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Abstract

Image restoration consists in recovering a high quality image estimate based only on

observations. This is considered an ill-posed inverse problem, which implies non-unique

unstable solutions. Regularization methods allow the introduction of constraints in such

problems and assure a stable and unique solution. One of these methods is Total Variation,

which has been broadly applied in signal processing tasks such as image denoising, image

deconvolution, and image inpainting for multiple noise scenarios. Total Variation features

a regularization parameter which defines the solution regularization impact, a crucial step

towards its high quality level. Therefore, an optimal selection of the regularization param-

eter is required. Furthermore, while the classic Total Variation applies its constraint to the

entire image, there are multiple scenarios in which this approach is not the most adequate.

Defining different regularization levels to different image elements benefits such cases. In

this work, an optimal regularization parameter selection framework for Total Variation im-

age restoration is proposed. It covers two noise scenarios: Impulse noise and Impulse over

Gaussian Additive noise. A broad study of the state of the art, which covers noise es-

timation algorithms, risk estimation methods, and Total Variation numerical solutions, is

included. In order to approach the optimal parameter estimation problem, several adap-

tations are proposed in order to create a local-fashioned regularization which requires no

a-priori information about the noise level. Quality and performance results, which include

the work covered in two recently published articles, show the effectivity of the proposed

regularization parameter selection and a great improvement over the global regularization

framework, which attains a high quality reconstruction comparable with the state of the art

algorithms.
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Chapter 1

Introduction

Total Variation is a well established regularization method widely used in image reconstruc-

tion scenarios due to its versatility and its great adjustment to different reconstruction tasks

[5, 6, 7]. The constraint this method imposes is a mathematical model coherent with the

structure of natural images. Since image restoration’s main goal is to obtain an estimate

of the original image based on observations, which is an ill-posed inverse problem, such

concept limits the set of possible solutions and thus satisfies the uniqueness and stability

conditions a well-posed problem requires.

This regularization method features a way of choosing the solution constraint impact

based on an element known as regularization parameter. This parameter holds relation with

the observation noise level and has a crucial effect in the image estimation quality, which

is why it must be selected appropiately [8, 9]. Moreover, extensions of the classic TV

functional require multiple regularization parameters [10, 11, 12], which makes of their

selection a crucial task. Despite these facts and the wide coverage Total Variation has in the

literature, the regularization parameter selection has been mostly left aside. Besides some

automatic selection methods [8, 13, 5], a typical approach is to arbitrarily select it.

Since image restoration arises in many practical scenarios, the use of methods such as

Total Variation are of major weight in all of them. In fact, every image processing task

includes a degradation model [14]. Examples where image restoration is applied go from

communication systems to medical imaging. This wide application spectrum implies a

wide variety of noise models which deserve a broad study. For instance, Gaussian additive

noise usually represents the blurring effect which is typical in data acquisition systems

[15, 14, 16]; Impulse noise sources include data transmission or data storage faults; etc.

Consequently, several works have extended the Total Variation classic formulation [17] into

a more versatile framework. In addition, The research on numerical methods for solving it

is still an important matter of study in the literature [10, 18].

The present work focuses on the design of an optimal Total Variation regularization pa-

rameter selection framework, which is comparable to the state of the art algorithms. The

design concentrates on two noise scenarios: Impulse noise and Impulse over Gaussian Ad-

ditive noise scenarios. The work includes an insightful view of the regularization parameter

impact in the reconstruction quality, along with statistical tools which allow an accurate

noise scenario description. This will serve as a mean to study the Total Variation regular-
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CHAPTER 1. INTRODUCTION 2

ization behavior under the noise models of interest in order to design a novel and efficient

framework. Also, the present work’s preliminary results [1, 4] will serve as backbone for

yielding such a scheme.

The rest of the document is organized as follows: Section 2 presents the state of the

art methods and concepts required for designing a novel parameter selection framework;

Section 3 presents the proposed framework, its stages and their features; Section 4 presents

an in-depth evaluation of the proposed algorithm and contrasts it with the state of the art;

Finally, Section 5 states the conclusions on the covered topics.



Chapter 2

State of the Art

2.1 Noise Models

Given a noise free image U ∈ Rm×n×c and its observation B ∈ Rm×n×c, the noise dis-

tribution in the observation and its corruption level is crucial information for dealing with

an image restoration problem. While there is a wide variety of noise distributions, only

two are of interest in the present work: Impulse noise and Impulse over Gaussian Additive

noise. For the following subsections, let b(m,n) and u(m,n) denote an element in B and

U, respectively.

2.1.1 Impulse Noise

An Impulse noise corrupted image is represented by the following properties:

b(m,n) = I
(
u(m,n)

)
=



i0 , with probability(p0)

i1 , with probability(p1)
...

iN−1 , with probability(pN−1)

u(m,n) , with probability(1− p)

where p =
∑N−1

i=0 pi. Under this noise scenario, corrupted elements holds no information

about its original intensity values.

2.1.2 Additive Noise

An Additive noise corrupted image is represented by the following properties:

b(x, y) = A
(
u(m,n)

)
= u(m,n) + η(m,n), (2.1)

where η(m,n), represents a specific noise model. In contrast with Impulse noise, Each

element in the image is corrupted, and each holds information about its original value.

3
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2.1.3 Mixed Impulse and Additive Noise

Based on the two previous models, The combination of Impulse and Additive noise is rep-

resented in two different ways:

I

(
A
(
u(m,n)

))
: Impulse over Additive noise scenario.

A

(
I
(
u(m,n)

))
: Additive over Impulse noise scenario.

It is straightforward to demonstrate that both resulting images are different. A typical

and broadly studied Impulse noise scenario is the Salt and Pepper noise model. In it, a

corrupted element may only take the minimum intensity value (with probability pmin) or

the maximum intensity value (with probability pmax). For the Additive noise scenario, a

typical and broadly studied case is the White Gaussian noise model.

2.2 Total Variation

Let the degradation model for the image restoration problem, i.e. the relationship between

an original noise free image u∗ and its degraded version or observation b be defined as:

b = Ku∗ + η, (2.2)

where η represents an additive noise component, and both original image and observation

are vectorized images, i.e. bidimensional signals rearranged as vectors under a certain cri-

teria. The degradation system (K) stability, along with the noise term (η) stochastic nature

make this an ill-posed inverse problem [5, 6], which means there may not be a unique

stable solution. A useful approach for solving such problems lies in regularization theory

[17], which implies giving coherent constraints to the original problem in order to guaran-

tee stablity and uniqueness. This concept is introduced in a strictly mathematical way as a

constrained minimization problem:

min
u
‖Ku− b‖mm + α · g(u), (2.3)

The constrained problem is now shown as a cost function in which the optimal solution is

represented as the argument u which minimizes it. This cost function is composed by three

elements: i) a fidelity or data fitting term
(
‖Ku−b‖mm

)
, ii) a regularization or penalization

term
(
g(u)

)
, and iii) a regularization parameter (α). The regularization term introduces

a constraint or prior information the solution must satisfy, so it works as a condition the

solution must attain and thus stabilizes the initial problem. The fidelity term responds to

the fact that, even though the observation contains perturbations, it also contains valuable

information about its original structure and features. This term allows the solution to keep

such structural information. Finally, the regularization parameter establishes a weighting

or balance between both mentioned terms, in order to define the level of similarity to the

observation and the level of penalization the solution may hold. The functional represents

an unconstrained cost function based on the original problem, as seen on Lagrangian theory

[19].
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The regularization term introduces constraints based on mathematical models, which

must be coherent with the original signal nature. Such constraints include Tikhonov regu-

larization, Wavelet regularization, and Total Variation regularization [5].

In [17], the use of Total Variation as a penalization criterion is introduced into regular-

ization theory. The Total Variation of a signal u is defined as:

TV (u) =

∫
σx

|∇u(x)|dx, (2.4)

where the function gradient is represented as

|∇u(x)| = δu

δx
, (2.5)

for a one dimensional function u, or

TV =

∫ ∫
σx,y

|∇u(x, y)|dxdy, (2.6)

where the gradient magnitude is represented as

|∇u(x, y)| =

√
δu

δx

2

+
δu

δy

2

, (2.7)

for a two dimensional function u. Based on its continuous definition, the Total Variation

disrete version is expressed as:

TV (u) =
∑

Ω

|∇u| = ‖∇u‖1, (2.8)

where the gradient magnitude is represented as

|∇u(x)| = Dxu, (2.9)

for a one dimensional function u, or

|∇u(x, y)| =
√
Dxu(x, y)2 +Dyu(x, y)2, (2.10)

for a two dimensional function u. Dx and Dy represent horizontal and vertical discrete

derivative operators, respectively.

Total Variation has a remarkable property which explains its versatility as part of the

regularization term. The following Lemma [20] shows the main feature of such a constraint:

min
u
TV (u) s.t. u(0) = a, u(1) = b, u : R→ R, (2.11)

has as minimizer a monotonic in [a, b], not necessarily continuous function û satisfying

û(0) = a, û(1) = b and TV (û) = |b − a|. Figure 2.1 shows the possible solution subset

for this problem and how oscillatory functions such as u5 may not be part of it. As the

Figure shows, function u5 is not monotonic in its defined domain, and since it has a highly
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Figure 2.1: Total Variation on one dimensional functions.

oscilatory nature, TV (u5) > |b− a|. Thus, it is not an element in the solution subset.
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(e) α = 1

Figure 2.2: Regularization parameter impact for one dimensional functions. Red: Estimated
signal. Black: Original signal.

(a) α = 10−4 (b) α = 10−3 (c) α = 10−2 (d) α = 10−1 (e) α = 1

Figure 2.3: Regularization parameter impact for two dimensional normalized functions (∈
[0, 1]).

Equation (2.11) shows how the solution for the minimization problem does not favor

a specific kind of function, whether smooth or edge-structured. Moreover, it rejects oscil-

latory solutions while preserving edges. As a consequence, the Total Variation term is a

favorable element for the image restoration problem which preserves features and adapts to

a specific desired fitting level.

Following this concept, the Total Variation regularization cost function is described as:

min
u
‖Ku− b‖mm + λTV (u). (2.12)

In this formulation, increasing λ results in an increase in the constraint impact and a de-

crease in the reconstruction - observation similarity, i.e. an increase in the regularization

weight and a decrease in the similarity weight.
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The Total Variation regularization approach may be summarized in a phrase: ”Find a

solution which approximates to the observation, but which has a minimum Total Variation”.

It is shown that the cost function solution is unique and its existence can be proven under

certain assumptions [17]. Solving this functional is a complex task since it is not differen-

tiable [5, 6, 21]. Moreover, the regularization approach can also be seen as a scale selection

based on λ, by which a certain level of detail preservation is defined. Figures 2.2 and 2.3

show the impact of the regularization parameter in the restoration of one dimensional and

two dimensional signals, respectively.

Finally, given an observation B ∈ Rm×n×c, the Total Variation constraint is introduced

by characterizing the solution U∗ ∈ Rm×n×c as:

u∗ = arg min
u

1

m

∥∥∥∥Ku− b

∥∥∥∥m
m

+
λ

n

∥∥∥∥∇u∥∥∥∥n
n

, (2.13)

where u∗,b are vectorized versions of the estimated image and the observation, respec-

tively. ∇u represents the solution gradient magnitude, which can be modelled as its isotropic

version (|∇u| =
√∑

n∈c(Dxun)2 + (Dyun)2) or its anisotropic version (|∇u| = |Dxu|+
|Dyu|). For c = {1, 2, 3} we have that u = [(u1)T (u2)T (u3)T ]T is a 1D vector that rep-

resents a 2D color image. Both cost function terms consist on vector norms defined by

(m,n ∈ R+).

The classic Total Variation formulation proposed on [17] focused on the Additive noise

model scenario and consisted on an `2 data fidelity term and an `1 regularization term:

u∗ = arg min
u

1

2

∥∥∥∥Ku− b

∥∥∥∥2

2

+ λ

∥∥∥∥∇u∥∥∥∥
1

. (2.14)

Although typically used on previous approaches, the fidelity term norm was kept since,

for the statistics field, it was considered the best smooth edge-preserving cost function for

such a noise model. On the other hand, several data fitting functions and their impact

as fidelity terms have been studied in [22, 19]. It is shown that non-smooth data fidelity

terms reach high quality minimizers for corrupted images characterized by containing non

corrupted elements and outliers, which is the case of the Impulse noise model. The `1

data fidelity term proofs to be more accurate for this scenario than the `2 term [14]. This

approach is formulated as:

u∗ = arg min
u

∥∥∥∥Ku− b

∥∥∥∥
1

+ λ

∥∥∥∥∇u∥∥∥∥
1

. (2.15)

2.3 Risk Estimation

A common risk metric for defining the level of likeness between two signals based on the

`2 norm is the Mean Squared Error (MSE) [5]:

MSE(x,y) =
1

n

n−1∑
i=0

(
x(i)− y(i)

)2
, (2.16)
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where x, y ∈ Rn. This tool is able to characterize the reconstructed image quality level, but

only if the original image is available.

An alternative way for measuring the reconstruction quality level is by using an unbiased

risk estimator, which does not require the original signal. Although the use of such metrics

were originally confined to the White Gaussian noise case, its study and applications has

been widely covered in the literature [8, 9].

2.3.1 Unbiased Predictive Risk Estimator

The Unbiased Predictive Risk Estimator (UPRE), also known as CL method [5], for the

Total Variation framework was proposed in [9]. As its original formulation, which was

intended for the Tikhonov Regularization method, the UPRE estimates the MSE of uλ for

b = Ku + η, where η ∼ N(0, σ2). UPRETK is formulated as

UPRETK(λ) =
1

n
||rλ||22 +

2σ2

n
tr(ATK,λ

)
− σ2, (2.17)

rλ = Kuλ − b (2.18)

ATK,λ = K(KTK + λI)−1KT . (2.19)

where uλ represents u∗ for a specific λ. Given this risk estimation, it is possible to find the

optimal λ value by searching in the λ space. Extending this concept to the Total Variation

framework, UPRETV is denoted as

UPRETV(λ) =
1

n
||rλ||2 +

2σ2

n
tr
(
ATV,λ

)
− σ2, (2.20)

ATV,λ = K(KTK + λL(uλ))−1KT , (2.21)

L(uλ) = DT
x diag

(
Ψ′(uλ)

)
Dx +DT

y diag
(
Ψ′(uλ)

)
Dy. (2.22)

Since there is no linear operator than can describe the Total Variation solution, function A,

which depends on uλ is introduced. The Total Variation regularization term is approximated

by

||u||TV = ||ψ
(
(Dxu)2 + (Dyu)2

)
||1, (2.23)

ψ(u) =
√

u + β2, (2.24)

where ψ(u) is a smooth approximation of the absolute value function which allows differ-

entiation at the origin.

UPRETV inserts in the original formulation a parameter which depends on xλ. This im-

plies that a solution xλ must be computed first, which increases the method’s computational

cost. Besides, [9] points out the high computational cost for computing Trace
(
ATV,λ

)
,

given the fact that in regular cases the images of interest are of a considerable size, and soA

dimensions dramatically increase. This problem is approached by means of the Hutchinson

Trace estimator [5]. While a Monte-Carlo framework based on Gauss quadrature to obtain

the trace is presented in the literature, we propose a rather simple approach to find the trace



CHAPTER 2. STATE OF THE ART 9

estimation.

Let the Hutchinson trace estimator be defined as:

E(uT f(A)u) ' Trace(f(A)) (2.25)

where u is a vector which entries are values 1 or -1 with 0.5 probabilities each. It has

been proven that
1

N

N−1∑
n=0

(uTnf(A)un) ' Trace(f(A)), (2.26)

where N << M , A ∈M ×M . So, it is required to solve

uTnf(A)un = uTnK
(
KTK + λL(uλ)

)−1
KTun. (2.27)

The proposed approach, in contrast with the original approach in [9], is to solve:

KT (K(r)) + λL(uλ)r = v (2.28)

for r, where v = KT (u). Furthermore, L(uλ)r may be represented as

DT
x (Ψ′(uλ) •Dx(r)) +DT

y (Ψ′(uλ) •Dy(r)). (2.29)

So, this procedure requires a linear solver to estimate Trace(A).

2.3.2 Q Metric

In [23], The Q metric, a pseudo-local signal to noise ratio, is presented. Its formulation

is based on the estimation of the gradient covariance matrix and its singular value de-

composition. Based on this, the gradient’s dominant orientations and its energy charac-

terizes each image patch in order to define its structure properties. This no-reference metric

quantifies the image ”coherence measure”, allowing the analysis of the noise level in non-

homoskedastic scenarios without depending on its model. It requires no prior knowledge

about the noise variance.

The Q Metric is defined as:

Q = s1R, (2.30)

R =
s1 − s2

s1 + s2
, (2.31)

G = USV T = U

(
s1 0

0 s2

)(
v1

v2

)
, (2.32)

G =


px(1) py(1)

...
...

px(n) py(n)

 , (2.33)

where (s1, s2) are the singular values of the local region gradient matrixG, and n represents
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the elements on a neighborhood Wn. Under this formulation, s1 represents the gradient’s

dominant orientation, while s2 represents its perpendicular direction (s1 ≥ s2 ≥ 0).

The metric requires consistent gradient components in the analyzed patches in order to

obtain a good noise estimate. Thus, it is not capable of defining the noise level in homoge-

neous regions. The basic idea behind this metric is the level of ”structure features” covered

by each patch. So, for high noise levels, it is demonstrated that this metric is innacurate,

mainly because the loss of structure.

2.4 Impulse Noise Set Estimation

For Mixed noise scenarios, the original Total Variation approach may suffer from bad re-

sponses since it affects the entire image in the same way. Different approaches have been

proposed in order to attack this issue, most of them based on the addition of terms to the cost

function in order to fit the noise distributions. Figure 2.4 shows results from [1], a recent

work based on the proposed method’s preliminary stages, and displays the reconstruction

benefits of local vs. global restoration. A special case for this scenario is the Impulse over

Gaussian Additive noise. Since the distortion introduced by it remains unchanged by the

others, the corrupted pixel set may be easily identified.

In [2], this approach is used on the Salt and Pepper noise scenario by applying a local

noise detector for finding the corrupted pixel set, and then treating them by applying a

median filter. Then, the same concept is applied for a variational scheme by penalizing the

corrupted pixel set only. Following this idea, a study on different Impulse noise detectors is

presented.

2.4.1 Ranked Over Adaptive Median Filter

The Salt and Pepper noise detector based on an adaptive median filter applied in [2, Al-

gorithm 1] is described. The noise pixel set of the observed image b with L channels is

defined by:

N : {n ∈ C, l ∈ Ω : b̂w
l
n

n (l) 6= bn(l) ∧ bn(l) ∈ {vmin, vmax}}, (2.34)

where b̂w
l
n

n (l) is the output of the Ranked Over Based Adaptive Median Filter (RAMF) [24].

This filter analyzes K, a (2 · wln + 1)× (2 · wln + 1) neighborhood centered at l in order to

define whether this pixel is noise-corrupted or not. The neighborhood size is increased if the

median of the neighborhood is equal to its minimum or maximun value, and the procedure

is repeated until it reaches a maximum size wmax. Then, l is defined as a noise-corrupted

pixel if it is equal to the maximum or minimum value in the neighborhood, in which case

is replaced by the neighborhood median. In [2], manually selected values for wmax are

applied depending on the noise level.

The proposed algorithm defines the set W , which is zero if the element l is noise-free

and wln if it is noisy. This gives information about the local noise level for each noise-

corrupted pixel. Moreover, the global noise level p can be estimated as p̃ = 1
N

∑
I[W 6=0],

where N is the number of pixels and I is the indicator function.
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(a) Original image (b) 90% noisy image

(c) 90% Global regularization reconstruction (d) 90% Local regularization reconstruction

Figure 2.4: Global versus local regularization approaches, as shown on the present work
preliminary results [1].

2.4.2 Progressive Switching Median Filter

In [25], a progressive switching median filter (PSM) is proposed for treating images cor-

rupted by Salt and Pepper noise. Its general framework is composed by an outlier detector

for defining the noise pixel set, and a median filter for restoring it. Regarding the noise

set estimation, the algorithm base its criteria in the median absolute difference (MAD). For

this purpose, an iterative scheme is used, where an element is defined as corrupted if its

observation is over a threshold. fi defines if the i-th element belongs to the noise set:

f
(n)
i =

f
(n−1)
i ,|u(n−1)

i −m(n−1)
i | < Td

1 , else

where mi is the median value of a neighborhood centered at the i-th element. Initially,

all the elements are assumed to be uncorrupted (f (0) = 0). Based on the output of each
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iteration, the element intensities of the observation are modified in order to cope with the

iterative scheme:

u
(n)
i =

m
(n−1)
i ,f (n)

i 6= f
(n−1)
i

u
(n−1)
i ,f (n)

i = f
(n−1)
i

After a number of iterations, the noise pixel set is defined by f (n)
i . Td is chosen based on

the noise level (p), which is based on an estimation with the same criteria:

p =

∑n−1
i=0 p̂i
n− 1

(2.35)

p̂i =

0 ,|ui −mi| < T0

1 ,else

2.4.3 Impulse Weighting Function

In [26], an extension of the Bilateral filter introduced in [27] is proposed. A new weighting

component is proposed based on the ROAD (Ranked-over Absolute Difference) statistic,

which, in contrast with the Two-Stage methods, gives a continuous function of how much

an element is ”Impulse-like” or not. This new component, which will be called Impulse

Weighting Function (IWF) is defined as:

wI(x) = e
−ROAD(x)2

2σ2
j (2.36)

where σj is a tunable parameter which defines the weighting penalization degree. By

applying a threshold to the function response, it is possible to classify the image elements

into a two-stage scheme.

2.4.4 Directional Weighted Median Filter

A novel median filter intended for detecting Impulse noise was proposed in [28]. This

directional weighted median filter (DWMF) features a weighting which depends on the

intensity differences between local elements on four main directions. This design bases in

the fact that a noise free image is characterized by locally smooth areas separated by edges.

The difference on each direction shows if the smooth local region assumption is satisfied

based on how big the variability on its main direction is. Following this, the intensity

difference on each direction is defined as:

d
(k)
i,j =

∑
(s,t)∈Sk

ws,t|yi+s,j+t − yi,j |, (2.37)

where ws,t describes a weighting function which gives more emphasis to the elements

closer to the central pixel. Based on this measurement, the minimum is used as an index for

the level of region variability:
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ri,j = min{d(k)
i,j : 1 ≤ k ≤ 4}. (2.38)

An Impulse noise element should be characterized by big differences in all four direc-

tions due to its outlier nature, while edge elements and elements in flat regions should at

least have one small difference. Thus, large ri,j values correspond to outliers. Figure 2.5

shows the four main directions.

-2,2 -1,2 0,2 1,2 2,2

-2,1 -1,1 0,1 1,1 2,1

-2,0 -1,0 0,0 1,0 2,0

-2,-1 -1,-1 0,-1 1,-1 2,-1

-2,-2 -1,-2 0,-2 1,-2 2,-2

Figure 2.5: Directional Weighted Median Filter: Main gradient directions.

2.4.5 Fuzzy Impulse Noise Detection

In [29], the Fuzzy Impulse noise Detection and Reduction Method (FIDRM) is introduced.

Its noise estimation stage is a fuzzy-ruled system established based in the GOA filter [30].

Fuzzy gradient values for an element are defined by applying a membership degree function

to the element finite difference based gradients, which are taken between the element and

its eight neighbors.

∆c,dI(a, b) = I(a+ c, b+ d)− I(a, b); (a, b, c, d) ∈ {−1, 0, 1} (2.39)

Each pixel features eight basic gradients, each with two related gradients associated,

which are its two finite difference gradient neighbors in the same direction. Figure 2.6

shows the eight basic gradient and their related gradients, as well as the main directions.

Fuzzy rules for identifying Impulse noise pixels are based on membership functions for the

gradients magnitude and sign. Algorithm 1 shows the applied fuzzy rules.

-2,2 -1,2 0,2 1,2 2,2

-2,1 -1,1 0,1 1,1 2,1

-2,0 -1,0 0,0 1,0 2,0

-2,-1 -1,-1 0,-1 1,-1 2,-1

-2,-2 -1,-2 0,-2 1,-2 2,-2

Figure 2.6: Fuzzy Impulse noise detection: Basic and Related gradients.

Besides this algorithms, different approaches based on the median filter, such as the

Centered Weighted Median Filter (CWMF) and its modifications, has been widely covered

in the literature [27, 24].
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Algorithm 1 Fuzzy Impulse noise detection
initialization;
if ∆basicI(i, j) is large and ∆related 1I(i, j) is small
or ∆basicI(i, j) is large and ∆related 2I(i, j) is small
or ∆basicI(i, j) is big positive and ∆related 1I(i, j) is big negative and ∆related 2I(i, j) is big negative
or ∆basicI(i, j) is big negative and ∆related 1I(i, j) is big positive and ∆related 2I(i, j) is big positive
then

∆(F )I(i, j) is large
end
if most of the ∆(F )I(i, j) are large
then

I(i, j) is an Impulse noise pixel
end

2.5 Gaussian Additive Noise Variance Estimation

In [31], a noise variance estimator with a very simple concept and interesting results, which

bases on the low variability areas natural images contains, is presented. For the Gaussian

Additive noise scenario, the estimator is based on the variances from multiple patches from

the entire image. Based on this variance collection, it is proposed to use its mode as an

unbiased estimator.

The variance estimation is crucial for the multiple noise scenarios, including the Gaus-

sian Additive scenario, since most of the filtering processes requires the image noise level

[5]. Based on an Additive noise scenario:

b(x, y) = u(x, y) + η(x, y), (2.40)

where b is the degraded image (observation), u is the original image, and η is the additive

noise, the overall variance can be expressed as:

σ2
b(x,y) = σ2

u(x,y) + σ2
η (2.41)

Where σ2
b(x,y), σ

2
u(x,y) are local variances. So, if σ2

u(x,y) = 0 (homogenous local region),

then σ2
b(x,y) = σ2

η . In order to exploit this condition to find the noise level, an homogenous

zone selection is required. Assuming an ideal case: σ2
η = σ2

min = minx,y{σ2
b(x,y)}. How-

ever, in a real scenario, this estimator is sensitive to outliers. Another common employed

estimator is σ2
MAD = 1.4826·MAD(yHij ), which is the median absolute deviation of the high-

est wavelet decomposition stage of a signal, i.e. MAD(f) = median(f − median(f)).

Beside the mentioned methods, A wide variety of them is covered in [24].

The effect of adding White Gaussian noise in the sample variances along patches in

the image corresponds to a right shift in its distribution, i.e. in its histogram. This reflects

in a uniform increase in the observation variance itself. The literature suggests based in

this phenomenom that an effective noise estimator based on the population distribution of

the variance is the mode. Modeling the noise as a Gaussian distribution and assuming a

constant image scenario, it is shown that if we choose

σ2
η =

1

N

∑
σ2
b(x,y), (2.42)
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(a) Original image (b) (σ2
η = 10

255 ) noisy image
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(c) Original image local variance histogram
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(d) Noisy image local variance histogram

Figure 2.7: Gaussian Additive noise estimation by local variance histogram approach.

we obtain the maximum likelihood estimator for σ2
sample. Another estimator which gets

close to σ2
η for N large is Mode{σ2

sample}.

Mode{σ2
sample} = σ2N − 3

N − 1
, (2.43)

N − 1

N − 3
Mode{σ2

sample} = σ2, (2.44)

For typical natural images, which mostly contains homogenous zones, the variance dis-

tribution has its peak around 0. Analyzing the distributions of a test picture set and approxi-

mating them to known statistical models, it is shown that, depending on the variability ratio

between image and noise, the mode is not the actual Maximum likelihood σ2
η estimation,

however it approximates to it. Figure 2.7 shows the noise variance estimation for a natu-

ral image and its Gaussian Additive noise corrupted counterpart based on their variances

histogram.



Chapter 3

Proposed Restoration Framework

Given the previous concepts, a `1 plus `2 Total Variation formulation capable of restoring

images under Impulse over Gaussian Additive noise is introduced, and an optimal regular-

ization parameter estimation framework is proposed. Additionally, the framework focuses

also on the Impulse noise scenario as a particular case of the Impulse over Gaussian Ad-

ditive case. Regarding the Gaussian Additive noise scenario, since the proposed frame-

work includes the UPRE, which remarkable performance for the Gaussian Additive noise

scenario has already been covered in the literature (refer to [17, 4] for more details), the

proposed framework does not focus on this noise model.

For a non-mixed noise model like the Gaussian Additive or Impulse scenario, there are

several methods that successfully estimate the corrupted pixel set and noise level such as

those mentioned in Section 2. However, none of this methods covers the scenario where

more than a single noise model is present. Furthermore, the classic Total Variation cost

function parameters are selected focusing on single noise models. Finally, a well condi-

tioned metric is required in order to define an optimal regularization parameter. In the

following, this requirements are analyzed in detail in order to propose a method that en-

compasses them. Also, the framework proposed in [1, 4] is revisited in order to extend such

concepts to a general denoising procedure.

3.1 Salt and Pepper Noise Scenario Approach: Spatially Adap-
tive Iteratively Reweighted Norm

An image restoration method for the Salt and Pepper noise model is stated in the prelimi-

nary work published in [1], which uses a modification on the `1 TV functional. By taking

advantage of the `1 TV functional benefits for this noise model shown in [14, 19], the pro-

posed approach consists on applying a local fashioned `1 TV regularization on an estimated

noise set obtained by a two-phase filter. The following section describes its framework.

3.1.1 Iteratively Reweighted Norm Algorithm

The Iteratively Reweighted Norm (IRN) algorithm [21, 32] is a computationally efficient

and flexible Total Variation minimization method for grayscale and color images that can

16
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handle the p > 0 and q ≤ 2 norms in the regularization and fidelity terms, respectively. This

includes the `2-TV and `1-TV as special cases. The algorithm attacks the minimization

problem basing on the Iteratively Reweighted Least Squares (IRLS) approach [33], i.e.

by representing the `p and `q norms by their equivalent weighted `2 norms in an iterative

fashion. Given the IRLS method, the cost function

1

r
||u||rr =

1

r

∑
i

|ui|r, (3.1)

can be iteratively approaximated by

1

2
||W 1/2u||22 =

1

2
uTWu =

1

2

∑
i

wiu
2
i , (3.2)

where

W =
2

r
diag(|u|r−2), (3.3)

which is estimated iteratively by using the cost function minimizer from the previous itera-

tion (u).

Following this, the IRN approach, which converges to the solution of (2.13), is ex-

pressed as:

min
u

T (k)(u) =
1

2

∥∥∥∥W (k)
F

1/2
(u− b)

∥∥∥∥2

2

+
λ

2

∥∥∥∥W (k)
R

1/2
Du

∥∥∥∥2

2

, (3.4)

where

W
(k)
F = diag

(
τF,εF (u(k) − b)

)
, (3.5)

W
(k)
R = I2L ⊗ Ω(k), (3.6)

Ω(k) = diag

(
τR,εR

(∑
n∈C

(Dxu
(k)
n )2 + (Dyu

(k)
n )2

))
, (3.7)

τF,εF (x) =

{
|x|p−2 if |x| > εF

εp−2
F if |x| ≤ εF

, (3.8)

τR,εR(x) =

{
|x|(q−2)/2 if |x| > εR

0 if |x| ≤ εR
, (3.9)

D = IL ⊗ [DxTDyT ]T , (3.10)

IL is an L×L identity matrix, ⊗ is the Kronecker product, and L is a scalar which depends

on the image layers (typically, L = 1 for C = {1}, or L = 3 for C = {1, 2, 3}. Following a

common strategy in IRLS type algorithms, the functions τF,εF (x) and τR,εR(x) are defined
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to avoid numerical problems when u(k)−b or
∑
n∈C

(Dxu
(k)
n )2 +(Dyu

(k)
n )2 has zero-valued

components.

3.1.2 Local Regularization

A Total Variation cost function modification is proposed. This new cost function of interest

is the modified `1-TV problem:

min
u

T (u) =

∥∥∥∥Λ−1(u− b)

∥∥∥∥
1

+

∥∥∥∥√∑
n∈C

(Dxun)2 + (Dyun)2

∥∥∥∥
1

, (3.11)

It is straighforward to check that if Λ is fixed, the IRN algorithm can be used to solve (3.11).

The equivalent weighted `2 version of the modified `1-TV problem can be written as:

min
u

T (k)(u) =
1

2

∥∥∥∥W (k)
F

1/2
Λ(k)−1/2

(u− b)

∥∥∥∥2

2

+
1

2

∥∥∥∥W (k)
R

1/2
Du

∥∥∥∥2

2

, (3.12)

where Λ(k) > 0 is a diagonal matrix defined in some fashion. Since (3.12) is quadratic

and its Hessian ∇2T (k)(u) =
(
W

(k)
F Λ(k)−1

+DTW
(k)
R D

)
is greater than zero, then the

minimum of (2.13) can be reached by iteratively solving(
W

(k)
F Λ(k)−1

+DTW
(k)
R D

)
u = W

(k)
F Λ(k)−1

b. (3.13)

By replacing a scalar parameter by a vector, it is shown that the new Total Variation solution

is capable of penalizing each pixel in a particular way [1]. Given this new feature, the

way Total Variation fits to noise models acquires more flexibility, and thus allows better

reconstruction results for more complex noise models. By approximating this new cost

function to `2 norms by applying the Iteratively Reweighted Norm algorithm, the result is a

Spatially Adaptive IRN algorithm (SAIRN). Algorithm 2 presents the resulting method.

3.1.3 Salt and Pepper Noise Estimation

The Salt and Pepper noise detector based on the adaptive median filter described in (2.4.1)

is used for the outliers detection. The proposed algorithm defines the setW , which is zero if

the element l is noise-free and wln if it is noisy. This gives information about the local noise

level for each noise-corrupted pixel. Note that the global noise level p can be estimated as

p̃ = 1
N

∑
I[W 6=0], where N is the number of pixels and I is the indicator function.

3.1.4 Parameter Update

In [34], an estimation of local statistics for a fixed, manually selected neighborhood size is

applied in order to give a hint about the noise level of the residual (r = u− b) along with a

rule based procedure to spatially update the regularization parameter. The SAIRN algorithm

also makes use of local statistics of the residual, but based on particular neighborhood sizes.
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Algorithm 2 Spatially Adaptive IRN algorithm for `1-TV
Initialize

Estimate set W from b

Λ(0) = diag(I[wln(l)>0]) + 10−6 diag(I[wln(l)==0])

u(0,0) =
(
I + Λ(0)DTD

)−1
b

for m = 0, 1, ..,M

for k = 1, 2, ..,K
W

(k)
F = diag

(
τF,εF (u(m,k−1) − b)

)
for p = 1

Ω
(k)
R = diag

(
τR,εR

(
(Dxu

(m,k−1))2 + (Dyu
(m,k−1))2

))
for q = 1

W
(k)
R =

(
Ω

(k)
R 0

0 Ω
(k)
R

)
u(m,k) =

(
I + Λ(m)W

(k)
F

−1
DTW

(k)
R D

)
b

end
r = u(m,K) − b
estimate p̂ (via (3.14))
compute Λ(m+1) (via (3.15))

end m = 0, 1, ...

The local noise estimator is defined as:

p̂n(l) =
1

M

∑
k∈K

wln
(l)

|rn(l)| (3.14)

where M = (2 ·wln+ 1)2 andKwln(l) is defined as in (2.4.1). The spatially dependant regu-

larization parameter Λ is initialized as Λ(0) = diag(λ(0)), with λ(0)(l) = diag(I[wln(l)>0])+

10−6 diag(I[wln(l)==0]). After solving (3.11), p̂n(l) is computed in order to obtain the regu-

larization parameter updates λ(m)
n (l) in a spatially dependant fashion:

λ(m)
n (l) =

ρ−1 · λ(m−1)
n (l) if p̂n(l) < p̃ · σ

ρ · λ(m−1)
n (l) if p̂n(l) > p̃ · σ

, (3.15)

where ρ, σ are constant values and p̃ is the estimated global noise level.

The SAIRN focuses on the Salt and Pepper noise scenario. As an initial step, it uses

the RAMF as an Impulse noise detector. Following this, an initial (Λ(0)) is defined to

start the IRN iterations. at each step, (Λ(k)) is updated according the remaining noise in

(r = |b− u(k)|).

3.1.5 Regularization Parameter Selection without Update Strategy

Since it is possible to estimate the Impulse noise pixel set, the restoration problem for such

a noise model becomes a local Total Variation problem. The use of the SAIRN under this

scenario has shown to give promising results for a wide noise level range. Moreover, the
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local approach it uses can be modeled as a variational method generalization for low noise

level cases, since it is capable of restricting its penalization areas based on the estimated

noise set without neglecting the noise free elements. Consequently, a new adaptive scheme

was proposed as a preliminary stage for this work with a considerable change in the update

criteria, which has proven to get a faster convergence rate [4].

For the `1 TV image denoising under Impulse noise scenario, the elementwise Total

Variation solution for a particular (λ) is given by the following:

u(i,j,λ=0) = b(i) (3.16)

u(i,j,λ→∞) =
u(i+1,j) + u(i,j+1)

2
, (3.17)

for a forward operator based finite differentiation and the anisotropic Total Variation model.

Hence, local solutions lie between the observation pixel value (b(i,j)) and a pixel-based

average which bases on its neighborhood intensity values (
u(i+1,j)+u(i,j+1)

2 ).

Following the arguments stated in [31], the information of a natural image is contained

in its edges and form coherent structures of homogeneous regions. This means that most of

the noise pixels, except the ones located close to edges and other features, have an original

intensity which is very close to its neighborhood. On the other hand, as mentioned in

Section 2, Impulse noise pixels holds no information about their real intensity.

Figure 3.1 shows noise pixels for three different image regions on the (s = 0.05) Im-

pulse corrupted (gray) Lena: An edge region, a flat region, and a noise cluster region. In ad-

dition, Figure 3.2 presents the λ impact for such structures, based on the absolute difference

between the original and reconstructed intensities. The λ search shows how the edge region

reaches an accurate reconstruction inside the range defined by b(i,j) and
u(i+1,j)+u(i,j+1)

2 .

On the other hand, the flat region and the noise cluster reach good estimates which tend to
u(i+1,j)+u(i,j+1)

2 . This behavior is coherent with the previous argument for flat regions. For

the edge region and noise cluster, the optimal λ may depend on how big is the intensity

range defined by [b(i,j);
u(i+1,j)+u(i,j+1)

2 ].

Based on this, it is proposed to minimize the Total Variation fidelity term impact on the

noise pixel set, which reflects in a Λ with big valued elements. This forces a noise pixel

set solution based purely on their neighbors values. This implies no loss of certainty, since

Impulse noise pixels holds no original information. On the other hand, since Λ penalizes

only the noise pixel set, the Total Variation regularization term for the noise free pixels is

minimized, so they remain unaltered. This argument can also be applied to the isotropic

representation of the Total Variation term, since it also depends on its neighbors.

Finally, the optimal Total Variation solution is defined by solving the IRN scheme:

(
W

(k)
F Λ(k)−1

+DTW
(k)
R D

)
u = W

(k)
F Λ(k)−1

b. (3.18)

for u. the SAIRN defines Λ as diag( 1
λ0
, ..., 1

λn−1
) for b ∈ Rn. Then, following the new

criteria, let
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λi =

 0 ,i /∈ N

c >> 1 ,i ∈ N
(3.19)

Figure 3.3 shows the reconstruction quality (PSNR) contrast between the adaptive λ

iterative scheme, with ρ = 0.75 and σ = 0.5, and the fixed λ iterative scheme for grayscale

Lena under the Impulse noise scenario (s = 0.25). Convergence for the fixed scheme con-

siderably increases, while the quality remains almost the same without the need of updating

Λ.
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Figure 3.1: Image structure regions for the Impulse noise scenario.
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Figure 3.2: Optimal local regularization parameter grid search behavior for different image
structures for the Impulse noise scenario.
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Figure 3.3: Iterative fixed approach versus Iterative adaptive scheme (with ρ = 0.65 and
σ = 0.5) quality contrast for (gray) Lena under the Impulse noise scenario (s = 0.25).

3.2 Impulse over Gaussian Additive Noise Scenario Approach:
Modified Spatially Adaptive Iteratively Reweighted Norm

The SAIRN achieves high quality results for the Salt and Pepper noise scenario because,

with high probability, the `1 Total Variation solution derives from noise free image ele-

ments. For relatively low noise corruption levels, most of the Impulse noise corrupted

elements’ neighborhood belongs to noise free elements. Under these circumstances, The

use of either statistical filters or variational methods, such as the RAMF and `1 Total Varia-

tion respectively, have proven to give good results [5]. For relatively high noise corruption

levels, corrupted pixel clusters appears. In contrast to the former case, filtering under this

conditions attains poor quality results since the output for each element depends on its cor-

rupted neighbors. Given this scenario, SAIRN iterative approach leads to a progressive

cluster shrinkage. Due to the fact that some of the elements within a cluster, those in the

cluster edges, have uncorrupted elements within their neighborhood, the `1 Total Variation

output they attain is based on trusty information, and so it can be seen as an accurate inter-

polation. Then, the iterative behavior can be seen as a chain interpolation: a set of corrupted

elements within a cluster finds a stable solution at each iteration, giving accurate informa-

tion to the rest of elements within the cluster. This scheme is kept until the entire cluster

finds an unfluctuating solution.

For an Impulse over Gaussian Additive noise scenario, the mentioned scheme is un-



CHAPTER 3. PROPOSED RESTORATION FRAMEWORK 23

able to attain high quality outputs because the entire image is distorted. Any attempt of

reconstructing the Impulse noise pixels based on whether filtering or variational methods

derives from corrupted elements. Furthermore, the SAIRN algorithm targets only the Im-

pulse noise, leaving the Gaussian Additive noise behind. Based on this limitations, a novel

iterative scheme is proposed based on the SAIRN procedure. However, consistent modifi-

cations are done in order to surpass this new scenario.

A `1 plus `2 locally regularized Total Variation reconstruction is proposed for this Mixed

noise model. This means two separate reconstructions: a `1 TV reconstruction for the Im-

pulse noise pixel set and a `2 TV reconstruction for the Gaussian Additive noise pixel set.

In addition to the already stated SAIRN framework, a noise set estimation which discrimi-

nates between both models and an accurate criteria for choosing the optimal regularization

parameter for the `2 TV reconstruction is required. Furthermore, since both separate re-

constructions derives directly from corrupted pixels, a decision must be made in order to

choose which noise model must be dealt with first.

3.2.1 Impulse Noise: Outliers Detection

For this Mixed noise scenario, it is still possible to recognize the Impulse corrupted pixel set

N , since they are still represented as outliers. Of course, this also implies the identification

of the Additive corrupted pixel set. However, experimental results show that the RAMF

accuracy descreases considerably, specially under high Gaussian Additive noise level. The

proposed scheme uses two different observations in order to obtain a more accurate estima-

tion of N . The DWMF and the RAMF observations are combined in order define estimate

the corrupted set. So, let NDWMF denote the element set defined as Noise by the DWMF,

i.e.

min{d(k)
i,j } > Td : 1 ≤ k ≤ 4, (3.20)

And N the element set defined as noise by the RAMF, i.e.

NRAMF : {n ∈ C, l ∈ Ω : b̂w
l
n

n (l) 6= bn(l) ∧ bn(l) ∈ {vmin, vmax}}, (3.21)

Then, the estimated Impulse noise set is defined as

N : NRAMF ∩NDWMF (3.22)

Following this, the Gaussian Additive noise corrupted set can be defined as

G : Ω \ N (3.23)

3.2.2 Gaussian Additive Noise: Local Risk Estimation

The selection of which set (G,N ) must be approached first is crucial in the procedure. As

mentioned before, the Impulse noise pixels hold no information about its original intensities.

On the other hand, Additive noise corrupted elements does hold information.
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It is proposed to find a solution for the Impulse corrupted element set based onNRAMF∩
NDWMF as an initial step. Since, ideally, only the Impulse noise corrupted pixels are modi-

fied, the Gaussian Additive noise elements suffer no information loss.

After this step, the resulting image is formed by the Gaussian Additive noise pixels and

their interpolation which replaces the Impulse noise pixels. This new image cannot be taken

as a plain Gaussian Additive noise scenario, even when no outliers remain, for two main

reasons: First, the interpolation does not holds any information about the original Impulse

noise pixels. Second, applying this scheme may modify the noise properties due to the fact

that new intensities in different proportions are being introduced to the new image. That

is, if there was an initial Additive noise distribution affecting the original image, then the

resulting image does not hold it.

The purpose of creating this intermediate output is to find an Additive corrupted element

set Total Variation solution based on coherent non-outlier intensities. This is similar to the

plain Impulse noise case, where the Impulse pixel set find new intensities based noise free

elements only. However, in this new scenario, the only pixels holding true information are

the Additive noise elements. So, an iterative procedure first regularizes N based on the

Additive noise elements in order obtain structure-coherent intensities, and then regularizes

G based on this new intensities.

By using the UPRE, an accurate `2 TV reconstruction for the Gaussian Additive noise

scenario may be achieved by searching for the optimal regularization parameter as the risk

minimizer in the λ space [9]. However, under a Mixed noise scenario, the UPRE method

needs to be modified as a local operator so that it performs over a specific pixel set and not

the entire image. In the following, we introduce a UPRE modification in order to apply it in

a local fashion.

Let MSE(g) = MSE(u
(g)
λ ) denote the mean square error of the estimated Gaussian

corrupted elements set. This risk measurement tells the error between the original and

the restored elements in G by a specific λ. In order to estimate the risk measurement,

i.e. the UPRE for this set, then it must only take into account the elements in G. Let

Wg = diag(w0, ..., wn−1), where

wi =

 0 ,i /∈ G

1 ,i ∈ G

then, using this mask into the UPRE calculation:

UPRE(g) =
‖Wgrλ‖
|G|

+
σ̂2
η

|G|
Trace(WgA(uλ))− σ̂2

η (3.24)

An important detail is that, since the UPRE is applied to a portion of the image, then σ̂2

should take into account just the elements belonging to G. This is accomplished by taking

into account only the very same elements when estimating the noise variance.

Regarding the Hutchinson estimate used for calculating the UPRE, the shown modifi-
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cation is reflected as:

r = vTWg(K(KTK + λL(uλ))−1KT )v (3.25)

or

r = vT0 (KTK + λL(uλ))−1v1 (3.26)

where v0 = KTWgv and v1 = KT v. So, the requirement of a solver for (KTK +

λL(uλ))r = v1 is kept.

Given this modification, a Golden search on the λ space is proposed to find the UPRE

minimizer and estimate the optimal regularization parameter for the local `2 TV reconstruc-

tion.

3.2.3 Modified Spatially Adaptive Iteratively Reweighted Norm

Once the Additive noise corrupted elements are restored, the Impulse noise corrupted el-

ements should follow. Since the set G intensities are now closer to their original values,

an intuitive approach is to apply the SAIRN scheme to this pre-denoised image. Given

the attenuated Additive noise, the Impulse noise elements reconstruction should give more

accurate results. Algorithm 3 shows the proposed method.
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Algorithm 3 Modified Spatially Adaptive Iteratively Reweighted Norm for the Impulse
over Gaussian Additive noise scenario
Initialize

Estimate N : NRAMF ∩NDWMF from b
Estimate G : Ω \ N from b
Λi = λ0 diag(I[i∈N ]) + εdiag(I[i/∈N ]), λ0 >> 1, ε ∈ R+ << 1

u(0) =
(
I + ΛiD

TD
)−1

b

// Solve local `1 TV for b
for k = 1, 2, ..,K

W
(k)
F = diag

(
τF,εF (u(k−1) − b)

)
for p = 1

Ω
(k)
R = diag

(
τR,εR

(
(Dxu

(k−1))2 + (Dyu
(k−1))2

))
for q = 1

W
(k)
R =

(
Ω

(k)
R 0

0 Ω
(k)
R

)
u(k) =

(
I + ΛiW

(k)
F

−1
DTW

(k)
R D

)
b

end
Calculate λ∗ =arg minλUPRE(g)

TV,λ(u(K))

Λg = λ∗ diag(I[i∈G]) + εdiag(I[i/∈G])

v(0) =
(
I + ΛgD

TD
)−1

u(K)

// Solve local `2 TV for u
for m = 1, 2, ..,M

W
(m)
F = diag

(
τF,εF (v(m−1) − u(K))

)
for p = 2

Ω
(m)
R = diag

(
τR,εR

(
(Dxv

(m−1))2 + (Dyv
(m−1))2

))
for q = 1

W
(m)
R =

(
Ω

(m)
R 0

0 Ω
(m)
R

)
v(m) =

(
I + ΛgW

(m)
F

−1
DTW

(m)
R D

)
u(K)

end
w(0) =

(
I + ΛiD

TD
)−1

v(M)

// Solve local `1 TV for w
for k = 1, 2, ..,K

W
(k)
F = diag

(
τF,εF (w(k−1) − v(M))

)
for p = 1

Ω
(k)
R = diag

(
τR,εR

(
(Dxw

(k−1))2 + (Dyw
(k−1))2

))
for q = 1

W
(k)
R =

(
Ω

(k)
R 0

0 Ω
(k)
R

)
w(k) =

(
I + ΛiW

(k)
F

−1
DTW

(k)
R D

)
v(M)

end



Chapter 4

Experimental Results

The proposed framework is evaluated under Impulse noise and Impulse over Gaussian Ad-

ditive noise, as depicted in Section 3. A contrast between the present work and the results

reported on [2, 21, 32] and [35, 3, 4] is elaborated in order to show its performance against

the state of the art algorithms. Each algorithm in the proposed framework is evaluated under

different noise conditions against the state of the art algorithms. Furthermore, an evalua-

tion on the SAIRN update scheme parameters (ρ;σ) reconstruction quality impact for the

Impulse noise scenario is included. The evaluated quality metrics are the following:

SNR
(
10 log10

Nσ2{u∗}
‖u− u∗‖22

)
,

PSNR
(
10 log10

N(max {u})2

‖u− u∗‖22

)
,

and SSIM [36], where N is the number of pixels in all the image layers. The simulations

are carried out using Matlab code on a 3GHz. Intel core i7 processor (1024KB. L2 Cache,

4GB. RAM).

4.1 Spatially Adaptive Iteratively Reweighted Norm: Update
Scheme Parameters Evaluation

The output for different SAIRN update parameter values (ρ; σ) is presented in order to

show their reconstruction quality impact. Figures (4.11 - 4.13) show the quality results for

(gray) Lena, (gray) Peppers and (gray) Bridge; for s = {5%; 25%; 75%}, σ in the range of

[0.25− 1.25] (steps of 0.5) and ρ in the range of [0.6− 5.0].

Regarding ρ, while the curves does not show an optimal value, ρ = 0.6 and ρ = 0.7

show the best reconstruction quality for (gray) Lena and (gray) Peppers in most s and ρ

scenarios. On the other hand, covered σ values show no considerable impact for s =

{25%; 75%} on the image test set. However, for s = 5%, ρ = 1.25 shows a slight re-

construction quality increase for (gray) Lena and (gray) Bridge, while a slight decrease for

(gray) Peppers. Finally, results also show how ρ > 1 has an unfavorable impact in the

reconstruction quality, which keep the same reconstruction quality along all the iterations.

27
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σ̂2
η

MSEgrid UPRE grid,tr. comp. UPRE grid,tr. est. UPRE golden,tr. est.
642px. 1282px. 642px. 1282px. 642px. 1282px. 642px. 1282px.

10
255 0.01 0.01 0.01 0.01 0.01 0.01 0.0121 0.0122
20
255 0.025 0.025 0.03 0.025 0.03 0.03 0.0243 0.0319
30
255 0.045 0.04 0.045 0.04 0.045 0.05 0.0441 0.0441
40
255 0.06 0.06 0.07 0.06 0.07 0.075 0.0592 0.0714
50
255 0.075 0.08 0.08 0.08 0.075 0.09 0.0789 0.0911

Table 4.1: UPRETV accuracy: λ∗ for the computation and estimation of Trace(ATV).
MSEgrid: MSE grid search; UPREgrid, tr.comp.: UPRE grid search by Trace(ATV) computa-
tion; UPREgrid, tr.est.: UPRE grid search by Trace(ATV) estimation; UPREgolden, tr.est.: UPRE
golden Search by Trace(ATV) estimation.

Although the proposed framework does not include the SAIRN iterative (Λ) update

scheme, the evaluation shows how, under different scenarios, there may not be optimal ρ

and σ values. Instead, for images with different features and structural characteristics, such

parameters may be specifically selected in order to obtain the best outcome.

4.2 Gaussian Additive Noise Risk Estimation Performance

UPRE computation implies a great cost since it depends upon the Trace(ATV) computation.

ATV considerably increases its dimensions for a relatively big observation, which means a

serious obstacle. As mentioned in Section 3, the present work uses an alternative approach

which does not calculate Trace(ATV). Instead, it uses the Hutchinson Trace Estimator [9],

which dramatically reduces the computational requirements. On the other hand, the pro-

posed method estimates λ∗ as the UPRE minimizer by searching in the λ space, which

requires the `2 TV calculation for several λ values. Following this, an evaluation of both

methods, UPRE computation vs. Hutchinson estimation, for the White Gaussian Noise sce-

nario is presented. Additionally, a Grid search and a Golden search for the λ∗ estimation

is applied. The accuracy of both methods regarding the Trace(ATV) is analyzed on two

patches of (64 x 64) and (128 x 128) pixels on (gray) Lena corrupted by White Gaussian

noise with σ2
η in the range of [ 10

255 −
50
255 ] (steps of 10

255 ). Table 4.1 presents the achieved λ∗

for each case. Since the test does not include processing time, it is important to remark that

the Trace(ATV) calculation time is around fifteen times the time required by the Hutchinson

trace estimation in all the evaluations. Despite this, both risk outputs are relatively close.

Finally, the Local UPRE proposed in Section 3 is evaluated for the Impulse over Gaus-

sian Additive noise scenario. A 50% (s = 0.5) Salt and Pepper noise corruption is applied,

which in theory leaves half the pixel set corrupted only by Gaussian Additive noise (G).

Following this, the Local UPRE should estimate the risk for the Additive noise corrupted

elements only. Table 4.2 presents the achieved λ∗ for each case. Figure 4.1 shows the λ∗

grid search for both patch sizes (σ2
η = 50

255).
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σ̂2
η

MSEgrid UPRE grid,tr. comp. UPRE grid,tr. est. UPRE golden,tr. est.
642px. 1282px. 642px. 1282px. 642px. 1282px. 642px. 1282px.

10
255 0.01 0.01 0.015 0.01 0.015 0.01 0.0047 0.0122
20
255 0.02 0.025 0.02 0.025 0.02 0.025 0.0244 0.0244
30
255 0.035 0.03 0.025 0.03 0.025 0.03 0.0319 0.0441
40
255 0.05 0.05 0.04 0.05 0.04 0.05 0.0441 0.0592
50
255 0.065 0.07 0.045 0.075 0.045 0.06 0.0714 0.0811

Table 4.2: Local UPRETV accuracy: λ∗ for the computation and estimation of Trace(ATV).
MSEgrid: MSE grid search; UPREgrid, tr.comp.: UPRE grid search by Trace(ATV) computa-
tion; UPREgrid, tr.est.: UPRE grid search by Trace(ATV) estimation; UPREgolden, tr.est.: UPRE
golden Search by Trace(ATV) estimation.

4.3 Gaussian Additive Noise Variance Estimation Performance

A contrast between the ground truth σ2
η for the Gaussian Additive noise corrupted pixels,

i.e. the elements which belong to G, and the local variance estimator introduced in Section

3 is elaborated in order to analyze its accuracy. The ground truth variance is defined as

σ2
η,sample = 1

|G|
∑
G u(i)− µ(u), where µ(u) is the sample mean. The test is performed on

(gray) Lena, with Gaussian Additive noise with σ2
η = [ 25

255 −
75
255 ] (steps of 10

255 ), and Salt

and Pepper noise with s = [0.25 − 0.75] (steps of 0.25). Figure 4.2 shows the test results.

It is important to remark that the Additive noise is applied to the entire image, so after the

Impulse noise corruption, the Additive noise corrupted element set G not necessarily holds

the original σ2
η . The results show that σ̂2

η gets significantly close σ2
η in most cases.

4.4 Impulse Noise Outliers Detection Performance

The SAIRN proposed method makes use of the RAMF for outliers detection, which are

considered noise corrupted elements under the Salt and Pepper noise scenario. In contrast,

the present framework requires an accurate Impulse noise estimation whether on a Mixed

noise scenario or in a plain Impulse noise scenario. For this purpose, several Impulse noise

estimation methods are evaluated. The methods are: RAMF, PSM, IWF, DWMF, FIDRM

Detector, MAD, and a Modification of the CWMF proposed in [4]. This methods, all of

them based on two-stage ranked order filters and introduced in Section 2, are tested on

a Salt and Pepper over Gaussian Additive noise scenario for a test image set formed by

grayscale (Peppers, Cameraman) and color (Goldhill, Lena) images. Figure 4.3 show the

image set. For the evaluation, ση varies within [ 5
255 −

15
255 ] (steps of 5

255 ) and s within

[30% − 90%] (steps of 0.3). Each test consists of fifteen iterations. Each performance is

measured by the ratio of True positives vs. the ground truth noise set, False positives vs. the

number of pixels in the image, and the required time for each method. Figures (4.14 - 4.21)

show the performance results.

The evaluation shows no method which outperforms the rest. Some methods perform

better than others in some scenarios. RAMF attains an impressive True positives ratio for

high level Salt and Pepper noise in all the covered Gaussian Noise levels. However, this

feature is considerably reduced for low level Salt and Pepper noise. Moreover, in the Cam-
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(c) (128× 128 patch) UPRE (Trace computation)
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(d) (64× 64 patch) UPRE (Trace computation)
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(e) (128× 128 patch) UPRE (Trace estimation)
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(f) (64× 64 patch) UPRE (Trace estimation)

Figure 4.1: Local risk calculation vs. local risk estimation for (gray) Lena under a grid
search.

eraman test, RAMF results show a high False positives ratio on all the covered Gaussian

Noise corruption levels. For low level Salt and Pepper noise, the two better results are ob-

tained by RAMF and DWMF. For high level Salt and Pepper noise, the two better results

are obtained by RAMF and ACWMF. This pattern is kept in almost all the tests. Regard-

ing the computational requirements, PSM reports at least three times the cost of the rest of

methods. Besides this, RAMF reports a required time in the scale of 20 seconds, which is a

considerable difference with the rest of methods, which are below 10 seconds.
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Figure 4.2: Local variance estimation accuracy.

(a) (gray) Peppers (b) (gray) Cameraman (c) (color) Lena (d) (color) Goldhill

Figure 4.3: Test image set for the Impulse noise estimators evaluation.

Based on this results, it is proposed to combine the output of two Impulse noise detectors

in order to get a more accurate noise estimation whether on a Mixed noise scenario or in

a plain Salt and Pepper noise scenario. This approach consists on the combination of the

RAMF and the DWMF outputs (denoted asNRAMF∩NDWMF). This filters are chosen based

on the fact that DWMF has a great response for low level Impulse noise inputs, while the

RAMF has a good response for high level Impulse noise inputs. This aims to hold the

features of both, and thus obtain a high True positives ratio and low false positives ratio for

any Impulse noise level and Gaussian Additive noise level.

This novel estimation method is put into test and compared to the RAMF, which is used

in the SAIRN algorithm. Both ranked order filters are tested on a Mixed noise scenario

for a (256 x 256) patch from (gray) Lena. σ2
η varies within [ 10

255 −
50
255 ] (steps of 10

255 ) and

s within 0% − 90% (steps of 0.15). The performance is measured by the true positives

and false positives vs. the ground truth noise set each method achieve. Table 4.3 and 4.4

shows the test results. Figure 4.4 shows the false positives for σ2
η = 10

255 and s = 0.3. The

evaluation shows that the novel approach sustantially decreases the amount of false positives

for different s values. Moreover, the true positives almost remain the same in both outputs,

which is a favorable feature.

4.5 Impulse Noise Scenario: Image Restoration Performance

The proposed algorithm is contrasted with the results reported for Algorithm III proposed

in [2], which is refered as CHN, and with the (standard) IRN algorithm [21, 32]. The

test images consists of (gray) Bridge, (gray and color) Lena, and (color) Goldhill. Images
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(a) NRAMF ∩NDWMF (b) NRAMF

Figure 4.4: False positives for (gray) Lena (128× 128 px.). s = 0.3, σ2
η = 10

255 .

s (elements) σ2
η = 10

255 σ2
η = 20

255 σ2
η = 30

255 σ2
η = 40

255 σ2
η = 50

255

R∩D R R∩D R R∩D R R∩D R R∩D R
0(0) 1269 10920 3101 12512 6279 13222 9063 13769 11207 13928

0.15(10032) 629 5462 1554 6390 3175 6691 4724 6874 5575 6796
0.3(19779) 389 2629 828 2968 1692 3160 2350 3213 2644 3202
0.45(29775) 200 1119 495 1324 743 1221 974 1281 1100 1322
0.6(39399) 85 316 185 380 239 371 296 376 337 402
0.75(49298) 20 60 40 59 47 58 53 65 68 72
0.9(59022) 55 68 59 63 63 68 53 57 88 90

Table 4.3: Impulse noise detectors performance for the Impulse over Gaussian Additive
noise scenario: False positives. R : NRAMF, D : NDWMF.

are shown in Figure 4.5. This test images were corrupted with Impulse noise with s =

[0.1− 0.9] (steps of 0.2), which matches the experimental setup in [2].

(a) (gray) Bridge (b) (gray) Lena (c) (color) Lena (d) (color) Goldhill

Figure 4.5: Impulse noise scenario test image set.

s (elements) σ̂2
η = 10

255 σ̂2
η = 20

255 σ̂2
η = 30

255 σ̂2
η = 40

255 σ̂2
η = 50

255

R∩D R R∩D R R∩D R R∩D R R∩D R
0(0) 0 0 0 0 0 0 0 0 0 0

0.15(10032) 9714 9927 9804 9804 9849 9849 9856 9856 10032 10032
0.3(19779) 19779 19779 19625 2968 19710 3160 19607 3213 19702 3202
0.45(29775) 29843 1119 29937 1324 29775 1221 29489 1281 29708 1322
0.6(39399) 39150 39150 39296 39296 39149 39149 39394 39394 39312 39312
0.75(49298) 49201 49201 49007 49007 49038 49038 48991 48991 49298 49298
0.9(59022) 58399 58936 58499 59022 57657 58825 58125 58955 57547 58973

Table 4.4: Impulse noise detectors performance for the Impulse over Gaussian Additive
noise scenario: True positives. R : NRAMF; D : NDWMF.
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Image Noise SNR ( dB) PSNR ( dB) SSIM [36]
IRN SA-IRN IRN SA-IRN CHN IRN SA-IRN

Lena
(gray)

0.5 12.8734 19.9870 26.4388 34.1221 ≈34 0.8074 0.9419
0.7 10.1669 16.4732 23.5971 30.6190 29.3 0.7283 0.8934
0.9 2.3549 11.5379 14.3488 25.4222 25.4 0.5249 0.7760

Bridge
(gray)

0.5 8.5561 13.8882 21.7991 27.1569 ≈27 0.4941 0.8611
0.7 7.0238 11.1691 20.0541 24.4027 25 0.3908 0.7396
0.9 2.0901 7.6764 13.0018 20.9045 21.5 0.2371 0.4920

Lena
(color)

0.5 16.2371 21.8106 28.9538 34.5205 – – –
0.7 12.6595 18.7444 25.3708 31.4553 – – –
0.9 2.8881 14.1123 15.1128 26.7976 – – –

Goldhill
(color)

0.5 15.2090 20.4090 27.6639 32.9757 – – –
0.7 12.0941 17.3832 24.8784 30.0075 – – –
0.9 2.3510 13.2910 14.7308 25.7874 – – –

Table 4.5: Computation of the reconstructed image quality reached by the Spatially Adap-
tive IRN algorithm, the standard IRN algorithm, and the CHN(1) algorithm.(1) Information
taken from [2, Fig. 2 - Fig. 5]. Results shown in dB

Noise
level

(gray) Lena (gray) Bridge (color) Lena (color) Goldhill
N. detector Iter. `-1 TV N. detector Iter. `-1 TV N. detector Iter. `-1 TV N. detector Iter. `-1 TV

0.1 0.65 23.35 0.89 32.25 1.99 80.41 3.17 131.40
0.3 1.91 28.30 2.18 35.04 5.87 95.95 9.36 164.29
0.5 3.54 32.93 3.81 35.69 10.95 119.69 17.46 198.26
0.7 6.23 41.61 6.53 42.79 18.92 144.26 29.86 241.40
0.9 14.40 57.74 14.72 56.5 43.88 211.11 69.26 339.96

Table 4.6: Processing time for the Spatially Adaptive IRN algorithm. Results shown in
seconds.

For all experiments we use wmax = 9 (see section 3.1.3), and ρ = 0.65 and σ = 0.5

(see (3.15)). Also, we use five global iterations with eight local iterations (M = 5 and

K = 8 in Algorithm 2), which seems to be a good compromise between the computational

cost and the reconstruction quality.

As expected, both the CHN and the spatially adaptive IRN algorithm outperform the

(standard) IRN algorithm. We also note that the CHN and the proposed algorithm have

very similar performance for the grayscale case since both use the RAMF as noise estima-

tion method. Table 4.5 shows the reconstruction performance for the IRN, CHN, and the

proposed algorithm. This information is based on the average of ten different trials. Figures

(4.6 - 4.9) show the noisy test images, and their respective reconstruction images, based on

the proposed algorithm.

The execution time for the proposed algorithm is split into two specific tasks: Corrupted-

pixel set detection and Iterative Minimization based on the IRN algorithm. Table 4.6 shows

that the iterative procedure has a predominant weight in the computational time, although

the noise detection step increases with the noise level, which is expected. Moreover, the

computational performance of the spatially adaptive IRN outperforms that of the CHN al-

gorithm ([2, Table II]) by a factor of 100 to 1 for images with 70% and 90% of noise

corruption. Considering a correction factor for the CPUs available seven years ago ([2] was

published in 2005), this is still a significant computational improvement.
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(a) 70% noisy (b) 90% noisy (c) Rec. 70% (PSNR: 24.4 dB) (d) Rec. 90% (PSNR: 20.90 dB)

Figure 4.6: Impulse noise image denoising for (gray) Bridge.

(a) 70% noisy (b) 90% noisy (c) Rec. 70% (PSNR: 30.61 dB) (d) Rec. 90% (PSNR: 25.42 dB)

Figure 4.7: Impulse noise image denoising for (gray) Lena.

(a) 70% noisy (b) 90% noisy (c) Rec. 70% (PSNR: 31.45 dB) (d) Rec. 90% (PSNR: 26.79 dB)

Figure 4.8: Impulse noise image denoising for (color) Lena.

(a) 70% noisy (b) 90% noisy (c) Rec. 70% (PSNR: 30 dB) (d) Rec. 90% (PSNR: 25.78 dB)

Figure 4.9: Impulse noise image denoising for (color) Goldhill.

4.6 Impulse over Gaussian Additive Noise Scenario: Image Restora-
tion Performance

The framework composed by the previously evaluated algorithms is analyzed as a global

system under the worst case scenario of interest: Impulse over Gaussian Additive noise.

In order to test its performance, a grayscale image set based on four different images is

corrupted by Gaussian Additive noise with σ2
η : [ 5

255 ,
15
255 ] (steps of 5

255 ), and Salt and
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Image s (σ2
η = 5

255 )
SNR PSNR SSIM

ROD Proposed XIA CAI ROD Proposed ROD Proposed

Lena
(gray)

0.3 20.11 16.17 36.20 34.15 34.64 34.23 0.89 0.9091
0.5 18.21 14.1 33.93 32.30 32.75 31.99 0.87 0.8854
0.7 15.66 12.62 30.76 29.73 30.20 29.74 0.83 0.8418

Cameraman
(gray)

0.3 – 15.18 31.92 29.90 – 36.06 – 0.9323
0.5 – 13.83 29 27.40 – 33.38 – 0.9187
0.7 – 11.98 25.51 24.67 – 29.7 – 0.8857

Peppers
(gray)

0.3 – 14.1389 35.50 33.87 – 33.0612 – 0.8862
0.5 – 12.7962 33.38 31.83 – 30.2727 – 0.8539
0.7 – 11.7403 30.81 29.58 – 28.2741 – 0.8272

Table 4.7: Reconstruction quality comparison for the CAI(1), XIA(1), ROD(2) and the pro-
posed algorithm. σ2

η = 5
255 . (1) Information taken from [3]. (2) Information taken from [4].

Results shown in dB

Pepper noise with s : [0.1, 0.7] (steps of 0.1). Figure 4.10 show the test image set.

(a) (gray) Lena (b) (gray) Goldhill (c) (gray) Cameraman (d) (gray) Peppers

Figure 4.10: Impulse over Gaussian Additive noise test image set.

Quality results are measured and compared with the documented results from [35], [3]

and [4] (denominated (CAI), (XIA) and (ROD) respectively). Furthermore, the processing

time is also taken into account in the performance evaluation. Tables (4.7, 4.8, 4.9) show

the full results and algorithms contrast, respectively. Figures (4.22 - 4.24) shows the recon-

struction stages for the (σ2
η, s) = [( 5

255 , 0.3), ( 10
255 , 0.5), ( 15

255 , 0.7)] case for the test image

set. Regarding the experimental setup, the following parameter values were used:

• UPRETV: β = 10−5, Trace Estimation Iterationsmax = 15, Search Ratio=
1+
√

5
2 , Search Range= [0, 1] , Search Iterationsmax = 10.

• IRN(`2TV): Loopsinner = 20, Solver Tolerance= 10−4, εF = 10−2, εR =

10−4.

• SAIRN(`1TV) λ Update Scheme: fixed at 10, Loopsinner = 20, Loopsouter =

10, Solver Tolerance= 10−4, εF = 10−2, εR = 10−4 .

• RAMF: W= 5× 5.

• DWMF: W= 5× 5, Td = 510
255 (normalized intensities).

From the results, the obvious disadvantage the proposed algorithm introduces is the

overdemanding time it requires, which is more than two orders bigger than the rest of stud-

ied methods. Even for a UPRE estimation based on a search criteria (not a grid search), and

a relaxation in the error tolerance, the required time is extremely high. This stage is the one
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Image s (σ2
η = 5

255 )
SNR PSNR SSIM

ROD Proposed XIA CAI ROD Proposed ROD Proposed

Lena
(gray)

0.3 17.82 14.0159 33.19 31.33 32.36 31.8893 0.83 0.8581
0.5 16.61 13.2528 31.51 29.88 31.14 30.1793 0.81 0.8358
0.7 14.54 12.1933 28.98 28.11 29.07 28.0757 0.78 0.8035

Cameraman
(gray)

0.3 – 13.8010 29.79 27.71 – 31.8893 – 0.9118
0.5 – 12.9715 27.71 25.99 – 30.1793 – 0.8563
0.7 – 11.5333 24.16 23.45 – 28.0757 – 0.8348

Peppers
(gray)

0.3 – 13.3477 33.23 31.66 – 31.4600 – 0.8427
0.5 – 12.4770 31.82 30.24 – 29.7761 – 0.8173
0.7 – 11.3633 29.39 28.43 – 27.6307 – 0.7832

Table 4.8: Reconstruction quality comparison for the CAI(1), XIA(1), ROD(2) and the pro-
posed algorithm. σ2

η = 10
255 . (1) Information taken from [3]. (2) Information taken from [4].

Results shown in dB

Image s (σ2
η = 15

255 )
SNR PSNR SSIM

ROD Proposed XIA CAI ROD Proposed ROD Proposed

Lena
(gray)

0.3 16.03 12.2192 31.49 29.67 30.56 30.3238 0.76 0.8307
0.5 15.27 11.6562 29.95 28.42 29.80 29.0079 0.75 0.7894
0.7 13.80 10.7833 27.53 26.48 28.33 27.4080 0.74 0.7635

Cameraman
(gray)

0.3 – 12.8200 28.25 26.10 – 31.0199 – 0.8821
0.5 – 12.2386 26.19 24.69 – 29.9021 – 0.8250
0.7 – 11.0884 23.13 22.67 – 28.0336 – 0.7552

Peppers
(gray)

0.3 – 12.6931 31.75 30.25 – 30.1528 – 0.8139
0.5 – 12.0372 30.37 28.85 – 28.8289 – 0.7877
0.7 – 11.0469 27.89 27.07 – 27.3034 – 0.7534

Table 4.9: Reconstruction quality comparison for the CAI(1), XIA(1), ROD(2) and the pro-
posed algorithm. σ2

η = 15
255 . (1) Information taken from [3]. (2) Information taken from [4].

Results shown in dB

Algorithm s σ2
η = 5

255 σ2
η = 15

255

XIA 0.3 93 143
0.5 119 248

CAI 0.3 338 215
0.5 247 176

ROD 0.3 34.5 32.8
0.5 26.9 41.8

Proposed 0.3 1610.9 1654.3
0.5 1622 1663.2

Table 4.10: Processing Time for the XIA(1), CAI(1), ROD(2) and the proposed algorithm.
(1) Information taken from [3]. (2) Information taken from [4]. Results shown in s.

which introduces the most amount of processing time due to the fact that each estimation

step requires to find the TV solution for the actual λ. Moreover, since the test images are of

a considerable size (512× 512), constantly finding TV solutions is an expensive task.

Besides this, the algorithm achieves a reconstruction quality slightly below the other

studied methods for the SNR and PSNR metrics. However, based on the SSIM results, the

reconstruction structure for the proposed algorithm is more coherent to the original structure

than the rest of methods.
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(a) s = 5%;σ = 0.25.

1 2 3 4 5 6 7 8 9 10
53

53.5

54

54.5

55

55.5

56

56.5

57

57.5

58

iteration

P
S

N
R

 (
d

B
)

 

 

step= 0.6
0.7
0.9
1.25
2
5

(b) s = 5%;σ = 1.25.
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(c) s = 25%;σ = 0.25.
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(d) s = 25%;σ = 0.75.
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(e) s = 25%;σ = 1.25.
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(f) s = 75%;σ = 0.25.
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(g) s = 75%;σ = 0.75.
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(h) s = 75%;σ = 1.25.

Figure 4.11: SAIRN update parameters quality impact for (gray) Lena.
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(a) s = 5%;σ = 0.25.
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(b) s = 5%;σ = 1.25.
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(c) s = 25%;σ = 0.25.
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(d) s = 25%;σ = 0.75.
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(e) s = 25%;σ = 1.25.
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(f) s = 75%;σ = 0.25.
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(g) s = 75%;σ = 0.75.

1 2 3 4 5 6 7 8 9 10
24

24.5

25

25.5

26

26.5

27

27.5

28

iteration

P
S

N
R

 (
d

B
)

 

 

step= 0.6
0.7
0.9
1.25
2
5

(h) s = 75%;σ = 1.25.

Figure 4.12: SAIRN update parameters quality impact for (gray) Peppers.
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(a) s = 5%;σ = 0.25.
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(b) s = 5%;σ = 1.25.
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(c) s = 25%;σ = 0.25.
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(d) s = 25%;σ = 0.75.
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(e) s = 25%;σ = 1.25.
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(f) s = 75%;σ = 0.25.
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(g) s = 75%;σ = 0.75.
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(h) s = 75%;σ = 1.25.

Figure 4.13: SAIRN update parameters quality impact for (gray) Bridge.
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Figure 4.14: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (gray) Peppers.
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Figure 4.15: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (gray) Cameraman.
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Figure 4.16: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (color layer 1) Lena.
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Figure 4.17: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (color layer 2) Lena.
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Figure 4.18: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (color layer 3) Lena.
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Figure 4.19: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (color layer 1) Goldhill.
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Figure 4.20: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (color layer 2) Goldhill.
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Figure 4.21: Impulse noise detection performance for the Impulse over Gaussian Additive
noise scenario for (color layer 3) Goldhill.
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(a) (σ2
η, s) = ( 5

255
, 0.3) noise corrupted image. (b) (σ2

η, s) = ( 5
255

, 0.3) restored image (PSNR: 34.23 dB).

(c) (σ2
η, s) = ( 10

255
, 0.5) noise corrupted image. (d) (σ2

η, s) = ( 10
255

, 0.5) noise restored image (PSNR: 31.99 dB).

(e) (σ2
η, s) = ( 15

255
, 0.7) noise corrupted image. (f) (σ2

η, s) = ( 15
255

, 0.7) noise restored image (PSNR: 29.74 dB).

Figure 4.22: Impulse over Gaussian Additive Noise image denoising for (gray) Lena.
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(a) (σ2
η, s) = ( 5

255
, 0.3) noise corrupted image. (b) (σ2

η, s) = ( 5
255

, 0.3) restored image (PSNR: 31.01 dB).

(c) (σ2
η, s) = ( 10

255
, 0.5) noise corrupted image. (d) (σ2

η, s) = ( 10
255

, 0.5) noise restored image (PSNR: 29.01 dB).

(e) (σ2
η, s) = ( 15

255
, 0.7) noise corrupted image. (f) (σ2

η, s) = ( 15
255

, 0.7) noise restored image (PSNR: 27.40 dB).

Figure 4.23: Impulse over Gaussian Additive Noise image denoising for (gray) Cameraman.
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(a) (σ2
η, s) = ( 5

255
, 0.3) noise corrupted image. (b) (σ2

η, s) = ( 5
255

, 0.3) restored image (PSNR: 30.15 dB).

(c) (σ2
η, s) = ( 10

255
, 0.5) noise corrupted image. (d) (σ2

η, s) = ( 10
255

, 0.5) noise restored image (PSNR: 28.82 dB).

(e) (σ2
η, s) = ( 15

255
, 0.7) noise corrupted image. (f) (σ2

η, s) = ( 15
255

, 0.7) noise restored image (PSNR: 27.30 dB).

Figure 4.24: Impulse over Gaussian Additive Noise image denoising for (gray) Peppers.



Chapter 5

Conclusions

The present work proposes a novel automatic Total Variation optimal regularization param-

eter selection method for image restoration under two different noise scenarios: Impulse

and Impulse over Gaussian Additive noise. As main feature, the approach extends the Total

Variation formulation to a more suitable cost function, which deals more efficiently with

the noise scenarios of interest by penalizing each pixel in a custom way. Thus, the proposed

method introduces the following properties:

• It automatically estimates the noise pixel set for both noise models. Furthermore, it

estimates the Impulse noise level and the local variance for Gaussian Additive noise.

• It applies an elementwise regularization criteria for each noise model. Based on the

estimated noise properties and the noise set estimation, the proposed scheme allows

to define a particular regularization level for each noisy pixel in the image, discrimi-

nating between noise models while leaving the non-corrupted ones unaltered.

• It updates each regularization parameter by using an iterative scheme. An accurate

approach for automatically selecting each regularization parameter by a local-based

risk estimator for the Gaussian Additive corrupted pixels, and a novel penalization

method based on previous preliminary works for the Impulse noise pixels is applied

to define the penalization level in a spatially adaptive form.

The resulting algorithm is proven to be comparable with the state of the art reconstruc-

tion quality, although it also shows a dramatical limitation due to its required processing

time. Even when there is no considerable improvement in most quality metrics, results

show that a more accurate structure response is obtained in contrast to the state of the art

algorithms. Future research topics may include the following in order to attack the main

drawbacks: (i) the use of a more complex noise estimation algorithm that enhances the ac-

tual true positives - false positives ratio; (ii) a less expensive risk estimation method which

considerably reduces the actual computational cost; and (iii) a novel Total Variation cost

function which includes the Gaussian Additive over Impulse noise scenario, allowing a

genuine general Mixed noise scenario.
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