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Abstract 

The optimal control in linear systems is a widely known problem that leads to the 

solution of one or two equations of Ricatti. However, in non-linear systems is required 

to obtain the solution of the Hamilton-Jacobi-Bellman equation (HJB) or variations, 

which consist of quadratic first order and partial differential equations, that are really 

difficult to solve. 

On the other hand, many non-linear dynamical systems can be represented as poly- 

nomial functions, where thanks to abstract algebra there are several techniques that 

facilitate the analysis and work with polynomials. This is where the sum-of-squares 

approach can be used as a sufficient condition to determine the positivity of a poly- 

nomial, a tool that is used in the search for suboptimal solutions of the HJB equation 

for the synthesis of a controller. 

The main objective of this thesis is the analysis, improvement and/or extension of an 

optimal control algorithm for polynomial systems by using the sum of squares approach 

(SOS). 

To do this, I will explain the theory and advantages of the sum-of-squares approach 

and then present a controller, which will serve as the basis for our proposal. Next, 

improvements will be added in its performance criteria and the scope of the controller 

will be extended, so that rational systems can be controlled. Finally an alternative 

will be presented for its implementation, when it is not possible to measure or estimate 

the state-space variables of the system. Additionally, some examples that validated 

the results are also presented. 



 

 

 

 

 

Kurzfassung 

Die optimale Steuerung in linearen Systemen ist ein weithin bekanntes Problem, das 

zur Lösung von einer oder zwei Gleichungen von Ricatti führt. In nichtlinearen Sys- 

temen ist es jedoch erforderlich, die Lösung der Hamilton-Jacobi-Bellman-Gleichung 

(HJB) oder Variationen, die aus quadratischen ersten und partiellen Differentialgle- 

ichungen bestehen, zu erhalten, die wirklich schwierig zu lösen sind. 

 

Andererseits können viele nichtlineare dynamische Systeme als Polynomfunktionen 

dargestellt werden, wobei es dank der abstrakten Algebra mehrere Techniken gibt, die 

die Analyse erleichtern und mit Polynomen arbeiten. Hier kann der Ansatz der Summe 

der Quadrate als hinreichende Bedingung zur Bestimmung der Positivität eines Poly- 

noms verwendet werden, ein Werkzeug, das bei der Suche nach suboptimalen Lösungen 

der HJB-Gleichung für die Synthese eines Reglers verwendet wird. 

 

Das Hauptziel dieser Arbeit ist die Analyse, Verbesserung und / oder Erweiterung 

eines optimalen Regelalgorithmus für polynomische Systeme unter Verwendung des 

Summe-Quadrate-Ansatzes (SOS). 

 

Um dies zu tun, erkläre ich die Theorie und die Vorteile des Quadrats und führe dann 

einen Controller ein, der als Grundlage für unseren Vorschlag dienen soll. Als nächstes 

werden Verbesserungen in seinen Leistungskriterien hinzugefügt und der Umfang des 

Controllers wird erweitert, um zu ermöglichen, dass rationale Systeme gesteuert wer- 

den. Schließlich wird eine Alternative für seine Implementierung präsentiert, wenn es 

nicht möglich ist, die Zustandsraumvariablen des Systems zu messen oder zu schätzen. 

Darüber hinaus werden einige Beispiele vorgestellt, die die Ergebnisse validieren. 



List of notations 

Acronyms 

LMI Linear Matrix Inequalities 

SOS Sum of Squares 

SDP Semi-definite program 

HJ’s Hamilton-Jacobian inequality 

 
 

Functions 

He {P } Function that sums its input with its transpose 

x ⊗ y Kronecker product 
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1 Introduction 

 
1.1 Motivation 

With the industrialization and growth of the technological boom, safer and more effec- 

tive controllers are needed to control large processes that supply the requirements of 

our society; however, these processes are usually very complex and their mathematical 

models correspond to non-linear systems, which, due to their complexity, represent a 

great challenge when selecting and proposing a controller that not only allows their 

stabilization in an area of work, but also to make the solution optimal. 

 

Many of the current methods focus on system linearization around a point of oper- 

ation, such that the resulting mathematical model simplifies the complexity of the 

problem and the controller is focused on a specific working area; such is the case of 

systems that use linear models for Pole placement, LQR, H∞, PID, etc. In other cases 

it is necessary to work with the entirely non-linear model, because the linearization 

could lost important and determining information, which complicates the control and 

its stabilization. For this reason, it is usual to resort to more sophisticated and compli- 

cated methods such as the use of non-linear controllers based on Backstepping, Sliding 

Mode, Neuronal networks among others. 

 

However, there is an alternative to these methods, which take advantage of the polyno- 

mial decomposition of nonlinear systems represented as polynomial differential equa- 

tions, in other words, thanks to this, the Lyapunov or storage function can be proposed 

as a SOS and be solved computationally with SDP solvers. 

 

Hence the motivation to exploit the advantages of the polynomial systems to propose 

an optimal controller with greater scope by the SOS approach. 
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1.2 Previous Work 

The main advantage of the representation of non-linear systems as polynomial systems 

is found in the construction of the Lyapunov function in the form of sum of squares 

(SOS) [1], which reduces the problem of finding a Lyapunov function that guarantees 

stability to a set of LMIs, in which it is sought to find a coefficient matrix (P) that sat- 

isfies the conditions of definite positiveness as can be seen in Pablo Parrillo’s research 

[2, 3, 4, 5]. 

 

The problem can then be solved by computational tools directly, through the use of 

semi-definite programs such as CVX [6] or SOSTools [7], that, in turn, allow to set 

objectives to introduce the optimization criteria. 

 

The method that has had the greatest impact and that has aroused our interest, due 

to its simplicity in construction and efficiency: The Ichihara’s controller [8], which 

proposes an alternative method for the construction of an optimal controller taking 

advantage of the characteristics obtained when modeling a non-linear system in a poly- 

nomial representation. 

 

However, the current control theory, which focuses on the design of controllers using 

SOS [8, 9], require that all the state-space variables can be measured or at least esti- 

mated in order to be able to carry out its control loop, which in many cases is very 

difficult to obtain. So this controller can not be fully applied, despite having great 

potential. Therefore, other research works (see [10]) get more relevance, since they 

perform their control loop directly from the outputs of their systems, which makes 

them feasible to be used, but not optimal. And this is because their algorithms do 

not currently does not include performance specifications or do not have the scope and 

flexibility to emulate a desired behavior, compared to the controllers that have total 

feedback of its variables. 

 
1.3 Objectives 

The central objective of the thesis is the analysis, improvement and/or extension of an 

optimal control algorithm by using the Sum-of-Squares approach to later analyze the 

advantages and characteristics of this new theory. 

1. Simulate existing algorithms for optimal control in polynomial systems. 
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2. Implement improvements or extensions in the selected algorithm. 

3. Carry out a comparison between the controllers and analyze the effect of the 

improvements. 

 
1.4 Outline of the Chapters 

The content of the following chapters is described as follows. 

• Chapter 2: Describes the essential concepts needed to understand how, by means 

of SOS and SDP, an optimal controller can be synthesized for non-linear systems 

represented in a polynomial form. 

• Chapter 3: An extension of the Ichihara’s controller for non-linear systems using 

the SOS approach is proposed, such as an optimized desired performance criteria, 

which is used to find the optimal controller for an area of interest. At the same 

time the scope of the controller will be extended, such that it will be able to 

control rational systems. 

• Chapter 4: A dynamic output feedback controller with the ability to emulate the 

behavior of the Ichihara’s controller will be presented as an alternative for the 

case in which the system variables can not be measured or estimated. 

• Chapter 5: It presents the main conclusions and a perspective of the future work 

that can be derived from this thesis. 
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2 Theory and background 

In this chapter I present the definitions and concepts of the stability criteria, con- 

trol techniques and optimization proposals that are described later in the following 

chapters. 

 
2.1 Stability in the sense of Lyapunov 

The Lyapunov stability theory is the basic analysis tool to determine the stability of 

a non-linear system, that can be described as the following [11]: 

ẋ = f (x), x(t0) = x0 (1) 

 

where x ∈ D ⊆ Rn, f : D → Rn continuous on D with x0 ∈ D as the initial value. 

Similarly, the equilibrium point of the system are defined as 

x̄ ∈ X = 

,
x̄ ∈ D/f (x̄) = 0

, 
(2) 

where X includes the origin thanks to a change of variable. 

Figure 2.1: Stable equilibrium point 

 
Theorem 1 (Lyapunov Function). [12, 13] 

Consider the system (1) and assume there exist a continuously differentiable function 

V : D → R ∀x ∈ Rn, such that the following statements are satisfied: 
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i 

   
∗m (x) =

  x   ,  α  ∈ Zi 

 i 

 
· ∈ 

 

1. V (0) = 0. 

2.  V (x) > 0, ∀x ∈ D − {0}. 

3.  -V̇ (x) ≥ 0, ∀x ∈ D − {0}. 

The system (1) is stable in the origin. In the case that the third statement is positive 

definite (greater than zero), then the system (1) is asymptotically stable. 

Proof. See [12, 13]. 

 
2.2 Polynomial systems 

The main advantage of the representation of non-linear systems as polynomial systems 

is the decomposition, which means, if a polynomial function, such as p(x) ∈ Rn can 

be represented like a SOS, then it is a non-negative function [1]. In case it can not be 

represented directly as SOS, we can make an equivalent conversion by multiplying and 

dividing the function by a positive one, such that the numerator is a sum of squares: 

p(x) = 

 
f 2(x) > 0, (3) 

i 

 

where fi(x) represents a polynomial function from x. 

Definition 1 (Monomial Function). 

A monomial function is a function that has just one element and is represented as [10] 
 

n 
αi 
i 

Definition 2 (Polynomial Function). 

i=1 

A polynomial function, on the other hand, is a sum of monomials functions that is 

represented as [10] 
m 

f(x) = ci  mi(x), ci R, 
i=1 

where ci ∈ R are the coefficients and d is the total degree. 

Definition 3 (Rational Function). 

A rational function is conformed by a polynomial function in the numerator and de- 

nominator. 

This approach, that can be derivated from the polynomials functions, helps to deter- 

mine if a function is non-negative by analysing at first if it is SOS. 
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p

 p  x21  22

2

1 2 

1 2 1 2 1 2 

(x)
1 2 

2.3 Sum of squares 

In this section we no longer have the premise that a function is non-negative, but 

rather, it is the objective to be determined. And from there comes the relevance of 

this approach and its matrix decomposition representation. 

Theorem 2 (Sum of Squares). 

A polynomial function is called SOS if there exist a vector of monomials (or poly- 

nomials) z(x) and a constant symmetric positive semidefinite matrix Q, such that [5] 

f (x) = zT (x) Q z(x) > 0 (4) 

Proof. See [2]. 

Example 1. 

For example, let’s consider the following representation of a function as 

p(x) = 

Σ
x1 x2

Σ p11 p12 x1

= p11 · x2 + (p12 + p21) · x1 · x2 + p22 · x2 

Then, to determine if the function is non-negative, we must determine at first if the 

function is SOS, which means that the intermediate matrix must be symmetric positive 

(semi)defined, i.e., all its eigenvalues are greater (or equal) than zero. 

Example 2. 

The Motskin Polynomial is a non-negative function, but not SoS [3]: 

p(x) = 1 + x2 · x4 + x4 · x2 − 3 · x2 · x2 

Therefore, after introducing the function m(x) = (1 + x2 + x2
): 

1 2 

p’(x) =

m

1 

[(x2 · x2 − x2)
2 
+ (x1 · x2 − x1)

2

+ (x2 · x2 − 1)
2 
+

1 

· (x1 · x3 − x3 · x2)
2

1 2 
4 

2 1 

+ 

3 

· (x1 · x3 + x3 · x2 − 2 · x1 · x2)
2
],

4 
2 1 

we will have built a new rational function p’(x), whose numerator is a SOS. 
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2.3.1 SOS and its relation to stability 

As it was previously described in Theorem 1: it is necessary to satisfy V (x) ≥ 0, 

V˙ (x) ≤ 0 to determine if the non-linear system is stable. 

Therefore, we propose the following SOS Lyapunov function: 

 

V (x) = xT Px, P ≤ 0. (5) 

And we transform the non-linear system to its equivalent in the state-space represen- 

tation form: 

ẋ  = A(x) x,  x(t0) = x0. (6) 

Then, we build the first derivative of the Lyapunov function. 
 

V̇ (x) = ẋT  P  x + xT  P  ẋ 

= (A x)
T P x + xT P (A x) 

= xT (AT P + P A) x 

= − xT Qp x, Qp ≤ 0. 

(7) 

 

Finally the stability analysis is reduced to finding a symmetric positive semidefinite 

matrix Qp and constant symmetric positive definite matrix P . 

 
2.3.2 SOS decomposition of polynomial matrices 

The polynomial matrix Qp depends on the state-space variables x. This makes the 

task of determining wheter it is positive definite more complex. For this reason, a new 

approach must be used in order to reduce the complexity of the problem. 

Lemma 1 (SOS Representation). 

A polynomial matrix Qp(x) of dimension n is SOS with respect to the monomial basis 

x[N] if there exists a symmetric constant matrix Q1, such that: 

 

Qp = (In ⊗ x[N])
T  Q1 (In ⊗ x[N]), Q1 ≤ 0. (8) 

where ⊗ represents the Kronecker product and In ∈ Rn×n is the identity matrix. 

Proof. See [14]. 
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x 0 x 0 

  
I

P2

1 0 

⊗ x1

1 0 

⊗ x1

To understand this in more detail, let’s analyze the following statement: 

1 

T 
q11 · · · q16

   

1 

0 1 
x2

q16

· · · q66

0  1 
x2

which after being resolved is transformed to the following 

1 0 

T 

  1 

1 0 

  1 q11 + 2 q12 · x1 

Q  =
  2 

Q  2 
= 

+2 q13 · x2 + 2 q32 · x1 · x2 ∗ 
p 

0 1 0 1 
+q22 · x2 + q33 · x2 

0 x1

1 2 
0 x1 ∗ ∗ 

0 x2 0 x2

The next step is to perform equalities on the polynomial coefficients to construct the 

equivalent matrix Q1. Note that the equivalent degree must be the same as in Qp 

from equation (7), so it should be noted that d and N are the degrees of Qp and x[N] 

respectively, where: 

1. if d is even, then 2N = d else

2. d is odd and 2N = d + 1.

The problem here is reduced to find matrices P and Q1 that satisfy the definite positive- 

ness condition, which can be easily solve by the help of some semidefinite programming 

(SDP) solvers, such as CVx [6]. 

2.3.3 Schur complement 

Another very useful tool to work with LMIs is the Schur Complement, which provides 

many advantages when it comes to restrict and manipulate matrices [15], such as: 

Inverse relationship: 

Q2 =
P1 I 

≤ 0 ⇔ P2 > 0 ∧ P1 ≤ P2
−1 ≤ 0

⇔ P1 > 0 ∧ P2 ≤ P1
−1 ≤ 0

(9) 

x 0 x 0 

.. . 
. . .. = Qp 

1 
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P2
T I 

 
T T n×n q×q 

 

Square relationship: 

Q2 =  P1 P2  ≤ 0 ⇔ P1 ≤ P2
T P2 ≤ 0 (10) 

 

It can be applied also like a root relationship with an upper bound P1. 

 
Throughout this document, improvements and new proposals will be proposed, which 

use the concepts described here to add to their algorithms a better description of 

the desired behavior, thanks to the addition of desired performance constraints as 

optimization criteria. 

 
2.4 Optimal non-linear controller 

For the description of this section we take as a basis the work of Dr. Ichihara [8] and 

represent the full state-space system as a state-dependent linear-like form [16]: 

ẋ  = A(x)z(x) + B(x)u, x(t0) = x0, u ∈ Rq, (11) 

where z(x) is a vector of polynomials that is equivalent to the state-space vector x 

and satisfies the condition of z(x) = 0 if and only if x = 0 (see [17]). Although this 

equivalence may or not have the same dimension as x; for the purposes of this thesis 

we will only work with transformations, where there exists invertible matrices W (x) 

and M (x) ∈ Rn×n, such that 

 

z(x) = W (x) x, 

 

z˙(x) = 

∂z(x) 
 

 

∂x 
ẋ = M (x) ẋ,  z(x) ∈ Rn

 

 
. (12) 

The cost function J(x) is a very useful and widely used tool, since it assigns numerical 

values to the performance and behavior of the system; therefore, minimization of J (x) 

yields 

J (x) = 

∞ 
(x Q x + u R u) dt; Q > 0 ∈ R , R > 0 ∈ R , (13) 

 
 

 

0 
s 

(

˛
1

¸
)  

x 
s 

(

˛
2

¸
) 

x 

it is described as the sum of the energy delivered by the controller (1) plus a penalty 

to the system for moving away from the origin (2) [18]. 

 

Later, a Lyapunov function V(z) is proposed as sum of squares form, such that it has 
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a symmetric positive definite matrix P, that will be the incognita to find: 

 

V (z) = zT P −1 z > 0, P > 0. (14) 

Likewise, the Hamilton-Jacobian’s inequality is built as the sum of the first derivative 

of the Lyapunov function and the cost function in order to guarantee stability and add 

optimization conditions: 
 

H(x) = V˙ + xT Q x + uT R u ≤ 0. (15) 
 

The state feedback that minimizes J (x) is given by 

 

u(x) = −R−1 BT MT P −1 z(x). (16) 

After replacing the equations (11), (13), (14) and (16) into (15), the HJ’s inequality is 

rewritten as 

H(x) = żT  P −1 z + zT  P −1 ż + zT  Q z + uT  R u 

= zT  (He 
,
P −1 M A

, 
+ Q − P −1 M B R−1 BT  MT  P −1

) z ≤ 0. 

 
(17) 

 

As it has been explained in the previous section, the variable z can be omitted from 

the analysis to focus on the intermediate equivalent matrix. However, since the matrix 

P is inversed in the equation, we have to multiply P to both sides to eliminate the 

inverse from the equation and therefore eliminate the problem of bilinearity. 

−Hp(x) = P  (He 
,
P −1 M A

, 
+ Q − P −1 M B R−1 BT  MT  P −1

) P 

= He {M A P } + P Q P − M B R−1 BT MT ≤ 0 

(18) 

 

Finally, 18 can be formulated using Lemma 1. Numerical results can be obtained with 

a SDP solver. 

 

However, and as is often the case, non-linear systems can not be controlled globally (for 

all values of x). For this reason the design resorts to the theory of Positivestellensatz 

[19], which adds a function h(x) to the first derivative of the Lyapunov function, such 

that when the system moves away from the area of interest the condition of positiveness 

is still satisfied: 

h(x) = 1 − zT Sx z, Sx > 0 ∈ Rn×n. (19) 
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Thereby the algorithm can focus on finding the best fit for the area of interest X : 

X = {x ∈ Rn  | h(x) ≥ 0} . (20) 

It also assumes an invariant set with p as upper bound: 

ε(P −1, p) = 

,
x ∈ Rn  | xT  P −1 x ™ p, p > 0

, 
⊆ X , (21) 

Consequently, the HJ’s inequality is rewritten as 

 

−Hp(x) = He {M A P } + P  Q P − M B R−1 BT  MT + h(x) S̃R(x) ≤ 0 (22) 

with 
S̃R(x) = (I ⊗ x[NR]) QR (I ⊗ x[N  ]), (23) 

T 

where SR(x) is a symmetric polynomial matrix Rn×n, that is introduced, so that the 

function h(x) has the appropriate dimensions to be added to the HJ’s function. 

 

Finally, if the system starts from an initial position x0 ∈ s(P −1, p) ⊂ X and the HJ’s 

inequality is satisfied, then the system response will remain in ε(P −1, p) and converge 

to the origin. 

Theorem 3 (Ichihara’s Optimal Controller). 

A system described given by (11) with the control law 16 and x0 ∈ s(P −1, p) ⊂ X is 

asymptotically stable in the origin if there exist a symmetric positive definite matrix 

P; symmetric positive semidefinite matrices QR, Q1; and positive scalar values β and 

ξ; such that the following matrices are positive semidefinite: 
  
MBR−1BT MT − He {M A P } − h(x)S̃R(x) PQ0.5  

S1(x) =  

Q2 = βSx
−1 − P ≤ 0, 

Q0.5P I 
 − ξI ≤ 0, 

 
β βz0

T  
Q3 = 

βz0 P 
 ≤ 0, 

Q4 = P − ξI ≤ 0, 

Q5 = β − ξ ≤ 0. 

Proof. See [8]. 

R 



Master Thesis Carlos Alberto Vilcarima Sabroso 

2 Theory and background 12 
 

 

In ⊗ v[N ] 

In 

0 

0 

In 

  
I

 P
 

1  n   

 

S1(x) is decomposed to a SOS form: 

 

S1(x) = (I ⊗ x[N])
T Q1 (I ⊗ x[N]), I ∈ R2n×2n. 

And the objective of the algorithm is to minimize the value  of the cost function:    

J ™ x0
T P −1 x0 for the intial conditions. But, since the SD program can not work 

directly with the inverse, it is necessary to propose a change of variable, such that there 

exist a defined positive matrix Y, which replaces P −1 in the upper bound of J(x). 

Q6 = 

Y I 
 

≤ 0 ⇔ P ≤ 0 ∧ Y ≤ P −1 ≤ 0 (24) 

Finally β is used as the inverse of p and ξ as the tolerance for the definite positiveness. 

2.5 Conservativeness reduction 

While the optimal control strategy allows us to directly find the optimal controller that 

will be needed for given conditions, it still has a high degree of conservativeness, which 

greatly restricts the response of the controller and requires a higher computational cost 

in its execution. 

 

Therefore, in this section, I propose some tools that reduces the degree of conserva- 

tiveness while expanding the range of solutions to find the best fit for the controller. 

For this purpose, we will use the theory presented in [8], which is explained in detail 

in the following subsections. 

 
2.5.1 Structural reducion of LMI 

Until now, and thanks to the fact that the current theory only resorts to constant 

matrices P, Q and R; the folowing transformation can be used, instead of the kronecker 

product, to reduce the dimensions of Q1, and hence, reduce the computational cost: 

 
In

 ⊗ v[N ] T   

S (x) = I 
0 

Q1  , Q1 > 0, I ∈ Rn×n (25) 
 

0 In  

   

s 
(

˛
1

¸
) 

x 

 

where v[N] is the vector of monomials that does not include the unit value, O is a 
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6×6

R 

 

matrix of zeros and In is the identity matrix. 

 
This reduction is made posible, because the matrix S1(x) has constant values in its 

last three quadrants as seen in the theorem 3: 

 

 
 

Proof. See [8]. 

S1(x) =   − ξ I 
 

 

To appreciate the reduction of dimensions of Q1 in better detail, the following example 

is proposed. 

Example 3. 

If we consider x = [x1 x2]
T , N = 1 and n = 3, then we have x[N] = [1 x1 x2]

T , 

v[N] = [x1 x2]
T . 

 
   

I6  

 

S1(x)kronecker = (I ⊗ x[N ])
T · · · ⇒ R6×6  ∈ R18×6 ⇒ Q1 ∈ R18×18

 

 

 

S1(x)reduced =  
 

T  

 · · · ⇒  

 

12  6 12 12 

 ∈ R  ×   ⇒ Q1 ∈ R  ×
 

 

As can be seen in the previous equality, the matrix Q1 corresponding to the kronecker 

product is much larger than the one proposed by this reduction. 

 

In the same way, it can be seen the remarkable reduction of computational costs that 

this approach will have when it is used for higher order systems. 

 
2.5.2 Polynomial annihilators 

Thanks to the representation of the problem as in the lemma 1, the main objective 

that must be met to guarantee an asymptotically stable solution is that −Hp(x) ≤ 0. 

However, the fact that this is not fulfilled, does not mean that the system can not 

be stabilized, which add some degree of conservativeness, limiting the range of the 

Q0.5 P 
∗ P Q0.5 

I 

In ⊗ v[N ] 

In 

0 

0 

In 

R6×3 

I3 

03×3 

0 9×3 

I3 
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x 

1 2 

 

 

solutions. This effect can be clearly seen in the following example. Consider: 

x1

 
1 0

 4 − 1 · x1  
  

z(x) = 

x2
 , P = 

0 1

 and − Hp(x) = 

and − 1 · x1 −x2 
 , then 

2 

H(x) = x2 · x4 
1 

x2 · x2 
2 1 1 

x2 · x2 − x2 · x4 

1 2 − 
2 

·  1 2 − 
2 

·  1 2 1 2 

H(x) = −x2 · x2 ≤ 0, ∀x ∈ R 
 

When we start analysing the eigenvalues of −Hp(x), it can be clearly seen that it does 

not accomplish the negative semidefiniteness condition, which is mandatory to guar- 

antee the stability criteria, but, on the other hand, when the equation (17), described 

as H(x), is analyzed, we find that the system is stable under those conditions. 

 
However, the bilinearity does not allow the problem to be resolved directly, so it is 

proposed the use of a two step approach, where in the first step we find P by applying 

the Theorem 3, and in the second step we scale P by reducing the conservativeness 

and obtaining a better value of J(x). From there and with the addition of polynomial 

annihilators, that are proposed in the following theorem, a better value of P can be 

found [8, 20, 21]. 

Theorem 4 (Ichihara’s Optimal Controller with Annihilator). 

Assume Theorem 3 is satisfied and there exist symmetric positive semidefinite matrices 

Qr and Q1, and polynomial matrices N (x) ∈ Rn×n and NA(x) ∈ Rn×n, such that 

N (x) P −1 z(x) = 0, NA(x) z(x) = 0, ∀x ∈ Rn. 

If α ∈ R is maximize and the following inequalities are satisfied 
 

MBR−1BT MT − h(x)S̃R(x) ( ) 

1 

 
 

 

S1(x) =   −He {M [αA + NA 
1 

 
 

(x)] P − N (x)} 
αP Q 2

 

 − ε · I ≤ 0, 

Q 2 (αP ) I 

Q2 = βSx
−1 − αP ≤ 0,  

β βx0
T  

Q3 = 

βx0 αP 

Q4 = β − ε ≤ 0, 

Q5 = α − ε ≤ 0. 

 ≤ 0, 

Then, the asymptotic stability will be guaranteed and the new performance will be 

2 2 
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better or equal to the one obtained with Theorem 3. In addition the new control law 

is 

 
Proof. See [8]. 

u = −R−1 BT MT (α P )−1 z(x). 
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2 

 − 
•  P = 

 
 
 
 
 
 

3 Improvements and new proposals to 

the optimal control algorithms 

In this section, I will present some numerical examples of the current theory, that have 

been solved by using CVx on Matlab, and then I propose improvements to the optimal 

controller 

 
3.1 Numerical examples of the current theory 

Example 4 (Ichihara’s Controller). 

Let’s consider the non-linear system 

ẋ1

 

= 

 
−1 0 

 
x1

 

+ 

0

 

u

 

ẋ2

 
x1 + x2 x2

 
x2  1

 

 

The conditions for the development of the controller are in the table below. 

 
Table 3.1: Example 4 - Conditions 

ξ Q R Sx x0 W 

0.001 
Σ 

1
 

5 

0 

0

Σ 

1 
1 

Σ
5

 

1 

1

Σ 

2 

Σ 
0.3 

Σ
 

−0.4 

Σ
1

 

0 

0

Σ 

1 

 

After adding this information to the Theorem 3 the following results are obtained 

(rounded to two digits). 

• Lyapunov function: V(x) = 0.52 x2 − 0.34 x1 x2 + 0.42 x2. 
1 2 

 

• Control variable: u(x) = −0.91 x1 − 2.7 x2. 

• Upper bound: p = 0.42. 

0.52 0.17 

−0.17 0.42  
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Figure 3.1: Example 4 - System response 

 
The following observations can be obtained through the figure 3.1: 

• Since ε(P −1, p) ⊆ X , if we want to have a larger area in which the controller can 

work and be optimal at the same time, the X defined by h(x) must grow. 

• The initial condition x0 delimits the minimum volume in which the controller 

should be optimal. 

• The gains matrices (Q, R) of the cost function J (x) determines the behavior of 

the system in terms of time of stabilization and response speed. 

In the table 3.2 we can see the effect of changing the invariant set X and the initial 

condition x0 for the previous conditions. 

 
Table 3.2: Comparison of the invariant set effect 

 h(x) 

Gain Matrix 
(Sx) 

Initial 
Condition 

x0 

Upper 
Bound 

p 

Control 
Variable 

u(x) 

1 
Σ
0.5 0.1

Σ
 

Σ 
0.8 

Σ
 

−0.4 

7.62 1.7 10
−8 x1 − 20 x2 

2 
0.1 0.2 Σ
1.8−2 

0

Σ
 

0 1 

Σ 
0.8 

Σ
 

−0.4 

2.97 3.3 10
−7 x1 − 4.6 x2 

3 
Σ
1.2−2 

0 

Σ
 

0 1.2−2
 

Σ
−
0 

0.2
Σ

 
.65 

2.77 2.9 10
−7 x1 − 6.1 x2 
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1 

 

Example 5 (Ichihara’s Annihilator). 

As an example, we will use the system described in the Ichihara’s paper [8, first 

numerical example]. 

ẋ1

 

= 

x2 
1 

 
x1

 

+ 

0

 

ẋ2

  
0 x2 + x2 · x1

 
x2  1

 u 

 

The conditions for the analysis are described in the table below, while the results of 

the algorithm for both theorems 3 (optimal controller) and 4 (optimal controller with 

polynomial annihilators) are shown in the table 3.4 and figures 3.2, 3.3, 3.4. 

 
Table 3.3: Example 5 - Conditions 

ξ Q R Sx x0 W 

0.001 
Σ 1  

10 

0 

0

Σ 

1 
1 

Σ
1.05

−2
 

0 

0 

1.05
−2

 

Σ Σ 
0.4 

Σ
 

−0.2 

Σ
1

 

0 

0

Σ 

1 

 

Table 3.4: Comparison of the addition of the polynomial annihilator 
 Optimal Control Annihilator 

Control Variable u(x)   

Matrix P 
12 x1 − 9 x2 

Σ−
0.12 −0.16

Σ
 

−0.16 0.32 

6.8 x1 − 5.2 x2 
−Σ  

0.21 −0.27

Σ
 

−0.27 0.55 

Upper bound p 2.54 1.36 
Cost function J 0.59 0.39 

 

 

Figure 3.2: Comparison of the system response with the addition of the 

polynomial annihilator 
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Since the value of the cost function in Theorem 4 is lower, it is confirmed that the 

performance of the system has been improved thanks to the addition of the polynomial 

annihilator and how it can be seen in the figure 3.2, the system response is faster and 

with less overshoot. 
 

Figure 3.3: Comparison of the invariant set with the addition of the 

polynomial annihilator 
 

 

 

Figure 3.4: Comparison of the cost function with the addition of the 

polynomial annihilator 

 

 
3.2 Variable gain matrix of the cost function 

To find the best controller for a system, it is necessary that the desired performance 

specifications are accurately described in the cost function. In other words, the weight 

matices Q(x) and R(x) can be variable, such as, the penalty is not constant, but, 

rather, variable with respect to the area of interest. 
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F P Q 2 

1 

Q 2 P 
1 

I 

 

First and since the controller will be designed to work within an area, where the solution 

has to be optimal, the state-space penalty function Q(x) should only be constructed to 

describe the desired conditions in it. Then, as a solution it is propose that the further 

away the states of the system are to the origin, then the penalty values should increase. 

In other words, it is penalized mored when the solution approaches the limits of the 

controller. Finally, the remaining values of the penalty matrix must define the desired 

characteristics. 
 

Figure 3.5: Variable gain matrix Q(x) 

 
The figure 3.5 shows how these three conditions fulfill this concept while describing a 

desired performance, which is based on an exponential penalty function for the state- 

space variables. 

 

On the other hand, it should be noted that the matrix Q(x) can not have a freely 

arbitrary value, but rather has a couple of conditions to satisfy and which in turn are 

a bit restrictive, such as 

S1(x) =   ≤ 0 ⇒ F ≤ P  Q P ≤ 0,  Q > 0. (26) 

 

To save some space we will refer to F as the equivalent matrix that goes in the first 

quadrant of S1(x). 
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−1P
 

Q 

 
T −1 T 

4 2 

2 

 

For this reason the Schur Complement is used to transform the matrix S1(x) into 

an equivalent, which gives the variable Q(x) greater flexibility: 

S1(x) =   F P  ≤ 0. (27) 

 

Although the polynomial matrix Q(x) is no longer represented as a root, we do need to 

represent the matrix S1(x) as a polynomial matrix, therefore the following substitution 

is proposed 
 

J¯(x) = 

∞ 

(z Q z + u R u)dt; Q > 0, R > 0 (28) 
0 

 

Hereinafter we can focus on finding a polynomial matrix Q(x) that must be positive 

defined and invertible in the invariant set X . 
 

Figure 3.6: Desired Gain Function 

 
However, obtaining a polynomial matrix whose inverse satisfies the condition shown in 

the figure 3.6 (exponential penalty) is not easy, much less simple, because it requires 

a high degree function. So, instead of looking for a function that fully satisfy this 

condition, we look for a function that satisfies the condition locally and contains a 

local maximum (the origin) and two local minimums (according to the desired speci- 

fications), such that, the curve drawn in this area describes a parabola or exponential 

function: 

∂q(x) 

∂x = 

 
a · (x − x 

 

 
min ) · (x − /x/0) · (x − x 

 

 
max ) > 0 

= a · (x3 − (xmin + xmax) · x2 + xmin · xmax · x), (29) 

q(x) = 

a 
· x4 

a 
− 

3 

· (xmin + xmax ) · x3 + 

a 
· x 

 
min · xmax · x + c > 0 
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MBR−1BT MT − He {M A P } − h(x)S̃R(x) P 

P Q(x) 

S   x1 

 

 

 

 

 
 

Figure 3.7: Proposed gain function 

 
Theorem 5 (Optimal Controller Q(x)). 

Assume all condition of Theorem 3 are satisfied with S1 replaced by 

¯ 

  

S1 =  

Proof. Given the new cost function 

inequality is rewritten as 

 ≤ 0, (30) 

J (̄x),  described in the equation (28), the HJ’s 

 

−Hp(x) =  He {M A P } + P  Q−1 P − M B R−1 BT  MT + h(x) S̃R(x) ≤ 0 

which, thanks to the Schur complement, can be transformed to an equivalent matrix 
S̄1(x) as 

¯ ( ) = 

F P
 

P Q(x) 

 ≤ 0 ⇒ F − P  Q−1 P ≤ 0 

where F = −He {M A P } + M B R−1 BT  MT − h(x) S̃R(x) 

 

Theorem 5 allows the addition of a variable gain matrix Q(x) to the algorithm and the 

following lemmas present the proposals for its value. 

Lemma 2 (Q(x) as a cuadratic function). 

In this case it is desired that the matrix Q(x) be described as (29) and satisfy the 

following conditions: 

1. The extreme points of the area of interest (see figure 3.7) contain the invariant 
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a 

2 

 
· ∈ 

1 

 

set X and xlim = xmax = −xmin with 

x = (1 + θ) eig(S ) 
− 1 

, S 
 

 

∈ Rn×n, 0 < i ≤ n, 
ilim x i   

2 

x
 (31) 

q(x) = 

4

 x4 − 
a
 xlim 

2 x2 + c > 0, 

 

for θ ∈ [1.2, 1.5] the percentage, whose usefulness is to extend the curve to 

emphasize the limits of the area of interest. 

2. The polinomial matrix Q(x) must be symmetric positive definite, therefore the 

constant value: c ≥ 1. 

3. The equation, that described the distance d between the points of inflection of 

the curve, is ruled by: 

=

  q(x0) 4 · c · (1 − 1 
) 

 d 
 

4. The matrix Q(x) is built as 

q(xlim) 
, a = d 

4 
lim 

 

n 

Q(x) = ( qi(xi)) In, In Rn×n, 
i 

 
 

Then, the closed-loop system is asymptotically stable in the origin with perfor- 

mance J (̄x). 

 
Similarly, it should be mentioned that in this case the structural reduction of LMI can 

not be used, because the structure of S1(x) now contains variables of space state in its 

last quadrant. 

 
Example 6. 

As an example, we will use the same system exposed in the example 5 employing the 

same conditions for the design of the optimal controller with the state dependent the 

matrix Q, in order to be able to compare the results and understand the advantages 

of this improvement proposal. 

ẋ1

 

= 

x2 
1 

 
x1

 

+ 

0

 

ẋ2

  
0 x2 + x2 · x1

 
x2  1

 u 

x 
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0  1

 

1 1 

2 2 

 
 

The specifications for the design of the matrix Q(x) are shown in the table below. 

 
Table 3.5: Example 6 - Specifications of Q(x) 

 x1 x2 

Constant c 2 2 
Distance d 5 5 
Gain percentage θ 1.2 1.2 

Subsequently, the functions that conforms the matrix Q(x) are 

q1(x) = 2 + 0.4 x4 − 1.26 x2, 

q2(x) = 2 + 0.63 x4 − 2.02 x2, 

Q(x) = (q1(x) + q2(x)) · 
1 0

 

. 

The graphics of Q(x) and its inverse are shown in the figure 3.8, where it can be clearly 

seen the region of interest as the concave surface of the inverse matrix of Q(x) 
 

Figure 3.8: Matrix Q(x) in  3D 

 
Finally the results are shown in the figures 3.10, 3.9 and table 3.6, where it can be 

seen that the upper bound on J¯(x) has been reduced with success. 
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Figure 3.9: Comparison of the system response with Q(x) 
 

Figure 3.10: Comparison of the cost function with Q(x) 

 
Table 3.6: Comparison of the addition of Q(x) 

 Optimal Control 
with Q(x) 

Optimal Control with Q(x) 
and Annihilator 

Control Variable u(x) −11.69 · x1 − 9.18 · x2 −6.93 · x1 − 5.44 · x2 

Matrix P 
Σ 

0.13 −0.17

Σ
 

−0.17 0.33 

Σ 
0.23 −0.29

Σ
 

−0.29 0.55 

Upper bound p 2.32 1.32 
Cost function J 0.5 0.31 
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Example 7. 

In the same way, during the development of this research, the following matrices were 

also proposed as alternatives: 

Q1  (x) = 

q1(x) 0 

  

∧  Q1 (x) = 

q2(x) 0 

 
a 

   
0 q2(x)

 
b 

   
0 q1(x)  

 

However, those matrices did not present the best results compared to the Lemma 2, 

as it can be seen in the tables 3.7 and 3.8, and this is due to the fact that the surface 

of the matrix Q1(x) does not fully contain X , how it is shown in the figure 3.11. 
 

Figure 3.11: Matrix Q1(x) in 3D 

 

Table 3.7: Comparison of the addition of Q1a(x) 

 Optimal Control 

with Q1a(x) 

Optimal Control with Q1a(x) 

and Annihilator 

Control Variable u(x) −12.35 x1 − 8.87 x2 −8.508 x1 − 6.11 x2 

Matrix P 
Σ 

0.09 −0.12

Σ
 

−0.12 0.28 

Σ 
0.13 −0.18

Σ
 

−0.18 0.41 

Upper bound p 3.14 2.13 
Cost function J 0.67 0.49 

 

Table 3.8: Comparison of the addition of Q1b(x) 

 Optimal Control 

with Q1b(x) 

Optimal Control with Q1b(x) 

and Annihilator 

Control Variable u(x) −12.09 x1 − 8.78 x2 −7.86 x1 − 5.71 x2 

Matrix P 
Σ 

0.10 −0.14

Σ
 

−0.14 0.31 

Σ 
0.16 −0.22

Σ
 

−0.22 0.47 

Upper bound p 2.82 1.79 
Cost function J 0.64 0.45 
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Lemma 3 (Q(x) as h(x)). 

Consider Q(x) as a function h(x) that includes the invariant set X : 

Q(x) = (c + zT Sx z) In,  In ∈ Rn×n, 

where the constant value c > 0 and In is an identity matrix. 

Example 8. 

Consider the system exposed in the example 5 with its same conditions and 

2.05 + xT Sx x 0  
Q2(x) =  

0 2.05 + xT Sx x  
 
 
 

 
 

Figure 3.12: Matrix Q2(x) in 3D 

 
How it can be seen in the table 3.9 the cost function is considerably reduced. And its 

main advantage is the simplicity of its design compared to Theorem 5. 

 

Table 3.9: Comparison of the addition of Q2(x) 

 Optimal Control 

with Q2(x) 

Optimal Control 
with Q2(x) 

and Annihilator 
Control Variable u(x) −11.59 · x1 − 9.34 · x2 −6.59 · x1 − 5.3 · x2 

Matrix P 
Σ 

0.15 −0.18

Σ
 

−0.18 0.33 

Σ 
0.26 −0.32

Σ
 

−0.32 0.59 

Upper bound p 2.17 1.15 
Cost function J 0.45 0.27 
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At the same time, another interesting approach is to let the algorithm find the best 

performance criteria for the controller, which means, to assign Q(x) as a variable with 

just a specification of a desired behavior in the origin. 

Lemma 4 (Q(x) as a polynomial matrix to be find). 

As it has been done in the case of the polynomial annihilator, this time a polynomial 

matrix Q(x) will be proposed, such that 

Q(x) = Qx + Q0, Q(x) > 0, (32) 

where Qx is a symmetric polynomial matrix of x with even absolute degree and Q0 a 

constant positive definite matrix, which defines the desired performance at the origin. 

Example 9. 

Let’s consider the system shown in the example 6 with the addition of the matrix Q(x) 

according to Lemma 4. 

Q0 = 

1 0 

 

, max  
(Q ) = 4 

0 10  
degree x 

 

The surface of the matrix Q(x) is shown in the figure 3.13, while the results of this 

theorem are shown in the table 3.10 and figure 3.14. 
 

Figure 3.13: Matrix Q(x) in 3D 
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1 1 

 
 

 

Figure 3.14: Comparison of the system response with Lemma 4 

Table 3.10: Comparison of the results of Lemma 2 and 4 

 

 

 

 
 

On the other hand, the proposals for the matrix Q(x) can also be applied to the 

matrix R(x), as it is shown in the following example. 

Example 10. 

For this example, consider the system of example 6 and for the design of the controller 

a matrix R(x) and Q(x) applying the theory of Lemma 2: 

q1(x) = 2 + 0.4 x4 − 1.26 x2, 
q2(x) = 2 + 0.63 x4 − 2.02 x2, 

2 2 
n 

Q(x) = (

 
qi(xi)) · In, In ∈ Rn×n, 

R−1
(x) = q1(x) + q2(x). 

Its curve is shown in the figure 3.15. 

i 

 Lemma 2 Lemma 3 
Control Variable u(x) −11.69 · x1 − 9.18 · x2 −11.6 · x1 − 9 · x2 

Matrix P 
Σ 

0.13 −0.17

Σ
 

−0.17 0.33 

Σ 
0.14 −0.18

Σ
 

−0.18 0.34 

Upper bound p 2.32 2.24 
Cost function J 0.49 0.08 
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Figure 3.15: Desired matrix R(x) 

 
As it can be seen in the table 3.11 and figure 3.16, the value of the cost function is 

considerably reduced. 

 
Table 3.11: Comparison of the addition of R(x) together with Q(x) 

 Optimal Control Optimal Control with Q(x) ∧ R(x) 
and Annihilator 

Matrix P 

with Q(x) ∧ R(x) Σ  
0.23 −0.315

Σ
 

−0.315 0.7223 

Σ
0.3431 −0.47 

Σ
 

−0.47 1.0777 

Upper bound p 1.1848 0.7857 
Cost function J 0.2543 0.1892 

 

 

Figure 3.16: Desired matrix R(x) 
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3.3 Optimal non-linear controller for rational systems 

In this section, we propose a control algorithm for rational systems, whose main char- 

acteristic is that the derivative vector of the state-space variable is not free in its 

equality, but rather has a non-linear dependence with its state-space variables, which 

can be seen reflected in this well-known dynamic equation [22]: 

H(q) q̈ = C(q, q )̇ q̇ + G(q) = B u, q0 = 0, 

 
where q is just another representation of the variable x and equivalent to the state- 

space form 
 

L(x) ẋ  = A(x) z(x) + B(x) u, z(x) = W (x) x, z(x0) = 0, (33) 

where W (x) ∈ Rn×n is invertible. 

For the proposal of an optimal controller represented in a polynomial form (equation 

33), we resort to the basis of Theorem 3 and add the characteristics of this type of 

systems. 

 

 

Figure 3.17: Triple inverted pendulum 

Source: Control Theory III - Triple inverted pendulum [23]. 

 

Consider the cost function as in equation (28) and the Lyapunov function as V (x) = 

zT P −1 z, then assume that the polynomial matrix L(x) is invertible and the feedback 

control law is 

u(x) = −R−1 BT L−T  MT P −1 z. (34) 
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R 

 
I P 

 

−He 
,
APM −T LT 

, 
+ BR−1BT − LM −1P QP M −T LT 

z  

 

The first derivative of V(x) with respect to time is: 

V̇ (x) = żT  P −1 z + zT  P −1 ż 

= (M L−1 A z + M L−1 B u)T P −1 z + zT P −1 (M L−1 A z + M L−1 B u) 

= zT  (He 
,
P −1 M L−1 A

, 
− 2 P −1ML−1BR−1BT L−T MT P −1

) z 

Subsequently we obtain the HJ’s inequality as 

H(x) = V˙ (x) + zT Q−1 z + uT R u + zT h(x) SR(x) z ≺ 0 

= V˙ 
(x) + zT (Q + h(x) SR(x) + P −1ML−1BR−1BT L−T MT P −1

)z 

=  
T He {P −1 M L−1 A} + Q + h(x)SR(x)

 

0

 

−P −1ML−1BR−1BT L−T MT P −1 

s 
−H

˛
p

¸
(x) 

 z ≤ 

x 

 

Later, we multiply Hp(x) by L(x)M −1P in both sides to obtain a result that will be 

free of any inverse and keep the result in a polynomial representation. 

 

Hp(x) = 

−h(x)LM −1S˜ (x)M −T LT 
≤ 0 (35)

 
 

Finally, and in this particular case the selection of the matrix M(x) is very important, 

since its inverse or the product between L(x)M −1
(x) must maintain the condition of 

being a polynomial matrix. 

Theorem 6 (Optimal Controller for rational systems). 

A system described as in the equation (33) with x0 ∈ s(P −1, p) ⊂ X is asymptotically 

stable in the origin if there exist a symmetric positive definite matrix P; symmetric 

positive semidefinite matrices QR and Q1; and positive scalar values β and ξ; such that 

the following matrices are positive semidefinite: 
  
BR−1BT − He 

,
APM −T LT 

, 
− h(x)LM −1S̃R(x)M −T LT LM −1P   

S1(x) =  
PM −T LT Q 

 − ξI ≤ 0 

Q2 = β Sx
−1 − P ≤ 0, Q3 = P − ξ I ≤ 0, Q4 = β − ξ ≤ 0  

β βz0
T  

Q5 = 

βz0 P 
 ≤ 0 

Q6 = 

Y I 
 

≤ 0 
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i 

1 2 1 

1 2 

Q(x) =  i 

0 

Σ2 q (x ))
 ,
 

 

And the objective function is to minimize the cost function: J ™ z0
T Y z0. 

Proof. The HJ’s inequality, described in the equation (35), has been represented as a 

matrix by using Schur complement: 

S1(x) =   − ξ I  ⇒  F − LM 

 
−1PQ−1PM −T LT 

≤ 0, 

 

where F represents the component of the first quadrant of S1(x). 

 
On the other hand, the weight matrix Q is presented as an inverse, such that the 

algorithm is flexible to be used in conjunction with the Theorem 5. Finally, the proof 

of the other statements are in [8]. 

Example 11. 

Let’s consider the non-linear system 

10 + x2 + x2 
0 

 
x˙1

 

= 

x2
 

1 

 
x1

 

+ 

0

 

 
0 10 + x2 + x2

 
ẋ2  

 
0 x2 · (1 + x1)

 
x2  1

 u 

 

For this example we will apply the Theorem 6 in conjunction with the Theorem 5. 

 
Table 3.12: Example 11 - Conditions 

ξ Sx x0 W 

0.001 
Σ
1.05

−2
 

0 

0 

1.05
−2

 

Σ Σ 
0.4 

Σ
 

−0.2 

Σ
1

 

0 

0

Σ 

1 

 

The conditions for this design are shown in the table above, while the conditions for 

the weight matrices are 

q1(x) = q2(x) = 2 + 0.71 x4 − 2.27 x2, 
1 1 

Σ2 qi(xi)) 0  
 

 
R(x) = 

0.01 
 

 Σ2 qi(xi) 

i  i i 

F 

PM −T LT 

LM −1P 

Q 
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1 1 1 

2 2 

 

The state feedback control law results as follows 

−872.61 · x5 − 606.36 · x4 · x2 + 2770.7 · x3 
+1925.3 · x2 · x2 − 872.61 · x1 · x4 + 2770.7 · x1 · x2 

u(x) = 

1 2 2 

−4887.6 · x1 − 606.36 · x5 + 1925.3 · x3 − 3396.2 · x2 
10 + x2 + x2 

1 2 
 

The characteristics of the optimal controller can be seen in the table 3.13, while the 

system response in the figure 3.18, from where it can be seen that the system stabilizes 

in 40 seconds and the value of the control variable varies between [-111.50, 0.32]. 

 

Table 3.13: Example 11 - Optimal Controller 
 Optimal Control 

Matrix P: 
Σ 

0.0464 −0.0667

Σ
 

−0.0667 0.2138 

Upper bound p: 4.6498 
Cost function J : 1.129 

 

 

Figure 3.18: Example 11 - System response 

 
Finally, and as an observation, it has to be noted that for this theorem the reduction 

of LMI can not be used, because of the addition of state-space variables to the lower 

quadrants of the matrix S1(x). 
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4 Closed loop system 

 
4.1 Estimator design 

In many systems, the outputs are the only ones that can be measured, which mostly 

do not include all the state space variables. For this reason, it is necessary to add an 

estimator, that can feed the controller with all the variables, which are necessary for 

the control of non-linear systems as it was appreciated in the previous chapters. 

 

In the figure below, it can be seen how the estimator is going to be placed in order to 

provide the estimated variables to the controller. 
 

 

Figure 4.1: Full system block diagram 

The equation of the estimator is described as 

ẋ̂ = Âx̂ + B̂u + Ê(y − ŷ) 

ẋ̂ = (Â − B̂K̂ − ÊĈ)x̂ + ÊCx 

Therefore the equation of the full system is represented as 

 

 

 
(36) 

ẋ
 

= 

  
x

 

=

  
x

 (37) 

ẋ̂
   

x̂
   

x̂
 

 

where K̂  represents the gain vector of the optimal controller, which can be found by 

any of the methods previously described and as best corresponds; while Ê is the gain 

vector of the estimator. 

A 

ÊC Â − B̂K̂ − ÊĈ 

−BK̂ 

ÊC 

A −BK̂ 

Ĥ 
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= 

 ,

 

ˆ  ̂

 
,  ,  

ˆ

 ˆ 

H
 

x 

W (xd) = xT 
d  xd ≤ 0. (39) 

P  H − P BK  

p 
 

 

The stability analysis of the global system has to include all the variables of the system 

(real and estimated), for this reason we introduce a new variable xd: 
 

x 
xd 

x̂
 

 

which is used to build the new proposed Lyapunov function W (xd): 

 
W (x ) = xT P x = 

Σ
x x̂

Σ P1 P2

 
x

 

≤ 0,  P > 0, (38) 

d d d 
P2 P3

 
x̂

 

 

where Pi > 0,  i ∈ {1, 2, 3}; 
 

, 
ˆ 

, P2H + CT ET P3  
He P1A + P2EC 

˙ 
 

 

 
+AT P2 − P1BK̂  

 

+P2A
T  − K̂T BT P1 

e 3  2
 

s 
−H

˛
p

¸
(x)  

x
 

However, if we  take  a deeply view to the equation (39),  it can be seen that it has  

a problem of bilinearity as a result of a multiplication between unknown variables 

that  must  be  found:  P2 Ê and  P3 Ê.   Therefore  we  decided  to  choose  the  following 

assumptions to prevent the conflict of bilinearity [24]: 

Px = P2 = P3, 

Ê(x̂) =  Px
−1 Ex(x̂), 

 

 
(40) 

 

where Px is a symmetric positive definite matrix and Ex is a polynomial symmetric 

matrix to be find by the algorithm. Then, the function Hp(x) is rewritten as 

H (x) = 

Hp1 Hp2

 

≤ 0 (41) 
T 
p2 

 

where 
 

Hp1 = − He {P1A + ExC} 

Hp2 =  − AT Px − PxÂ + PxB̂K̂ + ExĈ − CT ET + P1BK̂ 

 

(42) 

Hp3 =  − He 
,
PxÂ − PxB̂K̂ − ExĈ − PxBK̂

,
 

T 

H 
Ĥ P2 + P3ÊC 

H p3 
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=

 

 

   
P

 Px  x

 

x 

 

Although, it would be great to guarantee the stability of the system for all Rn, this 

will not always be fulfilled, so in the same way as the previous cases, an equation 

representing the area of interest should be added to Hp(x), such that the analysis is 

restricted to finding the stability of the system for the invariant set 
 

X̄ = 

,
xe ∈ R2n  | h(xe) ≥ 0

, 
, xe 

x 

e
 (43) 

 

where e = x − x̂ is the estimation error and 

 
x 

T           
x 

 

h(xe) = 1 − 
x − x̂

 Sx  
x − x̂

 ,  Sx > 0, (44) 

and its gain matrix Sx is built as 

S  = 

Sx 0 

0 diag([b1 ... bi]) 

 ,  I ∈ Rn,  bi > 0, i ∈ {1, · · · , n} , (45) 

 

where Sx is the gain matrix of the area of interest of the optimal controller that will be 

used at first, while bi is a scalar value assigned by the designer, such that it represents 

the tolerance of the estimation error. 

 
In practical cases it can be considered that 

 

b1 = · · · = bn 

however, this decision is left to the criteria of the person who uses this algorithm. 

Theorem 7 (Estimator for the Optimal Controller). 

To guarantee the asymptotical stability of the closed-loop system with controller given 

by Theorem 3 or 5, there must exist positive semidefinite matrices Q1, QR, P1, Px; a 

polinomial matrix Ex; and a positive scalar value ξ; such that, the following is satisfied: 

 

P = 

P1 Px

 

> 0, 

S1(xd) = Hp(xd) − h(xe)SR(xd) − ξI ≤ 0, 

SR(xd) = (I ⊗ xd[NR ])
T QR(I ⊗ xd[N ]), 

S1(xd) = (I ⊗ xd[N])
T Q1(I ⊗ xd[N]), NR < N 

   

R 
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2 

 
x2

 

 

 

where NR and N represents the higher degree of its corresponding function. 

Proof. Direct application of Theorem 3 for the Lyapunov candidate function W yield 

the desired results. 

Example 12. 

Consider the non-linear system of the example 4: 

ẋ1

 

= 

 
−1 0 

 
x1

 

+ 

0

 

u

 

ẋ2

 
x1 + x2 x2

 
x2  1

 

y = 

Σ
1 0

Σ x1
 

And its optimal controller: u(x) = −0.91 x1 − 2.7 x2. Then, for the design of the 

estimator it is proposed that the gain matrix of the invariant set S1 be 

S  = 

Sx 0 

x 
0 I 

 ,

 

 

where Sx is the same that have been used for finding the optimal controller. 

 

 

 

 

 

Figure 4.2: System response with estimator 

The estimator vector law is (rounded to 4 digits): 

ˆ 
0.002 x̂1 − 2.55 10

−4x̂2 + 1.55  
E(x̂) =  

2.49 10
−4  x̂1 + 0.526 

 .
 

 

Finally, it can be seen in figure 4.2, that the state-space variable x2 does not converge 

quickly to zero, as it does x1, and, this is, because the dynamic controller only knows 

the value of x1, therefore this variable is stabilized at first and after a certain time and 

due to the condition of zero input, the variable x2 converges to equilibrium. 
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c 

 

On the other hand, given the choice of matrix S̄x, the tracking error must be within a 

tolerance, such that it is in the invariant set. Therefore, the values of the estimator 

should not be far from the system. 

 
4.2 Dynamic output feedback law 

As it was explained previously, for the implementation of the Ichihara controller or 

any of the improvement proposals explained here, it is necessary to know the value 

of all the state-space variables at all time. However, this is not always possible to 

obtain, due to the characteristics of the system and the difficulty of placing sensors to 

measure the variables. Therefore, we must resort to some other method that allows 

the control of the non-linear system through the feedback of its outputs and that, in 

turn, is capable of emulating the desired behavior. 

 

In other words, in this section we present another solution that can guarantee the sta- 

bility of the closed-loop system, when the other method can not, by the development 

of a dynamic controller that is able to emulate the behavior of another controller by 

its dynamic variable [10]. 

 

At first, let’s consider the following polynomial dynamic output feedback law: 
 

ẋ̂ =Ac(x̂, y)x̂ + Bc(x̂, y)y, 

u =Cc(x̂, y)x̂ + Dc(x̂, y)y 

x̂(t0) = x̂0, x̂ ∈ R1
 
 

(46) 

where Ac ∈ Rnx̂×nx̂ , Bc ∈ Rnx̂×ny , Cc ∈ Rnu×nx̂ , Dc ∈ Rnu×ny   are polynomial matrices 

to be found by the control algorithm; u is the input variable from the system; and y, 

its output variable. 

 
Then, the closed-loop system as 

ẋ = 

ẋ
 

= 

M (A + BDcC)  MBCc

 
x

 

= A   x
  

(47) 
f 

ẋ̂
  

B C A 
 

x̂
 

f f
 

 

for the state dependent linear-like form representation of the system. 

c 
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c 

  ,

 

f 

f 

He 
,
P1

−1M (A + BDcC)

,    
P1

−1MBCc  

 

Theorem 8 (Dynamic Output Feedback Law inspired from [10]). 

Assume that there exist a state feedback controller (obtained by some other theorem) 

in  the  form:   k  = KP1
−1z(x).   Then,  the  closed-loop  system  (47)  is  asymptotically 

stable if there exist symmetric positive definite matrices Q1f , Pf and Q2f ; and a non- 

negative value ξ; such that Q1f + Q2f + ξI ≤ 0 for some polynomial matrices Ac, Bc, 

Cc and Dc where 

 

Q1f =  
CT BT MT P1

−1 
0 

 ,
 

 
Q2f =  

Λ11 Λ12 

Λ12
T 

Λ22 

Λ11 = H 

.

P1
−1KT ( 

∂k 
(A + BD C)) − B C)

Σ 

, 
e 

∂x 
c c 

∂k ∂k T 
Λ12 = P1

−1KT 
( 
∂x BCc − Ac) + (BcC − (A + BDcC)) , 

∂x 

Λ22 = He 

. 

(Ac 
∂k 

− 
dx 

Bc C)

Σ 

. 

 

where ξ is a tolerance for the definite positiveness. 

Proof. The matrices Q1f and Q2f are built on the proposed Lyapunov function to 

ensure the close-loop asymptotic stability using Theorem 3: 

V (xf ) = V1(xf ) + V2(xf ) > 0, 

V1(xf ) = zT P1
−1z > 0, 

V˙
1(xf ) = xT Q1f xf ≺ 0, 

V2(xf ) = (k − x̂)
T 
(k − x̂) > 0, 

V˙
2(xf ) = xT Q2f xf ≺ 0. 

 

For more information see [10]. 
 
 

Finally we can replace the law of the state feedback controller to the dynamic feedback 

law found by this theorem. 
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3 

 

Example 13. 

Let’s take as our first example the non-linear system presented by the author of this 

theory [10]. 

0.5 − 0.1 · x2 0  
 1

 

x˙ =  
x1 −1

 x + 

0

 u
 

y = 

Σ
1 0

Σ 
x, z = x 

The considerations assigned for the design of the optimal controller by Theorem 3 are 

shown in the table below. 

 

Table 4.1: Example 13 - Conditions 

ε Q(x) R(x) Sx x0 

0.001 
Σ
1 0

Σ 

0 1 
1 

1.05
−2 · 

Σ
1 0

Σ

 
0 1 

Σ 
0.4 

Σ
 

−0.2 

 
Then, the result of the Theorem 3 is as follows 

 
Table 4.2: Example 13 - Results 

u(x) P matrix p J (x) 

−1.62 · x1 − 6.646e−10 · x2 
Σ 

0.6174 −8.196e−10
Σ

 
−8.196e−10 

1.997 

0.3368 0.3252 

 

Finally, and after constructing the conditions of the theorem 8, we obtain the following 

matrices for the dynamic output feedback law (rounded to 3 digits): 

Ac = − 52x3 − 16 

Bc = 0 

Cc = 0.051x3 + 0.057 

Dc = 0.1y2 − 0.049x2 − 0.56, 

which guarantee the the asymptotic stability of the closed loop system as it can be 

seen in the figure 4.3. 

1 
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Figure 4.3: System response to the dynamic controller 

 
Similarly, it should be noted that the dynamic controller can not always guarantee 

the global stability of a system, therefore this theory must also be modified, such that 

its resulting controller focuses on an area of interest. 

 

An extension of this controller will be proposed below, so that it can work with a 

greater number of dynamic variables and, in turn, add the local action advantage, 

which will increase the range of solutions. 

 
Theorem 9 (Extension of the Output Feedback Law). 

Consider the polynomial dynamic output feedback as 

ẋ̂ = Ac(x̂, y) x̂ + Bc(x̂, y) y, 

u = Cc(x̂, y) x̂ + Dc(x̂, y) y 

ŷ = Ec x̂. 

x̂(t0) = x̂0 

Then, the closed-loop system is asymptotically stable if there exist symmetric positive 

definite matrices Q1f , Pf , Q2f , Q3f and QR; and a non-negative value ξ; such that 

Q1f + Q2f + Q3f − h(xf ) SR(xf ) + ξI ≤ 0 for some polynomial matrices Ac, Bc, Cc 

and Dc; where 
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Q  
3f

 

f 

f 

f 

He 
,
P1

−1M (A + BDcC)

,    
P1

−1M BCc  

c 1 

= 
c 

B C AT + A 

d 

 

 

 

Qf = Q1f + Q2f + Q3f 

 

Q1f =  
MT BT CT P −1 

0   
P1

−1KT ( dk 
(A + BDcC))

  
Q2f 

=   

dx 
−Ec Bc C) 

∆      
, ,  

 

 
∆

T He 
dk 

(Ec Ac − dk
 

dk Bc C) 
T 

∆ = P1
−1KT ( 

x BCc − EcAc) + (EcBcC 

− 
dx 

(A + BDcC)) 

  
0 CT BT  

 

c c c 
 

and Ec must be choosen, such that Ec x̂ = x̂1. 

Proof. In this theorem the Lyapunov function V (xf ) is represented as 

 

V (x) = V1(xf ) + V2(xf ) + V3(xf ) 
 

where 
V1(xf ) = zT  P1

−1  z →  V̇1  = xT Q1f xf ≤ 0 

V2(xf ) = (k − ŷ)
T 
(k − ŷ) →  V̇2  = xT  Q2f xf ≤ 0 

V3(xf ) = x̂T x̂ →  V̇3  = xT  Q3f xf ≤ 0 

Then, the function h(xf ) is added, as in the Theorem 7, to focus the algorithm on 

finding solutions only within the area of interest X̄ .  See (44). 

Example 14. 

Continuing with what was developed in example 13, a dynamic two-variable controller 

with a gain matrix for the function h(xf ) as 

Sx = diag([1.05
−2, 1.05

−2, 10
−5, 10

−5
]) 

 

will give the following results (rounded to 5 digits), which also guarantee the stability 

of the closed-loop system as it is shown in the figure 4.4. 

dx 

He 
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=

 

 
 

 

Figure 4.4: Response to 2-Variable Dynamic 
 

 
  

1.2e−3y − 8.5e−5x3 − 8.5e−5x4 − 4 0  

Ac = 

1.9e−5x3 − 4.9e−5y + 1.9e−5x4 − 0.2 1.9e−5x3 − 1.7e−4y + 1.9e−5x4 − 7.8  

0 

Bc 
0

 

Cc = 

Σ
−4.4e−4x1 + 3.7e−3 −8.9e−5x1

Σ
 

Dc = −6.7e−4x1 − 0.67 
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5 Conclusions and outlook 

 
5.1 Summary 

This thesis aims to improve the design of an optimal controller for non-linear systems 

represented in a polynomial form by extending its range of application and improving 

the selection of the desired performance criteria. 

 

For this, we began with the presentation of the main theory, to then continue with 

the proposal of providing greater flexibility to the algorithm, such that it is capable of 

accepting matrices of variable weight. Later we extended the scope of the algorithm, 

so that it could be used on rational systems. 

 

Finally, two algorithms were developed to guaranty asymptotic stability in the origin 

of the closed loop,  when some states are not available  for measurement.  First it  

is proposed an observer approach and then a dynamic output feedback controller is 

improved. 

 
5.2 Conclusions 

The main advantage of LMIs is that there exist computational methods to solve them 

and, in turn, these methods are scalable and allow us to play with large amounts of 

variables, which usually appear in SOS. 

 

The addition of the S1 matrix in the design of the estimator provides as main advan- 

tage the ability to keep the tracking error in a tolerance range, such that stability of 

the closed-loop system can be guaranteed. 

 

After comparing the different selections of Q(x) from Theorem 5 represented in each 

Lemma (2, 3, 4), it can be seen that the main advantage that the addition of Q(x) 

grants is the ability to define a desired behavior outside and at the origin. 
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5.3 Future work 

The currently theory [8, 10] seeks to avoid the bilinearity generated by the optimization 

criteria by resorting to assumptions that can and do reduce the range of solutions and 

the scope of the algorithm. For this reason, the future work should focus on reducing 

the problem of bilinearity by adding better restrictions that allow keeping it within an 

acceptable margin. 

 

Similarly, the proposal made for variable weight matrices opens a door to define and 

add functions that more accurately describe the desired parameters for the system, as 

do the fuzzy controllers, such that we divide the invariant set per zones, where the 

cost function can penalize with different intensity. 

 

On the other hand, it would be very interesting to add an optimization criteria to 

Theorem 9, so that it is able to faithfully emulate the proposed controllers, that are 

used for its design, and to keep a desired performance at the origin. 
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