

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO

RESPUESTA NO-LINEAL DE ESTRUCTURAS DE CONCRETO ARMADO DE UN PISO SOMETIDAS A SOLICITACIONES SÍSMICAS BI-DIRECCIONALES CON ÁNGULOS DE INCIDENCIA VARIABLES

Tesis para optar el Grado de Magíster, que presenta el Ingeniero Civil:

ALEXANDER RUBENIL FLOREZ TTITO

ASESOR: Dr. VÍCTOR I. FERNÁNDEZ-DÁVILA

Lima, agosto del 2012

ÍNDICE

CAPÍTULO I	
1. Introducción	3
1.1. Antecedentes	3
1.2. Justificación	4
1.3. Objetivos	4
1.3.1. Objetivo general	4
1.3.2. Objetivos Específicos	5
1.4. Estructura del proyecto	5
CAPÍTULO II	
2. Metodología	7
2.1. Definición de los parámetros elásticos	7
2.2. Definición del modelo paramétrico	10
2.3. Determinación de la familia de casos	12
2.4. Confección del espectro de diseño y definición del parámetro inelástico R	. 18
2.5. Análisis lineal	19
2.5.1. Carga muerta (D)	19
2.5.2. Carga viva (L)	19
2.5.3. Carga de sismo (E)	19
2.6. Diseno de los elementos estructurales	21
CAPÍTULO III	
3. Análisis inelástico	25
3.1. Determinación de las curvas de comportamiento inelástico	25
3.2. Excitación sísmica	27
3.3. Preparación de información para la herramienta de análisis inelástico	30
3.3.1. Introducción	30
3.3.2. Obtención de las curvas de momento-rotación	34
3.4. Elaboración de los modelos inelásticos	41
CAPÍTULO IV	
4. Análisis de respuestas de interés	46
4.1. Respuestas globales	46
4.1.1. Desplazamientos laterales y torsionales del CM	46
4.2. Respuestas locales	52
4.2.1. Fuerza cortante y momento del muro	52
4.2.2. Fuerza cortante de columnas	60
4.3. Indice de deformación demanda-capacidad	63
4.4. Comparación de las respuestas elásticas e inelásticas	67
CAPÍTULO V	
5.1. Conclusiones y recomendaciones	75
5.1.1. Conclusiones	75
5.1.2. Recomendaciones	76
REFERENCIAS BIBLIOGRÁFICAS	77

2

CAPÍTULO I

1. Introducción

1.1. Antecedentes

El Perú se encuentra en una zona de alta sismicidad y los sismos muestran lo vulnerables que son las edificaciones.

La norma de diseño sismorresistente de estructuras E.030, no toma en cuenta la bi-direccionalidad del sismo. La norma asume que las acciones sísmicas actúan independientemente en cada una de las dos direcciones principales ortogonales o aproximadamente ortogonales del edificio. La acción sísmica separada es válida si la dirección predominante es coincidente con una de las direcciones principales. Si el sismo tiene dos componentes horizontales de acciones simultáneas importantes, además el agravante que el movimiento sísmico experimenta cambios en la dirección de incidencia y magnitud durante la ocurrencia del evento. Se puede suponer entonces que las respuestas calculadas por el análisis que indican las normas que no consideran la direccionalidad del sismo, no sean las verdaderas respuestas que se generan en las estructuras (Fernández-Dávila et al, 2000). Además, los edificios no han sido probados en condiciones sísmicas extremas en los últimos 130 años (Muñoz, 2004).

El Federal Emergency Management Agency (FEMA, en su sigla en inglés) considera los efectos sísmicos multidireccionales en edificios que cumplen los criterios de irregularidad en un plano y columnas principales que forman parte de dos o más pórticos de intercepción o elementos apoyados en pórticos. Señala que los elementos y los componentes del edificio serán diseñados para las combinaciones de fuerzas y deformaciones de análisis separados realizado para los movimientos de suelo en direcciones de X e Y. Para los casos de procedimiento estático no-lineal (NSP) o procedimiento dinámico no-lineal (NDP), los elementos y componentes del edificio serán diseñados para las 100% del desplazamiento del diseño en la dirección X más las fuerzas (no deformaciones) asociadas a 30% de los desplazamientos del diseño en la dirección horizontal perpendicular Y. Así mismo para

las fuerzas y las deformaciones asociadas a 100% de los desplazamientos del diseño en la dirección Y más las fuerzas (no deformaciones) asociadas a 30% de los desplazamientos del diseño en la dirección X (FEMA 356, 2000).

Estudios previos señalan que los códigos de diseño internacionales vigentes, proporcionan respuestas distintas al caso bi-direccional. Los resultados del análisis elástico considerando efectos de excitaciones bi-direccionales con ángulos de incidencia variables señalan que las respuestas son mayores y ocurren en diferentes ángulos críticos (Lobos y Fernández-Dávila, 2000). Por lo tanto, es necesario evaluar la respuesta de estructuras sometidas a eventos sísmicos bi-direccionales con ángulos de incidencia variables con el empleo de modelos de comportamiento inelástico en los elementos.

1.2. Justificación

Es necesario estudiar el comportamiento de edificios con el fin de identificar y relacionar el ángulo en donde se maximice la respuesta global y local con los parámetros que definen a la estructura, sometidos a movimientos sísmicos bidireccionales con ángulos de incidencia variable. Es necesario contribuir y complementar con la iniciativa de estudios realizados por Lobos y Fernández-Dávila (Lobos y Fernández-Dávila, 2000) para la identificación de respuestas sísmicas máximas en modelos simples de estructuras tridimensionales (3D) de concreto armado de un piso solicitado por aceleraciones del suelo.

1.3. Objetivos

1.3.1. Objetivo general

El objetivo general del proyecto es conocer la respuesta no-lineal de estructuras de concreto armado de un piso sometidas a solicitaciones sísmicas bi-direccionales con ángulos de incidencia variables.

1.3.2. Objetivos específicos

- a) Generar una familia de modelos paramétricos representativos de estructuras "reales" de un piso de concreto armado.
- b) Determinar la respuesta no-lineal de los modelos paramétricos empleando un registro sísmico (dos componentes horizontales del movimiento del suelo) y aplicándolos en diferentes ángulos de incidencia.
- c) Evaluar los ángulos críticos de incidencia en donde una determinada respuesta de interés (global y local) es máxima.

1.4. Estructura de la tesis

En el capítulo 1 se presenta el tema del proyecto, justificación y los objetivos considerados. También se tiene la información sobre los estudios disponibles de investigaciones anteriores relacionadas con el tema.

El capítulo 2 considera la metodología a utilizar para la definición de los parámetros elásticos del modelo y a partir de ellos evaluar las dimensiones de los elementos resistentes. Parámetros que permitirán analizar estructuras con diferentes características resistentes. Luego se definirá el modelo paramétrico de la estructura de un piso. El modelo será tridimensional (3D) compuesto por vigas, columnas y muros. Además se determina la familia de casos de la combinatoria de valores dados a los parámetros elásticos. Finalmente se realiza el análisis lineal para los diferentes estados de carga y el diseño según el ACI 318-05.

El capítulo 3 trata del análisis no-lineal tiempo-historia de cada caso aplicando la solicitación sísmica bi-direccional (registro de aceleraciones del sismo de El Centro 1940) para diferentes ángulos de incidencia en planta. El valor del incremento angular será de 15° (0°: delta angular: 360) para estimar máximas respuestas en los modelos.

En el capítulo 4 se evaluará el comportamiento estructural de las respuestas globales y locales como son los desplazamientos laterales del CM y fuerza cortante y momento basal en X e Y de los elementos respectivamente. Finalmente se detallará las conclusiones y comentarios al final del proyecto.

A continuación se muestra el diagrama de flujo de la metodología considerada

para este trabajo.

6

CAPÍTULO II

2. Metodología

2.1. Definición de los parámetros elásticos

La ecuación diferencial del movimiento de una estructura de un piso sin amortiguación esta definido por la Ecuación 2.1. Estructura sometido a una solicitación sísmica bi-direccional con respecto a los grados de libertad [gdl's] ubicados en el CM mostrado en la Fig. 2.1. La Ecuación 2.1 puede expresarse en función de las frecuencias de vibración desacopladas traslacionales ω_x , ω_y y torsionales ω_{θ} , razón entre las excentricidades estáticas y el radio medio de giro e_x/r , e_y/r . Para el presente proyecto la estructura es simétrica con respecto a la dirección principal X por tanto e_y no es considerado (Lobos y Fernández-Dávila, 2000).

Figura 2.1: Planta de un edificio con gdl's en el CM (acción sísmica bi-direccional)

$$\begin{bmatrix} \vec{U}_{x} \\ \vec{U}_{y} \\ r\vec{\theta} \end{bmatrix} + \omega_{y}^{2} \begin{bmatrix} \left(\frac{\omega_{x}}{\omega_{y}}\right)^{2} & 0 & 0 \\ 0 & 1 & \frac{\mathbf{e}_{x}}{r} \\ \mathbf{0} & \frac{\mathbf{e}_{x}}{r} & \left(\frac{\omega_{\theta}}{\omega_{y}}\right)^{2} + \left(\frac{\mathbf{e}_{x}}{r}\right)^{2} \end{bmatrix} \begin{bmatrix} U_{x} \\ U_{y} \\ r\theta \end{bmatrix} = -\begin{bmatrix} U_{gx} \\ U_{gy} \\ \mathbf{0} \end{bmatrix} \quad (2.1)$$

Donde:

$$\begin{split} \ddot{U} &= \begin{bmatrix} U_{x} \\ U_{y} \\ \bar{\theta} \end{bmatrix} \end{split} \tag{2.2} \\ U &= \begin{bmatrix} U_{x} \\ U_{y} \\ \bar{\theta} \end{bmatrix} \\ \tilde{U}_{g} &= \begin{bmatrix} U_{gx} \\ U_{gy} \\ 0 \end{bmatrix} \end{aligned} \tag{2.3}$$

Donde:

Ü	: Vector de aceleraciones del CM de la estructura
U	: Vector de desplazamientos del CM de la estructura
Üg	: Vector de aceleraciones del suelo

La Ecuación 2.1 puede expresarse en función de los parámetros elásticos $T_y,~\omega_x/\omega_y,$ $\omega_\theta/\omega_y~y~e_x/r.$

Donde:

$T_y = \frac{2\pi}{\omega_y} = \frac{2\pi}{\sqrt{\frac{K_y}{m}}}$	(2.5)	
$\frac{\omega_x}{\omega_y} = \sqrt{\frac{K_x}{K_y}}$	(2.6)	
$\frac{\omega_{\theta}}{\omega_{y}} = \sqrt{\frac{K_{\theta}}{r^{2}K_{y}} - \left(\frac{\mathbf{e}_{x}}{r}\right)^{2}}$	(2.7)	
$\frac{s_x}{r} \ con: \ s_x = \frac{\sum_{i}^{n} K_{yi} x_i}{K_y}; \ r = \sqrt{\frac{1}{12}m(a^2 + b^2)}$	(2.8)	

Donde:

 $\begin{array}{ll} T_y & : \mbox{Período de vibración traslacional desacoplado en la dirección Y} \\ \omega_x/\omega_y & : \mbox{Razón entre las frecuencias de vibración traslacionales desacopladas} \\ \omega_{\Theta}/\omega_y & : \mbox{Razón entre las frecuencias desacopladas torsional y traslacional} \\ e_x/r & : \mbox{Razón entre la excentricidad estática y el radio de giro de la planta} \\ K_x & : \mbox{Rigidez traslacional en la dirección X de la estructura} \\ K_y & : \mbox{Rigidez traslacional en la dirección Y de la estructura} \\ K_{yi} & : \mbox{Rigidez traslacional en la dirección Y del elemento i} \\ K_{\Theta} & : \mbox{Rigidez torsional de la estructura con respecto al CM} \end{array}$

- e_x : Excentricidad estática en la dirección X
- r : Radio medio de giro de la planta
- x_i : Distancia entre el elemento i el CM medido en la dirección X
- a,b : Dimensiones de la planta de la estructura

La variación de los parámetros elásticos permitirá analizar estructuras con diferentes características resistentes. La Tabla 2.1 presenta los valores adoptados. Los valores de T_y son propios de estructuras de un piso rígidas, semi-rígidas, semi-flexible y flexibles en la dirección Y. Los valores de ω_x/ω_y son propios de estructuras de un piso con mayor rigidez traslacional en la dirección Y que en la dirección X, con igual rigidez en ambas direcciones y con mayor rigidez en la dirección X que en la dirección Y. Los valores de ω_{θ}/ω_y son propios de estructuras de un piso con mayor rigidez traslacional en la dirección X que en la dirección Y. Los valores de ω_{θ}/ω_y son propios de estructuras de un piso con mayor rigidez traslacional en la dirección X que en la dirección Y. Los valores de ω_{θ}/ω_y son propios de estructuras de un piso con mayor rigidez traslacional en la dirección Y en comparación a la rigidez torsional en la dirección θ , con igual rigidez en ambas direcciones y con mayor rigidez en la dirección θ que en la dirección Y. Los valores de ex/r son propios de estructuras de un piso con pequeña, mediana y gran excentricidad.

$T_y(seg.)$	ω_x / ω_y	ω <i>θ</i> ω _y	<i>e_x/r</i>
0,05	0,5	0,5	0,3
0,1	1,0	1,0	0,6
0,15	1,5	1,5	0,9
0,3			

Tabla 2.1: Variación de los parámetros elásticos

2.2. Definición del modelo paramétrico

El modelo tridimensional (3D) está compuesto por vigas, columnas y muros. Las Figs. 2.2, 2.3, 2.4 y 2.5 describen el modelo. Estructurado a nivel del plano del CM por un comportamiento de diafragma rígido. El modelo es una estructura de un piso de concreto armado simétrico en planta con respecto a la dirección X. El modelo 3D está conformado por cuatro pórticos perimetrales de un vano y un núcleo de ascensores y/o caja de escaleras constituido por muros de corte en forma de doble "T". Los dos pórticos orientados en la dirección principal X tienen columnas de distinta sección. Los dos pórticos orientados en la dirección principal Y tienen columnas de igual sección.

Se precisa que los cuatro pórticos tienen un índice de rotación del nudo definido por el parámetro de Blume (Lobos y Fernández-Dávila, 2000) de ρ =0.125. El valor considerado del parámetro de Blume permite que la viga y la columna que llegan a un nudo se deformen en doble curvatura. Todos los elementos estructurales verticales se consideran empotrados en la base. Para el cálculo de la masa sísmica se consideró una carga uniformemente distribuida de 1.0 ton/m2 resultado de la carga muerta de la estructura y carga viva para estructuras educativas. Las dimensiones en planta del modelo son de 12x6 m² con una altura de entrepiso de 3 m.

Figura 2.2: Núcleo conformado por muros de corte con sus respectivos gdl's

Figura 2.4: Planta del modelo estructural del edificio de concreto armado de un piso

Figura 2.5: Solicitación sísmica bi-direccional con ángulo de incidencia variable a

2.3. Determinación de la familia de casos

Los parámetros elásticos de los modelos permiten evaluar las dimensiones de los elementos resistentes y la combinación de los mismos genera la familia de casos mostrado en la Tabla 2.2. A través de las Tablas 2.3 y 2.4 se determinan las dimensiones de los elementos estructurales presentados en las Tablas 2.5, 2.6, 2.7 y 2.8 para los periodos de 0.05, 0.1, 0.15 y 0.30 respectivamente.

La leyenda de la Tabla 2.2 señala que en la etapa de definición de los parámetros elásticos se tiene 108 modelos paramétricos. En esta etapa los modelos se reducen a 68 por requerimiento de anchos mínimos y relaciones de rigidices en los elementos estructurales según Norma E.060 de concreto armado. Además algunos modelos presentan excentricidades superiores a la dimensión en planta del modelo base. En la etapa de análisis y diseño se reducen a 48 modelos por verificaciones según las normas E.030 y ACI 318-05 respectivamente. Para la presente tesis se considerarán 4 modelos para el análisis inelástico.

	Tabla 2.2: Resumen de la generación de la familia de casos																				
ωχ/ωγ	e _X /r						Familia	de casos						Leye	nda:						
	0.90	1313	1323	1333	2313	2323	2333	3313	3323	3333	4313	4323	4333	108	B Fil	Filtro físico y geométrico					
1.50	0.60	1312	1322	1332	2312	2322	2332	3312	3322	3332	4312	4322	4332	68	Fil	tro No	ormas	E.030 y	ACI 318	3-05	
	0.30	1311	1321	1331	2311	2321	2331	3311	3321	3331	4311	4321	4331	48	M	Modelos para el análisis inelástico					
	0.90	1213	1223	1233	2213	2223	2233	3213	3223	3233	4213	4223	4233	4	M	odelos	s de an	álisis i	nelástio	to prese	nte tesis
1.00	0.60	1212	1222	1232	2212	2222	2232	3212	3222	3232	4212	4222	4232								
	0.30	1211	1221	1231	2211	2221	2231	3211	3221	3231	4211	4221	4231								
	0.90	1113	1123	1133	2113	2123	2133	3113	3123	3133	4113	4123	4133								
0.50	0.60	1112	1122	1132	2112	2122	2132	3112	3122	3132	4112	4122	4132								
	0.30	1111	1121	1131	2111	2121	2131	3111	3121	3131	4111	4121	4131								
ω _θ /	/ωγ	0.50	1.00	1.50	0.50	1.00	1.50	0.50	1.00	1.50	0.50	1.00	1.50								
T _Y (s	ieg)		0.05			0.10			0.15			0.30									

Propiedades	de los Elemen	tos Estructu	rales de las Co	olumnas y Mur	os						
			1 Familia d	e caso conside	rado.						
2 Secciones	de columnas y	muros.	N ^o	_		-	e _x /r	Leyenda			
b _{1x} =	0.485	m.	1	0.05	0.5	0.5	0.3		Definir la fa	milia de caso)_
b _{1y} =	0.485	m.	2	0.1	1	1	0.6		Datos a ingr	esar.	
b _{2x} =	0.485	m.	3	0.15	1.5	1.5	0.9		Resultado de	e secciones d	e vigas.
b _{2y} =	0.485	m.		0.0500	0.50	0.50	0.30				
h=	3.000	m.	altura de en	trepiso							
H _{1Y} =	3.030	m.	longitud 1 d	el muro.							
H _{2X} =	1.500	m.	longitud 2 d	lel muro.							
a _X =	1.250	m.	distancia de	el CM al centro	oide del muro) .					
E=	2500000	t/m2.			8 Sección t	ransversal de	vigas		1		
ρ=	0.125		parámetro o	de Blume.	viga	ancho	peralte				
lc1x=	0.005	m4.	lv1x=	0.005	1	0.485	0.485				
lc1y=	0.005	m4.	lv2x=	0.002	2	0.485	0.385				
lc2x=	0.005	m4.	lv3x=	0.005	3	0.485	0.485				
lc2y=	0.005	m4.	lv4x=	0.002	4	0.485	0.385				
A=	12	m.	long. model	o direccion X.							
B=	6	m.	long. model	o direccion Y.							
r=	3.873	m.	radio de gir	o de la planta.							
W=	1	t/m2.	peso del mo	delo.							
m=	7.339	t*seg2/m.	masa sísmi	a.							
Nota: La plar	nta tiene dimer	nsiones A*B,	en donde A=4	4*h y B=2*h							

Tabla 2.3: Evaluación de las dimensiones de los elementos resistentes

3 Rigideces	de los marcos	condensados	para cada un	a de las direc	ciones.			
α ₁₃ =	1.00000000							
β ₁₃ =	1.00000000	2794.48488	2794.48488					
Kmarcx13=	4657.475	t/m.	rigidez cond	densada par	a los marcos	s 1 y 3 orient	ados en la d	ireccion X.
Kmarcx2=	4657.475	t/m.	rigidez cond	densada par	a el marco 2	orientados	en la direcci	on Y.
Kmarcx4=	4657.475	t/m.	rigidez cond	densada par	a el marco 4	orientados	en la direcci	on Y.
4 Propiedad	les de los muro	5.						
H1=	3.030	m.						
H2=	1.500	m.						
espesor=	0.150	m.						
5 Geometrí	a de los muros							
lx=	1.188	m4.	inercia del	muro c/r a X	de un muro	doble T.		
Ax=	0.225	m2.	área para c	alcular el co	rte en direcc	ión X.		
ly=	0.085	m4.	inercia del	muro c/r a Y	de un muro	doble T.		
Ay=	0.455	m2.	área para c	alcular el co	rte en direcc	ión Y.		
6 Rigideces	de los muros o	ondensados (oara cada una	de las direcci	ones.			
U=	0.200		módulo de	poisson.				
G=	1041666.667	t/m2.	módulo de	corte.				
Fx=	0.600		factor de fo	rma direcció	n X.			
FY=	1.000		factor de fo	rma direcció	n Y.			
Kmy=	106767.033	t/m.	rigidez cond	densada del	muro en la	direccion Y.		
Kmx=	20032.034	t/m.	rigidez conc	densada del	muro en la	direccion X.		
7 Rigideces	del modelo							
K _x =	29346.984	t/m.	rigidez del 1	modelo en la	a dirección)	(.		
K _y =	116081.982	t/m.	rigidez del 1	modelo en la	a dirección Y	Ι.		
K _{γθ} =	133458.791	t/m.	rigidez acop	olada del mo	delo movim	iento torsio	nal y traslaci	onal Y.
K _e =	585996.221	t/m.	rigidez torsi	ional del mo	delo.			

Tabla 2.4: Evaluación de las dimensiones de los elementos resistentes (continuación)

			Colu	imna				Muro	
N°	Modelo	b _{1x}	b _{sy}	b _{2x}	b _{2Y}	h _{entrepiso}	Hay	H _{2X}	a _x
1	1111	0.485	0.485	0.485	0.485	3.000	3.030	1.500	1.250
2	1112	0.470	0.475	0.480	0.480	3.000	3.040	1.500	2.500
3	1113	0.470	0.450	0.460	0.460	3.000	3.050	1.550	3.710
4	1121	0.500	0.760	0.600	0.800	3.000	2.530	1.000	1.250
5	1122	0.465	0.765	0.600	0.765	3.000	2.550	1.140	3.150
6	1123	0.530	0.700	0.550	0.700	3.000	2.710	1.200	4.700
7	1131	0.435	1.040	0.650	1.050	3.000	1.820	0.010	0.000
8	1132	0.350	1.040	0.650	1.050	3.000	1.840	0.010	5.900
9	1133	0.350	1.040	0.650	1.050	3.000	1.840	0.010	6.200
10	1211	0.350	0.400	0.560	0.600	3.000	2.640	2.960	0.800
11	1212	0.340	0.400	0.670	0.605	3.000	2.600	2.920	2.010
12	1213	0.360	0.420	0.690	0.620	3.000	2.570	2.890	3.350
13	1221	0.735	0.630	0.790	0.690	3.000	2.230	2.400	1.250
14	1222	0.630	0.630	0.895	0.690	3.000	2.223	2.360	2.550
15	1223	0.610	0.620	0.885	0.680	3.000	2.265	2.390	4.200
16	1231	0.790	0.800	0.905	0.905	3.000	1.210	1.700	0.000
17	1232	0.760	0.760	1.000	0.920	3.000	1.200	1.300	2.000
18	1233	0.665	0.760	1.100	0.920	3.000	1.200	1.000	5.500
19	1311	0.900	0.250	0.900	0.320	3.000	2.645	4.320	1.150
20	1312	0.900	0.250	0.900	0.320	3.000	2.645	4.320	2.350
21	1313	0.900	0.250	0.900	0.320	3.000	2.645	4.320	3.550
22	1321	0.870	0.470	0.870	0.740	3.000	2.000	3.940	0.000
23	1322	0.890	0.480	0.890	0.750	3.000	1.975	3.940	1.700
24	1323	0.900	0.490	0.900	0.760	3.000	1.935	3.900	3.500
25	1331	0.980	0.720	0.990	0.830	3.000	1.255	3.300	0.900
26	1332	0.980	0.700	0.990	0.830	3.000	1.290	3.320	3.900
27	1333	1.000	0.600	1.300	0.830	3.000	1.300	2.400	3.900

Tabla 2.5: 26 modelos paramétricos para T=0.05 seg

Tabla 2.6: 22 modelos paramétricos para T=0.10 seg

			Colu	imna				Muro	
N°	Modelo	b _{1x}	b _{ar}	b _{2x}	b _{ay}	h _{entrepiso}	Hay	H _{zx}	a _x
1	2111	0.200	0.405	0.300	0.405	3.000	1.445	1.000	1.150
2	2112	0.200	0.400	0.300	0.400	3.000	1.445	1.000	2.450
3	2113	0.200	0.400	0.300	0.400	3.000	1.445	1.000	3.700
4	2121	0.340	0.500	0.345	0.680	3.000	1.230	0.775	0.000
5	2122	0.345	0.505	0.350	0.685	3.000	1.210	0.780	2.100
6	2123	0.340	0.505	0.350	0.685	3.000	1.215	0.780	4.200
7	2131	0.355	0.700	0.430	0.760	3.000	1.255	0.010	0.000
8	2132	0.210	0.800	0.500	0.770	3.000	0.900	0.000	6.000
9	2133	0.150	0.800	0.500	0.800	3.000	0.000	0.010	0.000
10	2211	0.380	0.325	0.380	0.340	3.000	1.240	1.700	1.260
11	2212	0.375	0.320	0.370	0.340	3.000	1.255	1.650	2.500
12	2213	0.365	0.310	0.360	0.330	3.000	1.260	1.650	3.720
13	2221	0.350	0.410	0.520	0.590	3.000	1.040	1.530	-0.460
14	2222	0.390	0.440	0.560	0.605	3.000	0.987	1.460	1.380
15	2223	0.400	0.450	0.570	0.610	3.000	0.972	1.430	3.600
16	2231	0.570	0.570	0.600	0.650	3.000	0.700	1.100	0.550
17	2232	0.550	0.550	0.680	0.660	3.000	0.670	0.930	3.000
18	2233	0.500	0.520	0.770	0.700	3.000	0.930	0.000	2.000
19	2311	0.330	0.330	0.420	0.330	3.000	1.127	2.350	1.180
20	2312	0.330	0.330	0.420	0.330	3.000	1.127	2.350	2.450
21	2313	0.320	0.320	0.410	0.320	3.000	1.133	2.350	3.700
22	2321	0.430	0.420	0.560	0.560	3.000	0.920	2.220	0.000
23	2322	0.430	0.420	0.580	0.580	3.000	0.890	2.200	1.550
24	2323	0.435	0.425	0.585	0.585	3.000	0.878	2.190	3.600
25	2331	0.605	0.530	0.730	0.600	3.000	0.660	1.880	0.000
26	2332	0.575	0.495	0.790	0.635	3.000	0.590	1.810	0.000
27	2333	0.575	0.490	0.850	0.635	3.000	0.555	1.690	5.000

			Colu	imna				Muro	
N°	Modelo	b _{1x}	b _{ay}	b _{2x}	b _{2Y}	h _{entrepiso}	Hay	H _{2X}	a _x
1	3111	0.185	0.100	0.317	0.384	3.000	1.078	0.690	0.510
2	3112	0.170	0.250	0.250	0.450	3.000	1.040	0.720	1.850
3	3113	0.170	0.285	0.250	0.450	3.000	1.035	0.720	3.350
4	3121	0.250	0.490	0.250	0.450	3.000	0.967	0.650	2.150
5	3122	0.250	0.462	0.250	0.450	3.000	0.984	0.660	3.470
6	3123	0.250	0.435	0.250	0.450	3.000	1.000	0.660	4.750
7	3131	0.200	0.800	0.200	0.600	3.000	0.350	0.700	6.000
8	3132	0.200	0.800	0.200	0.600	3.000	0.350	0.700	6.000
9	3133	0.200	0.800	0.200	0.600	3.000	0.350	0.700	6.000
10	3211	0.250	0.300	0.250	0.300	3.000	0.901	1.253	1.260
11	3212	0.250	0.285	0.250	0.300	3.000	0.905	1.250	2.480
12	3213	0.250	0.272	0.250	0.300	3.000	0.907	1.250	3.700
13	3221	0.250	0.506	0.250	0.300	3.000	0.822	1.240	2.900
14	3222	0.250	0.470	0.250	0.300	3.000	0.843	1.240	3.910
15	3223	0.250	0.437	0.250	0.300	3.000	0.860	1.240	4.920
16	3231	0.250	0.620	0.250	0.300	3.000	0.728	1.230	5.740
17	3232	0.250	0.620	0.250	0.300	3.000	0.728	1.230	6.000
18	3233	0.250	0.620	0.250	0.300	3.000	0.728	1.230	6.000
19	3311	0.250	0.295	0.250	0.300	3.000	0.810	1.713	1.270
20	3312	0.250	0.285	0.250	0.300	3.000	0.813	1.710	2.500
21	3313	0.250	0.270	0.250	0.300	3.000	0.815	1.710	3.700
22	3321	0.250	0.505	0.250	0.300	3.000	0.738	1.700	2.920
23	3322	0.250	0.470	0.250	0.300	3.000	0.756	1.705	3.900
24	3323	0.250	0.438	0.250	0.300	3.000	0.770	1.710	4.950
25	3331	0.250	0.620	0.250	0.300	3.000	0.650	1.695	5.750
26	3332	0.250	0.620	0.250	0.300	3.000	0.650	1.695	6.200
27	3333	0.250	0.620	0.250	0.300	3.000	0.650	1.695	7.000
20	3333	0.250	0.620	0.250	0.300	3.000	0.650	1.695	

Tabla 2.7: 17 modelos	paramétricos par	a T=0.15 seg
-----------------------	------------------	--------------

Tabla 2.8: 03 modelos paramétricos para T=0.30 seg

			Colu	mna				Muro	
N°	Modelo	b _{1x}	b _{ir}	b _{zx}	b _{ay}	h _{entrepiso}	Hay	H _{zx}	a _x
1	4111	0.160	0.160	0.230	0.240	3.000	0.723	0.410	0.850
2	4112	0.150	0.150	0.241	0.271	3.000	0.717	0.400	1.900
3	4113	0.150	0.150	0.265	0.301	3.000	0.722	0.358	3.050
4	4121	0.160	0.300	0.259	0.357	3.000	0.691	0.281	0.000
5	4122	0.150	0.293	0.276	0.383	3.000	0.683	0.243	1.000
6	4123	0.150	0.304	0.282	0.395	3.000	0.684	0.206	3.220
7	4131	0.200	0.415	0.230	0.435	3.000	0.450	0.200	3.500
8	4132	0.200	0.415	0.230	0.435	3.000	0.450	0.200	6.200
9	4133	0.200	0.415	0.230	0.435	3.000	0.450	0.200	7.000
10	4211	0.150	0.150	0.380	0.170	3.000	0.605	0.720	1.000
11	4212	0.150	0.150	0.380	0.180	3.000	0.605	0.715	2.200
12	4213	0.150	0.150	0.385	0.185	3.000	0.604	0.715	3.450
13	4221	0.235	0.235	0.465	0.253	3.000	0.605	0.540	0.650
14	4222	0.240	0.240	0.470	0.260	3.000	0.610	0.506	2.200
15	4223	0.235	0.230	0.477	0.268	3.000	0.612	0.492	3.650
16	4231	0.200	0.370	0.500	0.330	3.000	0.570	0.210	-0.300
17	4232	0.195	0.370	0.500	0.330	3.000	0.576	0.210	3.900
18	4233	0.156	0.373	0.525	0.330	3.000	0.595	0.208	5.800
19	4311	0.150	0.150	0.380	0.170	3.000	0.539	1.008	1.000
20	4312	0.150	0.150	0.386	0.181	3.000	0.538	1.000	2.200
21	4313	0.150	0.150	0.388	0.186	3.000	0.537	0.999	3.450
22	4321	0.192	0.234	0.430	0.285	3.000	0.485	0.945	0.000
23	4322	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192
24	4323	0.183	0.223	0.471	0.328	3.000	0.444	0.903	2.300
25	4331	0.310	0.310	0.487	0.325	3.000	0.388	0.810	0.000
26	4332	0.270	0.305	0.532	0.340	3.000	0.365	0.760	0.900
27	4333	0.270	0.302	0.534	0.340	3.000	0.366	0.765	5.220

2.4. Confección del espectro de diseño y definición del parámetro inelástico R

Según la norma E.030 (SENCICO, 1997) se tienen los siguientes parámetros resumidos en la Tabla 2.9 que definen el espectro de la Fig. 2.6. Uno de los parámetros definidos es precisamente el parámetro inelástico de reducción de ductilidad R.

ES	PECTRO DE	DISEÑO - E.	030 (PERÚ)					
PA	RÁMETROS DE	SITIO:						
zo	NIFICACIÓN							
	ZONA:	3						
	Z	0.4						
cc	NDICIONES LO	CALES						
CC	NDICIONES GE	EOTÉCNICAS:						
	TIPO	52	Suelos inter	medios				
	S	1.2						
	Т,	0.6						
CA	TEGORÍA DE LA	AS EDIFICACIO	NES					
	CATEGORÍA	А	Edificacione	s Esenciales				
	FACTOR U	1.5	Centros edu	cativos				
SIS	TEMAS ESTRU	CTURALES						
	Sist Estruct _{xx}	Dual						
	Sist Estruct _{yy}	Dual						
	R _{xx}	7						
	R _{YY}	7						
AN	IÁLISIS DE EDIF	ICIOS:						
PE	RÍODO FUNDA	MENTAL						
	H,	3						
	Elementos	Para edificios	de concreto	armado cuyos	elementos si	smorresister	ites sean pórtico	s y las cajas de a
-	Elementos	Dara edificios	de concreto	armado cuvos	elementos si	morresister	tes sean nórtico	e v las caias do :
	Resist _{vv}	Para cunicios	ue concreto	armado cuyos	elementos si:	SHIUTESISCE	rtes sean portico	s y las cajas de
_	CTXX	45						
	Cmr	45						
	T _{xx}	0.06667	<0.70 seg	Fa=0	$T = \frac{h_n}{n}$			
	Түү	0.06667	<0.70 seg	Fa=0	· - C7			
FA	CTOR DE AMPI	LIFICACIÓN SÍS	MICA					
_	Cxx	2.5		0.257				
_	Crr	2.5		0.257				
_	g	9.81	m/seg ²	2	US	ZUS	ZUSC	
1	F _{xx}	1.009	m/seg ²	$F_{XX} = -$	g F _{YY}	$= \frac{1}{R_{YY}}g$	$S_a = \frac{R}{R}$	1
	F _{YY}	1.009	m/seg ²					

Tabla 2.9: Parámetros que definen el espectro

Figura 2.6: Espectro de diseño - Norma E.030

2.5. Análisis Lineal

Se utiliza el programa de computo ETABS v9.7.2 (CSI, 2010) donde cada modelo está sometido a carga muerta (D=0.4 ton/m²), carga viva (L=0.3 ton/m²) y carga de sismo (E=Espectro de diseño). Los resultados del análisis se presentan en las Figs. 2.7, 2.8 y 2.9 para el modelo 1111. Se verifica la cortante mínima, el desplazamiento lateral e irregularidad torsional según la Norma E.030 a través de la Tabla 2.10. Se realizó dos tipos de análisis:

- Análisis sísmico estático.
- Análisis sísmico dinámico modal espectral.

Figura 2.7: Modelo 3D -1111

Figura 2.9: Análisis de muro doble T

Veri	ficación	del d	esplazan	niento la	ateral y c	ortan	te mínimo (Norr	ma E.030)
	Periodo	С	V estática	Vdinámica	80% Vesta.	f		
T _{xx}	0.085059	2.50	18.48	16.52	14.78	0.89		
T _{YY}	0.042580	2.50	18.48	15.69	14.78	0.94		
			CM	1			Desplazamientos	
							Laterales (<7 C°A°)	
Story	Diaphragm	Load	UX	UY	RZ	h	(0.75*R*Delta /h)*1000	
PISO 1	D1	SISXX	0.0005	0	0	3	0.9	
000.4		0102.07						
PISO 1	D1	SISYY	0	0.0001	0.00004	3	0.2	
			DDIE	-			Desplazamientos	Irregularidad
			DRIF	т			Desplazamientos Laterales	Irregularidad Torsional
Story	Item	Load	DRIF	T DriftY	-	h	Desplazamientos Laterales (0.75*R*Drift)*1000	Irregularidad Torsional Cumple si >1/1.3
Story PISO 1	Item Max Drift X	Load SISXX	DRIF DriftX 0.000154	T DriftY	-	h 3	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81	Irregularidad Torsional Cumple si >1/1.3 0.92
Story PISO 1	Item Max Drift X	Load SISXX	DRIF DriftX 0.000154	T DriftY	-	h 3	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81	Irregularidad Torsional Cumple si >1/1.3 0.92
Story PISO 1 PISO 1	Item Max Drift X Max Drift Y	Load SISXX SISYY	DRIF DriftX 0.000154	DriftY 0.000101	-	h 3 3	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81 0.53	Irregularidad Torsional Cumple si >1/1.3 0.92 3.03
Story PISO 1 PISO 1	Item Max Drift X Max Drift Y	Load SISXX SISYY	DRIF DriftX 0.000154	DriftY 0.000101	-	h 3 3	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81 0.53	Irregularidad Torsional Cumple si >1/1.3 0.92 3.03
Story PISO 1 PISO 1	Item Max Drift X Max Drift Y Desplazam	Load SISXX SISYY	DRIF DriftX 0.000154	DriftY 0.000101	-	h 3 3 Drift XX	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81 0.53	Irregularidad Torsional Cumple si >1/1.3 0.92 3.03
Story PISO 1 PISO 1	Item Max Drift X Max Drift Y Desplazam Maximos a	Load SISXX SISYY ientos	DRIF DriftX 0.000154 Desplaza	DriftY 0.000101	-	h 3 3 Drift XX Drift XX	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81 0.53 0.81 0.81 0.53	Irregularidad Torsional Cumple si >1/1.3 0.92 3.03
Story PISO 1 PISO 1	Item Max Drift X Max Drift Y Desplazam Maximos a X (cm)	Load SISXX SISYY ientos azotea Y(cm)	DRIF DriftX 0.000154 Desplaza relat X (cm)	DriftY 0.000101 0.000101	-	h 3 Drift XX DriftYY Junta	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81 0.53 0.81 0.53 0.81 0.53 0.18	Irregularidad Torsional Cumple si >1/1.3 0.92 3.03
Story PISO 1 PISO 1	Item Max Drift X Max Drift Y Desplazam Maximos a X (cm) 0.26	Load SISXX SISYY ientos azotea Y(cm) 0.05	DRIF DriftX 0.000154 Desplaza relat X (cm) 0.24	DriftY 0.000101 0.000101 0.000101 0.000101	-	h 3 Drift XX DriftYY Junta	Desplazamientos Laterales (0.75*R*Drift)*1000 0.81 0.53 0.81 0.53 0.18	Irregularidad Torsional Cumple si >1/1.3 0.92 3.03 cm

Tabla 2.10: Chequeo de CM desplazamientos y DRIFTS

2.6. Diseño de los elementos estructurales

El diseño se realizo basado en el código ACI 318-05 (ACI, 2005) y con el apoyo de la herramienta de análisis elástico. Las Figs. 2.10, 2.11, 2.12 y 2.13 muestran los diseños de vigas, columnas y muros. Además se presenta el resumen del número de modelos utilizados en las diferentes fases del proyecto según la Tabla 2.2.

Se procedió al análisis y diseño de 68 modelos paramétricos de los cuales solo 48 modelos son válidos para la etapa de análisis no lineal. Los 20 modelos no califican por no cumplir requerimientos de desplazamientos laterales, irregularidad torsional y capacidad resistente viga-columna. Finalmente se presentan los 48 modelos resumidos en las Tablas 2.5 y 2.6 asociados a periodos de 0.05 y 0.10 seg.

øcorrido

2Ø1

øcorrído

.20

.29

 2°

<u>VT-01, VT-03 (.485X.485) M-1111</u>

Figura 2.10: Diseño de las vigas V1 y V3

Tesis publicada con autorización del autor No olvide citar esta tesis

<u>VT-02, VT-04 (.485X.385) M-1111</u>

<u>A-A</u>

Figura 2.11: Diseño de las vigas V2 y V4

Tesis publicada con autorización del autor No olvide citar esta tesis

Figura 2.12: Diseño de columnas C1, C2, C3 y C4

Figura 2.13: Diseño de muro

CAPÍTULO III

3. Análisis inelástico

3.1. Determinación de las curvas de comportamiento inelástico

Para obtener las curvas de momento-curvatura $(M-\phi)$ y los diagramas de interacción para las columnas se utilizó la herramienta de análisis elástico. Las Figs. 3.1 y 3.2 muestran la sección transversal y la distribución de refuerzo de la viga. Con las anteriores consideraciones se obtuvieron las curvas de comportamiento no lineal mostrado en las Figs. 3.3 y 3.4 cuyos datos serán utilizados para obtener curvas momento-rotación de cada elemento estructural.

Figura 3.2: Distribución refuerzo vigas V1 y V3

Figura 3.3: Curva momento-curvatura vigas V1 y V2

Figura 3.4: Superficie de interacción columnas C1, C2, C3 y C4

En las Tablas 3.1 y 3.2 se presentan las propiedades de entrada así como las propiedades de salida respectivamente para el modelo 1111. Las propiedades de salida permitieron generar las curvas empleados en la herramienta de análisis inelástico PERFORM-3D v5.0.0 (CSI, 2011) para todo los modelos paramétricos.

Propiedad	des de en	trada				
			DATOS DE	ENTRADA		
ELEMENTO	fc	fy	ευ	Ec	E₅	S
	[Ton/m2]	[Ton/m2]	[m/m]	[Ton/m2]	[Ton/m2]	[m]
V-13	2800	42000	0.02	2500000	20000000	0.10
V-24	2800	42000	0.02	2500000	20000000	0.10
C-14	2800	42000	0.02	2500000	20000000	0.10
M-1.50	2800	42000	0.02	2500000	20000000	0.20
M-3.03	2800	42000	0.02	2500000	20000000	0.20

Tabla 3.1: Propiedades de entrada del modelo 1111

Tabla 3.2: Propiedades de salida del modelo 1111

Propiedad	Propiedades de salida para las curvas momento-rotación								
			DATOS D	e salida					
ELEMENTO	M _y Pos	M _y Neg	PT	Pc	PB	MB			
	[Ton-m]	[Ton-m]	[Ton]	[Ton]	[Ton]	[Ton-m]			
V-13	13.28	14.12							
V-24	8.75	8.76							
C-14	19.73	19.73	90.72	-340.56	-116.03	36.13			
M-1.50	23.06	23.06	32.19	-296.01	-134.34	86.32			
M-3.03	48.52	48.52	32.19	-580.03	-282.82	331.57			

3.2. Excitación sísmica

La solicitación sísmica bi-direccional empleado para el análisis de cada caso corresponde al registro sísmico de El Centro de 1940. La señal sísmica se importo a la herramienta computacional para el análisis inelástico tiempo-historia. Las componentes horizontales ortogonales entre si son EL40EWC de aceleración máxima de -0.2148g ocurrido a 11.48 seg mostrado en la Fig. 3.5 y EL40NSC de aceleración máxima de -0.3129g ocurrido a 2.16 seg mostrado en la Fig. 3.6. Ambos componentes fueron escalados a 0.60g de aceleración utilizando un factor de escala de 1.92. El registro de aceleraciones fue aplicado para diferentes ángulos de incidencia en planta mostrada en la Fig. 3.7. El valor del incremento angular fue de 15° (0°: delta angular: 360) para estimar máximas respuestas en los modelos paramétricos.

Figura 3.5: Componente E-W del sismo El Centro 1940

Figura 3.6: Componente N-S del sismo El Centro 1940

Figura 3.7: Excitación sísmica bi-direccional con ángulo de incidencia variable α

3.3. Preparación de información para la herramienta de análisis inelástico

3.3.1. Introducción

Se utilizo el documento FEMA 356 (Federal Emergency Management Agency, 2000) para modelar las propiedades no lineales de los elementos estructurales. FEMA 356 establece parámetros que se definen numéricamente en diferentes tablas según el tipo del elemento estructural. Los parámetros definen la curva generalizada de esfuerzodeformación propio para los elementos estructurales. La Fig. 3.8 muestra la curva generalizada de fuerza-deformación por FEMA 356 para los elementos de concreto armado.

Figura 3.8: Curva generalizada fuerza-deformación de FEMA 356

Los parámetros de modelamiento y los criterios numéricos de aceptación del procedimiento no-lineal se determinaron de las Tablas 6-7, 6-8 y 6-18 del FEMA 356, los que están en función de las secciones transversales, propiedades del material, condiciones de carga y distribución de acero longitudinal y transversal de los elementos estructurales tales como las vigas, columnas y muros de corte de concreto armado mostrados en las Figs. 3.9, 3.10 y 3.11, respectivamente.

			Mod	leling Para	meters ³		Acceptance Criteria ³					
							Plastic Ro	tation Ang	le, radian	5		
							Perf	ormance L	.evel			
					Residual			Compon	ent Type			
			Plastic I Angle,	Rotation radians	Strength Ratio		Prin	nary	Secondary			
Conditions			a	b	c	ю	LS	СР	LS	СР		
i. Beams	controlled I	by flexure ¹										
<u>ρ – ρ΄</u>	Trans.	V										
ρ _{bal}	Reint.*	$b_w d_v f_c$										
≤ 0.0	С	≤3	0.025	0.05	0.2	0.010	0.02	0.025	0.02	0.05		
≤ 0.0	С	≥6	0.02	0.04	0.2	0.005	0.01	0.02	0.02	0.04		
≥0.5	С	≤3	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03		
≥0.5	С	≥6	0.015	0.02	0.2	0.005	0.005	0.015	0.015	0.02		
≤0.0	NC	≤3	0.02	0.03	0.2	0.005	0.01	0.02	0.02	0.03		
≤0.0	NC	≥6	0.01	0.015	0.2	0.0015	0.005	0.01	0.01	0.01		
≥0.5	NC	≤3	0.01	0.015	0.2	0.005	0.01	0.01	0.01	0.01		
≥0.5	NC	≥6	0.005	0.01	0.2	0.0015	0.005	0.005	0.005	0.01		
ii. Beams	controlled	by shear ¹										
Stirrup spa	acing ≤ d/2		0.0030	0.02	0.2	0.0015	0.0020	0.0030	0.01	0.02		
Stirrup spa	acing > d/2		0.0030	0.01	0.2	0.0015	0.0020	0.0030	0.005	0.01		
iii. Beams	controlled	by inadequa	te develop	ment or sp	licing along th	ie span ¹						
Stirrup spa	acing ≤ d/2		0.0030	0.02	0.0	0.0015	0.0020	0.0030	0.01	0.02		
Stirrup spa	acing > d/2		0.0030	0.01	0.0	0.0015	0.0020	0.0030	0.005	0.01		
iv. Beams	controlled	by inadequa	te embedm	ent into be	am-column jo	oint ¹						
			0.015	0.03	0.2	0.01	0.01	0.015	0.02	0.03		

3. Linear interpolation between values listed in the table shall be permitted.

Figura 3.9: Tabla de FEMA 356 para determinar los parámetros de la curva momento- rotación

para las vigas de concreto armado

Table 6-8	Mod Rein	eling Param forced Cond	eters and crete Colu	Numerica mns	al Acceptanc	e Criteria	for Nonli	inear Pro	cedures-	-
			Mod	leling Para	meters ⁴		Acce	ptance Cri	iteria ⁴	
							Plastic Ro	tation Ang	le, radians	5
							Perf	ormance L	.evel	
					Residual			Compon	ent Type	
			Plastic Angle,	Rotation radians	Strength Ratio		Prin	nary	Seco	ndary
Condition	15		а	b	c	ю	LS	СР	LS	СР
i. Column	s controlle	d by flexure ¹								
$\frac{P}{A_g f_c'}$	Trans. Reinf. ²	$\frac{V}{b_w d_v f_c''}$								
≤ 0.1	С	≤3	0.02	0.03	0.2	0.005	0.015	0.02	0.02	0.03
≤ 0.1	С	≥6	0.016	0.024	0.2	0.005	0.012	0.016	0.016	0.024
≥ 0.4	С	≤3	0.015	0.025	0.2	0.003	0.012	0.015	0.018	0.025
≥ 0.4	С	≥6	0.012	0.02	0.2	0.003	0.01	0.012	0.013	0.02
≤ 0.1	NC	≤3	0.006	0.015	0.2	0.005	0.005	0.006	0.01	0.015
≤ 0.1	NC	≥6	0.005	0.012	0.2	0.005	0.004	0.005	0.008	0.012
≥ 0.4	NC	≤3	0.003	0.01	0.2	0.002	0.002	0.003	0.006	0.01
≥ 0.4	NC	≥6	0.002	0.008	0.2	0.002	0.002	0.002	0.005	0.008
ii. Colum	ns controlle	d by shear ^{1, a}	3							
All cases	5		-	-	-	-	-	-	.0030	.0040
iii. Colum	ns controll	ed by inadeq	uate develo	opment or s	splicing along	the clear	height ^{1,3}			
Hoop space	cing ≤ d/2		0.01	0.02	0.4	0.005	0.005	0.01	0.01	0.02
Hoop spa	cing > d/2		0.0	0.01	0.2	0.0	0.0	0.0	0.005	0.01
iv. Colum	ns with axi	al loads exce	eding 0.70F	0,1,3						
Conformin length	ng hoops ove	er the entire	0.015	0.025	0.02	0.0	0.005	0.01	0.01	0.02
All other c	ases		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
 When n "C" and hinge re three-fo 	iore than one o "NC" are abb gion, hoops are withs of the des	f the conditions i, reviations for conf a spaced at $\leq d/3$, s sign shear. Otherw	ii, iii, and iv o forming and no and if, for com rise, the comp	occurs for a giv onconforming ponents of mo onent is consid	ven component, us transverse reinforc derate and high du dered nonconformi	e the minimu ement. A con actility deman ing.	m appropriate aponent is cor d, the strength	numerical va aforming if, w a provided by	alue from the rithin the flex the hoops (V)	table. tural plastic) is at least

3. To qualify, columns must have transverse reinforcement consisting of hoops. Otherwise, actions shall be treated as force-controlled.

4. Linear interpolation between values listed in the table shall be permitted.

5. For columns controlled by shear, see Section 6.5.2.4.2 for acceptance criteria.

Figura 3.10: Tabla de FEMA 356 para determinar los parámetros de la curva momento- rotación

para las columnas de concreto armado

Table 6-18 N	Nodel Nemb	ling Parame ers Control	ters and Nu led by Flexu	merical ure	Accept	ance Crite	ria for No	nlinear	Proced	ures—	
							Acce	ptable Pl (lastic Hir radians)	nge Rota	tion
								Perfor	rmance l	evel	
				_					Compor	ent Type	
				Plastic Rota	: Hinge ation ians)	Residual Strength Ratio		Prin	narv	Seco	- ndarv ⁴
Conditions				a	b	c	ю	LS	СР	LS	СР
i. Shear walls an	d wall	seaments		-	-	-					
$(A_{5}-A_{5}')f_{y}+h$	Р	Shear	Confined Boundary ¹								
twlwfc		$t_w l_{w^{\prime}} f_c'$,								
≤ 0.1		≤3	Yes	0.015	0.020	0.75	0.005	0.010	0.015	0.015	0.020
≤ 0.1		≥6	Yes	0.010	0.015	0.40	0.004	0.008	0.010	0.010	0.015
≥ 0.25		≤3	Yes	0.009	0.012	0.60	0.003	0.006	0.009	0.009	0.012
≥ 0.25		≥6	Yes	0.005	0.010	0.30	0.0015	0.003	0.005	0.005	0.010
≤ 0.1		≤3	No	0.008	0.015	0.60	0.002	0.004	0.008	0.008	0.015
≤ 0.1		≥6	No	0.006	0.010	0.30	0.002	0.004	0.006	0.006	0.010
≥ 0.25		≤3	No	0.003	0.005	0.25	0.001	0.002	0.003	0.003	0.005
≥ 0.25		≥6	No	0.002	0.004	0.20	0.001	0.001	0.002	0.002	0.004
ii. Columns supp	oortin	g discontinuo	ous shear wa	lls							
Transverse reinfor	rceme	nt ²									
Conforming				0.010	0.015	0.20	0.003	0.007	0.010	n.a.	n.a.
Nonconforming				0.0	0.0	0.0	0.0	0.0	0.0	n.a.	n.a.
iii. Shear wall co	upling	g beams			•		•				•
Longitudinal reinfo transverse reinfor	orcem cemer	ent and nt ³	$\frac{\text{Shear}}{t_w l_w \sqrt{f_c'}}$								
Conventional long	gitudin	al	≤3	0.025	0.050	0.75	0.010	0.02	0.025	0.025	0.050
reinforcement with transverse reinfor	h confi cemer	orming nt	≥6	0.02	0.040	0.50	0.005	0.010	0.020	0.020	0.040
Conventional long	jitudin	al	≤3	0.020	0.035	0.50	0.006	0.012	0.020	0.020	0.035
transverse reinfor	cemer	nt	≥6	0.010	0.025	0.25	0.005	0.008	0.010	0.010	0.025
Diagonal reinforce	ement		n.a.	0.030	0.050	0.80	0.006	0.018	0.030	0.030	0.050
1. Remirements for	a confi	ined boundary are	the same as thos	e given in	ACI 318						

ary are the same as th ose given in ACI 318.

Requirements for conforming transverse reinforcement in columns are: (a) hoops over the entire length of the column at a spacing ≤ d/2, and (b) strength of hoops V_g ≥ required shear strength of column.

3. Conventional longitudinal reinforcement consists of top and bottom steel parallel to the longitudinal axis of the coupling beam. Conforming transverse reinforcement consists of: (a) closed stirrups over the entire length of the coupling beam at a spacing ≤ d/3, and (b) strength of closed stirrups V_g ≥ 3/4 of required shear strength of the coupling beam.

For secondary coupling beams spanning <8'-0", with bottom reinforcement continuous into the supporting walls, secondary values shall be permitted to be doubled.

Figura 3.11: Tabla de FEMA 356 para determinar los parámetros de la curva momento- rotación

para los muros de corte de concreto armado

3.3.2. Obtención de las curvas momento-rotación

Los datos de las Tablas 3.1 y 3.2 tales como las propiedades geométricas, los momentos de fluencia positivos y negativos, cargas axiales máximas de tensión y compresión, carga axial en el punto de balance y momento de balance de cada elemento, se utilizaron para elaborar las Tablas 3.3, 3.4, 3.5, 3.6 y 3.7, a fin de determinar las rotaciones de fluencia con las siguientes expresiones:

$\theta_y = \frac{M_y}{6E_c I_{\theta}} L$ (para vigas y columnas)	(3.1)	
$\theta_{y} = \frac{M_{y}}{E_{c}I}L_{p} (para\ muros)$	(3.2)	
Donde: $I_{R} = \left(\frac{M_{CP}}{M_{Y}}\right)^{s} I_{g} + \left[1 - \left(\frac{M_{CP}}{M_{Y}}\right)^{s}\right] I_{CP}$	(3.3)	
$E_c = 15000 \sqrt{f_c^*}$	(3.4)	
$M_{cr} = f_r \frac{bh^2}{6}$	(3.5)	
$I_{cr} = 0.7 I_g$ (para columnas)		(<mark>3.6</mark>)
$I_{cr} = 0.35I_g \ (para \ vigas)$	(3.7)	
$f_r = 1.99 \sqrt{f_c^*}$	(3.8)	
$I_{\mathcal{G}} = \frac{1}{12}bh^{s}$	(3.9)	

Donde:

M_y	: Momento de fluencia
L	: Longitud del elemento
L_p	: Longitud de la rótula plástica
Ec	: Modulo de elasticidad del concreto
I, I _g	: Momento de inercia de la sección
Ie	: Momento de inercia efectivo
M _{cr}	: Momento de rotura
Icr	: Momento de inercia de la sección agrietada
\mathbf{f}_{c}	: Resistencia del concreto a la compresión
$\mathbf{f}_{\mathbf{r}}$: Modulo de rotura del concreto
h, b	: Dimensiones de la sección transversal

Las Tablas 3.3-3.7 también permitieron obtener parámetros de entrada para las Tablas 6.7, 6.8 y 6.18 de FEMA 356. Los parámetros de entrada para las vigas son la relación de cuantía de refuerzo, conformidad del refuerzo transversal y condición de carga por cortante. Los parámetros de entrada para las columnas son la condición de carga axial, conformidad del refuerzo transversal y condición de carga por cortante. Los parámetros de entrada para las columnas son la condición de carga axial, conformidad del refuerzo transversal y condición de carga por cortante. Los parámetros de entrada para los muros de corte son la condición de carga axial, condición de carga por cortante y elementos de confinamiento. Con los parámetros de entrada se ingresaron a las tablas correspondientes de FEMA 356 para determinar los parámetros de modelamiento a, b y c con lo cual queda definido la curva momento-rotación de los elementos. Las curvas momento-rotación se muestran en las Figs. 3.12 y 3.13 para las vigas, Fig. 3.14 para las columnas y Figs. 3.15 y 3.16 para los muros de corte.

Hoja de	e cálculo	para los par	rámetros d	e la curv	a de mon	nento rot	tación					
					Propied	ades del El	emento					
L	В	н	d	Ec	f'c	fy	S	V	lg	Icr	fr	Mcr
[cm]	[cm]	[cm]	[cm]	[kg/cm ²]	[kg/cm ²]	[kg/cm ²]	[cm]	[kg]	[cm⁴]	[cm⁴]	[kg/cm ²]	[kg-cm]
1200	48.5	48.5	44.5	250000	280	4200	10	8100	461090.01	161381.50	33.28	632728.00
				Propieda	des de Ref	uerzo				Paráme	etros de FE	MA 356
	As	Му	le	Propieda θy	des de Ref P	uerzo P _{bal}	(ρ-ρ')/ρ _{bal}	d/3	V/(Bdf'c^0.5)	Paráme a	etros de FE b	MA 356 c
	As [cm ²]	My [kg-cm]	le [cm⁴]	Propieda θy [rad]	des de Ref P	uerzo P _{bal}	$(\rho\text{-}\rho')/\rho_{bal}$	d/3 [cm]	V/(Bdf'c^0.5)	Paráme a [rad]	etros de FE b [rad]	MA 356 c
Superior	As [cm ²] 8.47	My [kg-cm] 1,412,000.00	le [cm ⁴] 188349.34	Propieda θy [rad] 0.006	des de Ref p 0.00392	μerzo ρ _{bal} 0.02853	(p-p')/p _{bal}	d/3 [cm] C	V/(Bdf'c^0.5)	Paráme a [rad] 0.025	etros de FE b [rad] 0.05	MA 356 c 0.2

Momento Positivo								
М	θ							
[kg-m]	[rad]							
0	0							
13280	0							
16600	0.030							
2656	0.050							
2656	0.055							
	mento Posi M [kg-m] 0 13280 16600 2656 2656							

Tabla 3.3 y figura 3.12: Determinación de los parámetros y curva momento-rotación para las vigas V1 y V3 del modelo 1111

Hoja de	e cálculo	para los pa	rámetros o	de la curv	a de moi	mento ro	tación					
					Propieda	ades del El	emento					
L	В	н	d	Ec	f'c	fy	S	V	lg	Icr	fr	Mcr
[cm]	[cm]	[cm]	[cm]	[kg/cm ²]	[kg/cm ²]	[kg/cm ²]	[cm]	[kg]	[cm⁴]	[cm⁴]	[kg/cm ²]	[kg-cm]
600	48.5	38.5	34.5	250000	280	4200	10	9500	230644.28	80725.50	33.28	398708.08
	Propiedades de Refuerzo											
				Propieda	ides de Ref	fuerzo				Parám	etros de FE	EMA 356
	As	Му	le	Propieda 0 y	ides de Ref P	fuerzo P _{bal}	(ρ-ρ')/ρ _{bal}	d/3	V/(Bdf'c^0.5)	Parám a	etros de FE b	EMA 356 c
	As [cm ²]	My [kg-cm]	le [cm⁴]	Propieda θy [rad]	ides de Ref ρ	fuerzo P _{bal}	(ρ-ρ')/ρ _{bal}	d/3 [cm]	V/(Bdf'c^0.5)	Parám a [rad]	etros de FE b [rad]	EMA 356 C
Superior	As [cm ²] 6.49	My [kg-cm] 876,000.00	le [cm ⁴] 94860.92	Propieda Øy [rad] 0.004	odes de Ref p 0.00388	fuerzo P _{bal} 0.02853	(p-p')/p _{bal} 0.0115	d/3 [cm] C	V/(Bdf'c^0.5) 0.3	Parám a [rad] 0.025	etros de FE b [rad] 0.05	EMA 356 c 0.2

Tabla 3.4 y figura 3.13: Determinación de los parámetros y curva momento-rotación para las vigas V2 y V4 del modelo 1111

37

Hoja de	e cálculo	para los par	rámetros d	e la curva	a de mon	nento rot	tación						
					Propieda	ades del Ele	emento						
L	В	Н	d	Ec	f'c	fy	S	V	lg	Icr	fr	Mcr	
[cm]	[cm]	[cm]	[cm]	[kg/cm ²]	[kg/cm ²]	[kg/cm ²]	[cm]	[kg]	[cm⁴]	[cm⁴]	[kg/cm ²]	[kg-cm]	
300	48.5	48.5	44.5	250000	280	4200	10	7350	461090.01	322763.00	33.28	632728.00	
	Propiedades de Refuerzo										Parámetros de FEMA 356		
	As	MB	le	θу	ρ	Р	P/(Agf'c)	d/3	V/(Bdf'c^0.5)	а	b	с	
	Lorm ² 1	[ka.em]	Lorm 41	fradl		[ka]		[cm]		Iradi	Iradi		
	[cm]	[Kg-cili]	[cm]	lian		1,631		found		[raa]	ficial		
Superior	23.75	3,613,400.00	323505.70	0.002	0.01100	19590	0.03	C	0.2	0.02	0.03	0.2	

Momento Positivo									
М	θ								
[kg-m]	[rad]								
0	0								
36134	0								
45167.5	0.022								
7226.8	0.029								
7226.8	0.032								
	mento Posi M [kg-m] 0 36134 45167.5 7226.8 7226.8								

Tabla 3.5 y figura 3.14: Determinación de los parámetros y curva momento-rotación para las columnas C1-C4 del modelo 1111

Hoja de	cálculo	para los pará	metros de	e la curva	de mom	ento rota	ación			
					Propied	dades del E	Elemento			
Н	tw	l _w	d	Ec	f'c	fy	S	Shear	I	Р
[cm]	[cm]	[cm]	[cm]	[kg/cm ²]	[kg/cm ²]	[kg/cm ²]	[cm]	[kg]	[cm⁴]	[kg]
300	15	303	301	250000	280	4200	20	15170	34772658.75	14803
			Parámetros de FEMA 356							
	As	MB	l _p	θy	(A _s -A' _s)fy+P	Confined	V/(t _w l _w f'c^0.5)	а	b	с
	[cm ²]	[kg-cm]	[cm]	[rad]	/t _w l _w fc	Boundary		[rad]	[rad]	
Izquierdo	4.28	33,156,870.00	300.00	0.0011	0.01	No	0.2	0.008	0.015	0.6
Derecho	4.28	33,156,870.00	300.00	0.0011				0.008	0.015	0.6

Tabla 3.6 y figura 3.15: Determinación de los parámetros y curva momento-rotación para el muro de corte M-3.03 del modelo 1111

39

Hoja de	cálculo	para los par	ámetros d	le la curv	a de mon	nento ro	tación			
					Propie	dades del	Elemento			
н	t _w	l _w	d	Ec	f'c	fy	S	Shear	I	Р
[cm]	[cm]	[cm]	[cm]	[kg/cm ²]	[kg/cm ²]	[kg/cm ²]	[cm]	[kg]	[cm⁴]	[kg]
300	15	150	148	250000	280	4200	20	6562	4218750.00	13063
				Parámetros de FEMA 356						
	As	MB	lp	θγ	(A _s -A' _s)fy+P	Confined	V/(t _w l _w f'c^0.5)	а	b	с
	As [cm ²]	M _B [kg-cm]	l _p [cm]	θy [rad]	(A _s -A' _s)fy+P /t _w l _w fc	Confined Boundary	V/(t _w l _w f'c^0.5)	a [rad]	b [rad]	с
Izquierdo	As [cm ²] 4.28	M _B [kg-cm] 8,632,360.00	I _p [cm] 300.00	θy [rad] 0.0025	(A _s -A' _s)fy+P /t _w I _w fc 0.02	Confined Boundary No	V/(t _w l _w f'c^0.5)	a [rad] 0.008	b [rad] 0.015	с 0.6

Tabla 3.7 y figura 3.16: Determinación de los parámetros y curva momento-rotación para el muro de corte M-1.50 del modelo 1111

40

3.4. Elaboración de los modelos inelásticos

Luego de determinar los parámetros de modelamiento y obtener las curvas momento-rotación para la herramienta computacional de análisis inelástico se modelaron los modelos paramétricos. Se asignaron las masas sísmicas de entrepiso ubicado en el centro de masa. Así mismo se asumió un comportamiento de diafragma rígido de entrepiso. Se definieron las curvas específicas de esfuerzo-deformación del acero, del concreto no confinado y del material amortiguador de acero mostradas en las Figs. 3.17, 3.18 y 3.19 respectivamente.

Figura 3.18: Curva de esfuerzo-deformación del concreto no confinado

Figura 3.19: Curva de esfuerzo-deformación del material amortiguador de acero

El elemento que se empleo para modelar las vigas orientadas en la dirección E-W corresponde al modelo Chord Rotation mostrado en la Fig. 3.20. Los tipos de componentes que tiene el modelo están las zonas rígidas en los extremos y los componentes FEMA Beam. La curva momento-rotación de la Fig. 3.12 se ingreso al programa considerando la rotación de fluencia y pertenece al componente FEMA Beam mostrado en la Fig. 3.21.

Figura 3.21: Curva momento-rotación en la herramienta de análisis inelástico para vigas E-W modelo 1111

El elemento que se empleo para modelar las vigas orientadas en la dirección N-S corresponde al modelo Chord Rotation mostrado en la Fig. 3.22. Los tipos de componentes que tiene el modelo están las zonas rígidas en los extremos, las articulaciones plásticas y los segmentos elásticos.

Figura 3.22: Modelo Chord Rotation para las vigas N-S

El elemento que se empleo para modelar las columnas corresponde al modelo mostrado en la Fig. 3.23 donde la zona rígida no esta presente en el extremo que se une a la zapata. Los tipos de componentes que tiene el modelo están la articulación plástica, el componente FEMA Column de proporción 2%, el componente FEMA Column de proporción 98% y la zona rígida. Los datos de la Tabla 3.2 se ingresaron a la herramienta de análisis inelástico para generar el diagrama mostrado en la Fig. 3.24.

Figura 3.23: Modelo para las columnas en la herramienta de análisis inelástico

Figura 3.24: Diagrama de interacción para las columnas del modelo 1111

También se ingresaron los datos de la Fig. 3.14 a la herramienta de análisis inelástico para definir las curvas de momento-rotación y carga-desplazamiento axial mostrados en las Figs. 3.25 y 3.26 respectivamente. En ambas curvas se consideraron la rotación de fluencia y el desplazamiento de fluencia. Curvas que determinan el comportamiento no-lineal de los componentes FEMA Column señalado en el modelo propio de las columnas.

Figura 3.26: Curva carga-desplazamiento axial para las columnas del modelo 1111

Los elementos que se emplearon para modelar los muros de corte en la dirección Y corresponden a los modelos mostrados en las Figs. 3.27 y 3.28. El modelo utilizado para el acero considera la sección dividido en 12 fibras concordante con la cantidad de varillas de acero. El modelo utilizado para el concreto considera la sección dividido en 12 partes concordante con el modelo del acero.

El valor del modulo de corte inelástico utilizado para los muros de corte orientados en ambas direcciones fue el 25% del modulo de corte elástico.

Figura 3.27: Modelo del acero para muros de corte Y en la herramienta de análisis inelástico

Figura 3.28: Modelo del concreto muros de corte Y en la herramienta de análisis inelástico

Los elementos que se emplearon para modelar los muros de corte en la dirección X corresponden a los modelos mostrados en las Figs. 3.29 y 3.30. El modelo utilizado para el acero considera la sección dividido en 6 fibras concordante con la cantidad de varillas de acero. El modelo utilizado para el concreto considera la sección dividido en 6 partes concordante con el modelo de acero.

Figura 3.29: Modelo del acero para muros de corte X en la herramienta de análisis inelástico

Figura 3.30: Modelo del concreto muros de corte X en la herramienta de análisis inelástico

CAPÍTULO IV

4. Análisis de las respuestas de interés

4.1. Respuestas globales

4.1.1. Desplazamientos laterales y rotacionales del CM

Los modelos paramétricos se modelaron en la herramienta computacional de análisis inelástico aplicando la metodología presentado en el capítulo 3. Finalmente se procesaron los modelos paramétricos en la herramienta sometidos a solicitaciones sísmicas bi-direccionales con incremento del ángulo de incidencia de 15° hasta cubrir los 360°. El análisis de las respuestas globales de interés se centrara en los desplazamientos laterales y rotacionales del centro de masa mostrados en las Figs. 4.1-4.12. Las respuestas globales se presentan en gráficas de coordenadas polares y rectangulares en función del ángulo de incidencia de la solicitación sísmica.

El desplazamiento lateral máximo en la dirección principal X se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal Y. El ángulo de incidencia crítico es aproximadamente de 75° del modelo 1111 mostrado en las Figs. 4.1, 4.2.

Figura 4.1: Desplazamiento lateral Ux del modelo 1111 (Sistema de coordenada rectangular)

Figura 4.2: Desplazamiento lateral Ux del modelo 1111 (Sistema de coordenada polar)

El desplazamiento lateral máximo en la dirección principal Y se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 195° del modelo 1111 mostrado en las Figs. 4.3, 4.4.

Figura 4.3: Desplazamiento lateral Uy del modelo 1111 (Sistema de coordenada rectangular)

Figura 4.4: Desplazamiento lateral Uy del modelo 1111 (Sistema de coordenada polar)

El desplazamiento rotacional máximo en la dirección principal Z se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 15° del modelo 1111 mostrado en las Figs. 4.5, 4.6.

Figura 4.5: Desplazamiento rotacional θ del modelo 1111 (Sistema de coordenada rectangular)

Figura 4.6: Desplazamiento rotacional θ del modelo 1111 (Sistema de coordenada polar)

El desplazamiento lateral máximo en la dirección principal X se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal Y. El ángulo de incidencia crítico es aproximadamente de 75° del modelo 1112 mostrado en las Figs. 4.7, 4.8.

Figura 4.7: Desplazamiento lateral Ux del modelo 1112 (Sistema de coordenada rectangular)

Figura 4.8: Desplazamiento lateral Ux del modelo 1112 (Sistema de coordenada polar)

El desplazamiento lateral máximo en la dirección principal Y se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 195° del modelo 1112 mostrado en las Figs. 4.9, 4.10.

Figura 4.9: Desplazamiento lateral Uy del modelo 1112 (Sistema de coordenada rectangular)

Figura 4.10: Desplazamiento lateral Uy del modelo 1112 (Sistema de coordenada polar)

El desplazamiento rotacional máximo en la dirección principal Z se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 165° del modelo 1112 mostrado en las Figs. 4.11, 4.12.

Figura 4.11: Desplazamiento rotacional θ del modelo 1112 (Sistema de coordenada rectangular)

Figura 4.12: Desplazamiento rotacional θ del modelo 1112 (Sistema de coordenada polar)

4.2. Respuestas locales

4.2.1. Fuerza cortante y momento del muro

Los modelos paramétricos se modelaron en la herramienta computacional de análisis inelástico aplicando la metodología presentado en el capítulo 3. Finalmente se procesaron los modelos paramétricos en la herramienta de análisis inelástico sometidos a solicitaciones sísmicas bi-direccionales con incremento del ángulo de incidencia de 15° hasta cubrir los 360°. El análisis de las respuestas locales de interés se centrara en las fuerzas cortantes y momentos del muro doble T mostrados en las Figs. 4.13-4.28. Las respuestas locales se presentan en gráficas de coordenadas polares y rectangulares en función del ángulo de incidencia de la solicitación sísmica bi-direccional.

La fuerza cortante máximo en la dirección principal X se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal Y. El ángulo de incidencia crítico es aproximadamente de 75° del modelo 1111 mostrado en las Figs. 4.13, 4.14.

Vx del Muro

Figura 4.13: Fuerza cortante Vx del modelo 1111

(Sistema de coordenada rectangular)

Figura 4.14: Fuerza cortante Vx del modelo 1111 (Sistema de coordenada polar)

La fuerza cortante máximo en la dirección principal Y se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 195° del modelo 1111 mostrado en las Figs. 4.15, 4.16.

70000 60000

50000

Fuerza de Corte [kg]

Figura 4.15: Fuerza cortante Vy del modelo 1111 (Sistema de coordenada rectangular)

Figura 4.16: Fuerza cortante Vy del modelo 1111 (Sistema de coordenada polar)

La fuerza cortante máximo en la dirección principal X se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal Y. El ángulo de incidencia crítico es aproximadamente de 75° del modelo 1112 mostrado en las Figs. 4.17, 4.18.

Vx del Muro

Figura 4.17: Fuerza cortante Vx del modelo 1112

(Sistema de coordenada rectangular)

Figura 4.18: Fuerza cortante Vx del modelo 1112 (Sistema de coordenada polar)

La fuerza cortante máximo en la dirección principal Y se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 195° del modelo 1112 mostrado en las Figs. 4.19, 4.20.

Figura 4.19: Fuerza cortante Vy del modelo 1112

(Sistema de coordenada rectangular)

Figura 4.20: Fuerza cortante Vy del modelo 1112 (Sistema de coordenada polar)

El momento máximo alrededor del eje principal X se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 180° del modelo 1111 mostrado en las Figs. 4.21, 4.22.

(Sistema de coordenada rectangular)

Figura 4.22: Momento Mx del modelo 1111 (Sistema de coordenada polar)

El momento máximo alrededor del eje principal Y se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal Y. El ángulo de incidencia crítico es aproximadamente de 75° del modelo 1111 mostrado en las Figs. 4.23, 4.24.

Figura 4.23: Momento My del modelo 1111

Figura 4.24: Momento My del modelo 1111 (Sistema de coordenada polar)

El momento máximo alrededor del eje principal X se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 165° del modelo 1112 mostrado en las Figs. 4.25, 4.26.

Figura 4.25: Momento Mx del modelo 1112

(Sistema de coordenada rectangular)

Figura 4.26: Momento Mx del modelo 1112 (Sistema de coordenada polar)

El momento máximo alrededor del eje principal Y se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal Y. El ángulo de incidencia crítico es aproximadamente de 75° del modelo 1112 mostrado en las Figs. 4.27, 4.28.

4.2.2. Fuerza cortante de columnas

El análisis de las respuestas locales de interés se centrara en las fuerzas cortantes de las columnas mostradas en las Figs. 4.29-4.32. Las respuestas locales se presentan en gráficas de coordenadas polares y rectangulares en función del ángulo de incidencia de la solicitación sísmica bi-direccional.

La fuerza cortante máximo en la dirección principal X se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal Y. El ángulo de incidencia crítico es aproximadamente de 75° del modelo 1111 mostrado en las Figs. 4.29, 4.30.

Figura 4.30: Fuerza cortante Vx del modelo 1111 (Sistema de coordenada polar)

La fuerza cortante máximo en la dirección principal Y se presenta cuando el ángulo de incidencia de la solicitación sísmica bi-direccional es próximo al eje principal X. El ángulo de incidencia crítico es aproximadamente de 180° del modelo 1111 mostrado en las Figs. 4.31, 4.32.

Figura 4.32: Fuerza cortante Vy del modelo 1111 (Sistema de coordenada polar)

4.3. Índice de deformación demanda-capacidad

Para índices de deformación demanda-capacidad (índice D/C) en articulaciones P-M-M, la herramienta de análisis inelástico utiliza solamente deformaciones por flexión. Cuando se especifica la capacidad de deformación, puede especificarse la capacidad de deformación por flexión para un máximo de cinco niveles de desempeño. El índice D/C es calculado con la Ecuación 4.1 (CSI, 2011).

Indice
$$\frac{D}{C} = \sqrt{\left[\frac{D2}{DC2}\right]^2 + \left[\frac{D3}{DC3}\right]^2}$$

Donde:

D2, D3 : Deformaciones por flexión alrededor de los ejes locales 2 y 3
DC2, DC3 : Capacidades de deformación alrededor de los ejes locales 2 y 3

(4.1)

Para el acero en articulaciones P-M-M se puede especificar que la capacidad de deformación depende de la fuerza axial. Para el concreto en articulación P-M-M se puede especificar que la capacidad de deformación depende tanto de la fuerza axial y la fuerza de corte.

La Fig. 4.33 muestra el índice de daños del modelo 1111 luego del análisis inelástico sometido a la acción sísmica bi-direccional con ángulo de incidencia crítico de 75°. Donde se observa a los elementos estructurales de distintos colores los cuales representan la cantidad de deformación máxima en relación a la deformación última de cada elemento.

Las vigas orientadas en la dirección N-S llegaron a una deformación que varia entre el 2% al 3% de la deformación última. Las vigas orientadas en la dirección E-W tuvieron una deformación que alcanzó el punto de colapso en la curva de momento-rotación. Las cuatro columnas llegaron a una deformación que varia entre el 2% al 4% de la deformación última. Por último los muros de corte tuvieron una deformación que varia entre el 40% al 60% de la deformación última.

Figura 4.33: Índice de daños de los elementos estructurales del modelo 1111 α =75°

La Fig. 4.34 muestra el índice de daños del modelo 1111 luego del análisis inelástico sometido a la acción sísmica bi-direccional con ángulo de incidencia crítico de 195°. Donde se observa a los elementos estructurales de distintos colores los cuales representan la cantidad de deformación máxima en relación a la deformación última de cada elemento.

Las vigas orientadas en la dirección N-S llegaron a una deformación que varia entre el 1% al 2% de la deformación última. Las vigas orientadas en la dirección E-W tuvieron una deformación que alcanzó el punto de colapso en la curva de momento-rotación. Las cuatro columnas llegaron a una deformación que varia entre el 2% al 3% de la deformación última. Por último los muros de corte tuvieron una deformación que varia entre el 30% al 40% de la deformación última.

Figura 4.34: Índice de daños de los elementos estructurales del modelo 1111 α=195°

La Fig. 4.35 muestra el índice de daños del modelo 1112 luego del análisis inelástico sometido a la acción sísmica bi-direccional con ángulo de incidencia crítico de 75°. Donde se observa a los elementos estructurales de distintos colores los cuales representan la cantidad de deformación máxima en relación a la deformación última de cada elemento.

Las vigas orientadas en la dirección N-S llegaron a una deformación que varia entre el 2% al 4% de la deformación última. Las vigas orientadas en la dirección E-W tuvieron una deformación que alcanzó el punto de colapso en la curva de momento-rotación. Las cuatro columnas llegaron a una deformación que varia entre el 2% al 5% de la deformación última. Por último los muros de corte tuvieron una deformación que varia entre el 40% al 60% de la deformación última.

Figura 4.35: Índice de daños de los elementos estructurales del modelo 1112 α =75°

La Fig. 4.36 muestra el índice de daños del modelo 1112 luego del análisis inelástico sometido a la acción sísmica bi-direccional con ángulo de incidencia crítico de 195°. Donde se observa a los elementos estructurales de distintos colores los cuales representan la cantidad de deformación máxima en relación a la deformación última de cada elemento.

Las vigas orientadas en la dirección N-S llegaron a una deformación que varia entre el 1% al 3% de la deformación última. Las vigas orientadas en la dirección E-W tuvieron una deformación que alcanzó el punto de colapso en la curva de momento-rotación. Las cuatro columnas llegaron a una deformación que varia entre el 2% al 4% de la deformación última. Por último los muros de corte tuvieron una deformación que varia entre el 30% al 40% de la deformación última.

Figura 4.36: Índice de daños de los elementos estructurales del modelo 1112 α =195°

4.4. Comparación de las respuestas elásticas e inelásticas

Las respuestas elásticas son los resultados obtenidos en el capítulo 2 considerando el análisis dinámico de superposición modal espectral con la herramienta computacional de análisis elástico. Las respuestas inelásticas son los resultados obtenidos en el capítulo 3 considerando el análisis dinámico tiempo-historia con la herramienta computacional de análisis inelástico. Las componentes horizontales del registro sísmico de El Centro de 1940 fueron escalados a 0.4g para que el tamaño del sismo de espectro de la norma sea comparable con cada uno de ellos. Para las respuestas inelásticas los modelos paramétricos fueron sometidos a la acción sísmica unidireccional, a la acción sísmica bi-direccional con ángulo de incidencia de 0° y a la acción sísmica bi-direccional con ángulo de incidencia las respuestas globales de interés se centrara en los desplazamientos laterales del centro de masa y la fuerza de corte en la base.

El desplazamiento lateral elástico en la dirección principal X del modelo 1111 es de 0.26 cm. El desplazamiento lateral inelástico máximo uni-direccional en la dirección principal X del modelo 1111 es de 0.86 cm mostrado en la Fig. 4.37. El desplazamiento lateral inelástico máximo bi-direccional con ángulo de incidencia de 0° en la dirección principal X del modelo 1111 es de 0.62 cm mostrado en la Fig. 4.38. El desplazamiento

lateral inelástico máximo bi-direccional con ángulo de incidencia crítico en la dirección principal X del modelo 1111 es de 0.95 cm mostrado en la Fig. 4.39. Resultando una relación entre los desplazamientos laterales inelásticos y desplazamiento lateral elástico de 3.31, 2.38 y 3.65 respectivamente.

Figura 4.37: Desplazamiento lateral inelástico Ux del modelo 1111 - análisis uni-direccional

Figura 4.38: Desplazamiento lateral inelástico Ux del modelo 1111 - análisis bi-direccional ángulo de incidencia $\alpha=0^{\circ}$

Figura 4.39: Desplazamiento lateral inelástico Ux modelo 1111 - análisis bi-direccional α=75°

El desplazamiento lateral elástico en la dirección principal Y del modelo 1111 es de 0.05 cm. El desplazamiento lateral inelástico máximo uni-direccional en la dirección principal Y del modelo 1111 es de 0.25 cm mostrado en la Fig. 4.40. El desplazamiento lateral inelástico máximo bi-direccional con ángulo de incidencia de 0° en la dirección principal Y del modelo 1111 es de 0.28 cm mostrado en la Fig. 4.41. El desplazamiento lateral inelástico máximo bi-direccional con ángulo de incidencia crítico en la dirección principal Y del modelo 1111 es de 0.33 cm mostrado en la Fig. 4.42. Resultando una relación entre los desplazamientos laterales inelásticos y desplazamiento lateral elástico de 5.00, 5.60 y 6.60 respectivamente.

Figura 4.40: Desplazamiento lateral inelástico Uy del modelo 1111 - análisis uni-direccional

Figura 4.41: Desplazamiento lateral inelástico Uy modelo 1111 - análisis bi-direccional α=0°

Figura 4.42: Desplazamiento lateral inelástico Uy modelo 1111 - análisis bi-direccional α=195°

El desplazamiento lateral elástico en la dirección principal X del modelo 1112 es de 0.26 cm. El desplazamiento lateral inelástico máximo uni-direccional en la dirección principal X del modelo 1112 es de 0.86 cm mostrado en la Fig. 4.43. El desplazamiento lateral inelástico máximo bi-direccional con ángulo de incidencia de 0° en la dirección principal X del modelo 1112 es de 0.50 cm mostrado en la Fig. 4.44. El desplazamiento lateral inelástico máximo bi-direccional con ángulo de incidencia crítico en la dirección principal X del modelo 1112 es de 0.50 cm mostrado en la Fig. 4.45. Resultando una

relación entre los desplazamientos laterales inelásticos y desplazamiento lateral elástico de 3.31, 1.92 y 3.54 respectivamente.

Figura 4.43: Desplazamiento lateral inelástico Ux del modelo 1112 - análisis uni-direccional

Figura 4.44: Desplazamiento lateral inelástico Ux modelo 1112 - análisis bi-direccional $\alpha=0^{\circ}$

Figura 4.45: Desplazamiento lateral inelástico Ux modelo 1112 - análisis bi-direccional α=75°

El desplazamiento lateral elástico en la dirección principal Y del modelo 1112 es de 0.11 cm. El desplazamiento lateral inelástico máximo uni-direccional en la dirección principal Y del modelo 1112 es de 0.61 cm mostrado en la Fig. 4.46. El desplazamiento lateral inelástico máximo bi-direccional con ángulo de incidencia de 0° en la dirección principal Y del modelo 1112 es de 0.63 cm mostrado en la Fig. 4.47. El desplazamiento lateral inelástico máximo bi-direccional con ángulo de incidencia crítico en la dirección principal Y del modelo 1112 es de 0.82 cm mostrado en la Fig. 4.48. Resultando una relación entre los desplazamientos laterales inelásticos y desplazamiento lateral elástico de 5.54, 5.73 y 7.45 respectivamente.

Figura 4.46: Desplazamiento lateral inelástico Uy del modelo 1112 - análisis uni-direccional

Figura 4.47: Desplazamiento lateral inelástico Uy modelo 1112 - análisis bi-direccional α=0°

Figura 4.48: Desplazamiento lateral inelástico Uy modelo 1112 - análisis bi-direccional α=195°

Se resume el análisis realizado a cada uno de las respuestas globales y locales de los modelos paramétricos. A continuación se precisa los ángulos críticos de incidencia en donde se observaron las respuestas máximas de los modelos sometido a solicitación sísmica bi-direccional:

 Las respuestas globales Ux del CM ocurren cuando el ángulo crítico de incidencia es de 75°.

 Las respuestas globales Uy del CM ocurren cuando el ángulo crítico de incidencia es de 195°.

3. Las respuestas globales θ del CM ocurren cuando los ángulos críticos de incidencia son de 15° y 165°.

4. Las respuestas locales Vx del muro doble T ocurren cuando el ángulo crítico de incidencia es de 75°.

5. Las respuestas locales Vy del muro doble T ocurren cuando el ángulo crítico de incidencia es de 195°.

6. Las respuestas locales Mx del muro doble T ocurren cuando los ángulos críticos de incidencia son de 165° y 180°.

7. Las respuestas locales My del muro doble T ocurren cuando el ángulo crítico de incidencia es de 75°.

8. Las respuestas locales Vx de las columnas ocurren cuando el ángulo crítico de incidencia es de 75°.

9. Las respuestas locales Vy de las columnas ocurren cuando el ángulo crítico de incidencia es de 180°.

10. Las respuestas globales y locales en la direccional principal X ocurren con similares ángulos críticos de incidencia.

11. Las respuestas globales y locales en la direccional principal Y ocurren con similares ángulos críticos de incidencia.

CAPÍTULO V

5.1. Conclusiones y recomendaciones

5.1.1. Conclusiones

A partir del análisis inelástico de edificios de concreto armado de un piso definidos mediante modelos paramétricos sometido a una sola solicitación sísmica bidireccional con ángulos de incidencia variable, se concluye lo siguiente:

1. Se complementa los resultados obtenidos por Lobos del análisis elástico de los modelos paramétricos sometidos a solicitaciones sísmicas bi-direccionales. Afirmación que se sustenta en los índices obtenidos entre las respuestas inelásticas globales y las respuestas elásticas globales. Los índices de los desplazamientos laterales en la dirección principal X varían en el rango de 1.92-3.65. Los índices de los desplazamientos laterales en la dirección principal Y varían en el rango de 5.00-7.45. Se resalta que los modelos considerados tienen como parámetro elástico variable la razón entre la excentricidad estática y el radio medio de giro.

2. Los resultados del análisis inelástico considerando el efecto de excitación sísmica bi-direccional con ángulos de incidencia variable, muestran que las respuestas máximas ocurren en ángulos críticos diferentes a 0° y 90°. Por tanto las direcciones principales asumidas por la norma de diseño E.030 para la acción sísmica no son necesariamente las direcciones críticas.

3. A través de las curvas momento-rotación se estimaron los índices de daños presentados en cada elemento estructural de los modelos. Las vigas orientadas en la dirección N-S llegaron a una deformación máxima que varia entre el 1% al 4% de la deformación última. Las vigas orientadas en la dirección E-W tuvieron una deformación que alcanzó el punto de colapso en la curva de momento-rotación. Las columnas llegaron a una deformación máxima que varia entre el 2% al 5% de la deformación última. Por último los muros de corte llegaron a una deformación máxima que varia entre el 30% al 60% de la deformación última. Conociendo el estado de daños de cada

elemento estructural es posible aplicarlos para plantear proyectos de rehabilitación de edificaciones.

4. Se comprueba la ventaja de efectuar el análisis de modelos paramétricos debido a que permite abarcar estructuras con diferentes características resistentes. Además es representativo de estructuras reales propias de edificaciones peruanas.

5. Finalmente se valida la consideración del FEMA 356 sobre los efectos sísmicos multidireccionales en edificaciones con irregularidad en un plano, debido a que las respuestas máximas no se dan en las direcciones principales de las edificaciones.

5.1.2. Recomendaciones

A partir del trabajo realizado en la presente tesis, se recomienda extender la investigación a estructuras definidas mediante modelos paramétricos con períodos de vibración fundamental diferentes a 0.05 seg (Tabla 2.1). Continuar con el proceso de análisis inelástico de los 44 modelos paramétricos faltantes. También se recomienda realizar el análisis inelástico considerando registros sísmicos peruanos.

REFERENCIAS BIBLIOGRÁFICAS

AMERICAN CONCRETE INSTITUTE (2005). "Building Code Requirements for Reinforced Concrete, ACI 318-05, and Commentary, ACI 318R-05, ACI Commitee 318 2005". Detroit, Michigan, USA.

COMPUTERS AND STRUCTURES, Inc. (2010). "ETABS Nonlinear Version 9.7.2". University. Berkeley, California, USA.

COMPUTERS AND STRUCTURES, Inc. (2011). "PERFORM-3D Version 5.0.0". University. Berkeley, California, USA.

COMPUTERS AND STRUCTURES, Inc. (2011). "Components and Elements for PERFORM-3D and PERFORM-COLLAPSE". University. Berkeley, California, USA.

FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA 356) (2000). "Prestandard and Commentary for the Seismic Rehabilitation of Buildings". Washington DC, USA.

FERNÁNDEZ-DÁVILA G., V. I., COMINETTI C-C, S. AND CRUZ Z., E. F. (2000). "Considering the Bi-directional Effects and the Seismic Angle Variations in Building Design". Proceedings 12th WCEE Twelfth World Conference in Earthquake Engineering, Auckland, New Zealand. January, 2000.

LOBOS, D. U. Y FERNÁNDEZ-DÁVILA, V. I. (2000). "Efectos de Excitaciones Sísmicas Bi-direccionales con Ángulos de Incidencia Variables sobre Edificios de un Piso". Jubileo. Universidad Nacional Andrés Bello. Santiago, Chile.

MANDER, J. B., PRIESTLEY M. J. N. Y PARK R. (1984). "Seismic Design of Bridge Piers". Departamento de Ingeniería Civil, Universidad de Canterbury. Christchurch, New Zealand. pp. 442.

MUÑOZ, A. (2004). Propuesta de investigación: "Plan Nacional de Protección de Infraestructura Educativa del Perú". Pontificia Universidad Católica del Perú. Lima, Perú.

SENCICO/CERESIS (1997). "Proyecto de Norma Técnica de Edificación E.030, Diseño Sismorresistente". SENCICO. Lima, Perú.

