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Abstract

This work considers the study of chance constrained Model Predictive Control (MPC)
for reliable spacecraft trajectory tracking and landing.
Objectives of the master thesis:

• To identify and study mathematical dynamic models of a spacecraft.
• To study the trajectory design and landing schemes for a given mission.
• To study the source of uncertainty in the model parameters and external distur-

bances.
• To study the chance constrained MPC scheme for the reliable and optimal trajec-

tory tracking and landing.
• To testing the new analytic approximation approaches, Inner and Outer, for chance

constraints.
• To study appropriate MPC algorithms and implement on case-studies.

In the first part of the thesis considers deterministic dynamical models of spacecraft are
discussed.
The first example is about the tracking of trajectory and soft landing on the surface of
an asteroid EROS433, this model uses Cartesian coordinates.
In the second example, in a similar way to the first example, the trajectory and soft
landing is performed on the surface of a celestial body. It is assumed that the celestial
body is a perfect sphere, something that does not happen in the first example. Thus,
the second example uses a Spherical coordinate system.
The third example is about a Lander that enters the Martian atmosphere. This Lander
follows a designed trajectory until reaching a certain altitude over the Martian surface.
At this altitude the Lander deploys a parachute to make the landing.
To solve the deterministic examples described above, the following sequence of steps are:

• pose the deterministic Nonlinear Optimal Control Problem (NOCP),
• convert the infinite Optimal Control Problem (OCP) to a finite Nonlinear Pro-

gramming Problem (NLP), applying the Runge-Kutta 4th order discretization
method,

• apply the Quasi-sequential method to the deterministic NLP obtained from the
previous step,

• solution of the reduced NLP obtained from the previous step using IpOpt software.
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The steps outlined above are also part of the Nonlinear Model Predictive Control (NMPC)
approach.
In the second part of the thesis, the same examples of the first part are used but now
with stochastic variables. To find the control law in each model, the stochastic NMPC
was used. The above mentioned approach begins with a chance constrained OCP.
The latter is discretized obtaining an NLP. The problem with this NLP, with chance
constraints, is that is very difficult to solve in analytic form. So these chance constraints
are approached by a different method that exist in the state of the art. This thesis
work is focused on approaching the chance constraints through Analytic Approximation
Strategies, specifically by the recent: Inner and Outer Approximation methods.
The chance constrained MPC is expensive from a computational point of view, but it
allows to find a control law for a more reliable trajectory-tracking and soft landing .
That is suitable for applications with random disturbances, model inaccuracies, and
measurement errors.
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Kurzfassung

Diese Arbeit betrachtet das Studium der wahrscheinlichkeitsbeeschränkten modellprä-
diktiven Regelung (MPC) für zuverlässige Raumfahrzeug-Trajektorienverfolgung und
-Landung.
Die Ziele der Masterarbeit sind,

• mathematische, dynamische Modelle eines Raumfahrzeugs zu identifizieren und
zu studieren,

• der Trajektorienverfolgung und Landungspläne für eine bestimmte Mission zu
untersuchen,

• die Unsicherheitsquellen bei den Modellparametern und externen Störungen zu
untersuchen,

• das wahrscheinlichkeitsbeschränkte MPC-Schema für die zuverlässige und optima-
leTrajektorienverfolgung und Landung zu studieren,

• die neuen, analytischen inneren und äußeren Approximationsansätze für Wahr-
scheinlichkeitsnebenbedingungen zu testen und

• geeignete MPC-Algorithmen zu untersuchen und auf Fallstudien umzusetzen. Im
ersten Teil der Arbeit werden deterministische, dynamische Modelle von Raum-
fahrzeugen diskutiert.

Das erste Modell beschreibt die Verfolgung der Trajektorie und die weiche Landung auf
der Oberfläche des Asteroiden EROS433 und verwendet kartesische Koordinaten.
Im zweiten Beispiel wird in ähnlicher Weise wie beim ersten die Trajektorie und die
weiche Landung auf der Oberfläche eines Himmelskörpers durchgeführt. Es wird davon
ausgegangen, dass der Himmelskörper eine perfekte sphärische Form hat, was im ersten
Beispiel nicht gegeben ist. Das zweite Beispiel verwendet ein sphärisches Koordinaten-
system.
Das dritte Beispiel handelt von einer Landungssonde, die in die Marsatmosphäre eintritt.
Diese Sonde folgt einer entworfenen Bahn, bis sie eine gewisse Höhe über der Marso-
berfläche erreicht hat. Auf dieser Höhe entfaltet die Sonde einen Fallschirm, um die
Landung durchzuführen.
Um die oben beschriebenen deterministischen Beispiele zu lösen, sind die folgenden
Schritte nötig:
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• Aufstellen des deterministischen, nichtlinearen optimalen Steuerungsproblem
(NOCP) Umwandlung des unendlich-dimensionalen, optimalen Steuerungsproblems
(OCP) zu einem endlich-dimensionalen, nichtlinearen Programmierungsproblem
(NLP), wobei die Runge-Kutta- Methode 4. Ordnung als Diskretisierungsmethode
angewendet wird

• Anwendung des Quasi-Sequentiellen Ansatzes auf das deterministische NLP , das
aus dem vorherigen Schritt gewonnen wurde,

• Lösen des reduzierten NLP aus dem vorherigen Schritt mit Ipopt-Software, Die
oben beschriebenen Schritte sind Teil des “Nonlinear Model Predictive Control”
(NMPC)-Ansatzes.

Im zweiten Teil der Arbeit werden die gleichen Modelle des ersten Teils, aber jetzt mit
stochastischen Variablen angewendet. Um das Steuergesetz in jedem Modell zu finden,
wurde die stochastische NMPC verwendet. Der oben genannte Ansatz beginnt mit einem
wahrscheinlichkeitsbeschränkten OCP. Letzteres ist diskretisiert worden, um ein NLP
zu erhalten. Das wahrscheinlichkeitsbeschränkte NLP ist sehr schwierig in analytischer
Form zu lösen. So werden diese Wahrscheinlichkeitsbeschränkungen durch eine andere
Methode behandelt, , die dem Stand der Technik entsprechen. Diese Arbeit beschäftigt
sich mit der Annäherung an die Wahrscheinlichkeitsbeschränkungen durch analytische
Approximationsstrategien, insbesondere durch die jüngsten Methoden der inneren und
äußeren Approximation.
Die wahrscheinlichkeitsbeschränkte MPC ist aus rechnerischen Sicht aufwändig, aber
sie erlaubt, ein Steuergesetz für eine zuverlässigere Trajektorienverfolgung und eine
weiche Landung zu finden. Das eignet sich für Anwendungen mit zufälligen Störungen,
Modell-Ungenauigkeiten und Messfehlern.
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Chapter 1

Introduction

Space exploration is the continuous discovery and exploration in the deep space of
celestial bodies, this requires the continuous development and improvement of the
technology to fulfill the exploration purposes.
Today astronomers study deep space using powerful telescope systems located on our
planet, the physical exploration of deep space is carried out by unmanned robotic space
probes, but also use manned spaceships to explorations not so distant to our planet.

Many years ago the scientist Galileo Galilei studied the surface of the Moon, the cluster
of stars of the Pleiades to cite some of his astronomical studies, making use of a simple
telescope, of limited scope, and collecting data of what he observed (e.g. The movement
of the celestial bodies).
It was not until the 20th century, when the first long-range missiles were developed that
for the first time in the history of mankind allowed the physical exploration of outer
space. The importance of exploring space is varied, we will state some reasons.
Advances in scientific research are achieved, the teamwork of several nations allows
technological developments such as the International Space Station (ISS) (see Figure 1.3),
ensure the future survival of humanity.
Finally, the least noble of the reasons is the development of military power and military
strategies.

The Space Age (understood as a period of mankind) in its beginnings was ruled by the
race to reach space, a kind of competition, rivalry between the United States of America
and the USSR (today Russia), because of the “Cold War”.
The launch of the first man-made unmanned spacecraft whose purpose was to orbit
the earth was first achieved by the USSR. That spacecraft was called Sputnik 1 (see
Figures 1.1a and 1.1b).
Then it happened that mankind got to send a man to the moon and bring him back to
earth safe and sound, inside a spaceship called Apollo 11 (see Figure 1.2) owned by the
United States of America.
These two events mentioned above are considered milestones in the space age.

Master thesis Augusto José, Tam Tapia 1



1 Introduction

(a) Assembled Sputnik 1 (b) Explode view of Sputnik 1

Figure 1.1 – Sputnik 1 [1]

After 20 years since the beginning of the physical exploration of outer space, there were
very significant changes such as:

1. now the development of reusable spaceships that could be used in several missions
was looked for, and not only in a unique mission like before it happened,

2. the strong spirit of competition between nations was changed by a cooperation
between them, joining efforts was achieved to build the ISS(see Figure 1.3).

In 2000 the People’s Republic of China initiated a successful space program for a manned
spacecraft. Japan, China, India and Russia have opted for manned space missions to
the moon in the present century, on the other hand the European community has opted
for manned missions to both the Moon and Mars.

We mentioned above the importance of space exploration, we will give more reasons of
the importance of the same in more detail [2]:

1. The need to explore outer space in search of answers to the following questions:
How old is our Solar System? Know about the history of our Solar System. The
collateral effects of this space exploration that seeks to answer these questions
have been the immense development, expansion of technology, creation of new
industries.

2. Space probes whose mission is to visit asteroids near our planet, try to answer the
questions that humanity is asking: Are there more forms of life in outer space?

2



Figure 1.2 – Apollo 11 [1]

Also the probes collect data of scientific interest about the gravitational field of
these asteroids, to achieve that a space probe orbits during a period of time around
the asteroid, sends all the collected data to the Earth where it is processed and a
three-dimensional image is obtained of the gravitational field. The probes can also
land on asteroids, as the previous step is done with respect to the gravitational
field, the landing is planned, if this is done successfully then it can collect more
data of the asteroid related to its chemical composition, and even return with
samples to the Earth. It is also important to mention that missions with space
probes is not only important because of the data collected, but also because it
allows to acquire more experience, training to in the future to achieve greater
challenges such as sending a man to Mars.

3. Space missions to the translunar space (a space beyond the orbit of the Moon, where
Earth and Moon gravitation predominate) allow to study the cosmic radiations of
the Galaxy, the latter are very harmful to the human health, the data collection
is important to develop mitigation techniques, and thus be able to travel in deep
space in the future without fear of the harmful effects of these radiations. Another
advantage of translunar missions is that it provides the opportunity to develop
tools, techniques for future space explorations, without the need to move far from
the Earth.

In order to carry out the aforementioned space missions, it is necessary to develop
robust controllers that can effectively follow a desired path, to land in a celestial body
of interest (e.g. The moon) and also to handle uncertainties present in outer space as
for example:

• The pressure exerted by the radiation, solar winds, the drag of outer space, space
junk.

• The dynamics not modeled in the model of the real plant, is sometimes treated as
a stochastic disturbance.

• Inaccurately modelled gravitational fields surrounding celestial bodies.
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1 Introduction

• Sensor errors(e.g. radar, accelerometers, etc) leading to inaccuracies in navigation
and landing.

• Misalignment of the propellers.

The robust controllers adequate to handle these uncertainties and to fulfill the objectives
of the missions are the “chance constrained Stochastic Model Predictive Control (SMPC)
controllers”, that will be developed in this thesis for some space missions in later chapters.

Figure 1.3 – ISS [1]

1.1 Motivation
Spacecraft trajectory tracking and soft landing requires an efficient control strategy that
provides robust performance and fault-tolerant navigation in the face of uncertainties
arising from aerodynamics, atmospheric density, gravitational field modeling, plant
model mismatch, etc. For such mission-critical applications, efficient trajectory tracking
and precision landing are central issues. The Stochastic Model Predictive Control
provides the most convenient scheme for the control of a Spacecraft on moving horizons,
where chance constraints are to be used to guarantee reliable trajectory tracking as well
as safe, stable, accurate localized landing with high reliability.

1.2 Objectives of the Thesis
The objectives of the master thesis research work are:

• To identify and study mathematical dynamic models of a spacecraft.
• To study the trajectory design and landing schemes for a given mission.
• To study the source of uncertainty in the model parameters and external distur-

bances.
• To study the chance constrained MPC scheme for the reliable and optimal trajec-

tory tracking and landing.
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1.3 Structure of the thesis

• To study appropriate MPC algorithms and implement on case-studies.

1.3 Structure of the thesis
The following will briefly explain each of the remaining chapters:

Chapter 2 sets out theoretical foundations for the operation of the MPC approach,
the general formulation of an OCP is also presented, followed by an exposition of the
different methods of the state of the art that allow the resolution of the OCP, of these
methods, the most used today are the Direct Methods. The latter are subclassified in
Sequential, Simultaneous and Quasi-Sequential Methods. Later the main methods of
these subclassifications are outlined (Direct Single Shooting, Direct Multiple Shooting
and Quasi-sequential method). Finally this chapter ends briefly explaining the main
numerical methods for the solution of NLP: SQP and Interior Point(IP) Methods.

In Chapter 3, the chance constrained MPC is formulated.
Then the NLP Problem is presented which results from the discretization of the first one
mentioned. The problem with this NLP is that it has chance constraints that are very
difficult to evaluate, for that reason are exposed the different methods of the state of the
art that serve to approximate these chance constraints, and thus obtain a Deterministic
Optimization Problem.
This thesis-work applies recent analytic approximation approaches such as Inner and
Outer Approximations, which are also explained in this chapter.

Chapter 4 presents the dynamic equations, the designed trajectories, chance constrained
OCPs, chance constrained NLPs, parameters for the simulations, of the three study
cases: Tracking trajectory and landing on the asteroid Eros433, Guidance law in three
dimensions for a Soft landing on a celestial body, and Longitudinal model of lifting
entry of a Mars Lander.

Chapter 6 presents the results of the simulations that are done to find the control laws
in the deterministic case as well as the stochastic case, for the 3 study cases presented
in Chapter 4.

Chapter 7 concludes with a summary of obtained results and by suggesting possible
future work.

Master thesis Augusto José, Tam Tapia 5



Chapter 2

State of the art

The development of this chapter will be started, exposing current works related to the
tracking trajectory and landing of Spacecraft using control techniques based on MPC.

In [3] an MPC controller was developed for the orientation of a spacecraft, the spacecraft
consists of actuators like flywheels that allow torque to be applied.
In addition, there are restrictions on the control variable, e.g., Torque.
The MPC controller takes advantage of the term of the objective function related to
the reference system.
The addition of a low-complexity integral action to eliminate the offset in the tracking
of the orientation set-points, and an online optimization algorithm for the solution of a
quadratic programming problem set to fixed-point arithmetic.
The simulation made with a nonlinear model for the spacecraft shows that the MPC
controller achieves a very good tracking of the set-points, besides that the control
restrictions (the torque of the flywheels) are satisfied. The controller developed has low
computational complexity, and is also suitable for implementation in spacecraft with
fixed point processors. Comparing explicit MPC solutions to MPC online solutions, the
latter require small Read-only memorys (ROMs), which is an advantage since ROMs
may be limited in size on-board a spacecraft.
Furthermore, large ROMs may get damaged by outer space radiation.

In [4] a robust MPC controller was used to solve a problem of spacecraft rendezvous,
in order to achieve the above, it was necessary to apply the Clohessy-Wiltshire-
Hill (CWH) [5,6] model with perturbations and Line of Sight (LOS) constraints.
A robust MPC controller was designed using a chance constrained approach for the
satisfaction of probabilistic constraints.
In a space vehicle navigation there are multiple sources of disturbances such as error in
the measurement of position or speed, thruster misalignments, atmospheric drag. Hence
the need to design robust control schemes to deal with these disturbances.
The perturbations are modeled as Gaussian distributions. This may allow to convert
the probabilistic restrictions into simple algebraic constraints for linear plant models.
In the end, the robust MPC controller is compared with the non-robust MPC controller
using the Monte Carlo method. Finally, the results demonstrate the superiority of the

Master thesis Augusto José, Tam Tapia 7



2 State of the art

robust MPC controller. In [4], an online estimator was used to find the statistical
properties of the perturbations.

In [7], the author has developed in previous works an algorithm of path planning
for spacecraft rendezvous that calculates the optimum control signal by Pulse Width
Modulation (PWM).
A realistic model was used in relation to the spacecraft propellers. Commonly the
propellers actuators are ON/OFF type.
These impellers can only toggle their state of “produce maximum force” (ON) to “no
force” (OFF) and vice versa. We can only control these ON-OFF changes of the impellers
by generating pulse trains as shown in Figure 2.1.

Figure 2.1 – Thruster ON-OFF change, modified from [7].

Planning the trajectory for spacecraft rendezvous with the actuators generating pulse
trains, poses a great challenge because the system is nonlinear when the impellers
alternate their state (ON-OFF).

The work done in [8, 9], proposes a path-planning algorithm for spacecraft rendezvous
that can handle PWM control signals. In [8] was used the Clohessy-Wiltshire model
[6]. In [9] the time-varying linear model of Tschaune and Hempel [10] was used.
However, the above methods based on path planning cannot handle orbit perturbations,
uncertainties or errors in the model.
In order to overcome these difficulties, an MPC algorithm based on the open-loop PWM
planer [9], was developed, and this algorithm was tested for elliptical trajectories of
arbitrary eccentricity [10]. The operation of the proposed algorithm is as follows. The
MPC is initialized by solving the open loop problem with the path planning PWM
algorithm. Then at each subsequent step, the MPC saves time by recomputing the path
by applying an iterative scheme of linearization of the path planning algorithm.

In [11] an approach is developed for the control of the relative movement of a spacecraft
based on the application of Linear Quadratic MPC with reconfigurable dynamic con-
straints. The MPC controller was designed to produce ∆v impulsive velocity changes
rather than a constant piecewise thrust profile. The restrictions on the positioning
control system of the spacecraft, in addition to the restrictions concerning the directions
(orientation), are taken into account.
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The MPC controller is validated by making use of a spacecraft motion model that is
highly nonlinear.
It is also augmented with an Extended Kalman Filter (EKF) which is used to estimate
spacecraft states. It proved:

1. The robustness of the proposed approach with respect to unmeasured disturbances.
This is achieved through corrections made through feedback with MPC.

2. Feedback MPC can only be implemented based on measures of relative angles as
well as relative ranges.

3. Capacity to switch between MPC guidance in the spacecraft rendezvous phase and
MPC guidance in the spacecraft docking phase, with the specific requirements,
restrictions and sample rates for each phase [11].

In [12] an MPC approach is used to calculate the optimal control strategy for a spacecraft
to be able to mate (rendezvous) to a spacecraft that orbits our planet. The life of
spacecraft is limited by the fuel they carry on-board and by the rate of fuel consumption.
If the rendezvous maneuvers are carried out optimally, the life of the missions with the
spacecraft will be extended. Usually the planning of the two spacecraft’s rendezvous
path is carried out in open loop in the mission planning phase, after which a closed loop
controller is used to follow the pre-planned path.
In addition, the MPC approach has to recalculate the optimal path every time obstacles
occur (e.g. other spacecraft, garbage from outer space). This is done in real time.
Obstacles are approached by ellipsoids for:

1. simple evaluation of the restrictions and for
2. a better representation of the position of obstacles.

SQP was used to solve this quadratic optimization problem with nonlinear constraints
to avoid obstacles. In situations where multiple obstacles are in motion, this MPC
approach is adequate because the formulation of nonlinear constraints is flexible.

In the paper [13], an MPC system was implemented that is capable of guiding, controlling
a tracking spacecraft during the rendezvous process with another target spacecraft that
is orbiting in a circle or ellipse.
To achieve an efficient system design, the rendezvous maneuver is partitioned into three
phases. In addition, to a maneuver to avoid collisions in case of failure. Each of the
three phases has its own MPC controller.
Figure 2.2 shows the three phases as well as the maneuver in case of failure mentioned
in the previous paragraph.
The first phase is called Orbit Synchronization Translational Guidance (OSTG), the
second phase is called Impulsive Nominal Translational Orientation (INTG), the third
phase is called Forced Terminal Translation Guide (FTTG), the maneuver in case of
failure is called Collision Avoidance Maneuver (CAM). Finally the acronym TAP means
“target approach point”.
Linear time-varying systems were used that allowed for trajectory predictions in elliptic
as well as circular orbits, and a norm in the objective function over cost in the change
of velocity allowed to minimize the propulsion fuel consumption.
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Figure 2.2 – Rendezvous phases [13].

A very important characteristic in the design proposed in this work was that nonconvex
constraints can be shifted to convex constraints, which allowed the use of linear and
convex quadratic programming.
There is a significant reduction in total fuel consumption in the propulsion compared to
that obtained in a baseline benchmark solution.

In [14] an MPC based scheme is built to control a spacecraft when it performs maneuvers
such as the rendezvous and splices with another spacecraft platform that does not rotate
or tumble(see Figure 2.3).
Restrictions were imposed to restrict the spacecraft within the LOS cone during the
docking maneuver as well as to make the spacecraft speed as close to or equal to the
docking port speed.
Finally the restrictions are also to limit the control inputs subject to the physical limits
of the propellers.

Figure 2.3 – Target platform and spacecraft [14].
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The approach combines Linear Quadratic MPC with restrictions that change in real
time and that are also dynamically reconfigurable, also this approach approximates the
original restrictions. An explicit solution was constructed in the form of a piecewise
control law.
Some advantages of the approach presented in this paper:

• The MPC optimization problem can be solved using conventional Quadratic
Programming (QP) optimization solvers.

• An explicit solution to the MPC optimization problem can be obtained off-line
and be applied online. This gives us the advantage of not embedding the numerical
solver for the optimization problem within the spacecraft software package.

Also note that, the MPC controller proposed in this paper includes feedback to com-
pensate for non-measured perturbations such as:

• Error in the thrusters.
• Drag of the air when the spacecraft orbits very close to the terrestrial atmosphere.

The paper [15] applies the MPC approach to Rendezvous and proximity Opera-
tions (RPO), based on the extended use of Linear Quadratic MPC scheme with constant
horizon, real-type optimization variables, and dynamically reconfigurable linear con-
straints. The cost function of the MPC problem is based on a scenario and terminal
costs defined by Lyapunov stability considerations. To apply the approach proposed
in this paper to the following application: “maneuvers approaching a spacecraft to a
disk-shaped platform (this platform orbits in circles the planet Earth)”.
The considerations necessary to address the above problem are:

1. the mass of the spacecraft is concentrated in its center of mass,
2. circular orbits, and
3. movement of the spaceship limited to a plane.

The three previous considerations are accepted in many maneuvers of this same type.
The model used in the MPC strategy was the CWH [5, 6] of the relative spacecraft
movement.
It was shown that the multiple constraints that arise in RPO problems can be handled
with the MPC approach.
Some of the constraints are:

• The impellers have a maximum capacity due to physical limits.
• Restrictions on the spacecraft to keep it inside the LOS cone while performing the

operations necessary for a successful docking with the platform, on the platform
is mounted the port for the docking.

• We also have speed restrictions that the spacecraft has a speed equal to or very
close to the docking port of the platform (soft docking).

The platform was studied in two states of motion:
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1. When the platform does not rotate through its axis, in addition the port for the
docking that is in the platform is fixed in relation to the reference system used
in the analysis. An off-line solution to the MPC optimization problem is feasible.
The solution takes the form of a piecewise constant control law. This solution
is suitable for on-line implementation without the need to package a numerical
solver for the optimization problem within the spacecraft software package.

2. When the platform rotates through its own axis, it is observed that, it is necessary
to predict the rotation of the platform in order to execute the maneuvers and
reduce the fuel consumption.

In paper [16] a method based on Constrained MPC was proposed for the autonomous
optical Guidance, navigation and control (GNC) problem applied to smooth landings in
asteroids. There is a growing interest in the study of asteroids, but to study them is
cumbersome because they are very far from the earth, have irregular shapes, are also
small size.
To overcome the difficulties mentioned above, a GNC system is necessary for the soft,
safe and accurate landing on the asteroid.
In Figure 2.4 the different systems of references are shown, that were used to develop the
dynamic model of the spacecraft. In paper [17] a detailed development of the dynamic
model of the spacecraft is given.
The design strategy of the MPC controller was as follows. First a path was designed
from the initial position of the spacecraft to the desired landing site, it was taken into
account that the total time to travel this path is T , second, we apply the MPC method
with constraints to follow the path designed in the previous step.
Due to the inherent danger in the maneuvers that are to avoid collisions, in addition to
the scientific information of investigations related to this subject, the spacecraft must
use the shortest possible time to arrive at a point above the place of landing starting
from the initial position , therefore, most of the time T is used for the descent from the
point above the landing site towards the aforementioned same.
The MPC controller was used together with an EKF, the EKF is a standard technology
used in nonlinear estimation, it is the most suitable for navigation, detailed information
of the EKF is found in paper [18].

In the paper [19] a design was proposed to control soft landing, for example in a
spacecraft, the approach was based on invariant control sequences as well as on Receding
Horizon Control (RHC)(also known as MPC). The control of the soft landing is of great
interest in many practical applications, such control is intended to ensure that a mobile
vehicle is positioned with very high precision at a target location, simultaneously, as
it is closer to the target location, the vehicle speed will decrease. The advantages of a
soft landing is that it allows to avoid mechanical damages, as well as the wear of parts.
The trajectories obtained by this approach achieve soft landing, regardless of the cost
function, the finite time horizon, and even when there are uncertainties. To generate
the above-mentioned trajectories the following was done, an invariable control sequence
was calculated and used as additional constraints on the MPC problem.
In this paper [20] was developed onboard, real-time, robust GNC algorithms that
allow maneuvering near celestial bodies (e.g. planets, moons, asteroids, etc.) that have
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Figure 2.4 – Geometrical relationship of coordinate systems [17].

stable and constant rotation speeds. For the development of such algorithms MPC
techniques are used. These algorithms are the feedforward and feedback approaches, a
brief explanation of them will be given below:

Feedfordward approach Also known as open-loop guided, based on the PWG (Pseudo-
way-Generation) algorithm, this algorithm makes use of a discrete, linear, time-
varying dynamic model (include thruster silent times). If a gravitational model
is added to the PWG algorithm, the performance of the controller increases
dramatically. From the PWG algorithm it is obtained a series of trajectories to
guide the spacecraft towards the celestial body of interest, these trajectories are
polynomials that are adjusted based on the present state, as well as the necessary
states in the future to carry out a maneuver (e.g. The landing).

The PWG algorithm generates a sequence of states, if a gravitational model of
a celestial body has been included, this sequence will include the effect of that
gravitational field. The generation of a sequence of states with the PWG algorithm
is given simultaneously to the determination of the control inputs required for
that sequence, this simultaneous work is possible due to the convexification of the
nonlinear dynamics governing, control constraints , and the constraints on both
trajectory and states, this allows the problem to be modeled as a SOCP (Second-
Order Cone Program) to optimize fuel consumption or total energy consumed
by the propellers. The resulting SOCP can be solved through Interior Point
algorithms. The PWG algorithm is very accurate when there are no perturbations
present.
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Feedback approach The objective of this algorithm is to guarantee the solution of
the trajectories that are obtained from the PWG algorithm, in other words, it is
obtained a control signal for each one of the trajectories generated by the PWG
algorithm, which allows the proper tracking. The design of this approach is carried
out off-line.

2.1 Introduction to the MPC approach.

Proportional-Integral-Differential (PID) controller is a classic control strategy, suitable
for linear systems.
There are many real-world problems that cannot be solved or addressed with this
technique. For example, if we have a system where it is used the PID controller and also
presents disturbances, then the PID controller cannot guarantee the system stability.
Given the limitation of the PID controller, more advanced techniques are developed
that have enabled the development of robust controllers such as Linear Quadratic
Regulator (LQR), H2, H∞ which are the well known. The above provide a law of robust
feedback control which optimizes a performance criterion. Although, the LQR and H∞
can address dynamical systems with constraints.
The problem they present is when the system has great nonlinearities and critical
constraints, which may cause stability problems.
To overcome the limitation of these controllers, the concept of MPC arises, which
overcomes the limitations presented by the previous controllers mentioned.

2.1.1 General operation of the MPC

The MPC [21–24] is based on the RHC [25]. The MPC has the advantage that introduces
a feedback controller, with that, system stability is achieved, in addition to good
performance. At each sampling time (∆t) the following is done:

1. The current state that corresponds to the sampling time is measured by sensors
or estimated.

2. Predict the uuu∗ (optimal control variable) in a finite time horizon ( “N” points),
this uuu∗ minimizes an objective function “J”, in addition to driving the dynamic of
the system towards the desired behavior.

3. The actuator applies only the first data of sequence uuu∗, until the next sampling
time.

4. The prediction horizon is receding to the next sampling time.

5. This is iteratively repeated while the system operates in real time.
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These set of steps constitute Algorithm 1.

Algorithm 1: MPC Strategy [26]
Input : Initial value of the states
Output :Optimal control variables

1 repeat
2 Measure or observe the process state xxx at time tk;
3 Formulate the Optimization problem for t ∈ [tk, tk+N ];
4 Compute the optimal control sequence uuu∗(t), t ∈ [tk, tk+N ] by solving the

Optimization problem;
5 Apply optimal control uuu(t) = uuu∗(tk), t ∈ [tk, tk+1] to the system until t = tk+1;
6 Set k = k + 1;
7 until stopped by user;;

The complexity of “J” goes according to the application, it should preferably be as simple
as possible. There is no standard rule for choosing “N”, but it is advisable to use a value
that includes beyond the transient dynamic of the system, also must be considered that
depending on the taken by “N” value will increase or decrease the complexity in solving
the optimal problem, when we solve this problem will get uuu∗ = {u∗k, u∗k+1...u

∗
k+N−1}.

The MPC approach requires a model of the plant.

This model should capture the significant dynamic, should not be too complex, nor
pursue an extremely high accuracy.

Because this causes higher order models which sometimes have a very similar dynamic
to simple models with lower order. The MPC approach operation is illustrated in
Figure 2.5.

Figure 2.5 – A basic working principle of model predictive control [1]
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2.1.2 Advantages and disadvantages of MPC

1. You can specify restrictions for the state vector xxx and the control variables uuu,
besides the “J” which depends on the dynamic of the system.

2. Manage Multiple inputs-Multiple outputs (MIMO) of large-scale systems (linear
or nonlinear).

3. Minimization of trajectory tracking error.

4. Noise propagation errors are reduced, also dead time is compensated.

5. Compensation of disturbances is achieved by the feedback feature that is charac-
teristic of the receding horizon approach [25].

6. The MPC controller can be used to control complex processes (e.g. processes in
the chemical industry), regardless of whether there are large delays in the processes
or they are unstable.

7. The complexity in solving the optimization problem causes the sampling time to
be a critical factor.
In the best case, this time is enough to solve the optimization problem. In the
adverse case, when the time is insufficient, auxiliary numerical methods must be
applied.
An example where the sampling time becomes a critical factor is autonomous
vehicle navigation.

Figure 2.6 – Basic structure of MPC, modified from [27].
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2.2 Nonlinear Model Predictive Control

In the study and resolution of various engineering problems, the first step is to obtain a
model of that part of the reality that is intended to study, a model is an approximation
of reality usually represented by a set of differential equations, sometimes the models
obtained from reality are highly nonlinear. When designing a control strategy, if the
model of the plant is nonlinear, the controller can be designed based on the linearized
model of the plant.
Sometimes the controller so designed has a good performance, sometimes not. Then
it is necessary to design a control strategy that can handle highly nonlinear dynamic
models such as the Nonlinear Model Predictive Control (NMPC), which will be used in
this thesis.
The NMPC not only handles dynamic models with complex nonlinearities, it is also
very robust against stochastic perturbations.
Stochastic NMPC will be discussed in Chapter 3.
The NMPC is a case of the general MPC, which is characterized because the equation of
the dynamic model is nonlinear or the constraints are nonlinear or the objective function
is non-quadratic.
The NMPC is very useful in solving the infinite time horizon Nonlinear Optimal Control
Problem (NOCP).
As shown in the Section 2.1.1, the MPC is a finite time horizon that slides in each
iteration.
If this finite time horizon is sufficiently long, the control and state variables thus
calculated will have a good accuracy, with respect to the exact solution [27,28].
It may be the case that an NLP problem associated with a NMPC has a nonconvex
objective function.
This would make real-time optimization difficult.

2.2.1 Formulation of OCP

The OCPs that will be found in Chapter 3 of this thesis, are chance constrained NOCPs,
that is to say in its formulation we find stochastic restrictions (chance constraints), in
this chapter we will approach the NOCP without taking into account the restrictions
before mentioned, then only the initial condition in the state vector, the dynamic model
equation, trajectory constraints and finally a final condition for the state vector will be
taken into account, mathematically this is expressed in Equation (2.1).

J = min
xxx,uuu

{∫ T

0
L(xxx(t),uuu(t))dt+ E(xxx(T ))

}
(2.1a)
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subject to

ẋxx(t) =fff(xxx(t),uuu(t)), t ∈ [0, T ] (2.1b)
xxx(0) =xxx0 (2.1c)

hhh(xxx(t),uuu(t)) ≥000, t ∈ [0, T ] (2.1d)
rrr(xxx(T )) =000 (2.1e)

It must be understood by a NOCP, such as that optimal control problem whose dynamic
model equation is nonlinear or the constraints are nonlinear or the objective function
is non-quadratic. In the Figure 2.7 we can see a schematic of an OCP that has the
mathematical formulation of the Equation (2.1), but that counts on a single variable of
state and of control, this scheme serves for illustrative purposes, and serves to have an
idea of the NOCP with many control variables and states. The solution of the OCP of
the Equation (2.1) , will be those variables of state and control that satisfy with all the
restrictions, the dynamic equation of the model, and that they make that the objective
function takes its minimum value.

Figure 2.7 – OCP, modified from [29].

2.2.2 OCP Solutions

The interest to solve an OCP arises because these kinds of problems are frequent to
find them in industrial processes, in the following fields: chemistry, automotive industry,
systems of distribution of energy, economic systems, etc. In the state of the art are
several methods for the resolution of OCPs, we can classify them as shown in the figure
Figure 2.8.
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Figure 2.8 – Classification of methods to solve OCPs, modified from [26,29].

1. Dynamic Programming [29–31]: It is based on the principle of optimality of
sub-arcs to calculate iteratively a feedback control for the entire time horizon [t0, tf ]
and x0. The foregoing leads to the Hamilton-Jacobi-Bellman (HJB) equation,
which is a partial differential equation in state space. The solution of the HJB
equation is a sufficient condition for optimality. Applying numerical methods to
solve the HJB equation is not always easy, in addition this method cannot support
constraints of the type inequality.

2. Indirect methods: They use the necessary optimality conditions of an infinite
time problem, to obtain a Boundary Value Problem (BVP) in Ordinary Differential
Equations (ODEs), then the BVP has to be solved by a numerical method.
They are known as “first optimize, then discretize” because that is precisely the
sequence of steps for resolution. Usually the collocation methods are used for
BVP resolution [32]. In the scenario where the BVP has multiple local solutions,
the solution obtained has to comply with HJB conditions to ensure it is optimal.
This class of methods has as main disadvantages that it is very difficult to solve
the differential equations due to the large nonlinearities, besides that they cannot
handle constraints of the type inequality.

3. Direct methods [27, 29]: What these methods do is to transform the infinite
OCP into a finite NLP problem, then through the use of the various numerical
solvers of the state of the art, we proceed to solve the NLP, for the above are
known as “first discretize, the optimize”. This class of methods is better than the
previous ones because they can handle constraints of the type inequality. The
direct methods are based on the parameterization of the control path (piecewise
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constant), but differ in the way they handle the state variables. In the state of the
art the direct methods are sub-classified into two groups [33]: Sequential Methods
and Simultaneous Methods.
In the sequential methods, the control variables are discretized over the entire
time horizon (piecewise constant), in each iteration of the NLP solver the dynamic
equation of the model will be solved, making use of the initial states xxx0, and of
the variable of control piecewise constant in each subinterval of a time interval,
the foregoing implies that the optimization variables are the discretized control
variables, and that, therefore, the extended NLP(the optimization variables are
the control and states) has to be transformed to a reduced NLP (only the control
variables are considered as optimization variables), the numerical methods of
Runge-Kutta [34,35] can be used to solve the dynamic equation of the model.
In the simultaneous methods, both the control and state variables will be discretized
in a time interval, then we will have as NLP problem optimization variables to the
discretized state and control variables, additionally we add equations representing
the dynamics of the model in discrete time. The simulation and optimization are
given in parallel, in the Figure 2.8 you can see the main direct methods.

2.2.3 Direct methods for the discretization of OCPs

2.2.3.1 Direct Single Shooting Methods

This method first discretizes the control variables in the interval [t0, tf ], for this purpose
we will use the following partition:

t0 < t1 < t2 < . . . < tN = tf (2.2)

In each interval of this partition the control variables will be piecewise constant, math-
ematically this is expressed as follows, uuu(t) = qqqk, ∀t ∈ [tk, tk+1], with this uuu(t) only
depends of the parameters qqq = {qqq0, qqq1, ....., qqqN−1}, we can denote this dependence in the
expression uuu(t;qqq), see Figure 2.9.
We will need a numerical method to solve the following Initial Value Problem (IVP):

xxx(t0) = xxx0, ẋ̇ẋx(t) = fff(xxx(t),uuu(t;qqq)), ∀t ∈ [t0, tf ] (2.3)

Once the IVP is solved, the state variables xxx(t), ∀t ∈ [t0, tf ], are dependent variables,
this is denoted as xxx(t;qqq), see Figure 2.9. Depending on the dynamic model of the
plant will choose the numerical method to solve the IVP, this numerical solver must
properly handle the sensitivity of the dynamic model. Then we proceed to discretize the
constraints of the trajectory Equation (2.1d), in the points of the partition Equation (2.2),
thus we obtain the following finite NLP:

J = min
qqq

{∫ T

0
L(xxx(t;qqq),uuu(t, qqq))dt+ E(xxx(T,qqq))

}
(2.4a)
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Figure 2.9 – Direct Single Shooting scheme, this graph illustrates a u ∈ <, x ∈ <,
in the more general case we have that xxx ∈ <p, qqq ∈ <m.

subject to

hhh(xxx(tk;qqq),uuu(tk;qqq)) ≥0, k = 0, 1, 2, . . . , N (2.4b)
rrr(xxx(T ;qqq)) =0 (2.4c)

The Equation (2.4) is solved by a numerical solver based on SQP or IP (Interior Point)
methods. The advantages of direct single shooting method are:

• Numerical solver can be used for Differential Algebraic Equations (DAEs) or ODEs,
full adaptative, and that control the error.

• Low number of optimization variables even when working with large scale DAEs
or ODEs.

• It is only necessary to assume the value of the discretized control variables at the
beginning.

• You can easily handle “Active set changes”.

Some disadvantages of this method:

• Handling constraints on the trajectory of state variables is complicated.

• It is complicated to work unstable systems with this method [36].

• The resolution of the dynamic model of the plant xxx(t;qqq), in occasions has a highly
nonlinear dependence with qqq.
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This type of direct methods is implemented in engineering software packages such as
gOPT( [37]), DYOS( [38]).

2.2.3.2 Collocation Methods

In this method [39], the control and state variables are first discretized in a partition
like Equation (2.2), in each one of the intervals of the partition, the control variable
is piecewise constant, therefore its values are the sequence qqq = {qqq0, qqq1, ....qqqN−1}, qqqk for
the interval [tk, tk+1], the optimization variables of the NLP are the sequence qqq. The
values of the state variables at each point in the partition are expressed by mmmk ≈ xxx(tk).
In the collocation methods the dynamic equation of the model is replaced by a finite set
of constraints type equation:

ccck(qqqk,mmmk, m̄mmk,mmmk+1) = 0 (2.5)

In Equation (2.5) the term m̄mmk refers to possible additional intermediate collocation
points in the interval [tk, tk+1], in the case these additional collocation points will be
used, the appropriate selection of such points will provide a much greater approximation,
they are usually chosen to be equal to the roots of orthogonal polynomials. It also
approaches the objective function (Equation (2.1a)) in each interval of the partition
(Equation (2.2)):

Lk(qqqk,mmmk, m̄mmk,mmmk+1) (2.6)

The large-scale and sparse NLP problem is:

J = min
qqq,mmm,m̄̄m̄m

{
N−1∑
k=0

Lk(qqqk,mmmk, m̄mmk,mmmk+1) + E(mmmN )
}

(2.7a)

ccck(qqqk,mmmk, m̄mmk,mmmk+1) =0, k = 0, 1, 2, 3 . . . N − 1 (2.7b)
hhhk(qqqk,mmmk, m̄mmk,mmmk+1) ≥0, k = 0, 1, 2, 3 . . . N − 1 (2.7c)

mmm0 =xxx0 (2.7d)
rrr(mmmN ) =0 (2.7e)

The NLP of Equation (2.7) is solved iteratively by a numerical solver, in each iteration
the Equation (2.5) are not necessarily satisfied, when the numerical solver converges,
the Equation (2.7) are satisfied and are obtained as outputs to qqq∗k,mmm∗k, m̄mm∗k. Like the
previous method of Section 2.2.3.1, the problem of Equation (2.7) is solved by a numeric
solver based on SQP [40] or Interior Point methods [41].
Some advantages of this method are [29]:

• A large-scale, but widely dispersed (sparse) NLP is obtained.
• Unlike direct single shooting, this method can use information concerning the

trajectory of the states in the initialization.
• Very fast local convergence.
• Efficient management of systems that are unstable.
• Robust handling of path constraints and terminal constraints.
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Some of its disadvantages:

• The adaptive control of the discretization error can change to the partition Equa-
tion (2.2) (e.g. greater number of collocation points), this causes the dimensions
of the NLP to change.

Some of the software packages used for its implementation are the IpOpt [41], DIRCOL [42].

2.2.3.3 Direct Multiple Shooting Methods

Figure 2.10 – Direct Multiple Shooting scheme when the solver still does not
converge.

This method [43], combines the advantages of a simultaneous method like the one
of collocation(Section 2.2.3.2), with the advantages of direct single shooting meth-
ods(Section 2.2.3.1), therefore, this method can make an adaptive control of the error
in the ODE solvers .
The first step of this method is to discretize the control variables in each interval of
the partition Equation (2.2), in this way the control variable will be piecewise con-
stant in each of these intervals, mathematically this is expressed in uuu(t) = qqqk, for
t ∈ [tk, tk+1], i = 0, 1 . . . N − 1, then the dynamic equation of the model in each interval
[tk, tk+1] will be solved using an artificial initial state mmmk, in addition to the control
variable qqqk.

ẋxxk(t) =fff(xxxk(t), qqqk), t ∈ [tk, tk+1]
xxxk(tk) =mmmk
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Figure 2.11 – Direct Multiple Shooting scheme when the solver converge.

A set of trajectories that are dependent on the time, the artificial initial state mmmk, and
the control variable qqqk, xxxk(t;mmmk, qqqk) will be obtained, see Figure 2.10. Simultaneously
with the resolution of the dynamic equation of the model in each interval of the partition,
the following integrals will be calculated numerically:

lk(mmmk, qqqk) :=
∫ tk+1

tk

L(xxxk(tk;mmmk, qqqk))dt

It will be necessary additionally to impose constraints on the artificial initial states
mmmk, mmmk+1 = xxxk(tk+1;mmmk, qqqk), this ensures that when the solver of the NLP converges,
a continuous path in the states will be obtained, see Figure 2.11.
After the steps explained above, we get the following sparse structure NLP:

J = min
qqq,mmm

{
N−1∑
k=0

lk(qqqk,mmmk) + E(mmmN )
}

(2.9a)

xxxk(tk+1;qqqk,mmmk) = mmmk+1, k = 0, 1, 2, 3 . . . N − 1 (2.9b)
hhhk(qqqk,mmmk) ≥ 0, k = 0, 1, 2, 3 . . . N (2.9c)

xxx0 = mmm0 (2.9d)
rrr(mmmN ) = 0 (2.9e)

This method has been used in the resolution of practical off-line problems such as
[44], it is also widely used in real-time optimization [45,46].
Some of the advantages of this method are:

• State trajectory information can be used at initialization.
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• Uses adaptive numerical solver for ODEs or DAEs.
• The resulting NLP has a fixed dimension.
• Can handle unstable systems, path constraints, final conditions.
• In each of the solver iterations to solve the NLP, the part that most demands

computational effort is the solution of the ODEs, this can easily be parallelized.

Some disadvantages:

• The NLP that is obtained with this method is of smaller dimension with respect
to the one obtained in the collocation method, but less sparse.

In this thesis the OCP in each prediction horizon of the MPC is discretized using
Runge-Kutta 4th order.

2.3 Solution methods for NLP
After applying some method of discretization to the NOCP, we will obtain an NLP, the
resolution of the optimization problem is to find the value of the optimization variables
that satisfy the equations, inequalities, and that minimize or maximize (depending on
the case) the value of the objective function. The NLP has the following structure:

min
vvv

F (vvv) (2.10a)

subject to

GGG(vvv) = 000 (2.10b)
HHH(vvv) ≤ 000 (2.10c)

The terms of Equation (2.10) are:

• vvv is a vector conformed by the discretized control and state variables in the
partition Equation (2.2).

• F (vvv) is the objective function, dependent on the elements that make up the vector
vvv.

• HHH(vvv) group of equations that are derived from the dynamic equation of the model,
is a function of the elements of vector vvv.

• GGG(vvv), a group of inequalities derived from constraints in the trajectory of states,
constraints on control variables, is a function of the elements of vector vvv.

The three substructures of the NLP are the equations(Equation (2.10b)), inequali-
ties(Equation (2.10c)), and the objective function(Equation (2.10a)). If the previous
substructures were all linear, then the optimization problem is a Linear Programming(LP)
problem, otherwise it is called NLP. The optimization problem of Equation (2.10) is
usually nonconvex, so more sophisticated numerical methods are required than are used
for the convex case. It will be mentioned three numerical methods for this class of NLP.
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• The quasi-sequential method.

• The sequential-quadratic-programming methods.

• The interior-point methods.

The choice of which method to use depends on the properties of the aforementioned as
well as the characteristics of the optimization problem that is intended to be solved. A
brief explanation of each of these methods will be given, with an emphasis on the most
important of each of them.

2.3.1 Quasi-Sequential Method

This method discretizes control and state variables using collocation on finite ele-
ments [47] or some Runge-Kutta method [48, 49], and can handle constraints in the
state trajectory.
The approach has to solve the set of algebraic equations CCC(XXX,UUU) = 000 (Figure 2.12)
resulting from the discretization of DAEs or ODEs, making use of a numerical solver,
usually a Newton method [48, 50, 51], in a simulation layer. The above allows to reduce
the dimension of the optimization problem, this is because the equality constraints and
the state variables are eliminated.
The resulting NLP (Figure 2.12, third block) consists only of inequality constraints[
hhh(XXX(UUU),UUU)
XXX(UUU)

]
and control variables UUU , the NLP stated in this way greatly improves

the perfomance of the Line Search [50–52]. The solution of this NLP is done in the
optimization layer.
This approach, compared to the Simultaneous Approach (Sections 2.2.3.2 and 2.2.3.3),
requires a greater computational effort because it solves the set of equationsCCC(XXX,UUU) = 000,
in each iteration, if the solution of the set of equations by some numerical solver con-
verges quickly, then the Quasi-sequential method [53–55] can be more efficient than the
Simultaneous Approach. This approach is appropriate for highly nonlinear large-scale
OCPs.

This thesis uses this method implemented in IpOpt (more details about IpOpt software
in Section 2.3.3), below a brief explanation of the implementation:
The IpOpt in each iteration k provides an UUUk, with this UUUk will solve the system of
equations CCC(XXX,UUU) = 000 obtaining an XXXk.
Then we derive with respect to UUU the system of equations CCC(XXX,UUU) = 000, with what we
would have:

dCCC(XXX,UUU)
dUUU

= ∂CCC(XXX,UUU)
∂XXX

dXXX

dUUU
+ ∂CCC(XXX,UUU)

∂UUU
= 000 (2.11)

Then the matrix dXXX
dUUU

∣∣∣
k
is found by applying some linear algebra package to Equa-

tion (2.11):
∂CCC(XXX,UUU)

∂XXX

∣∣∣∣∣∣ XXXk
UUUk

(
dXXX

dUUU

)
+ ∂CCC(XXX,UUU)

∂UUU

∣∣∣∣∣∣ XXXk
UUUk

= 000→ dXXX

dUUU

∣∣∣∣∣
k
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With the previous matrix we can find the gradient of the objective function and the
Jacobian of the constraints (there are only inequalities):

dϕ(XXX(UUU),UUU)
dUUU

= dϕ(XXX,UUU)
dUUU

= ∂ϕ(XXX,UUU)
∂XXX

dXXX

dUUU
+ ∂ϕ(XXX,UUU)

∂UUU
→

dϕ(XXX(UUU),UUU)
dUUU

∣∣∣∣
UUUk

= dϕ(XXX,UUU)
dUUU

∣∣∣∣
UUUk

= ∂ϕ(XXX,UUU)
∂XXX

∣∣∣∣∣∣ XXXk
UUUk

dXXX

dUUU

∣∣∣∣∣
k

+∂ϕ(XXX,UUU)
∂UUU

∣∣∣∣∣∣ XXXk
UUUk

(2.12a)
d

dUUU

[
hhh(XXX(UUU),UUU)
XXX(UUU)

]
= d

dUUU

[
hhh(XXX,UUU)
XXX

]
=
[

∂hhh(XXX,UUU)
∂XXX

dXXX
dUUU + ∂hhh(XXX,UUU)

∂UUU
dXXX
dUUU

]
→

d

dUUU

[
hhh(XXX(UUU),UUU)
XXX(UUU)

] ∣∣∣∣∣∣
UUUk

= d

dUUU

[
hhh(XXX,UUU)
XXX

] ∣∣∣∣∣∣
UUUk

=


∂hhh(XXX,UUU)
∂XXX

∣∣∣∣∣∣ XXXk
UUUk

dXXX
dUUU

∣∣∣
k
+∂hhh(XXX,UUU)

∂UUU

∣∣∣∣∣∣ XXXk
UUUk

dXXX
dUUU

∣∣∣
k


(2.12b)

Then it is necessary to find the objective function, the constraints evaluated in UUUk, XXXk:

ϕ(XXX(UUU),UUU)
∣∣∣∣∣
UUUk

= ϕ(XXX,UUU)

∣∣∣∣∣∣ XXXk
UUUk

(2.13a)

[
hhh(XXX(UUU),UUU)
XXX(UUU)

] ∣∣∣∣∣∣
UUUk

=
[
hhh(XXX,UUU)
XXX

] ∣∣∣∣∣∣ XXXk
UUUk

(2.13b)

After it, is necessary to find the Hessian of the Lagrangian, this will be approximated
numerically by the L-BFGS algorithm, which comes implemented in the IpOpt.
The IpOpt will iterate until finding the optimal solution UUU∗.

min
uuu

ϕ(xxx,uuu)

s.t. FFF (ẋxx,xxx,uuu) = 000
hhh(xxx,uuu) ≤ 000
xxxmin ≤ xxx ≤ xxxmax
uuumin ≤ uuu ≤ uuumax

min
XXX,UUU

ϕ(XXX,UUU)

s.t. CCC(XXX,UUU) = 000
hhh(XXX,UUU) ≤ 000
XXXmin ≤XXX ≤XXXmax

UUUmin ≤ UUU ≤ UUUmax

min
UUU

ϕ(XXX(UUU),UUU)

s.t. hhh(XXX(UUU),UUU) ≤ 000
XXXmin ≤XXX(UUU) ≤XXXmax

UUUmin ≤ UUU ≤ UUUmax

OCP Large NLP Reduced NLP

Figure 2.12 – Illustrative scheme of how to convert an OCP to a reduced NLP
by applying the Quasi-sequential method.
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2.3.2 Sequential Quadratic Programming Method [26]

SQP [52, 56] is one of the most commonly used numerical methods for solving NLPs,
because it is very robust and effective [57]. Its operation is as follows: At each iteration
the SQP algorithm solves a QP problem [36] , which is obtained through the linearization
of the NLP in the vicinity of the point vvvk corresponding to the iteration k (k = 0, 1, 2 . . .).
The solution of the QP problem at iteration k provides a descent vector ~ddd, to the next
point vvvk+1. The next step is to minimize a merit function in the direction and sense of
the vector ~ddd , with this determining the length to the next point vvvk+1. The process is
repeated iteratively, the result of these iterations is a sequence {vvv0, vvv1, vvv2, vvv3, . . . , vvv

∗}
that converges to vvv∗.
Next, the resolution of the optimization problem Equation (2.10) will be explained using
this method. Starting from an initial point vvv0, the SQP algorithm iterates as follows:

vvvk+1 = vvvk + αk ~dddk, k = 0, 1, . . . (2.14)

In Equation (2.14) αk is the length of the step that is determined by the merit function,
~dddk is the result of solving the following QP problem Equation (2.15), obtained from the
linearization of the NLP at point vvvk.

min
~dddk

{(∇vvvF |vvvk)>~dddk + 0.5(~dddk)>PPP k ~dddk} (2.15a)

subject to

GGG(vvvk) +∇vvvGGG|vvvk~dddk = 000 (2.15b)

HHH(vvvk) +∇vvvHHH|vvvk~dddk ≤ 000 (2.15c)

From Equation (2.15a), PPP k is an approximation of the Hessian of the Lagrangian:

PPP k ≈ ∇2
vvvL(vvv,λλλ,µµµ)

∣∣∣∣∣∣∣ vvvkλλλk
µµµk

(2.16a)

L(vvv,λλλ,µµµ) = F (vvv) + λλλ>GGG(vvv) +µµµ>HHH(vvv) (2.16b)

To approximate the Hessian matrix of the Lagrangian(Equation (2.16a)) one can use
Quasi-Newton methods [50–52,58], or the method of Gauss-Newton [52,59]. For the
solution of the QP problem Equation (2.15), the most well-known convex optimization
methods such as Interior Point Methods [60] or Active Set Methods [52] can be used.
For the implementation of the SQP method, Active Set Methods are used commonly,
and not the Interior Point Methods, because in using the latter, the computational
complexity is considerably increased.
NPSO [61] was one of the first implementations of SQP methods, based on the FORTRAN
programming language, used for solving smooth problems. For large-scale problems
solving there are efficient commercial programs such as SNOPT [62], GAMS [63], the first
of which uses a reduced Hessian active-set method. Among the free software packages
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is NLPQL [64], based on FORTRAN.
The SQP methods prove to be very robust when both the gradient and the jacobian
do not approximate in numerical form, but rather are calculated analytically, they are
also robust in the scenario when the objective function, and the NLP constraints are
smooth nonlinear functions [65]. It is usual that of the multiple iterations used by the
SQP method, some of them do not satisfy the nonlinear constraints, for this reason and
in addition to the above, this method is applied in those problems that present low
nonlinearities.

2.3.3 Interior Point Method

This method is one of the most efficient algorithms for solving large-scale NLPs. There
are a number of OCPs that discrete them are obtained NLPs whose objective functions
are nonconvex, in that context it is no longer possible to apply the interior-point methods
that are for convex optimization problems, but rather will use much complex interior-
point algorithms that need a series of additional resources such as linear algebra solvers,
efficient methods to compute the gradient and hessian, regularization methods, efficient
use of the Line-search strategy, to mention a few.
To solve the NLPs of this thesis will be used the IpOpt solver [41], this numerical
solver is an implementation of the interior-point method specially designed to address
large-scale optimization problems and containing many high nonlinearities.

IpOpt solver [26, 41, 66]

The IpOpt (Interior Point Optimizer) solver is a free software designed for solving
large-scale optimization problems, based on a primal-dual interior-point line-search filter
method [41]. This solver in its beginnings was developed with FORTRAN [67], currently
it can find the software implementing in several languages of programming like C ++,
C, Python, Matlab.
If we apply this solver to an optimization problem whose objective function is nonconvex,
and we consider that within the admissible region for optimization variables there is
more than a local minimum, if we start from an arbitrary initial point vvv0, we will find a
local minimum which cannot be guaranteed to be the global minimum, for more details
about the mathematical fundamentals of this solver see [41].
For the realization of this thesis was used the IpOpt code in C++ programming
language [68], in addition worked under the Linux Ubuntu operating system . In order
to solve an NLP problem using the IpOpt solver, it is necessary first to define some
parameters, functions with which this solver works, such as: The number of optimization
variables (n), the total number of equations plus inequations (m) , the objective function,
the constraints, the upper and lower limits of the optimization variables must be defined.
In addition, since the IpOpt solver is based on an interior-point method, it will be
necessary to provide information of the first and second derivatives.
For NMPC problems whose finite time horizon is relatively large, and which also have a
high number of state variables, it is practical to approximate the Hessians using a C++
Automatic Differentiation Solver [69] such as CASADI [70], or using the approximation
method of the IpOpt, L-BFGS Hessian approximation [71,72]. The Figure 2.13 shows a
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flow diagram of how the IpOpt solves an NLP.
When we define the Jacobian of the constrains and the Hessian of the Lagrangian in the
corresponding functions in the IpOpt C++ code, previously, in the function where the
initial parameters are defined, we should have indicated the number of nonzero elements
of both the Jacobian as Hessian, therefore, we must only define the elements of each of
these matrices that are nonzero, this is advantageous in those matrices very dispersed
with a large number of zeros.
The IpOpt can work efficiently with large dispersed matrices, this is achieved through
the use of efficient sparse linear algebra solvers, then the linear algebra solvers that
come within the package will be listed:

HSL-MA27 [73] is the solver that uses IpOpt by default, uses a sequential algorithm.
It manages to solve a system of linear equations Ax = b of large scale by Gaussian
elimination.

HSL-MA57 [74] it is a version after the MA27, of very similar operation, its operation
differs with respect to the first one exposed because it uses the aggregation of
scattered elements, with this improves the performance.

HSL-MA86 solves a system of symmetric linear equations through LDLT factorization,
which is specially designed for multi-core processors.

MUMPS [75] solves linear equations system by LU factorization when matrices are
square, in the case of symmetric matrices it uses the LDLT factorization.

PARDISO [76] multithreaded parallel processing algorithm, using OpenMP [77], the
algorithm allows the Cholesky or LDLT factorization for symmetric matrices, in
the case of non-symmetric matrices it uses a QR factorization.
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Figure 2.13 – Flowchart of the IpOpt, modified from [26].
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Chapter 3

Chance Constrained MPC

The operation of the chance constrained MPC is the same as explained in Section 2.1.1,
the difference with respect to the deterministic MPC is in the formulation of the OCP,
NLP, now in the latter are present chance constraints, it will be explained that it is a
Chance Constraint later.
Determining the value of chance constraints is not easy, and it can demand a lot of
computational effort, which results in more calculation time by iteration, this can be
very critical for systems with high sampling frequencies, fortunately in the state of the
art there are several methods of approaching chance constraints such as: Back Mapping,
Robust Optimization, Sample Average Approximation, Analytic Approximation; these
will be explained later in the Chapter. Approximation methods transform the chance
constrained NLP into a Deterministic Optimization Problem that can be solved by the
numerical solvers discussed in Section 2.3.
There are engineering applications with operational restrictions that sometimes cannot
be satisfied due to unexpected events, extreme events, the presence of measurement
errors, etc. In such situations, what is done in practice is to establish a limit or tolerance
of violation of restrictions. This tolerance of violation of the restrictions is expressed
mathematically as follows:

lim
#Experiment→∞

( #Event AAA
#Experiment

)
= Pr{AAA} ≥ α (3.1)

Where AAA is the study event, in this context a operational restriction, α ∈ [0, 1] is the
probability level. The Equation (3.1) is known as Chance Constraint, its interpreta-
tion [78] is that if you perform a number “n” of times the experiment associated with
event AAA, and this “n” is large enough, then event AAA is expected to occur a number
“α× n” of times, at least.

3.1 Chance Constrained OCP

The mathematical formulation of chance constrained OCP [79] is as follows:

J = min
uuu
{γ1E [J1(xxx,uuu,ξξξ)] + γ2J2(uuu)} (3.2a)
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subject to

GGG(ẋ̇ẋx(t),xxx(t),uuu,ξξξ, t) = 0 (3.2b)

Pr
{
xmini ≤ xi(t) ≤ xmaxi

}
≥ αi; i = 1, 2, 3, . . . , n (3.2c)

xxx(t0) = xxx0 (3.2d)
uminj ≤ uj(t) ≤ umaxj ; j = 1, 2, 3, . . . ,m (3.2e)
t0 ≤ t ≤ tf (3.2f)

From Equation (3.2):

• xxx: are the State variables. xxx is related to ξξξ through Equation (3.2b), so it is
expected that they have a behavior similar to that of the Stochastic variables.

• ξξξ ∈ χ ⊂ <q: are the Stochastic variables, they may be dependent or indepen-
dent of time, it is normally assumed that the Stochastic variables have a known
distribution.

• The two functions that are part of the objective function J are J1 and J2, which
represent the error of the tracking to the designed path, the fuel consumption,
respectively.

• GGG : <n ×<n ×<m ×<q → <n: defines the dynamic model equation.

• Pr{•}, E[•]: they are operators that represent the probability, the average or
expected value, respectively.

• γ1, γ2 ≥ 0: are weighting factors.

In this work of thesis will be taken to control variables uuu as deterministic, this is what
is normally done in the state of the art.
There are two ways in which chance constraints can be expressed: Single Chance
Constraint (SCC) and Joint Chance Constraint (JCC). Here is a brief explanation.

Single Chance Constraint

The Equation (3.2c) equation is an example of SCCs because it represents each Chance
Constraint separately:

Pr{xmin1 ≤ x1(t) ≤ xmax1 } ≥ α1

Pr{xmin2 ≤ x2(t) ≤ xmax2 } ≥ α2
...

Pr{xminn ≤ xn(t) ≤ xmaxn } ≥ αn

The interpretation is that in each Chance Constraint a probability level is established
to keep the corresponding State variable within a lower and upper limit.
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3.2 Chance Constrained NLP

Joint Chance Constraint

Unlike the SCCs, the JCCs groups many chance constraints establishing a same level of
probability for the whole set, mathematically this is expressed:

Pr


xmin1 ≤ x1(t) ≤ xmax1
xmin2 ≤ x2(t) ≤ xmax2

...
xminn ≤ xn(t) ≤ xmaxn

 ≥ α

In this thesis work will be used SCCs, the use of JCCs is usually more complex, and
will be left as future work.
Continuing with the exposure of the chance constraints, below are additional notes
about them.
From Probability Theory [78], it is true that:

Pr{A}+ Pr{Ac} = 1; A: is an event (3.4)

Using Equation (3.4) in Equation (3.2c), it is obtain the following:

Pr{xi > xmaxi ∨ xi < xmini } ≤ 1− αi; i = 1, 2, 3 . . . n (3.5)

The Equation (3.5) is interpreted as the risk of states exceeding the upper and lower
limits, the maximum risk is 1− αi, i = 1, 2, . . . , n, for each state.
The property of convexity in the Chance Constraint is dependent on the function that
defines them, also of the Probability Density Function (PDF) of the stochastic variables.

Nonlinear chance constraints

Mathematically a Nonlinear Chance Constraint is expressed in generic form as follows:

Pr{Lower bound ≤ c(xxx,uuu,ξξξ) ≤ Upper bound} ≥ α

A simple example of a state, control, and stochastic variable is: c(x, u, ξ) = x3 sin(u)ξ.
Nonlinear chance constraints are very difficult to work with.
It is not common for them to have the convexity property.
It is also rare a direct deterministic representation, like the one given in the previous
example.

3.2 Chance Constrained NLP

After formulating the chance constrained OCP, as in the deterministic case.
This will be solved by using Direct Methods.
Therefore the infinite OCP is transformed to a finite NLP¸ that has chance constraints.
Henceforth the latter will be called the chance constrained NLP.
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The evaluation of the chance constraints is not an easy task, Approximation Methods
will be used which will be explained in detail in the following section, to approximate
the SCCs of chance constrained NLP.
In this way the Stochastic Optimization Problem becomes a deterministic one. The quasi-
sequential method explained in Section 2.3.1 is applied to the obtained deterministic
NLP.
Finally the obtained reduced NLP , will be solved by IpOpt.
Mathematically the chance constrained NLP is the following expression.

J = min
XXX,uuu

{
γ1E

[
f1(xxxi,uuu,ξξξ)

]
+ γ2f2(uuu)

}
; (3.6a)

i = 1, 2, 3, . . . ,M ; M is the number of samples,

uuu = [uuu0,uuu1,uuu2, . . . ,uuuN−1], uuuj =


uj,1
uj,2
...

uj,m

 ,

where the second index after “j” indicates the number of Control variable, it is obvious
that the total number of Control variables is “m”,

XXX =


xxx1

xxx2

...
xxxM

 =


xxx1

1 xxx1
2 xxx1

3 . . . xxx1
N

xxx2
1 xxx2

2 xxx2
3 . . . xxx2

N
...

...
... . . . ...

xxxM1 xxxM2 xxxM3 . . . xxxMN

 , xxxij =


xij,1
xij,2
...

xij,n

 ,

where the second index after “j” indicates the State variable number, the total of State
variables is “n”.

Subject to

xxxij+1 = xxxij +FFF (xxxij ,uuuj , ξξξ); j = 0, 1, 2, . . . , (N − 1); i = 1, 2, 3, . . . ,M ; (3.6b)

the above discretization method for example can be Runge-Kutta 4th Order,

XXX(t0) = XXX0; (3.6c)
Pr{(xj,k)min ≤ xj,k(uuu,ξξξ) ≤ (xj,k)max} ≥ αj,k; j = 1, 2, . . . , N ; k = 1, 2, . . . , n;

(3.6d)

where “j” indicates the time, “k” the state variable number, this expression does not
depend on the Sample number.

uuuj ∈ UUU ⊂ <m; j = 0, 1, 2, . . . (N − 1) (3.6e)

Below is a brief explanation of the terms of Equation (3.6):

• γ1, γ2: are weighting factors.
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• E[•]: is the expected value.

• f1, f2: are the discretized functions corresponding to the tracking error of the
designed path, the fuel consumption, respectively.

• ξξξ ∈ χ ⊂ <q: are the Stochastic variables, they may be dependent or independent
of time.

3.3 Approximation Methods for chance constraints

As discussed in the previous section, approximation methods are used for SCCs, in this
way a Deterministic Optimization Problem will be obtained. This section discusses
some methods of approximation existing in the state of the art.

3.3.1 Sampling Approaches

3.3.1.1 Robust Optimization Techniques [80]

This method aims at minimizing the worst-case. The following is a generic mathematical
formulation:

J = min
xxx
{E[f(xxx,ξξξ)]} (3.7a)

subject to

ccc(xxx,ξξξ) ≤ 000; ξξξ ∈ Ω (3.7b)
xxx ∈ χ (3.7c)

Then, it is necessary to generate a sequence of vectors of stochastic variables {ξξξ1, ξξξ2, . . . , ξξξN};
ξξξk ∈ Ω, the method looks for the constraints to be fulfilled as much as possible for
each element of the sequence shown above. The sequence is generated by the Quasi
Monte-Carlo (QSM) [81] algorithm.
With this method it is not necessary to calculate integrals, the convexity is preserved in
the mathematical expressions of the deterministic NLP, the latter is simple to implement
and solve. On the other hand, it has drawbacks such as that the deterministic NLP
solution may not be feasible for the chance constrained NLP; in order to increase
the reliability, a greater number of elements in the sequence of stochastic variables is
necessary, which increases the computational effort.

3.3.1.2 SAA [82]

In this method the following function is first defined:

III(c(x, ξ)) :=
{

0, if c(x, ξ) > 0
1, if c(x, ξ) ≤ 0
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The next step is to generate sequences of stochastic variables ξ of low discrepancy such as
the SOBOL [83] sequence , with these, chance constraints are approximated as follows.

Pr{c(x, ξ) ≤ 0} ≥ α ≡ 1
N

N∑
j=1

III(c(x, ξj)) ≥ α

The advantages of using this method are that it is avoided to calculate multidimensional
integrals, the mathematical expressions of the chance constrained NLP preserve their
convexity even after the method has been applied. On the other hand, the use of this
method leads to the resolution of a non-smooth deterministic NLP, the obtained solution
will be feasible when “N” tends to infinity or is a very large number.

3.3.2 Back Mapping Method [84]

This method looks for a monotonic relation between z = c(x,ξξξ) and a stochastic variable
ξi, for it has to verify theoretically [85] or experimentally that there exists a Real function
ϕ in which it is fulfilled:

z = ϕx(ξi), ∃x ∈ χ, (3.8)

where ϕx(•) is strictly increasing or decreasing, then applying the inverse of ϕx to two
sides of Equation (3.8), it will be obtained:

ξi = ϕ−1
x (z)

ξi ↑ z −→ Pr{c(x,ξξξ) ≤ 0} = Pr{ξi ≤ ϕ−1
x (0)}

ξi ↓ z −→ Pr{c(x,ξξξ) ≤ 0} = Pr{ξi ≥ ϕ−1
x (0)}

Then in a chance constrained Optimization Problem, if ξi ↑ z, chance constraints can
be calculated as follows:

Pr{ξi ≤ ϕ−1
x (0)} =

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ ϕ−1
x (0)

−∞
ρ(ξ1, ξ2, . . .)dξ1dξ2 . . . ,

the gradients of chance constraints are mathematically expressed as follows:

∇Pr{ξi ≤ ϕ−1
x (0)} =

∫ +∞

−∞
. . .

∫ +∞

−∞︸ ︷︷ ︸
(q−1), ξξξ∈<q

∇xϕ−1
x (0)ρ(ξ1, ξ2, . . .)dξ1dξ2 . . .

This method is used if it is easy to find the function ϕ, the chance constraints are
expressed directly, the method has the disadvantage that the function ϕ does not always
exist, or that it actually exists but it is extremely difficult to prove its existence.

38



3.3 Approximation Methods for chance constraints

3.3.3 Analytic Approximation Strategies [79,86]

To understand the operation of this kind of methods, it will be started with the following
Chance Constraint:

Pr{c(xxx,uuu,ξξξ) ≤ 0} ≥ α ≡ Pr{c(xxx,uuu,ξξξ) > 0} ≤ (1− α)

Then the following function is defined:

h(xxx,uuu,ξξξ) :=
{

0, if c(xxx,uuu,ξξξ) < 0
1, if c(xxx,uuu,ξξξ) ≥ 0,

then it is true that Pr{c(xxx,uuu,ξξξ) > 0} = E[h(xxx,uuu,ξξξ)], the expected value approximates
the Chance Constraint exactly when the experiment associated with event c(xxx,uuu,ξξξ) > 0
is performed a sufficiently large number of times. The disadvantage of approaching
chance constraints with the function h(xxx,uuu,ξξξ) is that the latter is not continuous, which
makes it not suitable for computational calculations.
The Analytic Approximation Approaches uses instead of the h(xxx,uuu,ξξξ) function, the
ψ(τ,xxx,uuu) function, which depends on the parameter τ > 0, is continuous and possibly
smooth.

E[h(xxx,uuu,ξξξ)] ≤ ψ(τ,xxx,uuu),∀τ > 0, (3.11)

A suitable ψ(τ,xxx,uuu) function will be one in which Equation (3.12) is satisfied.

lim
τ→0+

ψ(τ,xxx,uuu) = E[h(xxx,uuu,ξξξ)] (3.12)

Define ψ(τ,xxx,uuu) as:
ψ(τ,xxx,uuu) := E[Θ(τ, c(xxx,uuu,ξξξ))],

where Θ is a function such that Θ : <+ ×< → <. In the state of the art are different
proposals for Θ, here are some of them:

• Θ(τ, c(xxx,uuu,ξξξ)) = Θ(τ, s) = exp(τ × s), τ > 0, [87]

• Θ(τ, c(xxx,uuu,ξξξ)) = Θ(τ, s) = exp(τ−1 × s), τ > 0, [88]

• Θ(τ, c(xxx,uuu,ξξξ)) = Θ(τ, s) = τ +
(

1
1−α

)
max{s− τ, 0}, τ > 0, [89]

New Analytic Approximation Strategies [79, 86]

These new analytical approximation methods are those that are used in this work of
thesis.

Inner Approximation

Θ(τ, c(xxx,uuu,ξξξ)) = Θ(τ, s) = 1 +m1τ

1 +m2τ exp
(−s
τ

) , (3.13)

Master thesis Augusto José, Tam Tapia 39



3 Chance Constrained MPC

where m1 ≥ m2 > 0, τ ∈< 0, 1 >, Equation (3.13) gives a smooth approximation to the
unit step function:

ustep(s) =
{

0, s < 0
1, s ≥ 0

A chance constrained NLP has a Feasible Set “PPP ”, if the chance constraints are approx-
imated by this method, it will be obtained a deterministic NLPInnerτ whose Feasible
Set approaches “PPP” when τ → 0+, this idea is illustrated in Figure 3.1. The Inner
Approximation Method is usually accompanied by another method known as Outer
Approximation, for corroboration. A Chance Constraint approximated by this method
would be expressed as follows:

lim
τ→0+

ψ(τ,xxx,uuu) = lim
τ→0+

E[Θ(τ, c(xxx,uuu,ξξξ))] = E[h(xxx,uuu,ξξξ)] ≤ (1− α) (3.14)

The Inner Approximation has the advantage that the deterministic NLPInnerτ solution
will always be a point in the chance constrained NLP Feasible Set, in contrast, the
chance constrained NLP mathematical structures, it may be the case that they lose
the property of convexity, obviously those structures that had said property before the
application of the method.

Outer Approximation

The following function is defined:

ϕ(τ,xxx,uuu) := E[Θ(τ, c(xxx,uuu,ξξξ))],

where Θ is the next function:

Θ(τ, c(xxx,uuu,ξξξ)) = Θ(τ, s) = 1 +m1τ

1 +m2τ exp
(
s
τ

) , (3.15)

in addition the following properties are fulfilled, ϕ(τ,xxx,uuu) ≥ Pr{c(xxx,uuu,ξξξ) ≤ 0},
∀τ ∈< 0, 1 >; ϕ is not a decreasing function; and finally limτ→0+ [ϕ(τ,xxx,uuu)] =
Pr{c(xxx,uuu,ξξξ) ≤ 0}.

A chance constrained NLP has a Feasible Set “PPP ”, if the chance constraints are approx-
imated by this method, it will be obtained a deterministic NLPOuter

τ whose Feasible
Set approaches “PPP” when τ → 0+, this idea is illustrated in Figure 3.1.

A Chance Constraint approximated by this method would be expressed as follows:

lim
τ→0+

ϕ(τ,xxx,uuu) = lim
τ→0+

E[Θ(τ, c(xxx,uuu,ξξξ))] = Pr{c(xxx,uuu,ξξξ) ≤ 0} ≥ α (3.16)

If the NLPOuter
τ , NLPInnerτ , for τ → 0+ is solved, the corresponding feasible sets would

have the graphical behavior of Figure 3.1.
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3.3 Approximation Methods for chance constraints

Figure 3.1 – Behaviour of the Feasible Sets of Inner and Outer Approximations.

From Figure 3.1:

• M(τ): Feasible Set of NLPInnerτ .

• S(τ): Feasible Set of NLPOuter
τ .

• PPP : Feasible Set of chance constrained NLP.

At the limit τ → 0+, the Feasible Sets of NLPInnerτ , NLPOuter
τ are the same as the

chance constrained NLP, i.e. “PPP”, then the Control Law uuu∗ (or J∗) obtained for the
Inner will be the same as for the Outer Approximation.
To conclude this chapter, in the study cases of Chapter 4, you will see chance constraints
as follows:

Pr{a ≤ cp(xxx,uuu,ξξξ) ≤ b} ≥ α ≡
Pr{k2[ln(exp(k1(−cp(xxx,uuu,ξξξ) + a)) + exp(k1(cp(xxx,uuu,ξξξ)− b)))− k3]︸ ︷︷ ︸

c(xxx,uuu,ξξξ)

≤ 0} ≥ α ≡

Pr{c(xxx,uuu,ξξξ) ≤ 0} ≥ α,
(3.17)

then the last equivalence can be approximated by Inner or Outer Approximations.
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Chapter 4

Study cases

In this chapter the characteristics, considerations, dynamic equations, design of trajec-
tories, parameters for the simulations, of the study cases of this thesis will be exposed.

4.1 Trajectory tracking and landing on the asteroid Eros433

This study case is based on [16].
For a detailed development of this dynamic model see [17]. The dynamic model of the
spacecraft expressed as a state equation, and with respect to the fixed coordinate system
Σa in the center of mass of the asteroid Eros433 is:

xxx = [x1, x2, x3, x4, x5, x6] = [x, y, z, ẋ, ẏ, ż]

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


=



x4
x5
x6

2ωax5 + ω2
ax1 + Ux1 + ux1

−2ωax4 + ω2
ax2 + Ux2 + ux2

Ux3 + ux3


+



δx1

δx2

δx3

δx4

δx5

δx6


(4.1)

where,

• ωωω = [0, 0, ωa]>: is the rotational velocity of the Asteroid in the coordinate system
Σa on rad

s , it is assumed to be constant, see Figure 4.1.

• [Ux1 , Ux2 , Ux3 ]: are the components of the gradient of the gravitational potential
U(see references [90], [17]), on m

s2 .

• [x1, x2, x3]: are the position of the Spacecraft with respect the coordinate system
Σa on the axes x, y, z respectively, on meters.

• [x4, x5, x6]: are the velocities of the Spacecraft with respect the coordinate system
Σa on the axes x, y, z respectively, on m/s.
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4 Study cases

• [ux1 , ux2 , ux3 ]: are the control accelerations with respect the coordinate system
Σa, on m/s2.

• [δx1 , δx2 , δx3 , δx4 , δx5 , δx6 ]: errors of observation and perturbation accelerations on
axes x, y, z (Σa) .

Figure 4.1 – Scheme of Case 1

In Figure 4.1 we can see the scheme from which the Equation (4.1) of state was derived.
Mathematically the gravitational potential U of the asteroid is expressed as an expansion
of a series of spherical harmonics [17], the expression is as follows:

U = GM

r

∞∑
n=0

n∑
m=0

(
r0
r

)n
Pnm (sinϕ) [Cnm cos(mλ) + Snm sin(mλ)] (4.2)

where,

• GM : is the product of the mass of the asteroid(M) by the gravitational constant(G).
• n: is the degree.
• m: is the order.
• Pnm: is the fully Legendre polynomials.
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4.1 Case 1

• Cnm, Snm: are the coefficients of the potential determined by the distribution of
asteroid’s mass inside itself.

• r0: is the largest equatorial radius of the asteroid.

• ϕ, λ: are the latitude and longitude respectively of the Spacecraft with respect
the coordinate system Σa(see Figure 4.1).

• r: is the distance to the Spacecraft from the origin of the coordinate system Σa,
see Figure 4.1.

A very brief explanation will be given of how the asteroid is modeled to obtain the
gravitational potential gradient [17].

Figure 4.2 – Triaxial Ellipsoid [1]

The Asteroid was approximated using a triaxial ellipsoid with axes a, b, c (see Figure 4.2).
The coefficients for this symmetric body are:

• Cnm = 0 for n or m odd.

• Snm = 0 for all n or m.

For simplicity we used Equation (4.2) through 4 order, then the coefficients are equal
to:

C20 = 2c2 − (a2 + b2)
10r2

0
(4.3a)

C22 = a2 − b2

20r2
0

(4.3b)

C40 = 3
140

[
3(a4 + b4) + 8c4 + 2a2b2 − 8(a2 + b2)c2

r4
0

]
(4.3c)

C42 = (a2 − b2)(2c2 − a2 − b2)
280r4

0
(4.3d)

C44 = (a2 − b2)2

2240r4
0

(4.3e)
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4 Study cases

Therefore, Equation (4.2) is of fourth order with the mathematical expression:

U = GM

r

[
1 +

(
r0
r

)2 [(1
2

)
C20(3 sin2 ϕ− 1) + 3C22 cos2 ϕ cos 2λ

]
+(

r0
r

)4 [(1
8

)
C40(35 sin4 ϕ− 30 sin2 ϕ+ 3) +

(15
2

)
C42 cos2 ϕ

(
7 sin2 ϕ− 1

)
cos 2λ+

105C44 cos2 ϕ cos 4λ
]

+O
(
r−5

)]
(4.4)

r =
√
x2 + y2 + z2 (4.5a)

ϕ = arctan
(

z√
x2 + y2

)
(4.5b)

λ = arctan
(
y

x

)
(4.5c)

Replacing Equation (4.5) in Equation (4.4) and finding the gradient(~∇ =
[
∂
∂x ,

∂
∂y ,

∂
∂z

]>
)

of the resulting function U .
The gradient of the gravitational potential [Ux1 , Ux2 , Ux3 ] was obtained.
The resulting mathematical expression will not be shown in this chapter. The complete
mathematical expression is shown in the appendices, Section A..

4.1.1 Trajectory planning xd, yd, zd

The strategy of planning the trajectory consists of having a time T to carry out the
whole maneuver until landing.
The spacecraft will start from an initial position at t = 0, after a period of time
t = ζ(ζ < T ), the spacecraft has to be found above the position, where it is intended to
land, then proceed to the soft vertical landing (seen from the Σa system). We can see a
general scheme of the above explained in Figure 4.3.
It will begin with the design of the trajectory in zd:

Initial Position At landing place
zd(0) = z0 zd(T ) = zn
żd(0) = ż0 żd(T ) = 0, to ensure soft landing

Table 4.1 – Design conditions for zd(t)

It is sought that the trajectory in zd(t) is a polynomial of third degree (see [16], [17]):

zd(t) = a0 + a1t+ a2t
2 + a3t

3 (4.6)
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Using the initial and final conditions of the Table 4.1:

zd(t) = z0 + ż0t+ (3zn − 3z0 − 2ż0T )
(
t

T

)2
+ (2z0 + ż0T − 2zn)

(
t

T

)3
(4.7)

The next step is to design the trajectories for xd(t), yd(t) over time.

Figure 4.3 – Planning the trajectory of the Spacecraft

It must be considered that at time t = ζ(ζ < T ) the spacecraft has to be above the
landing point (see Figure 4.3). The design is done this way for the following reasons [16]:

• Avoid the hazards of this type of operations.

• The accumulated scientific experience on this type of operations.

Initial Position At landing place
xd(0) = x0 xd(T ) = xn
ẋd(0) = ẋ0 ẋd(T ) = 0, to ensure soft landing

Table 4.2 – Design conditions for xd(t)
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4 Study cases

Initial Position At landing place
yd(0) = y0 yd(T ) = yn
ẏd(0) = ẏ0 ẏd(T ) = 0, to ensure soft landing

Table 4.3 – Design conditions for yd(t)

Using the initial and final conditions of the Tables 4.2 and 4.3, we obtain the following:

xd(t) =

x0 + ẋ0t+ (3xn − 3x0 − 2ẋ0ζ)
(
t
ζ

)2
+ (2x0 + ẋ0ζ − 2xn)

(
t
ζ

)3
; t ≤ ζ

xn; t > ζ

(4.8)

yd(t) =

y0 + ẏ0t+ (3yn − 3y0 − 2ẏ0ζ)
(
t
ζ

)2
+ (2y0 + ẏ0ζ − 2yn)

(
t
ζ

)3
; t ≤ ζ

yn; t > ζ

(4.9)
Using the Matlab software [91], together with the parameters of Table 4.4, it was
obtained the designed position(Figures 4.5a and 4.5b), and velocity(Figure 4.5c) graphs.
It is also shown the graph of the components of the gradient of the gravitational potential
Figure 4.4.
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the time.
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Figure 4.5 – Designed Trajectories for the Case 1
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4.1.2 Parameters for the simulation

433 Eros Physics Parameters
GM

(
m3

s2

)
446300

ωa
(
rad
s

)
0.000331182021

Reference Radius ro(m) 16000
[C20, C22, C40, C42, C44] [3e−2,3.8e−3,4.1e−3,6.2e−3,5.1e−3]

Spacecraft Parameters
m(kg) 100

Spacecraft Initial Parameters
[x0, y0, z0] (meters) [350,300,9000]

[ẋ0, ẏ0, ẋ0]
(
m
s

)
[-1.2,0.2,-1]

Spacecraft Final Parameters
[xn, yn, zn] (meters) [0,30,7000]

[ẋn, ẏn, ẋn]
(
m
s

)
[0,0,0]

Time Simulation Parameters
T (seconds) 4000
ζ (seconds) 2500

MPC Parameters
uminxi , i = 1, 2, 3

(
m
s2

)
−50× 10−3

umaxxi , i = 1, 2, 3
(
m
s2

)
50× 10−3

Table 4.4 – Simulation Parameters for Case 1 [92], [16].
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4.2 Case 2

4.2 Guidance law in three dimensions for a soft landing
on a celestial body

This model is based on the papers presented by [93,94]. The “Rendezvous” maneuver
of a Spacecraft in a “Celestial Body”, consists of three phases:

• Approach to the vicinity of the celestial body.
• A closer approach to the celestial body.
• Maneuvers performed on the surface of the celestial body.

The model presented in the papers of [93,94], takes into account the effect of the gravity
of the celestial body, in addition to the drag force of the atmosphere. Effects such as
solar radiation pressure, non-spherical gravitational effects, are treated as perturbations,
the authors of these papers [93,94] model these perturbations as trigonometric functions,
instead , the QSM algorithm will be used to simulate the effect of these perturbations
on the model. We will use this model for the following:

• Ensure the landing of the spacecraft on the surface of the celestial body in a finite
time.

• Ensure that the landing is smooth, this means that the speed an instant before
touching the ground is zero or almost zero.

• Design of a suitable trajectory to carry out the tracking, see Figure 4.6.

Figure 4.6 – Scheme for Case 2
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In Figure 4.6 we have:

• r: Distance from the center of the celestial body to the spacecraft in km.
• Θ: Azimuth angle with respect to the fixed spherical coordinate system in the

celestial body in rad .
• Φ: Pitch angle with respect to the spherical coordinate system fixed in the celestial

body in rad.
• ra: Celestial body radius in km.

The dynamic equation of the model expressed in state space has the following form:

xxx = [x1, x2, x3, x4, x5, x6] = [r,Θ,Φ, ṙ, Θ̇, Φ̇]

 ẋ1
ẋ2
ẋ3

 =

 x4
x5
x6

 (4.10a)

 ẋ4
ẋ5
ẋ6

 =

 x1x
2
6 + x1x

2
5cosx3

2 − µ
x2

1
2x5x6 tan x3 − 2x4x5

x1
−2x4x6

x1
− x2

5 cosx3 sin x3



− β
√
x2

4 + (x1x5 cosx3)2 + (x1x6)2 ×
(
w1x1

−2 + w2 exp(−k × x1)
)
×

 x4
x1x5 cosx3

x1x6


+

 1 0 0
0 1

x1 cosx3
0

0 0 1
x1

×
 ur
uΘ
uΦ

+

 δr
δΘ
δΦ

 (4.10b)

The terms of Equation (4.10) are:

• µ = G×MCelestial Body; Standard gravitational parameter.
• w1, w2; are constants.
• β > 0; Drag coefficient.
• [ur, uΘ, uΦ]; are the control inputs.
• [δu, δΘ, δΦ]; are the coupling effects and external disturbances.

4.2.1 Designed trajectory

Then the designed path given in [93,94] will be exposed.

rd = ra + (r0 − ra)× exp
(−t

10

)
− δ (4.11a)

Θd = Θfinal (4.11b)
Φd = Φfinal (4.11c)
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Where;

• ra: Celestial body radius in km.
• δ: Parameter that assures to land in the celestial body in a finite time, in km.
• Θfinal, Φfinal: Desired final angles of Θ and Φ, in rad.

The components across time in r, Θ, Φ of the position and speed can be seen in
Figures 4.7a and 4.7b respectively.
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Figure 4.7 – Position and velocity components designed for Case 2.
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4.2.2 Parameters for the Simulation

The parameters for the simulation are as follows:

Parameter V alue Units Parameter V alue Units Parameter V alue Units

ra 10 km r0 200 km ṙ0 −20 km
h

Θ0 0.5 rad Φ0 0.5 rad k 0.1 −
Φ̇0 0.2 rad

h µ 4000 km3

h2 Φfinal 0.5 rad

w1 1 − δ 0.1 km Θ̇0 0.2 rad
h

w2 1 − Θfinal 0.5 rad β 0.02 −
uminr −1000

(
km
h2

)
umaxr 1000

(
km
h2

)
uminΘ −1000

(
rad
h2

)
umaxΘ 1000

(
rad
h2

)
uminΦ −1000

(
rad
h2

)
umaxΦ 1000

(
rad
h2

)
σδr 10−4

(
km
h2

)
σδΘ 10−4

(
rad
h2

)
σδΦ 10−4

(
rad
h2

)

Table 4.5 – Simulation parameters for Case 2
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4.3 Longitudinal model of lifting entry of a Mars Lander

The case 3 model is based on papers by [95,96].
With the model of case 3 we look for a control law to follow a designed path, to ensure an
accurate landing, we have to consider in this model the nonlinear dynamics, uncertainties,
and input saturation constraints.

(a) Mars Polar Lander Cruise Configuration
[1]

(b) Mars Polar Lander parachute descent illus-
tration [1]

(c) MSL type Vehicle Coordinate System [96]

Figure 4.8 – Mars Lander

Assumptions of this model:

• The atmosphere of Mars remains static.

• The physical effects of the Mars rotation will not be considered.
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• The dynamic equation of the model was deduced in an MSL type vehicle coordinate
system, see Figure 4.8c.

The dynamic equation of this model is as follows:

ḣ = v sin γ + ξh (4.12a)
v̇ = −D − g sin γ + ξv (4.12b)

γ̇ =
(
v

r
− g

v

)
cos γ + 1

v
L cosσ + ξγ (4.12c)

ṡ = v cos γ (4.12d)

In addition to Equation (4.12) we have the following algebraic equations.

g = µ

(h+ rMars)2 (4.13a)

L = 1
2ρv

2
(
CLSr
m

)
(4.13b)

D = 1
2ρv

2
(
CDSr
m

)
(4.13c)

ρ = ρ0 exp
(
−
(
r − rMars

hs

))
(4.13d)

r = h+ rMars (4.13e)

In Equations (4.12) and (4.13) the following terms are:

• h: It is the height of the Mars Lander with respect to the Martian surface.
• v: It is the magnitude of Mars Lander’s speed.
• γ: Is the flight path angle.
• s: Is the downrange.
• σ: Is the bank angle.
• g: Gravity equation of Mars.
• µ: Mars gravitational parameter.
• rMars: Is the radius of Mars.
• L: Lift acceleration.
• D: Drag acceleration.
• CL: Lift coefficient.
• CD: Drag coefficient.
• Sr: Vehicle reference surface Area.
• m: Vehicle mass.
• ρ: Atmospheric density.
• ρ0: Density at Sea level.
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• hs: Constant scale height.
• [ξh, ξv, ξγ ]: Stochastic variables.

Some of the above terms can be seen in Figure 4.8c.

4.3.1 Designed Trajectory

For the design of the trajectory that the Mars Lander must follow, one has to consider
the initial states as well as the final states of the Lander, these states are seen in
Table 4.6. The Mars Lander starts from its initial position, at a certain height from the
Martian surface, at a certain speed, and has to arrive at a position described by the
final states, at this point it deploys a parachute that it has incorporated, and begins
to decelerate until it touches the Martian soil, we can see a scheme of the Lander in
Figure 4.8a, as well as a scheme of descent with the parachute in Figure 4.8b. The
methodology for the design of the trajectory consisted of the following:

• A graph has to be found as a function of time for σ, up to a time of 300 seconds.
• With this graph, we solve Equation (4.12) by Runge-Kutta [48,49] of 4th order,

with a constant step of 0.75 seconds, obtaining the graphs shown in Figure 4.9c.
• The graph of σ as a function of time must be such that it complies with the values

of the initial and final states.

To find the appropriate σ plot as a function of time, was used as reference the σ plot
used in paper [96], finally the σ plot obtained is shown in Figure 4.9a.
In Figure 4.9b we can see the trajectory designed in a vertical plane s−h , in Figure 4.9c
the resulting designed graphs for h, v, γ, s, ḣ, ṡ are shown, the last two were obtained
by deriving once with respect to time Equations (4.12a) and (4.12d), and replacing
Equations (4.12b) and (4.12c).

Initial States F inal States

h = 125km h ∈ [7, 12]km
v = 6000ms v ≤ 400ms
γ = −11.5◦ γ = any
s = 0km s = any

Table 4.6 – Initial and final states for the trajectory design.

Master thesis Augusto José, Tam Tapia 57



4 Study cases
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Figure 4.9 – Designed Trajectories for the Case 3
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4.3 Case 3

4.3.2 Parameters for the Simulation

The parameters for the simulation are as follows:

Parameter V alue Units Parameter V alue Units

rMars 3397 km hs 9353.5 m

µ 4.282837e13 m3

s2 ρ 0.0158 kg
m3

m 2200 kg Sr 12.8825 m2

CD 1.4499 − CL 1.7979 −
umin 10 ◦ umax 90 ◦

σξh 0.25 m
s σξv 0.25 m

s2

σξγ 10−6 rad
s − − −

Table 4.7 – Simulation parameters for Case 3
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Chapter 5

Deterministic and Stochastic MPC For-
mulation

In this chapter the deterministic and stochastic MPC will be formulated for the study
cases of Chapter 4.

5.1 Deterministic MPC Formulation

The operation of the deterministic MPC is explained in the flowchart of Figure 5.1.
The deterministic MPC was formulated for each of the study cases, making use of this
flowchart.
Some of the steps in the flowchart require additional precisions:

• The discretization method used to transform the deterministic NOCP to a deter-
ministic NLP was the Runge-Kutta 4th order method.

• The deterministic OCP and NLP of each of the study cases is presented later in
this section.

• The GNU Scientific Library [97] was used to implement the Newton solver, and
the linear algebra solver in C++ [68].

• In order to find the first derivatives, the objective function and the constraints
(equations + inequations), Casadi [98] software was used, as well as MATLAB [91].
The second derivative, that is, the Hessian, was approximated by the algorithm
L-BFGS, which is part of the IpOpt software package

• IpOpt is an optimization software based on gradients, that is why it is necessary
to calculate the first and second derivatives. For more detailed information on the
IpOpt, see Section 2.3.3.

• The program of the deterministic MPC was implemented in C++, under the
operating system Linux Ubuntu.
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5 Deterministic and Stochastic MPC Formulation

Figure 5.1 – Flowchart of the deterministic MPC.
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5.1 Deterministic MPC Formulation

5.1.1 Trajectory tracking and landing on the asteroid Eros433

OCP formulation

The deterministic OCP is expressed by the following equations:

[x1, x2, x3, x4, x5, x6] = [x, y, z, ẋ, ẏ, ż]

J = min
ux1 ,ux2 ,ux3

{∫ T

0

(
(x1(t)− xd(t))2 + (x2(t)− yd(t))2 + (x3(t)− zd(t))2

)
dt+

∫ T

0

(
u2
x1 + u2

x2 + u2
x3

)
dt

}
(5.1a)



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


=



x4
x5
x6

2ωax5 + ω2
ax1 + Ux1 + ux1

−2ωax4 + ω2
ax2 + Ux2 + ux2

Ux3 + ux3


(5.1b)

0 ≤
(
(x1(t)− xd(t))2 + (x2(t)− yd(t))2 + (x3(t)− zd(t))2

)
≤ 1m2 (5.1c)

uminx1 ≤ ux1 ≤ umaxx1 (5.1d)
uminx2 ≤ ux2 ≤ umaxx2 (5.1e)
uminx3 ≤ ux3 ≤ umaxx3 (5.1f)

NLP formulation

The NLP obtained from the deterministic OCP is as follows:

J = min
(xk1 ,xk2 ,xk3 ,xk4 ,xk5 ,xk6 ,ukx1 ,u

k
x2 ,u

k
x3 )

{
N−1∑
k=0

ak∆t
[
(xk1 − xkd)2 + (xk2 − ykd)2 + (xk3 − zkd)2

]
+

N−1∑
k=0

bk∆t
(
ukx1

2 + ukx2

2 + ukx3

2)} (5.2a)

ak = 1; k = 0, 1, 2, 3 . . . (N − 1)
bk = 2.5; k = 0, 1, 2, 3 . . . (N − 1)

subject to

xxxk+1 = xxxk +FFF k(xxxk,uuuk, tk); for some Runge-Kutta method(Euler,Heun,Runge Kutta 4th order)

Master thesis Augusto José, Tam Tapia 63



5 Deterministic and Stochastic MPC Formulation

Assuming it is the Runge-Kutta 4th order method, one would have:

kkkk1 = FFF (xxxk,uuuk, tk)

kkkk2 = ∆tFFF (xxxk + kkkk1
2 ,u
uuk, tk + ∆t

2 )

kkkk3 = ∆tFFF (xxxk + kkkk2
2 ,u
uuk, tk + ∆t

2 )

kkkk4 = ∆tFFF (xxxk + kkkk3,uuuk, tk + ∆t)

xxxk+1 = xxxk +
(
kkkk1
6 + kkkk2

3 + kkkk3
3 + kkkk4

6

)
︸ ︷︷ ︸

FFFk(xxxk,uuuk,tk)

; k = 0, 1, 2 . . . (N − 1) (5.2b)

Where FFF (xxxk,uuuk, tk) is the right part of the Equation (5.1b).

The discretized trajectory constraints are:

0 ≤ (xk1 − xkd)2 + (xk2 − ykd)2 + (xk3 − zkd)2 ≤ 1m2; k = 1, 2, 3, . . . N (5.2c)

The upper and lower limits for the discretized control variables are:

− 50× 10−3
(
m

s2

)
≤ ukxi ≤ 50× 10−3

(
m

s2

)
; i = 1, 2, 3; k = 0, 1, 2, . . . (N − 1)

(5.2d)
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5.1 Deterministic MPC Formulation

5.1.2 Guidance law in three dimensions for a soft landing on a celestial
body

OCP formulation

The deterministic OCP is expressed in the following formulas:

[x1, x2, x3, x4, x5, x6] = [r,Θ,Φ, ṙ, Θ̇, Φ̇]

J = min
ur,uΘ,uΦ

{∫ T

0

(
(x1 − rd(t))2 + (x2 −Θd(t))2 + (x3 − Φd(t))2

)
dt +

∫ T

0

(
u2
r + u2

Θ + u2
Φ

)
dt

}
(5.3a)

 ẋ1
ẋ2
ẋ3

 =

 x4
x5
x6

 (5.3b)

 ẋ4
ẋ5
ẋ6

 =

 x1x
2
6 + x1x

2
5cosx3

2 − µ
x2

1
2x5x6 tan x3 − 2x4x5

x1
−2x4x6

x1
− x2

5 cosx3 sin x3



− β
√
x2

4 + (x1x5 cosx3)2 + (x1x6)2 ×
(
w1x1

−2 + w2 exp(−k × x1)
)
×

 x4
x1x5 cosx3

x1x6


+

 1 0 0
0 1

x1 cosx3
0

0 0 1
x1

×
 ur
uΘ
uΦ

 (5.3c)

0 ≤
(
(x1 cosx3 cosx2 − rd cos Φd cos Θd)2 + (x1 cosx3 sin x2 − rd cos Φd sin Θd)2

+(x1 sin x3 − rd sin Φd)2
)
≤ 25km2 (5.3d)

uminr ≤ ur ≤ umaxr (5.3e)
uminΘ ≤ uΘ ≤ umaxΘ (5.3f)
uminΦ ≤ uΦ ≤ umaxΦ (5.3g)
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5 Deterministic and Stochastic MPC Formulation

NLP formulation

The NLP that is obtained from the deterministic OCP is expressed in the following
formulas:

J = min
(xk1 ,xk2 ,xk3 ,xk4 ,xk5 ,xk6 ,ukr ,ukΘ,u

k
Φ)

{
N−1∑
k=0

ak∆t
[
(xk1 − rkd)2 + (xk2 −Θk

d)2 + (xk3 − Φk
d)2
]

+

N−1∑
k=0

bk∆t
(
ukr

2 + ukΘ
2 + ukΦ

2)} (5.4a)

ak = 1; k = 0, 1, 2, 3 . . . (N − 1)
bk = 3; k = 0, 1, 2, 3 . . . (N − 1)

subject to

xxxk+1 = xxxk +FFF k(xxxk,uuuk, tk); k = 0, 1, 2 . . . (N − 1) (5.4b)

For a better understanding of Equation (5.4b) see Equation (5.2b).

The discretized trajectory constraints are:

0 ≤
(
(xk1 cosxk3 cosxk2 − rkd cos Φk

d cos Θk
d)2 + (xk1 cosxk3 sin xk2 − rkd cos Φk

d sin Θk
d)2

+(xk1 sin xk3 − rkd sin Φk
d)2
)
≤ 25km2; k = 1, 2, 3, . . . N (5.4c)

The upper and lower limits for the discretized control variables are:

− 1000
(
km

h2

)
≤ ukr ≤ 1000

(
km

h2

)
; k = 0, 1, 2, . . . (N − 1) (5.4d)

− 1000
(
rad

h2

)
≤ ukΘ ≤ 1000

(
rad

h2

)
; k = 0, 1, 2, . . . (N − 1) (5.4e)

− 1000
(
rad

h2

)
≤ ukΦ ≤ 1000

(
rad

h2

)
; k = 0, 1, 2, . . . (N − 1) (5.4f)
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5.1 Deterministic MPC Formulation

5.1.3 Longitudinal model of lifting entry of a Mars Lander

Before formulating the OCP, a change of variable will be made as follows:

eh = h(t)− hdesign(t) (5.5a)
es = s(t)− sdesign(t) (5.5b)

Replacing Equation (5.5) in Equations (4.12) and (4.13), and reformulating in the space
of states, we have:

xxx = [x1, x2, x3, x4] = [eh, v, γ, es]; u = σ

ẋ1 = x2 sin x3 − ḣdesign(t) + ξh (5.6a)
ẋ2 = −D − g sin x3 + ξv (5.6b)

ẋ3 =
(
x2
r
− g

x2

)
cosx3 + 1

x2
L cosu+ ξγ (5.6c)

ẋ4 = x2 cosx3 − ṡdesign(t) (5.6d)

And the algebraic equations are now:

g = µ

(x1 + hdesign(t) + rMars)2 (5.7a)

L = 1
2ρx2

2
(
CLSr
m

)
(5.7b)

D = 1
2ρx2

2
(
CDSr
m

)
(5.7c)

ρ = ρ0 exp
(
−
(
r − rMars

hs

))
(5.7d)

r = x1 + hdesign(t) + rMars (5.7e)

OCP formulation

The deterministic OCP is expressed in the following formulas:

xxx = [x1, x2, x3, x4] = [eh, v, γ, es]; u = σ

J = min
u(t)

{∫ T

0

(
x1

2 + x4
2
)
dt+

∫ T

0
u2dt

}
(5.8a)
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5 Deterministic and Stochastic MPC Formulation

subject to

ẋ1 = x2 sin x3 − ḣdesign(t) (5.8b)

ẋ2 = −1
2

[
ρ0 exp

(
−x1 + hdesign(t)

hs

)]
x2

2
(
CDSr
m

)
−
[

µ

(x1 + hdesign(t) + rMars)2

]
sin x3 (5.8c)

ẋ3 =

 x2
x1 + hdesign(t) + rMars

−

(
µ

(x1+hdesign(t)+rMars)2

)
x2

 cosx3

+ 1
x2

[1
2ρ0 exp

(
−x1 + hdesign(t)

hs

)
x2

2
(
CLSr
m

)]
cosu (5.8d)

ẋ4 = x2 cosx3 − ṡdesign(t) (5.8e)
0 ≤ x2

1 + x2
4 ≤ R2 (5.8f)

umin ≤ u ≤ umax (5.8g)

NLP formulation

The NLP that is obtained from the deterministic OCP is expressed in the following
formulas:

J = min
(xk1 ,xk2 ,xk3 ,xk4 ,uk)

{
N−1∑
k=0

ak∆t
[
(xk1)2 + (xk4)2

]
+
N−2∑
k=0

bk∆t (uk+1 − uk)2
}

(5.9a)

ak = 2; k = 0, 1, 2, 3 . . . (N − 1)
bk = 0.1; k = 0, 1, 2, 3 . . . (N − 2)

subject to

xxxk+1 = xxxk +FFF k(xxxk,uuuk, tk); k = 0, 1, 2 . . . (N − 1) (5.9b)

For a better understanding of Equation (5.9b) see Equation (5.2b).

The discretized trajectory constraints are:

0 ≤
(
(xk1)2 + (xk4)2

)
≤ R2; k = 1, 2, . . . N (5.9c)

The upper and lower limits for the discretized control variable is:

10◦ ≤ uk ≤ 90◦; k = 0, 1, 2, . . . (N − 1) (5.9d)
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5.2 Stochastic MPC Formulation

5.2 Stochastic MPC Formulation

Figure 5.2 – Flowchart of the stochastic MPC.
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5 Deterministic and Stochastic MPC Formulation

The operation of the stochastic MPC is explained step by step in the flowchart of
Figure 5.2. The stochastic MPC was formulated, for each of the study cases, based on
this flowchart.
Some of the steps in the flowchart require additional precisions:

• It was used the discretization method of Runge-Kutta 4th order.
• The chance constrained OCP, chance constrained NLP, and the deterministic

NLPτ (inner or outer) are presented later in this section, for each study case.
• The GNU Scientific Library [97] was used in C++, to generate sequences of

random numbers of low discrepancy (Sobol sequences).
• The first and second derivatives were calculated, making use of the same software

that was used for the deterministic MPC, Section 5.1.
• The program of the stochastic MPC was implemented in C++, under the operating

system Linux Ubuntu.
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5.2 Stochastic MPC Formulation

5.2.1 Trajectory tracking and landing on the asteroid Eros433

OCP formulation

The chance constrained OCP formulation is:

J = min
ux1 ,ux2 ,ux3

{
E

[∫ T

0
‖ (x1(t)− xd(t), x2(t)− yd(t), x3(t)− zd(t)) ‖2dt

]
+

∫ T

0
‖ (ux1 , ux2 , ux3) ‖2dt

}
(5.10a)

subject to

Dynamics model Equation (4.1)
uminx1 ≤ ux1 ≤ umaxx1 (5.10b)
uminx2 ≤ ux2 ≤ umaxx2 (5.10c)
uminx3 ≤ ux3 ≤ umaxx3 (5.10d)

Pr
{
‖ (x1(t)− xd(t), x2(t)− yd(t), x3(t)− zd(t)) ‖2 ≤ 1m2

}
≥ 0.97 (5.10e)

NLP formulation

After discretizing the chance constrained OCP, we will have a chance constrained NLP
as explained in Section 3.2.
This NLP has the following objective function:

J = min
XXX,uuu


( 1
M

) M∑
i=1

N−1∑
j=0

aij∆t
[
(xij,1 − xdj)2 + (xij,2 − ydj)2 + (xij,3 − zdj)2

] +

N−1∑
j=0

bj∆t
(
uj,x1

2 + uj,x2
2 + uj,x3

2
) , (5.11a)

Runge Kutta 4th Order is used to discretize the Dynamic Equation (4.1). A set of
equations will be obtained for each sample, this is explained in Equation (3.6b)

Pr
{

0 ≤ (xj,1 − xdj)2 + (xj,2 − ydj)2 + (xj,3 − zdj)2 ≤ 1m2
}
≥ 0.97; j = 1, . . . , N

(5.11b)
uminj,xk

≤ uj,xk ≤ u
max
j,xk

; j = 0, 1, . . . , (N − 1); k = 1, 2, 3 (5.11c)

Equation (3.17) will be used to express the chance constraints of Equation (5.11b) in
its equivalent form,

Pr{cj(xxx,uuu,ξξξ) ≤ 0} ≥ 0.97; j = 1, 2, . . . N, (5.12)
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5 Deterministic and Stochastic MPC Formulation

where,

cj(xxx,uuu,ξξξ) = p2[ln(exp(p1(−((xj,1 − xdj)2 + (xj,2 − ydj)2 + (xj,3 − zdj)2)))+
exp(p1(((xj,1 − xdj)2 + (xj,2 − ydj)2 + (xj,3 − zdj)2)− 1)))− p3],

where p1, p2, p3 are coefficients that have to be adjusted. The Inner Approxima-
tion(Section 3.3.3) is applied to Equation (5.12), obtaining the following group of
deterministic inequalities.

( 1
M

) M∑
i=1

 1 +m1τ

1 +m2τ exp
(
−cij(xxx,uuu,ξξξ)

τ

)
 ≤ 0.03; j = 1, 2, . . . N, (5.13)

If the Outer Approximation(Section 3.3.3) is applied, the following deterministic in-
equalities are obtained.

( 1
M

) M∑
i=1

 1 +m1τ

1 +m2τ exp
(
cij(xxx,uuu,ξξξ)

τ

)
 ≥ 0.97; j = 1, 2, . . . N, (5.14)

Finally a deterministic NLP is obtained that will be solved by IpOpt. The equa-
tions corresponding to the NLPInnerτ are Equations (5.11a), (5.11c) and (5.13), and
the discretized Dynamic Equation (4.1) for all samples, the corresponding ones to
the NLPOuter

τ are the same as the latter but instead of Equation (5.13), it will be
Equation (5.14).
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5.2 Stochastic MPC Formulation

5.2.2 Guidance law in three dimensions for a soft landing on a celestial
body

OCP formulation

The chance constrained OCP formulation is:

J = min
ur,uΘ,uΦ

{
E

[∫ T

0

(
(r(t)− rd(t))2 + (Θ(t)−Θd(t))2 + (Φ(t)− Φd(t))2

)
dt

]
+

∫ T

0

(
u2
r + u2

Θ + u2
Φ

)
dt

}
(5.15a)

subject to

Dynamics model Equation (4.10)
uminr ≤ ur ≤ umaxr (5.15b)
uminΘ ≤ uΘ ≤ umaxΘ (5.15c)
uminΦ ≤ uΦ ≤ umaxΦ (5.15d)

Pr
{

0 ≤
(
(x(t)− xd(t))2 + (y(t)− yd(t))2 + (z(t)− zd(t))2

)
≤ 25km2

}
≥ 0.97

(5.15e)

Equation (5.15e) is expressed in cartesian coordinates, so we must transform it into
spherical coordinates.

x(t) = r cos Φ cos Θ (5.16a)
y(t) = r cos Φ sin Θ (5.16b)
z(t) = r sin Φ (5.16c)
xd(t) = rd cos Φd cos Θd (5.16d)
yd(t) = rd cos Φd sin Θd (5.16e)
zd(t) = rd sin Φd (5.16f)

Replacing Equation (5.16) in Equation (5.15e), we obtain the following Chance Con-
straint.

Pr
{

0 ≤
(
(r cos Φ cos Θ− rd cos Φd cos Θd)2 + (r cos Φ sin Θ− rd cos Φd sin Θd)2

+(r sin Φ− rd sin Φd)2
)
≤ 25km2

}
≥ 0.97

NLP formulation

After discretizing the chance constrained OCP, we will have a chance constrained NLP
as explained in Section 3.2.
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5 Deterministic and Stochastic MPC Formulation

This NLP has the following objective function:

J = min
XXX,uuu


( 1
M

) M∑
i=1

N−1∑
j=0

aij∆t
[
(xij,1 − rdj)2 + (xij,2 −Θdj)2 + (xij,3 − Φdj)2

] +

N−1∑
j=0

bj∆t
(
uj,r

2 + uj,Θ
2 + uj,Φ

2
) , (5.17a)

Runge Kutta 4th Order is used to discretize the Dynamic Equation (4.10). A set of
equations will be obtained for each sample, this is explained in Equation (3.6b)

Pr
{

0 ≤ (xj,1 cosxj,3 cosxj,2 − rdj cos Φdj cos Θdj)2+

(xj,1 cosxj,3 sin xj,2 − rdj cos Φdj sin Θdj)2+

(xj,1 sin xj,3 − rdj sin Φdj)2 ≤ 25km2
}
≥ 0.97; j = 1, . . . , N (5.17b)

uminj,k ≤ uj,k ≤ umaxj,k ; j = 0, 1, . . . , (N − 1); k = r,Θ,Φ (5.17c)

Equation (3.17) will be used to express the chance constraints of Equation (5.17b) in
its equivalent form,

Pr{cj(xxx,uuu,ξξξ) ≤ 0} ≥ 0.97; j = 1, 2, . . . N, (5.18)

where,

Expression =(xj,1 cosxj,3 cosxj,2 − rdj cos Φdj cos Θdj)2+
(xj,1 cosxj,3 sin xj,2 − rdj cos Φdj sin Θdj)2+
(xj,1 sin xj,3 − rdj sin Φdj)2,

cj(xxx,uuu,ξξξ) =p2[ln(exp(p1(−Expression)) + exp(p1(Expression− 25)))− p3],

where p1, p2, p3 are coefficients that have to be adjusted. The Inner Approxima-
tion(Section 3.3.3) is applied to Equation (5.18), obtaining the following group of
deterministic inequalities.

( 1
M

) M∑
i=1

 1 +m1τ

1 +m2τ exp
(
−cij(xxx,uuu,ξξξ)

τ

)
 ≤ 0.03; j = 1, 2, . . . N, (5.20)

If the Outer Approximation(Section 3.3.3) is applied, the following deterministic in-
equalities are obtained.

( 1
M

) M∑
i=1

 1 +m1τ

1 +m2τ exp
(
cij(xxx,uuu,ξξξ)

τ

)
 ≥ 0.97; j = 1, 2, . . . N, (5.21)
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5.2 Stochastic MPC Formulation

Finally a deterministic NLP is obtained that will be solved by IpOpt. The equa-
tions corresponding to the NLPInnerτ are Equations (5.17a), (5.17c) and (5.20), and
the discretized Dynamic Equation (4.10) for all samples, the corresponding ones to
the NLPOuter

τ are the same as the latter but instead of Equation (5.20), it will be
Equation (5.21).
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5 Deterministic and Stochastic MPC Formulation

5.2.3 Longitudinal model of lifting entry of a Mars Lander

OCP Formulation

The formulation of the OCP is as follows:

J = min
u(t)

{
E

[∫ T

0

(
x1

2 + x4
2
)
dt

]
+
∫ T

0
u2dt

}
(5.22a)

subject to

Equations (5.6) and (5.7)
umin ≤ u ≤ umax (5.22b)

Pr
{

0 ≤ x2
1 + x2

4 ≤ R2
}
≥ 0.97 (5.22c)

NLP Formulation

After discretizing the chance constrained OCP, we will have a chance constrained NLP
as explained in Section 3.2.

This NLP has the following objective function:

J = min
XXX,uuu


( 1
M

) M∑
i=1

N−1∑
j=0

aij∆t
[
(xij,1)2 + (xij,4)2

]+
N−2∑
j=0

bj∆t (uj+1 − uj)2

 ,
(5.23a)

Runge Kutta 4th Order is used to discretize the Dynamic Equation (5.6). A set of
equations will be obtained for each sample, this is explained in Equation (3.6b)

Pr
{

0 ≤ x2
j,1 + x2

j,4 ≤ R2
}
≥ 0.97; j = 1, . . . , N (5.23b)

uminj ≤ uj ≤ umaxj ; j = 0, 1, . . . , (N − 1) (5.23c)

Equation (3.17) will be used to express the chance constraints of Equation (5.23b) in
its equivalent form,

Pr{cj(xxx,uuu,ξξξ) ≤ 0} ≥ 0.97; j = 1, 2, . . . N, (5.24)

where,

cj(xxx,uuu,ξξξ) =p2[ln(exp(p1(−(x2
j,1 + x2

j,4))) + exp(p1((x2
j,1 + x2

j,4)−R2)))− p3],

where p1, p2, p3 are coefficients that have to be adjusted. The Inner Approxima-
tion(Section 3.3.3) is applied to Equation (5.24), obtaining the following group of
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deterministic inequalities.

( 1
M

) M∑
i=1

 1 +m1τ

1 +m2τ exp
(
−cij(xxx,uuu,ξξξ)

τ

)
 ≤ 0.03; j = 1, 2, . . . N, (5.25)

If the Outer Approximation(Section 3.3.3) is applied, the following deterministic in-
equalities are obtained.

( 1
M

) M∑
i=1

 1 +m1τ

1 +m2τ exp
(
cij(xxx,uuu,ξξξ)

τ

)
 ≥ 0.97; j = 1, 2, . . . N, (5.26)

Finally a deterministic NLP is obtained that will be solved by IpOpt. The equa-
tions corresponding to the NLPInnerτ are Equations (5.23a), (5.23c) and (5.25), and
the discretized Dynamic Equation (5.6) for all samples, the corresponding ones to
the NLPOuter

τ are the same as the latter but instead of Equation (5.25), it will be
Equation (5.26).
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Chapter 6

Computational results

In this chapter we show the computational results, from the simulations of the study
cases, in the deterministic and stochastic MPC.
All simulations were carried out on a desktop computer with the following features:
Intel Core i7 CPU X980, 6-core, with 3.33Ghz of speed per core, and 6GB of RAM.

6.1 Deterministic results
In this section we show the results of the simulations, of solving the case studies with
the deterministic MPC.

6.1.1 Trajectory tracking and landing on the asteroid Eros433

This study case was solved with the deterministic MPC approach, discussed in Section 5.1,
we also used the equations in Section 5.1.1 and the data in Table 4.4. The method
of discretization was Runge-Kutta 4th order, the finite time horizon was N = 10, the
sampling time was ∆t = 1s.
The iteration time reported by IpOpt, to solve the optimization problem, is in the
interval [0.09, 0.5] seconds.
In Figures 6.1 to 6.3, the data obtained by IpOpt is observed in visual form.
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Figure 6.1 – Trajectory calculated by IpOpt and trajectory designed, you can see that
both trajectories are very close, the error of the tracking of the position is
small. Calculated using Runge-Kutta 4th Order discretization method,
finite time horizon N = 10, ∆t = 1s, for Case 1.
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(a) Tracking the trajectory designed over time in each of its components, it can be noted that the error
of tracking the position is small, almost imperceptible.
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(b) This graph shows that the velocities calculated by the IpOpt follow with an error almost imperceptible
to the speeds designed.

Figure 6.2 – Calculated using the Runge-Kutta 4th order method for discretiza-
tion, a finite time horizon of N = 10, ∆t = 1s, for Case 1.
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(a) It can be seen that the graph of ux1 has the shape of the
graph Figure 4.4 but inverted with respect to the time axis,
this is logical since the controller has to exert a force or
effect contrary to that produced by gravity, plus an effect or
force that allows to follow the path designed with low error,
that is the reason why the graphs have the same shape, but
do not match their values at every instant in time.
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(b) Analogous to the analysis of Figure 6.3a but with respect
to the corresponding graph of Figure 4.4.
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the corresponding graph of Figure 4.4.
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(d) The tendency of this graph to increase its value in each
iteration is because as the Spacecraft is closer to the aster-
oid, the intensity of the gravitational field increases in the
component “z”, as shown in Figure 4.4, the controller has
to increase the effort applied to counteract the intensity of
the gravitational field that increases in the component “z”,
this is seen in Figure 6.3c.

Figure 6.3 – Graph of control variables computed by IpOpt, using the Runge-
Kutta 4th order discretization method, a finite time horizon of
N = 10, ∆t = 1s, for Case 1. A graph of the value of the objective
function in each iteration is also shown.
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6.1.2 Guidance law in three dimensions for a soft landing on a celestial
body

This case study was solved with the deterministic MPC approach, discussed in Section 5.1,
we also used the equations in Section 5.1.2 and the data in Table 4.5. The method
of discretization was Runge-Kutta 4th order, the finite time horizon was N = 10, the
sampling time was ∆t = 0.07h.

The iteration time reported by IpOpt, to solve the optimization problem, is in the
interval ]0, 0.144] seconds.

In Figures 6.4 to 6.6, the data obtained by IpOpt is observed in visual form.
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Figure 6.4 – Trajectory designed and trajectory calculated by IpOpt, for Case 2, with
a finite time horizon N = 10, sampling time ∆t = 0.07h, and using
Runge-Kutta 4th order discretization method. It is observed that at the
beginning there is a great error to follow the path designed, after a time
the controller manages to follow the path with low error.
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(a) Tracking the trajectory designed over time in each of its components, it has to be remarked that only the simulation could
be carried out until the time t ≈ 30h, after that instant of time the IpOpt software reports problems of precision and aborts
the simulation.
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(b) In this graph it is seen how the speed calculated by the IpOpt follows the designed speed, in its three components. It is very
remarkable the error in the component ṙ, besides converging to zero relatively fast, at time t ≈ 30h, it is possible that this
premature convergence to zero, is the cause by which IpOpt fails.

Figure 6.5 – Calculated using the Runge-Kutta 4th Order discretization method,
a finite time horizon of N = 10, ∆t = 0.07h, for Case 2.
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(a) The oscillatory behavior observed in the initial instants is
of short duration, after it is observed that the effort of the
controller increases in time, this is because as the Space-
craft approaches the celestial body, the gravitational field
becomes more intense, which translates into a greater ef-
fort of the controller in component r, so that the landing is
smooth.
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(b) In this graph it is observed at the beginning a sudden change
of the effort applied by the controller, in a relatively short
time, the reason of this abrupt change is because in the
tracking of the designed speed in this component Θ, Fig-
ure 6.5b, in the instant of time 0, there is a noticeable dif-
ference in the magnitude of the velocity of the IpOpt, with
respect to the one designed. After the above explained, the
controller effort in this component is almost constant in the
value of 0, this steady behavior is because the gravitational
field only acts in the component r, but not in Θ or Φ.
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(c) The analysis of this graph is analogous to that of Fig-
ure 6.6b.
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(d) In this graph the objective function takes after a few itera-
tions a value of almost 0.

Figure 6.6 – Control variables calculated by IpOpt, using the Runge-Kutta 4th
order discretization method, a finite time horizon of N = 10, ∆t =
0.07h, for Case 2.
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The same case was also solved, using the Heun discretization method (Runge-Kutta
2nd order), a finite time horizon N = 10, a sampling time ∆t = 0.05h.

The reason why this case is approached using Heun discretization method is because,
when attempting to solve it using the Runge-Kutta 4th order discretization method,
with the stochastic MPC approach, there were many problems of precision.

The time IpOpt uses to solve the optimization problem varies from iteration to iteration,
this time is in the interval ]0, 0.208] seconds.
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Figure 6.7 – Trajectory designed and trajectory calculated by IpOpt, for Case 2, with
a finite time horizon N = 10, sampling time ∆t = 0.05h, and using Heun
discretization method. It is observed that at the beginning there is a great
error to follow the path designed, after a time the controller manages to
follow the path with low error.
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(a) Tracking the trajectory designed over time in each of its components, it is appreciated that until the time instant t ≈ 30h,
there is an error in the tracking of the designed path, that is relatively small, in each component.

time(h)
0 10 20 30 40 50 60 70 80

ṙ(
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(b) In this graph it is seen how the speed calculated by the IpOpt follows the designed speed, in its three components.

Figure 6.8 – Calculated using the Heun method for discretization, a finite time
horizon of N = 10, ∆t = 0.05h, for Case 2.
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(a) It is observed that the effort of the controller increases in
time, this is because as the Spacecraft approaches the ce-
lestial body, the gravitational field becomes more intense,
which translates into a greater effort of the controller in
component r, so that the landing is smooth.

time(h)
0 10 20 30 40 50 60 70 80

u
Θ

(

ra
d
/h

2
)

-250

-200

-150

-100

-50

0

50

(b) The controller effort in this component is almost constant
in the value of 0, with imperceptible oscillations (it is nec-
essary to zoom), this steady behavior, because the gravita-
tional field only acts in the component r, but not in Θ or
Φ.
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(c) The analysis of this graph is analogous to that of Fig-
ure 6.9b.
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(d) In this graph the objective function takes after a few it-
erations a value of almost 0, but then begins to increase
slightly because as the Spacecraft approaches the celestial
body, the intensity of the gravitational field in the compo-
nent r increases, see Figure 6.9a.

Figure 6.9 – Control variables calculated by IpOpt, using the Heun discretization
method, a finite time horizon of N = 10, ∆t = 0.05h, for Case 2.
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6.1.3 Longitudinal model of lifting entry of a Mars Lander

This case study was solved with the deterministic MPC approach, discussed in Section 5.1,
we also used the equations in Section 5.1.3 and the data in Table 4.7.
The method of discretization was Runge-Kutta 4th order, the finite time horizon was
N = 15, the sampling time was ∆t = 0.75s.
The iteration time reported by IpOpt, to solve the optimization problem, is in the
interval ]0, 0.16] seconds.
In Figures 6.10 and 6.11, the data obtained by IpOpt is observed in visual form.
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(a) The control variable calculated by the IpOpt in contrast to the one that was designed, shows
sudden changes in its value over time, it was expected that its graph is similar to the one
designed, a possible cause of this result is that of the 4 states of the dynamic equation of
the model, we have 3 whose rate of change in time is high, whereas only the state γ has a
very slow rate of change over time.
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(b) Trajectory designed in the s−h plane, also the trajectory calculated by IpOpt, it is observed
that the controller manages to follow the path designed with low error.

Figure 6.10 – Graph of σ, graph of the trajectory designed in the s− h plane.
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(b) The controller does a tracking of this state with almost
imperceptible error.
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(c) The controller fails to perform a very good tracking of
this state, it is seen in the graph that there is a relatively
large error from the time t ≈ 150s, a possible cause
because the controller is unable to follow this state with
a low error, is because the rate of change of said state
with respect to time is low.
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(d) The controller does a tracking of this state with almost
imperceptible error.
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(f) The graph of the objective function has the same form as
the error graph, Figure 6.11e, the interpretation is that
as the Mars Lander is diverted from the designed path,
the error increases, and consequently the controller will
try harder to reduce said error of tracking.

Figure 6.11 – Graphs of the tracking of the 4 states [h, v, γ, s], also the Objective
function.
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6.2 Stochastic results

In this section we show the results of the simulations, of solving the case studies with
the stochastic MPC.

6.2.1 Trajectory tracking and landing on the asteroid Eros433

This case was solved using the stochastic MPC approach, explained in Section 5.2, also
the equations of Section 5.2.1, and the data of Table 4.4.
Different set of parameters were tested to solve the NLPOuterτ and NLPInnerτ , below a
summary of the obtained results (Tables 6.1 to 6.3).

Number of iterations Cause of failure
τInner = 0.9 475 Problem may be infeasible
τInner = 0.8 478 Problem may be infeasible
τInner = 0.7 478 Problem may be infeasible
τInner = 0.6 487 Problem may be infeasible
τInner = 0.5 498 Problem may be infeasible
τInner = 0.4 497 Problem may be infeasible
τInner = 0.3 0 Restoration failed
τInner = 0.2 0 Restoration failed
τInner = 0.1 0 Restoration failed
τOuter = 0.9 0 Restoration failed
τOuter = 0.8 0 Restoration failed
τOuter = 0.7 0 Restoration failed
τOuter = 0.6 0 Restoration failed
τOuter = 0.5 0 Restoration failed
τOuter = 0.4 0 Restoration failed
τOuter = 0.3 0 Restoration failed
τOuter = 0.2 0 Restoration failed
τOuter = 0.1 0 Restoration failed

Table 6.1 – m1 = m2 = 0.01, p1 = 2, p2 = 500, p3 = 0.25, a = 1, b = 2.5, α =
0.95, M = 1000 samples, N = 10 (Finite time horizon), ∆t =
1s, Runge-Kutta 4th order as discretization method, σδx1

= σδx2
=

σδx3
= 10−4 (m

s

)
, σδx4

= σδx5
= σδx6

= 10−4 (m
s2

)
It was also tried to simulate with M = 10000 samples, using the same data of Table 6.1,
but with different standard deviation for the stochastic variables σδx1

= σδx2
= σδx3

=
10−5 (m

s

)
, σδx4

= σδx5
= σδx6

= 10−5
(
m
s2

)
.

It was tested for τ = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2}, the results were:

• For the NLPOuterτ , in all cases IpOpt showed the message “Restoration Failed”, it
was not iterated even once,
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6 Computational results

• For the NLPInnerτ , IpOpt invests a lot of time per iteration, after a certain number
of iterations fails, cannot find the control law for the entire time horizon (T = 4000).

Number of iterations Cause of failure
τInner = 0.9 0 Problem may be infeasible
τInner = 0.8 0 Problem may be infeasible
τInner = 0.7 2 Problem may be infeasible
τInner = 0.6 3 Problem may be infeasible
τInner = 0.5 1 Problem may be infeasible
τInner = 0.4 0 Problem may be infeasible
τOuter = 0.9 0 Restoration failed
τOuter = 0.8 0 Restoration failed
τOuter = 0.7 0 Restoration failed
τOuter = 0.6 0 Restoration failed
τOuter = 0.5 0 Restoration failed
τOuter = 0.4 0 Restoration failed

Table 6.2 – m1 = m2 = 0.01, p1 = 2, p2 = 60, p3 = 0.25, a = 1, b = 2.5, α =
0.95, M = 1000 samples, N = 10 (Finite time horizon), ∆t =
1s, Runge-Kutta 4th order as discretization method, σδx1

= σδx2
=

σδx3
= 10−6 (m

s

)
, σδx4

= σδx5
= σδx6

= 2.5× 10−3 (m
s2

)

Number of iterations Cause of failure
τInner = 0.9 481 Problem may be infeasible
τInner = 0.8 491 Problem may be infeasible
τInner = 0.7 493 Problem may be infeasible
τInner = 0.6 517 Problem may be infeasible
τInner = 0.5 514 Problem may be infeasible
τInner = 0.4 534 Problem may be infeasible
τOuter = 0.9 0 Restoration failed
τOuter = 0.8 0 Restoration failed
τOuter = 0.7 0 Restoration failed
τOuter = 0.6 0 Restoration failed
τOuter = 0.5 0 Restoration failed
τOuter = 0.4 0 Restoration failed

Table 6.3 – m1 = m2 = 0.01, p1 = 2, p2 = 500, p3 = 0.25, a = 1, b = 2.5, α =
0.95, M = 100 samples, N = 10 (Finite time horizon), ∆t =
1s, Runge-Kutta 4th order as discretization method, σδx1

= σδx2
=

σδx3
= 10−5 (m

s

)
, σδx4

= σδx5
= σδx6

= 10−5 (m
s2

)
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Next, we graph the data obtained by Ipopt, for some cases in Table 6.1.
For a τInner = 0.9, the time that IpOpt invests to solve the optimization problem, is in
the interval [1.724, 2.752] seconds, for each iteration. In Figures 6.12 to 6.15, the data
obtained with the IpOpt is shown in visual form.
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Figure 6.12 – Graph of control variables computed by IpOpt. A graph of the
value of the objective function in each iteration is also shown. Note
that it is only possible to iterate until time t ≈ 500.

Master thesis Augusto José, Tam Tapia 93



6 Computational results

300

Plotted using expected values

200

x(m)

100

0

300
320

8600

8650

9000

8950

8900

8850

8800

8750

8700

y(m)

z
(m

)

IpOpt

Designed

(a)

300

200

Graph of many samples

100

0350

8550

8600

8650

9000

8950

8900

8850

8800

8750

8700

z
(m

)

Designed

(b)

Figure 6.13 – Trajectory calculated by IpOpt and trajectory designed. Note that it is
only possible to iterate until time t ≈ 500.
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6.2 Stochastic results
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Figure 6.14 – Tracking of the position.
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(a) This graph shows that the velocities calculated by the IpOpt follow with an error almost imperceptible
to the speeds designed.
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Figure 6.15 – Tacking of the velocities.
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6.2 Stochastic results

For a τInner = 0.6, the time that IpOpt invests to solve the optimization problem, is in
the interval [1.676, 2.176] seconds, for each iteration. In Figures 6.16 to 6.19, the data
obtained with the IpOpt is shown in visual form.
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Figure 6.16 – Graph of control variables computed by IpOpt. A graph of the
value of the objective function in each iteration is also shown. Note
that it is only possible to iterate until time t ≈ 500.
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Figure 6.17 – Trajectory calculated by IpOpt and trajectory designed. Note that it is
only possible to iterate until time t ≈ 500.
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Figure 6.18 – Tracking of the position.
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(a) This graph shows that the velocities calculated by the IpOpt follow with an error almost imperceptible
to the speeds designed.
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ż
(

m s

)

-1.1

-1

-0.9

-0.8

-0.7

Designed

(b)

Figure 6.19 – Tacking of the velocities.
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6.2 Stochastic results

For a τInner = 0.4, the time that IpOpt invests to solve the optimization problem, is in
the interval [1.636, 1.968] seconds, for each iteration. In Figures 6.20 to 6.23 the data
obtained with the IpOpt is shown in visual form.
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Figure 6.20 – Graph of control variables computed by IpOpt. A graph of the
value of the objective function in each iteration is also shown. Note
that it is only possible to iterate until time t ≈ 500.
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Figure 6.21 – Trajectory calculated by IpOpt and trajectory designed. Note that it is
only possible to iterate until time t ≈ 500.
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6.2 Stochastic results
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Figure 6.22 – Tracking of the position.
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6 Computational results
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(a) This graph shows that the velocities calculated by the IpOpt follow with an error almost imperceptible
to the speeds designed.
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ẏ
(

m s

)

-0.4

-0.2

0

0.2

Designed

time(s)
0 50 100 150 200 250 300 350 400 450 500

ż
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Figure 6.23 – Tacking of the velocities.
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6.2 Stochastic results

Based on the theory of Inner and Outer methods (Section 3.3.3). If τ → 0+, then it is
to be expected that the uuu∗, J∗ of both the NLPInner

τ , NLPouter
τ , are the same. There has

to be a trend.
Looking at Figures 6.12, 6.16 and 6.20 it is observed that there is no trend in the uuu∗,
J∗, in fact, there are no appreciable changes between those of one graph with respect to
another.
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6 Computational results

6.2.2 Guidance law in three dimensions for a soft landing on a celestial
body

This case was solved using the stochastic MPC approach, explained in Section 5.2, also
the equations of Section 5.2.2, and the data of Table 4.5.
We attempted to solve the deterministic NLPOuterτ , with different sets of parameters
m1, m2, p1, p2, p3, a, b, α, without any success.
However, it was possible to solve the deterministic NLPInnerτ , with the parameters:
m1 = 0.1, m2 = 0.1, p1 = 0.08, p2 = 5, p3 = 1, a = 1, b = 3, α = 0.95
In addition, the total number of samples used wasM = 10000, the finite time horizon was
N = 10, the Heun discretization method was used, the sampling time was ∆t = 0.05h.
For a τInner = 0.8, the time that IpOpt invests to solve the optimization problem, is in
the interval [2.336, 2.932] seconds, for each iteration. In Figures 6.24 to 6.27, the data
obtained with the IpOpt is shown in visual form.
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(a) It is observed that the effort of the controller increases in
time, this is because as the Spacecraft approaches the ce-
lestial body, the gravitational field becomes more intense,
which translates into a greater effort of the controller in
component r, so that the landing is smooth.
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in the value of 0, with imperceptible oscillations (it is nec-
essary to zoom), this steady behavior, because the gravita-
tional field only acts in the component r, but not in Θ or
Φ.
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(d) In this graph the objective function takes after a few it-
erations a value of almost 0, but then begins to increase
slightly because as the Spacecraft approaches the celestial
body, the intensity of the gravitational field in the compo-
nent r increases, see Figure 6.24a.

Figure 6.24 – Control variables calculated by IpOpt, using the Heun discretization
method, a finite time horizon of N = 10, ∆t = 0.05h, for Case 2.
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Figure 6.25 – Trajectory designed and trajectory calculated by IpOpt, for Case 2, with
a finite time horizon N = 10, sampling time ∆t = 0.05h, and using Heun
discretization method.
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(a) Tracking the trajectory designed over time in each of its components, it is appreciated that until the time instant t ≈ 40h,
there is an error in the tracking of the designed path, that is relatively small, in each component.
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Figure 6.26 – Calculated using the Heun discretization method, a finite time
horizon of N = 10, ∆t = 0.05h, for Case 2.
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(a) In this graph it is seen how the speed calculated by the IpOpt follows the designed speed, in its three components.
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Figure 6.27 – Calculated using the Heun discretization method, a finite time
horizon of N = 10, ∆t = 0.05h, for Case 2.
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6 Computational results

For a τInner = 0.9, the time that IpOpt invests to solve the optimization problem, is in
the interval [2.396, 3.116] seconds, for each iteration. In Figures 6.28 to 6.31, the data
obtained with the IpOpt is shown in visual form.
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(a) It is observed that the effort of the controller increases in
time, this is because as the Spacecraft approaches the ce-
lestial body, the gravitational field becomes more intense,
which translates into a greater effort of the controller in
component r, so that the landing is smooth.
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(b) The controller effort in this component is almost constant
in the value of 0, with imperceptible oscillations (it is nec-
essary to zoom), this steady behavior, because the gravita-
tional field only acts in the component r, but not in Θ or
Φ.

time(h)
0 10 20 30 40 50 60 70 80

u
Φ

(

ra
d
/h

2
)

-350

-300

-250

-200

-150

-100

-50

0

50

(c) The analysis of this graph is analogous to that of Fig-
ure 6.28b.
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(d) In this graph the objective function takes after a few it-
erations a value of almost 0, but then begins to increase
slightly because as the Spacecraft approaches the celestial
body, the intensity of the gravitational field in the compo-
nent r increases, see Figure 6.28a.

Figure 6.28 – Control variables calculated by IpOpt, using the Heun discretization
method, a finite time horizon of N = 10, ∆t = 0.05h, for Case 2.
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6.2 Stochastic results
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Figure 6.29 – Trajectory designed and trajectory calculated by IpOpt, for Case 2, with
a finite time horizon N = 10, sampling time ∆t = 0.05h, and using Heun
discretization method.
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(a) Tracking the trajectory designed over time in each of its components, it is appreciated that until the time instant t ≈ 40h,
there is an error in the tracking of the designed path, that is relatively small, in each component.
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Figure 6.30 – Calculated using the Heun discretization method, a finite time
horizon of N = 10, ∆t = 0.05h, for Case 2.
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6.2 Stochastic results
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(a) In this graph it is seen how the speed calculated by the IpOpt follows the designed speed, in its three components.
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Figure 6.31 – Calculated using the Heun discretization method, a finite time
horizon of N = 10, ∆t = 0.05h, for Case 2.
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6 Computational results

We tried to do the simulation with smaller τ , but it was not successful, the IpOpt
software iterates a few times and then it aborts, or it does not manage to iterate even
once.
The recurring message that IpOpt displays when aborting is “Restoration Failed”.
Contrasting the results obtained with τInner = 0.8, τInner = 0.9, it is observed that there
is a slight change in the control variable ur, and J∗.
It remains as future work, to investigate why this case study does not work when the
chance constraints are approximated by the Outer approximation approach.
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6.2 Stochastic results

6.2.3 Longitudinal model of lifting entry of a Mars Lander

This case study was solved with the stochastic MPC approach, discussed in Section 5.2,
we also used the equations in Section 5.2.3 and the data in Table 4.7.
The deterministic NLPInner

τ , NLPOuter
τ were solved for τ = 0.5, 0.25, 0.0625, the param-

eters used for the simulation were: m1 = 0.01, m2 = m1, p1 = 3.125 × 10−6, p2 =
100, p3 = 0.25, a = 2, b = 0.1, α = 0.97.
Additionally, we used a total number of samples M = 10000, the finite time horizon
was N = 15, the Runge-Kutta 4th order method was used for the discretization, the
sampling time was ∆t = 0.75s.
For τInner = 0.5, IpOpt solves the optimization problem, for each iteration, in a time
that oscillates in the interval [3.144, 3.476] seconds.
In Figures 6.32 to 6.34, the data obtained with the IpOpt is shown in visual form.
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(a) It can be seen in the figure that the IpOpt data has been
graphed to the middle of the time horizon (T = 300s). The
reason is that IpOpt only manages to iterate until half of
the time horizon T , at that time t ≈ 150s, IpOpt shows
the message: “ Converged to a point of local infeasibility.
Problem may be infeasible ”.
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(b) Trajectory designed in the s − h plane, also the trajectory
calculated by IpOpt.
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Figure 6.32 – Graph of σ, graph of the trajectory designed in the s− h plane.
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) The controller does a tracking of this state with almost
imperceptible error.
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(e) It is observed that there is a slight difference between
what was designed and what is calculated by IpOpt at
time t ≈ 50s. It is also seen that at time t ≈ 150s, the
difference becomes relatively large, it begins to increase.
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Figure 6.33 – Graphs of the tracking of the states [h, v, γ].
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6.2 Stochastic results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) Error at every instant of time.
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(d) The graph of the objective function has the same form
as the error graph, Figure 6.34c, the interpretation is
that as the Mars Lander is diverted from the designed
path, the error increases, and consequently the con-
troller will try harder to reduce said error of tracking.

Figure 6.34 – Graph of the tracking of the state s, also the Objective function.
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6 Computational results

For τOuter = 0.5, IpOpt solves the optimization problem, for each iteration, in a time
that oscillates in the interval [3.088, 3.380] seconds.
In Figures 6.35 to 6.37, the data obtained with the IpOpt is shown in visual form.
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(a) It can be seen in the figure that the IpOpt data has been
graphed to the middle of the time horizon (T = 300s). The
reason is that IpOpt only manages to iterate until half of
the time horizon T , at that time t ≈ 150s, IpOpt shows
the message: “ Converged to a point of local infeasibility.
Problem may be infeasible ”.
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(b) Trajectory designed in the s − h plane, also the trajectory
calculated by IpOpt.
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Figure 6.35 – Graph of σ, graph of the trajectory designed in the s− h plane.

118



6.2 Stochastic results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) The controller does a tracking of this state with almost
imperceptible error.
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(e) It is observed that there is a slight difference between
what was designed and what is calculated by IpOpt at
time t ≈ 50s. It is also seen that at time t ≈ 150s, the
difference becomes relatively large, it begins to increase.
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Figure 6.36 – Graphs of the tracking of the states [h, v, γ].
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6 Computational results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) Error at every instant of time.
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(d) The graph of the objective function has the same form
as the error graph, Figure 6.37c, the interpretation is
that as the Mars Lander is diverted from the designed
path, the error increases, and consequently the con-
troller will try harder to reduce said error of tracking.

Figure 6.37 – Graph of the tracking of the state s, also the Objective function.
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6.2 Stochastic results

For τInner = 0.25, IpOpt solves the optimization problem, for each iteration, in a time
that oscillates in the interval [3.172, 3.692] seconds.
In Figures 6.38 to 6.40, the data obtained with the IpOpt is shown in visual form.
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(a) It can be seen in the figure that the IpOpt data has been
graphed to the middle of the time horizon (T = 300s). The
reason is that IpOpt only manages to iterate until half of
the time horizon T , at that time t ≈ 150s, IpOpt shows
the message: “ Converged to a point of local infeasibility.
Problem may be infeasible ”.
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(b) Trajectory designed in the s − h plane, also the trajectory
calculated by IpOpt.
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Figure 6.38 – Graph of σ, graph of the trajectory designed in the s− h plane.
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6 Computational results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) The controller does a tracking of this state with almost
imperceptible error.
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(e) It is observed that there is a slight difference between
what was designed and what is calculated by IpOpt at
time t ≈ 50s. It is also seen that at time t ≈ 150s, the
difference becomes relatively large, it begins to increase.
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Figure 6.39 – Graphs of the tracking of the states [h, v, γ].
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6.2 Stochastic results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) Error at every instant of time.
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(d) The graph of the objective function has the same form
as the error graph, Figure 6.40c, the interpretation is
that as the Mars Lander is diverted from the designed
path, the error increases, and consequently the con-
troller will try harder to reduce said error of tracking.

Figure 6.40 – Graph of the tracking of the state s, also the Objective function.
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6 Computational results

For τOuter = 0.25, IpOpt solves the optimization problem, for each iteration, in a time
that oscillates in the interval [3.088, 3.7] seconds.
In Figures 6.41 to 6.43, the data obtained with the IpOpt is shown in visual form.
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(a) It can be seen in the figure that the IpOpt data has been
graphed to the middle of the time horizon (T = 300s). The
reason is that IpOpt only manages to iterate until half of
the time horizon T , at that time t ≈ 150s, IpOpt shows the
message: “Restoration Failed”.
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(b) Trajectory designed in the s − h plane, also the trajectory
calculated by IpOpt.
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Figure 6.41 – Graph of σ, graph of the trajectory designed in the s− h plane.
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6.2 Stochastic results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) The controller does a tracking of this state with almost
imperceptible error.

time(s)
0 20 40 60 80 100 120 140 160

v
(m

/s
)

2500

3000

3500

4000

4500

5000

5500

6000

6500

Graph of many samples

Designed

(d)

time(s)
0 50 100 150 200 250 300

γ
(r
a
d
)

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

Plotted using the expected value

Designed

IpOpt

(e) It is observed that there is a slight difference between
what was designed and what is calculated by IpOpt at
time t ≈ 50s. It is also seen that at time t ≈ 150s, the
difference becomes relatively large, it begins to increase.
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Figure 6.42 – Graphs of the tracking of the states [h, v, γ].
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6 Computational results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) Error at every instant of time.
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(d) The graph of the objective function has the same form
as the error graph, Figure 6.43c, the interpretation is
that as the Mars Lander is diverted from the designed
path, the error increases, and consequently the con-
troller will try harder to reduce said error of tracking.

Figure 6.43 – Graph of the tracking of the state s, also the Objective function.
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6.2 Stochastic results

For τInner = 0.0625, IpOpt solves the optimization problem, for each iteration, in a time
that oscillates in the interval [3.184, 3.624] seconds.
In Figures 6.44 to 6.46, the data obtained with the IpOpt is shown in visual form.

time(s)
0 50 100 150 200 250 300

σ
(r
a
d
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Designed

IpOpt

(a) It can be seen in the figure that the IpOpt data has been
graphed to the middle of the time horizon (T = 300s). The
reason is that IpOpt only manages to iterate until half of
the time horizon T , at that time t ≈ 130s, IpOpt shows the
message: “Restoration Failed”.
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(b) Trajectory designed in the s − h plane, also the trajectory
calculated by IpOpt.
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Figure 6.44 – Graph of σ, graph of the trajectory designed in the s− h plane.
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6 Computational results
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(a) The controller does a tracking of this state with almost
imperceptible error.

time(s)
0 20 40 60 80 100 120 140

h
(k
m
)

20

40

60

80

100

120

140

Graph of many samples

Designed

(b)

time(s)
0 50 100 150 200 250 300

v
(m

/s
)

0

1000

2000

3000

4000

5000

6000

7000

Plotted using the expected value

Designed

IpOpt

(c) The controller does a tracking of this state with almost
imperceptible error.

time(s)
0 20 40 60 80 100 120 140

v
(m

/s
)

4000

4500

5000

5500

6000

6500

Graph of many samples

Designed

(d)

time(s)
0 50 100 150 200 250 300

γ
(r
a
d
)

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

Plotted using the expected value

Designed

IpOpt

(e) It is observed that there is a slight difference between
what was designed and what is calculated by IpOpt at
time t ≈ 50s.
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Figure 6.45 – Graphs of the tracking of the states [h, v, γ].
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6.2 Stochastic results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) Error at every instant of time.
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(d) The graph of the objective function has the same form
as the error graph, Figure 6.46c, the interpretation is
that as the Mars Lander is diverted from the designed
path, the error increases, and consequently the con-
troller will try harder to reduce said error of tracking.

Figure 6.46 – Graph of the tracking of the state s, also the Objective function.
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6 Computational results

For τOuter = 0.0625, IpOpt solves the optimization problem, for each iteration, in a time
that oscillates in the interval [3.068, 3.592] seconds.
In Figures 6.47 to 6.49, the data obtained with the IpOpt is shown in visual form.
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(a) It can be seen in the figure that the IpOpt data has been
graphed to the middle of the time horizon (T = 300s). The
reason is that IpOpt only manages to iterate until half of
the time horizon T , at that time t ≈ 150s, IpOpt shows the
message: “Restoration Failed”.
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(b) Trajectory designed in the s − h plane, also the trajectory
calculated by IpOpt.
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Figure 6.47 – Graph of σ, graph of the trajectory designed in the s− h plane.
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6.2 Stochastic results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) The controller does a tracking of this state with almost
imperceptible error.
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(e) It is observed that there is a slight difference between
what was designed and what is calculated by IpOpt at
time t ≈ 50s. It is also seen that at time t ≈ 150s, the
difference becomes relatively large, it begins to increase.
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Figure 6.48 – Graphs of the tracking of the states [h, v, γ].

Master thesis Augusto José, Tam Tapia 131



6 Computational results
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(a) The controller does a tracking of this state with almost
imperceptible error.
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(c) Error at every instant of time.
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(d) The graph of the objective function has the same form
as the error graph, Figure 6.49c, the interpretation is
that as the Mars Lander is diverted from the designed
path, the error increases, and consequently the con-
troller will try harder to reduce said error of tracking.

Figure 6.49 – Graph of the tracking of the state s, also the Objective function.

According to the theory of the Inner and Outer approximations (Section 3.3.3), when τ
tends to zero, the solution of NLPInner

τ and NLPouter
τ must be the same, the same should

occur with the value of their respective objective functions J∗.

From the above, then a trend should be observed for both the control law uuu∗ , and the
value of the objective function J∗ , as the value of τ decreases.

It can be seen that the control laws uuu∗ obtained from Figures 6.32a, 6.35a, 6.38a, 6.41a,
6.44a and 6.47a are very similar, there are no appreciable changes.

With respect to the objective function J∗, we see in Figures 6.34d, 6.37d, 6.40d, 6.43d,
6.46d and 6.49d, those are very similar, no substantial changes are observed.
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6.2 Stochastic results

No trends are observed in uuu∗, J∗, as τ tends to zero, it is left as future work to investigate
because this trend is not appreciated.

It is re-emphasized that it was not possible to obtain the control laws uuu∗ for the whole
time horizon T = 300s, because the IpOpt aborts the simulations at time t ≈ 150, and
reports on the failure: “Converged to a point of local infeasibility. Problem may be
infeasible” or “Restoration Failed”.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we study and implement (by simulation) the chance constrained MPC
for reliable spacecraft trajectory tracking and landing, this control strategy is adequate
in those applications where there are disturbances in both the model parameters and
external.
It was identified that in space missions there are many sources of disturbances, such
as the pressure exerted by solar winds, space debris, the drag force of outer space, the
dynamics not modeled in the model used, errors in sensor measurements, misalignment
of propellants, etc.
This control strategy is also adequate when the dynamics of the model is highly nonlinear,
this is precisely the case with the models addressed in this thesis.
In order to solve the chance constrained MPC, it was first necessary to discretize the
chance constrained OCP to a chance constrained NLP, the discretization method used
was the Runge-Kutta 4th order, then the chance constraints are approximated in such a
way that they become a group of deterministic inequalities. The above is achieved by
applying the new analytic approximation methods, inner and outer.
After applying the new analytic approximation methods, the chance constrained NLP
is converted to a deterministic NLPInner

τ , or NLPOuter
τ .

This deterministic NLP is applied the Quasi-sequential approach, in this way, a reduced
NLP is obtained. The optimization variables of the reduced NLP are the elements of
the sequence uuu∗ = {uuu∗0,uuu∗1, . . . ,uuu∗N−1}.
The reduced NLP can be solved by some numerical method for optimization problems.
After the first element of the sequence uuu∗ is preserved, the next step is to find the new
initial state vector xxx0, finally the finite time horizon slides to the next sampling time.
The exposed sequence of steps is repeated until a stop condition is satisfied.
It is very important to generate sequences of random numbers of low discrepancy (Sobol
sequences), without the previous sequences, cannot carry out the simulation.
The generation of sequences of random numbers of low discrepancy (Sobol sequences),
the implementation of a solver of Newton, the implementation of a linear algebra solver
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7 Conclusions and Future Work

for sparse linear system equations, was realized by means of the implementation of
libraries in C++, also in these C++ libraries , the GNU scientific library was used.
IpOpt software was used in C++ to solve the reduced NLPs obtained in each case
study. IpOpt is an optimization solver based on gradients, so it is necessary to provide
information about first and second derivatives.
To find the first and second derivatives, we used Matlab and Cassadi.
The second derivative, that is the Hessian of the Lagrangian, was approximated by the
algorithm L-BFGS, which is part of the IpOpt software package.
The use of the new analytic approximation methods (Inner and Outer), leads to the
solution of a deterministic NLP, whose resolution is computationally expensive, but
whose results are much more realistic, if reliable statistical information is available of
the stochastic variables.
In the simulation of the chance constrained MPC, for Case 1, the following problems
occurred:

• It was possible to solve the NLPInner
τ for several cases mentioned in Tables 6.1

to 6.3, but this was not the case for NLPOuter
τ .

• It was not possible to find the stochastic control law uuu∗ for the entire time horizon
T = 4000s.

In the simulation of the chance constrained MPC, for Case 2, the following problems
occurred:

• It was possible to solve the deterministic NLPInner
τ , for τ = 0.8, 0.9, and determined

set of parameters. The deterministic NLPInner
τ could not be resolved with an smaller

τ .
• It was not possible to resolve the NLPOuter

τ , for any τ , even when tried with several
sets of parameters.

From the above, it will be left as future work to investigate in detail the dynamics and
properties of the model of Case 2.
In the simulation of the chance constrained MPC , for Case 3, the following events
occurred:

• It was possible to solve the deterministic NLPInner
τ , NLPOuter

τ , for τ = 0.5, 0.25,
0.0625 and certain set of parameters.

• There is no trend in uuu∗, J∗, as for the NLPInner
τ and NLPOuter

τ , as τ tends to zero.
• IpOpt fails to find the control law uuu∗, for the entire time horizon T = 300s, it

is only possible to find the control law until the time t ≈ 150s. At that instant
IpOpt aborts the program, and reports the cause of the failure: “Converged to a
point of local infeasibility. Problem may be infeasible” or “Restoration Failed”.

7.2 Future Work

• To investigate why the NLPOuter
τ of case 1 and 2, cannot be solved by IpOpt, this

implies a detailed study of the dynamic model and its properties.
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7.2 Future Work

• Design a solution that allows to solve the stochastic MPC of case 2, making use
of the discretization method of Runge-Kutta 4th order.

• To investigate why in case 3, we cannot see the trend in uuu∗ and J∗, as the value
of τ tends to zero.

• Address the three case studies of the thesis, using JCC, which are more realistic
restrictions.

• Application of parallelization techniques, to reduce the time invested in the
evaluation of NLP functions.
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Appendices

A. Gradient of the Gravitational Potential U
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A. Gradient of the Gravitational Potential U

Continuation of Equation Ux
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Continuation of Equation Uy
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Continuation of Equation Uy
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A. Gradient of the Gravitational Potential U
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Continuation of Equation Uz
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List of Acronyms

CAM Collision Avoidance Maneuver

FTTG Forced Terminal Translation Guide

INTG Impulsive Nominal Translational Orientation

OSTG Orbit Synchronization Translational Guidance

ISS International Space Station

SAA Sample Average Approximation

MPC Model Predictive Control

ROM Read-only memory

PWM Pulse Width Modulation

EKF Extended Kalman Filter

SQP Sequential Quadratic Programming

OCP Optimal Control Problem

LOS Line of Sight

QP Quadratic Programming

RPO Rendezvous and proximity Operations

CWH Clohessy-Wiltshire-Hill

GNC Guidance, navigation and control

RHC Receding Horizon Control

PID Proportional-Integral-Differential

LQR Linear Quadratic Regulator

MIMO Multiple inputs-Multiple outputs

SMPC Stochastic Model Predictive Control
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NLP Nonlinear Programming Problem

QSM Quasi Monte-Carlo

MSL Mars Science Laboratory

NMPC Nonlinear Model Predictive Control

NOCP Nonlinear Optimal Control Problem

HJB Hamilton-Jacobi-Bellman

BVP Boundary Value Problem

ODE Ordinary Differential Equation

IVP Initial Value Problem

DAE Differential Algebraic Equation

SCC Single Chance Constraint

JCC Joint Chance Constraint

PDF Probability Density Function
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