
alexander ulrich

Q U E RY F L AT T E N I N G A N D T H E N E S T E D D ATA
PA R A L L E L I S M PA R A D I G M

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/196531967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Query Flattening and the Nested Data
Parallelism Paradigm

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Diplom-Informatiker Alexander Ulrich

aus Karlsruhe

Tübingen
2018

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 21. November 2018

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr. Torsten Grust

2. Berichterstatter: Prof. Dr. Klaus Ostermann

A B S T R A C T

This work is based on the observation that languages for two seemingly
distant domains are closely related. Orthogonal query languages based on
comprehension syntax admit various forms of query nesting to construct
nested query results and express complex predicates. Languages for nested
data parallelism allow to nest parallel iterators and thereby admit the paral-
lel evaluation of computations that are themselves parallel. Both kinds of
languages center around the application of side-effect-free functions to each
element of a collection.

The motivation for this work is the seamless integration of relational da-
tabase queries with programming languages. In frameworks for language-
integrated database queries, a host language’s native collection-programming
API is used to express queries. To mediate between native collection pro-
gramming and relational queries, we define an expressive, orthogonal query
calculus that supports nesting and order. The challenge of query flattening
is to translate this calculus to relational queries that are restricted to flat,
unordered multisets and can be executed on relational query engines. Prior
solutions to this problem either support only query languages that lack in
expressiveness or employ a complex, monolithic translation that is hard to
comprehend and generates inefficient code that is hard to optimize.

To improve on those approaches, we draw on the similarity to nested data
parallelism. Blelloch’s flattening transformation is a static program transfor-
mation that translates nested data parallelism to flat data parallel programs
over flat arrays. Based on the flattening transformation, we describe Query
Flattening, a pipeline of small, comprehensible lowering steps that translates
our nested query calculus to a bundle of relational queries. The pipeline is
based on a number of well-defined intermediate languages. Query Flatten-
ing adopts the key concepts of the flattening transformation but is designed
with the specifics of relational query processing in mind.

Based on this translation, we revisit all aspects of query flattening. Query
Flattening is fully compositional and can translate any term of the input
language. Like prior work, Query Flattening by itself produces inefficient
code due to compositionality that is not fit for execution and requires op-
timization. In contrast to prior work, we show that query optimization is
orthogonal to flattening and can be performed prior to flattening. We em-
ploy well-known work on logical query optimization for nested query lan-
guages and demonstrate that this body of work integrates well with Query
Flattening.

Furthermore, we describe an improved encoding of ordered and nested
collections in terms of flat, unordered relations. Query Flattening produces
relational queries in which the effort required to maintain the non-relational
semantics of the source language (order and nesting) is minimized.

A set of experiments provides evidence that Query Flattening handles com-
plex, list-based queries with nested (intermediate) results well. We translate
flat and nested queries and compare their runtime with hand-written as
well as generated SQL queries. From the experiments we conclude that
Query Flattening generates idiomatic relational queries that are usually as
efficient as hand-written SQL code.

v

Z U S A M M E N FA S S U N G

Die vorliegende Dissertation beruht auf der Beobachtung, dass Sprachen
zweier vermeintlich unterschiedlicher Domänen eng verwandt sind. Orthog-
onale Abfragesprachen, die auf comprehension-Syntax basieren, erlauben ver-
schiedene Formen der Verschachtelung von Abfragen, um verschachtelte
Ergebnisse sowie komplexe Prädikate auszudrücken. Sprachen für verschach-
telte Datenparallelität erlauben das Verschachteln paralleler Iteratoren und er-
möglichen es, die parallele Auswertung von Berechnungen zu beschreiben,
die selbst wieder Datenparallelität ausdrücken. Beide Arten von Sprachen
basieren auf der Anwendung seiteneffektfreier Funktionen auf jedes Ele-
ment einer Kollektion.

Das Ziel dieser Arbeit ist es, die — idealerweise nahtlose — Einbettung
von relationalen Datenbankabfragen in Programmiersprachen zu unterstü-
tzen. Frameworks für language-integrated query erlauben es, Datenbankabfra-
gen mit den natürlichen Schnittstellen der Programmiersprache für Abfra-
gen auf Kollektionen auszudrücken. Wir definieren einen ausdrucksstarken,
orthogonalen Abfragekalkül, der Verschachtelung und Ordnung unterstützt,
um zwischen dem Kollektions-Framework und relationalen Abfragen zu
vermitteln. In diesem Zusammenhang stellt sich das Problem des query
flattening: die Übersetzung eines derartigen verschachtelten Kalküls in rela-
tionale Abfragen, die auf flache und ungeordnete Kollektionen beschränkt
sind und auf relationalen Datenbanken ausgeführt werden können. Frühere
Lösungen für dieses Problem unterstützen entweder nur Abfragesrachen,
deren Ausdrucksstärke nicht zufriedenstellend ist, oder basieren auf kom-
plexen, monolithischen Übersetzungen, die ineffizienten und schwierig zu
optimierenden Code erzeugen.

Wir stellen einen verbesserten Ansatz für query flattening vor, der auf der
Verwandschaft zu verschachtelter Datenparallelität beruht. Die erstmals von
Blelloch beschriebene flattening transformation ist eine statische Programm-
transformation die verschachtelte Datenparallelität in flache datenparallele
Programme über flachen Arrays übersetzt. Auf der Grundlage der flattening
transformation beschreiben wir Query Flattening. Dabei handelt es sich um
eine Abfolge von kleinen, verständlichen Übersetzungsschritten, die Aus-
drücke unseres verschachtelten Kalküls in Bündel von relationalen Abfra-
gen übersetzt. Diese Abfolge stützt sich auf eine Anzahl wohldefinierter
Zwischensprachen. Query Flattening übernimmt die Schlüsselkonzepte der
flattening transformation, bezieht aber die Besonderheiten relationaler Ab-
frageverarbeitung ein.

Mit dieser Übersetzung als Grundlage überarbeiten wir alle Aspekte des
query flattening. Unser Ansatz Query Flattening ist kompositional und un-
terstützt beliebige Ausdrücke des verschachtelten Kalküls. Kompositional-
ität hat einen Preis: Query Flattening alleine erzeugt — wie vorherige An-
sätze auch — ineffiziente Abfragen, die ohne weitere Optimierung nicht
zur Ausführung geeignet sind. Im Gegensatz zu früheren Arbeiten zeigen
wir, dass Abfrageoptimierung und flattening unabhängig voneinander be-
trachtet werden können. Wir verwenden etablierte Techniken zur logischen
Optimierung von verschachtelten, orthogonalen Abfragekalkülen. Wir zei-
gen, dass sich diese Techniken problemlos mit Query Flattening zusammen-
fügen lassen.

vi

Weiterhin beschreiben wir eine verbesserte Darstellung geordneter und
verschachtelter Kollektionen durch flache, ungeordnete Relationen. Basie-
rend auf diesen Darstellungen erzeugt Query Flattening relationale Abfragen,
in denen der Aufwand für die Unterstützung der nichtrelationalen Semantik
der Ausgangssprache minimiert ist.

Wir zeigen anhand von Experimenten, dass Query Flattening gut mit kom-
plexen, ordnungsbasierten Abfragen mit verschachtelten (Zwischen)-Ergeb-
nissen zurecht kommt. Wir übersetzen eine Reihe flacher und verschachtel-
ter Abfragen und vergleichen ihre Ausführungszeit mit handgeschriebenen
und generierten SQL-Abfragen. Aus diesen Experimenten ziehen wir den
Schluss, dass Query Flattening idiomatische relationale Abfragen erzeugt.
Diese sind üblicherweise nicht weniger effizient als handgeschriebene SQL-
Abfragen.

vii

A C K N O W L E D G M E N T S

This work would not have succeeded without a number of people that sup-
ported me during my time as a PhD student.

First and foremost, I would like to thank my advisor Torsten Grust. From
the beginning, Torsten has been a mentor and teacher in the best sense. I
am grateful for the opportunity to pursue a PhD in his group. Torsten’s in-
sistence that the fields of databases and programming languages can profit
from each other has been an inspiring background for my research. During
my work on the thesis, Torsten provided crucial perspective and guidance
whenever I got lost in details. I am also grateful that Torsten gave me the
opportunity to take part in multiple Dagstuhl events and pursue a summer
internship.

I would like to thank Klaus Ostermann for agreeing to be my second
supervisor and for reviewing the thesis. With his perspective as a program-
ming language researcher, Klaus provided valuable insights and advice.

Torsten’s research group has been a good place to work and do research.
I have benefited from working with a team of talented and motivated re-
searchers: Dennis Butterstein, Benjamin Dietrich, George Giorgidze, Melanie
Herschel, Manuel Mayr, Tobias Müller, Jan Rittinger, Tom Schreiber and
Jeroen Weijers. Thank you for many interesting and fruitful discussions,
and thank you for being excellent colleagues.

I would like to thank James Cheney and Sam Lindley of the University of
Edinburgh for interesting discussions on query flattening and embedding
of queries.

When I had left Torsten’s research group, I finished writing this thesis
while working at Oracle Labs. It certainly was challenging to work on the
thesis next to a full-time day job, but people at Oracle Labs fully supported
me in this endeavour. In particular, I would like to thank Hassan Chafi and
Laurent Daynès of Oracle Labs for motivating me to finish the thesis in the
final stages of writing.

ix

C O N T E N T S

1 introduction 1

1.1 Language-Integrated Query 1

1.2 Broken Promises 2

1.3 Case Study: Database-Supported Haskell 3

1.4 A List-Based Query Language 9

2 related work on query flattening 15

2.1 Foundations of Query Flattening 15

2.2 Practical Approaches 20

2.3 Outlook 32

3 the flattening transformation 33

3.1 Flattening Nested Data Parallelism 33

3.2 The Flattening Transformation By Example 34

3.3 Related Work and Outlook 40

4 flattening queries 43

4.1 Desugaring Comprehensions 44

4.2 Lifting: Flattening Nested Data-Parallelism 49

4.3 Flattening Collections: The Segment Vector Model 57

4.4 Extensibility 90

4.5 Related Work 91

5 query flattening and query optimization 93

5.1 Avoiding Replication in Flattening 93

5.2 Optimizing Iterations 94

5.3 Lifting Join Combinators 108

5.4 Shredding Join Combinators 111

6 relational backend 121

6.1 Multiset Algebra 121

6.2 Generating Multiset Plans 124

6.3 Generating Multiset Plans 137

6.4 Optimization of Relational Plans 146

6.5 SQL Code Generation 147

6.6 Related Work 148

7 delayed replication 149

7.1 Delaying Replication 150

7.2 Shredding With Delayed Vectors 152

7.3 Related Work 157

8 experimental evaluation 159

8.1 Implementation of Query Flattening 159

8.2 Quality of Relational Plans 159

8.3 Setup for Experiments 163

8.4 Complex Flat-to-Flat Queries 163

8.5 Nested Queries 166

9 summary and outlook 169

xi

xii contents

9.1 Contributions 169

9.2 Future Work 171

a indexed semantics of lifted operators 173

b introduction rules for join combinators 175

bibliography 177

1I N T R O D U C T I O N

Many high-level general-purpose programming languages provide expres-
sive collection-programming frameworks for querying in-memory collec-
tions. These frameworks usually couple collection combinators that can be as-
sembled into pipelines to filter and transform collections with comprehension
syntax. Comprehension syntax describes the side-effect free iteration over
one or multiple collections with optional predicates. Examples for collection-
programming frameworks are Scala’s scala.collections framework, Mi-
crosoft LINQ [MBB06], Haskell’s lists and the Java java.util.streams API.
Following Blelloch and Sabot [BS89; SB90], these frameworks can be consid-
ered collection-oriented (sub-)languages.

Evaluating queries on in-memory collections can benefit from techniques
originally invented for database query processing. Deep embedding of col-
lection queries enables relational-style optimizations on queries [Gia+13;
Gia17]. Query evaluation itself can then benefit from run-time code gen-
eration, index data structures and columnar data layouts [NBV14; Nag15].

Next to in-memory collections, however, vast amounts of data are man-
aged in actual relational database management systems and many applica-
tions rely on those. Relational database systems constitute a major part of
data processing infrastructure. Relational query engines are among the most
efficient solutions for large-scale data processing, with decades of invest-
ment in research and engineering. With an integration of database query-
ing into programming languages, applications can make use of this infras-
tructure by offloading computations on database-resident data — database-
supported program execution [Gru+09].

1.1 language-integrated query

The integration of relational database queries with general-purpose pro-
gramming languages has been a challenging topic. Atkinson and Bune-
man [AB87] observed that “Databases and programming languages have
developed almost independently of one another for the past 20 years”. Da-
tabase query languages and general-purpose programming languages differ
in data model, syntax and expressiveness. The resulting impedance mismatch
has been described as early as 1985 by Copeland and Maier [CM84], and
many others afterwards. Embedding SQL queries directly into a database
application requires developers to constantly switch between two worlds,
loses type safety and brings a variety of engineering problems. To quote
Cheney et al.: “The problem is simple: two languages are more than twice
as difficult to use as one language.” [CLW13].

In practice, many database applications rely on object-relational mapper
(ORM) frameworks to hide relational queries from developers and provide
an object-oriented view on database-persisted relational data. However,
ORM frameworks often provide leaky abstractions, can not express complex
query logic and bring a variety of performance pitfalls [Yan+17; GRW08]
such as the notorious n+ 1 Queries Problem.

A more compelling integration of database queries and programming lan-
guages leverages the native syntax, type system and data model of the

1

2 introduction

for (x <- xs; y <- ys if p) yield e (Scala)

from x in xs from y in ys where p select e (C#)

[for x in xs for y in ys if p yield e] (F#)

[e | x <- xs, y <- ys, p] (Haskell)

Table 1: Comprehension syntax in various programming languages.

host language: language-integrated database query allows to formulate data-
base queries using the native collection framework (e.g. LINQ) of the host
language. Queries are written using the same combination of collection
combinators and comprehension syntax used for in-memory collections.

The usefulness of comprehension syntax for database querying has been
recognized by Trinder [Tri91] as well as Buneman et al. [Bun+94]. Compre-
hensions readily express query operations like projections and joins and are
closely related to query calculi. Table 1 shows examples of comprehension
syntax in various languages.

Language-integrated database query is widely used. Microsoft’s LINQ
framework provides language-integrated database query for a multitude of
programming languages (e.g. C#, F#). Slick [Slick] embeds database queries
in Scala applications based on the native Scala collection framework. Other
examples include the research language Links [Coo+06], Wong’s Kleisli sys-
tem [Won00; Won94] and Database-Supported Haskell [Gio+11a].

1.2 broken promises

Ideally, use of language-integrated database query should bring no sur-
prises compared to querying in-memory collections. From the perspective
of a programmer, the integration should be seamless.

In reality, however, language-integrated database query facilities regularly
break the promise of a seamless integration. Programmers are used to in-
memory collections that can be arbitrarily nested (e.g. lists of lists) while
relational systems support only flat relations. Nested collections are natu-
rally associated with nested queries to filter and transform nested collections
at any level. In LINQ, queries with nested results either lead to a run-
time error or are executed via an inefficient avalanche of individual database
queries [GRS10]. Also, in-memory collections can be ordered (i.e. lists, se-
quences) while SQL is based on unordered multisets. The native collection
type of Links, for example, are ordered lists. Links database queries using
the same syntax and types as for lists, however, only provide unordered
multiset semantics that directly maps to SQL.

Broken promises in query embedding can cause actual breakage. The
Scala snippet in Figure 1 expresses grouping and aggregation using Slick.
Grouping with aggregation is expressed in two steps. Grouping is based
on the regular Scala groupBy operator that returns a nested collection of
groups (expression q, Line 1). The groups are aggregated in a second step by
applying aggregation combinators (length, avg) to each group (expression
q2, Line 6). Expression q2 utilizes q and can be translated to a SQL query
by Slick. Expression q, however, is a valid, type-correct collection expression
in its own right and could be executed without problems on an in-memory
collection. Due to the nested result type of q, however, Slick is not able to
translate it to a SQL query and generates a runtime error.

1.3 case study : database-supported haskell 3

val q = (for {

c <- coffees

s <- c.supplier

} yield (c, s)).groupBy(_._1.supID)

5

val q2 = q.map { case (supID, css) =>

(supID, css.length, css.map(_._1.price).avg)

}

Figure 1: Grouping and aggregation in Slick. Example copied from the Slick 3.2.3
documentation [Slick].

Seamlessly language-integrated database queries are the motivating back-
ground for this thesis. We argue that the data model of nested and ordered
collections along with support for nested iteration should be extended to the
subset of a programming language that can be used for database queries. In
Section 1.3, we motivate this opinion based on an example of language-
integrated database queries in Haskell.

We incur, however, the challenge of query flattening: we need a way to
translate nested queries over nested and ordered collections into efficient re-
lational queries that are restricted to flat and unordered relations. In Chap-
ter 2 we survey prior work on query flattening and analyze its shortcomings.
In the remainder of this thesis, we then go on to describe an approach to
query flattening that improves over the state of the art.

1.3 case study : database-supported haskell

Haskell is a purely-functional, statically typed general-purpose program-
ming language with lazy evaluation [Mar10]. Database-Supported Haskell
(DSH) [Gio+11a] integrates relational database queries in Haskell based on
list combinators and list comprehensions1. Queries written in the DSH sub-
set of Haskell mimic regular Haskell list programs both in syntax and types.
DSH admits a rich data model in which query results can be arbitrary combi-
nations of lists, tuples and atomic values — in particular, query results may
feature nested lists. DSH queries are type-checked just as regular Haskell
code: while e :: [a] denotes an expression e of type [a] (list of a), expres-
sion q :: Q [a] is a query that returns a value of type [a] when executed.
A query of type Q [a] can be executed by the DSH runtime on a relational
database to obtain the resulting Haskell value of type [a]2. DSH faithfully
preserves the order semantics of the Haskell list combinators.

DSH imposes a list view on relational database tables and provides access
to tables in the form of lists of records. The following excerpt of a record
type definition maps to the schema of the customer table in the TPC-H
schema [TPC-H]:

data Customer = C { c_custkey :: Integer, c_name :: Text, ... }

1 DSH as described by Giorgidze et al. uses quasi-quoting to overload list comprehension syn-
tax for database queries. In this thesis, we describe a version of DSH that utilizes monad
comprehensions [Gio+11b] instead.

2 For the sake of readability, we slightly simplify types in our discussion of DSH. The actual
DSH implementation uses type classes to restrict type variables to those Haskell types — lists,
tuples and atomic values — that are supported by DSH

4 introduction

ordersOf :: Q Customer -> Q [Order]

ordersOf c = filter (\o -> o_custkeyQ o == c_custkeyQ c) orders

orderVolume :: Q [(Text, Decimal)]

5 orderVolume =

[(c_nameQ c, sum [o_totalpriceQ o | o <- ordersOf c])

| c <- customers]

Figure 2: A simple DSH query: compute the total of each customers’ orders.

map :: (Q a -> Q b)-> Q [a] -> Q [b]

concatMap :: (Q a -> Q [b])-> Q [a] -> Q [b]

filter :: (Q a -> Q Bool)-> Q [a] -> Q [a]

sortWith :: Ord b => (Q a -> Q b)-> Q [a] -> Q [a]

groupWith :: Eq b => (Q a -> Q b)-> Q [a] -> Q [(b,[a])]

concat :: Q [[a]] -> Q [a]

nub :: Eq a => Q [a] -> Q [a]

elem :: Eq a => Q a -> Q [a] -> Q Bool

enum :: Q [a] -> Q [(a,Integer)]

take :: Q Integer -> Q [a] -> Q [a]

drop :: Q Integer -> Q [a] -> Q [a]

zip :: Q [a] -> Q [b] -> Q [(a,b)]

length :: Q [a] -> Q Integer

sum :: Num a => Q [a] -> Q a

maximum :: Ord a => Q [a] -> Q a

minimum :: Ord a => Q [a] -> Q a

and :: Q [Bool] -> Q Bool

or :: Q [Bool] -> Q Bool

mins :: Num a => Q [a] -> Q [a]

Table 2: Haskell list combinators supported by DSH (excerpt)

In queries, the database-resident list of customers is denoted by the expres-
sion customers of type Q [Customer] (sorted in primary-key order). DSH
automatically provides query versions of the record field selectors: While
c_custkey is of type Customer -> Integer, its query equivalent c_custkeyQ
is of type Q Customer -> Q Integer.

Figure 2 shows a basic query in DSH based on the TPC-H schema that
answers the following question: What is the total price of all orders of each
customer? The one-to-many relationship between customers and orders is
expressed by the function ordersOf: Given one customer, it computes all cor-
responding order records. For each order, orderVolume relies on ordersOf

to fetch the corresponding orders and aggregates them. The query is written
in the typical style of Haskell list programs by combining list combinators
(sum, filter) and list comprehensions. Indeed, the only artifacts that mark
the program as a DSH query to be executed on a database system are the
type annotations Q. The list combinators are DSH versions that mimic their
regular Haskell counterparts. Table 2 lists an excerpt of combinators sup-
ported by DSH.

1.3 case study : database-supported haskell 5

-- margin =̂ current value - minimum value up to now

margins :: (Ord a, Num a) => Q [a] -> Q [a]

margins xs = [x - y | (x,y) <- zip xs (mins xs)]

5 -- our profit is the maximum margin obtainable

profit :: (Ord a, Num a) => Q [a] -> Q a

profit xs = maximum (margins xs)

-- best profit obtainable for stock on given date

10 bestProfit :: Text -> Date -> Q [Trade] -> Q Double

bestProfit stock date trades =

profit [price t | t <- sortWith ts trades,

id t == toQ stock,

day t == toQ date]

Figure 3: Best profit obtainable if we buy, then sell stock.
bestProfit"ACME""10/20/2014"trades yields 6.0.

In the following, we discuss more closely query formulation in DSH.
Through a series of examples we identify aspects that – in our opinion –
make a subset of a programming language practically usable as a database
query language.

1.3.1 Ordered Data Model

The data model of real-world relational database systems is centered around
unordered multisets. In contrast, the collection type in functional program-
ming languages is often ordered (for example, Haskell and Links both pro-
minently feature lists). To preserve the semantics of the host language, a
language-integrated query system should maintain the order semantics on
the database.

In an orthogonal collection programming framework, sorting is expressed
with combinators (e.g. Haskell’s sortWith) that can be used without restric-
tions in a query. In a query language based on unordered collections, sorting
can not be used in arbitrary locations. Sorting can only be expressed as post-
processing on the top-level of queries, in the style of SQL’s ORDER BY clause.
Thus, making sorting available as a first-class operation in an orthogonal
language requires ordered collections.

In addition, an ordered data model is useful to formulate complex query
logic in inherently order-aware domains. To make this case, we adopt an
example query by Lerner and Shasha [LS03] based on a time series of stock
trades. For a given stock on a specific day, we want to answer the following
question: What is the maximum profit that we can obtain by first buying
the stock and then selling it later on the same day? We answer this question
with the list-processing DSH query bestProfit in Figure 3.

Function bestProfit sorts trading records sorted by their timestamp —
expression trades references a database-resident table (Line 12). Note that
this is the only point in the query that explicitly specifies the order of data.
The remainder of the query is based on list semantics and preserves the
order of input lists. For example, in bestProfit, the comprehension that
filters the sorted trading time series based on stock and day will preserve
its order.

Based on the ordered representation of the trading time series, the query
is straightforward to implement with two helper functions. For each trad-

6 introduction

ing record, we compute the minimum price of all preceding trades, and the
difference between both prices is the margin obtainable by selling at this
point in time (function margins). DSH provides the combinator mins that
computes a running minimum on its input list. For example, mins [6,5,9,3]

evaluates to [6,5,5,3]. The maximum of the margins for all records is the
best profit obtainable at the given day (profit). Based on mins and margins,
computation of the actual maximum profit is easy (Line 7).

Lerner and Shasha [LS03] argue that an ordered data model and a set of
corresponding primitives admits a formulation of queries on time series and
other inherently ordered data that is both simple and compact. The DSH
query formulation in Figure 3 mirrors the formulation of the same query in
their ordered query language AQuery. In contrast, query languages that add
limited order-aware operators to an unordered data model (e.g. SQL:2003

window functions) tend to be complex to use.

1.3.2 Abstraction Over Queries, Building Tools

Functional programming languages emphasize a style of programming in
which small functions that perform well-defined, isolated tasks are com-
bined. DSH extends this style to database queries: DSH’s deep embedding
approach allows to freely combine individual Haskell functions into queries.
This property is exploited in query orderVolume (Figure 2): Fetching a cus-
tomer’s orders is delegated to function ordersOf. DSH allows to abstract
over arbitrary parts of a query. Crucially, abstraction in DSH queries comes
for free. An invocation of ordersOf in the enclosing iteration of orderVolume
does not cause DSH to issue a separate backend query. Instead, DSH inlines
function applications and translates orderVolume as a whole.

Query abstraction allows to build domain-specific libraries of reusable
building blocks from which complex queries can be assembled. Building
blocks like ordersOf can be reused in other queries on the TPC-H schema.
In Figure 4 we reuse ordersOf in a DSH formulation of TPC-H Q22 that
identifies potential customers in specific areas. Customers are deemed in-
teresting if their account balance is above average and they do not have any
open orders. For each area, the query asks for the summary account balance
of the corresponding potential customers.

The DSH query splits this problem into easily digestible parts. Comput-
ing the average account balance of a list of customers is implemented in
function avgBalance (Line 2). In the SQL formulation of Q22, computing
the average account balance is entwined with the area-based selection of
customers — here, these tasks can be implemented independently. Filtering
potential customers is delegated to potentialCustomers which itself relies
on other building blocks (avgBalance, ordersOf) to implement the complex
predicates. Filtering customers based on their areas is implemented in func-
tion livesIn. The main function q22 merely has to combine these abstrac-
tions to select eligible customers and then compute aggregates to prepare
the actual report.

Abstraction in queries is not only useful to provide domain-specific tools.
We can build more general abstractions that are not tied to any particular
domain. True to the functional nature of Haskell, we can build higher-order
abstractions. Abstraction topK provides a means to express top-k queries
that select the k elements with the highest rank.

-- Top k elements in xs based on ordering criterion f

topK :: Ord b => Q Integer -> (Q a -> Q b) -> Q [a] -> Q [a]

1.3 case study : database-supported haskell 7

-- average account balance of the customers cs

avgBalance :: Q [Customer] -> Q Double

avgBalance cs = avg [c_acctbal c | c <- cs, c_acctbal c > 0.0]

5 -- high potentials among the customers cs

potentialCustomers :: Q [Customer] -> Q [Customer]

potentialCustomers cs =

[c | c <- cs, c_acctbal c > avgBalance cs, empty (ordersOf c)]

10 -- country code (phone number prefix) for customer c

countryCodeOf :: Q Customer -> Q Text

countryCodeOf c = subString 2 (c_phone c)

-- does customer c live in any of the given countries?

15 livesIn :: Q Customer -> [Text] -> Q Bool

livesIn c countries = countryCodeOf c ‘elem‘ toQ countries

-- TPC-H query Q22

q22 :: [Text] -> Q [(Text, Integer, Double)]

20 q22 countries =

sortWith (\(country, _, _) -> country)

[(country, length custs, sum (map c_acctbal custs)) |

(country, custs) <- groupWith countryCodeOf pots]

where

25 pots = potentialCustomers [c | c <- customers,

c ‘livesIn‘ countries]

Figure 4: A Haskell formulation of TPC-H query Q22.

topK k f xs = take k $ reverse $ sortWith f xs

The ordering criterion that determines the rank is provided as an argument
f to the generic topK combinator. topK sorts its input list in the order im-
posed by the ordering criterion and then returns a prefix of this list. Note
that the ordering criterion is not limited to simple scalar expressions. Any
DSH abstraction that fits the generic type of argument f can be employed
as an ordering criterion. For example, topK can be used to retrieve the 10

customers with the most orders:

topK 10 (length . ordersOf) customers

In a recent publication [UG15], we have described this style of querying as
layered. Complex queries are assembled from layers of abstractions, consist-
ing of domain-specific building blocks and generic tools. These two layers

domain margins ordersOf fromNation . . .

generic
topK groupagg mins groupWith sortWith zip

concat map elem reverse take/drop head !!

primitive
[·|·] enum aggregates (sum, length, or, . . .) ++

sort nub empty simple expressions (+, ==, . . .)

Figure 5: Three layers of query abstractions. Operations in upper layers are definable
in terms of those on lower layers (Figure adapted from [UG15]).

8 introduction

-- Does customer c have nationality nation?

fromNation :: Q Customer -> Q Text -> Q Bool

fromNation c nation =

or [n_nationkey n == c_nationkey c && n_name n == nation |

5 n <- nations]

-- When did customers from nation place their k most expensive orders?

topOrders :: Q Integer -> Q Text -> Q [(Text, [Day])]

topOrders k nation =

10 [(c_name c,

[o_orderdate o | o <- topK k o_totalprice (ordersOf c)]) |

c <- customers,

c ‘fromNation‘ nation]

Figure 6: DSH query with a nested result.

are themselves constructed from a small number of primitives which are
provided by the embedded query language (Figure 5).

Formulating queries in this style brings a requirement, though: our query
language needs to be fully orthogonal. Queries obtained as a composition of
arbitrary abstractions can not be guaranteed to fit in any restricted syntacti-
cal skeleton like select-from-where blocks in SQL. All query constructs can
be used independently of their context. Concretely, in DSH any type-correct
term of type Q a is a valid query that can be executed.

1.3.3 Queries With Nested Results

In the subset of Haskell we consider here, type constructors [·] for lists and
(·,·) for tuples can be nested arbitrarily. In particular, lists can be nested. In
order to properly integrate queries, we have to preserve this property in the
embedded query language.

Layered queries naturally lead to nested intermediate results, even if the
queries’ result type is flat. The following query computes the number of
orders placed by each customer.

orderCount :: Q [(Customer, Integer)]

orderCount = zip customers (map length $ map ordersOf customers)

The expression map ordersOf customers has the nested type Q [[Order]].
Although the inner lists are subsequently aggregated to form a flat result,
the embedded query language has to be able to represent nested data.

Nested lists may not only occur as intermediate data but also as query
results. A common pattern in database programming is the following: For
each element of an outer collection, obtain a number of related elements
from another inner collection. A naive implementation of this pattern results
in a separate backend query being issued to the database for each element of
the outer collection. The resulting query avalanche [GRS10] harrows users
of object-relational mappers.

With a nested data model, on the other hand, we can describe this pattern
as a single query with a nested result as shown in query topOrders in Fig-
ure 6: for each customer belonging to a given nation, it computes the dates
on which the customer’s most expensive orders have been placed. Again
the query is implemented as a composition of domain-specific and generic
abstractions. First, only those customers are retained that are from a given
nation. Abstraction fromNation expresses the existential quantification us-

1.4 a list-based query language 9

-- Line items of order o

itemsOf :: Q Order -> Q [Lineitem]

itemsOf o = [l | l <- lineitems, l_orderkey l == o_orderkey o]

5 -- Line items of order o and how many days they have been delayed

delaysOf :: Q Order -> Q [(Lineitem, Integer)]

delaysOf o = [(l, o_orderdate o - l_shipdate l) | l <- itemsOf o]

-- Orders whose line items are delayed more than 5 days on average

10 shippingDelay :: Q [(Integer, [LineItem]]

shippingDelay = [(o_orderkey o, map fst (sortWith snd ds)) |

o <- orders, let ds = delaysOf o,

sum (map snd ds) > 5]

Figure 7: DSH query: compute shipping delays.

ing the Boolean aggregate or. For each relevant customer, the implemen-
tation employs ordersOf to fetch all corresponding orders. As we are not
interested in all orders of a customer, we use generic abstraction topK to
reduce them to the k most expensive ones.

Figure 7 lists another query with a nested result on the TPC-H schema. It
computes the lineitems of an order o together with the number of days that
shipment of each lineitem has been delayed. The delay is here understood as
the difference between the order date and actual shipping date of a lineitem.
The query only considers those orders for which the total delay exceeds
a certain threshold. The query demonstrates that DSH allows sorting at
an arbitrary place in a query. For each order, the list of corresponding
lineitems is sorted individually. In the remainder of this thesis we use query
shippingDelay as a running example.

1.4 a list-based query language

To recapitulate, we argue in Section 1.3 that a language-integrated query
system should have the following properties:

• A data model that allows intermediate results as well as final query
results to be nested.

• A combination of an ordered collection type and the means to express
order-aware operations (e.g. sorting, enumeration, top-k).

• The embedded query language should be expressive and include func-
tionality like grouping, aggregation and duplicate elimination.

• The query language should be orthogonal not only in types but also in
terms [BBW92] and allow arbitrary combinations of combinators and
comprehensions.

Implementing a language-integrated query system brings two largely or-
thogonal tasks: (1) language embedding and (2) translation to SQL. Queries
need to be integrated with the syntax and type system of the host language
(1) and reified into a form that is subsequently translated to SQL queries
(2). In this work, we focus on task (2). We define the query language CL

that has the properties listed above. CL is designed as an intermediate rep-
resentation for a language-integrated query facility such as DSH. The DSH

10 introduction

t ::= ⟨table name⟩
v ::= ⟨scalar literal value⟩

x,y ::= ⟨variable name⟩
ℓ ::= ⟨record field label⟩

Expressions, Comprehension Syntax

e ::= v | x | [v, . . . ,v] | table(t) | let x = e in e

| p e · · · e | reduce{s, s} e | if e then e else e

| [e | x← e,qs]

qs ::= x← e,qs | e,qs | ε

Built-In Functions and Operators

p ::= sort | # | concat | distinct | group | append

| sng | ⟨ℓ = _, . . . ,ℓ = _⟩ | c(_, . . . ,_) | _.ℓ

Scalar Expressions

s ::= x | v | c(s, . . . ,s) | s.ℓ | ⟨ℓ = s, . . . , ℓ = s⟩
| if s then s else s | λx · · · x.s | s s . . . s

Figure 8: Syntax of query language CL.

frontend translates a reified DSH query into CL. CL queries are then further
translated to SQL queries ready to be executed on a database.
CL is an orthogonal query calculus centered around comprehensions and

combinators. CL is similar to query calculi that have been defined as a theo-
retical basis for complex-object query languages like OQL [Bun+95; Gru99;
FM00]. It operates on arbitrarily nested lists and records. Our running ex-
ample, the DSH query shippingDelay (Figure 7), can be expressed in CL as
follows:

[⟨o, sort [⟨l, l.sd - o.od⟩ | l← ls, l.ok = o.ok]⟩
| o← os

, 5 < sum [l.sd - o.od | l← ls, l.ok = o.ok]]

(Q1)

Just as DSH queries, Query Q1 centers around comprehensions and uses
additional list combinators. Combinator sort takes a list of pairs whose
second component specifies the sorting key of each element. In the re-
mainder of this thesis, we use some convenient shortcuts for the TPC-H
schema. We write os for table(orders) and ls for table(lineitem). Ad-
ditionally, we use the shortcuts od and sd for the record labels o_orderdate

and l_shipdate. Depending on the context we write ok for the record labels
o_orderkey and l_orderkey.

The syntax of CL terms is defined in Figure 8. List comprehensions
[e | qs] are the central construct that expresses side-effect free iteration
over multiple lists as well as filtering of lists. We call expression e the head
expression and qs the qualifiers. Qualifiers are a non-empty sequence of
generators x← e and guard expressions3.

Base operators c(_, . . . ,_) include arithmetic, boolean and comparison
operators as well as max and min which return the larger and smaller of
two values, respectively. We require equality and order on all scalar types

3 Note that the grammar includes a dangling comma at the end of the qualifier sequence which
we ignore.

1.4 a list-based query language 11

including records. Order on records is defined as the lexicographic order on
record labels. We write pairs ⟨_, _⟩ as a shortcut for the record constructor
⟨1 = _, 2 = _⟩. Constants are either base literal values, literal lists of base
values or table references table(t). We assume tables to be flat multisets
and interpret them as flat lists of records in the order of the primary key.

Combinator reduce{sz, sf} folds a list into a scalar value and subsumes
aggregation functions. Scalar expression sz defines the initial value and sf
defines the folding function. Note that we do not define a particular order
for the fold. Folding functions are required to be associative. Combinator
reduce{sz, sf} may compute multiple aggregates at once. In the following
example, a list is folded into a pair of the element sum and the length.

reduce{⟨0, 0⟩, λa x.⟨a.1 + x, a.2 + 1⟩} [4, 5, 6] ≡ ⟨15, 3⟩

In examples, we sometimes use concrete aggregate combinators like sum that
map to reduce{}.

The grammar includes a syntactic category s of scalar expressions. These
are restricted to atomic and record operations but do also include lambda
abstraction and application. For now, scalar expressions are used exclu-
sively as fixed arguments to reduce{sz, sf}. Actual expressions of CL do
not include functions. In scalar expressions we use some usual notational
shortcuts for lambda abstractions:

s1 ◦ s2 ≡ λx.s1 (s2 x)

πℓ ≡ λx.x.ℓ

s1 ⊘ s2 ≡ λx y.s1 x (s2 y)

s1 ∥ s2 ≡ λx.⟨s1 x.1, s2 x.2⟩

1.4.1 Static Semantics

Types in CL have the following form. We let τ range over general types —
arbitrary combinations of lists and records — and π over atomic base types.
Additionally, we let δ range over scalar types that only include nested records
of base types.

Base Types

π ::= Int | Text | Bool | Date | ⟨⟩

Types

τ ::= π | [τ] | ⟨ℓ:τ, . . . , ℓ:τ⟩
Scalar Types

δ,α,β,γ ::= π | ⟨ℓ:δ, . . . , ℓ:δ⟩

We say that a type is nested if the element type of a list type constructor
contains further nested list type constructors. Otherwise, a type is flat.

We define the static semantics of CL using the (standard) typing rules
in Figure 9. We let Γ and ∆ range over type environments that map vari-
ables to types. The inference rules in Figure 9a define the typing relation
for terms. The language’s central construct is the list comprehension, for
which we adopt the typing rules from Peyton Jones and Wadler [PW07]. In
a comprehension [e | qs,q,qs ′] qualifier q is type-checked in a type en-
vironment extended with bindings for all preceding qualifiers qs. Likewise,
the head expression e is type-checked in a type environment extended with

12 introduction

CL-ty-var

x : τ ∈ Γ

Γ ⊢ x : τ

CL-ty-let

Γ ⊢ e1 : τ1 Γ , x : τ1 ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

CL-ty-table

Σ(t) = ⟨ℓi:πi⟩ni=1

Γ ⊢ table(t) : [⟨ℓi:πi⟩ni=1]

CL-ty-lit-base

⊢ v : π

Γ ⊢ v : π

CL-ty-lit-list

[⊢ vi : π]ni=1

Γ ⊢ [v1, . . . , vn] : [π]

CL-ty-op

Σ(p) = τ1 → · · · → τn → τ [Γ ⊢ ei : τi]
n
i=1

Γ ⊢ p e1 · · · en : τ

CL-ty-reduce

Γ ⊢ e : [τ] ⊢ sz : δa ⊢ sf : δa → τ→ δa

Γ ⊢ reduce{sz, sf} e : δa

CL-ty-if
Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

CL-ty-comprehension

Γ ⊢ e1 : [τ1] Γ , x : τ1 ⊢ qs ⇒ ∆ Γ , x : τ1,∆ ⊢ e : τ

Γ ⊢ [e | x← e1,qs] : [τ]

(a) Typing of terms.

CL-ty-gens

Γ ⊢ e : [τ] Γ , x : τ ⊢ qs ⇒ ∆

Γ ⊢ x← e,qs ⇒ {x : τ}∪∆

CL-ty-gen

Γ ⊢ e : [τ]

Γ ⊢ x← e ⇒ {x : τ}

CL-ty-guards

Γ ⊢ e : Bool Γ ⊢ qs ⇒ ∆

Γ ⊢ e,qs ⇒ ∆

CL-ty-guard

Γ ⊢ e : Bool

Γ ⊢ e ⇒ ∅

(b) Typing of comprehension qualifiers.

Figure 9: Typing rules for CL.

bindings for all qualifiers. Figure 9b defines a typing relation for qualifier
lists that constructs the type environment for subsequent qualifiers as well
as the head expression. Judgment Γ ⊢ qs ⇒ ∆ indicates that in type envi-
ronment Γ qualifiers qs lead to type bindings in ∆. In typing rules we let
Σ(t) denote the record type of table t. Also, Φ(t) denotes the scalar type of
the primary key of table t. We omit the typing rules for scalar expressions
s which are the standard typing rules for the simply-typed lambda calculus
with records and base types [Pie02].

Table 3 lists the type signatures of combinators provided by CL. List
combinators like sort are restricted in the type of their input arguments.
The second pair component that specifies the sorting key must have a scalar
type. This ensures that we can map it to relational operators later.

As a shortcut, we write Order and Lineitem for the element record type
of tables table(orders) and table(lineitem). Then, Query Q1 has type
[⟨Order,[Lineitem]⟩].

1.4 a list-based query language 13

c(_, . . . ,_) : δ1 → · · · → δn → δ

⟨ℓ1 = _, . . . ,ℓn = _⟩ : τ1 → · · · → τn → ⟨ℓ1:τ1, . . . ,ℓn:τn⟩
_.ℓ : ⟨. . . ,ℓ:τ, . . .⟩ → τ

sort : [⟨τ,δ⟩]→ [τ]

number : [τ]→ [⟨τ,Int⟩]
concat : [[τ]]→ [τ]

group : [⟨τ,δ⟩]→ [⟨δ,[τ]⟩]
distinct : [δ]→ [δ]

sng : τ→ [τ]

append : [τ]→ [τ]→ [τ]

Table 3: Type signatures of builtin CL combinators.

1.4.2 Frontend Translation

With DSH we advocate constructing complex queries by assembling small,
well-contained building blocks, including higher-order abstractions. At the
same time, built-in query combinators like sortWith that are provided by
DSH are higher-order functions as well. Our query language CL, on the
other hand, does not have a notion of functions. Built-in combinators like
sort don’t take functional arguments and are not first-class values them-
selves. They can only be fully applied to form expressions.

This is not actually a contradiction. In this thesis, we focus on the trans-
lation of nested, ordered CL queries into flat relational queries. The embed-
ding of CL into languages with first-class functions is an orthogonal topic
that has been discussed in prior work. Cheney et al. [CLW13], for instance,
provide a theory of language-integrated queries based on quotation. In
their work, queries are normalized and all abstractions are inlined. At the
point at which queries are actually translated to relational code, the query
is first-order and no abstractions remain. Subsequent work [CLW14a] of the
same authors on nested queries follows the same pattern: only a first-order
query language without abstractions is considered for translation to rela-
tional queries (see also Chapter 2). DSH uses a similar but less principled
approach.

This restriction is only natural: relational query languages (i.e. SQL) have
no notion of functional abstraction for good reasons. Hence, inlining func-
tions is necessary. In the work of Cheney et al., normalization provides the
guarantee that all functions are inlined. Even if that guarantee can not be
obtained, queries with residual function applications can still be rewritten
into first-order variants before being translated to relational queries [GU13].
In this work, we have decided to consider only a first-order query language
without function application in order to focus on the core aspects of query
translation.

2R E L AT E D W O R K O N Q U E RY F L AT T E N I N G

Query flattening translates a query in a nested query language into a number
of flat queries in a flat query language. Hence, query flattening enables the
execution of queries with nested results and nested intermediate results on
flat relational query engines. The problem of query flattening is not new. In
this chapter, we survey literature on query flattening.

Flat-to-flat queries in a nested query language can still produce nested
intermediate results. It is well-known that for a large class of queries, such
intermediate results can be eliminated such that only one flat query needs
to be translated (Section 2.1.2). However, we are interested in translations
that can deal with flat-to-nested queries as well.

One strategy to execute nested queries of the form [q2 | x ← q1] is
to execute the query q1 first and then execute one instance of query q2 for
each element in the result of q1 — assuming that q1 and q2 are both flat.
However, the number of flat queries issued depends on the cardinality of the
result of q1 and can quickly overwhelm a database system if that cardinality
is large. Generating such a query avalanche is an escape hatch for systems
that can not deal properly with nested queries and is known to be ineffi-
cient [GRS10]. We are only interested in translations for which the number
of flat queries that is generated is bounded and can be statically determined.
This excludes Wong’s Kleisli system [Won00], for example. For all query flat-
tening translations we survey in this chapter, the number of flat queries is
determined statically by the type of the query result. Our example Query Q1

features two list type constructors in its result type [⟨Order,[Lineitem]⟩]
and can be translated to two flat queries.

2.1 foundations of query flattening

We first review descriptions of query flattening in database theory.

2.1.1 Data Flattening

Multiple authors formalize encodings of nested relations into multiple flat
relations. Roth et al. [RKS88] define the Partitioned Normal Form (PNF) for
nested relations. A nested relation is in PNF if its atomic attributes form a
super key and its complex attributes are in PNF as well. Partitioned Normal
Form is the basis for encodings of nested relations into flat relations.

Abiteboul and Bidoit [AB86] as well as Hulin [Hul90] define a flat encod-
ing of nested relations that are in PNF using flat relations. Both use flat
relations as an intermediate representation for schema transformations. We

15

16 related work on query flattening

r1 = {"Jones",

"Smith"}

r2 = {⟨"Jones", "math"⟩,
⟨"Jones", "science"⟩,
⟨"Jones", "physics"⟩,
⟨"Smith", "physics"⟩}

r3 = {⟨"Jones", "math", 1977, "Russel"⟩,
⟨"Jones", "math", 1978, "Russel"⟩,
⟨"Jones", "math", 1978, "Doolittle"⟩,
⟨"Jones", "physics", 1977, "Martin"⟩,
⟨"Smith", "physics", 1978, "Anderson"⟩}

Figure 10: Flat representation of nested set r according to Hulin [Hul90].

adopt the following example from Hulin [Hul90] using set notation. Con-
sider the following nested set r of type {⟨Text,{⟨Text,{⟨Int,Text⟩}⟩}⟩}:

r = {⟨"Jones", { ⟨"math", { ⟨1977, "Russel"⟩,
⟨1978, "Russel"⟩,
⟨1978, "Doolittle"⟩}⟩,

⟨"science", {}⟩,
⟨"physics", { ⟨1977, "Martin"⟩,

⟨1978, "Anderson"⟩}⟩}⟩,
⟨"Smith", {⟨"physics", {}⟩}⟩}

All sets in r are in PNF. Note that some nested sets are empty. Hulin notes
that unnesting a nested relation into a single flat relation by repeatedly ap-
plying the nested relational unnest operator µ looses information about the
nesting structure. Empty inner relations are not preserved. Instead, r is
encoded by three flat sets (Figure 10).

The nested set is vertically sliced and each flat set represents one level of
nesting. Since r is in PNF, the scalar key attributes of each set are used to
link nesting levels. Note that keys of all enclosing levels are necessary to
uniquely assign elements of r3. Empty inner sets are represented by absence:
the key ⟨"Jones", "science"⟩ is present in r2 but r3 has no corresponding
entries. Hulin shows that nested relations in PNF can be restored from this
flattened representation without information loss.

2.1.2 Query Flattening

Query flattening has found most use in database theory. In this field, query
flattening is used to investigate properties of nested relational query lan-
guages. Query flattening itself typically shows up as a byproduct that is not
considered under practical aspects.

Paredaens and Van Gucht [PV92] show that any flat-to-flat query in nes-
ted relational algebra can be translated into one equivalent query in flat re-
lational algebra. Any intermediate nested results used in the original nested
query can be flattened. This means that nested relational algebra restricted
to flat-to-flat queries is no more expressive than flat relational algebra. We
say that nested relational algebra on flat-to-flat queries is a conservative ex-

2.1 foundations of query flattening 17

A B C

a e
b
c

a f d

A B id(C)
a e a e
a f a f

id(C) C

a e b
a e c
a f d

(a) Nested relation R.

D E

e

g
x
y

D id(E)
e e
g g

id(E) E

g x
g y

(b) Nested relation S.

Figure 11: Flat encoding of nested relations in [Van99].

tension of flat relational algebra. Paredaens’ and Van Gucht’s translation
approach is rather indirect and limited to flat-to-flat queries. As such, it is
not a general solution to query flattening.

As a side note, we point out that Wong [Won96] shows a more general
conservativity result for a nested relational calculus which also extends to
queries over lists and bags. Cooper [Coo09] extends the conservativity result
to flat-to-flat queries in a recursive higher-order language.

van den bussche Van Den Bussche [Van99] obtains the same conser-
vativity result with a technique that is more relevant for our purposes. He
shows that a nested-to-nested query in nested relational algebra can be simu-
lated with multiple queries in relational algebra. The nested algebra consists
of the core relational operators (π, σ, ρ, ×, ∪, −) extended with the bare min-
imum to work with nested relations: the operators ν (nest) and µ (unnest).
The conservativity result for flat-to-flat queries follows as a byproduct of the
simulation. We review the simulation briefly.

Consider the nested relations R and S and their flat encoding in Figure 11.
Note that both relations are in PNF. Their flat encoding essentially corre-
sponds to the one discussed in Section 2.1.1. Relation R with one complex
attribute C is mapped two to relations. Non-complex attributes A and B are
copied as unique identifiers for the complex attribute C, denoted as id(C).
The inner relation uses these identifiers to relate the elements of the inner
relations.

Van Den Bussche simulates a query in nested relational algebra with a
bundle of flat queries expressed in a mixture of relational calculus and rela-
tional algebra. One flat query generates the flat representation of the result
relation. For each complex attribute in the result, an additional flat query
computes the corresponding inner relation. The result of the cartesian prod-
uct R× S in Figure 12 is therefore encoded by three flat queries: one query
for the top-level relation, and one query each for the complex attributes C

and E. Note that the flat simulation of the cartesian product merely consists
of the cartesian product of the outer relations while the representations of
complex attributes are preserved unchanged. As a consequence, the indexes
(e.g. id(C)) are no longer unique in the result. Data for complex attributes
in inner relations is shared.

We consider a selection on atomic attributes of a nested relation in Fig-
ure 13. Here, the selection on the nested relation is translated into a selection
on the outer flat relation while the inner relations are again unchanged. As a
consequence, the inner relations contain stale tuples that are not referenced
by the outer relation. While stale tuples are not an issue for correctness,

18 related work on query flattening

A B C D E

a e
b
c

e

a e
b
c

g
x
y

a f d e

a f d g
x
y

A B id(C) D id(E)
a e a e e e
a e a e g g
a f a f e e
a f a f g g

id(C) C

a e b
a e c
a f d

id(E) E

g x
g y

Figure 12: Product: νC(R)× S

A B C D E

a e
b
c

e
A B id(C) D id(E)
a e a e e e

id(C) C

a e b
a e c
a f d

id(E) E

g x
g y

Figure 13: Selection: σB=D (νC(R)× S)

they are an issue for a practical implementation. It is easy to construct an
example in which the flat encoding of a nested query result returned by the
database is much larger than necessary. A query flattening implementation
has to fetch these stale tuples from the database just to discard them while
reconstructing the nested result.

Although Van Den Bussche shows that it is possible to simulate nested
queries on a flat relational system in principle, his approach is not useful for
practical query languages (Chapter 1). The simulation relies on set seman-
tics and it is not clear how to extend it to lists or bags. Indeed, Cheney et
al. [CLW14b, Appendix A] demonstrate that the simulation does not work for
multisets. The nested algebra used is not a practical query language as it
lacks aggregation, for example. Most significantly, the algebra is not com-
positional in the operator arguments of π and σ — relational operators can
not be nested. This makes it impossible to directly express arbitrary nested
iteration over nested collections. Nesting of queries has to be simulated by
unnesting and re-nesting with µ and ν.

suciu Suciu [Suc97] proves a conservativity result for a nested relational
calculus extended with recursion in the form of a bounded fixpoint operator.
His approach is similar to Van Den Bussche’s: Suciu describes an encoding
of complex objects in flat relations. He then shows that any query in the
nested relational calculus can be simulated by flat relational queries. Two
things are particularly interesting about Suciu’s work. First, besides its use
as a proof technique, he proposes query flattening as an implementation tech-
nique for complex-object models on relational query engines. Second, in
contrast to Van Den Bussche’s algebra, Suciu’s calculus is orthogonal and
allows arbitrary nesting not only of data but also of iteration (i.e. nested data
parallelism). We briefly review Suciu’s query flattening approach.

Similar to approaches discussed earlier in this chapter, Suciu uses a flat
encoding of nested collections based on indexes. This is in contrast to earlier
work by Suciu [ST94; Suc95; Suc96] that uses a length-based encoding. Suciu
defines a flat encoding for complex-object types (arbitrary combinations of
base, tuple and set types). Base values of type s are encoded as singleton sets

2.1 foundations of query flattening 19

type encoding type representation type

Int {Int} {Int}

{Int} [I⇒ {Int}] ⟨{I},{⟨I,Int⟩}⟩
{⟨Int,Int⟩} [I⇒ ⟨{Int},{Int}⟩] ⟨{I},⟨{⟨I,Int⟩},{⟨I,Int⟩}⟩⟩
{{Int}} [I⇒ ([I⇒ {Int}])] ⟨{I},⟨{⟨I,I⟩},{⟨I, I, Int⟩}⟩⟩

Table 4: Flat relational representation of complex-object types in [Suc97].

type value representation

Int 42 {42}

{Int} {10, 20, 30} {i1, i2, i3}

{⟨i1, 10⟩, ⟨i2, 20⟩, ⟨i3, 30⟩}
{⟨Int,Int⟩} {⟨1, 10⟩, ⟨2, 20⟩, ⟨3, 30⟩} {i1, i2, i3}

{⟨i1, 1⟩, ⟨i2, 2⟩, ⟨i3, 3⟩}
{⟨i1, 10⟩, ⟨i2, 20⟩, ⟨i3, 30⟩}

{{Int}} {{10, 20}, {}, {30}} {i1, i2, i3}

{⟨i1, i11⟩, ⟨i1, i12⟩, ⟨i3, i31⟩}
{⟨i11, 10⟩, ⟨i12, 20⟩, ⟨i31, 30⟩}

Table 5: Flat relational representation of complex-object values in [Suc97]

of type {s}. To encode sets, set elements are identified by unique indexes of
some type I. The encoding of a set of type {t} can then be understood as a
finite function [I → t] that maps an index to the encoding of a set element.
Actually, a set of type {t} is encoded as a partial finite function [I ⇒ t]

that explicitly denotes its domain of type {I}. A partial function [I ⇒ {s}]

is represented as a pair of a flat relation {I} (the domain) and a function
[I→ {s}]. The explicit representation of the function domain is necessary to
preserve empty inner sets (Section 2.1.1).

In Table 4 we show examples of encoding and representation of various
complex object types. The encoding of corresponding values is shown in
Table 5. Note that a set of tuples {⟨Int,Int⟩} is vertically fragmented: data
for the individual tuple components is stored in individual binary relations.
Effectively, the encoding implements a decomposed storage model [CK85].
Furthermore, we note that Suciu’s encoding of a set of sets adds one layer of
indirection compared to the encoding of Van Den Bussche that is not strictly
necessary.

In Suciu’s work, query flattening proceeds in two stages. Queries in the
nested calculus are first translated into a variable-free nested relational al-
gebra. Subsequently, this nested algebra is translated into a flat relational
algebra on the indexed flat representation. The nested relational algebra is
an algebra of functions in point-free form similar to the work of Buneman et
al. [Bun+95]. Each sub-expression in a calculus term is translated into a func-
tion of its free variables. Nested iteration is translated into a higher-order
combinator that maps its functional argument over a set and replicates any
variables that are free in the iterator. This nested algebra is in turn translated
into a flat algebra in points-free style. Central to the translation is the Map
Lemma [Suc97, Lemma 5.4]: it describes how to translate operators that are
iteratively applied to a set of operands to flat operations on the flat, indexed

20 related work on query flattening

encoding. For example, a select operator map(σ) iteratively applied to a set
of sets of type {{t}} translates into a selection on the flat set that encodes
the inner set contents.

Suciu’s translation is more interesting for our purposes than that of Van
den Bussche: he uses an orthogonal calculus that expresses nested paral-
lelism. Unfortunately, Suciu only sketches the translation and leaves out
details.

more theoretical query flattening Levy and Suciu [LS97] use
the same query flattening approach in subsequent work to investigate con-
tainment properties of nested relational queries. Koch et al. [KLT16] have
used query flattening to define Incremental View Maintenance for a nested re-
lational calculus. They first flatten nested calculus queries and then define
delta generation for the individual flat queries.

To summarize, we have reviewed two use cases for query flattening in a
theoretical setting. First, query flattening is used as a tool to investigate rela-
tions between nested and flat queries by mapping one onto the other [Van99;
Suc97]. Second, query flattening is used to simplify a problem on nested
queries (containment, incremental view maintenance) by mapping it onto
a simpler domain, namely flat queries [LS97; KLT16]. However, none of
the approaches discussed so far has been developed under consideration
of practical implementation aspects. We are not aware of any implementa-
tions of the approaches discussed here. In the following section we discuss
approaches that are more fit for an actual implementation.

2.2 practical approaches

In the work discussed so far, query flattening merely played an auxiliary
role. In this section, we discuss work that develops query flattening un-
der practical considerations: as a tool to actually evaluate nested queries
on flat relational systems. In particular, this requires to consider multisets
instead of sets. We will discuss two approaches in more detail, as they have
influenced our work considerably: Query Shredding in Section 2.2.1 and Loop-
Lifting in Section 2.2.2.

2.2.1 Query Shredding

Cheney et al. [CLW14a] start with a higher-order nested relational calculus
λNRC as a basis for language-integrated query systems. Contrary to ap-
proaches discussed in Section 2.1, the data model of λNRC is not based on
sets but multisets to match real-world relational query languages (e.g. SQL).
We adopt the syntax of our own language CL for λNRC examples. How-
ever, we stress that all collection operations work on multisets, not lists. To
avoid confusion with list comprehensions, we write bag comprehensions as⦃ e | qs ⦄.

Cheney et al. define query flattening under the name Query Shredding for
flat-to-nested λNRC queries. Prior to flattening, λNRC queries are normalized
into a first-order subset of the calculus. In normal form, terms consist only
of bag comprehensions, bag union (⊎), emptiness tests empty and scalar
operators. Normalized comprehensions have the form ⦃ e | x ← t,p ⦄α
limited to one generator from a base table t and a single predicate. Each
comprehension has a unique label. We let α,β range over comprehension
labels. Query Shredding crucially relies on this normal form.

2.2 practical approaches 21

We first illustrate the basic idea of query shredding with a simple example.
Consider the following normalized query q that returns a value of type⦃⟨dept:Text⟩, emps:⦃⟨name:Text, sal:Int⟩⦄⦄.

q = ⦃ ⟨dept = d.name,emps = ⦃ ⟨name = e.name, sal = e.sal⟩
| e← table(employees)

, e.sal > 50000

, e.dept = d.id ⦄β⟩
| d← table(departments)⦄α

Query results have the following form:

⦃⟨dept = "Sales",emps = ⦃⟨name = "Bob", sal = 60000⟩,
⟨name = "Alice", sal = 80000⟩ ⦄⟩,

⟨dept = "R&D",emps = ⦃⟨name = "Lucy", sal = 100000⟩,
⟨name = "John", sal = 120000⟩ ⦄⟩,

⟨dept = "Acct", emps =⦃⦄⟩⦄
Similar to work discussed in Section 2.1, Cheney et al. flatten nested

queries into a bundle of flat queries. In contrast to earlier work, though,
Query Shredding does not translate into relational algebra but into a flat mul-
tiset calculus. For each multiset type constructor in the result type of the
query, Query Shredding produces one flat calculus query. Indexes link the
individual flat multisets computed by those queries and allow the recon-
struction of nested results.

Shredding query q results in two flat queries. The outer query q1 returns
the departments and replaces the nested comprehension with a scalar in-
dex Iα(v). For the comprehension labeled α, Iα(v) denotes an index value
constructed from scalar value v.

q1 = ⦃ ⟨dept = dept = d.name, emps = Iα(d)⟩
| d← table(departments) ⦄

The inner flat query q2 computes the employees of every department. It
returns pairs of index values and the actual employee data. Note that q2

includes the generator of the outer comprehension in q. Each element of the
result of q2 is paired with an index value Iα(d) derived from the department.
Both queries q1 and q2 share the same index value for each individual
department.

q2 = ⦃ ⟨Iα(d), ⟨name = e.name, sal = e.sal⟩⟩
| d← table(departments)

, e← table(employees)

, e.sal > 50000

, e.dept = d.id ⦄
Flat queries q1 and q2 produce the following flat multisets, with i1, i2, i3

denoting index values derived from departments. Nested results are recon-
structed by joining both bags on the indexes. Note that the empty multiset
for "Acct" is encoded by the absence of index i3 in the inner result.

22 related work on query flattening

⦃⟨dept = "Acct", emps = i1⟩,
⟨dept = "R&D", emps = i2⟩,
⟨dept = "Acct", emps = i3⟩⦄

⦃⟨i1, ⟨name = "Bob", sal = 60000⟩⟩,
⟨i2, ⟨name = "Lucy", sal = 100000⟩⟩,
⟨i1, ⟨name = "Alice", sal = 80000⟩⟩,
⟨i2, ⟨name = "John", sal = 120000⟩⟩⦄

Cheney et al. organize the flat queries in a shredded package: the original
type of the nested query in which each multiset type constructor is anno-
tated with the corresponding flat query:

⦃⟨dept:Text⟩, emps:⦃⟨name:Text, sal:Int⟩⦄q2⦄q1

In normalized λNRC terms, the term structure reflects the type structure
of the result as seen in q. Each multiset type constructor corresponds to one
comprehension (or a union of comprehensions) in the term. Query Shred-
ding exploits this correspondence and splits the original nested query term
at each multiset type constructor. The comprehension corresponding to that
multiset type constructor is split into an outer query and inner queries as
seen in q1 and q2: in the outer query, any nested comprehensions are re-
placed with an index value derived from the generator of the comprehen-
sion. Inner queries derive the same index value to correlate outer and inner
queries. This establishes the index relationship between the individual flat
results.

Shredding a nested comprehension includes all enclosing generators in
index values. Consider shredding the following query at level n− 1.

⦃ . . . ⦃ ⦃ e | xn ← tn,pn ⦄αn

| xn−1 ← tn−1,pn−1 ⦄αn−1
. . .

| x1 ← t1,p1 ⦄α1

Each evaluation of the head expression ⦃ e | xn ← tn,pn ⦄ is determined
by the bindings x1, . . . , xn−1 of all enclosing generators. Shredding at level
n− 1 derives an inner query that computes elements for all inner lists. To
uniquely identify those inner lists, indexes at level n− 1 are obtained from
bindings of all enclosing generators. Hence, shredding obtains the following
outer and inner query at level n− 1:

qn−1 = ⦃ ⟨Iαn−2
(x1, . . . , xn−2), Iαn−1

(x1, . . . , xn−1)⟩
| x1 ← t1,p1, · · · , xn−1 ← tn−1,pn−1 ⦄

qn = ⦃ ⟨Iαn−1
(x1, . . . , xn−1), e

′⟩
| x1 ← t1,p1, · · · , xn−1 ← tn−1,pn−1, xn ← tn,pn ⦄

In Query Shredding, comprehension labels guarantee unique index values.
Consider the following query involving a bag union. Note that generators
in both outer comprehensions use the same base table t1.

⦃ ⦃ e2 | y← t3 ⦄α2
| x← t1 ⦄α1

⊎ ⦃ ⦃ e4 | z← t5 ⦄β2
| x← t1 ⦄β1

The following outer query is obtained by shredding:

⦃ Iα1
(x) | x← t1 ⦄ ⊎ ⦃ Iβ1

(x) | x← t1 ⦄
If indexing were to depend only on the generator binding x, indexes for the
outer comprehensions would overlap. Including the comprehension label
in the index ensures unique indexes without overlap.

2.2 practical approaches 23

Query Shredding maps flat multiset queries to SQL queries with a simple
scheme: flat comprehensions obtained via shredding are isomorphic to SQL.
Translation to SQL is merely a syntactical mapping. Index values are derived
from keys of base tables. Query Shredding synthesizes uniform integer index
values by enumerating the underlying combinations of base table keys with
SQL’s row_number() window function. Cheney et al. also consider natural
indexes which are tuples of base table keys but do not explore this option
further. Hence, all SQL queries obtained by shredding nested comprehen-
sions include window functions.

2.2.1.1 A Critique of Query Shredding

We find Query Shredding to be rather simple and elegant. The structure of
flat queries obtained via shredding is directly related to the original (nor-
malized) nested query and easy to predict. After shredding, flat compre-
hensions translate to relatively simple SQL queries. Apart from window
functions that compute index values, Query Shredding produces regular be-
nign join queries in SQL. In addition, Cheney et al. give a rigorous proof
of correctness for query shredding, showing that the shredding translation
preserves the semantics of the original nested queries.

The language λNRC that can be handled by Query Shredding, however, falls
short of being a satisfying query language. Its limitation to bag semantics
and lack of grouping, duplicate elimination, aggregation and other function-
ality makes it impossible to express complex queries. Cheney et al. assume
that Query Shredding can be extended towards grouping, aggregation and
list semantics. However, we are not aware of any follow-up work in this
direction.

Query Shredding fundamentally relies on the correspondence of terms and
types after normalization. It is not clear whether this property can be ex-
tended to a richer query language. Prior work on normalization of flat-to-
flat queries by Cooper [Coo09] and Cheney et al. [CLW13] is based on simi-
larly restricted query languages. Cheney et al. [CLW13] prove normalization
for flat-to-flat queries to be complete and correct for a restricted query lan-
guage. However, they do not uphold those guarantees if the language is
extended with grouping, sorting and aggregation. Hence, we believe that
Query Shredding can not handle a more expressive query language without
fundamental changes to the approach.

2.2.2 Loop-Lifting

Among practical approaches to query flattening, Loop-Lifting takes a rather
prominent place in the literature. In this section, we first review literature
on Loop-Lifting. We then go on to explain the core concepts of Loop-Lifting in
some detail to provide a basis for a comparison with our work.

2.2.2.1 Literature Survey on Loop-Lifting

Grust et al. [GST04] originally describes Loop-Lifting as a compilation tech-
nique that translates XQuery into relational queries. While preceding work
focused on relational encodings of XML documents and the evaluation of
XPath axes [Gru02], Loop-Lifting focuses on the iterative core of XQuery:
FLWOR comprehensions express potentially nested iteration over ordered se-
quences without side effects. Loop-Lifting is centered around a relational
encoding of iteration that transforms iterative into set-oriented evaluation.

24 related work on query flattening

From the get-go, Loop-Lifting supports an extensive subset of XQuery, in-
cluding aggregation, order-aware operations, set operations and duplicate
elimination next to XML-specific constructs.

Grust et al. [GST04] provide an account of Loop-Lifting that maps XQuery
constructs directly to SQL expressions. Grust [Gru05] replaces SQL with
a relational algebra on multisets as a backend-independent intermediate
language. From this algebra, Loop-Lifting’s implementation Pathfinder of-
fers two paths for actual backend code generation. First, Pathfinder has
been integrated with MonetDB [MKB09] to form the XQuery processor
MonetDB/XQuery [Bon+06]. Here, Pathfinder directly emits MonetDB’s
MAL algebra and exploits XML-specific operators in the MonetDB kernel
(e.g. staircase join [GVT03]). Second, a SQL code generator [Gru+07] allows
to execute Loop-Lifting queries on a SQL:2003 database system. Both ap-
proaches have been found to provide efficient and scalable XQuery imple-
mentations [Rit11].

Originally, Loop-Lifting is tailored to XQuery and the peculiarities of its
data model: sequences are flat, have only scalar elements and singleton
sequences and scalar values are equivalent. Loop-Lifting has since been ex-
tended to other query languages in the Ferry project [Gru+09]. Most impor-
tantly, the data model considered by Loop-Lifting has been extended from
flat XQuery sequences to arbitrarily nested lists. Loop-Lifting supports an or-
thogonal query language with sorting, grouping, aggregation and duplicate
elimination. Furthermore, Rittinger [Rit11] describes a relational encoding
of closures and Ulrich [Ulr11] adds sum-of-product types. In the presence of
nested query results, Loop-Lifting generates a bundle of flat queries.

A number of experimental language-integrated query systems make use
of Loop-Lifting. Grust et al. [GRS10] describe an implementation of Microsoft
LINQ that integrates nested relational queries with queries over XML doc-
uments. Ulrich [Ulr11] extends the query facility in Links to nested results,
grouping, aggregation and list semantics using Loop-Lifting. Giorgidze et
al. [Gio+11a] describe Database-Supported Haskell (DSH), a type-safe query
facility for Haskell based on a deep embedding of list combinators and com-
prehensions. Their version of DSH is a predecessor of DSH as discussed
in Chapter 1. An alternative implementation of Ruby’s ActiveRecord query
facility is described by Grust and Mayr [GM12; May13]. Loop-Lifting has
found use beyond XQuery compilation and language-integrated query sys-
tems: Grust and Rittinger [GR11] propose observational debugging for SQL
queries based on Loop-Lifting.

2.2.2.2 Algebraic Iteration

Loop-Lifting is a compositional compilation scheme that offers an isolated com-
pilation rule for each syntactic category of an orthogonal query language.
In contrast to Query Shredding, Loop-Lifting does not require the query to
be in a normal form. We review the core concepts of Loop-Lifting — its
algebraic handling of nested iteration and nested data — based on simple
examples. We refer to Rittinger [Rit11] for a more comprehensive account
of Loop-Lifting.

We start with a relational encoding of flat lists and scalar values as de-
picted in Figure 14. A list element is represented by exactly one relational
tuple. List elements are annotated with an explicit encoding of list order. In-
dividual fields of (nested) records are mapped to relational attributes. Base
tables are mapped to the list encoding by enumerating their elements in
the order of the table’s primary key and using that enumeration as posi-

2.2 practical approaches 25

pos i1
1 10
2 20
3 30

[10, 20, 30]

(a) [Int]

pos i1
1 42

42

(b) Int

pos i1 i2 i3
1 23 5 18

⟨23, ⟨5, 18⟩⟩

(c) ⟨Int,⟨Int,Int⟩⟩

Figure 14: Relational encoding of ordered lists and scalar types in Loop-Lifting.

iter
1

(a) s0

iter
1
2
3

(b) s1

Figure 15: Loop-Lifting: Relational encoding (loop relations) of iteration scopes s0, s1.

tions. Loop-Lifting provides an algebraic, set-oriented account of iteration
over lists. Consider the following expression:

s0︷ ︸︸ ︷
[x + 42︸ ︷︷ ︸

s1

| x← [10, 20, 30]]

Loop-Lifting considers every expression to be evaluated in an iteration scope.
The comprehension, including its generator expression [10, 20, 30], is eval-
uated once in the outer iteration scope s0. Scope s0 encompasses a single
dummy iteration. Expression x + 42, on the other hand, is evaluated inde-
pendently three times under different bindings for x in the inner iteration
scope s1. Loop-Lifting enumerates iterations in an iteration scope and repre-
sents them as a single-column loop relation (Figure 15).

For each (sub)-expression e, a syntax-directed compilation rule derives a
relational algebra plan fragment that encodes the evaluation of e in every
iteration of the current iteration scope. We depict the plan fragments for
individual sub-expressions in Figure 16. Plan fragment q1 establishes the
representation of the generator expression [10, 20, 30] in the outer iteration
scope s0. The relational representation of variable x in scope s1 is derived by
the plan fragment q2 (Figure 16b). The numbering operator #:⟨⟩ computes
an enumeration of the list elements in the generator expression, correspond-
ing to an enumeration of iterations over this list. In the resulting table, ev-
ery tuple represents one iteration of the loop over the list [10, 20, 30]. The
plan fragment in Figure 16c derives the representation of sub-expression 42

in iteration scope s1. The scalar value is replicated over the loop relation to
provide a copy in each iteration.

Plan fragments q2 and q3 encode bindings for the variable x and a copy
of the constant 42 for each iteration of s1. Plan fragment q4 aligns corre-
sponding iterations and performs the addition. The addition operator is
applied in a set-oriented manner by the relational projection operator π. Plan
fragment q5 maps the result of the individual iterations back to the enclos-
ing iteration scope to obtain the encoding of the result list of three elements.
It computes a mapping from iteration identifiers of the inner scope s1 to list
positions of the outer scope s0 and joins this mapping with q4. Note that
this backmapping step also restores the order encoding of the generator list.

26 related work on query flattening

[x + 42

| x ← [10,20,30]

]

×

iter
1

pos i1
1 10
2 20
3 30

iter pos i1
1 1 10
1 2 10
1 3 10

q1

(a)

[x + 42

| x ← [10,20,30]

]

πiter:inner,pos,i1

#inner:⟨iter,pos⟩

q1

iter pos i1
1 1 10
2 1 20
3 1 30

q2

(b)

[x + 42

| x ← [10,20,30]

]

×

πiter:inner

#inner:⟨iter,pos⟩

q1

pos i1
1 42

iter pos i1
1 1 42
2 1 42
3 1 42

q3

(c)

[x + 42

| x ← [10,20,30]

]

πiter,pos,i1:i1+i2

⋊⋉iter=iter′

q2 πiter′:iter,i2:i1

q3

iter pos i1
1 1 52
2 1 62
3 1 72

q4

(d)

[x + 42

| x ← [10,20,30]

]

πiter:outer,pos,i1

⋊⋉inner=iter

πouter:iter,inner,pos

#inner:⟨iter,pos⟩

q1

πiter,i1

q4

iter pos i1
1 1 52
1 2 62
1 3 72

q5

(e)

Figure 16: Translation of a flat comprehension by Loop-Lifting. The relational plan
fragment is generated for the highlighted expression on the left and com-
putes the relation on the right.

2.2 practical approaches 27

[[x + y

| y ← [100,200]

]

| x ← [10,20,30]

]

×

πiter:inner

#inner:⟨iter,pos⟩

q1

pos i1
1 100
2 200

iter pos i1
1 1 100
1 2 200
2 1 100
2 2 200
3 1 100
3 2 200

q6

(a)

[[x + y

| y ← [100,200]

]

| x ← [10,20,30]

]

πiter:inner,pos,i1

#inner:⟨iter,pos⟩

q6

iter pos i1
1 1 100
2 1 200
3 1 100
4 1 200
5 1 100
6 1 200

q7

(b)

[[x + y

| y ← [100,200]

]

| x ← [10,20,30]

]

πiter:outer,pos,i1

⋊⋉outer=iter

πouter,inner

πouter:iter,inner,pos

#inner:⟨iter,pos⟩

q6

πiter,pos,i1

q2

iter pos i1
1 1 10
2 1 10
3 1 20
4 1 20
5 1 30
6 1 30

q8

(c)

[[x + y

| y ← [100,200]

]

| x ← [10,20,30]

]

q9

iter pos i1
1 1 110
1 2 210
2 1 120
2 2 220
3 1 130
3 2 230

(d)

Figure 17: Translation of nested comprehensions by Loop-Lifting.

2.2.2.3 Nested Iteration

Consider the following example with nested comprehensions:

s0︷ ︸︸ ︷
[[x+ y︸ ︷︷ ︸

s2

| y← [100, 200]]

︸ ︷︷ ︸
s1

| x← [10, 20, 30]]

The nested comprehensions define three iteration scopes s0, s1 and s2. As
for the previous example, we depict plan fragments and intermediate re-
lations for sub-expressions in Figure 17. Note that plan fragments for the
outer comprehension (list [10, 20, 30] and the loop relation for scope s1) are
the same as in Figure 16.

The constant expression [100, 200] is compiled in fragment q6 just as the
constant 42 before (Figure 17a): the relational encoding of the constant is
replicated into an independent copy for each iteration in the current itera-
tion scope s1. From q6, fragment q7 derives the encoding of variable y: it
enumerates all copies of [100, 200] to derive new iteration identifiers for
scope s2. The resulting relation encodes the binding for variable y for all six
iterations of scope s2.

28 related work on query flattening

[box [x + y

| y ← [100,200]

]

| x ← [10,20,30]

]

iter pos i1
1 1 1
2 1 2
3 1 3

iter pos i1
1 1 110
1 2 210
2 1 120
2 2 220
3 1 130
3 2 230

πiter:inner,pos:1,i1:inner

#inner:⟨⟨iter,pos⟩⟩

q1

q9

q10

Figure 18: Loop-Lifting: Splitting plans to derive the flat representation of a nested
list.

In iteration scope s2, expression x + y is evaluated in an environment with
bindings for the variables x and y. Considering only variable bindings by
comprehensions, lexical and iteration scopes coincide. The encoding of vari-
able x obtained in fragment q2 (Figure 16b), however, is bound to iteration
scope s1. Plan fragment q8 (Figure 17c) derives a relation mapping identi-
fiers of the outer scope (s1) to identifiers of the inner scope (s2). A join with
q2 creates a copy of bindings for x in s1 for each corresponding inner iter-
ation in s2. Variable bindings from the enclosing iteration scope are lifted
into the new scope by replicating the binding. We refer to this as environment
lifting.

Plan fragments q7 and q8 encode bindings for variables y and x for all
iterations of s2. As in our previous example, a join aligns both relations
along their iteration identifiers to enable a set-oriented evaluation of the
addition operator (not depicted). The same mapping relation derived in q8

for environment lifting is utilized to map the result of the addition back to
iteration scope s1 (Figure 17d). We omit the explicit presentation of plan
fragment q9 and refer to the analogous mapping fragment in Figure 16e.

In summary, Loop-Lifting implements nested iteration by replicating data.
Generator expressions (constant lists, base tables) are replicated as well as
variable bindings. Concretely, replication here means the computation of
cartesian products (Figure 17a) and joins (Figure 17b). Loop-Lifting heav-
ily relies on numbering operators to compute iteration identifiers that map
between iteration scopes and align iterations.

2.2.2.4 Constructing Nested Lists

The query in Figure 16 returns a flat list that is readily encoded by a single
flat relation. In contrast, the result of query in Figure 17 is nested. To
encode nested lists, Loop-Lifting splits the plan into multiple flat relations
linked by indexes. Preceding algebraic compilation, Loop-Lifting identifies
expressions e that require a split of the plan and inserts annotations box e

(Figure 18)
Recall plan fragment q9 (Figure 17d) that encodes the result of the nested

comprehension. It encodes the content of the three inner lists produced
by the inner comprehension. However, it does not yet encode the list of
type [[Int]] of those inner lists: an element (i.e. each of the inner lists)
occupies more than one relation tuple. The proper representation is derived
by compiling the box annotation on q9 (Figure 18). In plan fragment q10, it
derives an outer relation that defines the structure of the nested list. Outer
relation (q10) and inner relation (q9) are linked by indexes derived from

2.2 practical approaches 29

[sum (unbox xs)

| xs ← xss

]

iter pos i1
1 1 110
1 2 210
2 1 120
2 2 220
3 1 130
3 2 230

iter pos i1
1 1 1
2 1 2
3 1 3

q12

q11

(a)

[sum (unbox xs)

| xs ← xss

]

πiter:iter′ ,pos,i1

⋊⋉ref=iter

πiter′:iter,ref:i1

q11 q12

iter pos i1
1 1 100
1 2 200
2 1 100
2 2 200
3 1 100
3 2 200

q13

(b)

[sum (unbox xs)

| xs ← xss

]

πiter,pos:1,i1

∪

πiter,i1:0

\ GRPi1:sum(i1)/iter

πiter πiter

q11 q13

iter pos i1
1 1 320
2 1 340
3 1 360

q14

(c)

Figure 19: Loop-Lifting: Merging split plans.

iteration identifiers and computed by the numbering operator #:⟨⟩ — flat
or synthetic indexes in the terminology of Cheney et al. [CLW14a]. When
translating queries on base tables, indexes are originally synthesized from
base table keys. We point out that — contrary to a remark by Cheney et
al. [CLW14b] — indexes in Loop-Lifting do not only link adjacent levels of
nesting. Indexes are derived from iteration identifiers. As we have seen in
the previous paragraph, iteration identifiers for nested iteration are obtained
from iteration identifiers of the enclosing iteration scope and positions of the
generator expression. Hence, Loop-Lifting indexes incorporate information
from all levels of nesting.

To obtain the algebraic plan for the complete expression, plan fragment
q10 is mapped to the outer scope s0 while the inner fragment q9 remains un-
changed. In effect, Loop-Lifting generates a bundle of two relational algebra
plans that encode the nested list.

querying nested lists Consider the following expression which ap-
plies the sum aggregate iteratively to all inner lists xs:

s0︷ ︸︸ ︷
[sum xs︸ ︷︷ ︸

s1

| xs← xss]

Variable xss : [[Int]] denotes the result of the query in Figure 17:

xss ≡ [[110,210],[120,220],[130,230]]

30 related work on query flattening

To evaluate sum, the content of the inner lists is required. The two plans
that encode this nested list are merged. Loop-Lifting annotates expressions e

that require merging of plans as unbox e (Figure 19).
In Figure 19a, plan fragment q11 establishes the loop-lifted representation

of variable xs as usual. Plan fragment q13 in Figure 19b dereferences the in-
dexes in column i1 of the outer relation q11 by joining with the inner relation
q12. Based on the unboxed representation, plan fragment q14 (Figure 19c)
computes the aggregate sum independently for all iterations by grouping on
the iteration identifiers iter. Note that the plan fragment accounts for empty
inner lists (represented by the absence of iteration identifiers) and includes
the default value 0 for empty lists.

2.2.2.5 A Critique of Loop-Lifting

Loop-Lifting supports expressive query languages like CL. The translation
can handle arbitrary expressions of the query language and does not de-
pend on a normalization step. Loop-Lifting has been used successfully to
implement relational XQuery processors. However, we argue that it suffers
from conceptional problems that limit its theoretical appeal as well as its
practical usability.

While Query Shredding pairs a simple query language with an equally
simple flattening scheme, Loop-Lifting pairs a rich query language with a
complex flattening scheme. Most striking about Loop-Lifting is its lack of
abstraction. The source language is a rich orthogonal calculus with a com-
plex data model (lists, records). Its target language is a simple relational
algebra over unordered, multisets. Loop-Lifting bridges the considerable gap
between these languages and data models in one large, monolithic step.
No intermediate abstractions are used. In this monolithic compilation step,
Loop-Lifting rules handle multiple aspects of query flattening at once.

• Nested records are mapped to flat relational schemas.

• Nested iteration is implemented algebraically by replicating data and
lifting the environment.

• A flat representation of nested data based on synthetic keys is gener-
ated (box, unbox).

• List order is explicitly encoded and maintained using numbering op-
erators.

Loop-Lifting’s algebraic compilation rules that handle these tasks are com-
plex and hard to comprehend. As an example, Figure 20 shows the transla-
tion rule for the iteration construct in LINQ. Loop-Lifting’s compilation rules
are also hard to extend. For example, the synthetic index scheme based on
numbering operators is fixed in the compilation rules. Due to the concep-
tual complexity embedded in this single translation step, it appears hard to
reason about the rules.

Relational plans generated by Loop-Lifting feature a complex structure
with large numbers of operators. The plan fragments we show in Figures 16

and 17 for very simple queries combine into query plans of considerable
size. Indeed, Grust [Gru05] notes that flat plans for moderately complex
queries consist of hundreds of operators and that the plan size has a nega-
tive impact on performance. Moreover, not just the size but also the nature
of the plans is problematic: As we saw in Figure 17, Loop-Lifting plans fix
a nested-loop evaluation strategy for nested iteration. In query engines,

2.2 practical approaches 31

�; loop ` e

V̀ (q, [c1, c2, ... , cn, ...], ts)

�; loop ` e.n V̀✓
⇡

iter,pos,c

n

(q), [c
n

],

{c

n

7� (q
n

, cs

n

, ts

n

)} if c
n

7� (q
n

, cs

n

, ts

n

) 2 ts

? otherwise

◆
(1)

�; loop ` e

i

V̀ (q
i

, cs

i

, ts

i

)
i=1,2

q ⌘ @

pos:1
�
⇡

iter,cs1kcs2 (q1 1

iter

q2)
�

�; loop ` (e1,e2) V̀ (q, cs1kcs2, ts1kts2)
(2)

�(v) = (q, cs, ts)

�; loop ` v

V̀ (q, cs, ts)
(3)

�; loop ` tableR (c1,...,cn)
with key (c

k1,...,ckm

)
V̀

⇣
loop ⇥ %

pos:hc
k1

,...,c

k

m

i(R

), [c1, ... , cn],?
⌘

(4)

�; loop ` e

V̀ (q, [c],?)
q0 ⌘ ⇡

iter,pos,c:c0 (castc0:(t)c (q))

�; loop ` (t)e V̀ (q0, [c],?)
(5)

⇤ 2 {+, -, *, /, =, <, and, or, ...}
�; loop ` e

i

V̀ (q
i

, [c
i

],?)
i=1,2

q ⌘ ⇡

iter,pos,c:val
�
⇣

val:hc1,c2i(q1 1

iter

q2)
�

�; loop ` e1 ⇤ e2 V̀ (q, [c],?)
(6)

{... , x 7� (q
x

, cs

x

, ts

x

) , ...}; loop ` e1 V̀ (q1, cs1, ts1)
q

v

⌘ %

inner:hiter,posi(q1) map ⌘ ⇡

iter,inner

(q
v

) loop

v

⌘ ⇡

iter:inner(map)

�
lift

⌘ {... , x 7�
�
⇡

iter:inner,pos,cs
x

(q
x

1

iter

map), cs
x

, ts

x

�
, ...}

�
lift

+ {v 7�
�
@

pos:1(⇡
iter:inner,cs1 (qv)), cs1, ts1

�
}; loop

v

` e2 V̀ (q2, cs2, ts2)

{... , x 7� (q
x

, cs

x

, ts

x

) , ...}; loop ` e1.Select(v => e2) V̀�
⇡

iter,pos,cs2 (%pos:hinneri/iter(⇡inner:iter,cs2 (q2) 1

inner

map)), cs2, ts2
�

(7)

�; loop ` e1.Select(v => e2) V̀ (q1, [c],?)
q2 ⌘ sum

c:hci/iter(q1) q0 ⌘ @

c:0 (loop \ ⇡

iter

(q2))

�; loop ` e1.Sum(v => e2) V̀ (@
pos:1(q0 ·[q2), [c],?)

(8)
�; loop ` e1.Select(v1 => e2.Select(v3 => e3 [v1/v2])) V̀ (q, cs, ts)

�; loop ` e1.SelectMany(v1 => e2,(v2,v3) => e3) V̀ (q, cs, ts)
(9)

�; loop ` e1 V̀ (q1, cs1, ts1) �; loop ` e1.Select(v => e2) V̀ (q2, [c],?)

q ⌘ ⇡

iter,pos:pos0,cs1

⇣
%

pos0:hposi/iter
�
q1 1

iter,pos

⇡

iter,pos

(�
c

(q2))
�⌘

�; loop ` e1.Where(v => e2) V̀ (q, cs1, ts1)
(10)

�; loop ` e1.Select(v1 => e2) V̀ (q1, cs1,?) �; loop ` e1.Select(v2 => e3) V̀ (q2, cs2, ts2)

q

g

⌘ ⇡

iter,pos,cs1,g

�
%

g:hiter,cs1i(q1)
�

q

i

⌘ ⇡

iter:g,pos:pos0,cs2

⇣
%

pos0:hposi/g(q2 1

iter,pos

⇡

iter,pos,g

(q
g

))
⌘

�; loop ` e1.GroupBy(v1 => e2,v2 => e3) V̀
�
%

pos:hgi/iter
�
�(⇡

iter,cs1,g(qg))
�
, [cs1, g], {g 7� (q

i

, cs2, ts2)}
� (11)

q0 ⌘ loop ⇥ @

pos:1 (⇡
hid

(�
name=name^kind=DOC(XMLdocs

)))

�; loop ` XElement.Load(name) V̀ (q0, [hid],?)
(12)

�; loop ` e

V̀ (q, [c],?)
q0 ⌘ ⇡

iter,pos,value

(
XMLdocs

1

hid=c

q)

�; loop ` e.Value V̀ (q0, [value],?)
(13)

�; loop ` e

V̀ (q, [c],?)

�; loop ` e.Descendants(name) V̀
�
%

pos:hhidi/iter
�
⇡

iter,hid

((�
name=name^kind=ELEM(XMLdocs

)) 1

hidDescOf c q)
�
, [hid],?

� (14)

�; loop ` e

V̀ (q, [c],?)

�; loop ` e.Element(name) V̀
�
�

pos=1
�
%

pos:hhidi/iter
�
⇡

iter,hid

((�
name=name^kind=ELEM(XMLdocs

)) 1

hidChildOf c q)
��

, [hid],?
� (15)

�; loop ` e

V̀ (q, [c],?)

�; loop ` e.Attribute(name) V̀
�
�

pos=1
�
%

pos:hhidi/iter
�
⇡

iter,hid

((�
name=name^kind=ATTR(XMLdocs

)) 1

hidChildOf c q)
��

, [hid],?
� (16)

�; loop ` e

V̀ (q, cs, ts)

�; loop ` e.Box() V̀
�
@

pos:1(⇡
iter,c:iter(loop)), [c], {c 7� (q, cs, ts)}

� (17)

�; loop ` e

V̀ (q, [c], {c 7� (q
c

, cs

c

, ts

c

)})
q0 ⌘ ⇡

iter:iter0,pos,csc (⇡iter0:iter,iter:c(q) 1

iter

q

c

)

�; loop ` e.UnBox() V̀ (q0, csc, tsc)
(18)

Figure 7: Inference rules defining the algebraic compiler for basic LINQ expressions (Rules 1–6), SQOs (Rules 7–11), LINQ to
XML methods (Rules 12–16), and (un)boxing (Rules 17–18). k denotes list concatenation (see Rule 2).

• Rule 4 reads base table R and then derives a default
ordering in column pos based on R’s keys.

• Rules 14–16 use join predicates (e.g., ChildOf) de-
fined on XML node identifiers to implement the XPath-
style navigation embodied by the LINQ to XML meth-
ods Descendants, Element, and Attribute. The rules
use % to derive list order (pos) from XML document
order (hid) as required by the LINQ to XML seman-
tics.

The algebraic plan bundle—comprised of q and the entries in
ts—for LINQ program e is obtained through the evaluation

of ?; iter

1 ` e

V̀ (q, cs, ts). In the case of Program P , this

leads to a trace of rule applications reviewed in Paragraph 3
(Appendix). In Paragraph 4 (Appendix) and [10, Section 4],

we elaborate on the general loop-lifting technique—including
the roles of � and the loop table.

With loop lifting, the complete family of LINQ SQOs comes
into reach of database-supported execution. In the absence
of a runtime-accessible encoding of order, the .NET LINQ
providers either (1) compile order-sensitive SQOs into un-
ordered substitute operations (Concat is translated into a
SQL UNION ALL while Take turns into SELECT TOP(·) over an
arbitrarily ordered table, for example), (2) resort to only
partially implement the SQO semantics (e.g., Concat and
Union accept flat lists only), or (3) flag these SQOs as be-
ing unsupported. Table 2 summarizes the levels of SQO
support in the Ferry-based as well as the .NET-supplied
LINQ providers.

5

Figure 20: Loop-Lifting rule for LINQ’s iteration construct, equivalent to [e2 | v ←
e1] (reproduced from [GRS10]).

nested-loop evaluation basically circumvents efficient access paths and join
algorithms. In addition, plans are littered with expensive numbering oper-
ators used to derive iteration identifiers, indexes and list order. As noted
by Grust et al. [GMR09], shape and size of plans basically overwhelm the
optimizers of common database systems.

To transform Loop-Lifting plans into a form that is reasonably executable,
a number of algebraic simplifications have been proposed [Gru05; GMR09].
Most comprehensively, Rittinger [Rit11] describes a set of heuristic rewrite
rules based on inferred plan properties (e.g. functional dependencies, keys).
Rewrite rules aim to decorrelate queries, reduce the effort for order mainte-
nance and decrease the overall plan size. These rules are implemented in
Pathfinder’s optimizer.

For list queries with nested results, the results of Pathfinder’s optimiza-
tions seems to be mixed. Cheney et al. [CLW14a] provide evidence that
Pathfinder plan simplification is unable to eliminate numbering operators
even for some simple nested queries. Numbering operators sit atop carte-
sian products and prevent merging selections into products to form joins.
This forces the query engine to sort (i.e. materialize) intermediate results
of quadratic size. Rittinger [Rit11] notes that numbering operators can’t
be eliminated for split plans because indexes need to be kept consistent
across individual plans. Pathfinder’s optimization scheme is based on a
fixed pipeline of rewrites with complex dependencies between individual
phases. As noted by Rittinger [Rit11], this causes the optimizer to miss
opportunities for plan simplification. We believe that the optimization prob-
lems are caused mostly by the low-level nature of the algebraic plans that
Loop-Lifting compiles into directly. The original macro query structure is
blurred by index and order maintenance as well as compositionality arti-
facts.

2.2.3 Dodo

Van Ruth [Van06] describes Dodo, a further approach to query flattening.
Dodo appears very similar to earlier work by Suciu [Suc97] (Section 2.1.2)
but is phrased with the notions of category theory. Dodo is based on a flat
encoding of complex objects in binary relations. Each binary relation en-
codes a partial finite function from indexes to atomic values. The notion of
an encoding function is extended to frames that describe a mapping from an
index to a complex value in its decomposed flat representation. Calculus
queries on the complex object model are first transformed into a point-free
nested algebra and subsequently into a flat point-free algebra on the flat
representation. The former translation implements nested iteration by repli-
cating bindings of free variables (environment lifting). The latter translation
is described as in Suciu’s approach as a composition of the functions of the
point-free algebra with the functions of the flat representation.

32 related work on query flattening

Van Ruth defines a mapping of the binary relations to the binary data
model of MonetDB that is similar to earlier work by Boncz et al. [BWK98].
Backend code generation is performed as a direct translation from the flat
algebra on binary relations to MonetDB’s MIL algebra [BK99]. As in Suciu’s
approach, the query flattening translation of Dodo fundamentally relies on
binary relations for its flat representation. Considering actual query process-
ing, this might be a good fit for the particular processing model of MonetDB.
However we will argue in Section 4.3 that an early binary decomposition is
not helpful when targetting a general relational query language like SQL.

We are not aware of a performance evaluation of Dodo. As noted by
Van Ruth [Van06], query flattening in Dodo is similar to Loop-Lifting. We
expect that relational plans produced by Dodo exhibit the same problematic
characteristics as those produced by Loop-Lifting.

2.3 outlook

We believe that the normalization approach in Query Shredding is too limit-
ing and that a translation that can handle arbitrary expressions in the input
language is necessary. The three descriptions of compositional query flat-
tening (Suciu [Suc97], Loop-Lifting and Dodo) we have reviewed in this chap-
ter are structurally similar. Nested iteration is implemented with algebraic
bulk operators by replicating base data and bindings for free variables. Loop-
Lifting shortcuts the translation into a nested algebra to eliminate variables
and tracks free variables explicitly in its monolithic translation.

All approaches have deficits, however, that limit their usability. In the
remainder of this thesis, we try to address those deficits. In Chapter 3

we review the flattening transformation and sketch a translation scheme
that makes query flattening more tractable. In following chapters we build
on this foundation and address the optimization problem as well as the
computation of indexes and maintenance of list order.

3T H E F L AT T E N I N G T R A N S F O R M AT I O N

The problem we aim to solve is to support an expressive, nested query lan-
guage with ordered collections on off-the-shelf relational query engines. In
Chapter 2 we surveyed the literature on query flattening and found prior
work to be lacking. In this chapter, we look at a program transformation
from a different domain — nested data parallelism — that can be adopted for
our purposes.

3.1 flattening nested data parallelism

Data parallelism is expressed by an apply-to-each construct that describes the
side-effect free iteration over all elements of a collection. Consider the fol-
lowing expression in which some function f is applied to all elements of a
collection xs.

[f x | x← xs]

If function f does not contain further iterators we say that the expression ex-
hibits flat data parallelism. If f itself is parallel — that is, it contains iterators
of the above form — we say that it exhibits nested data parallelism. A consider-
able number of algorithms naturally exhibit nested data parallelism [Ble90].
Nested data parallelism coincides with nested collections.

Nested data parallelism is challenging to implement. It needs to be
mapped to parallel execution platforms — parallel hardware like GPUs,
multi-threaded runtimes or distributed systems — that only provide flat
parallelism. Nested data parallelism is irregular: in general, the amount of
work performed by each application of f in the example above differs. It is
hard to balance that work in order to fully exploit all parallel capabilities.

The flattening transformation is a static program transformation that elim-
inates nested data parallelism: programs with nested data parallelism are
rewritten into an equivalent program that only uses flat data parallelism.
The example above is rewritten into expression f ′ xs where f ′ is a function
that applies the computation of f to all elements of its argument in parallel
and uses only flat parallelism. The flattening of parallel computation coin-
cides with the flattening of collections: as part of the transformation, nested
collections are mapped to a flat representation.

The flattening transformation has been described for a variety of lan-
guages: Blelloch’s data-parallel language NESL [Ble+94] and a subset of
Haskell [Pey+08], for example. In all descriptions of the flattening transfor-
mation, the input languages share the same core: central is an apply-to-each
construct that expresses data parallelism, a library of collection operations
and a data model centered around ordered, nested collections (vectors, ar-
rays, sequences). This is the same class of collection-oriented languages de-
scribed earlier in the context of collection programming Chapter 1.

Flattening has been first described by Blelloch and Sabot [BS89], albeit
only informally. To the best of our knowledge, Prins and Palmer [PP93] are
the first to give a formal account of the flattening transformation as a set of
rewrite rules. Subsequent work has extended the flattening transformation

33

34 the flattening transformation

to richer data models including recursive types [CK00] and higher-order
functions [Les05].

3.2 the flattening transformation by example

Our query language CL consists of comprehensions that describe nested
iteration as well as number of scalar and list primitives. It perfectly matches
the class of languages that can be handled by the flattening transformation.
If anything, our job is easier because CL has no user-defined functions and
consists of expressions alone. In this section, we explain the fundamental
ideas of the flattening transformation based on a CL query.

For the purpose of our discussion, we strip down the CL running example
Query Q1 and consider the following simplified variant that is sufficient to
discuss all aspects.

[⟨o, sort [⟨l, o.od - l.sd⟩ | l← ls, l.ok = o.ok]⟩ | o← os] (Q2)

To focus on nested iteration, we strip down this query even further and start
with the following minimal variant:

[[l | l← ls, l.ok = o.ok] | o← os] (Q3)

General list comprehensions as defined in Section 1.4 for CL express (nes-
ted) iteration over multiple lists and filter lists according to guard expres-
sions. While comprehensions are a convenient way to express query logic,
they are not essential. We can replace the inner comprehension with a sim-
ple iterator in combination with a restrict combinator that filters the result-
ing list:

[restrict [⟨l, l.ok = o.ok⟩ | l← ls] | o← os] (Q4)

An iterator [e1 | x ← e2] solely describes the evaluation of expression
e1 for all elements of collection e2. Combinator restrict is a first-order
variant of the usual higher-order filter combinator. It applies to lists of
type [⟨t,Bool⟩] in which each element is paired with a Boolean value and
retains only those elements for which it is True.

restrict : [⟨τ,Bool⟩]→ [τ]

Compared to full comprehensions, the simpler form of iterators enables us
to focus on the core aspect of nested iteration. We desugar comprehensions
systematically in Section 4.1.

3.2.1 Data Replication

To describe nested iteration, we adopt the notion of iteration scopes from
Grust [Gru05]. An expression e1 in the head of an iterator [e1 | x ← e2]

is evaluated in an iteration scope s determined by the generator expression
e2. In Query Q4, the head of the outer iterator is evaluated in scope s0
determined by the generator expression os. The head of the inner iterator
is evaluated in iteration scope s1 determined by the sequence of generator
expressions os and ls:

[

s0︷ ︸︸ ︷
restrict [⟨l, l.ok = o.ok⟩︸ ︷︷ ︸

s1

| l← ls] | o← os]

3.2 the flattening transformation by example 35

An iteration scope can be described by the list in the corresponding gener-
ator expression. The outer head expression in iteration scope s0 is evaluated
for all elements of list os. The outer iteration thus is accurately described by
os.

In contrast, list ls is not sufficient to describe the inner iteration in scope
s1: it is determined by both enclosing generators o ← os and l ← ls. For
each o, the list ls is considered independently, conceptually as a separate
copy of ls. The inner head expression in scope s1 then is evaluated for each
element of each copy of ls. To describe the shape of the inner iteration, we
take this description verbatim and replicate ls for each element of os. We
express replication with the combinator ⊗, typed as follows:

⊗ : τ1 → [τ2]→ [τ1]

e1 ⊗ e2 creates a list containing a copy of e1 for each element of e2:

e1 ⊗ e2 ≡ [e1 | x← e2]

Hence, expression ls⊗ os has type [[τl]] and results in a nested list that
contains copies of ls:

ls⊗ os = [[l1, . . . ,lm]︸ ︷︷ ︸
o1

, . . . , [l1, . . . ,lm]︸ ︷︷ ︸
on

]

This nested list accurately describes the inner iteration scope s1. The head
expression of the innermost iterator is evaluated for each element of each
inner list in ls⊗ os.

3.2.2 Lifted Combinators

Let us for a moment assume that in scope s1 only variable l occurs but
not o. For the sake of brevity, we consider the following abstract form of
Query Q4:

[f [g l | l← ls] | o← os]

The resulting list has the shape of ls⊗ os and is computed as follows:

[f [g l1, . . . ,g lm], . . . ,f [g l1, . . . ,g lm]]

In the original query, combinators apply to single arguments at a time and
iteration is expressed explicitly through iterators. If we can derive a lifted
form g ′ of g that can be applied to ls⊗ os and works on all elements in
parallel, the inner iterator is no longer necessary. Likewise, a lifted variant
f ′ of f that can be applied to g ′ (ls ⊗ os) allows to eliminate the outer
iterator and transform the query into the following form:

f ′ (g ′ (ls⊗ os))

Lifted combinators are bulk operations that are evaluated in a data-parallel
fashion on all elements of the input list. Consider the record selector l.ok

in iteration scope s1. A lifted record selector e.ℓ1 applies to a list of records:

e.ℓ1 ≡ [x.ℓ | x← e]

However, as l.ok occurs in a nested iteration scope, we have lists of lists of
arguments, namely ls⊗ os. Accordingly, we assume lifted variant e.ℓ2 of
record selection with the following meaning:

e.ℓ2 ≡ [[x.ℓ | x← xs] | xs← e]

36 the flattening transformation

e.ℓ2 applies record selection to all inner elements of the argument list and
does not change the shape of the list itself. With lifted operations ⟨_, _⟩2
(record construction) and the equality operator =2 defined analogously, we
can derive g ′ for the inner head expression in s1, apply it to ls⊗ os and
thus eliminate the explicit inner iterator. We explain how to deal with the
free occurrence of variable o in the next paragraph.

Expression g ′ (ls⊗ os) results in a list of type [[⟨tl,Bool⟩]]. The data-
parallel variant f ′ of the outer head expression is derived easily by relying
on a lifted restrict1 combinator that applies to lists of arguments:

restrict1 e ≡ [restrict xs | xs← e]

Note that restrict1 preserves the shape of the outer list and only modifies
the inner lists, i.e. the actual arguments.

3.2.3 Environment Lifting

So far, we have conveniently ignored the free occurrence of variable o in
scope s1. The expression in scope s1 can not be evaluated based on ls⊗ os

alone, though, as it provides only bindings for variable l.
The expression in scope s0 is evaluated in an environment with a binding

for variable o. A lifted variant of this expression evaluates all iterations at
once. Conceptually, it is evaluated in a parallel environment that provides all
bindings for variable o at once:

o 7→ os

Likewise, the lifted variant of the expression in scope s1 is evaluated in a
parallel environment that provides all bindings for variable l at once:

l 7→ ls⊗ os

However, we can’t simply extend the parallel environment of s1 with this
binding for o. Values os and ls⊗ os have different shape:

l 7→ [[l1, . . . ,lm], . . . ,[l1, . . . ,lm]]

o 7→ [o1 , . . . , on]

To enable a uniform replacement of combinators p in scope s1 with p2, we
bring the bindings to the same shape by lifting the binding for o: for each
order, we create a copy of that order for each element of the corresponding
list of lineitems:

l 7→ [[l1, . . . ,lm] , . . . , [l1, . . . ,lm]]

o 7→ [[o1, . . . ,o1︸ ︷︷ ︸
m

], . . . ,[on, . . . ,on︸ ︷︷ ︸
m

]]

The lifted binding for o reflects that variable o is constant in s1 for one
particular evaluation of the inner iterator.

Is a new operator necessary to express per-element replication as above?
Fortunately not: We can use the lifted version of operator ⊗:

⊗1 : [τ1]→ [[τ2]]→ [[τ1]]

With the lifted environment binding for o, we obtain the following parallel
environment for s1:

l 7→ ls⊗ os

o 7→ os⊗1 (ls⊗ os)

3.2 the flattening transformation by example 37

[⟨o, sort [⟨l,o.od - s.sd⟩
| l ← restrict [⟨l,l.ok = o.ok⟩

| l ← ls]]⟩
| o ← os]

s0 s1

s2

(a) Nested Iteration

let o = os

in ⟨o, sort1 (let l = restrict1 (let l = ls ⊗ o

o = o ⊗1 l

in ⟨l,l.ok2 =2 o.ok2⟩2)
o = o ⊗1 l

in ⟨l,o.od2 -2 l.sd2⟩2)⟩1

(b) Data-Parallel Operators

Figure 21: Query Q2 (Figure 21a) and its iterator-free lifted variant (Figure 21b).

Here, bindings for o and l have the same shape.
With the lifted parallel environment, the free occurrence of o in s1 is

no longer a problem and we can derive the lifted variant of the complete
expression. The record selector o.ok can be replaced with e.ℓ2 applied to
os⊗1 (ls⊗ os). The lifted comparison operator =2 takes two lists of lists of
arguments (here: [[Int]]), with both lists having the same shape:

l.ok2 =2 o.ok2 ≡
[[l1.ok, . . . ,lm.ok], . . . ,[l1.ok , . . . ,lm.ok]]

...
... =2

...
...

[[o1.ok, . . . ,o1.ok], . . . ,[on.ok, . . . ,on.ok]]

Overall, we obtain the following lifted expression that solely relies on
lifted combinators and is free of explicit iteration:

restrict1 (let l = ls⊗ os

o = os⊗1 (ls⊗ os)

in ⟨l, l.ok2 =2 o.ok2⟩2)

3.2.4 Complete Running Example

Proceeding in the same way as outlined above, we can derive a lifted variant
free of iterators from the slightly more complex Query Q2. Figure 21a shows
Query Q2 with the comprehension guard replaced by restrict. The three
iterators define iteration scopes s0, s1 and s2.

The lifted variant of Query Q2 in Figure 21b follows the same pattern
as the previous example. For each iteration scope we construct a parallel
environment that mimics the original lexical environment. Constant table
references in the generator (here: ls) are replicated and names in the lexical
environment of the iterator (here: o) are lifted to the appropriate shape. In
this new environment, the head expression is lifted by replacing all combi-
nators with their lifted variants.

The generators of both inner iterators are evaluated in iteration scope s0.
Note, that only the constant table reference ls is replicated, but not the
restrict expression. We need a copy of ls for each iteration of scope s0 in

38 the flattening transformation

order to evaluate all iterations of scope s1 at once. In contrast, the generator
expression for s2 is lifted and its results already has the correct shape. For
s2, we still need to lift the binding for variable o, though. Although bindings
for l and o in s1 and s2 have the same type, they are not identical: In s2, l
is a filtered version of l in s1.

3.2.5 Flat Data Parallelism

For each iteration scope, we call the number of enclosing iterators its iteration
depth. In Figure 21, scope s0 is evaluated at depth 1 while s1 and s2 have
depth 2. For scope s0, we obtain a parallel environment with a binding for
the iterator variable o of type [Order]. With flat lifted combinators p1 we
can evaluate all iterations of s0 at once. At depth 2, replication adds one
layer of list nesting for all environment bindings (l : [[Lineitem]] and
o : [[Order]]). Lifted combinators p2 operate on lists of lists of arguments.
In general, at iteration depth d we have d− 1 additional layers of list nesting
on the original list type of generator expressions and use lifted combinators
pd. Consequently, for each combinator p, we require an infinite family of
data-parallel variants pd. For an operation p with type signature

p : τ1 → · · · → τn → τ

the type signature of pd is

pd :

d︷ ︸︸ ︷
[. . . [τ1] . . .]→ · · · →

d︷ ︸︸ ︷
[. . . [τn] . . .]→

d︷ ︸︸ ︷
[. . . [τ] . . .]

Note that CL allows not only scalar operations but also list combinators
to be applied iteratively. Consequently, we also need lifted variants of list
operations like restrictd and groupd.

Are those families of lifted operators we have introduced actually essen-
tial? Fortunately not, due to a central insight of Blelloch and Sabot [BS89]:
for any combinator p, all variants pd with d > 1 can be mapped to p1 stat-
ically. We require only flat lifted combinators p1 that apply to flat lists of
arguments. In Section 3.2.6, we will see that with a suitable representation
of nested lists, this mapping does not incur any runtime cost.

We outline the mapping to flat lifted combinators with a concrete example
from Query Q2. In the lifted variant of Figure 21b (Figure 21), expression
o.od2 -2 l.sd2 computes the difference between the shipping date of all line
items l and the order date of the corresponding orders o. Operator -2 is
applied to two arguments of type [[Date]] and behaves as follows:

[[1995-11-09 , 1995-11-13 , 1995-12-16 , 1995-12-30] , [1993-02-19 , 1993-05-01]]

- - - - - -

[[1995-09-12 , 1995-09-12 , 1995-09-12 , 1995-09-12] , [1993-01-04 , 1993-01-04]]

= = = = = =

[[65 , 58 , 62 , 109] , [46 , 117]]

Both operands as well as the result have the same list structure. Combina-
tor -2 computes the difference between pairs of corresponding Date values.
The enclosing nested list structure is preserved in the result of the lifted
combinator but is not relevant for the actual computation applied to the ar-
guments. The family -d of data-parallel operators differs only in the depth
of the list structure that encloses the arguments. If we turn both operands
into flat lists of type [Date] and apply -1, we have essentially described the
same computation — modulo list nesting.

3.2 the flattening transformation by example 39

[[1995-11-09,

1995-11-13,

1995-12-16,

1995-12-30],

[1993-02-19,

1993-05-01]]

[[1995-09-12,

1995-09-12,

1995-09-12,

1995-09-12],

[1993-01-04,

1993-01-04]]

-

-

-

-

-

-

xs -2 ys

[1995-11-09,

1995-11-13,

1995-12-16,

1995-12-30,

1993-02-19,

1993-05-01]

[1995-09-12,

1995-09-12,

1995-09-12,

1995-09-12,

1993-01-04,

1993-01-04]

-

-

-

-

-

-

(forget1 xs) -1 (forget1 ys)

[65,

58,

62,

109,

46,

117]

[[65,

58,

62,

109]

[46,

117]]

imprint1 xs ((forget1 xs) -1 (forget1 ys))
evaluate -1

re-imprint the
structure of xs

forget (one level of) structure

Figure 22: Restructuring nested lists with a flat representation.

This connection allows us to replace -2 with -1. We temporarily flatten the
operands into lists of type [Date], apply -1 and subsequently restructure the
result of type [Int] into a list of type [[Int]] whose structure is the same
as that of the original operands.

To flatten and restructure lists, we introduce shape operations forgetd
and imprintd that modify only the shape of a list. Shape operations are
typed as follows:

Γ ⊢ e :

d︷ ︸︸ ︷
[. . . [[t]] . . .]

Γ ⊢ forgetd e : [t]

Γ ⊢ e1 :

d︷ ︸︸ ︷
[. . . [[t1]] . . .] Γ ⊢ e2 : [t2]

Γ ⊢ imprintd e1 e2 : [. . . [︸ ︷︷ ︸
d

[t2]] . . .]

Applied to an expression e, forgetd e strips away the outer d layers of
list nesting of e. In our example, applying forget1 to both operands of
-2 results in operands of type [Date] that are suitable for -1. Conversely,
imprint1 e1 e2 restructures the list e2 according to the d outer list nesting
layers of e1. In Figure 22, we use forget1 and imprint1 to implement -2.

With imprintd and forgetd we can turn any lifted expression into an
equivalent expression that uses only flat data parallelism in the form of p1.
Whenever a combinator pd with d > 1 occurs, we use forgetd−1 to strip
away the outer d− 1 layers of list nesting from all operands and apply p1

instead. We then restructure the resulting flat list of results with imprintd−1

into the original nesting structure of the arguments.

3.2.6 Flattening Data

At this point, we can eliminate explicit iteration and nested data parallelism
from CL queries. The underlying data model, however, is centered around
nested lists. Although we strip layers of nesting from those lists temporar-
ily with forgetd, the result of lifted combinators after imprintd is nested.
Additionally, we strip only the list nesting as generated by nested iteration
— the result of forgetd is not in general a flat list of scalar values. Lifted

40 the flattening transformation

r1
r2

1995-11-09
r1

1995-11-13

1995-12-16

1995-12-30

1993-02-19
}
r2

1993-05-01

1995-11-09

1995-11-13

1995-12-16

1995-12-30

1993-02-19

1993-05-01

Date[[]] Date[[]]

forget1

imprint1

Vo

Vi Vi

Figure 23: Shape operations on segment vectors.

list combinators like sort1 are defined on nested lists. However, we target
query engines that support flat collections only and need a flat representa-
tion of nested lists.

After lifting, CL queries are littered with shape operations: each applica-
tion of an operation in a nested iteration incurs applications of forgetd and
imprintd. The flat data representation has to support forget and imprint

that work on the list structure as well as lifted operations that work on list
content efficiently.

With a representation of nested lists that separates structure and content,
we can achieve both objectives. Figure 23 depicts the representation of the
nested list of type [[Date]] from Figure 22. The nested list is encoded in
two flat vectors Vo and Vi. The inner vector Vi stores the content for both
inner lists. Its elements are partitioned into segments r1 and r2, one for each
inner list. The outer vector Vo encodes the structure of the outer list: it has
two elements, each of which represents one of the inner lists and references
the corresponding segment in Vi.

As sketched in Figure 23, evaluating forgetd and imprintd on segment
vectors involves no work at all. The representation of the flat list of type
[Date] is obtained from Vo and Vi with forget1 merely by ignoring the
outer vector Vo and the segment structure of the inner vector. The operands
to -1 are then two unstructured vectors of Date values on which the data-
parallel subtraction can be evaluated easily for each pair of corresponding
values. The resulting vector has the same shape as the original vectors.
Restructuring with imprint1 is achieved by combining the result vector
with the original outer vector Vo. Hence, both forgetd and imprintd are
compile-time operations with no runtime cost.

This description of segment vectors is deliberately vague. In particular,
we have not yet defined how vector segments are encoded. In Section 4.3
we discuss concrete encodings of vectors and segments and devise a flat
representation of nested lists that fits the processing model of query engines.

3.3 related work and outlook

The transformation of CL queries that we have sketched in this chapter is not
original at all. We simply apply principles of the flattening transformation
as originally described by Blelloch and Sabot [BS89] to our query language
CL.

We have translated a nested query with nested iteration into an iterator-
free query on flat collections (for now: lists) that relies on flat data-parallel

3.3 related work and outlook 41

operators. Essentially, we have performed query flattening. To execute
flattened code, an engine primarily has to provide flat data-parallel oper-
ators. Most uses of the flattening transformation target explicitly parallel
hardware like vector processors and GPUs ([Ble+94], [BR12]) as well as
concurrent [Pey+08] and distributed [Kel99] runtimes. These are not the
only choices, however. Relational query engines are geared towards the
efficient execution of algebraic bulk operators — essentially flat data paral-
lelism. Lifted versions of scalar operations like +1, for instance, are readily
provided by projection. In the rest of this thesis, we explore that analogy
and show that it extends to collection combinators (e.g. sort1) as well.

We are not the first to draw the connection between query flattening and
the flattening transformation. Some query flattening approaches discussed
in Chapter 2 — Loop-Lifting, Dodo and the translation of Suciu [Suc97] —
are structurally quite similar to the translation sketched here. Loop-Lifting
and Dodo seem to have been developed independently, though. Employ-
ing the flattening transformation for query flattening has been suggested
by Suciu [ST94; Suc95; Suc96], Cheney et al. [CLW14a], Mayr [May13] and
Rittinger [Rit11].

Our goal is to show that the flattening transformation can lower an ex-
pressive, nested query language into a form that can be executed by regular
relational query engines. We will describe a version of the flattening trans-
formation that takes the specific aspects of query processing into account.
This gives us an alternative account of query flattening (Chapter 2) that is
more structured and comprehensible than previous work.

4F L AT T E N I N G Q U E R I E S

With the overview in Chapter 3, we have outlined query flattening based on
the flattening transformation. In this chapter, we describe the approach in
detail. We write Query Flattening for our specific approach to distinguish it
from the general term of query flattening as discussed in Chapter 2.

Conforming with established principles [Sha+16], we describe Query Flat-
tening as a sequence of lowering steps between intermediate languages.
Each subsequent step strips away one layer of abstraction and translates
to a simpler target language. Compared to a monolithic translation (e.g.
Loop-Lifting), each individual lowering step is easier to comprehend. Addi-
tionally, as we do not strip all layers at once, we can delay details of the
data representation (e.g. the representation of order) and consider them
independently. The pipeline of lowerings is depicted in Figure 24.

Query Flattening incorporates specifics of query processing but does not
prescribe a particular backend. Backend here denotes a query engine that
offers bulk operations on flat collections. Query Flattening targets the flat
language SL which can serve as the starting point for code generation for
a variety of backends. In a subsequent chapter, we consider one concrete
backend and describe the generation of efficient relational queries on flat,
unordered multisets. This paves the way for the generation of SQL:2003

queries that can be executed on off-the-shelf relational database systems.
We discuss alternative implementations of SL in Section 4.3.2.3.

The fine-grained nature of Query Flattening allows us to plug in optimiza-
tions after any lowering step. Meaningful optimizations can be performed
before lowering to a specific backend. All potential backends profit from
such optimizations. Concretely, the pipeline of Figure 24 includes one op-
timization step on SL that focuses on scalar expressions. Further optimiza-
tions are discussed in Chapter 5.

The actual lowering steps are the following:

1 As a preparatory step, desugaring (Section 4.1) simplifies CL queries.
General comprehensions are replaced with iterators. The target lan-
guage CLd is centered around iterators and ensures that all combina-
tors are applied iteratively.

2 Lifting (Section 4.2) eliminates iteration and thus nested data paral-
lelism. Iterators are replaced with lifted combinators and replication.
The target language FL is an algebraic language without iterators
based on nested lists.

CL CLd FL SL MA
1 2 3 5

4

Figure 24: Pipeline of lowering steps that define Query Flattening.

43

44 flattening queries

3 Shredding (Section 4.3) eliminates nested lists and lowers operations on
nested lists to operations on flat vectors. It targets SL, a language of
simple vector operators.

4 SL vector operators are fused to merge scalar operators and avoid
excessive intermediate results.

5 A backend that eliminates implicit order of lists and vectors and emits
relational queries on unordered multisets is described in Chapter 6.
SL operators are lowered to the relational algebra MA on multisets.

As Loop-Lifting (Section 2.2.2), Query Flattening does not depend on pre-
ceding normalization and can handle any type-correct CL expression. How-
ever, while normalization is not strictly necessary, normalization is never-
theless beneficial. We explore this topic in Chapter 5.

We restrict admissible CL queries in one regard: We consider only CL

queries e : [τ] that return lists. Top-level scalar values are not allowed. This
restriction is only natural in the context of query flattening. After all, we
target query engines whose data model typically is restricted to collections
and does not allow top-level scalar values. The expressiveness of the query
language is not limited notably. For queries that do return scalar values (e.g.
TPC-H Q4), the result can be wrapped in a singleton list.

4.1 desugaring comprehensions

We rewrite list-typed CL expressions e : [τ] into the dialect CLd defined in
Figure 25. CLd differs in two aspects from CL:

1. Instead of proper comprehensions with multiple qualifiers, CLd sup-
ports only simple iterators [e1 | x← e2] with exactly one generator
and no guards. Guards are replaced with the restrict combinator
described in Section 3.2.

2. The form of top-level expressions is restricted to iterators with an op-
tional application of concat. The generator expression may only be a
literal list or a table reference.

In CLd, there are only two forms of expressions which can occur outside
of the head of an iterator and are not evaluated iteratively: List-typed con-
stants (literal lists [v, . . . ,v] and table references table(t)), applications of
concat and iterators [e | x← e] themselves.

Considering only CLd simplifies subsequent lowering steps considerably.
We profit particularly from the second restriction: With the exception of
concat, combinators are only applied iteratively. With iterators eliminated,
we only have to provide lifted combinators and can omit the not-lifted ver-
sion, leading to a simple and uniform translation.

In the following, we describe rewrite rules that transform any CL query
that returns a list into an equivalent CLd query. We write e1 ⇝ e2 for a rule
that rewrites expression e1 into expression e2.

substitution on comprehensions One technicality has to be obser-
ved when applying rewrite rules to comprehensions. Here and in following
chapters (in particular Chapter 5) we transform CL queries according to
rewrite rules. Rewrite rules substitute expressions for variables in a given

4.1 desugaring comprehensions 45

Top-Level Queries

q ::= concat [e | x← ds] | [e | x← ds]

Expressions, Iterators

ds ::= table(t) | [v, . . . , v]

e ::= x | v | ds | let x = e in e | if e then e else e | [e | x← e]

| p e · · · e

Built-In Operations

p ::= . . . | restrict

Figure 25: Grammar of language CLd with iterators instead of comprehensions.
Combinators p are as in Figure 8 extended with restrict.

expression. We use the usual notation e[e ′/x] for the capture-avoiding sub-
stitution of e ′ for x in e. To prevent free variables in the substitute e ′ from
being captured, capturing bindings are alpha-renamed.

On comprehensions, we often apply rewrites in the middle of a quali-
fier list. We extend substitution to qualifier lists and write qs[e ′/x] for the
capture-avoiding substitution of e ′ for x in all qualifiers of qs. If necessary,
generators in qs are renamed to avoid capturing variables that occur free
in e ′. Note though that alpha-renaming performed in the qualifier list has
to be performed in the head expression as well. Consider the following
expression:

[e | qs[y.1/x]] with qs ≡ y← e1, z← e2

The generator binding y will be renamed to avoid capturing y in the substi-
tute. This will change the binding for y in the head expression, though. To
be correct, substitution in the qualifier list has to rewrite e as well. In terms
of notation, this is inconvenient, however. In examples and rewrite rules in
this thesis, we ignore this issue and assume that no renaming is necessary.

eliminate comprehensions Comprehensions are desugared by two
rules that match a pattern at the beginning of a qualifier list. We assume that
the qualifier list does not start with a guard — if it does, the guard expres-
sion is pushed back in the qualifier list first. Given a generator x ← e2 and
a guard e3, Rule desugar-pred merges both qualifiers into an application
of the restrict combinator.

[e1 | x← e2, e3,qs]

⇝
[e1 | x← restrict [⟨x, e3⟩ | x← e2],qs]

(desugar-pred)

Given two generators x ← e2 and y ← e3, Rule desugar-gens computes
pairs of all elements of e2 and e3 in the correct order with nested iterators.
Record selectors replace the generator variables x and y. Here, our remarks
about substitution in a qualifier list are relevant: we choose the new gener-

46 flattening queries

ator variable z as a globally fresh variable that will not be captured by any
generator in qs.

[e1 | x← e2,y← e3,qs]

⇝
[e1[z.1/x][z.2/y]

| z← concat [[⟨x,y⟩ | y← e3] | x← e2]

, qs[z.1/x][z.2/y]]

(desugar-gens)

Applied exhaustively, Rules desugar-pred and desugar-gens turn all
comprehensions into iterators of the form [e1 | x ← e2]. Starting at
the beginning of the qualifier list, all qualifiers are merged into one.

Comprehension guards are usually desugared into conditionals [Wad90].
Query Q3 would be desugared as follows:

[concat [if l.ok = o.ok then sng l else [] | l← ls] | o← os] (Q5)

However, we solely care about comprehensions over collection data struc-
tures. The query engines we target offer efficient primitives for filtering
collections. Translating guards as conditionals would complicate intermedi-
ate representations of a query and blur the query structure. Recovering the
actual collection filter from the translated conditional might fail and lead to
inefficient backend code. Instead, we translate directly to the combinator
restrict that can be easily mapped to a backend primitive. This resembles
the desugaring scheme of Fegaras and Maier [FM00].

top-level expressions After desugaring, we rewrite any top-level ex-
pression that does not match the syntactic category q of Figure 25. Any
closed, list-typed expression e : [τ] can be rewritten into CLd by wrapping
it in an iterator with a singleton generator:

e⇝ concat [e | z← [⟨⟩]] (desugar-top)

We apply the rewrite only to expressions that are not already valid top-level
queries.

Note that Rule desugar-top makes the dummy iteration encoded in Loop-
Lifting’s loop relation explicit.

4.1.1 Definition of the Meta-Language

Throughout this thesis, we use a number of intermediate languages to de-
scribe the lowering of CL to relational algebra. For each of them, we define
a denotational semantics in terms of lists and records. We define semantics
using a Haskell-like meta-language ML. In fact, we would prefer to define
executable semantics in terms of actual Haskell code. However, Haskell’s
lack of records is inconvenient.

Meta-level lists with elements x1 to xn are written as [x1, . . . , xn], with []
being the empty list. The concatenation of lists xs and ys is written as xs ++
ys. Lists in insert notation are defined with x : xs = [x] ++ xs. In ML, we rely
heavily on list comprehensions with the usual syntax and semantics [PW07].

We use a number of list combinators in ML:

• List elements can be enumerated with enum:

enum [x1, . . . ,xn] = [⟨x1, 1⟩, . . . ,⟨xn,n⟩]

4.1 desugaring comprehensions 47

• Lists are sorted with sortWith:

sortWith (λx.x.2) [⟨5, 7⟩, ⟨6, 3⟩, ⟨4, 3⟩] = [⟨6, 3⟩, ⟨4, 3⟩, ⟨5, 7⟩]

Note that sortWith performs stable sorting: elements in the input list
that have a tie in their sorting key appear in the original order.

• Folding and scanning of lists is defined using pattern matching:

scan f z [] = []

scan f z (x : xs) = f z x : scan f (f z x) xs

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

For example, foldl (+) 0 [1, 2, 3] = 6 and scan (+) 0 [1, 2, 3] = [1, 3, 6].

• Combinator groupWith groups a list based on a function that projects
a grouping key for each element:

groupWith (λx.x.2) [⟨5, 7⟩, ⟨6, 3⟩, ⟨4, 3⟩] = [⟨3, [⟨6, 3⟩, ⟨4, 3⟩]⟩, ⟨7, [⟨5, 7⟩]⟩]

Note that groupWith includes the grouping key for each group. In each
group, the relative order of the input list is preserved.

• Duplicates in a list are eliminated with nubWith:

nubWith (λx.x.2) [⟨5, 7⟩, ⟨6, 3⟩, ⟨4, 3⟩] = [⟨5, 7⟩, ⟨6, 3⟩]

Note that nubWith preserves the order of the input list. Out of multiple
elements with the same key, nubWith keeps the first.

4.1.2 Indexed Semantics of CLd

We define the semantics of CLd in terms of lists and records. We inter-
pret lists as indexed lists in the same way as the annotated semantics spec-
ified by Cheney et al. [CLW14a] for Query Shredding. A list of type [τ]

is interpreted as an indexed list of type [⟨k:δ, p:τ⟩]. In an indexed list
[⟨k= k1, p = x1⟩, . . . , ⟨k= kn, p = xn⟩] of type [⟨k:δ, p:τ⟩], each element xi
is annotated with a unique scalar index ki of type δ that denotes its identity.

The indexed semantics of CLd serves two purposes. First, it is easier to
specify some operations with indexes — in particular the shape operations
forget and imprint in Section 4.2.4. Primarily, though, it provides a con-
nection to the flat representation of nested lists defined in Section 4.3. In the
remainder of this thesis, we use an index-based flat representation of nested
lists as in prior work on query flattening (Chapter 2). If we were to define
the semantics of intermediate languages based on list positions to identify
elements, it would be hard to relate both worlds. Once we lower our flat
representations to an unordered flat representation, positional access is not
an option anymore. Additionally, by decoupling Query Flattening from list
order, it provides the basis for extending Query Flattening to queries over
unordered collections.

Base values v are interpreted as JvK and base operators c(_) as JcK(_). The
interpretation of scalar expression s is expressed as JsK which is a direct
mapping to ML. We write ρ for an environment that maps variables to

48 flattening queries

values. Looking up a variable x is written as ρ(x) and extension of the
environment with a variable x as ρ [x 7→ v].

Function IJqK{} interprets a top-level CLd expression q. We let ρ range
over an environment that maps variables to values. The interpretation of
basic constructs is trivial, then.

IJxKρ = ρ(x) (CLd-var)

IJlet x = e1 in e2Kρ = IJe2K
ρ[x 7→IJe1Kρ] (CLd-var)

IJe.ℓKρ = IJeKρ.ℓ (CLd-rec-sel)

IJ⟨ℓi = ei⟩ni=1Kρ = ⟨ℓi = IJeiKρ⟩ni=1 (CLd-var)

IJvKρ = JvK (CLd-lit)

IJc(ei)ni=1Kρ = JcK(IJeiKρ)ni=1 (CLd-baseop)

In CLd, lists are originally obtained from literal lists, table references or
singleton lists. For these three constructs, we have to provide initial indexes.
Indexes for literal lists are derived from an enumeration of the elements. A
table t is interpreted as a list JtK with elements in some arbitrary order. We
impose a canonical order on tables by sorting them according to the primary
key. For each element x of JtK, pkt(x) returns the scalar record of the pri-
mary key. The primary key also defines the initial indexes. We uniformly
use the primary key although any candidate key would be sufficient.

IJ[v1, . . . ,vn]Kρ = [⟨k= 1, p = Jv1K⟩, . . . ,⟨k=n, p = JvnK⟩] (CLd-list)

IJtable(t)Kρ = [⟨k= pkt(x), p = x⟩ | x← sortWith (λx. pkt(x)) JtK]
(CLd-table)

IJsng eKρ = [⟨k= ⟨⟩, p = IJeKρ⟩] (CLd-sng)

Iterators and list combinators are directly interpreted by their counter-
parts in the meta-language. Maintaining the indexes of input lists requires
some gymnastics with records.

IJ[e1 | x← e2]Kρ = [⟨k= x.k, p = IJe1Kρ[x 7→x.p]⟩ | x← IJe2Kρ]

(CLd-iterator)

IJreduce{sz, sf} eKρ = foldl JsfK JszK IJeKρ (CLd-reduce)

IJnumber eKρ = [⟨k= x.1.k, p = ⟨x.1.p, x.2⟩⟩ | x← enum IJeKρ]
(CLd-number)

IJsort eKρ = [⟨k= x.k, p = x.p.2⟩ | x← sortWith (π2 ◦ πp) IJeKρ]
(CLd-sort)

IJdistinct eKρ = nubWith (π2 ◦ πp) IJeKρ (CLd-distinct)

IJconcat eKρ = [⟨k= ⟨xs.k, x.k⟩, p = x.p⟩ | xs← IJeKρ, x← xs.p]
(CLd-concat)

IJrestrict eKρ = [⟨k= x.k, p = x.p.1⟩ | x← IJeKρ, x.p.2]
(FL-restrict)

IJgroup eKρ = [⟨k= kg.1, p= ⟨kg.1, [⟨k= g.k, p= g.p.1⟩ | g← kg.2]⟩⟩
| kg← groupWith (π2 ◦ πp) IJeKρ]

(CLd-group)

4.2 lifting : flattening nested data-parallelism 49

n ::= ⟨positive natural number 1, 2, . . . ⟩

Expressions

e ::= x | [v, . . . , v] | table(t) | let x = e in e | p e · · · e
| o e · · · e | e⊗ e | rep{v} e | forgetn e | imprintn e e |

Combinators

o ::= restrict | concat | combine

Lifted Combinators

p ::= sort↑ | #↑ | concat↑ | distinct↑ | group↑ | append↑

| ⟨ℓ = _, . . . , ℓ = _⟩↑ | c(_, . . . ,_)↑ | _.ℓ↑ | restrict↑ | _⊗↑ _

| combine↑ | sng↑ | reduce{s, s}↑

Figure 26: Syntax of language FL that trades iterators for lifted combinators.

The only list combinator with two inputs so far is append which requires
special attention. Indexes are non-uniform and in general the indexes of
both append operands do not have the same type. Hence, we provide new
uniform indexes of type Int for both inputs by enumerating the elements.
These new indexes are combined with Int tags 1 and 2 to make them unique
in the result list.

IJappend e1 e2Kρ = [⟨k= ⟨1, x.2⟩, p = x.1.p⟩ | x← enum IJe1Kρ]

++

[⟨k= ⟨2, x.2⟩, p = x.1.p⟩ | x← enum IJe2Kρ]
(FL-append)

4.2 lifting : flattening nested data-parallelism

In Section 3.2 and Section 3.2.5, we have outlined the elimination of iterators
based on data replication, environment lifting and lifted combinators. Here,
we define the translation from CLd with iterators into the algebraic language
FL with bulk operators precisely

4.2.1 Flat Data-Parallel Language

Lifting targets the language FL whose syntax is defined in Figure 26. Com-
pared to CLd, it trades iteration for combinators that implement replication
(⊗, rep{v}), lifted combinators (p↑) and environment lifting (⊗↑) as well as
shape operators imprintd and forgetd. Typing rules for FL are defined
in Figure 27. Languages CL and FL share the same data model: arbitrary
combinations of record and list type constructors.

In Chapter 3 we use lifted combinators pd at iteration depth d. These
combinators are subsequently normalized to p1. Combinators pd with d >

1, however, are not necessary in an explicit form. Language FL includes
only flat data-parallel operators p↑ that are equivalent to p1.

Combinator combine has the following type:

combine : [Bool]→ [τ]→ [τ]→ [τ]

It merges two lists of the same type according to a list of Boolean flags:

combine [True,True,False,True,False] [1, 2, 3] [7, 8] = [1,2,7,3,8]

50 flattening queries

FL-ty-forget

Γ ⊢ e :

d︷ ︸︸ ︷
[. . . [[τ]] . . .]

Γ ⊢ forgetd e : [τ]

FL-ty-imprint

Γ ⊢ e1 :

d︷ ︸︸ ︷
[. . . [[τ1]] . . .] Γ ⊢ e2 : [τ2]

Γ ⊢ imprintd e1 e2 : [. . . [︸ ︷︷ ︸
d

[τ2]] . . .]

FL-ty-replicate

Γ ⊢ e1 : [δ] Γ ⊢ e2 : [τ]

Γ ⊢ e1 ⊗ e2 : [[δ]]

FL-ty-replicate-base

⊢ v : π Γ ⊢ e : [τ]

Γ ⊢ rep{v} e : [π]

FL-ty-replicate-lift

Γ ⊢ e1 : [τ1] Γ ⊢ e2 : [[τ2]]

Γ ⊢ e1 ⊗↑ e2 : [[τ1]]

FL-ty-op-lift

Σ(p) = τ1 → · · · → τn → τ [Γ ⊢ ei : [τi]]
n
i=1

Γ ⊢ p↑ e1 · · · en : [τ]

FL-ty-op

Σ(o) = τ1 → · · · → τn → τ [Γ ⊢ ei : τi]
n
i=1

Γ ⊢ o e1 · · · en : τ

Figure 27: Typing rules for FL. Typing rules for variables, let-bindings, table refer-
ences and literal lists are as in Figure 9.

Next to the replication operators ⊗ and rep{v}, only few non-lifted com-
binators are included. Due to the restrictions of CLd, concat is the only
combinator that can appear outside of iteration. The non-lifted forms of
restrict and combine are necessary to lift if-conditionals.

Replication of data is implemented by operators ⊗ and rep{v}. Both
behave essentially the same: A value is replicated for each element of a list.

e1 ⊗ e2 = [e1 | x← e2]

rep{v} e = [v | x← e]

The difference between both is apparent in typing rules FL-ty-replicate

and FL-ty-replicate-base. In contrast to the type of ⊗ defined in Sec-
tion 3.2, ⊗ replicates not arbitrary values but is restricted to lists. Combina-
tor rep{v} replicates a fixed atomic literal v.

In FL, literal values are only included in the form of literal lists [v, . . . ,v].
In contrast to CL, atomic literals v are not allowed as expressions. They can
only be expressed with operator rep{v} that expands v to a list. Operations
with scalar results (e.g. sum, +) only appear in lifted form and produce lists.
As a consequence, FL can not express a purely scalar computation. All FL
expressions are list-typed. This property will come in handy in Section 4.3.

Note that FL is essentially a variable-free language, hence an algebra. Vari-
ables are only bound by let-expressions that are included for convenience
but are not essential to the semantics of the language. We translate the
complex-object calculus CL into the algebraic language FL. This step is the
equivalent of translating into point-free nested relational algebras in Chap-
ter 2.

4.2 lifting : flattening nested data-parallelism 51

4.2.2 Translating to FL

We specify the lowering from CLd to FL as a syntax-directed function LJ−K.
A CLd top-level expression q : [τ] lowers to a FL expression LJqK : [τ].

top-level expressions Let us begin with top-level expressions that
are not enclosed by an iterator. In CLd, top-level expressions can only be
applications of concat, list constants and iterators.

For top-level list constants and concat applications, LJ−K is merely the
identity:

LJconcat eK = concat LJeK (lift-concat-top)

LJ[v, . . . ,v]K = [v, . . . ,v] (lift-lit-list-top)

LJtable(t)K = table(t) (lift-table-top)

Top-level iterators are handled by Rule lift-iter-top. This rule kicks off the
translation of the interesting cases: expressions that are evaluated iteratively.

LJ[e1 | x← e2]K = let x = LJe2K in LJe1K1{x} (lift-iter-top)

In the original iterator, head expression e1 is evaluated in an environment
with a binding for variable x. Rule lift-iter-top creates a corresponding
parallel environment by binding x to the result of the generator expression.
The head expression e1 is then lifted by function LJ−Kdρ . The lifted expres-
sion LJe1K1

{x}
is placed in a parallel environment in which the lifted variable

x holds all bindings for x.

iterative expressions For any CL expression that is evaluated itera-
tively (including nested iterators), function LJ−Kdρ derives a equivalent lifted
FL expression. The iteration depth is denoted by d and the set ρ tracks vari-
ables that are in scope. We know that ρ ̸= ∅ because at least the one variable
bound by the outermost iterator is in scope, and that d ⩾ 1. For iterative
expressions, the result of LJ−Kdρ can be summarized as follows: If e is an
expression in an iteration scope at depth d, LJeKdρ evaluates to the result of
e for all evaluations of its iteration scope.

As in Rule lift-iter-top, lifting maintains a parallel environment for all
sub-expressions. For some expression e at depth d and all variables x ∈ ρ

with x : τ, LJeKdρ is evaluated in a parallel environment with bindings

x : [. . . [︸ ︷︷ ︸
d

τ] . . .]

In this environment, x contains all bindings for x in all iterations. The lifting
of variable references is easy, then:

LJxKdρ = x (lift-var)

Literal expressions (v, [v, . . . ,v], table(t)) are lifted by creating a copy
of the constant for each iteration. This is easily achieved by replicating
the constant for each element of a list that already has the required shape.
We obtain such a list by choosing an arbitrary variable from the parallel
environment.

LJvKdρ = v ⨰d x (some x ∈ ρ) (lift-lit-atom)

LJtable(t)Kdρ = table(t)⨳d x (some x ∈ ρ) (lift-table)

LJ[v, . . . ,v]Kdρ = [v, . . . ,v]⨳d x (some x ∈ ρ) (lift-lit-list)

52 flattening queries

The macro v ⨰d x replicates the constant v for each element of list x by
replacing each element of x at depth d with v. For d = 1, variable x denotes
a flat list. In this case, replication simply amounts to an application of
rep{v}. The case for d > 1 is uniformly handled by dropping the outer list
structure, replicating the constant and restructuring the resulting list to the
appropriate shape:

v ⨰1 e = rep{v} e

v ⨰d e = imprintd−1 e (rep{v} (forgetd−1 e))

For list constants, we use an equivalent macro that implements replication
of lists with operator ⊗.

e1 ⨳1 e2 = e1 ⊗ e2

e1 ⨳d e2 = imprintd−1 e2 (e1 ⊗ (forgetd−1 e2))

We now consider combinators p iteratively applied to operands e1, . . . , en.
By translating the operands, we obtain nested lists of operands of depth d.
The operation p has to be performed on the elements of those lists at level
d. In Rule lift-builtin, we express this with the help of a macro V−Wd:

LJp e1 · · · enKdρ = Vp LJe1Kdρ · · · LJe1Kdρ Wd (lift-builtin)

Macro Vp e1 · · · en Wd describes the lifted application of p to FL expres-
sions e1, . . . , en at depth d. By flattening the list structure with forgetd−1,
we obtain flat lists of operands of the same length and apply the lifted com-
binator p↑:

Vp e1 · · · en W0 = p e1 · · · enVp e1 · · · en W1 = p↑ e1 · · · enVp e1 · · · en Wd = imprintd−1 e1 (p↑ (forgetd−1 e1)

...

(forgetd−1 en))

In this definition, we restructure the flat result according to the first operand
e1. We might as well have chosen any other operand because their list shape
up to depth d is the same. Note that the definition includes a case V−W0
for depth 0. For rule lift-builtin, we know that d ⩾ 1. The case for d = 0

is required for the lifting of conditionals, however.
To lift a let-binding, we extend the parallel environment for expression

e2 with a binding for x. Variable x is bound to a list that contains the result
of all iterative evaluations of expression e1. This list is readily obtained by
lifting e1 itself. Rule lift-let preserves the let-binding with both expres-
sions lifted.

LJlet x = e1 in e2Kdρ = let x = LJe1Kdρ in LJe2Kdρ∪{x} (lift-let)

The central lifting rule is Rule lift-iter that handles nested iteration:

LJ[e1 | x← e2]Kdρ = (lift-iter)

let x = LJe2Kdρ
[y = Vy⊗ xWd]y∈ρ,y̸=x

in LJe1Kd+1
ρ∪{x}

4.2 lifting : flattening nested data-parallelism 53

The iterator itself is translated at depth d and opens a new iteration scope in
which its head expression e1 will be translated at depth d+1. First, however,
the parallel environment has to be set up for e1. A chain of let-bindings
binds the iterator variable x and lifts all variables y that are currently in
scope (environment lifting). We write let x1 = e1, . . . , xn = en in e as abbre-
viation for a chain of non-recursive let-bindings.

Lifting the generator expression e2 determines the iteration structure for
the head expression e1. Let the generator expression e2 be of type [τ].
Lifting e2 results in the following type:

LJe2Kdρ :

d+1︷ ︸︸ ︷
[. . . [︸ ︷︷ ︸

d

[τ]] . . .]

At depth d, the result of expression LJe2Kdρ corresponds to iteration over lists
of type [τ]. At depth d+ 1, however, it corresponds to iteration over values
of type τ — this is what the iterator [e1 | x← e2] expresses. Additionally,
we lift the environment ρ to obtain the proper parallel environment for e1.
In the parallel environment of the iterator, values for all variables y ∈ ρ

reflect the iteration structure at the current depth d. Individual values for a
variable y are found at list depth d. With the lifted replication operator ⊗↑,
we replicate those values over the lists found at depth d of the list for the
iteration variable x. At depth d+ 1, then, the result reflects an iteration over
copies of values for y. As for built-in operators, we use macro V−Wd to lift
⊗.

Finally, we lift if conditionals with a standard branch-free approach as
described by Prins et al. [PP93]. We identify those iterations in which the
then and else branches, respectively, are evaluated. We split the parallel
environment accordingly and lift both branches on their respective part of
the parallel environment. Finally, branch results are merged to obtain the
result of the conditional for all iterations.

LJif e1 then e2 else e3Kdρ = (lift-cond)V combine bs

(let [x = V restrict V ⟨x,bs⟩ Wd Wd−1]x∈ρ

in LJe2Kdρ)

(let [x = V restrict V ⟨x,V not bs Wd⟩ Wd Wd−1]x∈ρ

in LJe3Kdρ)Wd−1

where bs = LJe1Kdρ
Note that restrict and combine are applied with V−Wd−1. At depth

d, we have values for individual iterations. To filter and combine them,
however, we need lists of of those values and therefore work at depth d− 1.
This is the reason why FL includes combinators restrict and combine in
non-parallel form: if a conditional is translated at depth d = 1, we require
restrict and combine on single arguments.

4.2.3 Example

In Section 3.2 we have eliminated iterators by replicating constants, environ-
ment lifting and lifted combinators. Function LJ−K is an implementation
of these concepts. Indeed, we can easily verify that applying LJ−K to our

54 flattening queries

running example Query Q2 derives the iterator-free FL expression in Fig-
ure 21b. Only minor syntactical differences have to be observed: we write
p↑ instead of p1 and Vp Wd instead of pd.

Function LJ−K proceeds mechanically on the syntactical structure of a
CLd expression. As an example for the handling of the individual CL

constructs, we trace the translation of Query Q5 (Section 4.1). Query Q5

computes for each order the list of matching line items based on an if con-
ditional. All translation steps are shown in Figure 28.

The resulting FL query sets up parallel environments containing bindings
for variable o for the outer iteration scope and l and o for the inner itera-
tion scope. Data replication (ls⨳1 os) and environment lifting (V os⊗ lW1)
construct nested lists of the appropriate shape. Data-parallel operations are
used on these nested lists: VV l.okW2 = V o.okW2 W2 derives the data-parallel
variant of the predicate l.ok = o.ok.

Let us take a closer look at the sub-expression derived with rule lift-cond

that evaluates the conditional in the innermost iterator in a data-parallel
fashion. We assume that os is a list of two order records [o1,o2] and ls is
a list of four line item records [l1, l2, l3, l4]. If o1 and o2 match the line
items l1, l2 and l4, and l3, respectively, we have the following intermediate
lists in the innermost scope:

l ≡ [[l1 , l2 , l3 , l4]],[[l1 , l2 , l3 , l4]]

o ≡ [[o1 , o1 , o1 , o1]],[[o2 , o2 , o2 , o2]]

bs ≡ [[True , True , False , True]],[[False , False , True , False]]

The result bs of the predicate dictates the assignment of individual val-
ues of l and o to the respective conditional branches. With restrict↑, we
derive the following bindings for l in the restricted environments for both
branches:

l ≡ [[l1, l2, l4], [l3]] (then-branch)

l ≡ [[l3], [l1, l2, l4]] (else-branch)

Branch expressions are evaluated in parallel in the restricted environ-
ments to obtain the collective branch results.

V sng l W2 ≡ [[[l1], [l2], [l4]], [[l3]]]

[]⨳2 l ≡ [[[]], [[], [], []]]

We merge branch results with combine↑. Finally, concat↑ flattens the inner
lists, resulting in the overall query result.

V combine . . . W1 ≡ [[[l1], [l2], [], [l4]], [[], [], [l3], []]]V concat . . . W1 ≡ [[l1, l2, l4], [l3]]

4.2.4 Indexed Semantics of FL

We define the semantics of FL based on indexed lists in terms of ML. We
focus on a couple of FL combinators to discuss the essential cases and list
the remaining rules in Appendix A.

4.2 lifting : flattening nested data-parallelism 55

LJ [concat [if l.ok = o.ok then sng l else [] | l← ls]

o← os]K
≡ { lift-iter-top }

let o = LJosK
in LJconcat [if l.ok = o.ok then sng l else [] | l← ls]K1{o}

≡ { lift-table-top, lift-builtin }

let o = os

in V concat LJ[if l.ok = o.ok then sng l else [] | l← ls]K1{o} W1

≡ { lift-iter }

let o = os

in V concat (let l = LJlsK1{o}, o = V o⊗ lW1

in LJif l.ok = o.ok then sng l else []K2{l,o})W1

≡ { lift-table }

let o = os

in V concat (let l = ls⨳1 os, o = V os⊗ lW1

in LJif l.ok = o.ok then sng l else []K2{l,o})W1

≡ { inline variable o }V concat (let l = ls⨳1 os, o = V os⊗ lW1

in LJif l.ok = o.ok then sng l else []K2{l,o})W1

≡ { lift-cond }V concat (let l = ls⨳1 os, o = V os⊗ lW1

in let bs = LJl.ok = o.okK2{l,o}

in V combine

bs

(let l = V restrict V ⟨l, bs⟩W2 W1

in LJsng lK2{l,o})
(let l = V restrict V ⟨l,V not bsW2⟩W2 W1

in LJ[]K2{l,o})W1)W1

≡ { lift-builtin, lift-var, lift-lit-list }V concat (let l = ls⨳1 os, o = V os⊗ lW1

in let bs = VV l.okW2 =V o.okW2 W2

in V combine

bs

(let l = V restrict V ⟨l, bs⟩W2 W1

in V sng lW2)

(let l = V restrict V ⟨l,V not bsW2⟩W2 W1

in []⨳2 l)W1)W1

Figure 28: Lifting of Query Q5.

56 flattening queries

Indexed lists are originally derived from literal lists and table references
as in CLd.

FJ[v1, . . . ,vn]Kρ = [⟨k= 1, p = Jv1K⟩, . . . ,⟨k=n, p = JvnK⟩] (FL-list)

FJtable(t)Kρ = [⟨k= pkt(x), p = x⟩ | x← sortWith (λx. pkt(x)) JtK]
(FL-table)

Crucial are the shape operators forget and imprint. First, forget tem-
porarily flattens one nesting level of a nested list. For the flattened list, it
constructs unique indexes as pairs of the outer index (xs.k) and the inner
index (x.k). To reconstruct nesting, imprint exploits this specific structure
of indexes.

FJforget eKρ = [⟨k= ⟨xs.k, x.k⟩, p = x.p⟩ | xs← FJeKρ, x← xs.p]

(FL-forget)

FJimprint e1 e2Kρ =

[⟨k= x.k, p= [⟨k= y.k.2, p = y.p⟩ | y← FJe2Kρ, x.k = y.k.1]⟩
| x← FJe1Kρ]

(FL-imprint)

Note that the semantics of forget matches that of concat defined in Equa-
tion (FL-concat) (Appendix A). It is nevertheless necessary to distinguish
the two operators. Once we lower to a flat representation, their implemen-
tation will differ.

We only define imprint and forget although lifting generates the more
general imprintd and forgetd with an arbitrary depth d. However, it is
easy to see that these are related as follows [KS96]:

forgetd e = forget (forgetd−1 e)

forget1 e = forget e

imprintd e1 e2 = imprint e1 (imprintd−1 (forget e1) e2)

imprint1 e1 e2 = imprint e1 e2

For forgetd we strip nesting layers one by one. Inversely, for imprintd we
apply nesting layers one by one. We note that the index-based interpretation
of the reshaping operators bears close resemblance to the nest and unnest
operators of nested relational algebra.

The replication combinators simply repeat the respective value:

FJe1 ⊗ e2Kρ = [⟨k= x.k, p=FJe1Kρ⟩ | x← FJe2Kρ] (FL-dist)

FJrep{v} eKρ = [⟨k= x.k, p= v⟩ | x← FJeKρ] (FL-dist-base)

Lifted combinators are the remaining interesting category of FL combina-
tors. Lifted combinators with a single (lifted) argument are straightforward
to define. The operation is applied to each element of the argument list,

4.3 flattening collections : the segment vector model 57

regardless whether it is a scalar or list operation. For lifted list combinators,
indexes of inner lists are maintained as in Section 4.1.2.

FJe.ℓ↑Kρ = [⟨k= x.k, p = x.p.ℓ⟩ | x← FJeKρ] (FL-record-sel-lift)

FJnumber↑ eKρ =

[⟨k= xs.k, p= [⟨k= x.1.k, p = ⟨x.1.p, x.2⟩⟩
| x← enum xs.p]⟩

| xs← FJeKρ]

(FL-number-lift)

FJrestrict↑ eKρ =

[⟨k= xs.k, p= [⟨k= x.k, p = x.p.1⟩ | x← xs.p, x.p.2]⟩
| xs← FJeKρ]

(FL-restrict-lift)

Note that shape and indexes of the outer list are preserved. Only the ele-
ments of the outer lists are modified.

More interesting are lifted combinators with more than one argument.
Consider the following example of the lifted +↑ combinator:

+↑ [2, 5, 3]

[7, 4, 6]

To evaluate +↑, corresponding elements of both arguments need to be aligned.
In the flattening transformation, this alignment is usually described in terms
of list positions [PP93] or explicit order-aware combinators like zip [KS96].
This, however, would tie us to an ordered representation of lists. Instead,
we use indexes to align corresponding elements:

+↑ [⟨k= 1, p = 2⟩, ⟨k= 2, p = 2⟩, ⟨k= 3, p = 2⟩]
[⟨k= 1, p = 7⟩, ⟨k= 2, p = 4⟩, ⟨k= 3, p = 6⟩]

Lifted combinators are applied to argument expressions that are lifted
in the same iteration scope. Consequentially, all argument expressions of
a lifted combinator have the same outer list shape and the same indexes.
This allows us to align elements from corresponding iterations by joining
arguments on their indexes.

FJc(e1, e2)↑Kρ = [⟨k= x.k, p= JcK(x.p, y.p)⟩
| x← FJe1Kρ,y← FJe2Kρ, x.k = y.k]

(FL-base-op-lift)

FJe1 ⊗↑ e2Kρ = [⟨k= x.k, p= [⟨k= y.k, p = x.p⟩ | y← ys.p]⟩
| x← FJe1Kρ, ys← FJe2Kρ, x.k = ys.k]

(FL-dist-lift)

4.3 flattening collections : the segment vector model

Lifting eliminates nested iteration from queries by translating into FL. This
language is defined on lists, i.e. ordered and potentially nested collections.
Ultimately, though, we want to target query engines centered around flat
collections — in particular, flat unordered multisets. In this section, we
introduce segment vectors as a flat, ordered representation of nested lists
that mediates between those worlds. We translate FL expressions into a
language of operators on flat vectors.

58 flattening queries

Although we mainly target unordered collections, we introduce an or-
dered flat intermediate representation first and translate to an unordered
representation in a subsequent step (Chapter 6). This design choice is ben-
eficial for two reasons: First, we obtain simple translation steps that handle
only single, well-defined aspects. Second, ordered vectors as an intermedi-
ate representation enable us to generate code for order-aware backends as
well.

Terminology for collection types in literature on the flattening transfor-
mation is non-uniform and depends on the respective target platform and
language. Blelloch [Ble90] mostly uses the term vector, while other authors
use (parallel) array [CK00; Pey+08; Kel99] and sequence [PP93; PP95]. In the
following, we use the term vector for flat, homogeneous, ordered sequences
of scalar values. Our translation does not depend on positional access to
vectors. When defining the semantics of our vector language, we interpret
vectors as meta-level lists. Accordingly, we use list notation in examples.

4.3.1 Segment Vectors

Blelloch and Sabot [BS89] describe a flat representation of nested collections
in terms of flat segment vectors. In this non-parametric model [Pey+08], the
representation of collections depends on the type of elements. Collections
of atomic values are represented as flat vectors. Collections whose elements
are not scalar (e.g. lists of types [[Int]] and [⟨Int,[Int]⟩]), on the other
hand, are represented by separating structure from content. Atomic values
that make up the actual content of the complex value are stored in flat
vectors of atomic values, whereas their structure in the complex value is
recorded separately.

In Blelloch’s representation, complex values are flattened as follows:

• If the element type of a list is itself a list, (e.g. type [[Int]]), the flat
representation is a pair of two vectors. A data vector stores the elements
of all inner lists. A separate segment descriptor vector describes a parti-
tioning of the data vector into segments and encodes the structure of
the outer list. Usually, the segment descriptor records the lengths of
the segments as in the following example of a list of type [[Int]]:

[[10, 20, 30], [], [70, 80]]

⇒
⟨[3, 0, 2], [10,20,30,70,80]⟩

Note that the empty inner list has no explicit representation in the data
vector. It is encoded as an empty segment of length 0.

This representation extends to arbitrary nesting depths. For instance,
a list of type [[[Int]]] is represented by two segment descriptors and
one data vector.

• Lists of records are decomposed into records of vectors that store
the content of individual record fields. For example, a list of type
[⟨Int,[Int]⟩] is represented as follows:

[⟨100, [10, 20, 30]⟩, ⟨200, []⟩, ⟨300, [70, 80]⟩]
⇒
⟨[100, 200, 300], ⟨[3, 0, 2], [10,20,30,70,80]⟩⟩

4.3 flattening collections : the segment vector model 59

The three pair elements of the original outer list are represented as
the three elements of the data vector [100, 200, 300] and the segment
descriptor [3, 0, 2].

On this representation, the shape operators forget and imprint have no
runtime cost and just rearrange vectors. Data vectors represent flat lists of
atomic values. Simply ignoring associated segment descriptors temporarily
flattens lists:

[[10, 20, 30], [], [70, 80]]

⟨[3, 0, 2], [10,20,30,70,80]⟩

[10,20,30,70,80]

[10,20,30,70,80]

forget1

imprint1

Most subsequent work on the flattening transformation uses essentially
the same data representation with length-based segment descriptors and
flat atomic vectors [Ble+94; Pey+08; PP93; Les05; Ber+13; PP95; Kel99].
Chakravarty and Keller [CK00] extend the flat representation to general
sum and product types, including recursive types. Next to length-based
segment descriptors, Blelloch [Ble90] discusses other possible encodings of
the segment information (storing flags that describe a change of the seg-
ment, and positions of the start of each segment, respectively). However,
with one exception [BR12], only length-based segment descriptors are used
in the literature. Lippmeier et al. [Lip+12] extend segment descriptors to
allow sharing of segments (see also Chapter 7).

4.3.1.1 Length-Based Vectors and Query Processing

Although used prevalently in the literature, Blelloch’s flat representation is
not a good fit for all conceivable target platforms. For example, Bergstrom et
al. [BR12] point out that length-based segment descriptors do not allow an
efficient implementation of some of the required vector operations on GPUs.
Directly adapting the length-based vector model is not an option in our
setting of query processing either.

Length-based segment descriptors lead to code that frequently recom-
putes segment lengths and accesses vector elements by position:

• In queries, filtering collections is ubiquitous. In FL, restrict↑ ex-
presses filtering of lists:

restrict↑ [[⟨1, True⟩, ⟨2, False⟩, ⟨3, True⟩], [⟨4, True⟩, ⟨5, False⟩]]

With length-based segment descriptors, we obtain the following flat
representation for the argument list, composed of one segment de-
scriptor and two data vectors:

⟨[3,2], ⟨[1,2,3,4,5], [True,False,True,True,False]⟩⟩

Filtering itself is performed on the data vector. To keep the repre-
sentation consistent however, we have to update segment lengths to
account for elements that have been removed. In general, lifted list
combinators that change the shape of lists (e.g. distinct↑, restrict↑)
are non-local: they have to recompute and update segment lengths next
to the actual data vector.

• Data-parallel scalar operators like +↑ work on multiple lists of argu-
ments that are encoded in multiple vectors. If data vectors are simple

60 flattening queries

vectors of atomic values, corresponding elements of multiple vectors
can only be identified by their position. Vectors have to be aligned po-
sitionally. When lowering vectors to unordered multisets, this would
force us to encode actual list positions, not just a relative order of ele-
ments.

• FL is centered around a number of lifted collection primitives (e.g.
sort↑, group↑). Applying sort↑, for example, sorts each inner list
independently:

sort↑ [[⟨10, 2⟩, ⟨20, 1⟩, ⟨30, 3⟩], [⟨40, 6⟩, ⟨50, 4⟩]]

A vector operator that implements the sort↑ combinator needs to sort
individual segments of the data vector. With length-based vectors,
however, segment boundaries can only be determined from the seg-
ment descriptor. An implementation of sort↑ has to align data vec-
tors and segment descriptors to compute segment boundaries, an op-
eration that is inherently positional. Furthermore, it introduces data
dependencies between segment descriptors and data vectors.

Computation of lengths and positional access are cheap if vectors are
mapped to physical arrays with constant-time positional element access. In
our setting, however, these operations are not cheap at all. Most query
engines use pipelining and avoid the materialization of intermediate results
as long as possible [Gra93]. Single tuples or blocks of tuples [BZN05] are
streamed through pipelines of query operators. Computing lengths breaks
the pipeline and enforces the materialization of the input: the length can
only be computed once the complete input is available. Furthermore, if the
query engine offers only unordered collections, positional access requires
sorting and forces materialization of the input as well. Generating backend
code that implements length-based vectors would effectively disable a query
engine’s ability to stream data.

Lists records are represented as multiple vectors of atomic values. In a
main-memory setting, these vectors can be implemented as unboxed arrays
with data locality properties that play well with the CPU cache hierarchy.
In query processing, similar decomposed storage models are well-known.
Copeland and Khoshafian [CK85] propose a decomposition of n-ary rela-
tions into single columns. A number of column-store query engines (e.g. Mon-
etDB [MKB09]) implements this scheme. Subscribing to the decomposed
representation of records in our intermediate representation would be pre-
mature, however. A substantial number of relevant database systems do not
implement a columnar processing model. Even systems that are based on
a columnar storage model internally typically do not expose it but offer a
higher-level interface with n-ary relations. For example, the physical alge-
bra implemented by the X100 engine [BZN05] works on relations with n-ary
tuples. The sole exception is the MonetDB system [MKB09] with its colum-
nar language MAL. A non-decomposed vector model with proper records
does not prohibit backends that generate optimized code for column stores
and exploit their internal representation. Turning vectors of records into
records of vectors is possible as a separate step after shredding.

4.3.1.2 Index-Based Vectors

As outlined above, the length-based encoding of segments commonly used
in work on the flattening transformation is not a good fit for query engines.

4.3 flattening collections : the segment vector model 61

However, the flattening transformation does not rely on this particular rep-
resentation. In Section 4.2.1, we have defined the semantics of FL constructs
based on lists explicitly annotated with scalar index values that express el-
ement identity. Here, we define an index-based representation of segment
vectors along the lines of flat representations discussed in Chapter 2.

We write our example of type [[Int]] as an indexed list with indexes of
type Int:

[[10, 20, 30], [], [70, 80]]

⇒
[⟨k= 1, p = [⟨k= 1, p = 10⟩, ⟨k= 2, p = 20⟩, ⟨k= 3, p = 30⟩]⟩,
⟨k= 2, p = []⟩,
⟨k= 3, p = [⟨k= 1, p = 70⟩, ⟨k= 2, p = 80⟩]⟩]

Index values of the outer list uniquely identify the inner lists and the respec-
tive segments. We include these outer index values in the inner vector to
mark segments explicitly. We obtain the following flat representation with
two vectors Vo and Vi:

Vo =
[⟨s = ⟨⟩, k = 1, p = ⟨⟩⟩ ,
⟨s = ⟨⟩, k = 2, p = ⟨⟩⟩ ,
⟨s = ⟨⟩, k = 3, p = ⟨⟩⟩]

Vi =

[⟨s = 1, k = ⟨1, 1⟩, p = 10⟩ ,
⟨s = 1, k = ⟨1, 2⟩, p = 20⟩ ,
⟨s = 1, k = ⟨1, 3⟩, p = 30⟩ ,
⟨s = 3, k = ⟨3, 1⟩, p = 70⟩ ,
⟨s = 3, k = ⟨3, 2⟩, p = 80⟩]

Vector elements are scalar records of type ⟨s:α, k:β, p:γ⟩, consisting of an
outer index of type α, an inner index of type β and a payload of type γ. The
outer index or segment identifier denotes the segment to which a vector ele-
ment belongs and relates an inner vector to the corresponding outer vector.
The inner index uniquely identifies vector elements. The indexes of the orig-
inal individual inner lists do not uniquely identify elements of the inner
vector Vi. In this example, we obtain unique inner indexes for Vi by form-
ing pairs of the indexes of the original outer and inner lists. The payload
stores the actual content of a list element. Since the payload has to be scalar,
we replace all nested list values with the placeholder ⟨⟩.

Note that elements of the outer vector include an outer index of type ⟨⟩,
even though the outer vector only stores the elements of the outer list. This
leads to a uniform representation: all vector elements are part of a segment.
Elements of the outermost list are part of the unit segment ⟨⟩.

As in Blelloch’s length-based encoding, empty (inner) lists are represented
by absence of a corresponding segment. In our example, the inner index 2

of the outer vector Vo does not occur as an outer index in the inner vector
Vi. In general, empty inner lists can be identified by computing the set
difference of outer and inner indexes of the corresponding vectors. Empty
top-level lists are represented as an empty vector.

In the remainder of this thesis, we find it convenient to write ❲_, _, _❳
both for the record type constructor ⟨s:_, k:_, p:_⟩ and for the record con-
structor ⟨s = _, k = _, p = _⟩.

shredded packages Index-based vectors store list elements, with inner
list values replaced with ⟨⟩. This encoding results in a direct correspon-

62 flattening queries

dence between lists and vectors. Consider the following indexed list of type
[⟨Int,[Int]⟩]:

[⟨100, [10, 20, 30]⟩, ⟨200, []⟩, ⟨300, [70, 80]⟩]
⇒
[⟨k= 1, p = ⟨100, [⟨k= 1, p = 10⟩, ⟨k= 2, p = 20⟩, ⟨k= 3, p = 30⟩]⟩⟩,
⟨k= 2, p = ⟨200, []⟩⟩,
⟨k= 3, p = ⟨300, [⟨k= 1, p = 70⟩, ⟨k= 2, p = 80⟩]⟩⟩]

This list is encoded with two vectors V ′o and V ′i :

V ′o =
[❲⟨⟩, 1, ⟨100, ⟨⟩⟩❳ ,❲⟨⟩, 2, ⟨200, ⟨⟩⟩❳ ,❲⟨⟩, 3, ⟨300, ⟨⟩⟩❳] V ′i =

[❲1, ⟨1, 1⟩, 10❳ ,❲1, ⟨1, 2⟩, 20❳ ,❲1, ⟨1, 3⟩, 30❳ ,❲3, ⟨3, 1⟩, 70❳ ,❲3, ⟨3, 2⟩, 80❳]
The segment vector representations of our examples of types [[Int]] and
[⟨Int,[Int]⟩] are mostly identical and differ only in the payload of the
outer vectors Vo and V ′o. The only difference between the types occurs in
the scalar component of the outer element type. Their list nesting structure,
on the other hand, is the same. Only the list nesting structure dictates the
structure of the vector representation.

List types and vectors are related directly: each list type constructor [_]

corresponds to one vector. Following Cheney et al. [CLW14a], we orga-
nize vectors into shredded packages (short: package). A shredded package is
a type ρ in which each list type constructor is annotated with a segment
vector:

ρ ::= π | [ρ]V | ⟨ℓ:ρ, . . . , ℓ:ρ⟩

A shredded package annotated with segment vectors represents a list value.
For example, the shredded packages for the example lists in this section are
[[Int]Vi]Vo and [⟨Int,[Int]V ′i ⟩]V ′o .

Recall from Section 4.1 that we only consider list-typed CL expressions for
Query Flattening. Accordingly, the result of any type-correct CL expression
can be represented as a shredded package with the corresponding vectors.
The lowering of FL expressions to vector operators (Section 4.3.3) will reflect
this correspondence.

shredding lists We now describe the representation of nested lists
by segment vectors precisely. We define functions that convert between
both representations. Function shred([⟨k:δ, p:τ⟩], xs) shreds an indexed list
value xs : [⟨k:δ, p:τ⟩] into a package. Function stitch([ρ]V) implements
the inverse transformation and stitches a nested list value from a shredded
package [ρ]V .

Function shred(−,−) shreds an indexed list value into the different levels
of list nesting. It produces a shredded package in which each list type
constructor carries the vector that assembles the elements of all list elements
at the respective nesting level. From the type alone, we can derive an initial
shredded package with empty vectors:

init([τ]) = [init(τ)][]

init(⟨ℓi:τi⟩ni=1) = ⟨ℓi: init(τi)⟩ni=1

init(π) = π

4.3 flattening collections : the segment vector model 63

From a list element value, function payload(−) derives the corresponding
vector payload value by replacing any inner lists with ⟨⟩.

payload(⟨ℓi = vi⟩ni=1) = ⟨ℓi = payload(vi)⟩ni=1

payload(v) = v

payload([_]) = ⟨⟩

Function shreds(τ, v) traverses a value v and its type τ while tracking the
current index value s. Once an inner list value is encountered, it derives
a vector V that contains only the segment for the current inner list value.
The inner index of vector V is composed from the original index of the list
and the current outer index s. At the same time, the annotated version of
the list element type is derived by recursively shredding the list element
values. Here, the tracked index value is updated to the composition of list
index and s. By shredding the individual list elements, we obtain a list of
packages that have the same structure but differ in their annotations. We
merge these packages into one to obtain the package ρ that encodes the list
elements.

shred([⟨k:δ, p:τ⟩], xs) = shred⟨⟩([⟨k:δ, p:τ⟩], xs)

shreds(π, v) = π

shreds(⟨ℓi:τi⟩ni=1, ⟨ℓi = vi⟩ni=1) = ⟨ℓi: shreds(τi, vi)⟩ni=1

shreds([⟨k:δ, p:τ⟩], xs) = [ρ]V

where ρ = merge([shred⟨s, x.k⟩(τ, x.p) | x← xs], τ)

V = [❲s, ⟨s, x.k⟩, payload(x.p)❳ | x← xs]

Note that shredding of lists preserves the order of list elements.
Packages are merged pairwise by merging the vector annotations on list

type constructors:

mergePkg([ρ]V , [ρ ′]V
′
) = [mergePkg(ρ, ρ ′)]V ++ V ′

mergePkg(⟨ℓi:ρi⟩ni=1, ⟨ℓi:ρ ′i⟩
n
i=1) = ⟨ℓi:mergePkg(ρi, ρ ′i)⟩

mergePkg(π,π) = π

merge([], τ) = init(τ)

merge([ρ1, . . . ,ρn], τ) = mergePkg(ρ1, . . .mergePkg(ρn−1, τn))

Merging packages as specified results in vectors with dense segments: ele-
ments of one particular segment are stored consecutively.

Having defined the shredding of lists, we can now derive the vector rep-
resentation of our examples from above systematically. To illustrate shred-
ding, we compute the vector representation from the indexed form of our
example of type [⟨Int,[Int]⟩]. Applying shred⟨⟩ to the outer list yields the
vector Vo:

Vo =
[❲⟨⟩, ⟨⟨⟩, 1⟩, ⟨100, ⟨⟩⟩❳ ,❲⟨⟩, ⟨⟨⟩, 2⟩, ⟨200, ⟨⟩⟩❳ ,❲⟨⟩, ⟨⟨⟩, 3⟩, ⟨300, ⟨⟩⟩❳]

64 flattening queries

By shredding the three elements of the outer list with shred⟨⟨⟩, 1⟩, shred⟨⟨⟩, 2⟩
and shred⟨⟨⟩, 3⟩, respectively, we obtain the following vectors, each with a
single segment:

Vi·1 =
[❲⟨⟨⟩, 1⟩, ⟨⟨⟨⟩, 1⟩, 1⟩, 10❳ ,❲⟨⟨⟩, 1⟩, ⟨⟨⟨⟩, 1⟩, 2⟩, 20❳ ,❲⟨⟨⟩, 1⟩, ⟨⟨⟨⟩, 1⟩, 3⟩, 30❳]

Vi·2 = []

Vi·3 =
[❲⟨⟨⟩, 3⟩, ⟨⟨⟨⟩, 3⟩, 1⟩, 70❳ ,❲⟨⟨⟩, 3⟩, ⟨⟨⟨⟩, 3⟩, 2⟩, 80❳]

The corresponding packages are [Int]Vi·1 , [Int]Vi·2 and [Int]Vi·3 . Each
partial vector contains one individual segment for the respective inner list
value. These three packages merge into the package

[[Int]Vi·1 ++ Vi·2 ++ Vi·3]Vo

with two vectors Vo and Vi·1 ++ Vi·2 ++ Vi·3. Our introductory examples
did not include the top-level index ⟨⟩ in the inner index of the outermost
list. Here, index composition starts with ⟨⟩ to obtain a uniform indexing
scheme.

stitching lists For the reconstruction of nested lists from shredded
packages we adopt function stitch(−) directly from Cheney et al. [CLW14a].
Function stitch(ρ) converts package ρ to a list value. List elements are re-
constructed from vector elements by traversing vector payload values with
the inner index of the current vector element. If the function encounters a
nested list type, the segment associated with the current index is retrieved
from the corresponding vector in the type annotation.

stitch([τ]V) = [stitchx.k(τ, x.p) | x← V]

stitchs(π,p) = p

stitchs(⟨ℓi:τi⟩ni=1,p) = ⟨ℓi = stitchs(τi,p.ℓi)⟩ni=1

stitchs([τ]V , ⟨⟩) = [stitchx.k(τ, x.p) | x← V, s = x.s]

We have defined shredding to preserve the order of list elements in the order
of segment elements. Stitching exploits this property to restore list elements
in the original order: segment lookup is defined as a list comprehension
that keeps the order of segment elements.

4.3.2 Vector Operator Language

So far, we have defined a flat representation of nested lists with index-based
segment vectors. To express FL queries on this flat representation, we in-
troduce the language SL of vector operators that work on segment vectors.
Language SL is the intermediate representation from which code for back-
ends is generated. It is designed to map well to the typical operations of-
fered by a (relational) query engine. Before we define the language formally,
we introduce the essential concepts based on examples.

In this introduction, we focus on data-parallel operators p↑ and replica-
tion operators (⊗, ⊗↑). List type constructors in data types dictate the vector
structure of the flat representation. Hence, we structure our discussion of
data-parallel operations by categorizing them along their type signatures.
First, though, we look at the crucial shape operations.

4.3 flattening collections : the segment vector model 65

[❲⟨⟩,s0, ⟨⟩❳ ,❲⟨⟩,s1, ⟨⟩❳ ,❲⟨⟩,s2, ⟨⟩❳]
[❲s0,k0, 10❳ ,❲s0,k1, 20❳ ,❲s2,k2, 30❳ ,❲s2,k3, 40❳]

[❲s0,k0, 10❳ ,❲s0,k1, 20❳ ,❲s2,k2, 30❳ ,❲s2,k3, 40❳]
forget1

imprint1

[[10,20],[],[30,40]] [10,20,30,40]

Figure 29: Shape operations on index-based vectors. Arrows indicate a valid rela-
tionship between an inner and an outer vector.

shape operators FL shape operations on index-based vectors work as
outlined in Section 3.2.6. Lists are temporarily flattened by ignoring outer
vectors. In Figure 29, we demonstrate forget1 and imprint1 on the index-
based representation of list [[10,20],[],[30,40]]. Evaluating shape op-
erations amounts to statically selecting the appropriate vectors during the
generation of vector programs. No vector operators and thus no runtime
effort is involved.

Note that the inner vector obtained via forget1 preserves the segment
structure of the inner vector instead of merging all elements into the unit
segment. Thus, in contrast to the length-based representation, the inner vec-
tor is not the canonical encoding of the flat list [10,20,30,40]. Preserving
the segment structure by preserving the inner vector unmodified is actually
essential. Imagine an implementation of forget1 that modifies the outer
index to ⟨⟩. Then, we would have a shape operation that involves runtime
effort. Worse, however, we would destroy the index relationship to the outer
vector and thereby make a zero-cost implementation of imprint1 impossi-
ble.

As it turns out, we can safely ignore the segment structure. Data-parallel
FL operators p↑ uniformly apply to individual elements of a flat list of ar-
guments. In the example of Figure 29, these are the elements of the inner
vector. The segment structure of this vector does not play any role in the
evaluation of data-parallel operators. Furthermore, we know that every oc-
currence of forgetd in an FL expression generated by LJ−K is matched by
a corresponding occurrence of imprintd. Thus, outer vectors are always
restored.

scalar operators Lifted scalar operators c(_, . . . ,_)↑ receive and pro-
duce lists of atomic values:

c(_, . . . ,_)↑ : [π1]→ · · · → [πn]→ [πr]

Each argument of type [π] shreds to a package [π]V with a vector V that
has an atomic payload of type π. Evaluating c(_, . . . ,_)↑ on the vector rep-
resentation amounts to evaluating c(_, . . . ,_) on the payload of correspond-
ing vector elements. We have to (1) align corresponding vector elements
(that is, elements with the same inner index), and (2) apply the scalar opera-
tion itself. In Figure 30, we see that these tasks are split among two separate
SL operators: Operator alignV aligns two vectors based on their inner in-
dexes and forms pairs of the respective payloads. Operator projectV{_}

then applies an arbitrary scalar function to the payload of the resulting vec-
tor.

As vectors are aligned based on their inner indexes, they are required
to have the same vector shape, i.e. the same indexes, segment structure
and length. The translation into SL guarantees this property. Given two

66 flattening queries

[❲s0,k0, 10❳ ,❲s0,k1, 20❳ ,❲s2,k2, 30❳ ,❲s2,k3, 40❳]
[❲s0,k0, 23❳ ,❲s0,k1, 42❳ ,❲s2,k2, 23❳ ,❲s2,k3, 42❳]

alignV

projectV{λx.x.1 + x.2}

[❲s0,k0, ⟨10, 23⟩❳ ,❲s0,k1, ⟨20, 42⟩❳ ,❲s2,k2, ⟨30, 23⟩❳ ,❲s2,k3, ⟨40, 42⟩❳]

[❲s0,k0, 33❳ ,❲s0,k1, 62❳ ,❲s1,k2, 53❳ ,❲s1,k3, 82❳]

Figure 30: Implementing lifted addition +↑ in SL. Dashed lines mark intermedi-
ate results of SL operators.

[❲s0,k0, 10❳ ,❲s0,k1, 20❳ ,❲s1,k2, 30❳ ,❲s1,k3, 40❳]
V1

[❲s0,k0, ⟨5, ⟨⟩⟩❳ ,❲s0,k1, ⟨4, ⟨⟩⟩❳ ,❲s1,k2, ⟨8, ⟨⟩⟩❳ ,❲s1,k3, ⟨7, ⟨⟩⟩❳]
Vo

alignV

[❲s0,k0, ⟨10, ⟨5, ⟨⟩⟩⟩❳ ,❲s0,k1, ⟨20, ⟨4, ⟨⟩⟩⟩❳ ,❲s1,k2, ⟨30, ⟨8, ⟨⟩⟩⟩❳ ,❲s1,k3, ⟨40, ⟨7, ⟨⟩⟩⟩❳]
[❲k0,ki0

, 4❳ ,❲k0,ki1
, 3❳ ,❲k2,ki2
, 2❳ ,❲k2,ki3
, 1❳ ,❲k3,ki4
, 0❳]

Vi

Figure 31: Implementing lifted pair construction ⟨_, _⟩↑ on vectors.

vectors of equal shape, the result of alignV has the same shape. Likewise,
projectV{_} does not change the shape of its operand.

For c(_, . . . ,_)↑, the individual operands are lists of atomic values, ensur-
ing a representation with single vectors. Record operations, however, are
typed more general:

⟨ℓ1 = _, . . . ,ℓn = _⟩↑ : [τ1]→ · · · → [τn]→ [⟨ℓ1:τ1, . . . ,ℓn:τn⟩]

Again, we obtain one vector for each argument that represents the argument
list itself. However, τ1, . . . , τn are arbitrary types that may include nested
lists. In this case, the flat representation will include inner vectors. Does
record construction affect inner vectors as well? Consider the lifted pair
constructor ⟨e1, e2⟩↑ with e1 : [Int] and e2 : [⟨Int,[Int]⟩]. Given the
argument packages [Int]V1 and [⟨Int,[Int]Vi⟩]Vo , the representation of
the second operand consists of two vectors Vo and Vi. The situation is
illustrated in Figure 31.

As pairs are constructed from individual elements of the argument lists,
we use alignV to align the elements of the appropriate vectors. Again, both
vectors are required to have equal shape and alignV maintains that shape.
As the inner index of the result vector is identical to the inner index of Vo,
the index relationship to the inner vector Vi remains valid. The inner vector
is simply preserved in the result. Hence, record construction affects only
the payload of the outer vectors.

4.3 flattening collections : the segment vector model 67

[❲⟨⟩,k0, ⟨⟩❳ ,❲⟨⟩,k1, ⟨⟩❳]
Vo

[❲k0,ki0
, 1❳ ,❲k0,ki1
, 3❳ ,❲k0,ki2
, 3❳ ,❲k1,ki3
, 3❳ ,❲k1,ki4
, 2❳]

Vi

distinctV

[❲k0,ki0
, 1❳ ,❲k0,ki1
, 3❳ ,❲k1,ki3
, 3❳ ,❲k1,ki4
, 2❳]

Figure 32: Implementing lifted duplicate elimination distinct↑ in SL.

To summarize, scalar operations are executed on outer vectors. Their
shape as well as any inner vectors are preserved.

sustain list nesting depth Next, we discuss list operations. Con-
sider data-parallel duplicate elimination:

distinct↑ : [[δ]]→ [[δ]]

Operators sort↑, number↑, restrict↑ and append↑ are similar in that they
do not change the list nesting depth.

Duplicate elimination is performed on the individual inner lists, while
the shape of the outer list is preserved. With the argument represented as
package [[δ]Vi]Vo , duplicate elimination is performed on the individual
segments of the inner vector Vi, while the outer vector Vo is preserved
(Figure 32).

Duplicate elimination is implemented by the vector operator distinctV

that eliminates duplicates in the payload of a vector while observing seg-
ment boundaries. Since the outer index of the inner vector directly encodes
segment boundaries, there is no need to consult the outer vector Vo. Note
that distinctV preserves the outer index of Vi, so that the index relationship
to Vo remains valid.

The implementation of duplicate elimination is the blueprint for all data-
parallel list operators that sustain the list nesting depth of their argument:
the operation is performed on the inner vector by vector operators on the
segment level. So far, append↑ is the only list operator with two arguments
(we will introduce more in Chapter 5). As in the case of scalar operators, we
are guaranteed that the (outer) vectors of all arguments have equal shape,
hence equal inner indexes. Accordingly, the inner vectors have compati-
ble outer indexes. To implement append↑, vector operator appendV pairs
corresponding segments of both inner vectors and appends the segments
individually.

decrease list nesting depth Operators reduce{}↑ and concat↑ de-
crease the nesting depth of their argument:

concat↑ : [[τ]]→ [τ]

Reducing list nesting amounts to the elimination of inner vectors. As an ex-
ample, we show the SL implementation of reduce{0, λx y.x + y}↑ (i.e. sum↑)
in Figure 33.

68 flattening queries

[❲s0,k0, ⟨⟩❳ ,❲s1,k1, ⟨⟩❳ ,❲s1,k2, ⟨⟩❳]
Vo

[❲k0,ki0
, 1❳ ,❲k0,ki1
, 3❳ ,❲k0,ki2
, 3❳ ,❲k2,ki3
, 3❳ ,❲k2,ki4
, 2❳]

Vi

reduceV{0, λx y.x + y}
[❲k0,k0, 7❳ ,❲k2,k2, 5❳]

V ′i

unboxV{0}
[❲s0,k0, ⟨⟨⟩, 7⟩❳ ,❲s1,k1, ⟨⟨⟩, 0⟩❳ ,❲s1,k2, ⟨⟨⟩, 5⟩❳]

projectV{λx.x.2}

Figure 33: Implementing lifted aggregation in SL.

In the example, summation is implemented by the SL operator reduceV{}
that folds individual segments. The result V ′i of reduceV{} has the shape
of the inner vector Vi. Together, Vo and V ′i describe a list of singleton
lists ([[Int]V

′
i]Vo). The result of sum↑, however, is a flat list of type [Int],

represented by a single vector. Operator unboxV{} joins outer and inner
vectors along their indexes and places the payload of the inner vector’s
singleton segments in corresponding elements of the outer vector. Note
that one segment is missing in the inner vectors Vi and V ′i . To account for
missing segments, unboxV{} inserts a default payload value (here: 0 for the
sum aggregate).

increase list nesting depth Combinator group↑ increases list nest-
ing:

group↑ : [[⟨τ,δ⟩]]→ [[⟨δ,[τ]⟩]]

The singleton list constructor sng↑ belongs to the same category. Increasing
list nesting amounts to the introduction of additional vectors. Hence, we
need SL operators that introduce new vectors and establish a valid index
relationship to them.

In Figure 34, we illustrate the shredding of group↑ into vector operators.
Consider the expression group{λx.x.2}↑ e that groups argument e of type
[[⟨Int,Text⟩]] based on the Text values. According to its type, e shreds to
the package [[⟨Int,Text⟩]Vi]Vo .

Again according to its type, the result of group{}↑ shreds into the follow-
ing package:

[[⟨Text,[⟨Int,Text⟩]Vg⟩]Vk]Vo

The outer vector Vo is identical to the outer vector of argument e. Figure 34

illustrates how the two inner vectors Vk and Vg are derived. Vector operator
groupV{} constructs two vectors Vk and Vg from Vi. While Vk represents the
structure of groups and contains the grouping keys, Vg represents the group
content itself. Note that each segment of Vi is grouped individually. We have

4.3 flattening collections : the segment vector model 69

[❲⟨⟩,k0, ⟨⟩❳ ,❲⟨⟩,k1, ⟨⟩❳]
Vo

[❲k0,ki0
, ⟨6, "a"⟩❳ ,❲k0,ki1
, ⟨7, "b"⟩❳ ,❲k0,ki2
, ⟨4, "a"⟩❳ ,❲k1,ki3
, ⟨3, "c"⟩❳ ,❲k1,ki4
, ⟨5, "c"⟩❳ ,❲k1,ki5
, ⟨1, "a"⟩❳]
Vi

groupV{λx.x.2}

[❲k0,kg0
, "a"❳ ,❲k0,kg1
, "b"❳ ,❲k1,kg2
, "a"❳ ,❲k1,kg3
, "c"❳]

Vk

[❲kg0
,ki0

, ⟨6, "a"⟩❳ ,❲kg0
,ki2

, ⟨4, "a"⟩❳ ,❲kg1
,ki1

, ⟨7, "b"⟩❳ ,❲kg2
,ki3

, ⟨1, "a"⟩❳ ,❲kg3
,ki5

, ⟨3, "c"⟩❳ ,❲kg3
,ki4

, ⟨5, "c"⟩❳]
Vg

Figure 34: Implementing group↑ in SL. Double and triple lines indicate the second
and third vector result of an operator, respectively.

omitted simple projections on Vk and Vg that add ⟨⟩ as the placeholder for
nested list values. While Vk preserves the outer indexes of Vi and is related
to Vo, new indexes derived from the grouping key relate Vk and Vg. Note
that vector Vg preserves the length and inner index of Vi. Only the order of
elements and the segment structure changes.

replication We turn to the operators ⊗ and ⊗↑ used for data replica-
tion and environment lifting:

⊗ : [τ1]→ [τ2]→ [[τ1]]

⊗↑ : [τ1]→ [[τ2]]→ [[τ1]]

We illustrate the implementation of both operators in Figure 35.
As ⊗ increases list nesting, its SL counterpart repV creates a new vector

Vi1 that replicates the elements of its left operand for each element of its
right operand. repV establishes an index relationship between V2 and Vi1

based on the inner index of V2. Unique inner indexes for Vi1 are derived
from the inner indexes of both V1 and V2. A simple projection derives the
outer vector Vo from V2.

Like unboxV{}, operator repsegV joins outer and inner vector based on
their indexes. It propagates payload values from an outer vector (here: V2)
to an inner vector (here: Vi1). With Vi2 , we have a vector that has the
same shape as the inner vector produced by repV: outer and inner indexes
concur, as well as vector length. The interplay of repV and repsegV reflects
the construction of parallel environments in FL (Section 4.2): replication
increases the nesting level of data, while environment lifting replicates data
to this new nesting level.

propagating index changes The translation to SL maintains valid
index relationships between vectors. In certain cases, we have to propagate
changes to the shape of a vector to any inner vectors to keep the relation-
ship valid. Consider the FL operator restrict, applied to an argument

70 flattening queries

[❲⟨⟩,kl·0, 10❳ ,❲⟨⟩,kl·1, 20❳]
V1

[❲⟨⟩,kr·0, "a"❳ ,❲⟨⟩,kr·1, "b"❳]
V2

repV

repsegV

[❲kr·0, ⟨kr·0,kl·0⟩, 10❳ ,❲kr·0, ⟨kr·0,kl·1⟩, 20❳ ,❲kr·1, ⟨kr·1,kl·0⟩, 10❳ ,❲kr·1, ⟨kr·1,kl·1⟩, 20❳]
Vi1

[❲kr·0, ⟨kr·0,kl·0⟩, "a"❳ ,❲kr·0, ⟨kr·0,kl·1⟩, "a"❳ ,❲kr·1, ⟨kr·1,kl·0⟩, "b"❳ ,❲kr·1, ⟨kr·1,kl·1⟩, "b"❳]

Vi2

projectV{λx.⟨⟩}

[❲⟨⟩,kr·0, ⟨⟩❳ ,❲⟨⟩,kr·1, ⟨⟩❳] Vo

Figure 35: Implementing data replication (⊗) and environment lifting (⊗↑) in SL.

with shredded package [⟨[Int]Vi,Bool⟩]Vo . Figure SL illustrates its SL

implementation.
The SL operator selectV{} filters Vo based on the second component of

its payload. While the relationship of Vi to Vo is valid, it is not related to
the outer result vector V ′o: the outer index k2 does not occur as an inner
index in V ′o. The segment denoted by k2 is no longer referenced. To re-
establish a valid relationship, we eliminate the stale segment from Vi. Next
to the vector V ′o, selectV{} returns I, the description of a filtering index
transformation. Transformation I is encoded as a simple list of valid index
values. Operator appfilterV applies this transformation to Vi and removes
any segments whose outer index does not occur in I.

Index propagation is recursive: appfilterV changes the shape of Vi. Ac-
cordingly, this change has to be propagated to any inner vectors that relate
to Vi. Next to V ′i , appfilterV returns a further index transformation that
describes the change to the shape of Vi.

Other operators cause index transformations as well and not all of them
are of the same form. We identify four different forms of index transforma-
tions:

1. If elements are removed from a vector, a filtering transformation lists
the inner indexes of the remaining elements. For a vector with inner
index type δ, the filtering transformation is of type [δ]. In the example
of Figure 36, the filtering transformation is [k0,k1,k3].

2. Operator repsegV replicates elements of a vector. Given the applica-
tion of repsegV to V2 and Vi1 in Figure 35, repsegV replicates elements
of V2 and maps them to the indexes of Vi1 . In any inner vector that is
related to V2, segments need to be replicated and mapped to the new
indexes. The segment identified by kr·0 needs to be replicated into
two segments identified by ⟨kr·0,klcdot0⟩ and ⟨kr·0,klcdot1⟩.
A replication transformation describes the changes to segments: it maps
segment identifiers to new segment identifiers. In the example in Fig-

4.3 flattening collections : the segment vector model 71

[❲s0,k0, ⟨⟨⟩, True⟩❳ ,❲s0,k1, ⟨⟨⟩, True⟩❳ ,❲s1,k2, ⟨⟨⟩, False⟩❳ ,❲s2,k3, ⟨⟨⟩, True⟩❳]

Vo

[❲k0,ki0
, 10❳ ,❲k0,ki1
, 20❳ ,❲k1,ki2
, 30❳ ,❲k1,ki3
, 40❳ ,❲k2,ki4
, 50❳ ,❲k2,ki5
, 60❳]

Vi

selectV{λx.x.2}
[k0 ,

k1 ,

k3]

I

[❲s0,k0, ⟨⟨⟩, True⟩❳ ,❲s0,k1, ⟨⟨⟩, True⟩❳ ,❲s2,k3, ⟨⟨⟩, True⟩❳]V ′o

Vi

appfilterV

[❲k0,ki0
, 10❳ ,❲k0,ki1
, 20❳ ,❲k1,ki2
, 30❳ ,❲k1,ki3
, 40❳ ,

V ′i

Figure 36: Implementing restrict in SL. Propagating index changes to Vi main-
tains the index relationship to the outer vector.

ure 35, operator repsegV generates the following replication transfor-
mation:

[⟨f = kr·0, t = ⟨kr·0,kl·0⟩⟩ ,
⟨f = kr·0, t = ⟨kr·0,kl·1⟩⟩ ,
⟨f = kr·1, t = ⟨kr·1,kl·0⟩⟩ ,
⟨f =kr·1, t = ⟨kr·1,kl·1⟩⟩]

Both segments identified by kr·0 and kr·1 are replicated into two copies
identified by the new index of Vi2 .

3. If elements of a vector with inner index type t are reordered (e.g. in
the implementation of sort↑ and group↑), a sorting transformation re-
orders segments in any inner vectors. For example, operator groupV{}
in Figure 34 re-orders elements of the inner vector and generates the
following sorting transformation:

[ki0,ki2,ki1,ki5,ki3,ki4]

4. As a special form of a replication transformation, a rekeying transforma-
tion describes a one-to-one mapping from old indexes to new indexes.
Applying a rekeying transformation to an inner vector does not change
the segment structure. Only the outer index is updated.

Distinguishing different forms of index transformation is not strictly nec-
essary. Replication transformations as the most general type subsume the
three other forms we have described. For example, a filtering transformation
of type [δ] could be expressed as a replication transformation [⟨f:δ, t:δ⟩]
that omits certain index values. Making the distinction, however, allows us
to generate more specific and efficient backend code. Different forms of in-
dex transformations differ in their runtime cost depending on the concrete
backend. Sorting transformations, for example, are necessary in a backend

72 flattening queries

Statements, Tuple Patterns

bs ::= p← o x · · · x;bs | p← o x · · · x
p ::= x | (x,x) | (x, x, x)

Vector Operators

o ::= tableV{t} | litV{[v . . . , v]} | projectV{f} | selectV{s}

| numberV | sortV{s} | groupV{s} | distinctV | reduceV{s, s}

| appendV | unsegmentV | mergesegV | alignV | unboxV{s}

| repV | repseg V | combineV

| apprepV | appfilterV | appsortV | appkeyV

Figure 37: Syntax of SL programs.

that keeps vectors physically ordered (Section 4.3.2.3). Applying sorting
transformations in this setting involves actual work. Lowering vectors to
unordered multisets, on the other hand, eliminates the necessity for sorting
transformations altogether (Chapter 6).

4.3.2.1 Formal Definition of SL

Having introduced the essential concepts of operations on flat vectors, we
now introduce the vector language SL completely and formally. Figure 37

defines the syntax of vector programs. We adopt notation used by Blel-
loch [Ble90], and Suciu and Tannen [ST94], and define SL programs as non-
empty sequences of statements. A statement x ← o x · · · x applies operator
o to the variables x1 to xn bound by preceding statements. The result of o is
bound to variable x. For example, the SL implementation of sum↑ (Figure 33)
is expressed as the following vector program:

V ← reduceV{0, λx y.x + y} Vi

V ′← unboxV{0} Vo V

Vr← projectV{λx.x.2}

As vector operators may return multiple results, a statement can match on
a tuple and bind multiple names at once. Filtering inner and outer vectors
(Figure 36) is expressed as the following vector program:

(Vr,Vt)← selectV{λx.x.1} Vo

(V ′i,V
′
t)← appfilterV Vt Vi

In FL all computations are expressed as operators on the same level. In
contrast, computations in SL are expressed on two different levels: vector
operators express computations on lists, while scalar computations are ex-
clusively expressed in the arguments of vector operators. Vector operators
are parameterized with scalar functions s: sortV{s} applies s to the payload
of each vector element to obtain a sorting key.

Vector operators belong to the following categories.

• Base operators tableV{} and litV{} provide constant vectors.

• Operators projectV{} and selectV{} are vector counterparts of the
usual relational algebra operators. projectV{} applies a scalar expres-
sion to the payload of each vector element and selectV{} filters vector
elements based on the result of a scalar expression.

4.3 flattening collections : the segment vector model 73

• Segmented SL operators express operations on individual segments.
Segmented operators include sortV{} (sorting segments), groupV{}

(grouping segments), distinctV (eliminating duplicates in segments)
and numberV (enumerating elements of segments). Operator reduceV{}
folds segments individually into single scalar values.

• Operators repV and repsegV provide global and per-segment data
replication.

• A number of administrative operators explicitly maintain indexes and
vector relationships. In preceding examples, we have described op-
erators alignV and unboxV{}. Operators segmentV and unsegmentV

modify the outer index of a vector. Every element is placed in the
unit segment (unsegmentV) or in its own singleton segment (segmentV).
Operator mergesegV merges the elements of an inner vector into the
segment structure of an outer vector.

• Operator combineV is a direct counterpart of the FL operator of the
same name. It merges two vectors into one.

• Operators apprepV, appkeyV, appfilterV and appsortV apply the vari-
ous forms of index transformations.

We define a typing relation for SL in Figure 38. Rules SL-ty-stmts and
SL-ty-stmt derive typing contexts for vector programs (we have omitted
the obvious rule variations for statements that bind multiple variables). The
remaining rules derive result types of individual operators. In typing rules,
we distinguish segment vectors and different kinds of index transforma-
tions.

Segment Vector

V ::= D ❲α,β,γ❳
Index Transformations

I ::= Rββ | Kββ | Fβ | Sβ

Recall that α, β and γ range over scalar types. The type D ❲α,β,γ❳ denotes
a segment vector with outer index type α, inner index type β and payload
type γ. Types Rβo βn and Kβo βn denote replication and rekeying trans-
formations mapping from index type βo to βn. Finally, Fβ and Sβ are the
types of filtering and sorting transformations for indexes of type β.

In general, indexes are non-uniform and vectors may have indexes of dif-
ferent types. For operators with more than one operand, the typing rules
specify the constraints that must be fulfilled by the index types. In an ap-
plication of alignV, for example, the inner index type of both operands has
to match (Rule SL-ty-align). Operators like repsegV (Rule SL-ty-repseg)
and unboxV{} (Rule SL-ty-unbox) that relate outer and inner vectors, on the
other hand, require matching inner and outer indexes.

Most operators preserve indexes of their operands. Since repV V1 V2

replicates the elements of V1, neither the inner index of V1 nor V2 iden-
tify elements of the result uniquely. Unique index values for the result are
obtained by pairing index values from both inputs. Operators apprepV and
repsegV also replicate elements and therefore incur the same effect. Group-
ing segments individually (SL-ty-group) produces a new vector in which
the combination of segment identifier and grouping key uniquely identifies
elements.

74 flattening queries

SL-ty-stmts

Γ ⊢ x← o x1 · · ·xn : V Γ ,x :V ⊢ bs ⇒ ∆

Γ ⊢ x← o x1 · · ·xn; bs ⇒ {x :V}∪∆

SL-ty-stmt

Γ ⊢ x← o x1 · · ·xn : V

Γ ⊢ x← o x1 · · ·xn;bs ⇒ {x :V}

SL-ty-table

Σ(t) = γ Φ(t) = γk

Γ ⊢ tableV{t} : D ❲⟨⟩,γk,γ❳
SL-ty-lit

[⊢ si : γ]ni=1

Γ ⊢ litV{[s1, . . . ,sn]} : D ❲⟨⟩, Int,γ❳
SL-ty-project

Γ ⊢ V : D ❲α,β,γ❳ ⊢ s : γ→ γ ′

Γ ⊢ projectV{s} V : D ❲α,β,γ ′❳
SL-ty-distinct

Γ ⊢ V : D ❲α,β,γ❳
Γ ⊢ distinctV V : D ❲α,β,γ❳

SL-ty-select

Γ ⊢ V : D ❲α,β,γ❳ ⊢ s : γ→ Bool

Γ ⊢ selectV{s} V : (D ❲α,β,γ❳,Fβ)

SL-ty-sort

Γ ⊢ V : D ❲α,β,γ❳ ⊢ s : γ→ γ ′

Γ ⊢ sortV{s} V : (D ❲α,β,γ❳,Sβ)

SL-ty-number

Γ ⊢ V : D ❲α,β,γ❳
Γ ⊢ numberV V : D ❲α,β, ⟨γ,Int⟩❳

SL-ty-reduce

Γ ⊢ V : D ❲α,β,γ❳ ⊢ sz : δ ⊢ sf : δ→ γ→ δ

Γ ⊢ reduceV{sz,sf} V : D ❲α,α,δ❳
SL-ty-append

Γ ⊢ V1 : D ❲α,β1,γ❳ Γ ⊢ V2 : D ❲α,β2,γ❳
Γ ⊢ appendV V1 V2 : D ❲α, Int,γ❳

SL-ty-mergeseg

Γ ⊢ Vo : D ❲α,β, ⟨⟩❳ Γ ⊢ Vi : D ❲β,β ′,γ❳
Γ ⊢ mergesegV Vo Vi : D ❲α,β ′,γ❳

SL-ty-align

Γ ⊢ V1 : D ❲α,β,γ1❳ Γ ⊢ V2 : D ❲α,β,γ2❳
Γ ⊢ alignV V1 V2 : D ❲α,β, ⟨γ1,γ2⟩❳

SL-ty-segment

Γ ⊢ V : D ❲α,β,γ❳
Γ ⊢ segmentV V : D ❲β,β,γ❳

SL-ty-unsegment

Γ ⊢ V : D ❲α,β,γ❳
Γ ⊢ unsegmentV V : D ❲⟨⟩,β,γ❳

SL-ty-unbox

Γ ⊢ V1 : D ❲α,β1,γ1❳ Γ ⊢ V2 : D ❲β1,β2,γ2❳ ⊢ s : γ2

Γ ⊢ unboxV{s} V1 V2 : D ❲α,β1, ⟨γ1,γ2⟩❳
SL-ty-rep

Γ ⊢ V1 : D ❲⟨⟩,β1,γ1❳ Γ ⊢ V2 : D ❲α,β2,γ2❳
Γ ⊢ repV V1 V2 : D ❲β2, ⟨β2,β1⟩,γ1❳

SL-ty-repseg

Γ ⊢ V1 : D ❲α1,β1,γ1❳ Γ ⊢ V2 : D ❲β1,β2,γ2❳
Γ ⊢ repsegV V1 V2 : (D ❲β1,β2,γ1❳,Rβ1 β2)

SL-ty-apprep

Γ ⊢ I : Rα1 α2 Γ ⊢ V : D ❲α1,β,γ❳
Γ ⊢ apprepV I V : (D ❲α2, ⟨α2,β⟩,γ❳,Rβ ⟨α2,β⟩)

SL-ty-appkey

Γ ⊢ I : Kα1 α2 Γ ⊢ V : D ❲α1,β,γ❳
Γ ⊢ appkeyV I V : D ❲α2,β,γ❳

SL-ty-appsort

Γ ⊢ I : Sα Γ ⊢ V : D ❲α,β,γ❳
Γ ⊢ appsortV I V : (D ❲α,β,γ❳,Sβ)

SL-ty-appfilter

Γ ⊢ I : Fα Γ ⊢ V : D ❲α,β,γ❳
Γ ⊢ appfilterV I V : (D ❲α,β,γ❳,Fβ)

SL-ty-group

Γ ⊢ V : D ❲α,β,γ❳ ⊢ s : γ→ γ ′

Γ ⊢ groupV{s} V : (D ❲α, ⟨α,γ ′⟩,γ ′❳,D ❲⟨α,γ ′⟩,β,γ❳,Sβ)

SL-ty-combine

Γ ⊢ Vb : D ❲α,β, Bool❳ Γ ⊢ Vt : D ❲α,β,γ❳ Γ ⊢ Ve : D ❲α,β,γ❳
Γ ⊢ combineV Vb Vt Ve : D ❲α,β,γ❳

Figure 38: Typing rules for SL operators.

4.3 flattening collections : the segment vector model 75

4.3.2.2 Semantics of Vector Operators

In order to define the semantics of vector programs and vector operators
precisely, we define a list interpretation SJ−Kρ of vector programs in terms
of ML.

We interpret sequences of statements by constructing an environment that
maps variables to the result of vector operators (i.e. segment vectors and in-
dex transformations). For each statement, the (initially empty) environment
ρ is extended with the respective binding. As for typing rules, we omit the
trivial rule variations that handle statements binding multiple variables.

SJx← o x1 · · · xnKρ = ρ [x 7→ SJo x1 · · · xnKρ] (SL-stmt)

SJx← o x1 · · · xn;bsKρ = (SL-stmts)

SJbsKρ[x 7→V] where V = SJo x1 · · · xnKρ
The interpretation of statements does not depend on the concrete list inter-
pretation of vectors. We may plug in any alternative interpretation of vector
operators. In Chapter 6, we define the lowering of vector programs to an
unordered multiset algebra as such an alternative interpretation.

We now discuss briefly the various categories of SL operators. All opera-
tors are interpreted by mapping to list combinators and list comprehensions
in ML. As all ML constructs involved preserve the order of list elements,
the order of vector elements and segments does not change. This enables
us to translate list-based FL queries to SL programs without having to con-
sider the preservation of list order explicitly. We first flatten data and care
about the concrete implementation of list order afterwards when lowering
to backend-specific collection types.

table references , literal lists Tables references and literal lists
are handled in a way identical to the indexed semantics of FL programs
defined in Section 4.2.1. For base tables, both order and indexes are derived
from their primary key. Indexes for literal tables are the enumeration of list
elements.

SJtableV{t}Kρ = (SL-table)

[❲⟨⟩, pkt(x), x❳ | x← sortWith (λx. pkt(x)) JtK]

SJlitV{[v1, . . . , vn]}Kρ = [❲⟨⟩, 1, Jv1K❳, . . . , ❲⟨⟩,n, JvnK❳] (SL-lit)

projection, selection Simple list comprehensions suffice to imple-
ment projectV{} and selectV{}. Crucially, the order of vector elements
does not change.

SJprojectV{s} VKρ = [❲x.s, x.k, JsK x.p❳ | x← ρ(V)] (SL-project)

SJselectV{s} VKρ = (SL-select)

let vr = [x | x← ρ(V), JsK x.p]

m = [x.k | x← vr]

in (vr, m)

segmented operators The interpretation of segmented operators fol-
lows a uniform pattern: we first compute an explicit list of segments from

76 flattening queries

the vector. From the list representation of a vector, combinator segs com-
putes a list of pairs of outer indexes and corresponding segments:

segs xs = [⟨r, [x | x← xs, x.s = r]⟩
| r← nub [x.s | x← xs]

Note that segs preserves the order of segments as well as the order of indi-
vidual vector elements. The actual computation is then performed on each
segment individually by mapping the corresponding ML combinator over
the list of segments.

SJdistinctV VKρ = (SL-distinct)

concat [nubWith πp seg.2 | seg← segs ρ(V)]

SJnumberV V Kρ = (SL-number)

concat [[❲x.1.s, x.1.k, ⟨x.1.p, x.2⟩❳ | x← enum seg.2]

| seg← segs ρ(V)]

SJsortV{s} VKρ = (SL-sort)

let vr = concat [sortWith (JsK ◦ πp) seg.1 | seg← segs ρ(V)]

m = [x.k | x← vr]

in (vr, m)

SJreduceV{sz, sf} VKρ = (SL-reduce)

[❲seg.1, seg.1, foldl (JsfK ⊘ πp) JszK seg.2❳ | seg← segs ρ(V)]

Although it follows the same pattern as other segmented operators, the
interpretation of groupV{} stands out in being somewhat complex. The
complexity stems from the fact that by grouping individual segments, we
obtain a list of groups g for each segment, i.e. increase the level of list nest-
ing. Each segment of the original input is split into a number of segments.
Rule SL-group explicitly derives the corresponding vector representation:
the contents of all groups are consolidated in one inner vector (vi) and an
outer vector (vo) is established with a valid index relationship based on orig-
inal outer indexes and grouping keys.

SJgroupV{s} VKρ = (SL-group)

let gs = [⟨⟨seg.1, g.1⟩, g.2⟩
| seg← segs ρ(V), g← groupWith (JsK ◦ πp) seg.2]

vo = [❲x.1.1, x.1, x.1.2❳ | x← gs]

vi = concat [[❲g.1, x.k, x.p❳ | x← g.1.3]

| g← gs]

m = [x.k | x← vi]

in (vo, vi, m)

SJappendV V1 V2Kρ = (SL-append)

let i1 = [⟨❲x.1.s, ⟨1, x.2⟩, x.1.p❳, x.1.k⟩ | x← enum ρ(V1)]

m1 = [⟨f = x.2, t = x.1.k⟩ | x← i1]

i2 = [⟨❲x.1.s, ⟨2, x.2⟩, x.1.p❳, x.1.k⟩ | x← enum ρ(V2)]

m2 = [⟨f = x.2, t = x.1.k⟩ | x← i2]

va = sortWith (λx.⟨x.s, x.p⟩) (i1 ++ i2)

in (va, m1, m2)

4.3 flattening collections : the segment vector model 77

replication Replication of vectors (Rule SL-rep) and replication of in-
dividual elements per segment (Rule SL-repseg) is implemented through
list comprehensions with multiple generators. While Rule SL-rep copies
a complete vector, Rule SL-repseg restricts to matching pairs of inner and
outer index. Note that the order of generators in the main comprehension
of Rule SL-rep keeps the individual copies of the segment from V1 dense:
elements of different segments are not mixed.

SJrepV V1 V2Kρ = [❲x.k, ⟨x.k, y.k⟩, y.p❳ | x← ρ(V2), y← ρ(V1)]
(SL-rep)

SJrepsegV V1 V2Kρ =

let vp = [⟨❲x.s, x.k, y.p❳, y.k⟩
| x← ρ(V2), y← ρ(V1), x.k = y.s]

v = [x.1 | x← vp]

m = [⟨f = x.1, t = x.1.k⟩ | x← vp]

in (v,m)

(SL-repseg)

administrative operators Except for unboxV{}, all administrative
operators are defined through simple list comprehensions. Based on the
index of the outer vector, Rule SL-unbox determines any empty or missing
segments in the inner vector and inserts the default value for them. Note
that Rule SL-unbox critically relies on singleton segments in the inner vec-
tor.

SJmergesegV V1 V2Kρ = (SL-mergeseg)

[❲x.s, y.k, y.p❳ | x← ρ(V1), y← ρ(V2), x.k = y.s]

SJalignV V1 V2Kρ = (SL-align)

[❲x.s, x.k, ⟨x.p, y.p⟩❳ | x← ρ(V1), y← ρ(V2), x.k = y.k]

SJsegmentV VKρ = [❲x.k, x.k, x.p❳ | x← ρ(V)] (SL-segment)

SJunsegmentV VKρ = [❲⟨⟩, x.k, x.p❳ | x← ρ(V)] (SL-unsegment)

SJunboxV{s} Vo ViKρ = (SL-unbox)

concat [if null r

then [❲x.s, x.k, ⟨x.p, JsK⟩❳]
else [❲x.s, x.k, ⟨x.p, y.p⟩❳ | y← seg.2]

| x← ρ(Vo), seg← segs ρ(Vi), x.k = seg.2]

SJcombineV Vb V1 V2Kρ = (SL-combine)

[❲x.s, x.k, y.p❳
| x← ρ(Vb), y← ρ(V1) ++ ρ(V2), x.k = y.k]

78 flattening queries

index transformations

SJapprepV I VKρ = (SL-apprep)

let vp = [⟨⟨x.t, y.k⟩, y.p⟩ | x← ρ(I), y← ρ(V), y.f = x.s]

v = [❲x.1.1, x.1, x.2❳ | x← vp]

m = [⟨f = x.1.2, t = x.1⟩ | x← vp]

in (v, m)

SJappkeyV I VKρ = (SL-appkey)

[❲x.t, y.k, y.p❳ | x← ρ(I), y← ρ(V), x.f = y.s]

SJappfilterV I VKρ = (SL-appfilter)

let vp = [y | x← ρ(I), y← ρ(V), x = y.s]

m = [x.k | x← vp]

in (v, m)

SJappsortV I VKρ = SJappfilterV I VKρ (SL-appsort)

4.3.2.3 Implementing Vector Operators

The list interpretation SJ−K of SL operators not only defines their semantics.
It also outlines the constructs required of concrete backends to evaluate SL,
and thus the nested calculus CL. Despite the rather large and specific set of
operators comprising SL, these requirements are modest. All SL operators
can be expressed with comprehensions over flat collections, complemented
with a couple of list combinators (e.g. sortWith).

All inputs and results produced by SJ−K are flat. From the perspective of
query languages, the comprehension-based implementation of SL operators
matches familiar calculus patterns that express joins and projections. Hence,
we can expect that most SL operators map directly to relational operators.

Only segmented list operators do not fit this picture. In the implemen-
tation of those, we use nested intermediate results to represent segments
explicitly. This is not mandatory and does not hinder lowering to a backend
with flat collections. In defining SJ−K, we have restricted ourselves to list
combinators of ML to be on common semantical ground with the definition
of CL and FL. Explicitly materializing segments allows the implementation
of segmented operations with those regular list operations. Actual backend
implementations can use efficient implementations of individual segment
operators that do not materialize nested data. In Chapter 6, for example, we
demonstrate that the bulk processing primitives of flat relational algebra are
perfectly sufficient to express all segmented operations efficiently.

We consider multiple implementation alternatives for SL. Among other
things, the representation of list order characterizes potential backends.

1. We may lower flat, ordered vectors to unordered multisets and trans-
late SL to relational algebra. Following this way, we can generate SQL
code and target relational query engines. A key challenge in this set-
ting is to preserve the order semantics of SL on unordered multisets
while minimizing the order constraints in relational queries. In the
remainder of this thesis, we follow this route (Chapter 6).

2. We may closely adhere to the order semantics of SL and lower vectors
to physically ordered collections. Order-preserving backend primi-
tives can preserve the order of vector elements without additional
effort. Segmented SL operations can be implemented with existing

4.3 flattening collections : the segment vector model 79

primitives. Alternatively, we may add specialized primitives that di-
rectly support individual segmented operations efficiently and take
the specifics of the vector model into account.

Advised by the author of this thesis, Bruder [Bru17] describes an im-
plementation of SL on top of MonetDB’s MAL [MKB09] algebra. The
code generator maps ordered segment vectors to MonetDB’s ordered
BATs. It exploits the order-preserving nature of MAL operators to
maintain that physical order without sorting effort. Certain SL opera-
tors (e.g. alignV) then come for free. Furthermore, the dense storage
of segments can be exploited for some operations: if elements of differ-
ent segments are not interleaved, a single scan over a BAT is sufficient
to implement reduceV{}, for example. Bruder compares the runtime
of MAL code generated with this backend to SQL:2003 code generated
with the relational backend described in Chapter 6. For some queries,
the MAL backend is considerably faster.

There is no reason to target only full-blown relational database man-
agement systems. Recently, a number of low-level intermediate query
representations have been proposed that serve as a starting point for
compilation to native code: ScaLite [Sha+16], Voodoo [Pir+16] and
Weld [Pal+17]. These intermediate representations are centered around
flat lists and arrays and could be targetted to enable compiled in-
memory execution of SL programs.

4.3.3 Shredding FL Expressions

So far, we have defined segment vectors and the shredding of list values
into vectors. We have also defined SL, a language over segment vectors.
Now, we add the last building block of Query Flattening: the shredding of
FL expressions. For each construct of FL, we define its implementation in
terms of a sequence of SL operators on the flat representation.

translation by typing To organize the translation, we exploit the di-
rect correspondence between a list type and the vector structure of its flat
representation. Translation to SL takes the form of inference rules that de-
fine a relation e ⦂ ρ to derive a shredded package ρ for expression e. The
package ρ has the same structure as the regular type inferred according to
rules in Figure 27. List type constructors in shredded packages are anno-
tated with vector variable names. As a side effect, shredding rules emit
sequences of SL statements that bind the vector variables.

As an example, consider the shredding rules for literal lists (shred-lit)
and table references (shred-table). Each rule emits one SL statement. We
enclose the sequence of statements emitted in [·] brackets. The flat list type
inferred for both constructs is annotated with the name bound by the re-
spective SL operator.

shred-table

[V ← tableV{t}]

Γ ⊢ table(t) ⦂ [Σ(t)]V

shred-lit

[⊢ Vi : π]ni=1 [V ← litV{[v1, . . . ,vn]}]

Γ ⊢ [v1, . . . ,vn] ⦂ [π]V

Statements emitted by shredding rules are appended to a global sequence
of statements that is initially empty. As type inference rules describe a
bottom-up traversal of expressions, we obtain a linear sequence of SL state-
ments that describe the SL program and compute all vectors that make up

80 flattening queries

the query result. We assume all variable names bound by vector statements
to be unique, such that no shadowing occurs.

evaluating shredded terms The result of lowering a FL expression
consists of two components: (1) the complete vector program emitted by
shredding rules, together with (2) the inferred shredded package that refer-
ences individual results of that vector program. Together, these provide all
information required to evaluate a shredded FL expression and assemble
the nested list result from flat vectors. Evaluating a vector program with
SJ−Kρ (Section 4.3.2.2) results in an environment ρ that maps each name
bound in the vector program to a vector or index transformation value, i.e.
a flat list. Traversing the shredded type and replacing each vector name with
the corresponding vector value results in a shredded package from which
the nested result can be reconstructed with stitch(−). Any alternative inter-
pretation of vector programs can be plugged in instead of SJ−Kρ to execute
flattened queries on actual backends (e.g. Chapter 6).

plan sharing In introductory SL examples, we have seen the result of
individual operators being referenced multiple times (e.g. Figures 34 to 36).
In general, shredding of FL expressions exposes sharing and the resulting
vector programs are DAG-shaped. Information about sharing can be ex-
ploited during backend code generation to reuse intermediate results. Some
instances of sharing are observable in the FL term (variables being refer-
enced multiple times), others are exposed by shredding rules (e.g. operators
like groupV{} with multiple results). In other cases, independent rule ap-
plications emit the same operators on the same arguments. In shredding
rules, we consider sharing only to the extent described above. However,
standard implementation techniques (e.g. hash consing) can be used to re-
cover sharing of operator results completely and exploit it for backend code
generation.

4.3.3.1 Shredding Rules

We present in turn shredding rules for the various categories of FL con-
structs. Together, these rules constitute a compositional translation from
FL to SL. FL operators are translated uniformly and independent of their
enclosing expression.

bindings , variables let-bindings are handled as in regular typing
rules. The type for e2 is inferred in a type context Γ extended with the
shredded type inferred for e1. Variable references are simple lookups in the
type context.

shred-let

Γ ⊢ e1 ⦂ ρ1 Γ , x : ρ1 ⊢ e2 ⦂ ρ2

Γ ⊢ let x = e1 in e2 ⦂ ρ2

shred-var

x : ρ ∈ Γ

Γ ⊢ x ⦂ ρ

shape operations Shape operations forgetd and imprintd work ex-
clusively on the shredded package and do not emit any vector operators.
Flattening the list structure comes down to removing the outer d list type
constructors and returning the inner shredded list type constructor [t]V .
Restoring the list structure works analogously by re-adding the outer d an-
notated list type constructors.

4.3 flattening collections : the segment vector model 81

shred-forget

Γ ⊢ e ⦂ [. . . [[ρ]V]Vd . . .]V1

Γ ⊢ forgetd e ⦂ [ρ]V

shred-imprint

Γ ⊢ e1 ⦂ [. . . [ρ1]
Vd . . .]V1 Γ ⊢ e2 ⦂ [ρ2]

V

Γ ⊢ imprintd e1 e2 ⦂ [. . . [[ρ2]
V]Vd . . .]V1

scalar operators SL provides a binary alignV operator that aligns
two vectors and constructs pairs of payload values. In the following rules,
it is convenient to assume an n-ary alignV operator that aligns n vectors
and constructs n-tuples of payload values. The latter operator can be easily
implemented with n− 1 applications of regular alignV and one projectV{}.

With Rule shred-base-op, we shred data-parallel atomic primitives. We
align the vectors v1, . . . , vn for all arguments based on their inner index and
implement the actual operation with projectV{}.

shred-base-op

Σ(c(_, . . . ,_)) = π1 → · · · → πn → π

[Γ ⊢ ei ⦂ [πi]
Vi]ni=1

[
Vt← alignV V1 · · · Vn

V ← projectV{λx.c(x.1, . . . ,x.n)} Vt

]
Γ ⊢ c(e1, . . . ,en)

↑ ⦂ [π]V

Implementing record construction (Rule shred-record) and record se-
lection (Rule shred-record-sel) also comes down to aligning vectors and
manipulating their payload. In both rules, we have to preserve any inner
vectors. As inner vectors are organized in the packages of operands ei, this
happens automatically through the construction of the result package.

shred-record

[Γ ⊢ ei ⦂ [ρi]
Vi]ni=1

[
Vt← alignV V1 · · · Vn

V ← projectV{λx.⟨ℓi = x.i⟩ni=1} Vt

]
Γ ⊢ ⟨ℓi = ei⟩↑i=1,...,n ⦂ [⟨ℓi:ρi⟩ni=1]

V

shred-record-sel

Γ ⊢ e ⦂ [⟨. . . , ℓ:t, . . .⟩]Vr [V ← projectV{λx.x.ℓ} Vr]

Γ ⊢ e.ℓ↑ ⦂ [ρ]V

replication To implement the data replication operator ⊗, we employ
its SL counterpart repV to construct the inner vector with replicated seg-
ments (Figure 35). The vector representation of operand e2 serves as the
template for the outer vector Vo. Only its payload has to be replaced with
the placeholder value ⟨⟩ for inner lists.

shred-dist

Γ ⊢ e1 ⦂ [δ]V1 Γ ⊢ e2 ⦂ [ρ]V2

[
Vo← projectV{λx.⟨⟩} V2

Vi ← repV V1 V2

]
Γ ⊢ e1 ⊗ e2 ⦂ [[δ]Vi]Vo

The SL implementation of ⊗↑ with repsegV also has been demonstrated
in Figure 35.

82 flattening queries

shred-dist-lift

Γ ⊢ e1 ⦂ [ρ1]
V Γ ⊢ e2 ⦂ [[ρ2]

Vi]Vo
[
(Vj,I)← repsegV V Vi

]
Γ ⊢ e1 ⊗↑ e2 ⦂ [[⟬ ρ1 ⟭ I]

Vj]Vo

The index transformation I returned by repsegV describes the replication
of elements of V. This transformation has to be applied to any inner vectors
related to V. Inner vectors are found as annotations on list type constructors
in the element package ρ1. Function ⟬− ⟭− propagates a replicating index
transformation recursively through a shredded package:

⟬π ⟭ I = π

⟬ ⟨ℓi:ρi⟩ni=1 ⟭ I = ⟨ℓi: ⟬ ρi ⟭ I⟩ni=1

⟬ [ρ]V ⟭ I = [⟬ ρ ⟭ I ′]
V ′[

(V ′,I ′)← apprepV I V
]

The special case of replicating a constant scalar value comes down to a
simple projection.

shred-dist-scalar

⊢ v : π Γ ⊢ e ⦂ [τ]V
[
V ′ ← projectV{λx.v} V

]
Γ ⊢ rep{v} e ⦂ [π]V

′

data-parallel list ops The implementation of restrict↑ has been
sketched in Figure 36 and is defined in Rule shred-restrict-lift. Operator
selectV{} generates a filtering index transformation I that eliminates stale
segments from inner vectors. We use function ⦗ − ⦘− to propagate this
transformation into ρ. Function ⦗ − ⦘− emits operator appfilterV instead
of apprepV, but is otherwise equivalent to ⟬ _ ⟭ _.

shred-restrict-lift

Γ ⊢ e ⦂ [[⟨ρ,Bool⟩]Vi]Vo

[
(Vs,I)← selectV{λx.x.2} Vi

Vp ← projectV{λx.x.1} Vs

]
Γ ⊢ restrict↑ e ⦂ [[⦗ ρ ⦘ I]

Vp]Vo

Most lifted list combinators are implemented as demonstrated in Fig-
ures 32 and 34: they map directly to segmented vector operators. Note
that groupV{} (Rule shred-group-lift) and sortV{} (Rule shred-sort-lift)
return sorting transformations. Function ⦑ − ⦒− propagates these transfor-
mations and is defined analogously to ⟬− ⟭−. Sorting transformations are
applied by operator appsortV.

4.3 flattening collections : the segment vector model 83

shred-distinct-lift

Γ ⊢ e ⦂ [[δ]Vi]Vo [V ← distinctV Vi]

Γ ⊢ distinct↑ e ⦂ [[δ]V]Vo

shred-number-lift

Γ ⊢ e ⦂ [[ρ]Vi]Vo [V ← numberV Vi]

Γ ⊢ #↑ e ⦂ [[⟨ρ,Int⟩]V]Vo

shred-sort-lift

Γ ⊢ e ⦂ [[⟨ρ,δ⟩]Vi]Vo

[
(Vs,I)← sortV{λx.x.2} Vi

V ← projectV{λx.x.1} Vs

]
Γ ⊢ sort↑ e ⦂ [[⦑ ρ ⦒ I]V]Vo

shred-group-lift

Γ ⊢ e ⦂ [[⟨ρ,δ⟩]Vi]Vo

(Vk, Vg, I)← groupV{λx.x.2} Vi

V ′g ← projectV{λx.x.1} Vg

V ′k ← projectV{λx.⟨x, ⟨⟩⟩} Vk

Γ ⊢ group↑ e ⦂ [[⟨δ,[⦑ ρ ⦒ I]V

′
g⟩]V

′
k]Vo

All aggregate functions are implemented through the same sequence of
SL operators as demonstrated in Figure 33. In Rule shred-agg-lift, we map
the lifted reduce combinator to the segment folding operator reduceV{}.

shred-agg-lift

Γ ⊢ e ⦂ [[τ]Vi]Vo

⊢ sz : δa

Vf ← reduceV{sz, sf} Vi

Vu← unboxV{sz} Vo Vf

V ← projectV{λx.x.2} Vu

Γ ⊢ reduce{sz, sf}↑ e ⦂ [δa]

V

In contrast to other parallel list operations, sng↑ and concat↑ do not map
to segmented SL operators. These two exclusively modify the list nesting
structure. Their vector implementations, accordingly, only modify the seg-
ment structure of the vectors involved. Note that neither segmentV nor
mergesegV modify the shape and inner index of a vector. The index rela-
tionship with any inner vectors is not affected.

shred-sng-lift

Γ ⊢ e ⦂ [ρ]V
[
Vo← projectV{λx.⟨⟩} V

Vi ← segmentV V

]
Γ ⊢ sng↑ e ⦂ [[ρ]Vi]Vo

shred-concat-lift

Γ ⊢ e ⦂ [[[ρ]Vi]Vm]Vo
[
V ′i ← mergesegV Vm Vi

]
Γ ⊢ concat↑ e ⦂ [[ρ]V

′
i]Vo

appending lists Shredding of the lifted combinator append↑ is speci-
fied by shred-append-lift. Primarily, it uses operator appendV to append
each pair of corresponding segments in Vi·1 and Vi·2.

shred-append-lift

Γ ⊢ e1 ⦂ [[ρ]Vi·1]Vo·1

Γ ⊢ e2 ⦂ [[ρ ′]Vi·2]Vo·2 [(Va, I1, I2)← appendV Vi·1 Vi·2]

Γ ⊢ append↑ e1 e2 ⦂ [[⦉ ρ ⦊ I1 ⊔ ⦉ ρ
′ ⦊ I2]

Va]Vo

84 flattening queries

Two aspects of append↑ require special consideration. First, operator
appendV derives new unique indexes for its result vector Va: each element
of vectors Vi·1 and Vi·2 is mapped to a new inner index which is unique in
Va. The mapping of indexes is described by the rekeying transformations
I1 and I1 which are applied to the respective packages by function ⦉ − ⦊−.
In contrast to other forms of index transformations, however, rekeying trans-
formations do not need to be propagated recursively through the package
— a rekeying transformation describes a 1:1-mapping.

⦉π ⦊ I = π

⦉ ⟨ℓi:ρi⟩ni=1 ⦊ I = ⟨ℓi: ⦉ ρi ⦊ I⟩ni=1

⦉ [ρ]V ⦊ I = [ρ]V
′[

V ′ ← appkeyV I V
]

Second, it is not sufficient to only apply the top-level vectors. Any vectors in
the element packages need to be appended as well. Function −⊔− appends
two packages with the same structure by recursively appending each pair
of vectors.

π⊔ π = π

⟨ℓi:ρi⟩ni=1 ⊔ ⟨ℓi:ρ
′
i⟩

n
i=1 = ⟨ℓi:ρi ⊔ ρ ′i⟩

n
i=1

[ρ]V ⊔ [ρ ′]V
′
= [⦉ ρ ⦊ I1 ⊔ ⦉ ρ

′ ⦊ I2]
Va[

(Va, I1, I2)← appendV V V ′
]

If the element packages of branch results merged by combine↑ contain
inner vectors, these are merged by −⊔− as well.

shred-combine-lift

Γ ⊢ eb ⦂ [[Bool]Vb]Vo

Γ ⊢ et ⦂ [[ρ]Vt]Vo·1

Γ ⊢ ee ⦂ [[ρ ′]Ve]Vo·2 [V ← combineV Vb Vt Ve]

Γ ⊢ combine↑ eb et ee ⦂ [[ρ⊔ ρ ′]V]Vo

non-parallel operations FL includes a small set of non-parallel list
operators (restrict, combine and concat) that are applied to single list-
typed arguments. The flat representation of such a list is an outer vector
that contains the unit segment.

Shredding of the former two operations is mostly identical to their data-
parallel variants (Rules shred-restrict-lift and shred-combine-lift). Both
SL operators selectV{} and combineV work on the basis of individual vector
elements and are oblivious to the segment structure.

shred-combine

Γ ⊢ eb ⦂ [Bool]Vb

Γ ⊢ et ⦂ [ρ]Vt

Γ ⊢ ee ⦂ [ρ ′]Ve [V ← combineV Vb Vt Ve]

Γ ⊢ combine eb et ee ⦂ [ρ⊔ ρ ′]V

shred-restrict

Γ ⊢ e ⦂ [⟨ρ,Bool⟩]V
[
(Vs,I)← selectV{λx.x.2} V

Vp ← projectV{λx.x.1} Vs

]
Γ ⊢ restrict e ⦂ [⦗ ρ ⦘ I]

Vp

4.3 flattening collections : the segment vector model 85

For concat, we can define a more efficient implementation than for its
lifted counterpart concat↑. As the argument is a top-level list, we know that
the outer vector Vo consists only of the unit segment. Explicit merging of
segments in this case is not necessary. Instead, we simply discard Vo and
replace the outer index of Vi with ⟨⟩ using unsegmentV.

shred-concat

Γ ⊢ e ⦂ [[ρ]Vi]Vo [V ← unsegmentV Vi]

Γ ⊢ concat e ⦂ [ρ]V

4.3.3.2 Running Example Shredded

As an example for vector programs obtained via shredding, we show the
SL form of the running example Query Q2 in Figure 39. To make it easier
to read, we do not show the sequence of SL statements but use the form
of a data-flow plan as in Figure 30. Evaluated via some interpretation of
vector programs (e.g. SJ−K), it provides a flat implementation of the nested
CL query.

The SL program solely describes the runtime aspect of the original FL
expression, i.e. the actual computation on vector elements. In particular,
the plan shows no traces of the flattening and unflattening of vectors with
shape operators. Information about the relationship between vectors is only
maintained in the annotations of the result package [⟨Order,[Lineitem]⟩],
i.e. compile-time meta information.

With lifting and shredding, we obtain comprehensible flat implementa-
tions. Due to the compositionality of the translation scheme, the structure
of the SL program can be easily related to the structure of the original FL
expression. The runtime aspect of each FL operator is implemented as a
small group of SL operators.

The structure of the SL plan also reflects the structure of iteration scopes
in the SL expression: references to variables that make up the parallel en-
vironment manifest in the reuse of vector operator results. Concretely, the
plan fragments arising from ⊗ and restrict↑ represent the FL expressions
bound to variable l in the parallel environments — in the original CL expres-
sion, these are the iterator variables l of the inner iterators. Any occurrence
of l in the inner iteration scopes manifests in the DAG-shaped SL plan as a
reference to the corresponding vector operator.

4.3.4 Optimizing SL

It is apparent in Figure 39 that scalar computations in SL programs obtained
by shredding are handled rather inefficiently. For example, the computation
of the predicate expression _.ok↑ =↑ _.ok↑ is split among three projectV{}

operators. Likewise, pair construction for the outer vector is mapped to
an alignV operator that essentially aligns tableV{os} with itself. These
fine-grained patterns are due to the compositional nature of the translation
scheme. FL operators are translated in isolation and each SL operator im-
plements one specific FL operator.

On any conceivable backend, directly lowering SL programs obtained by
shredding will lead to inefficient backend code. Every operator results in an
intermediate vector. A backend that materializes intermediate results will
be constrained by memory bandwidth due to the multitude of intermedi-
ate vectors. Problems caused by the excessive materialization of intermedi-

86 flattening queries

tableV{os}tableV{ls}

repV

repsegV

projectV{λx.x.ok} projectV{λx.x.ok}

alignV

projectV{λx.x.1 = x.2}

alignV

projectV{λx.⟨x.1, x.2⟩}

selectV{λx.x.2}

projectV{λx.x.1}

repsegV
projectV{λx.x.sd}

projectV{λx.x.od}

alignV

projectV{λx.x.1 - x.2}

alignV

projectV{λx.⟨x.2, x.1⟩}

sortV{λx.x.1}

projectV{λx.x.1}

projectV{λx.⟨⟩}

alignV

projectV{λx.⟨x.1, x.2⟩}

table(ls) table(os)

⊗

⊗↑

_ =↑ _

⟨_, _⟩↑

restrict↑

⊗↑

_ -↑ _

⟨_, _⟩↑

sort↑

_.sd↑

_.od↑

_.ok↑ _.ok↑

⟨_, _⟩↑

[⟨Order,[Lineitem]⟩]

Figure 39: SL implementation of the running example Query Q2 on flat vectors, de-

rived by shredding. Boxes mark groups of operators that implement
specific FL operators.

4.3 flattening collections : the segment vector model 87

ate results in vectorized programs have been noted both in the domain of
data-parallelism [Kel+12; Ber+13] and column-store query engines [BZN05].
On backends that do implement pipelining and avoid the materialization
of intermediate results, the size and complexity of plans nevertheless is
likely to cause problems: Rittinger [Rit11], for instance, describes problems
with large relational algebra plans generated by Loop-Lifting (see also Sec-
tion 2.2.2). The underlying problem is the compositionality of the Query
Flattening translation scheme that considers each sub-expression indepen-
dently. Grust et al. call this the “compositionality threat” [GMR09].

Instead of dealing with this problem in a backend-specific manner, we
reshape SL programs before lowering them. The goal is a more coarse-
grained handling of scalar expressions. A set of straightforward rewrite
rules suffices to simplify SL programs significantly. We sketch the rewrites
in DAG plan form on specific patterns in Figure 39. In their general form,
rewrites are stated as pattern matches on sequences of statements in an SL

program.

projection We move projectV{} operators towards the top of the plan
by pulling them through other operators. The goal is to move projectV{}

next to other operators to expose inlining opportunities.

• Projections are pulled through alignV operators:

V1 projectV{λx.x.1 = x.2}

V2

alignV

V1 V2

alignV

projectV{λx.⟨x.1, x.2.1 = x.2.2⟩}

⇝

A symmetric rewrite pulls projections from the left input of an alignV

operator.

• Adjacent projections are fused:

projectV{λx.⟨x.1, x.2.1 = x.2.2⟩}

projectV{λx.⟨x.1, x.2⟩}
⇝ projectV{λx.⟨x.1, x.2.1 = x.2.2⟩}

• Projections are pulled through operators like selectV{} and sortV{}:

projectV{λx.⟨x.1, x.2.1 = x.2.2⟩}

selectV{λx.x.2}

selectV{λx.x.2.1 = x.2.2}

projectV{λx.⟨x.1, x.2.1 = x.2.2⟩}
⇝

Similar rewrites pull projectV{} operators through most other SL operators.
The correctness of these rewrites is easily verified based on the semantics of
operators in terms of list comprehensions.

alignment Pulling projections up fuses scalar computations. Addition-
ally, it clears the way for the elimination of alignV{} operators.

• If a vector is aligned with itself, the alignV operator is replaced with
a projection.

tableV{os}

alignV

tableV{os}

projectV{⟨x, x⟩}
⇝

88 flattening queries

• Stacked alignV operators are eliminated if they refer to the same input.

V1 V2

alignV

alignV

V1 V2

alignV

projectV{⟨x.1, x⟩}

⇝

Variations of this rewrite eliminate all stacked alignV operators that
refer to the same input.

conditionals Consider the following CL expression in which a condi-
tional is iteratively evaluated:

[if x > 5 then x + 42 else 0 | x← xs]

Conditionals are uniformly lifted and shredded into a branch-free form
based on the SL combineV operator (Rule lift-cond). The general branch-
free form is necessary to implement conditionals in which either the condi-
tion or a branch expression features complex, list-typed expressions.

In this example, however, all expressions involved are purely scalar. The
projectV{} and alignV rewrites discussed so far will reshape any such
scalar conditional into the following form:

V

selectV{λx.x > 5}

projectV{λx.x + 42}

selectV{λx.not (x > 5)}

projectV{λx.0}

projectV{λx.x > 5}

combineV

Here, we see another instance of non-optimal code due to the composition-
ality of the translation scheme. Although the plan features only one input
vector V, this input is split into three vectors for the condition and both
branches. The result of all sub-expressions is explicitly materialized in inter-
mediate vectors. These intermediate vectors have to be merged. Selections
and combineV have non-trivial runtime cost on any conceivable backend.

Fortunately, this conditional pattern is easy to recognize in a rewrite. Cru-
cially, both selections and the projection in the leftmost combineV input fea-
ture the same scalar expression (only negated in the rightmost input). SL

offers a much simpler alternative to evaluate scalar conditionals on a vector.
Abandoning the branch-free implementation, we rewrite this pattern into
the following form

V

projectV{λx.if x > 5 then x + 42 else 0}

In effect, scalar conditionals are specialized from the general form and eval-
uated without any intermediate vectors and expensive operators.

plan shape With SL rewrites, we simplify the SL program for Query Q2

into the form depicted in Figure 40. With respect to scalar computations,
this plan behaves much better than the original one. The number of oper-
ators and thus the number of intermediate results is considerably smaller.

4.3 flattening collections : the segment vector model 89

tableV{os}tableV{ls}

repV

repsegV

alignV

selectV{λx.x.1.ok = x.2.ok}

repsegV

alignV

sortV{λx.x.2.od - x.1.1.sd}

projectV{λx.x.1.1} projectV{λx.⟨x, ⟨⟩⟩}

[⟨Order,[Lineitem]⟩]

Figure 40: Running example Query Q2 with SL optimizations applied. The plan
region marked red effectively describes the cartesian product of os and
ls while the region marked blue describes their join.

90 flattening queries

The predicate and sorting keys for selectV{} and sortV{} are no longer
materialized in intermediate vectors.

The optimized SL plan is no longer obstructed by scalar computations
and we can clearly see the iteration structure of the original CL query. Itera-
tion and variable scopes are directly reflected in the plan. For the inner iter-
ation scopes, operators repV and repsegV provide the flattened bindings for
the parallel variables o and l, originally bound by iterators. With these two
operators, the region marked red in Figure 40 computes all combinations of
orders and line items in the required segment structure — the nested-loops
semantics of nested iterations turns into data replication. Only afterwards
are these combinations restricted to the matching ones by selectV{}.

Query Flattening enables a flat comprehension of nested iteration and nes-
ted collections. The SL program in Figure 40 describes the semantics of the
nested input query in flat form. Clearly, however, it does not describe a
reasonable evaluation strategy. Directly evaluating it leads to a large inter-
mediate result. Only a small portion of it is actually relevant and survives
the selection.

Let us disregard for a moment the segment structure necessary to cor-
rectly represent the nested query result. The plan region marked red es-
sentially describes the cartesian product of tables os and ls. Together with
the selection (plan region marked blue), it describes an equi-join. Joins are
fundamental primitives of query engines, backed by efficient implementa-
tions with sorting, hashing or based on indexes [Gra93]. Merging cartesian
products and selections into joins is a standard measure of any logical query
optimizer [JK84].

Once we lower the SL program to backend code, however, a backend op-
timizer will have a hard time introducing a join. The plan does not fit the
standard σ-×-patterns expected by query optimizers. Additionally, back-
end code will be further complicated by having to maintain the segment
structure and — for an unordered backend — order information.

On a slightly higher level of abstraction, we can introduce additional SL
rewrites that recognize certain patterns of SL operators and rewrite them
into specialized operators. Arbitrarily nested lists and nesting of iterators al-
lowed in the orthogonal language CL lead to a considerable diversity in the
SL patterns that have to be considered. Furthermore, SL rewrites critically
have to maintain segment structure. As a consequence, an SL optimizer that
fundamentally reshapes the structure of SL queries requires a complicated
rule set. In our work, relying on SL rewrites alone to obtain good backend
queries turned out not to be a viable option.

Instead, we take a more high-level approach in Chapter 5. There is no
reason to change the query structure into more efficient forms only after
flattening. Optimization and deriving a flat implementation are actually or-
thogonal. As we are mainly interested in specializing the iteration structure
into more efficient forms, we optimize CL queries before flattening. Here,
the iteration structure is most clearly available.

4.4 extensibility

In this chapter we have described Query Flattening for CL with a fixed set of
built-in list combinators. However, Query Flattening can be easily extended
with new list combinators. Note that lifting treats all built-in combinators
uniformly with Rule lift-builtin. No changes to lifting are necessary to
support an additional combinator p as long as we can supply a data-parallel

4.5 related work 91

version p↑ of the combinator. To integrate p↑ with shredding and implement
it on segment vectors, we only have to provide one additional shredding
rule.

As an example, consider adding a scan{} combinator to CL that has the
following typing rule and ML interpretation:

CL-ty-scan

Γ ⊢ e : [τ] ⊢ sz : δa ⊢ sf : δa → τ→ δa

Γ ⊢ scan{sz, sf} e : [δa]

IJscan{sz, sf} eKρ = scan JsfK JszK IJeKρ (CLd-scan)

The scan{} combinator provides running aggregates of lists. The mins run-
ning minimum of Section 1.3.1, for instance, can be expressed as

scan{∞, λm x.min m x}

As a side note, we point out that the scan operator plays a significant role
in Blelloch’s discussion of parallel algorithms [Ble90].

We omit the trivial definition of the lifted scan{}↑ combinator. Shredding
occurrences of scan{}↑ requires the definition of a segment scan operator in
SL:

SL-ty-scan

Γ ⊢ V : D ❲α,β,γ❳ ⊢ sz : δ ⊢ sf : δ→ γ→ δ

Γ ⊢ scanV{sz, sf} V : D ❲α,β, δ❳
SJscanV{sz, sf} VKρ =

concat [scan (JsfK ⊘ πp) JszK seg.2 | seg← segs ρ(V)]
(SL-distinct)

Given this definition, the shredding rule is defined easily:

shred-scan-lift

Γ ⊢ e ⦂ [[τ]Vi]Vo

⊢ sz : δa
[
V← scanV{sz, sf} Vi

]
Γ ⊢ scan{sz, sf}↑ e ⦂ [δa]

V

In the relational world, scanV{} can be implemented with partitioned win-
dow aggregates. In Chapter 5 we extend CL with further combinators for
optimization of comprehensions.

4.5 related work

Query Flattening directly implements the core concepts of the flattening
transformation as originally described by Blelloch and Sabot [BS89]. We
limit Query Flattening to a language without functions and handle only ex-
pressions, not function definitions. This is not a fundamental restriction,
though. The flattening transformation for first-order languages generates
lifted versions of user-defined functions by lifting the function body expres-
sion — this would be easy to add. Only higher-order flattening described by
Leshchinskiy [Les05] takes a substantially different route. As explained in
Section 1.4.2, we think that the additional complications for higher-order
flattening are not warranted in the context of query flattening.

Central to lifting is the handling of nested iterators and the corresponding
nested variable scopes. Lifting is usually implemented with rewrite rules

92 flattening queries

that eliminate iterators by pushing them through other expressions. The
following rules are the core of the transformation and can be found verbatim
in the works of Palmer and Prins [PP95], Keller and Simons [KS96] and
Keller [Kel99]:

[fn e1 · · · en | x← xs] = fn+1 [e1 | x← xs] · · · [en | x← xs]

(1)

[x | x← xs] = xs (2)

[y | x← xs] = y⊗ xs x ̸= y (3)

Equation (1) pushes an iterator through a function application by increasing
the lifting level (initially 0) of the function. Equation (2) replaces an occur-
rence of the iterator variable with the generator expression. Equation (3)
distributes a variable that is not the iterator variable. Constants are dis-
tributed in the same fashion as Equation (3). Starting with the innermost
iterator, these rules eliminate one iterator at a time. Note that repeated
pushing of iterators leads to lifted occurrences of ⊗. For nested iterators,
lifting in this fashion leads to deeply nested chains of ⊗↑ that replicate data
through each individual nesting level step by step. The resulting code is not
only inefficient but also hard to comprehend.

Our description of lifting is different in that it does not eliminate vari-
able bindings completely upfront. It maintains nested variable scopes but
replaces variable bindings due to iterators with the explicit construction of
a parallel environment (Rule lift-iter). Constants are not replicated level by
level. Instead, we track the nesting depth d explicitly and use ⨳d to directly
replicate at the correct nesting level. Hence, replication of constants does
not require ⊗↑ and the resulting lifted expressions are considerably more
concise. An optimization with the same effect is described by Keller and
Simons [KS96] as a separate post-mortem rewrite rule. Madsen [Mad16]
describes a version of lifting very similar to ours.

The description of flattening usually targets physically ordered vectors
and is tied to length and positions of elements. Lifted operations are im-
plemented based on element positions or using inherently orderered com-
binators like zip. In contrast, we define flattening to rely exclusively on
identity of list elements provided by indexes. This prepares for the lower-
ing to unordered backends where we aim to minimize any effort for order
maintenance.

5Q U E RY F L AT T E N I N G A N D Q U E RY O P T I M I Z AT I O N

Query Flattening as described in Chapter 4 enables a flat comprehension of
nested queries and nested data. The resulting flat SL queries encode an
inefficient evaluation strategy, though (Section 4.3.4). Algebraic FL queries
implement nested iteration by replicating data. Base tables that occur in
an iteration scope are replicated to provide their value in each iteration
independently. Variable bindings are propagated to inner iteration scopes
by replicating their values (environment lifting). Effectively, Query Flattening
takes the nested-loop semantics of nested iterators literally. The resulting
flat queries suffer from large intermediate results and a complex structure.
Deriving idiomatic and efficient relational queries is difficult.

Nested iteration, however, is prevalent in queries. In particular, nested
comprehensions that are correlated by predicates as in Query Q1 — i.e. cor-
related subqueries — occur in the vast majority of queries. We are not only
interested in a flat comprehension of queries, but in a practical and efficient
one. Hence, the ability to generate efficient backend code for typical query
patterns is paramount.

In this chapter, we show that well-established methods from logical query
optimization are sufficient to eliminate replication due to flattening. Con-
trary to prior work by Rittinger [Rit11], we don’t rely on purely relational
rewrites to reshape flat queries. Instead, we focus on the optimization of
comprehensions in the original CL queries (Section 5.2). Our main result in
Sections 5.3 and 5.4 is to show that these methods are orthogonal to query
flattening and integrate well with the framework of lifted combinators and
flat data representation we set up in Chapter 4.

5.1 avoiding replication in flattening

Problems due to replication of data are not specific to Query Flattening. All
implementations of Blelloch’s flattening transformation (Chapter 3) suffer
from replication and the resulting large intermediate results [Ble95; PP95;
Lip+12; Pal+95]. Blelloch, for instance, notes that iterative positional index-
ing into a list requires a copy of the list for each iteration [Ble95, Appendix
C]. Loop-Lifting — basically the flattening translation phrased in relational
algebra (Section 2.2.2) — suffers from the same problems [GMR09; Rit11].

A number of proposed solutions to these problems focus on positional
indexing [PP95; KS96], but do not cover correlated iteration. More gen-
eral approaches refrain from fully set-oriented evaluation [Pal+95] or share
segments physically with pointer-based representations of segment vectors
[RP00; Lip+12]. These approaches, however, assume a particular parallel
runtime and do not match our setting of generating code for general relatio-
nal engines.

Specific to query flattening, a number of authors propose to rewrite low-
level relational algebra expressions produced by Loop-Lifting [Rit11; Gru05].
Those relational expressions encode replication and are additionally ob-
scured by the maintenance of list order and nested data (Section 2.2.2).
Rewriting those complex plans requires an equally complex set of rules as

93

94 query flattening and query optimization

well as an intricate rewriting strategy and has been shown to fail in simple
cases (Section 2.2.2).

We have described query flattening as a sequence of lowerings that peel of
layers of abstraction. All optimizations that we might want to perform can
in principle be expressed at the very last stage of lowering, i.e. in the most
low-level language. However, at this point, most optimizations will not be
convenient to express because the problematic patterns we would like to op-
timize are blurred and hard to recognize. Instead, individual optimizations
should be performed at the specific level of abstraction at which problem-
atic patterns can be observed first and the corresponding optimization can
be expressed best [Sha+16].

Is the problem of data replication forced by the flat data and operations
in SL? In our two-phase approach in which lifting precedes shredding, data
replication is introduced in the lifting phase. The FL queries resulting from
LJ−K encode data replication in the form of ⊗ and ⊗↑ operators. Hence, we
can focus on the lifting phase that maps the calculus-based language CL to
the algebraic language FL. Every description of the flattening transforma-
tion includes a translation to an algebraic form without variable bindings
(Chapter 3) to enable set-oriented or data-parallel evaluation.

Are problems with data replication specific to the flattening transforma-
tion? Actually, they are well-known from the implementation of query cal-
culi: a naive translation from a query calculus with nested queries to an
algebra enforces a nested-loops evaluation strategy [Cod72; Ste95; Suc97;
RKS88]. Hence, we argue that the major problems in flattened queries do
not require flattening-specific optimization techniques. Essentially, we have
to derive efficient algebraic FL forms from CL calculus queries prior to
shredding that do not encode replication.

Deriving efficient algebraic forms from calculus queries has been exten-
sively researched in the field of logical query optimization — both for rela-
tional [JK84] and complex-object models [Ste95]. In this chapter, we adopt
this work to derive efficient algebraic FL expressions from CL queries. The
optimization techniques we employ are neither novel nor specific to query
flattening. We rely on prior work on logical query optimization for complex-
object query languages [Ste95; Gru99; GS99; CM93; Cla+97; FM00]. In par-
ticular, we closely follow the approach outlined by Grust [Gru99], and Grust
and Scholl [GS99].

5.2 optimizing iterations

Steenhagen [Ste95] summarizes two approaches to translate calculus queries
into efficient expressions in an algebraic intermediate representation:

• Efficient algebraic expressions can be obtained by translating into the
algebra in a naive or canonical way first and rewriting into more effi-
cient equivalent expressions afterwards [JK84].

• Alternatively, optimization can be included into the translation to the
algebra [Ste95; Nak90; FM00].

In our framework, these alternatives amount to either (a) rewriting FL

expressions that result from the lifting transformation LJ−K, or (b) extend-
ing LJ−K with additional rules. Both alternatives lead to an increase in
complexity of individual translation steps. Alternative (a) would require an
involved system of algebraic rewrites that can deal with the diversity of FL
expressions caused by the compositional translation scheme. Alternative (b),

5.2 optimizing iterations 95

CL CLd FL

optimize

desugar LJ−K
Figure 41: Optimization of CL queries prior to Query Flattening.

on the other hand, would increase the complexity of LJ−K considerably.
Hence, we prefer to consider optimization separately.

Although query optimization is traditionally performed on an algebraic
representation, this is not a necessity. Grust and Scholl [GS99] argue that
comprehension calculi are a useful intermediate representation for queries
and provide a good starting point for logical query optimization. Compre-
hensions can be rewritten into a normal form in which typical iteration pat-
terns have a canonical representation and are easy to recognize. We adopt
their point of view and optimize queries in the comprehension calculus CL

before translating to the algebra FL (Figure 41). This allows us to keep
optimization and translation separate and simple.

In the following, we assemble the ingredients of a rule-based CL opti-
mizer. We rewrite CL queries into equivalent queries such that replication
can be avoided during lifting. Rewrite rules simplify the iteration structure
of CL queries and introduce specialized operators that encapsulate certain
iteration patterns.

5.2.1 Rewrite Notation

We specify rewrite rules on CL expressions in the notation introduced in Sec-
tion 4.1. In some rewrite rules, we refer to the location of a sub-expression
relative to its enclosing expression. We write

e % e1

to refer to a sub-expression of e that matches the syntactic form of e1. More
precisely, we let e % e1 denote the first occurrence of an expression that
matches e1 in a pre-order traversal of the abstract syntax tree representation
of e. We restrict this traversal in one regard: we do not let it descend into
the head expression of nested comprehensions.

If the left-hand side of a rule features a sub-expression pattern, we use
the same syntax on the right-hand side to replace the sub-expression. We
write

e % e1 ⇝ e % e2

to indicate that in expression e sub-expression e1 is replaced by e2.

5.2.2 Normalizing CL Expressions

Our primary objective is to avoid replication of data due to nested iteration.
As a preparation, we utilize a set of well-known rewrite rules that eliminate
redundant computation in CL queries. We only sketch these rules here and
focus on comprehension-specific aspects. We refer to Wong [Won94] for a
extensive discussion.

As a first measure, we employ standard partial evaluation techniques.
This includes constant folding for scalar operations, fusing record creation

96 query flattening and query optimization

and record field selection as well as eliminating conditionals if the condition
is constant. We eliminate bindings let x = e1 in e2 by inlining e1 into e2 if
x is referenced not more than once in e2. However, we never inline into the
head of nested comprehensions to avoid an unnecessary iterative evaluation
of e1 (see also Section 5.2.3). We evaluate list computations over constant
lists at compile time, thus for instance propagating empty lists. Finally, we
move let-bindings as much as possible towards the root of the expression.

Redundant comprehensions are removed by the following Rule norm-id.

[x | x← xs]⇝ xs (norm-id)

We employ a number of comprehension-specific rewrites to eliminate in-
termediate list nesting whenever possible. The following rules fuse the cre-
ation of nested lists with subsequent list flattening by concat.

concat [[e | qs ′] | qs]⇝ [e | qs,qs ′] (norm-concat)

concat [sng e | qs]⇝ [e | qs] (norm-concat-sng)

concat [if e1 then sng e2 else [] | qs]⇝ [e2 | qs, e1]

(norm-concat-if)

concat [if e then [h | qs ′] else [] | qs]⇝ [h | qs, e,qs ′]
(norm-concat-if-comp)

The effect of Rules norm-concat to norm-concat-if-comp opposes desug-
aring with Rule desugar-gens (Section 4.1). Indeed, these rules can be con-
sidered a form of resugaring [Ale+15] that transforms deeply nested iterators
of the simple form [e1 | x ← e2] into a canonical form of comprehen-
sions with multiple generators and guards. In particular, resugaring recov-
ers canonical comprehensions from CL queries obtained by a compositional
translation of a source language (Section 1.4.2). We employ resugaring and
desugaring in different phases of the compiler and thus avoid any conflicts.
We resugar to obtain a canonical representation during optimization and
desugar to iterators only afterwards (Figure 41).

The orthogonality of CL allows arbitrary nesting of comprehensions. As
the iteration structure is directly reflected in flattened queries, it pays off to
eliminate redundant comprehensions. We simplify comprehensions with a
set of well-known comprehension normalization [Gru99; FM00] rules. Three
rules simplify comprehensions due to specific forms of generator expres-
sions. Rules norm-empty and norm-sng handle empty and singleton gen-
erators (a variant of Rule norm-sng deals with singleton literal lists).

[e | qs, x← [],qs ′]⇝ [] (norm-empty)

[e | qs, x← sng e ′,qs ′]⇝ [e[e ′/x] | qs,qs ′[e ′/x]] (norm-sng)

Most importantly among the normalization rules, Rule norm-gen inlines
comprehensions nested in a generator expression.

[e | qs, x← [e ′ | qs ′′],qs ′]⇝ [e[e ′/x] | qs,qs ′′,qs ′[e ′/x]]

(norm-gen)

Two technicalities have to be observed for a correct implementation of
Rules norm-gen and norm-sng:

• Substitution in qualifiers qs ′ may require renaming to avoid capturing
free variables in e ′. We refer to our remarks in Section 4.1. To simplify
the exposition, we assume that fv(e ′) and bv(qs ′) are disjunct and thus
no renaming is necessary.

5.2 optimizing iterations 97

• As qualifiers qs ′′ are lifted to the outer comprehension, variables that
occur free in qs ′ and e must not be shadowed. Here, we assume that
bv(qs ′′) and fv(qs ′)∪ fv(e) are disjunct.

The normalizing rewrites described in this section reduce the variability
of expression in CL queries and thus ease the task of subsequent optimiza-
tions. At the same time, these rewrites eliminate redundant computations
and are thus reasonable heuristic optimizations on their own. Consider the
following application of Rule norm-gen:

[⟨x, z⟩ | x← xs, z← [y | y← ys,p x y]]

≡ { norm-gen }

[⟨x, y⟩ | x← xs, y← ys,p x y]

The rewritten variant is clearly preferable. Unnesting the inner comprehen-
sion fuses two loops and eliminates a redundant intermediate result that oth-
erwise might have to be materialized. More importantly though, normaliza-
tion combines the predicate and both generators in one comprehension and
allows subsequent rewrites to introduce a join combinator (Section 5.2.4).

Inlining comprehensions with Rule norm-gen reduces the number of it-
eration scopes and thereby the effort for environment lifting. Consider the
effects of lifting on the following example:

[[⟨x, y⟩ | y← [⟨x, z⟩ | z← zs]] | x← xs] (Q6)

≡ { norm-gen }

[[⟨x, ⟨x, z⟩⟩ | z← zs] | x← xs]

The free occurrence of variable x in both inner iteration scopes leads to envi-
ronment lifting for both scopes and thus two occurrences of ⊗↑ (Rule lift-
iter). In the rewritten expression, both inner comprehensions are fused and
x has to be lifted only once.

5.2.3 Loop-Invariant Expressions

Simple techniques suffice to eliminate replication of data in certain cases.
Consider Query Q7 in which the guard expression sum ys does not depend
on the comprehension variable x (let ys be a list constant).

[x | x← xs, x > (sum ys)] (Q7)

≡ { desugar-pred, desugar-top }

concat [restrict [⟨x, x > (sum ys)⟩ | x← xs] | z← [⟨⟩]]

Lifting results in an FL expression that replicates ys as follows:

V sum (ys⨳2 (xs⨳1 [⟨⟩]))W2
This term clearly does not encode a reasonable evaluation strategy: For each
element of xs, an independent copy of ys is created, potentially resulting in a
large intermediate result. Evaluating sum↑ on these copies duplicates work.

98 query flattening and query optimization

As sum ys does not depend on x, there is no actual reason to evaluate it
iteratively. The following rewrite rules factor expressions out of comprehen-
sions if none of the variables bound by generators in qs occur free:

[h % e | qs]⇝ let v = e in [h % v | qs]

(factor-head)

[h | qs,p % e,qs ′]⇝ let v = e in [h | qs,p % v,qs ′]
(factor-guard)

[h | qs, x← e % e ′,qs ′]⇝ let v = e ′ in [h | qs, x← e % v,qs ′]
(factor-gen)

We understand h % e to denote the maximal sub-expression of h encoun-
tered in a pre-order traversal of h, such that fv(e) and bv(qs) are disjunct.
Again, we do not let the traversal descend into nested comprehensions.

With Rule factor-guard in place, we can rewrite Query Q7 as follows:

[x | x← xs, x > (sum ys)]

≡ { factor-guard }

let s = sum ys in [x | x← xs, x > s]

≡ { desugar-pred, desugar-top }

concat [let s = sum ys in restrict [⟨x, x > s⟩ | x← xs]

| z← [⟨⟩]]

Here, the constant expression sum ys is evaluated outside of the scope of the
inner iterator. Consequently, the sum is computed only for a single copy of
ys:

V sum (ys⨳1 [⟨⟩]) W1
Subsequently, environment lifting for the innermost iteration scope propa-
gates the singleton result of sum↑ over all elements of xs.

Note that factoring the list ys alone would not improve the situation for
flattening. Since the constant computation on ys (sum ys) would still be eval-
uated iteratively, lifting would replicate the data nevertheless. To actually
improve the situation, the computation itself has to be factored out. Hence,
we restrict factoring to complex expressions — i.e. expressions involving list
combinators and comprehensions.

Factoring expressions out of iterations is profitable even if we can’t move
them to the top level. Consider Query Q8 in which a complex predicate is
correlated with the outer but not the inner comprehension.

[[y | y← ys, y > (sum [z | z← zs, x = z])] | x← xs] (Q8)

≡ { factor-guard }

[let u = sum [z | z← zs, x = z] in [y | y← ys, y > u]

| x← xs]

Lifting leads to the following replication patterns for Query Q8 and the
rewritten version, respectively.

V sum (zs⨳2 (ys⨳1 xs)) W2 (original)VV sum (zs⨳1 xs)W1 ⊗ (ys⨳1 xs) W1 (rewritten)

Clearly, the latter version is an improvement: zs is only replicated for el-
ements of xs, not all combinations of ys and xs. More importantly, this

5.2 optimizing iterations 99

thetajoin{s} e1 e2 = [⟨x, y⟩ | x← e1, y← e2, s x y] (thetajoin)

semijoin{s} e1 e2 = [x | x← e1, or [s x y | y← e2]] (semijoin)

antijoin{s} e1 e2 = [x | x← e1, and [¬(s x y) | y← e2]]

(antijoin)

nestjoin{s} e1 e2 = [⟨x, [⟨x, y⟩ | y← e2, s x y]⟩ | x← e1]

(nestjoin)

Figure 42: Definition of CL join combinators, expressed in terms of CL.

rewrite brings the innermost comprehension closer to the outer compre-
hension with which it is correlated and thus enables other rewrites (Sec-
tion 5.2.4).

5.2.4 Introducing Join Combinators

The techniques introduced so far eliminate redundant nesting of data and
iteration and avoid the iterative evaluation of constant expressions. How-
ever, for a large class of queries, exhaustively applying these rewrites does
not avoid replication. Consider our running example Query Q1:

[⟨o, sort [⟨l, l.sd - o.od⟩ | l← ls, l.ok = o.ok]⟩
| o← os

, 5 < sum [l.sd - o.od | l← ls, l.ok = o.ok]]

This query is in normal form — comprehension normalization rules do not
apply. Furthermore, none of the expressions evaluated iteratively is con-
stant. Lowering via LJ−K leads to backend code that replicates ls and
evaluates the predicate on each copy. All queries that feature nested iter-
ation with independent generator expressions (here: table references os, ls)
correlated by a predicate will end up in the same situation.

Centered around comprehensions, CL can not express this pattern in a
different way that would avoid replication. Hence, we follow Grust [Gru99]
and extend CL with join combinators that encapsulate specific forms of nested
iteration. We list all join combinators in Figure 42 and their typing rules in
Figure 43. Being defined in CL themselves, join combinators clearly do not
increase the expressiveness of CL. By rewriting specific iteration patterns
into join combinators, we prevent LJ−K from introducing replication. Join
combinators can be directly lowered to equivalent operators in FL without
falling back to the canonical implementation of nested iteration. To LJ−K,
join combinators appear as blackboxes, just as other list combinators like
sort and group.

All join combinators in Figure 42 are well-known: thetajoin{}, semijoin{}
and antijoin{} are standard list-based equivalents of the usual relational
join operators ⋊⋉, ⋉ and ▷. The nestjoin{} combinator has been introduced
by Steenhagen et al. [SAB94] to unnest complex-object queries. It covers nes-
ted iteration in the head of a comprehension as well as in qualifiers. For
each element of a list xs, nestjoin{s} xs ys computes the list of matching
elements in list ys. These inner lists may be empty, indicating the absence
of matching elements.

Similar to the folding combinator reduce{z, f}, join combinators are pa-
rameterized with scalar functions that specify join predicates. With the predi-

100 query flattening and query optimization

CL-ty-thetajoin

Γ ⊢ e1 : [τ1] Γ ⊢ e2 : [τ2] ⊢ s : τ1 → τ2 → Bool

Γ ⊢ thetajoin{s} e1 e2 : [⟨τ1,τ2⟩]

CL-ty-quantjoin

Γ ⊢ e1 : [τ1] Γ ⊢ e2 : [τ2] ⊢ s : τ1 → τ2 → Bool

Γ ⊢ semijoin/antijoin{s} e1 e2 : [τ1]

CL-ty-nestjoin

Γ ⊢ e1 : [τ1] Γ ⊢ e2 : [τ2] ⊢ s : τ1 → τ2 → Bool

Γ ⊢ nestjoin{s} e1 e2 : [⟨τ1,[⟨τ1,τ2⟩]⟩]

Figure 43: Typing rules for CL join combinators.

cate fixed, join combinators are regular list combinators with two arguments.
We deliberately support only scalar predicates to preserve the uniformity
of query flattening. Subsequent lowering stages can map scalar predicates
directly to relational queries. Complex predicates that involve list compu-
tations, on the other hand, need to be expressed by list combinators and
comprehensions and are thus subject to flattening. Considering join predi-
cates particularly next to the regular lowering pipeline of query flattening is
not necessary. Join combinators enable us to map such complex predicates
to idiomatic backend queries.

To demonstrate how join combinators eliminate replication, we use the
nestjoin{} combinator to rewrite Query Q1 into the following Query Q9:

[⟨u.1, sort [⟨l, v.2.sd - v.1.od⟩ | v← u.2]⟩
| u← nestjoin{λo l.l.ok = o.ok} os ls

, 5 < sum [v.2.sd - v.1.od | v← u.2]]

(Q9)

In Query Q9, nestjoin{} encapsulates the heavy lifting of computing match-
ing elements of table ls for each element of os. Both os and ls are argu-
ments to the same list combinator and occur in the same outer iteration
scope. Hence, lifting will not replicate ls over os. The nested compre-
hensions that remain in Query Q9 apply scalar operations to elements of
the nested lists produced by nestjoin{}. This is already handled well by
LJ−K: those inner comprehensions translate to lifted combinators (i.e. -↑,
⟨−,−⟩↑) and zero-cost flattening and unflattening of nested lists (forgetn,
imprintn).

Most join combinators are close to relational operators. Still, there is a
considerable gap to bridge from list-based CL joins to relational joins. Any
implementation of a CL join combinator has to preserve the semantics of its
defining list comprehension faithfully: join combinators preserve the list or-
der of inputs and accept lists whose elements are arbitrary combinations of
records and nested lists. Furthermore, the nestjoin{} combinator produces
a nested result and has no obvious relational counterpart.

We have described query flattening as a sequence of lowerings that peel
of certain aspects (nested iteration, nested lists, order) on the way to flat and
eventually relational queries. Relational engines have particularly efficient
implementations of join operators that we should target. Hence, we peel off
all non-relational aspects but map the core aspect of the combinator — the
correlated iteration pattern that it expresses — to its relational counterpart.

5.2 optimizing iterations 101

In the remainder of this chapter, we demonstrate that lowering of join com-
binators indeed integrates well with the concepts introduced in Chapter 4.
We end up with idiomatic and efficient flat queries.

5.2.4.1 Avoiding Environment Lifting

As in the work of Steenhagen et al. [SAB94], the result of nestjoin{} pairs
each element of the first argument with the group of matching elements
of the second argument. Steenhagen et al. originally define the nestjoin
operator as follows (in our notation):i

{s} e1 e2 = [⟨x, [y | y← e2, s x y]⟩ | x← e1]

With (nestjoin) we slightly modify their definition for our combinator
nestjoin{}: groups additionally contain the corresponding element of the
first argument list in every element. This seemingly trivial change has
proven to be of considerable consequence in translating nested comprehen-
sions: in many cases, it enables us to eliminate variable references across
iteration scopes and thus the need for environment lifting (Rule lift-iter).
This simplifies the structure of queries considerably and avoids runtime cost
for the ⊗↑ operator.

Concretely, in Query Q1 the head of the inner comprehensions contains a
free occurrence of variable o that is bound by the outer comprehension. In
Query Q10, on the other hand, we replace o with v.1, i.e. references to the
current group element. As a consequence, Query Q10 avoids environment
lifting from the get-go.

[⟨u.1, sort [⟨l, v.2.sd - v.1.od⟩ | v← u.2]⟩
| u← nestjoin{λo l.l.ok = o.ok} os ls

, 5 < sum [v.2.sd - v.1.od | v← u.2]]

(Q10)

5.2.4.2 Introduction Rules for Join Combinators

Any CL expression that matches the right-hand side of an equation in Fig-
ure 42 can be replaced by the corresponding combinator. Exact matches
are rare, however and only capture a small subset of queries. In addition,
we side each join operator with one or multiple introduction rules: rewrite
rules that match patterns in comprehensions and replace them with a join
combinator. Rule antijoin-12, for instance, introduces antijoin{} for a pat-
tern that expresses universal quantification with a range predicate pr and a
quantifier predicate pq.

[h | qs, x← xs, and [pq x y | y← ys,pr y],qs ′]

⇝
[h | qs, x← antijoin{λxy.¬ pq} xs [y | y← ys,pr],qs ′]

(antijoin-12)

The primary introduction rules that we use can be summarized as follows:

• An introduction rule for thetajoin{} replaces consecutive generators
in a qualifier list if a matching predicate is present.

• Rule antijoin-12 and similar introduction rules for the antijoin{}

combinator rewrite universal quantification expressed with the boolean
aggregate and as described by Claussen et al. [Cla+97].

102 query flattening and query optimization

• An analogous set of introduction rules for semijoin{} covers existen-
tial quantification.

• Introduction rules for nestjoin{} cover correlated subqueries in the
head of a comprehension as well as consecutive generators and pred-
icates. As demonstrated in Query Q9, this makes nestjoin{} a par-
ticularly versatile tool that covers a wide range of queries: queries
constructing nested data structures from flat tables as well as complex
predicates involving aggregates, for instance.

Introduction rules that we employ are mostly based on those described by
Grust [Gru99] and Grust and Scholl [GS99]. We omit a detailed discussion
of introduction rules as it offers no additional insight beyond their work.
We list the complete set of rules in Appendix B.

The correctness of introduction rules can be established by replacing the
join combinator in a rewritten term with its defining equation and using
normalization rules to simplify the resulting term. We refer to Grust [Gru99]
for a detailed account of this argument.

5.2.5 Fusing Grouping and Aggregation

In flat relational query languages, grouping and aggregation are necessar-
ily entwined. Due to the flat data model, groups can not be represented
explicitly and have to be aggregated. In nested query languages, though,
grouping and aggregation are orthogonal concepts. Groups are produced
e.g. by nestjoin{} (binary grouping) or group (unary grouping). They may
then be consumed by reduce{} but may also appear in the query result or
undergo transformations before aggregation. Query Q1 demonstrates some
of these alternatives.

Query flattening readily lowers the combination of grouping and aggre-
gation to flat queries: groups — produced by nestjoin{} or group — are
simply nested lists represented by flat segment vectors. Applying reduce{}

to those nested lists maps to data-parallel aggregation on segments, i.e. SL
operators reduceV{} and unboxV{} (Section 4.3.3.1). In our compositional
lowering scheme, this division is necessary to support grouping and aggre-
gation as orthogonal concepts.

We assume that any relational query engine offers efficient primitives for
grouped aggregation. If grouping and aggregation concur as in Query Q11,
the compositional lowering scheme leads to non-idiomatic relational queries
that are hard to map to those primitives.

[⟨g.1, sum [x.v | x← g.2], length g.2⟩ | g← group xs] (Q11)

To obtain efficient backend code, we would have to recover backend prim-
itives from non-idiomatic low-level code emitted for the combination of
groupV, reduceV{} and unboxV{}.

Instead, we follow the same approach as for correlated iteration. We
rewrite specific high-level patterns in CL queries into specialized combina-
tors for grouped aggregation that lower directly to corresponding backend
primitives. Specifically, we add rewrite rules for fold-group fusion [Ale+15]:
we rewrite pairs of grouping combinators and reduce{} into groupagg{}

and groupjoin{} combinators defined in Figures 44 and 45. These combina-
tors are based on group and nestjoin{}, respectively, but extend the result
with an aggregate of each group. Clearly, groupagg{} corresponds to usual
relational grouping operators. groupjoin{} is a variant of binary grouping

5.2 optimizing iterations 103

groupjoin{sp, sz, sf} e1 e2 = [⟨x.1, reduce{sz, sf} x.2⟩
| x← nestjoin{sp} e1 e2]

groupagg{sz, sf} e = [⟨x.1, x.2, reduce{sz, sf} x.2⟩
| x← group e]

Figure 44: Definition of CL grouping combinators, expressed in CL.

CL-ty-groupagg

Γ ⊢ e : [⟨τ,δ⟩] ⊢ sz : δa ⊢ sf : δa → τ→ δa

Γ ⊢ groupagg{sz, sf} e : [⟨δ, [τ], δa⟩]

CL-ty-groupjoin

Γ ⊢ e1 : [τ1] Γ ⊢ e2 : [τ2]

⊢ sp : τ1 → τ2 → Bool ⊢ sz : δa ⊢ sf : δa → ⟨τ1,τ2⟩ → δa

Γ ⊢ groupjoin{sp, sz, sf} e1 e2 : [⟨τ1,δa⟩]

Figure 45: Typing rules for CL grouping combinators.

operators that extend Steenhagen’s nestjoin [SAB94] with a function (usu-
ally an aggregation function) that is applied to each group [Gru99; CM93;
MHM04; MN11].

A number of straightforward introduction rules employ groupagg{} and
groupjoin{} for aggregates encountered in the head of comprehensions as
well as subsequent qualifiers. We list rules for fold-group fusion in Ap-
pendix B.

Note that the result of combinator groupagg{} includes the original groups
next to the aggregate results. This accounts for queries in which groups are
consumed by multiple aggregates (e.g. Query Q11). Rewrite rules gradu-
ally merge aggregates into the grouping combinator while preserving other
references to the groups:

[⟨g.1, sum [x.v | x← g.2], length g.2⟩ | g← group xs]

≡ { groupagg-head }

[⟨g.1, g.3, length g.2⟩ | g← groupagg{0, λs e.s + e.a} xs]

≡ { groupagg-head-extend }

[⟨⟨g.1, g.2, g.3.1⟩.1, ⟨g.1, g.2, g.3.1⟩.3, g.3.2⟩
| g← groupagg{⟨0, 0⟩, λs e.⟨s.1 + e.a, s.1 + 1⟩} xs]

≡ { partially evaluate record selectors }

[⟨g.1, g.3.1, g.3.2⟩
| g← groupagg{⟨0, 0⟩, λs e.⟨s.1 + e.a, s.1 + 1⟩} xs]

Merging individual reduce{} occurrences one by one simplifies rewrite
rules: we only consider one occurrence at a time and do not have to check
whether groups are preserved explicitly in the query result. Admittedly,
we pay for the simplicity of rules with a somewhat complex definition of
groupagg{}. However, in Section 5.4, we show that this complexity is easily
resolved during shredding.

104 query flattening and query optimization

5.2.6 Predicate Pushdown

A standard heuristic of logical query optimization is to apply predicates as
early as possible. This heuristic is convenient to express during comprehen-
sion rewriting.

• In a sequence of comprehension qualifiers, a guard expression p can
be freely moved to the left across other guards and generators. Obvi-
ously, we must not move guards over generators that bind variables
occurring free in p.

• Guard expressions in comprehensions can be pushed into the argu-
ment of list combinators. For instance, the following rule pushes pred-
icate p through the semijoin{} combinator if the only variable that
occurs free in p is x:

[h | qs, x← semijoin{s} xs ys,p x,qs ′]

⇝
[h | qs, x← semijoin{s} [x | x← xs,p x] ys,qs ′]

(push-semijoin)

Similar rewrite rules push predicates into the input of other list com-
binators.

5.2.7 Running Example

We put join combinators to use to eliminate correlated nested iteration in our
runnning example. We start with the fully normalized query Query Q1 and
rewrite it in a completely mechanical sequence of transformations. Rewrite
steps are shown in detail in Figure 46.

1 We introduce a nestjoin{} combinator to unnest the correlated sub-
query in the predicate. For each order record, nestjoin{} produces
the matching lineitem records required for the predicate.

2 To avoid materializing those groups of matching lineitems, we fuse the
sum aggregate into the nestjoin{} combinator. Note that the predicate
is reduced to a scalar comparison on the groupjoin{} result.

3 Next, we introduce another nestjoin{} combinator to unnest the cor-
related subquery in the head of the comprehension.

4 So far, the nestjoin{} stacked on top of the groupjoin{} considers all
orders since the groupjoin{} merely adds the aggregate result to each
order. We push the predicate 5 < w.3 into the left input of nestjoin{}
to eliminate those orders that do not pass the predicate.

After optimization, all correlated nested iteration in Query Q12 is encap-
sulated in join combinators. A sequence of join combinators filters base
tables and constructs a (nested) intermediate result that is consumed by the
head of the outer comprehension. The nested comprehension in the head
merely iterates over a nested list constructed by nestjoin{}.

The optimized query contains none of the problematic properties dis-
cussed in the beginning of this chapter. It does not contain nested base
table references that would lead to data replication. Also, it does not fea-
ture variable references across iteration scopes that introduce environment
lifting. Those are eliminated by the nestjoin{} combinator (Section 5.2.4.1).

5.2 optimizing iterations 105

[⟨o, sort [⟨l, l.sd - o.od⟩ | l← ls, l.ok = o.ok]⟩
| o← os

, 5 < sum [l.sd - o.od | l← ls, l.ok = o.ok]]

≡ { nestjoin-guard 1 }

[⟨u.1, sort [⟨l, l.sd - u.1.od⟩ | l← ls, l.ok = u.1.ok]⟩
| u← nestjoin{λo l.l.ok = o.ok} os ls

, 5 < sum [v.2.sd - v.1.od | v← u.2]]

≡ { groupjoin-guard 2 }

[⟨w.1, sort [⟨l, l.sd - w.1.od⟩ | l← ls, l.ok = w.1.ok]⟩
| w← groupjoin{ λo l.l.ok = o.ok, 0,

λa b.(a.2.sd - a.1.od) + b} os ls

, 5 < w.3]

≡ { nestjoin-head 3 }

[⟨s.1.1, sort [⟨t.2, t.2.sd - t.1.1.od⟩ | t← s.2]⟩
| s← nestjoin{λw l.l.ok = w.1.ok}

(groupjoin{ λo l.l.ok = o.ok, 0,

λa b.(a.2.sd - a.1.od) + b} os ls)

ls

, 5 < s.1.3]

≡ { push down predicate 4 }

[⟨s.1.1, sort [⟨t.2, t.2.sd - t.1.1.od⟩ | t← s.2]⟩
| s← nestjoin{λw l.l.ok = w.1.ok}

[r

| r← groupjoin{ λo l.l.ok = o.ok, 0,

λa b.(a.2.sd - a.1.od) + b} os ls

, 5 < r.3]

ls

]

(Q12)

Figure 46: Introducing join and grouping combinators in Query Q1.

106 query flattening and query optimization

5.2.8 Rewrite Strategy

This chapter focuses on providing tools for logical query optimization and in-
tegrating them with query flattening. Devising a holistic optimization strat-
egy based on those tools is beyond the scope of this work. In principle, we
provide all tools (e.g. join combinators, normalization, lifting loop-invariant
expressions) to leverage the complete body of work on logical query opti-
mization for orthogonal query languages.

In the rewriting of our running example in Figure 46, we have discussed
a fixed sequence of rule applications. In general, though, for one expression
multiple rewrite steps can apply. For example, in step 1 , we may unnest
the comprehension head first instead of starting with the guard. In general,
ambiguities may be resolved based on a cost model. In the scope of this
work, however, we follow a simple approach: we resolve those ambiguities
from the start by giving priority to rule groups over others. Priorities are
assigned based on a set of simple heuristics.

First, we assume that normalization is always beneficial and subsequent
optimizations should be applied to fully normalized queries. Normalization
reshapes comprehensions into the canonical forms expected by introduction
rules. Furthermore, normalization eliminates redundant list nesting. In the
following example, we find an immediate match for Rule nestjoin-head.

concat [[⟨x, y⟩ | y← ys, x.a = y.b] | x← xs]

≡ { nestjoin-head }

concat [[y | y← x.2] | x← nestjoin{λx y.x.a = y.b} xs ys]

≡ { norm-id }

concat [x.2 | x← nestjoin{λx y.x.a = y.b} xs ys]

The resulting query enables a more efficient evaluation of the nested cor-
related iteration. Employing the nestjoin{} combinator avoids data repli-
cation and environment lifting. However, creating nested lists which are
subsequently flattened with concat is clearly redundant. In this example,
we are better off normalizing the query first and then employing a flat join
combinator.

concat [[⟨x, y⟩ | y← ys, x.a = y.b] | x← xs]

≡ { norm-concat }

[⟨x, y⟩ | x← xs, y← ys, x.a = y.b]

≡ { thetajoin }

[xy | xy← thetajoin{λx y.x.a = y.b} xs ys]

≡ { norm-id }

thetajoin{λx y.x.a = y.b} xs ys

Hence, we give priority to comprehension normalization and partial evalu-
ation over introduction rules for join combinators.

Furthermore, we assume that flat join operators (e.g. antijoin{}) should
be preferred over nested joins. In the following example, nestjoin{} covers

5.2 optimizing iterations 107

the correlation part of the universal quantification. Subsequently, we employ
groupjoin{} to fuse the boolean aggregate with the join.

[x | x← xs, and [y.b < 42 | y← ys, x.a = y.b]]

≡ { nestjoin-guard }

[x.1 | x← nestjoin{λx y.x.a = y.b} xs ys

, and [y.2.b < 42 | xy← x.2]]

≡ { groupjoin-guard }

[x.1 | x← groupjoin{ λx y.x.a = y.b,

True, λa y.a ∧ (y.2.b < 42)} xs ys

, x.2]

While the rewritten query is clearly an improvement, universal quantifica-
tion is expressed in a very general way. First, groupjoin{} returns all el-
ements of xs with the associated boolean aggregate. Only subsequently
are those elements filtered based on the aggregate. Alternatively, we may
rewrite into the specialized antijoin{} that fuses those two steps.

[x | x← xs, and [y.b < 42 | y← ys, x.a = y.b]]

≡ { antijoin-15 }

[x | x← antijoin{λx y.x.a = y.b} xs [y | ys,¬ (y.b < 42)]]

≡ { norm-id }

antijoin{λx y.x.a = y.b} xs [y | ys,¬ (y.b < 42)]

We assume that the latter alternative based on antijoin{} performs bet-
ter [Cla+97]. Rewriting into groupjoin{} only serves as a fallback for quan-
tifiers that are not eligible for antijoin{}.

The implementation of query flattening that forms the basis for the exper-
imental evaluation in Chapter 8 orders rewrites according to those consider-
ations and standard heuristics. We structure rewrite rules into the following
sequence.

1. Partial evaluation and comprehension normalization are applied ex-
haustively.

2. Predicates are pushed into the argument of list combinators.

3. Next, we detect flat joins. Here, we give priority to semijoin{} and
antijoin{} over thetajoin{} matches.

4. Grouping and aggregation are fused.

5. Loop-invariant expressions are extracted from the head of comprehen-
sions. The resulting let-bindings are moved up as far as possible.

6. Nested correlated comprehensions are unnested with nestjoin{}. We
first search for matches in the qualifiers before searching in the head
of the comprehension.

If a rewrite rule matches in one of these steps, we restart the sequence.
We apply this sequence iteratively until we reach a fixed point. Rewriting
typically assembles a tree of join and grouping operators in the generator
of a comprehension. The resulting queries resemble the classical pattern of
join graphs with plan tails [GMR10].

108 query flattening and query optimization

5.2.9 Related Work on Optimization

So far, none of the optimization techniques described in this chapter are
original. As stated initially, we adapt well-known work on logical query
optimization for nested or complex-object query languages.

Normalization rules on comprehensions are ubiquitous in the literature
on orthogonal, comprehension-based collection programming and query
languages. [Wad90; Gia+13; Ale+15; FM00; CLW14a; Gru99; GS99; Won96;
Won94]. Both Grust [Gru99; GS99] and Fegaras [FM00] include an addi-
tional normalization rule that unnests existential quantifiers in an idempo-
tent monad or monoid (e.g. the set monad or monoid). This rule is not
applicable in our list-based language. Instead, we introduce list-based semi-
join operators for existential quantifiers (Section 5.2.4).

Factoring loop-invariant expressions out of iterators is commonly em-
ployed to unnest uncorrelated subqueries [CM93; Ste95]. In a relational
setting, it covers constant type-A queries according to Kim’s classification
of nested queries [Kim82]. In the context of the flattening transformation,
Palmer and Prins [PP95] as well as Keller and Simons [KS96] include fac-
toring as part of flattening: specialized flattening rules move constant ex-
pressions out of iterators. We do not inflate lifting with additional rules but
employ a simple source-to-source translation prior to flattening that has the
same effect.

Grust [Gru99] as well as Grust and Scholl [GS99] explore hybrid rewrit-
ing of comprehensions and combinators. Join combinators are introduced
by rewrite rules for specific patterns of comprehension generators. They
show that much prior work on optimization originally described for nested
algebras can be understood and rephrased in terms of the (monad) compre-
hension calculus.

5.3 lifting join combinators

Some optimizations (e.g. normalization, hoisting loop-invariant expressions)
do not extend the language CL and are thus readily supported by Query
Flattening as described in Chapter 4. However, our approach crucially relies
on CL join and grouping combinators. Combinator-based optimization of
CL queries is only feasible if we can integrate those combinators into query
flattening and lower them to efficient flat queries.

As a first step towards integrating join and grouping combinators into
query flattening, we describe the lowering to FL. In the rewriting of our
running example Query Q1, join combinators are located in the generator
of the top-level comprehension and evaluated only once. In general, though,
we can not rely on having combinators appear only at the top-level. Intro-
duction rules for combinators reflect the orthogonal nature of CL and may
match deeply nested comprehensions. As a consequence, we encounter join
combinators that occur in the head of a comprehension and are applied to
each element of a list.

We demonstrate this with the following example that features a univer-
sally quantified comprehension in the head of an outer comprehension.
Note that the inner comprehension [p2 y z | z← zs,p3 x z] depends on

5.3 lifting join combinators 109

both variables x and y, i.e. both enclosing comprehensions. Two rewrite
steps replace the quantifier predicate with the antijoin{} combinator:

[[y | y← ys,p1 x y, and [p2 y z | z← zs,p3 x z]] | x← xs]

≡ { nestjoin-head }

[[y.2 | y← xy.2, and [p2 y.2 z | z← zs,p3 y.1 z]]

| xy← nestjoin{p1} xs ys]

≡ { antijoin-16 }

[[y.2 | y← antijoin{λy z.¬(p2 y.2 z) ∧ p3 y.1 z} xy.2 zs]

| xy← nestjoin{p1} xs ys]

(Q13)

The first rewrite utilizes the nestjoin{} combinator to encapsulate the de-
pendency between x and y: the individual groups xy.2 pair a binding for x
with all corresponding bindings for y. By eliminating the dependency on x

in the inner comprehension, the quantifier predicate is decoupled from the
outer generator. This enables the second rewrite to introduce an antijoin{}

combinator nested in the head of the outer comprehension that applies to
each element of the result of nestjoin{}.

Such iterated join and grouping combinators naturally occur when rewrit-
ing complex, nested comprehensions. Furthermore, recall from Section 4.1
that comprehensions are desugared to CLd such that combinators occur ex-
clusively in the head of iterators. Hence, dealing with the iterated application
of join and grouping combinators is paramount.

Fortunately, we do not have to introduce any new concepts here. In Sec-
tion 4.2, we describe how to deal with arbitrary combinators that are ap-
plied to all elements of a list in parallel: LJ−K maps combinator applica-
tions nested in iterators to applications of lifted data-parallel combinators p↑

(Rule lift-builtin). With scalar parameters fixed, join and grouping combi-
nators appear as regular built-in list combinators. The LJ−K transformation
lowers them via Rule lift-builtin — no different from append, for example.
After rewriting, Query Q13 lowers to FL as follows1:

[[y.2 | y← antijoin{_} xy.2 zs]

| xy← nestjoin{_} xs ys]

≡ { desugar-top }

concat [[[y.2 | y← antijoin{_} xy.2 zs]

| xy← nestjoin{_} xs ys]

| z← [⟨⟩]]

≡ { LJ−K }

concat (let z = [⟨⟩]
in let xy = V nestjoin{_} (xs⨳1 z) (ys⨳1 z)W1

in let y = V antijoin{_} V xy.2W2 (zs⨳2 xy)W2
in V y.2W3)

The application of nestjoin{} at iteration depth 1 maps to the lifted combi-
nator nestjoin{}↑. Likewise, the antijoin{} combinator at iteration depth 2

maps to antijoin{}↑. Integrating additional combinators into query flatten-
ing comes down to defining those corresponding lifted combinators.

1 We omit join predicates (replaced with _) to increase readability. Join predicates are not affected
by lifting.

110 query flattening and query optimization

The concept of lifted or data-parallel combinators easily extends to joins
and grouping. Like all lifted combinators, lifted join and grouping combi-
nators apply to lists of arguments. Join combinators apply to two lists of
lists and join corresponding elements of the outer lists to produce a list of
results. Combinator antijoin{}, for example, behaves as follows:

antijoin{λx y.x > y}↑ [[4, 7, 8], [20, 30], [500, 600]]

[[5, 6], [], [100, 200, 700]]

≡ [[4], [20, 30], []]

An alert reader may notice that Query Q13 features the iterated list con-
stant zs. Indeed, lifting replicates this list constant for each group produced
by nestjoin{} to provide for a uniform data-parallel evaluation. This is an
instance of data replication that we can not avoid with the tools introduced
in this chapter. However, we discuss a solution in Chapter 7.

5.3.1 Indexed Semantics

In Section 4.2.4 we have defined the semantics of FL and its lifted combina-
tors based on indexed lists. Against this background, the semantics of our
new lifted join and grouping combinators are straightforward to define. For
groupagg{}↑, we simply extend the interpretation of group{}↑ to fold the
groups:

FJgroupagg{sz, sf}↑ eKρ =

[⟨k= xs.k, p= [⟨k= g.1, p= ⟨g.1, foldl (JsfK ⊘ πp) JszK xs.p

| g← groupWith (π1 ◦ πp) xs.p]⟩
| xs← FJeKρ]

(FL-groupagg)

Join combinators like antijoin{}↑ that consume two lists of arguments
utilize indexes of the outer lists to identify corresponding arguments, i.e. in-
ner lists. Those inner lists are joined based on the scalar predicate.

FJantijoin{s}↑ e1 e2Kρ =

[⟨k= xs.k, p = [x | x← xs.p, and [¬(JsK x.p y.p) | y← ys.p]]⟩
| xs← FJe1Kρ, ys← FJe2Kρ, xs.k = ys.k]

(FL-antijoin)

For thetajoin{}↑ and nestjoin{}↑, we additionally combine inner in-
dexes of both arguments to derive unique indexes for the individual inner
lists in the join result.

FJthetajoin{s}↑ e1 e2Kρ =

[⟨k= xs.k, p = [⟨k= ⟨x.k, y.k⟩, p = ⟨x.p, y.p⟩⟩
| x← xs.p, y← ys.p, JsK x.p y.p]⟩

| xs← FJe1Kρ, ys← FJe2Kρ, xs.k = ys.k]

(FL-thetajoin)

5.4 shredding join combinators 111

FJnestjoin{s}↑ e1 e2Kρ =

[⟨k= xs.k, p = [⟨x.k, [⟨k= ⟨x.k, y.k⟩, p = ⟨x.p, y.p⟩⟩
| y← ys.p, JsK x.p y.p]⟩

| x← xs.p]⟩
| xs← FJe1Kρ, ys← FJe2Kρ, xs.k = ys.k]

(FL-nestjoin)

We omit the definitions for groupjoin{}↑ and semijoin{}↑ which are
straightforward variations of other definitions listed above.

5.4 shredding join combinators

Shredding (Section 4.3) lowers lifted FL combinators on nested lists to SL

operators on flat segment vectors. In this section, we integrate join and
grouping combinators into this lowering step. Join and grouping combina-
tors do not extend the expressiveness of CL but merely fuse specific com-
binations of CL combinators. Hence, we do not have to invent anything
new here: the shredding framework of Section 4.3 readily supports lower-
ing these new combinators as well. We define SL combinators that provide
the nested iteration core of those combinators. Shredding rules map FL join
combinators to those and maintain the structure of segment vectors.

In Section 5.4.1 we sketch the shredding of join combinators and intro-
duce the required SL operators. We then define the shredding rules pre-
cisely in Section 5.4.2. To conclude our discussion of optimizations in this
chapter, we discuss the shredding of our running example Query Q1 in its
optimized form Query Q12 into a plan of flat SL operators (Section 5.4.3).
In Section 5.4.4, we define the semantics of SL join operators in terms of
ML.

5.4.1 Segment Join Operators

We extend SL with a small number of operators, each of which implements
the iterative core of a CL join combinator. Typing rules for these operators
are listed in Figure 47. In this section, we discuss the essential challenges in
shredding FL join combinators: 1. the data-parallel application of joins to
lists of operands, 2. the maintenance of list nesting in operands and 3. the
shredding of combinators that introduce additional list nesting.

5.4.1.1 Lifted Joins

A lifted join combinator consumes two lists of arguments and joins each
pair of arguments individually. Consider the following application of lifted
combinator antijoinV{}↑ to arguments of type [[Int]]:

antijoin{λx y.x > y}↑ [[4, 7, 8], [20, 30], [500, 600]]

[[5, 6], [], [100, 200, 700]]

≡ [[4], [20, 30], []]

The argument expressions are shredded into packages [[Int]V1]Vo and
[[Int]V2]V

′
o . Each inner list maps to a segment of the inner vectors V1

or V2. A SL implementation of antijoinV{}↑ joins corresponding pairs of
segments in these inner vectors.

112 query flattening and query optimization

SL-ty-thetajoin

Γ ⊢ V1 : D ❲α,β1,γ1❳ Γ ⊢ V2 : D ❲α,β2,γ2❳ ⊢ s : γ1 → γ2 → Bool

Γ ⊢ thetajoinV{s} V1 V2 : (D ❲α, ⟨β1,β2⟩, ⟨γ1,γ2⟩❳,Rβ1 ⟨β1,β2⟩,Rβ2 ⟨β1,β2⟩)

SL-ty-semijoin

Γ ⊢ V1 : D ❲α,β1,γ1❳ Γ ⊢ V2 : D ❲α,β2,γ2❳ ⊢ s : γ1 → γ2 → Bool

Γ ⊢ semijoinV{s} V1 V2 : (D ❲α,β1,γ1❳, Fβ1)

SL-ty-antijoin

Γ ⊢ V1 : D ❲α,β1,γ1❳ Γ ⊢ V2 : D ❲α,β2,γ2❳ ⊢ s : γ1 → γ2 → Bool

Γ ⊢ antijoinV{s} V1 V2 : (D ❲α,β1,γ1❳, Fβ1)

SL-ty-nestjoin

Γ ⊢ V1 : D ❲α,β1,γ1❳ Γ ⊢ V2 : D ❲α,β2,γ2❳ ⊢ s : γ1 → γ2 → Bool

Γ ⊢ nestjoinV{s} V1 V2 : (D ❲β1, ⟨β1,β2⟩, ⟨γ1,γ2⟩❳,Rβ1 ⟨β1,β2⟩,Rβ2 ⟨β1,β2⟩)

SL-ty-groupagg

Γ ⊢ V : D ❲α,β,γ❳ ⊢ sg : γ→ γg ⊢ sz : γa ⊢ sf : γa → γ→ γa

Γ ⊢ groupaggV{sg, sz, sf} V : D ❲α, ⟨α,γg⟩, ⟨γg,γa⟩❳
SL-ty-groupjoin

Γ ⊢ V1 : D ❲α,β1,γ1❳ Γ ⊢ V2 : D ❲α,β2,γ2❳
⊢ sp : γ1 → γ2 → Bool ⊢ sz : γa ⊢ sf : γa → ⟨γ1,γ2⟩ → γa

Γ ⊢ groupjoinV{sp, sz, sf} V1 V2 : D ❲α,β1, ⟨γ1,γa⟩❳
Figure 47: Typing rules for join and grouping operators in SL.

[❲s0,kl·0, 4❳ ,❲s0,kl·1, 7❳ ,❲s0,kl·2, 8❳ ,❲s1,kl·3, 20❳ ,❲s1,kl·4, 30❳ ,❲s2,kl·5, 500❳ ,❲s2,kl·6, 600❳]
V1

[❲s0,kr·0, 5❳ ,❲s0,kr·1, 6❳ ,❲s2,kr·2, 100❳ ,❲s2,kr·3, 200❳ ,❲s2,kr·4, 700❳]
V2

antijoinV{λx y.x > y}
[❲s0,kl·0, 4❳ ,❲s1,kl·3, 20❳ ,❲s1,kl·4, 30❳]

Vj

Figure 48: Implementing lifted join combinators on segment vectors: antijoin{}↑.

5.4 shredding join combinators 113

This situation is depicted in Figure 48. The SL antijoinV{} operator
joins the inner vectors V1 and V2. Matching pairs of segments are joined
individually. For example, in V2 the segment identified by index s1 is empty.
The elements of this segment in V1 do not find a join partner. Although
elements of other segments in V2 would match the universal quantification
predicate, only elements of s1 are considered. Hence, all elements of s1 in
V1 appear in the result vector Vj.

Lowering join combinators to efficient relational plans is crucial to our op-
timization approach. Fortunately, the required per-segment join operators
are easily derived from regular join operators. Recall that all arguments
of any lifted combinator p↑ as well as its result share the same list shape –
this property is guaranteed by the flattening transformation. The outer vec-
tors representing those lists consequentially also have the same vector shape.
Two properties follow from this:

1. Corresponding segments in the inner vectors are identified by having
the same outer index. Matching corresponding segments of two inner
vectors comes down to comparing scalar outer index values.

2. Evaluating lifted join combinators in SL exclusively affects the inner
vectors — V1 and V2 in Figure 48. The segment structure of those
inner vectors stays the same. The outer vector of any of the arguments
accurately describes this segment structure and can serve as the outer
vector of the result. A segment join operator is thus evaluated locally
on two flat (inner) vectors and it’s result does not have to be propa-
gated to outer vectors2.

These two properties hint towards the implementation of per-segment join
operators like antijoinV{}. On individual pairs of segments, antijoinV{}
behaves as an ordinary order-preserving antijoin operator. Based on such an
operator, the segment join operator antijoinV{} can be easily implemented:
it is sufficient to extend the join predicate with a comparison of outer in-
dexes.

5.4.1.2 Maintaining Nested Arguments

Consider the following example in which one argument of thetajoin{}↑

features an additional layer of list nesting.

thetajoin{λx y.x = y.a}↑ [[1, 2, 4, 1]]

[[⟨a = 1, b = [10, 20]⟩,
⟨a = 2, b = [30]⟩]]

≡ [[⟨1, ⟨a = 1, b = [10, 20]⟩⟩,
⟨2, ⟨a = 2, b = [30]⟩⟩,
⟨1, ⟨a = 1, b = [10, 20]⟩⟩]]

The SL implementation of this example is depicted in Figure 49. Operator
thetajoinV{} generates the result vector Vj that contains the join result.
Note that thetajoinV{} combines the inner indexes of V1 and V2 to derive
unique inner indexes for Vj. Crucially, though, outer indexes are preserved.

The element of V2 identified by kr·0 appears in the join result two times.
To keep the relation to the inner vector Vi consistent, the corresponding

2 This property only holds for an index-based vector model (Section 4.3.1). In a length-based
representation, segment descriptors need to be modified if the size of segments in inner vectors
change.

114 query flattening and query optimization

[❲s0,kl·0, 1❳ ,❲s0,kl·1, 2❳ ,❲s0,kl·2, 4❳ ,❲s0,kl·3, 1❳]
V1

[❲s0,kr·0, ⟨a = 1, b = ⟨⟩⟩❳ ,❲s0,kr·1, ⟨a = 2, b = ⟨⟩⟩❳]
V2

[❲kr·0,ki·0, 10❳ ,❲kr·0,ki·1, 20❳ ,❲kr·1,ki·2, 30❳]
Vi

thetajoinV{λx y.x = y.a}

[❲s0, ⟨kl·0,kr·0⟩, ⟨1, ⟨a = 1, b = ⟨⟩⟩⟩❳ ,❲s0, ⟨kl·1,kr·1⟩, ⟨2, ⟨a = 2, b = ⟨⟩⟩⟩❳ ,❲s0, ⟨kl·3,kr·0⟩, ⟨1, ⟨a = 1, b = ⟨⟩⟩⟩❳]Vj apprepV

[❲⟨kl·0,kr·0⟩, ⟨⟨kl·0,kr·0⟩,ki·0⟩, 100❳ ,❲⟨kl·0,kr·0⟩, ⟨⟨kl·0,kr·0⟩,ki·0⟩, 200❳ ,❲⟨kl·1,kr·1⟩, ⟨⟨kl·0,kr·0⟩,ki·0⟩, 300❳ ,❲⟨kl·3,kr·0⟩, ⟨⟨kl·0,kr·0⟩,ki·0⟩, 100❳ ,❲⟨kl·3,kr·0⟩, ⟨⟨kl·0,kr·0⟩,ki·0⟩, 200❳]
Va

Figure 49: Maintenance of nested arguments for thetajoin{}↑.

segment in Vi needs to be replicated. Such changes to inner vectors are
propagated just as described in Section 4.3.2: next to the actual result vector
Vj, the join operator generates an index transformation:

[⟨f = kr·0, t = ⟨kl·0,kr·0⟩⟩ ,
⟨f = kr·1, t = ⟨kl·1,kr·1⟩⟩ ,
⟨f = kr·0, t = ⟨kl·3,kr·0⟩⟩]

Applied to Vi by apprepV, this replication transformation aligns Vi with Vj.
In the result Va, segment sr·0 is replicated and outer and inner indexes are
adapted to match Vj.

5.4.1.3 Combinators with Nested Results

Combinators nestjoin{}↑ and groupagg{}↑ introduce additional list nest-
ing. Fortunately, these operators are straightforward to implement on the
segment vector model. They shred into simple bulk operators on flat vec-
tors.

nested join Consider an application nestjoin{}↑ e1 e2 of the lifted
nestjoin{}↑ combinator. We assume that argument expressions e1 and e2
shred into the following packages:

e1 ⦂ [[Int]V1]Vo

e2 ⦂ [[⟨a:Int, b:Text⟩]V2]V
′
o

Vectors V1 and V2 represent the elements of the inner lists. We know that
the outer list structure of e1 and e2 is the same and that the corresponding
outer vectors Vo and V ′o have the same vector shape.

5.4 shredding join combinators 115

[❲s0,kl·0, 1❳ ,❲s0,kl·1, 4❳ ,❲s0,kl·2, 2❳]
V1

[❲s0,kr·0, ⟨a = 1, b = "a"⟩❳ ,❲s0,kr·1, ⟨a = 2, b = "b"⟩❳ ,❲s0,kr·2, ⟨a = 1, b = "c"⟩❳ ,❲s0,kr·3, ⟨a = 2, b = "d"⟩❳]
V2

nestjoinV{λx y.x = y.a}

[❲kl·0, ⟨kl·0,kr·0⟩, ⟨a = 1, b = "a"⟩❳ ,❲kl·0, ⟨kl·0,kr·2⟩, ⟨a = 1, b = "c"⟩❳ ,❲kl·2, ⟨kl·2,kr·1⟩, ⟨a = 2, b = "b"⟩❳ ,❲kl·2, ⟨kl·2,kr·3⟩, ⟨a = 2, b = "d"⟩❳]

Vj

projectV{λx.⟨x, ⟨⟩⟩}

[❲s0,kl·0, ⟨1, ⟨⟩⟩❳ ,❲s0,kl·1, ⟨4, ⟨⟩⟩❳ ,❲s0,kl·2, ⟨2, ⟨⟩⟩❳]
Vi

Figure 50: Implementing nestjoin{}↑ on segment vectors.

nestjoin{} computes the (possibly empty) list of matches in the right
operand for each element of its left operand. The nested join results in the
following package that references three vectors:

nestjoin{s}↑ e1 e2 ⦂ [[⟨Int,[⟨Int,⟨a:Int, b:Text⟩⟩]Vj⟩]Vi]V
′′
o

As the outermost list structure of the result does not change, V ′′o has the
same vector shape as Vo and V ′o, the outer vectors of the arguments3. Struc-
ture and content of the list of groups are encoded by vectors Vi and Vj,
respectively.

Let the predicate be λx y.x = y.a and let arguments e1 and e2 evaluate to
the following values:

e1 ≡ [[1, 4, 2]]

e2 ≡ [[⟨a = 1, b = "a"⟩, ⟨a = 2, b = "b"⟩, ⟨a = 1, b = "c"⟩,
⟨a = 2, b = "d"⟩]]

Given these arguments, computation of the inner vectors Vi and Vj is de-
picted in Figure 50. Vector Vi encodes the structure of groups while vector
Vj encodes the content of all groups. Providing the structure in Vi is ac-
tually easy: as each element of the left nestjoin input maps to a group in
the nestjoin result, vector V1 readily describes the resulting structure. We
merely have to insert the ⟨⟩ placeholder in the payload of V1. To assemble
the content of all groups in Vj, the SL operator nestjoinV{} joins matching
segments of V1 and V2. All matches for one particular element of V1 are
assembled in a segment identified by that elements’ inner index. This estab-
lishes the index relationship between Vi and Vj and thus the representation
of the nested join result.

Note that despite the nested result of nestjoin{}, the corresponding vec-
tor operator nestjoinV{} is a regular flat join of two flat collections. The
only difference to thetajoinV{} lies in the handling of outer indexes. We
can safely assume that the implementation of nestjoinV{} poses no more
challenge than that of thetajoin{}. If we are able to lower order-aware

3 Since the payload of these outer vectors is just a placeholder ⟨⟩, they do not only have the same
vector shape but are actually identical.

116 query flattening and query optimization

[❲⟨⟩,k0, ⟨⟩❳ ,❲⟨⟩,k1, ⟨⟩❳]
Vo

[❲k0,ki0
, ⟨6, "a"⟩❳ ,❲k0,ki1
, ⟨7, "b"⟩❳ ,❲k0,ki2
, ⟨4, "a"⟩❳ ,❲k1,ki3
, ⟨3, "c"⟩❳ ,❲k1,ki4
, ⟨5, "c"⟩❳ ,❲k1,ki5
, ⟨1, "a"⟩❳]
Vi

[❲k0,kg0
, ⟨"a", 10⟩❳ ,❲k0,kg1
, ⟨"b", 7⟩❳ ,❲k1,kg2
, ⟨"a", 1⟩❳ ,❲k1,kg3
, ⟨"c", 8⟩❳]

Vk

groupaggV{λx.x.2, 0, λe s.e.1 + s}

[❲kg0
,ki0

, ⟨6, "a"⟩❳ ,❲kg0
,ki2

, ⟨4, "a"⟩❳ ,❲kg1
,ki1

, ⟨7, "b"⟩❳ ,❲kg2
,ki3

, ⟨1, "a"⟩❳ ,❲kg3
,ki5

, ⟨3, "c"⟩❳ ,❲kg3
,ki4

, ⟨5, "c"⟩❳]

Vg

groupV{λx.x.2}

Figure 51: SL implementation of groupagg{}↑ (based on Figure 34).

segment joins to efficient relational algebra plans, we can support nested
joins efficiently in query flattening. This enables the use of the nestjoin{}

combinator as an essential tool in the optimization of nested queries.

grouped aggregation Next to join combinators, we introduced CL

combinators groupagg{} and groupjoin{} that fuse grouping and aggrega-
tion. To ease comprehension rewriting, they return both the groups as well
as an aggregate of that group. During shredding, however, that complexity
disappears: both combinators map to simple SL operators on flat vectors.

Consider the following application of groupagg{}↑ in which argument e
has the package [[⟨Int,Text⟩]Vi]Vo :

groupagg{0, λe s.e.1 + s}↑ e

Elements are grouped by the second pair component of type Text. Accord-
ing to the type of combinator groupagg{}↑ (see Figure 45), this application
shreds into the following package:

[[⟨Text, [Int]Vg , Int⟩]Vk]Vo

Based on the example of Figure 34, we illustrate in Figure 51 how to
obtain the result vectors Vk and Vg that represent the structure and content
of groups, respectively. Vector operator groupaggV{} groups each segment
of Vi independently and includes the aggregate for each group. Vector Vk

contains an element for each group that features the grouping key as well
as the aggregate value. Note that Vk and the outer vector returned by the
groupV{} operator in Figure 34 have the same vector shape. Indeed, the
structure of the groups computed in both examples is the same. Due to this
correspondence, we can employ operator groupV{} to provide the group
content in the inner vector Vg (identical to Vg in Figure 34). The outer
vector also computed by groupV{} is not referenced. We have omitted the
projectV{} operator that removes the Text grouping keys from Vg as well
as the projectV{} operator on Vk that inserts ⟨⟩ into the payload as the
placeholder for the nested list.

5.4 shredding join combinators 117

As demonstrated here, the effort to support the combinator group{} dur-
ing shredding is minimal: we only extend SL with a simple flat, segment-
based operator for grouped aggregation.

5.4.2 Shredding Rules for Join Combinators

In this section, we extend shredding (Section 4.3.3) with rules that handle
join and grouping combinators.

Shredding rules for the FL combinators thetajoin{}↑, semijoin{}↑ and
antijoin{}↑ essentially emit the corresponding SL join operator. As de-
scribed in Section 5.4.1.1, for instance, lifted combinator antijoin{}↑ di-
rectly maps to operator antijoinV{} that implements the essential iteration
pattern encapsulated in the combinator. Additionally, index transformation
vectors obtained from those join operators are recursively applied to the el-
ement packages to maintain the structure of vectors that represent nested
lists. For thetajoin{}↑, we employ ⟬ _ ⟭ _ to replicate and filter segments in
inner vectors as described in Section 5.4.1.2.

shred-thetajoin-lift

Γ ⊢ e1 ⦂ [[ρ1]
Vi·1]Vo·1

Γ ⊢ e2 ⦂ [[ρ2]
Vi·2]Vo·2

[
(Vj, I1, I2)← thetajoinV{s} Vi·1 Vi·2

]
Γ ⊢ thetajoin{s}↑ e1 e2 ⦂ [[⟨⟬ ρ1 ⟭ I1, ⟬ ρ2 ⟭ I2⟩]

Vj]Vo·1

shred-semijoin-lift

Γ ⊢ e1 ⦂ [[ρ1]
Vi·1]Vo·1

Γ ⊢ e2 ⦂ [[ρ2]
Vi·2]Vo·2

[
(Vj,I)← semijoinV{s} Vi·1 Vi·2

]
Γ ⊢ semijoin{s}↑ e1 e2 ⦂ [[⦗ ρ1 ⦘ I]

Vj]Vo·1

shred-antijoin-lift

Γ ⊢ e1 ⦂ [[ρ1]
Vi·1]Vo·1

Γ ⊢ e2 ⦂ [[ρ2]
Vi·2]Vo·2

[
(Vj,I)← antijoinV{s} Vi·1 Vi·2

]
Γ ⊢ antijoin{s}↑ e1 e2 ⦂ [[⦗ ρ1 ⦘ I]

Vj]Vo·1

Shredding rule shred-nestjoin-lift emits two simple operators (a flat
join and a projection) to obtain the two vectors that make up the nested
result of nestjoin{}↑.

shred-nestjoin-lift

Γ ⊢ e1 ⦂ [[ρ1]
Vi·1]Vo·1

Γ ⊢ e2 ⦂ [[ρ2]
Vi·2]Vo·2

[
(Vj, I1, I2)← nestjoinV{s} Vi·1 Vi·2
Vm ← projectV{λx.⟨x, ⟨⟩⟩} Vi·1

]
Γ ⊢ nestjoin{s}↑ e1 e2 ⦂ [[⟨ρ1,[⟨⟬ ρ1 ⟭ I1, ⟬ ρ2 ⟭ I2⟩]

Vj⟩]Vm]Vo·1

Rule shred-groupjoin-lift implements binary grouping on segment vec-
tors.

shred-groupjoin-lift

Γ ⊢ e1 ⦂ [[ρ1]
Vi·1]Vo·1 Γ ⊢ e2 ⦂ [[ρ2]

Vi·2]Vo·2

⊢ z : δa
[
Va← groupjoinV{sp, sz, sf} Vi·1 Vi·2

]
Γ ⊢ groupjoin{sp, sz, sf}↑ e1 e2 ⦂ [[⟨ρ1, δa⟩]Va]Vo·1

118 query flattening and query optimization

tableV{os}[❲⟨⟩, 1, ⟨⟩❳]
repV

tableV{ls}[❲⟨⟩, 1, ⟨⟩❳]
repV

groupjoinV{p, 0, f}

selectV{λx.5 < x.2}

nestjoinV{p}

sortV{λx.x.2.sd - x.1.1.od}

projectV{λx.x.2}

projectV{λx.x.1}

unsegmentV

Lineitem]⟩][⟨Order,[

Figure 52: Flat SL plan for the running example Query Q12, obtained via shredding.
Scalar functions for join predicate and aggregate abbreviated as p, and f.

As described earlier, rule shred-groupagg-lift emits operators that com-
pute both explicit groups and group aggregates. Note that we apply a sort-
ing transformation to the group element type just as in shred-group-lift.

shred-groupagg-lift

Γ ⊢ e ⦂ [[⟨ρ1,ρ2⟩]Vi]Vo

⊢ z : δa

(_, Vg, I)← groupV{λx.x.2} Vi

V ′g ← projectV{λx.x.1} Vg

Va ← groupaggV{λx.x.2, sz, sf} Vi

Vk ← projectV{λx.⟨x.1, ⟨⟩, x.2⟩} Va

Γ ⊢ groupagg{sz, sf}↑ e1 ⦂ [[⟨ρ2, [⦑ ρ1 ⦒ I]V

′
g , δa⟩]Vk]Vo

The CL groupagg{} combinator enables step-by-step fusion of multiple ag-
gregates as well as queries in which groups are both aggregated and re-
tained. If groups are exclusively aggregated, however, the vector Vg pro-
duced by groupV{} is not required. In that case, variable Vk is not referenced
and the statement binding it can be eliminated via dead-code analysis. No
overhead is incurred.

5.4.3 Shredding Running Example

The combination of join combinators in CL queries and shredding produces
reasonable flat SL plans. Figure 52 shows the SL plan for the optimized
running example Query Q12. SL optimizations described in Section 4.3.4
have been applied to inline scalar expressions into selectV{} and sortV{}

operators. Other than that, the plan is a direct output of the shredding
translation.

5.4.4 Semantics of Segment Join Operators

We define list-based interpretations for segment join and grouping operators
that integrate with the SL semantics described in Section 4.3.2.2. Next to

5.4 shredding join combinators 119

defining the semantics of our new operators precisely, the interpretations
also hint towards the lowering of those operators to relational algebra.

Operator thetajoinV{} is defined based on a simple list comprehension
over the input vectors V1 and V2 in (SL-thetajoin). We extend predicate
p with comparison of outer indexes to only consider elements of the same
segment. We pair inner indexes of V1 and V2 to obtain unique inner in-
dexes for the result. From V, we derive the index transformations I1 and I2
that map old indexes to new indexes. We have omitted the interpretation
of nestjoinV{} which is essentially identical to (SL-thetajoin) — the dif-
ference being that we use inner indexes of V1 as outer indexes of the result.

SJthetajoinV{s} V1 V2Kρ =

letV = [❲x.s, ⟨x.k, y.k⟩, ⟨x.p, y.p⟩❳
| x← ρ(V1), y← ρ(V2)

, x.s = y.s, JsK x.p y.p]

M1 = [⟨f = x.k.1, t = x.k⟩ | x← V]

M2 = [⟨f = x.k.2, t = x.k⟩ | x← V]

in (V ,M1,M2)

(SL-thetajoin)

Likewise, (SL-antijoin) interprets antijoinV{} with a simple list com-
prehension. We omit the interpretation of semijoinV{} which is a trivial
variation that trades universal for existential quantification.

SJantijoinV{s} V1 V2Kρ =

let V = [x | x← ρ(V1), and [¬ (JsK x.p y.p)

| y← ρ(V2), x.s = y.s]]

M = [x.k | x← V]

in (V ,M)

(SL-antijoin)

Note that the core of (SL-thetajoin) matches the calculus definition of
the relational thetajoin operator ⋊⋉. Deriving the index transformations I1
and I2 matches a relational projection π on the join result. Likewise, (SL-
antijoin) directly matches the calculus definition of the relational operator
▷. This indicates that these segment join operators can be lowered rather
directly to idiomatic fragments of relational algebra.

Operator groupjoinV{} is interpreted in (SL-groupjoin) with nested com-
prehensions. Groups are folded directly. As with the other segment join
operators, the defining list comprehension resembles the calculus definition
of a relational operator, namely the groupjoin operator as defined by Mo-
erkotte and Neumann [MN11].

SJgroupjoinV{sp, sz, sf} V1 V2Kρ =

[let a = foldl (JsfK ⊘ πp) JszK [⟨x.p, y.p⟩
| y← ρ(V2), x.s = y.s, JspK x.p y.p]

in ❲x.s, x.k, ⟨x.p, a⟩❳
| x← ρ(V1)]

(SL-groupjoin)

120 query flattening and query optimization

Finally, to implement groupaggV{}, (SL-groupagg) uses groupWith to group
the individual segments and folds the resulting groups.

SJgroupaggV{sg, sz, sf} VKρ =

concat [[❲seg.1, ⟨seg.1, g.1⟩, foldl (JsfK ⊘ πp) JszK seg.2❳
| g← groupWith (JsfK ◦ πp) seg.2]

| seg← segs ρ(V)]
(SL-groupagg)

5.4.4.1 Segment Joins and Relational Joins

At the beginning of this chapter, we start by encapsulating specific patterns
of correlated nested iteration into join combinators. Our aim has been to
map these patterns to efficient backend primitives and prevent the flatten-
ing transformation from enforcing a naive evaluation strategy. By peeling
away abstractions from CL join combinators, we end up with SL segment
join combinators. As we have seen in this section, the comprehension defini-
tion of all segment join operators closely resembles the calculus definitions
of relational join operators. This correspondence indicates that CL join com-
binators indeed can be lowered almost directly to relational joins. This is a
first verification of the optimization approach described in this chapter: we
optimize queries in the high-level language CLwhere the query structure is
clearly visible and introduction of join combinators can be expressed con-
veniently. We then rely on query flattening to lower these combinators to a
low-level flat query language.

We can reasonably expect that the simple iteration patterns of segment
join operators are well supported by query engines. Recall, though, that we
start with list-based CL joins and that segment operators are order-preserving
operators defined on ordered vectors. The ordered semantics of join opera-
tors is the last remaining roadblock. We discuss the lowering of order-aware
operators to unordered relational algebra in Chapter 6.

6R E L AT I O N A L B A C K E N D

Query Flattening (Chapter 4) eliminates the major obstacles that prevent an
implementation of the query language CL on relational backends. Instead
of nested iteration and nested data, we only face a flat representation of
nested data and a number of rather simple flat, data-parallel operators. Op-
timizations described in Chapter 5 turn the nested-loop nature of flattened
queries into iteration patterns (e.g. joins) closer to relational plans. Still, the
segment vector model abstracts over a number of aspects that do not map
to relational query processing in an obvious way.

• We require an efficient scheme for creating and maintaining indexes.

• Vectors are implicitly ordered and vector operators preserve the order
of their inputs. The relational model, on the other hand, is restricted
to unordered sets or multisets. We require a representation of ordered
data in terms of unordered collections.

• Lifted list combinators (e.g. sort↑) are lowered to vector operators
(e.g. sortV{f}) that observe the segmentation of a vector and perform
the computation on each segment individually. These segment opera-
tors need to be lowered to regular relational bulk operators.

In this chapter, we take the final step towards relational queries: We de-
scribe an interpretation of segment vector operators in terms of relational
algebra. Our goal is to devise idiomatic relational plans that are fit for ex-
ecution without substantial rewriting efforts. We show that segment vector
operators map to benign and idiomatic combinations of relational opera-
tors. We aim for a relational encoding of list order that does not burden the
backend code with expensive order maintenance.

The remainder of this chapter is structured as follows: In Section 6.1 we
describe the multiset algebra and define its static and dynamic semantics.
In Section 6.2, we sketch the code generator: We discuss the implementa-
tion of segment vector operators with multiset operators as well as indexing
schemes and the representation of order. Combining these aspects, we de-
scribe a relational code generator based on natural indexes and lazy order
in Section 6.3. We conclude with a discussion of relational optimizations
(Section 6.4) and SQL code generation (Section 6.5).

6.1 multiset algebra

We define a multiset algebra MA that serves as an intermediate language in
the translation from vector operators to relational queries. MA is close to
textbook relational algebra and reflects the capabilities of real-world query
engines. Operators of the algebra are supported by any reasonably com-
plete SQL:2003 database system. We find it convenient to deviate somewhat
from standard notation and use lambda notation for operator arguments.
For example, projection is expressed as π{λx.s} q where q is an algebra
expression and s is an arbitrary scalar expression.

To enable a simple translation from vector operators, we use the same
language for scalar expressions as for all other intermediate languages (Fig-

121

122 relational backend

ure 8). All MA operators consume and produce multisets of type ⦃δ⦄
with scalar elements of type δ. Hence, multiset elements may be arbitrar-
ily nested records. Nested records will prove helpful to formulate transla-
tion rules that are not burdened with tracking and renaming of relational
columns. Nested records can be mapped to flat records in a subsequent
translation (Section 6.5). In contrast to real-world relational systems, our
data model does not include NULL values. Avoiding NULL simplifies the se-
mantics of the algebra considerably. This restriction is not fundamentally
necessary, though.

We define the typing rules for all algebra operators in Figure 53 and a list
interpretation in Figure 54. The algebra features the core relational operators
π{}, σ{}, ∪ and ×. Note that × produces pairs of elements from its operands
and thus nested records. Explicit duplicate elimination on multisets can be
expressed with operator δ.

The join operator ⋊⋉{} combines × with an arbitrary scalar predicate. In
q1 ⋊⋉{λx y.s}q2, predicate expression s is evaluated with x and y bound
to elements of operands q1 and q2, respectively. Semi- and antijoin opera-
tors ⋉{} and ▷{} express existential and universal quantification. We also
include the left outerjoin operator ⟕ {}. We follow Moerkotte and Neu-
mann [MN11] and let ⟕ {} attach an arbitrary scalar value instead of NULL
for missing join partners. In ⟕ {sp, sz, sr}, scalar function sp is the join
predicate while value sz defines the value to be assigned for missing join
partners. Scalar function sr is applied to elements of the right operand and
allows to restrict those values. Consider the following example.

⦃1, 2⦄ ⟕ {λx y.= x y.1, 42, λx.x.2}⦃⟨1, 5⟩, ⟨3, 23⟩⦄
= ⦃⟨1, 5⟩, ⟨2, 42⟩⦄

With this definition of ⟕ {}, we can employ outer joins without having to
consider NULL in the algebra. When translating MA to SQL:2003, ⟕ {} can
be simulated with NULL.

Operator Γ{} expresses grouped aggregation. Given Γ{sg, sz, sf}, scalar
function sg maps each element of the input multiset to a grouping key. Ar-
guments sz and sf define folding of each group into a single scalar value. As
an example, the following expression groups a collection of pairs by their
first component and then computes the sum of their second pair compo-
nents as well as the number of each groups’ elements:

Γ{λx.x.1, ⟨0, 0⟩, λx y.⟨s = + x.2 y, l = + 1 y⟩}⦃⟨23, 3⟩,⟨42, 4⟩,⟨23, 2⟩,⟨23, 8⟩⦄
= ⦃⟨23, ⟨s = 13, l = 3⟩⟩,⟨42, ⟨s = 4, l = 1⟩⟩⦄

Next to unary grouping, we include binary grouping with the relational
groupjoin operator {} as defined by Moerkotte and Neumann [MN11].
We slightly deviate from their definition by applying the aggregate func-
tion to pairs of values from both operands. Groupjoin is not supported by
SQL:2003 and most relational query engines. However, it can be simulated
with a left outer join using equivalences by Moerkotte and Neumann.

As the only order-aware operator in MA, #{} provides an equivalent to
SQL’s window function row_number(). In #{sp, so}, scalar function sp re-
turns a partitioning key for each element of the input multiset. Elements of
each partitions are sorted according to the sorting key provided by so and
enumerated starting with 1. Consider the following example that partitions

6.1 multiset algebra 123

MA-ty-table

Σ(t) = ⟨ℓ1:π1, . . . ,ℓn:πn⟩
t : ⦃⟨ℓ1:π1, . . . ,ℓn:πn⟩⦄

MA-ty-lit

[⊢ vi : π]ni=1⦃v1, . . . ,vn⦄ : ⦃π⦄
MA-ty-project

q : ⦃δ⦄ ⊢ s : δ→ δ ′

π{s} q : ⦃δ ′⦄
MA-ty-select

q : ⦃δ⦄ ⊢ s : δ→ Bool

σ{s} q : ⦃δ⦄
MA-ty-union

q1 : ⦃δ⦄ q2 : ⦃δ⦄
q1 ∪ q2 : ⦃δ⦄

MA-ty-product

q1 : ⦃δ1⦄ q2 : ⦃δ2⦄
q1 × q2 : ⦃⟨δ1,δ2⟩⦄

MA-ty-thetajoin

q1 : ⦃δ1⦄ q2 : ⦃δ2⦄ ⊢ s : δ1 → δ2 → Bool

q1 ⋊⋉{s}q2 : ⦃⟨δ1,δ2⟩⦄
MA-ty-semijoin

q1 : ⦃δ1⦄ q2 : ⦃δ2⦄ ⊢ s : δ1 → δ2 → Bool

q1 ⋉ {s}q2 : ⦃δ1⦄
MA-ty-antijoin

q1 : ⦃δ1⦄ q2 : ⦃δ2⦄ ⊢ s : δ1 → δ2 → Bool

q1 ▷ {s}q2 : ⦃δ1⦄
MA-ty-distinct

q : ⦃δ⦄
δ q : ⦃δ⦄

MA-ty-rownum

q : ⦃δ⦄ ⊢ sp : δ→ δ ′ ⊢ so : δ→ δ ′′

#{sp, so} q : ⦃⟨δ,Int⟩⦄
MA-ty-group

q : ⦃δ⦄ ⊢ sg : δ→ δg ⊢ sz : δa ⊢ sf : δ→ δa → δa

Γ{sg, sz, sf} v : ⦃⟨δg,δa⟩⦄
rel-ty-outerjoin

q1 : ⦃δ1⦄
q2 : ⦃δ2⦄ ⊢ sp : δ1 → δ2 → Bool ⊢ sz : δ3 ⊢ sr : δ2 → δ3

q1 ⟕ {sp, sz, sr}q2 : ⦃⟨δ1,δ3⟩⦄
rel-ty-groupjoin

q1 : ⦃δ1⦄ q2 : ⦃δ2⦄
⊢ sp : δ1 → δ2 → Bool ⊢ sz : δa ⊢ sf : ⟨δ1,δ2⟩ → δa → δa

q1 {sp, sz, sf}q2 : ⦃⟨δ1,δa⟩⦄
Figure 53: Typing rules for MA multiset operators.

124 relational backend

MJ tK = JtK
MJ⦃v1, . . . ,vn⦄K = [Jv1K, . . . , JvnK]

MJπ{s} qK = [JsK x | x←MJqK]

MJσ{s} qK = [x | x←MJqK, JsK x]

MJq1 ∪ q2K = MJq1K ++ MJq2K
MJδ qK = nubWith (λx.x) MJqK

MJ#{sp, so} qK = concat [enum (sortWith JsoK g.2)

| g← groupWith JspK MJqK]

MJq1 × q2K = [⟨x, y⟩ | x←MJq1K, y←MJq2K]

MJq1 ⋊⋉{s}q2K = [⟨x, y⟩ | x←MJq1K, y←MJq2K, JsK x y]

MJq1 ⋉ {s}q2K = [x | x←MJq1K, or [JsK x y | y←MJq2K]]

MJq1 ▷ {s}q2K = [x | x←MJq1K, and [¬(JsK x y) | y←MJq2K]]

MJΓ{sg, sz, sf} qK = [⟨k, foldl JsfK JszK xs⟩
| ⟨k, xs⟩ ← groupWith JsgK MJqK]

MJq1 ⟕ {sp, sz, sr}q2K = [⟨x.1, JsrK x.2⟩ | x←MJq1 ⋊⋉{sp}q2K]

++

[⟨x, JszK⟩ | x←MJq1 ▷ {sp}q2K]

MJq1 {sp, sz, sf}q2K = [⟨x, foldl JsfK JszK [y | y←MJq2K, JspK x y]⟩
| x←MJq1K]

Figure 54: List interpretation of MA operators.

a collection of pairs by their first component and sorts according to the sec-
ond component:

#{λx.x.1, λx.x.2} ⦃⟨23, 1⟩,⟨23, 3⟩,⟨42, 8⟩,⟨42, 3⟩,⟨23, 3⟩⦄
= ⦃⟨⟨23, 1⟩, 1⟩,⟨⟨23, 3⟩, 3⟩,⟨⟨23, 3⟩, 2⟩,⟨⟨42, 8⟩, 2⟩,⟨⟨42, 3⟩, 1⟩⦄

Note that in the partition 23 a tie exists between two elements with sorting
key 3. Recall that sortWith provides stable sorting such that the original
order of tied elements is preserved. An implementation in SQL:2003 with
row_number() however, will choose a random, non-deterministic order. This
gap is not relevant for us: the lowering of SL to MA ensures that sorting
keys for #{} are always unique.

6.2 generating multiset plans

Before delving into the details of the MA code generator, we discuss the
unordered representation of segment vectors and sketch the implementation
of vector operators.

6.2.1 Multiset Representation of Segment Vectors

In Section 4.3, we describe the segment vector model based on indexes. In-
dexes align vector elements from the same iteration and link pairs of corre-

6.2 generating multiset plans 125

[❲s1,k1, ⟨1, 10⟩❳ ,❲s1,k2, ⟨2, 20⟩❳ ,❲s1,k3, ⟨3, 30⟩❳ ,❲s2,k4, ⟨10, 100⟩❳ ,❲s2,k5, ⟨11, 110⟩❳]

⦃ ⟪s1,k1, 1, ⟨1, 10⟩⟫
⟪s2,k4, 4, ⟨10, 100⟩⟫
⟪s1,k2, 2, ⟨2, 20⟩⟫
⟪s1,k3, 3, ⟨3, 30⟩⟫
⟪s2,k5, 5, ⟨11, 110⟩⟫ ⦄

Figure 55: A vector with two segments and its unordered representation: a multiset
of (nested) records.

sponding outer and inner vectors to represent nested lists. Segment vectors
D ❲δs, δk, δp❳ are interpreted as lists of type

[⟨s:δs, k:δk, p:δp⟩]

with δs and δk denoting the types of outer and inner indexes, respectively,
and δp denoting the payload type.

We lower list-based vectors directly to unordered multisets. To encode
the order of list elements, each element is extended with a order label. Order
labels encode the order of vector elements explicitly. Hence, a segment
vector is lowered to the following multiset type:

⦃⟨s:δs, k:δk, o:δo, p:δp⟩⦄
It will be convenient to abbreviate the corresponding record constructor as
follows:

⟨s = s, k = k, o =o, p =p⟩ ≡ ⟪s,k,o,p⟫

An example for the multiset representation of a segment vector is shown in
Figure 55.

In Section 4.3.2, we distinguish four forms of index transformations that
propagate index changes from outer and inner vectors. All four transforma-
tions map to multisets in an obvious way:

• Replication and rekeying maps of type R r1 r2 and K r1 r2 are imple-
mented as multisets of type ⦃⟨f:r1, t:r2⟩⦄.

• Sorting and filtering transformations of type S r and F r are multisets
of type ⦃r⦄.

In Section 4.3, we have used abstract indexes. The concrete encoding of
indexes is not relevant for the flattening translation and there are multiple
indexing schemes to consider. For now, we will keep the representation of
indexes as well as of order abstract and sketch the implementation of vector
operators first. Section 6.2.2 demonstrates that the per-segment nature of
vector operators maps naturally to MA operators. In Section 6.2.3, we make
the vector encoding concrete and consider natural and synthetic indexing
schemes as well as eager and lazy encodings of order.

6.2.2 Implementing Segment Operators

MA operators process their complete input collection uniformly. In contrast,
SL segment operators have to observe the segment structure of their inputs.
Our discussion of SL operators semantics hints towards the relational im-
plementation of these operators, in particular segment joins (Section 5.4.4).

126 relational backend

Here, we demonstrate that SL operators indeed map to idiomatic and effi-
cient relational plans.

Each vector operator is expanded into a small number of MA operators.
For some vector operators there is a trivial one-to-one mapping to a sin-
gle MA operator (i.e. π). Others are centered around one particular oper-
ator (typically join operators) and use additional projections to maintain
administrative information (indexes and order). In the following, we sketch
the MA implementation of the five vector operators projectV{}, reduceV{},
semijoinV{}, nestjoinV{} and alignV. We postpone the discussion of order
representation and use the placeholder @ for order values in records.

• The vector operator projectV{} expresses a data-parallel scalar com-
putation. As it deals with individual vector elements only, projectV{}
is oblivious to the input vector’s segment structure. Indexes and the
order of elements do not change and need to be preserved from the
operator’s input. A vector projection projectV{λx.+ x.1 x.2} maps to
a MA projection π{λx.⟪x.s, x.k, x.o, + x.p.1 x.p.2⟫} which applies
the scalar expression to the payload x.p and copies indexes and order
without modification.

• Operator reduceV{} folds each segment individually to implement
data-parallel aggregates. As each element in the multiset encoding is
annotated with the outer index, reduceV{} maps directly to grouped
aggregation. Consider the example in Figure 56 where reduceV{} com-
putes the sum of each segment. By including segment identifiers as
the grouping key (marked red), it can be implemented by Γ{}. A sub-
sequent projection establishes the complete multiset vector encoding.
The inner index can be derived from the outer index because we stat-
ically know that each folded segment will have exactly one element.
Note that this choice of inner index is in line with the typing rule for
the reduceV{} operator in Figure 38 which requires the result vector
to use the same type of outer and inner indexes.

• Vector join operators like semijoinV{} observe the segment structure
of their inputs and join corresponding segments individually. As
demonstrated in Figure 57, adding a comparison of segment identi-
fiers to the join predicate is sufficient to implement this behaviour.
The comparison ensures that only elements from corresponding seg-
ments are considered for the actual join predicate. As semijoinV{}

only removes elements from its left operand, the inner index of the
left operand stays intact.

• Vector operator nestjoinV{} creates a segment for each element of the
left operand. Each segment in the result vector contains all matching
elements from the corresponding segment of the right operand. In
Figure 58 we sketch the MA implementation of nestjoinV{}. Operator
⋊⋉{} evaluates the join predicate and combines matching tuples. As for
semijoinV{}, we add a comparison of segment identifiers to the join
predicate to align elements from corresponding segments only. After
the join, a projection utilizes the left operands’ inner index as outer
index in the result. Unique inner indexes for the result are obtained
by pairing inner indexes of the operands.

• Operator alignV pairs corresponding elements from two vectors. It
maps to a join

⋊⋉{λx y.= x.k y.k}

6.2 generating multiset plans 127

⦃ ⟪s1,k1, @ , 10⟫
⟪s1,k2, @ , 20⟫
⟪s2,k3, @ , 40⟫
⟪s2,k4, @ , 50⟫ ⦄

Γ{λx.x.s, 0,λx y.+ x.p y}

π{λx.⟪x.1, x.1, @ , x.2⟫}

⦃ ⟪s1,s1, @ , 30⟫
⟪s2,s2, @ , 90⟫ ⦄

[❲s1,k1, 10❳ ,❲s1,k2, 20❳ ,❲s2,k3, 40❳ ,❲s2,k4, 50❳]

reduceV{0,λx y.+ x y}

[❲s1,s1, 30❳ ,❲s2,s2, 90❳]

Figure 56: MA implementation of reduceV{} (sketch).

⦃ ⟪s1,kl·1, @ , 1⟫
⟪s1,kl·2, @ , 6⟫
⟪s2,kl·3, @ , 1⟫
⟪s2,kl·4, @ , 3⟫ ⦄

⦃ ⟪s1,kr·1, @ , 2⟫
⟪s1,kr·2, @ , 3⟫
⟪s2,kr·3, @ , 0⟫ ⦄

⋉{λx y.x.s = y.s ∧ x.p > y.p}

⦃ ⟪s1,kl·1, @ , 6⟫
⟪s2,kl·3, @ , 1⟫
⟪s2,kl·4, @ , 3⟫ ⦄

[❲s1,kl·1, 1❳ ,❲s1,kl·2, 6❳ ,❲s2,kl·3, 1❳ ,❲s2,kl·4, 3❳]
[❲s1,kr·1, 2❳ ,❲s1,kr·2, 3❳ ,❲s2,kr·3, 0❳]

semijoinV{λx y.x > y}

[❲s1,kl·1, 6❳ ,❲s2,kl·3, 1❳ ,❲s2,kl·4, 3❳]

Figure 57: MA implementation of semijoinV{} (sketch).

on inner indexes. Again, the typing rule for alignV in Figure 38 guar-
antees that both operands have inner indexes of the same type. As
we know that the vector shape of both operands is identical, a projec-
tion chooses the outer index of the left operand to establish the proper
vector encoding.

All operators discussed exhibit a rather direct and idiomatic MA imple-
mentation. Although we have deliberately chosen simple operators here, the
detailed discussion in Section 6.3 will show that the other operators follow
the same pattern: Per-element and administrative operators map to projec-

⦃ ⟪s1,kl·1, @ , 1⟫
⟪s1,kl·2, @ , 6⟫
⟪s2,kl·3, @ , 1⟫
⟪s2,kl·4, @ , 3⟫ ⦄

⦃ ⟪s1,kr·1, @ , 2⟫
⟪s1,kr·2, @ , 3⟫
⟪s2,kr·3, @ , 0⟫ ⦄

⋊⋉{λx y.x.s = y.s ∧ x.p > y.p}

π{⟪ s = x.1.k, ⟨x.1.k, x.2.k⟩,@ , ⟨x.1.p, x.2.p⟩⟫}

⦃ ⟪k2, ⟨kl·2,kr·1⟩, @ , ⟨6, 2⟩⟫
⟪k2, ⟨kl·2,kr·2⟩, @ , ⟨6, 3⟩⟫
⟪k3, ⟨kl·3,kr·3⟩, @ , ⟨1, 0⟩⟫
⟪k4, ⟨kl·4,kr·3⟩, @ , ⟨3, 0⟩⟫ ⦄

[❲s1,kl·1, 1❳ ,❲s1,kl·2, 6❳ ,❲s2,kl·3, 1❳ ,❲s2,kl·4, 3❳]
[❲s1,kr·1, 2❳ ,❲s1,kr·2, 3❳ ,❲s2,kr·3, 0❳]

nestjoinV{λx y.x > y}

[❲kl·2, ⟨kl·2,kr·1⟩, ⟨6, 2⟩❳ ,❲kl·2, ⟨kl·2,kr·2⟩, ⟨6, 3⟩❳ ,❲kl·3, ⟨kl·3,kr·3⟩, ⟨1, 0⟩❳ ,❲kl·4, ⟨kl·4,kr·3⟩, ⟨3, 0⟩❳]

Figure 58: MA implementation of nestjoinV{} (sketch).

128 relational backend

tions and simple joins, whereas data-parallel per-segment operators extend
join predicates and the like with index comparisons.

6.2.3 Vector Encoding: Indexes and Order

To define a concrete multiset encoding of segment vectors, we discuss index-
ing schemes (Section 6.2.3.1) and order representation (Section 6.2.3.2).

In Loop-Lifting (Section 2.2.2), indexes and order are entwined: in Loop-
Lifting’s relational encoding, each tuple is annotated with its relative list
position. Iteration identifiers, in turn, are derived from list positions and
serve as the basis for indexes that link outer and inner relations. In our
approach, index and order representation are related as well: both indexes
and the order of vector elements are initially derived from primary keys
of base tables. The segment vector model, however, enables us to consider
those aspects separately: the index maintenance of vector operators is de-
fined without prescribing a physical or logical representation of the order
of vector elements.

Separating the two topics is beneficial for two reasons. First, the behaviour
of vector operators is not symmetrical with regard to index and order main-
tenance. Certain operators (e.g. repV, nestjoinV{}) require to recompute
indexes but allow to preserve the order representation. Others (most promi-
nently sortV{}) change the order of elements but leave indexes intact. We
aim to exploit these asymmetries in the translation to relational algebra. In
particular, we describe an implementation of the sortV{} operator that, ef-
fectively, has no runtime cost. Second, the separation enables an adaption of
Query Flattening to unordered collections that require indexes but no order
labels (see Section 9.2).

6.2.3.1 Synthetic and Natural Indexes

Indexes are derived from the primary keys of base tables. The implemen-
tation of a SL operator has to recompute indexes whenever the inner in-
dexes of the input vectors do not uniquely identify elements of the result.
Concerned are nesting operators groupV{} and repV as well as the join op-
erators thetajoinV{} and nestjoinV{}. These operators take a prominent
place in most queries. An efficient implementation of index computation is
paramount.

The list interpretation of SL operators derives new indexes by compos-
ing indexes of operands. For thetajoinV{}, for example, Equation (SL-
thetajoin), provides unique indexes for the result vector as pairs of old
indexes of both operands. In this section, we discuss the viability of this
indexing scheme for the MA interpretation of SL and compare it with an
alternative indexing scheme that has been used in related work. We discuss
two kinds of indexes:

1. Synthetic indexes are uniform integer indexes derived by enumerating
vector elements.

2. Natural indexes are non-uniform tuples of base table keys.

For the purpose of the discussion, we express abstract index computation
with the MA operator index⦃⦄ {s}. Applied to a multiset of type ⦃δ⦄, the
operator extends each element with an index value of some type δk and
returns a multiset of type ⦃⟨δ,δk⟩⦄. Index values are derived from the re-
sult of expression s. For example, index⦃⦄ {λx.x.k} computes new indexes

6.2 generating multiset plans 129

⋊⋉{ . . . }

index⦃⦄ {fk}
⋊⋉{ . . . }

index⦃⦄ {fk}
p1 p2

t
h
e
t
a
j
o
i
n
V
{
}

n
e
s
t
j
o
i
n
V
{
}

(a) Abstract Index

⋊⋉{ . . . }

#{fk}

⋊⋉{ . . . }

#{fk}

p1 p2

(b) Synthetic Index

⋊⋉{ . . . }

π{fk}

⋊⋉{ . . . }

π{fk}

p1 p2

(c) Natural Index

Figure 59: Join plan sketches with index computation instantiated with synthetic and
natural indexes. fk ≡ λx.⟨x.1.k, x.2.k⟩

from the inner index of the input. Consider the plan fragment in Figure 59a.
It sketches a relational plan implementing thetajoinV{} and nestjoinV{}.
For both operators, indexes for the join result are derived from the combi-
nation of indexes of both operands.

Index computation has to be deterministic. This property is crucial to con-
struct nested results from vectors that are linked by indexes. In Figure 59a,
the index computed as part of the thetajoinV{} implementation is shared in
the relational plans p1 and p2 and links the corresponding outer and inner
vectors. We do not prescribe a particular evaluation strategy for relational
plans with sharing (we discuss evaluation strategies for shared subplans in
Section 6.5). While the shared sub-plan’s result might be physically mate-
rialized and reused, the plan might also be evaluated by unfolding it into
two separate backend queries which are evaluated independently. Without
deterministic index computation, the relationship between outer and inner
vector could not be established.

synthetic indexes Both Loop-Lifting Query Shredding (Section 2.2) are
based on synthetic indexes (coined flat indexes by Cheney et al. [CLW14a]).
The idea is simple: Sort the input bag in some order, enumerate its elements
and use the enumeration as the index values. To ensure a deterministic
index, the input bag is sorted by a key. In MA, synthetic indexes can be
computed with #{}:

index⦃⦄ {s} q = #{λx.⟨⟩, s} q

In Figure 59b, synthetic indexes for join results are computed based on the
unique combination of the left and right inputs’ indexes. The synthetic
index scheme combines keys by sorting and enumerating according to both
indexes:

#{λx.⟨⟩, λx.⟨x.1.k, x.2.k⟩}

A synthetic index value computed in this way is a single integer value.
Hence, synthetic index values are compact and can be efficiently compared.
Synthetic indexes provide for cheap sorting and hashing in physical opera-
tors. Creating a synthetic index based on row numbering, however, is not
cheap. In relational query engines based on unordered collections, number-
ing operators are evaluated by sorting the input. Sorting is an expensive op-
eration. Furthermore, sorting is a blocking operation that prevents pipelining

130 relational backend

and materializes intermediate results. MA plans derived from SL queries
with synthetic indexes are littered with expensive sorting operations.

In some cases, numbering operators can be simplified or eliminated en-
tirely. Rittinger [Rit11] describes a set of algebraic rewrites that aim to min-
imize numbering operators (Section 2.2.2). Such rewrites, however, do not
provide a guarantee to eliminate all numbering operators. Index-generating
numbering operators are hard to remove in the presence of nested data, i.e.
outer and inner vectors linked by indexes as in Figure 59. In Figure 59b,
both plans p1 and p2 depend on the index values generated by the lower
#{} operator. This operator can not be replaced with a local rewrite — index
values need to be consistent across both plans.

Next, we consider an indexing scheme that does not introduce expensive
operations that have to be removed afterwards.

natural indexes Rather than computing integer surrogates from table
keys and use those surrogates as indexes, we can use base table keys them-
selves as indexes. We have already employed this scheme in the indexed
semantics of FL (Section 4.2.4) and the semantics of SL (Section 4.3.2.2
and Section 5.4.4). We follow Cheney et al. [CLW14a] and call such indexes
natural indexes. In MA, natural indexes are obtained as follows:

index⦃⦄ {s} q = π{λx.⟨x, s x⟩} q

Under this indexing scheme, indexes are non-uniform: In general, two
vectors will have different types for their outer and inner indexes, respec-
tively. However, in a type-correct SL program obtained by Query Flattening,
vectors have the same type of indexes in all situations in which indexes are
actually compared (Figure 38):

1. For a pair of an outer vector Vo and an inner vector Vi, the type of the
outer index of Vi matches the type of the inner index of Vo.

2. Vectors that are combined with alignV have the same vector shape
and therefore the same type of outer and inner index.

In Figure 59c, natural indexes are used. Indexes are combined simply by
forming pairs of input indexes:

π{λx.⟨x, ⟨x.1.k, x.2.k⟩⟩}

Let δk1
, δk2

and δk3
denote the inner index types of the three input rela-

tions. Then the indexes generated for the lower (thetajoinV{}) and upper
(nestjoinV{}) vector operators are of type ⟨δk1

,δk2
⟩ and ⟨⟨δk1

,δk2
⟩,δk3

⟩,
respectively.

In general, natural indexes are composed from nested records of scalar
data, most often consisting of primary key attributes of base tables. Com-
paring them is more expensive than comparing single integer values. There-
fore, we expect that comparisons on natural indexes have higher cost than
on synthetic indexes. However, we assume that the cost of sorting induced
by synthetic indexes is considerably higher.

Under the natural indexing scheme, a large class of queries can be imple-
mented without any numbering operators for index maintenance. Indeed,
Section 6.3 shows that appendV is the only operator that requires a number-
ing operator for index maintenance.

6.2 generating multiset plans 131

[["a", "b", "c"],

["d", "e", "f"]]

(a) Nested list.

[❲⟨⟩, s0, ⟨⟩❳ ,❲⟨⟩, s1, ⟨⟩❳]
[❲s0,k0, "a"❳ ,❲s0,k1, "b"❳ ,❲s0,k2, "c"❳ ,❲s1,k3, "d"❳ ,❲s1,k4, "e"❳ ,❲s1,k5, "f"❳]
(b) Segment vectors.

⦃ ⟪⟨⟩, s0, 1, ⟨⟩⟫ ,
⟪⟨⟩, s1, 2, ⟨⟩⟫ ⦄

⦃ ⟪s0,k0, 1, "a"⟫ ,
⟪s0,k1, 2, "b"⟫ ,
⟪s0,k2, 3, "c"⟫ ,
⟪s1,k3, 4, "d"⟫ ,
⟪s1,k4, 5, "e"⟫ ,
⟪s1,k5, 6, "f"⟫ ⦄

(c) Multiset.

Figure 60: A nested list represented as a pair of segment vectors and a pair of mul-
tisets. Order labels on multiset elements (here of type Int) describe the
order of segment elements.

6.2.3.2 Eager and Lazy Order

All languages defined in query flattening are based on lists, i.e. ordered
collections. We have defined the semantics of SL operators based on flat
lists.

Query Flattening uses intermediate languages (CLd, FL, SL) centered
around ordered lists. Here, however, we lower SL operators to MA oper-
ators on unordered multisets. Hence, we have to define an explicit encod-
ing of ordered vectors in terms of multisets. Although some work can not
be avoided to maintain order information, the cost of order maintenance
should be minimized. In this section, we make observations that lead to an
efficient unordered backend. Same as for the index scheme, our aim is to
minimize the effort for order maintenance upfront by construction instead of
relying on subsequent optimizations.

order labels An ordered list [x1, . . . , xn] can be represented in terms
of an unordered multiset by encoding order as data: Every list element x is
equipped with an order label o such that for two list elements xi, xj, we have
oi < oj if and only if i < j. Then, instead of the original list, the multiset⦃⟨x1,o1⟩, . . . , ⟨xn,on⟩⦄ can be stored. The original list can be obtained by
sorting the multiset on the order labels. List order then is defined through
the order relation on order labels.

A list in a CL query maps to a segment in a SL vector. To maintain the
order of CL list elements, we have to maintain the order of elements in
the corresponding segment. Hence, when lowering a segment vector to a
multiset, we add order labels such that for each segment, labels impose a
total order on the elements of that segment. In Figure 60, the order of the
two elements of the outer list is described by order labels on the multiset
that encodes the outer vector. The order of elements of the two inner lists
is described by order labels on the segments s0 and s1 on the multiset that
encodes the inner vector.
CL lists are originally created from unordered base tables. As defined in

Section 1.4, base tables are interpreted as lists in the order of their primary
key. Primary keys of base tables serve as the basis for order labels. An MA

implementation of an SL operator has to maintain order labels such that for
each segment of the result, order labels describe the total order of segment
elements.

132 relational backend

[❲⟨⟩, s0, ⟨⟩❳ ,❲⟨⟩, s1, ⟨⟩❳]
[❲s0,k0, "a"❳ ,❲s0,k1, "b"❳ ,❲s0,k2, "c"❳ ,❲s1,k3, "d"❳ ,❲s1,k4, "e"❳ ,❲s1,k5, "f"❳]

(a) Segment vectors.

⦃ ⟪⟨⟩, s0, 1, ⟨⟩⟫ ,
⟪⟨⟩, s1, 2, ⟨⟩⟫ ⦄

⦃ ⟪s0,k0, ⟨1, 1⟩, "a"⟫ ,
⟪s0,k1, ⟨1, 2⟩, "b"⟫ ,
⟪s0,k2, ⟨1, 3⟩, "c"⟫ ,
⟪s1,k3, ⟨2, 2⟩, "d"⟫ ,
⟪s1,k4, ⟨2, 3⟩, "e"⟫ ,
⟪s1,k5, ⟨2, 5⟩, "f"⟫ ⦄

(b) Multiset.

⦃ ⟪⟨⟩, s0, 1, ⟨⟩⟫ ,
⟪⟨⟩, s1, 2, ⟨⟩⟫ ⦄

⦃ ⟪s0,k0, 1, "a"⟫ ,
⟪s0,k1, 2, "b"⟫ ,
⟪s0,k2, 3, "c"⟫ ,
⟪s1,k3, 2, "d"⟫ ,
⟪s1,k4, 3, "e"⟫ ,
⟪s1,k5, 5, "f"⟫ ⦄

(c) Multiset.

Figure 61: Order encoding with and without ordering of segments.

order of segments The list semantics of SL operators (Section 4.3.2.2)
not only maintains the order of segment elements but also the order of
segments. The order of segments in an inner vector is the same as the order
of the corresponding elements in the outer vector.

This consistent order of segments can be exploited by a backend with or-
dered collections (Section 4.3.2.3). For the MA backend, though, maintain-
ing this property incurs unnecessary overhead. The relationship between
elements of an outer vector Vo and segments in an inner vector Vi is de-
scribed by indexes. To relate each element of Vo with the corresponding
segment in Vi, the order of segments in Vi is not relevant. In Figure 61b, or-
der labels are pairs that not only describe the order of segment elements but
also the order of segments that corresponds to the order of elements in the
outer vector. In Figure 61c, on the other hand, order labels only describe the
order of elements relative to a segment. Although the latter representation
is more liberal, it still faithfully represents the original nested list.

propagating order changes Since we don’t insist on ordering seg-
ments, order labels become a local property of one particular multiset. If
the order of elements in an outer vector changes (e.g. because of sortV{}),
the change in order labels does not have to be propagated to multisets that
encode any inner vectors.

We illustrate this with an example. Consider the expression sort↑ e,
where e is an expression of type [[⟨[Int],Text⟩]]. By shredding we obtain
for e the package [[⟨[Int]Vn,Text⟩]Vi]Vo where the segments of vector
Vi encode the lists that are to be sorted. Sorting is implemented with the
corresponding vector operator applied to Vi. By shred-sort-lift we have

sort↑ e ⦂ [[⟨[Int]V
′
n,Text⟩]V

′
i]Vo

and emit the vector program

(Vs,I)← sortV{λx.x.2} Vi

V ′i ← projectV{λx.x.1} Vs

V ′n ← appsortV I Vn

By sorting Vi, elements of Vi that encode pairs of type ⟨[Int],Text⟩ are
rearranged. We depict the situation with concrete arguments and integer
order labels in Figure 62. In the multiset corresponding to vector Vi, this
rearrangement is reflected in a change to the order labels. The order of
elements of the innermost lists of type [Int], however, is not affected and
their order labels stay the same. Because the inner index of Vi does not

6.2 generating multiset plans 133

⦃ ⟪s1,k1, 1, ⟨⟨⟩, "b"⟩⟫
⟪s1,k2, 2, ⟨⟨⟩, "a"⟩⟫ ⦄ ⦃ ⟪k1,ki·1, 1, 10⟫

⟪k1,ki·2, 2, 20⟫
⟪k1,ki·3, 3, 30⟫
⟪k2,ki·4, 4, 40⟫
⟪k2,ki·5, 5, 50⟫ ⦄

⦃ ⟪s1,k2, 1, ⟨⟨⟩, "a"⟩⟫
⟪s1,k1, 2, ⟨⟨⟩, "b"⟩⟫ ⦄

sortV{λx.x.2}

appsortV

•

Figure 62: Maintaining the order of segments in inner vectors
with segment-relative order labels involves no work.
sort↑ [[⟨[10, 20, 30], "b"⟩, ⟨[40, 50], "a"⟩]]

change through sorting, the inner vector Vn does not need to be changed at
all. The multiset implementation of appsortV then returns the inner vector
unmodified.

abstract order labels Before we discuss concrete encodings of or-
der labels, we discuss maintenance of order labels. For the purpose of the
discussion, we use the abstract labeling function ord {ss, so} to extend a
multiset with order labels. For each element of the input, so returns a value
of some type δo that represents the elements’ order. ss returns the outer
index of an element to enable ord {} to create segment-relative order labels.
Given a multiset q of type ⦃δ⦄, ord {ss, so} q evaluates to a multiset of type⦃⟨δ,ϕ(δo)⟩⦄ where ϕ(δ) denotes the type of order labels. We also use ϕ(x)

to denote an abstract order label derived from value x.
Values of any scalar type (i.e. atomic values and records) can serve as

the basis for order labels. The order relation defined on the scalar type
determines the order condensed into labels. As defined in Section 1.4, the
order relation on records is defined as the lexicographic order on record
fields according to the order of record labels. Creating order labels from
records — in particular pairs — composes orders: Order labels derived with
ord {fg, λx.⟨s1, s2⟩} order elements primarily by expression s1 and secon-
darily (for ties in s1) by expression s2.

maintaining order labels Most vector operators merely preserve
the order of elements in their input (e.g. projectV{}). Some operators, how-
ever, have to explicitly maintain the order of elements: Either because the
order actually changes (e.g. sortV{}) or because the order labels of one of
the operators’ inputs are not sufficient to uniquely describe the order of el-
ements in the operators’ result (e.g. thetajoinV{}). We discuss order label
maintenance with three examples:

1. Vector operator sortV{s} has to recompute order labels as it changes
the order of segment elements. Segment elements are rearranged
based on the result of function s applied to the vector payload. In
Figure 63a, sortV{λx.x.p} reorders elements according to the integer
payload.

134 relational backend

⦃ ⟪s1,k1, 1, 20⟫
⟪s1,k2, 2, 10⟫
⟪s1,k3, 3, 10⟫
⟪s2,k4, 1, 15⟫ ⦄

ord {λx.x.s, λx.⟨x.p, x.o⟩}

⦃ ⟪s1,k2,ϕ(⟨10, 2⟩), 10⟫
⟪s1,k3,ϕ(⟨10, 3⟩), 10⟫
⟪s1,k1,ϕ(⟨20, 1⟩), 20⟫
⟪s2,k4,ϕ(⟨15, 1⟩), 15⟫ ⦄

(a) sortV{λx.x}

⦃ ⟪s1,k1, 1, 3⟫
⟪s1,k2, 2, 3⟫
⟪s2,k3, 1, 7⟫ ⦄

⦃ ⟪s1,k ′1, 1, 3⟫
⟪s1,k ′2, 2, 4⟫
⟪s2,k ′3, 1, 7⟫
⟪s2,k ′4, 2, 7⟫ ⦄

⋊⋉{λx y.x.s = y.s ∧ x.p = y.p}

ord {λx.x.1.s, λx.⟨x.1.o, x.2.o⟩}

⦃ ⟪s1, ⟨k1,k
′
1⟩,ϕ(⟨1, 1⟩), ⟨3, 3⟩⟫

⟪s1, ⟨k2,k
′
1⟩,ϕ(⟨2, 1⟩), ⟨3, 3⟩⟫

⟪s2, ⟨k3,k
′
3⟩,ϕ(⟨1, 1⟩), ⟨1, 7⟩⟫

⟪s2, ⟨k3,k
′
4⟩,ϕ(⟨1, 2⟩), ⟨1, 7⟩⟫ ⦄

(b) thetajoinV{λx y.x = y}

Figure 63: Maintaining order labels for vector operators sortV{} (Figure 63a) and
thetajoinV{} (Figure 63b)

New order labels are derived from the result of function s. However,
as demonstrated in the example, ties can occur between elements of
a segment. Ties are resolved by including the original order label as
a secondary order criterion in the call to ord. This implements the
stable sorting semantics defined for the CL sort combinator and its
lifted variant sort↑.

2. List semantics of join combinators imply that all matches for a par-
ticular element of the left operand come before the matches for the
elements’ successors. The order of matches for one particular left ele-
ment reflects the original order of elements in the right operand.

As depicted in Figure 63b, this behaviour is easily implemented by
composing the order labels of the left and right operand. Elements
in the join result are primarily ordered according to the order labels
of the left join operand and only secondarily according to the order
labels of the right operand.

3. Operator appendV appends individual pairs of corresponding segments.
It implements the list-based semantics of the corresponding combina-
tor append↑. For each segment identifier s, elements from the left
operands’ segment s appear before elements from the right operands’
segment s. At the same time, the original order of elements in segment
s of the left and right operands, respectively, has to be preserved.

In Figure 64 we sketch the multiset implementation of appendV. Order
labels are recomputed for the individual operands based on their orig-
inal order labels. Including integer tags 1 and 2, respectively, ensures
that elements from the left operand always have a smaller order label
than elements from the right operand. A regular multiset union, then,
is sufficient to implement appendV.

Note that in all three examples, we ensure that generated order labels are
unique in a segment. New order labels are always computed based on a
composition with the original labels: by pairing order labels that are unique
in the respective input (thetajoinV{}), by using unique labels to resolve ties
in the sorting key (sortV{}) and by prefixing labels with a unique tag before
merging labels into one multiset (appendV).

6.2 generating multiset plans 135

∪

ord {λx.x.s, λx.⟨1, x.o⟩} ord {λx.x.s, λx.⟨2, x.o⟩}

⦃ ⟪s1,k ′1, 10,p1⟫
⟪s1,k ′2, 20,p2⟫
⟪s2,k ′3, 10,p3⟫ ⦄

⦃ ⟪s1,k ′1, 10,p4⟫
⟪s2,k ′2, 20,p5⟫ ⦄

⦃ ⟪s1, . . . ,ϕ(⟨1, 10⟩),p1⟫
⟪s1, . . . ,ϕ(⟨1, 20⟩),p2⟫
⟪s1, . . . ,ϕ(⟨2, 10⟩),p4⟫
⟪s2, . . . ,ϕ(⟨1, 10⟩),p3⟫
⟪s2, . . . ,ϕ(⟨2, 20⟩),p5⟫ ⦄

Figure 64: Maintaining order labels for vector operator appendV

⦃ ⟪s0,k1, 1, "a"⟫ ,
⟪s0,k0, 2, "c"⟫ ,
⟪s1,k2, 1, "x"⟫ ,
⟪s1,k3, 2, "x"⟫ ⦄

⦃ ⟪s0,k0, 1, "c"⟫ ,
⟪s0,k1, 2, "a"⟫ ,
⟪s1,k2, 1, "x"⟫ ,
⟪s1,k3, 3, "x"⟫ ⦄

π{λx.⟪x.1.s, x.1.k, x.2, x.1.p⟫}

#{λx.x.s, λx.⟨x.p, x.o⟩}

(a) Eager.

⦃ ⟪s0,k1, ⟨"a", 2⟩, "a"⟫ ,
⟪s0,k0, ⟨"c", 1⟩, "c"⟫ ,
⟪s1,k2, ⟨"x", 1⟩, "x"⟫ ,
⟪s1,k3, ⟨"x", 3⟩, "x"⟫ ⦄

⦃ ⟪s0,k0, 1, "c"⟫ ,
⟪s0,k1, 2, "a"⟫ ,
⟪s1,k2, 1, "x"⟫ ,
⟪s1,k3, 3, "x"⟫ ⦄

π{λx.⟪x.s, x.k, ⟨x.p, x.o⟩, x.p⟫}

(b) Delayed.

Figure 65: Eager and delayed computation of order labels.

encoding order labels The five operators discussed in the previous
paragraph are the only ones that have to recompute order labels. Addition-
ally, tableV{} has to compute initial order labels from base tables. All other
operators can copy order labels from their inputs. Thus, the effort for im-
plementing order-preserving SL operators on unordered multisets depends
solely on the implementation of ord.

The alternatives to implement order label computation are the same as for
index computation: either derive integer surrogates as order labels or use
the underlying values that describe element order. The obvious choice is to
use

ord {ss, so} q = #{ss, so} q

to derive order labels of type Int. We obtain dense integer labels that enu-
merate the elements of each segment in the correct order. The resulting mul-
tiset algebra plans feature one numbering operator #{} for each SL operator
that requires updating order labels. As an example, consider SL operator
sortV{λx.x} that sorts its input vector by the payload field. In Figure 65a,
this operator is implemented with dense integer order labels: numbering op-
erator #{} derives new order labels and a subsequent projection rearranges
record fields into the format expected for vector encodings.

The performance implications of plans littered with numbering operators
have been discussed in Section 6.2.3.1. We can expect that sorting dominates

136 relational backend

sortV{ . . . }

thetajoinV{ . . . }

semijoinV{ . . . }

numberV

(a) Vector plan.

#{ . . . }

⋊⋉{ . . . }

#{ . . . }

⋉{ . . . }

#{ . . . }

(b) Eager labels.

π{ . . . }

⋊⋉{ . . . }

π{ . . . }

⋉{ . . . }

#{ . . . }

(c) Delayed labels.

Figure 66: Order encoding schemes.

the execution time and prohibits pipelining. Similar to the natural index
scheme, however, we can avoid introducing numbering operators in the first
place.

Order label computation is based on data that determines the order of
segment elements. Recall that the original order of CL lists is induced by
primary keys of base tables. Instead of condensing those keys into uniform
integer labels, we preserve them. We use

ord {fs, fo} q = π{λx.⟨x, fo x⟩} q

to derive order labels. Here, we essentially track the record fields that de-
scribe order. An example is given in Figure 65b. The order labels computed
here merely combine the input payload of type Text (the primary sorting cri-
terion) with the original order labels. The resulting pairs precisely describe
the order of elements computed by sortV{λx.x}. The effort to evaluate
sortV{} on multisets is minimal. We refer to this scheme for order labels
as lazy order because any actual effort for list positions is delayed as long as
possible. We only materialize list positions when absolutely necessary — for
example when encountering a numberV operator.

Note that the resulting order labels are non-uniform: their type depends
on the order-maintaining operators occurring in the plan. In general, two
multisets that encode different segment vectors have different types of order
labels. This does not pose a problem, however. Earlier in this section, we
have established that order labels are local to a given vector. In MA plans
derived from SL plans, we never compare order labels across vectors1.

In Figure 66 we sketch order maintenance for an SL plan with both al-
ternatives for order labels discussed here. In the SL plan in Figure 66a,
operators thetajoinV{} and sortV{} require maintenance of order labels.
Generating integer order labels with #{} (Figure 66b) requires three #{} op-
erators. Next to one #{} generating list positions for numberV, two more are
required to update order labels. The resulting plan encodes substantial sort-
ing effort. In contrast, the plan in Figure 66c employs lazy order and features
only one occurrence of #{}. Projections track the data that induces segment
order up until the point where positions actually have to be computed by
numberV{}. The plan encodes only minimal runtime effort for order mainte-
nance in the form of projections.

1 With the exception of appendV. We elaborate on this problem in Section 6.3

6.3 generating multiset plans 137

6.3 generating multiset plans

We now put the concepts discussed in Section 6.2 to work and describe the
MA code generator based on natural indexes and lazy order. All essential
ingredients are in place: the implementation of segment semantics as well
as the computation of indexes and order labels. We specify translation rules
for all vector operators based on these concepts.

We define an interpretation RJ−Kρ of vector operators in terms of MA

operators. It plugs directly into the semantics of vector programs defined in
Section 4.3.2.2 and can be considered an alternative to the list interpretation
of vector operators. Evaluating RJaKρ maps the vector operator applica-
tion a to MA expressions that evaluate to the multiset encoding of either a
segment vector or an index transformation. The result of preceding vector
applications is provided by environment ρ. As a simple example, operator
projectV{} is lowered by Rule (MA-project):

RJprojectV{s} VKρ = π{λx.⟪x.s, x.k, x.o, s x⟫} ρ(V) (MA-project)

projectV{f} is translated given the multiset representation of its input vec-
tor obtained with ρ(V). It maps to a single π{} operator that preserves
indexes and order labels while applying the scalar function f to the payload
of the multiset vector encoding.

In the following rules, we often construct indexes, order labels etc. from
pairs generated by a join operator. To abbreviate this pattern, we write

pairℓ(e) = ⟨e.1.ℓ, e.2.ℓ⟩

In the construction of MA expressions, some translation rules re-use MA

expressions (e.g. (MA-group)). This reflects the sharing in SL programs. If
sharing of operator results is made explicit, we obtain DAG-shaped MA

plans. We do not consider sharing in the translation rules. Standard imple-
mentation techniques (e.g. hash consing) can recover sharing and make it
explicit in plans.

table references , literal vectors Base tables and literal lists are
handled by rules (MA-lit) and (MA-table).

RJlitV{[v1, . . . ,vn]}Kρ = ⦃⟪⟨⟩, i, i, vi⟫ni=1⦄ (MA-lit)

RJtableV{t}Kρ = π{λx.⟪⟨⟩, pkt(x), pkt(x), x⟫} (t) (MA-table)

Both have to provide inner indexes as well as order labels. As discussed
previously, (MA-table) derives those from the primary key value pkt(r) of
a base table row r. For literal tables, we use list positions to index elements.
Note that both rules put all elements into the top-level unit segment by
choosing the constant ⟨⟩ as outer index.

segment operators MA implementations of operators selectV{} and
numberV are independent of the index and order label scheme. Both map
directly to their MA counterparts.

RJselectV{s} VKρ = (qs,qm) (MA-select)

where qs ≡ σ{λx.s x.p} ρ(V)

qm ≡ π{λx.x.k} qs

138 relational backend

Vector selection is implemented by σ{} with indexes, order labels and
payload being preserved from the input. A segment map is created from
the result of qs that contains only those indexes surviving the selection and
eliminates stale segments in any inner vectors.

RJnumberV VKρ = qd (MA-number)

where qn ≡ #{λx.x.s, λx.x.o} ρ(V)

qd ≡ π{λx.⟪x.1.s, x.1.k, x.1.o, ⟨x.1.p, x.2⟩⟫} qs

In rule (MA-number), segment positions are created with #{} by partition-
ing on outer indexes and enumerating each partition in the order dictated
by the order labels.

RJsortV{s} VKρ = (qs,qm) (MA-sort)

where qs ≡ π{λx.⟪x.s, x.k, ⟨s x.p, x.o⟩, x.p⟫} ρ(V)

qm ≡ π{λx.x.k} qs

Rule (MA-sort) delays any actual sorting and simply records the sorting
key as a prefix to the original order labels. As discussed in Section 6.2.3.2,
by preserving the original order labels as a secondary ordering criterion,
we implement stable sorting. A sorting transformation qm is generated by
(MA-sort) to comply with the type of the sortV{} vector operator. As the
multiset representation of vectors does not depend on the order of segments,
it will not actually be applied to inner vectors (see rule (MA-appsort)).

To eliminate duplicates, MA provides the δ operator that removes du-
plicates in a multiset globally and compares whole multiset elements. For
the vector operator distinctV, however, we have to observe the segment
structure and eliminate duplicates only relative to one particular segment.
Furthermore, only the payload components of the multiset elements are
compared — indexes and order labels are to be ignored.

RJdistinctV VKρ = qd (MA-distinct)

where qn ≡ #{λx.⟨x.s, x.p⟩, λx.x.o} ρ(V)

qs ≡ σ{λx.x.2 = 1} qn

qd ≡ π{λx.x.1} qs

Based on #{}, rule (MA-distinct) partitions the input such that partition
elements concur in their outer indexes and payload values. A segment-
relative elimination of duplicates can then be performed by selecting exactly
one element — the first — from each partition. Note that partition elements
are enumerated in their relative order indicated by their order labels. This
allows to preserve the semantics of the vector operator distinctV that keeps
the first unique element (Section 4.3.2.2).

Next to (MA-number), (MA-distinct) is the only rule where row number-
ing is necessary to faithfully implement the operator semantics. Selecting
the first unique element is not possible when eliminating duplicates with
the δ operator: order labels must not be part of the δ input nor can they be
recovered afterwards2.

2 PostgreSQL’s DISTINCT ON(...) construct provides for a more direct implementation of
distinctV without #{}.

6.3 generating multiset plans 139

folding and grouping As discussed in Section 6.2.2, folding of seg-
ments is implemented using Γ{} by grouping on the outer index (MA-
reduce).

RJreduceV{sz, sf} VKρ = qd (MA-reduce)

where qg ≡ Γ{λx.x.s, sz, λx y.sf x.p y} ρ(V)

qd ≡ π{λx.⟪x.1, x.1, ⟨⟩, x.2⟫} qg

Note that we have to direct the folding function to the payload of the input
only. In the result, all segments have exactly one element. Using ⟨⟩ as order
label is sufficient.

Rule (MA-group) implements unary grouping without aggregation.

RJgroupV{f} VKρ = (qo,qi,qm) (MA-group)

where q1 ≡ π{λx.⟨x, f x.p⟩} ρ(V)

q2 ≡ π{λx.⟨x.1.s, x.2⟩} q1

q3 ≡ δ q2

qo ≡ π{λx.⟪x.1, x, x.2, x.2⟫} q3

qi ≡ π{λx.⟪⟨x.1.s, x.2⟩, x.1.k, x.1.o, x.1.p⟫} q1

qm ≡ π{λx.x.k} qs

The plan q1 pairs each element of the input with the corresponding group-
ing key f x.p. Plan q1 serves as the basis for the outer as well as the inner
vector. Operator groupV{} refines each segment individually by splitting
it into multiple segments for each unique value of the grouping key. Every
unique combination of outer index and grouping key describes one segment
in the result.

These unique combinations are computed in q3 and used in qo to specify
element identity (inner index) for the outer vector qo. Grouping keys form
the payload of the outer vector, but also order labels. This implements
the first aspect of the order semantics of vector operator groupV{}: groups
themselves are ordered by the grouping key. Naturally, there is no guarantee
for grouping keys to be unique over the complete outer vector qo. As we
require only per-segment order, this is not necessary.

The multiset qi that encodes the inner vector is computed by a single
projection. It has the same shape as the original input q — we only have
to redistribute the elements to the new, more fine-grained segments. Redis-
tribution is easily achieved by combining the original inner index with the
grouping key. Inner indexes stay valid. Note that we reuse the order labels
from q. The original order labels are completely sufficient to describe the
relative order of elements of the new segments. This implements the sec-
ond aspect of the order semantics of groupV{}: elements in the individual
groups appear in the order of the original input. As in (MA-sort), the or-
dering transformation qm just serves to preserve the structure of the vector
program and will never actually be used.

The combination of outer index and grouping key link the outer and inner
vectors qo and qi. Natural indexes enable our implementation in which the
only actual work is the δ operator for the outer vector. The effort shared
between the outer and inner vector consists just of the evaluation of the
scalar expression f in q1. An implementation based on synthetic indexes,
on the other hand, would generate the linking indexes by computing integer
ranks with a window function based on the result of f. Used as indexes, the
ranks would be shared between the outer and inner index and have to be

140 relational backend

kept consistent. Just as for the example in Figure 59b, we would have vectors
linked by the result of an expensive operator that is hard to remove.

Operator groupaggV{} refines segments based on the grouping key as
well, but folds the resulting segments immediately.

RJgroupaggV{sg, sz, sf} VKρ = qd (MA-groupagg)

where qg ≡ Γ{λx.⟨x.s, sf x⟩, sz, λx y.sg x.p y} ρ(V)

qd ≡ π{λx.⟪x.1.1, x.1, x.1.2, ⟨x.1.2, x.2⟩⟫} qg

In rule (MA-groupagg), groupaggV{} maps to its MA counterpart Γ{}. The
input is grouped by outer index and grouping key and folded according to
sz and f.

appending segments Natural indexes and lazy order avoid number-
ing operators as far as possible. So far, we have employed numbering opera-
tors only to implement numberV and distinctV, but not for index and order
maintenance. Unfortunately, appendV is the sole exception.

Consider the following CL query: Each group produced by the group

combinator is append with itself after sorting.

[append g.2

(sort [⟨x,x⟩
| x ← g.2])

| g ← group xs]

xs

groupV{λx.x.2}

sortV{λx.x}

appendV

⟨. . . , o:to, . . .⟩
⟨. . . , o:⟨tp,to⟩, . . .⟩

⟨. . . , o:to, p:tp⟩

The corresponding vector plan on the right side is annotated with the
element types of the multisets that encode the vectors. The type of order
labels in the left input of appendV is the same as in the input of groupV{}.
The right input of appendV, though, has a different type of order labels:
sortV{} pairs the payload type with the original label type to implement
sorting.

Non-uniform index and order label types pose a problem for the imple-
mentation of appendV: We can’t simply employ multiset union ∪ since the
element types of the input do not match. Instead, we have to provide uni-
form indexes and order labels.

The helper function uniforms(−) uses #{} to provide uniform Int indexes
and order labels. An enumeration in the order of the unique combination of
outer index and order label generates unique indexes. Note that the gener-
ated values do not represent segment positions but still encode the relative
order of segment elements. uniforms(−) prefixes indexes and order labels
with a constant scalar value s. As we change the inner index of a vector, we
have to maintain consistency with any inner vectors. The rekeying transfor-
mation qm updates outer index values in inner vectors to conform to the
new synthetic index.

uniforms(q) = (qd,qm)

where qn ≡ #{λx.⟨⟩, λx.⟨x.s, x.o⟩} q

qs ≡ π{λx.⟨x.1, ⟨s, x.2⟩⟩} qn

qm ≡ π{λx.⟨f = x.1.k, t = x.2⟩} qs

qd ≡ π{λx.⟪x.1.s, x.2, x.2, x.1.p⟫} qs

6.3 generating multiset plans 141

With uniform vectors produced by uniforms(−), implementing appendV

comes down to using ∪ in rule (MA-append). In qu1
and qu2

, indexes and
order labels overlap. To ensure that indexes in the result of ∪ are unique
and that order labels encode the correct segment order (elements from the
left before elements from the right), uniforms(−) prefixes indexes and order
labels with integer tags 1 and 2.

RJappendV V1 V2Kρ = (qd,qm,q ′m) (MA-append)

where (qu1
,qm1

) ≡ uniform1(ρ(V1))

(qu2
,qm2

) ≡ uniform2(ρ(V2))

qd ≡ qu1
∪ qu2

join operators The implementation of vector join operators has been
outlined in Section 6.2.

RJthetajoinV{sp} V1 V2Kρ = (qd,qm,q ′m) (MA-thetajoin)

where qj ≡ ρ(V1)⋊⋉{λx y.x.s = y.s ∧ sp x.p y.p} ρ(V2)

qd ≡ π{λx.⟪x.1.s, pairk(x), pairo(x), pairp(x)⟫} qj

qm ≡ π{λx.⟨f = x.1.k, t = ⟨x.1.k, x.2.k⟩⟩} qj

q ′m ≡ π{λx.⟨f = x.2.k, t = ⟨x.1.k, x.2.k⟩⟩} qj

Rule (MA-thetajoin) is centered around a ⋊⋉{} operator that performs
the actual work. The projection qd pairs (1) inner indexes to provide unique
indexes, (2) order labels to implement list join semantics, and (3) payloads.
Projections qm and q ′m generate replication transformations that maintain
consistency with any inner vectors.

Even less effort is necessary for the semijoinV{} operator. In addition to
its MA equivalent ⋉{}, we only have to provide a map that eliminates stale
segments from any inner vectors.

RJsemijoinV{sp} V1 V2Kρ = (qd,qm) (MA-semijoin)

where qj ≡ ρ(V1) ⋉ {λx y.x.s = y.s ∧ sp x.p y.p} ρ(V2)

qm ≡ π{λx.x.k} qj

Rule MA-antijoin for operator antijoinV{} is exactly equivalent to MA-
semijoin with ▷{} being used instead of ⋉{}.

RJantijoinV{sp} V1 V2Kρ = (qd,qm) (MA-antijoin)

where qj ≡ ρ(V1) ▷ {λx y.x.s = y.s ∧ sp x.p y.p} ρ(V2)

qm ≡ π{λx.x.k} qj

As outlined before, operator nestjoinV{} maps to a regular ⋊⋉{}.

RJnestjoinV{sp} V1 V2Kρ = (qd,qm,q ′m) (MA-nestjoin)

where qj ≡ ρ(V1)⋊⋉{λx y.x.s = y.s ∧ sp x.p y.p} ρ(V2)

qd ≡ π{λx.⟪x.1.k, pairk(x), x.2.o, pairp(x)⟫} qj

qm ≡ π{λx.⟨f = x.1.k, t = pairk(x)⟩} qj

q ′m ≡ π{λx.⟨f = x.2.k, t = pairk(x)⟩} qj

Whereas thetajoinV{} preserves the segment structure of the operands,
(MA-nestjoin) uses the left operands’ inner index to create new segments.

142 relational backend

This provides us with the opportunity to minimize order constraints. Oper-
ator thetajoinV{} preserves the outer index of elements from the left and
right operand and pairs their order labels to describe the relative order cor-
rectly. As nestjoinV{} creates a new segment for every element of the left
operand, order labels from the left will be constant in each new segment.
Recall that we only require order labels to describe the order in an individ-
ual segment. Order labels of the right operand are perfectly sufficient to
describe the relative order of elements in the segments of the result vector.

The last remaining SL join operator, groupjoinV{}, again maps directly
to its MA equivalent.

RJgroupjoinV{sp, sz, sf} V1 V2Kρ = qd (ma-groupjoin-2)

where

qj ≡ ρ(V1)⟕ { λx y.∧ x.s = y.s sp x.p y.p,

sz, λaV.sf a pairp(V)}ρ(V2)

qd ≡ π{λx.⟪x.1.s, x.1.k, x.1.o, ⟨x.1.p, x.2⟩⟫} qj

Note that our usage of {} relies on the multiset ρ(V1) not containing
duplicates. By definition, a multiset encoding of a segment vector includes
element identity in the form of index values and thus is free of duplicates.

In Chapter 5 we have employed list-based join combinators and the equiv-
alent order-preserving segment join operators as crucial tools to specialize
(nested) iteration patterns. All SL join operators lower to a single MA join
combined with a projection. Effectively, the cost of a vector join is that of
the underlying MA join. This supports our claim that we can indeed derive
idiomatic and efficient relational queries through Query Flattening.

administrative operators To conclude the description of the MA

code generator, we list translation rules for operators that maintain admin-
istrative information on multiset vectors.

RJsegmentV VKρ = π{λx.⟪x.k, x.k, x.o, x.p⟫} ρ(V) (MA-segment)

RJunsegmentV VKρ = π{λx.⟪⟨⟩, x.k, x.o, x.p⟫} ρ(V)

(MA-unsegment)

RJmergesegV Vo ViKρ = qd (MA-mergemap)

where qj ≡ ρ(V1)⋊⋉{λx y.x.k = y.s} ρ(V2)

qd ≡ π{λx.⟪x.1.s, x.2.k, pairo(x), x.2.p⟫} q

RJalignV V1 V2Kρ = qd (MA-align)

where qj ≡ ρ(V1)⋊⋉{λx y.x.k = y.k} ρ(V2)

qd ≡ π{λx.⟪x.1.s, x.1.k, x.1.o, pairp(x)⟫} q

The implementation of unboxV{s} uses a left outerjoin to account for miss-
ing segments.

RJunboxV{sz} V1 V2Kρ = qd (ma-unbox-2)

where qj ≡ ρ(V2) ⟕ {λx y.x.k = y.s, sz, λx.x.p} ρ(V2)

qd ≡ π{λx.⟪x.1.s, x.1.k, x.1.o, ⟨x.1.p, x.2⟩⟫} qj

6.3 generating multiset plans 143

(MA-rep) uses the multiset product × to replicate the unit segment of the
left operand for all elements of the right operand.

RJrepV V1 V2Kρ = (qd,qm) (MA-rep)

where qp ≡ ρ(V1) × ρ(V2)

qd ≡ π{λx.⟪x.2.k, pairk(x), x.1.o, x.1.p⟫} qp

qm ≡ π{λx.⟨f = x.2.k, t = ⟨x.2.k, x.1.k⟩⟩} qp

Similar to (MA-nestjoin), we can ignore the order labels from the right
operand because repV creates new segments.

RJrepsegV V1 V2Kρ = (qd,qm) (MA-repseg)

where qj ≡ ρ(V1)⋊⋉{λx y.x.k = y.s} ρ(V2)

qd ≡ π{λx.⟪x.2.s, x.2.k, x.2.o, x.1.p⟫} qj

qm ≡ π{λx.⟨f = x.1.k, t = x.2.k⟩} qp

RJcombineV Vb V1 V2Kρ = qd (MA-combine)

where qu ≡ ∪ ρ(V1) ρ(V2)

qj ≡ ρ(Vb)⋊⋉{λx y.x.k = y.s}qu

qd ≡ π{λx.⟪x.1.s, x.1.k, x.1.o, x.2.p⟫} qj

index propagation Finally, we implement the four SL operators that
propagate index changes from outer to inner vectors. Here, we benefit from
having distinguished different forms of index propagation (Section 4.3.2).
We list the operator implementations in decreasing order of the evaluation
work involved.

In rules (MA-apprep) and (MA-appkey), operator ⋊⋉{} joins a vector with
a segment map to update outer indexes. apprepV applies a replication map
that describes a replication of segments. In the multiset implementation,
each element of multiset ρ(V) may find multiple or none join partners. In
effect, segments are replicated or removed according to the replication map.

RJapprepV I VKρ = (qd,qm) (MA-apprep)

where qj ≡ ρ(I)⋊⋉{λx y.x.f = y.s} ρ(V)

qd ≡ π{λx.⟪x.1.t, ⟨x.2.k, x.1.t⟩, x.2.o, x.2.p⟫} qj

qm ≡ π{λx.⟨f = x.2.k, t = ⟨x.2.k, x.1.t⟩⟩} qp

A rekeying transformation applied by appkeyV, on the other hand, de-
scribes a one-to-one mapping between outer indexes. In rule (MA-appkey),
every element of the right join operand is guaranteed to find exactly one
join partner. Consequently, the cardinality of multisets ρ(V) and qd is the
same.

RJappkeyV I VKρ = qd (MA-appkey)

where qj ≡ ρ(I)⋊⋉{λx y.x.f = y.s} ρ(V)

qd ≡ π{λx.⟪x.1.t, x.2.k, x.2.o, x.2.p⟫} qj

In rule (MA-appfilter), a semijoin is sufficient to filter segments accord-
ing to a segment filter.

RJappfilterV I VKρ = (qd,qm) (MA-appfilter)

where qj ≡ ρ(V) ⋉ {λx y.x.s = y} ρ(I)

qm ≡ π{λx.x.k} qj

144 relational backend

Finally, rule (MA-appsort) does not invoke any runtime effort. As we
track the order of vector elements relative to their segments only, the re-
ordering of segments described by a sort transformation has no meaning in
the multiset code generator. The implementation of appsortV ignores the
sort transformation and returns the vector unmodified. We produce a fur-
ther sort transformation qm to conform with the type of the SL operator
appsortV.

RJappsortV I VKρ = (ρ(V),qm) (MA-appsort)

where qm ≡ π{λx.x.k} ρ(V)

6.3.1 Flattening and Relational Query Optimization

In Chapter 5, we use nestjoinV{} as an essential tool for the optimization
of nested queries. Steenhagen et al. [SAB94] note that nestjoin does not
have the algebraic properties of regular join operators. In particular, it is
neither associative nor commutative and does not associate with a regular
theta join. The corresponding vector operator nestjoinV{} is defined on
flat collections but suffers from the same lack of algebraic properties. Here,
the necessity to preserve the segment structure prohibits associativity and
commutativity.

However, relational query evaluation critically relies on join ordering based
on these properties to limit the size of intermediate results [Lei+15]. Due
to the lack of algebraic properties, a direct physical implementation of ei-
ther the CL or SL nestjoin would severely limit an optimizer’s freedom to
re-order join trees. The MA implementation of nestjoinV{}, on the other
hand, enjoys the crucial algebraic properties and integrates well with query
optimization in the relational backend system.

Vector operator implementation by MA operators does not prescribe a
particular evaluation strategy on the backend database system. As we tar-
get a logical algebra, the backend is free to choose among the evaluation
strategies implemented by the backends’ query engine: ⋉{}, for example,
can be evaluated with sorting, hashing or based on an index.

One cause of concern could be that adding segment identifier compar-
isons to join predicates, grouping specifications and the like might prevent
index usage. However, this will turn out not to be a problem. In those cases
in which evaluation actually can be backed by an index, we are typically
able to infer statically that outer indexes are constant. In these cases, index
comparisons can be eliminated from the backend plan. We will elaborate
on this in Section 6.4.

6.3.2 Running Example

In Figure 67 we show the MA plan for our running example Query Q12.
This plan is the result of lowering the SL plan of Figure 52 to MA. We focus
on the structure of the plan and omit operator arguments. This plan is the
direct output of the MA translation scheme described in this chapter. No
MA optimizations have been applied (see Section 6.4).

The structure of the plan directly reflects the structure of the original SL
plan. Each SL operator has been expanded into one or few MA operators
as dictated by the translation rules. At the plan bottom, both base tables are
replicated over the singleton literal multiset that encodes the list [⟨⟩]. This is
the price we pay for uniformly employing lifted combinators in query flat-

6.3 generating multiset plans 145

⦃⟪⟨⟩, 1, 1, ⟨⟩⟫⦄os

π

×

π

ls

π

×

π

π

σ

π

π

⋊⋉

π

π

π

[⟨⟩]

tableV{os} tableV{ls}

repV repV

groupjoinV{p, 0, f}

selectV{λx.5 < x.2}

projectV{λx.x.1}

unsegmentV

nestjoinV{p}

sortV{λx.x.2.sd - x.1.1.od}

projectV{λx.x.2}

[Lineitem]⟩]⟨Order,[

Figure 67: Structure of the MA plan implementing the running example Query Q12.
Obtained by lowering the SL program of Figure 52. No MA optimizations
have been applied.

146 relational backend

os ls

{ λx y.x.ok = y.ok, 0,

λa v.a + (v.2.sd - v.1.od)}

σ{λx.5 < x.2}

π{λx.so}

⋊⋉{λx y.x.1.ok = y.ok}

π{λx.si}

[Lineitem]⟩]⟨Order,[

Figure 68: MA plan for running example Query Q12 from unoptimized plan in Fig-
ure 67.

tening (Section 4.1). A cartesian product with a singleton input is unlikely
to reflect in the runtime of the relational query at all. Still, this pattern can
be completely removed by rewriting the MA plan.

In the MA plan, we can expect operators {}, σ{} and ⋊⋉{} to involve
non-trivial evaluation effort. These operators directly express the core query
logic of the original CL query and can not be avoided. Note that segment
sorting of the inner vector maps to a projection — any runtime effort for
actual sorting is delayed.

The plan faithfully implements the list semantics of the original CL query.
It maintains element order as well as index information to describe nested
data. Still, this effort barely reflects in the plan. In particular, it does not
feature any numbering operators. This is to be expected since the original
query does not involve numberV, appendV and distinctV — the only SL

operators whose lowering emits a numbering operator. Maintaining admin-
istrative information in our plan is purely expressed in projections.

6.4 optimization of relational plans

The MA plan for our running example in Figure 67 is arguably reasonable.
However, it still contains potential for simplification. In Figure 68 we show
the MA plan after a number of simple rewrites have been applied. The
following rewrites have been performed.

• Cartesian products with the singleton literal multiset at the plan bot-
tom have been replaced with a projection.

• These projections and all other projections have been pushed down-
stream and inlined with other projections.

• As a result of projection inlining, the part of the join predicates that
compares outer index values (segment identifiers) has been recognized
as being constant True and eliminated.

In the rewritten plan, the only remaining projections are at the plan top.
They directly describe the multiset encoding of the vectors that result from

6.5 sql code generation 147

evaluating our query of type [⟨Order,[Lineitem]⟩]. In the plan, expression
so generates the multiset encoding of the outer vector. As it encodes a top-
level list, the outer index is ⟨⟩. Element identity is described by inner indexes
derived from o_orderkey (abbreviated as os), the primary key of the orders

base table. The same primary key also defines the element order in the outer
list. As dictated by the element type of the outer list, the payload consists
of pairs of order records and the nested list placeholder ⟨⟩.

so = ⟨ s = ⟨⟩,
k = ⟨⟨⟩, x.1.ok⟩,
o = x.1.ok,

p = ⟨x.1, ⟨⟩⟩⟩

Expression si generates the encoding of the inner vector. Crucially, we
note that the outer index generated here matches the inner index gener-
ated by so — in the inner vector, segments are identified by o_orderkey.
Elements of the inner vector, in turn, are identified by inner indexes com-
posed from the outer index and the primary key of the lineitem base ta-
ble (l_orderkey and l_linenumber abbreviated as ok and ln, respectively).
Together, these attributes uniquely identify elements in the join result of
orders and lineitem. Order labels in the inner vector reflect the original
sort combinator. The order of segment elements in the inner vector is dic-
tated primarily by the difference between l_shipdate and o_orderdate (sd,
od) according to the original query logic.

si = ⟨ s = ⟨⟨⟩, x.1.ok⟩,
k = ⟨⟨⟨⟩, x.1.ok⟩, ⟨⟨⟩, ⟨x.2.ok, x.2.ln⟩⟩⟩,
o = ⟨x.2.sd - x.1.1.od, ⟨x.2.ok, x.2.ln⟩⟩,
p = x.2⟩

In this work, we do not further delve into relational query optimization.
Logical optimization of relational algebra plans is extensively discussed in
the literature [JK84]. Prior work on optimization can be directly transferred
to MA. For example, the set of relational optimizations described by Rit-
tinger [Rit11] can mostly be transferred to MA. Rittinger’s rewrites for the
simplification and elimination of numbering operators can be employed in
those cases where our translations scheme actually introduces numbering.

It is important to note, though, that any optimizations that are specific
to the nature of CL (i.e. nested and ordered lists, nested iteration) as well
as Query Flattening are performed at higher levels of abstraction. MA plans
produced from CL via query flattening do not require large-scale structural
changes for query unnesting and similar optimizations. Typically, these
MA plans only provide opportunities for simple house-cleaning rewrites as
in our running example.

6.5 sql code generation

One step is missing to translate flattened queries to SQL. The lowering to
MA uses nested records. In the translation rules, the support for nested
records in MA has proven convenient: We can focus on the core aspects of
indexes and order labels without having to keep track of attribute names.
Nested records allow for an easy composition of indexes and order labels
by forming pairs. The tracking of column names and renaming of columns

148 relational backend

necessary for record flattening would considerably inflate the translation
rules.

To real-world relational systems, nested records are not alien: Object-
relational and NewSQL systems support structured records in relations, for
example in the form of user-defined composite types (PostgreSQL [PG]) or Pro-
tocol Buffers (Google F1 [Shu+12]). These are non-standard vendor-specific
extensions, though. At the same time, relevant relational systems (e.g. Hy-
Per, MonetDB) do not support structured values at all.

Nested records can be simulated with flat records that contain only the
base values at the leaf of the nested records. Information about the record
nesting structure can be encoded in the record labels. To flatten records, it
is sufficient to modify the arguments of MA operators. Crucially, this does
not change the structure of MA plans. In this thesis, we do not expand on
record flattening. The translation is described by Cheney et al. [CLW14b].

After record flattening, it is straightforward to generate actual SQL code
from relational plans. A SQL code generator that uses tiling to generate
compact SQL:2003 queries from relational algebra plans has been described
by [May13]. Our implementation of Query Flattening in DSH is backed by a
similar code generator.

6.6 related work

The Loop-Lifting translation (Section 2.2.2) heavily relies on numbering oper-
ators to derive compact integer index values and order labels. Indexes are
derived by a row-numbering operator implemented via the SQL row_number

() window function. Order labels are computed by a ranking operator im-
plemented with dense_rank(). The resulting relational plans are littered
with numbering operators that require sorting effort in the relational back-
end and restrict the backends freedom to optimize plans.

In contrast, we pick up suggestions by Rittinger [Rit11, Section 6.3.2] as
well as Cheney et al. [CLW14a] and implement natural indexes and order
labels that track the columns that express element identity and order. We
can precisely characterize which plans involve numbering operators. Any
CL query that does not append lists, eliminate duplicates or actually enu-
merates elements will not feature numbering operators — without relying
on an optimization step.

Rittinger [Rit11, Section 4.3] describes an involved set of algebraic rewrites
that simplify and eliminate numbering operators in Loop-Lifting plans based
on global plan properties. Under certain circumstances, numbering opera-
tors are promoted to less expensive variants. Ranking operators used for
order labels can be eliminated if their ordering criterion is a single column
and only the relative order of rank values is required. The effect of remov-
ing rank operators mimics natural order labels in some special cases but is
hindered by the Loop-Lifting translation scheme: Loop-Lifting rules hardcode
a single attribute that expresses element order. Hence, any scenario in which
the order of elements is dictated by multiple attributes prohibits removal of
rank operators.

7D E L AY E D R E P L I C AT I O N

By default, Query Flattening implements nested iteration by replicating base
tables. We have described the resulting problematic patterns in flattened
queries in Section 4.3.4. In Chapter 5 we show that replication can be elim-
inated by rewriting CL expressions prior to query flattening. Correlated
nested iteration is encapsulated in join combinators and loop-invariant ex-
pressions are lifted out of iterators. These optimizations eliminate replica-
tion in many relevant cases.

Certain occurrences of replication, however, can not be eliminated by
rewriting CL queries. As an example, we pick up Query Q13 from Chapter 5.
Recall that the universal quantifier in the original query correlates zs with
both xs and ys. This prevents us from lifting the antijoin{} combinator
out of the head of the outer comprehension.

[[y.2 | y← antijoin{p2} xy.2 zs]

| xy← nestjoin{p1} xs ys]

The antijoin{} combinator is applied iteratively to each element in the re-
sult of nestjoin{} and joins it with zs. Lifting maps explicit iteration to
the lifted combinator antijoin{}↑. To enable a uniform data-parallel eval-
uation of antijoin{}↑, lifting replicates zs (Rule lift-table) and provides
an independent copy of zs for each iteration. The problematic replication
is clearly visible in the resulting SL plan in Figure 69. The segment opera-
tor antijoinV{} requires its operands to have the same segment structure.
The plan creates a vector that matches the segment structure of the left
antijoinV{} operand by replicating tableV{zs}. A relational plan derived
from this SL plan will effectively compute the cartesian product of zs and
xs. This is clearly not acceptable.

We incur replication in this manner whenever base table references can’t
be lifted out of comprehensions — for example due to correlation across
multiple iteration levels. The same problem can be observed in queries
that construct deeply nested lists from nested comprehensions as in the

tableV{xs} [❲⟨⟩, 1, ⟨⟩❳] tableV{ys} [❲⟨⟩, 1, ⟨⟩❳]
repV repV

nestjoinV{p1}

tableV{xs} [❲⟨⟩, 1, ⟨⟩❳]
repV

repV

tableV{zs}

antijoinV{p2}

projectV{λx.x.2}unsegmentV

projectV{λx.⟨⟩}

Figure 69: Query Q13 shreds into this SL plan. The plan region marked red effec-
tively computes the cartesian product of xs and zs.

149

150 delayed replication

following example. Note that the inner predicate p2 correlates zs with both
xs and ys.

[⟨x, [⟨y, [z | z← zs,p2 x y z]⟩ | y← ys,p1 x y]⟩
| x← xs]

≡ { nestjoin-head }

[⟨x.1, [⟨y.2, [z | z← zs,p2 y.1 y.2 z]⟩ | y← x.2]⟩
| x← nestjoin{p1} xs ys]

≡ { nestjoin-head }

[⟨x.1, [⟨y.1.2, [z.2 | z← y.2]⟩
| y← nestjoin{λy z.p2 y.1 y.2 z} x.2 zs]⟩

| x← nestjoin{p1} xs ys]

The nestjoin{} combinator provides bindings for the outer variable x to
the inner comprehension and enables us to introduce a further nestjoin{}

combinator. However, similar to Query Q13, the table reference zs can not
be lifted to the top-level. The structure of the SL plan obtained through
shredding is mostly equivalent to Figure 69.

In both examples, variable dependencies between nested comprehensions
prevent us from lifting table references out of iteration. Nevertheless, repli-
cation is not strictly required to implement the query logic. In this chapter,
we sketch a solution to this problem based on a scheme described by Lipp-
meier et al. [Lip+12]. As in earlier chapters, we aim for a solution that does
not rely on optimization after the fact, but avoids the problem by construc-
tion.

7.1 delaying replication

The SL operator repV replicates it’s left operand as shown in Figure 70a. For
each element of the right operand V2, a copy of the single segment in V1 is
created. The resulting vector has one segment for each element of V2 and
inner index values of V2 are used to identify those segments. Each of the
two segments kr·0 and kr·1 of the result vector Vr maps to the ⟨⟩ segment
of V1.

In Figure 70a, this mapping between segments has been materialized in the
vector Vr. However, Vr can also be accurately described by recording the
mapping of segments (kr·0 → ⟨⟩ and kr·1 → ⟨⟩) and the original vector V1.
In this case, we furthermore know that V1 has only one segment identified
by ⟨⟩. We record the list of segment identifiers [kr·0,kr·1] that map to
the ⟨⟩ segment and call this list a unit segment map. The replication that
results in Vr can be described by the segment map combined with V1. We
call a pair (U,V) of a unit segment map U and a segment vector V a delayed
vector: we only record the information that is necessary to perform the actual
replication at a later point.

Consider Figure 70b. The SL operator unitmapV creates the unit segment
map U. To obtain the actual result vector, operator forceV combines the
segment map U and the segment vector V1 and materializes the delayed
vector. Note that forceV combines the new outer index and the inner index
of V1 to derive unique inner indexes for Vr that match those in Figure 70a.

7.1 delaying replication 151

[❲⟨⟩,kl·0, 10❳ ,❲⟨⟩,kl·1, 20❳] [❲⟨⟩,kr·0, "a"❳ ,❲⟨⟩,kr·1, "b"❳]
repV

[❲kr·0, ⟨kr·0,kl·0⟩, 10❳ ,❲kr·0, ⟨kr·0,kl·1⟩, 20❳ ,❲kr·1, ⟨kr·1,kl·0⟩, 10❳ ,❲kr·1, ⟨kr·1,kl·1⟩, 20❳]

V1 V2

Vr

(a) Eager replication

[❲⟨⟩,kr·0, "a"❳ ,❲⟨⟩,kr·1, "b"❳][❲⟨⟩,kl·0, 10❳ ,❲⟨⟩,kl·1, 20❳]
unitmapV [kr·0 ,

kr·1]

forceV

[❲kr·0, ⟨kr·0,kl·0⟩, 10❳ ,❲kr·0, ⟨kr·0,kl·1⟩, 20❳ ,❲kr·1, ⟨kr·1,kl·0⟩, 10❳ ,❲kr·1, ⟨kr·1,kl·1⟩, 20❳]

V1 V2

Vr

U

(b) Delayed Replication

Figure 70: Delaying and materializing segment replication.

nestjoinV{}

tableV{zs}

repV

antijoinV{}

(a) Eager Replication

nestjoinV{}

tableV{zs}

forceV

antijoinV{}

(b) Delayed Replication

nestjoinV{}tableV{zs}

antijoinUV{}

(c) Shortcut Replication

Figure 71: Exploiting delayed replication with join operators.

7.1.1 Exploiting Delayed Replication

Delaying replication does not improve the situation immediately. The work
performed by forceV is equivalent to the work performed by repV. If each
delayed vector has to be materialized right away, we gain nothing. How-
ever, we can exploit delaying replication into the pair of segment map and
segment vector when performing operations on segment vectors:

• SL operators that consider individual segments (e.g. distinctV) or in-
dividual rows (e.g. projectV{}) of a single vector can be applied on
the original segment. Only the result of that operation is replicated.

• For some SL operators — in particular join operators — we can discard
the segment map completely and only work on the segment vector.

The former approach clearly saves work. This situation, however, is rare.
Note that lifting exclusively replicates table references and list constants
(Section 4.2) which are both considered constants. Operations on constant
lists are invariant to any enclosing iteration. As described in Section 5.2.3,
constant expressions as in [distinct ys | x ← xs] are hoisted out of the
iteration. Hoisting has a similar effect to operating on a delayed vector.

The second approach is more profitable. Recall the replication problem
related to the lifted antijoin{} combinator in Query Q13. Figure 71a shows
the relevant excerpt of the vector plan. Replication of zs is necessary to cre-
ate a vector that matches the segment structure of the vector resulting from

152 delayed replication

nestjoinV{}. The segment join antijoinV{} combines matching segments
from its inputs.

If we delay the replication of zs (Figure 71b), we are forced to materialize
the vector before applying antijoinV{}. Materialization is required to pro-
vide vectors with the same segment structure (i.e. compatible outer indexes)
to antijoinV{} — delaying replication in this example is pointless. How-
ever, from the delayed vector we can infer that every segment in the right
input of antijoinV{} maps to a single segment identified by ⟨⟩. Matching
segments in antijoinV{} is crucial if those segments are actually different.
In this scenario, however, each segment of the left operand is joined effec-
tively with the exact same segment of the right operand.

To exploit this, we replace antijoinV{} with the antijoinUV{} operator in
Figure 71c. The latter operator assumes that its right operand only has the ⟨⟩
segment and joins each segment from the left operand with that ⟨⟩ segment.
This allows us to shortcut the replication of zs: instead of materializing the
vector, we discard the segment map and use the original table reference
directly.

7.2 shredding with delayed vectors

In this section, we sketch shredding with delayed replication. During shred-
ding, we distinguish materialized from delayed vectors. New shredding
rules for list combinators take this information into account and target spe-
cialized SL operators like antijoinUV{}.

To support delayed vectors, we introduce a small number of new SL op-
erators. We only define the semantics of those operators but do not describe
their lowering to the multiset algebra MA. All new operators are sufficiently
simple such that their lowering is obvious.

7.2.1 Delayed Replication

Shredding with delayed replication requires only minimal changes to our
notation. As before, we let V and I range over data vectors and index trans-
formations, respectively. In addition, we let U range over unit segment
maps. During shredding, we track vectors as pairs (X,V) of an indicator X

and an actual segment vector V. The indicator M signals that the vector is
materialized. Alternatively, the indicator DU indicates that the vector is de-
layed with segment map U. Hence, a delayed vector is written as (DU,V)
and a materialized vector as (M,U)

Rule shred-dist-delay handles the FL ⊗ combinator and implements
delayed replication as discussed in the previous section. We know that e1
is a top-level list with a single segment. We employ the unitmapV operator
to derive a segment map from the materialized right operand. The result’s
inner vector is delayed and consists of the segment map U and the segment
vector V1 obtained for e1.

shred-dist-delay

Γ ⊢ e1 ⦂ [δ](M,V1)

Γ ⊢ e2 ⦂ [ρ](M,V2)

[
Vo← projectV{λx.⟨⟩} V2

U ← unitmapV V2

]
Γ ⊢ e1 ⊗ e2 ⦂ [[δ](DU,V1)](M,Vo)

The previous rule assumes that the inner vector for e2 is materialized.
Rule shred-dist-update, on the other hand, handles the case in which that

7.2 shredding with delayed vectors 153

SL-ty-unitmap

Γ ⊢ V : D ❲α,β,γ❳
Γ ⊢ unitmapV V : Uβ

SL-ty-force

Γ ⊢ V : D ❲⟨⟩,β,γ❳ Γ ⊢ U : Uα

Γ ⊢ forceV V U : D ❲α, ⟨α,β⟩,γ❳
Figure 72: New SL operators that create and materialize delayed vectors.

vector is delayed itself. In this case, we obtain a unit segment map Ui in two
steps: forceV forces the vector for e2 and thereby provides all indexes for
which V1 has to be replicated. Those indexes are the basis for the segment
map obtained with unitmapV.

shred-dist-update

Γ ⊢ e1 ⦂ [δ](M,V1)

Γ ⊢ e2 ⦂ [ρ](DU,V2)

Vo← projectV{λx.⟨⟩} V2

Vf ← forceV V2 U

Ui← unitmapV Vf

Γ ⊢ e1 ⊗ e2 ⦂ [[δ](DUi,V1)](M,Vo)

Rule shred-dist-update handles the crucial case of chained replication seen
in the example in Figure 69: the list e2 itself is a product of replication. To
obtain the correct segment map, we are forced to materialize the right input.
However, to exploit delayed replication in this scenario, we are actually only
interested in the vector U1 for e1 which provides the data that is replicated
in the end. If we are able to discard the segment map as sketched in Sec-
tion 7.1.1 for the antijoinV{} operator, we can shortcut the complete chain
of replication — the forceV operator is not evaluated.

Figure 72 lists SL typing rules for the involved operators. The list inter-
pretations of these operators are as follows:

SJunitmapV VKρ = [x.k | x← ρ(V)] (SL-unitmap)

SJforceV V UKρ = [❲u, ⟨u, x.k⟩, x.p❳ | u← ρ(U), x← ρ(V)]
(SL-force)

These definitions are as expected: unitmapV is a simple projection and forceV

is essentially equivalent to repV.

7.2.2 Index Transformations

In the description of shredding (Section 4.3.3.1) we use functions like ⟬− ⟭−

to propagate the various kinds of index transformations through a package.
These functions need to be adapted for shredding with delayed vectors. The
following definition of ⟬− ⟭− propagates a replication index transform and
distinguishes materialized and delayed vectors.

⟬π ⟭ I = π

⟬ ⟨ℓi:ρi⟩ni=1 ⟭ I = ⟨ℓi: ⟬ ρi ⟭ I⟩ni=1

⟬ [ρ](M,V) ⟭ I = [⟬ ρ ⟭ I ′]
(M,V ′)[

(V ′,I ′)← apprepV I V
]

⟬ [ρ](DU,V) ⟭ I = [ρ](DU ′,V)[
U ′ ← repunitV I U

]

154 delayed replication

SL-ty-repunit

Γ ⊢ U : Uα1 Γ ⊢ I : Rα1 α2

Γ ⊢ repunitV I U : Uα2

Figure 73: SL typing rule for repunitV.

The replicating index transform I is either applied to the vector V for a
materialized vector (M,V) or to the segment map U for a delayed vector
(DU,V). Note that in the latter case, changes don’t need to be propagated
to the element package ρ because V itself does not change. The SL operator
repunitV is defined in Figure 73 and has the following list interpretation.

SJrepunitV I UKρ = [i.t | i← ρ(I), u← ρ(U), i.f = u] (SL-repunit)

Propagation for the remaining index transforms ⦉ − ⦊− (index map), ⦑ −

⦒− (sorting) and ⦑ − ⦒− (filter) is straightforward to adapt to delayed vectors
in the same fashion. In all cases, the index transform is applied to the
segment map while the corresponding vector remains unchanged — index
transforms do not materialize a delayed vector.

7.2.3 Operations on Delayed Vectors

Shredding for lifted list combinators (e.g. sort↑) and lifted scalar operators
(e.g. _.ℓ↑) that have one operand works uniformly on materialized and de-
layed vectors. The corresponding SL operators (e.g. sortV, projectV{})
work on individual segments or segment elements and are oblivious to
whether those are replicated. As an example, we show the shredding rule
for the distinct↑ combinator adapted to delayed vectors. It maps to the
distinctV operator that considers each segment of the input vector inde-
pendently.

shred-distinct-lift

Γ ⊢ e ⦂ [[δ](Xi,Vi)]Do [V ← distinctV Vi]

Γ ⊢ distinct↑ e ⦂ [[δ](Xi,V)]Do

This rule does not inspect the indicator Xi. The SL operator distinctV is ap-
plied to the underlying vector Vi regardless of whether it is materialized or
delayed. All shredding rules for lifted combinators with only one operand
(e.g. shred-sort-lift, shred-record) are adapted in the same fashion to
delayed vectors and do not require materialization of the input.

7.2.4 Joining Delayed Vectors

For lifted join combinators, we shortcut replication using delayed vectors as
described in Section 7.1.1. We discuss the shredding of antijoinV{}↑ only,
but shredding for the other join combinators is adapted in the same way.
Based on whether the left and right operands are materialized or delayed,
we have to consider four cases.

• Both operands are materialized. In that case, we employ the regular
antijoinV{} operator. The shredding rule shred-antijoin-mat is a
straightforward adaptation of shred-antijoin-lift.

7.2 shredding with delayed vectors 155

shred-antijoin-mat

Γ ⊢ e1 ⦂ [[ρ1]
(M,Vi·1)]Do·1

Γ ⊢ e2 ⦂ [[ρ2]
(M,Vi·2)]Do·2

[
(Vj,I)← antijoinV{p} Vi·1 Vi·2

]
Γ ⊢ antijoin{p}↑ e1 e2 ⦂ [[⦗ ρ1 ⦘ I]

(M,Vj)]Do·1

• The right operand is delayed. In this case, we statically know that we
only have to consider one segment identified by ⟨⟩ on the right side.
We employ the antijoinUV{} operator that foregoes the matching of
segments. It filters elements from all segments of the left operand
based on the single ⟨⟩ segment on the right. Note that this rule also
covers the case in which both operands are delayed.

shred-antijoin-lift-unit

Γ ⊢ e1 ⦂ [[ρ1]
(Xi·1,Vi·1)]Do·1 Γ ⊢ e2 ⦂ [[ρ2]

(DU,Vi·2)]Do·2[
(Vj,I)← antijoinUV{p} Vi·1 Vi·2

]
Γ ⊢ antijoin{p}↑ e1 e2 ⦂ [[⦗ ρ1 ⦘ I]

(Xi·1,Vj)]Do·1

The antijoinUV{} operator (typing rule in Figure 74) is actually a sim-
plification of the regular antijoinV{} operator. In its list interpreta-
tion, we merely have to eliminate the additional join predicate that
matches segments from Equation (SL-antijoin).

SJantijoinUV{p} V1 V2Kρ =

let V = [x | x← ρ(V1), and [¬ (p x.p y.p) | y← ρ(V2)]

I = [x.k | x← V]

in (V, I)
(SL-antijoinu)

Based on this definition, the operator maps directly to a MA antijoin
▷{}.

• Only the left operand is delayed. In this case, care is necessary: we
must not shortcut the replication for the left operand. Consider the fol-
lowing variant of our motivating example Query Q13 that switches the
operands of the antijoin{} combinator1. In each iteration, elements
of zs are filtered based on another inner list produced by nestjoin{}.

[[z | y← antijoin{p2} zs xy.2]

| xy← nestjoin{p1} xs ys]

By shredding, we obtain a delayed vector for the left operand and a
materialized vector produced by nestjoinV{} for the right operand.
Employing antijoinUV{} here would be wrong: we do not statically
know that all segments on the right are identical — in general, they
are not. Here, we actually have to provide copies of zs that are filtered
based on the corresponding segment on the right. Hence, we have
to materialize the left operand and employ the regular antijoinV{}

combinator.

1 This example reflects the structure of Example Query 6 given by Steenhagen et al. [Ste+94]

156 delayed replication

SL-ty-antijoin-unit

Γ ⊢ V1 : D ❲α,β1,γ1❳
Γ ⊢ V2 : D ❲⟨⟩,β2,γ2❳ ⊢ s : γ1 → γ2 → Bool

Γ ⊢ antijoinUV{s} V1 V2 : (D ❲α,β1,γ1❳, Fβ1)

Figure 74: Typing rule for antijoinUV{}.

shred-antijoin-lift-force

Γ ⊢ e1 ⦂ [[ρ1]
(DU,Vi·1)]Do·1

Γ ⊢ e2 ⦂ [[ρ2]
(M,Vi·2)]Do·2

[
Vf ← forceV Vi·1 U

(Vj,I)← antijoinV{p} Vf Vi·2

]
Γ ⊢ antijoin{p}↑ e1 e2 ⦂ [[⦗ ρ1 ⦘ I]

(Xi·1,Vj)]Do·1

This case distinction extends to the other join combinators. Rules for com-
binators semijoin{}↑, groupjoin{}↑ and nestjoin{}↑ are symmetrical to
the ones discussed above. For all of them we materialize the left operand
if it is delayed. Note, however, that thetajoin{}↑ does not have the restric-
tion discussed in the last case: here, either of the operands or both may be
delayed.

7.2.5 Forcing Vectors

For some combinators, we have no choice but to materialize delayed input
vectors. In particular, this is necessary for the following categories:

• Combinators whose SL implementation requires to relate outer and
inner vectors based on their indexes (e.g. concat↑, reduce{_}↑).

• Combinators whose SL implementation aligns vectors based on their
inner indexes. This category includes lifted scalar operations (c(. . .)↑)
and record construction.

For these combinators, we adapt shredding rules to materialize delayed in-
puts with forceV. As an example, consider the shredding rule for reduce{_}↑

if the inner vector is delayed.

shred-agg-lift-delayed

Γ ⊢ e ⦂ [[ρ](DU,Vi)](Xo,Vo)

⊢ sz : δa

Vf ← foldV{sz, sf} Vi

Vm← forceV U Vf

Vu ← unboxV{sz} Vo Vf

V ← projectV{λx.x.2} Vu

Γ ⊢ reduce{sz, sf}↑ e ⦂ [δ]V

7.2.6 Example

Figure 75 shows the SL plan obtained by shredding our motivating ex-
ample Query Q13 with delayed replication. Originally, both operands of
nestjoin{}↑ shred to delayed vectors. We force the left input for xs but
employ nestjoinUV{} and shortcut replication for the right input. The re-
sult of nestjoinUV{} is materialized. Hence, when shredding antijoin{}↑,

7.3 related work 157

tableV{xs} unitmapV

[❲⟨⟩, 1, ⟨⟩❳]

forceV tableV{ys}

nestjoinUV{p1}

tableV{zs}

antijoinUV{p2}

projectV{λx.x.2}unsegmentV

projectV{λx.⟨⟩}

Figure 75: With delayed replication, Query Q13 shreds into this SL plan.

the left operand is materialized while the right operand is delayed. Again,
we employ the antijoinUV{} combinator and shortcut the replication of the
right operand.

Compared to the original plan in Figure 69, this plan is a substantial
improvement. We retain only the trivial replication for zs which is easily
removed after lowering to a MA plan. The problematic replication of zs, on
the other hand, has been eliminated.

7.3 related work

The flat representation of nested arrays due to Blelloch and Sabot [BS89] is
not capable of sharing segment data. All transformations on the segment
structure have to be materialized. Lippmeier et al. [Lip+12] introduce a
level of indirection for the length-based representation of nested arrays (Sec-
tion 4.3.1) that allows to share segment data logically. Segment descriptors
contain the length of virtual segments. Virtual segments map onto physical
segments that may be shared among multiple virtual segments. All opera-
tions on nested arrays are performed on this representation.

We adopt their solution and transfer it to our setting of index-based vec-
tors. Our target data model is more restricted, though. Lippmeier et al.
allow the physical segments of a vector to be scattered across multiple non-
contiguous data blocks. This is not possible in our setting: all segments
must map to a single flat multiset or relation in the end. With index-based
vectors — in particular natural indexes — we are also obliged to maintain
the index relationship across vectors. The type of indexes has to be kept
consistent which forces materialization of vectors in certain cases.

The approach described by Lippmeier et al. is more general than ours. We
only consider the special case of replicating top-level lists or base tables: unit
segment maps describe a mapping to a single segment. Shredding can be
further extended to delay not only replication of base tables but index trans-
forms of the segment structure in general. Then, all index transforms (e.g.
replication, sorting or filtering of segments in inner vectors) are not applied
eagerly. Instead, subsequent index transforms can be combined into gener-
alized segment maps and the original inner vector preserved. We do not
follow this path in this thesis but leave it for future work. The optimizations
described in Chapter 5 already eliminate most occurrences of replication
in typical queries. Delayed replication in addition provides the freedom

158 delayed replication

to employ join combinators in comprehensions that are applied iteratively
without suffering from replication.

8E X P E R I M E N TA L E VA L U AT I O N

In preceding chapters we have argued that Query Flattening derives efficient
relational queries. To support this claim, we investigate the quality of SQL
queries generated by an implementation of Query Flattening. We take an
exemplary qualitative look at relational plans produced for two example
queries that make use of different DSH features (Section 8.2). In a subse-
quent quantitative assessment we investigate the actual run time of gener-
ated relational queries. First, we compare the performance of flat-to-flat
queries that have nested intermediate results with hand-written SQL code
(Section 8.4). This experiment is based on the standard TPC-H benchmark
queries. Second, we compare the performance of flat-to-nested queries trans-
lated by Query Flattening and Query Shredding (Section 8.5).

8.1 implementation of query flattening

The experimental evaluation is based on an implementation of Query Flatten-
ing in DSH (Section 1.3). The new backend replaces the Loop-Lifting backend
of DSH [Gio+11a]. We implemented the backend as a direct — almost lit-
eral — implementation of the transformations described in preceding chap-
ters. DSH queries are first translated into CL and optimized as described in
Chapter 5. We implemented CL optimizations as a system of rewrite rules
using the KURE library [SFG14] for strategic programming in Haskell. Op-
timized CL queries are subsequently transformed into flat SL plans exactly
as described in Chapter 4. Lowering to MA plans directly implements the
translation rules of Chapter 6. SL plans are subject to a set of simple opti-
mizations (Section 6.4). Our implementation performs only basic rewrites
on MA plans, mostly related to inlining and merging of projection operators.
In SL and MA plans we capture sharing of sub-plans and generate directed
acyclic graphs of operators. Finally, we flatten records in MA plans and a
code generator similar to the one described by Mayr [May13] translates to
SQL:2003 queries. The code generator exploits the DAG structure of plans
and binds shared intermediate results as Common Table Expressions (CTE).

Each generated SQL:2003 query includes a ORDER BY clause. As described
in Chapter 6, we encode list element order in relational queries using order
labels. The SQL queries generated from MA plans sort by the combination
of outer index and order label. As a consequence, query results arrange
segment elements consecutively in the correct list order. This enables the
DSH runtime to assemble nested lists from flat relational results by scanning
the flat query result only once. The effort of turning logical order labels
into a physical order is performed by the database system as part of query
execution.

8.2 quality of relational plans

With Query Flattening, our goal is to translate high-level list-based queries
into idiomatic relational queries. In particular, the use of abstractions and
the complex data model should not negatively impact query runtime. At
the same time, the lowering to relational queries should be comprehensible.

159

160 experimental evaluation

In preceding chapters we traced the translation of our running example
through Query Flattening and inspected the resulting MA plan. Before we go
into the experimental evaluation, we exemplarily look at the quality of two
more query plans produced by Query Flattening. We reuse a scenario used by
Rittinger [Rit11] to evaluate the quality of relational plans produced by Loop-
Lifting. Two queries answer the same information need based on the TPC-H
schema: list the order items of the order with the most parts. Rittinger describes
two approaches to answer this request, both of which we transcribe to DSH
queries.

The first variant db is written in the style of a relational query and uses
two aggregates and a self join to identify the lineitems of those orders that
have the maximum number of parts.

quantPerOrder :: Q [(Integer, Decimal)]

quantPerOrder = [(fst g, sum $ map l_quantityQ $ snd g)

| g <- groupWithKey l_orderkeyQ lineitems]

db :: Q [LineItem]

db = [li | li <- lineitems,

g <- quantPerOrder,

l_orderkeyQ li == fst g,

snd g == maximum $ map snd quantPerOrder]

The second variant prog is written in the style of a typical Haskell list
program and exploits the ordered nature of DSH lists as well as the nested
data model1.

prog :: Q [LineItem]

prog = concat $ take 1

$ sortWith (\g -> -1 * (sum $ map l_quantityQ g))

$ groupWith l_orderkeyQ lineitems

It constructs the nested list of lineitems per order by grouping, sorts the
groups in descending order of the number of parts and returns the top
group. The take combinator takes a 1-element sublist from the beginning of
the list of groups which in this case is the group with the highest quantity.
Arguably, both queries prog and db encode reasonable strategies to answer
the question.

After translation to CL, both queries are subject to CL optimizations that
result in the queries of Figure 76. In variant db, the maximum aggregate is
hoisted to the top-level and a join operator encodes the correlated iteration
over lineitems and and the per-order quantities produced by the sum aggre-
gate. In both queries, fold-group fusion combines grouping and aggregation
into one combinator. Note that in Figure 76a, the groupagg{} combinator
produces both the groups explicitly (g.2) as well as the sum aggregate of
each group (g.3).

The optimized CL expressions describe the structure that Query Flattening
translates to relational plans. Lifting and shredding result in the optimized
SL vector plans of Figures 77 and 78 which map the query structure to flat
vectors. For query db, the SL plan mirrors the macro structure of the CL

query: the segment join operator thetajoinV{} links two vectors obtained
from the lineitems table. The original query makes no use of nested lists that
would mandate a representation with outer and inner vectors during shred-

1 Note that the two queries are not strictly equivalent: the first query actually computes the
items of all orders that have the maximum number of parts.

8.2 quality of relational plans 161

let m = maximum [g.3 | g← groupagg{0, λs x.s + x.quant} [⟨l, l.ok⟩
| l← ls]]

in [x.1

| x← thetajoin{λx y.x.ok = y.1}

ls

[g | g← groupagg{0, λs x.s + x} [⟨l, l.ok⟩ | l← ls]

g.3 = m]]

(a) CL query for db.

concat [n.1

| n← number (sort [⟨g.2, -1 * g.3⟩
| g← groupagg{0, λs x.s + x} [⟨l, l.ok⟩

| l← ls]]

n.2 = 1]

(b) CL query for prog.

Figure 76: CL representation of DSH queries db and prog after CL optimizations
(Chapter 5) have been applied.

tableV{ls} [❲⟨⟩, 1, ⟨⟩❳]
repV

groupaggV{λx.x.ok, 0, λs x.s + x.quant}

foldV{-∞, λm x.max m x.2}

unboxV{-∞}

repsegV

selectV{λx.x.2.2 = x.1.2}

thetajoinV{λx.x.ok = y.2.1}

unsegmentV

projectV{λx.x.1}

Figure 77: Optimized SL plan for DSH query db.

162 experimental evaluation

tableV{ls} [❲⟨⟩, 1, ⟨⟩❳]
repV

groupaggV{λx.x.ok, 0, λs x.s + x.quant} groupV{λx.x.ok}

sortV{λx.-1 * x.2}

numberV appsortV

selectV{λx.x.2 = 1}

appfilterV

mergesegV

unsegmentV

Figure 78: Optimized SL plan for DSH query prog.

ding. The only nesting introduced is caused by the replication of lineitems
over the dummy list [⟨⟩] due to desugaring.

Similarly, the plan in Figure 78 directly reflects the structure of the CL

query in Figure 76b. Here, however, the original query makes use of a nes-
ted intermediate list and the SL plan represents it with a pair of vectors pro-
duced by groupaggV{} and groupV{}. This plan exemplarily demonstrates
how SL plans maintain the consistency of vectors that represent nested lists.
In the original query, a nested list of groups is transformed by sorting, enu-
merating and filtering the elements. This is clearly visible in the SL plan.
The left side of the plan reflects the modifications to the outer list. The cor-
responding vector is sorted (sortV{}), enumerated (numberV) and filtered
(selectV{}). In the vector model, sorting and filtering affects segments of
the inner vector that contains the elements of each group. These changes
are propagated to the inner vector after each step (appsortV, appfilterV).

We lower the SL plans of Figures 77 and 78 to the MA plans shown in
Figure 79. Both MA plans directly express the intent of the original DSH
queries and encode almost no overhead for the maintenance of order or
nesting. Only the join operator marked red in Figure 78 is redundant and
could be removed by further relational rewrites based on functional depen-
dencies. As for our running example in Figure 68, order labels and indexes
that establish the complex data model are restricted to a projection at the top
of the plan. Simple relational MA rewrites eliminate literal single-element
multisets as well as joins with constant predicates and merge projections.
Due to our encoding of indexes and order labels, the MA plans actually
feature less operators than the original SL plans. Observe that the ⋉{} op-
erator in Figure 79b implements the appfilterV SL operator. The operators
groupV{} and appsortV, however, do not reflect in the plan at all. This
is not due to a complex optimization scheme but can be directly inferred
from the corresponding MA translation rules (Section 6.3). For appsortV,
no MA operators are emitted because we do not rely on encoding the order
of segments ((MA-appsort)). Producing the inner vector of the groupV{}

operator emits only projections ((MA-group)) which are merged with other
downstream projections.

8.3 setup for experiments 163

ls

Γ{λx.x.ok, 0,λs x.s + x.quant}

Γ{λx.1, -∞,λm x.max m x.2}

⋊⋉{λx y.x.2 = x.2}

⋊⋉{λx y.x.ok = y.2.1}

π{λx.s1}

(a) MA plan for db. ls

Γ{λx.x.ok, 0,λs x.s + x.quant}

#{λx.⟨x.2, x.1⟩}

σ{λx.x.2 = 1}

⋉{λx y.x.ok = y.1.1}

⋊⋉{λx y.x.ok = y.1.1}

π{λx.s2}

(b) MA plan for prog.

Figure 79: Optimized MA plans for prog and db (top-most projection expressions s1
and s2 omitted for space reasons).

Both MA plans are reasonable idiomatic relational plans for the respective
queries. For this reason, we omit an explicit experiment on query runtime.
Any relational database system can be expected to cope with these queries.

8.3 setup for experiments

For our experimental evaluation we use a machine with 60GB of main mem-
ory and two quad-core Intel X5570 processors. SQL queries were executed
on the database system HyPer v0.5-588-g7dc9661 [Neu11]. HyPer by de-
fault makes use of all main memory and all CPU cores. All data sets used
in experiments fit into main memory.

In all experiments, we are only interested in the quality and hence exe-
cution time of generated SQL queries. We do not consider translation time
in DSH nor time spent in reconstruction of the list result. We report end-
to-end time for query execution in the database system starting with the
submission of the SQL query. Time for query translation is arguably rele-
vant for real-world usage of a language-integrated query system. However,
the analytical queries we focus on in our analysis are clearly dominated by
query execution time.

8.4 complex flat-to-flat queries

DSH can be used to formulate regular flat-to-flat queries like TPC-H Q22.
In Chapter 1 we advocate composing complex queries from small build-
ing blocks. The resulting flat-to-flat DSH queries (e.g. Figure 4) extensively
feature nested intermediate results. With a first experiment we investigate
whether high-level querying in DSH incurs a runtime penalty when backed
by Query Flattening.

We implemented all 22 queries of the TPC-H benchmark in DSH in the
style of Figure 4, making heavy use of abstractions and nested intermedi-
ate results. DSH translates each query into a single SQL:2003 query. We
compare the runtime of generated queries with the runtime of the corre-
sponding standard TPC-H benchmark SQL query. Queries are executed on

164 experimental evaluation

0.8
1.0
1.2
1.4
1.6
1.8

DSH

SQL

Q1

308

309

Q2

162

138

Q3

385

341

Q4

191

192

Q5

291

292

Q6

110

110

Q7

325

322

Q8

173

172

Q9

597

593

Q10

448

272

Q11

113

110

0.8
1.0
1.2
1.4
1.6
1.8

DSH

SQL

Q12

189

192

Q13

631

627

Q14

73

85

Q15

165

165

Q16

261

244

Q17

165

146

Q18

665

644

Q19

557

558

Q20

382

215

Q21

403

386

Q22

84

84

Figure 80: DSH implementation of TPC-H benchmark queries compared with stan-
dard SQL benchmark queries. Displayed is the normalized execution time
of DSH-generated SQL queries over the execution time of SQL benchmark
queries (baseline 1.0). Also displayed for each query is the absolute ex-
ecution time (in milliseconds), averaged over 10 runs after one warmup
run.

a TPC-H instance with scale factor 10 by the HyPer RDBMS. In addition
to the standard indexes on primary- and foreign-key columns, we created
indexes on all columns that appear in predicates.

Figure 80 lists the execution time of SQL TPC-H benchmark queries and
their DSH equivalent. For each query, we record the average over 10 runs
after one discarded warmup run. In addition, Figure 80 shows the normal-
ized execution time of queries translated by DSH, relative to the execution
time of the standard SQL queries.

Except for Q10 and Q20, all DSH queries are on par with the standard
benchmark SQL queries. This is not surprising: inspection of the SQL:2003

queries generated by DSH shows that they typically match hand-written
queries quite closely. As an example, Figure 81 shows the query generated
by DSH for TPC-H Q22: it has the same structure as the benchmark SQL
query and differs only in details. Differences in query execution time seem
mostly to be caused by minor variations in the formulation of scalar expres-
sions. The runtime of Q6, for example, improved substantially — to the
point of matching the runtime of the native SQL query — once we modified
the SQL code generator to use the BETWEEN expression in a range predicate
instead of two independent comparisons.

The runtime of Q10 and Q20 in DSH, however, is substantially worse
than their SQL counterparts. For Q10 this is due to differing SQL formu-
lations of the queries’ top-k part. The query logic of Q10 limits the result
to the first 20 rows in the order of the ORDER BY clause. In the standard
SQL query, top-k is implemented using the LIMIT clause. HyPer fuses LIMIT

and ORDER BY: result rows are directly emitted from the sort operator which

8.4 complex flat-to-flat queries 165

SELECT (substr(a4.c_phone, 1, 2)) AS c_3_1_x,

(substr(a4.c_phone, 1, 2)) AS c_4_1_x, COUNT(*) AS c_4_2_x,

SUM(a4.c_acctbal) AS c_4_3_x

FROM (VALUES (0)

5) AS a0(c_2_x),

(SELECT 0 AS c_2_1_x, AVG(a1.c_acctbal) AS c_2_4_x

FROM customer AS a1

WHERE ((substr(a1.c_phone, 1, 2))

IN (VALUES (’13’), (’31’), (’23’),

10 (’29’), (’30’), (’18’), (’17’)))

AND (a1.c_acctbal > CAST(0.0 AS DECIMAL(1,1)))

) AS a3(c_2_1_x, c_2_4_x),

customer AS a4

WHERE ((substr(a4.c_phone, 1, 2))

15 IN (VALUES (’13’), (’31’), (’23’), (’29’),

(’30’), (’18’), (’17’)))

AND ((NOT (a4.c_custkey IN (SELECT a5.o_custkey

FROM orders AS a5))))

AND (a4.c_acctbal > a3.c_2_4_x)

20 AND (a0.c_2_x = a3.c_2_1_x)

GROUP BY (substr(a4.c_phone, 1, 2))

ORDER BY c_3_1_x ASC;

Figure 81: SQL query generated for the DSH formulation of Q22.

stops once it has produced 20 rows. In contrast, DSH emits a combination of
the row_number() window function and a selection. For the DSH query, Hy-
Per sorts the large intermediate result to implement the window function,
selects the first 20 rows explicitly and subsequently sorts the final result
after selection.

For Q20, the DSH query is noticeably slower as well. Upon closer inspec-
tion, this slowdown is caused by a semantic difference in the treatment of
aggregates on empty inputs. Q20 contains the following predicate with a
correlated subquery:

... (SELECT ps_suppkey

3 FROM partsupp

WHERE ...

AND ps_availqty > (

SELECT 0.5 * SUM(l_quantity)

FROM lineitem

8 WHERE l_partkey = ps_partkey AND ...))

...

Assume that for a given row from partsupp, the correlated subquery returns
an empty result. In line with the SQL semantics, the SUM aggregate function
and hence the subquery itself returns NULL and the row is skipped. Effec-
tively, this predicate has the secondary effect of skipping all suppliers that
do not supply any lineitems in the selected time interval.

In the DSH formulation of Q20, combinator sum is used to implement the
predicate. However, in contrast to the SQL aggregate, sum on an empty list
is not unknown (NULL) but evaluates to zero. This behaviour not only re-
flects the regular Haskell sum combinator but is arguably more reasonable
and less surprising. For Q20, however we have to be careful not to include
suppliers in the result that supply no lineitems — for those, the predicate

166 experimental evaluation

on ps_availqty would be fulfilled since sum evaluates to zero. In the DSH
implementation of Q20 we explicitly exclude such suppliers with an addi-
tional predicate on partsupp. In the following excerpt, we explicitly check
whether the current partsupp row is referenced by lineitems in the relevant
interval (Line 10):

excessBoundary :: Interval -> Q PartSupp -> Q Decimal

excessBoundary interval ps =

0.5 * sum (stockQuantities interval ps)

5 excessSuppliers :: Text -> Interval -> Q [Integer]

excessSuppliers color interval =

[ps_suppkeyQ ps

| ps <- partsupps,

...,

10 not (null (stockQuantities interval ps)),

ps_availqtyQ ps > excessBoundary interval ps]

We have argued in Chapter 1 that preserving the semantics of the host
language precisely is essential for language-integrated querying. Preserv-
ing the semantics of the Haskell sum combinator does not come for free in
this example, though. The query generated by DSH has to identify empty
inputs to sum and add the value zero for those. This work is performed by
the groupjoin{} combinator used to unnest the correlated subquery (Sec-
tion 5.2). The relational implementation of the groupjoin{} combinator re-
lies on a left outerjoin to identify empty groups. The resulting relational
execution plan for HyPer is more expensive than the plan for the standard
SQL form of Q20 which does not require an outerjoin. Furthermore, the
additional check in Line 10 maps to a semijoin and has a runtime cost. We
verified that these differences are the sole cause of the slowdown for Q20 by
manually modifying the generated query.

8.5 nested queries

In a second experiment, we investigate the performance of flat-to-nested
queries translated by DSH. In the experimental evaluation of Query Shred-
ding, Cheney et al. use six flat-to-nested benchmark queries Q1 to Q6 [CLW14a].
These queries return nested results with a nesting depth of one to four, using
the query constructs supported by Query Shredding: nested comprehensions,
bag union and quantifiers expressed with a bag emptiness test. We refer
to Cheney et al. for a detailed description of the benchmark queries. Their
evaluation compares the end-to-end execution time of those queries in Links
with Query Shredding and Loop-Lifting (using the Pathfinder compiler [Rit11])
backends. Results by Cheney et al. demonstrate that Query Shredding gen-
erates reasonable SQL queries that compare favorably to those generated by
Loop-Lifting. Loop-Lifting queries do not finish in reasonable time for queries
Q1 and Q6 and perform substantially worse for Q2.

We use benchmark queries Q1 to Q6 to assess the SQL code generated for
flat-to-nested queries by Query Flattening and Query Shredding. In contrast to
the evaluation of Cheney et al., we exclusively consider the execution time
of the generated SQL queries and do not measure the time spent for query
translation or fetching and reconstruction of the host language result values.
Implementations of Query Shredding in Links and Query Flattening in DSH
are backed by different database drivers as well as different runtimes imple-

8.5 nested queries 167

0.6 0.8 1.0 1.2 1.4 1.6 1.8 DSH Links

Q1 2853 1796

Q2 62 86

Q3 398 512

Q4 215 135

Q5 630 856

Q6 2840 3187

Figure 82: Relative execution times of shredding benchmark queries translated by
the flattening compiler on HyPer DBMS (Sum of individual flat queries,
average over 10 runs each).

mented in OCaml and Haskell, respectively. Comparing those is unlikely to
yield meaningful results. In addition, we can expect that for compute-heavy
analytical queries on large datasets, SQL execution time will dominate.

For each of the six nested benchmark query, we obtained the bundle of
SQL queries generated by Links with Query Shredding. We transcribed the
Links formulation of those queries to Haskell using DSH and obtained the
bundle of generated SQL queries. We used the data generator by Cheney et
al. and generated a data set with 4096 departments — the largest data set
used in their evaluation. For each nested benchmark query, we execute the
bundle of SQL queries 10 times. We report cumulative execution times for
all queries in a bundle, averaged over ten runs after one discarded warmup
run. SQL queries are executed on the HyPer RDBMS.

Figure 82 reports normalized as well as absolute cumulative execution
times for Q1 to Q6. Except for queries Q1 and Q4, Query Flattening per-
forms slightly better than Query Shredding. More importantly, for Q1 and
Q4 the execution time for Query Flattening is higher but still within a reason-
able range. In particular, Query Flattening does not exhibit the performance
problems of Loop-Lifting queries reported by Cheney et al. [CLW14a].

This is not surprising: the problems with Loop-Lifting queries are caused
by window functions on top of cartesian products that Pathfinder is not
able to remove. As established in Chapter 6, Query Flattening does not use
window functions for indexes or order labels. Window functions are only
used for a limited set of combinators (append, distinct and number). Indeed,
among the six benchmark queries, only Q6 features a row_number() window
function due to append being used.

Recall that Query Flattening observes list semantics while Query Shredding
works with multiset semantics. The sorting effort in SQL queries generated
by Query Shredding, however is typically at least as high as the sorting ef-
fort in the case of Query Flattening. Query Shredding uses window functions
to generate synthetic indexes. In contrast, Query Flattening uses natural in-
dexes and order labels that do not rely on window functions. In many
queries (e.g. benchmark queries Q1 to Q5) the only sorting construct in SQL
code generated by Query Flattening is the top-level ORDER BY clause that ar-
ranges elements into the correct list and segment order to ease construction
of nested list results (Section 8.1).

9S U M M A RY A N D O U T L O O K

This thesis takes on the challenge of query flattening: supporting nested
query languages with a complex nested and ordered data model on off-the-
shelf relational query engines. We have found prior work on this problem to
not be fully convincing (Chapter 2). Taken from a seemingly distant domain
— implementation of nested data parallelism — the flattening transforma-
tion provides the basis to improve on prior approaches. With Query Flatten-
ing we have revisited all aspects of query flattening: from the translation to
flat queries over query optimization to the generation of relational queries.
We believe that the work presented in this thesis constitutes a clear step for-
ward on all of these aspects. We have been able to draw on previous work
both from the domain of database query languages and query optimization
as well as the implementation of data-parallel languages — a clear indicator
that these domains are not so distant after all.

9.1 contributions

This thesis is not the first attempt to leverage the flattening transformation
for query flattening. In unpublished work, Weijers [Wei17] adapts Leshchin-
skiy’s higher-order flattening [Les05] to generate the relational algebra di-
alect of Pathfinder. The scheme for indexes and order labels described
by Weijers is mostly equivalent to that of Loop-Lifting. Weijers relies on
Pathfinder for query optimization. The work presented in this thesis started
by adding optimization to Weijers’ translation but evolved over time into
a completely separate effort. In contrast to Weijers’ work, we argue that
higher-order flattening is not necessary since the target language (relational
algebra) is first-order (see also Section 1.4.2). Then, considering first-class
functions complicates the translation considerably and does not provide ad-
ditional insights.

In the following, we summarize our contributions.

9.1.1 Comprehensible Query Flattening

Arguably, prior descriptions of query flattening suffer either from a lack of
expressiveness or from a complex translation (Chapter 2). Query Flattening
(Chapter 4) combines the support for an expressive query language with
a comprehensible, well-structured translation. The lowering to relational
queries is structured into a pipeline of simple, clearly confined steps. Each
lowering step implements one central aspect of query flattening. Lifting
provides a description of a calculus query in terms of algebraic bulk oper-
ators. Shredding implements those operators on flat collections. Translation
to MA maps ordered collections to the unordered relational world. Individ-
ual translation steps target a number of intermediate languages that each
remove one layer of abstraction. We have defined the static and dynamic
semantics of these intermediate languages precisely as a basis for reasoning
about the type-safety and correctness of Query Flattening.

The fine-grained lowering pipeline is the basis for all other improvements
discussed in this thesis. It has enabled us to apply query optimization just

169

170 summary and outlook

at the right levels of abstraction and devise improved encodings for indexes
and element order without changing the whole pipeline.

9.1.2 Query Optimization

It is well-established that compositional query flattening leads to inefficient
queries that relational engines can not cope with (Section 5.1). Our main
result on query optimization in the context of query flattening (Chapter 5)
is to show that major problems are not specific to query flattening but well-
known from the implementation of orthogonal query calculi. We face op-
timization challenges that have been extensively researched for complex-
object query languages.

With this perspective, we conclude that optimization should be performed
before flattening, not after. The structure of queries is best understood in
a high-level query language such as CL, not after translation to a low-level
language such as relational algebra. Optimizing early allows to employ
established optimization techniques (Section 5.2) that integrate well with
Query Flattening (Sections 5.3 and 5.4).

High-level CL optimizations fix the macro query structure prior to flatten-
ing. Little optimization effort is required after flattening. Here, we profit
from the fine-grained lowering pipeline of Query Flattening: much of the re-
maining work (e.g. merging of scalar expressions) can be performed at the
intermediate level of vector plans where rewrites are easier to express than
in relational algebra (Section 4.3.4).

Not all problems however, can be addressed on the level of calculus or al-
gebra plan rewriting. For those remaining issues we have been able to draw
on techniques originally developed for the flattening transformation (Chap-
ter 7).

9.1.3 Relational Code Generator

Even though high-level optimizations on CL eliminate the major problem-
atic aspects of flattened queries, the quality of actual backend queries still
hinges on an efficient relational encoding of indexes and order labels. In
this work, we devised efficient encodings that describe indexes and order
in terms of base columns and do not incur the runtime overhead of win-
dow functions. In contrast to prior work, we do not rely on post-mortem
optimizations here. Our translation to relational queries makes use of the
efficient encoding from the get-go without impacting preceding lowering
steps.

9.1.4 Database-Supported Haskell

With it’s expressive library of list combinators and its native support for
comprehension syntax, Haskell provides an ideal environment for language-
integrated querying. With DSH, Giorgidze et al. [Gio+11a; Gio+11b] present
a seamless embedding of queries into Haskell. During the work on this
thesis we built on their foundation and used DSH as the basis for the re-
search on query flattening. This culminated in a new implementation of
DSH that only keeps the language-embedding of DSH and adds a complete
new backend based on Query Flattening. Our implementation provides all
components discussed in this thesis (optimization, SQL code generation etc.)
and does not rely anymore on the Pathfinder compiler.

9.2 future work 171

The nested data model of DSH enables a high-level style of querying
with reusable abstractions. Faithful preservation of list semantics allows
to formulate order-aware queries with ease. Our experiments (Chapter 8)
indicate that this does not come at the expense of query runtime. DSH
reliably generates SQL queries of reasonable quality that typically perform
as well as hand-written queries. Hence, for language-integrated queries,
DSH provides “abstraction without regret” [Rom12]. The usefulness of DSH
is further underlined by its use in research: Stolarek and Cheney [SC18]
implemented language-integrated provenance based on DSH.

9.2 future work

We believe that the work presented here can and should be extended in mul-
tiple directions. Specifically, we see the following opportunities for follow-
up research.

• It remains to be shown formally that Query Flattening preserves the se-
mantics of the original CL query. Compared to Loop-Lifting, we believe
that the starting position is much improved. The fine-grained low-
ering pipeline allows to check the correctness of a number of small,
well-defined steps that focus on specific aspects of query flattening.
We have defined the semantics of intermediate languages based on
indexed lists. Indexes relate all intermediate forms down to SL vec-
tors. We conjecture that a correctness proof could be based on the
proof given by Cheney et al. [CLW14b] for Query Shredding that relies
on indexes.

Query Flattening guarantees that a flat-to-flat query in CL lowers to a
single flat relational query. Hence, as a side-effect, a rigorous proof of
correctness for Query Flattening would establish that CL is a conserva-
tive extension of relational algebra. This would extend the conservative
extension property to a more expressive query language than in earlier
work by Libkin and Wong [LW97].

• We have described Query Flattening based on list semantics. Any bag
query can be expressed as a list query as well by ignoring the order
of the result. As demonstrated in Chapter 8, the overhead for main-
taining list order in generated relational queries is small if no explicit
order-aware operations like enumeration are used. Still, tracking order
columns requires some work that is redundant for queries that do not
rely on list semantics.

Query Flattening, however, does not rely on list semantics and we ex-
pect that it extends without problems to multiset semantics. All in-
termediate languages and the final flat representation are based on
indexes that carry no notion of order. This is different to other imple-
mentations of the flattening transformation that rely on list order and
positions. In Query Flattening, order only becomes relevant in the last
lowering to MA. Compared to Query Shredding (Chapter 2) which is
defined on multisets, Query Flattening on multisets would still support
a more expressive query language (e.g. aggregation, grouping, dupli-
cate elimination). Our optimizations on comprehensions are valid not
only for lists but also for multiset queries.

It should be possible to extend Query Flattening to queries that work
on multisets and lists at the same time. The monad comprehension

172 summary and outlook

calculus [Bun+95; Gru99] provides a basis for query languages that
support multiple collection types.

• Recently, Hoelsch et al. [HGS16] as well as Cao and Badia [CB07] have
proposed the use of nested relations and nested relational algebra for
the optimization of relational queries with nested subqueries. Opti-
mization of nested subqueries profits from the ability to explicitly rep-
resent nested intermediate results, in particular empty nested interme-
diate results. Query Flattening can help in such approaches. As demon-
strated in Chapter 5, we can employ unnesting techniques for nes-
ted query languages on CL. Unnesting of correlated subqueries with
nestjoin{} and groupjoin{} operators, for example, is safe against
the infamous COUNT bug [GW87] and similar problems. These tech-
niques can be used in flat-to-flat queries as well, using nested interme-
diate results. Subsequently, Query Flattening supports these unnesting
combinators and provides a systematic lowering to a flat query that
can be executed on relational database systems.

AI N D E X E D S E M A N T I C S O F L I F T E D O P E R AT O R S

FJxKρ = ρ(x) (FL-var)

FJlet x = e1 in e2Kρ = FJe2K
ρ[x 7→FJe1Kρ] (FL-let)

FJ⟨ℓ1 = e1, ℓ2 = e2⟩↑K = [⟨k= x.k, p = ⟨ℓ1 = x.p, ℓ2 = y.p⟩⟩
| x← FJe1Kρ, y← FJe2Kρ, x.k = y.k]

(FL-record-lift)

FJconcat eKρ =

[⟨k= ⟨xs.k, x.k⟩, p = x.p⟩ | xs← FJeKρ, x← xs.p]
(FL-concat)

FJrestrict eKρ = [⟨k= x.k, p= x.p.1⟩ | x← FJeKρ, x.p.2]
(FL-restrict)

FJcombine e1 e2 e3Kρ =

[⟨k= x.k, p= y.p⟩
| x← FJe1Kρ, y← FJe2Kρ ++ FJe3Kρ, x.k = y.k]

(FL-combine)

FJsng↑ eKρ = [⟨k= x.k, p= [⟨k= ⟨⟩, p = x.p⟩]⟩ | x← FJeKρ]
(FL-sng-lift)

FJreduce{z, f}↑ eKρ = [⟨k= xs.k, p = foldl (f ⊘ πp) z xs.p⟩ | xs← FJeKρ]
(FL-agg-lift)

FJdistinct↑ eKρ =

[⟨k= xs.k, p = nubWith πp xs.p⟩ | xs← FJeKρ]
(FL-distinct-lift)

FJsort↑ eKρ =

[⟨k= xs.k, p= [⟨k= x.k, p= x.p.1⟩
| x← sortWith (π1 ◦ πp) xs.p]⟩

| xs← FJeKρ]

(FL-sort-lift)

FJconcat↑ eKρ =

[⟨k= xss.k, p= [⟨k= ⟨xs.k, x.k⟩, p = x.p⟩
| xs← xss.p, x← xs.p]⟩

| xss← FJeKρ]

(FL-concat-lift)

FJgroup↑ eKρ =

[⟨k= xs.k, p= [⟨k= g.1, p = ⟨g.1, [⟨k= x.k, p= x.p.1⟩
| x← g.2]⟩⟩

| g← groupWith (π1 ◦ πp) xs.p]⟩
| xs← FJeKρ]

(FL-group-lift)

173

174 indexed semantics of lifted operators

FJappend↑ e1 e2Kρ =

[⟨k= xs.k, p= [⟨k= ⟨1, x.2⟩, p = x.1.p⟩ | x← enum xs.p]

++

[⟨k= ⟨2, y.2⟩, p = y.1.p⟩ | y← enum ys.p]

| xs← FJe1Kρ, ys← FJe2Kρ, xs.k = ys.k]
(FL-append-lift)

FJcombine↑ eb et efKρ =

[⟨k= xsb.k, p= [⟨k= x.k, p = y.p⟩
| xb← xsb.p, x← x← xst.p ++ xsf.p

, xb.p = x.p]⟩
| xsb← FJebKρ, xst← FJetKρ, xsf← FJefKρ
, xsb.k = xst.k, xsb.k = xsf.k]

(FL-combine-lift)

BI N T R O D U C T I O N R U L E S F O R J O I N C O M B I N AT O R S

We use the following shortcut to substitute two variables with components
of a pair:

tupx,y,u(e) = (e[u.1/x])[u.2/y]

tripx,u(e) = e[⟨u.1,u.2⟩/x]

Introduction rules for join combinators are the following:

[h | qs, x← xs,y← ys,p x y,qs ′]

⇝
[tupx,y,u(h) | qs,u← thetajoin{λxy.p} xs ys, tupx,y,u(qs

′)]

(thetajoin)

[h | qs, x← xs, and [pq y | y← ys,pr x y],qs ′]

⇝
[h | qs, x← antijoin{λxy.pr} xs [y | y← ys,¬ pq],qs ′]

(antijoin-15)

[h | qs, x← xs, and [pq x y | y← ys,pr x y],qs ′]

⇝
[h | qs, x← antijoin{λxy.pr ∧ ¬ pq} xs ys,qs ′]

(antijoin-16)

[h | qs, x← xs, or [pq x y | y← ys,pr x y],qs ′]

⇝
[h | qs, x← semijoin{λxy.pq ∧ pr} xs ys,qs ′] (semijoin)

¬(or [h | qs])⇝ and [¬h | qs] (norm-universal)

¬(and [h | qs])⇝ or [¬h | qs] (norm-existential)

[h % [e | qs1,y← ys, s x y,qs2] | qs3, x← xs,qs4]

⇝
[(h % [tupx,y,v(e) | qs1, v← u.2, tupx,y,v(qs2)])[u.1/x]

| qs3,u← nestjoin{λxy.s} xs ys,qs4[u.1/x]]

(nestjoin-head)

175

176 introduction rules for join combinators

[h | qs1, x← xs,qs2,p % [e | qs3,y← ys, s x y,qs4,],qs5]

⇝
[h[u.1/x]

| qs1

, u← nestjoin{λxy.s} xs ys

, qs2[u.1/x]

, (p % [tupx,y,v(e) | qs3, v← u.2, tupx,y,v(qs4)])[u.1/x]

, qs5[u.1/x]]

(nestjoin-guard)

Both Rules nestjoin-head and nestjoin-guard assume that the inner list
ys is closed, i.e. fv(ys) = ∅. In practice, we have found it useful to extend
both rules to consider predicates p y in the inner comprehension that only
depend on the inner generator. Such predicates can be evaluated on the
right-hand input of the nestjoin operator as nestjoin{λxy.s} xs [y | y←
ys,p].

[h % (reduce{z, f} [e x | x← g.2]) | qs,g← group xs,qs ′]

⇝
[tripg,v(h % v.3) | qs, v← groupagg{sz, f ⊘ e} xs, tripg,v(qs

′)]

(groupagg-head)

[h % (reduce{z ′, f ′} [e x | x← g.2]) | qs,g← groupagg{z, f} xs,qs ′]

⇝
[(h % v.3.2)[⟨v.1, v.2, v.3.1⟩/g]
| qs, v← groupagg{⟨z, z ′⟩, f ∥ (f ′ ⊘ e)} xs]

, qs ′[⟨v.1, v.2, v.3.1⟩/g]]
(groupagg-head-extend)

[h % (reduce{z, f} [e x | x← g.2]) | qs,g← nestjoin{p} xs ys,qs ′]

⇝
[tripg,v(h % v.3) | qs, v← groupjoin{p, z, f ⊘ e} xs ys, tripg,v(qs

′)]

(groupjoin-head)

[h | qs,g← nestjoin{p} xs ys,qs ′

, (reduce{z, f} [e x | x← g.2]),qs ′′]

⇝
[tripg,v(h) | qs, v← groupjoin{p, z, f ⊘ e} xs ys, tripg,v(qs

′)

, tripg,v(p
′ % v.3), tripg,v(qs

′′)]

(groupjoin-guard)

Similar to Rule groupagg-head-extend, groupjoin operators can be ex-
tended with additional aggregates.

B I B L I O G R A P H Y

[AB86] Serge Abiteboul and Nicole Bidoit. Non First Normal Form Re-
lations: An Algebra Allowing Data Restructuring. In Journal of
Computer and System Sciences 33.3 (1986), pp. 361–393.

[Ale+15] Alexander Alexandrov, Lauritz Thamsen, Andreas Kunft, Odej
Kao, Asterios Katsifodimos, Tobias Herb, and Volker Markl. Im-
plicit Parallelism Through Deep Language Embedding. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on
Management of Data (SIGMOD). 2015.

[AB87] Malcolm P. Atkinson and Peter Buneman. Types and Persis-
tence in Database Programming Languages. In ACM Computing
Surveys 19.2 (1987), pp. 105–170.

[BR12] Lars Bergstrom and John Reppy. Nested Data-Parallelism on
the GPU. In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP). 2012, pp. 247–258.

[Ber+13] Lars Bergstrom, John Reppy, Stephen Rosen, Adam Shaw, Matthew
Fluet, and Mike Rainey. Data-Only Flattening for Nested Data
Parallelism. In ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPOP). 2013.

[Ble90] Guy E. Blelloch. Vector Models for Data-Parallel Computing. The
MIT Press, 1990.

[Ble95] Guy E. Blelloch. NESL: A Nested Data-Parallel Language. Tech.
rep. Carnegie Mellon University, 1995.

[Ble+94] Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco
Zagha, and Siddhartha Chatterjee. Implementation of a Portable
Nested Data-Parallel Language. In Journal of Parallel and Dis-
tributed Computing 21.1 (1994), pp. 4–14.

[BS89] Guy E. Blelloch and Gary W. Sabot. Compiling Collection-Oriented
Languages onto Massively Parallel Computers. In Journal of Par-
allel and Distributed Computing 8.2 (1989), pp. 119–134.

[Bon+06] Peter Boncz, Torsten Grust, Maurice Van Keulen, Stefan Mane-
gold, Jan Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast
XQuery Processor Powered by a Relational Engine. In Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD). 2006, pp. 479–490.

[BK99] Peter Boncz and Martin Kersten. MIL Primitives For Querying
a Fragmented World. In VLDB Journal 8.2 (1999), pp. 101–119.

[BWK98] Peter Boncz, Annita Wilschut, and Martin Kersten. Flattening
an Object Algebra to Provide Performance. In Proceedings of the
Fourteenth International Conference on Data Engineering (ICDE).
1998, pp. 568–577.

[BZN05] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Conference on Innovative
Data Systems Research (CIDR). 2005.

177

178 Bibliography

[BBW92] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Natu-
rally Embedded Query Languages. In Proceedings of the 4th In-
ternational Conference on Database Theory (ICDT). 1992, pp. 140–
154.

[Bru17] Moritz Bruder. MAL Code Generation for Flattening-Based Query
Compilers. MA thesis. University of Tübingen, 2017.

[Bun+94] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and
Limsoon Wong. Comprehension Syntax. In ACM SIGMOD Record
23.1 (1994), pp. 87–96.

[Bun+95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsson Wong.
Principles of Programming With Complex Objects and Collec-
tion Types. In Theoretical Computer Science 149.1 (1995), pp. 3–
48.

[CB07] Bin Cao and Antonio Badia. SQL Query Optimization Through
Nested Relational Algebra. In ACM Transactions on Database Sys-
tems 32.3 (2007).

[CK00] Manuel M.T. Chakravarty and Gabriele Keller. More Types for
Nested Data Parallel Programming. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP). 2000, pp. 94–105.

[CLW13] James Cheney, Sam Lindley, and Philip Wadler. A Practical The-
ory of Language-Integrated Query. In ACM SIGPLAN Interna-
tional Conference on Functional Programming. 2013, pp. 403–416.

[CLW14a] James Cheney, Sam Lindley, and Philip Wadler. Query Shred-
ding: Efficient Relational Evaluation of Queries Over Nested
Multisets. In International Conference on Management of Data (SIG-
MOD 2014). 2014, pp. 1027–1038.

[CLW14b] James Cheney, Sam Lindley, and Philip Wadler. Query Shredding:
Efficient Relational Evaluation of Queries Over Nested Multisets (Ex-
tended Version). 2014. arXiv: 1404.7078v2 [cs.DB].

[Cla+97] Jens Claussen, Alfons Kemper, Guido Moerkotte, and Klaus
Peithner. Optimizing Queries with Universal Quantification in
Object-Oriented and Object-Relational Databases. In Proceedings
of 23rd International Conference on Very Large Data Bases (VLDB).
1997, pp. 286–295.

[CM93] Sophie Cluet and Guido Moerkotte. Nested Queries in Object
Bases. In Proceedings of the Fourth International Workshop on Data-
base Programming Languages - Object Models and Languages (DBPL).
1993, pp. 226–242.

[Cod72] Edgar F. Codd. Relational Completeness of Data Base Sublan-
guages. In Data Base Systems, Proceedings of 6th Courant Computer
Science Symposium. 1972.

[Coo09] Ezra E. Cooper. The Script-Writer’s Dream: How to Write Great
SQL In Your Own Language, And Be Sure It Will Succeed. In
Database Programming Languages - DBPL 2009, 12th International
Symposium. 2009.

[Coo+06] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web Programming Without Tiers. In Formal Methods for
Components and Objects, 5th International Symposium, (FMCO). 2006,
pp. 266–296.

http://arxiv.org/abs/1404.7078v2

Bibliography 179

[CK85] George P. Copeland and Setrag N. Khoshafian. A Decomposi-
tion Storage Model. In Proceedings of the 1985 ACM SIGMOD
International Conference on Management of Data. 1985, pp. 268–
279.

[CM84] George P. Copeland and David Maier. Making Smalltalk a Da-
tabase System. In Proceedings of the 1984 ACM SIGMOD Interna-
tional Conference on Management of Data. 1984, pp. 316–325.

[TPC-H] Transaction Processing Performance Council. TPC-H. url: http:
//www.tpc.org/tpc-h (visited on 06/16/2018).

[FM00] Leonidas Fegaras and David Maier. Optimizing Object Queries
Using an Effective Calculus. In ACM Transactions on Database
Systems 25.4 (2000), pp. 457–516.

[GW87] Richard A. Ganski and Harry K.T. Wong. Optimization of Nes-
ted SQL Queries Revisited. In Proceedings of the Association for
Computing Machinery Special Interest Group on Management of Data
1987 Annual Conference (SIGMOD). 1987, pp. 23–33.

[Gia17] Paolo G. Giarrusso. Optimizing and Incrementalizing Higher-
Order Collection Queries by AST Transformation. PhD thesis.
Universität Tübingen, 2017.

[Gia+13] Paolo G. Giarrusso, Klaus Ostermann, Michael Eichberg, Ralf
Mitschke, Tillmann Rendel, and Christian Kästner. Reify Your
Collection Queries for Modularity and Speed! In Aspect-Oriented
Software Development (AOSD). 2013, pp. 1–12.

[Gio+11a] George Giorgidze, Torsten Grust, Tom Schreiber, and Jeroen
Weijers. Haskell Boards the Ferry. In Proceedings of the 22nd Inter-
national Conference on Implementation and Application of Functional
Languages (IFL). 2011, pp. 1–18.

[Gio+11b] George Giorgidze, Torsten Grust, Nils Schweinsberg, and Jeroen
Weijers. Bringing Back Monad Comprehensions. In Proceedings
of the 4th ACM SIGPLAN Symposium on Haskell. 2011.

[GRW08] Thomas Goldschmidt, Ralf Reussner, and Jochen Winzen. A
Case Study Evaluation of Maintainability and Performance of
Persistency Techniques. In Proceedings of the 13th International
Conference on Software Engineering (ICSE). 2008, p. 401.

[Gra93] Goetz Graefe. Query Evaluation Techniques for Large Databases.
In ACM Computing Surveys 25.2 (1993), pp. 73–170.

[Gru99] Torsten Grust. Comprehending Queries. PhD thesis. Universität
Konstanz, 1999.

[Gru02] Torsten Grust. Accelerating XPath Location Steps. In Proceed-
ings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD). 2002.

[Gru05] Torsten Grust. Purely Relational FLWORs. In Proceedings of the
Second International Workshop on XQuery Implementation, Experi-
ence and Perspectives (XIME-P). 2005.

[GM12] Torsten Grust and Manuel Mayr. A Deep Embedding of Queries
into Ruby. In Proceedings of the 2012 IEEE 28th International Con-
ference on Data Engineering (ICDE). 2012, pp. 1257–1260.

[GMR09] Torsten Grust, Manuel Mayr, and Jan Rittinger. XQuery Join
Graph Isolation. In Proceedings of the 25th International Conference
on Data Engineering (ICDE). 2009.

http://www.tpc.org/tpc-h
http://www.tpc.org/tpc-h

180 Bibliography

[GMR10] Torsten Grust, Manuel Mayr, and Jan Rittinger. Let SQL Drive
the XQuery Workhorse. In Proceedings of the 13th International
Conference on Extending Database Technology (EDBT). 2010, pp. 147–
158.

[Gru+07] Torsten Grust, Manuel Mayr, Jan Rittinger, Sherif Sakr, and Jens
Teubner. A SQL:1999 Code Generator for the Pathfinder XQuery
Compiler. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD). 2007, pp. 1162–1164.

[Gru+09] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber.
Ferry Database Supported Program Execution. In Proceedings
of the ACM SIGMOD International Conference on Management of
Data (SIGMOD). 2009, pp. 1063–1065.

[GR11] Torsten Grust and Jan Rittinger. Observing SQL Queries in their
Natural Habitat. In ACM Transactions on Database Systems 38.1
(2011).

[GRS10] Torsten Grust, Jan Rittinger, and Tom Schreiber. Avalanche-Safe
LINQ Compilation. In PVLDB 3.1 (2010), pp. 162–172.

[GST04] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL
Hosts. In Proceedings of the 30th International Conference on Very
Large Databases (VLDB). 2004, pp. 252–263.

[GS99] Torsten Grust and Marc H. Scholl. How to Comprehend Queries
Functionally. In Journal of Intelligent Information Systems 12.2-3
(1999), pp. 191–218.

[GU13] Torsten Grust and Alexander Ulrich. First-Class Functions for
First-Order Database Engines. In Proceedings of the 14th Inter-
national Symposium on Database Programming Languages (DBPL.
2013.

[GVT03] Torsten Grust, Maurice Van Keulen, and Jens Teubner. Staircase
Join: Teach a Relational DBMS to Watch its (Axis) Steps. In Pro-
ceedings of the 29th International Conference on Very Large Databases
(VLDB). 2003.

[HGS16] Jürgen Hölsch, Michael Grossniklaus, and Marc H. Scholl. Op-
timization of Nested Queries using the NF2 Algebra. In Proceed-
ings of the 2016 International Conference on Management of Data
(SIGMOD). 2016.

[Hul90] Guy Hulin. On Restructuring Nested Relations in Partitioned
Normal Form. In 16th International Conference on Very Large Data
Bases (VLDB). 1990, pp. 626–637.

[JK84] Matthias Jarke and Jürgen Koch. Query Optimization in Data-
base Systems. In ACM Computing Surveys 16.2 (1984), pp. 111–
152.

[Kel99] Gabriele Keller. Transformation-based Implementation of Nes-
ted Data Parallelism for Distributed Memory Machines. PhD
thesis. Technische Universität Berlin, 1999.

[Kel+12] Gabriele Keller, Manuel M.T. Chakravarty, Ben Lippmeier, and
Simon Peyton Jones. Vectorisation Avoidance. In Proceedings of
the 5th ACM SIGPLAN Symposium on Haskell. 2012, pp. 37–48.

Bibliography 181

[KS96] Gabriele Keller and Martin Simons. A Calculational Approach
to Flattening Nested Data Parallelism in Functional Languages.
In Concurrency and Parallelism, Programming, Networking, and Se-
curity: Second Asian Computing Science Conference (ASIAN). 1996,
pp. 234–243.

[Kim82] Won Kim. On Optimizing an SQL-like Nested Query. In ACM
Transactions on Database Systems 7.3 (1982), pp. 443–469.

[KLT16] Christoph Koch, Daniel Lupei, and Val Tannen. Incremental
View Maintenance For Collection Programming. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Princi-
ples of Database Systems (PODS). 2016, pp. 75–90.

[Lei+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. How Good Are Query
Optimizers, Really. In PVLDB 9.3 (2015), pp. 204–215.

[LS03] Alberto Lerner and Dennis Shasha. AQuery: Query Language
for Ordered Data, Optimization Techniques, and Experiments.
In Proceedings of the 29th VLDB Conference. 2003, pp. 345–356.

[Les05] Roman Leshchinskiy. Higher-Order Nested Data Parallelism: Se-
mantics and Implementation. PhD thesis. Technische Univer-
sität Berlin, 2005.

[LS97] Alon Levy and Dan Suciu. Deciding Containment for Queries
with Complex Objects and Aggregations. In Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS). 1997, pp. 20–31.

[LW97] Leonid Libkin and Limsoon Wong. Query Languages for Bags
and Aggregate Functions. In Journal of Computer and System Sci-
ences 55.2 (1997), pp. 241–272.

[Lip+12] Ben Lippmeier, Manuel M.T. Chakravarty, Gabriele Keller, Ro-
man Leshchinskiy, and Simon Peyton Jones. Work Efficient Higher-
Order Vectorisation. In ACM SIGPLAN International Conference
on Functional Programming (ICFP). 2012, pp. 259–270.

[Mad16] Frederik M. Madsen. Streaming for Functional Data-Parallel Lan-
guages. PhD thesis. University of Copenhagen, 2016.

[MKB09] Stefan Manegold, Martin Kersten, and Peter Boncz. Database
Architecture Evolution: Mammals Flourished Long Before Di-
nosaurs Became Extinct. In PVLDB 2.2 (2009), pp. 1648–1653.

[Mar10] Simon Marlow. Haskell 2010: Language Report. haskell.org. 2010.

[MHM04] Norman May, Sven Helmer, and Guido Moerkotte. Nested Queries
and Quantifiers in an Ordered Context. In Proceedings of the
20th International Conference on Data Engineering (ICDE). 2004,
pp. 239–250.

[May13] Manuel Mayr. A Deep Embedding of Queries into Ruby. PhD
thesis. Universität Tübingen, 2013.

[MBB06] Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: Rec-
onciling Object, Relations and XML in the .NET Framework. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD). 2006, p. 706.

[MN11] Guido Moerkotte and Thomas Neumann. Accelerating Queries
with Group-By and Join by Groupjoin. In PVLDB 4.11 (2011),
pp. 843–851. issn: 21508097.

haskell.org

182 Bibliography

[Nag15] Fabian Nagel. Efficient Query Processing in Managed Runtimes.
PhD thesis. University of Edinburgh, 2015.

[NBV14] Fabian Nagel, Gavin Bierman, and Stratis D. Viglas. Code Gen-
eration for Efficient Query Processing in Managed Runtimes. In
PVLDB 7.12 (2014), pp. 1095–1106.

[Nak90] Ryohey Nakano. Translation with Optimization from Relational
Calculus to Relational Algebra Having Aggregate Functions. In
ACM Transactions on Database Systems 15.4 (1990), pp. 518–557.

[Neu11] Thomas Neumann. Efficiently Compiling Efficient Query Plans
for Modern Hardware. In PVLDB 4.9 (2011), pp. 539–550.

[Pal+17] Shoumik Palkar, James J. Thomas, Deepak Narayanan, Anil Shanbhag,
Rahul Palamuttam, Holger Pirk, Malte Schwarzkopf, Saman P.
Amarasinghe, Samuel Madden, and Matei Zaharia. Weld: Re-
thinking the Interface Between Data-Intensive Applications. 2017. arXiv:
1709.06416 [cs.DB].

[PP95] Daniel W. Palmer and Jan F. Prins. Work-Efficient Nested Data-
Parallelism. In Frontiers of Massively Parallel Computation. 1995.

[Pal+95] Daniel W. Palmer, Jan F. Prins, Siddhartha Chatterjee, and Rickard
Faith. Piecewise Execution of Nested Data-Parallel Programs. In
Languages and Compilers for Parallel Computing, 8th International
Workshop (LCPC). 1995, pp. 346–361.

[PV92] Jan Paredaens and Jan Van Gucht. Converting Nested Algebra
Expressions into Flat Algebra Expressions. In ACM Transactions
on Database Systems 17.1 (1992), pp. 65–93.

[PW07] Simon L. Peyton Jones and Philip Wadler. Comprehensive Com-
prehensions. In Proceedings of the ACM SIGPLAN Workshop on
Haskell. 2007, pp. 61–72.

[Pey+08] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and
Manuel M.T. Chakravarty. Harnessing the Multicores: Nested
Data Parallelism in Haskell. In Foundations of Software Technology
and Theoretical Computer Science. 2008, pp. 383–414.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[Pir+16] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. Voodoo
- A Vector Algebra for Portable Database Performance on Mod-
ern Hardware. In PVLDB 9.14 (2016), pp. 1707–1718.

[PP93] Jan F. Prins and Daniel W. Palmer. Transforming High-Level
Data-Parallel Programs into Vector Operations. In Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming (PPOPP). Vol. 3175. 1993.

[RP00] James Riely and Jan F. Prins. Flattening is an Improvement. In
7th International Symposium on Static Analysis. 2000, pp. 1–17.

[Rit11] Jan Rittinger. Constructing a Relational Query Optimizer for
Non-Relational Languages. PhD thesis. Universität Tübingen,
2011.

[Rom12] Tiark Rompf. Lightweight Modular Staging and Embedded Com-
pilers: Abstraction Without Regret for High-Level Performance
Programming. PhD thesis. Ecole Polytechnique Federale de Lau-
sanne, 2012.

http://arxiv.org/abs/1709.06416

Bibliography 183

[RKS88] Mark A. Roth, Henry F. Korth, and Abraham Silberschatz. Ex-
tended Algebra and Calculus for Nested Relational Databases.
In ACM Transactions on Database Systems 13.4 (1988), pp. 389–
417.

[SFG14] Neil Sculthorpe, Nicolas Frisby, and Andy Gill. The Kansas
University Rewrite Engine - A Haskell-Embedded Strategic Pro-
gramming Language with Custom Closed Universes. In Journal
of Functional Programming 24.4 (2014), pp. 434–473.

[Sha+16] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown,
Mohammad Dashti, and Christoph Koch. How to Architect a
Query Compiler. In Proceedings of the 2016 International Confer-
ence on Management of Data (SIGMOD). 2016, pp. 1907–1922.

[Shu+12] Jeff Shute et al. F1: A Distributed SQL Database That Scales.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD). 2012.

[SB90] Jay M. Sipelstein and Guy E. Blelloch. Collection-Oriented Lan-
guages. Tech. rep. Carnegy Mellon University, 1990.

[Slick] Slick: Functional Relational Mapping for Scala. url: http://slick.
lightbend.com (visited on 06/16/2018).

[Ste95] Hennie J. Steenhagen. Optimization of Object Query Languages.
PhD thesis. Universiteit Twente, 1995.

[SAB94] Hennie J. Steenhagen, Peter M.G. Apers, and Henk M. Blanken.
Optimization of Nested Queries in a Complex Object Model. In
Proceedings of the 4th International Conference on Extending Data-
base Technology. 1994, pp. 337–350.

[Ste+94] Hennie J. Steenhagen, Peter M.G. Apers, Henk M. Blanken, and
Rolf A. de By. From Nested-Loop to Join Queries in OODB.
In Proceedings of 20th International Conference on Very Large Data
Bases (VLDB). 1994, pp. 618–629.

[SC18] Jan Stolarek and James Cheney. Language-Integrated Provenance
in Haskell. In Programming Journal 2.3 (2018), p. 11.

[Suc95] Dan Suciu. Parallel Programming Languages For Collections.
PhD. University of Pennsylvania, 1995.

[Suc96] Dan Suciu. Implementation and Analysis of a Parallel Collec-
tion Query Language. In Proceedings of the 22th International Con-
ference on Very Large Data Bases (VLDB). 1996, pp. 366–377.

[Suc97] Dan Suciu. Bounded Fixpoints for Complex Objects. In Theoret-
ical Computer Science 176.1-2 (1997), pp. 283–328.

[ST94] Dan Suciu and Val Tannen. Efficient Compilation of High-Level
Data Parallel Algorithms. In Proceedings of the 6th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA). 1994,
pp. 57–66.

[PG] The PostgreSQL Relational Database System. url: http : / / www .

postgresql.org (visited on 06/16/2018).

[Tri91] Philip W. Trinder. Comprehensions, a Query Notation for DB-
PLs. In Proceedings of the Third International Workshop on Database
Programming Languages (DBPL). 1991.

http://slick.lightbend.com
http://slick.lightbend.com
http://www.postgresql.org
http://www.postgresql.org

184 Bibliography

[Ulr11] Alexander Ulrich. A Ferry-Based Query Backend for the Links
Programming Language. MA thesis. University of Tübingen,
2011.

[UG15] Alexander Ulrich and Torsten Grust. The Flatter, the Better. In
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data (SIGMOD). 2015, pp. 1421–1426.

[Van99] Jan Van Den Bussche. Simulation of the Nested Relational Al-
gebra by the Flat Relational Algebra, with an Application to
the Complexity of Evaluating Powerset Algebra Expressions. In
Theoretical Computer Science 254.1 (1999), pp. 363–377.

[Van06] Joeri Van Ruth. Flattening Queries over Nested Data Types. PhD
thesis. University of Twente, 2006.

[Wad90] Philip Wadler. Comprehending Monads. In Proceedings of the
1990 ACM Conference on LISP and Functional Programming. 1990,
pp. 61–78.

[Wei17] Jeroen Weijers. A Flattening Based Compilation Strategy For
Rich Database Query Languages. 2017.

[Won94] Limsoon Wong. Querying Nested Collections. PhD thesis. Uni-
versity of Pennsylvania, 1994.

[Won96] Limsoon Wong. Normal Forms and Conservative Extension Prop-
erties for Query Languages over Collection Types. In Journal of
Computer and System Sciences 52.3 (1996), pp. 495–505.

[Won00] Limsoon Wong. Kleisli, a Functional Query System. In Journal
of Functional Programming 10.1 (2000), pp. 19–56.

[Yan+17] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. Under-
standing Database Performance Inefficiencies in Real-world Web
Applications. In Proceedings of the 2017 ACM Conference on Infor-
mation and Knowledge Management (CIKM). 2017, pp. 1299–1308.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Language-Integrated Query
	1.2 Broken Promises
	1.3 Case Study: Database-Supported Haskell
	1.4 A List-Based Query Language

	2 Related Work on Query Flattening
	2.1 Foundations of Query Flattening
	2.2 Practical Approaches
	2.3 Outlook

	3 The Flattening Transformation
	3.1 Flattening Nested Data Parallelism
	3.2 The Flattening Transformation By Example
	3.3 Related Work and Outlook

	4 Flattening Queries
	4.1 Desugaring Comprehensions
	4.2 Lifting: Flattening Nested Data-Parallelism
	4.3 Flattening Collections: The Segment Vector Model
	4.4 Extensibility
	4.5 Related Work

	5 Query Flattening and Query Optimization
	5.1 Avoiding Replication in Flattening
	5.2 Optimizing Iterations
	5.3 Lifting Join Combinators
	5.4 Shredding Join Combinators

	6 Relational Backend
	6.1 Multiset Algebra
	6.2 Generating Multiset Plans
	6.3 Generating Multiset Plans
	6.4 Optimization of Relational Plans
	6.5 SQL Code Generation
	6.6 Related Work

	7 Delayed Replication
	7.1 Delaying Replication
	7.2 Shredding With Delayed Vectors
	7.3 Related Work

	8 Experimental Evaluation
	8.1 Implementation of Query Flattening
	8.2 Quality of Relational Plans
	8.3 Setup for Experiments
	8.4 Complex Flat-to-Flat Queries
	8.5 Nested Queries

	9 Summary and Outlook
	9.1 Contributions
	9.2 Future Work

	A Indexed Semantics of Lifted Operators
	B Introduction Rules For Join Combinators
	Bibliography

