
Proceedings of the 5th bwHPC Symposium doi: 10.15496/publikation-29062

HPC with Python: An MPI-parallel
implementation of the Lattice

Boltzmann Method
Lars Pastewka Andreas Greiner

Department of Microsystems Engineering, University of Freiburg, Germany

The Lattice Boltzmann Method is well suited for high-performance computational
fluid dynamics. We show by means of a common two-dimensional test case, the
lid-driven cavity problem, that excellent parallel scaling can be achieved in an
implementation based on pure Python, using the numpy library and the Message
Passing Interface. We highlight opportunities and pitfalls for the implementation
of parallel high-performance codes in the high-level language Python.

1 Introduction

The Boltzmann transport equation (BTE) was introduced by Ludwig Boltzmann
in the context of kinetic gas theory (Boltzmann, 1896) and is a statistical model
for the transport of molecular constituents during flow (Cercignani, 1988). The
Lattice Boltzmann method (LBM) is a numerical scheme based on a discretized
version of the BTE, introduced by McNamara and Zanetti in 1988 (McNamara
et al., 1988). LBM models have been used for the last three decades to study the
dynamics of fluids in many different applications, from multiphase flow (Gunstensen,
Rothman et al., 1991; Grunau et al., 1993), porous media (Aharonov et al., 1993;
Gunstensen and Rothman, 1993) to microfluidics (Zhang, 2011). A thorough review
of its applications in fluid dynamics and beyond can be found in Succi (2001).

cba4.0 doi: 10.15496/publikation-29049

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/196531577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.15496/publikation-29062
https://orcid.org/0000-0001-8351-7336
https://doi.org/10.15496/publikation-29049

Lars Pastewka and Andreas Greiner

2 The Boltzmann transport equation

The BTE describes the time of evolution of the probability density f(v, r, t) for find-
ing a molecule with mass m and velocity v at position r as a function of time t. The
moments of this probability density define the mass density ρ(r, t), the momentum
density j(r, t) and the temperature T (r, t) in D-dimensional space,

ρ(r, t) = m

∫
dDv f(v, r, t) (1)

j(r, t) = ρ(r, t)u(r, t) = m

∫
dDv vf(v, r, t) (2)

kBT (r, t) = m2

Dρ(r, t)

∫
dDv [v − u(r, t)]2 f(v, r, t), (3)

where we have defined the average velocity u(r, t) at position r. We have here
assumed a monoatomic system with molecules of mass m and kB is the Boltzmann
constant.

The BTE describes the total time-rate of change of this probability distribution,
df/dt. We know that for large times t it must relax towards statistical equilibrium,
given by the Maxwell velocity distribution function (Huang, 1987),

f eq(v; ρ, u, T) = ρ

m

(
m

2πkBT

)D/2
exp

{
−m(v − u)2

2kBT

}
. (4)

A common approximation is to assume relaxation of f towards f eq with a single
characteristic time τ , as suggested by Bhatnagar, Gross, and Krook (BGK) in 1954
(Bhatnagar et al., 1954),

df(v, r, t)
dt

= −f(v, r, t) − f eq(v; ρ(r, t), u(r, t), T (r, t))
τ

. (5)

Eq. (5) is the BGK-Boltzmann equation. Note that the total differential of f is

df

dt
= F(r)

m

∂f(v, r, t)
∂v + v∂f(v, r, t)

∂r + ∂f(v, r, t)
∂t

, (6)

where F(r) is an external force acting on the molecules.
We will remain within the context of this single (BGK) relaxation time approxim-

ation, but modern developments of the method aim at introducing multiple relaxa-

120

Lattice Boltzmann with Python

tion times, for example by relaxing the cumulants of f individually (Geier, Greiner
et al., 2006; Geier, Schönherr et al., 2015).

2.1 The Lattice Boltzmann Method in two dimensions

The BTE is discretized in space, velocity and time. Discretizing Eq. (5) on a regular
(square) lattice in space is straightforward. However, we also require a suitable
discretization of velocity space and the time step. Both are chosen such that the
distance between interpolation points in velocity space multiplied by the time step
equals the distance between points on the spatial lattice; in other words, a molecule
traveling on the spatial lattice travels between integer number of lattice points
during one time step.

The particular realization of the velocities used by us is shown in Fig. 1a. The
velocity set contains 9 directions. Each direction is assigned the index shown in
Fig. 1a. Direction 0 zero hence describes the population of molecules at rest. This
specific discretization in two-dimensional space (D = 2) with nine directions is
commonly denoted by D2Q9.

0 1

2

3

4

56

7 8

(a) (b)

Figure 1: Discretization of the BTE. (a) Discretization of velocity space into
nine directions. The numbers uniquely identify the direction. (b) Regular two-
dimensional lattice used for the spatial discretization.

The discrete velocities are therefore given by the directions to the eight neighbors
divided by the time step. We have nine velocity vectors ci, with i = 0, . . . , 8 for each
direction i. We now also require the occupation numbers for these nine directions.
The probability distribution f(r, v) is hence represented by nine discrete fi(xj , t)

121

Lars Pastewka and Andreas Greiner

where xj is the discrete lattice point and i denotes the direction. Note that the
moments of the probability density Eqs. (1) and (2) become

ρ(xj , t) =
∑

i

fi(xj , t) (7)

u(xj , t) = 1
ρ(xj , t)

∑
i

cifi(xj , t), (8)

where ρ(xj , t) is now the number density, i. e. we assume unit molecular mass.
The discretized BGK-Boltzmann equation (5) then reads

fi(xj + ci · ∆t, t + ∆t) = fi(xj , t) − ω[fi(xj , t) − f eq
i (xj , t)] (9)

where ∆t is a time step used for the discrete dynamical propagation of the occupa-
tion numbers. We have introduced the normalized relaxation parameter ω = ∆t/τ

and the external forces F(r) are set to zero. Note that the left hand side and the
first term on the right hand side of Eq. (9) is a discretization of the total differential
of f . The expression for the equilibrium distribution function in the nine directions
is (Mohamad, 2011; Wolf-Gladrow, 2000)

f eq
i (xj , t) = wiρ(xj , t)

{
1 + 3ci · u(xj , t) + 9

2 [ci · u(xj , t)]2 − 3
2u2(xj , t)

}
, (10)

with wi = 4/9, 1/9 and 1/36 for directions 0, 1-3 and 4-8, respectively. Note that
like Eq. (4) for the continuous distribution function, Eq. (10) is obtained by apply-
ing the maximum entropy principle under the constraint of mass and momentum
conservation to the discrete distribution function (Mohamad, 2011; Wolf-Gladrow,
2000).

To give a rough idea of how Eq. (9) propagates the occupation numbers for the
individual directions, we describe as an example what happens to f5. Assume we
have a finite value for direction fi including f5, their magnitude given by the length
of the green arrows, respectively, and based at the position shown by the blue spot
in Fig. 1b. At time t the r.h.s. of Eq. (9) relaxes f5 towards the local equilibrium
given by the black arrow based at the blue spot, which is commonly called the
collision operation (Boltzmann, 1896). Time propagation is described by the l.h.s.
of Eq. (9). After one time step ∆t, the occupation f5 will be handed to the red
spot and occupy direction 5 there. This is commonly called the streaming step. An

122

Lattice Boltzmann with Python

algorithmic implementation of Eq. (9) is conveniently split into these streaming and
collision steps.

2.2 Implementation in Python and numpy

The quantity that specifies the state of our simulation are the occupation num-
bers fi(xj). We represent these as a single contiguous numpy1 array called f_ikl.
Note that the suffixes in our specific naming scheme indicate the number of array
dimensions and their function. In the present case, ikl stands for three array di-
mensions: i is a direction (array dimension of size 9), k is the lattice position in
x-direction, and l (size nx) the lattice position in y-direction (size ny). Below we
also encounter c, which denotes a Cartesian array dimension (size 2). This naming
convention eases readability of the code and translation of formulas containing lin-
ear algebra into numpy operations and is borrowed from the GPAW code (Mortensen
et al., 2005; Enkovaara et al., 2010). Note that because numpy’s default storage order
is row-major, the array f_ikl is stored in what is commonly called the structure of
arrays (SoA) storage order (Obrecht et al., 2011; Qi, 2017).

The streaming part can be cast into the form listed in Code Listing 1, which
uses the numpy.roll function and automatically takes care of periodic boundary
conditions. numpy.roll rolls the data on the lattice into the direction specified
by axis in the code listing by a distance given by c_ic[i] . Note that c_ic[i]

is a one-dimensional array of length 2 that specifies the Cartesian coordinates of
direction i. Taking the example of the f_ikl array, a roll operation on occupation
number 1 and axis 0 with unit distance will assign f1,k,l → f1,k+1,l.

import numpy as np

c_ic = np.array([[0, 1, 0, -1, 0, 1, -1, -1, 1],

[0, 0, 1, 0, -1, 1, 1, -1, -1]]).T

def stream(f_ikl):

for i in range(1, 9):

f_ikl[i] = np.roll(f_ikl[i], c_ic[i], axis=(0, 1))

Code Listing 1: Implementation of the streaming step

1http://www.numpy.org/, Version 1.14.3

123

http://www.numpy.org/

Lars Pastewka and Andreas Greiner

The collision part of Eq. (9) is also straightforward to implement. To translate
an expression like Eq. (9) into vectorized numpy code, it can be useful to write it
down in Einstein notation. Einstein notation can be cast directly in Python code
using the numpy.einsum function. Code Listing 2 shows a naive but straightforward
implementation of the collision step, split into the computation of the equilibrium
distribution function in equilibrium and the final collision step in collide, where
omega is the relaxation parameter ω of Eq. (5).

import numpy as np

w_i = np.array([4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36])

def equilibrium(rho_kl, u_ckl):

cu_ikl = np.dot(u_ckl.T, c_ic.T).T

uu_kl = np.sum(u_ckl**2, axis=0)

return (w_i*(rho_kl*(1 + 3*cu_ikl + 9/2*cu_ikl**2 - 3/2*uu_kl)).T).T

def collide(f_ikl, omega):

rho_kl = np.sum(f_ikl, axis=0)

u_ckl = np.dot(f_ikl.T, c_ic).T/rho_kl

f_ikl += omega*(equilibrium(rho_kl, u_ckl) - f_ikl)

return rho_kl, u_ckl

Code Listing 2: Naive implementation of the collision step

It is worth pointing out that the collision implementation of Code Listing 2 does not
lead to optimal performance. The Python code can be further optimized by unrolling
all multiplications with c_ic and eliminating the terms that vanish due to zeros
in c_ic. This implementation is our optimized reference Python implementation.
We additionally benchmark this Python implementation against a C++ collision
kernel integrated into our Python code with pybind112 and eigen3.

2.3 Parallelization strategy

We parallelize the LBM using spatial domain decomposition and the message pass-
ing interface (MPI)4. The collision part of the LBM is then embarrassingly parallel.
It is a spatially local operation and no communication is required. Note that we

2https://github.com/pybind/pybind11, Version 2.2.2
3https://eigen.tuxfamily.org/, Version 3.3.4
4https://www.mpi-forum.org/

124

https://github.com/pybind/pybind11
https://eigen.tuxfamily.org/
https://www.mpi-forum.org/

Lattice Boltzmann with Python

could also have decided to parallelize in the direction space by distributing the oc-
cupation numbers for the individual directions onto separate MPI processes. This
would then require communication during the collision step. This is, however, disad-
vantageous because there are just nine directions and parallelism would be limited
to just nine parallel processes.

rank 0 rank 1 rank 2

rank 3 rank 4 rank 5

Figure 2: Domain decomposition and communication strategy. We decom-
pose the full two-dimensional lattice into spatial domains of roughly equal size
(green lattice points). We then add an additional ghost region of unit thickness
surrounding these domains (gray lattice points). During each communication
step, we communicate the outermost green active lattice into the adjacent out-
ermost ghost lattice (as exemplified by the blue arrows). This requires four
communication steps, two of which are indicated by the arrows.

Parallelization in the spatial domain requires communication during the streaming
step. All occupation numbers that are moved past a domain boundary need to be
communicated to the neighboring domain. We implement this by adding an addi-
tional ghost region to the simulation domain. Figure 2 illustrates the concept for a
decomposition in 3 × 2 domains. The green lattice points are our active computa-
tional domain and the grey points are the ghost lattice points. We now communicate
the region adjacent to the ghost points into the respective ghost points of the neigh-
boring domain as shown in Fig. 2 before the streaming step. Within the streaming
step, we then stream the relevant occupation numbers fi from the ghost points into
the active lattice points. This requires a total of four communication steps: Com-

125

Lars Pastewka and Andreas Greiner

munication to the right and bottom as shown in Fig. 2 (for each domain) plus their
reverse, communication to left and top.

We implement communication in Python using the mpi4py5 bindings to the MPI
library. The Python code responsible for communication is shown in Code Listing 3.
We need onpe Sendrecv call to communicate in each of the four directions. Sendrecv

takes care of sending data in one direction and simultaneously receiving it from the
opposite direction. ndx and ndy in the code are the number of domains in x and
y-direction.

from mpi4py import MPI

comm = MPI.COMM_WORLD.Create_cart((ndx, ndy), periods=(False, False))

left_src, left_dst = comm.Shift(0, -1)

right_src, right_dst = comm.Shift(0, 1)

bottom_src, bottom_dst = comm.Shift(1, -1)

top_src, top_dst = comm.Shift(1, 1)

def communicate(f_ikl):

comm.Sendrecv(f_ikl[:, 1, :], left_dst,

recvbuf=f_ikl[:, -1, :], source=left_src)

comm.Sendrecv(f_ikl[:, -2, :], right_dst,

recvbuf=f_ikl[:, 0, :], source=right_src)

comm.Sendrecv(f_ikl[:, :, 1], bottom_dst,

recvbuf=f_ikl[:, :, -1], source=bottom_src)

comm.Sendrecv(f_ikl[:, :, -2], top_dst,

recvbuf=f_ikl[:, :, 0], source=top_src)

Code Listing 3: Implementation of the communication step

At the time of this writing, all mpi4py communication methods require contiguous
numpy arrays. The input arrays in Code Listing 3 need therefore be cast into con-
tiguous arrays using numpy.ascontiguousarray and a temporary contiguous buffer
is required for receiving data. These intermediate steps have been omitted from the
code excerpt for brevity.

3 Results for the lid-driven cavity

The lid-driven cavity is frequently used to test fluid dynamics simulation programs.
Given a quadratic box with a sliding lid, as shown in Fig. 3a, we use equilibrium

5https://mpi4py.scipy.org/, Version 3.0.0

126

https://mpi4py.scipy.org/

Lattice Boltzmann with Python

initial conditions, Eq. (10), for the discrete BGK-Boltzmann transport equations.
The initial values were chosen as ρ = 1.0 and u = 0 at time t = 0.

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

(a) (b)

Figure 3: Lid-driven cavity. (a) The system consists of a quadratic box with
hard walls drawn in black and a lid that slides to the right with a prescribed
velocity, drawn in red. The lattice points all lie inside the box and the walls
lie half way between boundary lattice points and (virtual) solid lattice points
outside the box. (b) Streamlines in the steady state for a domain of 300 × 300
lattice points and ω = 1.7, corresponding to Reynolds number 1000, given the
typical velocity of the sliding lid as ulid = 0.1. The figures is visualized using
the streamplot function of the matplotlib6library. The lattice is resampled
into a 30 × 30 lattice before determining the streamlines.

The lid moves with a given velocity ulid in direction 1, i. e. to the east. We apply
bounce-back boundary conditions on the black boundaries and the prescribed wall
velocity boundary conditions on the red wall. The full boundary conditions can be
written as

fi = fi∗ − 6wiρwallci · ulid (11)

where i∗ indicates the direction before bounce-back and ρwall is the fluid density at
the wall. More information can be found in Ref. (Mohamad, 2011; Wolf-Gladrow,
2000). Note that we apply bounce back boundary conditions to all parallel domains,
but we introduce ghost buffers only for domain boundaries in interior domains, not
for the outer boundaries of edge domains. Using this approach, we do not need
special treatment of boundary or interior domains. Bounce back of particles in an
interior is simply overridden in the next communication step. Outer boundaries of
edge domains are not communicated when specifying periods=(False, False) in

6https://matplotlib.org/

127

https://matplotlib.org/

Lars Pastewka and Andreas Greiner

the call to Create_cart in Code Listing 3. This keeps our Python implementation
as simple as possible and free of specific treatment of corner cases.

We calculated the velocity field in the steady state. Figure 3b shows the stream-
lines of the flow field after 1 million time steps for a lattice of 300 × 300 lattice
points with ω = 1.7 and the velocity of the lid chosen as ulid = 0.1. The sliding
lid induces a large vortex rotating clock wise. The two lower corners show small
vortices rotating in the opposite direction.

In order to demonstrate the scaling behavior for the parallel version of our code,
we calculated the steady state solution of the problem for different sizes of the
simulation domain 300 × 300, 1, 000 × 1, 000, 3, 000 × 3, 000 and 10, 000 × 10, 000
lattice points on bwForCluster NEMO at the University of Freiburg (2x Broadwell
E5-2630v4 at 2.2 GHz per compute node with a 100 Gbit/s Omni-Path intercon-
nect). The square computational lattice was divided in rectangular subregions, with
each subregion assigned to one process.

A common measure for the speed of an implementation of the Lattice Boltzmann
Method is the number of million lattice updates per second (MLUPS), which we
compute for the lid-driven cavity. Fig. 4a reports this measure for the naive and
optimized Python implementation as well as for the Python implementation using
a C++ implementation of the collision kernel, all using double precision floating-
point arithmetics. It is immediately clear that the Python&C++ implementation
is fastest, reaching about 15 MLUPS on a single core, while the naive Python
implementation reaches only 1 MLUPS. Scaling for all implementations is excellent
and the dashed lines in Fig. 4a shows ideal scaling for the three implementations.
For a 10, 000 × 10, 000 lattice, the Python&C++ implementation peaks at 7 billion
lattice updates per second (BLUPS = 1000 MLUPS) when using 640 MPI process
(32 NEMO compute nodes).

Figure 4b shows the execution time (per simulation step) as a function of number
of lattice points per MPI process. For each lattice there is a minimum in execution
time that moves to a smaller number of lattice points per MPI process with decreas-
ing lattice size. This means the larger the overall lattice, the larger the portions that
reside on each MPI process must be for scaling to be optimal.

128

Lattice Boltzmann with Python

100 101 102 103 104

Number of MPI processes

100

101

102

103

104

M
illi

on
 la

tti
ce

 u
pd

at
es

 p
er

 se
co

nd

300 × 300, C++ collision kernel
300 × 300, optimized Python
300 × 300, naive Python
1000 × 1000
3000 × 3000
10000 × 1000

(a)

103 104 105 106

Number of grid points per MPI process

10 3

10 2

Ti
m

e
pe

r s
im

ul
at

io
n

st
ep

 (s
)

300 × 300
1000 × 1000
3000 × 3000
10000 × 1000

(b)

Figure 4: Parallel scaling of the lid-driven cavity on bwForCluster NEMO.
(a) Strong scaling test for different system sizes. The dashed lines show ideal
scaling with 1 MLUPS, 3 MLUPS and 15 MLUPS per MPI process for the
naive, optimized and C++ implementations. (b) Weak scaling test showing
the execution time required for a single simulation step for the implementation
using C++ collision kernels.

4 Discussion

Figure 4a shows that the three implementations achieve different execution speeds.
The optimized Python implementation is already 3× faster than the naive imple-

129

Lars Pastewka and Andreas Greiner

mentation, while the C++ collision kernels gain another factor of 5× in speed.
Scaling is good for all implementations and breaks down at a higher number of
MPI processes for the slower implementations. For the 300 × 300 lattice, all three
implementations achieve almost identical execution speed at 160 MPI processes. At
this point, the execution time is entirely dominated by the cost of communication
between the processes.

Parallel scaling breaks down at different points for different lattice sizes. More
insights are obtained from the weak scaling test of Fig. 4b, which shows that there
is a minimal number of lattice points per process, such that computation and not
communication or idling dominates the aggregate cost. This number depends on
the overall size of the lattice and is around 5, 000 for the small 300 × 300 lattice
and 100, 000 for the largest 10, 000 × 10, 000 lattice. Assuming a square region per
process, we end up with a surface to volume relation of about 0.06 to 0.01. Because
the point of breakdown occurs at different surface to volume ratios, we believe that
cost of communication is not its source. There are slight differences in run-time
between the individual processes because the global lattice is not evenly divisible
by the lattice used for domain decomposition, leading to slight variations in the size
of the local domains. These differences in run-time are likely exacerbated at a larger
number of total MPI processes, leading to some idling processes. More investigation
is necessary to clarify this point. We also note that this result is specific for the
D2Q9 model and is likely different for other two-dimensional and three-dimensional
models.

The maximum performance of 7 BLUPS reached by our implementation is com-
parable to recent reports of 5 BLUPS reached on an implementation on multiple
graphics processing units (GPUs) (Xu et al., 2018), albeit for a D3Q19 lattice and a
multi-relaxation time collision operation, but (presumably) single precision floating-
point arithmetics. Xu et al. (Xu et al., 2018) report 5 BLUPS on 12 NVIDIA
K20M GPUs. Assuming linear scaling, we reach 5 BLUPS at 240 MPI processes or
24 NEMO compute nodes. An extensive test of the CPU-based LBM implementa-
tion Musubi (Hasert et al., 2014) using double precision floating-point arithmetics
was recently presented by Qi (Qi, 2017). On Hazel Hen (Haswell E5-2680v3 at
2.50 GHz with a Cray Aries interconnect), Musubi achieves around 10 MLUPS per
core for a D3Q19 lattice as compared to our 15 MLUPS per core for a D2Q9 lattice.

130

Lattice Boltzmann with Python

5 Conclusions

We have demonstrated a parallel implementation of the Lattice Boltzmann Method
(LBM) in Python using the numpy library and the mpi4py bindings to the Mes-
sage Passing Interface (MPI) that yields excellent scaling on bwForCluster NEMO.
We have further shown that implementing the collision operation in the lower level
programming language C++ yields a significant performance gain. It eliminates
the creation of temporary buffers and avoids multiple loops over data structures.
Our C++ optimization appears competitive with recently reported performances of
implementations of the Lattice Boltzmann Method (Xu et al., 2018; Hasert et al.,
2014), but one has to keep in mind that most published benchmarks are obtained
for three-dimensional lattices while we here discuss only the two-dimensional case.
Yet, our implementation can still be optimized further, e. g. by fusing streaming
and collision steps, looping over data structures in a manner that maintains cache-
coherency (Pohl et al., 2003) or by hiding communication behind computation.
Future work will focus on extending the present code to three-dimensions and im-
plementing further optimizations.

Implementing high-performance codes in Python has the advantage of fast de-
velopment times and compact codes that can be used to test implementation and
parallelization strategies before optimizing portions of the code in a lower-level lan-
guage. Our naive parallel LBM implementation has 160 lines of Python code, 34 of
which are a parallel implementation of numpy.save using MPI I/O. The simplicity
of this code makes Python and MPI also suitable for teaching parallel computing.
We note that more complex parallel simulation codes implemented largely in Py-
thon, for example the GPAW code (Mortensen et al., 2005; Enkovaara et al., 2010)
and associated libraries (Larsen et al., 2017) for electronic structure calculations,
have emerged over the past years. Python is maturing towards a language that al-
lows rapid development of parallel simulation codes for high-performance computing
systems. Libraries such as pybind11 and eigen make extending Python with native
numerical code straightforward.

Our full parallel implementation of the Lattice Boltzmann Method can be found
online7.

7https://github.com/IMTEK-Simulation/LBWithPython

131

https://github.com/IMTEK-Simulation/LBWithPython

Lars Pastewka and Andreas Greiner

Acknowledgements

The authors acknowledge the support by the state of Baden-Württemberg through
bwHPC and the German Research Foundation (DFG) through grant no INST
39/963-1 FUGG as well as through the Research Unit FOR 2383 ProMiSe under
Grant No. GR 2622/6-1.

Corresponding Author

Lars Pastewka: lars.pastewka@imtek.uni-freiburg.de

Department of Microsystems Engineering, University of Freiburg,
Georges-Köhler-Allee 103, 79110 Freiburg, Germany

ORCID

Lars Pastewka https://orcid.org/0000-0001-8351-7336

License cba4.0 https://creativecommons.org/licenses/by-sa/4.0

References
Aharonov, E. and D. H. Rothman (1993). »Non-Newtonian flow (through porous media):

A lattice-Boltzmann method«. In: Geophys. Res. Lett. 20.8, pp. 679–682.
Bhatnagar, P. L., E. P. Gross and M. Krook (1954). »A model for collisionless processes

in gases I: small amplitude processes in charged and neutral one-component systmes«.
In: Phys. Rev. 94, pp. 511–525.

Boltzmann, L. (1896). Vorlesungen über Gastheorie. Barth.
Cercignani, C. (1988). The Boltzmann Equation and its Applications. Springer.
Enkovaara, J. et al. (2010). »Electronic structure calculations with GPAW: A real-space

implementation of the projector augmented-wave method«. In: J. Phys.: Condens. Mat-
ter 22.25, p. 253202.

Geier, M., A. Greiner and J. G. Korvink (2006). »Cascaded digital Lattice Boltzmann
automata for high Reynolds number flow«. In: Phys. Rev. E 73, p. 066705.

Geier, M., M. Schönherr, A. Pasquali and M. Krafczyk (2015). »The cumulant lattice
Boltzmann equation in three dimensions: Theory and validation«. In: Comput. Math.
Appl. 70.4, pp. 507–547.

Grunau, D., S. Chen and K. Eggert (1993). »A lattice Boltzmann model for multiphase
fluid flows«. In: Physics of Fluids A: Fluid Dynamics 5.10, pp. 2557–2562.

132

mailto:lars.pastewka@imtek.uni-freiburg.de
https://orcid.org/0000-0001-8351-7336
https://creativecommons.org/licenses/by-sa/4.0

Lattice Boltzmann with Python

Gunstensen, A. K. and D. H. Rothman (1993). »Lattice-Boltzmann studies of immiscible
two-phase flow through porous media«. In: J. Geophys. Res. 98.B4, pp. 6431–6441.

Gunstensen, A. K., D. H. Rothman, S. Zaleski and G. Zanetti (1991). »Lattice Boltzmann
model of immiscible fluids«. In: Phys. Rev. A 43.8, pp. 4320–4327.

Hasert, M. et al. (2014). »Complex fluid simulations with the parallel tree-based Lattice
Boltzmann solver Musubi«. In: J. Comput. Sci. 5, pp. 784–794.

Huang, K. (1987). Statistical Mechanics. Wiley, New York.
Larsen, A. H. et al. (2017). »The Atomic Simulation Environment-A Python library for

working with atoms«. In: J. Phys.: Condens. Matter 29, p. 273002.
McNamara, G. R. and G. Zanetti (1988). »Use of the Boltzmann equation to simulate

lattice gas automata«. In: Phys. Rev. Lett. 56, pp. 2332–2335.
Mohamad, A. A. (2011). Lattice Boltzmann Method. Springer.
Mortensen, J. J., L. B. Hansen and K. W. Jacobsen (2005). »Real-space grid implement-

ation of the projector augmented wave method«. In: Phys. Rev. B 71.3, p. 035109.
Obrecht, C., F. Kuznik, B. Tourancheau and J.-J. Roux (2011). »A new approach to

the lattice Boltzmann method for graphics processing units«. In: Comput. Math. Appl.
61.12, pp. 3628–3638.

Pohl, T., M. Kowarschik, J. Wilke, K. Iglberger and U. Rüde (2003). »Optimization and
profiling of the cache performance of parallel Lattice Boltzmann codes«. In: Parallel
Process. Lett. 13.04, pp. 549–560.

Qi, J. (2017). »Efficient Lattice Boltzmann simulations on large scale high performance
computing systems«. PhD thesis. Rheinisch-Westfälische Technische Hochschule Aa-
chen.

Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clar-
endon Press, Oxford.

Wolf-Gladrow, D. A. (2000). Lattice Gas Cellular Automata and Lattice Boltzmann Models
Mechanics. Springer, Berlin.

Xu, L., A. Song and W. Zhang (2018). »Scalable parallel algorithm of multiple-relaxation-
time Lattice Boltzmann Method with large eddy simulation on multi-GPUs«. In: Sci.
Program. 2018, p. 1298313.

Zhang, J. (2011). »Lattice Boltzmann method for microfluidics: models and applications«.
In: Microfluid. Nanofluidics 10.1, pp. 1–28.

133

	Introduction
	The Boltzmann transport equation
	The Lattice Boltzmann Method in two dimensions
	Implementation in Python and numpy
	Parallelization strategy

	Results for the lid-driven cavity
	Discussion
	Conclusions

