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Abstract

We use models to understand or predict a system. Often, there are multiple plausi-
ble but competing model concepts. Hence, modelling is associated with conceptual
uncertainty, i.e., the question about proper handling of such model alternatives.
For mathematical models, it is possible to quantify their plausibility based on
data and rate them accordingly. Bayesian probability calculus offers several for-
mal multi-model frameworks to rate models in a finite set and to quantify their
conceptual uncertainty as model weights. These frameworks are Bayesian model
selection and averaging (BMS/BMA), Pseudo-BMS/BMA and Bayesian Stacking.

The goal of this dissertation is to facilitate proper utilization of these Bayesian
multi-model frameworks. They follow different principles in model rating, which
is why derived model weights have to be interpreted differently, too. These prin-
ciples always concern the model setting, i.e., how the models in the set relate to
one another and the true model of the system that generated observed data. This
relation is formalized in model scores that are used for model weighting within
each framework. The scores resemble framework-specific compromises between
the ability of a model to fit the data and the therefore required model complexity.

Hence, first, the scores are investigated systematically regarding their respective
take on model complexity and are allocated in a developed classification scheme.
This shows that BMS/BMA always pursues to identify the true model in the set,
that Pseudo-BMS/BMA searches the model with largest predictive power despite
none of the models being the true one, and that, on that condition, Bayesian
Stacking seeks reliability in prediction by combining predictive distributions of
multiple models.

An application example with numerical models illustrates these behaviours and
demonstrates which misinterpretations of model weights impend, if a certain fra-
mework is applied despite being unsuitable for the underlying model setting. Re-
garding applied modelling, first, a new setting is proposed that allows to identify a
“quasi-true” model in a set. Second, Bayesian Bootstrapping is employed to take
into account that rating of predictive capability is based on only limited data.

To ensure that the Bayesian multi-model frameworks are employed properly and
goal-oriented, a guideline is set up. With respect to a clearly defined modelling
goal and the allocation of available models to the respective setting, it leads to the
suitable multi-model framework. Aside of the three investigated frameworks, this
guideline further contains an additional one that allows to identify a (quasi-)true
model if it is composed of a linear combination of the model alternatives in the set.
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The gained insights enable a broad range of users in science practice to properly
employ Bayesian multi-model frameworks in order to quantify and handle con-
ceptual uncertainty. Thus, maximum reliability in system understanding and pre-
diction with multiple models can be achieved. Further, the insights pave the way
for systematic model development and improvement.
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Kurzfassung

Wir benutzen Modelle, um ein System zu verstehen oder vorherzusagen. Oft gibt es
dabei mehrere plausible aber konkurrierende Modellkonzepte. Daher geht Model-
lierung einher mit konzeptioneller Unsicherheit, also der Frage nach dem angemes-
senen Umgang mit solchen Modellalternativen. Bei mathematischen Modellen ist
es möglich, die Plausibilität jedes Modells anhand von Daten des Systems zu quan-
tifizieren und Modelle entsprechend zu bewerten. Bayes’sche Wahrscheinlichkeits-
rechnung bietet dazu verschiedene formale Multi-Modellrahmen, um Modellalter-
nativen in einem endlichen Set zu bewerten und ihre konzeptionelle Unsicherheit
als Modellgewichte zu beziffern. Diese Rahmen sind Bayes’sche Modellwahl und
-mittelung (BMS/BMA), Pseudo-BMS/BMA und Bayes’sche Modellstapelung.

Das Ziel dieser Dissertation ist es, den adäquaten Umgang mit diesen Bayes’schen
Multi-Modellrahmen zu ermöglichen. Sie folgen unterschiedlichen Prinzipien in der
Modellbewertung weshalb die abgeleiteten Modellgewichte auch unterschiedlich zu
interpretieren sind. Diese Prinzipien beziehen sich immer auf das Modellsetting,
also darauf, wie sich die Modelle im Set zueinander und auf das wahre Modell des
Systems beziehen, welches bereits gemessene Daten erzeugt hat. Dieser Bezug ist
in Kenngrößen formalisiert, die innerhalb jedes Rahmens der Modellgewichtung
dienen. Die Kenngrößen stellen rahmenspezifische Kompromisse dar, zwischen der
Fähigkeit eines Modells die Daten zu treffen und der dazu benötigten Modellkom-
plexität.

Daher werden die Kenngrößen zunächst systematisch auf ihre jeweilige Bewertung
von Modellkomplexität untersucht und in einem entsprechend entwickelten Klas-
sifikationschema zugeordnet. Dabei zeigt sich, dass BMS/BMA stets verfolgt das
wahre Modell im Set zu identifizieren, dass Pseudo-BMS/BMA das Modell mit
der höchsten Vorsagekraft sucht, obwohl kein wahres Modell verfügbar ist, und
dass Bayes’sche Modellstapelung unter dieser Bedingung Verlässlichkeit von Vor-
hersagen anstrebt, indem die Vorhersageverteilungen mehrerer Modelle kombiniert
werden.

Ein Anwendungsbeispiel mit numerischen Modellen verdeutlicht diese Verhaltenwei-
sen und zeigt auf, welche Fehlinterpretationen der Modellgewichte drohen, wenn
ein bestimmter Rahmen angewandt wird, obwohl er nicht zum zugrundeliegen-
den Modellsetting passt. Mit Bezug auf anwendungsorientierte Modellierung wird
dabei erstens ein neues Setting vorgestellt, das es ermöglicht, ein “quasi-wahres”
Modell in einem Set zu identifizieren. Zweitens wird Bayes’sches Bootstrapping
eingesetzt um bei der Bewertung der Vorhersagegüte zu berücksichtigen, dass diese
auf Basis weniger Daten erfolgt.
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Um zu gewährleisten, dass die Bayes’schen Multi-Modellrahmen angemessen und
zielführend eingesetzt werden, wird schließlich ein Leitfaden erstellt. Anhand eines
klar definierten Modellierungszieles und der Einordnung der gegebenen Modelle in
das entspechende Setting leitet dieser zum geeigneten Multi-Modellrahmen. Ne-
ben den drei untersuchten Rahmen enthält dieser Leitfaden zudem einen weiteren,
der es ermöglicht ein (quasi-)wahres Modell zu identifizieren, wenn dieses aus einer
Linearkombination der Modellalternativen im Set besteht.

Die gewonnenen Erkenntnisse ermöglichen es einer breiten Anwenderschaft in Wis-
senschaft und Praxis, Bayes’sche Multi-Modellrahmen zur Quantifizierung und
Handhabung konzeptioneller Unsicherheit adäquat einzusetzen. Dadurch lässt sich
maximale Verlässlichkeit in Systemverständis und -vorhersage durch mehrere Mo-
delle erreichen. Die Erkenntnisse ebnen darüber hinaus den Weg für systematische
Modellentwicklung und -verbesserung.
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1 Introduction

1.1 Motivation

Models and Uncertainty in Modelling

Whenever we want an explanation of the past, confirmation in the present or
predictions of the future, we employ models. In most simple and general terms, a
model is “a thing used as an example to follow or imitate” (Oxford), i.e., something
that allows us to understand or forecast behaviour of the system we are interested
in, whether its underlying relations are of physical, ecological, technical, political,
social, economical, financial, or other nature. More specifically, for quantitative
modelling of systems, models are rather to interpret as “a simplified description,
especially a mathematical one, of a system or process, to assist calculations and
predictions” (Oxford). Mathematical models enable us to simulate systems under
all kinds of conditions, to perform scenario analyses and, ultimately, to support
decision-making (Reichert et al., 2015; Ferré, 2017).

However, modelling is subject to uncertainty. The shear attempt of creating a
model implies uncertainty due to simplifications, assumptions, etc. Operating a
model adds and propagates uncertainty further due to all kinds of errors, vague
included observations, etc. Therefore, modelling comes with an intrinsic demand
for uncertainty quantification. Numerous approaches were proposed about how
to quantify uncertainty in model results based of sensitivity analyses (Gupta and
Razavi, 2018), interval computation (Moore, 1979), fuzzy set theory (Zadeh, 1965;
Klir and Yuan, 1995) and possibility theory (Zadeh, 1999) or entropy (Shannon,
1948), naming just a few. Yet, the most thoroughly discussed and widely used
tool to quantify uncertainty is probability theory (Gillies, 2012).

In particular, Bayesian inference proved to be suitable to handle uncertainty be-
cause under the Bayesian paradigm probability resembles belief that quantifies
lack of knowledge (e.g. Bernardo and Smith, 1994; Gelman and Shalizi, 2013), i.e.,
the paramount origin of uncertainty in modelling. Under this interpretation, Bay-
esian probability theory remains as the only consistent mathematical calculus for
uncertainty quantification (Nearing et al., 2016, and references therein). Plainly,
mathematical models contain parameters that map a certain input to a correspon-
ding output. Bayesian inference provides a comprehensive framework that allows
to address the vague notion of overall model uncertainty, e.g., by decomposing
it accordingly into parameter, input, output and so-called conceptual uncertainty
(Renard et al., 2010; Schöniger et al., 2014).
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Multiple Models and Conceptual Uncertainty

While parameter, input and output uncertainty are evaluated for individual mo-
dels, they can be subsumed under the overarching conceptual uncertainty, i.e., the
question of how to deal with multiple alternative models (hypotheses). This un-
certainty goes beyond how the parameters can map input to output more reliably
to whether the chosen parametrization is adequate at all. It defines which inputs,
parameters and outputs are relevant and targets at the very core of science: sys-
tematic hypothesis testing and inductive inference, i.e., how to infer general rules
from special cases and observations (Rathmanner and Hutter, 2011).

This issue about model choice dates back to ancient philosophy where Epicurus
stated the principle of multiple explanations and, concomitant, to never discard a
plausible hypothesis when it is consistent with the observations (e.g. Rathmanner
and Hutter, 2011). The multi-model approach stands to reason also in light of the
Duhem-Quine thesis (see Harding, 1975), i.e., that any single model suffers from
underdetermination by observations. Thereafter, a single hypothesis cannot be
isolated and evaluated because it always relies on other (auxiliary) hypotheses or
assumptions. Hence, multiple models that utilize divergent auxiliaries illuminate a
system from different angles and thereby shed light on shortcomings of individual
models.

Employing multiple models requires rules to rate their ability to “follow or imitate”
to the modelers desire. Some models are more plausible than others and objective
model rating prevents us from unreasonable preference of one model over others
(Elliott and Brook, 2007). However, a rationale for such rules and formal rating is
not straight-forward. A qualitative heuristic is given by Occam’s razor (e.g. Hut-
ter, 2007, and references therein). It states that between competing hypotheses,
the model that needs fewest assumptions (is the simplest model) while still being
consistent with the observations is best. A model that follows this principle is
called parsimonious (Angluin and Smith, 1983).

In our era of machine-based computation, Solomonoff (1964) formalized these prin-
ciples for the first time entirely by a concept called algorithmic probability (Rath-
manner and Hutter, 2011). The basic assumption is that our observations were
generated by some “true” algorithm. In theory, it is then possible to systematically
rate (Occam’s razor) all imaginable hypotheses (principle of multiple explanati-
ons) by writing them down as algorithms and computing them on a Universal
Turing Machine (Rathmanner and Hutter, 2011), i.e., the most general platform
for algorithm execution (Grünwald and Vitányi, 2003). Solomonoff’s algorithmic
probability then allows to translate the code-length of each algorithm into a Bay-
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esian probability. This way, it offers (theoretically) a way to place a probability
distribution over the entirety of potential models (Hutter, 2007). Each algorithm
resembles a compression of the observations - storing each observation separately
resembles the longest possible code. Hence, the probability of an algorithm to
be the optimal compression is the higher the shorter its code-length is. The best
model, in this spirit, is the shortest code that can fully reproduce the observations
and then halts (Grünwald and Vitányi, 2003) - and this is the true data-generating
algorithm. This comprehensive approach is called universal induction. It is the-
oretically complete, but practically incomputable (Rathmanner and Hutter, 2011).

Despite its practical inapplicability, the above concept sheds light on all issues of
conceptual uncertainty in practice. Three principal issues and their consequences
can be elicited:

1. The range of possible models is huge or even infinite - in theory, we need to
check all alternatives to know which one is absolutely the best. In practice,
we deal with a subset which is known as finite hypotheses problem (Nearing
et al., 2016). Therefore, it is by no means guaranteed, that one of our models
is the algorithm that generated the data at all. Hence, we need a system to
qualitatively describe the relation of this finite subset toward the so-called
data generating process (DGP).

2. In scenarios where a true model of the DGP is unavailable, aiming at identi-
fying it is no suitable objective. Then, conceptual uncertainty does not relate
to the probability of being the true model any more. As a consequence the-
reof, interpretations of conceptual uncertainty within such scenarios have to
be adjusted. Subsequently, Occam’s razor for model rating and selection also
needs to be realized by different means than algorithmic probability because
the underlying assumptions are different, too.

3. Under the assumption that a true model cannot be found, it is questionable
whether model rating with the ultimate goal to select only one model is
promising. Rather, we require systematic approaches to successfully operate
multiple non-true models.

In practice, we frequently consider multiple model alternatives (Clyde and Iversen,
2013) and therefore need guidance for appropriately matching “truth scenarios”
and “razor implementations” in order to adequately rate and utilize a single mem-
ber or multiple alternatives within a model set. Such guidance, however, is too
rare and too little systematic in the available literature.
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Model Types and Model Settings

For every modelling task at hand, it is typically possible to come up with several
hypotheses that are consistent with the observations - theoretically, it is even “pos-
sible to propose an infinite number of different models that allow us to correctly
predict any finite number of events” (Nearing et al., 2016) if we had infinite time.
Looking only at some model classification approaches reveals that numerous types
of models and kinds of modelling schools exist: physics-based vs. data-driven,
linear vs. non-linear, deterministic vs. stochastic, slow vs. fast, etc. (see, e.g.,
Refsgaard and Abbott, 1996; Breiman, 2001). Models fall into several of such ca-
tegories, e.g., physics-based and stochastic, and even within such a specification
there are countless possible alternatives. Using expert knowledge, we are able to
restrict this huge variety but still, we can often only guess whether we “get close”
to the DGP with a certain model or not.

Settings that describe whether (a) the true model is within our set of candidate
models, (b) the true model exists but is outside of our set or (c) the true model
is per se unavailable have been proposed by Bernardo and Smith (1994) from a
decision theoretic perspective. They enable us to formalize this issue and serve
as starting point for any kind of successive model rating. Despite the difficulty of
transferring such settings to practical modelling tasks, such a distinction is crucial
before any method for model rating can be applied: Model rating methods that
are tailored to identify a true model will yield misleading results if applied in a
setting where the true model is not included. Likewise, model rating methods that
assume the truth to be unavailable among the candidate models can also never
support the claim that the model they rate best is probably the true model. As
example, when models are used to gain understanding of an isolated process in
natural sciences they need to represent the relevant physics at the process-scale
and have to be rated by methods that can identify a true model.

Mostly, such settings are recognized and discussed in the field of statistics (e.g.
Clyde and Iversen, 2013). This motivates to elaborate on their relation to specific
model types in order to make them accessible to a broader audience for practical
application in other fields. Existing literature on model rating in most scientific
disciplines does not take these settings into account.

Model Complexity and Model Rating

In practice, we typically deal with a finite set of distinct and fully defined models
that share at least one objective like a quantity of interest (QoI) and account for
conceptual uncertainty between all competitors in this respect. The law of par-
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simony manifests itself as trade-off between quantified fit of model predictions to
observations and the vague notion of model complexity: A model is best if it fits
observations at least equally well or better while being simpler than the alterna-
tive models. This implies that, for a given amount of data, there is an optimal
complexity of a model (Claeskens, 2016), which is neither too complex, nor too
simple (see Occam’s razor).

Numerous model rating methods were developed that all employ this trade-off
but deviate vastly in their rating results due to the vagueness about what model
complexity actually is. Universal induction (Solomonoff, 1964) provided the first
rigorous definition of model complexity. Model rating methods that are directly
derived from it link model complexity to code length (Grünwald and Vitányi,
2003). Others measure model complexity by the number of (effective) parameters
(Akaike, 1973; Spiegelhalter et al., 2002), the probabilistic distribution of para-
meters (Kashyap, 1982), the sensitivity of parameters to observations (Mallows,
1973), the spread of predictions (Friedman et al., 2001), mixtures of the previous
or other means. There is no unique definition of model complexity and, often
enough, model rating is only based on quantified fit obtained via an error metric
like simple root-mean-square-error or so-called loss-functions without any conside-
ration of model complexity. This is however insufficient regarding so-called model
generalizability (e.g., Friedman et al., 2001), i.e., it does not allow to estimate the
model performance for new data.

Among all those model rating methods, there are some that share the same un-
derlying principles including similar representations of model complexity. Their
asymptotic equality is often shown in the limit of infinite observations. However,
in practice, there is only a limited amount of data. This limitation prevents that
any hypothesis could ever be proven right (Popper, 2005; Tarantola, 2006) and
exacerbates to assess which ones are good or bad (Nearing et al., 2016). Hence,
the model rating methods require classification and interpretation with respect to
the finite amount of data they are operated with and how they decide which mo-
dels are better or worse than others. Attempts in this direction were made before
(e.g. Kadane and Lazar, 2004; Yang, 2005; Vrieze, 2012), but are spread over
many different scientific disciplines and typically compare distinct methods rather
than aiming for an encompassing overview. A general classification scheme that,
first, clearly depicts what is meant by model complexity, and, second, from which
recommendations for action can be deduced for a specific modelling task at hand,
is still missing.
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Multi-model frameworks and their adequate utilization

Several multi-model frameworks are related to these model rating methods and
allow for statistical model selection and averaging (e.g. Burnham and Anderson,
2004; Gelman et al., 2004). The most prominent example might be Bayesian Model
Selection or Averaging (BMS or BMA; Draper, 1995; Hoeting et al., 1999; Raftery
et al., 2005) in which model probabilities are used to express uncertainty between
models in terms of how likely it is that a certain candidate model generated the
observed data. Both BMS and BMA enjoy wide-spread usage over many disci-
plines (e.g. Trotta, 2008; Faust et al., 2013; Hooten and Hobbs, 2015; Schöniger,
2016) where they are often first choice to deal with conceptual uncertainty. Si-
milarly, so-called Pseudo-BMA (Geisser and Eddy, 1979; Yao et al., 2017) is used
to handle uncertainty between multiple models with respect to their individual
ability to predict potential future data. In a similar spirit, model rating methods
like the famous Akaike information criterion (AIC; Akaike, 1973, 1974) serve as
basis for model selection. Other frameworks like (Bayesian) Stacking (Yao et al.,
2017; Le et al., 2017) allow to combine model competitors in a set for predictive
purposes rather than quantifying the uncertainty about one being relatively best.

Despite the popularity of multi-model frameworks, their applications frequently
cause confusion: different model selection criteria rate completely different models
as “best” (Burnham and Anderson, 2002; Claeskens et al., 2008); despite a true
model possibly being in the set, criteria like the AIC are not able to identify it
(Vrieze, 2012); model averaging by BMA often yields worse predictive results than
single model use (Domingos, 2000; Clarke, 2003), which raises the question whet-
her model combination as weighted average can be provided by BMA at all (see
Minka, 2002) and how actual model combination can successfully be performed
(Clyde and Iversen, 2013; Le et al., 2017).

All of these problems can be traced back to the central question: Which multi-
model framework employs the adequate Occam’s razor with respect to the model
setting of the modelling task at hand? Then, among other insights, it becomes
apparent that “BMA is no panacea” (Clyde and Iversen, 2013) and that concep-
tual uncertainty has different meanings and needs to be accounted for differently
as well. Still, much too often the fundamental principles are neglected and multi-
model methods are applied to practical modelling tasks decoupled from them. A
thorough investigation on these principles that collects insights from various scien-
tific disciplines and elicits guidance by highlighting linkages to method application
is still missing.
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Water and Hydrosystem Modelling

While the philosophical and statistical questions of conceptual uncertainty concern
all scientific disciplines on a rather abstract level, their answers pertain to very
practical consequences when applied in fields with direct impact on our every-day
lives. In hydrosystem modelling, our interest is water and its ubiquitous impact:
life rests on the availability of water; we humans depend on it for drinking and agri-
cultural irrigation, hygiene and health care, or energy and industrial production.
Water is vital to us and our cultural progress and requires sustainable management
of water quality and quantity. At the same time, the excessive abundance of water
during floods or harmful scarcity of water throughout droughts in the course of
weather and climate-related events require prognoses and adaption. Hydrosystem
models help us to deal with these issues on distribution and protection of water
resources and the risk assessment of water-related threats.

Traditionally, hydro(geo)logists employ process-based models (Freeze and Harlan,
1969; Montanari and Koutsoyiannis, 2012) to gain system understanding and as
primary choice to support decision making (Reichert et al., 2015) in addressing the
above challenges. Thereby, a major concern is uncertainty that arises from simpli-
fication of the underlying physical processes (e.g. Renard et al., 2010; Clark et al.,
2011; Refsgaard et al., 2012; Elshall and Tsai, 2014), which makes model com-
plexity also a question of scale like temporal resolution or spatial variability and
heterogeneity (Mendoza et al., 2015; Orth et al., 2015). As a consequence thereof
the space of potential models expands by, e.g., lumped bucket-type (Bergström
and Singh, 1995), spatially distributed (Refsgaard and Abbott, 1996), meso-scale
hydrologic (Samaniego et al., 2010) models or even neural networks (Hsu et al.,
1995) as modelling approaches on a completely different conceptual basis.

For decades, the hydro(geo)logic community has actively debated whether one ap-
proach is more suitable than others (e.g. Freeze and Harlan, 1969; Bergström and
Singh, 1995; Blöschl and Sivapalan, 1995; Wagener et al., 2009; Mendoza et al.,
2015). However, beyond individual preferences, there is no clear consensus on
preferring one modelling approach over another when all approaches appear plau-
sible for a certain task - and it remains questionable whether such a principle
preference is justifiable. Nonetheless, there is consensus about the necessity to
rigorously evaluate and rate models on a quantitative basis in order to justify an
objective preference (e.g. Clark et al., 2008; Schöniger et al., 2014). Correspon-
dingly, the growing insight of the community that “stochastification” of models
allows for rigorous estimation of uncertainty for all kinds of hydrosystem models
(Liu and Gupta, 2007; de Barros and Nowak, 2010; Cirpka et al.; Montanari and
Koutsoyiannis, 2012; Nearing et al., 2016) spurred various attempts of so-called
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Bayesian total error analyses (Kavetski et al., 2006; Vrugt et al., 2008; Reichert
and Mieleitner, 2009; Renard et al., 2010; Montanari and Koutsoyiannis, 2012;
Giudice et al., 2013) up to the level of conceptual uncertainty estimation using,
e.g., BMA (Ye et al., 2010; Wöhling et al., 2015; Schöniger, 2016) or AIC-related
model rating (Schoups et al., 2008). Thereby, however, the same shortcomings of
model selection and averaging methods as mentioned above have been recognized
(e.g. Poeter and Anderson, 2005; Ye et al., 2008; Lu et al., 2011; Schöniger, 2016).

1.2 This Thesis

1.2.1 Goals and Objectives

The goal of this thesis is to enable modellers to properly address conceptual un-
certainty: For modelling tasks where multiple competing models are available, I
explain and discuss which multi-model framework is most suitable to achieve a cer-
tain modelling goal that complies with the underlying model setting. Therefore, I
deeply analyse theoretical underpinnings of these frameworks; I demonstrate their
proper usage in applied modelling; I unify scattered insights from across various
scientific disciplines that work on related topics; and I offer a map for the confu-
sing field of conceptual uncertainty. Ultimately, I aim at making these multi-model
frameworks more accessible, in particular to applied modellers that often face con-
ceptual uncertainty in practice but are not (yet) familiar with the background
required to address it.

Bayesian multi-model frameworks allow for proper uncertainty quantification in
stochastic modelling. Within this thesis, I clarify how these Bayesian tools work
and how they can be used successfully when modellers desire process-identification,
predictive reliability and decision support in multi-model use.

This thesis is an attempt to close the highlighted gaps in Section 1.1 by bridging
the theoretical and philosophical underpinnings of multi-model usage to applied
modelling tasks. Therefore, I focus on examples from hydrosystem modelling but,
without any loss of generality, the insights can be transferred to other disciplines
where models are used, e.g., machine learning, psychology, ecology, engineering or
economics.

1.2.2 Research Questions and Contributions

An effective utilization of model rating methods and built-on multi-model frame-
works is complicated by the sprawling amount of alternatives and lack of guidance.
Modellers are often forced to pick one method in order to put model selection or
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averaging on a quantifiable basis - often this is a commonly used one within the
own scientific discipline. Yet, they have to rely on the chosen method to properly
address conceptual uncertainty and have to trust the obtained model rating - often
without fully knowing under which premisses the models are rated.

In order to establish guidance in this field, I want to invert this pattern by answe-
ring the following research questions (RQ):

1. How is the law of parsimony implemented in different model rating and
selection methods and what does this tell us about the evaluated models?

2. How are related multi-model frameworks properly used in specific modelling
settings and how are their often contradictory results interpreted correctly?

3. How can a multi-model framework be chosen for any modelling task at hand
such that the chosen framework properly addresses conceptual uncertainty
specifically for this task?

These three research questions focus on different but complementary parts of the
central question from Section 1.1: “Which multi-model framework employs the
adequate Occam’s razor with respect to the model setting of the modelling task
at hand?”

To answer the first RQ, I collected various model rating and selection methods that
were developed and used over the last decades and dissected them with respect
to their interpretation of model complexity, i.e., their implementation of Occam’s
razor. Thereby, I merged insights about model selection from vastly different scien-
tific disciplines and transferred them to applied modelling. As result, I developed
a classification scheme for model selection criteria that allows to rate models ac-
cording to whether a true model of an underlying DGP shall either be identified
or only approached in an either Bayesian or non-Bayesian way. For each class,
I discuss examples from hydrosystem modelling and propose matchings between
certain modelling goals and model selection methods.

To answer the second RQ, I applied three Bayesian multi-model frameworks (BMA,
Pseudo-BMA and Bayesian Stacking) to a finite model set for a typical task in hyd-
rosystem modelling. Using the insights about the Occam’s razor implementations
in my classification scheme from RQ 1, I analysed and contrasted how the three
frameworks account for conceptual uncertainty in philosophically different model
settings (see (a), (b) and (c) in Section 1.1). Therefore, additionally, I propose a
new practical model setting (called Quasi-M-closed) to close a gap between the
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existing ones for applied modelling. To assure reliability of the model rating re-
sults within the frameworks, I further applied the so-called Bayesian Bootstrap
method. This method allows to address insufficiently confident model ratings of
predictive performance in case of using only a small amount of available data. By
this practical example, I link the rigorous evaluation of Bayesian multi-model fra-
meworks with specified model settings and the usage of Bayesian Bootstrapping in
the context of hydrosystem modelling. Thereby, I demonstrate how the Bayesian
multi-model frameworks are adequately employed to achieve process-identification
or predictive reliability.

To answer the third RQ, I clarify which Bayesian multi-model frameworks allow for
model combination for either identifying or approaching a true model - similarly to
the different kinds of model selection from RQ 1. Therefore, I introduce a recent
approach that merges these principles by selecting the best model combination
for process-identification and exemplify it for a potential hydrosystem modelling
task. In direct relation to the three Bayesian multi-model frameworks from RQ
2, I propose a guiding scheme that allows to find the appropriate multi-model
framework for an arbitrary modelling task at hand. The guide shows that choosing
a proper multi-modelling framework is the natural outcome when starting from
the philosophical perspective on the modelling task, rather than picking one based
on some ad-hoc preference.

1.2.3 Thesis Structure

This thesis is structured as follows: First, I introduce the underlying theory on
models and model settings, as well as state-of-the-art Bayesian multi-model infe-
rence methods in Chapter 2. Second, in three core chapters, I answer and discuss
the three posed research questions:

• In Chapter 3, I answer RQ 1 and elucidate why some model selection criteria
look similar but pursue vastly different goals of modelling. Thereby, the
keyword is model complexity.

• In Chapter 4, I answer RQ 2 and demonstrate why respective model ra-
ting results seem to mean the same but represent vastly different takes on
conceptual uncertainty. Thereby, the keyword is model setting.

• In Chapter 5, I answer RQ 3 and elaborate why some multi-model frame-
works have similar names but apply to vastly different modelling situations.
Thereby, the keyword is model task.

Third and finally, I deduce conclusions from the found answers and discuss poten-
tial issues for future research in Chapter 6.
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2 Theory & Methods

Systematically addressing conceptual uncertainty requires a thorough considera-
tion of model theory. Hence, I focus on model conceptuality and model settings in
Section 2.1, on the principles behind Bayesian inference and uncertainty quantifi-
cation in Section 2.2, on available Bayesian multi-model frameworks in Section 2.3,
on their practical implementation in Section 2.4 and on common approximative
methods for model rating in Section 2.5.

2.1 Model Theory

2.1.1 A Refined Model Definition

The previous chapter introduced two definitions of a model as “a thing used as
an example to follow or imitate” or “a simplified description, especially a mathe-
matical one, of a system or process, to assist calculations and predictions”. Both
are kept as general definition that, in the spirit of Cartwright (1983), considers a
model as a tool to translate a set of hypotheses and/or theories into predictions
(e.g. Nearing et al., 2016). In order to translate this into mathematical terms,
we define a model here as: mathematical function of interrelated parameters Θ
that map a certain input x to an output y while being subject to noise/error ε.
The model parameters comprise latent variables ω like system properties and the
“model frame” of boundary and initial conditions Γ (Θ = {ω,Γbound,Γinit}):

Mm : y = f(x,Θ) + ε (1)

The above formulation for a model can most easily be understood as deterministic
model, where all model parameters Θ are fixed. Then, a certain input x̂ generates
one specific f(x̂) which equals the model output if ε is zero. Probabilistic models
or deterministic models that are operated in a “stochastic framework” account for
uncertainty of the components, e.g., specified by a probability distribution or pro-
bability density function (pdf) over parameters p(Θ), input p(x) and noise p(ε).
This results in a pdf of the model output p(y). Therefore, stochastic modelling can
be considered as generalization because taking the expectation over the assigned
distributions yields a deterministic model.

A model set or model ensemble M refers to a finite list of NM models that are
fully specified and share at least one identical objective or QoI as output variable:
M := (M1,M2, ...,MNM ).
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Despite its simplicity, the above definition of a model Mm as a thing to follow or
imitate essentially spans the entire spectrum of model types when we specify what
follow or imitate mean in the extremes (see, e.g., Breiman, 2001):

• follow refers to mechanistic modelling, where causal relations represent the
modelled system. Mechanistic models help to understand and explain a sy-
stem and allow for predictions based on causality. Universal natural laws and
principles are specified for a certain system in a top-down manner. Physics-
based models are an obvious example for mechanistic models and are often
used synonymously. In hydro-system modelling, such a model would be the
solution for the hydraulic head h as a function in space and time to the un-
derlying parabolic partial differential equation (PDE) for groundwater flow:

S0
∂h

∂t
−∇(K∇h) = Qin/out (2)

with time t and ∇ as vector operator of partial derivatives in all spatial di-
mensions, parameters storage coefficient S0 and hydraulic conductivity ten-
sor K, state variable hydraulic head h, and sources and sinks term Qin/out

as boundary condition. Further, to specifically solve this mechanistic model,
initial conditions like h0 = h(t0) and boundary conditions like constant head
or flux in space are required. Under steady-state conditions, the storage term
in the groundwater flow equation drops out, turning the parabolic into an
elliptic PDE −∇(K∇h) = Qin/out. Both contain the most fundamental law
in hydrogeology as example for the physical flux-gradient relationship, i.e.,
Darcy’s law for specific discharge q = −K∇h.

• imitate refers to data-driven modelling, where associations of system varia-
bles are not necessarily causal. Data-driven models mimic a system and allow
for predictions based on association of variables like correlation, regardless
of whether there is causality or not. Patterns in the data are generalized
for the observed or a similar system, i.e., a bottom-up approach. Empirical
relations are exemplary for data-driven models, like a neural network (NN):

f(x) = ψ(Wx+ b) + b0 (3)

A basic NN consists of interconnected nodes that allow for a non-linear map-
ping. Mathematically, in its core, it is a simple linear matrix multiplication
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of parameters known as weights W between connected nodes and the vector
of independent input variables x. A linear offset parameter b represents the
bias at each node and b0 additionally adjusts for the bias of the NN out-
put. The so-called activation function ψ(·) (typically a sigmoidal function)
introduces non-linearity and allows the NN with its linear core to fit also
non-linear data. A typical example from hydrosystem modelling is the pre-
diction of non-linear stream discharge as output based on inputs like rainfall,
evaporation, stored water, etc.

2.1.2 Model Conceptuality: Model Types and Model Fidelity

The above section outlined two extremes of model types: mechanistic and data-
driven modelling. These extremes are referred to as white-box or black-box models,
respectively (Breiman, 2001). All mathematical models can conceptually be situa-
ted somewhere on the grey scale between or at these two extremes (Refsgaard and
Abbott, 1996). Causality and association (specifically correlation) are not mutu-
ally exclusive - association at the white end is included into the model by causal
relations and at the black end regardless thereof. A grey-box model is a mixture
that uses causal relations for the parts of the model that are understood mecha-
nistically and adds associative relations to approximate the system behaviour in
other model parts. I refer to the black-white scale as model type in Figure 1, as
explained in the following.

Just like the grey scale is continuous, the transitions between the model types are
smooth. In natural science and engineering, systems and their processes are often
represented by conservation laws, as for mass, energy and momentum. Corre-
sponding white-box models contain ordinary or partial differential equations (see
Equation 2) which fully describe causal relations for all involved variables and
parameters. However, it is often not possible to describe every detail of a system
by fully resolved physics at all scales, e.g., friction as a meso-scale phenomenon.
Then, empirical or data-driven relations have to be employed for which it might
be possible to assign physical dimensions as units (even with fractal exponents
as in case of friction laws). Yet, they lump properties of the considered system
that are not fully resolved or understood, e.g., by friction coefficients. The data-
driven paradigm can likewise be used to model the whole system directly as full
black-box model (see Equation 3) without the need of any mechanistic description.
Illustrative examples of white-box, grey-box and black-box models in hydrosystem
modelling with the same objective like stream discharge prediction are shown in
Figure 1: finite element models (e.g. von Gunten et al., 2014), conceptual hydro-
logic (bucket) models (e.g. Fenicia et al., 2016) or neural network models (Zhang
and Zhao, 2012), respectively.
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Figure 1: Model conceptuality: model type and fidelity; illustrated by two examples for each
model type with different degrees of detail, i.e. a neural network, a bucket-type model and a
PDE-based model (from von Gunten et al., 2014) for stream discharge modelling.

In each conceptual modelling type - black, grey or white - there are different levels
of fidelity (see Figure 1). Typically, the term fidelity expresses accurate reproduci-
bility. In modelling, this can refer to the model output or the model itself in terms
of approaching or representing the true system. Here, model fidelity (e.g. Sinsbeck
and Tartakovsky, 2015) refers to the number of model elements and the degree
of detail or resolution within a particular model type - for which fidelity provides
an encompassing and type-independent terminology. In case of black-box neural
networks, fidelity refers to the number of nodes within each layer, the number of
hidden layers as well as inter- and intra-linking connections, etc. Staying with
the example of discharge predictions, high fidelity can mean to have two separate
output nodes for base and peak flow. A grey-box model can have different fide-
lity stages depending on the amount of sequentially or parallely arranged units or
pools (like hydrologic buckets), attached source and sink terms or other functional
parts that modify the output like stream discharge. For differential equation-based
white-box models like finite element models, the fidelity refers to different levels of
spatial or temporal discretization (e.g. Leube et al., 2013), i.e. the grid resolution
for solving the underlying equations, coupling of subsurface and surface water flow
and further (semi-)physical relationships that refine process descriptions.

Model evaluation and rating usually does not only refer to the model conceptuality,
but also to model fidelity. With respect to the scale of the modelling task (spatially,
temporally, amount of data, etc.) and the resolution of available model parameters,
boundary conditions, input variables and targeted output, the appropriateness
of models varies along both categorical axes. Conceptual uncertainty refers to

14



the degree of appropriateness and, for compactness, is assumed to comprise both
categories: model type and model fidelity.

2.1.3 Mathematical Spaces covered by Modelling

Regardless of which model classification system is used, every mathematical model
Mm refers to three different spaces:

• The prediction space Y (a.k.a. data or model output space) contains our
quantity of interest (QoI), e.g., hydraulic head or stream discharge. The
variables y for model output (predictions) and D for observations (data) of
the QoI are situated in Y . The dimensions of this space have the units of the
QoI. Each observation, i.e., every element in D or new data point Do, adds
an axis to this space. Models are set up to to match all observations by their
output y or yo on the respective axis. Note, that apart from predictions to
meet observed data, prediction might also refer to not (yet) observed states
or additional QoI. These can be considered as additional dimensions of Y
yet without measured Do. Model output is then supposed to yield estimates
for both, measured and unmeasured quantities. However, for quantitative
model rating only the dimensions of Y where data is available are considered.
Meanwhile, the remaining dimensions provide more information on the mo-
del’s plausibility in a qualitative and semi-quantitative manner, e.g., if the
magnitude of the estimated but unobserved quantity matches the modeller’s
educated guess.

• The parameter space Ωm encloses the parameters Θm of a certain model, e.g.,
hydraulic conductivity or storage coefficients. Each model Mm has its own
parameter space with parameters Θm. The dimensionality of the parameter
space is defined by the number of model parameters Np,m, which is sometimes
referred to as parametric complexity (Vanpaemel, 2009).

• The model space M is populated by our model(s), e.g., physics-based or
bucket-type models. Conceptually, each model Mm can be located somew-
here in this space. However, the dimensions of this model space are not
clearly defined. One can think of the dimensions that span this space as:
number of model parameters, degree of nonlinearity of functional relations
in the model, etc. Nonetheless, there is no comprehensive and complete
description of M.

In stochastic modelling, probability distribution are assigned to both, Y and Ω,
in order to account for predictive and parametric uncertainty, respectively. Yet,
without clear definition of M, the assignment of a probability distribution the
model space is not straight-forward without further specification.

15



2.1.4 Model Space Settings

All members in a model ensemble M (e.g., candidates from Figure 1) can be lo-
cated somewhere in M. Therefore, despite being only vaguely defined, we need a
conceptual basis for model evaluation and comparison inM under the finite hypot-
heses problem (see Chapter 1; Nearing et al. (2016)), i.e. a qualitative system to
formally relate the models in M to the data-generating truth a.k.a. true model
Mtrue. The true model is the exact mathematical description of the system to be
modelled, and is often also called the data-generating model or process, respecti-
vely (DGM or DGP). The above terms are used synonymously in the following.
All observations D are per definition instances of the corresponding distribution
of data / predictions from the true model q(y|Mtrue). The way model candidates
relate to Mtrue for a certain modelling task at hand can be distinguished by three
different M-settings adopted from Bernardo and Smith (1994):

• M-closed: One of the models in the ensemble M is exactly the true model.
Yet, it is unknown which one.

• M-complete: None of the ensemble members Mm is the true model. The true
model exists but it has not been possible (yet) to fully formulate it. Although
no member fully represents the truth, at least one might still approximate
it.

• M-open: None of the ensemble members Mm is the true model; it is que-
stionable whether a tractable true model exists or certain that it does not.
Opposed to the other settings, the true model cannot even be conceptually
defined due to, e.g., lack of expertise, lack of time, difficulty in conceptuali-
zing, or the system is indeed infinitely complex.

All settings are visualized in Figure 2 as a projection of all model candidates from
the M-space onto a 2-dimensional plane (similar to e.g. Sanderson et al., 2015):
Between each model’s predictive distribution p(y|Mm) and the DGP’s distribution
q(y|Mtrue), distances are evaluated using a statistical distance metric (cf. Section
2.2.4). Then, all models are projected on a 2D plane in a so-called multidimensional
scaling process that preserves these mutual distances. Note, that this process has
no unique solution regarding the allocation of models on the plane (Sanderson
et al., 2015), but this does not limit its suitability for a schematic visualization.
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Figure 2: Illustration of the three M-settings as 2D projection: M-closed (left), M-complete
(center) and M-open (right). The model set comprises three models (blue circles) of different
complexity (indicated by the circle size). While in the M-closed and M-complete setting the
true model (green circle with “T”) is static in the model space, arrows in the M-open setting
depict the true model as “moving target”. The primary objective (process-understanding or
predictive approximation) in each setting is visualized by the grey scale (bottom).

In Figure 2, each circle can be considered as the outline of a model’s projection
on this plane. The calculated distances between the models can be found between
the centers of the circles and the size of each circle sketches the complexity of the
model. The transparent green circle resembles the true model and the enumerated
opaque blue circles 1, 2 and 3 are model alternatives that are set up to follow
or imitate this truth. Regarding (continuously) taken observations from the true
model, Figure 2 can be read as follows:

• In the M-closed setting, one of the models matches the true model exactly
which follows from the fact that the DGP can be and is fully conceptualized
and also fully formulated. Informative observations allow to identify one
model in the set as the true model.

• In the M-complete setting, it can only be incompletely formulated despite
full conceptualization. Hence, the true model is not matched by any single
model in the ensemble but it is known to be fixed and finite somewhere in
M. Informative observations allow to locate the true model with respect to
the models in the set.

• In the M-open setting, the truth cannot even be conceptualized, let alone
written down. Then, there is no way to match the truth since the truth itself
could not even be located statically on the 2D plane - it “moves” along (yet)
unknown or hidden dimensions of M. Informative observations allow to
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reveal (previously unknown) features of the true model but without locating
it.

These qualitative differences of the M-settings are summarized in Table 1.

Table 1: Qualitative summary of the three M-settings: M-closed, M-complete and M-open
with respect to the true model.

Model (pdf)... M-closed M-complete M-open
... can be conceptualized fully fully incompletely
... can be formulated fully incompletely impossibly
... matches actual true model (pdf) fully maybe closely maybe temporarily

When referring to the basic purposes for modelling, i.e., to follow or “process
understanding” and to imitate or “predictive approximation”, we can simply vi-
sualize these M-settings on a white-to-black scale as in Figure 2: The white end
refers to M-closed, while the black end resembles M-open and the grey area in
between contains M-complete.

Each end has one dominant objective: At the white end, the goal can be to fully
explain the DGP - via identifying the true model from our ensemble of models. At
the black end, the objective can only be predictive capability - via selecting one
or combining several of the models in the ensemble for obtaining best predictions.
This does not mean that the respective other objective is discarded, but every
multi-model framework is primarily tailored to accomplish one major objective,
depending on what can be achieved in a certain M-setting.

Although pursuing only one of the primary objectives, any multi-model framework
might thereby still achieve the respective other objective: The correctly identified
DGP in theM-closed setting will automatically yield best predictions. Vice versa,
the best model (combination) that produces best predictions outside ofM-closed
might reveal variable associations or functional relations that are the reason for
such predictive power. Potentially, these can be translated into a mathematical
description that might help to (partially) understand the DGP - even if we know
that at the black end, we are not able to fully conceptualize (and write down)
the true model. In both cases, the respectively other objective is covered as a
side-product while pursuing the major objective.

Coming from the perspective of physical science and engineering, the colors black
and white in the extremes directly resemble the respective model categories that
we think are able to fulfil the purpose of modelling in the specific M-setting:

• White-box models that fully describe the causal relations of a system (like
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physical differential equations) are the closest resemblance of a real-world
DGP and therefore fit to the M-closed setting (white end).

• Black-box models are assumed not to contain any physics and are therefore
perfectly suited for theM-open setting. There, we expect that the true DGP
cannot even be conceptualized and a bottom-up (data-driven) approach for
generalization is required at the black end.

The famous “all models are wrong, but some are useful” (Box, 1976) holds outside
of theM-closed setting (with increasing severity towardsM-open). Usually, when
the word “model” is used, it is implicitly assumed that the modelling task at hand
is outside of M-closed - hence the quote is so appealing. However, in a scenario
where an allegedly true model of the DGP is formulated and becomes part of the
ensemble for process identification, the quote does not hold. A simple example for
a true model can be found in the field of electromagnetism. There, the Maxwell-
equations provide a true model of electromagnetic phenomena. Hence, under the
current state of knowledge about physics, they are considered right and because
of this, they are useful as a model.

It is important to internalize what statements can and cannot be made ultimately
when comparing models while being in one or the other M-setting: In an actual
M-closed setting, the best model resembles the DGP. There, and only there, it
can be called true model. Per definition, the true model is fully consistent with the
data, it provides the exact explanation and yields best predictions. Yet, outside of
this framework, the model that yields best predictions by no means also resembles
the actual DGP - it might not even be close, e.g., when we have a true physical
system and use a data-driven approach to successfully mimic it. Even if a model
rating clearly shows one model in the ensemble to be superior to the alternatives
in terms of predictive power and we think it resembles the truth quite well, we can
never state that we found the true model being outside of the M-closed setting.
But it still is the objectively best model for predictive approximation of the truth.

The unresolvable issue is that we never know which setting applies to our modelling
task at hand. However, to handle multiple models in a multi-model framework,
this is also not necessary as long as we understand which M-setting is assumed
by the applied method. The distinction between the M-settings helps us in two
respects:

• To choose a multi-model framework that at least helps us to achieve our
primary modelling goal, i.e., to follow (understand) or imitate (predict).

• To correctly interpret the outcome of multi-model frameworks and properly
account for conceptual uncertainty.
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2.2 Bayesian Inference and Uncertainty Quantification

2.2.1 Uncertainty, Knowledge and Bayesian Priors

Uncertainty in modelling arises from two sources: true randomness and lack of
knowledge (e.g. Rinderknecht et al., 2012, and references therein):

• True randomness as it appears in quantum mechanics, for example as radi-
oactive decay, is called aleatoric uncertainty.

• Lack of knowledge about the system that shall be modelled, its thorough con-
ceptualization, the correct mathematical description and all their cascading
consequences are referred to as epistemic uncertainty.

Both kinds of uncertainty can mathematically be handled by probabilities (Rinder-
knecht et al., 2012), yet with two different perspectives: Frequentist and Bayesian.

Frequentist : Classically, the entry point to probabilities is the quantification of
true randomness by frequencies of occurences in an infinite number of repetitions
(e.g. Omlin and Reichert, 1999), e.g., for radioactive radiation as result of nuclear
decay. Thereby, it is impossible to predict when a certain atom will decay but
between a lot of atoms, it is possible to count how many of them decay after a
certain time. This so-called frequentist perspective naturally yields probabilities
in the sense of aleatoric uncertainty. Ultimately, this kind of uncertainty remains
in any physical system and can be fully described by frequency-based probabilities.

Bayesian: Yet, before aleatoric uncertainty dominates, lack of knowledge is the
major source of uncertainty. This can hardly be captured by a frequentistic con-
sideration of whether something occurs or not. Instead, it can be described by
degree of belief in the available knowledge. This is the Bayesian interpretation of
probabilities. This kind of belief shall not be confused with arbitrariness or claims
that cannot stand scientific reasoning. Only knowledge that follows the scientific
paradigm and cannot be clearly falsified by experts can be transferred into proba-
bilities that express degree of belief with respect to epistemic uncertainty.

Under the Bayesian paradigm, probabilities can be assigned before any data is
available as so-called prior knowledge. Likewise, the distribution of errors bet-
ween observations and model predictions that stem from the measurement process
can also be considered as belief (Omlin and Reichert, 1999). As most important
property, the Bayesian interpretation of probabilities as beliefs allows their upda-
ting when new evidence like observed data is available. Although the Frequentist
and Bayesian probability interpretations differ, “resulting knowledge quantificati-
ons will be consistent with the axiomatic foundation of probability theory” (Rin-
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derknecht et al., 2012). This means that, ultimately, after theoretically all lack
of knowledge has been removed, the remaining epistemic uncertainty equals the
irreducible aleatoric uncertainty.

Note that, despite being commonly used, the distinction between aleatoric and
epistemic uncertainty is also subject to discussion (Nearing and Gupta, 2018).
Further, other approaches of uncertainty quantification are not mutually exclusive
with probability theory, e.g., information-theoretic tools allow for a broader ana-
lysis of uncertainty (cf. Section 2.2.4) in probabilistic forecasting.

The perspective on probabilities as degree of beliefs requires a closer look at the
kinds of knowledge or belief that are transferred into (Bayesian) probability distri-
butions, i.e., a distinction between objective, subjective and intersubjective kno-
wledge (Gillies, 2012; Rinderknecht et al., 2012; Omlin and Reichert, 1999):

• Objective knowledge refers to facts that can be empirically confirmed and
also hold in the absence of human opinion.

• Subjective knowledge, in contrast, is based on impressions of individuals that
might but do not have to coincide with objective facts.

• Intersubjective knowledge is what several individuals agree upon.

While subjective knowledge appears and disappears with an individual, intersub-
jective knowledge remains as long as individuals join and stay with what was
agreed upon. From a scientific perspective, intersubjective knowledge of experts
about not-man-made systems is supposed to converge towards objective facts.

Often, the Bayesian interpretation of probabilities is criticized for its lack of ob-
jectivity or directly blamed to be fully subjective (as discussed in, e.g., Gelman
et al., 2008). Typically, there is no objective prior knowledge available - there is
even an ongoing scientific debate about what a truly objective prior is supposed to
look like (van der Linde, 2012; Gelman et al., 2008). In contrast, fully subjective
beliefs usually oppose scientific neutrality. Hence, the kind of knowledge that al-
lows to conduct Bayesian inference in compliance with scientific requirements is
mostly intersubjective (Reichert et al., 2015). Intersubjectivity entails a natural
self-correction away from individual perspectives due to averaging of underlying
subjective knowledge and incorporation of available facts that can ideally be ob-
jectively confirmed. Hence, Bayesian priors should be assigned and confirmed by
expert knowledge (O’Hagan et al., 2006). Despite all criticism, the strength of the
Bayesian approach is that it forces the modeller to state all induced knowledge
and made assumptions explicitly.
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In Bayesian (model) inference, we need to internalize that, first, we primarily deal
with epistemic uncertainty, and, second, we need to scrutinize prior beliefs and re-
spectively assigned probabilities in light of their kind of knowledge. When testing
basic physical laws in perfectly controlled and isolated laboratory experiments, the
randomness can be objectively described and even be interpreted from a frequen-
tist perspective. In applied fields (e.g., hydrosystem modelling), where we work
with a predefined limited subset of models and hardly identifiable parameters,
objectivity is per se restricted. At the same time, a model comparison that is ba-
sed on only subjective assignments of priors can be considered to be manipulated
(Gelman et al., 2004) and is therefore non-trustworthy. For a model comparison
to be reliable, we have to make sure that we conduct and interpret it from an
intersubjective perspective if objective knowledge is unavailable, honouring that
uncertainty in model evaluation and comparison is primarily of epistemic nature.

2.2.2 Bayesian Model Inference

Bayesian statistics provide a coherent framework to conduct uncertainty quanti-
fication in terms of uncertain knowledge (about model input, output, parameters
and the conceptuality itself) for stochastic models (Gelman et al., 2004). Bayes’
theorem thereby is the tool for updating knowledge with respect to new evidence
- formally, by conditioning marginal distributions p(·) in order to obtain condi-
tional distributions of the form p(·|·). Practically, this enables us to navigate
between and link the probabilistic distributions on the three modelling spaces in-
troduced in Section 2.1.3, or, more specifically, their contained variables y (model
output/predictions), D (data), Θ (parameters) and M (models). For any given
model Mm, Bayes’ theorem writes as:

p(Θm|D,Mm) =
p(D|Θm,Mm)p(Θm|Mm)

p(D|Mm)
(4)

The marginal distribution p(Θm|Mm) represents the prior distribution of parame-
ters, i.e., before observations D of the QoI are considered in model Mm. As discus-
sed in Section 2.2.1, it is supposed to represent intersubjective or even objective
knowledge. IncludingD yields the posterior parameter distribution p(Θm|D,Mm)
which is the prior distribution conditioned on D. The conditioning is conducted
via the likelihood function p(D|Θm,Mm) (cf. Section 2.2.3). Figuratively, the
likelihood “pulls” and “squeezes” the prior while updating it to the posterior as
shown in Figure 3.

The denominator p(D|Mm) in Equation 4 is the marginal likelihood of model Mm,
i.e. the likelihood function integrated over the whole prior parameter distribution:
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p(D|Mm) =

∫
p(D|Θm,Mm) p(Θm|Mm) dΘm (5)

The marginal likelihood is a measure for the average likelihood that model Mm

generated D. Therefore it is often termed Bayesian model evidence (BME). BME
is a specific instance of the prior predictive density p(y|Mm) that formally writes
like Equation 5 but with the specific observations D substituted by the general
QoI y:

p(y|Mm) =

∫
p(y|Θm,Mm) p(Θm|Mm) dΘm (6)

Similarly, the conditional density p(y|Θm,Mm) (i.e., the likelihood for y = D)
can also be marginalized over the parameter posterior which yields a posterior
predictive distribution:

p(y|D,Mm) =

∫
p(y|Θm,Mm) p(Θm|D,Mm) dΘm (7)

Assuming “new” observations D′ as specific instances from q(y|Mtrue) and a pos-
terior that stems from conditioning on “old” observationsD, equation 7 provides a
posterior predictive density D′ that formally looks similar to the BME in equation
5. However, the posterior-marginalized likelihood is an integrated measure of the
predictive power under the updated parameter belief and does not tell us anything
about having generated D (cf. Section 2.3).
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Figure 3: Illustration of Bayesian inference for a variable (like a parameter Θ or a prediction
y) with a Gaussian prior pdf (light blue, left), with a Gaussian likelihood (dark blue, right) and
the corresponding Gaussian posterior pdf (medium blue, center).
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Bayes’ Theorem can be used (Equations 4 to 7) regardless of which M-setting
applies. However, the meaning of its parts differs slightly between the settings:

• In theM-closed setting, it is assumed that the true model is in the ensemble.
Hence also the prior parameter distribution of this true model is assumed to
be correct which means there is no systematic deviation between the model’s
parameter distribution and the true parameter distribution. The likelihood
function therefore only fulfills the purpose to account for measurement error
and thereby adjust the model output y to the “blurredness” of data D.
Figuratively, the likelihood function acts like glasses through which the model
can adopt to the sharpness of the observations.

• Outside of M-closed, a prior is an “educated guess” about the parameters
for per se wrong models. It is assigned such that each model reaches highest
predictive capability despite being conceptually wrong. Nonetheless, there is
a systematic offset between all models and the truth and hence also for their
parameter distributions (see Figure 3 for illustration) - if the models and their
corresponding parameters are conceptually wrong, the assigned parameter
prior cannot be right. Then, staying in the above imagery, in addition to
adjusting for the resolution of observations, the likelihood function also might
contain a “filter” like darkening in sun-glasses to adjust for the systematic
deviation.

2.2.3 Likelihood Function and Prediction Errors

Bayesian updating from prior to posterior belief crucially depends on the choice of
likelihood function. It defines how information about the system, that is contained
in the observations, is transferred to the knowledge about model parameters Θm,
yielding the posterior. Mathematically, the likelihood function resembles the as-
sumed distribution of errors or residuals r between model predictions y and data
D. Originally, it is a frequentist approach (Fisher, 1922) but can likewise be used
and interpreted under the Bayesian paradigm (Del Giudice et al., 2013).

In Bayes’ theorem (Equation 4), the likelihood is p(D|Θm,Mm) which means that
it is a function of D given Θm of a certain Mm. However, when updating the pa-
rameter prior p(Θm|Mm), we are interested in the dependence on Θm. Therefore,
we employ the original model formulation in Equation 1 to make the likelihood a
function of the model parameters Θm given observed data D: L(Θm|D). Note,
that the re-labelled L(Θm|D) does not necessarily integrate to 1 and is therefore
no proper probability distribution.
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In most general terms, errors are often assumed to be independent and identi-
cally distributed (i.i.d.). A specific instance of this is Gaussian white noise, i.e.,
uncorrelated normally distributed errors with zero mean and finite variance. The
corresponding likelihood function for Ns residuals for given data D is a multivari-
ate Gaussian:

L(Θm|D) = (2π)−
Ns
2 |R|−

1
2 exp

(
−1

2
r(Θm)TR−1r(Θm)

)
(8)

It describes the normal distribution of residuals r(Θm) = y(Θm) −D, i.e., the
distribution of predictions y(Θm) centred at the observed data D. In case of un-
correlated errors, the variance-covariance matrix of errorsR contains only diagonal
elements. They represent the measurement uncertainty (see ε in Equation 1) and
can be interpreted as weighting factors for each residual - the larger the measu-
rement uncertainty, the smaller the weight of the corresponding residual. Then,
the exponential argument resembles the weighted sum of squared errors (WSSE),
which makes the logarithmic likelihood proportional to the WSSE, i.e. a common
error metric.

Depending on the modelling task at hand, alternative likelihood formulations
might potentially be more suitable than Gaussian white noise. However, this nor-
mal error model allows easily to shed light on the issues involved in the adequate
assignment of a likelihood function with respect to the M-setting of the model-
ling task. Note, that the “Gaussian white-noise likelihood model” in Equation 8
does not account for a systematic bias between model predictions and observations
that occurs when wrong models are used. Such bias can be accounted for within
the likelihood function by modifying R (e.g., by having non-zero off-diagonal ele-
ments) or a separate error model (e.g. Del Giudice et al., 2013). However, while
outside of the M-closed setting such a statistical error treatment might help to
increase predictive performance, it contradicts the idea behind identifying a true
model in the M-closed case according to which no systematic bias exists. Hence,
in M-closed, the likelihood function should only account for measurement uncer-
tainty. Philosophically, another perspective is to automatically account for errors
by making the model stochastic instead of describing them by a likelihood function
(Nearing et al., 2016). Yet, mathematically, corresponding equations of these two
perspectives are equivalent.

Further, the above likelihood formulation does not depend on the state of model
variables, i.e., it cannot represent errors relatively to the values themselves. A
common example from hydrologic modelling is that the measurement uncertainty
of stream discharge depends on the flow regime, e.g., errors are relative to the
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magnitude of discharge under low, medium or high flow conditions. This pro-
blem of variance that changes depending on the magnitude of the QoI is known
as heteroscedasticity (Sorooshian and Dracup, 1980). Possible solutions in mo-
delling are to make the elements in R dependent on the magnitude of the me-
asurements, i.e., to assign relative errors, or to apply a transformation, e.g., the
Box-Cox-Transformation (Box and Cox, 1964), to rescale the values and control
the variance. This, however, might introduce additional (uncertain) transforma-
tion parameters and requires an adjustment of the likelihood function (see, e.g.,
Schöniger et al., 2014). Alternatively, the likelihood has to be evaluated over all
possible states, which mathematically resembles an expensive integration that is
often analytically intractable and computationally infeasible (Albert et al., 2015).
Then, so-called Approximative Bayesian Computation (ABC) methods allow for
sampling the likelihood function rather than fully evaluating it and this way to
pursue Bayesian inference. Further, ABC methods allow to infer an approximate
posterior using summary statistics of the QoI if the model output space Y is high-
dimensional and a likelihood function like Equation 8 becomes unsuitable (Albert
et al., 2015).

Opposed to this are approaches that do not employ a rigorous likelihood definition
that would allow to infer a full probability distribution of model output y. A
respective popular method in hydrology is the so-called GLUE (generalized likeli-
hood uncertainty estimation; Beven and Binley, 1992). It uses a certain rescaled
error metric (related to “acceptable” not to probable errors) to weigh model pre-
dictions. Based on this, prediction envelopes are delimited and the whole model is
rated in its forecast performance for comparison against alternatives. Note, that
while such an approach provides pragmatic estimates of acceptable predictions and
corresponding ranges of variability, they should rather be considered as weighted
sensitivity analysis (Montanari, 2007) and do not allow for rigorous probabilistic
uncertainty quantification from a Bayesian perspective.

2.2.4 Scores and Divergences

In probabilistic forecasting - as with prior or posterior predictive densities from
Bayesian inference - so-called scoring rules are used to evaluate the quality of fo-
recasts from a stochastic model over the entirety of the distribution (Gneiting and
Raftery, 2007). For deterministic predictions, this is trivially done by calculating
a certain error metric like the sum of squared errors (SSE) or the mean absolute
error (MAE) between the deterministic prediction and the observed values (as it
is also done when evaluating the likelihood function for specific parameter values).
Thereby, the kind of error metric regulates the impact of each residual, e.g., taking
squares amplifies the impact of large residuals. Model performance evaluation and
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comparison is therefore always subject to the chosen metric. Regarding entire
distributions of forecasts, scoring rules play the same role. Therefore, in the fol-
lowing, the so-called log-score, the Kullback-Leibler divergence, Shannon entropy
and Brier score will be introduced.

The most popular scoring function in Bayesian inference is the log-score (Good,
1952), i.e., the logarithmic value of the forecast density p(·) for a random variable
Y , evaluated by inserting given data D:

fscore(p,D) = ln(p(D)) (9)

Every scoring rule has a corresponding divergence that resembles a “distance me-
tric” between the predictive distribution of the model p(y) and the target distri-
bution q(y), here, the true distribution q(y|Mtrue). The log-score corresponds to
the Kullback-Leibler divergence:

DKL(q, p) =

∫
q(y)ln

(
q(y)

p(y)

)
dy = Eq[ln(q(y))]− Eq[ln(p(y))] (10)

The Kullback-Leibler divergence (DKL) is a metric for comparing two distribu-
tions that grows with the lack of their matching. It originates from information
theory where it is also known as relative entropy (Weijs et al., 2010). Accor-
dingly, the divergence between two distributions can also be interpreted from an
information-theoretic perspective as information gain when moving from one dis-
tribution towards the other. An information gain of zero thereby implies perfect
matching since the same information is contained in both distributions. Note,
that moving from either one or the other distribution implies asymmetry, which
formally disqualifies DKL as distance metric although it carries a notion of how
close distributions are to one another.

Correspondingly, the ties of the logarithmic score to information theory are ob-
vious when looking at the fundamental information-theoretic concept of Shannon
entropy as expected information per event: H(p(y)) = Ep[−ln(p(y))] (Shannon,
1948). Hence, the negative log-score is commonly interpreted as information-
theoretic “surprisal” (Tribus, 1961). From this perspective, maximizing the log-
score corresponds to minimizing surprisal which resembles high matching of distri-
butions in a DKL sense - no surprisal in predictions means perfect forecasts under
uncertainty, i.e. perfect match of p(y) and q(y|Mtrue).

There are many other scores that rate probabilistic forecasts with different empha-
sis, e.g., the well-known quadratic a.k.a. Brier score with the L2-norm (Euclidian
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distance) as associated divergence. However, the log-score comes with several be-
neficial properties (Boero et al., 2011), making it the only so-called proper local
scoring rule (Gneiting and Raftery, 2007). A thorough discussion of scoring rules
and divergences is beyond the scope of this thesis, but the interested reader may
refer to Gneiting and Raftery (2007). For the evaluation of predictive distributi-
ons in Bayesian model inference the log-score with the corresponding DKL is the
preferred choice and used throughout this thesis.

In Bayesian inference, the model prediction performance is expressed as margi-
nalized likelihood (Equations 5 to 7). Hence, its logarithm can be considered as
an expected log-score and interpreted in a DKL sense with respect to the true
data distribution q(y|Mtrue). Often, for pragmatic reasons like the values’ order
of magnitude, the log-likelihood is already employed in Bayesian inference. Yet,
the theoretical underpinnings of scoring rules puts the performance evaluation of
Bayesian predictive distributions on a strict basis.

2.3 Bayesian Multi-Model Frameworks

In all Bayesian multi-modelling approaches, the common posterior predictive dis-
tribution p(y|D) of NM models is:

p(y|D) =

NM∑
m=1

p(y|D,Mm)w(Mm|D) (11)

where p(y|D,Mm) is the posterior predictive distribution of y given data D only
of model Mm and w(Mm|D) is the posterior model weight of model M given D.
The model weights are simplex weights (wm ≥ 0 and

∑NM
m=1 wm = 1) in order to

assure integration to one.

Correspondingly, the ensemble expectation E[y|D] is the weighted average of all
model-specific expectations:

E[y|D] =

NM∑
m=1

E[y|D,Mm]w(Mm|D) (12)

The variance Var[y|D] of the common posterior predictive distribution writes as:
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Var[y|D] =

NM∑
m=1

Var[y|D,Mm]w(Mm|D)

+

NM∑
m=1

(E[y|D,Mm]− E[y|D])2w(Mm|D) (13)

These “Bayesian Multi-Modelling” equations are the same for all considered Bay-
esian model selection, averaging and combination frameworks (see, e.g., Hoeting
et al., 1999). Each approach is a certain kind of linear probability density function
(pdf) averaging - in case all individual predictive pdfs were Gaussian, one obtains
a Gaussian mixture as common distribution. Referring back to the 2D-plane pro-
jection of models in Figure 2 this means that the models stay where they are on
the plane. The weights then define the fraction of each model’s contribution to
the common posterior predictive distribution p(y|D) in order to follow or imi-
tate q(y|Mtrue). Yet, the multi-model frameworks vastly differ in how each one
estimates the model weights w(Mm|D) and in terms of their meaning.

2.3.1 Bayesian Model Selection and Averaging

Model Selection: Bayesian model selection (BMS; e.g., Hoeting et al., 1999;
Schöniger, 2016) is probably the most popular Bayesian multi-model framework.
It originates from applying Bayes’ Theorem not only to the parameters of a model
but also to all model alternatives in a finite set of models, i.e., NM fully speci-
fied model competitors. This is sometimes called the “two levels of inference”
(MacKay, 1992). In theM-closed setting, BMS is able to identify the true model
among these ensemble members - which is the only logical goal. There, and only
there, it is possible to assign a probability to be the true model to each ensemble
member. Hence, model weights (see Section 2.3), both prior w(Mm) and posterior
w(Mm|D), resemble probabilities. The mere fact that these probabilities sum up
to one emphasizes that the true model must be in the considered set.

Prior model weights w(Mm) are defined by the distribution that the modeller
assigns to the list of models in the ensemble. For example, a discrete uniform
distribution over NM models would yield a model weight of w(Mm) = p(Mm) =
1/NM for each model alternative. Posterior model weights are updated model
probabilities in light of evidence (data D). They are gained by incorporating the
model-specific marginal likelihoods (BMEs) p(D|Mm):

wBME(Mm|D) = p(Mm|D) =
p(D|Mm)p(Mm)∑NM
k=1 p(D|Mk)p(Mk)

(14)
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The marginal likelihoods are obtained by evaluating Equation 5 for each model.
Ratios of marginal likelihoods between two models, BMEm and BMEk, are called
Bayes factors (Kass and Raftery, 1995) and are a commonly employed tool to
directly compare two models. Bayes factors (BF ) multiplied with the ratio of
the respective prior model probabilities yield posterior odds (e.g. Calderhead and
Girolami, 2009) which further take into account the prior beliefs in the respective
models:

p(Mm|D)

p(Mk|D)︸ ︷︷ ︸
posterior odds

=
BMEm

BMEk︸ ︷︷ ︸
BF

p(Mm)

p(Mk)︸ ︷︷ ︸
prior odds

(15)

With its implicit assumption of rating model in terms of their probability to be
the true model, the BMS framework (in form of both, posterior model weights or
posterior odds) naturally seeks to converge towards one model that it considers
to be the correct one. This is called consistency in model selection (e.g. Hurvich
and Tsai, 1989; Shibata, 1986). The preference for the allegedly true model the-
reby increases under growing data size. In the limit of infinitely informative data,
BMS will asymptotically converge towards the true model in theM-closed setting.

BMS shows direct ties to universal induction (see Chapter 1) which is also consis-
tent in finding the data-generating truth. BMS is a practical framework to identify
a true model under insufficient knowledge from a finite subset of model alternati-
ves in face of uncertainty in all modelling spaces. Its relation to code-length based
model evaluation and rating can be shown by decomposing BME as will be done
and discussed in Section 2.5.

Model Averaging: Based on the obtained posterior model weights Bayesian
Model Averaging (BMA; e.g., Hoeting et al., 1999) can be performed. Yet, due to
the consistency property, the model weights from Equation 15 are not meant to
yield weighted model averages in the sense of model combination as clearly stated
by Minka (2002): ”weights in BMA only reflect a statistical inability to distin-
guish the hypothesis [sic] based on limited data”. Combination implies weights
that converge to certain values such that the weighted average of models yields
best predictions. Opposed to this, the weights in BMS represent the quantified
conceptual uncertainty in converging towards the allegedly true model using only
the currently available dataD. Averaging in this sense has to be interpreted as ac-
counting for the conceptual uncertainty in selection when model predictions need
to be made in an M-closed setting despite incomplete identification of the true
model (see Figure 4 and Höge et al. (2019)).
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Figure 4: Predictive pdf resulting from applying BMA and BMS to two competing models M1
and M2. BMA predictive pdf (dashed lines) converges to BMS result (here: predictive pdf of
M1, solid line) with increasing data set size (from Höge et al., 2019).

BMA is therefore an intermediate step throughout BMS for a snapshot of data
D. With increasing amount of data and subsequent re-iteration of Equation 14 on
the model ensemble, conceptual uncertainty in selection decreases. The posterior
model weights will change in favour of the allegedly true model until it ultimately
receives a model weight of one and in M-closed, w(Mm|D) = 1 is an irrevocable
statement of truth.

Interpretation: Consistency in model selection holds strictly only in an actual
M-closed setting. Being interpreted from the perspective of scores and divergences
(cf. Section 2.2.4), BMA/BMS asymptotically selects the (allegedly true) model
that minimizes the DKL between its prior predictive pdf p(y,Mm) and q(y|Mtrue)
(Yao et al., 2017) - it rates individual models, not their average. However, note
that if applied outside of true M-closed setting, this best model can still be arbi-
trarily “far” away from the the truth in an absolute sense but the closest relatively
to its competitors. Outside ofM-closed, this might be mistaken for being the mo-
del that provides best predictions. A modeller who employs BMS/BMA outside of
the the M-closed setting risks to worsen explanatory power, predictive capability
and reliable uncertainty quantification.

Regardless of theM-setting in which BMS/BMA is employed, it is crucial to keep
this information-theoretic interpretation in mind. BME is a particular instance of
prior predictive density p(D,Mm) and rates unconditioned (uncalibrated) models
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in their ability to have generated the observations. Interpreted as such, BME might
therefore still be useful as so-called prior predictive check (Gabry et al., 2017) at
D , i.e. an assessment of whether the model candidate meets the pattern and
magnitude of the data D in the way itself and its prior were set up. Yet, outside
of the M-closed setting, other multi-model frameworks than BMS/BMA, that
are based on other quantities than BME, are more suitable to handle conceptual
uncertainty (see, e.g., Section 2.3.2).

2.3.2 Predictive (Bayesian) Model Selection and Averaging

Model Selection: For a typical modelling task, the assumption of being in an
actual M-closed setting might rather be the exception than the rule. A Bayesian
multi-model framework for selection (and averaging) that is applicable outside of
the M-closed setting is so-called predictive or Pseudo-BMS (Geisser and Eddy,
1979). It also employs Bayes’ theorem, however not on the model level since model
probabilities of being true cannot be assigned outside of the M-closed setting.
Pseudo-BMS does not seek to find a true model in the ensemble but the one with
best predictive capability despite being wrong - the logical goal when a true model
is unavailable. This is called non-consistent model selection. “Pseudo” in this
context refers to two things:

1. TheM-setting of the modelling task at hand is assumed to be not “closed”,
which prohibits the interpretation of model weights as probabilities.

2. Formally, there is no big difference by how Pseudo-BMS is conducted com-
pared to BMS/BMA.

Both rate models based on marginalized likelihoods. However, contrarily to the
evaluation of BME (Equation 5) for BMS/BMA, Pseudo-BMS requires the like-
lihood of new unknown (out-of-sample) data D′ marginalized over the posterior
parameter distribution given (within-sample) data D:

p(D′|D,Mm) =

∫
p(D′|Θm)p(Θm|D,Mm)dΘm (16)

p(D′|D,Mm) is a specific instance of the general posterior predictive density
p(y|D,Mm) of the model (Equation 7) at D′ (Gelman et al., 2014). Since we
do not have access to future data D′, we can split the available D into calibration
and validation data. This is the idea behind cross-validation (CV; e.g., Stone,
1977): Adjusting the parameters by using the calibration part and rating the mo-
dels using the validation part.
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This way, in deterministic model selection, the expected predictive error (EPE)
is estimated as basis for model rating. Doing this probabilistically is referred
to as Bayesian Cross Validation (BCV) (Piironen and Vehtari, 2017) to estimate
predictive densities. Thereby, leave-one-out (LOO) cross-validation is the closest
approximation to actual future data by always holding out one data point Do

from data D and inferring on the rest of the data set D∅. The pointwise posterior
predictive density writes as:

p(Do|D∅,Mm) =

∫
p(Do|Θm)p(Θm|D∅,Mm)dΘm (17)

To resemble potential future data D′, every data point Do ∈ D is considered
separately. Exploiting the therefore imposed i.i.d. assumption about all Do, we
take the product of the pointwise predictive densities p(Do|D∅,Mm). On a loga-
rithmic scale, this turns the product into a sum of expected logarithmic pointwise
predictive densities (Gelman et al., 2014), i.e. the sum of expected pointwise
log-scores:

elpdLOO,m =
Ns∑
o=1

ln p(Do|D∅,Mm) (18)

The logarithmic predictive density is an expected value, because the predictive
capability of a model is estimated for one data point Do from q(y|Mtrue). Since
each data point is yet unknown, the estimation has to be formulated as expecta-
tion Eq[·] over the whole q(y|Mtrue). Finally, exponentiating elpdLOO,m yields an
approximation to equation 16 and model weights via:

wLOO(Mm|D) =
exp(elpdLOO,m)∑NM
k=1 exp(elpdLOO,k)

(19)

These Pseudo-BMS weights (often also called (B)CV-type weights or Akaike weig-
hts; Yao et al., 2017) shall not be confused with BMS/BMA weights from equation
14. They cannot be interpreted as model probabilities, but provide a relative mea-
sure for how close each (wrong) model’s posterior predictive density p(y|D,Mm) is
towards the true DGP distribution q(y|Mtrue) given the current data D. Although
not resembling probabilities, the definition of weights assures

∑NM
m=1w(Mm|D) = 1

as natural constraint in pdf-averaging (see Yao et al., 2017).

Plainly, Pseudo-BMS weights reflect how strongly a certain (wrong) model is sup-
ported by D. Under assumed growing data size, the data D at each stage is used
to assess how each model candidate, specifically its conceptuality and parameters,
makes use of the information contained in the available limited D in order to
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achieve highest predictive density for out-of-sample D′. In model selection, this is
sometimes referred to as asymptotic efficiency (Shibata, 1980). In the asymptotic
limit of infinite data, the best predictive model out of the competitors within the
ensemble will be elicited in an M-complete/-open setting.

The Pseudo-BMS framework is the Bayesian equivalent to selecting models deter-
ministically in terms of their validation performance as out-of-sample error. The
similarity between the probabilistic and deterministic approach becomes evident in
the comparison between approximative methods for estimating predictive density
or predictive error (see Section 2.5).

Model Averaging: Pseudo-BMS can be most easily understood when compared
to BMS/BMA in terms of their similarities and differences. The selective behavi-
our of Pseudo-BMS is similar to BMS/BMA, yet with different objective. Model
weights can also be used to average the models but they do not yield an average
in the sense of combination either. The weighted average in Pseudo-BMS/BMA
honours the conceptual uncertainty between (wrong) models to be the best pre-
dictive one in light of the currently available data D. Hence, the model weights of
ensemble members also resemble only an intermediate stage on the way towards
selection and are supposed to change under re-iteration of the framework with
growing data (cf. Figure 4 interpreted for posterior predictive distributions).

Yet, Pseudo-BMS/BMA vastly differs from BMS/BMA, because the model set can
change by adding new (or dropping old) model candidates throughout re-iteration
(see Leeb and Pötscher, 2009). With the underlying assumption to be outside of
the M-closed setting, there is no requirement as in BMS/BMA to identify the
true model out of a fixed and finite set with assigned distribution. In the Pseudo-
BMS/BMA framework, the only objective for a model in the set is to provide a
high predictive score. It can therefore be arbitrarily complex (or simple) as long as
it is quantifiably supported by data D. This argument can even be taken further,
such that if a model ever receives a model weight of one, there might be enough
data to support an even more complex model as best predictive model - in the
M-complete setting to approximate the unknown but “static” true model more
closely and in the M-open setting to chase the truth as “moving target”.

Interpretation: The model with highest weight in Pseudo-BMS/BMA is relati-
vely closest to the unknown truth in an information-theoretic sense, but can still
be arbitrarily far away in absolute terms. Being interpreted from the perspective
of scores and divergences (cf. Section 2.2.4), Pseudo-BMS/BMA asymptotically
selects the model that minimizes the DKL between its posterior predictive pdf
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p(y|D,Mm) and the unknown q(y|Mtrue) (Yao et al., 2017). Again, this holds for
the posterior predictive densities of individual models, not for their average.

This proximity can be shown for the M-complete setting (Le et al., 2017) be-
cause the true model distribution q(y|Mtrue) can be allocated on a fixed position
as sketched in Figure 2. In the M-open case, this is formally not possible, but
since the framework of Pseudo-BMS/BMA allows to handle conceptual uncertainty
for predictive purposes also for evolving model ensembles, it is considered to be
suitable also inM-open (Yao et al., 2017; Akaike, 1973). However, even if Pseudo-
BMS/BMA were applied in an M-closed setting, it is not able to identify a true
model since it is tailored for otherM settings. It might select the true model from
the ensemble as best predictive one, but it does not allow for concluding that it is
also the true model because it lacks the consistency property.

Regardless of theM-setting in which Pseudo-BMS/BMA is employed, it is crucial
to keep its information-theoretic interpretation in mind. The posterior marginali-
zed likelihood is a particular instance of posterior predictive density p(D′|D,Mm)
and rates conditioned (calibrated) but wrong models in their ability to approx-
imate the observations. It can be interpreted as so-called posterior predictive
check (Gabry et al., 2017) at D′ and is the suitable metric to rate models with a
predictive purpose.

2.3.3 Bayesian Stacking

Model Combination: While the selection of a single model is the logical goal in
theM-closed setting where the true model can be identified, it might not generally
be the best option for handling multiple models outside of it - because there, even
the best predictive model is wrong. Therefore, alternatively to selecting the best
single (posterior) predictive model as in Pseudo-BMS/BMA, it might be better
to use several models together and declare the combination of model pdfs as final
goal. Ideally, they complement one another and their combination achieves higher
predictive capability than either single candidate. It might be plausible that the
true model is “encircled” by the models in the ensemble. We can imagine this
as a convex hull of model output distributions that contains the true distribu-
tion q(y|Mtrue) (Sanderson et al., 2015) (see Figure 2) in theM-complete setting.
Then, a multi-model framework is required that yields model weights such that
the weighted average rather than a single model matches the “encircled” truth.

A probabilistic framework that superposes or “stacks” predictive distributions of
all models in the ensemble and optimizes the model weights according to how the
whole combination performs is Bayesian Stacking. It optimizes the model weights
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according to how well the combined or stacked (posterior) predictive distribution
matches q(y|Mtrue). This is opposed to Pseudo-BMS/BMA (Section 2.3.2) and
BMS/BMA (Section 2.3.1) that rate the (posterior or prior) predictive distribu-
tion of each single model in terms of how well it matches q(y|Mtrue).

Being outside of M-closed, the same pointwise predictive densities as in Pseudo-
BMA/BMS are used in Bayesian Stacking. The optimal weights are found by
maximizing the combined predictive density under the log-score following:

ŵstack = arg max
w

1

Ns

Ns∑
o=1

ln

NM∑
m=1

wmp(Do|D∅,Mm) (20)

Equation 20 is subject to wm ≥ 0 and
∑NM

m=1 wm = 1 (convex a.k.a. simplex
constraint) and therefore resembles a simple linearly constrained maximization
problem that can be solved by using a Lagrange multiplier. The combination of
NM model candidates writes as convex set (Yao et al., 2017):

K =

{
NM∑
m=1

wmp(y|D,Mm)|
NM∑
m=1

wm = 1, wm ≥ 0

}
(21)

The model weights in K are no model probabilities despite their simplex constraint.
In Bayesian Stacking, they represent the optimal shares ŵstack of each model in
a convex combination under the chosen scoring rule. In case another score than
the DKL is chosen for optimizing model weights (e.g. the Brier score), also anot-
her objective function than in Equation 20 has to be maximized and the optimal
weights differ (Yao et al., 2017).

Originally, Stacking (Wolpert, 1992; Breiman, 1996) is a general concept for obtai-
ning a weighted average of “best” (point) estimates ŷm from multiple calibrated
models Mm. The weights are typically gained by minimizing the error metric SSE
between ŷm and observations D. Then the best point estimates ŷ′m from all mo-
dels are accordingly weighted to match new data D′. For such point estimator
combination, the simplex constraint on the weights can be relaxed and negative
weights can be used (Bates and Granger, 1969) while in Bayesian stacking the
constraint is a natural choice (Yao et al., 2017).

Model Averaging: The obtained stacking weights provide an average (weighted
mixture) of posterior predictive pdfs in the actual sense of pdf combination. Yet,
not single model predictions are averaged as in classic stacking, but their distri-
butions. This means that in the prediction space Y , the individual model pdfs
do not change their position but their weighted fractions form a hull to cover the
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unknown q(y|Mtrue).

The model weights do not express conceptual uncertainty in terms of relative
preference for one model over the others. Conceptual uncertainty is accounted
for by admitting each model candidate a certain share in the combination, but
it is not meant to be “resolved” under growing data size as in BMS/BMA and
Pseudo-BMS/BMA. For theM-complete setting, the model weights are supposed
to converge to static model weights such that, optimally, q(y|Mtrue) lies within
the convex hull created by the models in the ensemble. In theM-open case, since
q(y|Mtrue) cannot be conceptually allocated, Bayesian Stacking might yield better
predictive coverage by employing combined models for a certain amount of data
but under growing data size the model weights might change as well.

Interpretation: In Bayesian Stacking, the weighted average of models is closest
to the unknown truth in an information-theoretic sense, yet not necessarily ma-
tching it. Being interpreted from the perspective of scores and divergences (cf.
Section 2.2.4), Bayesian stacking yields model weights to minimize the DKL be-
tween their mixed posterior predictive pdf p(y|D) and the unknown q(y|Mtrue)
(Yao et al., 2017). Le et al. (2017) showed that K minimizes the information-
theoretic loss between these two distributions under the log-score. Thus, it is the
optimal Bayesian estimator outside of an M-closed setting.

2.4 Implementation of Bayesian Inference

2.4.1 Inferring Distributions and Normalizing Constants

Bayesian inference for mathematical models requires to integrate out the parameter
distribution in order to obtain posterior predictive distributions and marginalized
likelihoods. Sometimes, this can be conducted analytically when a certain likeli-
hood is used with a so-called conjugate prior (Schlaifer and Raiffa, 1961). Then,
a corresponding posterior can be analytically inferred (Box and Tiao, 1973). This
holds for the variables of individual models and, inM-closed, even on both levels
of inference (MacKay, 1992), i.e., also for the distribution over all models. This
conjugacy holds mostly for distributions of the exponential family like Binomial or
Gaussian, as respective examples for discrete and continuous distributions. The
Gaussian distribution is even self-conjugate: A Gaussian prior is a conjugate prior
for the Gaussian likelihood (Equation 8), and together they automatically yield a
Gaussian posterior as analytical solution to Bayesian inference. A small collection
of other conjugate examples (e.g., DeGroot, 2005) is given in Table 2.
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Table 2: Examples of conjugate distributions: corresponding posterior distributions are analy-
tically tractable if the specified likelihood is used with a conjugate prior.

likelihood p(D|Θm) conjugate prior p(Θm) posterior p(Θm|D)
Gaussian Gaussian Gaussian
Poisson Gamma Gamma

Binomial Beta Beta
Categorical Dirichlet Dirichlet
Multinomial Dirichlet Dirichlet

However, such analytical solutions are rarely applicable. A typical example is a
Gaussian likelihood in linear regression with normally distributed regression para-
meters. Usually, as for nonlinear models, Bayesian inference becomes analytically
intractable and other methods have to be employed.

Most of these methods are based on statistical sampling of the distributions. In
principle, the methods exploit that, first, Bayesian inference and uncertainty quan-
tification rests upon the proportionality: posterior ∝ likelihood · prior (see Equa-
tion 4); and, second, that Bayesian model rating rests upon turning this proporti-
onality into equality by marginalization.

The most straight-forward numerical approach that provides both is plain Monte
Carlo (MC) integration (e.g., Hammersley and Handscomb, 1964). With MC we
numerically draw NMC independent samples ζi from a random variable Z with
distribution of interest q(ζ), e.g., a prior parameter pdf. With these samples, we
can approximate the expected value Eq[f(ζ)] of a function f(ζ) (e.g., a likelihood
function) over q(ζ) that is defined as:

Eq[f(ζ)] =

∫
f(ζ)q(ζ)dζ ≈ 1

NMC

NMC∑
i=1

f(ζi) (22)

BME is the likelihood function p(D|Θm) integrated (marginalized) over the para-
meter prior pdf p(Θm) and can therefore be evaluated with plain MC via Equation
22. MC is computationally demanding but reliable in converging to the expecta-
tion. Convergence of the mean to the expectation is guaranteed by the law of large
numbers (see Section 3.2.2). Therefore, I employ MC in this thesis (see Chapter 4).

Advanced (and related) methods like Markov Chain Monte Carlo (MCMC) allow
for sampling of q(ζ) if it is not directly tractable (see, e.g., Andrieu et al., 2003) but
can be evaluated at ζi. Briefly, MCMC “jumps” over the target distribution and
stores thereby accepted samples in a so-called chain. The acceptance of samples
follows strict rules that assure convergence to the target distribution. In Bayesian
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inference, these jumps are in accordance with the above proportionality. Hence,
the posterior is sampled and resembled by the collection of samples in the chain
- yet, only up to an unknown constant. For normalization, further processing of
the samples has to be applied (e.g. Vehtari et al., 2017). Such advanced techni-
ques enable us to efficiently perform Bayesian inference by accessing the involved
distributions by more sophisticated sampling strategies than plain MC, e.g., some
MCMC techniques employ several chains. They usually provide more informative
samples faster but, as trade-off, they typically have methodical parameters that
require fine-tuning. Despite not being employed here, I provide more specifics on
numerical methods and their ties to Bayesian inference in Appendix A.

2.4.2 Bayesian Bootstrap

Like every other numerically estimated quantity, the model weights from BMS/BMA,
Pseudo-BMS/BMA and Bayesian Stacking are subject to inferential uncertainty:

• First, the evaluation of weights in either method rests on quantities that
are marginalized over the whole considered parameter distribution (p(Θm)
or p(Θm|D∅)). With these distributions being approximated by numeric
samples, there is always uncertainty about the convergence of the margina-
lized quantities. This is a question of appropriate sampling algorithms and
sufficient numerical sample sizes to assure full convergence (Schöniger et al.,
2014).

• Second, it remains unclear whether the used observations D are a sufficient
proxy for the whole unknown data distribution q(y|Mtrue) (see the problem
of finite data (Nearing and Gupta, 2018) in Section 1.1). Especially in pre-
dictive model selection or combination like Pseudo-BMS/BMA and Stacking,
this uncertainty propagates to the estimated model weights and has to be
accounted for, e.g., via a Bayesian Bootstrap approach as in Yao et al. (2017)
for statistical models.

The Bayesian Bootstrap (BB) introduced by Rubin (1981) can be considered as
Bayesian analogue of the Frequentist bootstrapping (Efron, 1979). It evaluates the
uncertainty of sampled distributions by resampling (Efron and Tibshirani, 1994).
Both provide a non-parametric approximation to the distribution of a random
variable. The BB employs a uniform Dirichlet distribution, i.e., a distribution
over distributions: The data-points themselves stem from the data distribution
q(y|Mtrue). Every available data-point Do in D is a sample from this distribution.
Yet, D resembles only one instance of y that follows q(y|Mtrue). Hence, also any
derived quantities like ln p(Do|D∅,Mm) in Pseudo-BMS/BMA are only a special
case. In order to randomize this instance and subsequently infer statistics on the
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randomized samples, the Dirichlet distribution lends itself to be suitable.

The Dirichlet distribution is the conjugate prior (cf. Section 2.4.1) to the poste-
rior distribution for both, the multinomial and the categorical (a special case of
the multinomial distribution) likelihood distribution (see Table 2). Let us take
i.i.d. elements in a vector ζ as samples of some random variable Z. Via the Diri-
chlet distribution, their occurrences are assigned a posterior probability of 1 since
they are contained in ζ, expressed as Dirichlet(1) with 1 ≡ (1, ..., 1) of length
Ns. Samples of Z that are not in ζ are assigned 0 probability since they have
no probability under the sample cumulative distribution function (Rubin, 1981).
Figuratively spoken, each sample has its own bin. The prior distribution of sam-
ples taken from these bins resembles a categorical distribution - one “category”
for each bin. The multinomial distribution generalizes this over multiple drawings
from all these bins; and the Dirichlet distribution depicts the respective posterior.

The BB is explained in the following for ζ being the vector of logarithmic LOO
predictive densities of model Mm, i.e., with ζo,m = ln p(Do|D∅,Mm). Per Boots-
trapping replication b with b = 1 : NBB the drawn posterior probabilities α1:Ns,b

for ζ follow (Yao et al., 2017):

α1:Ns,b ∼ Dirichlet(1) (23)

In the Bayesian Bootstrap procedure, we now draw NBB statistically plausible
and varying alternatives of ζ. These so-called Bootstrapping replications yield the
sampling-based Bootstrapping distribution of the distribution of Z over which any
statistical moment can be inferred (Rubin, 1981) - for instance the mean (Yao
et al., 2017):

ζ̄b,m =
Ns∑
o=1

αo,bζo,m (24)

Thereof, the NBB replicates of the model weight of model Mm are simply estimated
by:

wb,m =
exp(Nsζ̄b,m)∑NM
m=1 exp(Nsζ̄b,m)

(25)

The expected weight over the whole BB distribution then writes as:

wBB
m =

1

NBB

∑
b=1

wb,m (26)
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Bootstrapping typically counteracts extreme weights of 0 or 1 (Yao et al., 2017).
The major strength of the BB is, however, that it allows to formulate likelihood
statements about the moments of the BB distribution (Rubin, 1981). This means
that the BB mean of weights wBB

m is - accounting for the uncertainty in definiteness
of data D - more likely than the direct calculation of weights without bootstrap-
ping. In case the weights calculated without bootstrapping are the same as after
applying it, bootstrapping can be seen as confirmation. The additional compu-
tational costs of the BB are very small because the quantities required to apply
it (here, ζo,m = ln p(Do|D∅,Mm)) are already available for calculating the model
rating scores.

2.5 Approximative Model Rating Methods

The marginalized likelihoods p(D|Mm) and p(D′|D,Mm) (or more specifically
p(Do|D∅,Mm)) from Section 2.3 each follow the law of parsimony (see Section
1.1): They account for model complexity in their respective realm while quanti-
fying the overall model fit to dataD (orD′). Note, that when these two quantities
are obtained by full marginalization, e.g., via MC integration, model complexity
is taken into account implicitly.

Approximative estimators of the logarithmic marginalized likelihoods are com-
monly used and known as model selection criteria, most of them are called infor-
mation criteria (IC) (e.g. Spiegelhalter et al., 2014). They resemble decompositions
of the logarithmic scores into a term for so-called goodness-of-fit to D and a speci-
fic model complexity part. Hence, they depict how model complexity is quantified
with each score explicitly.

In the following, commonly used Bayesian model selection criteria (and their
non-Bayesian counterparts) are presented and discussed. Thereby, the model-
specification Mm is dropped for simplification. For clarity, the criteria are assigned
to four classes according to Höge et al. (2018). These classes distinguish them by
whether they are consistent (B-type) or non-consistent (A-type) and by whether
they are Bayesian or non-Bayesian (1 or 0). Criteria in class:

• B1 approximate ln p(D). Models are rated by posterior model probability
(class of BMS/BMA, see Section 2.3.1).

• B0 resemble the non-Bayesian counterpart to B1. Models are rated by code
length that is approximated by respective criteria.

• A1 approximate ln p(D′|D). Models are rated by predictive density (class
of Pseudo-BMS/BMA, see Section 2.3.2).
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• A0 resemble the non-Bayesian counterpart to A1. Models are rated by pre-
dictive error that is approximated by respective criteria.

The rest of the remaining Chapter 2 has been published by Höge et al. (2018) and
I reuse parts of the text.

In their original derivation, many model selection criteria assume that residuals
between observations D and model predictions y can be described as white noise
(zero mean, uncorrelated, finite variance) or even as independent and identically
distributed (i.i.d.) (e.g. Leeb and Pötscher, 2009). This holds for the uncorrelated
Gaussian case but rarely occurs in reality - especially in hydro(geo)logy. Hence, a
reasonable treatment of the errors is required when model selection criteria are ap-
plied (e.g. Schoups and Vrugt, 2010). However, it was shown that model selection
criteria generally work under weaker assumptions on the errors than being Gaus-
sian or i.i.d. (Leeb and Pötscher, 2009, and references therein). Principally, it has
to be noted that all criteria are conditional on the choice of the error distribution
(also known as loss, cost or likelihood function) (e.g. Tarantola, 2006).

2.5.1 B1: Posterior Model Probability

For linear models with Gaussian parameter prior and Gaussian likelihood, the
Kashyap information criterion KIC (Kashyap, 1982) provides an analytically cor-
rect solution to the marginal likelihood given by p(D) = exp(−1

2
KIC). It is based

on the Laplace approximation about the maximum a posterior estimator (MAP)
Θ̃ (Schöniger et al., 2014) and it can be applied whenever this approximation is
valid:

KICMAP = −2lnL(Θ̃|D)−2 ln p(Θ̃)−Np ln(2π)− ln|Σ̃|︸ ︷︷ ︸
lnOFKIC

(27)

The KIC allows for splitting up the logarithmic marginal likelihood explicitly into
a goodness-of-fit term (first term in equation 27) and a so-called logarithmic Oc-
cam factor (OF) (MacKay, 1992) comprising three complexity terms. A detailed
discussion on the effect of each of these terms can be found in Schöniger et al.
(2014). In summary, the first two of these terms penalize complexity with respect
to the number and prior uncertainty of parameters and balance each other parti-
ally by mutual compensation. The last term can be interpreted as a penalty for
low parameter sensitivity towards data, i.e. for poor parameter identifiability by
the given data D.

As an alternative to the KIC evaluated at the MAP, KIC is frequently evalua-
ted at the maximum likelihood estimator (MLE) (Neuman, 2003; Ye et al., 2004;
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Schöniger et al., 2014). For larger sample sizes it is assumed that the likelihood
function dominates the posterior parameter distribution and the MAP approaches
the MLE. Hence, for these cases, BME can be reasonably approximated by evalu-
ating the KIC terms at the MLE for large (informative) data sets.

The popular Schwarz or Bayesian IC (SIC/BIC; Schwarz, 1978) is the most com-
pact approximation to BME. The BIC is derived in the limit of infinite sample
size Ns →∞. Then again, the MLE Θ̂ becomes equal to the MAP. In this limit,
all Occam factor terms in equation 27 that are not affected by Ns drop because
they become negligible. The Occam factor that remains is Np,kln(Ns). The BIC
therefore writes as:

BIC = −2lnL(Θ̂|D) +Npln(Ns)︸ ︷︷ ︸
lnOFBIC

(28)

In theory, the BIC converges to BME in the limit of infinite sample size. In
practice, it is criticized for yielding unsatisfactory results even for large Ns (Kass
and Raftery, 1995). Nonetheless, the BIC is the most popular consistent informa-
tion criterion due to its simplicity. Hence, the whole branch of consistent model
selection is often referred to as BIC-type model selection (Aho et al., 2014). Like
the AICc in non-consistent model selection, there is a proposed correction for small
sample sizes called BICc (McQuarrie, 1999).

So far, reliable BME evaluation metrics do either underlie strong assumptions like
the above explicit criteria, or they are computationally demanding like the menti-
oned implicit schemes. Therefore, it is not possible to measure model complexity
in the above sense explicitly when these assumptions do not hold (Schöniger et al.,
2014). Criteria like the Watanabe-Bayesian IC (WBIC) (Watanabe, 2013) have
been proposed to resolve this issue, but in various cases they perform poorly in
approximating the BME when tested against implicit methods that directly assess
BME (see e.g. Mononen, 2015; Friel et al., 2016).

In summary, model complexity quantified as Occam factor OF as part of the BME
is the knowledge gain between parameter prior and posterior. It grows with the
data size Ns and only parameters that are affected by D (i.e. are identified by D)
contribute to this value.

2.5.2 B0: Code Length

In coding theory, a model is considered to be “a compact representation of possible
data one could observe” (Ghahramani, 2013). The coding-theoretic Kolmogorov(-
Chaitin) complexity (KC) formalizes this concept of a model by evaluating the
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complexity of a sequence (Grünwald, 2000). KC is the shortest code in bits that
can produce a certain output, e.g. a sequence of symbols like a series of data, and
then halts (Grünwald and Vitányi, 2003). For reasons not further discussed here,
KC is considered to be incomputable (Rathmanner and Hutter, 2011).

From a coding theory point of view, everything can be encoded. In this spi-
rit, fitting a model can be considered as encoding the data. The shortest coded
compression of data D is the simplest statistical model that can reproduce D
(Rissanen, 1978; Grünwald, 2000). The idea of compressing data is based on the
assumption that there is pattern or structure in the observations. A set of data
without any structure cannot be compressed easily and each data point has to be
stored explicitly. This enlarges the code and makes the required model more com-
plex. The more compression due to redundancy or structure is possible, the better
a simple model can describe the regularities behind the observations (Myung et al.,
2000).

This perspective motivated the development of model selection based on Minimum
Description Length (MDL) (Rissanen, 1978). The MDL of a model candidate to
compress D is its code length needed (Myung et al., 2006). The popular version of
MDL presented here is formalized as the so-called Fisher information approxima-
tion (e.g. Vandekerckhove et al., 2015) (see section 2.5.3 for details on the Fisher
information matrix F):

MDL = −lnL(Θ̂|D) +
Np

2
ln
Ns

2π
+

1

2
ln

∫
|F1(Θ)|dΘ︸ ︷︷ ︸

GC

(29)

The MDL consists of two parts (e.g. Barron et al., 1998; Myung et al., 2000):
A first part represents the code length that is needed to describe the deviations
between data and best-fit model predictions (goodness-of-fit). A second part en-
codes the functional relations of the model and its parameters, i.e. the complexity
of the model, called geometric complexity (GC). The idea behind GC is that a
model generates (likelihood) distributions p(·|Θ). A model therefore represents
a “family of probability distributions consisting of all the different distributions
that can be reproduced by varying Θ” (Myung et al., 2006). The complexity of
the model then refers to how similar these distributions are (Rissanen, 1996). A
model is considered to be simple, if the distributions are hardly distinguishable:
less distinguishability means more structure in the data and more structure means
more compressibility in code (Myung et al., 2000).
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In so-called entropy encoding, code length is approximately proportional to the ne-
gative logarithmic probability density (Friedman et al., 2001; Myung et al., 2006).
A high density means little deviations or small errors, which in turn require just
short pieces of code to be compressed (Barron et al., 1998). Hence, the goodness-
of-fit term and the GC terms in equation 29 can be interpreted as code lengths.

GC in equation 29 can be seen as the logarithm of the counted number of dis-
tinguishable distributions over the model’s whole parameter space, hence growing
with Np. The counting is based on a differential-geometric distance measure which
employs the Fisher information matrix normalized by the number of observations
F1 = FN−1

s . With this metric it is possible to quantify how “close” the distribu-
tions are, i.e. whether they can be distinguished and counted separately or not -
for more details refer to e.g. Myung et al. (2000) and references therein.

In summary, GC is a coding-theoretic counter for distinguishable distributions
produced by the model and it grows with data size Ns. MDL selects the model
with the highest ratio between goodness-of-fit and the number of distributions
the model can generate (Myung et al., 2000). It can be used for non-Bayesian
consistent model selection (Lanterman, 2001) but is numerically demanding in
case no closed-form solutions for the evaluation of GC are available.

2.5.3 A1: Predictive Density

Model selection criteria which try to estimate predictive density assume that there
is a (infinite dimensional) true model with a predictive density function q(y) for
an observable random variable y. They are called predictive information criteria
(IC). The exact pdf q(y) is generally unknown, but the observed (within-sample)
data D and future (out-of-sample) data D′ are both assumed to follow q(y).

However, without actual out-of-sample data D′, predictive IC can only approx-
imate Eq[ln p(D

′|D)] using the given within-sample data D. This results in an
offset (Hooten and Hobbs, 2015) that is caused by testing a model on the data
set on which it was conditioned (fitted). Predictive IC incorporate this offset by
an effective number of parameters N∗p and use it as complexity representation of
the model (Akaike, 1973). This correction can be interpreted as a quantification
of how much predictive density for D′ increases by fitting N∗p parameters to D
(Gelman et al., 2014).

The most popular predictive IC is the Akaike information criterion AIC (Akaike,
1973, 1974, 1978). It is an approximation to the information-theoretic Kullback-
Leibler-Divergence DKL(q, p) that quantifies the information loss between the pre-
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dictive distributions of a hypothetical true model q(y) and the candidate model
p(y) (Aho et al., 2014) in the model space:

DKL(q, p) =

∫
q(y)ln

(
q(y)

p(y|Θ)

)
dy = Eq[lnq(y)]− Eq[lnp(y|Θ)] (30)

The first term on the right-hand side of equation 30 is a constant for all compared
models. Therefore, the AIC addresses only the second term, called the relative
expected KL-information (Burnham and Anderson, 2004), resembling the expected
logarithmic predictive density. The approximation of equation 30 by the AIC was
derived for asymptotic normal posterior distributions in the large-sample limit (e.g.
linear models with uninformative parameter prior and normal error distribution).
In this special case, the point-estimate Θ̂ summarizes the posterior parameter
distribution. Therefore, the model’s expected log. predictive density is conditional
on Θ̂ and given by Eq[ln p(D

′|Θ̂)] (Gelman et al., 2014). This cannot be directly
calculated, but with all candidate models being conditioned on the same data D,
it can be approximated via the log.-likelihood value lnL evaluated at the model-
specific MLE Θ̂(D) plus a correction for the approximation offset. Under the
above conditions, this correction naturally appears in the derivation as simply the
number of model parameters Np (e.g. Burnham and Anderson, 2002). Hence, the
AIC writes as (with a factor of two for historical reasons):

AIC = −2lnL(Θ̂|D) + 2Np (31)

A model with many parameters can reduce DKL(q, p) for D by fitting all of these
Np parameters. Since the AIC was derived for uninformative priors, all the model
parameters have to be constrained by D instead of prior information. Hence, in
equation 31, the goodness-of-fit (negative first term) in the model selection crite-
rion has to be reduced by this “potential” for reducing DKL(q, p) (positive second
term), i.e. the independently adjustable parameters (Akaike, 1974). Interestingly,
the factor of two converts the first term in equation 31 to a plain sum of squared
errors for an uncorrelated normal error distribution. A version of the AIC cor-
rected for finite data size Ns (AICc) was developed (Hurvich and Tsai, 1989) to
compensate for smaller sample sizes in case of which the above asymptotic beha-
viour cannot be assumed, i.e. Ns is too small that the IC could reliably select the
model with the largest predictive capability.

A generalization of the AIC was proposed as Deviance information criterion (DIC)
(Spiegelhalter et al., 2002). In contrast to the AIC, the DIC was designed for
informative priors and can therefore be seen as a more Bayesian version of the
AIC (Spiegelhalter et al., 2014). The deviance D(Θ) is defined as the doubled
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negative logarithmic likelihood (NLL): D(Θ) = −2lnL(Θ|D) (as it was used for
the AIC). The DIC is evaluated at the posterior parameter mean Θ:

DIC = −2lnL(Θ|D) + 2N∗p (32)

In contrast to AIC, model complexity is measured as effective number of parame-
ters N∗p , which does not necessarily equal the straightforward parameter count Np.
The DIC does not require asymptotic normality in the large-sample limit. This
extends the applicability of the DIC to non-linear models and to incorporate infor-
mative priors (in contrast to AIC) as long as the posterior parameter distribution
can be sufficiently approximated by a Gaussian even under limited sample size.
Being evaluated at the posterior mean Θ, the DIC uses an averaged quantity based
on the assumed normality. In principle, this is more Bayesian than just using the
MLE as point-estimate, but it relies heavily on the Gaussian assumption. This
is not a real marginalization (see 2nd level of Bayesianism) and makes the DIC
subject to criticism (e.g. Piironen and Vehtari, 2017).

The derivation ofN∗p in equation 32 based on the devianceD(Θ) is as follows: If the
posterior parameter distribution is multivariate Gaussian, the deviance automati-
cally follows a X 2 distribution. This is typically given for errors being normally
distributed (Clark and Gelfand, 2006). As a property of the X 2 distribution, the
difference between the mean density D(Θ), and the density at the mean, D(Θ),
is equal to the statistical degrees of freedom ν of the X 2 distribution. The DIC
uses this difference to approximate ν and then defines it as the number of effective
parameters N∗p (Spiegelhalter et al., 2002):

N∗p,DIC1 ≡ ν ≈ D(Θ)−D(Θ) (33)

Exploiting another property of the X 2 distribution, Gelman et al. (2004) suggested
to use half of the variance of the Deviance over the posterior to estimate the
effective number of parameters. This is possible, because just like the difference
in equation 33, 1

2
Var[D(Θ)] also equals the distribution’s statistical degrees of

freedom:

N∗p,DIC2 ≡ ν ≈ 1

2
Var[D(Θ)] (34)

Spiegelhalter et al. (2002) describe N∗p,DIC1 or N∗p,DIC2 as the dimension of pa-
rameter space that can be constrained by the given data, calling it a model di-
mensionality. Since N∗p is not necessarily equal to Np, it shall not be confused
with parameter space dimensionality. However, N∗p reduces to Np if the prior is
uninformative (van der Linde, 2012; Meyer, 2014) and the DIC reduces to the AIC.
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The AIC and the DIC are limited to so-called regular models. This means that
certain regularity conditions hold, e.g. the Fisher information matrix F exists and
is positive definite (Watanabe, 2010). Otherwise, a model is called singular. F(Θ)
is defined as the negative Hessian of the log-likelihood lnL(Θ|D) with respect to

parameters: F(Θ) = −∂2lnL(Θ|D)

∂Θ2 . The inverse of F(Θ) is an estimator to the
posterior covariance matrix among the parameters. For singular models, F is not
positive definite. Hence, there can be parameters with infinite variance even after
calibration.

Because the AIC and DIC are limited to regular models (van der Linde, 2012),
the “widely-applicable” (or “Watanabe-Akaike”) information criterion (WAIC)
was developed (Watanabe, 2010) as generalization of the AIC and DIC to sin-
gular models (Betancourt, 2015) such as Gaussian mixture models, strongly over-
parametrized models (causing under-determined inverse problems) (Gelman et al.,
2004) or artificial neural networks (Watanabe, 2010). The WAIC writes as:

WAIC = −2
Ns∑
i=1

ln(E[p(Di|Θ)]) + 2N∗p (35)

Again, model complexity is measured by the effective number of parameters in two
versions, called N∗p,WAIC1 and N∗p,WAIC2 in the following. N∗p,WAIC1 is estimated in
a similar way as N∗p,DIC1 in equation 33. However, for N∗p,WAIC1 the difference is
evaluated for each observation Di in D independently over the whole parameter
space, and then summed over all Ns observations, approximating leave-one-out
(LOO) cross-validation (CV) - details on LOO follow at the end of this section).

N∗p,WAIC1 = 2
Ns∑
i=1

(ln(E[p(Di|Θ)])− E[ln p(Di|Θ)]) (36)

Similarly to N∗p,DIC2 above, a variance-based estimator of the N∗p exists, yielding
a second version of the WAIC:

N∗p,WAIC2 =
Ns∑
i=1

Var[ln p(Di|Θ)] (37)

It is still argued about whether the variance-based estimators in the DIC and the
WAIC can be seen as generalizations of each other (Watanabe, 2010). However,
for practical purposes, both are sometimes advantageous over the two difference-
based estimators (N∗p,DIC1 and N∗p,WAIC1) because they cannot become negative
(Gelman et al., 2014).
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In the WAIC-related equations 35 to 37, expectations and variance of log pre-
dictive density are evaluated for each data point in D and then summed up. This
is different from the approaches in the AIC and DIC where the log-likelihood
function lnL(Θ|D) of the entire data set D is used. Further, with the underlying
assumptions in the AIC and the DIC, they may use point-estimators to estimate
the predictive density. The WAIC only uses quantities averaged over the whole
parameter space and all independent observations. Therefore, the WAIC is consi-
dered the only fully Bayesian one among the predictive IC (Gelman et al., 2014).

In summary, model complexity quantified as effective number of parameters N∗p is
an offset correction for estimating the predictive density of unknown out-of-sample
data D′ by only using known within-sample data D. N∗p is conditional on D and
can therefore be interpreted as the amount of parameters that are constrained by
D rather than just by the prior information on parameters (Gelman et al., 2014).

2.5.4 A0: Predictive Error

An alternative starting point for assessing the predictive capability of a model is to
interpret observables y deterministically rather than as random variables. Then,
future data D′ shall be met as exactly as possible and model predictions shall only
show minimal residuals when compared to data. This is related but different from
A1-type criteria that see data as samples of random variables with the goal for
models to meet the right probability distributions.

In statistical learning (Friedman et al., 2001), calibration error and validation error
are often referred to as training and test error, respectively. A common way to
measure the training error is the residual sum of squares (RSS) (D− ŷ)T(D− ŷ)
between observations D and the corresponding best-fit estimates ŷ of the model.
Accordingly, the test error RSS writes as: (D′ − ŷ′)T(D′ − ŷ′). As the potential
future data D′ are unknown, the test error has to be estimated by just using
the training error from D. As the training error underestimates the test error,
a penalty term has to be added to the training error which accounts for the gap
between the two types of errors. This term is assumed to be proportional to the
so-called model degrees of freedom (DoF) (e.g. Friedman et al., 2001; Zou et al.,
2007) - not to be confused with the statistical degrees of freedom ν in section
2.5.3. Adding these DoF, scaled by a known error variance σ2

R, to the RSS yields a
common estimate for test error, called the expected prediction error (EPE) (Janson
et al., 2015):

EPE = (D − ŷ)T(D − ŷ) + 2σ2
R DoF (38)

This expression for EPE in equation 38 is also known as Mallows’ Cp (Mallows,
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1973; Efron, 1986; Janson et al., 2015). It can easily be seen that the RSS is
proportional to a Gaussian log-likelihood, which leads to the same term (yet with
a different derivation) as in the AIC. Therefore, the EPE is often interpreted si-
milarly to the predictive information criteria from section 2.5.3 and model DoF
are considered to be yet another measure for model complexity (Ye, 1998; Hooten
and Hobbs, 2015). However, the DoF as model complexity are neither motivated
by predictive density nor do they require any kind of Bayesian parameter prior.

DoF are meant to measure the sensitivity of model predictions y with respect to
perturbations in the data D used for training (Ye, 1998). A model with high
sensitivities does not allow for a unique calibration when calibrated to different
data sets that even just slightly deviate from one another. This interpretation
directly links to the stability of model inversion (e.g. Tarantola, 2005). In this
sense, a model with high sensitivities to data is considered to have many degrees
of freedom and is rated complex.

A widely accepted and used formulation for the DoF in model selection is the
so-called expected optimism (Efron, 1983, 1986), assuming i.i.d. errors of finite
variance σ2

R:

DoF =
1

σ2
R

Ns∑
i=1

cov(ŷ∗i ,D
∗
i ) (39)

In this approach, cov(ŷ∗i ,D
∗
i ) is estimated on repetitively perturbed data D∗ and

corresponding best-fit estimates ŷ∗. This is a direct assessment of how sensitive
model predictions are to noise in data. The perturbed data D∗ can be obtained,
for example, using residual bootstrapping (Efron and Tibshirani, 1994). DoF can
generally be evaluated for linear and non-linear models (Janson et al., 2015). In
the special case of Gaussian linear models, DoF is independent from data and pre-
dictions (Ye, 1998). Gaussian refers to the error distribution; and a linear model
writes as y = Xβ, with the parameter vector β and the independent variables
being contained in the matrix X of base function vectors. The least-square esti-
mator is β̂ = (XTX)−1XTDwhich yields ŷ = Xβ̂. This can be reformulated by
ŷ = SD, where the so-called projection matrix (a.k.a. hat, smoother or influence
matrix) S = X (XTX)−1XT describes the projection from observations to least-
square estimates: ŷ = SD (Cardinali et al., 2004). The diagonal elements of S
are called leverages. The sum of leverages, i.e. the trace of S, is interpreted as the
model DoF. Thus, for linear models, equation 39 turns into tr(S) and yields the
number of linearly independent predictors (Janson et al., 2015), i.e. the number
of parameters: DoFlin = tr(S) = Np.
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In general, the interpretation of model DoF has to be done carefully. In linear
(polynomial) regression, DoF is equal to the number Np of non-redundant free
parameters in the model and are therefore accepted as model complexity mea-
sure (van der Linde, 2012). For nonlinear models, it is possible that the DoF
are smaller or larger than the actual number of parameters (Janson et al., 2015).
This counteracts our intuition of counting flexible parts of the model and makes
it more important to consider model DoF as a complexity measure representing
sensitivities rather than a parameter count. Following a similar spirit, methods
exist (which can also be used for model selection) that bound the predictive error
using, e.g., structural risk minimization (e.g. Friedman et al., 2001), the so-called
covering number (Cucker and Smale, 2002) or related concepts (e.g. Pande et al.,
2009, 2015).

In summary, the sensitivity-based DoF estimated from the available data D quan-
tify the potential of poorly predicting new data D′ due to unstable model inver-
sion. This is a short-cut to classic (not Bayesian) cross-validation approaches (e.g.
Friedman et al., 2001).
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3 Investigating the Role of Model Complexity in

Model Rating and Selection

The theory from Chapter 2 enables us to fully understand all parts of the cen-
tral question from the introduction (Chapter 1): “ Which multi-model framework
employs the adequate Occam’s razor with respect to the model setting of the mo-
delling task at hand?”. To begin with, we consider its core, i.e., how Occam’s
razor relates to the model setting of candidates in a set.

First, in Section 3.1, I show which practical relevance conceptual uncertainty has
when a model is used to fit available old and potential new data and I discuss
model complexity in this respect. In Section 3.2, I elucidate how and why model
complexity is formalized as Occam’s razor within the model selection criteria from
Section 2.5 and its meaning in model rating. In Section 3.3, I introduce the
developed general classification scheme that helps to find a suitable criterion in
model selection. In Section 3.4, I provide a cross-comparison between the classes
of model selection and an application example. I close the chapter with a summary
and conclusion in Section 3.5.

3.1 Model Fit and Model Complexity

3.1.1 Overfitting and Underfitting

In statistical terms, conceptual uncertainty in modelling manifests itself as so-
called overfitting or underfitting (e.g. Burnham and Anderson, 2002). An overfit-
ted model closely matches available (within-sample) data D, but struggles with
reliably predicting (out-of-sample) data D′. Such models are usually too flexible
and tend to fit patterns in D that do not truly exist (e.g., are just caused by noise)
which deteriorates the prediction of D′. An underfitted model roughly meets the
trend of D, but struggles with following the actual pattern around the plain trend
and therefore also in predicting D′. Instead of being too flexible, an underfitted
model is not flexible enough. As a rule of thumb, underfitting implies large bias,
i.e., systematic error between model predictions and data, but typically also low
variance of the predictions - overfitting implies the reverse. Bias and variance are
visualized in Figure 5.

An illustration of both, overfitting and underfitting, is given by the simple binary
classification problem in Figure 6, generated using Python’s scikit-learn package
(Pedregosa et al., 2011). There, three different models shall classify 250 points
(with two unspecified attributes on the axes) either by a red or blue label in a
way that also further points will be correctly classified. We assume that the points
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Figure 5: Concepts and effects of bias and variance: (a) Accuracy and precision visualized as
bias and variance of shots on a target. Bias is the distance between the target center and the
average position of shots. Variance is the spread of shots around their average. (b) Decomposition
of total squared error into squared Bias and Variance (after e.g. Friedman et al. (2001)). Bias
is supposed to decrease and Variance is supposed to grow with increasing model complexity,
both due to growing model flexibility. Their superposition forms a minimum that marks optimal
model complexity (from Höge et al., 2018).

are correctly separated by a smooth S-shaped curve with some noise that explains
switched labels in the fringe zone. The model on the left separates the two classes
by a straight line which clearly underfits the pattern of the data. The middle one
appears as reliable estimation of the underlying classification model. The model
on the right overfits and adopts also to noise rather than only the pattern of the
data.

Figure 6: Illustrated underfitting (left), proper fitting (center) and overfitting (right) in binary
classification of data to a red or blue class with unspecified attributes on the axes.

In regression, over- and underfitting can be easily illustrated by the following
standard example: Being given 10 data points, a 9th order polynomial will yield
perfect fit with zero residuals. Every lower-order polynomial will underfit and
provide worse fit - the lower, the worse. Every higher-order polynomial will also
perfectly fit the available data but also overfit: between the 10 points and when
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leaving the within-sample data range, the “wiggling” of the polynomial model will
become the stronger, the higher the order of the polynomial is. Note, that if the
data are prone to error, the perfect fit of the 9th order polynomial is actually a
misfit that can already be interpreted as overfit.

The fear to overfit or to underfit is typically implied when modellers refer to model
complexity (see Figure 5). Typically, the excessive flexibility of overfitted models
is assumed to come from too many parameters, functional terms, highly non-linear
relationships, etc. They overestimate the complexity of the DGP and therefore fail
to explain or to predict it. Overfitting poses a more frequently encountered pro-
blem than underfitting. It becomes apparent as, e.g., nonuniqueness of calibration
or poor parameter identifiability (e.g. Schoups et al., 2008). Underfitting refers
to the other extreme, where models underestimate the system complexity and are
too simple to fully resolve the patterns of the DGP hidden in the data, i.e., to
decipher the full system complexity.

3.1.2 Model Complexity Control

Reliable and successful modelling requires model complexity control (Schoups
et al., 2008). I suggest to distinguish within-model and between-model complexity
control:

• Within-model complexity control for a single model means limiting its flexi-
bility.

• Between-model complexity control between multiple models (of typically de-
viating complexity) refers to either finding one model that suffers the least
from overfitting or underfitting, or to employing models of different complex-
ities together in order to mutually compensate individual shortcomings.

Within a model, complexity control is achieved by so-called regularization. This
technique is applied throughout model calibration or conditioning in primarily ill-
posed problems (e.g. Tarantola, 2005). Regularization means to provide further
information to a model rather than only the data for calibration. Effectively, this
additional information delimits the model output and therefore counteracts over-
fitting by reducing model flexibility or underfitting by preventing the extraction
of false trends.

Typically, this additional information concerns the parameters and enables to
constrain them during calibration, e.g., by preventing extreme parameter values.
Common examples of regularization are the so-called LASSO or Tikhonov re-
gularization (Marconato et al., 2013; Bardsley et al., 2015; Vaiter et al., 2015),
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which respectively apply a L1- or L2-norm on the parameter values. When mo-
dels are operated in a probabilistic (Bayesian) framework, they are assigned prior
parameter distributions, which automatically act as such additional information.
Therefore, applying a Bayesian prior is nothing else than putting a regularization
on the model parameters (e.g. MacKay, 1992; VanderPlas, 2014). The commonly
used L1- and L2-norms directly correspond to a Bayesian Laplace or Gaussian
prior, respectively.

Depending on the model type, models sometimes naturally contain constraints,
e.g., by enforced physical principles like conservation laws. This additional infor-
mation prevents such models to fit “non-sense” patterns in the data. For example,
in hydrosystem models, mass balance prevents that fitted discharges or concen-
trations can obtain negative values due to their physical constraints. This can be
considered as sort of model-type specific regularization in the sense of additional
information.

Between models, complexity control is achieved by model rating and subsequent
selection or combination (via averaging as discussed in Section 2.3). In order to
account for structural deficiencies that lead to overfitting and underfitting of single
models, competing models with the same target QoI but with different complexity
even ought to be set up and tested. Between-model complexity control means,
then, to rate these competitors under inclusion of a certain model complexity re-
presentation (law of parsimony), and elicit the model with the most appropriate
complexity for the modelling task at hand. Based on the rating scores that the
models achieve, a single model or model combination is found that resembles the
appropriate complexity for the model task at hand.

Modellers typically refer to a rather vague notion of model complexity in the con-
text of underfitting and overfitting. Höge et al. (2018) systematically analysed
and discussed the model selection criteria from Section 2.5 with respect to their
specific takes on model complexity. There, the explicit representation of model
complexity within each class B1, B0, A1 or A0 conveys a distinct meaning. The
decisive role thereof will be highlighted in the following. As in Höge et al. (2018),
I will discuss it in the extremes of the M-closed and M-open setting, in the fol-
lowing also referred to as finite and infinite dimensional truth, respectively.

With the exception of Sections 3.2.2, 3.4.4 and the corresponding class-specific
model complexity evaluations in Appendix B, the rest of the remaining Chapter 3
has been published in Höge et al. (2018) and I reuse parts of the text, figures and
tables. Considering my co-authors, “I” is substituted by “we”.
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3.2 The Role of Model Complexity within Model Selection
Criteria

All model selection methods that consider model complexity strike a trade-off
between goodness-of-fit −F and model complexity C (e.g. Wit et al., 2012). In
most general terms, there is a trade-off score S that is expressed as:

S = −F + C (40)

Traditionally, a model is rated better under a certain selection method, the more
negative S is. This implies a good fit of data (hence the negative sign) and a
low complexity (hence the positive sign). The goodness-of-fit −F is rather clear
to interpret as the accuracy of the model, either based on a representative esti-
mator like the maximum likelihood estimator (MLE), or based on an average fit,
for example marginalized over the whole distribution of possible parameter values
(van der Linde, 2012). Yet, the way model complexity C is interpreted and quanti-
fied differs strongly between model selection methods, as will be discussed in detail
in the following sections.
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Figure 7: Schematic behaviour of complexity term C under growing data size Ns for non-
parsimonious (light grey dots), non-consistent (grey line) and consistent (blue line) model se-
lection with linear complexity growth as reference (dashed black line) (from Höge et al., 2018).

In non-consistent model selection, the complexity term is constant or bounded
(Leeb and Pötscher, 2009), i.e. does not grow with the data size Ns. This is
schematically depicted in Figure 7. Hence, non-consistent model selection allows
switching to models of higher model complexity with more data as long as the
higher complexity is compensated by an even stronger increase in goodness-of-fit.
A special case of this would be non-parsimonious model selection where only the
goodness-of-fit term F is used for rating models, and F is given by e.g. the max-
imum likelihood, smallest root-mean-square error or another error metric. This
implies C = 0 (see Figure 7) for all models and prevents generalizability or consis-
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tency for the selected model because no trade-off is considered.

Opposed to this, the complexity representation in consistent model selection grows
with increasing sample size Ns. However, this growth must be slower than linear
(called subextensive and shown in Figure 7) (Bialek et al., 2001): mathematically,
for growing data size Ns →∞ the complexity term follows C → ∞ and C/Ns → 0
(Leeb and Pötscher, 2009). Such growth might be contradictory to our intuitive
understanding of complexity: If a model has a certain complexity, this complexity
should not increase with increasing Ns. However, in consistent model selection, the
model complexity penalty needs to grow in a way that the selection criterion can
identify the true model, rather than justifying higher and higher model complexity
with more and more data. While the goodness-of-fit will eventually get worse for
all non-true model candidates with more data, only the true model can balance
the growing complexity penalty.

3.2.1 Consistency in Model Selection

Accordingly, consistent model selection is sometimes also called confirmatory (Aho
et al., 2014), i.e. confirming the identified DGP by the given data D in hindsight.
Non-consistent model selection is also called conservative (Leeb and Pötscher,
2009) or exploratory (Aho et al., 2014), i.e. the model selected to approach the
DGP is appropriate to conservatively predict or explore new data D′ in foresight.

In the past, it was discussed whether the two types of model selection are (anti-)
correlated (e.g. MacKay, 1992) or uncorrelated (e.g. Bishop, 1995) with each ot-
her. Although such behaviour might appear coincidently, it was generally shown
that any model selection method cannot be optimal in both respects (Hurvich and
Tsai, 1989; Yang, 2005; Arlot and Celisse, 2010).

Illustrative thought experiment
The exploratory or confirmatory natures of the two model selection types can be
illustrated by a simple thought experiment: Imagine two modelers A and B who
seek to model a controlled laboratory experiment (e.g. a tracer flow-through co-
lumn experiment). Due to the fully controlled conditions it can be assumed that
this lab-scale truth is of (relevant) finite dimensionality. Modeler A, e.g. an en-
gineer or manager, assumes that there are too many dimensions to be covered by
a fixed parametric model, but still wants to find the best model for future pre-
dictions. Accordingly, she picks a type of model which is allowed to grow with
incoming new information and starts off with operational data-driven models, e.g.
regressive models. Modeler B, e.g. a fundamental scientist, wants to identify the
true data-generating process and hence prefers parametric physics-based models.
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One might think that the two purposes are the same thing, but from the perspecti-
ves of non-consistent vs. consistent model selection, they are not.

Each of them starts with three models of their preferred model type with increa-
sing complexity: A simple first model, a more complex second model and a highly
complex third model. Let’s assume that the second model of modeler B actually
represents the truth (which is an idea borrowed from consistent selection), i.e.
employs the right physical equations. On the same level of complexity, the second
model of modeler A mimics the data best, but as a data-driven empirical model it
is clear that it cannot represent the true data-generating process.

Both modelers collect and use the same data continuously in order to perform
a model selection procedure as soon as a new batch of data, i.e. new and non-
redundant information, comes in. According to her modelling purpose, modeler
A uses a non-consistent model selection criterion targeting the highest predictive
performance. Modeler B performs consistent model selection to identify the truth
and to understand the underlying physics. This procedure is shown schematically
in Figure 8.
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In Phase 0, before having any data, both modelers start with uniform model choice
preferences across their candidate models. In Phase 1, with little data available,
no complex model can be supported, so the simple first model of each modeler is
selected. However, with more incoming and informative data (Phase 2), a more
complex model provides a better trade-off between fit and complexity. Hence, the
second models of both modelers get selected by their respective criteria. With
more and more data becoming available in Phase 3, the two rankings become fun-
damentally different in the large sample limit: For modeler B the third physical
model (which is more complex than the truth) will never stand a chance in a model
selection process in the long run. Its additional complexity would be called exces-
sive. However, the third data-driven model of modeler A can be justified as the
model with the best trade-off between fit and complexity from an non-consistent
perspective.

This is because, for modeler B, the second model revealed itself as representing
the data-generating process, and as such a simpler (1st model) or more complex
(3rd) model is rejected by the consistent model selection procedure. For modeler
A it was clear from the beginning on that the truth is not among the data-driven
candidate models. Then, a more complex model is justifiable with more available
observations. More data reduces the risk of just fitting noise, so a more complex
model from the efficiency perspective is confident with yielding the best future
predictions and wins the model selection.

The illustrated behavior of consistent model selection, i.e. to identify and stick to
the best representation of the truth, can be found in Schöniger et al. (2015a). In
this study on mechanistic models for a laboratory-scale artificial aquifer, several
increasingly complex parametrizations of the hydraulic conductivity distribution
are ranked. Under growing data size, the consistent selection procedure converges
towards the model that represents the true zonated distribution, and it devaluates
simpler (homogeneous) and more complex (geostatistical) approaches. Contra-
rily, the tendency of non-consistent model selection to prefer increasingly complex
models is demonstrated in Vrieze (2012) for regression models.

3.2.2 Bounds of Consistent Model Selection

Now, it is schematically clear how the consideration of model complexity C within
model rating scores enforces consistent or non-consistent model selection. However,
it is less apparent where the regimes are delimited from a statistical perspective:
Under sub-extensive growth of C (C → ∞ and C/Ns → 0 for Ns → ∞; e.g.
Leeb and Pötscher, 2009) model selection is at least weakly consistent (Shibata,
1986), i.e., is per se able to identify a true model. Otherwise, for slower growth
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of C, it is non-consistent. Additionally, the Hannan-Quinn-Criterion (Hannan and
Quinn, 1979) resembles the lower bound of strongly consistent selection behaviour
(Shibata, 1986): any model selection method of which C grows faster than CHQ

converges to the true model almost surely in a statistical sense. Its complexity
representation CHQ = 2Npln(ln(Ns)) is based on the so-called law of iterated loga-
rithms (Shibata, 1986).

Interestingly, the law of iterated logarithms (LIL) is asymptotically (for Ns →∞)
closely related to the two most famous limit theorems: the law of large numbers
(LLN) and the central limit theorem (CLT). Such limit theorems are also known
as universal laws that describe aggregate properties of a system that appear on a
macroscopic scale despite a microscopic (or element-wise) complex and unpredic-
table nature (Tao, 2012). For a sum of N independent and identically distributed
(i.i.d.) random variables: Sx = x1 + x2 + ... + xN (Klenke, 2013, and references
therein),

• the LLN describes that the average of Sx converges to its expected value µx
of X: Sx/N → µx for N →∞;

• the CLT describes the typical fluctuations about the expected value that
follow a normal distribution: Sx/

√
N → N (µx, σ

2
x) for N →∞; and

• the LIL describes the asymptotic behaviour of maximum deviation for Sx/N
about the expected value µx, i.e. concerns the order of magnitude of (atypi-
cal) fluctuations: Sx/

√
2N ln(ln(N))→ 1 for N →∞.

In practical applications, the LIL is used, e.g., to mathematically describe the
occurrence of sports records over time, when the typical results in the particular
sports discipline follow a normal distribution (see Gembris et al., 2007).

In model evaluation and rating, the i.i.d. random numbers are the errors or resi-
duals between model predictions and observed data. The universal laws underpin
consistent model selection in the M-closed setting, because only there the true
model will yield i.i.d. residuals that follow these laws. For further details on the
limit theorems, the interested reader may refer to, e.g., Klenke (2013); Tao (2012);
Klesov (2014). Ties between the asymptotic behaviour of model selection criteria
- or rather their model complexity representation - and such universal laws are
evident and, interestingly, they mathematically delimit consistent model selection.

3.2.3 Bayesianism in Model Selection

While consistency refers to the goal of the model selection task at hand, Bayesi-
anism refers to the statistical perspective used to achieve it. Many of the non-
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consistent and consistent model selection methods are Bayesian to some degree.
The Bayesian view allows assigning distributions to both data and parameters (Be-
tancourt, 2015). Therefore, generally expressed, model selection methods which
are Bayesian consider model complexity as “a measure for stochastic dependence
between observations and parameters” (van der Linde, 2012). Model selection can
be Bayesian in one or more of the following respects:

1. within-model expert knowledge:
incorporation of prior probability distribution for parameters

2. model-representative quantities:
measures of fit and complexity are marginalized over the probability distri-
bution of the whole parameter space, and are not only (e.g. best-fit) point-
estimates

3. between-models expert knowledge:
model weights as prior ideas about ranking are used and updated, resembling
model probabilities

The first level of Bayesianism in model selection addresses what the parameter
space of a model looks like. In the Bayesian perspective, there is a probability
measure (here represented for simplicity by a probability density function, pdf,
p(Θ)) of parameter values Θ which expresses the belief what suitable parameter
values could be. Even before observations are considered, there is such a belief and
it is called the parameter prior pdf p(Θ). Observations D are then used to update
this prior knowledge to a conditional distribution called the parameter posterior
pdf p(Θ|D).

The second level addresses whether a point (single parameter set) or a margina-
lized (averaged over the parameter pdf) estimator (van der Linde, 2012) shall be
used to evaluate goodness-of-fit and model complexity. Often, goodness-of-fit is
evaluated with the best parameter calibration possible for a model, i.e. with the
maximum likelihood estimator (MLE). Being one specific set of parameters, the
MLE is one of the classic point estimators. Contrarily, the fully Bayesian spirit is
to marginalize over the whole parameter pdf (Piironen and Vehtari, 2017), and to
use averaged quantities such as the marginal likelihood to represent the overall fit.

The third level refers two how models are compared, ranked or selected using mo-
del probabilities. From a Bayesian point of view, model selection is based on a
belief in each model, again expressed as a probability P . There is a prior probabi-
lity of each candidate model to be the model which has most likely generated the
data D. These data can then be used to update the prior model weights to their
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Figure 9: Classification system for model selection methods with 4 classes: 1st) Non-consistent
versus consistent model selection, 2nd) Using a Bayesian parameter prior or not (from Höge
et al., 2018).

respective posteriors, just as for parameters within the models.

For a model selection method to be Bayesian, at least the first level of Bayesia-
nism has to be fulfilled. Figure 9 graphically summarizes the general classification
scheme of model selection methods over the two stages covered in Sections 3.2.1
and 3.2.3. First, the non-consistent or consistent type has to be picked depending
on the major purpose of modeling. Second, the incorporation of a Bayesian pa-
rameter prior (first level of Bayesianism) allows for a probabilistic treatment of
parameters during the model selection task. The second and third level of Bayesi-
anism are added on top of that by specific methods, as discussed for the respective
methods in section 2.5.

3.2.4 The Role of Priors in Model Selection

Generally, the use of priors (for parameters and models) in model selection is a
double-edged sword: On the one hand, an inappropriately chosen prior can yield
problematic results or even allow a modeler to manipulate a model ranking in
favour of a certain candidate model (Gelman et al., 2014). An appropriate prior
that is too vague does not help either, preventing a clear model selection (Bartlett,
1957; Gelfand and Dey, 1994). The search for priors that are less susceptible to
subjectivity of the modeler is still a large field of ongoing research. Among others,
uniform, maximum entropy or reference priors (van der Linde, 2012) are investi-
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gated as such “objective” priors.

On the other hand, using an appropriate (e.g. physics-based) parameter prior in
consistent model selection might sometimes be the only way to get close to the
data-generating truth. From a classic statistics point of view, infinitely many data
points have to be collected until the best-fit parameter estimate of the true candi-
date model converges to the true parameters. In reality this is simply impossible,
especially when expensive field data is collected. The parameter prior might be
the missing piece to select the true model with limited data. Further, it serves
as a natural regularization of the model that counteracts overfitting (VanderPlas,
2014). Hence, if for instance mechanistic models are used and a reasonable physical
prior for the parameters is available, it shall be used (Vanpaemel, 2009).

3.3 Classification of Model Selection Criteria

The selection criteria presented in Section 2.5 are those most widely used by the
majority of practitioners (see Mallick and Yi, 2013; Boisbunon et al., 2014). We
classify and discuss them with respect to their incorporation of model complex-
ity. Based on this classification, we explain why similarly looking but different
selection methods yield contradicting model ratings (Ye et al., 2008; Schöniger
et al., 2014) and put them into perspective, going beyond similar earlier attempts
(e.g. McQuarrie and Tsai, 1998).

3.3.1 Classification Scheme

Choosing the right model selection class, as summarized in Figure 10, starts with
asking what the purpose of the model is. This leads to either A-type (approaching
truth) or B-type (identifying truth) model selection. Then, the next step refers
to the distinction whether a Bayesian perspective starting with parameter prior
incorporation shall/can be used or not.

Predictive information criteria (A1-type) are non-consistent, and also Bayesian to
a certain degree: All of them cover the 1st level of Bayesianism; DIC and WAIC
can incorporate informative priors. Even the AIC assumes a Bayesian parameter
distribution, but just a non-informative one. Further, the WAIC uses averaged
goodness-of-fit and model complexity terms (2nd level). However, none of these
criteria is designed to work with Bayesian prior and posterior model weights (3rd
level).

B1-type model selection is consistent and covers all three levels of Bayesianism.
Methods of this kind use prior and posterior probabilities for both parameters and
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Figure 10: Classifying all introduced criteria based on them being 1st) non-consistent versus
consistent and 2nd) Bayesian or not. Subscripts display the level of Bayesianism of the particular
method/criterion. A1- & B1-type criteria are Bayesian using at least a Bayesian parameter prior.
The corresponding criteria are sorted according to the strength of underlying assumptions in
approaching their respective implicit (indicated by ∗) target model selection scores (BCV∗ vs.
BME∗). A0- & B0-type criteria are not Bayesian, they are represented by their most common
members EPE and MDL, respectively. In the large sample limit Ns → ∞, the influence of
the Bayesian parameter prior declines and, respectively, non-consistent and consistent model
selection criteria become asymptotically equivalent (dashed line) (from Höge et al., 2018).

models. Although point estimates are used in some of the criteria for assessing the
goodness-of-fit, e.g. like in the KIC, they are used under conditions where they
coincide with averaged estimators, i.e. the peak of a Gaussian likelihood function
is both mean and maximum of the distribution. Further, although the 1st Bayesian
level is covered by the BIC, it is irrelevant in the assumed infinite sample size limit.

The (weak-assumptions) end-members in A1-type and B1-type model selection
methods are the implicit evaluation of a Bayesian cross-validation (BCV) score or

64



the Bayesian model evidence (BME) coming from a implicit evaluation, respecti-
vely.

Looking back at the three levels of Bayesianism, the third level (model proba-
bilities/weights) occurs only in Bayesian model selection (BMS) (Hoeting et al.,
1999). The other two levels may occur in both the non-consistent and the con-
sistent model selection world. As an information-theoretic equivalent to Bayesian
model weights, so-called Akaike weights (Burnham and Anderson, 2002, 2004) can
be used in a similar way. However, these shall not be confused with the concept of
Bayesian model weights, because Akaike weights are non-consistent and have no
connection to the notion of (true) model probability.

While the Bayesian perspective is part of the underlying assumptions for A1-
type and B1-type criteria, A0-type (e.g. EPE) as well as B0-type (e.g. MDL)
selection criteria do not require a Bayesian parameter prior, as depicted in figure 10.
They allow for prior-free non-consistent or consistent model selection, respectively.
Hence, they are immune to misspecified priors, but can also not benefit from
potential advantages of using a prior. However, this does not mean that they
cannot be extended in a Bayesian fashion. For example, EPE can be employed
with a Bayesian parameter prior as a form of regularization (Mallick and Yi, 2013).
Similarly, the MDL (B0-type) presented here can be derived in a non-Bayesian
context (Lanterman, 2001), but can be extended to the normalized maximum
likelihood (NML) approach (Shiffrin et al., 2016) which is able to incorporate a
Bayesian prior.

3.3.2 Contrasting the Views on Models and their Complexity

The four introduced model selection classes differ in the definition of models, the
meaning of what a complex model is, how model complexity can be quantified
and what the respective complexity measures are. Therefore, table 3 summarizes
the foundations on which the four selection classes try to identify the respective
“best” model.

A1-type criteria consider a model to be a probabilistic attempt to approach the
infinitely complex data-generating truth - but only approaching, not representing.
The best model achieves the highest predictive capability based on predictive den-
sity. A complex model shows a large offset (large N∗p ) between the estimated
out-of-sample (D′) predictive density and the within-sample (D) predictive den-
sity (Vehtari and Ojanen, 2012), because the complexity of the model does not
allow the data D to sufficiently constrain the parameters.
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ög

e
et

al
.,

20
18

).

T
y
p

e
M

o
d

el
is

a
..

.
B

es
t

m
o
d

el
..

.
..

.
b

as
ed

on
..

.
A

co
m

p
le

x
m

o
d

el
..

.
C

om
p

le
x
it

y.
..

..
.q

u
an

ti
fi

es
..

.
C

ri
te

ri
a

A
1

p
ro

b
ab

il
is

ti
c

at
te

m
p

t
h

as
la

rg
es

t
p

re
d

ic
ti

ve
p

re
d

ic
ti

ve
h

as
lo

w
p

re
d

ic
ti

ve
N
∗ p

d
at

a-
co

n
st

ra
in

ed
A

IC
,

D
IC

,
to

ap
p

ro
ac

h
tr

u
th

.
ca

p
ab

il
it

y
d

en
si

ty
.

co
ve

ra
ge

.
p

ar
am

et
er

n
u

m
b

er
.

W
A

IC
(,

B
C

V
)

A
0

fl
ex

ib
le

re
gr

es
si

on
of

p
os

es
m

os
t

st
ab

le
p

re
d

ic
ti

ve
p

os
es

a
n

on
-u

n
iq

u
e

D
oF

se
n

si
ti

v
it

y
to

d
at

a
E

P
E

,
d

at
a.

in
ve

rs
io

n
er

ro
r.

in
ve

rs
io

n
p

ro
b

le
m

.
p

er
tu

rb
at

io
n

s.
M

al
lo

w
s’
C
p

B
1

p
ro

b
ab

il
is

ti
c

at
te

m
p

t
is

m
os

t
li

ke
ly

m
o
d

el
al

lo
w

s
on

ly
w

ea
k

O
F

“p
os

te
ri

or
-p

ri
or

B
IC

,
K

IC
to

re
p

re
se

n
t

tr
u

th
.

d
at

a-
ge

n
er

at
in

g
p

ro
ce

ss
p

ro
b

ab
il

it
y.

p
ar

am
et

er
in

fe
re

n
ce

.
-r

at
io

”.
(,

B
M

E
)

B
0

co
m

p
re

ss
io

n
of

d
at

a
is

m
os

t
co

m
p

ac
t

d
at

a
co

d
e

is
a

to
o

lo
n

g
co

d
e.

G
C

d
is

ti
n

gu
is

h
ab

le
M

D
L

se
ri

es
.

re
p

re
se

n
ta

ti
on

le
n

gt
h

.
li

ke
li

h
o
o
d

s.

66



In a similar spirit, A0-type criteria assume that a model is just a more or less
flexible regression of data. This does not need to be inspired by the physical truth
behind the data, either. The best model obtains the highest predictive capability
based on its predictive error for D′. A0-type criteria are concerned with the in-
stability (flexibility) of the model inversion. A complex model only allows instable
or non-unique parameter inversion, which is measured by large sensitivities (large
DoF) of model predictions with respect to perturbations in the data D.

B1-type criteria take each model as a probabilistic attempt to truly represent the
data-generating process, believing that the true model exists and is among the
candidate models. The best model is most likely to have generated the data D
and achieves the highest probability of being the true model. B1-type criteria
expect the strongest parameter inference for this model and its prior when faced
with the data D. A complex model shows weak parameter identifiablity (large
Occam factor OF), quantified as the shrinkage ratio from the prior towards the
posterior parameter distribution.

Alternatively, B0-type criteria consider each model to be a compression of data.
Thus, they state that the best possible compression of data requires just a certain
code length. The best model is the most compact one, which according to coding
theory coincides with the data-generating truth. Compactness of a model is quan-
tified as number of distinguishable (likelihood) distributions over its parameter
space. A complex model in a B0-type sense is a too long compression of D.

3.3.3 Matching Model Selection Classes with Model Types

The choice of a certain model selection criterion is specific to the model selection
task at hand. We outline imaginable extreme cases of matchings for the field of
water resources in the following, but there are equivalents in practically all other
fields where mathematical or numerical models are employed.

For A-type model selection in an infinite (relevant) dimensional truth scenario,
matching suggestions between selection criteria purpose and models one could
think of are:

• A1-type (N∗p ): Providing high predictive capability via high predictive den-
sity for unseen data. The probabilistic nature allows for incorporating prior
parameter knowledge - example: Bucket-type models for stream discharge
or flood forecasting (e.g. Orth et al., 2015). Such models normally include
(semi-)physical relationships and corresponding prior parameter distributi-
ons.
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• A0-type (DoF): Obtaining the highest predictive capability in a non-probabi-
listic manner via predictive error for unseen data with the most uniquely
calibrated model. Besides, the effect of regularizations can be assessed in
a second step because reduction in DoF means reduced risk of overfitting -
example: Regression models (e.g. artificial neural networks) for time-series
predictions (e.g. Tibshirani, 2014). Such flexible models are hardly uniquely
calibrated and often require some sort of regularization.

For B-type model selection in a finite (relevant) dimensional truth scenario, mat-
ching suggestions between selection criteria purpose and models one could think
of are:

• B1-type (OF): Identifying the data-generating model via Bayesian model se-
lection, given that a reasonable prior is provided (e.g. based on physical
quantities) - example: Partial differential equations (pde)-based models for
groundwater flow (e.g. von Gunten et al., 2014). These mechanistic models
and their parameters are subject to prior knowledge and physical meaning.
However, it is crucial that prior information on parameters covers poten-
tial subsurface heterogeneity, scale-dependence, etc. to obtain a maximally
unbiased prior (e.g. for hydraulic conductivity).

• B0-type (GC): Approaching the true model via minimal required code length,
without the need to specify a certain parameter prior distribution - exam-
ple: Stochastic rainfall generators (e.g. Golder et al., 2014). Such a model
represents the statistics of the process of interest. The parameters are the
statistical moments which describe the process pattern.

These extreme examples of matching highlight the importance of having the mo-
del purpose, the type of model (data-driven,mechanistic,...), and the information
about the model parameters in mind (Guthke, 2017), when an appropriate model
selection class has to be picked. Further, the consideration of the (relevant) di-
mensionality of the truth to be modelled affects whether a certain kind of model
selection matches with a model (Leeb and Pötscher, 2009).

3.3.4 Alternative Model Selection Criteria

Apart from the model selection criteria presented above (AIC, BIC,...), many ot-
her criteria were developed over the last decades - to the point that nearly a
whole alphabet of criteria can be set up (Spiegelhalter et al., 2014). In most of
them, model complexity is interpreted and measured differently, some are advan-
ces or refinements of other criteria. Additional examples of widely used model
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selection criteria and complexity measures are the non-consistent ICOMP (Boz-
dogan, 1990, 2000), Moody’s effective number of parameters (Moody et al., 1992)
or the Vapnik-Chervonenkis (VC) dimension (e.g. Friedman et al., 2001) which is
used in structural risk minimization (Guyon et al., 2010). Additional consistent
model selection criteria are Hannan-Quinn (Hannan and Quinn, 1979) or various
versions of encoding complexity (Rissanen, 1987; Myung et al., 2006).

Covering all of these in detail would go beyond the purpose of this primer, but the
completed classification scheme in section 3.3.1 may allocate them as well. Crucial
in their application is always how exactly they consider model complexity.

3.4 Cross-Comparison between Model Selection Criteria

3.4.1 B1- vs. B0-type Criteria

Interestingly, the integrand from GC in equation 29 coincides with the so-called
Jeffrey’s prior for parameters p(Θ) =

√
|F(Θ)| (Myung et al., 2006). This prior is

used as a kind of non-informative or “objective” prior in Bayesian model selection
(Barron et al., 1998). For large Ns and using Jeffrey’s prior on parameters, BMS is
identical to model selection using MDL (Myung et al., 2006). Further, in the limit
of Ns → ∞, the last term of MDL in equation 29 becomes negligible due to its
independence on sample size. Further, in this limit, the prior model weights and
prior parameter distribution become irrelevant. Then, MDL becomes proportional
to the BIC because the complexity terms in both criteria scale equivalently with
lnNs and Np (Barron and Cover, 1991; Myung et al., 2000; Hansen and Yu, 2001;
Shiffrin et al., 2016).

Despite the asymptotic equivalence, the criteria and complexity representations
differ fundamentally between the two classes (B1 & B0) as depicted in Figure 10:
Model complexity in B1-type criteria (OF) relates to how much knowledge about
the parameters was inferred from data D, shrinking the prior to the posterior
distribution. A complex model in this sense is a model for which parameters can
hardly be constrained and identified with D. B0-type model complexity according
to coding theory is measured as GC and relates to compressibility of data. A
complex model in this sense is a long code needed to describe the regularities of
data D. Apart from the special cases above, real BMS requires using posterior
model weights, Bayesian parameter and model distributions, all of which is not
supported by MDL. Therefore, the two classes generally lead to different selection
results (Grünwald, 2000), unless the true model is actually among the candidates
and will eventually be selected. Overall, the common ground of consistent model
selection (shown in B1 & B0) can be summarized by three points:
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1. Model complexity is a measure for the lack of identifiability of a model and
its parameters as representation of the data-generating process.

2. Model complexity is an integrated quantity over all possible model parame-
trizations unconditional on data D. Consistent model selection compares
model predictions to data D over the whole parameter space.

3. Their behaviour in the limit of Ns →∞ is asymptotically equivalent.

3.4.2 A1- vs. A0-type Criteria

For linear models and uncorrelated Gaussian errors, it can be shown that the A0-
type EPE (equation 38) is equivalent to the A1-type AIC (equation 31) (Mallick
and Yi, 2013; Boisbunon et al., 2014). In this special case, the model complexity
representation by Np coincides in both criteria. This coincidence is one of the
reasons, why model DoF and N∗p are often used interchangeably to quantify model
complexity despite their different motivation. In classical statistics, DoF are a me-
asure for the “number of dimensions in which a random vector may vary” (Janson
et al., 2015). This interpretation also suits the flexible-parts-view on DoF and
triggers even more the interchangeable use with effective number of parameters
N∗p . Further, in the large sample limit Ns → ∞, the influence of the Bayesian
parameter prior in the DIC and WAIC declines. This makes A1-type criteria
asymptotically equivalent to A0-type criteria.

Despite these similarities, they are not the same thing: A0-type DoF in model
selection refer to the difference between two kinds of error (training & test). They
resemble the summed-up sensitivities of predictions to perturbations in the cali-
bration data and can be seen as quantifying the stability of the model inversion.
A1-type N∗p refer to the information-theoretically motivated distance between pro-
bability distributions of observations and model predictions, which requires the
incorporation of a Bayesian parameter prior. Due to their different motivations,
they correspond to different non-consistent model selection classes, as shown in
Figure 10. Overall, the common ground of non-consistent model selection (shown
in A1 & A0) can be summarized by three points:

1. Model complexity is an estimate for the lack of generalizability to unseen
dataD′ after seeingD. In a quite counter-intuitive manner, this is estimated
based on just the calibration dataD (in IC), i.e. without actually considering
a validation data set D′ (as in CV).

2. Model complexity is evaluated for the model having a certain parametrization
(calibration) conditional on data D.
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3. Their behaviour in the limit of Ns →∞ is asymptotically equivalent.

3.4.3 A-type vs. B-type: Large Sample Limit

In the limit of infinitely large sample sizeNs →∞, the parameter prior distribution
becomes negligible and the complexity terms of the criteria within the A-type
classes converge as well as those within the B-type classes. However, non-consistent
model selection differs fundamentally from consistent model selection especially
in this limit (as schematically depicted in Figure 8 of the illustrative thought
experiment). The criteria designed for this limit are the AIC and BIC, respectively.
This is why model selection criteria are often sorted into the so-called AIC-world
and BIC-world (Vrieze, 2012; Aho et al., 2014), which is conform with A-type and
B-type used in this primer. The respective model complexity terms are shown
in Figure 11 in order to visualize the fundamental difference between the two
worlds. Remember, that the two criteria were designed for the large sample limit.
Nontheless, AIC and BIC are displayed for small sample sizes in Figure 11 for two
reasons: First, they are often applied in practice regardless of this assumption.
Second, these prominent members of the two model selection types are perfectly
suited to display the deviating model complexity representations between non-
consistent and consistent criteria and what this implies for the selection of models.
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Figure 11: Model complexity representation of AIC (twice the number of parameters: 2Np) ver-
sus BIC (the number of parameters scaled by the logarithmic number of observations ln(Ns)Np).
Blue isolines display same complexity in the Ns−Np− space, with lighter blue indicating higher
complexity (penalty) (from Höge et al., 2018).

In the AIC-world, the complexity penalty generally does not grow with growing
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Ns as can be seen in Figure 11. In the AIC, complexity is totally independent
of Ns and is given as twice the number of parameters. This resembles the most
classic way of bounded complexity representation (Leeb and Pötscher, 2009) in
non-consistent model selection, enabling A-type criteria to successively approach
the (infinite-dimensional) truth by switching to “closer” models under growing
data size. Opposed to this, in the BIC-world, the complexity penalty constantly
increases with Npln(Ns) as shown in Figure 11. This depicts the consistent nature
of model selection criteria in the BIC-world in the simplest way, enabling these
criteria to identify the (finite-dimensional) true model that is assumed to be among
the model candidates.

3.4.4 Model Selection by AIC and BIC Exemplified

In a simple example, I want to demonstrate how the most popular ICs from the
two parsimonious model selection worlds, AIC and BIC, are typically employed in
practice. Therefore, both criteria are evaluated over growing data size. The feature
application is the binary classification problem from Figure 6 by data-driven neural
networks (NN; see Equation 3; built according to the tutorial in Britz (2015)) of
different complexities (Figure 12 (a)). These are used to mimic the separating
curve for classifying subsets of data that are drawn randomly from a total of 750
data points as to see in Figure 12 (b).

(a) (b)

Figure 12: (a) Neural networks (NN) of increasing complexity: simple (black box, left), medium
(brown box, center) and complex (beige box, right); (b) Total data comprising 750 points with
predefined blue and red labels in binary classification with unspecified attributes on the axes.

The loss function for this classification with NL = 2 labels is the so-called cross-
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entropy between the true labels D (red or blue) and the predicted labels ŷ over
Ns data points:

L(D, ŷ) = − 1

Ns

Ns∑
o=1

NL∑
l=1

Do,lln ŷo,l (41)

The cross-entropy in this discrete form is a typical likelihood function in ma-
chine learning, where it is used to rate the quality of classification models (e.g.
Friedman et al., 2001). Generally, between the distribution of a true model
q(y|Mtrue) and a predictive model p(y) the cross-entropy is typically written as
H(q(y|Mtrue), p(y)) = Eqtrue [ln p(y)]. It is the sum of the entropy of the true model
q(y|Mtrue) and the DKL of q(y|Mtrue) coming from p(y) (cf. Section 2.2.4).

Figure 13: Maximum likelihood separation line in binary classification over growing data size
Ns of the simple NN (black box, top), medium complex (brown box, center) and complex NN
(beige box, bottom).
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The model preferences of the non-consistent AIC and of the consistent BIC are
evaluated over subsets of the data with Ns = 25, 50, 100, 250, 500 or 750. Figure
13 shows the maximum likelihood estimators (MLE) of separation lines for each
of the three NN classification models at every subset.

Figure 14 shows the resulting model weights for the three models assigned by (a)
the AIC and (b) the BIC. The AIC clearly shows its tendency to prefer more com-
plex models when there is enough data to support it. Contrarily, the BIC depicts
conservative model choice in search for the true model - which in this case is, ho-
wever, not among the candidate models. From the AIC perspective of predictive
model choice, it is legitimate to switch towards the medium-complexity model ear-
lier than from the BIC perspective. As soon as enough data supports it, the AIC
even switches to the most complex model. Sooner or later, for both criteria, the
most simple model is considered to underfit and therefore not preferred. While
the BIC then sticks to the medium-complexity model which it identifies as true
one, the AIC moves on to the most complex model. While the flexibility of the
separation-line from the most complex model is interpreted as too high complexity
with respect to the true model by the BIC, the AIC supports this flexibility as
legitimate approximation of an unknown truth given the large amount of available
information (Ns = 750).
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Figure 14: Model weights estimated by AIC (a) and BIC (b) in binary classification over
growing data size Ns represented as fractions from bars of length 1 of the simple NN (black
parts), medium complex (brown parts) and complex NN (beige parts).

This simple illustration highlights three important points:
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• Whenever a multi-model framework is applied, it is crucial to keep in mind
how the (explicit or implicit) complexity representation in the chosen score
evolves over growing data size (as depicted in Figure 11). This directly
pertains to how a method rates each model.

• Both, the AIC and BIC, were derived in the large sample limit. Therefore,
their application for small data set sizes is questionable. The illustrative
example refers to a comparably simple modelling task and therefore both
criteria yield plausible results. However, in more demanding modelling tasks,
violated assumptions might trigger wrong conclusions.

• While formally conducted correctly by using the same MLE, the AIC and the
BIC still represent fundamentally different takes on model rating. Friedman
et al. (2001) argue that the assigned likelihood function for misclassification
does not fit to the context of BIC, i.e., consistent model selection. The
three NN models that are rated did not generate the data-points but predict
curves to separate labels. Under these conditions, the intention of the BIC
to identify the model that most likely generated the available data in an
M-closed setting is inadequate. Hence non-consistent methods like the AIC
should be employ. This highlights, again, that the adequacy of a certain
model rating method is indispensably tied to theM-setting of the modelling
task.

3.5 Summary and Conclusion

Model selection methods perform an explicit or implicit trade-off between goodness-
of-fit with data and model complexity. Generally, no complexity metric in model
selection works without incorporating data - which means that there is no unique
intrinsic model complexity (e.g. Du, 2016) that quantifies complexity only based
on the model’s functional relationships and parameters. The counted number of
parameters Np fully represents the complexity of the model only in special cases
of model selection (see A-type).

It is non-intuitive why the two major model selection types (non-consistent and
consistent) should not lead to selecting the same model. However, they are optimal
under different assumptions about the dimensionality of the truth that is model-
led. If this truth is infinite dimensional, a model selection method is optimal if it
can progressively approach this truth by sticking with one model only until more
data justifies switching to another (more complex) one that approaches the truth
even more closely (A-type model selection). Alternatively, if the truth is of finite
(relevant) dimensionality, a model selection method is optimal if it identifies the

75



model that fully parametrizes this truth (B-type model selection). Hence, both
types of model selection pursue different target quantities for model selection and
yield deviating results when they are applied to the same modeling task.

The model purpose is crucial to be considered when a particular model selection
method is used. From a pragmatic point of view, non-consistent model selection is
the right choice for finding the best model for predictions in situations where the
modeller cannot be sure that the truth can be sufficiently represented. Then, non-
consistent methods enable optimal use of a certain model until more observations
become available and a more complex model can be legitimately employed. Driven
by the philosophy to find the model which represents the truth, a model selected
in a consistent manner will avoid to be falsified when more data arrives. The con-
sistent selection therefore ranks candidate models (hypotheses) according to how
strongly they resist to be proofed wrong by the data. Therefore, consistent mo-
del selection is the right choice for process understanding and scientific hypotheses
testing because it is philosophically completely in line with the scientific approach.

Centered around the specific interpretations of model complexity, we conclude the
following major points:

1. When choosing between model selection criteria, the truth (dimensionality)
that shall be approached or represented by a certain type of model indidcates
the appropriate type of model selection. Whether this modeling purpose can
be pursued in an either Bayesian way or not, directs towards the right model
selection class. The assumptions met by the modelling task at hand justify
the corresponding method/criterion within each class.

2. Model selection methods that incorporate Bayesian priors should only be
applied if “reasonable” priors can be assigned. The purpose of the prior
should be to provide a meaningful context for testing models (Nearing and
Gupta, 2015), which means not too vague and not too constraint in order to
allow for a fair model selection. In cases where a “reasonable” prior cannot
be assigned, non-Bayesian model selection methods offer an alternative.

3. Some of the explicit model selection criteria underlie strong assumptions in
order to reliably quantify what they consider to be model complexity. If
these assumptions do not hold, we rather recommend an admittedly more
computationally costly but more reliable implicit method, e.g. (Bayesian)
cross-validation (non-consistent) or direct evaluation of Bayesian model evi-
dence (BME) (consistent).
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4. For general discussions during qualitative model development and compari-
son, it does not seem to be necessary to force our intuitive notion of complex-
ity into a specific definition - which certainly will not be comprehensive and
itself will be subject to discussion (see Gell-Mann, 1995). However, as soon
as a model selection technique is applied, a specific definition and role of mo-
del complexity is used and the models are ranked accordingly. A comparison
of different model selection metrics does therefore only make sense if either
they belong to the same class (e.g. B1) or if their respective interpretation
of model complexity is part of the discussion on the results.

5. Rather than claiming the “best” model was found with a certain model
selection criterion, it would be more appropriate to call it “best given the
complexity interpretation” of the particular criterion. All of the criteria give
the right answer (within their underlying assumptions and limitations), but
to different questions.
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4 Applying Bayesian Multi-Model Frameworks

Properly to Model Settings

Modelling in practice normally does not offer the obvious and clearly distinguisha-
bleM-settings (finite vs. infinite dimensional true model) as discussed in Chapter
3, with their clear prescription for model rating and selection. In applied mo-
delling, we employ multi-model frameworks to cope with the conceptual model
uncertainty under typically vague conditions. Sometimes, it is difficult enough to
develop a single model that is plausible. Then, by expanding, reducing or varying
certain model parts of this single model, it is usually possible to generate other
model candidates in case conceptual alternatives were not present right from the
beginning. Either way, finally having an ensemble of models available, its effective
usage is complicated by mainly two issues:

• Having only limited observed data for inference and model rating.

• Allocating the task and models to the appropriate M-setting.

For example, in hydrosystem modelling, the collection of field data is usually de-
manding and expensive. The system under investigation can hardly, if not impos-
sibly, be fully investigated. Placing corresponding models in a certain M-setting
is therefore challenging and explanatory or predictive model rating might be con-
tradicting goals.

As discussed for the three Bayesian multi-model frameworks in Section 2.3, model
weights in different frameworks carry different meanings according to their under-
lying theory. Hence, I investigate the impact of both issues by applying the three
frameworks to models for a typical modelling task in hydrosystem modelling that
I introduce in Section 4.1. I relate this task to differentM-settings and propose a
novel Quasi-M-closed setting for applied modelling. Accounting for limited data
in predictive model rating, I apply the Bayesian multi-model frameworks and the
Bayesian Bootstrap (BB; see Section 2.4.2) within respective settings in Section
4.2. I compare the results of each method to contrast their outcomes in Section
4.3. Thereby, I specifically focus on the results obtained when frameworks are
applied to settings they are not tailored for, e.g., BMS/BMA outside ofM-closed.
I close the chapter with conclusions in Section 4.4.

4.1 Modelling Task, Data and Models

The modelling task, data and models chosen to demonstrate the three Bayesian
multi-model frameworks from Section 2.3 were previously used and presented in
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Schöniger et al. (2015a). There, the modelling task was to find the best out of
several models that represent different subsurface parametrization of hydraulic
conductivity for a laboratory-scale sandbox. The rating of models was done via
BMS/BMA, based on drawdown data from a hydraulic tomography experiment in
the sandbox studied by Illman et al. (2010).

4.1.1 Lab-scale Experiment, Data and Likelihood Function

The lab-scale sandbox is depicted in Figure 15 (cf. Illman et al., 2010). It is 193
cm long, 82.6 cm high and 10.2 cm deep, and it contains a synthetic heterogeneous
aquifer made of eleven basic sand types. With these base types and mixtures, 18
layers were created by cyclic deposition of sediments (Illman et al., 2010). During
this process water flow rates and feed rates of sediment were varied in order to
mimic natural sedimentation. The photograph in Figure 15 shows the interfinge-
ring layers of the sandbox. 48 ports, each with a diameter of 1.3 cm, are available
to access the sandbox aquifer for pumping or measurement devices. Geologic core
measurements from these ports define the range of hydraulic conductivity K va-
lues to be log-normally distributed with a unit-normalized mean of lnK = −2.56
(K = 0.077cm/s) and a variance of σ2

lnK = 0.87 (Schöniger et al., 2015a).

Steady-state drawdown observations serve as data. From the 48 ports, only 36
were used to collect data, 12 were discarded due to a bad signal-to-noise ratio
(Schöniger et al., 2015a). Throughout 6 pumping tests, in total 210 observations
were collected as data D - using one port at a time for pumping and the others to
measure drawdown yielding 35 observations per pumping test. These ports were
selected regularly distributed over the whole sandbox and the resultingD served as
calibration data for parameter posterior inference. Four additional pumping tests
were conducted using ports that served only as observation ports before. This
produced another 140 observations as validation data D′. Measurement errors
were assumed to be uncorrelated Gaussian with a standard deviation of 1 cm.
This is represented in a Gaussian likelihood function centred at the data D for
calibration and D′ for validation, respectively.
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Figure 15: Top: Photograph of the laboratory sandbox aquifer (modified from Illman et al.,
2010). The different coloured layers resemble different hydraulic conductivities, numbers enume-
rate the layers. Circles indicate the locations of the ports - for pumping to obtain calibration
(black) and validation (white) data. Bottom: Corresponding numeric models (modified from
Schöniger et al., 2015a): Homogeneous (1), informed zonated (2a) and uninformed zonated (2b),
pilot-point-based (3) and geostatistical (4).

4.1.2 Mechanistic models

For simulation, the sandbox was discretized in a physics-based finite element
(white-box) model based on partial differential equations for steady-state ground-
water flow (see Equation 2 without storage term). The models were implemented
as two-dimensional over a window of 160 cm length and 78 cm height in order to
avoid boundary effects (Schöniger et al., 2015a). The PDEs were solved on a regu-
lar grid with a spatial resolution of 1 cm in each direction, resulting in 12,480 cells
with 12,719 nodes. The forward model runs were then executed using a vectorized
FEM solver (Nowak et al., 2008), which employs the standard Galerkin technique
for spatial discretization (Cirpka and Nowak, 2004). For the 2-D sandbox model,
the FEM elements become a regular grid of square elements. According to the
chosen parametrization, each element is assigned a certain hydraulic conductivity
value. Within each element, e.g. at the exact port locations, hydraulic heads are
obtained by bilinear interpolation which is numerically consistent with the FEM
interpolation. Each forward model run returns the parameter-specific model fore-
casts for steady-state hydraulic heads at the observation ports.

All parametrizations of the 2-D model were based on the physical properties of the
sandbox (mean, variance, and correlation lengths). These subsurface parametri-
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zations as shown in Figure 15 depict a representative range of model complexity
within physics-based groundwater models which are often applied to larger real-
world scales:

1. a homogeneous single effective parameter model (1 parameter)

2. a zonated model

(a) with an informed zonation model inspired by the spatial distribution of
sand layers (19 parameters)

(b) with an uninformed zonation model that accounts for parameter hete-
rogeneity but without realistic spatial distribution (24 parameters)

3. a deterministic geostatistical model by kriging based on stochastically para-
metrized pilot points for lnK (120 parameters)

4. a stochastic geostatistical model generated from Fast Fourier Transform-
based logarithmic multi-Gaussian random fields (12480 parameters)

These models are very similar to so-called nested models, i.e., model alternatives
of which simpler models are contained in the more complex ones, making them
generalizations.

In order to assure full sampling of the model-specific prior parameter distributi-
ons (cf. Section 2.4.2), large parameter ensembles were generated by brute-force
Monte Carlo sampling of each model’s p(Θ|Mm). These ensembles comprise of
2.0 · 105 samples for the homogeneous model and 1.0 · 107 samples for the other
four approaches. The large ensemble sizes assure convergence of inferred posterior
distributions and of the evaluated model rating scores.

4.1.3 Summary of the Reference Study

The reference study by Schöniger et al. (2015a) focused exclusively on the BMS/BMA
framework for model rating:

• Over growing size of dataD from successive pumping test inclusion, BMS/BMA
was conducted and it was shown how the results at each stage can be inter-
preted and utilized.

• In a model justifiability analysis so-called model confusion matrices were
introduced and demonstrated: In the large sample limit, BMS/BMA is sup-
posed to converge to a weight of one for the allegedly true model. Using
only a limited amount of observed data, a justifiability analysis yields the
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maximally expectable model weights in model selection which are presented
as confusion matrix.

• In a contrasting example, the uninformed zonated model (2b) was included
into the model set as substitution for the informed zonated model (2a). Then,
BMS/BMA was applied to and interpreted for this modified model set.

• In a validation, the predictive performance was tested on hold-out validation
data which had not been used for the Bayesian inference.

BMS/BMA was evaluated for 6 data set sizes, i.e., with one to six included pum-
ping test (PT) and with 35 measurements per pumping test. At each stage of
included pumping tests, all possible combinations of pumping tests were evaluated
and the resulting BMS/BMA-weights were averaged: When 5 from the total of
6 pumping tests are considered, 6 combinations are possible, 4 out of 6 yields 15
combinations, 3 out of 6 yields 20 combinations and 2 out of 6 yields 15 combinati-
ons. 1 or 6 out of 6 are trivial cases. Hence, in total, 63 combinations of pumping
tests were evaluated and the behaviour of averaged model weights was analysed.
The tendency of BMS/BMA to converge to the allegedly true model (informed
zonated, 2a) could thereby clearly be demonstrated.

The focus of Schöniger et al. (2015a) was to thoroughly investigate how strongly
the proposed models are able to recognize themselves as DGP given the data size
at each step of included number of pumping tests. Stepwise, the results were
presented as a so-called confusion matrix: A confusion matrix displays the de-
gree of each model in the ensemble to recognize itself or any alternative model as
the data-generating model given the current amount of data by respective model
weights. It was built from generating 1000 model outputs as synthetic datasets
Dsyn from each model in the ensemble. Then, all models were conditioned on
the synthetic datasets from one another and, for each dataset Dsyn, correspon-
ding BME values were obtained. Based on this, BMS/BMA was conducted and
the resulting 1000 model weights of each model were averaged. In the sandbox
case study, the confusion matrix for model 1, 2a, 3 and 4 showed that using the
calibration data from 6 pumping tests (210 observations) does not allow for full
identification of the informed zonated model (2a) as true model even if it actu-
ally generated Dsyn. Using these 210 data points, an averaged model weight of
only 75% was achieved. Generally, Schöniger et al. (2015a) recommend to perform
such a justifiability analysis before including the actual observationsD to estimate
the maximal model weight that can be expected by BMS/BMA given the size ofD.

Referring to real-world scenarios where knowledge about the modelled system
might not be as highly resolved as on the lab-scale, the rougher, uninformed zo-
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nated model (2b) was added to the ensemble in exchange for the informed zona-
ted model (2a). Model 2b performed clearly worse than model 2a and therefore
BMS/BMA did not converge to it anymore over growing data size, but rather to
the pilot-point model 3.

The predictive performance of each single model and the BMA pdf-average for the
model set (incl. model 2a) were evaluated using the the validation data D′ (140
observations) via:

• the root-mean-square error (RMSE) between D′ and the expectation over
posterior predictions y′ (see Equation 12) as a measure of accuracy:

RMSE =

√
1

Ns

∑
(E[y′|D]−D′)2

• the corresponding standard deviation of predictions (see Equation 13) as a
measure of precision; and

• the posterior predictive coverage based on 90% Bayesian credible intervals
between the 5% and 95% quantiles.

These were evaluated for individual models (see Equation 7) and for the BMA pdf-
average (see Equation 11). The validation showed that both, the informed zonated
model (2a) and the pilot-point model (3), provide the best individual trade-offs in
terms of accuracy and precision. However, no single model was clearly superior
over the other candidates as can be seen in Table 4. Expect for the homogeneous
model which performs worse, the other three candidates show very similar per-
formance on D′ when conditioned on D. The BMA-average (dominated by the
informed zonated model) did not outperform the single models either (cf. Section
4.3.4).

Table 4: Predictive performance of individual models regarding accuracy (RMSE), precision
(Standard deviation) and predictive coverage from Schöniger et al. (2015a)

Predictor RMSE (cm) Std. (cm) Pred. Cov. (%)
Homogeneous 0.52 0.06 18
Zonated 0.37 0.20 70
Interpolated 0.33 0.22 74
Geostatistical 0.34 0.23 70

For further details refer to Schöniger et al. (2015a).
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4.2 Conducting Bayesian Multi-Model Inference

Expanding the previous work, I address conceptual uncertainty in the modelling
task not only from the perspective of BMS/BMA but also by Pseudo-BMS/BMA
and Bayesian Stacking, evaluating these multi-modelling frameworks with respect
to specified M-settings. For comparability to Schöniger et al. (2015a), I use the
same data (D and D′) as well as the same numerical samples of prior parameter
and prediction distributions. The only exception are numerical samples of the
uninformed zonated model which contained errors that distort the model weights
of BMS/BMA. I regenerated these samples for this thesis and therefore present
different results for BMS/BMA when the model 2b is in the set.

First, I propose a new setting called Quasi-M-closed that allows to pursue process-
identification in applied modelling tasks. Second, I define the M-settings for
the sandbox case study and explain which Bayesian multi-model frameworks are
applied in each setting. Third, I show how the marginalized likelihoods required to
apply the frameworks can be obtained from prior predictive distribution samples.

4.2.1 Defining a Quasi-M-closed setting

The threeM-settings of Bernardo and Smith (1994),M-closed,M-complete and
M-open, are comprehensive. However, in physical sciences or engineering, models
are often built that contain all known details about the physical system at the
current state of science - so they are considered to be very close to the truth. Yet,
knowing that this knowledge is incomplete prohibits to fully assume to be in the
M-closed setting. Further, even if all physics of the system were fully represented
in a model, there are still issues that come from model computation: Unless ana-
lytical solutions are available, numeric discretization schemes produce errors that
range from inaccuracies to numerical artifacts. Then, the model output, e.g., the
spatial spread of a solute in groundwater, contains numerical errors that might be
misinterpreted as features of the real system but are only a result of shortcomings
in the applied numerics.

Hence, I want to introduce a fourth setting, denoted Quasi-M-closed, which ena-
bles us to pursue the identification of the DGP even if we cannot (yet) fully write
down the exact mathematical description for it or have to assume numeric in-
accuracy. Thereby, we follow the terminology of Burnham and Anderson (2004)
who call the targeted model under these circumstances quasi-true. Formally, the
setting is M-complete, because the true model is not exactly represented by one
of the candidate models. Still, for practical purposes, it is treated as M-closed
such that methods for identification like BMS/BMA can be applied. This practical

84



compromise comes with the restriction that the best model is not the true model
- we rather have to interpret the best model from a DKL perspective as having a
prior predictive distribution that is very close to the pursued (but yet unavailable)
q(y|Mtrue).

M - closed Quasi -M - closed M - open

Process understanding (Identifying Truth)

Predictive approximation (Approaching Truth)

1

2

3

T

1

2

3

1

2

3
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3
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M - complete

T

T

Figure 16: Illustration of the four M-settings as 2D projection: M-closed (left), Quasi-M-
closed (center left), M-complete (center right) and M-open (right). The model set comprises
three models (blue circles) of different complexity (indicated by the circle size). While in theM-
closed, Quasi-M-closed andM-complete setting the true model (green circle with “T”) is static
in the model space, arrows in the M-open setting depict the true model as “moving target”.
The primary objective (process-understanding or predictive approximation) in each setting is
visualized by the grey scale (bottom).

As can be seen in Figure 2, Quasi-M-closed can be allocated on the black-white
scale in the region of light grey, whileM-complete rather refers to dark gray. The
qualitative differences of the M-settings are summarized in Table 5.

Table 5: Qualitative summary of the fourM-settings: M-closed, Quasi-M-closed,M-complete
and M-open with respect to the true model.

Model (pdf)... M -closed Quasi-M -closed M -complete M -open
... can be conceptualized fully fully fully incompletely
... can be written down fully nearly incompletely impossibly
... matches actual true model (pdf) fully nearly maybe closely maybe temporarily

4.2.2 Evaluating Multi-Model Frameworks in Different M-settings

As described in Section 2.1.4, the different M-settings deviate by whether the
DGP is assumed to be included or not and by how the list of models in the en-
semble relate thereto. In Figure 17 all model parametrizations are illustrated and
I aligned them in three different ways to represent the M-closed, the Quasi-M-
closed, and the M-complete setting, respectively.
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DGP

Model
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Figure 17: Defined M-settings for the applied modelling example: 1st column) M-closed -
DGP: informed zonated model - model set: homogeneous, inf. zonated, pilot-point and geosta-
tistical; 2nd column) Quasi-M-closed - DGP: sandbox - model set: homogeneous, inf. zonated,
pilot-point and geostatistical; 3rd column) M-complete - DGP: sandbox - model set: homoge-
neous, uninf. zonated, pilot-point and geostatistical

In the sandbox example, there is no M-open scenario because we can fully con-
ceptualize the steady-state problem (at least once we accept the continuum as-
sumption to define a hydraulic conductivity). The only relevant hindrance is that
we cannot fully resolve what we have conceptualized, e.g., the physical properties
in the fringes of the different sand zones.

1. In the M-closed setting (Figure 17, left), identification of the true model
(2a) is the logical objective, i.e. consistent model selection. Hence I conduct
BMS/BMA to achieve this task, partly reproducing the justifiability analysis
of Schöniger et al. (2015a) for model 2a as DGP. I consider the repetitive
evaluation of BME on various Dsyn for obtaining the confusion matrix as
extended prior predictive check (see Gabry et al., 2017). To that, I add an
extended posterior predictive check: I conduct Pseudo-BMS/BMA in parallel
in order to contrast the model rating from BMS/BMA with a method that
is not tailored for the identification of the true model. For computation
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feasibility, I reduce the 1000 Dsyn to 100, because the evaluation of Pseudo-
BMS/BMA based on prior samples (2·105 and 1·107) is computationally more
expensive due to the leave-one-out cross validation procedure (see Section
4.2.3). It has to be repeated over all 210 observations of the calibration data
throughout all 63 pumping test combinations.

2. Using real-world observations with the same models turns theM-closed into
a Quasi-M-closed setting (Figure 17, center). Knowing that the exact true
model is not in the set, I apply Pseudo-BMS/BMA to find the single best
predictive model. In comparison, I apply BMS/BMA to find the quasi-
true model. Besides Pseudo-BMS/BMA for predictive selection, this setting
qualifies for the application of Bayesian Stacking to converge to a suitable
predictive model combination. Further, due to the limited amount of data
points in D, I apply the Bayesian Bootstrap (BB) to the two predictive
multi-modelling frameworks Pseudo-BMS/BMA and Bayesian Stacking to
account for uncertainty in model weighting.

3. Substituting the informed zonated model (2a) by the uninformed zonated
model (2b) turns the Quasi-M-closed into an M-complete setting (Figure
17, right). There, only predictive methods for selection or combination are
expected to be suitable since no (quasi-)true model can be identified. Hence,
I focus on Pseudo-BMS/BMA and Bayesian Stacking, applying the BB to
both frameworks. For contrasting their behaviour with (bound to be mislea-
ding) consistent model selection, I also apply BMS/BMA in thisM-complete
setting.

4. In the Quasi-M-closed andM-complete settings, I evaluate all three frame-
works with respect to their predictive performance on the validation data.
Therefore, I calculate the same measures for accuracy (RMSE), precision
(standard deviation) and predictive coverage (90 % Bayesian credible inter-
vals) as done by Schöniger et al. (2015a) for comparability.

4.2.3 Obtaining the Marginalized Likelihoods

Each Bayesian multi-model framework rests on the evaluation of a marginalized
likelihood to quantify model performance in its respective realm. To guarantee
comparability between the three frameworks defined in Section 2.3, all model scores
are evaluated on the same prior samples for each model. In a straight-forward
manner, each model’s marginal likelihood p(D) (or p(D∅)) is obtained by plain
Monte Carlo integration (Equation 22). p(Do|D∅) is then gained by exploiting
the following relation:
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p(Do|D∅) =

∫
p(Do|Θ)p(Θ|D∅)dΘ

=

∫
p(Do|Θ)

p(D∅|Θ)p(Θ)

p(D∅)
dΘ =

∫
p(Do|Θ)p(D∅|Θ)p(Θ)dΘ∫

p(D∅|Θ)p(Θ)dΘ

iid
=

∫
p(Do,D∅|Θ)p(Θ)dΘ∫
p(D∅|Θ)p(Θ)dΘ

=

∫
p(D|Θ)p(Θ)dΘ∫
p(D∅|Θ)p(Θ)dΘ

=
p(D)

p(D∅)
(42)

The i.i.d. assumption of measurement error, i.e., conditional independence of Do

and D∅ given parameters, also applies here in form of the uncorrelated Gaus-
sian likelihood function. Therefore, the point-wise predictive density p(Do|D∅)
can be understood as the ratio between the marginal likelihoods (BMEs) of the
whole data set D and LOO data set D∅. This elucidates why predictive (non-
consistent) model selection does not support the conclusion that a certain model
has generated the data (as in consistent model selection) - the likelihood that the
model generated “past” data D∅ drops out and only the predictive density for the
“future” data point Do remains.

Going pointwise through the whole data setD yields an expression of the expected
logarithmic pointwise predictive density for model rating (see Equation 18) by
using Equation 42 that writes as:

elpdLOO =
Ns∑
o=1

ln
p(D)

p(D∅)
= Nsln p(D)−

Ns∑
o=1

ln p(D∅) (43)

This formulation further allows for an interpretation of elpdLOO from the per-
spective of explicit information criteria (cf. Section 3), considering the log-BME
as decomposed into a sum of a “goodness-of-fit” and a “model complexity” term
like, e.g., in the KIC: In consistent model selection, we know that the model com-
plexity has to grow subextensively with increasing amount of data (Bialek et al.,
2001) to allow for convergence toward the true model. Hence, the substraction
of log-BME values for all but one data point from the full log-BME in equation
43 can be interpreted as their subextensively growing model complexity terms to
cancel each other out up to the contribution from the left out data point. What
remains is a non-consistent metric without the property to converge towards a
presumably true model. Using the elpdLOO for model evaluation only focuses on
rating the model in its ability of predicting a single next data point - marginalized
over all available data points - but without the need to also cover the past data
for explanatory purposes.
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The obtained marginalized likelihoods are then turned into model weights for all
three Bayesian multi-model frameworks by employing equations 14, 19 and 20.
An analytic solution to the marginalized likelihoods and their interrelation can be
obtained for Gaussian linear models as shown in Appendix C.

4.3 Results and Discussion

4.3.1 Model Weights in the M-closed Setting

For theM-closed setting, the two compared frameworks BMS/BMA and Pseudo-
BMS/BMA yield similar results. Figure 18 shows that both frameworks clearly
prefer the zonated model in a selection. This does not come as a surprise because
from the perspective of prior or posterior predictive checks, the true model will
always yield best predictions.
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Figure 18: Expected model weights over growing data size (number of included pumping tests,
# PTs) for theM-closed setting, i.e., with data generated by the informed zonated model (DGP).
Top: BMS/BMA; bottom: Pseudo-BMS/BMA.

Plainly spoken, BMS/BMA simply does its job and converges towards the infor-
med zonated model which is in fact the DGP. By construction, its prior predictive
distribution is “closest” (identical) to the true data distribution. Due to the limi-
ted amount of (calibration) data, the zonated model reaches a maximum model
weight of 75% when all 210 data points are included in the inference. Despite using
only 100 realizations of Dsyn, this confirms the result of the justifiability analysis
of Schöniger et al. (2015a). This confirmation verifies also the reliability of the
Pseudo-BMS/BMA results. In the additionally evaluated Pseudo-BMS/BMA, the
zonated model also receives the highest weight, as shown on the bottom of Figure
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18. Obviously, its posterior predictive distribution is closest to the true data dis-
tribution q(y|Mtrue) in the DKL sense, too.

However, there are several differences to be noticed between the two frameworks:
At each data stage, the obtained model weights deviate between the two fra-
meworks which becomes more and more distinct over growing data size. In
BMS/BMA, the weights of more complex model alternatives (3 and 4) immedia-
tely decline as data size increases and with all 6 pumping tests included, only the
simpler homogeneous model remains as weak but still relevant alternative to the
informed zonated model. In Pseudo-BMS/BMA it is vice versa - after a slight peak
for considering only one pumping test, the weight of the simpler model diminishes.
Yet, the framework yields still significant weights for the more complex alterna-
tives due to their high predictive capability. This confirms both the conservative
nature of consistent model selection methods and the tendency of non-consistent
methods towards more complex models (see Section 3).

Yet, the most fundamental difference is that only the BMS/BMA weights can be
interpreted as probabilities in terms of the zonated model being the true model due
to the consistency property of the multi-model framework. Although the Pseudo-
BMS/BMA weights indicate largest (posterior) predictive capability of the zonated
model, it cannot be interpreted as true model. The underlying assumption behind
Pseudo-BMS/BMA - being outside ofM-closed - prohibits this interpretation even
if a model received a model weight of exactly one.

4.3.2 Model Weights in the Quasi-M-closed Setting

In the Quasi-M-closed setting, the focus shifts stronger to predictive Bayesian
multi-model frameworks. This requires to account for limited observations with
the Bayesian Bootstrap. For the two predictive methods, Pseudo-BMS/BMA and
Bayesian Stacking, the bootstrapped results are decisive for the comparison bet-
ween the three methods. The frameworks yield vastly different results, as it can
clearly be seen in Figure 19.

BMS/BMA assumes to be employed in an M-closed setting and (incorrectly)
identifies the zonated model (2a) as DGP. Knowing, that this model is not the
exact representation of the actual DGP, we can still take it as the most plausible
quasi-true model. This preference for the zonated model is similar to the result
in Section 4.3.1, yet the model alternatives are rated differently. In the Quasi-
M-closed setting, the simple homogeneous model is essentially discarded despite
the conservative tendency of BMS/BMA in model selection. Instead, the more
complex pilot-point model (3) remains as plausible candidate and even the most
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complex geostatistical model (4) receives higher probability to be the (quasi-)true
model than the simplest one. This shows that, despite the zonated model ap-
pearing as presumably close resemblance of the true physical system, BMS/BMA
struggles to identify it as DGP as clear as in an actual M-closed setting.
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Figure 19: Expected model weights over growing data size (number of included pumping tests,
# PTs) for the Quasi-M-closed setting, i.e., with data observed from the sandbox aquifer.
Top row: BMS/BMA; center row: Pseudo-BMS/BMA without (left) and with (right) Bayesian
Bootstrapping (BB); bottom row: Bayesian Stacking (BS) without (left) and with (right) BB.

Pseudo-BMS/BMA yields a very different result in Quasi-M-closed when di-
rectly compared to BMS/BMA and also in comparison to the result of Pseudo-
BMS/BMA in M-closed (cf. Section 4.3.2). The tendency toward models of hig-
her complexity is obvious and the simplest model (1) never stands a chance to be
preferred. In non-consistent selection, the model that promises largest predictive
capability while having a complexity that is still supported by the current amount
data is preferred. Hence, even though a human expert might think that the zona-
ted model is the closest resemblance of the physical sandbox, Pseudo-BMS/BMA
finds this trade-off to be fulfilled best by the pilot-point model (3) over growing
data. Over increasing amount of data, the tendency toward more complex models
is clearly visible. While for two pumping tests, the zonated model is rated best, yet
without strong advance, it loses ground in favor of the more complex alternatives
- especially the pilot-point model. The most complex geostatistical model does
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not gain weight but (contrarily to the BMS/BMA weights and to the results from
M-closed) it also does not loose any. The Bayesian Bootstrap confirms the model
weights as being robust over various instances of D from the true data distribution
q(y|Mtrue). Hence, the most likely bootstrapped weights are almost equal to the
original Pseudo-BMS/BMA weights.

Bayesian Stacking for predictive model combination behaves completely differently
from either selection framework. The conjoint inference of model weights via rating
the combined ensemble K is more challenging than rating each model individually
and afterwards evaluating the weights as in Pseudo-BMS/BMA: The maximization
problem in Equation 20 has several local maxima as solutions for different instan-
ces of D and Bayesian Stacking without bootstrapping yields only one. Hence, the
BB shows a much larger effect, yielding the global maximum over the true data
distribution q(y|Mtrue). The converged wBB are, again, more robust and allow for
a more reliable interpretation. The stabilized model weights distribution over four
to six pumping tests supports the assumption of convergence. At each data stage,
Bayesian Stacking seeks to find the combined average of models that covers the
data best. While for a single pumping test this seems to be accomplished by a
combination of the homogeneous and the zonated model, more complex models
receive higher weight in the combination with growing data. Over two and three
pumping tests, Bayesian Stacking moves toward a stable combination of essentially
the pilot-point and the zonated model (with minor contribution of the homoge-
neous one). It appears to combine the preferred models of both BMS/BMA and
Pseudo-BMS/BMA. While the BB adjustment is not as strong for small data si-
zes it has more impact for growing data when it is more difficult to find a global
maximum. For four and more pumping tests, the stable model weights allow for
averaging in the sense of real model combination. In an illustration like Figure
2, the true DGP can conceptually be located roughly between the pilot-point and
zonated model. Physically, this can be interpreted as accounting for the fringes
of the sand layers: The zonated model shows too stark contrasts between neig-
hbouring zones and the PP shows a too smooth transition. The reality is probably
somewhere in between, and the Bayesian Stacking weights reflect this.

4.3.3 Model Weights in the M-complete Setting

For theM-complete setting, the focus is only on predictive Bayesian multi-model
frameworks supported by Bayesian Bootstrapping. From the underlying theory,
BMS/BMA is inadequate to be applied in this setting. Its results are only pre-
sented to contrast it with predictive methods, taking into account that it is often
applied nonetheless in M-complete settings like a “panacea” (Clyde and Iversen,
2013). Accordingly, the results of the three frameworks deviate strongly, as shown
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in Figure 20.
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Figure 20: Expected model weights over growing data size (number of included pumping
tests, # PTs) for the M-complete setting, i.e., with data observed from the sandbox aquifer.
Top row: BMS/BMA; center row: Pseudo-BMS/BMA without (left) and with (right) Bayesian
Bootstrapping (BB); bottom row: Bayesian Stacking (BS) without (left) and with (right) BB.

Due to its consistent nature, BMS/BMA seeks to identify one of the models as
(quasi-)true but it is not able to clearly prefer only one over the others. Up to the
inclusion of three pumping tests, BMS/BMA shows a preference for the uninfor-
med zonated model (2b), mostly due to its parsimony. However, this preference
for a single candidate is by far not as clear as in theM-closed or Quasi-M-closed
settings. For four and more pumping tests, the pilot-point model (3) receives gro-
wing weight while the homogeneous model (1) loses ground and the geostatistical
model (4) remains nearly constant. In the M-complete setting, BMS/BMA only
yields an indecisive selection in the investigated range of data availability. Yet,
again, this shall not be confused with converging to an average in terms of model
combination, because BMS/BMA does not have the property to do so.

From its underlying theory, Pseudo-BMS/BMA is supposed to be a suitable choice
in an M-complete setting and yields plausible results in contrast to BMS/BMA.
The framework behaves similarly to the performance in Section 4.3.2), yet it is
even stronger in its preference for the pilot-point model (3) - simply because (2b)
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is not a good competitor. The principal preference for complex models is depicted
by the geostatistical model (4) obtaining the second highest weight when at least
two pumping tests are considered, which makes it clearly the second choice in a
selection for predictive purposes. In the same line of thought, the simple homoge-
neous model (1) diminishes in weight over the successive inclusion of up to three
pumping tests and the uninformed zonated model (2b) also has declining model
weight because it comes with comparably large complexity given insufficient fit to
data. Apparently, in the inappropriate zonation structure, the available complex-
ity is spent on comparably useless model degrees of freedom. Again, the Bayesian
Bootstrap confirms the model weights from Pseudo-BMS/BMA (cf. Section 4.3.2).

In Bayesian Stacking, the pilot-point model also receives highest weight rather
quickly, not as preferred single model but rather as dominating fraction in a model
combination. The BB shows similar behaviour as in the Quasi-M-closed setting,
accounting for the difficulty of joint weighting under yet growing but still limited
data size. Hence, Bayesian Stacking with Bayesian Bootstrapping also converges
to stable fractions of models for four to six pumping tests. In contrast to Quasi-
M-closed, the Bayesian Stacking model average in the M-complete setting relies
nearly entirely on the pilot-point model (3). A small fraction in the combination is
roughly equally covered by the homogeneous and uninformed zonated model. The
geostatistical model is not part of the combination - due to its large complexity,
forecasts from this model only come with low predictive density which makes it
insignificant in the weighted average that is optimized for high predictive density.
In the illustration like in Figure 16, the predictive distribution is very close to
the pilot-point model, slightly pulled toward the simpler models. This can again
physically be interpreted as compensating for the too smooth fields from the pilot-
point model. Yet, in the M-complete setting, the compensation does not honour
the geometric boundaries of the different zones as in Quasi-M-closed and therefore
the simpler models contribute only marginally.

4.3.4 Validation in Quasi-M-closed and M-complete settings

The validation with further observationsD′ was performed for the Quasi-M-closed
andM-complete settings. The only clear message thereof is: All multi-model fra-
meworks yield similar results for the chosen application example.

No framework shows its superior predictive capability, neither in the Quasi-M-
closed nor the M-complete case. A possible explanation therefore concerns the
used data: two of the four additional pumping tests that provided the validation
data (140 data points) were performed in parts of the sandbox, about which no
information was contained in the calibration data as already mentioned by Schöni-
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ger et al. (2015a). This questions whether there was already enough calibration
data used with the six pumping tests to allow for sufficient inference of the mo-
del with high parametric complexity. Yet, one might argue that a main purpose
of modelling is to provide predictions under conditions never experienced before.
Therefore, calibration data should be able to inform and constrain the employed
model(s) in a way that regardless from when and where validation data is obser-
ved, it should be matched by the model(s) to some degree. Hence, if the individual
members of a model set struggle with extrapolating to new situations, it cannot
be expected that a multi-model framework per se yields better results. In the first
place, the model set members require adjustment and improvement.

Mainly, the results can yet be explained with the apparent similarity of the indivi-
dual models regarding their individual predictive performance. Looking at Table
4, only the homogeneous model shows significantly higher RMSE, lower standard
deviation and lower predictive coverage. The other three models (2a, 3 and 4)
yield very similar results regarding accuracy, precision, and coverage.

Hence, in the Quasi-M-closed setting, no weighted average contains a significant
contribution of the homogeneous model. Predominantly, the averages are based on
the informed zonated (2a) and pilot-point model (3) - only in Pseudo-BMS/BMA
also the geostatistical model (4) obtains significant weight. Since all of them pro-
vide similar prediction metrics, their weighted averages do as well as presented in
Table 6. Although the model weights honour the objective (DGP identification
vs. best individual predictive model vs. best predictive combination) of each re-
spective Bayesian multi-model framework in distinctly different weightings, their
predictive results are similar.

Table 6: Predictive performance of model averages from Bayesian model frameworks (and the
informed zonated model) in the Quasi-M-closed setting regarding accuracy (RMSE), precision
(Standard deviation) and predictive coverage. (Note, that the results for BMS/BMA differ from
the ones reported in Schöniger et al. (2015a) where, presumably, typos made it into the printed
version of the article.)

Predictor RMSE (cm) Std. (cm) Pred. Cov. (%)
zonated (inf.) 0.37 0.20 70

BMS/BMA 0.36 0.21 73
Pseudo-BMS/BMA 0.34 0.22 73
Bayesian Stacking 0.35 0.22 72

The same holds for the M-complete setting with the uninformed zonated mo-
del (2b) as shown in Table 7. Except for the lower predictive coverage of 64%,
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this model shows similar individual performance to the more complex models (3)
and (4) regarding RMSE and standard deviation. The averages from the three
frameworks show, again, only negligible differences: the RMSEs of 0.34 cm and
the standard deviations of 0.22 cm are identical in all frameworks and the pre-
dictive coverages are very similar - although these results were achieved by vastly
different weightings of the models within each framework. The highest weighted
model in all averages is the pilot-point model, but the uninformed zonated model
is weighted comparably strongly in the non-decisive BMS/BMA and the the geo-
statistical model obtains significant second largest weight in Pseudo-BMS/BMA.
Hence, all rating results are in full compliance with the respective framework ob-
jective. Yet, due to their similar individual performances, this has negligible effect
on the average performance metrics of the respective frameworks.

Table 7: Predictive performance of model averages from Bayesian model frameworks (and the
uninformed zonated model) in the M-complete setting regarding accuracy (RMSE), precision
(Standard deviation) and predictive coverage

Predictor RMSE (cm) std (cm) Pred. Cov. (%)
zonated (uninf.) 0.35 0.19 64

BMS/BMA 0.34 0.22 71
Pseudo-BMS/BMA 0.34 0.22 70
Bayesian Stacking 0.34 0.22 72

Although the validation results of this example do not clearly depict the respective
strengths of each method, they neither support that it is irrelevant which multi-
model framework is employed. They rather emphasize the necessity to correctly
interpret the meaning of the model weights of each framework that underpin these
validation results:

• Bayesian Stacking seeks to compensate for shortcomings of individual models
regarding posterior predictive density by shares of model alternatives and
converges to model fractions that are optimal in this respect. It therefore
yields a best possible compromise between models, balancing the model set
by averaging for comprehensiveness.

• Both BMS/BMA and Pseudo-BMS/BMA are ultimately selection frame-
works that indicate to use only the model with highest weight. Yet, to
avoid misleading results before a completed selection (model weight of 1 for
one model), averaging assures reliability. Naturally, averages are not better
than an individual best model, but they account for remaining conceptual
uncertainty.
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4.4 Summary and Conclusion

Only by accounting for theM-setting of the modelling task, Bayesian multi-model
frameworks can be properly applied and one can exploit their full potential:

• In theM-closed setting, BMS/BMA allows to identify the true model by mo-
del probabilities and thereby yields highest predictive capability for unseen
data. Pseudo-BMS/BMA might prefer the true model, too, but it does not
allow to identify it as such.

• In the Quasi-M-closed setting, BMS/BMA might converge to the closest
resemblance of the truth but one cannot expect to obtain best future pre-
dictions by it. Pseudo-BMS/BMA might prefer another model as best in
predictive model rating. Alternatively, Bayesian Stacking might yield a mo-
del combination optimized for predictions that depicts a compromise between
suitable models.

• In the M-complete setting, BMS/BMA will be misleading, let alone that it
is able to converge to one candidate at all. In this setting, only predictive
methods for selection and combination are suitable and the modeller has to
decide whether an individual model or a weighted average shall be employed
for predictions.

Hence, before any Bayesian multi-model framework is applied in a practical mo-
delling task, it has to be clearly defined in which setting we allocate the modelling
task and which goal we pursue there:

• If the purpose is to understand the DGP, we follow the Quasi-M-closed
perspective whenever possible. There, we apply BMS/BMA, knowing that a
direct interpretation of the model weights as probabilities is yet impossible
but seeking to match the true data distribution q(y|Mtrue) with the prior
predictive distribution p(y) of one of our models in a DKL-sense. The best
model identified by this procedure can then be the basis for a next stage
of model refinement where we improve this model in a way we think that
it resembles the truth even better (here, by a refined parametrization for
the fringes in the informed zonated model). Then, having a new set of
alternatives, we re-iterate BMS/BMA, and so on. Ultimately, we want to
move our modelling task to a fullM-closed scenario where our model weights
actually resemble model probabilities.

• If the the assumption of having a (quasi-)true model in the set is unreaso-
nable, we follow the M-complete (or even M-open) perspective. There, to
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achieve maximum predictive power, we apply Pseudo-BMS/BMA or Baye-
sian Stacking to approximate the data distribution q(y|Mtrue) with the (indi-
vidual or common) posterior predictive distribution. The single best model
that comes out of Pseudo-BMS/BMA can then be the basis for adding com-
plexity as the available data size increases to approach the unknown DGP
even more closely. In the M-complete setting, Bayesian Stacking is suppo-
sed to yield a stable model combination that ensures predictive reliability. In
anM-open setting, it cannot be expected that Bayesian Stacking converges
to stable weights given that the true model is a “moving target”. Hence,
the continuous improvement of models or enlargement of the model set is
indispensable to increase predictive capability.

In case that a clear allocation of the modelling task in a certain M-setting bet-
ween the extremes,M-closed andM-open, is impossible (see Figure 16), switching
between the two perspectives, Quasi-M-closed and M-complete, might be a re-
asonable practical approach. Yet, it is then crucial to only interpret the model
weights accordingly in order to properly address conceptual uncertainty.

Whenever model weights are based on some inferred quantities, it is necessary to
account for associated inferential uncertainty, e.g., via the Bayesian Bootstrap. For
predictive multi-model frameworks like Pseudo-BMS/BMA or Bayesian Stacking,
the available data as proxy for unseen data is typically the source of uncertainty
in model weights of highest priority. In process-identification like via BMS/BMA,
prioritizing might show that the robustness of model weights suffers mostly from
measurement noise of the available data and model inputs, or vagueness in boun-
dary conditions (see Schöniger et al., 2015b). This has to be addressed separately.

Although model validation might provide similar results for all evaluated multi-
model frameworks for the currently available data (as in this example), the averages
have to be scrutinized with respect to the contributions of each model in the set.
It can be expected that significant deviances in predictive performance in terms
of accuracy, precision, coverage, etc. arise when more data is included. Sooner
or later, the multi-model average will converge to the single best model in both
selection frameworks. Contrarily, the stacking result as superposition of predictive
pdfs will provide predictive reliability by making use of several model set mem-
bers in the average. Nonetheless, deficiencies of the models in matching the true
data distribution mark an upper bound for (prior or posterior) predictive power
in applied modelling. This can be overcome by continuous model set improvement
where each iteration has to be rated in Bayesian multi-model frameworks.

This holds even more for models that deviate strongly in terms of their concep-
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tuality. In case, e.g., different model types are employed and not just white-box
models models with different levels of detail (as in this example), their type-specific
limitations and potentials oblige to perform a thorough analysis of conceptual un-
certainty in order to exploit their full potential regarding explanatory or predictive
power. As demonstrated throughout this chapter, this can only be achieved by pro-
perly applying a Bayesian multi-model framework with respect to the underlying
model setting.
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5 Guiding toward Task-Specific Multi-Model Use

Fully understanding model rating scores (see Chapter 3) and being aware of how
to apply and interpret built-on multi-model frameworks in different model settings
(see Chapter 4) should enable us to properly employ multiple models. However,
it is hardly possible to, first, keep all the relevant details in mind and therefore,
second, to reliably find the most suitable multi-model method for any given mo-
delling task.

I introduce a guideline in Section 5.4 that helps to find the suitable framework
based on comparably simple questions about the modelling task. These questions
concern the goal of the modelling task and the available model set and have to
be answered by the modeller. Before, I will disentangle the terminology of model
combination in multi-model use in Section 5.1. Since Bayesian Stacking only allows
for model combination to increase predictive power, I show how alternative fully
developed models in a set can be combined and rated for the sake of process-
identification in a consistent manner in Section 5.2. To clarify interpretability of
different multi-model averages, I elaborate the distinction between averaging of
model outputs and predictive distributions in Section 5.3. I close the chapter with
a summary, discussion and conclusion in Section 5.5.

5.1 Disentangling Model Combination Terminology

Many methods are found under the umbrella of model combination and many
of them use similar terminology. Often, they refer to “stacking” as combination
scheme, but mean different things:

• Bayesian Stacking, that I presented and employed in previous chapters, me-
ans stacking predictive distributions. Again, this does not change the indi-
vidual predictive distributions of the specified models but builds a weighted
average as superposed convex hull. Therefore, the conjoint optimization of
model weights in Bayesian Stacking in Section 2.3.3 is based on stacked
pointwise predictive densities from individual models instead of the actual
model output values.

• Alternatively, stacking can refer to adding weighted outputs of fully specified
models. The distribution of such a weighted forecast average obtains an
own pdf rather than being a linear (convex) mixture of individual pdfs. For
this, the weights are obtained differently than the conjoint optimization from
Bayesian Stacking (see Section 5.2).
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Contrarily, other notions of model combination exist: We might assume that our
candidates in the model set allow to be combined in a “blended” model that con-
tains elements from several candidates in order to give a better resemblance of
the DGP. In hydrology that might be, e.g., exchanging the parametrization of
evapo-transpiration parametrizations or outflow routing-functions between diffe-
rent model candidates (e.g. Clark et al., 2015). The predictive distribution of such
a “blended” model might then be closer to the q(y|Mtrue). Yet, unlike the other
introduced methods, this approach does not refer to a multi-model framework in
the sense of combining individual fully specified models but to build new alterna-
tives to populate the M-space. Therefore, it is not further discussed here.

The same holds for so-called “hybrid modelling”, i.e., combination approaches
where different model types are used to compensate shortcomings of one model
type by a different model type. Examples are data-driven (black-box) approaches
that correct numerical errors during the solution of differential equations (see Ray
and Hesthaven, 2018) in mechanistic (white-box) models or that are used to ac-
count for model parts (in grey or white box models) that cannot be parametrized
otherwise (e.g., Mekonnen et al., 2015).

5.2 Bayesian Model Combination for Process Identifica-
tion

Apart from the discussed circumstances under which predictive model selection
(via Pseudo-BMS/BMA) or combination (via Bayesian Stacking) is preferential in
multi-model usage (cf. Chapter 4), it remains a fundamental motivation in science
and engineering to understand the DGP - and sooner or later to identify the true
model. For a single distinct model, this is achieved by BMS/BMA. Often, this
“search for the truth” is also the intention when modellers refer to combination of
fully specified models for the same purpose - which might be falsely assumed by
modellers to be provided by BMA.

I want to specify what is exactly meant by an illustrative example from Höge
et al. (2019): “For an observed decline in concentration of a substance, two ex-
perts might provide two plausible hypotheses. The first expert hypothesizes the
concentration decrease results from only microbial consumption (M1) and the se-
cond expert claims that solely abiotic reactions cause the decline (M2). Each
expert comes up with a model that contains the mathematical formulation of their
respective process. If BMA was applied to both models, it would prefer one over
the other, and would do so increasingly clearly with more included data from the
decline - BMA assumes only one of the two models can be true and tries to identify
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it. BMA would not settle with the weights of the two processes like 75 % biotic and
25 % abiotic under growing data size, even if this ratio represented what actually
happened in reality. ”

One might think that this ratio can be found by Bayesian Stacking. However,
Bayesian Stacking would not search for the correct ratio on the process level, but
for the optimal shares of the two individual predictive distributions from the two
distinct hypotheses to superpose them. Hence, our desired kind of model com-
bination of fully developed models is on the process level and therefore different
from Bayesian Stacking.

What we want is to identify the representation of the process as “stacked” models
(Minka, 2002) on process level, i.e. as superposition of individual models’ out-
puts and not of their pdfs (see Section 5.1). A combined model in this sense is
a weighted average of the mathematical model equations. The prediction of this
combined model is the accordingly averaged individual model outputs. The right
combination of models is supposed to represent the DGP and our goal is therefore
to identify it - like the superposition of 75 % biotic model M1 and 25 % abiotic
model M2 in the above example.

Bayesian Combined Model Selection and Averaging

Such an approach was originally prosed by Monteith et al. (2011) as Bayesian
model combination. It rates combinations of models in line with consistent Baye-
sian model selection to fulfil the identification-purpose. The term Bayesian model
combination is concise but might cause confusion although it simply refers to the
methodology of BMS/BMA applied to combined models CMk instead of individual
models Mm. The combined models are defined as:

CMk = w1M1 + w2M2 + ...+ wNMMNM (44)

The models M1, ...,MNM are the fully specified models in the model set M . The
weights wm are not found by the method, but proposed by the modeller or pro-
vided otherwise - in Monteith et al. (2011), the weights stem from an assigned
distribution. Then, the same equations as for BMS/BMA (see Section 2.3.1) are
applied to the defined CMk. The computational effort is only slightly larger than
applying BMS/BMA to the individual models because both frameworks require
full marginalization over each individual model’s prior parameter distribution.

The underlying theory and its consistent behaviour to identify the true model then
holds for the rated combined models. Therefore, in a straight-forward manner, this
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method is called Bayesian Combined Model Selection/Averaging (BCMS/BCMA)
(Höge et al., 2019). Note, that the weights in Equation 44 do not express concep-
tual uncertainty between the individual models as in BMS/BMA. In BCMS/BCMA,
conceptual uncertainty refers to selecting one combined model as (quasi-)true.
Therefore, the model weights (probabilities) for all combined models CM that
come from applying the equations in Section 2.3.1 express conceptual uncertainty
in this context.

While BMS/BMA converges to the individual model with a prior predictive distri-
bution that is closest to the true data distribution q(y|Mtrue) (Minka, 2002; Mon-
teith et al., 2011), BCMS/BCMA converges to the optimal combined model CMopt

with a p(y|CMopt) that is closest. For an application example of BCMS/BCMA
to classification problems refer to Kim and Ghahramani (2012). In hydrosystem
modelling, an approach that works similarly can be found in Ajami et al. (2007).

No Data Little Data Much Data

Figure 21: Identification of the model closest to the truth in the set with BMA/BMS (upper
half) vs. identification of the most plausible combined model with BCMA/BCMS (lower half)
under growing data size (from left to right). The true model (vertical dashed line) is situated
between the two model candidates, M1 and M2. In BMA/BMS, weights are assigned to the
two distinct models; in BCMA/BCMS, weights are assigned to combinations of both models
(M1:M2, ratios in percent). BMA/BMS converges towards one model candidate, BCMA/BCMS
converges towards a specific model combination (from Höge et al., 2019).

As discussed by Höge et al. (2019), for the illustrative example above hence fol-
lows: “The difference between BMA/BMS and BCMA/BCMS becomes apparent
when looking at the change in model weightings under growing data size. This is
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illustrated for a simple two-model-setup in Figure 21, like the “biotic vs. abiotic
decay” example from above. Without any data, indifferent uniform prior model
weights are assigned to the two individual models M1 (microbial) and M2 (abiotic)
in BMA/BMS, i.e. 50% each, and for all a-priori specified combinations of the two
models in BCMA/BCMS, i.e. exemplary 5 combinations with 20% each. Referring
to the conceptual example above, each combined model consists of both the biotic
and abiotic reaction terms but by different fractions which resembles that the con-
centration decrease is caused by both, e.g., 25% microbial and 75% pure chemical
decay. Once the individual or combined models face a small amount of data, the
model set member closest to the data gains strongest in weight and others gain less
or lose model weight. These weights represent the uncertainty in BMA or BCMA
of an individual or combined model, respectively, to represent the truth given the
current data. Under more and more additional informative data, the weighting
converges fully to the one most plausible member in the set: BMA turns into BMS
for an individual model and BCMA turns into BCMS for a combined model. In
a situation as visualized in Figure 21, where the truth lays somewhere between
M1 and M2, BMA/BMS will tend towards the one single model in the set that
appears to be most likely to have generated the data - either the biotic or abiotic
model but not a mixture. Identifying a truth consisting of combined models will
only be pursued by BCMA/BCMS, where the combinations are a-priori defined
by the modeler and offered as candidates.”

5.3 Averaging of Model Outputs vs. Predictive Distribu-
tions

Averaging of models for combining them is always a promising approach if the
individual models in the set are assumed to “encircled” the true model (see Sections
2.1.4 and 4.2.1). Yet, it is thereby indispensable to distinguish between averaging
of model outputs and averaging of models’ predictive distributions:

• Averaging of predictive distributions, as it is done for model combination
in Bayesian Stacking or as preliminary result previous to model selection in
BMS/BMA or Pseudo-BMS/BMA, yields a mixture of pdfs. This envelope
of multiple pdfs is often wide and multi-modal which expresses the associ-
ated conceptual uncertainty. Thereby, averaging does not refer to weighted
averages of point-estimates from specific (e.g., maximum likelihood) parame-
ters. The statistical moments of the mixture, like mean or variance, should
therefore also only be interpreted statistically and not in a physical sense.

• Averaging of model outputs, as it is done to construct combined models ac-
cording to Equation 44, yields predictions in which deficits of the individual
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models are ideally mutually compensated. The pdf of a CM output is sup-
posed to be more focused than the ones of the individual models, providing,
e.g., a lower variance than the lowest individual variance (Bates and Gran-
ger, 1969). The averaged outputs allow to be interpreted from a physical
perspective, in particular in a special case: if each individual model complies
with conservation laws and convex (simplex) weights are used, this holds also
for the combined model output.

When averaging model outputs, we further have to distinguish between methods
with identification-driven or prediction-driven purpose. BCMS/BCMA seeks to
identify a combined model as DGP (or rather its q(y|Mtrue)) by its prior pre-
dictive pdf over averaged model outputs p(y|CMopt) and therefore relies on being
provided with a set of combined models.

An overview about methods of model combination that are based on predictions
that were originally developed for deterministic model forecasts, is given by Höge
et al. (2019): “A variety of model combination weighting schemes on forecast-level
has been proposed in order to produce a most accurate combined model for an
unknown truth, e.g., equal weights averaging (EWA) or Bates-Granger model aver-
aging (BGA) with weights based on the forecast variance. Most averaging rules rely
on “simplex weights” (positive weights that sum to one). Granger and Ramana-
than (1984) have proposed to move away from this constraint in order to improve
predictive performance of the combined estimator via bias correction (Granger-
Ramanathan averaging, GRA). Further, so-called ensemble methods like bagging
or boosting exist (Kim and Ghahramani, 2012, and references therein), where com-
bination implies mainly setting up model ensembles and applying distinct model
training schemes in a way that the ensemble members mutually counteract bias
or variance of forecasts. A comparison of combination approaches for hydrological
applications, yet without consideration of their philosophical differences, has been
performed by, e.g., Diks and Vrugt (2010).”

The numerous nuances of model combination as well as the previously discus-
sed differences in model selection and averaging often lead to confusion among
modellers that want use multi-model frameworks. To support proper choice and
utilization, I propose a guide that helps to find the suitable method in the following.

The following Section 5.4 has been published by Höge et al. (2019) and I reuse the
text and the corresponding figure. Considering my co-authors, “I” is substituted
by “we”.
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5.4 Guideline to Identify the Best-Suited Multi-Model Ap-
proach

Identifiable (quasi-)true model?

BMS

BMA

Philosophical

perspective

Truth

approximation

Selection of

justified model

complexity

Combination

rules for

ind. models

CV-based

weighting of

ind. models

CV, ICs, ...

Statistical

methods

Bayesian 

weighting of

comb. models

BCMA

(Quasi-)True model in the set

Yes No

BCMS

Stacking, EWA, 

BGA, GRA, ... 

Model selection:

Model averaging:

Bayesian 

weighting of

ind. models

Bayesian 

selection of

a comb. model

Bayesian 

selection of

an ind. model

Truth not in the set

Enrichment of model space
Model combination

With growing 
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Process 

identification

Model set:

Modeling Goal:

"Pseudo-BMA"

Figure 22: The hydrologist’s towel in outer model space: flowchart to find the most suitable
statistical approach for multi-modeling. Dashed arrows in the leftmost column guide along the
principal steps from the philosophy to the methodical stages and their convergence with growing
data. Arrows in the other four columns contain multi-modeling paths from averaging to selection
that naturally emerge from specific scenarios of modeling goal and model set assumptions (from
Höge et al., 2019).

To not throw in the towel, we propose a scheme for finding the most suitable
multi-modeling approach for any modeling task at hand. Starting from the phi-
losophical perspective enables us to find a clear way through the model selection
and averaging tree as depicted in Figure 22. BMS is our way to go if we are inte-
rested in process identification and the process is represented as identifiable target
model in our set of models. Depending on the data availability, this path will pass
through BMA which enables us to handle the uncertainty between all plausible
hypotheses probabilistically until one reveals itself as best representation of the
truth. However, if we think that this target model is not a single model but rather
a combined model which is situated somewhere between these candidates in the
set, we can propose and select a corresponding combined model using BCMA and
ultimately BCMS. In Figure 22, we see that all, BMS, BMA, BCMS and BCMA,
are aiming at model identification. By applying BCMA/BCMS, we avoid the une-
asy assumption of having a (quasi-)true model in the set immediately, but still we
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aim to identify a best combined model that represents the truth.

If we have to deny the initial question about whether there is an identifiable true
model or at least a quasi-true model, we can only seek to approximate this truth
to obtain plausible predictions. Then, our options are either to enrich model space
via classic combination approaches (EWA, BGA, GRA,...), or to select a single
model that promises the best while parsimonious approximation. Actual model
combination approaches as in the former option estimate model weights such that
the truth is approximated by a composite model ensemble. Again, this is also
different from BCMA during which the combined models are a-priori defined by
the modeler and not meant to only approximate the truth but to allow for its
identification. The latter option to select a model of justified complexity remains
as the way to approximate the truth when only one best model is desired. This
is achieved by CV and actual information-theoretic ICs. Thereby, if no model can
clearly outperform the others during the selection, preliminary CV-based weights
can be assigned to the models to handle the uncertainty in selecting one. However,
note that this is no actual model combination and therefore should also not be
applied as such.

5.5 Summary, Discussion and Conclusion

Model combination comes with many different connotations. Yet, in the context
of Bayesian multi-model frameworks, we can only pursue two different goals when
combining multiple fully developed models:

• Combining predictive distributions for high predictive coverage in case no
process-identification is possible (Bayesian Stacking).

• Combining the models on the process-level, i.e., their forecasts, for process-
identification in case the true model is assumed to be a superposition of
alternative models (BCMA/BCMS).

Both methods are suitable if the models in the set are assumed to “encircle” the
true model. Yet, they follow a prediction-driven (imitating) or identification-driven
(following) spirit, respectively. Together with the model selection (and preceding
averaging) frameworks BMS/BMA and Pseudo-BMS/BMA, these two frameworks
for rating model combinations resemble four distinct options of Bayesian multi-
modelling. In each case, averaging of models has a different meaning.

Guidance regarding which framework to choose starts with the single question of
whether there is an “Identifiable (quasi-)true model?”. If the answer is yes, we
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can try to identify it. If the answer is no, predictive approximation is the only
meaningful option. Looking at the set of available models, it is then up to the mo-
deller to decide whether a selection framework or combination framework (model
space enrichment) shall be applied in order to achieve either process-identification
or predictive approximation of the truth. It may be beneficial to support this
decision by a preceding analysis of the model setting regarding the interrelation of
the models in the set and toward the true model (see Annan and Hargreaves, 2010;
Sanderson et al., 2015). This allows to estimate whether it can be assumed that
the competitors “encircle”, individually approximate or one might even match the
true model.

Before applying a multi-model framework, further pre-processing is advisable: Mo-
dellers should account for interdependencies of models in a multi-model ensemble,
because conceptually coherent models might not result in better coverage of mo-
del space but might only add redundancy within the model combination (see, e.g.,
George et al., 2010; Sanderson et al., 2015). A potential solution to this issue is
given by so-called dilution priors as suggested for BMS/BMA (George et al., 2010,
and references therein): Redundancy is quantified by a correlation matrix between
models (e.g., Garthwaite and Mubwandarikwa, 2010) or a distance metric between
predictive distributions (George et al., 2010). Then, accordingly, prior model weig-
hts are adjusted, e.g., away from uniform weights before updating. As result, a
model that is strongly redundant in comparison to the other members in the set
receives a lower model weight. Similarly, this is imaginable for Pseudo-BMS/BMA.

Contrarily to selecting a single best model or combining several competitors in a
multi-model framework, there are other modelling paradigms, e.g., as proposed by
Neal (1996): “Sometimes a simple model will outperform a more complex model...
Nevertheless, I believe that deliberately limiting the complexity of the model is not
fruitful when the problem is evidently complex. Instead, if a simple model is found
that outperforms some particular complex model, the appropriate response is to
define a different complex model that captures whatever aspect of the problem led
to the simple model performing well.” Gelman et al. (2014) follow this spirit and
suggest to construct an expanding and fully-encompassing model that “spans” an
entire area of model space M and contains individual models (that would build
a set M) as special cases. Yet, it remains questionable whether this approach
is suitable for process-identification and whether it can be directly transferred to
disciplines like hydrosystem modelling where various different types and fidelities
of models are employed (Höge et al., 2019). Nonetheless, in particular if features
of the underlying system are (yet) unknown, it resembles a pragmatic approach to
increase predictive power.
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6 Conclusion & Outlook

Looking back at the introduction of this thesis, conceptual uncertainty between
multiple alternative models poses a fundamental problem in every modelling task.
I highlighted three research questions (RQ) to systematically address this chal-
lenge based on their answers:

Any model rating score requires a proper implementation of Occam’s razor: For
explanatory or predictive model selection, it is insufficient to only base the rating
on a measure of model fit to data like from a plain error metric. Answering RQ
1, I elucidated how the law of parsimony is enforced by a certain data-dependent
representation of model complexity within a model rating score, i.e., as Occam’s
razor. I analysed various model selection criteria that resemble decompositions of
such scores. Thereby, I elicited that the model complexity representation within
model rating scores defines whether and under which premisses a true model can
be identified (consistent model selection) or only approximated. A best model can
therefore only be interpreted as best in the respective realm. It is not necessary
to generally force our notion of complexity in a strictly defined meaning. But it is
necessary to know that when using a certain model rating score, model complexity
is rated in a certain way. For model selection, I deduced that asking two principal
questions leads to the appropriate class of model selection that employs the suit-
able model complexity interpretation. The first question distinguishes whether or
not a true model can be found. The second question differentiates if uncertainty
shall be addressed based on Bayesian probability theory. Within each class, it re-
mains modelling-task specific, whether an implicit evaluation of the model rating
score like a marginalized likelihood or its explicit approximation via information
criteria is more applicable. This depends on, e.g., computational demand of the
models and on underlying assumptions of the criteria about the distributions of
data and model predictions. A potential next step would be to couple my classifi-
cation scheme to a diagnostic system that checks whether the assumptions made
by a certain criterion are fulfilled by the modelling task at hand, e.g., based on
the numerical samples from model calibration. This system can help to reduce
computational demand whenever assumptions are fulfilled. Then, the criterion
can be used as “short-cut” to obtain the respective model score instead of full
likelihood marginalization or cross-validation. At the same time, it prevents the
unjustified application of criteria and misleading results. I am convinced that a
lot of misinterpretation of model rating results can be avoided, when systems are
used that assist modellers in correctly applying these model rating tools.

A multi-model framework can only be successfully applied relative to the model
setting of the modelling task: Every multi-model framework assigns a weight to
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each model that expresses conceptual uncertainty. Yet, I advise to keep in mind
that conceptual uncertainty has different meanings depending on the underlying
M-setting. Answering RQ 2, I demonstrated that the application of multi-model
frameworks in the wrong setting leads to misleading conclusions. Only in theM-
closed setting, BMS/BMA can reliably be applied and a model weight refers to
the probability of being the true model. Outside ofM-closed, Pseudo-BMS/BMA
and Bayesian Stacking allow for approximating the truth with predictive pdfs of
per se wrong models. The former framework therefore searches one best predictive
model and expresses preference by model weights, while the latter searches a weig-
hted average of predictive distributions and expresses shares by model weights.
For both predictive frameworks, I illustrated the importance of accounting for
inferential uncertainty of model weights because seen data might be only an in-
sufficient proxy for unseen data. Hence, I recommend to apply techniques like the
Bayesian Bootstrap to counteract erroneous model weights. This technique comes
with small additional computational costs but yields trustworthy model weights
under limited sample size. As future step, I suggest to also apply this technique
to numerical parameter samples when evaluating a marginalized likelihood like
BME. In case the numeric evaluation of a certain model is computationally very
demanding, Bayesian Bootstrapping can account for insufficient sampling of the
parameter space under a limited computational time budget, yielding, e.g., Baye-
sian Model Selection under time constraints.

The choice of the appropriate multi-model framework emerges naturally when star-
ting from the philosophical perspective on the modelling task: There is no unified
take on conceptual uncertainty and no single framework that is always applica-
ble. Hence, I suggest to interpret conceptual uncertainty strictly from the per-
spective on either branch of the proposed guide to allow for its adequate handling
or reduction. Answering RQ 3, I have elaborated which (Bayesian) multi-model
frameworks can be distinguished and under which circumstances each of them is
properly employed. I disentangled different notions of model combination which
showed why only Bayesian Stacking and the introduced BCMS/BCMA are multi-
model frameworks in terms of combining fully developed models. Averaging of
models for model combination on the level of predictive distributions or forecasts
can only be accomplished by these two Bayesian approaches, respectively. Juxta-
posed are the two philosophically distinct model selection frameworks, BMS/BMA
and Pseudo-BMS/BMA, for which model averaging is a preliminary compromise.
Rather than deciding whether one wants to select or combine models in a set in
advance, I recommend to follow the proposed guide that decides for the modeller
which approach is most promising. The development and discussion of the guide
showed that the usage of multiple models opens numerous options to increase ex-
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planatory or predictive power, also over conceptual boundaries. A potential future
step would be, e.g., to extend the proposed guide by so-called recursive Bayesian
estimators (e.g., particle filter, Kalman filter, etc.) as alternatives or complements
to model selection and combination. For instance, in the M-open setting where
a true model cannot even be conceptualized, sequential data-assimilation via such
recursive Bayesian estimators is a beneficial enhancement to increase predictive
reliability.

Above all, this thesis emphasizes the Bayesian paradigm - and this is the core
conclusion - to explicitly state every aspect of statistical modelling: The choice of
a certain model type to address a modelling task at hand, the information about
its parameters and also the model setting in which the respective modelling goal
shall be achieved - all of these are based on assumptions that require justification.
Following the Bayesian paradigm, I suggest to explicitly name and discuss all as-
sumptions made when applying Bayesian multi-model frameworks. Based on this,
full inference can be conducted and reliable conclusions can be drawn.

The gained insights and drawn conclusions from my thesis allow us to explore new
avenues in future research:

• The application of Bayesian multi-model frameworks to large-scale systems:
How can we assure, that the frameworks keep what they promise when used
on the field scale? There, we often have complex and computationally ex-
pensive models supported by only scarce data of and limited insight to the
underlying system. Bayesian methods therefore require a special focus on as-
signing (intersubjective or even objective) priors and probabilistic treatment
of model ranking results, e.g., via the Bayesian Bootstrap.

• A systematic approach to (Bayesian) model reduction: How can we use
methods and insights from model ranking and selection to obtain simpler
but effective models? Under limited data, an (underdetermined) model can
be reduced to the number of functional terms that are actually identified or
supported by the data, i.e. a “lower-dimensional effective theory” (Mattingly
et al., 2018).

• Model rating scores as objectives in optimal design of experiments (No-
wak and Guthke, 2016): How can we anticipate the optimal data required
to inform the marginalized likelihoods for consistent (BMS/BMA) or non-
consistent (Pseudo-BMS/BMA) model selection? Just like model selection
cannot be properly performed without consideration of the model setting,
optimal design can be developed further to pursue process-identification in
the M-closed setting or high predictive power outside of it.
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Further points were discussed by Höge et al. (2019):

• A systematic coverage of model space: How can we assure that the consi-
dered set of models is an adequate representation of model space? Model
(combination) probabilities are always conditional on that set which necessi-
tates approaches to measure the currently covered model space and to assign
consistent prior model probabilities.

• A solid treatment of measurement and model structural errors in multi-model
approaches: How can we adequately describe our assumptions about model-
specific structural errors and model-independent measurement errors? The
appropriateness of commonly used likelihood functions is questionable and
more realistic descriptions, e.g. in the form of statistical error models, are
needed.

• A guideline for model development: Can the knowledge gained in the eva-
luation of (yet non-true) models be utilized for creating enhanced model
candidates? A structured scheme of how to isolate the strong parts of a mo-
del and transfer it to another model with “complementary strong” features
would boost model development and system understanding.

Höge et al. (2019) state that “we hope to further strengthen the utility of Bayesian
methods in the face of conceptual uncertainty ... by directing their use into the
right channels.” This thesis is my contribution.
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Appendix

A Numerical Methods for Bayesian Inference

Generally, numerical samples of a distribution can be obtained by systematic met-
hods like Latin-Hypercube-Sampling, random methods like Monte Carlo, or hybrid
schemes like so-called orthogonal sampling (McKay et al., 1979).

A.1 Importance Sampling

Let us take p∗(Θ) (with Θ as one-dimensional variable for simplicity) as our dis-
tribution of interest we want to sample from, e.g., a prior parameter distribution.
If p∗(Θ) can be directly sampled, it is trivial to obtain representative numerical
samples, e.g., by plain Monte Carlo sampling (cf. Section 2.4.1), i.e., independent
random (direct) drawings from p∗(Θ). Sometimes, however, it might be only pos-
sible to evaluate p∗(Θi) for a certain Θi but the entire p∗(Θ) is not fully tractable.
If this is the case and another pdf g(Θ) in the same space can be sampled more
easily, so-called importance sampling (IS; Hammersley and Handscomb, 1964) al-
lows to obtain statistical samples from p∗(Θ) (indirectly), as visualized in Figure
23.
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Figure 23: Importance sampling illustration: The (complex) distribution of interest p∗(Θ)
cannot be directly sampled. The (simple) importance distribution g(Θ) is used to obtain samples
from Θ, indicated by vertical dotted lines. The sample weight wi for each Θi is calculated as
ratio of the two densities at Θi, indicated by the respective dashed and dotted lines.
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The idea behind importance sampling is to actually sample from the known (ideally
simple) g(Θ), i.e., the so-called importance distribution (Gelman and Meng, 1998).
Then, the samples are weighted by the ratio of densities each sampled Θi obtains
in g(Θ) and p∗(Θ). The weighted samples now represent the target pdf p∗(Θ).

The weight of each sampled Θi is wi = p∗(Θi)
g(Θi)

. Statistically, this weighting is a

correction for sampling from g(Θ) instead of p∗(Θ), and direct sampling resembles
the special case g(Θ) = p∗(Θ) with wi = 1. If g(Θ) is a proper normalized pdf,
the normalizing constant Z of p∗(Θ) can be expressed and approximated by:

Z =

∫
p∗(Θ)dΘ =

∫
p∗(Θ)

g(Θ)
g(Θ)dΘ = Eg

[
p∗(Θ)

g(Θ)

]
≈

N∑
i=1

p∗(Θi)

g(Θi)
(45)

In the approximation, N is the number of numerical samples. However, often, it is
not necessary to evaluate normalizing constants on an absolute scale but to evalu-
ate relative ratios between two (not necessarily normalized) target pdfs p∗1(Θ) and
p∗0(Θ), e.g. see Bayes Factors in Section 2.3.1. Then, with importance distribution
g(Θ), the corresponding ratio writes as (see, e.g., Lartillot and Philippe, 2006):

Z1

Z0

=
E1
g

[
p∗1(Θ)

g(Θ)

]
E0
g

[
p∗0(Θ)

g(Θ)

] ≈ ∑N
i=1

p∗1(Θi)

g(Θi)∑N
i=1

p∗0(Θi)

g(Θi)

(46)

N is the number of numeric samples. Equation 45 is therefore only a special case
of equation 46 for p∗0(Θ) = g(Θ).

Equation 46 nicely compresses common sampling-based estimators for the margi-
nalized likelihoods in BMS/BMA and Pseudo-BMS/BMA: The assignment of tar-
get distributions p∗1(Θ) and p∗0(Θ) defines whether BMS/BMA or Pseudo-BMS/BMA
is conducted. The assignment of g(Θ) results in a certain Phythagorean mean
(arithmetic or harmonic) as estimator for BME or elpdLOO, respectively.

• In BMS/BMA the densities of interest are defined as p∗1(Θ) = p(D|Θ)p(Θ)
and p∗0(Θ) = p(Θ). With the prior p(Θ) being contained in both, weights

can be defined as wi = p(Θi)
g(Θi)

and the BME is generally given by:

p(D) =
Z1

Z0

=
E1
g

[
p(D|Θ)p(Θ)

g(Θ)

]
E0
g

[
p(Θ)
g(Θ)

] ≈
∑N

i=1
p(D|Θi)p(Θi)

g(Θi)∑N
i=1

p(Θi)
g(Θi)

=

∑N
i=1 p(D|Θi)wi∑N

i=1 wi
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– Using samples from g(Θ) = p(Θ) yields wi = p(Θi)
p(Θi)

= 1 and results in

the arithmetic mean estimator (AME; as used in Chapter 4):

p(D) ≈ 1

N

N∑
i=1

p(D|Θi)

– Using samples from g(Θ) = p(D|Θ)p(Θ) yields wi = [p(D|Θi)]
−1 and

results in the harmonic mean estimator (HME; Newton and Raftery,
1994):

p(D) ≈

[
1

N

N∑
i=1

[p(D|Θi)]
−1

]−1

The AME is computationally expensive but, due to the law of large numbers,
the most reliable estimator for p(D) (Schöniger et al., 2014). The HME is
computationally less expensive because it can be evaluated based on posterior
samples from advanced sampling methods like MCMC. However, it could be
shown to be a very unreliable estimator for p(D) because a harmonic mean is
always very sensitive to the variance of the averaged quantity (see, e.g., Neal,
1996; Vehtari et al., 2017). Note, that, outside of the M-closed setting, the
posterior might be a bad importance distribution for the prior that actually
needs to me marginalized out for obtaining BME.

• Alternatively, in Pseudo-BMS/A , the target pdfs are assigned as p∗1(Θ) =

p(Do|Θ)p(Θ|D∅) and p∗0(Θ) = p(Do|D∅) and the weights are wi = p(Θi|D∅)
g(Θi)

,
which yields:

p(Do|D∅) =
Z1

Z0

=
E1
g

[
p(Do|Θ)p(Θ|D∅)

g(Θ)

]
E0
g

[
p(Θ|D∅)
g(Θ)

] ≈
∑N

i=1 p(Do|Θi)wi∑N
i=1 wi

– Using samples from g(Θ) = p(Θ|D∅) yields wi = p(Θi|D∅)
p(Θi|D∅)

= 1 and

results in the arithmetic mean estimator (AME):

p(Do|D∅) ≈ 1

N

N∑
i=1

p(Do|Θi)

– Using samples from g(Θ) = p(Θ|D) yields wi = [p(Do|Θi)]
−1 and results

in the harmonic mean estimator (HME):

p(Do|D∅) ≈

[
1

N

N∑
i=1

[p(Do|Θi)]
−1

]−1
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Usually, when estimating elpdLOO as
∑Ns

o=1 p(Do|D∅), not each LOO-posterior
is sampled individually. Normally, the full posterior is sampled and reweig-
hted. The underlying assumption is that the full posterior is very close to
each LOO-posterior and therefore serves as suitable importance distribution.
Nonetheless, the HME is an instable estimator that suffers from high vari-
ance of the evaluated p(Do|Θi). Hence, stabilization schemes exist, e.g., the
so-called pareto-smoothed importance sampling (PSIS; Vehtari et al., 2017)
that automatically provides additional key values to rate the reliability of
the stabilization.

A contrasting summary between BMS/BMA and Pseudo-BMS/BMA regarding
model weights, marginalized likelihood and all respective estimators (importance
sampling-based and IC-based, see Section 2.5) is given in Table 8.
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Table 8: Contrasting BMS/BMA and Pseudo-BMS/BMA: Summary of model weights, the
respective marginalized likelihoods BME and elpdLOO and numerical estimators for multi-
dimensional data D and parameters Θ: importance sampling (IS)-based arithmetic (AME)
and harmonic (HME) mean estimators for importance distribution g(Θ); information criteria
(IC) as approximative estimators. Estimators are indicated by ·̂ , the number of observations is
Ns and the number of numeric samples is N .

BMA/BMS Pseudo-BMA/BMS

model weight wm = p(D|Mm)p(Mm)∑NM
k=1 p(D|Mk)p(Mk)

wm = p(D′|D,Mm)∑NM
k=1 p(D

′|D,Mk)

core quantity p(D) =
∫
p(D|Θ)p(Θ)dΘ p(D′|D) =

∫
p(D′|Θ)p(Θ|D)dΘ

(prior predictive density (posterior predictive density
- evaluated at D) - estimated for D′)

- proxy elpdLOO =
∑Ns

o=1 ln p(Do|D∅) with
p(Do|D∅) =

∫
p(Do|Θ)p(Θ|D∅)dΘ

IS estimators p̂(D) =
∑N
i=1 p(D|Θi)wi∑N

i=1 wi
êlpdLOO =

∑Ns
o=1 ln

∑N
i=1 p(Do|Θi)wi∑N

i=1 wi

with wi = p(Θi)
g(Θi)

with wi = p(Θi|D∅)
g(Θi)

- AME p̂(D) =
∑N

i=1 p(D|Θi) êlpdLOO =
∑Ns

o=1 ln
∑N

i=1 p(Do|Θi)
for g(Θ) = p(Θ) for g(Θ) = p(Θ|D∅)

- HME p̂(D) =
[∑N

i=1 p(D|Θi)
−1
]−1

êlpdLOO =
∑Ns

o=1 ln
[∑N

i=1 p(Do|Θi)
−1
]−1

for g(Θ) = p(Θ|D) for g(Θ) = p(Θ|D)

IC ln p̂(D)WBIC ≈ −
1
2
WBIC êlpdWAIC ≈ −1

2
WAIC

ln p̂(D)KIC ≈ −1
2
KIC êlpdDIC ≈ −1

2
DIC

ln p̂(D)BIC ≈ −1
2
BIC êlpdAIC ≈ −1

2
AIC
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A.2 Power-Posterior and Thermodynamic Integration

Besides the AME and HME, also a geometric mean approach for estimating a
marginalized likelihood exists. Therefore, the concept of so-called power-posterior
distributions (Friel and Pettitt, 2008) has to be considered, focusing on the esti-
mation of BME.

A.2.1 Power-Posterior Distributions

A power-posterior is defined over a so-called geometric path with the exponent
β ∈ [0, 1] (Gelman and Meng, 1998) between prior and (not normalized) posterior
as:

qβ(Θ) = p(Θ)︸ ︷︷ ︸
prior

(1−β)(p(D|Θ)p(Θ))︸ ︷︷ ︸
not norm. post.

β = p(D|Θ)βp(Θ) (47)

The normalizing constant of the power-posterior for a certain β is:

Zβ =

∫
qβ(Θ)dΘ (48)

By tempering the likelihood, qβ(Θ) transitions between the prior (β = 0) and the
unnormalized posterior (β = 1) distribution. The respective normalizing constants
are Z0 = 1 and Z1 = BME. For an information-theoretic interpretation of the
tempered distributions refer to Vitoratou and Ntzoufras (2017).

A.2.2 Thermodynamic Integration

Thermodynamic integration in the context of Bayesian inference refers to obtaining
the logarithmic BME λ = ln p(D) based on power-posteriors and Equation 48. The
terminology clearly indicates the original motivation which was to estimate the free
energy of a physical system which is the energy density in the system integrated
over all its states, i.e. a marginalized quantity (Gelman and Meng, 1998). Hence,
BME is sometimes also referred to as Bayesian free-energy (Watanabe, 2010). The
thermodynamic interpretation of the exponent β ∈ [0, 1] is therefore an inverse
temperature T :

1 =
1

Tmin︸ ︷︷ ︸
Tmin=1

≥ β ≥ 1

Tmax
with lim

Tmax→∞

1

Tmax
= 0
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Generally expressed, ratios of normalizing constants Z of two (physical or statis-
tical) densities can be computed with thermodynamic integration by constructing
a path in between them. Thermodynamic integration is another name for path
sampling (Gelman and Meng, 1998) that recognizes its motivation from statistical
physics. The logarithmic BME writes as (e.g., Lartillot and Philippe, 2006):

λ =

∫ 1

0

∂lnZβ
∂β

dβ

with

∂lnZβ
∂β

=
1

Zβ
∂Zβ
∂β

=
1

Zβ
∂

∂β

∫
qβ(Θ)dΘ =

1

Zβ

∫
∂qβ(Θ)

∂β
dΘ

=

∫
1

qβ(Θ)

∂qβ(Θ)

∂β

qβ(Θ)

Zβ
dΘ =

∫
∂ln qβ(Θ)

∂β
pβ(Θ)dΘ

yields

λ =

∫ 1

0

∫
∂ln qβ(Θ)

∂β
pβ(Θ)dΘ dβ =

∫ 1

0

Epβ

[
∂ln qβ(Θ)

∂β

]
dβ (49)

For the geometric path between q0(Θ) = p(Θ) and q1(Θ) = p(D|Θ)p(Θ) (see
Equation 47) this is:

λ =

∫ 1

0

Epβ

[
∂ln (q0(Θ)(1−β) q1(Θ)β)

∂β

]
dβ =

∫ 1

0

Epβ

[
ln
q1(Θ)

q0(Θ)

]
dβ

=

∫ 1

0

Epβ [ln p(D|Θ)] dβ (50)

In practice, the thermodynamic integral is usually solved over a latter of discrete
temperatures β (Friel and Pettitt, 2008; Friel et al., 2013). By dampening the
likelihood function, thermodynamic integration is a suitable method in particular
if the likelihood function causes the posterior to be a “challenging” distribution,
e.g., being multi-modal. Further, thermodynamic integration is a suitable method
if q0(Θ) and q1(Θ) barely overlap (Liu et al., 2016). However, if this is the case,
again, it is questionable whether consistent model rating via BME is appropriate
(cf. Section 2.2).
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A.2.3 Related “Tempered” Methods

Another approach for estimating the BME, that is also based on power posteriors,
is called stepping-stone method (Li et al., 2010). Rather than a continuous inte-
gration over β, this method estimates the BME (Z1) in a step-wise manner for a
sequence of discrete values for β ∈ [0, 1]: Between two sequential values of β, the
ratio of respective normalizing constants (“tempered” Bayes factors) is evaluated,
starting from Z0. Then, the telescope product of these ratios yields Z1/Z0, i.e.
the BME. In statistics, this step-wise evaluation of normalizing constants is known
as bridge sampling (Gelman and Meng, 1998) and resembles importance sampling
over several stages.

A “thermodynamic” information criterion is the so-called Watanabe-Bayesian IC
(WBIC). The WBIC estimates BME based on samples from a power posterior for
a distinct (optimal) β∗ (Watanabe, 2013). WBIC is the consistent counterpart to
WAIC (Section 2.5.3) and both require theoretically only one MCMC chain to be
evaluated for sampling the (tempered) posterior (Friel and Wyse, 2012).

A.3 Alternative Methods

A popular sampling-based alternative for Bayesian inference is so-called nested
sampling (Skilling, 2004). In nested sampling, the marginalization over the prior
parameter distribution is performed as one-dimensional integral over so-called
“prior mass”. Using predefined likelihood thresholds, the method integrates over
the prior mass for each likelihood interval and sums the results to obtain the mar-
ginal likelihood (see, e.g., Schöniger et al., 2014).

In contrast to sampling-based approaches, Variational Inference (e.g., Brodersen
et al., 2013; Blei et al., 2017) turns the marginalization problem into an optimiza-
tion problem: Briefly, a predefined distribution (e.g., a conjugate distribution, see
Section 2.4.1) with unknown distributional parameters is fitted as posterior (mo-
del) parameter distribution given data D. The fitting is done by maximizing a
so-called evidence lower bound (which refers to BME) in an information-theoretic
sense while minimizing DKL between the corresponding posterior predictive dis-
tribution and the true data distribution (Blei et al., 2017). Thereby, Variational
Inference works similar to so-called Expectation-Maximization (Dempster et al.,
1977) in terms of fitting a predefined distribution to values that are seen as samples
from an underlying distribution. Expectation-Maximization yields a maximum li-
kelihood estimate for the best distributional parameters. Variational Inference
further allows to include prior (model parameter) knowledge and is therefore suit-
able for Bayesian inference.
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A.4 Numerical Techniques

Generally spoken, numerical techniques in Bayesian inference address Bayesian up-
dating and marginalization by employing optimization (see Variational Inference
in Section A.3) or sampling algorithms (see MCMC in Section 2.4.1). As a rule of
thumb: Optimization-based techniques are comparably fast but require (strong)
assumptions about the distributions. Sampling-based techniques typically require
no or only weak assumptions about the distributions but need a certain amount
of samples to converge to the full distribution and are therefore computationally
expensive.

When a certain modelling task in applied modelling prohibits strong assumpti-
ons about posterior distributions, Bayesian inference is usually conducted based
on numerical samples. As widely applicable and popular tool, I want to give a
quick overview of the variety of MCMC. Regarding the basics about MCMC and
convergence, numerous sources of information are available, e.g., Andrieu et al.
(2003) or Gelman and Rubin (1992). Sophisticated MCMC methods that were
developed to address challenges in sampling are shown in Table 9 right next to the
respective issue. All of them provide chains of numerical samples to represent the
distribution of interest but the ways how these chains are built differ vastly.

Table 9: Sophisticated MCMC techniques: Issues that exacerbate numerical sampling and the
respective MCMC method to solve them.

Challenge Solution
huge dataset Stochastic MCMC (Simsekli et al., 2016):

MCMC with data subsampling
high-dim. space preconditioned Crank-Nicolson MCMC (Cotter et al., 2013)

or similar methods:
dimension-independent sampling

slow convergence Hamiltonian MCMC (e.g. Hoffman and Gelman (2014)):
fictitious momentum (Hamiltonian energy operator)
for jump proposal

sampling of two spaces Reversible Jump MCMC (Green, 1995):
of different dimensionality MCMC that jumps within and in-between spaces
data-assimilation of Sequential MCMC (Yang and Dunson, 2013):
incoming data sampling from a sequence of distributions (e.g. dynamic posterior

over time)
multi-modality Parallel Tempering MCMC (Earl and Deem, 2005):

chains with different temperatures

Some of these numerical techniques are applicable in direct correspondence to
statistical methods. A straight-forward example is the combination of thermo-
dynamic integration with Parallel Tempering MCMC (MCMC-PT; e.g., Vousden
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β2
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β4

β5

T = 1

T = ∞

β =
1

𝑇
state jump swap chain

Figure 24: Parallel Tempering MCMC scheme: Example with five parallel chains at different
(inverse) temperatures β and the core concept of jumps and swaps between states in the sampling
space.

et al., 2016) as named last in Table 9. Hence, I want to give a quick qualitative
introduction to MCMC-PT, a.k.a. population MCMC (Calderhead and Girolami,
2009): MCMC-PT uses chains at different inverse temperatures β to “explore and
exploit” the distribution of interest, e.g., a posterior parameter distribution:

• Hot chains (small β) explore the (e.g, parameter) space with large jumps.
They might leave high probability regions before they are sufficiently sampled
but they do not get stuck in local maxima.

• Cold chains (large β) exploit the (e.g, parameter) space with small jumps.
Once found, they thoroughly sample high probability regions but might get
stuck in local maxima.

The core strength of MCMC-PT is: The different tempered chains can commu-
nicate with one another and occasionally swap positions. Thus, hot chains that
explored high probability regions lead cold chains there for them to exploit these
regions in detail. This makes MCMC-PT suitable also for multi-modal distri-
butions (Vousden et al., 2016) as they often appear with overparameterized and
underdetermined models. The scheme behind PT is illustrated in figure 24.

A.5 Available Software

An overview about software that provides easy access to numerical Bayesian Infe-
rence was assembled for Höge et al. (2019): “Readily available software packages
for Bayesian modeling and model evaluation exist (PyMC3 (Salvatier et al., 2016),
STAN (Carpenter et al., 2017), WinBUGS (Lunn et al., 2000), JAGS (Plummer
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et al., 2003), etc.). However, most of them provide Bayesian CV-based rather than
BME-based model evaluation and ranking. The ones that allow for BME evalu-
ation are often sampling algorithms that provide BME as a side-product (emcee
(Foreman-Mackey et al., 2013), DREAM (Vrugt et al., 2009), MrBayes (Huelsen-
beck and Ronquist, 2001), etc.).”
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B Applied Model Complexity Control

B.1 Model Complexity within Selection Criteria: Synthe-
tic Example

In extension to the comparison of the four model selection classes in the Section
3.2, the four complexity representations are evaluated in a synthetic example over
increasing sample size. For each class, one representative member is presented:

• Class B1 (Section 2.5.1): Occam factor OF as complexity representation in
the KIC (Equation 27).

• Class B0 (Section 2.5.2): Geometric complexity GC as complexity represen-
tation in the MDL (Equation 29).

• Class A1 (Section 2.5.3): Effective number of parameters N∗p as complexity
representation in the WAIC (Equation 36).

• Class A0 (Section 2.5.4): Model degrees of freedom DoF as complexity re-
presentation in the EPE (Equation 39).

For illustration, four simple models are used, two of which are linear (polynomial)
and two are non-linear (power-law and sine). The linear models are termed L1/L2
and the non-linear models NL1/NL2, respectively. They are summarized and
contrasted to the data-generating process (DGP) in Table 10.

Table 10: Synthetic truth (DGP) and models for evaluating model complexity measures: Off-
diagonal entries in parameter covariance matrix are always Σi,j 6=i = 0

Model Equation Parameter

DGP Θ1x + Θ2 + ε Θ̂ = [0.95; 0.05] ε ∼ N (0, σ2
εIn) with σε = 0.3

L1 Θ1x + Θ2 Θ = [1; 0] Σ1,1 = 0.25, Σ2,2 = 0.25
L2 Θ1x

3 + Θ2x
2... Θ = [−0.0025; 0.05; Σ1,1 = 0.0025, Σ2,2 = 0.025,

+Θ3x + Θ4 0.8;−0.1] Σ3,3 = 0.25, Σ4,4 = 0.25

NL1 Θ1x
Θ2 Θ = [1.1; 0.9] Σ1,1 = 0.0625, Σ2,2 = 0.01

NL2 Θ1sin (Θ2x + Θ3) ... Θ = [6; 5.75;−1; Σ1,1 = 0.0625, Σ2,2 = 0.0625,
+Θ4 5.25] Σ3,3 = 0.01, Σ4,4 = 0.0625

B.1.1 Numerical Implementation

With the DGP, a dataset of in total 500 data points was generated that was then
subdivided in nested datasets of sizes 5, 10, 30, 50, 100, 300 and 500 points. For
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each sample size, posterior parameter samples for the four simple models are gene-
rated. For the linear models with two (L1) and four (L2) parameters, 50,000 and
250,000 posterior prediction samples from the analytic solution for the posterior
were drawn, respectively. The posterior samples for the weakly non-linear power-
law model (NL1) and the stronger non-linear sine function (NL2) were gained via
importance sampling (see Section A.1). The importance sampling distributions
were the respective priors from which 250,000 samples were generated for the NL1
and 500,000 samples were drawn for the NL2. Sufficiency of sampling was ensured

by evaluating the effective sample size ESS =
(∑NMC

i w2
i

)−1

. With the genera-

tion of data and the sampling being performed over 50 realizations, the ESS was
averaged over all realizations. For the non-linear models, the average ESS was in
the order of 104 for Ns = 5, decreasing to the order of 102 for Ns = 500.

Two kinds of prior parameter distributions were used for each model: uniform
priors and Gaussian priors. The Gaussian priors were assumed to be uncorrelated
(see Table 10). The uniform priors were constructed using the respective Gaussian
prior means ±2

√
Σi,i, i.e. two times the respective standard deviation per parame-

ter. The evaluated model complexity terms for each prior over 50 realizations were
shown as Box-Whisker-plots in Figures 25 and 26: with median (dot), quartiles
(bars), whiskers (lines) and outliers (crosses).
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B.1.2 B-type Model Complexity

The consistent model complexity measures OF and GC are shown as Box-Whisker-
plots in Figure 25. The complexity term in the BIC, CBIC = Np ln(Ns)/2, is used
as reference.

(a) (b)

Figure 25: Consistent complexity measures evaluated over growing data size Ns for uniform
(red) and Gaussian (blue) parameter prior, respectively: (a) Occam factor (OF) from KIC in
class B1; (b) Geometric complexity (GC) from MDL in class B0.

For all models, both complexity representations clearly show the subextensive
growth over increasing data size required in consistent model selection, following
the trend of CBIC. For the OF in Figure 25 (a), this resembles the increasing
shrinkage of the posterior-prior-ratio. Except for the NL2, there is no significant
difference between the assigned priors. For NL2, the Gaussian prior restricts the
shrinkage due to the additional prior information about parameters, while in the
uniform case, the likelihood function dominates. Due to the strong non-linearity,
KIC might be unsuitable for model rating of NL2, which is shown by the large
spread of evaluated complexity values. The GC in Figure 25 (b) shows a similar
behaviour like OF with increasing sample size Ns. The complexity representations
(as distinguishable likelihoods) between the two priors are very similar and, with
exception for NL2, always slightly larger than the OF. This might cause differences
in model ranking between the two classes.
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B.1.3 A-type Model Complexity

The non-consistent model complexity measures N∗p and DoF are shown as Box-
Whisker-plots in Figure 26. The complexity term in the AIC, CAIC = Np, is used
as reference.

(a) (b)

Figure 26: Non-consistent complexity measures evaluated over growing data size Ns for uniform
(red) and Gaussian (blue) parameter prior, respectively: (a) Effective number of parameters (N∗p )
from WAIC in class A1; (b) Model degrees of freedom (DoF) from EPE in class A0.

For all models, both complexity representations clearly show the bounded behavi-
our over increasing data size required in nonconsistent model selection, following
the trend of CAIC. In case of N∗p in Figure 26(a), this can be interpreted as how
many parameters are constrained by the information contained in the data instead
of the prior information. This fraction increases over growing data size since the
prior becomes negligible and all information comes from the data. In particular,
L2 shows that the Gaussian prior contains more information than the truncated
uniform one. Again, NL2 is the exception due to the strong nonlinearity: First,
the bounding of N∗p does not seem to coincide with Np - the number of effective
parameters differs from the number of countable parameters. Second, for larger
data sizes, the Gaussian prior yields slightly larger N∗p as median than the uni-
form prior. This might indicate conflicting information between prior and data,
resulting in increased spread of N∗p . The DoF in Figure 26 (b) shows a similar
behaviour like N∗p over increasing sample size Ns. The complexity for both priors
are very similar, with the pattern of additional constraint by the Gaussian prior.
Yet, NL2 highlights that the two classes A1 and A0 still differ. All DoF show
much larger spread than corresponding N∗p and in case of a uniform prior, the
sensitivity to data perturbations is very large and decreases only over increasing
amount of data, with the median converging approximately to Np. This might
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cause differences in model ranking between the two classes.

B.2 Complexity Control in Black-Box Models

When working with black-box models, there is typically no “natural” complexity
control by physical conservation laws or expert knowledge about prior parame-
ter distributions, e.g., as in neural networks (see Equation 3). Then, complexity
control is enforced by regularization as discussed in Section 3.1, e.g., by assigning
prior parameter distributions which yields so-called Bayesian neural networks (e.g.
Neal, 1996).

Alternatively, splitting of available data is used to counteract overfitting. Opposed
to the traditional splitting into two parts for calibration and validation, the data is
split into three parts called: training data (for model calibration), validation data
(for model regularization) and testing data (for model ranking) (Friedman et al.,
2001). Respective percentages of all available data are, e.g., 50-25-25. This might
be confusing because, traditionally, validation data is used for model evaluation
and ranking. Now, especially in data-driven machine learning, validation data
is used in parallel to the calibration for regularization in order to constrain the
parameters – in data-driven modelling, data provides the expert knowledge, too.
Calibration is stopped when the performance on the validation data starts to
decline which implies increasing risk of overfitting. This procedure is called “early
stopping” (e.g., MacKay, 1992). After this within-model complexity control, the
remaining test data is used to evaluate the model performance on hold-out data
and according ranking between models.
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C Analytic Solutions to Marginalized Likelihoods:

Gaussian Linear Model

For a linear (polynomial) model with Gaussian parameter distribution and a Gaus-
sian likelihood function, the analytic expression for the logarithmic marginal like-
lihood (BME) is (e.g., Box and Tiao, 1973):

ln p(D)linG = −1

2
Nsln(2π)− 1

2
ln|ΣDD| −

1

2
rTΣ−1

DDr (51)

with the column vector of Ns residuals r = D −HΘ̄ between data D and pre-
dictions obtained by multiplying the parameter mean Θ̄ matrix of base functions
H . ΣDD can be obtained via linear uncertainty propagation (Schweppe, 1973;
Schöniger et al., 2014) with the parameter prior variance-covariance matrix ΣΘΘ

and the measurement error matrix R via ΣDD = HΣΘΘH
T +R.

Formulating Equation 51 for both, D and D∅, plugging them into Equation 43,
respectively, and rearranging terms yields:

elpdlinGLOO = −Ns

2
ln(2π) +

1

2

Ns∑
o=1

ln
|ΣD∅D∅|
|ΣDD|

− Ns

2

[
rTΣ−1

DDr −
1

Ns

Ns∑
o=1

rT∅Σ−1
D∅D∅

r∅

]
(52)

Generally, the more negative elpdLOO is, the smaller the predictive density of future
data is expected to be - to the downside of the particular model. A computationally
efficient solution to evaluate Equation 52 requires only the inversion of the data
variance-covariance matrix to obtain Σ−1

DD:

• The last term can be obtained by exploiting the relation between the inverse
of a submatrix (here ΣD∅D∅) to the inverse of the main matrix (here ΣDD),
proposed by e.g. Juárez-Ruiz et al. (2016): Given a square matrix A of
size n × n and its inverse A−1, the inverse of a submatrix A−1

sub, with Asub

obtained by dropping row i and column j from A, is

A−1
sub = N +

uvN

aija
−1
ji

(53)

N is a submatrix of A−1, where row j and column i are dropped; u is co-
lumn i of A−1 without element j; v is row i of A without element j; aij is
the element of A in row i and column j and a−1

ji is the element of A−1 in
row j and column i.
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• The ratio of determinants in the second term of equation 52 can likewise be
obtained using element a−1

ji from A−1, since

|Asub|
|A|

=
1

(−1)i+j
a−1
ij (54)

Throughout the summations in equation 52, the special case j = i holds and Asub

resembles ΣD∅D∅ (with n = Ns − 1) for each o.
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