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Abstract

We proposed a novel inpainting method where we use a multi-scale approach to speed

up the well-known Markov Random Field (MRF) based inpainting method. MRF based

inpainting methods are slow when compared with other exemplar-based methods, because

its computational complexity is O(|L|2) (L feasible solutions’ labels). Our multi-scale

approach seeks to reduces the number of the L (feasible) labels by an appropiate selection

of the labels using the information of the previous (low resolution) scale. For the initial

label selection we use local statistics; moreover, to compensate the loss of information in

low resolution levels we use features related to the original image gradient.

Our computational results show that our approach is competitive, in terms reconstruc-

tion quality, when compare to the original MRF based inpainting, as well as other exemplar-

based inpaiting algorithms, while being at least one order of magnitude faster than the orig-

inal MRF based inpainting and competitive with exemplar-based inpaiting.
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Chapter 1

Introduction

Image inpainting, an ancient art itself [1], is a technique of modifying (reparing) an image

in an undetectable form. Originally, its key objective was to fill-in the missing or dam-

aged parts of the artistic work, and to restore its unity. In time, movies, photographs and

other type of visual works have been digitized, so digital inpainting applications emerged.

Some applications are scaling-up images by superresolution, compression, reconstructing

old photographs, and removal of overlaid text or graphics. It is also possible to add or

remove objects.

In parallel to image inpainting, there was another field that also attracted a considerable

amount of research over the last years called texture synthesis (Fig. 1.1(a)). Given a small

texture sample as input, we are then asked to generate an arbitrarily large output texture,

which maintains the visual characteristics of the input [2]. In general, an ideal image in-

painting algorithm should take in account texture synthesis in order to generated a visually

plausible result.

(a) (b)

Figure 1.1: (a) Texture synthesis results [3]. (b) Classification of image inpainting methods

Image inpainting methods can be classified in diffusion-based and patch-based. In [1],

holes in the images are filled by diffusing linear structure of surrounding regions along

isophote direction by solving partial differential equations (PDEs). Inspired by this diffu-

sion method, numerous models, including curvature-driven diffusion (CDD) [4] and varia-

tional approaches [5], are incorporated into the inpainting task. The variational approaches

aim to solve a model based on Bayesian principle and geometric images models (curva-

tures) using second order PDEs. However, diffusion-based methods only works on small
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gaps (i.e. scrathes), and mostly, on non-textured images.

On the other hand, patch-based approaches ([6], [7], [8]) are proposed to address in-

painting problems with large missing image portions. Similar to the well studied domain

texture synthesis ([9], [10], [3]), results can be generated by sampling and copying the best

matching color values from known regions to missing regions at patch level. Among patch-

based methods we should mention the work of Criminisi et al. [6], which is one of the most

influential works in exemplar-based methods. The algorithm assigns priorities to the blocks

that intersects the unknown region and then looks for the best match from the known region

to fill the gap. The priority is determined by data and confidence terms. Confidence term is

given by the amount of known data in the block while data term is derived from measuring

isophote strength orthogonal to the fill front.

(a) (b)

Figure 1.2: (a) Image input. (b) Result after patch-based method from [6]

Even though, common patch-based methods generate better results than diffusion-based,

they are not supported by solid mathematical fundations, and thus, inpainted images may

present visual inconsistencies (see Fig. 1.2(b)). In order to overcome this limitation, global

optimization models have been proposed and state-of-the-art models are based on Markov

Random Fields (MRF) ([11], [12], [13], [2], [14], [15]). Among global optimization mod-

els, we should mention the work of Sun et al. [11], where the authors present an interactive

approach to image inpainting, in which the user indicates what important structures should

be completed before remaining unknown regions are filled in. The user-defined structures

are modeled as a Markov Random Field and the cost function involved is minimizing us-

ing loopy Belief propagation algorithm, and the remaining region is filled using a common

exemplar-based approach. However, there are other works in which no user intervention

is required and still plausible results are obtained. For example, the video-completion al-

gorithm of Wexler et al. [12], which could also be used for image inpainting, is based on

a non-parametric optimization introduced by [9] which leads to improve texture synthesis.

On the other hand, this algorithm is sensitive to initialization and may get easily trapped in

a poor local minima. In order to fix this problem, another global optimization approach has

been presented by Komodakis and Tziritas in [13]. The unknown region is modeled follow-
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ing the Markov Random Field approach and the goal is to fill the hole such that global and

local consistency should be preserved, thus, the functional in this case aims to maximize the

similarities between neighbour patches and candidates and the solution is given by Belief

Propagation algorithm. Although, the algorithm produces acceptable results it could take

several hours to inpaint an image no greater than 512x512. Thus, authors, in [2], proposed

an improvement for the belief propagation algorithm by pruning the candidates in each it-

eration. This modification has a relevant impact on the computation time by making the

algorithm at least 10 times faster.

In this thesis, we proposed a computational efficient method for image inpainting based

on a multi-scale approach. Our multi-scale approach, which is different from the prune

method proposed by [2], first performs a label selection based on (simple) local statistics.

Then, using a multi-scale approach, we reduce the number of possible solutions while pre-

serving the texture information in lower levels avoiding fake local minimas. This procedure

gives a substantial speedup when compared with previous methods. Preliminary results

have been presented in the 2013 European Signal and Image Processing Conference [16],

and in [17] we present an application oriented to catadioptric omnidirectional images, where

we combine our multi-scale image inpainting (MII) algorithm with unwrapping techniques

([18], [19]) as the MII can not be applied in the omnidirectional image directly.

Finally, let us explain the organization of the thesis. In chapter 2 we summary the state

of the art for image inpainting methods. In chapter 3 we present our multi-scale inpainting

method. In chapter 4 experimental results are given as well as comparisons with other algo-

rithms and parameter dependency. At the end of the thesis we summarize the conclusions

(Chapter 5) and recommendations.
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Chapter 2

State-of-The-Art

In this chapter we summarily describe the Markov Random Field (MRF) model, Belief

Propagation (BP) algorithm and its variation, loopy BP. We also mention the MRF model for

image inpainting, as well as the energy function in this case and the optimization algorithm

(Priority BP) to solve the problem.

2.1 Markov Random Fields

Markov Random Fields (MRFs) are defined as a probabilistic model over undirected graph

G such that it is described by G = (ν, ε), where ν and ε denotes the nodes and edges

respectively. Let us denote P (X = x) as the probability distribution for state of each node,

where X = (X1,X2, . . . ) is a sequence of random variables. This probability distribution

can be expressed in terms of an energy or cost function E(x) using the Gibbs’ distribution

[20]. In (2.1) Z is a function that does not depend on X.

P (x) =
1

Z
exp(−E(x)) (2.1)

The most common form of inference over the posterior MRF in vision and image-

processing problems is maximum a posteriori (MAP) estimation [20], in other words, we

need to compute the sequence of xi that maximize P (x) or minimize E(x). It is also pos-

sible to write the energy function as a sum of a unary Vi and pairwise Vij term described by

(2.2). We are going to apply the Markov Random Field model to inpainting problem, thus,

we are going to use (2.2) through the whole thesis.

E(x) =
∑

(i,j)∈ε

Vij(xi, xj) +
∑
i∈ν

Vi(xi) (2.2)

2.1.1 Belief Propagation

Belief propagation (BP) is a message passing based algorithm to either find the marginal

posteriors or maximum a posteriori on tree structured graphs. There are two versions of

BP: the sum-product and max-product, as long as we focus on solving the MAP problem we

use the max-product version. Note that in order to compute marginal posterior, sum-product
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should be used instead.

Let us denote mij(xj) the message from node i (children) to node j (parent). The

message passing in BP algorithm has two steps, in the first one messages are passed from

children nodes to their parents until they reach the root node (Fig. 2.1). The second step is

the MAP estimation.

Figure 2.1: Message passing inference in a tree structured graph. First, messages are sent
from nodes {c, d} to node a, and then {a, b} send their messages to root node r.

mij(xj) = max
xi

{
P (xi, xj)

∏
k∈Nc(i)

mki(xi)

}
(2.3)

x∗i = argmax
xi

P (x∗j , xi)
∏

k∈Nc(i)

mki(xi) (2.4)

where Nc(i) is the set of all the children of node i. Besides messages passing, estimation

is from root node to children, thus, given x∗j it is possible the find x∗i using (2.4). Since the

root node has not parents its MAP estimation (x∗r) is just the multiplication of the messages

from its children nodes; in other words it can be considered the only parent for root node is

itself.

Sometimes it is preferred to convert multiplications of the elements of a given sequence

to additions by applying the logarithm function, in our case we obtain (2.5) and (2.6) from

(2.3) and (2.4) respectively. Recall that the energy function is defined in (2.1) and thus in

(2.6) the function is minimized.

mij(xj) = min
xi

{ ∑
(i,j)∈ε

Vij(xi, xj) +
∑
i∈ν

Vi(xi) +
∑

k∈Nc(i)

mki(xi)

}
(2.5)

x∗i = argmin
xi

{ ∑
(i,j)∈ε

Vij(xi, x
∗
j ) +

∑
i∈ν

Vi(xi) +
∑

k∈Nc(i)

mki(xi)

}
(2.6)

2.1.2 Loopy Belief Propagation

We have seen that it is possible to find the optimal solution for MAP estimation with the

max-product BP in a tree structured graphs. On the other hand, there are also graphs with
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loops (Fig. 2.2), where belief propagation algorithm can not be guaranteed to find the global

maximum. Nevertheless, a modification of max-product BP algorithm has been proved to

be effective heuristic for MAP estimations in graph with loops [20].

Figure 2.2: MRFs with loops. Nodes {a, b, c} compose a loop as well as nodes
{a, b, d, e, f, g}

We can find the min-marginal of E(x) using (2.7). The min-marginal M(xi) is a func-

tion that provides information about the minimum values of the energyE(x) under different

constraints [21] and, under BP formulation, it can be also computed using messages using

(2.9), where N(j) refers to the neighbourhood of node j. In Fig. 2.3 is shown how message

passing is perfomed.

(a) Message passing to compute (2.8) (b) Message passing to compute (2.9)

Figure 2.3: (a) When node i wants to send a message to node k, it has to collect all the
messages from its neighbourhood except for k. (b) In order to compute M(xi) node i needs
to gather all the messages from its neighbourhood.

M(xi) = min
x−{xi}

E(x) (2.7)

M(xi) = Vi(xi) +
∑

k∈{N(i)}
mki(xi) (2.8)

mji(xi) = min
xj

{
Vj(xj) + Vji(xj , xi) +

∑
k∈N(j)−{i}

mkj

}
(2.9)
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Therefore the estimation of MAP is found by minimizing function M(xi).

x∗i = argmin
xi

M(xi) (2.10)

2.2 Markov Random Field Model for image inpainting

In this section we succintly describe [13] a MRF solution to the inpainting problem on

which our proposed algorithm is based. We also briefly mention some improvements to

[13] as well as other works that include multi-scale approaches.

(a) MRF image model (b) MRF potentials

Figure 2.4: (a) MRF image model. Red dots are MRF nodes πk, and black lines are edges
ε. Ψk is the original patch of size h,w centered at node πk and `k ∈ Lk is a sample label.
(b) Data cost Vk is calculated over yellow region. Pairwise potential Vpq is calculated over
orange region

Given an input image, it is assumed that it can be divided in two regions: known or

source region (Φ), and region to be filled or target (Ω). The target region is modeled as a

group of nodes with a horizontal and vertical spacing of (hn, wn) pixels respectively. An

undirected graph is constructed G = (ν, ε), where the set ν = {πk}Nk=1 correspoding to

all MRF nodes and ε is the set of all edges connecting adjacent MRF nodes and consist

of 4-neighborhood system (see Fig. 2.4(a)). Let Lk = {`1, . . . , `n} denotes the sample

labels of node πk such that Lk ∈ Φ. The idea is to find optimal labels candidate config-

uration Λ = {`∗1, . . . , `∗N}; in this context, assigning optimal label `∗k to the node πk is

the same as copying the patch over the node’s position. Let Vp(`p) denote the data cost

such that Vp = SSD(Ψp, `p) , where SSD is the sum of squared differences and Ψp is

the original patch centered at node πp, and `p is one of the sample labels that belongs to

Lp; and let Vpq denote the pairwise potential between neighbour nodes (πp, πq) such that

Vpq = SSD(`p, `q) in their overlap region (see figure 2.4(b)). Therefore, based on MRF

model and these definitions, the energy function defined in (2.2) changes to:

E(Λ) =
∑
p

Vp(`p) +
∑
p,q

Vpq(`p, `q) (2.11)

The cost function (2.11) is minimized using the iterative algorithm described in sec-

tion 2.1.2 called max-product Belief Propagation. During each iteration nodes their give

“opinions” about other nodes by passing messages to their neighbourhood. Under this for-

mulation, the message from node πp to node πq in graph G can be denoted as mpq(`q),
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which reflects how likely node πp ”believes” node πq should be assigned label lq. The

updated message is given by (2.12), where N(p) denotes the neighbourhood of node πp.

mt
pq(`q) = min

`p

{
V p(`p) + V pq(`p, `q) +

∑
r 6=q,r∈N(p)

mt−1
rp (`p)

}
(2.12)

Once all messages have converged, each node πp collects the messages from its neigh-

bourhood and compute the min-marginal (2.10) or, under this formulation, their belief

(2.14) which represents the probability of assigning label `p to node πp. Finally, the op-

timal labels are found by (2.13):

`∗p = argmax
`p

{b(`p)} (2.13)

bp(`p) = −Vp(`p)−
∑

r∈N(p)

mrp(`p) (2.14)

2.2.1 Priority-BP

Belief propagation (BP) is a slow algorithm. If |L| denotes the total number of labels

then the BP computational complexity is given by O(|L|2). In [2] a new approach, called

priority-BP, was proposed to reduce BP’s complexity: at each iteration, the algorithm ex-

ecutes ForwardPass and then BackwardPass; the ForwardPass declare nodes, at the begin-

ning, as uncommitted and visit them in order of highest priority (Fig. 2.5(a)), declaring as

committed, prunning their lables, sending messages to their neighbour uncommitted nodes

and updating their beliefs and priorities as well; in the BackwardPass nodes are visited in

reverse order (Fig. 2.5(b)), declaring uncommitted, sending messages to their neighbour

committed nodes, and updating belief and priorities.

(a) ForwardPass (b) BackwardPass

Figure 2.5: Message Passing in (a) FowardPass and (b) BackwardPass.Note that if we de-
note P (i) as priority of node i, then P (i) > P (k) > P (p) > P (n).

Let brelp (`p) denote the relative belief of node πp such that brelp (`p) = bp(`p)−bmaxp (`p),

where bmaxp (`p) = max
`p∈Lp

bp(`p). And let bprune be a predefined prune threshold such that the

set of labels of node πp is reduced, let denote as Lprunep := {∀`p ∈ Lp : brelp (`p) ≥ bprune}.
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Note that the computational complexity of priority-BP isO(|Lmax|), whereLmax = |Lprunep |
and Lmax � |L|. In practice a Lmin and Lmax are defined by the user.

2.2.2 Shortcomings of Priority-BP

The prune method proposed by [2] is still somehow inefficient because all possible labels

are considered, which implies more memory and more computation time. Thus, some au-

thors have proposed to perform a label selection as a first step. For example, in [22] it was

proposed to use statistics of patch offset matching similar patches in the known region, ob-

taining their offsets and computing offsets histogram in order to prune labels. Nevertheless,

this procedure requires a high-effienct implementation to avoid wasting computation time

while computing offset matching. On the other hand, in [23] it was proposed a context-

aware label selection, which limits the search for labels to the areas of interest based on

contextual information using Gabor-based and color descriptors. However, Gabor filter

computational complexity is O(M2N2), where M and N are the max{width, height} for

the filter and the image respectively.

2.3 Other multi-scale approches

Standard MRF-based image inpainting algorithms are of limited practical use when the

input image is larger than 512x512. Some published works have proposed multi-scale so-

lutions ([2], [12]), but they report lower quality results (than standard MRF-based image

inpainting methods) due to fake local minimals. However, in [15] it was proposed to use

also gradient information (SURF - descriptors [24]) while working with a multi-scale ap-

proach which improve the overall performance. Besides of being based on the intensity,

descriptors used in [15] are based on the gradient which tend to be very practical useful

while differentiating between geometric structures (edges).

As we explain in the introduction and [16], [17] we present a new method for inpainting,

improving the computation time, based on a multi-scale approach, pre-selection of the labels

(based on local statistics) and descriptors to avoid fake minimas.
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Chapter 3

Multi-scale Image Inpainting
algorithm

3.1 Proposed Algorithm

Based on the description of [2] as well as on the relationship between label selection and

speed-up (Section 2.2), in this Section we propose a simple procedure based on local statis-

tics to perform a label selection improving the computational performance of [2]. Moreover

we also propose a multi-scale approach to improve the computational efficiency of our al-

gorithm.

3.1.1 Label selection

We propose to guide the label selection using local statistics. To this end, we use [25],

where a simple method was propose to estimate the noise variance (of the observed image)

based only on its local variance; the local variance is computed using a window centered

at pixel p; however, it is possible to get information about other features such as texture or

edges if the window size is large enough.

The label selection is performed in a similar way as the Forward Pass in Priority-BP

algorithm. Declaring nodes, at the beginning, as uncommitted and visiting them in order

of highest priority, declaring as committed, selecting their lables and updating priorities.

We propose a new scheme of priorities based on local variance and a confidence term that

measures the known information in source patch Ψk (similar ideas have been used in [6]).

Let σ2k = var{k} denote the local variance of the node πk. Note that each σ2k is a 3-

dimensional vector (σ2k = [σ2kR, σ
2
kG, σ

2
kB]) related to each color channel in a RGB image.

And also let V (k) and C(k) denote the variance and confidence term, and P (k) the priority

of node πk. They are calculated as follows:

C(k) =
|Ψk ∩ Φ|
| Ψk |

(3.1)

V (k) =
‖σ2

k‖2
Vmax

(3.2)

P (k) = (1− λ)C(k) + λV (k) (3.3)
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where the operator |x| defines the number of elements of x, Vmax = max
πk∈ν

V (k) and λ ∈
[0, 1]. For each node πk we calculate local variance using only known information near the

node Ψk ∩Φ (Fig. 3.1). During the label selection process, it is necessary to check whether

a node is reliable or not, so if C(k) ≥ τ then σ2k = var{Ψk ∩ Φ}, else we re-estimate the

local variance of node πk using (3.4) where T = |N(k)|+ 1.

σ2k =

∑
i∈{N(k)∪{k}}

σ2i

T
(3.4)

Figure 3.1: Local variance and confidence term of node πk are calculated over the yellow
region.

Let σ2RGB denote the local variance vector of the input image such that σ2RGB :=

{var{p} : p ∈ Φ}. In order to perform the label selection of node πk we first compute the

distance vector dn between σ2RGB and σ2k (3.5). The distance dn is described by unimodal

histogram (hn), thus, it is possible to find a threshold τh using the unimodal thresholding

algorithm described in [26], in which it focuses in find the maximum distance between the

line the pass through the maximun and minimum value of hn and the histogram itself, as

show in figure 3.2. Finally, the set of labels of node πk is denoted by Lk = {`1, . . . , `n}
such that `n is the patch centered at pixel p ∈ ΩC which satisfy the condition dn ≤ τh.

dn = ‖σ2RGB − σ2n‖2 (3.5)

Figure 3.2: Unimodal thresholding described in [26].
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3.1.2 Pixel decriptors

Following similar ideas, as in [15], we also use descriptors to avoid losing texture informa-

tion of the original image while working with at lower levels; SURF-gradient descriptors

tend to be very useful for differentiating between geometric structures (edges) because of

their robustness and simplicity, and in [15] it has been shown that these descriptors give

good results in multi-scale setting. The descriptors are defined as follows:

gx(p) =
1

22L

∑
q∈N0(p)

∇xU(q) (3.6)

gy(p) =
1

22L

∑
q∈N0(p)

∇yU(q) (3.7)

Gx(p) =
1

22L

∑
q∈N0(p)

|∇xU(q)| (3.8)

Gy(p) =
1

22L

∑
q∈N0(p)

|∇yU(q)| (3.9)

where U = IR+IG+IB
3 denotes the image intensity of the RGB input image I , and N0(p) is

the 2Lx2L square set of pixels of the original image that are represented by pixel p at Lth

level. Descriptors gx(p) and gy(p) give us information about gradual changes of the gradient

and its direction on each axis. On the other hand, Gx(p) and Gy(p) give us information

about the “magnitude” of the gradient on each direction. Some examples are shown in Fig.

3.3.

(a) Vertical pattern (b) Horizontal pattern (c) Non texture (d) Diagonal pattern

(e) (f) (g) (h)

Figure 3.3: From top to bottom, the pattern and its SURF description. The SURF descriptors
are presented in the following order gx, gy, Gx, Gy. It is easy to see that patterns (a) and (b)
are described by (e) and (f). Since pattern (c) has no texture, descriptors are equally to zero.
Finally, pattern (d) has components in both directions, thus, none descriptor is zero.
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Algorithm 1: Multi-scale Image Inpainting

Initialization at level M ;22

Perform label selection;3

Belief based label pruning;4

Propagate the remaining labels to the upper level;5

Multiresolution Pruning;77

for k ←M − 1 : 1 do8

Similarity based label pruning;9

Propagate the remaining labels to the upper level;10

At level zero;1212

Similarity based label pruning ;13

Priority-BP algorithm ;14

Perform hole filling;15

Note that at Lth low-resolution level, each pixel p will be described by color and texture

(gradient) features, as follows

IL(p) = {r(p) , g(p) , b(p) , gx(p) , gy(p) , Gx(p) , Gy(p)}

where IL denotes the low resolution image. The first three components are the color in-

formation, and the last four are the texture information. In our algorithm, while working at

low-resolution levels we use this pixel representation to compute data cost Vp and pairwise

potential Vpq.

3.1.3 Multi-scale image inpainting

Our image inpainting method is based on a multi-scale framework, and it is summarized in

Algorithm 1. The main characteristics of our method are (i) the label selection using local

statistics in step 1, (ii) the multi-scale pruning process in step 2 and (iii) a new scheme of

priorities based on the confidence and variance/belief/similarity (depends on the case, the

first one is used in label selection and the other two are used in pruning process) terms.

(a) Markov Random Field (b) Priority map

Figure 3.4: (a) Green nodes are all the nodes πLk ∈ νL. (b) Priority map correspond to the
first iteration at the lowest level, the darker the color the lower priority

Now that we are describing our approach, it is neccesary to fix some notations. Let

denote Π be a set of grids such that Π = {ν0, . . . , νL}, where νl is the set of nodes at the
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lth level, and let denote πlk such that πlk ∈ νl and each node has a set of labels Llk. As we

mentioned before, we use local variance based segmentation to select labels LLk for each

node πLk at the lowest resolution. Then, at this level we perform one iteration ForwardPass

from priority-BP algorithm [2] in order to have a compact and high-confidence set of labels

for each node which will be refined in uppers levels. In the following levels we perform the

prunning process described in [23] because it is faster than belief based prunning process

and it works properly while working with a reliable predefined set of labels. This process

is similar as one iteration ForwardPass but here we stress that in [2] similarities rather than

beliefs are used as a measure in the pruning process. Let Sp(`lp) denote the similarity such

that initially Sp(`lp) = Vp(`
l
p),∀`lp ∈ Llk ∧ l ∈ {L− 1, L− 2, . . . , 1}. Once both priorities

and similiraties of all nodes have been initalized, ”ForwardPass” is executed. The similarity

update equation is defined by (3.10)

Sq(`
l
q) = Sq(`

l
q) +min

{
Vpq(`

l
p, `

l
q)

}
, ∀`lq ∈ Llj , (3.10)

where Llj is the set of labels of neighbour node πlj of πlk at lth level. In either case Belief or

Similarity based label pruning, it is necessary to have a priority scheme wich have influence

in the quality of the image inpainting problem in general. For each node πlk, l ∈ {L, . . . , 0},
we propose to combine the belief/similarity based term with the confidence term at the lth

level using (3.11). Note that only the confidence term will not change during each iteration

of pruning process, while the other term will be updated.

Figure 3.5: Blue points represent the upsampled set of labels Ll+1
k of node πl+1

k at certain
level l, and black points represent the propagation of each label `lk ∈ Llk.

P l(k) = (1− λ)C l(k) + λplb,s(k) (3.11)

plb(k) =
1

|brelk (`lk) ≥ bconf |
(3.12)

pls(k) =
1

|Sk(`lk) ≤ Tsim|
(3.13)

where plb,s is the priority using beliefs (3.12) or similarities (3.13), λ ∈ [0, 1] and Tsim, bconf
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are predefined thresholds. With this new scheme we ensure that nodes near source region

and specially the ones that have less labels will be pruned earlier (less labels implies more

node confidence about its label choice) . In figure 3.4(b) is shown the priority map of 3.4(a)

and as it was expected visiting order in the missing region is inwards from the boundary.

After pruning proccess, we propagate reamining labels to upper level such that we refine

label selection using a window search around propagated labels as it is shown in figure

3.5. In practice, the windows search is defined as a set of offsets W = {(x, y) : x, y ∈
{−1, 0, 1}}. Finally, on the original image we perfom Priority-BP algorithm to get the final

label for each node.
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Chapter 4

Experimental Results

In this chapter, we evaluate the proposed image inpainting algorithm on a variety of natural

images and we compare to well-known algorithms “Region Filling and Object Removal

by Exemplar-Based Image Inpainting” [6] and “ Image Completion Using Efficient Belief

Propagation via Priority Scheduling and Dynamic Pruning” [2]. We present results for two

cases: object removal and sratches, and we also provide an error analysis. Our multi-scale

approach with label selection and [6] have been implemented in MATLAB, while [2] is

a C++ opensource implementation (http:// lafarren.com/image-completer/). We run all the

implementations on a Intel i7-2630QM @ 2.00GHz with 6GB RAM.

4.1 Object Removal

Object removal is a real concern in image inpainting. We solve this problem using our

approach and our results are compared against [6] and [2]. Settings and results are presented

on table 4.1. Results show that our results are competitive, in terms reconstruction quality,

when compare to the ones obtained using the algorithm described in [2].

The computational results show that our method outperfoms the original Markov Ran-

dom Field based inpainting method proposed by Komodakis et al. [2]. It is 10-15 times

faster than C++ implementation of the original global optimization image inpainting (which

is a significant computational improvement) and it is comparable to the greedy algorithm

proposed by [6].

Blackbird Baseball Ruins Oregon Giraffes Golf
Criminisi’s [6] 58.32s 8.33s 8.86s 46.54s 5.51s 31.19
Komodakis’ [2] 980.63s 47.54s 48.60s 119.42s 53.46s 123.79s
Our approach 47.85s 5.75s 11.66s 9.79s 6.66s 11.56s

Multi-Scale and label selection Settings
Patch Radius w 2 2 2 3 2 3
Patch Radius wv 2 2 3 4 2 4
Number of Levels 3 3 3 3 3 3

Table 4.1: Summarized computation time result for test images.
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(a) Input (b) Results of [6] (58.32s) (c) Results of [2] (980.63s) (d) Ours (47.85s)

Figure 4.1: Inpainting results for ”BlackBird”. (a) Input image, results of (b) Criminisi [6],
(c) Komodakis [2] and (d) our method.

(a) Input (b) Results of [6] (8.33s)

(c) Results of [2] (47.54s) (d) Ours (5.75s)

Figure 4.2: Inpainting results for ”baseball”. (a) Input image, results of (b) Criminisi [6],
(c) Komodakis [2] and (d) our method.
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(a) Input (b) Results of [6] (8.86s)

(c) Results of [2] (48.60s) (d) Ours (11.66s)

Figure 4.3: Inpainting results for ”Ruins”. (a) Input image, results of (b) Criminisi [6], (c)
Komodakis [2] and (d) our method.

(a) Input (b) Results of [6] (46.54s)

(c) Results of [2] (119.42s) (d) Ours (9.79s)

Figure 4.4: Inpainting results for ”Oregon”. (a) Input image, results of (b) Criminisi [6], (c)
Komodakis [2] and (d) our method.
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(a) Input (b) Results of [6] (5.51s)

(c) Results of [2] (53.46s) (d) Ours (6.66s)

Figure 4.5: Inpainting results for ”Giraffes”. (a) Input image, results of (b) Criminisi [6],
(c) Komodakis [2] and (d) our method.

(a) Input (b) Results of [6] (31.19s)

(c) Results of [2] (123.79s) (d) Ours (11.56s)

Figure 4.6: Inpainting results for ”Golf”. (a) Input image, results of (b) Criminisi [6], (c)
Komodakis [2] and (d) our method.
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4.2 Parameters dependency

We analyse how the parameters related to our approach affects inpainting results. The

parameters to be analysed are label selection, patch radius used for label selection wv,

number of levels, gradient-based descriptors also the influence of patch radius rate or gain

(Gain = wl/wl+1, l ∈ {0, . . . , L− 1}).

4.2.1 Label selection

The inpainting results are improved by performing the label selection; indeed, artifacts on

output images can be reduced when using proper criterion for label selection (Fig. 4.7). In

addition, it can be observed that there is another advantage on performing the label selection

based on local statistics, lower computational times are achieved.

(a) Input (320x213) (b) Without label selection (10.33s) (c) Complete proposed method
(6.91s)

Figure 4.7: Inpainting quality and computation time are dependent on label selection

4.2.2 Patch radius for label selection

Through the filling hole process while using our algorithm it is important to setup the patch

radius (wv) or size to be used when estimating local variance. In most of the cases it is

enough to use the same patchsize used to create MRF grid for label selection; however,

what happens if it is not possible to have a good local variance estimated due to fact there

is no enough reliable information, specially near boundaries. In these cases it is needed

to increase the window search to improve the estimation, but without making changes to

the original MRF grid. Thus, it is important to be able to choose, either automatically or

manually, the window search to estimate the local variance.

In figure 4.8 it is observed the influence of choosing different wv. The setting for the

example was: patch radius at lowest level wL for MRF model is 2, gain = 2 and #L = 4.

In this case choosing wv > wL have improved the results.

4.2.3 Number of levels

The computation time, as it is expected, is highly dependent on the number of levels and it

can have some impact on the final results as well. We can observe in figure 4.9 the results

by choosing L = 1, 2, 3. For L = 1 (Fig. 4.9b), result image presents some artifacts, and

these artifacts disappear when using more levels. However, more levels does not necessary

mean better quality, it will depends on the input image, also do not forget that increasing or
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(a) Input (321x481) (b) wv = 2 (20.56s) (c) wv = 6 (20.59s) (d) wv = 9 (20.53s)

Figure 4.8: Dependency of patch radius for label selection.

decreasing the value of this parameter will affect computation time dramatically. Number

of levels is primarily limited by the gain and initial patchsize, in an extreme case the final

patchsize could be so large that the output image could present artifacts or inconsistencies.

(a) Input (466x316) (b) L = 1 (243.16s)

(c) L = 2 (19.27s) (d) L = 3 (8.50s)

Figure 4.9: Computation time is highly dependent on number of levels.

4.2.4 Gradient-based descriptors

In chapter 3, we described gradient-based descriptors which allow us to use texture and

structure information from original image at different levels. This descriptors have been

proved to be effective in [15]. By using gradient-based descriptors, in our case SURF de-

scriptors, it is possible to avoid fake minimas when estimating the set of labels for each

node. In figure 4.10 we can observe the improvement on the results just by using SURF
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descriptors, specially in the part of shadows. However, the drawback is reflecting in the

computation time (fig. 4.10), since the vector that represents each pixel has more dimen-

sions.

(a) Input (321x481) (b) without SURF descrip-
tors (14.94s)

(c) with SURF descriptors
(39.68s)

Figure 4.10: Importance of gradient-based descriptors.

4.2.5 Patch radius rate

The patch radius rate or gain is defined as the relation between patch radius at level l and its

immediately lower level l+ 1, such that Gain = wl/wl+1, l ∈ {0, . . . , L− 1}. Gain could

not be lower than 1 or greater than 2, in either case it has no sense since we are going from

low resolution levels to high ones and also the rate between two images from consecutive

levels is 2 for each dimension. The final result is highly dependent of this rate, as we can

observe in figure 4.11, for a gain of 2 the inpainting process outperforms, in term of quality,

the other two cases. Nevertheless, it does not mean that the higher the gain the better the

results, the optimal value should depend on image context aware (textures and structures).

(a) Input (330x330) (b) Gain = 1.2 (12.62s) (c) Gain = 1.5 (11.90s) (d) Gain = 2.0 (12.32s)

Figure 4.11: Patch radius rate dependency.

4.3 Error analysis

In this sections we focus on restoring images. For quality measure we used signal-to-noise

ratio (SNR) and structural similarity indexes [27]. We compare our method against [6] and
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[2] in two specific task, block recovery and scratchs. Processing times are presented below

each result. As it can be observed in table 4.2, proposed method shows best performance in

block recovery task. On the other hand, in scratchs the performance is similar than [2], but

still better than [6].

”Peppers” ”PalmTree”
SNR SSIM Time SNR SSIM Time

[6] 12.8692dB 0.9093 72.53s 18.4224dB 0.9544 26.93s
[2] 13.1594dB 0.9184 784.14s 16.6563dB 0.9274 118.82s

Ours 15.7277dB 0.9530 63.92s 18.8355dB 0.9578 46.75s
”Buildings” ”Ostrich”

SNR SSIM Time SNR SSIM Time
[6] 27.3859dB 0.9929 16.06s 12.3052dB 0.8704 9.51s
[2] 26.6868dB 0.9916 83.61s 14.5442dB 0.9272 164.06s

Ours 18.3638dB 0.9424 24.74s 14.0931dB 0.9198 69.74s

Table 4.2: Results of Error analysis. “Peppers” and “PalmTree” were used for block re-
covery test, and “Buildings” and “Ostrich” for scratches recovery test. The indexes were
calculated over corrupted (black) regions

(a) “Peppers” (b) [6] 72.53s

(c) [2] 784.14s (d) Ours 63.92s

Figure 4.12: Results for block recovery. (a) Input image, (b) results of [6] (SNR=12.87
dB, SSIM=0.9093), (c) results of [2] (SNR=13.16 dB, SSIM=0.9184) and (d) our results
(SNR=15.73 dB , SSIM=0.9530)
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(a) “PalmTree” (b) [6] 26.93s (c) [2] 118.82s (d) Ours 46.75s

Figure 4.13: Results for block recovery. (a) Input image, (b) results of [6] (SNR=18.42
dB, SSIM=0.9544), (c) results of [2] (SNR=16.66 dB, SSIM=0.9274) and (d) our results
(SNR=18.84 dB , SSIM=0.9578)

(a) “Buildings” (b) [6] 16.06s

(c) [2] 83.61s (d) Ours 24.74s

Figure 4.14: Results for scratches.(a) Input image, (b) results of [6] (SNR=27.39 dB,
SSIM=0.9929), (c) results of [2] (SNR=26.69 dB, SSIM=0.9916) and (d) our results
(SNR=18.37 dB , SSIM=0.9424)
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(a) “Ostrich” (b) [6] 9.51s (c) [2] 164.06s (d) Ours 69.74s

Figure 4.15: Results for scratches.(a) Input image, (b) results of [6] (SNR=12.31 dB,
SSIM=0.8704), (c) results of [2] (SNR=14.54 dB, SSIM=0.9272) and (d) our results
(SNR=14.09 dB , SSIM=0.9198)
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Chapter 5

Conclusions

A novel formulation for Markov Random Field image inpainting models have been pre-

sented. The proposed method uses a multi-scale approach to solve the inpainting problem

in which we compensate the loss of information in low resolution levels by using gradient

information of the original image. We also used local statistics to perform a initial label

selection in the lowest level in order to reduce the number of labels per MRF node.

Our computational simulations show that the reconstruction quality of our approach is

of comparable quality to results obtained by the original MRF based inpainting method, as

well as to other exemplar-based inpaiting algorithms. Moreover, our approach is at least one

order of magnitude faster than the original MRF based inpainting method, while at the same

time is competitive with exemplar-based inpainting algorithms. Although the reconstruction

quality of our method is comparable to that of exemplar-based methods, we acknowledge

that it depends on several parameters. However, from our analisys, it seems possible to

improve our proposed algorithm so that it could choose the optimal values automatically;

this would be considered in future developments.
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Recommendations

• The presented method is highly dependent on the parameters and users tend to waste

time finding, subjectively, the best setting possible. Thus, it is important to develop

methods or algorithms to tune parameters automatically.

• Our multi-scale image inpainting methods fails when the ”hole” is large compared

to optimal patchsize (assuming that the other parameters are fixed). We suggest to

use other or more features to perform label selection because local variance a sim-

ple one and during variance propagation local variance of inner nodes tends to zero.

Alternatively we could develop a new method for label selection to solve variance

loss.

• It could be interesting to develop a C or C++ code of our method and compare the

results with the ones obtained in MATLAB.
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