PONTIFICIA

TESIS PUCP : 2;'}‘35,521’“"
DEL PERU

Escuela de Posgrado

Tesis de Maestria

Autor: Kathrin Lang

Fecha de Nacimiento: 07.06.1989

Lugar de Nacimiento: Sulzbach-Rosenberg

Titulo a obtar: Maestria en Ingenieria Mecatrénica

Titulo de la Tesis:
"Software for calibrating a digital image processing"

Asesor de la PUCP: Ericka Patricia Madrid Ruiz
Asesor de la TU limenau: Florian Schale

Entrega de la Tesis: 03.03.2014

Lugar: lImenau (Alemania)

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

m, Technische Universitat llmenau
Fakultat fir Maschinenbau
Masterarbeit

fur Frau Kathrin Lang

geboren am 07.06.1989 in Sulzbach-Rosenberg

Studiengang Mechatronik

THEMA

~Software for calibrating a digital image processing”

verantw. Hochschullehrer: Prof. Dr.-Ing. habil. Mathias Weif3

Ausgabedatum: 01.09.2013 Abgabedatum: 03.03.2014
gl o
limenau, den 03.09.2013 S W

Univ.-Prof. Dr.-Ing. Thomas Sattel
Vorsitzender des Prifungsausschusses

Topic:

;
m

TECHNISCHE UNIVERSITAT
ILMENAU

Fakultat fur Maschinenbau

Fachgebiet Rechneranwendung im Maschinenbau

Task for the Master's thesis

of Ms. Kathrin Lang

Software for calibrating a digital image processing

A digital image processing software was developed for the RoboCup project at the Faculty of
Mechanical Engineering at the Technical University of llmenau, which determines the position

of multiple mobile robots on a playing field.

The image information provides a digital network camera (Prosilica GC1600H). For the
successful position detection of the robot it is necessary to determine various parameters and
settings of the camera. For this purpose, a software should be developed that semi-
automatically determines the necessary data.

Programming will done with Visual Studio in C # and an provided camera API.

Subtasks:

- Analysis of image processing software for required parameters and camera settings

- Definition or adaptation of the interface between image processing software and the
calibration software

- Programming of an User interface, algorithms and data interfaces

- Creation of documentation and manual

Date of issue:

Responsible proffessor:

Carer at TU llmenau:

Carer at Pontificia Universidad

Catdlica del Peru:

Tl cismun j #=H-A5
City, Date

/ o By

A A M 28 K A4

City, Date

3 (L’L—\eh-‘/f(./ " C3.03.45
City, Date

01.09.2013
Univ.-Prof. Dr.-Ing. habil. Mathias Weil

Florian Schale M. Sc.

Ericka Madrid Ruiz M.Sc.

.% j.e,i (, /y

Signature of the responsible proffessor

7 B .
I{f}.“ Lf/“’ ffu ’[/ L zf/'/;ﬁ‘)

Signature of the carer atPoFTficia niversidad Catélica del Perd

(£ Law
4]

Signature of the student

1ENE3,?/

ol % |PONTRCA
TESIS PUCP , 2| CATOLICA "

DEL PERU

LMENAU UNIVERSITY OF
HNOLOGY]

Statement of Authorship

| declare on oath that | completed this work on my own and that information which has
been directly or indirectly taken from other sources has been noted as such. Neither this,
nor a similar work, has been published or presented to an examination committee.

lImenau, February 28", 2014

{/(Q'I'Lm;b. L‘“ﬂ(s

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP . : gzl_:_\gzﬁgfnn

DEL PERU
LMENAU UNIVERSITY OF
HNOLOGY]

Abstract

This work is about a learning tool which provides the necessary parameters for a program
controlling robots of type LUKAS at the Faculty of Mechanical Engineering.

The robot controlling program needs various parameters depending on its environment,
like the light intensity distribution, and camera settings as exposure time and gain raw.
These values have to be transmitted from the learning tool to the robot controlling
software.

Chapter one introduces the robots of type LUKAS which are created for the RoboCup Small
Size League. Furthermore, it introduces the camera used for image processing.

The second chapter explains the learning process according to Christoph URfeller and
deduces the requirements for this work.

In the third chapter theoretical basics concerning image processing, which are fundamental
for this work, are explained.

Chapter 4 describes the developed learning tool which is used for the learning process and
generates the required parameters for the robot controlling software.

In chapter five practical tests with two test persons are represented.

The sixth and last chapter summarizes the results.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP 3 = CATOLICA

DEL PERU
LMENAU UNIVERSITY OF
HNOLOGY]

Abstract (German)

Ziel der vorliegenden Arbeit war es, ein Anlernprogram fiir das Steuerungsprogram der
Roboter Typ LUKAS im Fachgebiet Rechneranwendung im Maschinenbau zu entwickeln.

Fir dieses Steuerungsprogram mdussen verschiedene Umgebungseinflisse wie z.B. die
Helligkeitsverteilung Gber dem Spielfeld oder Belichtungszeit und Helligkeitsverstarkung der
Kamera angelernt werden. AnschlieBend missen die im Anlernprozess ermittelten Para-
meter an das Steuerungsprogram lbergeben werden.

Kapitel 1 geht auf den Roboter Typ LUKAS ein und stellt den Zusammenhang zur RoboCup
Small Size League her. AuBerdem wird kurz die fiir die Bildverarbeitung verwendete Kamera
vorgestellt.

Das zweite Kapitel stellt den Anlernprozess nach Christoph URfeller vor und leitet davon die
Anforderungen fiir diese Arbeit ab.

Im dritten Kapitel werden die benétigten theoretischen Grundlagen aus dem Bereich der
digitalen Bildverarbeitung erldutert.

Kapitel 4 schlieRlich beschreibt das entwickelte Learning Tool, das den Anlernprozess
Ubernimmt und die notigen Daten flr das Steuerungsprogram bereitstellt.

Im flinften Kapitel wird kurz auf Versuche mit zwei Probanden eingegangen.

Das sechste und letzte Kapitel fasst die Ergebnisse der Arbeit noch einmal zusammen.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP 3 = CATOLICA

DEL PERU
LMENAU UNIVERSITY OF
HNOLOGY]

Table of Contents

Statement of Authorship ii

Abstract iii
Abstract (German) iv
1 Introduction 1
1.1 RoboCup 1
1.2 Robot LUKAS 2
1.3 Prosilica GC1600H 2

2 Establishment of the Thesis’ Task 4
2.1 Software by URfeller 4
2.2 Derivation of Task 6

3 Digital Image Processing 8
3.1 Colors and Color Models 8
3.2 Sobel Operator 10
3.3 Hough Transform 11
3.4 AForge .Net Framework: BlobCounter 11
3.5 DBSCAN Algorithm 13

4 Learning Tool 14
4.1 General Design 14
4.1.1 Required Parameters 14
4.1.2 Program Flow 15
4.1.3 Design 17

4.2 Connection to Camera 17
4.3 Main Steps 19
43.1 Camera Adjustment 19
4.3.2 Light Intensity Compensation 21
433 Color Classification 23

4.4 Interface to Robot Controlling Software 27
441 Lut-File 27
4.4.2 Configuration File 29

5 Practical Tests 32
6 Conclusion 35

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,?/

PONTIFICIA

TESIS PUCP - @,% | UNIVERSIDAD

CATOLICA
DEL PERU

LMENAU UNIVERSITY OF
HNOLOGY]

List of Figures 37
List of Figures 37
List of Algorithms 37
List of Tables 37

List of Abbreviations and Symbols 38

Bibliographic References 39

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

1 Introduction

The first chapter gives an overview of the RoboCup project and explains which part the
IlImenau University of Technology plays in it. Furthermore it introduces the camera used for
determining the position of the robots.

1.1 RoboCup

After 40 years of research, IBM Deep Blue, a chess playing robot, defeated the human
world champion in May 1997. Until then the game of chess was the standard problem for
artificial intelligence. After it was solved successfully, a new and more complex problem
was required. In that year the first RoboCup games were held. [Rob14]

The robot world cup initiative started in Japan. At a Workshop on Grand Challenges in
Artificial Intelligence in Tokyo in 1992, a group of Japanese researchers decided the game of
soccer could be a new challenge for artificial intelligence. In September 1993 RoboCup was
announced publically for the first time. [Rob14]

The goal of the robot world cup initiative is stated as follows:

“By the middle of the 21* century, a team of fully autonomous humanoid robot soccer
players shall win a soccer game, complying with the official rules of FIFA, against the winner
of the most recent World Cup.” [Rob14]

In difference to chess, soccer has a dynamic environment and a continuous game flow —
that means real time robot controlling — while in chess the environment is static and the
game flow turn taking. In chess, the control is central and all information is accessible. On
the contrary, in soccer the control is distributed on the robots and the information is
incomplete. [Rob14]

The RoboCup Soccer domain is divided in Humanoid, Standard Platform, Middle Size, Small
Size and Simulation. In the Humanoid League there are up to three robots pro Team. Main
problem is to keep the balance while moving and taking a shot at the goal. In the Standard
Platform League every team uses the same robot hardware. So the main issue is the
controlling software. [Beh13]

In the Middle Size League there are up to six robots in a team. These robots are completely
autonomous. In the Small Size League there are five robots in a team. Their position is
monitored by a camera above the playing field and they are controlled by an external
computer. The Simulation League is based on software; the robots are only simulated and
the game itself is most important. [Beh13]

Nowadays, there are more domains like RoboCup Rescue, RoboCup@Home and RoboCup
Junior. RoboCup Rescue treats disaster scenarios. It includes simulations as well as actual
robotic systems. RoboCup @Home includes autonomous robots which can help in
household. RoboCup Junior is built up of teams of students. [Beh13] [Rob14]

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,?/

- fl% | UNIVERSIDAD
TESIS PUCP 2 | NTOLICA

DEL PERU

1.2 Robot LUKAS

A team from the llmenau University of Technology is building a robot team in the
dimensions of the RoboCupSoccer Small Size League. The name of the robot version is
LUKAS.

This robot has a diameter of 180 mm and a weight of 1.7 kg (see Figure 1.1). It can reach a
top speed of 4 m/s. The robots contain a position controller; so they can move to a position
on the playing field on their own. The robots can be controlled by a robot controlling
program which uses a camera above the playing field to detect their positions. The robots
can be distinguished by their tricots. [Uss13]

The robots have tricots in different colors. The team marker in the center is yellow or blue.
The front of the robot is marked by a white part. And the robot number is coded in a
combination of cyan, magenta and green.

Figure 1.1: Robot LUKAS

At the faculty of Mechanics the software for controlling the robots was written by
Christoph URfeller [Uss13]. This software needs special parameters (like the light intensity
distribution for example) as input values. Because of this a second program (the so-called
learning tool) should be written which determines these parameters semiautomatic and
helps user to adjust the camera. The aim of this learning tool is to make the learning
process easily repeatable and useable for everybody by using a self-explanatory user
interface.

1.3 Prosilica GC1600H

The Prosilica GC1600H is part of the GigE series of Allied Vision Technologies. Its dimensions
are 59 x 46 x 33 mm and its weight is 105 g. The camera contains a Sonic ICX274AL sensor
with a resolution of 1620 x 1220 pixels.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

At ENrg,e,
S Y | PONTIFICIA

T i <

= % | UNIVERSIDAD

. y | CATOLICA
DEL PERU

TESIS PUCP

The camera offers the possibility to select a region of interest; that is the camera streams

only part of the image, but with a higher frame rate.
The frame rate of the camera can be determined by formula (1-1). It can be increased by
reducing the height of the image; that is by reducing the region of interest. A reduction of
the width of the image does not increase the frame rate. The maximum frame rate of the

camera at full resolution is 25 fps.
1
(1-1)

29.24 us = height [pixels] + 3082.14 us

Fr[fps] =
Gain control, exposure control and white balance of the camera can be adjusted manually
and automatic. Furthermore, the camera is capable of multicast, which means, that the

camera image can be streamed on more than one computer at the same time.

Figure 1.2: Prosilica GC 1600H
The camera uses IEEE 802.3 1000BASE-T as hardware interface standard and GigE Vision

Standard 1.2 as software interface standard.[AVT13]

Tesis publicada con autorizacion del autor

No olvide citar esta tesis

1ENE3,E,

s ¢ | PONTIFICIA
a
™
s

TESIS PUCP : gzl_:_\gzﬁgfnn

DEL PERU

2 Establishment of the Thesis’ Task

The second chapter introduces the programs written by Christoph URfeller. The task of this
work is derived from these programs.

2.1 Software by Uf3feller

The software written by Christoph URfeller consists of two programs. The first one is used
for guiding the robots during a game. This program requires different parameters like the
size of the robots or the recent light intensity distribution. Those parameters are
contributed by the second program. The process of providing these parameters is called
learning process.

Robot Controlling Software

The robot controlling software has to fulfill different tasks. At first, the raw data has to be
preprocessed. Following, parts of the image which have the same color are put together
into segments. In the last step the position of the robots is determined via Helmert
transformation.

The preprocessing takes place in two steps. In the first step the raw data is Bayer
interpolated. This is necessary because the used camera contains only one color chip. So
the color filters are arranged according to a special pattern. The missing color information
has to be reconstructed afterwards. To reconstruct the color information there are
different processes. The one used by URfeller is called linear interpolation. The information
is reconstructed according to formula (2-1) (see Figure 2.1):

([3Vit1,j+1 + Vie1,j-1
2041+ 2v541 |,(imod 2 =0)A (jmod2 = 0)
3V + Vikz j+2
3Vit1,j t Vie1jt2
Zvi,j B 217i+1,j+1 ,(imod2=0)A (] mod 2 =1)
<X§> _ 1{ 3V 41t Vigz,j-1 (2-1)
4| [3Vij1+ Vi1
" 2v;; + 204141 |, (imod2 = 1) A (j mod 2 = 0)
3Vit1,j t Vie1jt2
3V + Vikz j+2
2041+ 20541 |, (imod2=1)A(jmod2 = 1)
Vi1, 41t Vieg o1

The second step consists of a light intensity regulation. A static local regulation is combined
with a dynamical global one. The local regulation divides the area of the playing field in 37 x
20 parts. For each part exists a coefficient with which the light intensity in this part is
multiplied. These coefficients are determined in the learning process and consist of the
reciprocal values of the matrix of the average light intensity.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

L PONTIFICIA
TESIS PUCP g:_:_\éELI:‘S:IEAD

DEL PERU

(a) (b) (@ ()

Figure 2.1: Linear Interpolation [Uss13]

The global regulation depends of two parameters of the camera. One is the exposure time
of the camera and the other one the gain raw. The gain raw is between 0 and 30 and
consists of integers.

The next task of the robot controlling software is the segmentation. In this step pixels of the
same color group in each line of the picture are united to groups and afterwards these
groups are put together into segments of one color group. Each segment has a center of
gravity and an area.

In the last step the direction of the robots is determined. This step uses the Helmert
transformation. Input data for the transformation are center of gravity and area of the
segments. This data is compared with the positions of the centers of gravity of an ideal
tricot.

For the positioning of the robots only the centers of gravity are used. But the segments
provide areas as well. These areas can be used to improve the results by reducing the
influence of segments which are not detected very well.

[Uss13]
Learning Process

The learning process by URfeller consists of three steps: In the first step the camera is
adjusted. In the second step the necessary light intensity compensation is determined. And
in the third step the color classification takes place.

At the camera there are three joints to adjust its direction. The joints have to be adjusted at
the same time. To determine how good the camera has been adjusted there is an image in
the program which contains the image of the camera as well as a grid. The grid tells where
the playing field should be. When the borders of the playing field are parallel to the grid the
camera can be focused via zoom and diaphragm at the camera. These adjustments of the
camera are hardware based. The software is only used to display the camera image for
reference purpose.

For the first step there have to be some robots on the playing field to decide if the camera
is well-focused, but the second step does not work properly if there are any objects on the
field. So, between step one and two, the user has to empty the playing field.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,%
T. = ¢ | PONTIFICIA
[[=l

™

-

TESIS PUCP g:_:_\éELI:‘S:IEAD

DEL PERU

The second step treats the light intensity compensation. At first the user has to mark the
playing field in the camera picture. Afterwards the program creates a so called gain grid. It
consists of the coefficients, with which the light intensity value of each part of the field has
to be multiplied to get the same intensity in the whole field. These coefficients are written
in a text document.

After the second step the program has to be closed and reopened. Besides, some robots (or
at least their tricots) have to be put on the playing field.

For the color classification a color has to be selected (that is, the exact name of the color
has to be written in a field) and after that, parts of the picture, which are in this color, have
to be marked. This is done with all necessary colors. After collecting this data a second
program has to be used to generate a lut-file out of this data. The lut-file provides the
information which RGB value belongs to which color.

2.2 Derivation of Task

The learning process by URfeller has different advantages and disadvantages. It should be
modified and joint to a learning tool. Basing on the learning process the learning tool has to
fulfill different requirements.

Both programs are written in C++. While the robot controlling program can be used on any
computer using Windows as well, the learning program by URfeller runs on exactly one
computer using Linux and can’t be transferred to another computer. So the first
requirement is mobility. That is, the learning tool can be transferred to different computers
and does not depend on a special one.

One big disadvantage of the learning program by URfeller is that the user has to know in
which order the program has to be used. For example there is no reference that the
program has to be closed and reopened or that a second program is needed to create the
lut-file. Furthermore, for selecting a color the user needs to know the exact name of the
color as it is used for generating the lut-file. If it is spelled another way the program will not
recognize it. So the next requirement is user-independency. For this the new learning tool
has to be self-explanatory or at least well-documented.

On the other hand, the learning process by URfeller does work. At least, if one has
experience in using the process. So the third requirement is an improvement of the three
basic steps.

At first the camera has to be adjusted hardware based. While doing this the user needs to
be able to watch the screen. The camera is adjusted correctly when the grid displayed in
the image is parallel to the borders of the playing field. It is very difficult to adjust the
camera while watching the screen so some sound-signal for notifying when the orientation
of the camera is all right would be an improvement.

Secondly, for the light intensity compensation the user has to mark the area of the playing
field by hand. In the new learning tool the program should find the borders of the playing
field automatically, if possible.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP : gzl_:_\gzﬁgfnn

DEL PERU

At last the color classification should be performed more automatically. In the learning
process by URfeller the user has to know the exact name of the color. Furthermore, he has
to mark the area of this color by hand. The new learning tool should recognize the colors
and areas by itself. In ideal case the user just has to press one button to start the process.

Another requirement is to collect the necessary parameters and transmit them to the robot
controlling program. In the learning process by URfeller this happens via three text files
with numbers but without explanations in them. In the new learning tool the number of
text files should be reduced and the parameters in the text files named.

Last but not least, the learning process should take place using only one single program, the
so called learning tool.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

et PONTIFICIA
TESIS PUCP 22}‘31'}21’“’

DEL PERU

3 Digital Image Processing

The third chapter describes the theoretical foundations for this work. It contains
information about digital image processing topics like color models or edge detection and
explains tools for digital image processing written in C#, for example the BlobCounter
algorithm by Aforge .Net.

3.1 Colors and Color Models

The soccer playing process is based on different colors (see Figure 3.1): The ball is orange.
Small circles in yellow or blue in the jerseys of the robots tell which team the robot belongs
to (team yellow or team blue). In addition the colors green, cyan and magenta are used to
encode the player number of the robot while the white segment always shows the front of
the robot. Other colors are defined as “rest” which includes for example the dark green
playing field. [Uss13]

Figure 3.1: Robot Tricots and Ball

Usually a human can tell which part of the picture belongs to which of the color groups
named above. That is because humans have learned as children how each color looks like.
But the camera as well as the software analyzing the pictures doesn’t know how these
colors look like. Because of this the program has to learn the colors, too.

But how do you tell a program how a color looks like? For this the color has to be somehow
classified. Different color models yet exist. For example the most common system, the RGB
(red, green, blue) system, is used for monitors and cameras while the CMY (cyan, magenta,
yellow) system is used for printers. The one most similar to the human visual perception is
the HSI(Hue, Saturation, Intensity) system.[Gon08]

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

RGB

This system uses red, green and blue as elementary colors. The combination is called
additive colors because the combination of these colors produces the color white. The RGB
system is used for describing things which emit light like monitors. [Ric09]

cmy

The CMY system is similar to the RGB system. The difference is it uses the complementary
colors of the RGB system. These are cyan, magenta and yellow and they are called
subtractive colors. Their combination produces the color black. [Ric09]

For changing from the RGB system into the CMY system formula (3-1) is used.
C R
M| = -G
Y B

It is the system most similar to the human view. The abbreviation does not stand for colors
this time but for the words Hue, Saturation and Intensity. The hue value defines a color at
the chromatic circle in the unit degree (for example red is equal 0°). Saturation stands for
the distance to the center of the chromatic circle; the border of the circle corresponds to
100%. The intensity or brightness is found on the vertical axis; 0% means a very dark color.
[Ric09]

1
1 (3-1)
1

HSI

The conversion from RGB system to HSI system is described by formula (3-2) to (3-4).

[Ric09]
_ 0 .B<G
H_{360°—9 fBs¢
3-2
| L fer-6)+®-B) -
with 6 = cos <
[(R-G)*+(R—-B)(G-B)]z
3 .
S=1 —m[mm(R,G,B)] (3'3)
I:%(R+G+B) (3-4)

Other color systems exist as well but to mention all of them would be too much for this
work.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

= “¢ | PONTIFICIA
% | UNIVERSIDAD

TESIS PUCP | CATOLICA

DEL PERU

3.2 Sobel Operator
The Sobel operator is a high pass filter which is used for edge detection. Usually it consists

of a 3x3 filter matrix.

The Sobel filter matrix is the product of a gradient filter and a mean filter (see formula
(3-5)and (3-6)).

0 1 0 0 0 O 0 -1 1
Fsoper)=10 2 0])*(0 -1 1]|=(0 -2 2 (3-5)
0 1 0 0 0 O 0 -1 1
0 0 O
where: 0 —1 1| - gradientfilterforlines
0 0 O
0 1 0
0a 240 - meanfilter for lines
0 1 0
0 0 O 0 0 O 0 0 0
FsopertW) =10 =1 0)x(1 2 1|=(-1 -2 -1 (3-6)
0 1 0 0 0 O 1 2 1
0 0 O
where: 0 —1 0] - gradient filter for rows
0 1 0

0 0 O
1 2 1 - mean filter for rows
0 0 O

The gradient filter is of first order and detects edges in an image while the mean filter for
neighbored lines / rows makes the image smoother and eliminates noise. For the Sobel
filter, the central line / row of the mean filter is twice of a neighbored line / row. [Ric09]

According to Bassmann, the Sobel operator can be written as in formula (3-7) as well.

[Bas04]
-1 0 1 1 2 1
FSobel(X) = (_2 0 2>'F50bel(Y) = (0 0 0 > (3-7)

-1 0 1 -1 -2 -1

Figure 3.2 shows an example for a Sobel filtering process. The original image is represented
by its grey level values. The filter matrix is put in the left upper edge and each value of the
original image is multiplied with the corresponding value of the filter matrix. The results of
these nine multiplications are summed up and written in the central position of the filter
matrix (marked with grey background).

Thereafter the filter matrix is moved step by step to the right and down and new values are
determined. As it is not possible to calculate values for the borders of the image, these are
filled with default values.

Tesis publicada con autorizacién del autor
No olvide citar esta tesis

1ENE3,E,

s ¢ | PONTIFICIA
a
™
s

TESIS PUCP : g:_:_\éELI:‘S:IEAD

DEL PERU

10 |14 | 11| 8 | 12

9 |12|10| 9 |11 139 | 140 | 140

79 | 75 | 80 | 77 | 81 1121 3 3 0
160,156 | 158 | 157 | 161 0|00 120 122 | 123

162 | 151 | 159 | 153 | 158 1) -2(-1
a) Original Image b) Filter Matrix ¢) Scaled and Filtered Image

Figure 3.2: Example for Sobel Filter

Some of these new values can be negative, so in the next step the filtered image has to be
scaled to real grey level values. Figure 3.2 c shows the scaled and filtered image.[Ric09]

3.3 Hough Transform

The Hough Transform detects lines, circles, ellipses and other objects with known shape in
images. One big advantage of the Hough Transform is that it is able to find those objects
even if their borders are not complete. The Hough transform was introduced in 1962.
[Nix08][Sch95][Tre10]

The Hough transform for lines starts with the definition for lines in Cartesian parameteri-
zation. As one can see in formula (3-8), the line can be defined by a pair of coordinates (x, y)
as well as by a pair of parameters, the slope m and the intercept c.[Nix08]

y=mx+c (3-8)

In normal form the line is written as in formula (3-9) [Trel0]. In this case the line is
characterized by the parameters r and a.

r=xcosa+ysina (3-9)
The values of r and a can be inserted in a 2D accumulator space. This is a table which at the
beginning is filled with zeroes. Each pair of parameters increases the corresponding cell by
one. At the end, the local maximum value in the table marks the values for r and a of the
line. [Sch95][Tre10]

The Hough transform can only find lines of infinite length. That means it can determine the
position of the line but not its actual starting and end points. [Seu00]

3.4 AForge .Net Framework: BlobCounter

AForge .Net Framework is a C# framework for Computer Vision and Artificial Intelligence.
Its first version was released on December 21st 2006 by Andrew Kirillov. The current
version is version 2.2.5. The AForge .Net Framework is released under LGPL license. [Kir09]
[Kir11]

The BlobCounter tool by AForge .Net Framework recognizes objects which are separated by
background. The default background color is black but can be changed in the code. The
background color is assigned in RGB format.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP ' gx_:_\‘(sELF:‘S:I‘I\)AD

DEL PERU

void ObjectDetection (Bitmap image)
//Turn background of the image to black

1 | ColorFilter(ref image, red, green, blue);

//Look for objects

blobCounter = new BlobCounter();
blobCounter.minWidth = widthMin;
blobCounter.maxWidth = widthMax;
blobCounter.Processimage(image);

Blob[] blobs = blobCounter.GetObjectsInformation();
Algorithm 3.1: Implementation of BlobCounter

AU wnN

Parameters which can be changed are the minimum and maximum size of the found
objects. Furthermore, the threshold values for the color filters can be altered. Algorithm 3.1
shows how the BlobCounter can be used.

Anzahl gefundensr Objekte

red gresn biue 14

55 : B4 = =)

Figure 3.3: BlobCounter algorithm, looking for circles

Figure 3.3 shows an example program using the BlobCounter algorithm. The color filter
values can be altered until every circle is found. Other geometrical objects than circles are
ignored. Circles found by the algorithm are marked with yellow circles.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

3.5 DBSCAN Algorithm

The abbreviation DBSCAN signifies Density Based Spatial Clustering of Applications with
Noise. The DBSCAN algorithm was introduces in 1996. [Clu09][Dun03]

One Advantage of the DBSCAN algorithm is that it can detect clusters of various shapes and
sizes. Furthermore, it is capable of filtering noise in images. On the other hand, the DBSCAN
algorithm has difficulties to find the correct clusters when they have different densities. In
this case it is possible that the algorithm detects noise as clusters. [Clu09]

The DBSCAN algorithm divides a quantity D of elements into clusters. Each cluster has a
minimum size and density. Dunham defines density as “a minimum number of points within
a certain distance [Eps] of each other.” [Dun03] The minimum size of a cluster is
characterized by the minimum number of points MinPts in the cluster. How many clusters
the algorithm creates is determined by the algorithm itself. [Dun03]

The sequence of the DBSCAN algorithm shows Algorithm 3.2. The phrase density-reachable
signifies that the distance between element i and element j is less than Eps. The cluster is
valid if each element in it has at least MinPts neighbors within a radius Eps.
[San99]Elements, which can’t be assigned to a cluster, are defined as noise. [Dun03]

List<Cluster>dbscan(List<Elements> D, int MinPts, double Eps)
1 List<Cluster> K;
2 |intk=0; //noclusters atthe beginning
3 |for(i=0;i<n;i++)
4 if (D[i] not in a cluster)
Cluster X = Cluster (D[j] | D[j] is density-reachable from D[i]);
6 if (X is valid cluster)
k ++;
K[k] = X;
end
end
end
12 | return K
Algorithm 3.2: DBSCAN algorithm[Dun03]

The expected time complexity of this algorithm is O(n*t), where n is the number of
elements and t the time for counting the elements within a distance of Eps. In worst case,
the time complexity can be O(n”2). In most cases it is possible to reach a time complexity of
O(n log n). [Clu09]

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

“ﬁNEg&

g% | BiVERsipao
TESIS PUCP = CATé_LICA

DEL PERU

4 Learning Tool

The forth chapter introduces the new learning tool as the program for determining the
required parameters is called now. It starts with the general design of the tool, explains the
main steps and shows how the results are transmitted to the robot controlling software.

4.1 General Design
The learning tool should fulfill different specifications. It has to be user-friendly and self-
explanatory. One can see these tasks are reflected in the design of the tool.

4.1.1 Required Parameters

The robots are controlled by special software. This software requires various parameters
for example the size of one robot or the light intensity distribution. All of these parameters
have to be generated by the learning tool.

The first group of parameters depends on the camera settings. It includes name and ID of
the camera as well as settings like gain raw, exposure time and white balance values.

Figure 4.1: Playing Field with robots

Another group of parameters depends on the robots. Each robot has a diameter and a
height. For the learning tool, | assume that each robot has the same diameter and height.
The diameter of the ball is of interest as well.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP ' g:_:_\gsﬁg?;m

DEL PERU

Furthermore, each robot has a tricot for distinguishing them. The assignment of the tricots
has to be defined in the learning tool. Another parameter of the tricot is the diameter of
the circle which marks the team the robot belongs to.

The next group of parameters depends on the playing field. These include length and width
of the field as well as the height of the camera above the field. The position of the playing
field in the camera image is another value for this group.

Of great importance is the light intensity distribution. It differs above the field and depends
on the light intensity, position of the lamps etc. The configuration file should include in how
many sections the field is divided in x- and y-direction as well as the light intensity
compensation matrix.

The last information which has to be generated for the robot controlling program is called
lut-file. This file is used for assigning a RGB value to a color name.

4.1.2 Program Flow
After starting the learning tool there are two possibilities. The first one is to create a new
configuration and the second to alter an already existing one.

Creating a new configuration starts with Tab One, Configuration and Camera (see Figure
4.2). Here the file name for the lut file can be defined. Furthermore, a camera can be
selected. After selecting a camera the camera image is displayed. Some basic settings like
gain raw, exposure time and white balance can be made. An example image shows how the
camera image should more or less look like.

Configurstion Camers Parsmaters | Camers Ad) .Fnld T ; ; =

Filename for LUT:
1T

Select Camera:

GC1600CH -
Gain Raw: Lt]

Exposure Time: 15000

WB Red: 100

WB Blue: 130

Activate helping tests

‘ Next >>

Figure 4.2: Learning Tool Tab One: Configuration and Camera

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,%

I.% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

In Tab Two, Parameters, the dimensions of the robots and the playing field can be altered

(see Figure 4.3). In addition the tricot colors of each robot are presented.

[Parameters | Camera Adustment I S — -|[_Zohr e

Robots Ball
Diametar m Diametar o040 m
Height: 0.100 m

Team Marker Diameter. 0.050

Robat Temm = Rt Playing Field
¢ ety b - = oty S Lengh: 274 m
2 Yelow ~ lcyan +|[Green -
g — o o o - Width: 152 m
1 Yelow ~ | Magerta + [Green = Height: 240 -
B elow ~ |Green ~[cyan -
5 Yolow |Green + [Magerta -
7 Blue > |Cran - | Magenta -
& Ble | Cyan + | Green - B2
5 Blue [Magerta ~[cyn -
10 Blue | Magerta [Green - r—
m Blue + [Green «[Gyen -
12 Bloe + |Green v [Magerta = L
wen
. - €
=

‘

Activate helping tests

Figure 4.3: Learning Tool Tab Two: Parameters

In Tab Three, Camera Adjustment, a grid is drawn in the camera image. In this tab, the
camera should be adjusted hardware based. This step requires robots on the playing field.

In Tab Four, Field Selection and Light Intensity Compensation, the position of the playing
field can be marked and the coefficients for the light intensity compensation are calculated.
For this step the playing field has to be empty.

After the forth tab the configuration can be saved.

In Tab Five, Color Classification, the lut file is created. After this step is done, the learning
process is finished and the learning tool can be closed. While closing the learning tool, there
is another possibility to save the configuration file. The lut file does not need to be saved; it
is saved automatically in Tab Five, Color Classification.

In the second possibility in Tab One, Configuration and Camera, an already existing
configuration can be load. This includes all parameters except the lut matrix.

After loading a configuration single parameters or the position of the playing field can be
altered. A new light intensity compensation can be generated as well. For the robot
controlling program, a new lut file can be created in Tab Five, Color Classification, or an old
already existing one can be used.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

4.1.3 Design
The general design of the learning tool is shown in Figure 4.2.

The main part of the learning tool is a TabControl Object with five tabs. The tabs and their
output parameters are listed in Table 4.1.

Tab Name Parameters
Configuration and Camera - Cameraname and ID

- Gain raw, exposure time, white balance
Parameters - Robot dimensions

- Ball dimensions
- Dimensions of playing field
Robot-tricot assignment

Camera Adjustment /

Field Selection and Light Intensity - Position of playing field

Compensation - Number of elements in x-/y- direction
- Gain grid

Color Classification - Lut matrix

Table 4.1: Tabs and distributed parameters

Moreover, there are two buttons on the form. With the Next Button the user can shift from
one tab to the next one. With the Save Configuration Button the recent configuration can
be saved as configuration file (Note: This does NOT include the lut file!). After Tab Four,
Field Selection and Light Intensity Compensation, the necessary parameters for the
configuration file are known.

If the check mark at Activate helping texts is set, there are texts shown on each tab which
explain what to do. Furthermore, a ToolTip is activated. If the mouse hovers above one
object, a little explaining text is faded in.

Last but not least, one design rule for the learning tool consists in deactivating the controls
which are not needed currently. For example, as long as no camera is selected, gain raw
and exposure time can’t be changed. The progress bar in Tab Five, Color Classification, is
another example. It’s invisible until the color classification is started.

4.2 Connection to Camera

To get a connection to the camera an instance of the camera program vimba is used. The
function init() creates a new instance, and the function shutdown() closes the connection to
the camera program.

Feature Value

Pixel Format BGR8Packed
Offset X 0

Offset Y 0

Height of Image 1220

Width of Image 1620

Table 4.2: Camera Settings

After an instance of vimba is created, a camera in the network can be selected and
connected. Basic settings for the Prosilica GC1600H are listed in Table 4.2.

17

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

s ¢ | PONTIFICIA
a
™
s

TESIS PUCP : g:_:_\éELI:‘S:IEAD

DEL PERU

At first the function Cameralist() is called. It returns a list of in the network accessible
cameras. It contains name and id of each camera.

Second, a camera is selected and a connection to this camera is opened. The function
connect(camerald) is used. After a connection to a camera is opened, single images or a
stream of images can be acquired. The connection is closed using the function disconnect().

The function getimage(camerald) returns a single image. It fetches the recent frame from
the camera and converts it to an image using ConvertToBitmap(frame, ref bitmap) (see
Algorithm 4.1).

void ConvertToBitmap(Frame frame, ref Bitmap bitmap)
1 | if (frame == null) throw new ArgumentNullException(“frame”); end
2 | if (bitmap == null) bitmap = new Bitmap (frame.Width, frame.Height,
PixelFormat.Format24bppRgb); end
3 | bitmapData = bitmap.LockBits(new Rectangle(0, 0, frame.Width, frame.Height),
WriteOnly, PixelFormat.Format24bppRgb);
4 | try

for (y = 0; y <frame.Height; y ++)
InteropServices.Marshal.Copy(frame.Buffer, 3*y*frame.Height,

new IntPtr(bitmapData.Scan0 + y*bitmapData.Stride), 3*frame.Width);

end
end
9 | finally
bitmap.UnlockBits(bitmapData);
11 | end

Algorithm 4.1: Converts a Frame to a Bitmap

The streaming process is started and stopped with the functions start() and stop() as shown
in Algorithm 4.2 and Algorithm 4.3.

void start()

1 |try

isWorking = false; isStartet = true;

if (m_isopen) return; end

m_isopen = true;

m_camera.OnFrameReceived += m_camera_OnFrameReceived;
m_camera.StartContinuousimageAcquisition(frameBufferSize);
end

8 | catch

m_isopen = false; isStarted = false;
m_camera.OnFrameReceived -= m_camera_OnFrameReceived;
11 | end

Algorithm 4.2: Starts the streaming process

void stop()
1 |try
if (= m_isopen) return; end
m_isopen = false;
m_camera.OnFrameReceived -= m_camera_OnFrameReceived;
5 try
m_camera.StopContinuousimageAcquisition();

18

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

end
8 catch

end
10 | catch

m_isopen = true;

m_camera.OnFrameReceived += m_camera_OnFrameReceived;
13 | end

Algorithm 4.3: Stops the streaming process

Algorithm 4.2 and Algorithm 4.3 both call the function OnFrameReceived(frame) (see
Algorithm 4.4).

void m_camera_OnFrameReceived (Frame frame)
1 | if (isWorking == false)

2 if (frameBuffer != null)
m_camera.QueueFrame(frameBuffer);
end

5 | frameBuffer = frame;
6 | isWorking = true;

end
8 | else
m_camera.QueueFrame(frame);
10 | end

Algorithm 4.4: Every time a new frame is received

4.3 Main Steps

The learning process consists of three main steps. At first the camera has to be adjusted
hardware based. Secondly, the light intensity compensation takes place. And the last step is
the color classification where the lut file is created.

4.3.1 Camera Adjustment

The camera has to be adjusted hardware based. At first the camera has to be directed on
the playing field and adjusted parallel to its borders. Secondly, zoom and diaphragm have
to be adapted. For the camera adjustment the user has to spread some robots on the
playing field.

The first idea was to use the BlobCounter algorithm (see chapter3.4) for rectangles to find
the borders of the playing field. This wasn’t functional because the BlobCounter algorithm
only detects areas and no lines. Looking for the playing field itself did not work because the
dark green of the playing field and the grey of the bottom around the field couldn’t be
separated by a color filter. For recall: The BlobCounter algorithm requires black background
around the objects.

The second idea was to use edge detection for finding the borders. At first filters were used
to intensify the edges in the camera image. Afterwards the borders can be found via Hough
transformation (see chapter 3.3). The advantage of the Hough transformation is that it
doesn’t require continuous lines, so the empty space for the goals wouldn’t matter.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

- PONTIFICIA
TESIS PUCP gxl{_\‘lsELI:‘S:I‘I\)AD

DEL PERU

Figure 4.4: Hough lines, detected in the color filtered camera image

In ideal case the result of the Hough transformation would be four lines representing the
borders of the playing field. The camera is adjusted parallel to the playing field if the Hough
lines are parallel to the image borders (via the slope of the lines). A sound signal with
increasing frequency would give audible feedback. Zoom and diaphragm are adjusted
correctly if the BlobCounter algorithm detects every robot on the field.

. LeamingTool | Frame: 1918 |

Configurstion Camera | Parsmeters

Figure 4.5: Learning Tool Tab Three: Camera Adjustment
20

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP ' g:_:_\ésﬁg?no

DEL PERU

The idea with the Hough transformation did not work properly as well. It did not find all
four borders of the playing field, independent of the number of Hough lines. Furthermore,
the borders the algorithm did find couldn’t be detected in every frame. So the algorithm
detected neither reliably the lines nor all of them.

The problem is the white wall next to the playing field. It generates many Hough lines which
are more intensive than the desired ones (see Figure 4.4).

The current solution consists in drawing a grid on the camera image (see Figure 4.5). The
grid contains of horizontal and vertical lines and can be moved using the mouse. Moreover,
the distance between the lines can be altered using the mouse wheel.

For adjusting the camera a second person would be utile. One person could watch the
screen while the other one is moving the camera.

4.3.2 Light Intensity Compensation

The light intensity compensation is necessary because of the inhomogeneous distribution
of the light intensity on the playing field. One reason is that the playing field is erratic
illuminated because of the distribution of the light sources like lamps or windows. Another
reason is the fall off in brightness towards the edge of the objective. Furthermore, there are
random effects caused by electronic parts. [Uss13]

Configurstion & Camera | Parsmeters | Camera Adustment | Fisid Selection & Light Intensity Compensation | Color Clzssfication

Number of sections
ows 37

lines |20

Borders of Playing Field:
X 6 & 83 2
¥ [355 |2 nez |2

Start Intensity Compensation

Activate helping tests

Save Configuration

Figure 4.6: Learning Tool Tab Four: Field Selection

When tab four is entered, a single frame is requested from the camera. If an old
configuration was opened, this frame is displayed as image with light intensity
compensation; otherwise the original image is displayed.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP : g:_:_\gsﬁg?m

DEL PERU

In the next step, the user can mark the area of the playing field (see Figure 4.6). For this, he
clicks with the mouse in the left upper edge of the field and drags the mouse arrow to the
right lower edge. The outline of the marked area is drawn as a yellow rectangle. For little
changes of the position the numericUpDown controls on the left side of the image can be
used.

Besides, the user can chose in how many parts the playing field is divided in x — and y —
direction. 37 parts in x — direction and 22 in y — direction is set as default.

Configuration & Camera | Parameters | Camera Adusimert Field Selection & Light Intensiy Compensation | Calor Classfication

Number of sections
rows B7

lines |20

Borders of Playing Field:
X [26 & e
¥ [/ |2 noz |2

Sttt Intansty Compensation J

Activate helping tests

‘ Next >>

‘ Save Configuration

Figure 4.7: Learning Tool Tab Four: Light Intensity Compensation

One click at the button starts the process. The btn Click event calls the function
LightintensityDistribution(see Algorithm 3.2Algorithm 4.5). Input values for this function are
the camera image, start and stop position of the playing field in x and y direction and the
number of areas in x and y direction. The function returns length and width of one area and
the light intensity distribution matrix.

double[,] LightIntensityDistribution(Bitmap image, intw_count, inth_count, intw_min,
intw_max, inth_min, inth_max, out int e, out int f)
1 | intensity = new double[w_count, h_count];
2 | count = new int[w_count, h_count];
3 | intf=((h_max—h_min)/h_count) + 1; int e = ((w_max—w_min) / w_count) + 1;
//sum up pixel intensities for each area
4 | for (a=w_min; a <=w_max; a ++)
row = (a—w_min) / e;
6 for (c = h_min; c <= h_max; c ++)
line=(c—h_min)/f;
Color pixel = image.GetPixel(a, c);
intensity[row, line]+ = Intensity(pixel); count[row, line] ++;
end

22

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

s ¢ | PONTIFICIA
a
™
s

TESIS PUCP : gzl_:_\gzﬁgfnn

DEL PERU

end
//determine average intensity in each area
12 | for (k =0; k <w_count; k ++)
for (I=0; I <h_count; | ++)
intensity([k, I] /= count[k, I];
end
end
//scale intensity
17 | for (k = 0; k <w_count; k ++)
for (I=0; 1 <h_count; | ++)
if (intensity[k, 1] >i_max)
i_max = intensity[k, I];
end
end
end
24 | for (k = 0; k <w_count; k ++)
for (I=0; I <h_count; | ++)
intensity[k, I] =i_max / intensity[k, I];
end
end
29 | return intensity;
Algorithm 4.5: Determine Light Intensity Distribution

After determining the values of the light intensity compensation matrix, the image is
redrawn. The intensity of every pixel in the playing field is multiplied with its gain, using the
HSI area.

Figure 4.7 shows the effect of the light intensity compensation. To increase the effect for
better demonstration, the robot tricots and color classification sheets are already on the
field. While generating the configuration file this step has to be done with an empty playing
field.

4.3.3 Color Classification

Because humans have learned as children how each color looks like, they can tell which
part of the picture belongs to which of the color groups. But the camera as well as the
software analyzing the pictures doesn’t know how these colors look like. So the program
has to learn the colors, too.

The result of this learning process will be the lut file. This file assigns which color value
belongs to which color group.

The first idea was to use the BlobCounter algorithm (see chapter 3.4) to find the robots and
balls in the camera image. Afterwards the program could collect the pixels in rectangles
around the robots and balls and save them in a new file.

The pixel collection could be classified into color clusters using the DBSCAN (see chapter
3.5) algorithm. The user would have to tell the program which color cluster belongs to
which color. In the last step, these clusters would be expanded and saved as lut file.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP o UNI\éERSIDAD

CATOLICA
DEL PERU

This idea had some disadvantages. First of all, the DBSCAN algorithm needed a lot of time.
For example, a test with two million pixels was aborted after 23.5 hours. These two million
pixels contained a lot of identical color values. So the number of pixels can be reduced by
using each color value only one time.

Figure 4.8: Color Classification Sheet

The next disadvantage of the DBSCAN algorithm is that it did not find all of the color groups
which are used for the robot tricots and the ball. Even if the algorithm got more color
clusters than color groups existing, it did not contain each color group. Instead there were
same clusters which belonged to the same group while other groups were missing.

Configuration & Camera | Parameters | Camera Adjustment | Field Selection & Light Intensty Compensation| Color Classification

Mumber of Color Classification Sheets on the Field
3 A

Number of Pixels to collect
500000 3

Color Filter Start Values:
red |40

green 50
blue 50

Collecting Pixel..

| Stop Streaming |

Activate helping taits

‘ Save Configuration

Figure 4.9: Learning Tool Tab Five: Searching for Color Classification Sheets

24

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

Because the first idea did not work properly, another approach was tried. Here the pixels
are collected in so called color classification sheets. These sheets consist of rectangles in
each color and a circle where a ball should be placed. One rectangle has to be cut out so the
color of the playing field can be recorded by the camera.

List<Bitmap>GetColorSheets(List<Point[]> positions, Bitmap bitmap)
1 | colorSheets = new List<Bitmap>();
2 | foreach(Point[] position in positions)
//create bitmap with area of the color classification sheet
max = Max(colorsheet.Width, colorsheet.Height);
bmp = new Bitmap(max, max); rect = new rectangle(startX, startY, max, max);
5 using (grD = Graphics.Fromlmage(bmp))
grD.Drawlmage(bitmap, new Rectangle(0, 0, max, max), rect, Pixel);
end
8 points = new Vector2DI[5];
9 for(i=0; i< 5; i ++)
points[i] = new Vector2D(position[i].X — startX — bmp.Width / 2,
position[i].Y — startY — bmp.Height / 2);

end

//find angle and rotate bitmap

12 | bool positive = false;

dx = position[3].X — position[0].X; dy = position[3].Y — position[0].Y;
alpha = Math.Atan2(dx, dy); //angle in rad

15 | if(alpha >0)

positive = true;

end

18 | dx = position[0].X — position[1].X; dy = position[0].Y — position[1].Y;
alpha += Math.Atan2(dx, dy) + Math.PI / 2;

20 dx = position[1].X — position[2].X; dy = position[1].Y — position[2].Y;

if (positive)

alpha += Math.Atan2(dx, dy) + Math.Pl;
end
else

alpha += Math.Atan2(dx, dy) - Math.Pl;
end

27 dx = position[2].X — position[3].X; dy = position[2].Y — position[3].Y;
alpha += Math.Atan2(dx, dy)-Math.PI / 2;
29 | alpha/=4; //average alpha
bmp = RotateBitmap(bmp, alpha);
points_ = points.Rotate(alpha);
//cut bitmap to new size
32 | x=points_[0].X + bmp.Width / 2; y = points_[0].Y + bmp.Height / 2;
width = points_[2].X — points_[0].X; height = points_[2].Y — points_[0].Y;
rect = new Rectangle(x, y, width, height); bmp2 = new Bitmap(width, height);
35 using (Graphics grD = Graphics.Fromlmage(bmp2))
grD.Drawlmage(bmp, new Rectangle(0, 0, width, height), rect, Pixel);
end
colorSheets.Add(bmp2);
end
40 | return colorSheets;
Algorithm 4.6: Rotate Color Classification Sheets

25

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

s ¢ | PONTIFICIA
a
™
s

TESIS PUCP : g:_:_\éELI:‘S:IEAD

DEL PERU

In these color classification sheets the position of the colors is known. The color
classification sheets can be found using the BlobCounter algorithm. The BlobCounter
returns the four edge points of the color classification sheet and diameter and position of
the ball on the color classification sheet.

With this information each color classification sheet can be cut out of the camera image
and rotated in horizontal position (see Algorithm 4.6). The ball is in the right lower edge of
the color classification sheet after this step.

void CollectPixel(List<Bitmap>colorSheets, ref double colPixels, ref List<RGBPoint>
points)

1 | found = new bool[256, 256, 256];

2 | foreach(Bitmap colorSheet in colorSheets)

fac = colorSheet.Height / 297.0; //DIN A 4 Sheet: 297 mm length

ObjectDetection(colorSheet, out circles, out points2);

5 for (each color group)

startX = startPosition(color group).X; endX = endPosition(color group).X;

startY = startPosition(colorgroup).Y; endY = endPosition(color group).Y;

symbol = symbol(color group)

9 for (y = startY; y <= endY; y ++)
10 for (x = startX; x <= endX; x ++)
Color pixel = colorSheet.GetPixel(x, y);
12 if (found[pixel.R, pixel.G, pixel.B] == false)

found[pixel.R, pixel.G, pixel.B] = true;
points.Add(newRGBPoint(pixel.R, pixel.G, pixel.B, symbol));

end
16 | colPixels ++;
end
end
end
20 | end

Algorithm 4.7: Collect color pixels

In the next step the pixels can be collected as shown in Algorithm 4.7. In contrast to the
first idea the color value of each pixel is already assigned to a color group. So the DBSCAN
algorithm is not needed in this case.

After collecting pixels the pixel cloud is expanded and saved as text file.

For expanding the pixel cloud Christoph URfeller took one color value and looked at its
neighbors. The color value was assigned to the color group which most of its neighbors
belonged to.

In contrary in this work a color value which already belongs to a color group is taken and
each of its neighbors, which does not already belong to a color group, is assigned to this
color group.

This alternative was chosen because it is easier for writing a program in C#. As the results
show, it does work as well.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA
UNIVERSIDAD

CATOLICA
DEL PERU

TESIS PUCP

intensty Compensation] Color Cassfication

Mumber of Color Classification Sheets on the Field
& i
Number of Pixels to collect:
500000 =

Color Filter Start Values:
wd 0
green 50
blus 50

Creating lut file ..

| Stop Streaming |

Activate helping teits

[P |

Figure 4.10: Learning Tool Tab Five: Color Classification (The black spots on the robot tricots
are color values which are not assigned to a color group.)

4.4 Interface to Robot Controlling Software

The interface to the robot controlling software consists of two files: The first one is a text
file and contains the look up table for the color classification. The second one includes all
necessary parameters and the light intensity distribution matrix.

4.4.1 Lut-File

The so called lut file is a look up table for the color groups which belong to the color values.
It consists of the values of the lut matrix which are saved as text file. The name of this text
file can be changed in Tab One, Configuration and Camera. It is saved during the button
click event in Tab Four, Light Intensity Distribution.

Which symbol belongs to which color shows Table 4.3.

At first pixels in the color classification sheets are collected and saved as a list of points.
Each point consists of a red, a green and a blue value as well as its color symbol.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

Symbol | Color R-G-B Meaning

Y Yellow 255-255-0 Team Marker

B Blue 0-0-255 Team Marker

M Magenta 255-0-255 Robot Number

C Cyan 0-255-255 Robot Number

G Green 149 -255-0 Robot Number

W White 255 -255-255 Front of the robots

0] Orange 255-127-39 Ball

F “Field” 0-100-0 Playing Field
Black 0-0-0 All other pixels

27

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

Table 4.3: Color Groups

In the second step, the points are inserted in a matrix and this matrix is expanded as shown
in Algorithm 4.8.

charl,,] build(List<RGBPoints>points, maxlterations)
1 | lut=new char[256, 256, 256];
2 | for (i = 0; i<points.count; i ++)
RGBPoint p = points][il;
lut[p.r, p.g, p.b] = p.symbol;
5 for (all neighbours p_)
if ((lut(p_) == null) && (p.iterationlevel<maxIterations))
points.Add(p_);
end
end
end
11 | return lut;
Algorithm 4.8: Expand the lut matrix

A three dimensional matrix of char values is created. The red value of a color is encoded in
the position in the first dimension. The second dimension stands for the green value and
the third for the blue value. The symbol for the color group is written at the position
encoded by the color values.

void CreateLut(char[,,] lut)
1 | s =new Streamwriter(lutname.txt, encoding.ASCIl);
2 | for(r=0;r<256;r++)
for (r=0; r<256; r ++)
for (r=0; r<256; r ++)
s.Write(lut[r, g, b]);
end
end
end
9 | s.Close();
Algorithm 4.9: Create the lut file

The points in the list are registered in the lut matrix. If a point already exists, it is skipped. If
it doesn’t exist, its symbol is written at its color position. Then its 26 neighbors are
examined. Each neighbor which doesn’t has a color symbol yet gets the color symbol of the
point and is added to the list of points.

Besides each color point possesses an iteration level. The iteration level of a new created
point is by one greater than the iteration level of the original point. If the iteration level
gets bigger than a maximum value, this point is skipped.

In the third step the lut matrix is saved as text file as shown in Algorithm 4.9.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

4.4.2 Configuration File
The rest of the parameters are saved in INI file format. The configuration file can be created
by clicking on the Save Configuration button or when the learning tool is closing.

On the other hand, an old configuration file can be load in Tab one, Configuration and
Camera. In this case only the color classification is missing; the rest of the parameters
already exists and can be altered.

Property Meaning Default Data
Type

Section: Camera

Id Id of the camera 02-2153A-06018 String

Name Name of the camera GC1600CH String

GainRaw Gain for camera image 0 Decimal

ExposureTime Exposure Time 10000 Decimal

WBRed White Balance: Red | 100 Decimal
Content

WBBIlue White Balance: Blue | 130 Decimal
Content

PacketSize Data packet size 1500 Decimal

MeanDesired Correction factor 22 Decimal

Section: Robots

Diameter Diameter of a robot 0.18 String

Height Height of a robot 0.12 String

TeamMarkerDiameter | Diameter of the Team | 0.05 String
Marker

Tricot n Tricot colors of the n-th | e.g.Yellow,Cyan,Magenta | String
robot

Section: Ball

Diameter | Diameter of a ball | 0.04 String

Section: Playing Field

Length Length of the playing field | 2.74 String

Width Width of the playing field 1.52 String

Height Height of the camera| 2.4 String
above the field

Section: PositionOfPlayingField

StartX Left upper point of the | Depends on recent | Int
field, x-value selection

EndX Right lower point of the | Depends on recent | Int
field, x-value selection

StartY Left upper point of the | Depends on recent | Int
field, y-value selection

EndY Right lower point of the | Depends on recent | Int
field, y-value selection

Section: LightIntensityDistribution

NumX Parts in x direction 37 Int

NumyY Parts in y direction 20 Int

GainField Light intensity compensa- | Depends on recent | String
tion matrix selection

Section: ColorClassification

LUT ‘ Name of the lut file ‘ 1lut String

29

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- ol < | PONTIFICIA
TESIS PUCP 8 gzl_:_\gzﬁgfnn

DEL PERU

Section: DataOutput

IP IP of data output 239.255.0.1 String
Port Port of data output 30002 String
Section: VideoOutput

IP IP of video output 127.0.0.1 String
Port Port of video output 30003 String

Table 4.4: Parameters in the configuration file

Generating the configuration file starts with collecting the necessary parameters in an
instance of the class parameters. Next, the function WriteConfig is called. This function
creates a configuration file with the parameters listed in Table 4.4.

For loading an old configuration the functions ReadConfig and LoadConfig are used.
ReadConfig loads the parameters from the configuration file in an instance of the class
parameters while LoadConfig loads the parameters from an instance of the class
parameters into the learning tool form and opens a connection to the camera.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

\‘gENEg&

§ Y | PONTIFICIA
=

TESIS PUCP S A UNIVERSIDAD

DEL PERU

5 Practical Tests
The fifth chapter summarizes practical tests. It shows if other people could use the learning
tool without more explanations.

Test Person 1

My first test person was a student. He was told to generate two files with the learning tool,
one being called lut file and the other one, the configuration file, should contain the
parameters.

He had no problems with selecting the camera and changing to the second tab, Parameters.
Here he recognized he could change the parameters, and assumed that the correct
parameters already are preset. Therefore he didn’t change them.

The camera in Tab Three, Camera Adjustment, already was adjusted correctly and he went
on to the next tab.

In Tab Four, Field Selection and Light Intensity Compensation, it wasn’t clear for him, that he
has to empty the playing field of robots manually. He had the same problem with Tab Five,
Color Classification. For him, the helping text did not state clearly that he has to spread
color classification sheets on the playing field. Furthermore, he suggested writing explicitly
that the balls have to be put on the color classification sheets.

Humber of Color Classfication Sheets on the Field:
6 i
hlumiber of Pixsls to collect
500000

Color Filter Start Values:
red |70

greén (70
blue B0

Creating lutile...

Step 5. Calor Classification 7] Activate helping texts
igurat e
nseit the camect numbsr of color classfication shests .

Figure 5.1: Result of the Color Classification by test person 1

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

\‘gENEg&

§ Y | PONTIFICIA
=

TESIS PUCP S A UNIVERSIDAD

DEL PERU

Another point he suggested was to show a message when the light intensity compensation
is finished, because this is difficult to diagnose. Besides, a hint that the lut file will be
generated automatically with the light intensity compensation would be useful.

In Tab Five, Color Classification, he put one color classification sheet in the area of the goal.
This color classification sheet wasn’t detected by the learning tool, because it was not
completely in the area marked as playing field. While placing the color classification sheet
he didn’t recognize that it would not be in the playing field. A possible solution for this
could be to mark the playing field borders in the region of the goal with tape.

In summary, my first test person could generate the two required files without major
difficulties. His result for the color classification is shown in Figure 5.1. After this first test |
revised my explanatory texts.

Test Person 2

My second test person was another student. She got the same instructions as my first test
person, but | had revised my explanatory texts before we met.

At first she activated the helping texts. Afterwards she followed the instructions step by
step. She didn’t change any default values either.

In Tab Four, Field Selection and Light Intensity Compensation, she not only marked the
playing field but the borders as well (as shown in Figure 5.2).

- 5
& Learning-Toal ¢ % . seh .- as . [=)

[c'mi-,g._ R — g —re— 5@.“ Adusiment | Field Selection & Light Intensty Compensation E_'cm'u' lassffication |

Number of sections
rows |37

lines |20

Borders of Playing Field:
b B e R

Yo = 1220 |5

| Stat intensity Compensation

Activate helping texts

| Next >> H Save Configuration

Figure 5.2: Tab Four, Field selection by test person 2

This led to the result shown in Figure 5.3.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP ' g:_:_\éELI:‘S:IEAD

DEL PERU

| Configuration & Camera | Parameters | Camera Adustment | Fiekd

Number of Color Classification Sheets on the Field
4 ¥
Number of Pixels to collect
500000

\ Siop Sireaming \

Step 5 Color Classffication V| Adtivate helping texts
Click Save Corfigurstion. Spread some Color Classfications shests {and balls on them) on the playing fiskd
Insert the comect number of color classfication shests:

Click: Start Calor Classification. The kit file wil be created automatically.

‘ Save Configuration

Figure 5.3: Result of the Color Classification by test person 2

Her result was not as exact as the one by test person 1 because she marked the borders of
the playing field. This led to a stronger light intensity compensation und therefore the color
group orange was not detected correctly.

Conclusion

Both test persons could follow the instructions in the learning tool and use it to generate
the configuration and the lut file at first try. After test person 1 | improved the helping texts
and test person 2 had no problems with them.

So the learning tool is user independent. Further instructions are not necessary for
generating the required files.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

6 Conclusion

The last chapter starts with a summary of the work done and explains how the learning tool
fulfills the requirements of chapter 2.2 Derivation of Task. Furthermore, it gives an
overview about what else could be tried to improve the learning tool.

The requirements which the learning tool should fulfill were described in chapter 2.2
Derivation of Task. The current learning tool is introduced in chapter 4 Learning Tool. It
does fulfill all of the requirements.

The learning tool is one single program written in C# using Visual Studio 2012. It can be
transferred to other computers which are in connected to the same network as a camera,
so the aspect of mobility is given.

As chapter 5 Practical Tests shows, it can be used by different people, who try to configure
the robot controlling software for the first time, as well. The learning tool is user-
independent.

How the necessary parameters are collected and transmitted to the robot controlling
software is described in chapter 4.4 Interface to Robot Controlling Software. The learning
tool produces two files. The first one is a text file and contains a look-up table for the
classification which color value belongs to which color group.

The second one is in INI file format and consists of the parameters and the gain grid. Each
parameter has a property name and belongs to a section, so the user can see where which
parameter is saved and change them manually in the configuration file if necessary.

The last requirement was an improvement of the three basic steps. These steps are camera
adjustment, light intensity compensation and color classification.

The camera adjustment is hardware based. The learning tool helps the user by showing a
grid in the camera image. The lines of this grid should by parallel to the playing field
borders. The grid can be moved and the distance between the lines of the grid can be
altered. In the learning process by Christoph URfeller there was only one rectangle painted
in the image, which could not be moved.

The first idea was to find the borders automatically. In chapter 4.3.1 Camera Adjustment
different approaches are explained how to find the borders, but none of them worked
dependable by now. In a future work different filters could be added to the Hough
transform. Perhaps this could improve the detection of the borders of the playing field.

For the light intensity compensation the user has to mark the playing field in the camera
image. It can be marked using the mouse arrow or by changing the values of four
numericUpDown controls. Furthermore, the user can select, of how many parts the gain
grid should consist. The light intensity compensation is started with a button. In the
learning process by Christoph URfeller the user had to mark the borders of the playing field
using the mouse arrow, but could not fine adjust the borders by using numericUpDown

controls or something similar.

35

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA
UNIVERSIDAD

TESIS PUCP : CATOLICA

DEL PERU

The light intensity compensation could work more automatically if the borders of the
playing field are already known in Tab Four, Camera Adjustment.

For the color classification the learning tool uses special color classification sheets. While in
the learning process by Christoph URfeller the user had to mark areas of a color, the color
classification sheets can be found automatically and the colors are extracted using a mask
of an ideal color classification sheet. In my version the user does not need to know the
exact names of the colors or mark them. On single button starts the color classification.

As one can see, the learning tool does fulfill the requirements and can be used to configure
the robot controlling software.

Tesis publicada con autorizacién del autor
No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

List of Figures

List of Figures

Figure 1.1: Robot LUKAS 2
Figure 1.2: Prosilica GC 1600H 3
Figure 2.1: Linear Interpolation [Uss13] 5
Figure 3.1: Robot Tricots and Ball 8
Figure 3.2: Example for Sobel Filter 11
Figure 3.3: BlobCounter algorithm, looking for circles 12
Figure 4.1: Playing Field with robots 14
Figure 4.2: Learning Tool Tab One: Configuration and Camera 15
Figure 4.3: Learning Tool Tab Two: Parameters 16
Figure 4.4: Hough lines, detected in the color filtered camera image 20
Figure 4.5: Learning Tool Tab Three: Camera Adjustment 20
Figure 4.6: Learning Tool Tab Four: Field Selection 21
Figure 4.7: Learning Tool Tab Four: Light Intensity Compensation 22
Figure 4.8: Color Classification Sheet 24
Figure 4.9: Learning Tool Tab Five: Searching for Color Classification Sheets 24
Figure 4.10: Learning Tool Tab Five: Color Classification (The black spots on the robots
tricots are color values which are not assigned to a color group.) 27
Figure 5.1: Result of the Color Classification by test person 1 32
Figure 5.2: Tab Four, Field selection by test person 2 33
Figure 5.3: Result of the Color Classification by test person 2 34
List of Algorithms

Algorithm 3.1: Implementation of BlobCounter 12
Algorithm 3.2: DBSCAN algorithm[Dun03] 13
Algorithm 4.1: Converts a Frame to a Bitmap 18
Algorithm 4.2: Starts the streaming process 18
Algorithm 4.3: Stops the streaming process 19
Algorithm 4.4: Every time a new frame is received 19
Algorithm 4.5: Determine Light Intensity Distribution 23
Algorithm 4.6: Rotate Color Classification Sheets 25
Algorithm 4.7: Collect color pixels 26
Algorithm 4.8: Expand the lut matrix 28
Algorithm 4.9: Create the lut file 28
List of Tables

Table 4.1: Tabs and distributed parameters 17
Table 4.2: Camera Settings 17
Table 4.3: Color Groups 28
Table 4.4: Parameters in the configuration file 30

37

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,?/

ol % |PONTRCA
TESIS PUCP 5| CATOr A

DEL PERU

List of Abbreviations and Symbols

API application programming interface

cMY Cyan, Magenta, Yellow

DBSCAN density-based spatial clustering of applications with noise
fps frames per second

HSI Hue, Saturation, Intensity

LGPL Lesser General Public License

lut look-up table

RGB Red, Green, Blue

ROI region of interest

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

1ENE3,E,

- fl,% | UNIVERSIDAD
TESIS PUCP = CATOLICA

DEL PERU

Bibliographic References

[AVT13] Allies Vision Technologies GmbH: Technical Manual. AVT GigE Vision
Cameras.Version 2.0.8.Stadtroda (Germany): 2013.

[B&s04] Bassmann, Henning; Kreyss, Jutta: Bildverarbeitung Ad Oculos. 4. Edition.
Berlin (Germany): Springer, 2004.

[Beh13] Behnke, Sven: RoboCup in Deutschland. http://www.ais.uni-
bonn.de/robocup.de/. — Last Visit: 02.03.2014

[Clu09] Team Clusteranalyse: DichteverbundenesClustern. http://www.m9.ma.
tum.de/material/felix-klein/clustering/Methoden/Dichteverbundenes_Clus
tern.php. - Last Visit: 02.03.2014

[Dun03] Dunham, Margaret H.: Data mining. Introductory and advanced topics. New
Jersey (United States of America): Pearson, 2003.

[Est00] Ester, Martin; Sander, Jorg: Knowledge Discovery in Databases. Berlin
(Germany): Springer, 2000.

[Gon08] Gonzalez, Rafael C.; Woods, Richard E.: Digital Image Processing. 3. Edition.
New Jersey (United States of America): Pearson, 2008.

[Kir09] Kirillov, Andrew: AForge .NET Framework changes its license. http://
www.aforgenet.com/news/2009.03.20.framework_license.html. - Last Visit:
02.03.2014

[Kir11] Kirillov, Andrew: AForge .NET Framework celebrates its 5 years birthday.

http://www.aforgenet.com/news/2011.12.21.five_years_framework.html. -
Last Visit: 02.03.2014

[Nix08] Nixon, Mark; Aguado, Alberto: Feature Extraction & Image Processing. 2.
Edition. Oxford (UK): Elsevier, 2008.

[Ric09] Richter, Christiane; Teichert, Bernd: Einfiihrung in die Digitale Bildverar-
beitung. 1. Edition. Dresden (Germany): Diskurs, 2009.

[Rob14] The Robocup Federation: A Brief History of Robocup. http://www.
robocup.org/about-robocup/. — Last Visit: 02.03.2014

[San99] Sander, Jorg: Generalized Density-Based Clusteringfor Spatial Data Mining.
Minchen (Germany): Herbert Utz, 1999.

[Sch10] Schale, Florian: Implementation von Kommutierungs- und Regelungs-
algorithmen fir elektronisch kommutierte Gleichstrommotoren auf
Mikrocontrollern. limenau (Germany): 2010.

39

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

PONTIFICIA

TESIS PUCP ' gzl_:_\gzﬁgfnn

DEL PERU

[Sch95] Schmid, Reiner: Industrielle Bildverarbeitung. Vom visuellen Empfinden

Problemldsung. Braunschweig (Germany): Vieweg, 1995.

[Seu00] Seul, Michael; O’Gorman, Lawrence; Sammon, Michael J.: Practical
Algorithms for Image Analysis. Description, Examples, and Code. New York
(United States of America): Cambridge, 2000.

[Tre10] Treiber, Marco: An Introduction to Object Recognition. Selected Algorithms
for a Wide Variety of Applications.London (UK): Springer, 2010

[Uss13] URfeller, Christoph: Beitrdge zur Lokalisation und zur modellbasierten
Lageregelung mobiler Roboter. llmenau (Germany): Universitdtsverlag,
2013.

Tesis publicada con autorizacién del autor

No olvide citar esta tesis

