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Abstract

This master thesis is devoted to developing an adaptive control scheme for the well-
known Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC)
technique. The main objective of this adaptive scheme is to asymptotically stabilize
a class of Underactuated Mechanical Systems (UMSs) in the presence of uncertainties
(not necessarily matched). This class of UMSs is characterized by the solvability of
the Partial Differential Equation (PDE) resulting from the IDA-PBC technique. Two
propositions are stated in this work to design the adaptive IDA-PBC. One of the main
properties of these propositions is that even though the parameter estimation conver-
gence is not guaranteed, the adaptive IDA-PBC achieves asymptotic stabilization. To
illustrate the effectiveness of these propositions, this work performs simulations of the
Inertia Wheel Inverted Pendulum (IWIP) system, considering a time-dependent input
disturbance, a type of physical damping, i.e., friction (not considered in the standard
IDA-PBC methodology), and parameter uncertainties in the system (e.g., inertia).
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Kurzfassung

Diese Masterarbeit ist der Entwicklung eines adaptiven Regelverfahrens für einschlägig
bekannte IDA-PBC-Methodik gewidmet. Das Hauptziel dieses adaptiven Verfahrens ist
die asymptotische Stabilisierung einer Klasse von unteraktuierten mechanischen Syste-
men (UMSs) unter Unsicherheiten, die nicht notwendigerweise in einem Eingangskanal
aufreten (englisch: matched) sind. Diese Klasse von UMSs zeichnet sich durch die Lös-
barkeit einer PDE aus, die sich aus der IDA-PBC-Methodik ergibt. In dieser Arbeit
werden zwei Ansätze zur Entwicklung von adaptivem IDA-PBC gemacht. Eine Hauptei-
genschaft dieser Ansätze ist, dass, obwohl die Konvergenz der Parameterschätzung nicht
gewährleistet ist, adaptives IDA-PBC eine asymptotische Stabilisierung erreicht. Um
die Wirksamkeit dieser Ansätze zu veranschaulichen, führt diese Arbeit Simulationen
an einem invertierten Schwungradpendel (IWIP) durch, wobei eine zeitabhängige Ein-
gangsstörung, eine Art der physikalischen Dämpfung, d.h. Reibung (nicht in der Stan-
dard IDA-PBC-Methodik enthalten), und die Parameterunsicherheiten des Systems
(z.B. Trägheit) berücksichtigt werden.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, special attention has been paid to a special class of mechanical
systems, namely, Underactuated Mechanical Systems (UMSs), i.e., systems that have
fewer control inputs than Degrees of Freedom (DOF). This is mainly because of its
broad application field and the fact that classical control techniques are very often not
applicable to this class of systems [1]. The control theory regarding fully actuated
systems is quite vast and its control design is relatively straightforward; however, they
lack the efficiency, agility, and robustness that UMSs can provide. The reason for it is
that fully actuated systems are forced to follow a desired trajectory, while UMSs could
take advantage of its natural dynamics [2].
A fair amount of control techniques has been developed to control UMSs (e.g., stabi-

lization and tracking). A generalization of these systems has been attempted by many
authors with the aim to propose a systematic control design method for UMSs; how-
ever, it has been difficult to find structural properties of UMSs in a sufficiently general
form to treat this class of systems in a unified way [1].
A well-established control technique for physical systems is the so-called Passivity-

Based Control (PBC) introduced in [3]. This technique has been proven to be very
powerful to control physical systems described by the Euler-Lagrange (EL) motion
equations (e.g., mechanical, electrical and electromechanical systems). Stabilization by
this technique is achieved by passivation of the system with a storage function that has
a minimum at the desired equilibrium point. The desired closed-loop system is still
an EL system as long as it was stabilized shaping only the potential energy. However,
this property is lost when the shaping of the total energy is required to stabilize the
system [4, 5]. To overcome this drawback, a new PBC theory called Interconnection
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1. Introduction

and Damping Assignment (IDA)-PBC was developed in [5] where the shaping of the
total energy is allowed while the previously mentioned properties hold; that is, i) the
closed-loop system has still a Hamiltonian structure, and ii) the closed-loop storage
function is the total energy. An extension of this theory applied to the stabilization
of UMSs is presented in [6], where they characterize a class of systems for which IDA-
PBC yields a smooth stabilizing controller. This class is given by systems whose set
of Partial Differential Equations (PDEs), corresponding to the potential and kinetic
energy, can be solved.
Uncertainties in a system model, as well as external disturbances among others, can

lead to the instability of the closed-loop system. Adaptive control and robust con-
trol are two main techniques for uncertainty compensation. Adaptive control is more
suitable in dealing with uncertainties in constant or slow-varying parameters while ro-
bust control is more appropriate when dealing with unmodeled dynamics and quickly
varying parameters [7]. In [8] an adaptive approach combined with the canonical trans-
formation theory is presented for general Port-Hamiltonian (PH) systems. Although
the IDA-PBC technique applied to UMSs has a certain range of robustness against
uncertainties (discussed in [9]), this work is devoted to developing an adaptive control
law based on the IDA-PBC technique in order to extend its application realm. The
types of uncertainties, for which the adaptive controller is designed, discussed in this
work are input disturbance and parameter uncertainties.

1.2 Literature Review

1.2.1 Underactuated Mechanical Systems

UMSs are defined as systems that have fewer control inputs than DOF. As a conse-
quence of the underactuation, the generalized inputs cannot control the instantaneous
acceleration in an arbitrary direction, therefore UMSs cannot follow arbitrary trajec-
tories [1, 2]. The research field to determine suitable control algorithms for UMSs is
quite active due to the variety of real-life applications such as swimming and flying
robots, walking robots, underactuated manipulators, flexible systems, among others;
plus, these systems are usually far more interesting than fully actuated systems.
UMSs can be classified in various ways such as in [1, 10, 11]. One of those classifica-

tions focuses on the reasons of underactuation, which, summarized in [10, p. 15], can
be stated as: i) Nature of the system dynamics (e.g., aircrafts, underwater vehicles,
spacecraft, and helicopters), ii) Imposed by design to reduce costs, weight or another
practical purpose (e.g., satellites with two thrusters and flexible-link robots), iii) Ac-
tuator failure (e.g., airplanes and surface vessels), iv) Artificially imposed to generate
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1. Introduction

low-order complex nonlinear systems in order to gain insight into controlling high-order
UMSs (e.g., IWIP and beam and ball system).1

As was previously mentioned, a countless number of UMSs can be found in real life,
some of them have practical applications such as airplanes, surface vessels, magnetic
suspension, etc. and some others are mainly used for academic purposes (standards
for nonlinear control where it is not feasible to apply classical control algorithms [1])
such as, but not limited to, the beam and ball system, the Translational Oscillator
Rotational Actuator (TORA) system, the IWIP system, the Acrobot system and the
Cart-Pole system.
When it comes to UMSs it is common to find that some of them are subject to

nonholonomic constraints, either first- or second-order nonholonomic constraints (ve-
locity or acceleration constraints). Velocity constraints occur mainly in wheeled mobile
robots and wheeled vehicles (e.g., the pure rolling conditions of wheels) while acceler-
ation constraints occur mainly in surface vessels, underwater vehicles, spacecraft and
robot manipulators [12]. The underactuation property of UMSs is sometimes considered
as a second-order constraint [1]. However, this work will consider neither nonholonomic
nor holonomic constraints; that is, constraints that depend only on the generalized co-
ordinates and time. Useful information regarding nonholonomic systems can be found
in [13].

1.2.2 Control of UMSs

Unlike the class of fully actuated systems, where some control techniques such as feed-
back linearization and passivity based adaptive control can be applied to the entire
class, there are only few control techniques such as collocated Partial Feedback Lin-
earization (PFL) that can be applied to the entire class of UMSs [14]. Addressing the
developments regarding each of the most popular control techniques applied to UMSs
is too broad to survey in a single chapter and since it is not the main topic of this work,
only the main idea and some of their applications will be presented. Table 1.1 shows
the most popular control techniques to stabilize UMSs summarized from [11].
In a nonlinear UMS, the fact that there are more DOF than control inputs makes it

impossible to completely linearize this system by a change of coordinates. However, a
partial linearization of this systems can be achieved [1].
Collocated PFL refers to the global linearization of the active (actuated) configuration

variables using an invertible change of control [15]. The control law in the resulting
system appears in both subsystems (actuated and underactuated). Even though the
collocated PFL offers a structural simplification of the control problem, it was shown

1The IWIP system is sometimes referred as the Inertia Wheel Pendulum (IWP) system.
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1. Introduction

Control Techniques for UMSs
Collocated PFLPartial Feedback Linearization Non-Collocated PFL
Backstepping

Controlled Lagrangian (CL)Energy Based methods
IDA-PBC

Sliding Mode Control (SMC)
Fuzzy Control

Optimal Control

Table 1.1. – Main control techniques for UMSs

in [16] that for some systems, the application of this technique leads to unstable zero
dynamics, so the choice of the control input is not trivial. In [10] is presented an
appropriate structure for a global change of coordinates that decouples both subsystems
with respect to the new control. Some UMSs, where collocated PFL has been used, are:
the acrobot system [17], three link gymnast robot [16], and the cart-pole system [18].
Non-collocated PFL linearizes the passive (underactuated) configuration variables.

However, to achieve such linearization, the Strong Inertial Coupling condition [15]
must hold, i.e., the number of actuated DOF is at least as great as the number of
underactuated DOF. This method has been successfully applied to the following UMSs:
the flexible one-link robot [10], the surface vessel [19], and the Pendubot [20].

Non-collocated PFL, as well as collocated PFL, is used as an initial step for reduction
and control of UMSs [11].
Backstepping is a recursive technique that has been proven to be effective to achieve

global stabilization of UMSs. The main idea of this technique is that in each iteration,
a "virtual" system is designed, such that it is strictly passive with respect to a "virtual"
input and a "virtual" output [21, 22]. This technique is mainly suitable for low-DOF
systems because the higher the DOF of the system, the higher the complexity of the
procedure. Some UMSs, where backstepping has been applied, are: Unmanned Aerial
Vehicles (UAVs) [23], Vertical Take-Off and Landing (VTOL) aircrafts [24, 25], and
surface vessels [26].
Sliding Mode Control is a technique insensitive to parameter variation and external

perturbations. The reason for this lies in the principle of this technique; that is, the
system is forced to reach a given surface, called a switching surface, and remain there.
The equations and parameters defining this surface determine the dynamic behavior
(sliding mode), which is independent of the structural properties of the system. The
procedure is done in two steps. First, a surface is determined in order to achieve a
sliding mode with the desired properties, afterward, a discontinuous control law chosen
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1. Introduction

such that the surface is invariant and attractive [1, 27]. This technique has one major
drawback though: the existence of a phenomenon called chattering, i.e., high-frequency
oscillations of the controlled variables in the surroundings of the surface. Application
of this technique to UMSs include: wheeled inverted pendulum [28], the beam and ball
system [29], and underactuated satellites [30].
Even though in Table 1.1 CL and IDA-PBC appear as two different control techniques

it is shown in [31] that the CL method is contained in the IDA-PBC method.
The main idea of the IDA-PBC technique is to assign a desired Port-Controlled

Hamiltonian (PCH) structure to the closed-loop in order to regulate the behavior of
non-linear systems. The reason why IDA-PBC is aimed to control physical systems
described by PCH models is that these models are natural candidates to describe many
physical systems [32]. The design of the IDA-PBC control law can be split into two
parts, the first is the so-called energy shaping where the total energy function of the
system is modified to assign the desired equilibrium and the second part is the damping
injection to achieve asymptotic stability. The main differences between IDA-PBC and
CL is that the CL method produces a state feedback that transforms a given EL system
into the desired EL system by modifying the generalized inertia matrix and potential
energy function while the IDA-PBC method generates a state feedback that transforms
a given Hamiltonian system into a desired Hamiltonian system by additionally modify-
ing the interconnection and dissipation matrices [5, 33]. There is one difficulty though
when applying the IDA-PBC technique (as well as in CL); that is, since we are inter-
ested in UMSs there are some restrictions known as matching conditions that have to
be satisfied. There are three main approaches to fulfill these matching conditions: non-
parameterized, parameterized, and algebraic IDA. Taking advantage of the structure
of UMSs, the parameterized IDA approach is usually used for their stabilization. Ap-
plying parameterized IDA, the matching conditions yield a PDE that has to be solved,
which is usually not an easy task; however, the particular PDE that has to be solved
in IDA-PBC is parameterized in terms of the interconnection and damping matrices,
which can be chosen by the designer, based on physical considerations, to simplify the
solution of the PDE [33]. The math involved in the IDA-PBC methodology and mathe-
matical preliminaries for the right understanding of this work will be further presented
in Chapter 2.

1.2.3 Remarks on Passivity-Based Control for UMSs

The IDA-PBC technique is formulated for systems described by PCH models. However,
it is not restricted to stabilize only this class of systems, this is due to its universal
stabilization property [32].
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In [6] it is shown that, for the IDA-PBC technique, if the difference between the
DOF and actuators is one, and the open-loop inertia matrix depends only on the
underactuated coordinate, then the kinetic shaping energy PDEs can be reduced to a
set of Ordinary Differential Equations (ODEs), which are easier to solve. Systems that
fulfill the first requirement are common in the control literature, some few examples
are the beam and ball system, and the cart and pendulum system. A simplification of
the potential energy PDEs for mechanical systems with underactuation degree one is
developed in [34], and applied to a rotary inverted pendulum.2

As well as in IDA-PBC, in the Energy Shaping (ES) [36] technique there is often the
necessity to solve PDEs. However, in [37] it is proposed a new ES method to stabilize a
class of PH systems where there is no need to solve PDEs. A related work is presented
in [38].
A generalization of the IDA-PBC technique for mechanical systems is presented in

[39] where it is claimed that the introduction of generalized forces, which replaces a
sub-matrix of the interconnection matrix, reduces the number of kinetic shaping energy
PDEs; however, it is demonstrated in [40] that this affirmation is not correct. Even
though the affirmation in [39] was wrong, it was the motivation of an extension of the
Simultaneous Interconnection and Damping Assignment (SIDA)-PBC technique [41].
One of the main steps of the standard IDA-PBC technique is splitting the control

action into two terms, namely, energy-shaping and damping injection. It was shown
in [41] that such partition induces some loss of generality, that is why in their work both
terms are calculated simultaneously. In addition, to extend even more the application
range of the IDA-PBC technique, motivated by [39], the inclusion of generalized forces
is considered in [42,43].
It would be logical to think that energy dissipation enhances the stability of a system;

however, this is not necessarily true since the effect of the combination of gyroscopic
and dissipation forces on a mechanical system’s stability is unexpected [44]. A related
phenomenon is studied in [45] where it is analyzed the effect of the presence of physical
damping (e.g., friction) on the closed-loop stability in the IDA-PBC technique. For the
case when the closed-loop stability in IDA-PBC with physical damping is lost, their
work states the necessary and sufficient conditions in order to guarantee the existence
of a control redesign, plus, if those conditions are met, they provide two methods for
the redesign.

2An approach to ease the calculation of the matching conditions for linear PCH systems is presented
in [35].
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1.2.4 Adaptive Control for UMSs

After designing a controller for a specific system, the performance of this controller
applied to the real system will not necessarily be the same from the simulations pre-
viously performed. This is because in order to design the controller a mathematical
model approximation has to be made. However, one can take into account a class of
system model uncertainties that are likely to appear in the system and then analyze the
properties of the designed controller. These model uncertainties cannot be expressed
in mathematical equations, but they may be characterized [46]. Adaptive control is
a technique used to compensate the effect of those model uncertainties on a system
response. Even though many of the existing control techniques have already shown
robustness against a certain range of uncertainties, techniques from adaptive control
are being used to improve the performance of such control techniques.
In [47] an interesting work regarding adaptive control of UMSs is done. They extend

the adaptive control results for fully actuated systems to the underactuated case using
a collocated adaptive control approach. One of the main advantages of their technique,
besides local stability and convergence of the collocated variables, is that since they do
not use any acceleration measurements, causality issues are avoided.
An adaptive control scheme for general nonautonomous PH systems, where matched

uncertainties are considered3, is proposed in [8,48]. Their work combines the canonical
transformation and stabilization of PH systems together with adaptive control in or-
der to asymptotically stabilize such systems in the presence of matched uncertainties
(mainly input disturbances). It is also important to remark that, even though their
technique theoretically accounts for uncertainties caused by unknown system param-
eters (e.g., Inertia values) that can be linearly parameterized in the control input, it
might not always be feasible due to the fact that one of the main conditions that they
require is the matrix of known functions to be non-constant and bounded as time goes
to infinity (basically a time-dependent function). They also apply their adaptive control
scheme to tracking control of fully actuated mechanical systems. A survey reviewing
their work is presented in [49], where learning control methodologies for PH systems
are also presented.
In order to compensate for the effect of uncertainties in the IDA-PBC control law

for the IWIP system, an adaptive control law is proposed in [50]. Since the efficiency
of the IDA-PBC controller depends on the tuning of its gains, the goal of the proposed
adaptive law is to adapt some of the IDA-PBC control law gains and so improve the
performance of the controller. The adaptive law proposed in their work coincides with
the one from [8]. A few remarks about their work are: i) at the beginning of their work,

3An uncertainty is matched if it enters the system through the same channel as the control input.
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1. Introduction

it is mentioned that they will deal with the asymptotic stability of the IWIP system;
however, they only prove stability, ii) Besides the simulations and real-life experiment,
there is no analysis about how their adaptive control law does improve the efficiency of
the IDA-PBC controller.
The work done in [51] presents an interesting approach to deal with external distur-

bances and parametric uncertainties for a set of nonlinear PCH systems with a common
control input. Their work first presents theorems for the simultaneous stabilization of
two nonlinear PCH systems. For the case when there simultaneously exist parametric
uncertainties in two PCH system, a theorem is stated to achieve an adaptive simulta-
neous stabilization of those systems. Additionally, if besides parametric uncertainties,
there are external disturbances, another theorem is stated in order to obtain a ro-
bust adaptive simultaneous stabilization. Finally, they study the case for more than
two PCH systems and provide a theorem for the simultaneous stabilization of those
systems.

1.3 Contributions of this Thesis

This thesis focuses on the asymptotic stabilization of a special class of mechanical
systems, namely, UMSs (represented as PH systems) whose PDEs in the IDA-PBC
technique can be solved, and are affected by parameter uncertainties (not necessarily
matched) and input disturbances. To achieve that, a couple of propositions are stated
based on the standard IDA-PBC technique and adaptive control in order to extend
its application realm. The first proposition deals with input disturbances while the
second one deals with parameter uncertainties including friction, which is obviated in
the standard IDA-PBC procedure. Stability in the first proposition is demonstrated
using nonautonomous systems’ stability theory because the external disturbance is
considered as a time-dependent function, while stability theory for autonomous systems
is used for the second proposition because the parameter uncertainties are considered
time-independent. Asymptotic stability is established under the condition of zero state
detectability with respect to the passive output. Both propositions could have been
stated in a single one. However, to convey the main idea behind the adaptive approach
in a clearer way for each case, it was decided to keep them apart. In order to prove
the validity of the preceding propositions, some simulations are carried out on the
well-known IWIP system and then compared to the standard IDA-PBC technique.
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1. Introduction

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows: In Chapter 2 mathematical pre-
liminaries that will help to improve the understanding of the proposed propositions
are presented. In Chapter 3, as a base controller the one resulting from the IDA-PBC
technique is used and, two propositions, that add an adaptive part to the standard
IDA-PBC, are presented to compensate the effect of parameter uncertainties and input
disturbance on the response of UMSs expressed as PH systems. The well-known IWIP
system is used in Chapter 4 to carry out a variety of simulations in order to verify the
validity of the adaptive IDA-PBC control approach. Finally, some concluding remarks
and future work are given in Chapter 5.
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Chapter 2

Mathematical Preliminaries

This chapter is devoted to presenting the necessary mathematical foundations for the
right understanding of the adaptive IDA-PBC approach discussed in Chapter 3. In Sec-
tion 2.1, the theory to study the stability of nonlinear autonomous and nonautonomous
systems is discussed. The basis of PBC, the definition and properties of PH systems,
and the IDA-PBC technique are reviewed in Section 2.2. Finally, The main idea of the
adaptive approach taken in this work is stated in Section 2.3.

2.1 Stability of Nonlinear Systems

In this section, the stability of equilibrium points in nonlinear systems is studied. Since
the analytical solutions of nonlinear differential equations generally cannot be obtained,
it is necessary to employ other mathematical tools in order to establish the stability
of these systems. Stability in the sense of Lyapunov is presented and then concepts
to extend Lyapunov’s stability theory are stated. Lyapunov’s work, The Problem of
Motion Stability, includes two methods for stability analysis: linearization method and
the direct method. This work will focus on the latter one. In the case of nonlinear
systems, the terms time-varying or time-invariant, used in linear systems, are typically
replaced by the terms nonautonomous and autonomous respectively. All the concepts
stated in this section, together with the proofs of theorems and lemmas, can be found
in [52,53].

2.1.1 Autonomous Systems

Let’s consider the autonomous system

ẋ = f(x) , (2.1)
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where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. Without
loss of generality, the equilibrium point x∗ ∈ D of (2.1), which obeys

f(x∗) = 0 ,

can be considered to be the origin of Rn, that is, x∗ = 0. This can be done because
any equilibrium point can be shifted to the origin via a change of variables. Therefore,
it will be assumed that f(x) satisfies f(0) = 0. Let x(t) be the solution of (2.1), i.e.,
the state trajectory, corresponding to the initial condition x(0) = x0.

Definition 2.1 (Lyapunov Stability) The equilibrium point x∗ = 0 of (2.1) is

◦ stable, if for each ε > 0 there is δ = δ(ε) > 0 such that ∀x0 ∈ Rn with

‖x0‖ < δ =⇒ ‖x(t)‖ < ε, ∀ t ≥ 0;

◦ unstable, if it is not stable;

◦ asymptotically stable, if it is stable and δ can be chosen such that ∀x0 ∈ Rn with

‖x0‖ < δ =⇒ lim
t→∞

x(t) = 0;

◦ exponentially stable, if it is asymptotically stable and there exist two strictly pos-
itive numbers α and λ such that ∀x0 ∈ Rn with

‖x0‖ < δ =⇒ ‖x(t)‖ ≤ α‖x0‖e−λt, ∀ t ≥ 0.

�

Having defined the stability concepts, we now have to define a way to determine the sta-
bility of an equilibrium. Lyapunov’s direct method is based on a physical observation:
“if the total energy of a mechanical (or electrical) system is continuously dissipated,
then the system, whether linear or nonlinear, must eventually settle down to an equi-
librium point” [53, p. 57]

Definition 2.2 (Positive/Negative (semi-)definite) Let X ⊆ Rn be an open set
containing x = 0. A function V = V (x) with V : X → R is called positive (negative)
definite if

1) V is continuously differentiable with respect to x,

2) V (0) = 0, and

Master Thesis Jhossep Popayán 11



2. Mathematical Preliminaries

3) V (x) > 0 (V (x) < 0) ∀x ∈ X\{0}.

However, if instead of 3) the following is satisfied

3’) V (x) ≥ 0 (V (x) ≤ 0) ∀x ∈ X\{0},

then V is called positive (negative) semidefinite. �

Theorem 2.1 (Lyapunov’s direct method) Let x∗ = 0 be an equilibrium point of
(2.1) and X ⊆ Rn be an open set containing x∗. If there exists a function V = V (x)
with V : X → R such that

1) V is positive definite and

2) V̇ is negative semidefinite, i.e., V̇ (x) = ∂V (x)
∂x f(x) ≤ 0 ∀x ∈ X ,

then the equilibrium point x∗ = 0 is stable. Moreover, if

2’) V̇ is negative definite,

then x∗ = 0 is asymptotically stable. �

Functions that initially satisfy 1) in Theorem 2.1 are called Lyapunov function can-
didates, while functions satisfying 1)-2) and 1)-2’) are called Lyapunov functions and
strict Lyapunov functions respectively.
The sign definiteness of functions of the quadratic form, i.e., V (x) = x>Px, where

P is a real symmetric matrix, can be easily verified. V (x) is positive definite (positive
semidefinite) if and only if P is positive definite (positive semidefinite), i.e., P � 0 (P �
0). Even though there is no general systematic way to find Lyapunov functions, there
are some approaches that can help to find them, e.g., consider the total energy of a
mechanical or electrical system as natural Lyapunov candidates; or apply the variable
gradient method.

Remark The Lyapunov stability criterion is only sufficient. Therefore, if the condi-
tions stated in Theorem 2.1 are not fulfilled, it does not imply that the equilibrium is
not stable or asymptotically stable.

Although the sufficient conditions for asymptotic stability have been introduced in
the Theorem 2.1, it is not always possible or at least easy to find a strict Lyapunov
function. Therefore, Lyapunov’s theory needs to be expanded appealing to the concept
of invariance principle, which is stated in the next theorem.
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Theorem 2.2 (LaSalle’s invariance principle) Let Ω ⊂ X be a compact set that is
positively invariant with respect to (2.1). Let V : X → R be a continuously differentiable
function such that V̇ (x) ≤ 0 in Ω. Let S = {x ∈ Ω|V̇ (x) = 0} and ε be the largest
positively invariant set in S. Then every solution x(t) starting in Ω approaches ε as
t→∞. �

One important remark of Theorem 2.2 is that the function V (x) is not required to be
positive definite as it was in Lyapunov’s theorem 2.1. Since the main interest of this
work is to show that limt→∞ x(t) = 0, it has to be established that ε is the origin. This
is accomplished by showing that no solution, other than the trivial solution x ≡ 0, can
stay identically in S. In order to extend Theorem 2.1, Theorem 2.2 is specialized, which
results in the following theorem, also known as the Barbashin-Krasovskii theorem.

Theorem 2.3 Let x∗ = 0 be an equilibrium point of (2.1) and V : X → R be a
continuously differentiable positive definite function on a domain X ⊆ Rn containing
the origin, such that V̇ (x) ≤ 0 in X . Let S = {x ∈ X |V̇ (x) = 0} and suppose that
no solution, other than the trivial solution x ≡ 0, can stay identically in S. Then the
origin is asymptotically stable. �

Remark Theorem 2.3 is equivalent to Theorem 2.1 when V̇ (x) is negative definite.

2.1.2 Nonautonomous Systems

Let’s consider the nonautonomous system

ẋ = f(x, t) , x0 = x(t0) , (2.2)

where f : X × [t0,∞)→ Rn is piecewise continuous in t and Locally Lipschitz in x on
X × [t0,∞), with an open set X ⊆ Rn containing x = 0. The equilibrium points x∗ of
(3.22) at t = t0 are defined by

f(x∗, t) ≡ 0 , ∀ t ≥ t0 ≥ 0 .

Similar to autonomous systems, without loss of generality, the equilibrium points x∗ of
(3.22) can be assumed to be at the origin of Rn, that is, x∗ = 0. Unlike autonomous
systems, the stability behavior of the equilibrium points in nonautonomous systems
will, in general, depend on t0. Therefore, a redefinition of Definition 2.1 must be done
for nonautonomous systems.

Definition 2.3 (Lyapunov stability for nonautonomous systems)
The equilibrium point x∗ = 0 of (3.22) is
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◦ stable, if for each ε > 0 there is δ = δ(ε, t0) > 0 such that ∀x0 ∈ Rn with

‖x0‖ < δ =⇒ ‖x(t)‖ < ε, ∀ t ≥ t0 ≥ 0; (2.3)

◦ uniformly stable, if for each ε > 0 there is δ = δ(ε) > 0, independent of t0, such
that (2.3) is satisfied;

◦ unstable, if it is not stable;

◦ asymptotically stable, if it is stable and there is a positive constant c = c(t0) such
that limt→∞ x(t) = 0, for all x0 ∈ Rn with ‖x0‖ < c;

◦ uniformly asymptotically stable, if it is uniformly stable and there is a positive con-
stant c, independent of t0, such that for all x0 ∈ Rn with ‖x0‖ < c, limt→∞ x(t) =
0, uniformly in t0; that is, for each η > 0, there is T = T (η) > 0 such that

‖x(t)‖ < η, ∀ t ≥ t0 + T (η), ∀x0 ∈ Rn with ‖x0‖ < c.

�

In order to study the stability of nonautonomous systems, Lyapunov’s stability theory
for autonomous systems is extended. The following theorem will state the sufficient
conditions to prove uniform stability and uniform asymptotic stability.

Theorem 2.4 (Uniform Stability/Asymptotic Stability) Let x∗ = 0 be an equi-
librium of (3.22). If there exists a function V = V (x, t) with V : X × [t0,∞) → R,
continuously differentiable such that ∀ t ≥ 0 and ∀x ∈ X

W1(x) ≤ V (x, t) ≤W2(x) ,

∂V (x)
∂t

+ ∂V (x)
∂x

f(x, t) ≤ 0 ,

where W1(x) and W2(x) are continuous positive definite functions on X , then x∗ = 0
is uniformly stable. Moreover, if

∂V (x)
∂t

+ ∂V (x)
∂x

f(x, t) ≤ −W3(x) ,

where W3(x) is a continuous positive definite function on X . Then x∗ = 0 is uniformly
asymptotically stable. �

Let us note that LaSalle’s invariance principle, used to prove asymptotic stability for
autonomous systems when V̇ (x) is negative semidefinite, can no longer be applied to
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the case of nonautonomous systems. However, a similar, but a weaker statement can
be presented using the following lemma.4

Lemma 2.1 (Barbălat) Let f(t) be a differentiable function. If the following condi-
tions are satisfied

1) limt→∞ f(t) = c, |c| <∞

2) ḟ(t) is uniformly continuous

then limt→∞ ḟ(t) = 0. �

Uniform continuity of a function is usually not easy to prove using its definition (not
mentioned here). However, a sufficient condition to prove it indirectly is to demonstrate
that ḟ(t) is Lipschitz-continuous or f̈(t) is bounded.

Now, an extension of Lemma 2.1 is presented for the analysis of dynamic systems.
This extension looks similar to the invariance set theorem in the Lyapunov analysis,
hence its name.

Lemma 2.2 (Lyapunov-Like Lemma) if there exists a scalar function V (x, t) :
Rn × [t0,∞)→ R differentiable in x such that

1) V (x, t) is lower bounded,

2) V̇ (x, t) is negative semidefinite, and

3) V̇ (x, t) is uniformly continuous in time,

then limt→∞ V̇ (x, t) = 0. �

Uniform continuity of V̇ (x, t) is typically verified, similar to Lemma 2.1, by proving
that V̈ (x, t) is bounded. Note that, V (x, t) then approaches a finite limiting value V∞,
such that V∞ ≤ V (x(t0), t0).

Some important differences between the Lyapunov-like and Lyapunov analysis are:
i) The function V is required to be only lower bounded in x and t instead of being
positive definite, ii) The function V̇ , besides being negative semidefinite, also has to be
uniformly continuous.

4Weaker in the sense that unlike LaSalle’s invariance principle, the Lyapunov-like lemma does not
give any information about the domain of attraction.
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2.2 Passivity-Based Control: Interconnection and Damp-
ing Assignment

2.2.1 Passivity

This section focuses on establishing the mathematical basis for the so-called passivity-
based control, i.e., dissipativity and passivity properties. Dissipativity is a property
of physical systems, that is closely related to the notion of energy dissipation (e.g.,
dissipation as heat in resistors for electrical systems and dissipation due to friction
in mechanical systems). To mathematically define the concept of dissipativity, two
functions must be defined: storage function, which measures how much energy is stored
in the system; and the supply rate, which measures how fast external energy is being
injected in the system. The main idea behind the dissipativity property is that a
system cannot have, at a certain time, more energy than what was injected into it.
The main sources of the mathematical concepts, here presented, where borrowed from
[4,52,54–57].

Assumption The system

Σ :

ẋ = f(x, u), x ∈ X ⊆ Rn, u ∈ U ⊆ Rm

y = h(x, u), y ∈ Y ⊆ Rp
(2.4)

with u = 0 has an equilibrium at x∗ = 0, that is, f(0, 0) = 0 and h(0, 0). For
all initial conditions x(0) = x0 and input functions u = u(t), the solution x(t) =
ϕ(x0, u(t), t),∀ t ≥ 0 is unique. Let s : U ×Y → R be the supply rate of Σ. The supply
rate s satisfies ∀x0 ∈ X and ∀u(t) ∈ U the following relationship

∫ t

0
|s(u(τ), y(τ))| dτ <∞, ∀ t ≥ 0 .

Definition 2.4 (Dissipativity) The system Σ is said to be dissipative with respect to
the supply rate s, if there exists a non-negative storage function V (x) ≥ 0, V : X → R+,
such that ∀x0 ∈ X and ∀u(t) ∈ U (that result in the solution trajectory x = x(t)), the
following inequality (integral dissipativity inequality) holds

V (x(t)) ≤ V (x0) +
∫ t

0
s(u(τ), y(τ)) dτ . (2.5)

�

Master Thesis Jhossep Popayán 16



2. Mathematical Preliminaries

In case (2.5) holds with equality ∀x0, t ≥ 0, u(t), then the system Σ is conservative
with respect to s. The physical interpretation of (2.5) is that there cannot be internal
"creation of energy"; that is, the stored energy V (x(t)) at any time t ≥ t0 ≥ 0 is at most
equal to the initial stored energy V (x(t0)), plus the supplied energy

∫ t
t0
s(u(τ), y(τ)) dτ .

Therefore, there can only be internal dissipation of energy.
Inequality (2.5) can be equivalently rewritten (assuming V (x(t)) is continuously dif-

ferentiable) as

∂V (x(t))
∂x

f(x, u) ≤ s(u(t), y(t)), ∀ t ≥ 0 (differential dissipativity inequality)

Definition 2.5 (Passivity) The system Σ with U = Y = Rm is said to be passive if it
is dissipative with respect to the supply rate s(u(t), y(t)) = u>y and the storage function
satisfies V (0) = 0. �

Definition 2.6 (Zero-State Observability) Σ is zero-state observable if u(t) = 0,
y(t) = 0, ∀ t ≥ 0, implies x(t) = 0, ∀ t ≥ 0. �

A weaker version of the observability property, used to prove asymptotic stability, is
presented in the next definition.

Definition 2.7 (Zero-State Detectability) Σ is zero-state detectable if u(t) = 0,
y(t) = 0, ∀ t ≥ 0, implies limt→∞ x(t) = 0. �

Even thought the zero-state observability and detectability properties are defined for
autonomous systems, they can be used for non-autonomous systems.

Theorem 2.5 (Passivity and Stability) Let the system Σ be passive with a C1 stor-
age function V and y be C1 in u for all x. Then the following properties hold:

(i) if V is positive definite, then the equilibrium x = 0 of Σ with u = 0 is stable.

(ii) if Σ is Zero-State detectable (ZSD), then the equilibrium x = 0 of Σ with u = 0
is stable.

(iii) When there is no throughput, i.e., y = h(x), then the feedback u = −y achieves
asymptotic stability of x = 0 if and only if Σ is ZSD. �

Assumption From now on, it is assumed that Σ has no feedthrough terms, i.e., y =
h(x).
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2.2.2 Port-Hamiltonian Systems

PH systems are generalizations of the Hamiltonian representation of systems stemming
from different physical domains. They are defined in terms of a Hamiltonian function
and two geometric structures: power-conserving interconnection and energy dissipa-
tion. These structures are such that, the Hamiltonian function satisfies the dissipation
inequality. The literature regarding PH systems is quite vast. In this work, we are
going to focus on a special case of PH systems, that is, input-state-output PH systems.
The mathematical concepts, here presented, are mainly borrowed from [54,58,59].
A generalized time-invariant PH system in the standard input-state-output represen-

tation is given by5

ẋ = (J(x)−R(x))∂H(x)
∂x

+ g(x)u ,

y = g>(x)∂H(x)
∂x

,

(2.6)

where x ∈ Rn, u, y ∈ Rm, J(x) = −J>(x) ∈ Rn×n is the power-conserving inter-
nal interconnection structure (generally known as the natural interconnection matrix),
R(x) = R>(x) � 0 ∈ Rn×n is the resistive structure (generally known as the damping
matrix) and g(x) ∈ Rn×m is the input matrix and determines how the control signal
enter into the system. The Hamiltonian H(x) ∈ R is the total stored energy of the sys-
tem. Since the structures J(x) and R(x) are skew-symmetric and positive semidefinite,
respectively, the passivity inequality holds

∂H(x(t))
∂t

=
(
∂H

∂x

)>
ẋ = −

(
∂H

∂x

)>
R

(
∂H

∂x

)
+

y>︷ ︸︸ ︷(
∂H

∂x

)>
g u ≤ u>y .

Notice that, if

1) u = 0 =⇒ Ḣ(x) ≤ 0 and

2) the equilibrium x∗ = arg minH(x) =⇒ H(x) > 0, ∀x ∈ X ⊆ Rn\{0},

then H is a (weak) Lyapunov function.

5From now on, the gradients are considered as column vectors.
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2.2.3 Port-Hamiltonian Modeling of a Mechanical System

Mechanical systems have a the following natural PH system representation

ẋ︷︸︸︷[
q̇

ṗ

]
=


J︷ ︸︸ ︷[

0 In

−In 0

]
−

R︷ ︸︸ ︷[
0 0
0 R(q)

]
∂H∂q
∂H
∂p

+

g︷ ︸︸ ︷[
0

G(q)

]
u , (2.7)

where q ∈ Rn and p ∈ Rn are the generalized positions and momenta, respectively,
and form the system’s state x = [q>, p>]>. For fully actuated systems G(q) = In. We
will focus on underactuated mechanical systems, so the matrix G(q) ∈ Rn×m is not
invertible i.e., rank(G) = m < n. If we were to consider natural damping we would
have to meet the conditions stated in [45]. To avoid these conditions, we assume the
system has no natural damping (at least for the IDA-PBC technique), so the system
(2.7) becomes [

q̇

ṗ

]
=
[

0 In

−In 0

]∂H∂q
∂H
∂p

+
[

0
G(q)

]
u . (2.8)

2.2.4 Interconnection and Damping Assignment Passivity-Based Con-
trol

The main goal of the so-called IDA-PBC technique is to modify the total energy func-
tion of the system (2.8) into a desired closed-loop energy function in order to obtain
the desired equilibrium (q∗, 0). Additionally, damping is added to achieve asymptotic
stability. The closed-loop system is a PH system, whose energy function will be deter-
mined via the solution of a PDE. This method was introduced in [5] to control physical
systems described by PCH models to exploit its properties (mentioned in Section 2.2.2).
However, it was showed in [32] that it can be applied to a more general class of systems,
namely, nonlinear affine systems. This work will be based on the application of this
method to UMS. The concepts here presented are mainly borrowed from [33, 44]. The
references [5, 32,45,59] are also taken into consideration.
First, a general idea of the IDA-PBC technique for general nonlinear systems is

presented, then a more specific approach for UMSs is introduced.
Consider the following nonlinear affine system

ẋ = f(x) + g(x)u. (2.9)
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As stated before, the closed-loop function is a PH system, which is obtained via a state
feedback u = u(x), that is,

f(x) + g(x)u = (Jd(x)−Rd(x))∂Hd(x)
∂x

. (2.10)

From the properties mentioned in Section 2.2.2, the (asymptotic) stability of the equi-
librium x∗ can be achieved using Theorem 2.1, which can be applied if the following
requirements are satisfied

Rd(x) (�) � 0 , (2.11)

x∗ = arg minHd(x) . (2.12)

The equality (2.10), for UMSs (i.e., g(q) ∈ Rn×m), can equivalently be rewritten as

u =
(
g>g

)−1
g>
(

(Jd(x)−Rd(x))∂Hd(x)
∂x

− f
)
, (2.13a)

0 = g⊥
(

(Jd(x)−Rd(x))∂Hd(x)
∂x

− f
)
, (2.13b)

where g⊥ ∈ R(n−m)×n is a full rank left annihilator of g(x), i.e., g⊥g = 0 (Lemma 2
in [60]). Equation (2.13b) is usually referred as the matching equation, which can be
difficult to solve. Solving this matching condition is the key step when applying the
IDA-PBC technique.
Apart from the previous conditions imposed on Jd and Rd, that is, Jd = −J>d and

Rd = R>d � 0, they are free parameters. Hd can be totally, or partially, fixed so that
(2.12) is satisfied. g⊥ has an additional degree of freedom, since it is not unique for a
given g(x). There are mainly three ways to solve the matching equation, these are:
Non-Parameterized IDA Here, the interconnection Jd and damping Rd matrices are

fixed, which was the original idea of IDA in [5], hence its name. Additionally, g⊥

is fixed. This yields a PDE whose solutions define the energy functions. A suitable
solution that satisfies (2.12) has to be selected.
Algebraic IDA The desired energy function is fixed, then (2.13b) becomes an alge-

braic equation in Jd, Rd and g⊥.
Parameterized IDA The structure of the desired energy function is physically moti-

vated, for instance, for mechanical systems the energy function is its total energy, i.e.,
the sum of kinetic and potential energy. Fixing the structure of Hd results in a new
PDE to define its unknown parameters. It also imposes some constraints in Jd and Rd.
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This work will focus on the application of the parameterized IDA applied to a class of
mechanical systems, namely, underactuated mechanical systems whose PDE (2.13b) can
be solved. Therefore, we now present the calculations to determine a suitable control
law uida for such an approach. The structure of the nominal mechanical system’s (2.8)
energy function is described by6

H(q, p) = 1
2p
>M−1(q)p+ V (q) , (2.14)

where M(q) = M>(q) � αIn ∈ Rn, for some α ∈ R+ is the inertia matrix and V (q) is
the potential energy. The structure of the desired energy function is

Hd(q, p) = 1
2p
>M−1

d (q)p+ Vd(q) , (2.15)

where Md(q) = M>d (q) � αIn ∈ Rn, for some α ∈ R+ and Vd(q) represent the closed-
loop inertia matrix and potential energy function, respectively.
The desired equilibrium x∗ has to belong to an admissible set.

Definition 2.8 (Admissible equilibrium) The equilibrium point (q∗, 0) of the nom-
inal system (2.8) is said to be admissible if the following equality is satisfied

G⊥
∂V (q)
∂q

∣∣∣∣
q∗

= 0 . (2.16)

Vd(q) is required to have an isolated minimum at the desired equilibrium q∗, i.e.,

q∗ = arg minVd(q) . (2.17)

The closed-loop PH system is

[
q̇

ṗ

]
=


Jd︷ ︸︸ ︷[

0 J1

−J>1 J2

]
−

Rd︷ ︸︸ ︷[
0 0
0 R2

]
∂Hd∂q
∂Hd
∂p

 . (2.18)

Now, the equality (2.10) becomes

[
0 In

−In 0

]∂H∂q
∂H
∂p

+
[

0
G

]
uida =

[
0 J1

−J>1 J2 −R2

]∂Hd∂q
∂Hd
∂p

 . (2.19)

6Even though it was mentioned that IDA is not restricted to control PH systems, it is considered here
that the nominal system is PH.
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From (2.19) it is clear that q̇ = M−1p must hold in both, the nominal and closed-loop
systems. Therefore, J1 = M−1Md.
The control law that satisfies (2.19), taken from (2.13a), is

uida =
(
G>G

)−1
G>
(
∂H

∂q
−MdM

−1∂Hd

∂q
+ (J2 −R2)M−1

d p

)
, (2.20)

only if the following PDE can be solved

G⊥
(
∂H

∂q
−MdM

−1∂Hd

∂q
+ (J2 −R2)M−1

d p

)
= 0 . (2.21)

Assuming R2 = R2(q) and J2 = J20(q) + J21(q, p), with J21 linear in p, the matching
condition (2.21) can be naturally separated in dependency of p; that is, independent
of p (corresponding to potential energy), linear in p (corresponding to dissipation) and
quadratic in p (corresponding to kinetic energy). Thus, the matching condition (2.21)
can be rewritten as the following set of PDEs

G⊥
(
∂p>M−1p

∂q
−MdM

−1∂p
>M−1

d p

∂q
+ 2J21M

−1
d p

)
= 0 , (2.22a)

G⊥
(
∂V

∂q
−MdM

−1∂Vd
∂q

)
= 0 , (2.22b)

G⊥(J20 −R2)M−1
d p = 0 . (2.22c)

The first equation in (2.22) is a non-homogeneous, first-order quasilinear PDE that has
to be solved to determine the elements of the closed-loop inertia matrix Md. For a
given inertia matrixMd, (2.22b) is a simple linear PDE for the desired potential energy
Vd. The third equation is an algebraic solve by choosing

J20 −R2 = G(Kj −Kv)G> , (2.23)

where Kj = −K>j ∈ Rm×m and Kv = K>v � 0. From (2.23) it is clear that R2 =
GKvG

>. Therefore, the closed-loop system can be finally rewritten as

[
q̇

ṗ

]
=

 0 M−1Md

−MdM
−1 J2 −GKvG

>︸ ︷︷ ︸
R2


∂Hd∂q
∂Hd
∂p

 . (2.24)

The control law can be decomposed into two terms, which are energy shaping and
damping injection

uida = ues(q, p) + udi(q, p) . (2.25)
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The term R2 in (2.24) can obtained by defining

udi = −KvG
>∂Hd

∂p
. (2.26)

Now, combining (4.14) together with (2.20) and (2.26) we get

ues =
(
G>G

)−1
G>
(
∂H

∂q
−MdM

−1∂Hd

∂q
+ J2M

−1
d p

)
. (2.27)

The so-called passive output of the closed-loop system (2.24) is defined by

yd = G>
∂Hd

∂p
. (2.28)

Proposition 2.1 ( [33]) The system (2.24) with (2.15) and (2.17) has a stable equi-
librium point at (q∗, 0). This equilibrium is asymptotically stable if (2.24) is zero-state
detectable from the output yd.

Proof

Ḣd =
(
∂Hd

∂q

)>
q̇ +

(
∂Hd

∂p

)>
ṗ

= −
(
∂Hd

∂p

)>
G︸ ︷︷ ︸

y>
d

Kv G
>
(
∂Hd

∂p

)
︸ ︷︷ ︸

yd

≤ −λmin{Kv}‖(yd‖2 ≤ 0 .

Asymptotic stability, under the zero-state detectability condition, is established invok-
ing Barbashin-Krasovskii Theorem 2.3.

2.3 Adaptive control

When the time comes to apply a designed controller to the mechanical system itself, it
can be noticed that the performance of the controller does not exactly match the one
from the simulations. This variation is usually directly connected to the fact that to
obtain the control law, some mathematical simplifications were made. Additionally, it
can be the result of the noise in the sensors’ readings, input disturbance, parameter un-
certainties, malfunction of some elements of the system, etc. Some control techniques
can already handle such uncertainties up to a certain range, however, their application
realm could be extended if the effect of those uncertainties was compensated7. Adap-

7The robustness of IDA-PBC against external disturbances is analyzed in [9].
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tive control arises to compensate for the effect of those unknown factors and ensure a
desired performance (e.g., ensure the stability of an uncertain system). This section
shortly explains the approach taken in order to extend the application realm of the so-
called IDA-PBC technique (applied to UMSs), adding an adaptive term to compensate
input disturbances and parameter uncertainties. The reader may refer to the following
literature regarding adaptive control [7, 46]
The approach taken to add and design the, previously mentioned, adaptive term is

based mainly on the idea of the Adaptive Dynamic Inversion (ADI) control presented
in [7]. However, it has to be remarked that such a control technique was presented for
tracking, not stabilization (which is what we focus on in this work).

2.3.1 Adaptive Dynamic Inversion

A short review of this technique, applied to a first-order systems, is presented in this
section.
Consider the first-order autonomous system

ẋ = ax+ bu+ f(x) , (2.29)

where a, b are constant unknown parameters, f(x) is an uncertain nonlinear function
that can be expressed as f(x) = θ>Φ(x), where θ ∈ Rn is a vector of constant unknown
parameters and Φ(x) ∈ Rn is a vector of known basis functions.
The desired stable reference system is

ẋm = amxm + bmr, (am < 0) . (2.30)

The control goal is to achieve trajectory tracking, i.e., limt→∞(x(t)− xm(t)) = 0.
Rewriting the dynamics of the system (2.29) leads to

ẋ = âx+ b̂u+ f̂(x)−
∆a︷ ︸︸ ︷

(â− a)x−

∆b︷ ︸︸ ︷(
b̂− b

)
u−

∆f(x)︷ ︸︸ ︷(
f̂(x)− f(x)

)
(2.31)

= âx+ b̂u+ f̂(x)−∆ax−∆bu− (θ̂ − θ︸ ︷︷ ︸
∆θ

)>Φ(x) . (2.32)

The chosen ADI control feedback is

u = 1
b̂

((am − â)x+ bmr)− θ̂>Φ(x) , (2.33)
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and yields the closed-loop system

ẋ = amxm + bmr −∆ax−∆bu−∆θΦ(x) .

The Lyapunov function candidate is

V = e2 + γ−1
a ∆2

a + γ−1
b ∆2

b + ∆>θ Γ−1
θ ∆θ , (2.34)

where e = x − xm is the tracking error; γa ∈ R, γb ∈ R and Γθ ∈ Rn×n are tunable
positive (definite) constant gains, also referred as adaptation rate constants.
Applying Lyapunov stability theory, we get that in order to obtain the energy rate

V̇ = 2ame2 ≤ 0 , (2.35)

the following adaptation laws have to be selected

˙̂a = γaxe ,

˙̂
b = γbue ,

˙̂
θ = ΓθΦ(x)e .

From (2.35), it is clear that the system is stable. Asymptotic stability is demonstrated
invoking the Lyapunov-like Lemma 2.2.
A remark about this technique is that the parameter convergence is not guaran-

teed, however, parameter convergence is not required to achieve a zero tracking error.
Additionally, it has to be guaranteed somehow that b̂ does not cross zero.

2.3.2 Adaptive Approach Applied to IDA-PBC

Based on the, previously described, ADI technique, the adaptive approach of this work
is presented in the following lines.
The concept, here presented, assumes that the nominal system (2.8) has only input

disturbance. However, this concept is generalized in Chapter 3 for parameter uncer-
tainty. For simplicity, the nominal PH system (2.8) with input uncertainty will be
expressed as follows

ẋ = f(x) + g(x)(u(x, t) + δ(x, t)), (2.36)

where δ(x, t) = ϕ(x, t)θ is the input uncertainty, ϕ(x, t) is a matrix of known basis
functions and θ is a vector of unknown constants.8 The desired closed-loop system

8The dimensions are assumed to be suitable.
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(2.24) is
ẋ = f̄(x) = f(x) + g(x)uida. (2.37)

The choice of the control law

u = uida(x)− δ̂(x, t) = uida(x)−

uadap︷ ︸︸ ︷
ϕ(x, t)θ̂ (2.38)

yields the following closed-loop system

ẋ = f̄(x)− g(x)ϕ(x, t)θ̃, (2.39)

where θ̃ = θ̂ − θ, θ̂ is the estimation of θ. The adaptation law results from the stabil-
ity analysis of (2.39). Since it is assumed that the input disturbance has an explicit
time-dependency, then to prove the stability of (2.39) it is required to use Lyapunov
theory for nonautonomous systems, i.e., Theorem 2.4. Additionally, to prove asymp-
totic stability, it is used the Barbălat-based Lemma 2.2 together with the zero-state
detectability condition. If the input disturbance has no explicit time-dependency, then
stability can be proved using Lyapunov theory for autonomous systems, i.e., Theo-
rem 2.1. Asymptotic stability is established by invoking Barbashin-Krasovskii Theo-
rem 2.3 or Theorem 2.5 (iii). Figure 2.1 shows a simple diagram of the adaptive control
approach.

Figure 2.1. – Adaptive control diagram
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Chapter 3

Adaptive IDA-PBC

In this chapter, two propositions are going to be established in order to asymptotically
stabilize a special class of mechanical systems, namely, UMSs (represented as PH sys-
tem) whose PDEs in the IDA-PBC technique can be solved, that is under the effect
of two types of uncertainties. The first is a disturbance in the control input and the
second one is parameter uncertainty of the system’s energy. Both propositions were
obtained using a similar approach, therefore being similar to each other. In fact, both
propositions could be expressed in just one. However, it was decided to state them sep-
arately just for clearness purposes, presenting the main idea of the adaptive approach
behind all the math involved.

3.1 Input Disturbance

In this section, the nominal system (2.8) affected by an explicitly time-dependent input
disturbance δ(q, p, t) is considered as follows

[
q̇

ṗ

]
=
[

0 In

−In 0

]∂H∂q
∂H
∂p

+
[

0
G(q)

]
(u+

δ︷ ︸︸ ︷
Φ(q, p, t)θ) , (3.1)

where Φ(q, p, t) ∈ Rm×l is a matrix of known basis functions and θ ∈ Rl is a column
vector of constant unknown parameters. To compensate for the input disturbance, the
control law

u = uida − Φ(q, p, t)θ̂ (3.2)

is used, which leads to the system

[
q̇

ṗ

]
=
[

0 M−1Md

−MdM
−1 J2 −R2

]∂Hd∂q
∂Hd
∂p

− [ 0
G(q)

]
Φ(q, p, t)θ̃ , (3.3)

Master Thesis Jhossep Popayán 27



3. Adaptive IDA-PBC

for θ̃ = θ̂− θ, and θ̂ is the estimation of θ. The system (3.3) is composed of two terms,
the desired system from IDA-PBC (2.24) and an additional term due to the uncertainty.

Proposition 3.1 (Motivated by [8]) The system (3.3) with the adaptation law

˙̂
θ = KΦ>G>

(
∂Hd

∂p

)
, (3.4)

with constant Rl×l 3 K = K> � 0, has a stable equilibrium point at (q∗, 0). Addition-
ally, if the system (3.3)-(3.4) is zero-state detectable from the output yd = G>

(
∂Hd
∂p

)
,

then the equilibrium is asymptotically stable.

Proof
Stability. In this case, since the system (3.3) is nonautonomous, the Theorem 2.4 will
be used. We define a new energy function for the closed-loop system (3.3)-(3.4) as

Hd(q, p, θ̃, t) = Hd(q, p) + 1
2 θ̃
>K−1θ̃ − Hd(q∗, 0) . (3.5)

From Theorem 2.4 and (3.5): W1 = W2 =Hd. The term Hd(q∗, 0) is included only to
ensure thatHd > 0, so we can use it as a Lyapunov candidate. Now, the time derivative
of the Lyapunov candidate is taken in order to verify if it is a Lyapunov function.

Ḣd = Ḣd + θ̃>K−1 ˙̃θ

=
(
∂Hd

∂q

)>
q̇ +

(
∂Hd

∂p

)>
ṗ + θ̃>K−1 ˙̃θ

=
(
∂Hd

∂q

)>
M−1Md

(
∂Hd

∂p

)
+
(
∂Hd

∂p

)>(
−MdM

−1
(
∂Hd

∂q

)
+
(
J2 −GKvK

>
)(∂Hd

∂p

)
−GΦθ̃

)
+ ˙̃θ>K−1θ̃

= −
(
∂Hd

∂p

)>
GKvG

>
(
∂Hd

∂p

)
−
((

∂Hd

∂p

)>
GΦ − ˙̃θ>K−1

)
θ̃ (3.6)

= −
(
∂Hd

∂p

)>
GKvG

>
(
∂Hd

∂p

)
≤ −λmin{Kv}‖yd(t)‖2 ≤ 0 . (3.7)

In (3.6), the term regarding θ̃ can be canceled using the adaptive law (3.4) and the fact
that since θ is constant ˙̃θ = ˙̂

θ. From (3.7), it has been proven that Hd is a Lyapunov
function and hence (q∗, 0) is a stable equilibrium.
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Asymptotic stability. Rearrange (3.3) together with (3.4) in order to obtain the
following port-Hamiltonian system


q̇

ṗ
˙̃θ

 =


0 M−1Md 0

−MdM
−1 J2 −GKvG

> −GΦK
0 KΦ>G> 0



∂Hd
∂q
∂Hd
∂p
∂Hd
∂θ̃

 . (3.8)

A more general representation of (3.8) is stated in [8]. The rearrangement yields a
bigger system whose coordinates are now (q, p, θ̃).
To prove asymptotic stability, the Lyapunov-like Lemma 2.2 is invoked and from it,

under the assumption that a bounded Vd(q) implies a bounded q(t), the following is
obtained

Ḣd ≤ 0 =⇒ q(t), p(t) and θ̃ bounded . (3.9)

To fulfill all the conditions in Lemma 2.2, it is also required that Ḣd is uniformly
continuous. A sufficient condition to prove the uniform continuity of Ḣd is to verify
that Ḧd is bounded. Assuming the total energy functionHd is twice differentiable with
respect to the time, the second order derivative of the new energy function is

Ḧd = −2y>d (q, p, θ̃)Kv ẏd(q, p, θ̃) . (3.10)

From (3.9)-(3.10) it is concluded that Ḣd is uniformly continuous. Therefore

lim
t→∞

Ḣd ≤ −λmin{Kv}‖yd(t)‖2 = 0 =⇒ lim
t→∞

yd = 0 . (3.11)

To achieve asymptotic stability, the zero-state detectability in Definition 2.7 is also
called upon, this is

yd = 0 =⇒ lim
t→∞

(q, p, θ̃) = (q∗, 0, θ̃∗) . (3.12)

Now, combining (3.11)-(3.12)

lim
t→∞

Ḣd = 0 =⇒ lim
t→∞

(q, p, θ̃) = (q∗, 0, θ̃∗) . (3.13)

Therefore, the closed-loop system (3.8) is asymptotically stable. �

Remark The use of Proposition 3.1 does not necessarily make θ̂ reach its true value.

3.2 Parameter Uncertainty

Now, a system parameter uncertainty in the system’s energy is considered, which does
not necessarily affect the system in the control signal channel. The effect of the uncer-
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tainty is reflected in the system’s total energy as follows

HR(q, p) = 1
2p
>
(
M−1(q) + ∆M (q)

)
p+ (V (q) + ∆V (q))

=

H︷ ︸︸ ︷
1
2p
>M−1p+ V +

H∆︷ ︸︸ ︷
1
2p
>∆Mp+ ∆V .

The structure of the system with parameter uncertainty is

[
q̇

ṗ

]
=
[

0 In

−In −R

]∂H∂q
∂H
∂p

+
[

0 In

−In −R

]∂H∆
∂q
∂H∆
∂p

+
[

0
G(q)

]
u . (3.14)

Since G(q) is not invertible we can no longer directly subtract the uncertainty with the
estimation like we did before. Consequently, we perform a momentum transformation,
see [61], and apply the same approach as in Proposition 3.1.

Remark Notice that in this case, the friction is taken into consideration in order to
be compensated by the adaptive law.

Lemma 3.1 Consider the system (2.7) with the momentum transformation

s = T (q)p ∈ Rn , (3.15)

and the following choice of T (q)

T (q) =

(G(q)>G(q)
)−1

G>(q)
G⊥(q)

 , (3.16)

where T (q) ∈ Rn×n is non-singular. Applying the coordinate transformation (3.15) on
the system (2.7) results in

[
ṡ

q̇

]
=

 E − F −T
T> 0

∂H∂s
∂H
∂q

+


Im

0r×m
0n×m

u , r = n−m, (3.17)

where

H(q, s) = 1
2s
>M−1(q)s+ V (q) ,

M−1(q) = T−>M−1T−1 ,

E =
(
∂Tp

∂q

)>
T> − T

(
∂Tp

∂q

)
,
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F = TRT> .

�

Proof The system’s total energy in the new coordinates is given by

H(q, s) = H(q, p)
∣∣∣
p=T−1s

= 1
2s
>

M−1︷ ︸︸ ︷
T−>M−1T−1 s+ V (q) = 1

2s
>M−1s+ V (q) .

Application of the chain rule for H(q, s) results in

∂H

∂q
= ∂H

∂q
+ ∂s

∂q

∂H
∂s

,

∂H

∂p
= ∂q

∂p

∂H
∂q

+ ∂s

∂p

∂H
∂q

= T>
∂H
∂s

,

and the system dynamics in the new coordinates

q̇ = ∂H

∂p
= T>

(
∂H
∂s

)
,

ṡ =
(
∂s

∂q

)>
q̇ +

(
∂s

∂p

)>
ṗ =

(
∂s

∂q

)>
q̇ + T ṗ

=
(
∂s

∂q

)>(∂H
∂p

)
− T

(
∂H

∂q
+R

∂H

∂p
−Gu

)

= −T
(
∂H
∂q

)
+
((

∂s

∂q

)>
T> − T

(
∂s

∂q

))
︸ ︷︷ ︸

E

∂H
∂s
− TRT>︸ ︷︷ ︸

F

∂H
∂s

+ TGu ,

which expressed in a matrix notation results in (3.17). �

Using the same procedure as in the proof of Lemma 3.1 we can demonstrate that the
system [

q̇

ṗ

]
=
[

0 M−1Md

−MdM
−1 J2 −R2

]∂Hd∂q
∂Hd
∂p


can be transformed into [

ṡ

q̇

]
=

 C −D −Q>

Q 0

∂Hd∂s
∂Hd
∂q

 , (3.18)
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where

Hd(q, s) = 1
2s
>M−1

d (q)s+ Vd(q) ,

M−1
d (q) = T−>M−1

d T−1 ,

Q = M−1MdT
> ,

C =
(
∂Tp

∂q

)>
Q−Q>

(
∂Tp

∂q

)
+ TJ2T

> ,

D = TR2T
> .

Lemma 3.2 The control law resulting from the IDA-PBC technique is independent of
the coordinate transformation considered in Lemma 3.1. Besides, the IDA-PBC control
law expressed in the new coordinates is

uida = [Im 0m×r]
(
−Q>∂Hd

∂q
+ (C −D)∂Hd

∂s
− E∂H

∂s
+ T

∂H
∂q

)
. (3.19)

Proof The standard IDA-PBC control law expressed in the original coordinates is

uida =
(
G>G

)−1
G>
(
∂H

∂q
−MdM

−1∂Hd

∂q
+ (J2 −R2)∂Hd

∂p

)
. (3.20)

Now, after transforming the nominal and desired systems to the new coordinates, the
IDA-PBC methodology is applied and the following equation is obtained

TGuida = −Q>∂Hd
∂q

+ (C −D)∂Hd
∂s
− E∂H

∂s
+ T

∂H
∂q

.

Transforming back to the original coordinates we get

TGuida = T
∂H

∂q
− TMdM

−1∂Hd

∂q
+ T (J2 −R2)∂Hd

∂p
. (3.21)

From (3.20)-(3.21), it is clear that ūida = uida. The matching conditions are also
equivalent in either coordinates, see Appendix A.1.
Assuming the matching conditions are fulfilled, the IDA-PBC control in the new

coordinates is

uida =
(
G>G

)−1
G>T−1

(
−Q>∂Hd

∂q
+ (C −D)∂Hd

∂s
− E∂H

∂s
+ T

∂H
∂q

)
, (3.22)
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where the expression for T−1 is unknown. After a few calculations, see Appendix A.2,
we get

T−1 =
[
G

(
G⊥
)>(

G⊥G⊥
>)−1

]
,(

G>G
)−1

G>T−1 = [Im 0m×r] ,

which together with (3.22), results in (3.19). �

Now, going back to the main point of this section, in order to compensate the parameter
uncertainty in the system (3.14), the following control law is proposed

u = uida − Φ(q, p)θ̂ . (3.23)

Proposition 3.2 The system (3.14) with the control law (3.23) and the adaptation law

˙̂
θ = KΦ>G>

(
∂Hd

∂p

)
, (3.24)

with constant Rl×l 3 K = K> � 0, under the condition

[0r×m Ir](ϕ1 − ϕ2) = 0r , (3.25)

where

ϕ1 = TMd∆M

(
∂Hd
∂q −

(
∂Tp
∂q

)
T−> ∂Hd∂p

)
+ ET−>

(
∂H∆
∂p

)
,

ϕ2 = TR
(
∂H
∂p + ∂H∆

∂p

)
+ T

(
∂H∆
∂q −

(
∂Tp
∂q

)
T−> ∂H∆

∂p

)
,

results in the system

[
q̇

ṗ

]
=

 0 (M−1 + ∆M )Md

−Md(M−1 + ∆M ) L− L> + J2 −R2

∂Hd∂q
∂Hd
∂p

− [ 0
G(q)

]
Φ(q, p)θ̃ , (3.26)

where L = T−1Md∆MT
(
∂Tp
∂q

)
T−>. The system (3.26) has a stable equilibrium point at

(q∗, 0). Additionally, if it is zero-state detectable from its output yd = G>
(
∂Hd
∂p

)
, then

the equilibrium is asymptotically stable.
The matrix of known functions Φ(q, p) is given by

Φθ = [Im 0m×r](ϕ1 − ϕ2) (3.27)
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where θ contains the true values of the uncertainties R, ∆M and ∆V as coefficients of
(3.27).

Proof The mechanical system with parameter uncertainty (3.14) in the new coordi-
nates using Lemma 3.1 is

[
ṡ

q̇

]
=

 E − F −T
T> 0

∂H∂s
∂H
∂q

+

 E − F −T
T> 0

∂H∆
∂s
∂H∆
∂q

+


Im

0r×m
0n×m

u .
Additionally, the system is decomposed as follows

[
ṡ

q̇

]
=

f︷ ︸︸ ︷ E −T
T> 0

∂H∂s
∂H
∂q

+

δ︷ ︸︸ ︷ −F ∂H
∂s

0n

+

 E − F −T
T> 0

∂H∆
∂s
∂H∆
∂q



+


Im

0r×m
0n×m

u , (3.28)

where f = [f1, f2]>, f1 ∈ Rm, f2 ∈ R2n−m, δ = [δ1, δ2]>, δ1 ∈ Rm, δ2 ∈ R2n−m and the
desired system is expressed as

[
ṡ

q̇

]
=

f︷ ︸︸ ︷ C −D −Q>

Q 0

∂Hd∂s
∂Hd
∂q

 , (3.29)

where f = [f1, f2]>, f1 ∈ Rm. The control law is designed so that the nominal system
in (3.28) becomes (3.29), and the remaining part is compensated by the adaptive control
law (3.24). Hence the chosen control law is

u = f1 − f1

−Φθ̂︷ ︸︸ ︷
−δ̂1 − ψ̂1 , (3.30)

where δ̂1 and ψ̂1 are the estimates of δ1 and ψ1 = [Im 0m×r]TMd∆M

(
∂Hd
∂q

)
, respectively.

Using Lemma 3.2, it can be shown that

f1 − f1 = [Im 0m×r]
(
−Q>∂Hd

∂q
+ (C −D)∂Hd

∂s
− E∂H

∂s
+ T

∂H
∂q

)
= uida .
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Therefore (3.30) is equivalent to (3.23). The control law (3.30) transforms (3.28) into

[
ṡ

q̇

]
=
[
f1

f2

]
+
[
δ1

δ2

]
+
[
f1 − f1 − δ̂1 − ψ̂1

0

]
=
[
f1
f2

]
−
[
δ̂1 − δ1 + ψ̂1

δ2

]

=

 C −D −Q>

Q 0

∂Hd∂s
∂Hd
∂q



+

 −F ∂H
∂s − F

∂H∆
∂s + E ∂H∆

∂s − T
∂H∆
∂q

T>
(
∂H∆
∂s

) −

δ̂1 + ψ̂1

0r
0n

 . (3.31)

From (3.31), it is easy to note that, theoretically, the term T>
(
∂H∆
∂s

)
should be imposed

to be zero because it is not located in the channel of the adaptation (the first m rows
of (3.31)). However, through the following manipulation

T>
(
∂H∆
∂s

)
= T>

(
T−>∆MT

−1s
)

= ∆MT
−1MdM−1

d s = ∆MT
−1Md

(
∂Hd
∂s

)
= ∆MMdT

>
(
∂Hd
∂s

)
,

it can be inserted in the nominal desired system generating, once again, a port-
Hamiltonian system

[
ṡ

q̇

]
=

 C −D −Q> − TMd∆M

Q+ ∆MMdT
> 0

∂Hd∂s
∂Hd
∂q



+

 TMd∆M
∂Hd
∂q − F

∂H
∂s − F

∂H∆
∂s + E ∂H∆

∂s − T
∂H∆
∂q

0n

−

δ̂1 + ψ̂1

0r
0n

 . (3.32)

Now, in order to adapt the closed-loop system (3.32), a condition that the uncertainties
outside the PH system have to be located in the actuated channel is stated. This is

[0r×m Ir]
(
TMd∆M

∂Hd
∂q
− F ∂H

∂s
− F ∂H∆

∂s
+ E

∂H∆
∂s
− T ∂H∆

∂q

)
= 0r . (3.33)

Once the condition (3.33) is satisfied, (3.32) becomes

[
ṡ

q̇

]
=

 C −D −Q> − TMd∆M

Q+ ∆MMdT
> 0

∂Hd∂s
∂Hd
∂q

−

δ̂1 + ψ̂1 − δ1 − ψ1

0
0

 ,

Master Thesis Jhossep Popayán 35



3. Adaptive IDA-PBC

which can equivalently be rewritten as

[
ṡ

q̇

]
=

 C −D −Q> − TMd∆M

Q+ ∆MMdT
> 0

∂Hd∂s
∂Hd
∂q

−
 TG

0

Φθ̃ . (3.34)

Stability. Calculations to establish the stability of (3.34) can be performed in either
pair of coordinates. In this case, they will be performed in the original coordinates.
Transforming back (3.34) to the original coordinates yields the system (3.26). In this
case, since the parameter uncertainties are considered to be time-independent, the
system (3.26) is autonomous. Therefore, to prove stability, Theorem 2.1 is invoked.
A new total energy function is defined as

Hd(q, p, θ̃) = Hd(q, p) − Hd(q∗, 0) + 1
2 θ̃
>K−1θ̃ .

Similar to Proposition 3.1, the addition of Hd(q∗, 0) is made to ensure that Hd > 0
and therefore be a suitable Lyapunov candidate. To demonstrate that Hd is in fact a
Lyapunov function, its time derivative is calculated

Ḣd =
(
∂Hd

∂q

)>
q̇ +

(
∂Hd

∂p

)>
ṗ + ˙̃θ>K−1θ̃

=
(
∂Hd

∂q

)>(
M−1 + ∆M

)
Md

(
∂Hd

∂p

)

+
(
∂Hd

∂p

)>(
−Md

(
M−1 + ∆M

)(∂Hd

∂q

)
+
(
L− L> + J2 −R2

)(∂Hd

∂p

))

−
(
∂Hd

∂p

)>
GΦθ̃ + ˙̃θ>K−1θ̃

= −
(
∂Hd

∂p

)>
R2

(
∂Hd

∂p

)
+
(

˙̃θ>K−1 −
(
∂Hd

∂p

)>
GΦ

)
θ̃ (3.35)

= −
(
∂Hd

∂p

)>
GKvG

>
(
∂Hd

∂p

)
≤ −λmin{Kv}‖yd(t)‖2 ≤ 0 . (3.36)

Since the value of θ is unknown, the term containing θ̃ in (3.35) is required to be
canceled, this is accomplished by selecting a suitable ˙̃θ and using the fact that ˙̃θ = ˙̂

θ,
thus originating the adaptive law (3.24). From (3.36) it’s clear that Hd is a Lyapunov
function, therefore (q∗, 0) is a stable equilibrium of (3.26).
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Asymptotic stability. Rearranging (3.34) together with (3.24) in order to obtain the
following port-Hamiltonian system


q̇

ṗ
˙̃θ

 =


0

(
M−1 + ∆M

)
Md 0

−Md

(
M−1 + ∆M

)
L− L> + J2 −GKvG

> −GΦK
0 KΦ>G> 0



∂Hd
∂q
∂Hd
∂p
∂Hd
∂θ̃

 . (3.37)

The rearrangement yields a bigger system whose coordinates are now (q, p, θ̃).
To prove asymptotic stability, the Barbashin-Krasovskii Theorem 2.3 is invoked and

from it, the following is implied

Ḣd ≤ −λmin{Kv}‖yd(t)‖2 = 0 =⇒ yd = 0 . (3.38)

However, in order to satisfy the previous theorem it is required that Ḣd = 0 implies
(q, p, θ̃) = (q∗, 0, θ̃∗). To achieve that, the zero-state detectability condition is called
upon, this is

yd = 0 =⇒ lim
t→∞

(q, p, θ̃) = (q∗, 0, θ̃∗) (3.39)

Now, combining (3.38)-(3.39) it is clear that Ḣd = 0 =⇒ (q, p, θ̃) = (q∗, 0, θ̃∗). There-
fore the Barbashin-Krasovskii Theorem 2.3 is applicable and the closed-loop system
(3.37) is asymptotically stable. �

Fulfilling the condition imposed in Proposition 3.2 as was stated can be tedious or even
not possible. However, it can be relaxed by requiring each element of ϕ1 and ϕ2 to be
0r. This leads to

[0r×m Ir]TMd∆M

(
∂Hd
∂q −

(
∂Tp
∂q

)
T−> ∂Hd∂p

)
= 0r

[0r×m Ir]TR
(
∂H
∂p

)
= 0r

[0r×m Ir]TR
(
∂H∆
∂p

)
= 0r

[0r×m Ir]ET−>
(
∂H∆
∂p

)
= 0r

[0r×m Ir]T
(
∂H∆
∂q −

(
∂Tp
∂q

)
T−> ∂H∆

∂p

)
= 0r

Remark Proposition 3.2 does not guarantee that θ̂ reaches its true values.
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Chapter 4

Adaptive IDA-PBC Application: Inertia
Wheel Inverted Pendulum

In this chapter, the well-known IWIP system will be used to study its response against
the uncertainties addressed in Chapter 3. The IWIP system will be subject to the
control law resulting from the standard IDA-PBC technique, namely (2.20), plus the
adaptive IDA-PBC control law resulting from Propositions 3.1 to 3.2, and then the
response to each control law will be analyzed to verify the validity of the propositions.
Before reaching the simulations stage, some previous calculations have to be performed.
These calculations will be presented in the following subsections.

4.1 IWIP Model

Figure 4.1 shows a schematic of the IWIP system.

θ2

A

B

C

θ1

u

y
g

m

M

l
L

Figure 4.1. – IWIP system.
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Table 4.1 shows the IWIP system’s parameters. The IWIP’s dynamics are obtained

Parameter Description Units

θ1 Pendulum angle with respect to the verti-
cal axis

rad

θ2 Wheel angle with respect to the pendulum
axis

rad

m Pendulum mass kg
M Wheel mass kg
l Length from pendulum base (A) to its cen-

ter of mass (B)
m

L Pendulum length: (A) to (C) m
IA Pendulum moment of inertia around (A) kg ·m2

I2 Wheel moment of inertia around (C) kg ·m2

g Gravity constant m/s2

Table 4.1. – IWIP system’s parameters.

using Newton’s second law of motion (derived from [33])

u = I2
(
θ̈1 + θ̈2

)
+ r2θ̇2 ,

MgL sin(θ1) +mgl sin(θ1)− u = IAθ̈1 +ML2θ̈1 + r1θ̇1 .

Equivalently, the motion equations can be expressed as

[
I1 + I2 I2

I2 I2

][
θ̈1

θ̈2

]
−
[
bg sin(θ1)

0

]
+

R︷ ︸︸ ︷[
r1 0
0 r2

][
θ̇1

θ̇2

]
=
[
0
1

]
u , (4.1)

I1 = IA +ML2 , b = ML+ml .

A coordinate transformation is done to obtain a simple representation of (4.1), that is

q = T1θ , T1 =
[
1 0
1 1

]
.

Additionally, the system (4.1) is pre-multiplied by T−>1 to achieve a symmetric inertia
matrix. The resulting system is

M︷ ︸︸ ︷[
I1 0
0 I2

][
q̈1

q̈2

]
−
[
bg sin(q1)

0

]
+

R︷ ︸︸ ︷[
r1 + r2 −r2

−r2 r2

][
q̇1

q̇2

]
=

G︷ ︸︸ ︷[
−1
1

]
u . (4.2)
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Expressing (4.2) in Port-Hamiltonian representation yields

[
q̇

ṗ

]
=
[

0 In

−In −R

]∂H∂q
∂H
∂p

+
[

0
G

]
u , (4.3)

where

H = 1
2p
>M−1p+ V (q) ,

= 1
2p
>M−1p+ bg(cos(q1) + 1) .

4.2 Standard IDA- PBC

In this section, it is considered that the nominal system (4.3) has no friction, i.e., R = 0.
The target PH system is

[
q̇

ṗ

]
=
[

0 M−1Md

−MdM
−1 J2 −GKvG

>

]∂Hd∂q
∂Hd
∂p

 , (4.4)

yd = G>
∂Hd

∂p
,

where Md = M>d � ρI for some ρ ∈ R+, J2 = −J>2 , Kv = K>v � 0 and

Hd = 1
2p
>M−1

d p+ Vd(q) .

The desired equilibrium is the pendulum upward position (q∗1 = 0). Moreover, just as
mentioned in [33], since the disk is symmetric there is no particular reason to choose q∗2
aligned with q∗1. However, it is chosen q∗2 = 0 to prove the generality of the IDA-PBC
technique.
As described in Chapter 2, there are two main steps to carry out in order to obtain

the IDA-PBC controller. These steps will be developed in the next subsections.

4.2.1 Energy Shaping

Since the inertia matrix M is constant we choose Md to be constant as well, that is

Md =
[
m1 m2

m2 m3

]
.

The desired inertia matrix Md has to fulfill a positive definiteness condition. Hence,
the following inequalities must hold: m1 > 0 , m1m3 − m2

2 > 0 . From the PDE
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corresponding to the kinetic energy

G⊥
{
∂p>M−1p

∂q
−MdM

−1
(
∂p>M−1

d p

∂q

)
+ 2J2

∂Hd

∂p

}
= 0 ,

it is concluded that J2 = 0. The remaining PDE is the only one that needs to be solved,
this is

G⊥
{
∂V

∂q
−MdM

−1∂Vd
∂q

}
= 0 .

For the IWIP system we have

G⊥ =
[
1 1

]
,

∂V

∂q
=
[
−bg sin(q1)

0

]
.

The PDE to be solved is(
m1 +m2

I1

)
∂Vd
∂q1

+
(
m2 +m3

I2

)
∂Vd
∂q2

= −bg sin(q1) ,

which is computed in Maple to get the following solution

Vd = bg cos(q1)I1
m1 +m2

+ α(β(q)) ,

β(q) = (m1 +m2)I2q2 − (m2 +m3)I1q1
(m1 +m2)I2

= q2

γ2︷ ︸︸ ︷
−I1(m2 +m3)
I2(m1 +m2) q1 ,

where α(β(q)) is an arbitrary function that has to be chosen such that the condition
q∗ = arg min Vd(q) is fulfilled. The necessary conditions to verify that Vd(q) has an
isolated minimum at q∗ are

∂Vd
∂q

∣∣∣∣
q∗

= 0 , ∂2Vd
∂q2

∣∣∣∣∣
q∗

> 0 .

The first condition yields

∂Vd
∂q

∣∣∣∣
q∗

=
[
−abg sin(q1)
m1 +m2

+ ∂α

∂β

∂β

∂q1

∂α

∂β

∂β

∂q2

]>∣∣∣∣∣
q∗

=
[
∂α

∂β
γ2

∂α

∂β

]>
= 0 . (4.5)
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From (4.5), in order to fulfill the first condition then ∂α
∂β

∣∣∣
q∗

= 0. For the second
condition the following is obtained

∂2Vd
∂q2

∣∣∣∣∣
q∗

=

−
abg cos(q1)
m1+m2

+ ∂2α
∂β2

(
∂β
∂q1

)2
∂2α
∂β2

∂β
∂q2

∂β
∂q1

∂2α
∂β2

∂β
∂q2

∂β
∂q1

∂2α
∂β2


∣∣∣∣∣∣∣∣
q∗

> 0 . (4.6)

From (4.6), ∂2α
∂β2

∣∣∣
q∗
> 0 and m1 < −m2 must be satisfied. A possible choice of the

arbitrary function that satisfies those conditions is α = K1
2 β

2 [33], where K1 > 0 is an
adjustable gain.
At this point, the energy shaping control law ues can be calculated

ues =
(
G>G

)−1
G>
(
∂V

∂q
−MdM

−1∂Vd
∂q

)

=

γ1︷ ︸︸ ︷
m2bg

m1 +m2
sin(q1)

Kp︷ ︸︸ ︷
−K1

(
m1m3 −m2

2
)

I2(m1 +m2) (q2 + γ2q1) .

After a few calculations and using the previous conditions, it is possible to show the
permissible region of the gains in ues, that is

γ1 > bg , Kp > 0 , γ2 > 0 .

4.2.2 Damping Injection

The damping injection term is

udi = −KvG
>∂Hd

∂p
,

where Kv > 0 is a gain. The passive output, which is a part of udi, expressed in terms
of the desired inertia matrix elements is

G>
∂Hd

∂p
= 1
m1m3 −m2

2
((m1 +m2)p2 − (m2 +m3)p1) =

K2︷ ︸︸ ︷
I2(m1 +m2)
m1m3 −m2

2
(q̇2 + γ2q̇1) ,

where K2 = −K1
Kp

< 0.

In order to guarantee the asymptotic stability of the system, it is required to prove
at least that the system (4.4) is zero-state detectable from the output yd.
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4.2.3 Zero-State Detectability

The zero-state detectability condition initially assumes that the output is zero, that is

yd = G>
∂Hd

∂p
≡ 0 =⇒ K2(q̇2 + q̇1γ2) ≡ 0 =⇒ q̇2 = −q̇1γ2 (4.7)

The desired system is represented by (4.4). From (4.4) together with (4.7), it is known
that

ṗ = −MdM
−1∂Hd

∂q
−GKv

0︷ ︸︸ ︷
G>

∂Hd

∂p
= −MdM

−1∂Hd

∂q

=

−m1f(q)−m2g(q)

−m2f(q)−m3g(q)

 , (4.8)

where

f(q) = 1
I1

(
−I1bg sin(q1)

m1 +m2
+K1(q1γ2 + q2)γ2

)
, g(q) = K1(q1γ2 + q2)

I2
. (4.9)

From (4.7), we know that q̇2 = −q̇1γ2 , q̈2 = −q̈1γ2 and q2 + q1γ2 = const. We now
perform algebraic operations to the elements of ṗ in order to achieve q̈2 + q̈1γ2 = 0 ,
that is

q̈2 + q̈1γ2 = ṗ2
I2

+ ṗ1γ2
I1

= Z1 sin(q1) +
const.︷ ︸︸ ︷

Z2(q2 + q1γ2) = 0 , (4.10)

where
Z1 = bg(I2m1γ2 + I1m2)

I1(m1 +m2)I2
= const.

Z2 = −K1(I2
2m2γ2

2 + 2I2I1m2γ2 + I2
1m3)

I2
1I

2
2

= const.

(4.11)

From (4.10), we know that Z1 sin(q1) has to be also constant, thus:

sin(q1) = const. =⇒ q1 = const. =⇒ q2 = const. =⇒ q̇1 = q̇2 = 0 =⇒ ṗ = 0 .
(4.12)

From (4.8) and (4.12), we get

f(q) = −m2
m1

g(q) = −m3
m2

g(q) . (4.13)

The only solution for (4.13) is

f(q) = g(q) = 0 =⇒ q2+q1γ2 = 0 =⇒ sin(q1) = 0 =⇒ q1 = q2 = 0 ∀q1 ∈< −π, π > .
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Based on all the performed calculations, it has been proven that the target PH sys-
tem (4.4) satisfies the stronger condition for asymptotic stability, that is, zero-state
observability instead of zero-state detectability.
All the terms required in the design of the IDA-PBC controller have been calculated

and now it can be presented

uida = γ1 sin(q1) +Kp(q2 + γ2q1)−KvK2(q̇2 + γ2q̇1) . (4.14)

Alternatively, (4.14) can be rewritten in terms of q and p

uida = γ1 sin(q1) + k1q1 + k2q2 + k3p1 + k4p2 , (4.15)

where
k1 = Kpγ2 , k2 = Kp , k3 = −KvK2γ2

I1
, k4 = −KvK2

I2
. (4.16)

The basic values for this gains together with IWIP system’s parameters values were
taken from [50]. Some of the gains were slightly modified because they do not exactly
satisfy the relationships between (4.14) and (4.15). The main values used in this work
are

γ1 = 6.1284 , γ2 = 542.447 , Kp = 0.0011 ,

Kv = 1.98 , K1 = 10−6 , K2 = −9.0909× 10−4 ,

which together with the IWIP’s parameters stated in Table 4.2 lead to the controller

Parameter Value

m 3.228 kg
M 330.81× 10−3 kg
l 60× 10−3 m
L 44× 10−3 m
IA 43.0× 10−3 kg ·m2

I2 417.6× 10−6 kg ·m2

g 9.81m/s2

Table 4.2. – IWIP system’s parameters values.

gains

k1 = 0.5967 , k2 = 0.0011 ,

k3 = 22.3632 , k4 = 4.3103 .
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Below are shown the simulations for the IWIP’s system response subject to the stan-
dard IDA-PBC control law (4.15) starting at the initial coordinates [q>(0) , p>(0)]> =
[0.2 0 0 0]>. It is clear from Figures 4.2 to 4.4, that the IDA-PBC control law uida

asymptotically stabilizes the IWIP system.

0 1 2 3 4 5 6 7 8
-0.1

0

0.1

0.2

0 1 2 3 4 5 6 7 8
0

50

100

Figure 4.2. – Simulation 1: Evolution of q over time.
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Figure 4.3. – Simulation 1: Evolution of p over time.
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0 1 2 3 4 5 6 7 8
-0.5

0

0.5

1

1.5

Figure 4.4. – Simulation 1: Evolution of u over time.

4.3 Simulation for Input Uncertainty

In this section, an input uncertainty will be considered to analyze the system response
using the adaptive control law stated in Proposition 3.1 and then compare it to the
response produced by the standard IDA-PBC control law. For this simulation, assuming
R = 0, the input control uncertainty is expressed as follows

[
q̇

ṗ

]
=
[

0 In

−In 0

]∂H∂q
∂H
∂p

+
[

0
G(q)

]
(u+A sin(t)) . (4.17)

From (4.17), it is easy to note that

Φ = sin(t) , θ = A .

Let us recall that to prove asymptotic stability of the system (4.17) using the Proposi-
tion 3.1 with the control law (3.2), it is required to prove zero-state detectability.

4.3.1 Zero-State Detectability

The assumption (4.7) keeps applying to this case. The target PH system (3.3) together
with the adaptive law (3.4) is represented by


q̇

ṗ
˙̃θ

 =


0 M−1Md 0

−MdM
−1 −GKvG

> −GΦK
0 KΦ>G> 0



∂Hd
∂q
∂Hd
∂p
∂Hd
∂θ̃

 , (4.18)

where
Hd = Hd + 1

2 θ̃
>K−1θ̃ . (4.19)
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It is clear that there is no need to include inHd the term that was previously included
in the proof of Proposition 3.1 to ensure thatHd > 0, since it was just a formalism to be
able to apply Lyapunov’s stability theory, plus, it makes no difference when calculating
the partial derivatives of Hd. From (4.18), the following is obtained

˙̃θ = KΦ>

0︷ ︸︸ ︷
G>

∂Hd

∂p
= 0→ θ̃ = const.,

ṗ = −MdM
−1∂Hd

∂q
−GKv

0︷ ︸︸ ︷
G>

∂Hd

∂p
−GΦθ̃ = −MdM

−1∂Hd

∂q
−GΦθ̃

=

−m1f(q)−m2g(q) + Φθ̃

−m2f(q)−m3g(q)− Φθ̃

 , (4.20)

where f(q) and g(q) are the same as in (4.9).
Applying the same approach as in (4.10), we get

q̈2 + q̈1γ2 = ṗ2
I2

+ ṗ1γ2
I1

= Z1 sin(q1) +
const.︷ ︸︸ ︷

Z2(q2 + q1γ2) +Z3Φθ̃ = 0 , Φ = sin(t) , (4.21)

where Z1 and Z2 are the same as stated in (4.11), and

Z3 = I2γ2 − I1
I2I1

= const. (4.22)

Isolating sin(q1) in (4.21) and replacing it in ṗ1 in order to obtain q̈1, we get

q̈1 = D1 sin(t) +D2 , (4.23)

where
D1 = (m1 +m2)θ̃

I1m2 + I2m1γ2
= const. ,

D2 = K1(m1m3 −m2
2)(q1γ2 + q2)

I2(I1m2 + I2m1γ2) = const.

The solution of (4.23) is

q1(t) = −D1 sin(t) + 1
2D2t

2 + (q̇1(0) +D1)t+ q1(0) . (4.24)

Since it is known that the system (4.18) is stable, the admissible values of the coefficients
in (4.24) are: D1 = −q̇1(0) andD2 = 0. The latter implies that q1γ2+q2 = 0. Therefore,
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(4.24) and (4.21) respectively become

q1(t) = q̇1(0) sin(t) + q1(0) , (4.25)

sin(q̇1(0) sin(t) + q1(0)) = −Z1θ̃

Z3
sin(t) . (4.26)

The solution to (4.26) is given by

θ̃ = 0 , q̇1(0) = 0 , q1(0) = kπ , ∀k ∈ Z . (4.27)

Combining (4.27) with (4.25) yields

q1(t) = q2(t) = 0 , ∀q1 ∈< −π, π > . (4.28)

In this case the stronger property zero-state observability is proven. Moreover, the
estimated parameter reaches its true value. Summarizing limt→∞(q, p, θ̃) = (0, 0, 0).

4.3.2 Simulation Results

For these simulations, the control law (3.2) and the adaptive law (3.4) are employed,
considering Table 4.3.

Parameter Φ K θ̂(0) [q>(0) , p>(0)]>

Value sin(t) 1.08 0 [0.2 0 0 0]>

Table 4.3. – Controller Parameters: Input Uncertainty.

Figures 4.5 to 4.8 show the system response with respect to A = 0.8. From Figure 4.5,
it is easy to note that the adaptive IDA-PBC control law (3.2) manages to compen-
sate the input uncertainty A sin(t), while the standard IDA-PBC yields a continuous
oscillatory response, which is, obviously, not a desired response.
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Figure 4.5. – Simulation 2: Evolution of q over time (A = 0.8).
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Figure 4.6. – Simulation 2: Evolution of p over time (A = 0.8).

From the zero-state detectability calculations, it is known that limt→∞(q, p, θ̃) =
(0, 0, 0), which means that the parameter estimation has to reach its true value. This
can be verified in Figure 4.7.
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Figure 4.7. – Simulation 2: Evolution of θ̂ over time (A = 0.8).
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Figure 4.8. – Simulation 2: Evolution of u over time (A = 0.8).

4.4 Simulation for Friction Compensation

The control law resulting from the IDA-PBC technique did not take into consideration
the effect of the friction, which may lead to a closed-loop instability. This issue is
addressed in [45], where some conditions are given to ensure the stability of the resulting
system. In this section, the adaptive control law from Proposition 3.2 will be used to
compensate for the effect of the friction. The IWIP dynamical system with friction is
described by (4.3).
From the Proposition 3.2, the stated conditions have to be satisfied. However, only

the relaxed version of those conditions are fulfilled, that is

[0r×m Ir]TMd∆M

(
∂Hd
∂q −

(
∂Tp
∂q

)
T−> ∂Hd∂p

)
= 0r → Satisfied because ∆M = 0

[0r×m Ir]TR
(
∂H∆
∂p

)
= 0r → Satisfied because H∆ = 0

[0r×m Ir]ET−>
(
∂H∆
∂p

)
= 0r → Satisfied because H∆ = E = 0

[0r×m Ir]T
(
∂H∆
∂q −

(
∂Tp
∂q

)
T−> ∂H∆

∂p

)
= 0r → Satisfied because H∆ = 0
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The only condition that needs calculations is

[0r×m Ir]TR
(
∂H

∂p

)
= −[0 1]

[
−1

2(q̇1(r1 + 2r2)− 2r2q̇2)
r1q̇1

]
= −r1q̇1 = 0 . (4.29)

From (4.29), it is clear that only friction in the actuated coordinate can be compensated.
The functions involved in Φ(q, p), considering r1 = 0, are

[Im 0m×r]TR
(
∂H

∂p

)
= −[1 0]

[
−1

2(q̇1(r1 + 2r2)− 2r2q̇2)
r1q̇1

]
= r2(q̇1 − q̇2) . (4.30)

Then it is clear that
Φ(q, p) = q̇1 − q̇2 , θ = r2 .

4.4.1 Zero-State Detectability

Here, the assumption (4.7) still holds. The target PH system (3.26) together with the
adaptive law (3.24), taking into account that ∆M = J2 = 0, is represented by (4.18).
Therefore, (4.20) is still valid.
Applying the same approach as in (4.21), we get

q̈2 + q̈1γ2 = ṗ2
I2

+ ṗ1γ2
I1

= Z1 sin(q1) +
const.︷ ︸︸ ︷

Z2(q2 + q1γ2) +Z3Φθ̃ = 0 , Φ = q̇1− q̇2 , (4.31)

where Z1, Z2 and Z3 are the same as (4.22).
Isolating sin(q1) in (4.31), using the relationship q̇1 − q̇2 = q̇1(1 + γ2) and replacing

it in ṗ1 in order to obtain q̈1

q̈1 = D1q̇1 +D2 , (4.32)

where

D1 = 1
I1

(
θ̃ − m1(I2γ2 − I1)(1 + γ2)θ̃

I2m1γ2 + I1m2

)
= const. ,

D2 =
(
m1K1

(
I2

2m1γ2
2 + 2I2I1m2γ2 + I2

1m3
)

I2
1I2(I2m1γ2 + I1m2)

− m1K1γ2
I2

1
− m2K1

I1I2

)
(q1γ2 + q2) ,

with D2 = const. The solution of (4.32) is

q1(t) = eD1t(D1q̇1(0) +D2)
D2

1
− D2t

D1
+ D2

1q1(0)−D1q̇1(0)−D2
D2

1
, (4.33)
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Since the system (4.18) is stable, the following must hold with respect to (4.33)

D1 ≤ 0 =⇒ θ̃ ≤ 0 ,

D2 = 0 =⇒ q1γ2 + q2 = 0 .
(4.34)

Combining (4.34) with (4.31) yields

q̇1 = ζ sin(q1) , ζ = − Z1

Z3(1 + γ2)θ̃
< 0 , ∀ θ̃ 6= 0 . (4.35)

The solution of (4.35) is ∣∣∣∣tan q1
2

∣∣∣∣ = eζt . (4.36)

From (4.36), it is clear that

lim
t→∞

q1(t) = q2(t) = 0 , ∀q1 ∈< −π, π > . (4.37)

In this case zero-state detectability condition is verified. Summarizing limt→∞(q, p, θ̃) =
(0, 0, θ̃∗).

4.4.2 Simulation Results

For these simulations, the control law (3.23) and the adaptation law (3.24) are em-
ployed, considering Table 4.4.

Parameter Φ K θ̂(0) [q>(0) , p>(0)]>

Value q̇1 − q̇2 2.08× 10−5 0 [0.2 0 0 0]>

Table 4.4. – Controller Parameters: Friction Uncertainty.

Figures 4.9 to 4.12 show the IWIP’s system response to r2 = 0.0012. From Figures 4.9
to 4.10, it’s clear that both control laws have a similar response. Even though the
convergence time of the response from the adaptive IDA-PBC technique is slightly
faster than the one from the IDA-PBC, both responses achieve asymptotic stability.
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Figure 4.9. – Simulation 3: Evolution of q over time (r2 = 0.0012).

0 5 10 15 20 25
-0.04

-0.02

0

0.02

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

Figure 4.10. – Simulation 3: Evolution of p over time (r2 = 0.0012).

From the zero-state detectability calculations, it is known that limt→∞(q, p, θ̃) =
(0, 0, θ̃∗), which means that the parameter estimation does not necessarily reach its
true value, this complies with what is shown in Figure 4.11.
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Figure 4.11. – Simulation 3: Evolution of θ̂ over time (r2 = 0.0012).
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Figure 4.12. – Simulation 3: Evolution of u over time (r2 = 0.0012).

Figures 4.13 to 4.16 show the IWIP’s system response to r2 = 0.0017.
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Figure 4.13. – Simulation 4: Evolution of q over time (r2 = 0.0017).
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In Figure 4.13, it’s noted that the IDA-PBC technique does not asymptotically sta-
bilize the system anymore. In fact, it seems to start to become unstable. However, as
it is shown in Figure 4.17, it does not become unstable, at least up to where it was sim-
ulated. Adaptive IDA-PBC proves to asymptotically stabilize the IWIP system despite
the effect of friction that was not considered in the standard IDA-PBC technique.
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Figure 4.14. – Simulation 4: Evolution of p over time (r2 = 0.0017).

For this simulation, it remains valid the fact that the parameter estimation does not
necessarily reach its true value, this is verified in Figure 4.15.
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Figure 4.15. – Simulation 4: Evolution of θ̂ over time (r2 = 0.0017).
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Figure 4.16. – Simulation 4: Evolution of u over time (r2 = 0.0017).
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Figure 4.17. – Simulation 4: Wider view of the evolution of q1 (r2 = 0.0017).

From the simulations, with the previous values of r2, it is seen that a slightly incre-
ment in r2 resulted in a drastic change in the system’s response under the IDA-PBC
technique. In contrast, the adaptive IDA-PBC technique can manage bigger increments
and still be able to asymptotically stabilize the IWIP system. Figure 4.18 shows the
system’s response to r2 = 0.02 under the adaptive IDA-PBC technique and Figure 4.19
shows the response to both controllers where it is easy to note that the IDA-PBC
technique is not enough to guarantee asymptotic stability.
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Figure 4.18. – Simulation 5: Evolution of q1 (adaptive only) over time (r2 =
0.02).
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Figure 4.19. – Simulation 5: Evolution of q1 over time (r2 = 0.02).

4.5 Simulation Subject to Parameter Uncertainty

Usually, when working with mechanical systems the values assigned to variables like
inertia are just a close approximation. Hence, the system response to the designed
controller could be slightly different from what the simulations showed or even worse,
the system could become unstable depending on the system dynamics and how far away
are the approximations from the real values of the previously mentioned variables. In
this section, the adaptive control law stated in Proposition 3.2 will be used and then
compared to the standard IDA-PBC. The parameter uncertainty is reflected in total
energy of the system, this is

HR = 1
2p
>

M̃−1︷ ︸︸ ︷
(M−1 + ∆M ) p+ (V + ∆V )

=

H︷ ︸︸ ︷
1
2p
>M−1p+ V +

H∆︷ ︸︸ ︷
1
2p
>∆Mp+ ∆V .

We choose ∆M and ∆V such that they have the same structure asM and V respectively

∆M = ∆>M =
[
∆11 ∆12

∆12 ∆13

]
,

∆V = B(cos(q1) + 1) .

The following step is to fulfill the conditions stated in Proposition 3.2. In this case the
relaxed version of those conditions is employed, that is

[0r×m Ir]TR
(
∂H
∂p

)
= 0r → Satisfied because R = 0 .

[0r×m Ir]TR
(
∂H∆
∂p

)
= 0r → Satisfied because R = 0 .
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[0r×m Ir]ET−>
(
∂H∆
∂p

)
= 0r → Satisfied because E = 0 .

Performing calculations for the condition

[0r×m Ir]T
(
∂H∆
∂q
−
(
∂Tp

∂q

)
T−>

∂H∆
∂p

)
= [0 1]

[
−1

2
1
2

1 1

][
−B sin(q1)

0

]
= −B sin(q1) = 0 . (4.38)

It is clear that stability of the target PH system (3.26), using Proposition 3.2, cannot
be ensured under an uncertainty in the potential energy. For the remaining condition
we have

[0r×m Ir]TMd∆M

(
∂Hd

∂q
−
(
∂Tp

∂q

)
T−>

∂Hd

∂p

)
= 0r ,

which leads to the following inertia uncertainty matrix

∆M =

 ∆11 −(m1 +m2)
(m2 +m3)∆11

−(m1 +m2)
(m2 +m3)∆11

(m1 +m2)2

(m2 +m3)2 ∆11

 ,
and so, the matrix of known functions Φ(q, p) derives from

[Im 0m×r]TMd∆M

(
∂Hd

∂q
−
(
∂Tp

∂q

)
T−>

∂Hd

∂p

)
= ∆11N1(N2 sin(q1)−N3(q1γ2 + q2)) ,

where

N1 = m1m3 −m2
2

(m2 +m3)2(m1 +m2) = const. ,

N2 = I1bg(m2 +m3) = const. ,

N3 = K1(m1 +m2)(γ2(m2 +m3)− (m1 +m2)) = const.

Then it is clear that

Φ(q, p) = N1(N2 sin(q1)−N3(q1γ2 + q2)) , θ = ∆11 .

Now, the effect of ∆M on the system’s inertia matrix is calculated as follows

M̃ =
(
M−1 + ∆M

)−1

= 1
Z

 (Z −∆11I1)I1
(m1 +m2)∆11I1I2

m2 +m3
(m1 +m2)∆11I1I2

m2 +m3
(I1∆11 + 1)I2

 ,
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where

Z = (m1 +m2)2∆11I2
(m2 +m3)2 + ∆11I1 + 1 .

4.5.1 Zero-State Detectability

The assumption in (4.7) still holds. The target PH system (3.26) together with the
adaptive law (3.24), taking into account that ∂Tp

∂q = J2 = 0, is represented by


q̇

ṗ
˙̃θ

 =


0

(
M−1 + ∆M

)
Md 0

−Md

(
M−1 + ∆M

)
−GKvG

> −GΦK
0 KΦ>G> 0



∂Hd
∂q
∂Hd
∂p
∂Hd
∂θ̃

 , (4.39)

where Hd is the same as in (4.19). From (4.39), the following is obtained

˙̃θ = KΦ>

0︷ ︸︸ ︷
G>

∂Hd

∂p
= 0→ θ̃ = const. ,

ṗ = −Md(M−1 + ∆M )∂Hd

∂q
−GΦθ̃

=

−m1f(q)−m2g(q) + Φθ̃

−m3f(q)−m4g(q)− Φθ̃

 , (4.40)

where

m1 = m1

( 1
I1

+ ∆11

)
− m2∆11(m1 +m2)

m2 +m3
= const. ,

m2 = m2

(
1
I2

+ ∆11(m1 +m2)2

(m2 +m3)2

)
− m1∆11(m1 +m2)

m2 +m3
= const. ,

m3 = m2

( 1
I1

+ ∆11

)
− m3∆11(m1 +m2)

m2 +m3
= const. ,

m4 = m3

(
1
I2

+ ∆11(m1 +m2)2

(m2 +m3)2

)
− m2∆11(m1 +m2)

m2 +m3
= const. ,

f(q) = −I1bg sin(q1)
m1 +m2

+K1(q1γ2 + q2)γ2 ,

g(q) = K1(q1γ2 + q2) .

Applying the same approach as in (4.10), we get

q̈2 + q̈1γ2 = ṗ2
I2

+ ṗ1γ2
I1

= Z1 sin(q1) +
const.︷ ︸︸ ︷

Z2(q2 + q1γ2) +Z3Φθ̃ = 0 , (4.41)
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Φ = Z4 sin(q1) + Z5(q2 + q1γ2) ,

where

Z1 = bg(I2m1γ2 + I1m3)
I2(m1 +m2) ,

Z2 = −K1
(
γ2I2m1 + (I2m2 + I1m3)γ2 + I1m4

)
I1I2

,

Z3 = I2γ2 − I1
I1I2

, Z4 = N1N2 , Z5 = N1N3 .

Equation (4.41) can be rewritten as

Z1 sin(q1) +
const.︷ ︸︸ ︷

Z2(q2 + q1γ2) = 0 , (4.42)

where

Z1 = Z1 + Z3Z4θ̃ ,

Z2 = Z2 + Z3Z5θ̃ .

From (4.42), we know that Z1 sin(q1) has to also be constant, thus:

sin(q1) = const. =⇒ q1 = const. =⇒ q2 = const. =⇒ q̇1 = q̇2 = 0 =⇒ ṗ = 0 .
(4.43)

From (4.43) and (4.40), we get

f(q) = −m2
m1

g(q) = −m3
m2

g(q) . (4.44)

The only solution for (4.44) is

f(q) = g(q) = 0 =⇒ q2+q1γ2 = 0 =⇒ sin(q1) = 0 =⇒ q1 = q2 = 0 ∀q1 ∈< −π, π > .

From all the operations that were carried out in this subsection, it is clear that the
target PH system (4.39) is zero-state observable, thus asymptotic stability is proved.
Summarizing limt→∞(q, p, θ̃) = (0, 0, θ̃∗).

4.5.2 Simulation Results

For these simulations, the control law (3.23) and the adaptive law (3.24) are employed,
considering Table 4.5.
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Parameter Φ K θ̂(0) [q>(0) , p>(0)]>

Value N1(N2 sin(q1)−N3(q1γ2 + q2)) 7.08× 103 0 [0.2 0 0 0]>

Table 4.5. – Controller Parameters: Parameter Uncertainty.

Figures 4.20 to 4.23 show the IWIP’s system response with respect to ∆11 = 15. For
such choice of ∆11, the inertia matrix changes as follows[

0.0437 0
0 0.0004

]
→
[

0.0264 −1.8× 10−5

−1.8× 10−5 0.0004

]
.
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Figure 4.20. – Simulation 6: Evolution of q over time (∆11 = 15).

It is clear from Figure 4.20, that decreasing the values of the inertia matrix leads
to a smoother response of the system compared to the standard IDA-PBC without
uncertainties. Additionally, the adaptive IDA-PBC technique yields a slightly faster
response compared to the standard IDA-PBC.
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Figure 4.21. – Simulation 6: Evolution of p over time (∆11 = 15).

From the zero-state detectability calculations, it is known that limt→∞(q, p, θ̃) =
(0, 0, θ̃∗), which means that the parameter estimation does not necessarily reach its
true value. This matches with what is shown in Figure 4.22.
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Figure 4.22. – Simulation 6: Evolution of θ̂ over time.(∆11 = 15).
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Figure 4.23. – Simulation 6: Evolution of u over time (∆11 = 15).

Figures 4.24 to 4.27 show the IWIP’s system response with respect to ∆11 = −22.
For such choice of ∆11, the inertia matrix changes as follows[

0.0437 0
0 0.0004

]
→
[
1.1097 0.0011
0.0011 0.0004

]
.
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Figure 4.24. – Simulation 7: Evolution of q over time (∆11 = −22).9

From Figure 4.24, it is noted that, as the inertia values increase, the response of the
system becomes more oscillating, plus, stabilization time increases considerably. The

9For this simulation, a wider time range is used to depict the asymptotic stabilization.
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system’s response subject to adaptive IDA-PBC has a slightly better performance (less
overshoot and convergence time) compared to the standard IDA-PBC.
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Figure 4.25. – Simulation 7: Evolution of p over time (∆11 = −22).
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Figure 4.26. – Simulation 7: Evolution of θ̂ over time (∆11 = −22).
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Figure 4.27. – Simulation 7: Evolution of u over time (∆11 = −22).

As it has been seen, for the simulations with ∆11 = −22 considering Table 4.5,
the system responses for both controllers are very similar to each other, and not very
desirable. To improve this behavior, there are two main ways. The first one, motivated
by a physical knowledge, is to set the initial estimation value to a non-zero value.
However, there is a problem with this approach: Since the propositions stated in this
work do not guarantee the estimation parameter convergence, the choice of this initial
estimation may turn out not intuitive at all. This fact can be noticed in Figures 4.28
to 4.33, where it can be seen that for a choice of θ̂(0) = −25 (Figures 4.28 to 4.30),
which is close to the true value of ∆11, the system response has worse performance
compared to the response resulting from the choice of θ̂(0) = 0. However, the choice of
θ̂(0) = 25 (Figures 4.31 to 4.33), which is not relatively close to the true value of ∆11,
yields a better behavior.
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Figure 4.28. – Simulation 8: Evolution of q over time
(
θ̂(0) = −25

)
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Figure 4.29. – Simulation 8: Evolution of θ̂ over time
(
θ̂(0) = −25

)
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Figure 4.30. – Simulation 8: Evolution of u over time
(
θ̂(0) = −25

)
.
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Figure 4.31. – Simulation 9: Evolution of q over time
(
θ̂(0) = 25
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Figure 4.32. – Simulation 9: Evolution of θ̂ over time
(
θ̂(0) = 25
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Figure 4.33. – Simulation 9: Evolution of u over time
(
θ̂(0) = 25

)
.
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From Figure 4.30 and Figure 4.33, it is clear that the choice of a non-zero θ̂(0)
affects directly the control input peak magnitude. For instance, the control input peak
to improve the system’s behavior (Figure 4.33) is considerably higher than the one
resulting from the standard IDA-PBC.
The second and more suitable way, at least for this system, is to adjust the adaptation

rate gain, i.e., K, leaving the initial estimation to be zero. In this case, physical
considerations have also to be taken into account. The original choice ofK = 7.08×103,
for this system, is suitable when the inertia matrix elements have smaller magnitudes
than those considered in the dynamic modeling. However, as it has been seen, as the
inertia matrix’s elements increase in magnitude (e.g., ∆11 = −22), this value of K is
not good enough to compensate for such uncertainties. This issue is solved, in this case,
by increasing the value of K. The choice of K = 7.08 × 104, considering ∆11 = −22,
yields the system’s behavior showed in Figures 4.34 to 4.36.
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Figure 4.34. – Simulation 10: Evolution of q over time
(
K = 7.08× 104).
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Figure 4.35. – Simulation 10: Evolution of θ̂ over time
(
K = 7.08× 104).
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Figure 4.36. – Simulation 10: Evolution of u over time
(
K = 7.08× 104).

It is easy to see from Figures 4.34 to 4.36, that, for this considered value of ∆11, the
system response subject to adaptive IDA-PBC has a remarkably better performance
(less overshoot and convergence time) compared to the standard IDA-PBC. However,
the increment on the value of K is not suitable if we are in the case that the inertia
matrix elements have smaller magnitudes than those considered in the dynamic mod-
eling (e.g., ∆11 = 15). This fact can be seen in Figures 4.37 to 4.39, where we simulate
with ∆11 = 15.
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Figure 4.37. – Simulation 11: Evolution of q over time
(
K = 7.08× 104)
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Figure 4.38. – Simulation 11: Evolution of θ̂ over time
(
K = 7.08× 104)
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Figure 4.39. – Simulation 11: Evolution of u over time
(
K = 7.08× 104)
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4. Adaptive IDA-PBC Application: Inertia Wheel Inverted Pendulum

Therefore, the use of the adaptive IDA-PBC requires, aside from the standard IDA-
PBC calculation, a good tunning of the adaptive gain rate K, taking into account
physical considerations.
It was mentioned that when a non-zero initial parameter estimation was selected,

the control input peak varies depending on the value of θ̂(0). However, it is clear from
Figure 4.36 and Figure 4.39, that just adjusting K does not have an impact in the
control input peak. Therefore, we obtain a better performance (with a suitable K)
with the same control input peak.
One remark regarding these set of simulations performed to compensate for parame-

ter uncertainties is that most of the variation in the inertia occurs in the inertial element
that is located in the non-actuated channel.
Throughout this chapter, a variety of simulations has been carried out to verify

the validity of the propositions stated in Chapter 3. Based on the results of those
simulations it can be concluded that, in presence of certain uncertainties, the adaptive
IDA-PBC yields an asymptotically stable response in contrast to the standard IDA-
PBC, which does not always asymptotically stabilizes the IWIP system.
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Chapter 5

Conclusion and Future Work

In this work, an adaptive control scheme is proposed for a class of mechanical sys-
tems, namely, the class of UMSs characterized in [33]. This adaptive control scheme
is combined with the IDA-PBC technique. The goal of the adaptive IDA-PBC is to
asymptotically stabilize such class of UMSs undergoing the effect of uncertainties (not
necessarily matched). The propositions stated in Chapter 3 define the structure of the
matrix of known basis functions. The adaptive IDA-PBC technique does guarantee the
parameter estimation convergence.
To illustrate the validity of the adaptive IDA-PBC technique, a variety of simulations

were carried out on the IWIP system, subject to different types of uncertainties. The
first set of simulations was performed assuming that the control input was affected by
a time-dependent input disturbance. For this case, asymptotic stability of the system
was demonstrated as well as parameter estimation convergence, while the standard
IDA-PBC could only achieve stability. The following set of simulations were performed
considering friction (only in the matched channel), which is obviated in the calculation
of the standard IDA-PBC. The results show clearly that the standard IDA-PBC,
at least for this system, can only asymptotically stabilize within a limited range of
friction coefficient values, while the adaptive IDA-PBC can asymptotically stabilize the
system within a much greater range. The last set of simulations deals with parameter
uncertainties in the system’s total energy. From the result of these simulations, it is
concluded that both the standard and adaptive IDA-PBC yield an asymptotically stable
response. For the specific case of the IWIP system, the right choice of the adaptive rate
gain can lead to a better performance of the adaptive IDA-PBC (less overshoot and
convergence time). Additionally, the asymptotic stabilization occurs in the presence of
an unmatched inertia-uncertainty.
The application realm of this work can be expanded by further investigating the

following topics. First, apply the adaptive IDA-PBC to the more general SIDA-PBC
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5. Conclusion and Future Work

using generalized forces [43]. Additionally, in the last set of simulations (inertia un-
certainties) the actuated and non-actuated terms in the inertia matrix are coupled.
Therefore, some calculations and simulations were performed to decouple these uncer-
tainties. Even though these simulations showed an outstanding behavior compared to
the standard IDA-PBC, no analytic proof was found to corroborate these results.
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Appendix A

Additional Calculations

A.1 Matching Condition and Equivalent Formulation

The matching condition in the original coordinates is

G⊥
(
∂H

∂q
−MdM

−1∂Hd

∂q
+ J2

∂Hd

∂p

)
= 0 . (A.1)

From the new coordinates we get

TGues = T
∂H
∂q
− E∂H

∂s
−Q>∂Hd

∂q
+ C

∂Hd
∂s

. (A.2)

Transforming back (A.2) to the original coordinates the following is obtained

TGues = T
∂H

∂q
− TMdM

−1∂Hd

∂q
+ TJ2

∂Hd

∂p
,

which is equivalent to (A.1).

A.2 Calculation of the Inverse Transformation Matrix

To obtain the term T−1, considering that T is a non-singular square matrix, we can
apply the following relationship

TT−1 = I ,(G>G)−1
G>

G⊥

[a b
]

=

(G>G)−1
G>a

(
G>G

)−1
G>b

G⊥a G⊥b

 =
[
I 0
0 I

]
, (A.3)
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A. Additional Calculations

where a ∈ Rn×m and b ∈ Rn×r. From (A.3) it’s clear that

a = G ,

b =
(
G⊥
)>(

G⊥G⊥
>)−1

,

then
T−1 =

[
G

(
G⊥
)>(

G⊥G⊥
>)−1

]
.
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Abbreviations

UMS Underactuated Mechanical System

DOF Degrees of Freedom

TORA Translational Oscillator Rotational Actuator

IWIP Inertia Wheel Inverted Pendulum

PH Port-Hamiltonian

PCH Port-Controlled Hamiltonian

PFL Partial Feedback Linearization

SMC Sliding Mode Control

IDA Interconnection and Damping Assignment

SIDA Simultaneous Interconnection and Damping Assignment

PBC Passivity-Based Control

EL Euler-Lagrange

CL Controlled Lagrangian

PDE Partial Differential Equation

ODE Ordinary Differential Equation

ES Energy Shaping

ADI Adaptive Dynamic Inversion

VTOL Vertical Take-Off and Landing

UAV Unmanned Aerial Vehicle

ZSD Zero-State detectable
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