

two methodologies (i.e. AlexNet and U-Net) a framework to compare both neural networks and define 

which is more suitable for biomedical applications, especially when dealing with Whole Slide Images. 

The present chapter will focus on the methodology followed in this project by describing the datasets, 

the preprocessing steps and the validation metrics for both deep learning approaches. 

 

3.1 Dataset 

 
Images used to evaluate the proposed methodologies were gathered from two public datasets corre- 

sponding to the ICPR-2012 contest [46, 62], and the MITOS-ATYPIA-2014 challenge [48]. Both 

datasets contain images corresponding to 10 High Power Fields (HPF) at 40x magnification, selected 

from a Whole Slide Image (WSI) by experienced pathologists.   Two  scanners were used to digi-   

tize the tissue samples: Aperio Scanscope XT with 1pixel = 0.2456µm resolution; and Hamamatsu 

Nanozoomer 2.0-HT with 1pixel = 0.2273µm resolution. The datasets combined add up to 2177 frames 

which are further processed to obtain the input patches for both neural networks. Table II summarizes 

the distribution of the data for both neural networks. To build the masks for the U-Net a manual seg- 

mentation of each mitosis and non-mitosis in the MITOS-ATYPIA 2014 dataset was necessary due  

to the lack of ground truth for region segmentation. In addition, data augmentation was only needed 

for the AlexNet as CNNs require large datasets as described before. This was implemented by rotat- 

ing the patches in four different angles (0°, 45°, 90°, 180°), and incorporating data from a third dataset 

(AMIDA13) reported in [42]. Patch sizes were dependent on the network configuration, and, in the case 

of the AlexNet, the 71 71-pixel size patch corresponds to the largest mitosis found in both datasets. 

Finally, before extracting the patches, a color normalization was applied to every frame in the datasets. 
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Table II: Summary of the datasets used in the AlexNet and U-Net. 

Neural Network Patch size Mitosis Non-mitosis Dataset 

AlexNet 71 × 71 5850 7563 ICPR2012 & MITOS-ATYPIA2014 & AMIDA13 

 

U-Net 128 × 128 
327 0 ICPR2012 

946 3585 MITOS-ATYPIA2014 

 
3.2 Color normalization 

 
Hematoxylin-and-eosin (H&E) staining is widely used in a histopathological analysis. However, de- 

spite more advanced and automatized staining devices (if existing) this staining still remains highly 

dependent on staining providers, concentration, chemical reactivity, storage conditions, and timing. 

These factors, combined with the fact that light transmission depends on tissue thickness as on me- 

chanical and optical properties of the scanners, generate one of the most common problems when using 

automated image processing algorithms: the color variability [7].  In [63],  Hoffman et al.,  reported  

a comparison between several color normalization methods which conceptually resembles Reinhard’s 

statistical methodology reported in [64]. Based on the latter, the RGB channels of each frame in the 

dataset were transformed into the Lab color space, in order to modify its color characteristics following 

Equation 1. 
 

(i) 
I = (I − µ  ) t  + µ  , i ∈ {L, a, b} (1) 
n s s (i) t 

s 

I(i), I(i) correspond to the normalized and the source RGB frame transform to the Lab color space. In 
n s 

addition, σ(i) and σ(i) correspond to the standard deviation and mean value computed over all the pixels 
s,t s,t 

of the source’s and target’s Lab channel i respectively. The target image corresponds to the mean image 

of all the dataset. After normalization, the frame is returned to the RGB color space, where each channel 

showed more separable distribution when evaluating its histogram. 

 

3.3 Blue Ratio computation 

 
H&E staining presents certain characteristics which allow the automatic detection of potential mitosis 

inside the High Power Field (HPF). In fact, the Hematoxylin stains the cell nuclei in a blue-purple 

shade, while Eosin stains cytoplasm and stroma in various shades from reddish to a pinkish color, and 

collagen in a pale pink shade. Due to its particular blue color shade observed in the RGB image, it 

was reported in [7, 36, 42] that the blue ratio image highlights nuclei as it enhances the blue color layer 

following the transformation in Equation 2. 

IBR =
  255 × B  

(1 + R + G)(1 + R + G + B) 

 
(2) 

R, G, and B are the red, green and blue channels respectively. After the generation of the blue ratio 

image, a segmentation and morphological opening operation are applied. The objective is to retain the 

potential mitosis present in the HPF, for further analysis. The threshold and the radius of the opening 

σ 
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operation were obtained empirically by validating them in the ICRP2012 dataset. Testing was also 

performed using the MITOS-ATYPIA2014 dataset. Using the potential candidates selected from the 

blue ratio image, 71 71-pixel patches were extracted from the original HPF. These patches were aug- 

mented afterward by rotation to increase the input data for training and testing the AlexNet. Regarding 

the U-Net, the blue ratio image was added as a fourth layer (i.e. R, G, B, BR) to the HPF. Then, patches 

of 128 128 pixels, centered at the centroid of a mitotic/non-mitotic cell, were extracted from each 

frame and its corresponding labeled mask was also generated. 

 

3.4 Deep learning architectures 

 
Convolutional Neural Networks (CNN) have proven to outperform classic machine learning techniques 

regarding image processing applications. In Chapter 2, it was reported that statistics from textural 

features and color features are frequently used along with different classic classifiers and CNN. In our 

study, the performance of the CNN proposed in [56] (currently known as AlexNet) was evaluated. The 

input layer was modified in order to allow the CNN to work with color-normalized patches of 71 71 

pixels. The softmax layer was also modified in order to obtain a binary classification rather than a 

1000-class classification as originally proposed by the authors. No handcrafted features were added to 

the computation and the training was performed from scratch using stochastic gradient descent, a batch 

size of 128 and 100 epochs. Finally, all patches generated from the BR image where divided into three 

datasets in the following proportions: 70% for training, 20% for validation, and 10% for testing. 

A second deep learning approach (so far unreported in the literature for this application) using  

the U-net, was also implemented. This 23-layer network was trained from scratch for 100 epochs 

using stochastic gradient descent, unitary batch size, Adam’s optimizer, and a binary cross-entropy loss 

function. As it was detailed in Table II, the patches used for the U-Net were unbalanced; therefore, 

we chose 898 samples (701 non-mitotic patches and 197 mitotic patches) for testing and the remaining 

2884 non-mitotic patches were randomly selected to match the 1076 mitotic patches. Additionally, 

these 2152 selected patches were again randomly divided into 90% for training and 10% for validation. 

Finally, to increase the performance in terms of computational time, both neural networks were 

trained in a parallel platform using two Nvidia Quadro M2000 GPUs. Furthermore, the CNN was 

implemented using DIGITS interface from Nvidia and the Caffe framework. Meanwhile, the U-Net 

was implemented using Keras and Tensorflow as a backend framework for deep learning. 

 

3.5 Validation metrics 

 
In order to measure the performance of the proposed methodologies, five metrics were selected. Ta- 

ble III relates the metrics with its corresponding dataset and neural network. 

TP + TN 
• Accuracy: 

TP + TN + FP + FN 

TP 
• 

Sensitivity: 
TP + FN
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| ̂Y | + |Y | 

 

TN 
• 

Specificity: 
TN + FP

 

F1-score: 2 
Precision × Recall 

Precision + Recall 

• 
Dice index: also known as the Sorensen-Dice coefficient is defined as 

|Ŷ ∩ Y | 
, where Ŷ are the 

predicted labeled masks, and Y are the ground truth masks. 

 
Table III: Metrics used to evaluate the performance of the algorithm in the testing dataset. 

Neural Network Evaluation metric Dataset used 

 

 
AlexNet 

Accuracy train/test 

Sensitivity test 

Specificity test 

F1-score test 

 

U-Net 
Accuracy train/test 

Dice index train/test 

• 
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Chapter 4 

 

Results and discussion 

 
4.1 Detection of potential mitosis 

 
A critical step in the CNN approach using the AlexNet is the detection of potential mitosis in the HPF 

frames. Figure 13 resumes the results for the color normalization algorithm and blue ratio image com- 

putation. The threshold to generate the binary image from the BR image and the radius of the structure 

used for the opening operation were found to be Th = 30, and Rd = 1 respectively. These parameters 

allow achieving a 100% detection of true positive mitosis in the validation dataset (ICPR2012). Addi- 

tionally, when tested in the MITOS-ATYPIA2014 dataset, the true positive rate was approximately 0.99, 

meaning only 1 mitosis was not detected from the whole dataset. Regarding the semantic segmentation 

approach, the RBG input was normalized without any further preprocessing steps. 

 

4.2 Convolutional Neural Network (AlexNet) 

 
The network was trained for 100 epochs obtaining a 94.35% in accuracy using the validation-patch 

dataset. Regarding the loss value for the validation, it showed a descending behavior until epoch 40. 

At epoch 100, the loss value for the validation was only 0.1 higher than the one at epoch 40, which 

indicates that the CNN is still correctly modeling the validation dataset. Figure 14 resumes the results 

throughout the entire training and validation as well as the learning rate behavior. 

The CNN was also evaluated using a testing-patch dataset which was never considered in training, 

nor in the validation process. Table IV shows the confusion matrix computed with the testing patch 

dataset. Additionally, Table V shows a resume of the metrics defined to evaluate and compare the 

performance of this CNN to other approaches present in the literature. 

Table IV: AlexNet: Confusion matrix for the testing patch dataset. 

 mitosis non-mitosis accuracy/class 

mitosis 551 34 94.19% 

non-mitosis 32 724 95.77% 
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(a) (b) (c) 

(d) (e) (f) 

Figure 13: Results of the color normalization algorithm and blue ratio image generation for one frame: 

(a) Original HPF; (b) Blue ratio (BR) image; (c) Mitotic 71 71 patch generated with the thresholded 

version of the BR image; (d) Color normalized HPF; (e) Detection of mitosis centroids using the BR 

image to validate true positive rate; (f) Non-mitotic 71 71 patch generated with the thresholded version 

of the BR image. 

Table V: AlexNet: Evaluation metrics in the testing patch dataset. 

Accuracy Sensitivity Specificity F1-score 

95.08% 94.19% 95.77% 94.35% 

 
4.3 Semantic segmentation (U-Net) 

 
Table VI and Figure 15 resume the performance of the network after 100 epochs of training. The 

overall accuracy was 97.98% in the validation patch dataset, and 97.73% in the testing patch dataset. 

Regarding the convergence using the Adam optimizer, the loss value for both training and validation 

dataset showed a decreasing behavior. Early stopping of the network could be applied around epoch #24 

due to the constant average loss value in the validation dataset. In addition, the Dice coefficient, obtained 

in both validation and testing datasets, indicates that nearly 60% of the predicted mask overlaps with the 

ground truth which translates into good network performance. In Figure 16 two RGB patches, ground 

truth masks, and predicted masks corresponding to mitosis and non-mitosis are shown. We found that 

almost every pixel corresponds to the ground truth classification and that borders are not well defined 
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(a) 

(b) 

Figure 14: Results of the AlexNet training. (a) Training and validation loss values, and accuracy for the 

validation dataset (20% of the total patch dataset). (b) Learning rate behavior for 100 epochs. 

 
in the predicted masks. Additionally, in certain cases, the classification is not 100% accurate and a low 

probability map (i.e predicted mask) is produced by the neural network as seen in Figure 17. 
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Table VI: U-Net: Evaluation metrics in training and testing. 

Dataset Train Validation Test 

Dice index 0.9747 0.6117 0.5842 

Accuracy 99.90% 97.98% 97.73% 

 

(a) (b) 

Figure 15: U-Net: Training and validation throughout 100 epochs. (a) Training and validation accuracy 

of each epoch. (b) Training and validation loss value of each epoch. 

 
4.4 Discussion 

 
Blue ratio has proven to be an efficient algorithm to detect potential mitosis with excellent accuracy 

(almost 0% false negative error). The analysis of the HPF containing the missed mitosis showed that 

the error presented when the WSI was scanned with the Hamamatsu scanner. This may suggest that 

the difference in resolution among scanners is likely to impact the quality of the algorithms used to 

preprocess the data. Additionally, commercial scanners perform a series of focusing actions during the 

digitalization of a tissue sample. These changes in the focus - due to fine mechanical slide scanners 

limitations - seem also likely to impact the quality of the whole slide image generated and, implicitly, 

of the analysis algorithms used for computation. 

Although BR obtained high accuracy, it was computationally time-consuming due to the generation 

of false positive cases. To generate the nearly 13000 patches used in this work, approximately 2.5 

hours were needed using a Core i7 processor computer with 24GB of RAM. To increase performance, 

both deep learning approaches were optimized to run in NVIDIA GPUs. The AlexNet, on a GeForce 

GTX980M, only took 20 minutes and 50 seconds to train, and 5 seconds to test nearly 1200 images. 

Meanwhile, the U-net, on two Quadro M2000, was trained in approximately 5 hours, and testing took 

46 second per 128 × 128 pixels patch. 

The second deep learning algorithm presented in this thesis, based on the U-net, is one approach 

closer to an end-to-end deep learning architecture. The complete elimination of handcrafted features 

(e.g. BR images) made the solution more robust to color and textural changes as observed in the slight 

increase of accuracy respect to AlexNet. Compared to the results in the literature, metrics obtained from 

both neural networks validate the fact that handcrafted features might introduce errors and subjectivity 
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(a) (b) (c) 

(d) (e) (f) 

Figure 16: Test results for the U-net. (a) HPF patch #37 with a mitosis. (b) GT mask of the mitosis. 

(c) Predicted mask for the mitosis class. (d) HPF patch #58 with a non-mitotic cell. (e) GT mask of the 

non-mitosis. (f) Predicted mask for the non-mitosis class. 
 

(a) (b) (c) (d) 

   

(e) (f) (g) (h) 

Figure 17: U-net: Probability maps for both predicted classes in the testing-patch dataset (a) HPF 

patch #35 with a mitosis. (b) GT mask of the mitosis. (c) Predicted mask for the mitosis class. (d) 

Predicted mask for the non-mitosis class. (e) HPF patch #128 with a non-mitotic cell. (f) GT mask of 

the non-mitosis. (g) Predicted mask for the non-mitosis class. (h) Predicted mask for the mitosis class. 

 
into the classification. To address this issue, we generated ground truth masks for the testing dataset 

using a Simple Linear Iterative Clustering (SLIC) algorithm to create super-pixels in an HPF frame 
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which correspond to mitotic or non-mitotic clusters of pixels. Figure 18 shows an example of a non- 

mitotic cell. The mask predicted using the SLIC algorithm involves several pink pixels from the patch 

which does not correspond the cell; meanwhile, the mask generated by the U-Net clearly identifies the 

region with predominant blue coloration representing the presence of a cell, in this case non-mitotic. 

Throughout the entire testing dataset, we found similar cases which validate the hypothesis that hand- 

crafted features introduce errors in the detection and classification of the behavior of cellular structures. 
 

(a) (b) (c) 

Figure 18: Evaluation of SLIC for mitosis selection. (a) HPF patch #75 with a non-mitosis. (b) Mask 

of the mitosis generated using SLIC. (c) Predicted mask for the mitosis class using U-Net. 

 
The results in the present work outperform all classical machine learning approaches existing at the 

moment in the literature. However, for the U-net, further analysis is needed in order to improve border 

detection (an increase of Dice index) and increase the sensitivity up to 100% which is more beneficial in 

biomedical applications. This study presented two methods to analyze and classify a frame containing 

10 HPF, usually observed by pathologists. Due to the structure of the networks and its performance, 

these algorithms can also be applied directly to the WSI. The direct application to WSI - which we will 

study in our future research - will improve the diagnosis of breast cancer as pathologists only evaluate 

small regions of the sample tissues. 
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Chapter 5 

 

Conclusions and perspectives 

 
In this thesis work, we have shown how two different deep learning approaches (i.e. AlexNet and U- 

Net) performs when dealing with the classification and detection of mitosis. The results suggest that 

the performance of classical image-processing methodologies and deep learning approaches combined 

with hand-crafted features can be noticeably improved (nearly 7% improvement in accuracy respect to 

the last work in [42]). Regarding the AlexNet we found that it is possible to adapt the neural network 

to work with small patches corresponding to single mitosis. Although this method has the disadvantage 

of using a pre-processing step (i.e. BR computation to detect potential mitosis), it outperforms the 

proposed algorithms in the literature. 

On the other hand, due to the semantic advantage of the U-Net, we can directly detect (finding the 

where) and classify (finding the what) cellular structures in an end-to-end framework without the need 

of pre/post-processing steps. This suggests that the U-Net is more suitable and robust to process WSI 

allowing a stable and effective transition towards the full WSI analysis. Although the U-Net does not 

depend on the size of the input image, WSI analysis may turn out a greater challenge due to its size, 

different cellular patterns and structures, and artifacts introduce by scanners, staining process or other 

human factors. Therefore, future research to validate the use of deep learning architectures such as the 

U-Net in WSI is needed. 

We have seen that the U-Net is an excellent tool to analyze histopathological images (validated in 

HPF so far). Therefore, we can extend the solution and apply it to different nuclei detection such as 

neoplastic nuclei, fibroblast, lymphocyte, adipose tissue (adipocytes), stroma, or blood vessels. These 

nuclei allow pathologists to have a better understanding of the tumor microenvironment which benefits 

the patient in terms of a targeted treatment to specific characteristics observed in the tumor. Addi- 

tionally, we can also use the U-Net to analyze the spatial distribution of the tumor microenvironment to 

further understand tumor heterogeneity which might, in turn, provide some insight on why certain types 

of cancers are more resistant than others. Tumor heterogeneity can manifest as intra-tumor (meaning 

clones of cells responding differently to the same treatment), or inter-tumor (meaning, same kind of 

tumor behaving differently in different patients). In both cases, the semantic property of the U-Net al- 

lows to have a pixel-wise understanding of the tissue and therefore give the pathologists and oncologists 

useful information to diagnose and treat patients. 

Finally, in this thesis, we used images of breast cancer tissues. However, this can be applied to all 

types of tissue as the deep learning architectures can be easily adapted to other inputs. 
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