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Topological phases generated with single photons
entangled in polarization and momentum

Elmer Eduardo Suarez Yana

Propuesto para el grado de Maǵıster en F́ısica

Resumen

El entrelazamiento puede abordarse desde dos perspectivas diferentes: como un re-

curso esencial para las tecnoloǵıas cuánticas y como un fenómeno fundamental que

está ı́ntimamente relacionado con nuestra comprensión de la naturaleza misma. Por

otro lado, la teoŕıa cuántica se formula en el marco teórico de los espacios de Hilbert,

para los que el entrelazamiento juega un papel importante en la determinación de

su geometŕıa y topoloǵıa. Las caracteŕısticas topológicas que puedan exhibirse al

utilizar estados entrelazados son largamente independientes de la realización f́ısica

particular del entrelazamiento: puede afectar a un solo grado de libertad poseido

por dos part́ıculas diferentes, o bien puede implicar dos grados diferentes de lib-

ertad que se cohesionan a una misma part́ıcula o entidad f́ısica, por ejemplo, un

campo electromagnético. Resulta que la manipulación de los grados de libertad de

polarización y momentum (camino) ya sea de forma independiente el uno del otro o

mediante la aplicación de evoluciones unitarias no separables es muy versátil. Con

esto en mente, la presente tesis apunta hacia el diseño e implementación de arreglos

experimentales que se pueden utilizar para estudiar fases geométricas y topológicas

en sistemas de dos qubits mediante el uso de los grados de libertad de momentum

(camino) y polarización de un solo fotoón. Finalmente mostramos el diseño de un

experimento, apuntado a exhibir la fase topológica, y los resultados obtenidos.
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Abstract

Entanglement can be addressed from two different perspectives, namely as an es-

sential resource for quantum technologies and as a fundamental phenomenon that is

intimately related to our understanding of Nature itself. On the other hand, quan-

tum theory is formulated within the mathematical framework of Hilbert spaces, for

which entanglement plays an important role in the determination of their geometry

and topology. The topological features that can be exhibited when using entangled

states are largely independent of the particular physical realization of entanglement:

it can involve a single degree of freedom carried along by two different particles, or

else it can involve two different degrees of freedom that are attached to one and

the same particle or physical entity, e.g., an electromagnetic field. Turns out that

the manipulation of polarization and momentum (path) degrees of freedom either

independently from one another or by applying non-separable unitary evolutions to

product or to entangled initial states is very versatile. With this in mind, the present

thesis points towards the design and implementation of experimental arrays that can

be used to exhibit geometric and topological phases in two-partite systems by using

polarization and momentum (path) degrees of freedom. Finally, we show the design

of an experiment aimed to exhibit topological phases and the results obtained.
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Chapter 1

Introduction

Quantum mechanics is the ultimate theory in physics. As it was to be expected,

new technology was developed and continues to be under the paradigm of quantum

information or microelectronics; however, it has also been useful in the pursuit of a

deeper understanding of nature. The present work is intended in the latter sense,

since we address fundamental issues that concern the topology and/or geometry

underlying the evolution of a quantum state: we aim to study geometric and topo-

logical phases in bipartite systems [1]. For this, we take advantage of the versatility

of the array proposed by Englert et al. [2] that allows us to manipulate polarization

and momentum degrees of freedom of single photons either independently from one

another or by applying non-separable unitary evolutions. We design experimental

arrays that, on one hand, fully exploit these capabilities and, on the other, permits

us to measure holonomic phases. Finally, we show the design and final results ob-

tained for one particular implementation with the objective of exhibiting topological

phases.

Previous research has been done along the above lines: Loredo et al. [3] measured

the geometric and topological phase of two entangled photons, Souza et al. [4, 5]

measured the topological phase in vortex beams and J. Du et al. [6] measured

topological phases using a pair of nuclear spins.

We shall now briefly discuss basic concepts that will be used in this thesis work.

1.1 The quantum bit

In electronics and information science the basic unit of information is the bit. The

bit represents a dichotomy, that is, it describes systems with only two possible states

and is commonly written as 0 or 1. As an example, a light bulb may only be on or

off.
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In the quantum regime, a bit falls short trying to represent any state of a two

dimensional system; it lacks the ability to be in a superposition. A qubit does not;

indeed, it is defined as

|Ψ〉 = a0 |0〉+ a1 |1〉 (1.1)

with |a0|2 + |a1|2 = 1, a0, a1 ∈ C. This is a pure state of a two dimensional quantum

system. In formal words, it is a vector in a Hilbert space H with an orthonormal

basis {|0〉 , |1〉} usually called the computational or standard basis.

A photon has three degrees of freedom which are of common use in quantum

optics: polarization, angular momentum and linear momentum. For the present

work two qubits will be of use: polarization and linear momentum.

1.1.1 Polarization as a qubit

Polarization is part of the description of light by Maxwell’s equations. In the absence

of free charges, the complex electric field is a two dimensional vector describing a

plane-wave beam propagating along some direction (~k):

~E = (E1e
iϕ1 ê1 + E2e

iϕ2 ê2)ei(
~k·~r−ωt) (1.2)

with | ~E|2 = E2 = E2
1 + E2

2 and a pair of perpendicular, in general complex, unit

vectors {ê1, ê2}.
We reparametrize by making cos θ = E1/E, sin θ = E2/E to obtain:

~E = (eiϕ1 cos θê1 + eiϕ2 sin θê2)Ee−i(
~k·~r−ωt) (1.3)

From this we can extract the so called fundamental vector mode function; by omit-

ting the global e−i(
~k·~r−ωt) phase for the moment, we obtain

Ê = eiϕ1 cos θê1 + eiϕ2 sin θê2 (1.4)

Which we may call the unit vector of polarization.

This representation is not suitable for describing the particle nature of light:

photons. Photons are a consequence of the quantization of the electromagnetic

(EM) field, and are represented by Fock states. Any given Fock state pertains to a

mode specified by ~k and one of the two polarization basis vectors tagged by s = 1, 2.

A single photon with a fixed ~k can ocuppy two modes: |1〉~k,s=1 and |1〉~k,s=2. These

states can form a qubit and are usually rewritten as

|Ψ〉 = eiϕ1 cos θ |H〉+ eiϕ2 sin θ |V 〉 (1.5)
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where |H〉(|V 〉) is a shorthand notation for |1〉~k,s=1(|1〉~k,s=2) and refer to a horizontal

and vertical direction respectively. This can be seen as the unit vector of polarization

written in Dirac’s notation with a particular choice of basis.

1.1.2 Linear momentum as a qubit

Linear momentum is parallel to the wave vector. Indeed, in the classical ap-

proach ~p = εE2~k/ω~k. While in the quantum approach the momentum operator

P̂ =
∑

~k,s ~~ka
†a i.e., |n〉~k,s is an eigenvector for the eigenvalue n~~k of the momen-

tum operator P̂ . Usual notation involves ~k instead, for this reason we omit writing

~p in the following paragraphs.

An EM wave incident in a material may be reflected, transmitted or absorbed.

Details depend on the particular material or on the incident polarization but, it is

most important to notice the similarity to the polarization case:

~Eout = (tei(
~kt·~r) + rei(

~kr·~r)) ~Ein (1.6)

Where t and r are the transmission and reflection coefficient respectively. We have

two waves going in different directions (~kr and ~kt); while with polarization we have

a vector with two possible directions (~e1 and ~e2).

For the single photon case, we must rephrase this by saying that it can excite only

two modes after passing through the material: |1〉~kr,ΨR and |1〉~kt,ΨT . In general, the

polarization states for each ~k (|ΨR〉 and |ΨT 〉) are not necessarily perpendicular nor

parallel but for the present work we shall consider the ideal case where polarization

is not changed and the reflecting materials do not absorb light. In this case we may

rewrite the state as:

|out〉 = t |T 〉+ r |R〉 (1.7)

where the coefficients depend on the material only, |t|2 + |r|2 = 1 and polarization

remains unchanged.

1.2 Qubit transformation

The evolution or transformation of a closed system is described by a unitary opera-

tor. Being a qubit a state of a closed two dimensional system, its unitary evolution

must be described by an element of the U(2) group. However, we shall focus on

those with determinant equal to one which form a subgroup called SU(2). This is

because we are not interested in global phases, such as distinguishing U(2) from

SU(2) elements.
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Let α and β be two complex numbers such that |α|2 + |β|2 = 1. The matrix

representation of any SU(2) can be written as

U =

(
α −β∗

β α∗

)
. (1.8)

We can parametrize SU(2) by making use of the operator basis, consisting of the

Pauli matrices σ1, σ2 and σ3 and the unit operator 1. There are three ways in which

this can be done

1. Homogeneous Euler angle parametrization

It depends on 4 variables (a0, a1, a2, a3) with the constraint a2
0+a2

1+a2
0+a2

3 = 1,

written as

U = a01− i~a · ~σ (1.9)

where ~σ denotes the triple of Pauli matrices.

2. Axis-angle parametrization

It depends on the coordinates of a unitary vector n̂ = (n1, n2, n3) and a rotation

α, written as

U = e−iαn̂·~σ = cosα1− i sinαn̂ · ~σ (1.10)

3. Euler angle parametrization

It depends on 3 angles (ξ, η, ζ), written as

U = exp(−iξσ2/2)exp(−iησ3/2)exp(−iζσ2/2) (1.11)

We will now explain how this type of evolutions are implemented in the qubits of

polarization and momentum.

1.2.1 Polarization transformation

Birefringent materials are commonly used to change polarization. These materials

have two indices of refraction, η1 and η2, each one oriented along one of two mutually

perpendicular directions. If η1 > η2 say, we then refer to the η2 direction as the fast

axis and the η1 direction as the slow axis.

The crystal coordinate system defines two preferred axes along which an incident

wave or photon accumulates different phases. The matrix representation of the
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SU(2) operator describing this transformation is

UBf =

(
eiφ 0

0 e−iφ

)
(1.12)

using the {fast, slow} basis and φ depends on the length and type of material as

well as the wavelength. Two cases are of great importance: the quarter wave plate

(φ = π/4) and the half wave plate (φ = π/2).

Polarization can be defined with respect to a coordinate system that may be

misaligned with respect to the crystal’s system. The laboratory coordinate system

defined by the horizontal and vertical direction, |H〉 and |V 〉, is our fixed reference

system; we must apply to 1.12 a rotation. Let the fast axis make an angle θ with

the horizontal direction, then the rotation matrix is given by

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (1.13)

Applying this rotation to the quarter and half wave plate cases (see eq. 1.12 with

φ = π/4 and π/2, respectively) we obtain

Q(θ) =
1√
2

(
1 + i cos(2θ) i sin(2θ)

i sin(2θ) 1− i cos(2θ)

)
(1.14)

and

H(θ) = i

(
cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)
. (1.15)

Where Q and H refers to quarter and half wave plate respectively.

A set of only two quarters and one half wave plate are necessary and sufficient

to realize an SU(2) operator [7]. It turns out that there is a linear relation between

the parameters of 1.11 and the angles the plates must be rotated:

U(ξ, η, ζ) = Q(π/4+ξ/2)H(−π/4+ ξ+η−ζ
4

)Q(π/4−ζ/2). (1.16)

We take the convention of writing at far right the first plate into which the light is

incident.

Some properties will be of use later on:

• Quarter and Half may be interchanged

Q(α)H(β) = H(β)Q(2β−α) (1.17)
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• An extra Half may be absorbed

Q(α)H(β)H(γ) = Q(α+π/2)H(α−β+γ−π/2). (1.18)

• Two ways to write any plate

H(α) = H(α+π) Q(α) = Q(α+π) (1.19)

• Inverse of any plate

H−1
(α) = H(α+π/2) Q−1

(α) = Q(α+π/2) (1.20)

1.2.2 Momentum transformation

How much of a wave is reflected or transmitted can be controlled by using a beam

splitter (BS). This consist of a partially reflecting mirror specially engineered to

reflect, for a fixed range of wavelengths, a certain percentage of the incident wave

power. Up to this point it is ambiguous how we should define the phases of the t

and r coefficients in 1.7. To deal with this we will assume symmetric beam splitters

in the ideal case. The matrix representation of the SU(2) operator associated with

this device would be (
cos θ i sin θ

i sin θ cos θ

)
. (1.21)

where the first and second column correspond to the action over light incident in the
~k1 and ~k2 direction respectively (Figure 1.1) and cot2 θ is the transmitted:reflected

power ratio.

Figure 1.1: An ideal, symmetric, cube beam splitter with a black space at one end.

7



Figure 1.2: A Mach-Zehnder interferometer

The relative phase between the transmitted and reflected wave may well be

controlled by a blank space as in figure 1.1. A blank space consists on a piece of

transparent material, specifically selected by its index of refraction and thickness,

that retards light by changing ~k in that region. It can also be rotated so refraction

can also play a role in the final relative phase that is gained.

In reality a BS is not reversible (it has preferred incident faces) nor symmetric

and θ depends on the incident polarization and the manufacturer. Also, since the top

priority in their design is the transmitted:reflected power ratio and its independence

of polarization, the phases may well vary between different beam splitters.

A Mach-Zehnder (MZ) interferometer is a versatile way to manipulate momen-

tum. From now on we shall refer to the ~k1 and ~k2 direction (figure 1.1) as the

R(ight) and L(eft) path respectively. In figure 1.2 we show a MZ interferometer

that consists of two 50:50 beam splitters and two mirrors (M). The parameters φ1,

φ2, ϕ1 and ϕ2 are phases that can be controlled by varying the optical path-length.

The zero reference is the disposition of each path such that the MZ acts as the unit

operator: in and out light have the same direction and intensity. In the present work

we mount mirrors on top of a piezoelectric displacer, thus controlling the length of

a path and so its acquired phase. Moving the mirror backwards makes the path

longer making it accumulate a negative phase; on the other hand, moving it forward

shortens the path thus making the light gain a positive phase. The unitary matrix
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for this operation is written as

Uph(θR, θL) =

(
eiθR 0

0 eiθL

)
. (1.22)

Note that Uph refers to the path degree of freedom, in contrast to U (eq. 1.12),

which refers to polarization space. Considering the SU(2) matrix of a mirror to be

Umir =

(
0 −i
−i 0

)
(1.23)

we can obtain the unitary matrix that corresponds to the MZ interferometer in figure

1.2. Multiplying all the involved operators we obtain

UMZ = ei(φ1+φ2+ϕ1+ϕ2)/2

(
ei

(φ1+φ2)
2 cos

(
ϕ1−ϕ2

2

)
e−i

(φ1−φ2)
2 sin

(
ϕ1−ϕ2

2

)
−ei

(φ1−φ2)
2 sin

(
ϕ1−ϕ2

2

)
e−i

(φ1+φ2)
2 cos

(
ϕ1−ϕ2

2

) ) . (1.24)

Ignoring the global phase, we have a SU(2) matrix with ϕ1−ϕ2, φ1 +φ2 and φ1−φ2

as its three parameters. In this way we have total control over the evolution in

momentum space, something we do not have with a single BS.
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Chapter 2

Composite systems

We can always join two or more systems (subsystems) to form a larger, composite

system. This is true for the classical as well as the quantum regime; however, the

superposition principle gives quantum composite states a very important feature:

entanglement.

Entanglement was first recognized by Einstein, Podolski and Rosen (EPR) [8] and

Schrödinger [9] in the early 30’s as the impossibility of writing some global states, in

a composite system, as a product of its subsystem’s states. This apparently simple

observation started a revolution that more than 70 years later is still running [10].

Formalism establishes that every subsystem can be accessed individually. It must

be possible, experimentally, to perform a unitary evolution on only one or some of the

subsystems; they are distinguishable. We can conclude that a composite system can

be a single quantum object with any of its degrees of freedom as subsystems [11]. In

this sense and with the explanation given in chapter 1 we can consider a single photon

as a composite system with its momentum and polarization degrees of freedom as

subsystems.

We will now explain, in our context, the formalism of a two-qubit system and

how it can be manipulated.

2.1 Two-qubit system

Hilbert spaces of subsystems are known as factor spaces. Here, we consider two

qubits. Each qubit belongs to a two-dimensional factor space: the momentum or

path Hilbert space Hm and the polarization Hilbert space Hp. In Hm we have the

{|R〉 , |L〉} basis so that we can write any momentum state as

|ψm〉 = a |R〉+ b |L〉 (2.1)

10



with a and b complex numbers. On the other hand, in Hp we have the {|H〉 , |V 〉}
basis so that we can write any polarization state (elliptical) as

|ψp〉 = c |H〉+ d |V 〉 (2.2)

with c and d complex numbers.

To describe composite systems we require the product Hilbert space: the tensor

product of all factor spaces involved. In our case we haveH = Hm⊗Hp. In the same

manner, the product of every possible pair between elements of theHp andHm bases

is an element of the H basis. We identify the latter as {|RH〉 , |RV 〉 , |LH〉 , |LV 〉}.
We then write any bipartite state as

|Ψ〉 = α |RH〉+ β |RV 〉+ γ |LH〉+ δ |LV 〉 (2.3)

with α, β, γ and δ complex numbers.

The Bell basis is a useful tool to describe two-qubit states. This basis is defined

by the following four states

∣∣Φ+
〉

=
1√
2

(|RH〉+ |LV 〉) (2.4a)∣∣Φ−〉 =
−i√

2
(|RH〉 − |LV 〉) (2.4b)∣∣Ψ+

〉
=
−i√

2
(|RV 〉+ |LH〉) (2.4c)∣∣Ψ−〉 =

1√
2

(|RV 〉 − |LH〉) (2.4d)

Usually the first three are referred to as the triplet and the last one as the singlet.

We have introduced the global phase factors (−i) in |Φ−〉 and |Ψ+〉 for future con-

venience. It is easy to observe that none of the Bell states are separable: they are

entangled. Actually, they are maximally entangled.

The definition of entanglement alone does not give us the whole picture. In

order to understand the role of entanglement in quantum theory we need it to be

introduced in the formalism: it must be parametrized. For a multi-qubit system this

is usually done by the Concurrence (C). Let |ψ〉 be some pure state of a multi-qubit

system then, following Wooters [12], we can apply to it the following transformation:

|ψ̃〉 = σ2 ⊗ . . .⊗ σ2 |ψ∗〉 (2.5)

where |ψ∗〉 is the complex conjugate of |ψ〉 when it is expressed in a fixed basis (e.g

11



the computational basis) and σ2 is the usual Pauli matrix written in that basis:

σ2 = i |1〉〈0| − i |0〉〈1| . (2.6)

The Concurrence is then defined as

C(ψ) = | 〈ψ|ψ̃〉 | (2.7)

Applying this definition to equation 2.3 we obtain

C = 2|γβ − αδ| (2.8)

The complex form of the concurrence (i.e. 〈ψ|ψ̃〉) shall be denoted by c for the rest

of this work.

States in a bipartite system can always be written as a sum of product states

that are mutually orthogonal. This is stated as a theorem.

Theorem 1 (Schmidt decomposition) [11]

Let
∣∣ψAB〉 be a normalized pure state of the composite system SAB in the product

Hilbert space HAB = HA ⊗ HB with dimHA = a and dimHB = b. With ρAB =∣∣ψAB〉 〈ψAB∣∣, the operators ρA = trB(ρAB) and ρB = trA(ρAB) are the reduced

density operators of the subsystems SA and SB. Then we have the following results:

• The vector
∣∣ψAB〉 can be written in the form of a Schmidt decomposition

∣∣ψAB〉 =
k∑

n=1

√
pn
∣∣uAn , wBn 〉 with pn ≥ 0 (2.9)

with k≤min(a,b), where {
∣∣uAn 〉} and {

∣∣wBn 〉} are the orthonormalised eigenvec-

tors of ρA in HA (or ρB in HB) with suitably chosen phases. For pairwise

differing eigenvalues pn (i.e. no degeneracy), the vectors
∣∣uAn 〉 and

∣∣wBn 〉 are

uniquely determined up to a phase. It follows from this that:

• ρA and ρB have the same positive eigenvalues p1,. . ., pk (for g-fold degeneracy,

the corresponding eigenvalue is to be repeated g times).

The number k is called the Schmidt rank of
∣∣ψAB〉. If k>1 then the state is entangled.

For our two-qubit system, the equation 2.9 can be written as

|Ψ〉 = e−iβ/2 cos(α/2) |m1〉 |p1〉+ eiβ/2 sin(α/2) |m2〉 |p2〉 , (2.10)
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where |mj〉 and
∣∣pj〉 are vectors like 2.1 and 2.2 inHm andHp respectively such that

〈mi|mj〉 =
〈
pi
∣∣pj〉 = δij. The theorem states that any vector in H can always be

written as the superposition of at most two particular, orthonormal separable states,

even though the global state may be entangled. Whether or not |Ψ〉 is entangled is

parametrized only by α. Indeed, the concurrence for 2.10 is given by

C = 2| sin(α/2)e−iβ/2 cos(α/2)eiβ/2| = | sin(α)| (2.11)

Therefore, we can think of α as being the entanglement.

2.1.1 Maximally entangled states (MES)

Maximal concurrence is achieved when α = π/2; we then call these states maximally

entangled. By expanding 2.10 we can conclude that MES are parametrized by two

complex numbers α and β in the following way:

|ΨMES〉 =
1√
2

(α |RH〉+ β |RV 〉 − β∗ |LH〉+ α∗ |LV 〉) (2.12)

with the constraint |α|2 + |β|2 = 1. It will be useful later to rewrite 2.12 in the Bell

basis:

|ΨMES〉 = Re(α)
∣∣Φ+

〉
− Im(β)

∣∣Ψ+
〉

+Re(β)
∣∣Ψ−〉− Im(α)

∣∣Φ−〉 . (2.13)

2.1.2 Local, bilocal and non-local evolutions

In the same manner we did with the basis elements of H we can obtain its operator

basis. We identify the latter as {σmi ⊗ σ
p
j} (i, j = 0, 1, 2, 3) where σm,p0 = 1m,p. We

can write then any operator O in H as a sum:

O =
∑
i,j

aijσ
m
i ⊗ σ

p
j . (2.14)

A unitary operator U should fulfill UU † = U †U = 1m ⊗ 1p.

We mentioned the separability criterion for vectors in H as we also mentioned

that subsystems must be distinguishable. Up to this point, nothing prevents us from

having a separability criterion for operators. Actually, the definition of subsystem

encourages this; we must have separable unitary operators in H. These can be of

the form Um⊗1p or 1m⊗Up known as local operators or of the form Um⊗Up known

as bilocal operators.

Separable operators do not change entanglement. A unitary transformation will
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RH,RV

LH,LV

Figure 2.1: A MZ type interferometer that can perform any momentum-polarization
unitary evolution

preserve orthonormality since the inner product is invariant under this type of trans-

formations. If we now apply to 2.10 a separable unitary evolution we would realize

that only the product states will change but remain orthonormal. Therefore, the

Schmidt decomposition of the new state , since it is unique, will have the same α

but not the same β in general; the entanglement is not changed.

We have concluded that a separable unitary transformation inH does not change

entanglement. We can rephrase this by saying that if entanglement is changed this

is due to a non-separable unitary transformation (non-local evolutions).

2.2 Momentum-Polarization transformation

In chapter 1 we described how polarization and momentum of light can be sepa-

rately accessed, this led us to identify both degrees of freedom as subsystems in a

single photon. We will now describe how can a given unitary evolution in H be

implemented [2].

The proposal consists in inserting a QHQ set along with every φ1, φ2, ϕ1 and

ϕ2 phase of figure 1.2. This way we end up with a Mach-Zehder type interferometer

like in figure 2.1. In order to obtain the unitary matrix corresponding to this new

14



array we need to introduce a new type of operator:

Ump = eiθRUR |R〉 〈R|+ eiθLUL |L〉 〈L| (2.15)

where UR and UL are SU(2) operators acting on polarization only while eiθR and eiθL

are accumulated phases in momentum. By looking at figure 2.1 we identify three of

these operators:

U1 =V1 |R〉 〈R|+ |L〉 〈L| (2.16)

URL =VR |R〉 〈R|+ VL |L〉 〈L| (2.17)

U2 =V2 |R〉 〈R|+ |L〉 〈L| (2.18)

where Vj (j = 1, 2, R, L) are U(2) operators. Using the operators for the BS and

mirrors introduced in chapter 1 we multiply these operators to obtain the new array’s

unitary matrix (S):

S = U2UBSURLUmirUBSU1 (2.19)

After some manipulation we can rewrite it as

S = |R〉 〈R|SRR + |L〉 〈L|SLL + |L〉 〈R|SLR + |R〉 〈L|SRL (2.20)

where the submatrices Sij (i, j = R,L) are given by

SRR =
1

2
V2(VR + VL)V1 (2.21a)

SLL =
1

2
(VR + VL) (2.21b)

SRL =− i

2
V2(VR − VL) (2.21c)

SLR =
i

2
(VR − VL)V1 (2.21d)

It is clear that any setting of birefringent plates and accumulated phases in momen-

tum will give some unitary operator S. In this case, the Sij sub-matrices will agree

with S whenever the equations below hold true. They are obtained as follows:

S†S = 1 implies

S†RRSRR + S†LRSLR =1 (2.22a)

S†RLSRL + S†LLSLL =1 (2.22b)

S†RRSRL + S†LRSLL =0 (2.22c)

S†RLSRR + S†LLSLR =0 (2.22d)
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while SS† = 1 implies

SRRS
†
RR + SRLS

†
RL =1 (2.23a)

SLRS
†
LR + SLLS

†
LL =1 (2.23b)

SRRS
†
LR + SRLS

†
LL =0 (2.23c)

SLRS
†
RR + SLLS

†
RL =0 (2.23d)

2.2.1 Building the array from a given unitary operator

Given a unitary operator S in H and 2.21, we can find the Vj operators needed to

reproduce the unitary evolution S. We start from the unitarity of S and start writing

the positive, hermitian operators SijS
†
ij and S†ijSij in their respective eigenvector

bases. Because of 2.22 and 2.23 their eigenvalues can be written using cos2 and sin2.

S†RRSRR = cos2 ϑ |ψ1〉〈ψ1|+ cos2 θ |ψ2〉〈ψ2| (2.24a)

SRRS
†
RR = cos2 ϑ

∣∣ψ̄1

〉〈
ψ̄1

∣∣+ cos2 θ
∣∣ψ̄2

〉〈
ψ̄2

∣∣ (2.24b)

S†LLSLL = cos2 ϑ |χ1〉〈χ1|+ cos2 θ |χ2〉〈χ2| (2.25a)

SLLS
†
LL = cos2 ϑ |χ̄1〉〈χ̄1|+ cos2 θ |χ̄2〉〈χ̄2| (2.25b)

S†LRSLR = sin2 ϑ |ψ1〉〈ψ1|+ sin2 θ |ψ2〉〈ψ2| (2.26a)

SLRS
†
LR = sin2 ϑ |χ̄1〉〈χ̄1|+ sin2 θ |χ̄2〉〈χ̄2| (2.26b)

S†RLSRL = sin2 ϑ |χ1〉〈χ1|+ sin2 θ |χ2〉〈χ2| (2.27a)

SRLS
†
RL = sin2 ϑ

∣∣ψ̄1

〉〈
ψ̄1

∣∣+ sin2 θ
∣∣ψ̄2

〉〈
ψ̄2

∣∣ (2.27b)
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We are now able to write every Sij using the eigenvectors and eigenvalues mentioned

above. By making explicit use of the phase ambiguity of the eigenvalues we obtain

SRR =eiαRR cosϑ |ψ̄1〉〈ψ1|+ eiβRR cos θ |ψ̄2〉〈ψ2| (2.28a)

SLL =eiαLL cosϑ |χ̄1〉〈χ1|+ eiβLL cos θ |χ̄2〉〈χ2| (2.28b)

SLR =eiαLR sinϑ |χ̄1〉〈ψ1|+ eiβLR sin θ |χ̄2〉〈ψ2| (2.28c)

SRL =eiαRL sinϑ |ψ̄1〉〈χ1|+ eiβRL sin θ |ψ̄2〉〈χ2| (2.28d)

The Sij expressed in this way must give S. This implies the following phase

relations:

−αRR + αRL =− αLR + αLL ± π (2.29)

−βRR + βRL =− βLR + βLL ± π (2.30)

By writing the submatrices as in 2.28 we must identify the αij and βij phases and

the above relations will be fulfilled.

We extract from 2.21 two identities:

SLL =V †2 SRRV
†

1 (2.31a)

SRL =− V2SLRV
†

1 . (2.31b)

From 2.31 we obtain:

SLLS
†
LL = V †2 SRRS

†
RRV2 (2.32)

S†LLSLL = V1S
†
RRSRRV

†
1 (2.33)

We can understand both V1 and V2 as basis change and write:

V1 = eiγ1 |χ1〉〈ψ1|+ eiΓ1 |χ2〉〈ψ2| (2.34)

V2 = eiγ2
∣∣ψ̄1

〉〈
χ̄1

∣∣+ eiΓ2
∣∣ψ̄2

〉〈
χ̄2

∣∣ (2.35)

Considering 2.29 and 2.30 we can identify Γ1,2 and γ1,2:

γ1 = αLR − αLL γ2 = αRR − αLR
= αRR − αRL ± π = αRL − αLL ∓ π

Γ1 = βLR − βLL Γ2 = βRR − βLR
= βRR − βRL ± π = βRL − βLL ∓ π

Let the operator A = V †2 SRL = −SLRV †1 so that A†A = S†RLSRL. We can rewrite
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equation 2.22c using A and 2.31:

S†RRSRL + S†LRSLL =(V †1 S
†
LLV

†
2 )V2A− (V †1 A

†)SLL

=V †1 S
†
LLA− V

†
1 A
†SLL

=V †1 (S†LLA− A
†SLL)

=0

Implying

S†LLA = A†SLL (2.36)

Making use of 2.31 we can rewrite 2.22b

1 =A†A+ S†LLSLL

=A†A+ iS†LLA− iA
†SLL + S†LLSLL

=(S†LL − iA
†)(SLL + iA)

1 =V †RVR

where we have used 2.36 multiplied by i to finally obtain a unitary operator that we

can identify with VR = SLL+ iA. Multiplying instead by −i we would have obtained

VL = SLL − iA. Operating we obtain the operator A:

A = V †2 SRL = − sinϑeiαLL |χ̄1〉〈χ1| − sin θeiβLL |χ̄2〉〈χ2| (2.37)

Finally we can obtain the last two operators

VR =e−iϑ |χ̄1〉〈χ1| eiαLL + e−iθ |χ̄2〉〈χ2| eiβLL (2.38)

VL =eiϑ |χ̄1〉〈χ1| eiαLL + eiθ |χ̄2〉〈χ2| eiβLL (2.39)
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Chapter 3

Holonomic phases

3.1 Pancharatnam’s phase

In the early 50’s, Pancharatnam [13] wanted to study the overall phase of light

after having passed through some polarizers arranged in such a way that the final

polarization is the same as the initial one. His objective was to verify if light that

enters is in phase with the exiting light. For this, he needed to reason how to

define the phase difference of two polarization states and proposed the following

definition: The polarization states of any two monochromatic beams of light with

the same momenta are in phase if the superposition of the two has the maximum

possible intensity. Let |ΨA〉 and |ΨB〉 be two non-orthogonal states representing

these beams. Then, the intensity would be given by:

(〈ΨA|+ 〈ΨB|) (|ΨA〉+ |ΨB〉) = 2 + 2 |〈ΨA|ΨB〉| cos (arg [〈ΨA|ΨB〉]) . (3.1)

Following Pancharatnam’s idea these two states will be in phase if 〈ΨA|ΨB〉 is real

so that arg(〈ΨA|ΨB〉) = 0. It is easy to see that this definition breaks down for

orthogonal states and that we can generalize it to any pair of states regardless

of its nature. We define the relative phase between two non-orthogonal states or

Pancharatnam’s phase as

ΦP = Φrel = arg (〈Ψ1|Ψ2〉) (3.2)

Although this definition is valid for the classical as well the quantum regime, we

will use it and focus only on the quantum regime from now on.
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3.2 Geometric phase

Anholonomy or holonomy is the failure of certain variables, describing a system, to

return to their original values. Is holonomy present in quantum theory? A first hint

was given by Berry who, while studying stationary states, corrected the adiabatic

theorem by introducing a new (global) phase which he called geometric phase [14].

Simon [15] proved that Berry’s phase was a manifestation of holonomy in a hermitian

line bundle.

The adiabatic theorem holds for slowly varying Hamiltonians. It stated that

eigenstates of these Hamiltonians will evolve as instantaneous eigenstates multi-

plied by a global phase termed dynamical phase. Let H (R) be a slowly varying

Hamiltonian with its set of time dependent parameters identified as R. Assuming

it has a discrete and non-degenerate spectrum, we can take as the initial state the

nth eigenstate at time t = 0: |n,R(0)〉. Its evolution will then be given by

|ψ(t)〉 = e−iϕn(t)/~ |n,R(t)〉 (3.3)

where ϕn(t) =
∫ t

0
dτEn(τ) is the dynamical phase and En(τ) is the instantenous

eigenvalue of the nth eigenstate. Berry, assuming an unknown time dependent phase,

found out that one should add

γn(t) = i

∫ R(t)

R(0)

〈n,R| ∇R |n,R〉 · dR (3.4)

to ϕn(t)/~ in order to be consistent with Schrödinger’s equation. Normalization of

|n,R〉 guarantees that γn is real.

Berry’s discovery, initially referred only as Berry’s phase [16,17], will soon start

to mutate. A big step towards today’s ubiquity of the geometric phase was made by

Aharanov and Anandan [18] who proved that adiabaticity is not necessary in order

to obtain a geometric phase, for this they started replacing parameter space with

the projective Hilbert space. Since a ray is defined as the set of states in Hilbert

space (H) that are joined by U(1) transformations we can define, in simple words,

the projective Hilbert space (P) as such where every point represents a ray. From

this point of view, if we parametrize a curve in H, denoted by ψ(s), and apply to it

a local gauge transformation:

ψ(s)→ ψ̃ = eiα(s)ψ(s) (3.5)

then both curves will map to the same ray in P .
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Geometric phase was even more general. Samuel and Bhandari [19] not only

took out the cyclic evolution premise but also proved that the evolution need not

be unitary. Perhaps motivated by this rapid growth and interest on abstracting

the geometric phase, Mukunda and Simon [20] presented the kinematic approach to

geometric phases which included Pancharatnam’s idea.

Starting with the curve |ψ(s)〉 inH, we can construct a gauge invariant term [21]:

〈ψ(s1)|ψ(s1 +Nδs)〉 〈ψ(s1 +Nδs)|ψ(s1 + (N − 1)δs)〉 . . . 〈ψ(s1 + δs)|ψ(s1)〉 (3.6)

Of course we shall assume δs → 0, N → ∞ and Nδs = s2 − s1. This construction

reminds us of Pancharatnam’s work: a starting state (|ψ(s1)〉) is passed through

several polarizers (|ψ(s1 + kδs)〉〈ψ(s1 + kδs)| , k = 1, . . . , N) and we wish to know

the phase change at the end relative to the starting state. Then we focus on

β = arg(〈ψ(s1)|ψ(s1 +Nδs)〉 . . . 〈ψ(s1 + δs)|ψ(s1)〉) (3.7)

which can be written in a more useful form:

β = arg(〈ψ(s1)|ψ(s2)〉)−
N−1∑
k=0

arg(〈ψ(s1 + kδs)|ψ(s1 + (k + 1)δs)〉) (3.8)

= arg(〈ψ(s1)|ψ(s2)〉)−
N−1∑
k=0

arg(〈ψk|ψk+1〉) (3.9)

Noting that 〈ψs|ψs+δs〉 ≈ 1 + 〈ψs| dds |ψs〉 δs for δs� 1 we rewrite:

β = arg(〈ψ(s1)|ψ(s2)〉)− arg
N−1∏
k=0

(1 + 〈ψk|ψ̇k〉 δs) (3.10)

= arg(〈ψ(s1)|ψ(s2)〉)− arg
N−1∏
k=0

e〈ψk|ψ̇k〉δs (3.11)

Since |ψ(s)〉 is kept normalized in [s1, s2] then, 〈ψ(s)|ψ̇(s)〉 = iIm( 〈ψ(s)|ψ̇(s)〉).
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Using this we obtain:

β = arg(〈ψ(s1)|ψ(s2)〉)− arg

(
exp

[
iIm(

N−1∑
k=0

〈ψk|ψ̇k〉 δs)

])
(3.12)

= arg(〈ψ(s1)|ψ(s2)〉)− Im

(
N−1∑
k=0

〈ψk|ψ̇k〉 δs

)
(3.13)

= arg(〈ψ(s1)|ψ(s2)〉)− Im
∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds (3.14)

The final expression for the geometric phase is usually written as

ΦG = arg(〈ψ(s1)|ψ(s2)〉) + i

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds (3.15)

We can think of it as being composed of two other phases

ΦP =arg(〈ψ(s1)|ψ(s2)〉) (3.16)

Φdyn =− i
∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds (3.17)

that are the familiar Pancharatnam (or total) and dynamic phases respectively.

This ΦG coincides with the other definitions in being gauge invariant, parameter

independent and thus defined as a function of the curve in P even though ΦP and

Φdyn are functions of the curve in H. This curve in P is embedded or constrained

by the geometry of this space.

Gauge invariance allows us to eliminate the dynamical phase. Indeed, if we

choose a lift α(s) (see e.q. 3.5) in H such that

α(s) = i

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds (3.18)

where the point above ψ is a shorthand notation of the derivative with respect to

s, it would result in ΦG = ΦP . This implies that the geometric phase is always

measurable.

3.3 Topological phase

Imagine yourself positioning the tip of a pencil at some point on a Möbius strip. As

you start moving the pencil (always going forward) you will be drawing some curve

and you will eventually complete a loop. The difference being that the tip of the

pencil ends up on the other side of the paper. You’ll need to complete another loop
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in order to get the tip of the pencil back to its original position. This phenomenon is

an holonomy that must manifest as a global phase imparted on the wave function.

However, this phase would have a different nature from the geometric one. Had

you completed the loop by taking another route you would have obtained the same

result.

The curvature of the projective Hilbert space affects the way you can draw

different curves or loops in it. The geometric phase, being a function of this curve,

will be affected by the curvature as well as by your particular choice of curve. On the

other hand, a phase that does not depend on your choice of curve shall be named

topological phase. This, in spirit of the branch of mathematics that studies how

connected a given space is.

Any space can be decomposed into base and fiber space. These are not just simple

subspaces: if the decomposition is not trivial (i.e. it is not of the form B × F ) we

can think of a space actually becoming a set of points (base space elements) with an

intrinsic structure (the fiber). This may remind us of the projective mapping (i.e.∏
: H → P) but we should not confuse the two concepts. Fibration of a space is

not the same as mapping, but looking at it from a different perspective.

The projective Hilbert space of a single qubit can be visualized as the Bloch

sphere. Indeed, it has been shown in [22] that Hopf fibrations decompose the one

qubit space into a S2 base and a S1 fiber. Identifying the latter as the global phase

indetermination we are left with S2 (the surface of a unit sphere) as the projective

Hilbert space. Since the surface of a sphere is simply connected we shouldn’t expect

a topological contribution to the the total phase. Since S2 has a non trivial curvature

we should expect geometric phases to appear and they have indeed been measured

and extensively studied.

Hopf fibrations were also applied to the two-qubit space. The base space is S4

and the fiber is S3. We can parametrize the former by the following identities:

X0 = 〈σz ⊗ 1〉Ψ (3.19)

X1 = 〈σx ⊗ 1〉Ψ (3.20)

X2 = 〈σy ⊗ 1〉Ψ (3.21)

X3 =Re
〈
Ê
〉

Ψ
(3.22)

X4 =Im
〈
Ê
〉

Ψ
(3.23)

where Ê = −Ĵ(σy⊗σy) is termed the Entanglor and Ĵ is the (antilinear) Conjugator

whose action is taking the complex conjugate of all complex numbers involved in an

expression. We recall this same operator in 2.6 where we introduced Concurrence.
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We then obtain the relation C =
√
X2

3 +X2
4 and c = X3 + iX4. Let’s analyze two

extreme cases:

1. Separable states: X3 and X4 vanish. Therefore, X0, X1 and X2 parametrize

S2 that are identified with the coordinates of the Bloch sphere of one qubit.

Meanwhile, the fiber is decomposed into S2 and S1, just like the one qubit

case. Finally, the overall result is two Bloch spheres, one for each qubit, and

a global phase.

2. Maximally entangled states (MES): Since X2
3 + X2

4 = 1 all the other

parameters must vanish, as X2
0 + X2

1 + X2
2 + X2

3 + X2
4 = 1. The base space

transforms into a unit circle that can be described by a normalized complex

number (i.e. it is described by c). Multiplying 2.12 by a global phase eiϕ we

obtain

c = ei2ϕ (3.24)

Therefore, it rotates a point on the base by twice the angle ϕ. Only when

ϕ = 0, π does the corresponding state belong to the same fibre (i.e. maps

onto the same point in the base). There is a clear two-to-one correspondence

between the fiber and the base under a global phase change; introducing the

two-element group Z2 = {−1, 1} under multiplication, we can write the MES

projective Hilbert space as S3/Z2 = SO(3).

3.3.1 Visualizing MES in the SO(3) ball

We can map the coefficients (α, β) in 2.12 to another set (a, ~k) by the identities [25]:

α = cos a/2− ikz sin a/2 (3.25)

β = −(ky + ikx) sin a/2 (3.26)

where ~k is a unit vector and a ∈ [0, π]. The reason for this map is that any MES

can be associated with an element of SU(2) by properly arranging the coefficients:

U(α,β) =

(
α β

−β∗ α∗

)
. (3.27)

It is known that SU(2) has a diffeomorphism with SO(3). From the axis-angle

parametrization of SU(2) (see eq. 1.10) we can identify the matrix elements and

obtain the above relations.

The SO(3) ball is a ball of radius π with opposite, antipodal points identified.

The Bell states have particular positions in this ball (see fig. 3.1)
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Figure 3.1: The SO(3) ball with a plus trajectory (red) and minus trajectory (blue)

3.3.2 Topological phases with MES

We have shown that only a 0 or π phase factor can appear with MES. Since we

know that this phase is of topological nature and due to the biconnected nature of

SO(3) [23]we can imply that there are two types of curves, each one identified with

a phase gain. Trajectories along which no global phase change occurs are termed

“plus” and those along which there is a phase change are termed “minus”’. Every

time the state crosses the space of states orthogonal to the initial one a π phase is

gained; therefore we identify the “plus”’ trajectories as those that make the state

cross it an even number of times and the “minus”’ trajectories with those that make

the state cross it an odd number of times.
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Chapter 4

Topological phase experiment

The main goal of the present thesis is to propose an experimental array that is able

to manifest holonomic phases in a two-qubit system. To this end, we will use Englert

et al. [2] versatile proposal of a Mach-Zehnder type interferometer (see fig. 2.1) that

can perform any local or non-local evolution on the polarization and momentum

degrees of freedom of a single photon. In this way, we could study geometric as well

as topological phases in the most general form possible for a two-qubit system.

In the following sections we shall describe how this experiment can be done. We

start with a general point of view in order to apply it to a particular implementation

aimed to exhibit the topological phase for which we present the experimental results.

4.1 Generation of entangled state in momentum

and polarization

To realize any curve in projective space we need a starting point: an initial state. A

Polarizing Beam Splitter (PBS) performs a non-local transformation in momentum-

polarization. This type of beam splitter reflects vertically polarized states and trans-

mits horizontally polarized one. Then, if an elliptical polarization (see eq. 2.2) is

incident through, say, the Left (|L〉) path then the resultant state would be

|ψout〉 = c |LH〉+ d |RV 〉 . (4.1)

This can be rewritten, up to a phase, as

|ψout〉 = cos θ |LH〉+ eiφ sin θ |RV 〉 . (4.2)
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Thus, we have obtained an entangled state. However, a PBS cannot reproduce all

unitary evolutions; for example, the following transformation

|LH〉 → 1√
2

(|RH〉+ |LV 〉) (4.3)

|LV 〉 → −i√
2

(|RV 〉+ |LH〉) (4.4)

is impossible to implement with a PBS. We can still use it as a generator of states

though. We recall equation 2.3. Reordering its coefficients we can obtain

|Ψ〉 = |R〉 (α |H〉+ β |V 〉) + |L〉 (γ |H〉+ δ |V 〉) (4.5)

=(|α|2 + |β|2)1/2 |R〉
(
α |H〉+ β |V 〉
(|α|2 + |β|2)1/2

)
+ (|γ|2 + |δ|2)1/2 |L〉

(
γ |H〉+ δ |V 〉
(|γ|2 + |δ|2)1/2

)
(4.6)

Which can be rewritten up to a global phase as

|Ψ〉 = eiφ sin θ |R〉 |pR〉+ cos θ |L〉 |pL〉 (4.7)

where |pR〉 and |pL〉 are two normalized but not necessarily orthogonal polarization

states. It is easy to observe that this last equation is related to 4.2 by a unitary

operator. Thus, submitting an elliptically polarized photon to a PBS and applying

a convenient unitary evolution (QHQ) on each of the exit ports we can generate any

state in the momentum-polarization Hilbert space.

Single photons, in our experiment, are generated by spontaneous parametric

down conversion (SPDC) on a BBO crystal. In order to produce SPDC we excite

the crystal with a 37.5 mW, 400 nm diode laser: the pump beam. SPDC gener-

ates two photons simultaneously with different momentum and frequency that are

constrained, by phase matching, to the pump beam’s. Then, many pairs of photons

are ejected in all directions but filters on the detectors permits us only to detect

photons with a wavelength of 800nm that are ejected making a 3 degree angle, each,

with the pump beam line. We name one of the photons as idler if it goes directly to

a detector and serves as a heralding photon while the remaining photon is named

the signal and is submitted to the action of our optical array before being detected

in coincidence with the idler.

We rotate the BBO crystal such that the generated photons will be vertically po-

larized and we identify the signal’s momentum with the Left path direction. There-

fore, we identify the signal’s photon state as |LV 〉. The initial state (after the PBS)
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Figure 4.1: Idealized relative displacement between interferograms.

will be given by

|ψ0〉 = Uge |LV 〉 (4.8)

where Uge is how we denote the PBS transformation.

4.2 Holonomic phase measurement

After we have generated the initial state, we must perform a unitary evolution.

This evolution (U) will be performed by using Englert et al. proposal as explained

in chapter 2. The resulting state will be identified with |ψf〉 and is given by

|ψf〉 =U |ψ0〉 (4.9)

=UUge |LV 〉 (4.10)

As explained in chapter 3, the holonomic phase is measured as a relative phase

between two states: |ψf〉 and |ψ0〉 in the present context. We propose to measure

this phase by interferometric methods. We recall that we need to measure

|eiµ |ψ0〉+ |ψf〉 |2 = 2 + 2| 〈ψ0|ψf〉 | cos(µ+ arg(〈ψ0|ψf〉)) (4.11)

where µ is a phase we have control on, so it allows us to reveal an interferogram.

By obtaining a zero reference interferogram (making |ψf〉 = |ψ0〉) we can obtain

the holonomic phase by, after changing |ψf〉, measuring the relative displacement

between the new interferogram and the zero reference one (see fig. 4.1).
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Det2
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Figure 4.2: Our proposal to measure Holonomic phases in the momentum-polarization
system. A Half-wave plate (H) at the beginning is used to change the initial
state and thus, the curve of interest. The phase reveals an interferogram
that, through its relative displacement, permits us to measure the holonomic
phase. The mirrors marked with an arrow are those which are mounted on
piezoelectric translation stages.

The inner product between |ψ0〉 and |ψf〉 is given by

〈ψ0|ψf〉 = 〈ψ0|U |ψ0〉 (4.12)

= 〈LV |U †geUUge |LV 〉 (4.13)

= 〈LV |Unew |LV 〉 (4.14)

Now, we can consider Unew as the unitary evolution and |LV 〉 as the new initial

state (input state). In this way, even though Unew |LV 〉 has two outputs (R and L)

we are only interested in the L output since the initial state has that direction. We

decided to obtain the interferograms with a MZ interferometer as in figure 4.2 where

Unew is implemented by a single MZ. We do not include the PBS, the U and the

U †ge implementation since placing all elements in line will involve bigger fluctuations,

more instability and, thus, large experimental errors.
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4.2.1 Topological phase measurement

We implemented a particular array to exhibit topological phases. We chose our

initial state to be parametrized by an angle a0 written as

|in〉 = cos(a0/2)
∣∣Φ+

〉
+ sin(a0/2)

∣∣Ψ+
〉

(4.15)

In this way the initial state will be located along the x axis in the SO(3) ball. For

this to be accomplished, we need Uge to perform the following transformation

|RH〉 →
∣∣Φ−〉 (4.16)

|RV 〉 →
∣∣Ψ−〉 (4.17)

|LH〉 →
∣∣Φ+

〉
(4.18)

|LV 〉 →
∣∣Ψ+

〉
(4.19)

where the first two relations are chosen so that Det(Uge) = 1. This way, the input

state must be

|in〉 = cos(a0/2) |LH〉+ sin(a0/2) |LV 〉 (4.20)

which can be accomplished with the aid of a Half-wave plate H(π/2 − a0/4). This

retarder appears in figure 4.2 before the first BS.

In order to study topological phases the evolution U must be local. For the

present work we choose the following

U = e−iΛσ3 ⊗ e−i2Λσ2 (4.21)

where Λ is the parameter of the curve. As will be shown next, this choice simplifies

the array.

As defined before, we have Unew = U †genUUgen. From the matrix representation

of this operator we obtain

S†LLSLL = cos2(Λ) |χ1〉〈χ1|+ cos2(3Λ) |χ2〉〈χ2| (4.22)

SLLS
†
LL = cos2(Λ) |χ̄1〉〈χ̄1|+ cos2(3Λ) |χ̄2〉〈χ̄2| (4.23)
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where Λ = ϑ, 3Λ = θ and the eigenvectors

|χ1〉 =
1√
2
|H〉+

1√
2
|V 〉 = |D〉 (4.24)

|χ2〉 =− 1√
2
|H〉+

1√
2
|V 〉 = |A〉 (4.25)

|χ̄1〉 = |χ1〉 (4.26)

|χ̄2〉 = |χ2〉 (4.27)

we can also obtain SLL

SLL =

(
cos(Λ) cos(2Λ) sin(Λ) sin(2Λ)

sin(Λ) sin(2Λ) cos(Λ) cos(2Λ)

)
(4.28)

and because of SLL |D〉 = cos(Λ) |D〉, SLL |A〉 = cos(3Λ) |A〉 and equation 2.28 we

can conclude that αLL = βLL = 0. Therefore we have

VR =e−iΛ |D〉〈D|+ e−i3Λ |A〉〈A| = e−2iΛ(eiΛ |D〉〈D|+ e−iΛ |A〉〈A|) (4.29)

VL =eiΛ |D〉〈D|+ ei3Λ |A〉〈A| = e2iΛ(e−iΛ |D〉〈D|+ eiΛ |A〉〈A|) (4.30)

is easy to note that VL = V †R or VL = VR(−Λ).

It can be shown that

Q(π/4)H(−π/4 + Λ/2)Q(π/4) =

(
eiΛ 0

0 e−iΛ

)
. (4.31)

Therefore we can calculate VR by applying a proper rotation (H(π/8)) to 4.31

VR =H(π/8)Q(π/4)H(−π/4 + Λ/2)Q(π/4)H(5π/8)

=H(π/8)Q(π/4)H(−π/4 + Λ/2)H(5π/8)Q(π)

=H(π/8)Q(3π/4)H(5π/8− Λ/2)Q(π)

=Q(π/2)H(π/8)H(5π/8− Λ/2)Q(π)

=Q(π)H(π/2− Λ/2)Q(π)

=Q(0)H(π/2− Λ/2)Q(0) (4.32)

where we have used the properties mentioned in chapter 1. The final results are

VR =e−2iΛQ(0)H(π/2− Λ/2)Q(0) (4.33)

VL =e2iΛQ(0)H(π/2 + Λ/2)Q(0) (4.34)
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Because of the design of our array we do not need to calculate V1 and V2.

According to the above results, we have to modify the length of both arms of

the inner MZ. We need to take into account the fact that we have only the R path

mirror mounted on a piezo translator. From 2.21 we note that VR± VL shows up in

every Sij expression, if we extract the phase from VL then we obtain

UEnglert = ei2ΛUarray (4.35)

where Uarray is the actual unitary operator the inner MZ is performing. We will

thus carry a e−i2Λ phase we do not need; to overcome this situation we change µ to

µ− 2Λ.

4.3 Experimental procedures

We use a Mach-Zehnder type interferometer nested within another one. In the outer

arm we place a blank space which is nothing more than a piece of common glass

18.6mm thick and with index of refraction of approximately 1.53. It is intended

to equalize the optical path length with the inner arm that passes through two

small (10mm each) beam splitters. Similarly, the retarder plates in the outer arm

compensate the passage of the inner one through the same type of retarders.

Both inside and outside mirrors marked by an arrow in figure 4.2 are mounted

on a piezoelectric translation stage. These piezos have an accuracy of 0.01 Volts

which equals to a translation of approximately λ/177.

For the initial state we chose a0 = π, this will make a vertical polarization enter

the array. It is a better choice to let a vertical or horizontal polarization enter the

array since the mirrors and beam splitters are not ideal. They behave differently

depending on polarization: indeed, polarization-dependent reflectance and phase

shifts can change visibility of the interferogram but, most importantly, they may

shift the pattern.

We chose to measure 4 values of Λ, although we present here the results for

the first two only. To select these points we calculated the inner product 〈ψ0|ψf〉.
A plot of this function is shown in figure 4.3. Every time the curve crosses the

horizontal axis there is a π phase shift. Since the absolute value of this function

will be the visibility, we choose those with a greater value; these are tagged by

red points in figure 4.3. The four points correspond to Λ = 0, θ, π − θ, π where

θ = arctan(
√

5) ≈ 1.15.

For each point there is an interference pattern. This pattern shows up in the

form of a signal of coincidence counts between detector 1 and detector 3 (see figure
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Figure 4.3: The chosen points are tagged by numbers and by red points.

4.2). In the ideal case, for a given Λ and varying µ we should obtain the normalized

signal:

I = 1/4(1 + 1/2(1 + cos(2Λ)Cos(4Λ)) + 2 cos(Λ) cos(2Λ) cos(µ)) (4.36)

Ideal normalized signals are shown in figure 4.4 for the first two Λ values. The phase

µ was fixed for 10 equally spaced values, every 2π/9. Plots of the normalized data

are shown in figure 4.5 and 4.6 for the first (Λ = 0) and the second (Λ = θ ≈ 1.15)

points respectively.

These curves do not exactly match the expected ones from figure 4.4. We argue

that this is because beam splitters are not exactly 50:50 nor are they equal, the glass

may absorb too much, making one arm carry a less intense beam than the other,

one or more mirrors may not be working properly or bad alignment. All these error

sources disturb the final signal. The final signal can be modelled by an expression

of the form (see eq.3.1):

I ∝ a+ b cosµ (4.37)

We can identify a and b in the ideal signal:

a =1 + 1/2(1 + cos(2Λ) cos(4Λ)) (4.38)

b =2 cos(Λ) cos(2Λ) (4.39)

In order to take into account any kind of error, we should multiply these ideal

coefficients by a different factor (say ca and cb) and then find the best fit for these

so that they reproduce the experimental curve. For the Λ = 0 curve we obtained
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I

Figure 4.4: Ideal normalized signals for the first two points.

ca = 0.88466 and cb = 0.513313 whereas for the Λ = θ we obtained ca = 0.818608

and cb = 0.826093.
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I

Figure 4.5: Normalized coincidence counts for the first point

I

Figure 4.6: Normalized coincidence counts for the second point
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Chapter 5

Summary and conclusions

This thesis work deals with an experimental array that can be used to study geo-

metric as well as topological phases in a two-qubit system. In chapter 1 we show

that it is possible to perform any unitary evolution in both polarization as well as

momentum independently of one another. This serves us to justify that a system

composed of these two degrees of freedom of a single photon can be used as a truly

two-qubit system. Chapter 2 presented a Mach-Zehnder type interferometer, a pro-

posal by Englert et al., that can perform any type of evolution in this system, be it

local or non-local evolutions.

A very interesting phenomenon in quantum theory, but that can also be exhib-

ited in classical systems, is holonomy. In particular, in quantum theory this shows

up as a global phase multiplying the wave function. Chapter 3 introduces this

phenomenon by stating that the global or Pancharatnam’s phase can involve three

different phases, each one of different nature: the dynamical phase depends on the

Hamiltonian; the geometric phase depends on the geometry (the curvature) of the

so called projective space and the topological phase responds only to the topology

of it.

We have designed an experiment that, by taking advantage of the versatility

of the arrangement proposed by Englert et al., can be used to study holonomic

phases. We propose two nested Mach-Zehnder interferometers, in one arm we built

Englert et al. arrangement (the evolution) and the other one is used as a reference to

measure the holonomic phase gained by measuring relative displacements between

the different measured patterns. Finally, we implemented the experiment aiming to

exhibit the topological phase. Our measurements show good agreement with the

expected results, considering error sources.

This work can be extended to study holonomic phases under non-local unitary

evolutions.
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