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Resumen

En este trabajo se investiga la noción de imparcialidad mutua para me-
diciones de grano grueso en sistemas cuánticos con variables continuas. Se
muestra que mientras que el procedimiento estándar de granulación gruesa
rompe la imparcialidad mutua entre variables conjugadas, dicha imparciali-
dad puede, en cambio, establecerse teóricamente y observarse experimental-
mente con granulación gruesa periódica. Se exhiben los resultados predichos
mediante un experimento óptico que implementa la difracción de Fraunhofer
a través de una red de difracción periódica, encontrándose excelente acuer-
do con la teoŕıa. Nuestros resultados representan un avance importante en
el desarrollo de una conexión formal entre la mecánica cuántica de variable
discreta y la de variable continua.
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que me ha dado. Especialmente por la oportunidad de viajar a Brasil donde
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The notion of mutual unbiasedness for coarse-grained measurements of quantum continuous variable systems
is considered. It is shown that while the procedure of “standard” coarse graining breaks the mutual unbiasedness
between conjugate variables, this desired feature can be theoretically established and experimentally observed in
periodic coarse graining. We illustrate our results in an optics experiment implementing Fraunhofer diffraction
through a periodic diffraction grating, finding excellent agreement with the derived theory. Our results are an
important step in developing a formal connection between discrete and continuous variable quantum mechanics.

Introduction. The ability to measure a system in an infinite number of non-commuting bases distinguishes the quantum
world from classical physics. Wave-particle duality and more generally the complementarity principle are directly rooted in
this feature of quantum mechanics. Though one can measure a quantum system in several distinct bases, uncertainty relations
limit the amount of information that can be obtained. It is well known that projection onto an eigenstate of one basis reduces
the information that can be obtained through or inferred about subsequent measurement in a different basis. The information
is minimum for mutually unbiased bases (MUBs) [1, 2], for which all outcomes of the second measurement are equally likely,
so that total uncertainty is always substantial (the sharpest uncertainty relations [3]) and most insensitive to input states [4].
MUBs play an important role in complementarity [5], quantum cryptography [6] and quantum tomography [7, 8], are useful for
certifying quantum randomness [9], and for detecting quantum correlations such as entanglement [10–12] and steering [13–20].

Quantum information encoding in high-dimensional systems harbor the potential for efficient quantum cryptography [21–23]
and interesting fundamental studies [24, 25]. A number of modern day implementations of high-dimensional quantum systems
rely on continuous variables (CV) encoded in photonics systems. These CV [26] or hybrid [27] platforms allow one to encode
several bits per outcome. However, a typical measurement device does not register a continuous and infinite range of values, and
it is thus necessary to consider discretized measurements. A most common approach is the selection of a finite set of transverse
spatial modes labeled by discrete mode indexes [28–31], for which MUB measurements are attainable by the use of phase
holograms [8]. Free-space [32], multicore fibers [33] or on-chip [34] path encoding as well as time-bin [35] are also interesting
techniques with potencial for high-dimensionality. These methods, despite being useful, discard a fraction of available modes
and do not straightforwardly extend to the complementary (Fourier) domain of CVs. A different discretization procedure is the
coarse graining of the continuous degree of freedom itself [36, 37]. In this case, practical constraints such as finite detector
resolution, or limited measurement time and sampling range, if not properly handled, can lead to false conclusions in tasks such
as entanglement detection and cryptographic security [15, 38, 39].

The notion of quantum mechanical mutual unbiasedness seems rather well established. In particular, two orthonormal bases
|ai〉 and |bj〉, i, j = 0, . . . , d − 1, in a finite-dimensional Hilbert space (of dimension d) are mutually unbiased if and only
if |〈ai |bj〉| = 1/

√
d for all i, j (MUB condition) [40]. This definition (for finite d) can be extended to deal with—so-called—

mutually unbiased (nonprojective [62]) measurements [41]. For continuous variables, such as a conjugate pair formed by position
and momentum, mutual unbiasedness is encoded in the relation |〈x |p〉| = 1/

√
2π~ [42]. One might suspect that coarse graining

preserves the original unbiasedness of continuous variables. We shall explain below why this is not the case for standard coarse
graining, and further construct a set of coarse-grained mutually unbiased measurements of finite cardinality. The latter property
may in principle allow for a conceptual relationship between CV and finite dimensional quantum mechanics. We demonstrate our
results in an optics experiment exploring the transverse position and momentum of a paraxial light field as conjugate CVs. The
proposed coarse graining is implemented and mutual unbiasedness is observed for measurement dimensionality up to d = 15.
Our coarse-graining model, in contrast to most of the discretization methods mentioned above, does not rely on the selection
of a subspace of all available modes and delivers the MUBs in complementary domains. Thus, mutual unbiasedness in high-
dimensional measurements is achieved without the assumption that operations [43, 44] will not transfer the photon state out of
the relevant subspace.

Unbiased coarse-grained measurements. In the most basic scenario, one can describe experimental outcomes of coarse-
grained position-momentum measurements by means of the projectors [15, 16, 36, 37] (k, l ∈ Z):

Ak =

∫ k+∆

k−∆

dx |x〉 〈x| , Bl =

∫ l+δ

l−δ

dp |p〉 〈p| , (1)
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Figure 1: Periodic coarse-graining scheme for d ≡ T/s = 4. A diagram of the mask function (4) for j = 0 is also represented.

with j± = j ± 1/2. The two parameters ∆ and δ are the coarse-graining widths, which can be understood as resolutions of the
detectors used in an experiment. Looking at the explicit representations it is quite easy to deduce that Tr (AkBl) = ∆δ/2π~.
The fact that the overlap does not depend on indices k and l suggests that the operators in Eq. (1) are interrelated in a special
way—so-called Accardi complementarity [45]. Note, however, that the constant-trace condition alone is not even enough to
assure that original variables are connected by the Fourier transformation [46]. On the other hand, a quantum state localized
in one coarse-grained basis, for instance ψ (x) = 1/

√
∆ for |x| ≤ ∆/2 (and 0 elsewhere) that is covered by A0, is not evenly

spread with respect to the second one (here given by {Bl}) but instead decays like the sinc function.
In the last observation, we actually pointed out that the pair of projective measurements (1) does not meet the most natural

definition of mutual unbiasedness in discrete settings that can be formulated as follows. Given a pure state |Ψ〉 and two sets of
d > 1 projective measurements, {Πk} and {Ωl}, we define the usual probabilities qk (Ψ) = 〈Ψ|Πk |Ψ〉 and pl (Ψ) = 〈Ψ|Ωl |Ψ〉.
The measurements are mutually unbiased if for all |Ψ〉 and all k0, l0 = 0, . . . , d− 1:

qk (Ψ) = δk0k =⇒ pl (Ψ) = d−1, (2a)

pl (Ψ) = δl0l =⇒ qk (Ψ) = d−1. (2b)

Again in words, whenever the state is localized in one set, it is evenly spread in the second one. The case with countably infinite
sets of projectors [like those in Eq. (1), which however do not fit into the definition] shall be understood in the limit d → ∞.
Extension to genuinely continuous scenario would require subtle modifications of the definition; this case is however beyond our
interest here. Whenever the pairs of projective measurements are unitarily equivalent, a single requirement is sufficient. Quite
obviously, this definition correctly reproduces the MUB condition.

As standard coarse graining (1) does not satisfy the definition (2), we consider now another type of coarse graining. In general,
one can define projectors

Πk =

∫
R
dxMk (x− xcen;Tx) |x〉 〈x| , (3a)

Ωl =

∫
R
dpMl (p− pcen;Tp) |p〉 〈p| , (3b)

where M is a “mask function" modelling the detector aperture, Tx and Tp play the role of coarse-graining widths, and we allow
extra displacement parameters xcen and pcen representing positioning degrees of freedom setting the masks’ origins. We now
define d-dimensional periodic coarse graining (PCG) by considering the mask functions (j = 0, . . . , d− 1)

Mj(z;T ) =

{
1, j s ≤ z (mod T) < (j + 1)s
0, otherwise

, (4)

as periodic square waves with spatial period T and bin width s = T/d, as illustrated in Fig. 1. The periodic functions (4) define
d > 1 orthogonal regions covering the whole CV domain:

∑d−1
k=0 Πk = I =

∑d−1
l=0 Ωl. This model of coarse graining thus

assigns a discrete (and finite) measurement outcome “j” to the detection of the quantum particle’s CV degree of freedom “z”
within the region defined by the mask function Mj(z;T ). In Ref. [47], a variant of the periodic masks (4) was used as analyser
to test for spatial entanglement of photon pairs.

We are ready to establish the main theoretical result. If [63]

TxTp
2π~

=
d

m
, m ∈ N s.t. ∀n=1,...,d−1

mn

d
/∈ N, (5)

then the projective measurements (3) with the mask function (4) fulfill Eq. (2), thus being mutually unbiased. Since for
m0d ≤ m ≤ (m0 + 1)d with m0 ∈ N one finds mn/d = m0n + [m (mod d)]n/d, the last condition in Eq. (5) is in



3

SLM
PREPARATION

SLM
MEASUREMENT

FOURIER TRANSFORM

125mm 125mm 250mm 250mm 200mm 200mm POWER
METER

Figure 2: Sketch of the experimental setup used for the demonstration of unbiased coarse-grained measurements. The transverse field dis-
tribution of a laser beam is prepared and measured using periodic spatial masks displayed on SLMs. Preparation and measurement sites are
connected via optical Fourier transform. The light power transmitted through preparation and measurement spatial masks is monitored with
an optical power meter.

general concerned with m′ := m (mod d). Of special significance is the case m′ = 1, since the discussed condition is valid for
all dimensions. On the other hand, m′ = 0 is always excluded, which fully corresponds to the fact that for m = m0d the left
part of Eq. (5) describes communing periodic sets [48–50], i.e. [Πk,Ωl] = 0, for all k, l. In this particular case there is neither
room for unbiasedness nor complementarity.

To gain more intuition we observe that, for instance, if d = 7 then all values of 0 < m′ < d are allowed since 7 is a prime
number, while for d = 10 only m′ = 1, 3, 7, 9 fulfill the right condition (note that n = 4, 6, 8 all rule out m′ = 5). For d = 9,
we obtain m′ = 1, 2, 4, 5, 7, 8, while for d = 8 we get m′ = 1, 3, 5, 7. Let us finally mention that xcen and pcen play no role for
unbiasedness. Before proceeding further, note that first part of Eq. (5) can also be put in equivalent forms: (a) sxsp = 2π/md,
(b) Txsp = 2π/m or (c) sxTp = 2π/m.

To show Eq. (2a), we represent [51] the probability associated with Ωl in terms of the position autocorrelation function [52]:

pl (Ψ) =
1

d
+
∑

N∈Z/{0}

1− e−(2πiN/d)

2πiN
eiNϕl

∫
R
dxψ∗(x)ψ (x+Nτp) , (6)

with ψ (x) = 〈x |Ψ〉, ϕl = −2πl/d − pcenτp/~ and τp = 2π~/Tp. Assume first that qk (Ψ) = δk0k for an arbitrary k0.
This means that ψ (x) is localized within a single periodic mask, so that the autocorrelation term, which due to Eq. (5) equals
ψ∗ (x)ψ (x+mNTx/d), does not vanish only when mN/d is an integer. Due to the further requirement, however, mN/d ∈ Z
if and only if N/d ∈ Z. But in this special case the factor 1− e−(2πiN/d) becomes equal to 0, so that all terms in the sum in Eq.
(6) do vanish, leaving the bare contribution 1/d. The same type of derivation applies to Eq. (2b). To conclude, the set defined in
Eq. (3) is mutually unbiased in a finite-dimensional manner, even though traces of all products ΠkΩl are clearly infinite.

Experimental Setup. The formal analogy between paraxial optics and non-relativistic quantum mechanics [53] allows us to
experimentally verify the condition of mutual unbiasedness (5) using a simple optical setup implementing Fraunhofer diffraction
through a multiple slit aperture. As sketched in Fig. 2, a paraxial HeNe laser beam diffracts from preparation to measurement
sites placed at the front and back focal planes of a Fourier transform lens system, respectively. At both sites, we use a spatial light
modulator (SLM) to display amplitude spatial masks modelled according to our periodic coarse graining (4) along the vertical
direction. The illumination of the preparation SLM by the collimated laser beam with Gaussian transverse profile generates a
periodically modulated beam whose intensity distribution at the measurement SLM is that of an interference pattern produced
by a periodic diffraction grating, as illustrated in Fig. 2. The intensity distribution of this diffracted beam is then analyzed by
periodic spatial masks displayed on the measurement SLM [64].

In our experiment, the conjugate CV stand for the transverse position (x) and momentum (p) of the paraxial light field.
As the transverse spatial variables at preparation and measurement sites are related via Fourier transform, the positions at the
measurement SLM correspond to the transverse momentum component at the preparation SLM. Denoting Tp as the physical
periodicity (units of length) of the spatial masks applied to the measurement SLM, we translate it to momentum domain as
Tp = Tp/α, where the constant α = feλ/(2π) relates to the optical Fourier transform (we set ~ = 1): fe = 100mm is
the effective focal length; λ = 633nm is the light field wavelength. In terms of the physical periodicities and experimental
parameters, condition (5) reads TxTp = feλd/m.

Results. Let us denote by |Ψk〉 = N−1
k Πk|Ψ〉 the projections of the state onto the k-th mask (Nk is a normalization

constant), which by construction are eigenstates of Πk. We perform the experiment with the building function ψ(x) ≡ 〈x |Ψ〉 a
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Figure 3: (a) Entropy plot associated with outcomes’ probabilities of PCG measurements with d = 4 and Tx = 192µm, as a function of Tp.
(b) Examples of measured outcome distributions pl|0 for the selected data points shown in plot (a). Unbiasedness (pl|0 ≈ 1/d) is shown for
data points I and III.

Gaussian given by the transverse profile of the laser beam at the preparation SLM: ψ(x) ∝ exp(−x2/(4σ2)), with σ = 520µm.
Our strategy to investigate PCG measurements is the experimental reconstruction of the probabilities pkl ≡ pl(Ψk). The

relevant distribution to evaluate unbiasedness is the conditional probability pl|k = pkl/
∑
l pkl that the outcome of PCG mea-

surements in momentum domain is l, given that |Ψk〉 was prepared. As a quantifier of unbiasedness, we calculate the entropy of
the distribution pl|k:

Ek = −
d−1∑
l=0

pl|k log2(pl|k). (7)

Hence, unbiasedness is verified whenever Ek = log2(d). In our setup, these outcome probabilities are obtained from the overall
light power, Wkl, transmitted through the preparation and measurement spatial masks: pl|k = Wkl/

∑
lWkl. The transmitted

light is monitored by an optical power meter (Newport 2931-C) set to output the mean value of 1000 power measurements
performed over a total sampling time of 1s.

The upper part of Fig. 2 presents an example of the prepared beam intensity distribution and its corresponding Fraunhofer
diffraction pattern. For this preparation, we used the periodic spatial mask k = 0, with bin width sx = 48µm and d = 4,
thus yielding a periodicity of Tx = 192µm. Following our notation, the prepared transverse field distribution corresponds to a
quantum wave-function ψ0(x) = 〈x|Ψ0〉. This field distribution is optically Fourier transformed and the resulting Fraunhofer
diffraction pattern is subjected to PCG measurements at the measurement site. The entropy E0 associated with the outcome
probabilities pl|0 is given in Fig. 3(a) as a function of the PCG periodicities in momentum domain. Experimental data are
shown as turquoise points while the solid orange line represents a theoretical prediction based on numerical calculations. The
momentum periodicities Tp = 2πd/(Txm) arising from the unbiasedness condition (5) are indicated as dashed vertical lines. It
is clear that for these specific values of the periodicity the entropy assumes either a maximum (when m is odd) or a minimum
(when m is even). In Fig. 3(b), we show the measured distributions pl|0 associated with the data points lying closer to these
periodicities. For d = 4, the unbiasedness condition (5) is fulfilled for m′ = 1, 3, as can be evidenced from the flat probability
distribution pl|0 ≈ 1/d achieved for these periodicities.

The results presented in Fig. 3 illustrate unbiased PCG measurements of dimension 4 for the single preparation |Ψ0〉. In order
to fully demonstrate Eq. (2a), we also run our experiment with complementary preparations |Ψk〉 (k = 0, . . . , 3). The extreme
values obtained for the entropy Ek are indicated as error bars in Fig. 3(a). We find the values Ek > 1.9953± 0.0008 ∀ k when
using the periodicities associated withm = 1 and 3, thus demonstrating the full unbiasedeness relation (2a) between preparation
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Figure 4: Measured optimal periodicity in momentum domain when using mask functions with constant bin width sx = 48µm for the
preparation of d-dimensional PCG. The theoretically predicted value is T opt

p = feλ/sx ≈ 1319µm.

and measurement outcomes for our periodic coarse graining. The presented error of 8 × 10−4 is due to fluctuations of the
transmitted light power over 1000 measurements. This error is much smaller than the data points in Fig. 3(a). Finally, we note
that the unitarity of the Fourier transformation (in mathematical terms, projection valued measures for position and momentum
are unitarily equivalent [46]) and the functional dependence of condition (5) on the product of periodicities TxTp (so they can
be swapped), exempt the experimental verification of Eq. (2b) for the demonstration of mutual unbiasedness.

A few remarks on the resolution limitations of coarse-graining measurements are in order. The momentum periodicity Tp in
plot 3(a) was scanned at the resolution limit of our setup: consecutive data points relate to bin widths differing by only 8µm (a
single pixel of our SLM). This is the reason as to why the features shown in the theoretical prediction for smaller Tp could not be
demonstrated experimentally. Theoretically, Eq. (5) provides an infinite number of possibilities for unbiasedness, but only a few
are reachable in practice. The condition with m = 1 (valid for all d) offers the best trade-off between experimentally attainable
resolutions in the position and momentum domains. In our optical setup, this trade-off implies the physical periodicity in the
measurement SLM given by Tp = feλd/Tx, which for d = 4 and Tx = 192µm yields Tp ≈ 1319µm. The focal length fe serves
as a magnification parameter that can be used to adjust the momentum resolution at the cost of changing the detection range.
Thus, a compromise between momentum resolution and a sensible detection range (the height of our SLM) also comes into play.
An experimental investigation of this resolution trade-off in our optical setup is provided in the Supplemental Material [51].

As a final remark, the measurements shown in Fig. 4 illustrate a particular feature of Eq. (5). Keeping the preparation
bin width at the constant value of sx = 48µm, we looked for the optimal periodicities while varying the PCG measurement
dimensionality from d = 3 up to 15. In this case, the condition for the optimal periodicity is independent of the dimension
parameter d: T optp = feλ/sx ≈ 1319µm. The experimental uncertainty in its determination (the error bars) is dictated by the
SLM pixel size: error(T optp ) = d × 8µm. Our measurements demonstrate close agreement with the theoretical prediction, as
seen in Fig. 4. We obtain |Ek − log2(d)| . 0.004 for all data points, thus demonstrating unbiased coarse-grained measurements
for dimensionality up to 15.

Discussion. We have shown how one can recover the condition of mutual unbiasedness in coarse-grained measurements of
continuous variable systems. Periodic “mask” functions were used to define projective measurements in position and momentum
variables, and these were shown to be mutually unbiased for particular combinations of periodicities. What other types of mask
functions can form the MUBs and how do our findings complement the periodic-commuting case treated in its generality [54]
are open questions on the theory side. Relevant, practically oriented questions also point towards the role of even values of
m′ and applications in interference experiments [55, 56]. Though (nonperiodic) coarse-grained observables have been used
in quantum key distribution [60], application of the present scheme requires a careful security analysis, and is thus an open
question for the future. Another interesting question is the use of our results in quadrature measurements, for which PCG might
be implementable using auxiliary qubits, as in measurement of the parity operator [61]. Nontrivial coarse-graining structures
have also been considered in the context of Bell inequalities violations [57–59]. Nonetheless, a formal demonstration of mutual
unbiasedness was still missing in the general framework of CV measurements. We believe our results may provide a method to
formally connect continuous and discrete variable quantum mechanics.
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I. EXPLICIT DERIVATION OF EQ. (6) OF THE MAIN TEXT

The aim of this section is to express pl (Ψ) = 〈Ψ|Ωl |Ψ〉 defined by

Ωl =

∫
R
dpMl (p− pcen;Tp) |p〉 〈p| , (S1)

with

Mk(z;T ) =

{
1, k s ≤ z (mod T) < (k + 1)s
0, otherwise

, k = 0, . . . , d− 1, (S2)

in terms of the position wave-function ψ (x) = 〈x |Ψ〉. Note that, by definition

pl (Ψ) =

∫
R
dpMl (p− pcen;Tp) ρ̃ (p) , (S3)

where ρ̃ (p) = |ψ̃ (p) |2 and ψ̃ (p) = 〈p |Ψ〉.
To achieve the desired goal we first represent the periodic mask function in terms of its Fourier decomposition

Mk (z;T ) =
∑
N∈Z

1− e− 2πiN
d

2πiN
e−

2πiN
d ke

2πiN
T z ≡ 1

d
+

∑
N∈Z/{0}

1− e− 2πiN
d

2πiN
e−

2πiN
d ke

2πiN
T z. (S4)

Clearly

pl (Ψ) =
1

d
+

∑
N∈Z/{0}

1− e− 2πiN
d

2πiN
eiNφl

∫
R
dpe

iNτp
~ pρ̃ (p) , (S5)

with φl = −2πl/d − pcenτp/~ and τp = 2π~/Tp. The momentum integral gives the characteristic function of the momentum
probability distribution, Φ̃ (Nτp/~), defined as

Φ̃ (λ) =

∫
R
dp eiλpρ̃ (p) . (S6)

The autocorrelation form of the characteristic function reads [1]:

Φ̃ (λ) =

∫
R
dxψ∗(x)ψ (x+ ~λ) . (S7)

Note that Eq. 3 from [1] deals with the characteristic function of position probability distribution, so that the shift ~λ appears
with the minus sign. The formula (S7) is a simple consequence of the Fourier transformation between wave functions in both
domains. As a final result we obtain the desired expression

pl (Ψ) =
1

d
+

∑
N∈Z/{0}

1− e− 2πiN
d

2πiN
eiNφl

∫
R
dxψ∗(x)ψ (x+Nτp) . (S8)
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II. RESOLUTION TRADE-OFF IN PERIODIC COARSE GRAINING

To illustrate the capability of our setup to implement unbiased PCG measurements, we run our system further with increased
mask periodicities in the preparation SLM. For each chosen Tx, we look for the entropy peak associated with condition m = 1
and experimentally determine the optimal periodicity T optp at the measurement site. These results are displayed in Fig. S1
for d = 4 and 7. In all measurements, we obtain optimal periodicities very close to the theoretical prediction (solid orange
curve), the uncertainty in its determination (the error bars) being dictated by SLM pixel size: error(T optp ) = d × 8µm. For
both dimensions, all obtained entropies are indicative of unbiased measurement outcomes: Ek > 1.997 ± 0.001 (≈ log2 4) or
Ek > 2.799± 0.001 (≈ log2 7).

0 300 600 900 1200 1500
0

300

600

900

1200

1500
Experimental  Data
Theory (m=1)

FIG. S1: Experimental demonstration of the resolution trade-off between the pair of periodicities in position and momentum domain leading
to unbiased PCG measurements with d = 4 and d = 7.
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Introduction 

• For Mutually Unbiased Bases (MUB), preparation in the first basis 
leads to equal probability (loss of information) of states in the 
second basis. 

 

• The usual coarse-grained measurements break the mutual 
unbiasedness between conjugate continuous variables (transverse 
position-𝒙 and momentum-𝑷𝒙 of a paraxial beam). 

 

• Using Periodic Coarse Graining (PCG)  we can achieve this 
unbiasedness for a specific configuration (MUB condition). 



Mutually Unbiased Bases (MUB) 

When silver atoms pass through a Stern-Gerlach device (z-axis), the magnetic 
field gradient deflects half of them up and half down (on average) depending 
on each atom’s spin. This prepares the spin state in an eigenstate of Z.  

 

 

 

 

 

 

 

 

 

 

If one of these states enters a second device aligned with an orthogonal axis 
(spin measured in the X basis), again, half is deflected up and half down (on 
average). This means we lost all information about the starting state’s spin 
and these two-dimensional bases are said to be mutually unbiased 

↑, 𝑥 ↓, 𝑧 2 = 1/2 

↓, 𝑥 ↓, 𝑧 2 = 1/2 



In a more general case of two 𝒅-dimensional mutually unbiased bases (MUB): 

 

 

 

 

There is also the case of continuous variables 𝒙  and 𝒑  with 𝒙 , 𝒑 = 𝑖ℏ. This 
means they are conjugate variables, so one is the Fourier transform of the 
other and they form MUB: 

 

 

 

 

 

 

MUB are useful in the field of Quantum Information. Some applications 
include quantum state tomography and quantum cryptography. 

 𝑎0 ,  𝑎1 , … ,  𝑎𝑑−1  

 𝑏0 ,  𝑏1 , … ,  𝑏𝑑−1  
 𝑎𝑖   𝑏𝑗  

2
=
1

𝑑
 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛:       𝑥   

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚:    𝑝   
 𝑥  𝑝 2 =

1

2𝜋ℏ
 

 𝑥  𝑝 =
𝑒𝑖𝑝𝑥/ℏ

2𝜋ℏ
 

Mutually Unbiased Bases (MUB) 



Heisenberg's uncertainty principle:  

 

The usual coarse-grained position-momentum measurements use projectors: 

 

 

 

A quantum state localized in the first basis is not evenly spread with respect to 
the second basis but instead decays like the sinc function 

Δ𝑥Δ𝑝 ≥
ℏ

2
 

𝑘, 𝑙 𝜖 ℤ 

𝑙± = 𝑙 ± 1/2 

𝒙 𝒑 

𝚫 

𝜓 𝑥 =
1

Δ
 

   

𝑓𝑜𝑟 𝑥 ≤
Δ

2
 

𝐹𝑂𝑈𝑅𝐼𝐸𝑅  
𝑇𝑅𝐴𝑁𝑆𝐹𝑂𝑅𝑀 

𝑘± = 𝑘 ± 1/2 

Standard Coarse Graining 



Periodic Coarse Graining (PCG) 

• The PCG of a continuous variable (CV) “z” is specified by the measurement 
setting (𝒛𝟎, 𝒅, 𝑻𝒛). This generates a set {𝑴𝒌(𝒛 − 𝒛𝟎;  𝑻𝒛)} of 𝒅 mask 
functions with bin width 𝒔𝒛 = 𝑻𝒛/𝒅 

 

• We define measurement operators for the conjugate CV “x” and “p”: 

 

 

 

 

 

 

 

• Eigenfunction: 

k = 0, … , d-1 
N: normalization constant 
h(x): gaussian function 



𝑘 = 0 

Intensity profile 
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑥) 



𝑘 = 1 

Intensity profile 
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑥) 



𝑘 = 2 

Intensity profile 
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑥) 



Mutually Unbiased Measurements (MUM) 

• MUM for PCG require: 

 

 

 

 

 

 

 

 

• We want to prove that: 

 

 

• First theoretical MUB condition:  

 

• Experimentally we found: 

 

• General measurements for PCG: 

 

 

 

 

 

 

 
for any 𝒌, 𝒍 ∈ {𝟎, … , 𝒅 − 𝟏} with 𝟎 ≤ 𝒑𝒍 𝒌 ≤ 𝟏 

( ℏ = 𝟏 ) 



Main experimental setup 

𝑇𝑥𝑇𝑝 = 2𝜋𝑑 



Main experimental setup 

The measurement SLM is in the Fourier plane, but we measure in 
units of length, not momentum. The period 𝑻𝒑 is  reinterpreted: 

 

 

 

 

So the main condition we want to prove changes with the setup 
parameters: 

 

MUB condition 

𝑇𝑥𝒯𝑝 = 𝑓𝑒𝜆𝑑    𝑜𝑟    𝑠𝑥𝑠𝑝 =
𝑓𝑒𝜆

𝑑
 

( 𝑇𝑗= 𝑠𝑗𝑑 ) 

𝑇𝑝 =
𝑓𝑒𝜆

2𝜋
𝒯𝑝 

𝑇𝑥𝑇𝑝 = 2𝜋𝑑 

𝑓𝑒: 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 
𝜆: 𝐵𝑒𝑎𝑚 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ  



Main experimental setup 

The relation between the focal lengths  is: 

 

There are some constraints for this setup: 

 

• Because of the limited SLM screen size: 

 

• In order to not obstruct beams near the SLM: 

 

Therefore, the relation between the focal lengths of the first two lenses 
is: 

𝑓𝑒 =
𝑓1𝑓3
𝑓2

 

𝑓𝑒 = 100 𝑚𝑚 

𝑓3 = 200 𝑚𝑚 

𝑓1
𝑓2

=
1

2
   

𝑓1 = 125 𝑚𝑚 

𝑓2 = 250 𝑚𝑚 



• To evaluate the unbiasedness of the measurements, we measure the 
intensities (corresponding to probabilities): 

 

 

 

• We calculate the conditional probability distributions  𝒑𝒍 𝒌 = 𝒑𝒌𝒍/𝒑𝒌 of 

measuring the 𝒍 mask if only the 𝒌 mask was prepared 

for each 𝒌, 𝒍 ∈ {𝟎, … , 𝒅 − 𝟏} 

𝒅 × 𝒅 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒎𝒂𝒕𝒓𝒊𝒙 

0 1 2 3 
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𝒍 

𝒌 

0

0.25

0.5

0.75

1

0 1 2 3

0

0.25

0.5

0.75

1

0 1 2 3

each 

row 

gives 

𝒑𝒍 𝒌 𝒑𝒍 𝒌 

𝒍 𝒍 

𝑑 = 4  

1/𝑑 

Not at MUB condition At MUB condition 

Intensity measurement 



• Then we calculate the Shannon entropy of one row of the matrix: 

 

 

 

 

 

 

• We use this as an indicator of unbiasedness and repeat the process for 
different configurations of 𝓣𝒑, 𝑻𝒙 and 𝒅. 

 

• We used the HOLOEYE PLUTO-NIR-015 phase-only spatial light 
modulator with the Newport 2931-C powermeter. 

 

MUB condition 

Maximum entropy 

Entropy measurement 



We used a phase-only spatial light modulator (SLM), a device that adds a  
phase (𝜙(𝑔)) to the incident beam depending on the shade of gray (𝑔) 
projected. The SLM is aligned in such a way that only the horizontally 
polarized light is affected: 

 

 

 

We prepare the diagonally polarized state:  

 

By changing the parameter 𝑔, we transform the state: 

 

Then, we project this state with  𝜓0  and measure the intensity, which allows 
us to obtain 𝜙 𝑔 . We want this increment in phase to be linear with respect to 
the shade of gray projected, so we adjust 𝑔  accordingly using a blazing 
function. 

Calibration of the SLM 

 𝐻  →  𝑒𝑖𝜙(𝑔) 𝐻  
 𝑉   →   𝑉  

 𝜓0 =
 𝐻 +  𝑉 

2
 

 𝜓𝑆𝐿𝑀 =
𝑒𝑖𝜙 𝑔  𝐻 +  𝑉 

2
 



Calibration of the SLM 

𝐼(𝑔)

𝐼𝑀𝐴𝑋
= 𝜓0 𝜓𝑆𝐿𝑀

2 =
 𝐻 +  𝑉 

2

𝑒𝑖𝜙 𝑔  𝐻 +  𝑉 

2

2

 

=
𝑒𝑖𝜙 𝑔 + 1

2

2

= 𝑐𝑜𝑠2
𝜙 𝑔

2
  ⇒   𝜙 𝑔 = 2 𝑐𝑜𝑠−1   

𝐼 𝑔

𝐼𝑀𝐴𝑋
  

 𝜓𝑆𝐿𝑀 =
𝑒𝑖𝜙 𝑔  𝐻 +  𝑉 

2
  𝜓0 =

 𝐻 +  𝑉 

2
 

SLM 
HWP(22.5°) HWP(22.5°) PBS PBS PM 



Calibration of the SLM 

Intensity 

Gray 

Level 

Phase / π 

Gray 

Level 

• Blazing funtion: 

 

 

 

 

 

 

• Final result: 



Diffraction grating 

We can use the SLM to simulate a diffraction grating by projecting a periodic 
ramp function along one axis of the screen. This will generate different orders 
of diffraction in the Fourier plane that are separated from each other. 

 

 

 

 

 

 

The first order diffraction is the one with the highest intensity and by filtering 
it we keep only the modulated light to use in the experiment. The efficiency is 
obtained by comparing the intensity in the first and zeroth order diffraction. 

 

By using this diffraction grating only in certain sections of the SLM, we can 
effectively “cut” the beam in different patterns, which will be useful in the 
preparation of our experimental state. 

𝑛 = 0 
𝑛 = −1 



Diffraction grating 

Phase / π 

X 
SLM screen Prism 

• Experimental first-order diffraction efficiency: 
𝐼1
𝐼0
× 100% = 73.8 % 

𝚲𝒙 



Diffraction grating 

Theoretical case with a phase up to 𝝓𝟎 
𝝓𝟎 

𝚲𝒙 𝒙 
• We find the Fourier coefficients as follows: 

• The nth-order diffraction efficiency is: 

When 𝝓𝟎 = 𝟐𝝅, the first 
order of diffraction 

becomes the maximum 

𝜙 𝑥 =
𝜙0𝑥

𝛬𝑥
 ⇒ 𝑒𝑖𝜙 𝑥 =  𝑐𝑛 𝑒

𝑖
2𝜋
𝛬𝑥

𝑛𝑥
∞

𝑛=−∞

 

𝑐𝑛 =
1

𝛬𝑥
 𝑒

𝑖
𝜙0𝑥
𝛬𝑥

𝛬𝑥

0

𝑒
−𝑖
2𝜋
𝛬𝑥

𝑛𝑥
𝑑𝑥 =  

1

𝛬𝑥
 𝑒

𝑖
2𝜋
𝛬𝑥

𝜙0
2𝜋 − 𝑛 𝑥

𝛬𝑥

0

𝑑𝑥 

𝑐𝑛 = 𝑒
𝑖𝜋

𝜙0
2𝜋 − 𝑛  𝑠𝑖𝑛𝑐

𝜙0

2𝜋
 −  𝑛  

𝑐𝑛
2 = 𝑠𝑖𝑛𝑐2

𝜙0

2𝜋
 −  𝑛  



Results 

𝑇𝑥𝑇𝑝 = 2𝜋𝑑 

𝑇𝑥𝑇𝑝 =
2𝜋𝑑

2
 𝑇𝑥𝑇𝑝 =

2𝜋𝑑

3
 

𝜓(𝑥)  ∝ exp (−𝑥2/2𝜎2) 

𝜎 = 520 μ𝑚 

𝑇𝑥 = 192 μ𝑚 

𝑑 = 4 

𝑴𝑼𝑩 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 



Fixed d, variable Tx 

𝒯𝑝 =
𝑓𝑒𝜆𝑑

𝑇𝑥
 

𝑠𝑝 =
𝑓𝑒𝜆

𝑠𝑥𝑑
 



Fixed Sx, variable d 

𝑠𝑝𝑑 = 𝒯𝑝 = 
𝑓𝑒𝜆

𝑠𝑥
 

𝒯𝑝 ≈ 1319 𝜇𝑚 

𝑠𝑥 = 48 𝜇𝑚 



Conclusions 

• The MUB condition was verified for different dimensions 
and periods of PCG masks. 

 

• Our measurements also suggested extra MUB conditions 
(𝑚 > 1)  that gave rise to a more complete theoretical 
description. 


