
Technische Universität Ilmenau
Fakultät für Maschinenbau

Master Thesis
Modeling and track planning for the automation of BMW

model car

To achieve the degree of:

Master of Science (M. Sc.)

in Mechatronische Systeme

Submitted by: Rubén Toshiharu Tabuchi Fukuhara
Date and Place of Birth: 24 April 1989, Lima - Perú

Supervisor (TU Ilmenau): M.Sc. Shih-Jan Lin
Supervisor (PUCP): Phd. Julio Tafur

Date and Place: 15 May 2017, Ilmenau - Germany

Abstract

In recent years, autonomous driving technologies have become a topic of growing interest
due to the promise of safer and more convenient mode of transportation. An essential
element in every autonomous driving system is the control algorithm. Classical control
schemes, like PID, are not able to manage Multiple Inputs-Multiple Outputs, complex,
non-linear systems. A more recent control strategy is Model predictive control (MPC),
a modern control method that has shown promising results in systems with complex
dynamics. In MPC, a sequence of optimal control inputs are predicted within a short
time horizon based on the car dynamics, and soft or hard restriction of the system.

In this work, three different nonlinear-MPC (NMPC) controllers were formulated based
on a kinematic, and two dynamic models (double-track and single-track). The steering
system’s dynamics were additionally identified using experimental data. Each MPC
was solved applying direct methods, by transforming the optimal control problem to
a Nonlinear programming (NLP) problem using the Multiple shooting scheme with a
Runge-Kutta 4 integrator. The NLPs were solved using the state-of-the-art optimization
solver IpOpt. Before the real-time implementation, all the NMPC controllers were
simulated in different scenarios and multiple configurations. The results allowed to
select the most suitable controllers to be implemented in a 1:5 scale robotic car.

Finally, two NMPC controllers based on the kinematic, and the single-track dynamic
model were implemented in the robotic car. The algorithms were tested in two different
scenarios at the maximum possible speed. The obtained results from the tests were very
promising, and provide compelling evidence that MPC could be implemented as the
core of future autonomous driving algorithms, since it computes the optimal control
inputs, taking in consideration the restrictions inherent to the system.

Master thesis Toshiharu Tabuchi 3

Zusammenfassung

In den letzten Jahren sind autonome Fahrtechnologien durch das Versprechen eines sicheren
und bequemen Transportmittels immer meht in den wissenschaftlichen Fokus gerückt. Ein
essenzielles Element in jedem autonomen Antriebssystem ist der Steueralgorithmus. Klassische
Kontrollsysteme, wie PID, sind nicht in der Lage, Multiple Inputs-Multiple Outputs, sowie
komplexe, nichtlineare Systeme zu regeln. Eine neuere Kontrollstrategie ist die Modellprädiktive
Regelung (engl. Model Predictive Control), eine moderne Steuerungsmethode, die vielverspre-
chende Ergebnisse in Systemen mit komplexer Dynamik gezeigt hat. In MPC wird eine Sequenz
von optimalen Steuereingängen innerhalb eines kurzen Zeithorizonts unter Berücksichtigung der
Dynamik und weicher oder harter Systemebeschränkung prädiktiert.

In dieser Masterarbeit wurden drei verschiedene nichtlineare-MPC (NMPC) Regler unter Ver-
wendung eines kinematischen, und zwei Dynamische (Einspurmodelle und Zweispurmodelle)
Fahrzeugmodells formuliert. Die Dynamik des Lenksystems wurde auch anhand von experimen-
tellen Daten identifiziert. Jeder MPC wurde durch direkte Methoden gelöst, indem die optimalen
Kontrollsysteme unter Verwendung des Mehrfachschießverfahren mit einem Runge-Kutta 4 Inte-
grator zu nichtlinearen Optimierungen (NLP) Problem umgewandelt wurden. Die NLPs wurden
mit dem hochmodernen Optimierungssolver IpOpt gelöst. Vor der Echtzeit-Implementierung,
wurden alle NMPC-Regler in verschiedenen Szenarien und mehreren Konfigurationen simuliert.
Die Ergebnisse erlaubten es, die besten Steuerungen auszuwählen, die in einem Modellfahrzeug
im Maßstab 1:5 implementiert werden sollen.

Schließlich wurden die kinematischen, und das Einspurmodelle NMPC-Regler im Modellfahrzeug
implementiert. Die Algorithmen wurden in zwei verschiedenen Szenarien mit der maximal
möglichen Geschwindigkeit getestet. Die erzielten Ergebnisse des Tests waren sehr vielver-
sprechend und lieferten überzeugende Hinweise darauf, dass MPC als Kern der zukünftigen
autonomen Fahralgorithmen implementiert werden kann, da die optimalen Steuereingänge unter
Berücksichtigung der Systemebeschränkungen berechnet.

Master thesis Toshiharu Tabuchi 5

Acknowledgments

I would first like to thank my practical advisor M.Sc. Shih-Jan Lin, for his support
during the implementation of the developed NMPC algorithm in the robotic car. The
testbed vehicle and image processing algorithm he developed were important parts to
complete the autonomous driving algorithm implementation. I also thank Prof. Pu
Li, for accepting me into his group. The door to Prof. Pu Li office was always open
whenever I had a question about my research. My sincere thanks to Dr. Julio Tafur,
for being my co-advisor and for providing worthy comments and advice.

I would also like to thank my friends Max, Felipe, and Sihela for their helpful and
inspiring comments.

My deeply thanks to CONCYTEC for the financial support during my stay in Germany.

Last, but not least, I want to thank Alexandra Elbakyan and her brave initiative.
Without the website she started, it wouldn’t have been possible to gather enough
information to make this work.

Master thesis Toshiharu Tabuchi 7

Contents

Abstract 3

Zusammenfassung 5

Acknowledgments 7

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Statement . 5
1.3 Overview . 6

2 Description of the 1:5 scale robotic car 7
2.1 General description . 7
2.2 Physical properties . 9
2.3 Drivetrain and steering components description 10
2.4 Sensors and peripherals for data acquisition 11
2.5 On-board computer . 13
2.6 Data communication interface . 13

3 Computational methods for real-time
optimal trajectory tracking 15
3.1 Motivation for the use of Model predictive control (MPC) 16
3.2 Principle of MPC . 17
3.3 Nonlinear model predictive control (NMPC) 18
3.4 Direct methods for solving optimal control problems 19

a. Direct single shooting . 20
b. Orthogonal collocation on finite elements 20
c. Direct multiple shooting . 21

Master thesis Toshiharu Tabuchi 9

Contents

3.5 Selection of the Nonlinear programming (NLP) solver 23
a. IpOpt C++ . 24
b. CasADI . 24

4 Mathematical models for vehicles 25
4.1 Steering system’s dynamics . 26

a. System identification . 26
b. Identified model for the steering system 27

4.2 Kinematic model . 28
4.3 Dynamic models for lateral dynamics . 29

a. Tire models . 29
a.1. Magic formula tire model 30
a.2. Linear tire model . 31

b. Double-track model for lateral dynamics 32
c. Single-track model for lateral vehicle dynamics 34

4.4 Parameters for the vehicle models . 36
4.5 Mechanical and operational bounds . 37

5 NMPC controller design for autonomous driving 39
5.1 Kinematic model based NMPC controller 40

a. Cost function . 41
b. Variables bounds . 41

5.2 Dynamic models based NMPC controllers 42
a. Cost function . 42
b. Variables bounds . 43

5.3 Obstacle avoidance . 43
a. Obstacle as a closed region . 43
b. Obstacle as repulsive force . 44

5.4 NMPC program structures . 45
a. Simulations version . 45
b. Real-time experimental version 47

6 Simulations of autonomous driving
algorithms 49
6.1 Vehicle testing tracks . 50

a. Circular testing track . 50
b. Double lane change testing track 51
c. Obstacles avoidance testing track 52

10

Contents

6.2 IpOpt configuration . 52
6.3 Path tracking simulations . 54

a. Kinematic model results . 54
b. Double-track model results . 56
c. Single-track model results . 58
d. Performance comparison between vehicle models 59
e. Phase difference of the steering angle and the input signal due to

delay . 62
6.4 Obstacle avoidance simulations . 63

a. Kinematic model results . 63
b. Single-track model results . 65

7 Experimental evaluation of autonomous driving algorithms 67
7.1 Command center software . 69
7.2 Path planning . 70

a. Reference points and look-ahead distance 70
a.1. Path curve identification applying image processing . . 70
a.2. Parameters and limits for the path curve parametrization 72

7.3 Experimental results in the double lane change maneuver test track . . 73
a. Kinematic model experimental results 73
b. Single-track model experimental results 75

7.4 Experimental results in the circular test track 77
a. Kinematic model experimental results 77
b. Single-track model experimental results 79

7.5 Influence of the steering’s dynamics in the real-time performance of the
vehicle . 81

8 Conclusions and future work 85
8.1 Conclusions . 85
8.2 Future work . 88

Bibliography 91

Master thesis Toshiharu Tabuchi 11

List of Figures

1.1 Autonomous driving representation [1] 3

2.1 1:5 scale BMW model car . 8
2.2 Internals of the robotic car. 1) CMOS camera. 2) LIDAR. 3) On-board

computer . 8
2.3 1:5 scale robotic car dimensions . 9
2.4 Electronic Speed controller (ESC) EZRUN-150A-PRO 10
2.5 Hitec HS-5805MG servomotor . 11
2.6 CMOS Camera MT-HDM108 . 11
2.7 Hokuyo UTM - 30LX . 12

3.1 Model predictive control working principle [1] 17
3.2 (left) Single trajectories obtained through the solution of the ODEs.

(right) Convergence of state and control profiles for the direct multiple
shooting method. Extracted from [2] 22

4.1 Experiment to identify the steering system’s model 26
4.2 Servo response to step input . 27
4.3 Identified model vs measured data. Step input response 27
4.4 Kinematic model for the car . 28
4.5 Lateral tire forces in pure cornering (s=0). Graph extracted from [3] . . 30
4.6 Comparison of Magic formula tire model (Pacejka 2006) vs linear tire

model. Graph extracted from [3] . 31
4.7 Double-track dynamic model . 32
4.8 Slip angle scheme [4] . 33
4.9 Single-track dynamic model . 35

5.1 NMPC controller based on the Kinematic model. Block diagram for
Inputs-Outputs. 40

Master thesis Toshiharu Tabuchi 13

List of Figures

5.2 NMPC controller based on the Dynamic model (Double-track or Single-
track). Block diagram for Inputs-Outputs. 42

5.3 Simulation program block diagram . 46
5.4 Real-time experimental software block diagram 48

6.1 Circular track curve . 50
6.2 Double lane change maneuver curve. Based on [5] 51
6.3 Obstacles testing track. 52
6.4 Simulation results for path tracking control with the Kinematic model in

two different trajectories. vx = 2.22 m/s [8 km/h]. Prediction horizons
length N = 5, 10, 15 . 54

6.5 Simulation results for the reference tracking control with the four wheels
model in two different trajectories. Different prediction horizons N were
tested. 56

6.6 Simulation results for the reference tracking control with the bicycle
model in two different trajectories. Different prediction horizons N were
tested. 58

6.7 Average computational time per iteration for the simulations of the car
models with different prediction horizon lengths N 59

6.8 Trajectory and control inputs comparison between NMPC controllers with
different vehicle models. Prediction horizon length N = 15. Sampling
rate ∆t = 100 ms. 61

6.9 Servomotor phase difference between input signal and actual position.
Simulated with the kinematic model (N = 10) at vx = 5m/s 62

6.10 Simulation results for obstacle avoidance with the Kinematic model.
vx = 2.22 m/s [8 km/h]. Different prediction horizons N were tested. . . 63

6.11 Simulation results for obstacle avoidance with the Bicycle model. vref =
2.22 m/s [8 km/h]. Different prediction horizons N were tested. 65

7.1 1:5 vehicle test tracks . 68
7.2 User interface for vehicle control . 69
7.3 Camera’s raw stream(top) and geometric features extraction(bottom) . 71
7.4 Reference points obtained from the camera 72
7.5 Experimental results for path tracking control with the Kinematic model

(N=10) . vx = 3.33 m/s [12 km/h]. Sampling rate ∆t = 100 ms. . . . 74
7.6 Experimental results for path tracking control with the Dynamic model

(N=10) . vref = 3.33 m/s [12 km/h]. Sampling rate ∆t = 100 ms . . . 76

14

List of Figures

7.7 Experimental results with the Kinematic model (N=10) in the circum-
ference test . vx = 5.55 m/s [20 km/h]. Sampling rate ∆t = 100 ms

. 78
7.8 Experimental results for path tracking control with the Single-track model

(N=10) . vref = 5.55 m/s [20 km/h]. Sampling rate ∆t = 100 ms . . . 80
7.9 Steering’s dynamics influence in the performance of the NMPC controllers.

Vehicle model: Kinematic (N=10) . vx = 3.33 m/s [12 km/h]. Sampling
rate ∆t = 100 ms . 82

7.10 Steering’s dynamics influence in the performance of the NMPC controllers.
Vehicle model: Kinematic (N=10) . vx = 5.55 m/s [20 km/h]. 83

7.11 Steering’s dynamics influence in the performance of the NMPC controllers.
Vehicle model: Single-track model (N=10). 83

Master thesis Toshiharu Tabuchi 15

List of Acronyms

AD Automatic differentiation

BEC Battery elimination circuit

BFGS Broyden–Fletcher–Goldfarb–Shanno

BVP Boundary value Problem

CAS Computer algebraic system

COG center of gravity

ESC Electronic Speed controller

IPM Interior point methods

IPM Interior Point methods

IpOpt Interior Point Optimizer

IVP Initial value problem

LTV-MPC Linear time variant MPC

MIMO Multiple Inputs - Multiple Outputs

MPC Model predictive control

NLP Nonlinear programming

NMPC Nonlinear model predictive control

Master thesis Toshiharu Tabuchi 1

List of Figures

OCP Optimal control problem

RC Radio-controlled

RHC Receding horizon control

RK4 Runge-Kutta 4

SQP Sequential quadratic programming

2

Chapter 1

Introduction

1.1 Motivation

Figure 1.1 – Autonomous driving representation [1]

In recent years, autonomous driving technologies have become a topic of growing interest
due to the promise of safer and more convenient mode of transportation. According to
the Association for Safe International Road Travel (ASIRT), nearly 1.3 million people
die in road accidents every year, making an average of 3287 deaths per day. Additionally,
20-50 million end injured or disabled [6]. Of these crashes, an estimated of 94% are
attributed to driver’s errors. From table (1.1), it can be seen that "Recognition error",
which included driver’s inattention, and internal or external distractions, was the most
frequently (41%) reason for accidents. Decision error such as miscalculation of speed for
weather conditions, entry curve speed, or false assumption of other drivers maneuvers
was the second most common cause (33 %) [7]. Autonomous vehicles can potentially

Master thesis Toshiharu Tabuchi 3

1 Introduction

reduce the number of accidents and stress-related-to-driving illness by using partial
assistance or fully autonomous driving. Moreover, seniors and people with disabilities
may also be benefited, as a result of the increase in freedom and independence. In the
future, centralized systems could reduce commuting time by efficiently choosing the
timing in every intersection and reduce the stress related to driving.

Table 1.1 – Driver-related critical reasons. Extracted from [7]

Critical Reason Percentage

Recognition error 41%
Decision error 33%
Performance error 11%
Non-performance error (sleep,etc) 7%
Other 8%
Total 100%

An increasing number of competitions to test the capabilities of autonomous vehicle
algorithms show the great interest to this type of technologies in the recent years. One
of the most recent milestone for fully autonomous ground vehicles was the DARPA
Grand challenge 2005, a 212 km off-road course with different number of difficulties, in
which 5 of the 23 teams completed successfully the course. [8]. Later, the DARPA urban
challenge was created to address more challenging task like avoiding moving obstacles
and navigating in confined environments, following more complex rules. Since then,
other competitions have been carried out. The most notables are the Intelligent Vehicle
Future Challenge, the Hyundai Autonomous Challenge, the Vislab Intercontinental
Autonomous Challenge, the Public Road Urban driverless-car test, and the autonomous
drive of the Bertha-Benz historic route [9].

An essential element in every autonomous driving system is the control algorithm.
Classical control schemes, like PID, have already been tested in vehicles for realistic
scenarios like the DARPA Grand challenge. However, without heuristic functions, this
type of controllers exhibit poor stability and disturbance rejection, even at moderate
speeds [9, 10]. A more recent control strategy is Model predictive control (MPC),
a modern control method that has shown promising results in systems with complex
dynamics. In MPC, a sequence of optimal control inputs are predicted within a short time
horizon using the dynamics, and soft or hard restriction of the system. Improvements

4

1.2 Problem Statement

in computational hardware and numerical algorithms have allowed the implementation
of MPC for real time applications like driverless vehicles.

Another major difficulty for many researchers are the high costs associated with ex-
perimentation on real-size vehicles. These costs may include the vehicle itself, its
maintenance and the required facilities for testing. In this thesis, in order to explore the
capabilities of MPC in autonomous driving within an acceptable budget, an algorithm
will be implemented in an 1:5 scale robotic car. Other works that also use model
scale cars as testbeds for autonomous driving are [11–14], but only Liniger [13] and
Verschueren [14] implement optimal controllers. Model scale cars allow realistic testing
scenarios compared to virtual simulations, but without all the inconveniences of full
sized cars. This work will implement both simulation and experimental tests to evaluate
the performance of the proposed Nonlinear model predictive control (NMPC) controller.

1.2 Problem Statement

The main objective of this thesis assignment is the implementation of a control algorithm
in an 1:5 scale robotic car that provides lane keeping and trajectory tracking capabilities.
A controller using the principle of non-linear MPC (NMPC) with a suitable vehicle
model is proposed. A monocular CMOS camera and an image processing algorithm
provide the information to compute the reference in real time. In order to solve this
problem, the following tasks will be properly accomplished in the present work:

• Review of the direct methods approach for optimal control theory and state-of-
the-art nonlinear numerical optimization solvers.

• Formulation of different mathematical models that describe the movement law of
the 1:5 scale robotic car.

• Design, simulation, and evaluation of different NMPC controllers based on the
proposed vehicle models.

• Selection and implementation of real-time NMPC controllers to be implemented
in the 1:5 scale robotic car, based on simulation results.

• Evaluation of the real-time NMPC controllers in preselected driving situations.

Master thesis Toshiharu Tabuchi 5

1 Introduction

1.3 Overview

The content presented in this thesis is organized as follows:

• Chapter 2 describes the 1:5 scale robotic car in which our NMPC controllers are
implemented and tested. The physical parameters required for the vehicle models
are listed. Also, a brief description of the sensors, actuators, and the on-board
computer are given.

• Chapter 3 introduces concisely the principle of MPC control scheme, as well as the
direct methods used for solving optimal control problems. Finally, the software
tools used to program our NMPC controllers are presented.

• Chapter 4 presents the mathematical models used to describe the movement law
of the robotic car. Three models are proposed. A Kinematic model is deduced
from geometrical properties, without considering inertial effects and forces in the
wheels. Second, a Double-track dynamic model is presented, in which inertial
effects and forces are introduced to increase the accuracy. Third and final, a
Single-track dynamic model is deduced as a simplification from the previous one.

• Chapter 5 formulates the NMPC controllers using the Kinematic and dynamic
models presented in the last chapter. The cost function, constraints, and boundaries
for trajectory tracking and obstacle avoidance are presented.

• Chapter 6 simulates the NMPC controllers on three scenarios and different pre-
diction horizon lengths. The results are presented and analyzed in order to select
the controllers to be implemented in the robotic car.

• Chapter 7 implements two selected NMPC controllers, the Kinematic and Single-
track model, in the robotic car. The autonomous algorithms are tested in two
different test tracks. Also, the influence of the steering’s dynamics in the system
stability are investigated.

• Chapter 8 summarizes the obtained achievements and results in this work, as
well as the problems encountered. Finally, some future remarks are given, as
suggestions for improvement and problem solving.

6

Chapter 2

Description of the 1:5 scale robotic car

In this chapter, general descriptions of the 1:5 scale robotic car physical characteristics,
and its components such as actuators, sensors, and computational hardware are presented.
As mentioned in the chapter 3, the mathematical model of the system is a key element in
an MPC controller. Then, in order for this model to be complete, the correct parameters
has to given, so that it can match, as close as possible, the real dynamics of the system.
These parameters were carefully obtained by measuring the robotic car.

Four main groups represent the vehicle car components. The first main group is the
rolling chassis, which includes the vehicle chassis, wheels, suspensions, and whole
powertrain. Second is the on-board computer, which combines a mini-ITX motherboard
with a desktop size CPU. Third comes the sensors group, which consists of a CMOS
camera, LIDAR sensor, tachometer, 6-axis IMU, and GPS unit. The last group is
the power system, which gathers the LiPo batteries, power regulators and monitoring
sensors.

2.1 General description

The vehicle used in the present work is a self-contained robotic system, which has an
on-board computer and multiple sensors, that allows it to drive autonomously without
relying on external systems, like in [11–14]. The robot was built upon an 1:5 scale Radio-
controlled (RC) car, model "4WD 530E" from the manufacturer FG Modellsport [15].
A high-torque brushless motor provides power to the four-wheels, and allows the car

Master thesis Toshiharu Tabuchi 7

2 Description of the 1:5 scale robotic car

(a) BMW model car with painted body (b) Rolling chassis

Figure 2.1 – 1:5 scale BMW model car

to reach speeds above 100 km/h, according to the manufacturer. The rolling chassis,
shown in figure (2.1b) is composed by a high rigidity aluminum frame, suspension
system, driveshaft, brushless motor and wheels. The frame allocates two LiPo batteries,
with capacities of 6S - 16000 mAh, and 4S - 16000 mAh. The first battery powers
the actuators of the car, while the second the on-board computer and sensors. The
power sources are isolated to reduce electrical noise interference. The computer and
peripherals are mounted over a PMMA (acrylic glass) platform, on top of chassis, as
shown in figure (2.2).

Figure 2.2 – Internals of the robotic car. 1) CMOS camera. 2) LIDAR. 3)
On-board computer

8

2.2 Physical properties

2.2 Physical properties

The physical properties of the vehicle are summarized in table (2.1) and the comple-
mentary schematics in figure (2.3). All the properties were carefully measured using
standard tools.

Figure 2.3 – 1:5 scale robotic car dimensions

Table 2.1 – Physical properties of the 1:5 scale robotic car

Property Symbol Value

Total mass m 15.6 kg
Rotational Inertia around CG in Z axis Iz 0.4734 kg m2

Distance between COG and frontal wheels Lf 0.271 m
Distance between COG and rear wheels Lr 0.255 m
Maximum length Lmax 0.900 m
Lateral distance between wheels midpoints W 0.325 m
Maximum width Wmax 0.400 m
Wheel diameter D 0.115 m
Maximum steering angle δmax ±21 rad

Master thesis Toshiharu Tabuchi 9

2 Description of the 1:5 scale robotic car

2.3 Drivetrain and steering components description

The vehicle is powered by a sensorless brushless motor, which distributes torque to the
four wheels.

The brushless motor revolutions are controlled using an ESC, which also provides energy
to the steering servo through an integrated Battery elimination circuit (BEC). The
ESC is shown in figure (2.4), and its characteristics summarized in table (2.2).

Figure 2.4 – ESC EZRUN-150A-PRO

Table 2.2 – ESC EZRUN-150A-PRO: Technical characteristics

Characteristic Value

Continous/Burst Current 150A/1080 A
Operating Voltage 7.4 - 22.2 V (2-6 Lipo cells)
BEC Output 3 A at 5.75 V
Motor type Sensorless brushless motor

For the steering, a Hitec high-torque servomotor is used (see fig. (2.5)), which can
provide up to 2.42 N-m of torque and has a maximum speed of 6.5 rad/s at no load. Its
technical data is summarized in table (2.3).

10

2.4 Sensors and peripherals for data acquisition

Figure 2.5 – Hitec HS-5805MG servomotor

Table 2.3 – Steering servo: Technical characteristics

Characteristic Value

Control signal PWM 1500 µs neutral
Operating Voltage 4.8− 6.0V
Operating speed 6.5 rad/s (6 V - no load)
Stall torque 2.42 N m

2.4 Sensors and peripherals for data acquisition

The car uses a series of sensors in order to obtain data of its surroundings and actual
state. A monocular CMOS camera and a LIDAR scanner are used to capture road
and obstacles information (see fig. (2.6), and (2.7)). These two sensors are directly
connected to the on-board computer, and their technical data are summarized in tables
(2.4), and (2.5)

Figure 2.6 – CMOS Camera MT-HDM108

Master thesis Toshiharu Tabuchi 11

2 Description of the 1:5 scale robotic car

Table 2.4 – CMOS Camera MT-HDM108: Technical characteristics

Characteristic Value

Model MT-HDM108 HD-SDI 1080P
Image sensor 2.0 MP 1/3" Sony CMOS
Effective pixels 1944 x 1092 @ 30/25 FPS
Actual resolution used 320 x 240 pixels
Lens 3.6 mm with ICR

Figure 2.7 – Hokuyo UTM - 30LX

Table 2.5 – Hokuyo UTM - 30LX Laser range finder: Technical characteristics

Characteristic Value

Manufacturer Hokuyo Automatic Co LTD
Model UTM - 30LX
Detection range 0.1 - 60 m
Minimum detection width 130 mm at 10 m
Total scan range 270°
Angular resolution 0.25°
Scan speed 25 ms
Interface USB ver 2.0 Full speed (12 Mbps)

12

2.5 On-board computer

2.5 On-board computer

The on-board computer runs the main program, which is in charge of the calculations
required for the whole autonomous operation of the vehicle. A mini-ITX mainboard
was chosen, due to the small form factor required. This board has installed 4 GB of
DDR3 RAM, and a low-power consumption CPU to increase the runtime operation
with batteries. The storage is supplied by an 120 GB SDD hardrive, which allows fast
operation, with reduced power consumption and low weight; the SDD stores a Windows
10 x64 - education ver, which supports the software framework in which the autonomous
driving algorithm runs. All the components are summarized in the table (2.6).

Table 2.6 – On-board computer components

Component Detail

CPU Intel Core i5-4570s
Mainboard Gigabyte GA-H97N-WIFI
Memory RAM 4 GB DDR3
Hard-drive SSD 120 GB
Operating system Windows 10 x64 Education ver.

2.6 Data communication interface

The on-board computer requires an interface with the sensors and actuators of the car.
In the center of the communication system rest a single-chip microcontroller based on a
high performance 1-T architecture 80C51. This microcontroller receives, buffer, filter,
code and send the sensors data to the computer; also, it receives, decode and send the
instructions from the computer to the car’s actuators. The computer and microcontroller
communicate through a RS-232 serial standard interface at 115200 bits/second. The
minimum sampling rate achievable to receive and transmit data to all the car’s devices
is 50 ms.

Master thesis Toshiharu Tabuchi 13

Chapter 3

Computational methods for real-time
optimal trajectory tracking

Nowadays, automation has become an inherent component of most daily use machines.
There is multiple automatic control strategies to suit broad range of applications, being
PID the most extensively used, due to its low cost implementation and easiness of tuning.
However, a complex problem like autonomous driving, requires a controller that can deal
with states and control constraints imposed by the dynamics, mechanical configuration of
the car, and man-imposed restrictions like environmental regulations, fuel consumption,
and traffic laws. MPC, due to its inherent capability to deal with constraints, has
become an attractive method to solve this kind of problems. Moreover, MPC uses a
complete multivariable system framework with on-line process optimization [16]. Many
researches in autonomous driving have adopted MPC, since it provides a simple design
scheme that integrates the model of the vehicle and its constraints, while performing the
tracking of a planned trajectory as an optimization task [3, 5, 14, 17, 18]. In this chapter,
an introduction to MPC, NMPC, and their solution methods through numerical solvers
are presented.

Master thesis Toshiharu Tabuchi 15

3 Computational methods for real-time
optimal trajectory tracking

3.1 Motivation for the use of Model predictive control
(MPC)

Model predictive control (MPC) is an advanced control technique able to control
systems with states and control inputs constraints. In this work, all the problems will
be implemented in a digital computer. Then, the formulation will be given in discrete
way. There is three crucial aspects that makes MPC an attractive methodology [16, 19].
The first point is that the design framework works around Multiple Inputs - Multiple
Outputs (MIMO), time-domain dynamic models; thus, the weight tuning parameters
can be directly related to physical values, which are more meaningful (compared to PID
parameters, for example). Second, its inherent capability to deal with soft and hard
constraints, in both states and control inputs. The third aspect is the ability to optimize
on-line a predicted trajectory based on the model given to the controller; hence, an
early control action allows a superior tracking.

MPC has already been proposed as a controller for autonomous vehicle applications.
In [3], Gao proposed an hierarchical scheme. A high level algorithm plans the trajectory
with a simplified point-mass model, in a predictive horizon formulation; then, a low
level MPC controller computes the vehicle inputs using a higher fidelity model. In [5],
an on-line MPC controller is implemented and the stability is compared at different
speed and prediction horizon lengths. MPC controllers have also been used in larger
vehicles. For example, in [20], an Linear time variant MPC (LTV-MPC) is simulated
for reference tracking of a truck in different scenarios. Other representative works of
MPC for autonomous driving can be found in [17,18,21–34].

As in this work, some researches have already seen the advantages of using scale
model cars for testing. In [13], an NMPC controller for 1:43 scale cars is proposed,
using FORCES [35] for the solver generation. The feedback was given by an external,
fixed camera above the testing tracking. In [14], also 1:43 scale cars are used, but a
time-optimal formulation with NMPC is proposed, using ACADO as the optimization
solver [36,37].

16

3.2 Principle of MPC

3.2 Principle of MPC

In the MPC scheme, an open loop Optimal control problem (OCP) is solved on-line
within a given finite "prediction horizon". In figure (3.1), this time horizon is defined as
p1. Some other definitions may define a second horizon for the control variables, know
in the literature as "control horizon"2. The measurement or observed states at the step k
are taken as the initial states x(0). The controller predicts the future dynamic response
based on the system model, the constraints, and the initial states; then computes the
optimal control input by minimizing an objective function. Using the Receding horizon
control (RHC) principle [16], only the first control sample sequence is given to the
system, while ignoring the rest. In the next sampling period, the prediction horizon
p is receded one step and the whole process is repeated again. All these steps are
summarized in Algorithm 1.

Figure 3.1 – Model predictive control working principle [1]

The MPC framework has some primary elements that directly relates to its final perfor-
mance. The first one is the objective function, frequently named "J", that determines
which parameters will be optimized in every iteration. Generally, a quadratic function
is adopted, since it is convex, fast to compute, and provides an smooth behavior. Also,
some weights are applied, in order to define the hierarchy of each parameter. The next
key element is the prediction horizon length "p". There is no exact definition on how to
determine its length, but it is recommended that it goes beyond the transient dynamics
of the system, or at least, large enough to anticipate and avoid any critical constraint
that may appear [2]. Nonetheless, it can not be too large, or the computational time to

1Since all the solution will be implemented in a digital computer, a discrete MPC notation will be
used along the text.

2In this work, the prediction horizon and the control horizon will have the same length, and thus, the
name "prediction horizon" will be used for both of them interchangeably.

Master thesis Toshiharu Tabuchi 17

3 Computational methods for real-time
optimal trajectory tracking

Algorithm 1: MPC Strategy. Adapted from [2]
Input :Prediction horizon p, sampling time ∆T , objective function weights
Output :Optimal control inputs, optimized predicted states

1 repeat
2 Measure or observe the process state x at time tk;
3 Formulate the MPC problem for the optimization time t ∈ [tk, tk+N];
4 Compute the optimal control sequence ū∗(t), t ∈ [tk, tk+N] by solving the MPC

problem;
5 Apply optimal control ū(t) = ū∗(tk), t ∈ [tk, tk+1] to the system until t = tk+1;
6 Set k = k + 1;
7 until interrupt flag is set;

solve the problem may exceed the sampling time of the system, forcing the algorithm to
decrease the sampling rate, and thus, deteriorating the general performance. Finally,
the last key element is the dynamic model of the system. A highly detailed model may
give accurate results in theory; however, the high computational cost may turn the
controller impractical for real-time applications. Thus, a balance between performance
and accuracy has to be made. Some model designers may simplify some equations based
on empirical experience of the system’s behavior.

3.3 Nonlinear model predictive control (NMPC)

Most system models in real life are inherently non-linear, although many linearized
models are used, because of their simplicity. However, complex systems like cars present
many challenges, like non-holonomic kinematic constraints, highly coupled control
states [17], and nonlinear behavior [38]. In this situation, a linear model is clearly not
adequate to describe the process.

As stated in the previous section, the MPC is a particular type OCP, which can be
defined as (3.1).

min
u(t)

Ψ(x(tf), tf) +
∫ tf

t0
L(x(t),u(t), t)dt (3.1a)

subject to ẋ = f(x(t),u(t), t), t ∈ [t0, tf] (3.1b)

g(x(t),u(t), t) ≤ 0 (3.1c)

x(t0) = x0 (3.1d)

18

3.4 Direct methods for solving optimal control problems

where x(t) and u(t) are the state and control variables, x0 in (3.1d) are the initial state
values, and the interval [t0, tf] is the prediction horizon in the MPC scheme (normally
fixed). In this problem, (3.1a) is the objective function which consist of an integral
term L(x(t),u(t), t), called the Lagrange term, and a terminal term Ψ(x(tf), tf), called
the Mayer term. The differential equations in (3.1b) represent the vehicle model in the
interval [t0, tf]. States and control constraints are described in (3.1c).

The solution approaches for OCPs are normally divided in three major groups: dynamic
programming, indirect, and direct methods [39]. Also, a comparison between methods
can be found in [40].

• Dynamic Programming turns the OCP in a Hamilton-Jacobi-Bellman equation
by recursive computation of the feedback control. This approach is restricted to
small state dimensions due to the Bellman’s "curse of dimensionality".

• Indirect methods makes use of concepts from calculus of variations like the the
Pontryagin Maximum Principle and the Euler-Lagrange differential equations to
transform the OCP into a Boundary value Problem (BVP). Then, this BVP is
numerically solved. For the reasons explained above, this method is also known
as first optimize, then discretize. The principal drawback is the difficulty to derive
the BVP, which becomes even more complex when constraints are introduced.

• Direct methods converts the continuous time OCP into a finite dimensional NLP
problem by using a discretization technique [41]. This method is also portrayed
as first discretize, then optimize. Nowadays, direct methods are the most widely
used for solving constrained OCPs; even though the resulting NLP is large, there
are state of the art optimization solvers that can solve this type of setups very
efficiently [40, 42]. In this thesis, multiple shooting, which is a direct method, was
used to discretize the NMPC problem into a NLP.

3.4 Direct methods for solving optimal control problems

In the last section, it was explained how the direct methods converts dynamic opti-
mization problem into a finite dimensional Nonlinear programming (NLP), and why
they are preferred over the other methodologies. The reformulation is achieved through
discretization of the optimal control problem, which is represented as a Initial value
problem (IVP). All direct methods parametrize first the control trajectory (generally

Master thesis Toshiharu Tabuchi 19

3 Computational methods for real-time
optimal trajectory tracking

in a piece-wise pattern); however, they vary in the way the states parametrization
are managed. In the literature, two different approaches are mentioned for the direct
methods.

The first one is the sequential approach. A sequential integration of states (simulation),
and optimization controls trajectory is executed in every iteration. The state trajectory
x(t) is defined as an implicit function of the controls u(t), which means that the solver
only optimize the controls trajectory. The direct single shooting methods belong to
this category. On the other hand is the simultaneous approach, in which the states
and controls are introduced as optimization variables. The most popular variants of
the simultaneous approach are the global collocation and multiple shooting. Both,
sequential and simultaneous approaches are briefly described in the following lines.

a. Direct single shooting

In this method, a grid of time points tk, for k = 0, . . . , N are initially generated. The
controls u(t) are discretized along the generated time intervals, usually as piecewiese
constants values. Then, the problem is solved, by sequentially integrating the states
(simulation) and optimizing for the controls trajectory u(t). The solution defines a
trajectory x̄ = x(t; ū) for each control sequence ū. The benefits of this method are
its simplicity, and the few degrees of freedom generated, even for large ODE or DAE
systems [39]. However, this approach presents problems with unstable systems, due to
the lack of information for the initial states.

b. Orthogonal collocation on finite elements

Also called pseudo-spectral methods [43], collocation on finite elements is particular
case of the implicit Runge-Kutta equations. For a given time interval ∆T (which in
the specific case of MPC, is the sampling rate of the system), the states trajectory
are approximated using collocation polynomials, as seen in equations (3.2). Generally,
controls trajectory are assumed piece-wise constant. The orthogonal collocation points,
denominated as tk, for k = 0, . . . ,M can be obtained from the quadratures of Legendre,

20

3.4 Direct methods for solving optimal control problems

Radau or Lobatto [2]. To ensure continuity of the ODE, equality restrictions are given
between final and initial values of each subsequent intervals.

x
(l)
i (t) =

N∑
k=0

x
(l)
ik Llk(t) , i = 1 . . . n

where , Llk(t) =
N∏
ν=0
v 6=kl

[
t− tν
tlk − tν

] (3.2)

After the discretization, a very large, but sparse NLP is obtained. One advantage of this
method is that sparse NLP can be solved efficiently by numerical solvers that exploit
this particular structures. Also, collocation methods can deal with unstable systems,
and has fast local convergence. Some works have successfully used collocation for solving
NMPC problems [44,45]

c. Direct multiple shooting

This numerical method for BVP was developed by Bock and Plitt around the 80s [46].
The working principle in multiple shooting is similar to single shooting. A grid of time
points tk, for k = 0, . . . , N are initially generated, and the controls u(t) are discretized
along the time intervals. The difference with the single shooting relies in how the
integration is made in each subinterval. In the multiple shooting, the ODE is integrated
(simulated) independently in each sub-interval with different initial values, designated
by a new variable x̂k (see equation (3.3) and figure (3.2) (left)).

ẋk(t) = f(xk(t), uk) , t ∈ [tk, tk+1] , (3.3)

xk(tk) = x̂k , (3.4)

Thus the designation of "multiple" shooting (and simultaneous approach), because each
interval "shoots" independently. The continuity of the dynamics are satisfied by the
residual constrains in the equality (3.5), that connects the discretized intervals [44].

x̂k+1 = xk(tk+1, x̂k, uk) (3.5)

Master thesis Toshiharu Tabuchi 21

3 Computational methods for real-time
optimal trajectory tracking

After the convergence of the optimization solver, the states trajectories may look like in
figure (3.2)(right).

t0

u0

t1

u1

t2

u2

tN−1

uN−1

tN

x̂0 x̂1 x̂2

xk(·)

x̂N−1

x̂N

t0

u0

t1

u1

t2

u2

tN−1

uN−1

tN

x̂0
x̂1

x̂2

xk(·)

x̂N−1
x̂N

Figure 3.2 – (left) Single trajectories obtained through the solution of the ODEs.
(right) Convergence of state and control profiles for the direct multiple
shooting method. Extracted from [2]

The multiple shooting technique generates an sparse NLP as a function of the states and
control trajectories. The advantages of this method are the resulting sparse NLP, and
that the initial states information can be used. Thus, this method can handle unstable
systems with path and terminal constraints. In terms of speed, multiple shooting
competes, and can even surpass the collocation approach [47]. In this work, multiple
shooting will be applied for solving the BVP of the dynamic models.

Finally, each of the shooting intervals is approximated using numerical techniques;
Runge-Kutta methods are commonly used for this task. More sophisticated techniques
like orthogonal collocation had also been used to approximate the shooting intervals [48].
In this work, the well-known Runge-Kutta 4 (RK4) is used, since it provides a good
balance between performance and precision. Moreover, each time interval ∆t can be
further divided during the integration to increase the accuracy of the results. From the
software development point of view, this allows a more modular and flexible code, in
which the precision can be adjusted just by changing the grid size.

22

3.5 Selection of the NLP solver

3.5 Selection of the NLP solver

As explained in the last section, an optimization problem can be transformed to a NLP
in order to use the efficient solvers available. This solvers use different algorithms to
approach the problem, which can be categorized in three [40,49,50]: Sequential quadratic
programming (SQP), Interior Point methods (IPM), and heuristic methods. SQP and
IPM are found in most of the applications, while the heuristic methods are used for
more particular cases3. Depending of the particular characteristics of the problem, one
approach may be more suitable than rest. The principal considerations for the selection
of a solver are: size of the problem, number of constraints, degree of non-linearity,
and CPU time [49]. Also, the availability and quality of documentation, as well as its
scalability without major changes should be taken in consideration. Finally, a particular
circumstance in this project was that the solver had to be compatible with the Windows
OS environment, so that it could interface with a previous developed software.

After reviewing surveys and comparative tests [44,51,52], in this work, the solver Interior
Point Optimizer (IpOpt) [53] was chosen. IpOpt is a well-known NLP solver based on
the IPM approach. It can solve efficiently large-scale, sparse non-linear optimization
problems. It is also well-documented and can be integrated with different linear solvers
to improve its capabilities in future works. Furthermore, it is distributed as open source
under the Eclipse Public Licencse(EPL) free of charge, even for commercial applications.
Finally, pre-compiled libraries for Windows are available, an important requirement for
this specific work.

In order to use IpOpt, the required inputs had to be analyzed. IpOpt request from
the user an objective function, variables bounds, constraints, gradient of the objective
function, and the Jacobian of the constraints. The Hessian of the Lagrangian can also be
provided, or can be approximated by the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm integrated in IpOpt. In this work, the gradient and Jacobian were generated
using CasADI [54], which is a symbolic framework for automatic differentiation and
optimal control.

3heuristics methods involve non-conventional approaches like neural networks, and evolutionary or
genetic algorithms

Master thesis Toshiharu Tabuchi 23

3 Computational methods for real-time
optimal trajectory tracking

a. IpOpt C++

IpOpt is software package for nonlinear optimization [53], with great benefits at large
scale problems. The solver was initially developer by Andreas Wächter as part of his
doctoral dissertation research, but it has been improved along the years, thanks to its
open-source license. At the core of the solver, a primal-dual interior point algorithm
coupled with a line-search filter method is used. IpOpt has been written in C++ and
has shown good performance for online optimization problems [2, 14]. As have been
mentioned earlier, the advantages of IpOpt are its compatibility with multiple linear
solvers, good documentation, free of charge distribution, integration with platforms like
MATLAB® and Modelica®, and its availability for different operating systems. IpOpt
has also been used by other researchers for autonomous driving applications, with fairly
good results [2, 14,44,55,56].

b. CasADI

CasADi is a symbolic framework for algorithmic differentiation and numeric optimization,
developed by Joel Andersson and Joris Gillis [54,57]. The user can easily define symbolic
expressions using Computer algebraic system (CAS); then their derivatives can be
obtained using state of the art algorithmic differentiation in forward, reverse modes,
and graph coloring techniques as sparse Jacobians and Hessians. Furthermore, the
derivatives can be exported into C++ functions and used with other applications, like
in this work. CasASI also provides front ends in either Python and MATLAB®. It
can also be integrated with state of the art solvers like Sundials (CVODES, IDAS and
KINSOL), IpOpt, WORHP, SNOPT and KNITRO. It is also worth mentioning that
CasADI is open-source, written in self-contained C++ code4, and it is well-documented.

4depends only in the C++ Standard Library

24

Chapter 4

Mathematical models for vehicles

As mentioned in the previous chapter, MPC controllers require a system model in order
to predict its future outputs. In this chapter, three vehicle models, and a steering
systems dynamics are used to characterized our robotic car’s movement law.

The steering system model is introduced first, since it is a core component along all the
vehicle models presented in this chapter. This system was identified by fitting a second
order, black-box model using experimental data.

For the vehicle mathematical representation, one kinematic and two dynamic models
were formulated; they were based on previous works from other researchers, in which
some modifications were thoughtfully made in order to meet the particular setup of the
vehicle used in this work. A kinematic model was deduced from geometrical properties,
without considering inertial effects and forces in the wheels. This model is accurate at
reduced speeds, in which inertial effects like drifting and slip are not noticeable.

At higher speeds, inertial effects and forces were introduced to generate a more accurate
model. The most common tire models are introduced at the beginning of the dynamic
vehicle models section, since they provide the forces on which the movement equations
are based. Next, a double-track dynamic model is presented; then, a single-track
dynamic model, also known as the "bicycle model", was deduced as a simplification from
the previous one.

Finally, the parameters used in all the models are summarized, taking in consideration
the information from chapter (2).

Master thesis Toshiharu Tabuchi 25

4 Mathematical models for vehicles

4.1 Steering system’s dynamics

The steering system is a critical component for the control of the car. However, little
attention is paid to the this system, and only few researchers address their dynamic
response. When the delay of the steering is comparable, or even higher than the
sampling’s rate of the system, problems could present during the execution on real-time,
especially when the vehicle moves at higher speeds. To overcome this problem, in
this work, the steering dynamics were modeled as a second order, linear system. The
methodology and results are presented next.

a. System identification

First, the dynamic response of the steering’s servomotor was measured, by sending an
step impulse to the actuator, and measuring the output with a rotational encoder. The
test was made with the car positioned on the floor in a stationary position, to take in
account the friction effects between the wheels and road surface (see fig. (4.1)). The
sampling rate used was ∆t = 20 ms. The measured data is shown in figure (4.2).

Figure 4.1 – Experiment to identify the steering system’s model

After the measurement, the model was identified using the System Identification Toolbox
from MATLAB®. Initially, the steering system was modeled as a generic, black-box
model, in which one of the states was intentionally defined as the output steering angle
δ to avoid expressing it as a linear combination of the states. Different system orders
were tried, to find the best balance between complexity, and fit index. Finally, a second
order system was selected, with a fit index of 81.07%. Higher system orders provided
no greater improvement.

26

4.1 Steering system’s dynamics

0 1 2 3 4 5 6
110

115

120

125

130

135

140

Time [10−2 ms]

A
ng

le
[d

eg
re

es
]

Step input signal
Angular position

Figure 4.2 – Servo response to step input

b. Identified model for the steering system

The second order identified model is presented in the next lines.

[
ẋ1

ẋ2

]
=
[
−5.5844 5.1870
−6.0771 −7.9005

] [
x1

x2

]
+
[
9.0813
0.7431

]
δin

δ = x1

(4.1)

where δ is the output angle of the servo, and δin is the input signal to the servomotor.

The measured data vs the identified model are presented in figure (4.3).

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−5

0

5

10

15

20

25

Time [s]

A
ng

le
[d

eg
re

es
]

Experimental data
Identified system: 81.07%

Step input signal

Figure 4.3 – Identified model vs measured data. Step input response

Master thesis Toshiharu Tabuchi 27

4 Mathematical models for vehicles

4.2 Kinematic model

A first approach to estimate the trajectory of a vehicle is through a kinematic analysis, in
which inertial effects are neglected. The kinematics of the vehicle’s center of gravity can
be modeled using just geometric relations. From figure (4.4), the differential equations
(4.2) can be derived.

The states x, y, ψ, β represent the yaw angle, the Cartesian coordinates, and the body
slip angle of the car. Lf and Lr represent the longitudinal distances from the center of
gravity (COG) of the car to the frontal and rear wheels, respectively. Also, it should be
noticed that in this model, the speed Vx is a parameter (written in uppercase), not a
control input.

The steering angle δ may be defined directly as the control input. However, as explained
in a previous section, the steering angle δ presents an inherent delay due the inertial
effects. Then, δ is defined as function of the servomotor input signal δin. Notice that
addition of the steering dynamics increases the order of the system by two. In summary,
the final kinematic model presented here has actually five states, and one control input.

v

y

x

CR

L

r

L

f

Figure 4.4 – Kinematic model for the car

28

4.3 Dynamic models for lateral dynamics

ẋ = Vx cos(ψ + β)

ẏ = Vx sin(ψ + β)

ψ̇ = Vx
Lf + Lr

tan(δ)

where β ≈ Lf
Lf + Lr

δ ,

δ = f(δin) , δin is the servomotor input signal .

(4.2)

4.3 Dynamic models for lateral dynamics

The next approach considers the inertial effects and forces to build a more realistic
model of the vehicle movement. The models presented here focus on the lateral dynamic
control, meaning that longitudinal forces are neglected. This approximation is adequate,
since in steady-state normal driving conditions, no sudden longitudinal accelerations
occur. Another characteristic that is derived from the previous premises is that normal
forces are considered constants. This means that inertial effects like "load transfer" were
neglected due to the absent of sudden braking or acceleration. Similar to the Kinematic
model case, the steering was defined as the servomotor input signal function δin, which
increased the total model order system by two.

An introduction to the most common tire models is presented first, since they provide
the interaction forces in which all the dynamic vehicle models are based. Then, two
vehicle models are presented in this section. The former is the double-track model,
which considers the forces exerted in all the four wheels of the vehicle. The latter, the
single-track model, which is a simplification derived from the former model; nevertheless,
the essential dynamic effects are maintained, while gaining appreciable reduction in
computational time.

a. Tire models

Many tire models have been formulated and tested; however, two models stand out
in most of the applications in autonomous driving. The first one is the linear model,
which is by far the most used one, because of its simplicity and good approximation
of the tire response in normal driving conditions. The second most used is the Magic

Master thesis Toshiharu Tabuchi 29

4 Mathematical models for vehicles

formula tire model, formulated by Pacejka, which considers the saturation at higher
slip angles, a behavior seen in more challenging driving conditions. Other models that
are also mentioned in the literature, but are not further explained in this section are
the Dugoff analytical tire model, LuGre dynamic friction model, the Brush tire model,
the SWIFT tire model, and even neural-network based models [58].

a.1. Magic formula tire model

The Magic formula tire model is a semi-empirical, non-linear tire model, which is able
to describe the tire forces under wide range of operation. This model has shown good
fitting indexes compared to other more analytical, complexer ones [13,14,59,60]. The
following function is used as grey-box model in which the parameters C, B, Sv, E, and
Sh are identified using experimental data.

Ftire = D sin
(
C arctan(BΘ)

)
+ Sv

where Θ = (1− E)(X + Sh) + E

B
arctan

(
B(x+ Sh)

) (4.3)

If Ftire represent the lateral forces, then X is the slip angle. Else, if Ftire act as the
longitudinal forces, X is the slip ratio. Figure (4.5) shows the lateral forces generated as
a function of the slip angle for different friction coefficients. Longitudinal forces present
similar behavior, thus their graphs are not presented.

Figure 4.5 – Lateral tire forces in pure cornering (s=0). Graph extracted from [3]

30

4.3 Dynamic models for lateral dynamics

a.2. Linear tire model

As it can be seen in figure (4.5) and (4.6), for small slip angles (α ≤ 5°), the lateral forces
generated present a linear behavior. This linear model has demonstrated to work well
under normal driving conditions [3, 12, 14, 32, 59, 61–71], and even in off-road conditions
like in the DARPA Challenge 2005 with good results [10]. Thus, under the assumptions
mentioned before, the following function approximates well the forces generated in the
tires.

Ftire = Cαα (4.4)

where Cα is the cornering stiffness for either the frontal or the rear wheels, since they
may vary depending of the weight distribution of the vehicle.

Figure 4.6 – Comparison of Magic formula tire model (Pacejka 2006) vs linear
tire model. Graph extracted from [3]

Master thesis Toshiharu Tabuchi 31

4 Mathematical models for vehicles

b. Double-track model for lateral dynamics

In this model, all four wheel lateral forces are considered in the dynamic equations. A
graphical representation of the model is presented in figure (4.7). The states ψ̇, ψ, β, x, y
represent the yaw’s rate, yaw angle, body slip angle, and the Cartesian coordinates of
the vehicle, respectively. The control inputs are speed vx, and servomotor input δin. In
summary, since the steering dynamics were considered here, this model has seven states,
and two control inputs.

F

x

r

L

F

x

r

R

F

y

r

L

F

y

r

R

V

x

V

y

L

r

L

f

W

F

x

f
L

F

y

f
L

F

x

f

R

F

y

f
R

Figure 4.7 – Double-track dynamic model

The differential equations of the model in (4.5) were modified from [72] using the
considerations described at the beginning of the chapter.

32

4.3 Dynamic models for lateral dynamics

ψ̈ = 1
Iz

(Lf (F fLy cos(δL) + F fRy cos(δR))

+ W

2 (F fRy sin(δR)− F fLy sin(δL))− Lr(F rLy + F rRy))
(4.5a)

ψ̇ = ψ̇ (4.5b)

β̇ = 1
mvx

(F fLy cos(β − δL) + F fRy cos(β − δR)

+ (F rLy + F rRy)cos(β))− ψ̇
(4.5c)

ẋ = vx cos(ψ)− vx tan(β) sin(ψ) (4.5d)

ẏ = vx sin(ψ) + vx tan(β) cos(ψ) (4.5e)

where δ = f(δin) , δin is the servomotor input signal .

The linear tire model was employed to describe the lateral forces, represented in equations
(4.6). This tire model is generally used for normal driving conditions, and provides a
good approximation of the forces generated due to frictional effects. Fyf and Fyr have
both a linear relationship with the slip angle α5(see figure (4.8)). Cf and Cr are the
frontal, and rear tire stiffness coefficients, which depend of the road and tires condition.

Figure 4.8 – Slip angle scheme [4]

F fLy ≈ CfαfL(t)

F fRy ≈ CfαfR(t)

F rLy ≈ CrαrL(t)

F rRy ≈ CrαrR(t)

(4.6)

5angle between the actual speed direction and the longitudinal direction of the wheels

Master thesis Toshiharu Tabuchi 33

4 Mathematical models for vehicles

where the slip angles of each wheel are:

αfL = δL − tan
(
vx tan(β) + ψ̇Lf

vx − ψ̇W2

)

αfR = δR − tan
(
vx tan(β) + ψ̇Lf

vx + ψ̇W2

)

αrL = − tan
(
vx tan(β)− ψ̇Lf

vx − ψ̇W2

)

αrR = − tan
(
vx tan(β)− ψ̇Lf

vx + ψ̇W2

)
(4.7)

c. Single-track model for lateral vehicle dynamics

Autonomous vehicles are considered fast dynamic systems, because they require short
sampling times to be controlled accurately and safely. This demands fast converging
times in the MPC algorithm, smaller than the sampling rate of the system. For that
reason, complex models are carefully simplified, trying to maintain the most essential
components of the dynamics, while omitting less significant ones. The single-track model
is a simplification of the previous double-track model presented in the last section. In
this model, each pair of left and right wheels are lumped together as one. Then, the
four wheels are reduced to two; for that reason, the single-track model is also known as
the "bicycle model". It can proved that under typical driving conditions, the behavior
of the double-track and single-track model are very similar; however, the computational
time in the simplified version is considerably shorter. Consequently, a great number
of MPC algorithms utilize the single-track model [10,13,22,61,63,64,71,73,74]. The
graphical representation is shown in the figure (4.9).

The differential equations in (4.8) were derived from the four wheels model, by setting
the width of the car W = 0, along with left "L" and right "R" parameters as equal.
Since the steering dynamics were considered, the order of the system increased to seven,
as in the four wheels model. As in the Double-track model, the states ψ̇, ψ, β, x, y
represent the yaw’s rate, yaw angle, body slip angle, and the Cartesian coordinates of
the vehicle, respectively. The control inputs are speed vx, and servomotor input δin.

34

4.3 Dynamic models for lateral dynamics

F

x

r

F

y

r

V

x

V

y

L

r

L

f

F

x

f

F

y

f

Figure 4.9 – Single-track dynamic model

ψ̈ = 2
Iz

(Lf (F fy cos(δ))− Lr(F ry)) (4.8a)

ψ̇ = ψ̇ (4.8b)

β̇ = 2
mvx

F fy cos(β − δ) + F ry cos(β)− ψ̇ (4.8c)

ẋ = vx cos(ψ)− vx tan(β) sin(ψ) (4.8d)

ẏ = vx sin(ψ) + vx tan(β) cos(ψ) (4.8e)

where δ = f(δin) , δin is the servomotor input signal .

where

F fy ≈ Cfαf (t)

F ry ≈ Crαr(t)

αf = δ − tan
(
vx tan(β) + ψ̇Lf

vx

)

αr = − tan
(
vx tan(β)− ψ̇Lf

vx

)
(4.9)

Master thesis Toshiharu Tabuchi 35

4 Mathematical models for vehicles

4.4 Parameters for the vehicle models

In order to be complete, the vehicle models require the correct physical parameters,
so that equations can match, as close as possible, the dynamics of the real system.
Except for the cornering stiffness, all the parameters were obtained from measurements
of the 1:5 scale robotic car. The cornering stiffnesses Cf , and Cr were estimated based
on the parameters of a real-sized vehicle from [21]. The constants were scaled down
proportionally to the mass of robotic car. The table (4.1) summarizes the parameters
used in all the models presented in this chapter.

Table 4.1 – Physical parameters for the mathematical models

Parameter Symbol Value
Total mass m 15.6 kg
Rotational Inertia around CG in Z axis Iz 0.4734 kg m2

Distance between CG and frontal wheels Lf 0.271 m
Distance between CG and rear wheels Lr 0.255 m
Lateral distance between wheels midpoints W 0.325 m
Wheel diameter D 0.115 m
Frontal cornering stiffness Cf 250 N/rad
Rear cornering stiffness Cr 234 N/rad

36

4.5 Mechanical and operational bounds

4.5 Mechanical and operational bounds

Every type of machine presents physical constraints that has to be respected in order to
avoid damages. Also, operational bounds may impose additional restrictions for safety,
environmental regulations, etc. The bounds presented in the table (4.2) were based
on the information from the chapter 2. The steering δ bounds were defined based on
servomotor mechanical limits; plus, they are applicable for both, the kinematic and the
dynamic models. The remaining bounds are only applicable to the dynamic models.
Although the robotic can reach speeds up to 20 m/s, the maximum speed was restricted
for safety reasons. The lower bound for the speed 1.5 m/s is required, because this
setpoint allows the motor to achieve the minimum sufficiently torque to move the car.
Finally, the bounds for the body slip angle β, and vehicle rotational speed ψ̇ were
computed based on the previous mentioned bounds, by simulating some borderline
conditions.

Table 4.2 – Mechanical and operational bounds

Variables Symbol Range

Steering† δ [−0.37, 0.37] rad
Speed vx [1.5, 5] m/s

Body slip angle β [−0.09, 0.09] rad
Vehicle rotational speed ψ̇ [−0.7, 0.7] rad/s

† Applicable for both the Kinematic and Dynamic mod-
els.

Master thesis Toshiharu Tabuchi 37

Chapter 5

NMPC controller design for autonomous
driving

As has been described in previous chapters, car dynamics are inherently non-linear,
because of non-holonomic kinematic constraints, highly coupled control states [17],
and nonlinear behavior [38]. An autonomous driving algorithm relies on one or more
controllers in order to achieve different tasks. In the present work, a Nonlinear model
predictive control (NMPC) algorithm was implemented as the main controller for
trajectory tracking. NMPC can manage not only non-linear models, but also non-linear
constraints, depending of the trajectory complexity. Furthermore, the objective function
may not only involve the primarily task of trajectory tracking, but also some other
secondary tasks like minimization of travel time, and obstacles avoidance [3, 33], which
also involve non-linear functions.

In this chapter, three different NMPC controllers were formulated based on the vehicle
models presented in chapter 4, which has also been summarized in this chapter. All
NMPC controllers were transformed to NLPs applying direct methods, with the multiple
shooting technique and the Runge-Kutta 4 (RK4) integrator. The RK4 integrator was
chosen, since it provides a good balance between performance and execution speed.

The design of the NMPC controllers started by defining the trajectory tracking cost
function. Two different cost functions and their respective boundaries were formulated,
to address the kinematic and dynamic models. Also, two obstacle avoidance approaches
are presented and compared.

Master thesis Toshiharu Tabuchi 39

5 NMPC controller design for autonomous driving

All the NMPC controllers were implemented using IpOpt with the MUMPS linear solver.
The objective functions and the constraints were symbolically formulated and discretized
using the Casadi framework. Furthermore, Casadi was also used to compute the gradient
of the objective function, and Jacobian of the constraints, using an state-of-the-art
automatic differentiation (AD) algorithm. All these functions were later exported as
C++ functions using a code generation engine, also included in Casadi.

Finally, the program structure for the simulations and real-time vehicle implementation
are presented. It is also explained the similarities between both programs, and the adap-
tations that needed to be made to the vehicle implementation software, to acknowledge
the capabilities of the 1:5 scale vehicle setup. Each of the sections also include a block
diagram, that explain the flow of data around the programs.

5.1 Kinematic model based NMPC controller

In figure (5.1), the general block diagram of the NMPC controller based on the kinematic
model is presented. The inputs for the NMPC controller are the initial states w0 and
the path reference ref . The outputs are the optimal states w∗, and servomotor control
signal δ∗in.

NMPC controller
Kinematic model

w0 = [x y ψ]T

ref = [xref yref]T

u∗ = [δ∗
in]T

w∗ = [x∗y∗ψ∗]T

Figure 5.1 – NMPC controller based on the Kinematic model. Block diagram for
Inputs-Outputs.

40

5.1 Kinematic model based NMPC controller

a. Cost function

When trajectory tracking task is executed with an NMPC controller, the cost function
is defined as the relative distance between the vehicle and road path. This cost function
must be minimized online within a predefined sampling rate. For the Kinematic model,
the cost function is defined below.

Jtrack(w,u, ref) = Px(xp,N − xref,N)2 + Py(yp,N − yref,N)2+
N−1∑
k=1

(
qx(xp,k − xref,k)2 + qy(yp,k − yref,k)2 + rδδ

2
k

) (5.1)

The vectors w, u, and ref are the states, control inputs, and position reference, respec-
tively. The position in each discretization interval is represented by xp,k and yp,k. A
terminal penalty for the last predicted position xp,N and yp,N was also included, in order
to increase the system stability. Finally, the control input δk was likewise introduced in
order to reduce the jerking or oscillations in the actuators. Notice that, in the Kinematic
model, the speed is not a control variable, but only a parameter.

b. Variables bounds

In addition, physical and operational bounds are defined to ensure smooth and safe
performance of the vehicle. One of the great advantages of MPC is that these bounds
can be easily declared into the problem formulation. The inequalities below represent
the states and controls bounds, based on the information from table (4.2). Any other
states or control inputs not defined are assumed to be unrestricted.

−2π rad ≤ ψ ≤ 2π rad , (5.2)

−0.37 rad ≤ δ ≤ 0.37 rad . (5.3)

Master thesis Toshiharu Tabuchi 41

5 NMPC controller design for autonomous driving

5.2 Dynamic models based NMPC controllers

For the two dynamic models (double-track, and single-track) based NMPC, the block
diagram in figure (5.2) shows their inputs and outputs. Since both of them share the
same states and control inputs, only one block is presented. As in the Kinematic based
controller, the initial states w0 and the path reference ref are the algorithm inputs.
The outputs are the optimal variables w∗, and the control signals δ∗in, and v∗x.

NMPC controller
Dynamic model

w0 = [ψ̇ ψ β x y]T

ref = [xref yref]T

u∗ = [δ∗
in v

∗
x]T

w∗ = [ψ̇∗ ψ∗ β∗ x∗ y∗]T

Figure 5.2 – NMPC controller based on the Dynamic model (Double-track or
Single-track). Block diagram for Inputs-Outputs.

a. Cost function

The cost function is also quite similar to the kinematic one. The main difference is the
addition of the actual speed vk, and a reference cruise speed vref . Depending on how
the weights are set in the cost function, higher priority could be given to reaching the
cruise control speed, or tracking the path reference. The cost function is defined as
follows:

Jtrack(w,u, ref) = Px(xp,N − xref,N)2 + Py(yp,N − yref,N)2+
N−1∑
k=1

(
qx(xp,k − xref,k)2 + qy(yp,k − yref,k)2+

rv(vk − vref)2 + rδδ
2
k

) (5.4)

42

5.3 Obstacle avoidance

b. Variables bounds

The states and control inputs bounds were determined based on the information in the
table (4.2), stability criteria, and safety reasons.

−0.35 rad ≤ β ≤ 0.35 rad ,

−2π rad ≤ ψ ≤ 2π rad ,

−π2 rad/s ≤ ψ̇ ≤ π

2 rad/s ,

−0.37 rad ≤ δ ≤ 0.37 rad ,

1.5 m/s ≤ vx ≤ 5 m/s .

5.3 Obstacle avoidance

As mentioned in [2], obstacles can be modeled as closed geometric shapes (ellipses) or
as a potential field that penalizes the distance between vehicle and obstacles. These
two approaches are briefly explained in the next lines.

a. Obstacle as a closed region

In this approach, a geometric path constrain is imposed in the trajectory tracking
problem. The obstacle is modeled as a closed, convex curve. Normally, the curve chosen
is the ellipse, which is very versatile since it can be shaped as almost any obstacle, by
adjusting the length of the major and minor axis. Also, thanks to its smooth and convex
properties, this kind of shape allows the generation of non-holonomic trajectories around
the obstacles. The path constraint can be formulated as the following inequality.

(xpos − xobs)2

a2 + (ypos − yobs)2

b2 ≥ 1 , (5.5)

Within the NMPC framework, the inequality is applied for one obstacle as multiple
non-linear constraints for each discrete position point (xk, yk) k = 0, 1, ..., N . For each

Master thesis Toshiharu Tabuchi 43

5 NMPC controller design for autonomous driving

new obstacle considered, new "N" inequalities will be added to the constraints. An
example for one obstacle is shown below.

(xpos,k − xobs)2

a2 + (ypos,k − yobs)2

b2 ≥ 1 , k = 0, 1, . . . , N , (5.6)

b. Obstacle as repulsive force

Potential field functions are another approach used for obstacle avoidance algorithms.
An internal point of the obstacle (commonly, the geometric center) is used as the origin
of potential fields. The closer the vehicle is to the obstacle, the higher the repulsive
force value generated. The potential field equation for discrete points (xk, yk) is shown
below.

Pobs,k = Kobs

(xpos,k − xobs)2 + (ypos,k − yobs)2 + ε
(5.7)

Within the NMPC framework, this function is added to the cost function, and penalize
the distance to the obstacle. If more obstacles are to be considered, more summations
has to be added into the cost function. Here, an example for only one obstacle is
considered.

Javoidance = Jtrack +
N∑
k=0

Pobs,k (5.8)

The main disadvantage of this approach is that the obstacle geometry can not be
explicitly defined. The safety region around the obstacle will depend on the obstacle
gain Kobs, and the other gains in the cost function.

As mentioned in the chapter 2, the robotic car is equipped with a LIDAR sensor to
detect obstacles. Also, the information from sensors allows the identification of obstacles
shapes. For that reason, it was chosen that the obstacles will be modeled as closed
shapes, as mentioned in the previous definition.

44

5.4 NMPC program structures

5.4 NMPC program structures

In this section, the interaction between the NMPC controller and robotic vehicle (system)
is explained. Two NMPC program versions are presented; one for the simulations, and
another one for real-time implementation.

a. Simulations version

The task of this program version was to test the performance of the NMPC controller
before the real-time implementation on the vehicle testbed. The program is divided in
four main parts (see fig. (5.3)). First, the variables and bounds for the NMPC controller
are initialized. Second, the sensors simulator computes the path reference (xref , yref)
for the controller. At the third part, the optimal control inputs are calculated by the
NMPC controller, in which core lies the IpOpt algorithm. Finally, the optimal control
inputs δ∗in, v∗x are given to the vehicle simulator, which outputs the states for the next
time frame w(k + 1). The cycle is repeated until the user stops the program, or the
final conditions are met.

Master thesis Toshiharu Tabuchi 45

5 NMPC controller design for autonomous driving

Vehicle model

V
eh

ic
le

si
m

u
la

to
r

Number of variables n
Number of constraints m
Cost function’s weights

Upper and lower bounds
Initial states w0

Se
n

so
rs

si
m

ul
at

or

Sensors model

M
ai

n
 s

im
u

la
ti

o
n

 p
ro

g
ra

m

(Xref,yref); w(k+1)

δ*, vx*

Update position
x(k+1) = x(k)
y(k+1) = y(k)

Ѱ(k+1) = Ѱ(k)

w(k+1)

N
M

PC

In
it

ia
liz

at
io

n

IPOPT
algorithm

Cost function
Gradient

Constraints
Jacobian of constraints

Figure 5.3 – Simulation program block diagram

46

5.4 NMPC program structures

b. Real-time experimental version

This program, represented in the block diagram in (5.4), is based on the simulation
version, but with few modifications. The first difference is that, the sensors and vehicle
simulators are replaced by their physical counterparts.

The second main difference relies in the way the path reference is computed. After the
initialization, the camera captures a new image of the road, which is sent to the image
processing algorithm. The image processing algorithm provide the NMPC controller
with the path’s reference curve (xref , yref). Due to the lack of an odometry unit, this
curve is computed with the vehicle COG as its origin, different to the simulation, in
which the world frame-of-reference is used. For that reason, the initial position of the
vehicle needs to be reset in every iteration in order to have the same frame-of-reference
in the camera and vehicle.

In the main algorithm, running in the on-board computer block, the path reference and
the initial states are introduced to the NMPC controller, which computes the optimal
control inputs. These optimal control signals δ∗in, v∗x are sent through a serial port
(RS-232) to the vehicle microcontroller, which is in charge of the low-level operations,
like the correct positioning of the actuators at provided setpoints.

Finally, the main program running in the computer wait until the predefined sampling
rate is met, to allow the vehicle to update its position w(k + 1). The complete cycle is
repeated until the user stops the main program from the GUI.

Master thesis Toshiharu Tabuchi 47

5 NMPC controller design for autonomous driving

Servomotor Motor

Microcontroller

Steering Wheels

Servomotor Motor

Microcontroller

Steering Wheels

Number of variables
Number of constraints

Upper and lower bounds
Initial states w0

Number of variables
Number of constraints

Upper and lower bounds
Initial states w0

|

Image Processing

Camera

|

Image Processing

Camera

O
n-

bo
ar

d
co

m
p

ut
er

Se
n

so
rs

V
eh

ic
le

δ*, vx*

w(0)

w(k+1)

(xref, yref)

In
it

ia
liz

at
io

n

Reset position
X(0) = 0
Y(0) = 0

Ѱ(0) = π/2

(xref, yref); w(0)

N
M

P
C

IPOPT
algorithm

Cost function
Gradient

Constraints
Jacobian of constraints

N
M

P
C

IPOPT
algorithm

Cost function
Gradient

Constraints
Jacobian of constraints

Figure 5.4 – Real-time experimental software block diagram

48

Chapter 6

Simulations of autonomous driving
algorithms

In this chapter, the previously formulated NMPC controllers are simulated and evaluated.
A total of three testing track scenarios were used in the simulation. The first track was
appropriately modeled after a real running track, where the 1:5 scale robotic car was
later tested. The second track was based on double lane change maneuver as mentioned
in [5]. The third one was a path with obstacles, based on the test ISO 3888-2. The
objective function’s weights for each controller were individually tuned to achieve reliable
and smooth performance. Also, three prediction horizon lengths N for each model were
tested, with a sampling rate of ∆t = 100 ms.

The results from all the simulations were compared and analyzed, in order to study
the influence of the prediction horizon length, dynamic response for each vehicle model,
computational time, and phase difference due to the delay in the actuators. These
results were later used in order to choose the most suitable controllers to be implemented
in the robotic car.

Master thesis Toshiharu Tabuchi 49

6 Simulations of autonomous driving
algorithms

6.1 Vehicle testing tracks

In the current work, three different tracks were used in order to test the performance of
each NMPC controller.

a. Circular testing track

The first one involves a circular path, modeled after a section of a real running track
(see fig. 7.1a), where the robotic car was later tested. This testing track was chosen
to allow the validation of the vehicle models, as well as the stability of of the NMPC
controllers designed. The equation (6.1) defines the track trajectory, and its plot can be
seen in figure (6.1).

ζ = (x− xc)2 + (y − yc)2 = R2 ,

where

xc = 38 , yc = 0 , R = 38 ,

x ∈ [0 : 76]

y ∈ [0 : 38]

(6.1)

0 10 20 30 40 50 60 70 80
0
5

10
15
20
25
30
35
40

Y
[m

]

Figure 6.1 – Circular track curve

50

6.1 Vehicle testing tracks

b. Double lane change testing track

The second test track simulates a double lane change maneuver and is based on the
equation found in [5]. The equation of the trajectory curve is shown in (6.2), and its
plot in figure (6.2). This second track allowed to test how the NMPC controller would
react in a fast, typical driving maneuver.

yref = dy1
2 (1 + tanh(z1))− dy2

2 (1 + tanh(z2)) + yoffset

where

z1 = Fshape
dx1

(xref − xs1)− Fshape
2

z2 = Fshape
dx2

(xref − xs2)− Fshape
2

(6.2)

Fshape = 0.7, dx1 = 3, dx2 = 3, dy1 = −2.5, dy2 = −2.5, xs1 = 10, xs2 = 20,
yoffset = 3.5.

0 5 10 15 20 25 30 35−5

0

5

10

X [m]

Y
[m

]

Figure 6.2 – Double lane change maneuver curve. Based on [5]

Master thesis Toshiharu Tabuchi 51

6 Simulations of autonomous driving
algorithms

c. Obstacles avoidance testing track

The third and final track was based on the evasive maneuver test, commonly known as
the "Moose test" or "Elk test". This test has been standardized in ISO 3888-2 [75]. Our
path test track was designed as a straight path with two obstacles between the start and
finish point. These obstacles were modeled like two identical ellipses with major, and
minor axises of 0.8, and 0.4 m, respectively; they were placed at (5,−0.2) and (10, 0.2).
The graphical representation is shown below. This third track tested the ability of the
NMPC algorithm to avoid obstacles on the road, while also tracking a predefined path.

0 5 10 15−1

−0.5

0

0.5

1

X [m]

Y
[m

]

P ath

Figure 6.3 – Obstacles testing track.

6.2 IpOpt configuration

Real-time operation can only be guaranteed if the NMPC problem is solved within the
sampling rate of the system ∆t. For that reason, the right configuration is crucial to
ensure a good performance and accuracy of the control. The implementation in this
works used IpOpt ver. 3.8.1 with MUMPS linear solver, distributed as a dynamic library
compatible with Windows. Prior to the simulations, the following options were set up
in IpOpt, and were kept along all the simulations shown in this work.

app -> Options () -> SetNumericValue ("tol", 1e -3);
app -> Options () -> SetNumericValue (" acceptable_tol ", 1e -3);
app -> Options () -> SetIntegerValue (" acceptable_iter ", 0);
app -> Options () -> SetIntegerValue (" print_level " ,0);
app -> Options () ->SetStringValue (" warm_start_init_point ","yes");
app -> Options () ->SetStringValue (" mu_strategy ", " adaptive ");
app -> Options () ->SetStringValue (" hessian_approximation ", ↘

"limited - memory ");

52

6.2 IpOpt configuration

The tolerance values were reduced from the default values of 10e-5, but they were
maintained above the precision of the actuators of the robotic car, to ensure a good
performance. Also, warm-start options were used in each iteration to reduce the
computational time and increase the accuracy of the results, as in [44].The cost function
and its gradient, the model constraints (after the discretization with Multiple shooting),
and the Jacobian of the constraints were all formulated symbolically using the CasaDi
framework; these were later exported into C++ code, using the code-generation engine,
also included with CasaDi.

The Hessian was approximated using the L-BFGS algorithm included in IpOpt. In the
preliminary tests, the use of the approximated Hessian with the L-BFGS algorithm
outperformed the exact Hessian provided with Casadi. For that reason, the L-BFGS
approximation was chosen, as it had shown reliable performance in the simulations.
Finally, since no visual output was required in the real-time implementation, the
print_level option is set to the "0", meaning no output was printed in the command
line.

Master thesis Toshiharu Tabuchi 53

6 Simulations of autonomous driving
algorithms

6.3 Path tracking simulations

In this section, the results of the simulations done with the previous vehicle models are
presented. All the controllers were simulated with three prediction horizons lengths N,
to study its influence in the performance. Furthermore, each controller was simulated
using two different test tracks, detailed in a previous section. All the simulation were
done in a PC with an Intel Core i5 3320M @2.60 GHz, and 8 GB of RAM, running
Windows® 7 OS. A precompiled version of IpOpt ver. 3.8.1 with MUMPS linear solver
compatible with Windows was used. The simulation were compiled and executed on
Microsoft Visual Studio® 2010.

a. Kinematic model results

The simulation results are presented in figure (6.4). The top of figure show the trajectories
performed by the vehicle for different prediction horizons N in two test tracks and the
reference trajectory (dashed red line). At the bottom, the optimal steering angles are
shown.

0 10 20 30 40 50 60 70 80
0
5

10
15
20
25
30
35
40

Y
[m

]

0 5 10 15 20 25 30 35
0

1

2

3

4

5
P ath

N = 5
N = 10
N = 15

0 10 20 30 40 50 60 70 80

−2

−1

0

1

2

X [m]Se
rv

om
ot

or
in

pu
t
δ

[d
eg

re
es

]

0 5 10 15 20 25 30 35

−1

0

1

2

X [m]

Figure 6.4 – Simulation results for path tracking control with the Kinematic model
in two different trajectories. vx = 2.22 m/s [8 km/h]. Prediction
horizons length N = 5, 10, 15

54

6.3 Path tracking simulations

The weights used for each prediction horizon are summarized in table (6.1).

Table 6.1 – Weights for the Kinematic model in path tracking simulation

N rδ Px Py qx qy

5 12 15 15 1 1
10 5 1 1 1 1
15 5 1 1 1 1

In the circumference track scenario, no significant difference was observed along the
different prediction horizons N . However, the controller with N = 5 shows some
oscillation at the beginning, which stabilized in the first three meters.

In the double lane change scenario, the three prediction horizon showed good performance,
but the controller with N = 5 presented some oscillations at the exit of the last curve.

By observing the weights in table (6.1), it can be noticed that the controller with the
shortest prediction horizon required significantly higher weights values. This indicates
that the length N = 5 presents stability issues, due to the short predicted horizon used.
Higher prediction horizon presented more stable performance, as evidenced by the figure
(6.4), and the weights in (6.1). No significant improvement was observed between the
controller with N = 10 and N = 15, which may indicate that higher prediction horizon
lengths will not produce further improvements.

Master thesis Toshiharu Tabuchi 55

6 Simulations of autonomous driving
algorithms

b. Double-track model results

The results of the simulation are shown in figure (6.5), with a structure similar to the
previous section.

0 10 20 30 40 50 60 70 80
0
5

10
15
20
25
30
35
40

Y
[m

]

0 5 10 15 20 25 30 35
0

1

2

3

4

5
P ath

N = 5
N = 10
N = 15

0 10 20 30 40 50 60 70 80

−2

−1

0

1

2

Se
rv

om
ot

or
in

pu
t

u
[d

eg
re

es
]

0 5 10 15 20 25 30 35
−2

−1

0

1

2

0 10 20 30 40 50 60 70 80

2

3

4

5

X [m]

Sp
ee

d
v x

[m
/s

]

0 5 10 15 20 25 30 35

2

3

4

5

6

X [m]

Figure 6.5 – Simulation results for the reference tracking control with the four
wheels model in two different trajectories. Different prediction hori-
zons N were tested.

The circumference track scenario presented no problem to any of the prediction horizon
lengths tested. However, in the double lane change maneuver scenario, some problems
were observed with the controller with N = 5, again. This confirms that a prediction
horizon shortest than N = 5 may be unsuitable for implementation in real-time systems,
due to stability related issues.

56

6.3 Path tracking simulations

The tuned weights used for each simulation with different prediction horizon lengths N
are presented in the table (6.2).

Table 6.2 – Weights for the Double-track model in path tracking simulation

N rδ rv Px Py qx qy

5 10 0.4 5 5 1 1
10 6 0.3 2 2 1 1
15 6 0.3 1 1 1 1

As in the Kinematic model case, the gains for the shortest prediction horizon N tend to
be higher, in order to compensate the stability of the controller.

The controller with N = 10, and N = 15 showed both similar, and good performance in
both scenarios.

Master thesis Toshiharu Tabuchi 57

6 Simulations of autonomous driving
algorithms

c. Single-track model results

Finally, the results for the single-track model based NMPC are presented here. As in the
Double-track model, the controller with the prediction horizon N = 5 shows stability
problems. It can be concluded that, in order to have an stable NMPC with the current
vehicle models and sampling rate ∆t = 100 ms, a prediction horizon must be equal o
higher than 10 discrete units N ≥ 10.

0 10 20 30 40 50 60 70 80
0
5

10
15
20
25
30
35
40

Y
[m

]

0 5 10 15 20 25 30 35
0

1

2

3

4

5
P ath

N = 5
N = 10
N = 15

0 10 20 30 40 50 60 70 80

−2

−1

0

1

2

Se
rv

om
ot

or
in

pu
t

u
[d

eg
re

es
]

0 5 10 15 20 25 30 35

−1

0

1

2

0 10 20 30 40 50 60 70 80

2

3

4

5

X [m]

Sp
ee

d
v x

[m
/s

]

0 5 10 15 20 25 30 35

2

3

4

5

X [m]

Figure 6.6 – Simulation results for the reference tracking control with the bicycle
model in two different trajectories. Different prediction horizons N
were tested.

58

6.3 Path tracking simulations

Table 6.3 – Weights for the Single-track model in path tracking simulation

N rδ rv Px Py qx qy

5 15 0.4 4 4 1 1
10 10 0.3 2 2 1 1
15 10 0.3 2 2 1 1

d. Performance comparison between vehicle models

Until now, each NMPC controller has been tested individually, with different prediction
horizon lengths. In this part, the optimal control solutions of the three proposed models
are compared, as well as the computational time required to complete each iteration.

The bar graphs in (6.7) summarize the computational time for each controller with the
different prediction horizon lengths tested. The times presented are the average values
of circumference and double lane change tracks. As expected, higher prediction horizons
N , and complexer models required more computational time to converge to the optimal
solution. Also, the computational time for the double-track model significantly increases
with each increment of the prediction horizon. For the prediction horizon N = 15, the
computational time for the double-track is 2.8x the time of the single-track model, and
8.62x the time for the Kinematic model.

0 10 20 30 40 50

Kinematic

Single-track

Double-track

3.01

8.03

10

4.34

15.07

27.84

5.64

21.33

48.64

Avg. computational time [ms]

(N=5)
(N=10)
(N=15)

Figure 6.7 – Average computational time per iteration for the simulations of the
car models with different prediction horizon lengths N

Master thesis Toshiharu Tabuchi 59

6 Simulations of autonomous driving
algorithms

Next, the trajectory of the three vehicle models is compared in figure (6.8), using a
prediction horizon length of N = 15, to avoid variations due to instability issues. As it
can be seen, the three controllers can follow both test tracks very precisely, and they
almost overlap each other.

Even though all the vehicle models produce almost the same trajectory, the steering
response was different. In the double lane change maneuver (right), the response of the
Kinematic model was very symmetric and smooth, since no inertial forces in the curves
are considered. In contrast, the dynamic models compute different steering responses to
acknowledge the lateral slip produced in the wheels, as observed between the 15th and
25th seconds.

Finally, both dynamic models were also compared. As it can be recalled from chapter
4, the Single-track model was deduced by making some simplifications in the Double-
track model. It can be noticed that, the results of both models were quite similar,
which supports the use of the Single-track over the Double-track model, due to shorter
computational times. Taking in consideration the simulation results in this section, only
the Single-track model and the Kinematic model will be used in the remaining of this
work.

60

6.3 Path tracking simulations

0 10 20 30 40 50 60 70 80
0
5

10
15
20
25
30
35
40

Y
[m

]

0 5 10 15 20 25 30 35
0

1

2

3

4

5
P ath

Kinematic
Bicycle

Four wheels

0 10 20 30 40 50 60 70 80

−2

−1

0

1

2

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]

0 5 10 15 20 25 30 35

−1

0

1

2

0 10 20 30 40 50 60 70 80

2

3

4

5

X [m]

Sp
ee

d
δ

[m
/s

]

0 5 10 15 20 25 30 35

2

3

4

5

X [m]

Figure 6.8 – Trajectory and control inputs comparison between NMPC controllers
with different vehicle models. Prediction horizon length N = 15.
Sampling rate ∆t = 100 ms.

Master thesis Toshiharu Tabuchi 61

6 Simulations of autonomous driving
algorithms

e. Phase difference of the steering angle and the input signal due to
delay

In the chapter 4, the steering dynamics were modeled as a second order system. Here,
the phase difference between the input control signal δin and the steering angle δ is
presented, in order to emphasizes the importance of considering the steering dynamics
into the vehicle modeling.

Figure (6.9) shows the phase difference of both signals, during the double lane change
maneuver, previously presented. This phase difference increases when the vehicle speeds
increases. Although this results only present simulated values, it allows to predict that
the omission of the steering’s dynamics in the NMPC controller could cause instability
issues. For that reason, this discussion will be continued in the implementation chapter,
in which the real impact of the delay on real-time operation could be better realized.

0 5 10 15 20 25 30 35 40
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

Time [s]

A
ng

le
[d

eg
re

es
]

Input signal
Actual position

Figure 6.9 – Servomotor phase difference between input signal and actual position.
Simulated with the kinematic model (N = 10) at vx = 5m/s

62

6.4 Obstacle avoidance simulations

6.4 Obstacle avoidance simulations

a. Kinematic model results

Next, the obstacle avoidance simulations are presented. Three prediction horizons
length were simulated in a straight path with two obstacles to study its influence in the
avoidance performance.

0 5 10 15
−1

−0.5

0

0.5

1

Y
[m

]

P ath

N = 5
N = 10
N = 15

0 5 10 15

−20

−10

0

10

20

X [m]Se
rv

om
ot

or
in

pu
t

u
[d

eg
re

es
]

Figure 6.10 – Simulation results for obstacle avoidance with the Kinematic model.
vx = 2.22 m/s [8 km/h]. Different prediction horizons N were
tested.

As it can be seen in figure (6.10), the controller with prediction horizon length N = 5
had a very late reaction to avoid the obstacle, and deviated significantly from the
proposed path. Due to the short prediction horizon length, the controller was unable
to anticipate with enough time the obstacle. The controller with N = 10 presented a
better performance at evading the obstacles, over the previous one; however, the delayed
reaction at the second obstacle suggest that a higher prediction horizon length is needed.
Lastly, the controller with N = 15 was able to evade both obstacles smoothly, without
deviating excessively from the proposed path.

Master thesis Toshiharu Tabuchi 63

6 Simulations of autonomous driving
algorithms

The tuned weights for the cost function of each simulation are shown below. As it can
be seen, all the controllers used the same weights. Different values for each controller
showed no improvement in the performance.

Table 6.4 – Weights for the Kinematic model in obstacle avoidance simulation

N rδ Px Py qx qy

5 2 2 2 1 1
10 2 2 2 1 1
15 2 2 2 1 1

64

6.4 Obstacle avoidance simulations

b. Single-track model results

The results of the obstacles avoidance simulation for the single-track model are shown
in the figure (6.11). Similarly to the Kinematic model simulation, the controller with
N = 5 presented a poor performance in the obstacle avoidance test. The controller with
N = 10 executed a better performance, but its reaction presented some delay, as in the
Kinematic model case with the same N . Finally, the controller with N = 15 achieved
an smooth, and overall good performance; also, it was able to reach and maintain the
reference speed vref = 2.22 m/s, due to the higher prediction horizon.

0 5 10 15
−1

−0.5

0

0.5

1

Y
[m

]

P ath

N = 5
N = 10
N = 15

0 5 10 15

−20

−10

0

10

20

Se
rv

om
ot

or
in

pu
t

u
[d

eg
re

es
]

0 5 10 15
1

1.5

2

2.5

X [m]

Sp
ee

d
v x

[m
/s

]

Figure 6.11 – Simulation results for obstacle avoidance with the Bicycle model.
vref = 2.22 m/s [8 km/h]. Different prediction horizons N were
tested.

Master thesis Toshiharu Tabuchi 65

6 Simulations of autonomous driving
algorithms

Table 6.5 – Weights for the Single-track model obstacle avoidance simulation

N rδ rv Px Py qx qy

5 2 0.3 2 2 1 1
10 2 0.3 2 2 1 1
15 2 0.3 2 2 1 1

66

Chapter 7

Experimental evaluation of autonomous
driving algorithms

In the previous chapter, multiple simulations and analysis were done using different
vehicle models. From those results, two NMPC controllers were selected and implemented
in the 1:5 robotic vehicle. The controllers were based on the Kinematic and the Single-
track model. The tests had two main objectives. The first one was to test the trajectory
tracking performance of the NMPC controllers, using the selected vehicle models. The
second main objective was to analyze the steering dynamics influence in the controllers
stability and performance.

The Kinematic and Single-track NMPC controllers were tested using a prediction horizon
N = 10, with a sampling rate ∆t = 100 ms. The value of N was selected based on
the simulations results, range of the sensors, and spatial resolution required for a good
performance of the tracking. These criteria are expanded later in this chapter.

First, an overview of the command center software is presented. This software manage
the image processing, and NMPC controller algorithms. Then, it is explained how
the path reference was computed. In this work, the reference points for the NMPC
algorithm are defined as a function of the speed and sampling rate, which means that
at higher speeds, the look-ahead distance increases.

Second, the NMPC autonomous driving algorithms experimental results are presented.
The tests were made in two different test paths, similar to the ones used in chapter 5.
The first track simulates a double lane change maneuver and it was recreated in one
of the TU Ilmenau’s research buildings (figure (7.1b)); this track tested the controller

Master thesis Toshiharu Tabuchi 67

7 Experimental evaluation of autonomous driving algorithms

ability to manage sudden changes in the path curvature. Also, since the test track was
indoors, it allowed to obtain more consistent data, at any time, independently of the
weather conditions; however, the maximum speed was limited (3.33 m/s [12 km/h])
due to space restrictions. The second path was a running track, which is part of the
TU Ilmenau sport’s facilities. A satellite image is shown in the figure (7.1a), with
coordinates 50°41’05.6"N 10°56’12.8"E. This track permitted testing the controllers
consistency and stability, since the path had a constant curvature. Also, because the
track was outdoors and the surface presented a high friction coefficient, it enabled
higher speeds (5.56 m/s [20 km/h]) to be tested. In all the tests, the vehicle started
from approximately the same initial position as in the simulations. This facilitated the
comparison between experimental, and simulated results.

This chapter is concluded with the steering’s dynamics influence evaluation in the
vehicle’s control stability and performance. This tests were made in parallel with the
previous presented cases; then, the same scenarios and vehicle models are used. Each
NMPC controller was tested in two different configurations: with the steering’s dynamics
considered, and without them. Even though the steering system is a fundamental compo-
nent in the control of the vehicle, only few researchers address its dynamic response. The
results prove that including the steering’s dynamics in the vehicle model are fundamental
for a good controller performance.

(a) Circular track (b) Double lane change track

Figure 7.1 – 1:5 vehicle test tracks

68

7.1 Command center software

7.1 Command center software

The command center software running in the on-board PC manages all the high-
level functions for the autonomous driving system. The program was developed in
Embarcadero C++ Builder XE8. Since the Embarcadero C++ compiler was not able to
compile the IpOpt libraries, the NMPC controller was integrated as a dynamic library
(dll), which was compiled independently in Microsoft Visual Studio 2010®. The sensor
data acquisition and processing, as well as the NMPC controller algorithm runs over this
software. A graphical user interface (GUI) (see fig. (7.2)) facilitates the monitoring of
the vehicle sensors, image processing, batteries status, and operation of the autonomous
driving algorithm. The GUI also provides access to some parameters of the NMPC
algorithm. The user can change the weights of the cost function, sampling rate and
reference speed without modifying the software code.

Figure 7.2 – User interface for vehicle control

Master thesis Toshiharu Tabuchi 69

7 Experimental evaluation of autonomous driving algorithms

7.2 Path planning

In robotics, a path is defined as a continuous curve function that maps some path
parameters in the robot’s configuration space [76]. The problem of path planning can
be summarized as a geometric path generation, without an associated time law, from
an initial to a final point, while avoiding obstacles and respecting given constraints
[77]. Common approaches of path planning for non-holonomic vehicles use clothoid or
polynomial curves, due to their smooth curvatures. In this thesis, a car-like robot will be
tested in a track with printed lanes over, that simulates a real-life scenarios in a typical
street. It will be assumed that the lanes follow smooth, non-holonomic compatible
curves, and that the controller can reach practical stabilization during the path tracking
as mentioned in [78]. Information of the lanes will be captured by a monocular CMOS
camera. An image processing algorithm based on the work in [79], finds the lane’s center
line and extract its geometric features, which the car uses as reference for the trajectory
tracking control (see fig. (7.3)). This task is repeated at each sampling time.

a. Reference points and look-ahead distance

The path’s information reference is an important component of the objective function,
since it provides the feedback to estimate the relative position of the vehicle with respect
to the tracked curve. In this part, it is explained how the information obtained from
the CMOS camera is processed, and what limits were defined in order to maintain a
reasonable error within the measurements.

a.1. Path curve identification applying image processing

First, the CMOS camera capture an image of the road ahead, as in figure (7.3). Then,
an image processing algorithm extract the geometric features of the lane lines, computes
the center line, and identifies the parameters of the curve. In this work, a second degree
polynomial with origin in the vehicle’s COG was used.

xpath = ay2 + bx+ c (7.1)

70

7.2 Path planning

Figure 7.3 – Camera’s raw stream(top) and geometric features extraction(bottom)

A segment of the curve (7.1) is given to the NMPC algorithm as the path reference.
This segment is discretized into N points (see fig. (7.4)), in order to match the length
of the prediction horizon. The length step dyk is defined as a function of the current
longitudinal speed of the vehicle v, and the sampling rate ∆t. Furthermore, as seen in
figure (7.4), there is an region of the curve below camera’s field of view (FOV), which
can not be captured. This area of the path is extrapolated backwards using the equation
(7.1). It may also be possible to extrapolate the curve forward, beyond the FOV of
the camera. However, in the tests, the forward extrapolation presented a very high
deviation from the real values. For that reason, that section of the curve is not used in
this work.

Master thesis Toshiharu Tabuchi 71

7 Experimental evaluation of autonomous driving algorithms

Δ

Δ

Δ

Δ

z
Figure 7.4 – Reference points obtained from the camera

a.2. Parameters and limits for the path curve parametrization

As stated in the previous section, the step length dyk is a function of the speed and the
sampling rate. In order to guarantee, to a certain degree, a good tracking performance,
the length step dyk should be maintained between a certain range. In this work, a
methodology to estimate this range is formulated. This range is defined by inequalities
(7.2) and (7.3).

In inequality (7.2), a maximum length step is defined, to maintain a good tracking
performance of the curve. It was found that a length step below half the length of
the car produces a good tracking performance. Inequality (7.2) also indicates that, in
order to use higher speeds, the time step ∆t, and therefore the sampling rate, should be
reduced proportionally to maintain a good discretization of the curve.

dyk = v∆t ≤ Lcar
2 , k = 0, 1, ...N (7.2)

Another limitation for the curve trajectory computation is the look-ahead distance,
defined in inequality (7.3) as the total length of the curve that the algorithm uses

72

7.3 Experimental results in the double lane change maneuver test track

to compute the path’s reference. The maximum look-ahead distance, that can be
trustfully used, depends of the visual range of the camera used, defined by Dmax. As
mentioned earlier, the area beyond the FOV of the camera is not used. Also, a minimum
look-ahead distance Dmin is defined, since if it is too short, the NMPC algorithm could
have problems tracking the curve, due to the lack of information. In this work, a
Dmin = 1.5Lcar is used. The equation in (7.3) also reveals that, if the prediction horizon
length N is incremented, the maximum range of the sensors also need to be incremented,
or the maximum speed of the vehicle reduced.

Look-ahead distance = Nvx∆t

Dmin ≤ Nvx∆t ≤ Dmax

(7.3)

With inequalities (7.2) and (7.3), it is possible to calculate the maximum safe speed to be
used, according to the actual setup of the vehicle. Then, with Lcar = 0.9 m, Dmax = 5 m,
N = 10, ∆t = 0.1 s, it can be easily found that the maximum recommended speed for
the setup is vmax = 4.5 m/s.

It is important to stress that the methodology previously defined by here must be taken
as a recommendation. The calculated values showed good results in the tests, but
this may vary depending of the vehicle or sensors setup.

7.3 Experimental results in the double lane change ma-
neuver test track

In this section, the experimental results performed in the double lane change maneuver
test track are presented (see fig. 7.1b).

a. Kinematic model experimental results

Figure (7.5) and the video links below show the optimal steering angle δ, as well as the
timing results per sampling rate. As expected, the simulated and experimental results
differ. The main reason could be attributed to some geometric differences between the
testing track built (see fig. 7.1b) and the equation in which it is based.

Master thesis Toshiharu Tabuchi 73

7 Experimental evaluation of autonomous driving algorithms

There is also mismatches between the system and vehicle model. At the speed the
vehicle was tested (v = 3.33 m/s), the wheels showed some signs of slippery, an inertial
effect that the kinematic model does not take in consideration. This mismatch is more
evident between the 4th and 6th second, in which the car made an overshoot in the
steering, due the sudden change of curvature in the path. Also, the path reference from
the camera and image processing algorithm may present some inaccuracies.

The computation time are presented in the bottom graph. Although the times were
higher than the reported in simulations, since they kept below the sampling rate of
the system, no problems were encountered during the execution of the algorithm. This
issue could be attributed to different initial conditions in each iteration for the IpOpt
solver, compared to the simulated version. As mentioned in the chapter 5, in the vehicle
implementation, the reference frame coordinate system is reset in every iteration, due
to the lack of an odometry unit. This difference translates into more iterations to
achieve the optimal solution. Also, it is be possible that software-related bugs may had
introduced during the porting of the code into a dynamic library, which is latter loaded
by the command center software.

0 2 4 6 8
−6
−4
−2

0
2
4
6

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]

Simulation

Experimental

0 2 4 6 8
0

20
40
60
80

100

t [s]

C
om

pu
ta

tio
na

lt
im

e
[m

s]

Figure 7.5 – Experimental results for path tracking control with the Kinematic
model (N=10) . vx = 3.33 m/s [12 km/h]. Sampling rate ∆t =
100 ms.

74

7.3 Experimental results in the double lane change maneuver test track

Also, the two following hyperlinks provide access to the test’s videos.

CD version:

• Video: Test with Kinematic model based controller (with steering’s dynamics)

Online version:

• Video: Test with Kinematic model based controller (with steering’s dynamics)

In table (7.1), the tuned weights used in the test are showed. These weights may differ
from the ones used in the simulation, due to system-model mismatches.

Table 7.1 – Weights for the kinematic model in the double lane change track test

N rδ Px Py qx qy

10 25 5 5 1 1

b. Single-track model experimental results

Next,the results from the NMPC controller based on the Single-track model are presented
in figure (7.6) and the video links below. The optimal values for the steering δ and speed
v are presented in the first and second graph. As in the Kinematic model case, some
mismatches were expected, due to the previous reasons explained. However, due to the
additional consideration of the lateral slip in the Single-track model, the vehicle managed
better the curvature change, between the 4th and 6th second. Also, the reference speed
given is reached in the at time t = 2 s and maintained during the whole course.

The bottom graph shows the computation time per iteration of the controller. Although
few iterations exceeded the sampling rate of the system, they did not represented a major
concern during the algorithm execution. This timings were higher than the reported in
the simulations and may be related to different initial conditions in every iteration, due
to the reference frame reset.

Master thesis Toshiharu Tabuchi 75

https://youtu.be/MBe3P_fERxI

7 Experimental evaluation of autonomous driving algorithms

0 2 4 6 8 10
−6
−4
−2

0
2
4
6

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]
Simulation

Experimental

0 2 4 6 8 10
0

1

2

3

4

Sp
ee

d
v x

[m
/s

]

0 2 4 6 8 10
0

20
40
60
80

100
120
140

t [s]

C
om

pu
ta

tio
na

lt
im

e
[m

s]

Figure 7.6 – Experimental results for path tracking control with the Dynamic
model (N=10) . vref = 3.33 m/s [12 km/h]. Sampling rate ∆t =
100 ms

Also, the two following hyperlinks provide access to the test’s videos.

CD version:

• Video: Test with Single-track model based controller (with steering’s dynamics)

Online version:

• Video: Test with Single-track model based controller model (with steering’s dy-
namics)

76

https://youtu.be/5DhCjcZZml8
https://youtu.be/5DhCjcZZml8

7.4 Experimental results in the circular test track

In table (7.2), the tuned weights used in the test are showed. As in the kinematic case,
these weights may differ from the ones in used the simulation, due to system-model
mismatches.

Table 7.2 – Weights for the Single-track model in the double lane track test

N rδ rv Px Py qx qy

10 15 0.3 2 2 1 1

7.4 Experimental results in the circular test track

This section reports the results obtained from the circular test track experiments (see
fig. 7.1a). Since the running track’s surface is made of an special material with a high
friction coefficient, it was possible to test higher speeds with the vehicle.

a. Kinematic model experimental results

Figure (7.7) and the video links below show the NMPC controller results based on the
Kinematic model. In the first graph, it is observed that the steering angle oscillates
around the simulated value. However, it should be noted that the amplitude of these
oscillations were small |δ| ≤ 1.5° and did not increased over time, which indicates that
the system was stable. In tests, the vehicle drove smoothly and the oscillations were
not perceptible in the movement.

Compared to the tests in the double lane change maneuver, the computational times
increased slightly. Although few iterations exceeded the system’s sampling rate, the
overall performance was not affected. As mentioned earlier, this problem may be
attributed to different initial conditions in the iterations, due to the reference frame
reset.

Master thesis Toshiharu Tabuchi 77

7 Experimental evaluation of autonomous driving algorithms

0 5 10 15 20 25
−6
−4
−2

0
2
4
6

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]
Simulation

Experimental

0 5 10 15 20 25
0

20
40
60
80

100
120

t [s]

C
om

pu
ta

tio
na

lt
im

e
[m

s]

Figure 7.7 – Experimental results with the Kinematic model (N=10) in the circum-
ference test . vx = 5.55 m/s [20 km/h]. Sampling rate ∆t = 100 ms

Also, the following hyperlinks provide access to the test’s videos.

CD version

• Video 1: Test with Kinematic model based controller (with steering’s dynamics)

• Video 2: Test with Kinematic model based controller (with steering’s dynamics)

Online version

• Video 1: Test with Kinematic model based controller (with steering’s dynamics)

• Video 2: Test with Kinematic model based controller (with steering’s dynamics)

In table (7.3), the tuned weights used in the test are showed. These weights may differ
from the ones used in the simulation, due to system-model mismatches.

78

https://youtu.be/CeTVpIG2Ft8
https://youtu.be/OclP81K82GM

7.4 Experimental results in the circular test track

Table 7.3 – Weights for the kinematic model in the circular track test

N rδ Px Py qx qy

10 23 2 2 1 1

b. Single-track model experimental results

Figure (7.8) and the video links below present the results obtained using the Single-track
model. Similar to the previous case, the steering angle oscillates around the simulated
value. The reference speed is reached around t = 2 s and maintained until the end of
the test.

The computation time graphs revealed that the algorithm exceeded the system’s sampling
rate in many occasions. Unfortunately, at the 7th second, one iteration exceeded the
sampling rate and the system was not able to recover from the unstable state. However,
during the period in which the computation time was kept below the sampling rate, the
algorithm worked as expected. The time could be reduced by compiling the code using
optimization flags. In this works, these options were not used for the controllers, since
each compilation can take up several hours. Multiple tests have to be done in order
to debug the code; then, using the optimization flags was not a viable option at the
moment. Future works could test the compilation with those options.

Master thesis Toshiharu Tabuchi 79

7 Experimental evaluation of autonomous driving algorithms

0 2 4 6 8 10
−6
−4
−2

0
2
4
6

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]
Simulation

Experimental

0 2 4 6 8 10
0
1
2
3
4
5
6

Sp
ee

d
v x

[m
/s

]

0 2 4 6 8 10
0

20
40
60
80

100
120
140
160

t [s]

C
om

pu
ta

tio
na

lt
im

e
[m

s]

Figure 7.8 – Experimental results for path tracking control with the Single-track
model (N=10) . vref = 5.55 m/s [20 km/h]. Sampling rate ∆t =
100 ms

Also, the following hyperlinks provide access to the test’s videos.

CD version

• Video 1: Test with Single-track model based controller (with steering’s dynamics)

• Video 2: Test with Single-track model based controller (with steering’s dynamics)

Online version

• Video 1: Test with Single-track model based controller (with steering’s dynamics)

80

https://youtu.be/M9BbV3VuAH8

7.5 Influence of the steering’s dynamics in the real-time performance of
the vehicle

• Video 2: Test with Single-track model based controller (with steering’s dynamics)

In table (7.4), the tuned weights used in the test are showed. These weights may differ
from the ones in used the simulation, due to system-model mismatches.

Table 7.4 – Weights for the Single-track model in the circular test track

N rδ rv Px Py qx qy

10 10 0.3 3 3 1 1

7.5 Influence of the steering’s dynamics in the real-time
performance of the vehicle

In this section, an evaluation of the steering dynamics’ influence in the NMPC controller
stability is presented. At low speeds (v ≤ 2 m/s), the controllers in which the steering
system’s inertia was not considered, were able to perform at an acceptable level. However,
when the speed increased, they became unable to follow the path.

Figure (7.9) and the video links below present the kinematic model NMPC tests’ results
on the double lane change maneuver track, in three different configurations. The blue
line defines the optimal value for the steering angle using the NMPC controller, in
which the steering’s dynamics were considered. This controller was able to finish the
course successfully. The green line represents the kinematic model without the steerings
dynamics. It can be seen that the reaction of system is slower, since the angle starts
changing later than in the previous case. This caused the car to run outside the path.
The previous model was also tested with a sampling rate above the transient state of
the servomotor (see fig. (4.3)). The results of this configuration are plotted with orange
and shows that the car was also unable to follow the path.

Master thesis Toshiharu Tabuchi 81

https://youtu.be/lzwB4FAgJ9Y

7 Experimental evaluation of autonomous driving algorithms

0 2 4 6 8
−6
−4
−2

0
2
4
6

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]

Simulation

with steering model
without steering model ∆t = 100 ms)
without steering model ∆t = 300 ms)

Figure 7.9 – Steering’s dynamics influence in the performance of the NMPC
controllers. Vehicle model: Kinematic (N=10) . vx =
3.33 m/s [12 km/h]. Sampling rate ∆t = 100 ms

Also, the following hyperlinks provide access to the test’s videos.

CD version:

• Video 1: Test with Kinematic model based controller (without steering’s dynamics
and sampling rate ∆t = 100 ms)

• Video 2: Test with Kinematic model based controller (without steering’s dynamics
and sampling rate ∆t = 300 ms)

• Video 3: Test with Kinematic model based controller (with steering’s dynamics)

Online version:

• Video 1: Test with Kinematic model based controller (without steering’s dynamics
and sampling rate ∆t = 100 ms)

• Video 2: Test with Kinematic model based controller (without steering’s dynamics
and sampling rate ∆t = 300 ms)

• Video 3: Test with Kinematic model based controller (with steering’s dynamics)

Figures (7.10) and (7.11) show the tests’ results made in the circular test track. As can
be seen in figure (7.10), the kinematic model with the steering model, represented by the
blue line, even tough presented an oscillatory response, the amplitude was small and did
not increase overtime. In contrast, the kinematic model without the steering’s dynamics,
represented by the green line, the steering angle’s amplitude increases overtime and the
vehicle became unstable. A similar situation is observed in figure (7.11).

82

https://youtu.be/kgYQtHGy_fU
https://youtu.be/kgYQtHGy_fU
https://youtu.be/vq2p4bf61Xc
https://youtu.be/vq2p4bf61Xc
https://youtu.be/MBe3P_fERxI

7.5 Influence of the steering’s dynamics in the real-time performance of
the vehicle

In summary, the NMPC controllers in which the steering dynamics were ignored showed
an unstable and a noticeable oscillatory movement, independent of the vehicle model.
The NMPC controllers with the steering model were more stable and their oscillations
were not appreciable. This suggest that the steering’s dynamics are very critical to the
autonomous driving control, and may be even more crucial than other inertial effects.

0 5 10 15 20 25
−6
−4
−2

0
2
4
6

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]

Simulation

with steering model ∆t = 100 ms)
without steering model ∆t = 100 ms)

Figure 7.10 – Steering’s dynamics influence in the performance of the NMPC
controllers. Vehicle model: Kinematic (N=10) . vx =
5.55 m/s [20 km/h].

0 2 4 6 8 10

−4

−2

0

2

4

St
ee

rin
g

an
gl

e
δ

[d
eg

re
es

]

Simulation

with steering model ∆t = 100 ms)
without steering model ∆t = 100 ms)

0 2 4 6 8 10
0
1
2
3
4
5
6

Sp
ee

d
v x

[m
/s

]

Figure 7.11 – Steering’s dynamics influence in the performance of the NMPC
controllers. Vehicle model: Single-track model (N=10).

Master thesis Toshiharu Tabuchi 83

Chapter 8

Conclusions and future work

8.1 Conclusions

The work presented in this thesis has focused on the design and implementation of an
autonomous driving algorithm for trajectory tracking. The algorithm was formulated
using the model predictive control (MPC) framework, which is a modern, state-of-the-art
control strategy. In MPC, a sequence of optimal control inputs are predicted within a
short time horizon using the non-linear dynamics, and soft or hard restriction of the
system. Since experimentation on real-sized vehicles involve high costs, the non-linear
MPC algorithms were tested in a 1:5 scale robotic car, which allows more realistic results
compared to virtual simulations.

Three mathematical model, specifically tailored for the robotic car, were formulated.
Also, the steering system’s dynamics were identified and included in the vehicle models
to increase the precision and stability. The steering system model was identified by
fitting a second order, black-box model using experimental data. For the general vehicle
mathematical representation, one kinematic and two dynamic models were formulated. A
Kinematic model was deduced from geometrical properties, without considering inertial
effects and forces in the wheels. This model was accurate at reduced speeds, in which
inertial effects like drifting and slip were not noticeable. For higher speeds, the inertial
effects and forces were introduced to generate two dynamic models: a Double-track
model, and a Single-track model, which is a simplification from the previous one.

Master thesis Toshiharu Tabuchi 85

8 Conclusions and future work

The MPC in continuous time was transformed into an NLP, in order to be solved with
state-of-the-art NLP optimizations solvers. In this work, the interior-point based IpOpt
solver was used, due to its good documentations, efficiency, and the ability to run on
Windows®. The transformation to NLP was done via discretization with the Multiple
shooting scheme. Within the shooting intervals, a Runge-Kutta 4 (RK4) integrator
was used. IpOpt requires that the user provide not only the cost and the constraints
functions, but also the gradient of the cost function, and the Jacobian of the constraints.
The cost function and the constraints were symbolically formulated within the Casadi
framework. Applying an state-of-art Automatic differentiation (AD) algorithm, these
two elements were derived to obtain the gradient and Jacobian of the problem. Casadi
also allowed to export all these functions as C++ code, which were later integrated
with IpOpt.

Before the implementation in the robotic vehicle, the NMPC controllers were simulated,
using to three different scenarios; the first and second track were used to test the
trajectory tracking performance, while an additional third one tested the ability of the
algorithm to avoid obstacles. All the simulations were executed in the same computer,
with identical setups for the IpOpt solver and the Microsoft Visual Studio 2010 C++
compiler, with a sampling rate ∆t = 100 ms. The results from the trajectory tracking
suggests that a minimum prediction horizon of N = 10 is required in order to achieve
stability and good performance of the controller. As expected, longer prediction horizons
and complexer models required more computation time.

In addition, the results from the obstacles avoidance test revealed that an even higher
prediction horizon (N = 15) may be needed in order to achieve an smooth response
during evasion maneuvers. Another discovery from the simulations was that Double-
track and Single-track models presented a very similar responses for the trajectory
tracking tests. For that reason, the Single-track model was chosen over the Double-track
model for the implementation, due to the lower computational resources it requires.

The experimental test bed used was a self-contained, 1:5 scale robotic vehicle, equipped
with an on-board computer and multiple sensors. The on-board PC runs a command
center software, developed in Embarcadero C++ Builder®. Since the Embarcadero
C++ compiler was not able to compile the IpOpt libraries, the NMPC controller was
integrated as a dynamic library (dll), which was compiled independently in Microsoft
Visual Studio 2010®. The command center software coordinates the acquisition of the
data, executes the autonomous driving algorithm, and monitors the status of the sensors

86

8.1 Conclusions

and batteries. For the path tracking, a CMOS camera coupled with an image processing
algorithm was used.

Additionally, a methodology was proposed, in order to discretize the reference curve
and to estimate the maximum recommended speed for the NMPC algorithm, based on
the vehicle and sensors setup. This methodology suggests that in order to reach higher
speeds, further information of the environment is required, and also smaller sampling
rates to keep the discretization of the path below an acceptable range.

For the experimental tests, the Kinematic and Single-track based NMPC algorithms were
implemented in the vehicle, using a prediction horizon of N = 10, and a discretization
time of ∆t = 100 ms. Two test tracks were used for the trajectory tracking test. The
first track recreated a double lane change maneuver and was built inside one of TU
Ilmenau’s buildings. The speed was limited to 3.33 m/s [12 km/h] due to the safety
reasons. Both tested controllers were able to complete the track. However, the bicycle
model presented a better performance, due to the additional information of the inertial
effects.

The second test was done in a circular running track, which is part of the TU-Ilmenau
university’s sports facilities. Since the track was outdoors, it was possible to test the
vehicle up to speeds of 5.55 m/s [20 km/h]. From the results, it can be concluded that
at low speeds, both the Kinematic and Single-track model would perform similarly. At
higher speeds, the Single-track model showed less oscillations and better performance.
speeds, independently of the vehicle model used. Even though a few previous works
considered basic steering models, this is the first study to our knowledge to investigate
the influence of the steering’s delay effects on the stability of controllers for autonomous
driving applications.

Additionally, the influence of the steering’s dynamics in the control was also evaluated.
In the tests, the controllers without the steering’s model were stable only at low speeds
v ≤ 2.22m/s [8km/h]. The controllers with the steering’s dynamics maintained
stability with speeds up to v = 3.33m/s [12km/h] in the Double lane change maneuver
test, and v = 5.56m/s [20km/h] in the Circular track.

In summary, the results from this work provide compelling evidence that a non-linear
MPC controller could be implemented as the core of future autonomous driving al-
gorithms, since it computes the optimal control inputs, taking in consideration the
restrictions inherent to the system. However, some limitations are worth noting. Al-
though in most of the tests, the vehicle was able to complete the test track, the

Master thesis Toshiharu Tabuchi 87

8 Conclusions and future work

computation time per iteration is still too high, which could present more complications
if higher speeds are used. Future work should therefore focus on reducing the computa-
tion time, and also limiting the execution time per iteration to ensure safe, real-time
operation.

8.2 Future work

One of the major drawbacks of MPC is the high computational resources it demands.
In most of the tests in this work, the computation times were kept below the sampling
rate of the system, but some iterations exceeded it. This suggests that, with some
improvements, the NMPC algorithms presented in this work could reduce its timings
below the sampling rate of the system. The easiest way to achieve this could be by using
a faster, more powerful CPU, at the expense of more power consumption. However, in a
real-sized vehicle, the energy requirements of this new CPU would not represent a major
concern, which means that it is a very reasonable solution. Computational time could
also be reduced by activating the optimization flags in the used compiler. In this work,
these options were not used, since each compilation could take up several hours, which
would have limited the number of tests made. A third alternative would be to change
the linear solver within IpOpt (MUMPS was used in this work), to a more efficient
one; or using a different optimization solver, more suitable for real-time operation like
ACADO [80]. A fourth option could be applying parallel computation. There is already
some works, like in [2], which presents promising results for reducing the computation
time using parallel optimized algorithms for MPC. All these ideas mentioned below are
not exclusive, and could be combined to obtain the best possible outcome.

Another minor problem in the tests was the lack of a precise odometry information to
obtain the position of the vehicle in the world’s frame of reference; this could allow a
better comparison between the simulation and experimental results. Also, this unit
may help reduce the the computational time, since better initial conditions can be
loaded in every iteration of the NMPC controller. A future task could be the design
and implementation of an odometry unit using a Kalman filter, to precisely estimate
the vehicle position.

In the other hand, the reference information is an important component for the NMPC
algorithm. A higher range of this reference, and the inclusion of more details may
improve the tracking performance. This could be achieved by using sensor fusion

88

8.2 Future work

algorithms which combine data from the camera, LIDAR, GPS and maps to estimate
the vehicle location within a map, and the details of its surroundings.

Master thesis Toshiharu Tabuchi 89

8 Conclusions and future work

Finally, a core component of an MPC algorithm is the system’s model. Improving
the vehicle model, by using system identification of the parameters could increase the
response accuracy. It was demonstrated in this work, that the steering’s dynamics
inclusion in the vehicle model dramatically increased the NMPC controller stability. The
inclusion of other actuators models could improve even more the controller capabilities.
Another task could focus on the tire model improvement. In the actual controller,
a linear tire model was used. However, at higher speeds, this model could reach its
operation limit and no longer be valid. Then, it may be necessary to use more complex
models like the Magic tire formula from Pacejka or the Fiala tire model. Furthermore,
the vehicle models presented in this work focused exclusively in the lateral dynamics,
which represent the most fundamental part in the vehicle movement control. However,
for more complex driving situations, like variable changes of acceleration and braking,
the longitudinal control should also be considered.

90

Bibliography

[1] W. Commons, “A basic working principle of model predictive control,” 2009.
Accesed 05-10-16.

[2] M. L. Correa Cordova, “High performance implementation of MPC schemes for
fast systems,” master thesis, Technische Universität Ilmenau, March 2016.

[3] Y. Gao, Model Predictive Control for Autonomous and Semiautonomous Vehicles.
PhD thesis, University of California, Berkeley, 2014.

[4] Caterham CSR trackday toy, “Does wider tyres equals more grip?.” http://csr200.

blogspot.de/2013/04/does-wider-tyres-equals-more-grip.html, 2013. Ac-
cesed 04-10-16.

[5] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “Mpc-based approach
to active steering for autonomous vehicle systems,” International Journal of Vehicle
Autonomous Systems, vol. 3, no. 2-4, pp. 265–291, 2005.

[6] Association for safe international road travel, “Road crash statistics,” 2015.

[7] National Highway Traffic Safety Administration, “Critical reasons for crashes
investigated in the national motor vehicle crash causation survey,” 2015.

[8] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA grand challenge: the
great robot race, vol. 36. Springer Science & Business Media, 2007.

[9] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” arXiv preprint
arXiv:1604.07446, 2016.

[10] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous

Master thesis Toshiharu Tabuchi 91

http://csr200.blogspot.de/2013/04/does-wider-tyres-equals-more-grip.html
http://csr200.blogspot.de/2013/04/does-wider-tyres-equals-more-grip.html

BIBLIOGRAPHY

automobile trajectory tracking for off-road driving: Controller design, experimental
validation and racing,” in American Control Conference, pp. 2296–2301, Citeseer,
2007.

[11] E. N. Moret, “Dynamic modeling and control of a car-like robot,” Master’s thesis,
Virginia Polytechnic Institute and State University, 2003.

[12] N. Schlegel, “Autonomous vehicle control using image processing,” Master’s thesis,
Citeseer, 1997.

[13] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing
of 1: 43 scale rc cars,” Optimal Control Applications and Methods, vol. 36, no. 5,
pp. 628–647, 2015.

[14] R. Verschueren, “Design and implementation of a time-optimal controller for model
race cars,” Master’s thesis, KU Leuven, 2014.

[15] RC race-shop, “1:5 Sportsline 4wd-530e BMW M3 ALMS, Elek-
tro, RTR, lackiert fg - 178179r.” http://www.rc-race-shop.de/fg/

178179r-1-5-sportsline-4wd-530e-bmw-m3-alms-elektro-rtr-lackiert-p-57423.

html, 2011. Accesed 02-02-17.

[16] L. Wang, Model predictive control system design and implementation using MAT-
LAB®. Springer Science & Business Media, 2009.

[17] J. Lee and W. Yoo, “Predictive control of a vehicle trajectory using a coupled
vector with vehicle velocity and sideslip angle,” International journal of automotive
technology, vol. 10, no. 2, pp. 211–217, 2009.

[18] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and L. B. Becker,
“A predictive controller for autonomous vehicle path tracking,” IEEE transactions
on intelligent transportation systems, vol. 10, no. 1, pp. 92–102, 2009.

[19] H. Chen, Stability and robustness considerations in nonlinear model predictive
control. VDI-Verlag, 1997.

[20] M. Isaksson Palmqvist, “Model predictive control for autonomous driving of a
truck,” 2016.

[21] M. A. Abbas, “Non-linear model predictive control for autonomous vehicles,”
University of Ontario Institute of Technology, Ontario, Canada, 2011.

92

http://www.rc-race-shop.de/fg/178179r-1-5-sportsline-4wd-530e-bmw-m3-alms-elektro-rtr-lackiert-p-57423.html
http://www.rc-race-shop.de/fg/178179r-1-5-sportsline-4wd-530e-bmw-m3-alms-elektro-rtr-lackiert-p-57423.html
http://www.rc-race-shop.de/fg/178179r-1-5-sportsline-4wd-530e-bmw-m3-alms-elektro-rtr-lackiert-p-57423.html

BIBLIOGRAPHY

[22] S. S. Oyelere, “The application of model predictive control (mpc) to fast systems
such as autonomous ground vehicles (agv),” IOSR J. Comput. Eng.(IOSR-JCE),
vol. 16, no. 3, pp. 27–37, 2014.

[23] M. A. Mousavi, Z. Heshmati, and B. Moshiri, “Ltv-mpc based path planning of an
autonomous vehicle via convex optimization,” in 2013 21st Iranian Conference on
Electrical Engineering (ICEE), pp. 1–7, IEEE, 2013.

[24] P. Lima, “Predictive control for autonomous driving: With experimental evaluation
on a heavy-duty construction truck,” 2016.

[25] F. Yakub and Y. Mori, “Model predictive control for car vehicle dynamics system-
comparative study,” in Information Science and Technology (ICIST), 2013 Inter-
national Conference on, pp. 172–177, IEEE, 2013.

[26] B. Kim, D. Necsulescu, and J. Sasiadek, “Model predictive control of an au-
tonomous vehicle,” in Advanced Intelligent Mechatronics, 2001. Proceedings. 2001
IEEE/ASME International Conference on, vol. 2, pp. 1279–1284, IEEE, 2001.

[27] A. Richards and J. P. How, “Model predictive control of vehicle maneuvers with
guaranteed completion time and robust feasibility,” in American Control Conference,
2003. Proceedings of the 2003, vol. 5, pp. 4034–4040, IEEE, 2003.

[28] R. C. Rafaila and G. Livint, “Nonlinear model predictive control of autonomous
vehicle steering,” in System Theory, Control and Computing (ICSTCC), 2015 19th
International Conference on, pp. 466–471, IEEE, 2015.

[29] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat, “Linear time-varying
model predictive control and its application to active steering systems: Stability
analysis and experimental validation,” International journal of robust and nonlinear
control, vol. 18, no. 8, pp. 862–875, 2008.

[30] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, “A linear time
varying model predictive control approach to the integrated vehicle dynamics
control problem in autonomous systems,” in Decision and Control, 2007 46th IEEE
Conference on, pp. 2980–2985, IEEE, 2007.

[31] C. E. Beal and J. C. Gerdes, “Model predictive control for vehicle stabilization at
the limits of handling,” IEEE Transactions on Control Systems Technology, vol. 21,
no. 4, pp. 1258–1269, 2013.

Master thesis Toshiharu Tabuchi 93

BIBLIOGRAPHY

[32] C. E. Beal, S. P. Boyd, J. C. Gerdes, and S. Beiker, Applications of model predictive
control to vehicle dynamics for active safety and stability. Stanford University,
2011.

[33] T. Schouwenaars, Safe trajectory planning of autonomous vehicles. PhD thesis,
Massachusetts Institute of Technology, 2005.

[34] T. Keviczky, P. Falcone, F. Borrelli, J. Asgari, and D. Hrovat, “Predictive control
approach to autonomous vehicle steering,” in American Control Conference, 2006,
pp. 6–pp, IEEE, 2006.

[35] Embotech - ETHZ spin-off, “Embotech-forces pro.” https://www.embotech.com/

FORCES-Pro, 2016. Accesed 21-02-17.

[36] H. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl, “High-speed moving
horizon estimation based on automatic code generation,” in Proceedings of the 51th
IEEE Conference on Decision and Control (CDC 2012), 2012.

[37] B. Houska, H. Ferreau, and M. Diehl, “An Auto-Generated Real-Time Iteration
Algorithm for Nonlinear MPC in the Microsecond Range,” Automatica, vol. 47,
no. 10, pp. 2279–2285, 2011.

[38] C. Liu, W.-H. Chen, and J. Andrews, “Experimental tests of autonomous ground
vehicles with preview,” International Journal of Automation and Computing, vol. 7,
no. 3, pp. 342–348, 2010.

[39] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multiple
shooting algorithms for optimal robot control,” in Fast Motions in Biomechanics
and Robotics, pp. 65–93, Springer, 2006.

[40] J. T. Betts, Practical methods for optimal control and estimation using nonlinear
programming. SIAM, 2010.

[41] D. Kraft, “On converting optimal control problems into nonlinear programming
problems,” in Computational mathematical programming, pp. 261–280, Springer,
1985.

[42] D. E. Kirk, Optimal control theory: an introduction. Courier Corporation, 2012.

[43] A. V. Rao, “A survey of numerical methods for optimal control,” Advances in the
Astronautical Sciences, vol. 135, no. 1, pp. 497–528, 2009.

94

https://www.embotech.com/FORCES-Pro
https://www.embotech.com/FORCES-Pro

BIBLIOGRAPHY

[44] S. Van Koutrik, “Optimal control for race car minimum time maneuvering,” Delft
University of Technology, MS Thesis, 2015.

[45] R. Huang, Nonlinear model predictive control and dynamic real time optimization
for large-scale processes. PhD thesis, Carnegie Mellon University Pittsburgh, PA,
2010.

[46] H. Bock and K. Plitt, “A Multiple Shooting algorithm for direct solution of op-
timal control problems,” in Proceedings of the 9th IFAC World Congress, (Bu-
dapest), pp. 242–247, Pergamon Press, 1984. Available at http://www.iwr.uni-
heidelberg.de/groups/agbock/FILES/Bock1984.pdf.

[47] M. Diehl, “Fast nonlinear model predictive control algorithms and applications in
process engineering,” Belgium, INRIA-Rocquencourt, 2007.

[48] E. Lazutkin, A. Geletu, S. Hopfgarten, and P. Li, “Modified multiple shooting
combined with collocation method in jmodelica. org with symbolic calculations,”
in Proceedings of the 10 th International Modelica Conference; March 10-12; 2014;
Lund; Sweden, no. 96, pp. 999–1006, Linköping University Electronic Press, 2014.

[49] S. Wright and J. Nocedal, “Numerical optimization,” Springer Science, vol. 35,
pp. 67–68, 1999.

[50] A. Messac, Optimization in Practice with MATLAB®: For Engineering Students
and Professionals. Cambridge University Press, 2015.

[51] S. Leyffer and A. Mahajan, “Nonlinear constrained optimization: methods and
software,” Argonee National Laboratory, Argonne, Illinois, vol. 60439, 2010.

[52] R. Brus, “Open-source software for nonlinear constrained optimization of dynamic
systems,” Master’s thesis, Technical University of Denmark, DTU, DK-2800 Kgs.
Lyngby, Denmark, 2010.

[53] A. Wächter and L. T. Biegler, “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,” Mathematical
programming, vol. 106, no. 1, pp. 25–57, 2006.

[54] J. Andersson, A General-Purpose Software Framework for Dynamic Optimization.
PhD thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical
Engineering (ESAT/SCD) and Optimization in Engineering Center, Kasteelpark

Master thesis Toshiharu Tabuchi 95

BIBLIOGRAPHY

Arenberg 10, 3001-Heverlee, Belgium, October 2013.

[55] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “Time-optimal race car
driving using an online exact hessian based nonlinear mpc algorithm,” in Control
Conference (ECC), 2016 European, pp. 141–147, IEEE, 2016.

[56] U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous vehicle control: A
nonconvex approach for obstacle avoidance,” IEEE Transactions on Control Systems
Technology, 2016.

[57] J. Andersson, J. Åkesson, F. Casellad, and M. Diehl, “Integration of casadi and
jmodelica. org,” in Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical Univeristy; Dresden; Germany, no. 063, pp. 218–231,
Linköping University Electronic Press, 2011.

[58] C. Long and H. Chen, “Comparative study between the magic formula and the
neural network tire model based on genetic algorithm,” in Intelligent Information
Technology and Security Informatics (IITSI), 2010 Third International Symposium
on, pp. 280–284, IEEE, 2010.

[59] A. Eskandarian, Handbook of intelligent vehicles. Springer, 2012.

[60] J. Frasch, Parallel algorithms for optimization of dynamic systems in real-time.
PhD thesis, KU Leuven, 2014.

[61] R. Yu, H. Guo, Z. Sun, and H. Chen, “Mpc-based regional path tracking controller
design for autonomous ground vehicles,” in Systems, Man, and Cybernetics (SMC),
2015 IEEE International Conference on, pp. 2510–2515, IEEE, 2015.

[62] M. Arndt, E. Ding, and T. Massel, “Identification of cornering stiffness during lane
change maneuvers,” in Control Applications, 2004. Proceedings of the 2004 IEEE
International Conference on, vol. 1, pp. 344–349, IEEE, 2004.

[63] B. Li, H. Du, and W. Li, “A novel cost effective method for vehicle tire-road friction
coefficient estimation,” in 2013 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pp. 1528–1533, IEEE, 2013.

[64] X. Li, Z. Sun, D. Liu, Q. Zhu, and Z. Huang, “Combining local trajectory planning
and tracking control for autonomous ground vehicles navigating along a reference
path,” in 17th International IEEE Conference on Intelligent Transportation Systems

96

BIBLIOGRAPHY

(ITSC), pp. 725–731, IEEE, 2014.

[65] B.-C. Chen, B.-C. Luan, and K. Lee, “Design of lane keeping system using adaptive
model predictive control,” in 2014 IEEE International Conference on Automation
Science and Engineering (CASE), pp. 922–926, IEEE, 2014.

[66] R. Pepy, A. Lambert, and H. Mounier, “Path planning using a dynamic vehicle
model,” in 2006 2nd International Conference on Information & Communication
Technologies, vol. 1, pp. 781–786, IEEE, 2006.

[67] T. D. Gillespie, “Fundamentals of vehicle dynamics,” tech. rep., SAE Technical
Paper, 1992.

[68] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media,
2011.

[69] D. Vilela and R. S. Barbosa, “Analytical models correlation for vehicle dynamic
handling properties,” Journal of the Brazilian Society of Mechanical Sciences and
Engineering, vol. 33, no. 4, pp. 437–444, 2011.

[70] J. Albersmeyer, Adjoint based algorithms and numerical methods for sensitivity
generation and optimization of large scale dynamic systems. PhD thesis, Ruprecht-
Karls-Universität Heidelberg, 2010.

[71] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic
vehicle models for autonomous driving control design,” in 2015 IEEE Intelligent
Vehicles Symposium (IV), pp. 1094–1099, IEEE, 2015.

[72] M. Doumiati, A. Victorino, A. Charara, and D. Lechner, “Unscented kalman filter
for real-time vehicle lateral tire forces and sideslip angle estimation,” in Intelligent
Vehicles Symposium, 2009 IEEE, pp. 901–906, IEEE, 2009.

[73] A. Bourmistrova, M. Simic, R. Hoseinnezhad, and R. N. Jazar, “Autodriver
algorithm,” Journal of Systemics, Cybernetics and Informatics, vol. 9, no. 1, pp. 59–
66, 2011.

[74] M. Egerstedt, X. Hu, and A. Stotsky, “Control of a car-like robot using a dynamic
model,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, vol. 4, pp. 3273–3278, IEEE, 1998.

[75] I. O. for Standardization (ISO), “Iso 3888-2:2011: Passenger cars – test track for a

Master thesis Toshiharu Tabuchi 97

BIBLIOGRAPHY

severe lane-change manoeuvre – part 2: Obstacle avoidance,” 2011.

[76] H. M. Choset, Principles of robot motion: theory, algorithms, and implementation.
MIT press, 2005.

[77] G. Carbone, F. Gomez-Barvo, et al., Motion and Operation Planning of Robotic
Systems. Springer, 2015.

[78] P. Morin and C. Samson, “Motion control of wheeled mobile robots,” in Springer
Handbook of Robotics, pp. 799–826, Springer, 2008.

[79] S.-J. Wu, H.-H. Chiang, J.-W. Perng, C.-J. Chen, B.-F. Wu, and T.-T. Lee, “The
heterogeneous systems integration design and implementation for lane keeping on
a vehicle,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 2,
pp. 246–263, 2008.

[80] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating microsecond
solvers for nonlinear mpc: a tutorial using acado integrators,” Optimal Control
Applications and Methods, vol. 36, no. 5, pp. 685–704, 2015.

98

	Abstract
	Zusammenfassung
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Overview

	2 Description of the 1:5 scale robotic car
	2.1 General description
	2.2 Physical properties
	2.3 Drivetrain and steering components description
	2.4 Sensors and peripherals for data acquisition
	2.5 On-board computer
	2.6 Data communication interface

	3 Computational methods for real-timeoptimal trajectory tracking
	3.1 Motivation for the use of Model predictive control (MPC)
	3.2 Principle of MPC
	3.3 Nonlinear model predictive control (NMPC)
	3.4 Direct methods for solving optimal control problems
	a. Direct single shooting
	b. Orthogonal collocation on finite elements
	c. Direct multiple shooting

	3.5 Selection of the NLP solver
	a. IpOpt C++
	b. CasADI

	4 Mathematical models for vehicles
	4.1 Steering system's dynamics
	a. System identification
	b. Identified model for the steering system

	4.2 Kinematic model
	4.3 Dynamic models for lateral dynamics
	a. Tire models
	a.1. Magic formula tire model
	a.2. Linear tire model

	b. Double-track model for lateral dynamics
	c. Single-track model for lateral vehicle dynamics

	4.4 Parameters for the vehicle models
	4.5 Mechanical and operational bounds

	5 NMPC controller design for autonomous driving
	5.1 Kinematic model based NMPC controller
	a. Cost function
	b. Variables bounds

	5.2 Dynamic models based NMPC controllers
	a. Cost function
	b. Variables bounds

	5.3 Obstacle avoidance
	a. Obstacle as a closed region
	b. Obstacle as repulsive force

	5.4 NMPC program structures
	a. Simulations version
	b. Real-time experimental version

	6 Simulations of autonomous drivingalgorithms
	6.1 Vehicle testing tracks
	a. Circular testing track
	b. Double lane change testing track
	c. Obstacles avoidance testing track

	6.2 IpOpt configuration
	6.3 Path tracking simulations
	a. Kinematic model results
	b. Double-track model results
	c. Single-track model results
	d. Performance comparison between vehicle models
	e. Phase difference of the steering angle and the input signal due to delay

	6.4 Obstacle avoidance simulations
	a. Kinematic model results
	b. Single-track model results

	7 Experimental evaluation of autonomous driving algorithms
	7.1 Command center software
	7.2 Path planning
	a. Reference points and look-ahead distance
	a.1. Path curve identification applying image processing
	a.2. Parameters and limits for the path curve parametrization

	7.3 Experimental results in the double lane change maneuver test track
	a. Kinematic model experimental results
	b. Single-track model experimental results

	7.4 Experimental results in the circular test track
	a. Kinematic model experimental results
	b. Single-track model experimental results

	7.5 Influence of the steering's dynamics in the real-time performance of the vehicle

	8 Conclusions and future work
	8.1 Conclusions
	8.2 Future work

	Bibliography

