
Calibrating Depth Sensors with a Genetic Algorithm

Jonas Haeling1,2, Marc Necker1, Andreas Schilling2

1Daimler AG R&D, Sindelfingen, Germany;
2University of Tübingen, Tübingen, Germany;

ABSTRACT
In this report, we deal with the optimization of the transformation estimate between the coordinate systems

of depth sensors, i.e. sensors that produce 3D measurements. For that, we present a novel method using a genetic
algorithm to refine the six degrees of freedom (6 DoF) transformation via three rotational and three translational
offsets. First, we demonstrate the necessity for an accurate depth sensor calibration using a depth error model
of stereo cameras. The fusion of stereo disparity assumes a Gaussian disparity error distribution, which we
examine with different stereo matching algorithms on the widely-used KITTI visual odometry dataset. Our
analysis shows that the existing calibration is not adequate for accurate disparity fusion. As a consequence, we
employ our genetic algorithm on this particular dataset, which results in a greatly improved calibration between
the mounted stereo camera and the Lidar. Thus, stereo disparity estimates show improved results in quantitative
evaluations.

1. INTRODUCTION
An accurate calibration between depth sensors is important to ensure that data between sensors can be

merged or evaluated jointly. The evaluation of a cheap sensor is an additional important task, e.g. comparing
a stereo camera against an accurate but prohibitively expensive sensor like a Lidar or a structured light setup.
Even though our proposed technique is general enough to handle any comparisons between depth maps, we are
particularly interested in Lidar-to-stereo calibration in this report. This calibration is needed in vehicle setups
like the popular KITTI visual odometry dataset [1] in which the Lidar delivers accurate but sparse measurements.
The stereo camera produces dense depth maps with additional image intensity or color information. The stereo
depth error increases quadratically with the depth itself (see Subsection 2.1), depending on the intrinsics of the
stereo camera and the particular stereo algorithm. To correctly evaluate the achieved accuracy of the dense
stereo matching against an accurate Lidar, an exact transformation estimate, i.e. a calibration, between the two
coordinate systems is required, which is the main focus of this report.

Genetic algorithms are optimization techniques, which are bio-inspired by evolution. The term genetic
algorithm has a diffuse meaning [2], but the general idea is to use an iterative process with evolutionary elements
like natural selection, crossover and mutation to find solutions to hard problems, e.g. the traveling salesman
problem. The solution may not be optimal and might only be a local optimum in a niche, but a direct solution
for some problems is not always feasible.

A generation of individuals constitutes the current population in a genetic algorithm. An individual could
simply be an encoded solution to the problem, e.g. a set of real numbers or indices. The genetic algorithm
iteratively produces new generations using the immediate previous one to optimize solutions. To mimic natural
selection, one has to model the fitness of an individual, which corresponds to a measure of how good the solution
is. The fittest individuals have a higher chance to reproduce. For the reproduction, there is a crossover phase in
which new offspring for the next generation are created by the recombination of genes. The parents are sampled
from the population with weights according to the fitness. Random mutations occur during reproduction, which
adds variance to the gene pool, thus potentially better or worse fitness values. That concludes one iteration. This
process leads to an optimization of the species to the specific environment over time, i.e. an optimized solution to
the problem.

Our genetic algorithm optimizes the six degrees of freedom between the coordinate systems of both depth
sensors. We assume an existing approximate estimate for the transformation and refine it with a rotational and
translational offset. An individual of a population has six offsets, which can be altered. The genetic algorithm
iteratively recombines and mutates new offspring, which is then evaluated over several frames to compute an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/196531431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


individual fitness using the histogram of the resulting error distribution. We demonstrate our algorithm on a real
dataset and show greatly improved results concerning the disparity error distributions. This new “recalibration”
may also improve quantitative results for stereo reconstruction approaches, especially those that rely on disparity
fusions.

A similar algorithm to our proposed solution is the widely researched iterative closest point (ICP) algorithm to
register two 3D point clouds iteratively [3]. Here, we match the points in image space like some ICP variants over
multiple frames and explore and refine the existing solution via a genetic algorithm. Even though we recalibrate a
Lidar to a stereo camera, it would still be possible to calibrate two separate stereo cameras. This will result in
higher run times due to the increased point cloud density.

Section 2 describes the motivation behind calibrating depth sensors using a stereo camera depth error model,
including an examination of the disparity error on a real dataset. Section 3 explains the basic sequence of our
genetic algorithm and the GPU implementation. We test our algorithm and show the corresponding results in
Section 4. Finally, we give a summary and an outlook for further research in Section 5.

2. MOTIVATION
2.1 Stereo Disparity Fusion

Kalman filters have been widely used in stereo vision for various aspects including the fusion of disparities
between frames [4–9]. For most Kalman filters used in the stereo vision context, one key assumption is Gaussian
stereo matching noise, i.e. Gaussian disparity errors. If this assumption is not given, e.g. the distribution is
actually skewed or multimodal, then formally correct fusion algorithms might help measurements to be more
precise, but the accuracy of the measurement does not improve because of an inherent bias. Popular stereo
matching benchmarks like the “Middlebury Stereo Evaluation” [10] or “Stereo Evaluation 2015” from the KITTI
Vision Benchmark Suite [11] do not report the error distribution directly, unfortunately. Assuming that a certain
stereo matching algorithm exhibits Gaussian noise as disparity errors, an inexact transformation to ground truth
depth sensor measurements would yield an artificial error overestimation in a quantitative error evaluation. Thus,
refining this calibration would improve quantitative results without changing the actual stereo depth estimation
process.

Geyer et al. [12] proposed to model the depth error ez as follows:

ez =
Bf

d
− Bf

d+ ed
=

z2ed
Bf + zed

(1)

B is the stereo baseline, f the focal length, d the disparity and ed the disparity or matching error. Thus, to
decrease the depth error ez we have to either increase B or f , decrease ed or simply move closer to the object for a
smaller z. Gallup [13] varied the baseline and focal length by choosing the input cameras for their plane sweep
algorithm or downsampling the images to achieve a desired fixed depth accuracy. Geyer et al. [12] increased the
stereo baseline and fused measurements from a moving airborne vehicle observing the ground using overlapping
images of a mono-camera to reduce the error variance of range measurements.

Alternatively, we can fuse 3D points temporally between frames with a static stereo baseline, which enables us
to decrease the stereo matching error ed. Reformulating Equation 1, we can approximate the needed disparity
error ed to achieve a certain desired and fixed depth error ez:

ed =
ezBf

z(z − ez)
(2)

ez is not distributed as a Gaussian because the disparities are transformed non-linearly from image space to
3D camera space (cf. Sibley et al. [14]). Therefore we can only approximately handle ez as Gaussian.

Assuming Gaussian noise for the disparity error (with ed being the standard deviation), the fusion of two
uncorrelated observations of the same depth will result in a lower variance of the error. If the error is perfectly
correlated, e.g. when running a deterministic stereo matching with unchanged parameters again on the same
exact images, then the fusion will not decrease the error.



Table 1: Examples for the needed uncorrelated observations (n) at a certain fixed depth to achieve a desired
accuracy ez′ = 0.10 m with ed = 0.5 px, B = 0.54 m and f = 700 px.

Depth n Fused ez Unfused ez

8.7 m 1 0.10 m 0.10 m
10 m 1.7 0.10 m 0.13 m
20 m 27.7 0.10 m 0.53 m
30 m 140.8 0.10 m 1.19 m
40 m 445.7 0.10 m 2.12 m
50 m 1089.2 0.10 m 3.32 m

Geyer et al. [12] found in simulated experiments that the error of stereo measurements was correlated up to
60%, which suggests that we underestimate the error with disparity fusion in practice. For the time-being, we
will not address this issue. Assuming uncorrelated errors in the stereo matching, the fused disparity estimate
ed′ is computed from the normalized product of two 1D Gaussian probability density functions with standard
deviations ed1

and ed2
(see Barfoot [15]):

1

e2d′
=

1

e2d1

+
1

e2d2

(3)

This is essentially the summation of both information terms to a new information term. To generalize, the
fusion of n uncorrelated observations with the same disparity variance results in a new error ed′ , which allows
us to compute the needed number of fusions n for the disparity error with a fixed depth error:

1

e2d′
= n · 1

e2d

⇒ n =
e2d
e2d′

=
e2d(

ez′Bf
z(z−ez′ )

)2 =
e2dz

4 + e2de
2
z′z2 − 2e2dez′z3

e2z′B2f2
= O(z4) (4)

We can see that the number of frames n is bound by O(z4), which means to achieve the desired and fixed
depth error ez′ from measurements of a particular depth, we need quartically more uncorrelated measurements of
the same depth (assuming ed′ < ed).

One concrete fusion example could be a house facade seen from far away by a sidewards looking camera
in a vehicle, so that we always measure the same depth. Table 1 gives examples for the needed independent
observations to get a desired accuracy. The intrinsic parameters for this were chosen similar to the actual
parameters of the KITTI visual odometry dataset [1]. Without fusion, the desired accuracy is achieved by
points below a distance of ca. 8.7 m. We also compare the fused vs. unfused depth error in ez, which is only an
approximation since the resulting distribution is skewed for far depth values (cf. Sibley et al. [7]).

To summarize, temporal disparity fusion is able to improve reconstruction results if the Gaussian noise
assumption for disparity errors is valid.

2.2 Stereo Matching Error as Gaussian Noise Assumption in Literature
In the literature, Sibley et al. [14] used the assumption that the disparity error is distributed as a Gaussian and

provided evidence using corner features and a synthetic checkerboard scene. Similarly, Matthies and Grandjean [16]
found the disparity distribution to be Gaussian-like when computing the disparity by minimizing the sum of
squared difference (SSD) in a search window. Sebe and Lew [17] found that in their case that a better fit is a
Cauchy function when using the sum of absolute differences or SSD with real world ground truth data. Wedel and
Cremers [8] on the other hand propose to approximate the disparity distribution with a Laplacian distribution.



Nevertheless, this noise attribute is highly dependent on the actual stereo matching algorithm itself and the
transformation to the ground truth, i.e. the calibration between the depth sensors. On the one hand, the fusion
may still be unbiased when the true distribution is unimodal and symmetrical, like the Cauchy or Laplacian
distribution. On the other hand, the variance estimate will be off and hence the weighting of the fusion, which
may introduce errors or limit the accuracy increase. In practice, the true variance is hard or impossible to estimate
anyway due to the aforementioned unknown error correlations.

2.3 Verification of Distribution
To verify whether the stereo matching error distribution is indeed Gaussian, we test how the disparity error

of actual stereo matching results is distributed. We tested the disparity distribution of the publicly available
and widely used stereo matcher ELAS (“Efficient Large-scale Stereo Matching” [18]) on the KITTI odometry
training dataset. This dataset is widely used to evaluate 3D reconstructions from multi-view stereo quantitatively
(see [19–26]) as it provides synchronized laser-scanned data as ground-truth and ground-truth poses. It is a de
facto benchmark for stereo scene reconstructions from a moving vehicle. For disparity error distributions, we
compute the disparity on the rectified color camera images via stereo matching, then project the 3D laser points
onto the rectified left color camera image and compare the laser projections to the stereo matching disparities.
We only evaluate pixels for which both stereo and laser measurements are present. We do this for every frame
and every sequence except sequence 03, as there is no raw calibration data available and the measurements were
made on a different day than all the others. Note that we can omit the ground-truth poses for this evaluation
as the transformation between stereo camera and Lidar should remain constant. The error is computed via
dStereo − dLaser and in Figure 1 all disparity error histograms of ELAS are plotted. The sequences 00 to 02 were
recorded on a different day than 04 to 10, which is why the calibration also differs, as well as the resulting shape
of the distribution. For sequences 04 to 10 we clearly see a local maximum at ca. +0.6 px and for sequences 00 to
02 closer to ca. +1.4 px. However, testing ELAS on the KITTI 2015 stereo dataset [11], we see very different
results, as shown in Figure 2. Unimodal distributions with only a small bias are visible. Sources of this bias
may be camera calibration errors, biased stereo matching, relative small ground truth transformation errors or
Lidar uncertainty.

Figure 3 shows one sample frame in sequence 08 and 01, consisting of RGB image, depth image and disparity
comparisons. The disparity error images were enhanced to make the visual comparison easier. Note that the
vertical field of view of the velodyne laser is inherently tilted down, resulting in a cutoff of higher stereo matching

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

00
01
02
04
05
06
07
08
09
10

Figure 1: The disparity error distribution of ELAS com-
pared to velodyne laser measurements on all KITTI
odometry training datasets (except 03) with the origi-
nal velodyne transformation. The different line styles
indicate different calibrations.

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

ELAS

SGBM

MeshStereo

Ideal Gaussian

Figure 2: Disparity error distribution of ELAS, SGBM
and MeshStereo of 200 ground truth frames of the multi-
view sequences of the SceneFlow 2015 KITTI training
dataset [11]. A normal distribution with µ = 0 and
σ = 0.65 is drawn for comparison.



(a) Left color camera RGB image.

(b) Left color camera ELAS depth image.

(c) Disparity comparison of stereo to Lidar measurements with original calibration.

(d) Disparity comparison after applying our new calibration.

Figure 3: Comparison of disparities between ELAS and the ground-truth on frame 08-430 (left) and frame 01-1100
(right). Red corresponds to positive disparity errors and blue to negative ones. Green represents good matches
(< 0.5 px) between the laser and stereo measurement.

points. We see a strong disparity bias, represented by red pixels on the ground, denoting too high disparity
estimates of the stereo.

We test OpenCV’s StereoSGBM algorithm (SGBM) [27] as well, which is an altered implementation of
semi-global matching (SGM) [28]. Additionally, we employ the approach “MeshStereo” by Zhang et al. [29]. We
use three different stereo algorithm to show that they produce similar distributions, i.e. it is not the fault of a
single stereo matcher. After testing ELAS on synthetic images and the KITTI 2015 stereo dataset, we did not
expect such a bias with the ground surface on the odometry dataset. We suspected that the velodyne to camera
transformation was not sufficiently calibrated, which was confirmed in early tests with small transformation
changes (also cf. Guindet et al. [30]). Some of those changes made the bimodal distribution more unimodal and
moved the center of mass of the error probability distribution towards zero.

Fusing measurements with the original bimodal error distributions would still increase the precision, but not
the accuracy. We would still be off the mark due to the bias of the distributions, i.e. not being centered around
zero error. A better calibration remedies this problem, so a recalibration of the Lidar to camera transformation is
required for improved quantitative results.



Heavy mutation

Rank population

Compute fitness

Recombination

n - k (Rest)
Repeat

New generation

k (Elites)

Mutation

Figure 4: Schematic sequence of the genetic algorithm.

3. GENETIC ALGORITHM
Here, we are interested only in the refinement of a depth sensor to depth sensor transformation, i.e. we already

have a rough estimate and want to hone in on an improved solution via evolution. We do this by adding three
translational offsets and three Euler angles as rotational offsets to the existing calibration.

To find suitable offsets, we employ a standard genetic algorithm, which explores and optimizes the 6 DoF
solution space. Per generation, we have a population of n = 100 individuals. An overview of the general sequence
of the algorithm is shown in Figure 4. We heavily mutate the first generation before the first iteration. We
compute the fitness of the population and rank the individuals according to the fitness score. Here, we actually
use a fitness cost instead of score, so we minimize the cost instead of maximizing the score. For the fitness cost,
we calculate the ratio of pixels with a resulting absolute disparity error of below 0.5 px to the total amount of
valid pixels. This corresponds to the green pixels seen in Figure 3 and empirically resulted in satisfactory results
fast. It is also one of the metrics used in the Middlebury stereo evaluation [10]. We also add one additional
term to the fitness cost, which is almost identical but uses a threshold of 0.2 px to hone in on excellent stereo
matches. These fitness function terms reward unbiased error distributions with low variance. We also strictly
punish outlier distributions, which do not have enough projected Lidar points. After the ranking, we use elitism
with k = 3 to transfer the three best individuals to the next generation directly. For the rest, we use rank selection
to select parents and produce the offspring by randomly choosing the parameter value from one parent, which
corresponds to a crossover rate of 1. The offspring then finally mutates, in which a big and a tiny mutation can
occur. A big mutation consists of choosing a random value from an interval which spans the given search space
(”wiggle room”), e.g. 1◦ for the angles and 5 cm for the translational components. A tiny mutation is a very
small variation around the current value, given a downscaled random value from the aforementioned interval.
These mutations ensure that the solution space is explored but also that local minima are found faster. We use
a mutation rate of 0.1 for both kinds of mutation. Then we begin computing the fitness again, which marks a
completed generation iteration.

3.1 GPU Implementation of the Fitness Evaluation
The fitness evaluation of a whole generation is the bottleneck of the evolutionary algorithm. All Lidar points

over multiple frames have to be projected with the new transformation and compared to the corresponding depth
image for each individual. On a single-core CPU implementation, this has to be done sequentially: For each
individual, for each frame and for each velodyne point in the frame. Almost all of the input data used in the



evolution remains static, except the new calibration T cam
velo . For these reasons, a simple GPU implementation of

the fitness evaluation was developed with CUDA [31].
Almost all the input data remain static, so we only have to upload all precomputed depth images, Lidar points

and the projection matrix once to the GPU. Since the Lidar points have an irregular size each frame, we take
the maximum Lidar point count of one frame as the array length. We pad the rest with points that will not be
projected onto the camera. The GPU kernel takes as input an array of n calibrations and outputs n average
fitnesses over all frames. We launch a kernel for each individual and each frame, which means there is potential to
break down the work load even further by partitioning the Lidar point cloud per frame. We allocate n floats for
the fitness of each individual beforehand. For that, we employ the CUDA function atomicAdd() on the specific
individual fitness index to add the computed fitness per frame, which prevents race conditions during the write
operation. After the kernels have finished, we compute the individual mean of the fitness values. Then these
results are downloaded to the CPU, which logs the results and starts the next generation iteration.

4. RESULTS ON KITTI VISUAL ODOMETRY DATASET
4.1 Main Results

We are looking for a new calibration between the laser and the cameras. This calibration does not need to
be optimal, but should show improved error distribution results. The transformation chain for transforming a
homogeneous 4D velodyne point X = [x, y, z, 1]T into a camera image point p = (u, v, 1)T in the rectified left
color camera coordinate system (camera 2) is the following (see Geiger et al. [32]):

p = P
(2)
rectR

(0)
rectT

cam
velo X (5)

with
T cam
velo =

(
Rcam

velo tcamvelo

0 1

)
(6)

P
(2)
rect is the 3x4 projection matrix for the left rectified color camera (“camera 2”) and R

(0)
rect the rotation

from the left gray camera (“camera 0”) to the rectified camera coordinate system of all rectified cameras. Note
that P

(2)
rect incorporates a translational component from camera 0. T cam

velo denotes the 4x4 transformation from
the velodyne laser coordinate system to camera 0, which incorporates a 3x3 rotation matrix Rcam

velo and a 3x1
translation vector tcamvelo . The intrinsic stereo camera calibration was done separately from the velodyne to camera
calibration (see [1]), which is why we only try to optimize T cam

velo . Since we assume that the original calibration
is already close to the truth, we try to find an offset to a new calibration T ′cam

velo consisting of R′cam
velo and t′camvelo .

Thus, we are looking for three Euler angle offsets and three translation offsets to improve the calibration. The
Euler angles are global rotations around X, Y and Z in this order (pitch-yaw-roll), which corresponds to the
following multiplication sequence of local 3D rotation matrices:

RXRY RZ = R

One observation is that the sequences 00 to 02 were recorded on the same day and the original calibration did
not change. Similarly, sequences 04 to 10 were also recorded on the same day. This means that we only have to
recalibrate twice, finding one calibration for 00-02 and one for 04-10. The raw calibration data for the sequence
03 is not available.

As input to our genetic algorithm, we use every 50th KITTI frame, corresponding to a frame every five seconds
to offer variation in the scenes and still maintain acceptable run times. We employed a wiggle room of ±2.5◦ and
± 7.5 cm, which delivered good results quickly.

The evolution process for sequence 00 is shown in Figure 5 and for sequence 08 in Figure 6. The horizontal axis
depicts the generations on a logarithmic scale. One can see that after ca. 100 generations the fitness improvements
are largely marginal. Improvements still occur, but they get less probable and significant. The resulting offsets
after 5000 generations represent our final recalibration for the sequences 00-02 and 04-10. One observation is that
the computed calibration offset for the translation is up multiple centimeters, which means that either we may be
overfitting and evolving to an unlikely offset or that the original calibration is less accurate than expected.



100 101 102 103
1.2

1.4

1.6

Generation

Fi
tn

es
s

co
st

Best

Avg.

(a) Fitness cost of best individual and average value of the generation.

100 101 102 103
−0.1

−0.05
0

0.05
0.1

Generation

O
ffs

et
in

m

X

Y

Z

(b) Translational offset of best individual.

100 101 102 103
−0.01
−0.005

0
0.005
0.01

Generation

O
ffs

et
in

ra
d

Rx

Ry

Rz

(c) Rotational offset of best individual.
Figure 5: Evolution results over 5000 generations for sequence 00. Top to bottom: fitness scores, translational
and rotational offset.

100 101 102 103
1.2

1.4

1.6

Generation

Fi
tn

es
s

co
st

Best

Avg.

(a) Fitness cost of best individual and average value of the generation.

100 101 102 103
−0.1

−0.05
0

0.05
0.1

Generation

O
ffs

et
in

m

X

Y

Z

(b) Translational offset of best individual.

100 101 102 103
−0.01
−0.005

0
0.005
0.01

Generation

O
ffs

et
in

ra
d

Rx

Ry

Rz

(c) Rotational offset of best individual.
Figure 6: Evolution results over 5000 generations for sequence 08. Top to bottom: fitness scores, translational
and rotational offset. The average fitness values appear fuzzier in the end due the logarithmic scale.



Table 2: Final calibration offset parameters for the KITTI VO dataset.
Calibration X Y Z Rx Ry Rz

00 - 02 -0.0150154 -0.030895 0.0644574 0.00277647 -0.00124684 -0.00100826
04 - 10 -0.00486741 0.00384346 0.0912176 0.00283365 -0.00150622 -0.00124315

Table 3: Average run time per generation of both algorithm implementations on sequence 08.
CPU GPU GPU speedup

48.677 s 0.092 s ca. 529 x

In Figure 7, the two final calibration offsets for sequences 00-02 and 04-10 are used to compute the new disparity
error distribution for ELAS, SGBM and MeshStereo. The new resulting distributions are clearly more unimodal,
sharper and show less bias than the original distributions. Again, we did not alter the stereo measurements,
merely the relative transformation between the ground truth and the stereo for the evaluation. Although we
only use ELAS for the evolution of these offsets, we still improve the results of SGBM and MeshStereo. This
is evidence that we are indeed not overfitting, but that the offsets are plausible since they improve the error
distributions of other stereo algorithms in a very similar way. In Table 2 we showcase our final optimized offsets
for reference.

Figure 3 shows two KITTI VO frames without and with the new calibration. The original calibration shows
a clear bias on the ground surface, while more vertical structures like the hedge and vehicles show less. Our
recalibration result removes this bias and keeps the rest of the scene intact or improves it. The aforementioned
ground bias is largely eliminated, which is also apparent from the new distributions shown in Figure 7.

Table 3 compares the CPU single core implementation without SIMD instructions against the implementation
with our CUDA fitness evaluation with a frame skip of 50. We use an Intel i7-6700T 2.8 GHz CPU with a nVidia
GTX 1080 GPU. Our GPU implementation accomplishes a speedup of 529 x with ca. 11 Hz, which makes it
feasible for online recalibration using a fixed generation limit.

4.2 Comparison of Variations and Alternative Approaches
For our final fitness cost function we chose to punish bad pixels instead of minimizing the mean absolute error

(MAE) or the root mean square error (RMSE). To compare these variants, we computed the mean MAE and
mean RMSE over all considered frames of sequence 00 and tested it on the whole sequence. In Figure 8 we show
the disparity error distribution of the calibration trained with our bad pixel approach, an MAE approach and
an an RMSE approach. The bad pixels approach delivers a less biased error distribution with less variance. Even
with perfect calibration, the error distribution would still possess non-empty tails due to stereo matching outliers,
which would dramatically influence the RMSE value and also MAE values. Our function represents a robust
alternative.

Additionally, we tested training on every 25th frame or 100th frame instead of every 50th frame, which is also
depicted in Figure 8. This did not significantly improve the error distribution, which means that skipping even
more frames than 50 might speed up the calibration process even further without introducing significant errors.

Furthermore, the optimization was evaluated with a standard downhill simplex method and a standard
gradient descent method. We computed the cost of a parameter set with our GPU implementation of the fitness
cost function. The downhill simplex version in our implementation was not suitable, because it quickly got
stuck in local minima. The gradient descent approach behaves similarly, but depends strongly on the choice
of the step size. A gradual decrease of the step size for example proved to produce comparable results to our
evolution algorithm. Still, our evolution method was faster in delivering good results due to the sheer amout
of parallelization. Also, our fitness cost function compares the ratio of bad pixels over the chosen frames. This
means that it is a non-differentiable function due to the discrete pixel steps, which might prove to be problematic
for the convergence of gradient descent methods.



-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

00
01
02
04
05
06
07
08
09
10

(a) ELAS Original

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

(b) ELAS Recalibration

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

00
01
02
04
05
06
07
08
09
10

(c) SGBM Original

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

(d) SGBM Recalibration

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

00
01
02
04
05
06
07
08
09
10

(e) MeshStereo Original

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Disparity error in px

Pr
ob

ab
ili

ty
de

ns
ity

(f) MeshStereo Recalibration
Figure 7: Left column: Original disparity error distributions of different stereo matching algorithms over the
KITTI visual odometry training sequences. Right column: Applying the resulting offsets of the genetic algorithm.



-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Disparity error in px

Pr
ob

ab
ili

ty

50 frames
25 frames
100 frames
MAE
RMSE

Figure 8: Comparison of the disparity error distributions on sequence 00 of a calibration trained in the same
sequence with different frame skips (50, 25, 100) and other fitness cost functions (mean MAE, mean RMSE) than
ours. Note that the frame skip graphs are overlapping.

5. CONCLUSION AND FUTURE WORK
We presented a novel recalibration method for existing depth sensors calibrations using a genetic algorithm.

We showed the potential of disparity accuracy improvements with fusion if the disparity error distribution is
indeed Gaussian. To demonstrate the effectiveness of our algorithm, we showed that the Lidar to stereo camera
transformation in the KITTI visual odometry dataset is not sufficiently calibrated, i.e. the disparity error
distribution is not Gaussian. The resulting new calibration shows significant improvements in the evaluation,
which was even true for other stereo matching algorithms than the input.

For future work, it might be interesting to see if an even faster implementation or better fitness function would
make stereo to stereo calibration feasible for the automatic online calibration of depth sensors even during transit.
It might even be possible to refine stereo camera pose movements between frames, i.e. as a pose movement
optimizer in a visual odometry framework. Furthermore, a comparison to an analogical ICP variant may yield
more insight on the true performance of the proposed method.

REFERENCES
[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous Driving? The KITTI Vision Benchmark

Suite,” in Conference on Computer Vision and Pattern Recognition (CVPR), (2012).
[2] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing 4(2), 65–85 (1994).
[3] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor Fusion IV: Control Paradigms

and Data Structures, 1611, 586–607, International Society for Optics and Photonics (1992).
[4] L. Matthies, T. Kanade, and R. Szeliski, “Kalman Filter-based Algorithms for Estimating Depth from Image

Sequences,” International Journal of Computer Vision 3(3), 209–238 (1989).
[5] S. Lee and Y. Kay, “A Kalman Filter Approach for Accurate 3-D Motion Estimation from a Sequence of

Stereo Images,” in 10th International Conference on Pattern Recognition, 1990. Proceedings. , 1, 104–108,
IEEE (1990).



[6] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6D-Vision: Fusion of Stereo and Motion for Robust
Environment Perception,” in Joint Pattern Recognition Symposium, 216–223, Springer (2005).

[7] G. Sibley, G. S. Sukhatme, and L. H. Matthies, “The Iterated Sigma Point Kalman Filter with Applications
to Long Range Stereo.,” in Robotics: Science and Systems, 8(1), 235–244 (2006).

[8] A. Wedel and D. Cremers, Stereo Scene Flow for 3D Motion Analysis , Springer Science & Business Media
(2011).

[9] S. Morales and R. Klette, “Kalman-filter Based Spatio-temporal Disparity Integration,” Pattern Recognition
Letters 34(8), 873–883 (2013).

[10] D. Scharstein and R. Szeliski, “Middlebury Stereo Vision Page,” Online at http://vision.middlebury.edu/
stereo/eval3/ Version 3 (2002).

[11] M. Menze and A. Geiger, “Object Scene Flow for Autonomous Vehicles,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 3061–3070 (2015).

[12] C. Geyer, T. Templeton, M. Meingast, and S. S. Sastry, “The Recursive Multi-Frame Planar Parallax
Algorithm,” in Third International Symposium on 3D Data Processing, Visualization, and Transmission,
17–24, IEEE (2006).

[13] D. Gallup, Efficient 3D Reconstruction of Large-scale Urban Environments from Street-level Video, PhD
thesis, The University of North Carolina at Chapel Hill (2011).

[14] G. Sibley, L. Matthies, and G. Sukhatme, “Bias Reduction and Filter Convergence for Long Range Stereo,”
Robotics Research , 285–294 (2007).

[15] T. D. Barfoot, State Estimation for Robotics, Cambridge University Press (2017).
[16] L. Matthies and P. Grandjean, “Stochastic Performance, Modeling and Evaluation of Obstacle Detectability

with Imaging Range Sensors,” IEEE Transactions on Robotics and Automation 10(6), 783–792 (1994).
[17] N. Sebe and M. S. Lew, “Maximum Likelihood Stereo Matching,” in Proceedings of the 15th International

Conference on Pattern Recognition, 1, 900–903, IEEE (2000).
[18] A. Geiger, M. Roser, and R. Urtasun, “Efficient Large-Scale Stereo Matching,” in Asian Conference on

Computer Vision, 25–38, Springer (2010).
[19] A. Geiger, J. Ziegler, and C. Stiller, “StereoScan: Dense 3D Reconstruction in Real-time,” in Intelligent

Vehicles Symposium (IV), 2011 IEEE, 963–968, IEEE (2011).
[20] S. Sengupta, E. Greveson, A. Shahrokni, and P. H. Torr, “Urban 3D Semantic Modelling Using Stereo

Vision,” in 2013 IEEE International Conference on Robotics and Automation (ICRA), 580–585, IEEE (2013).
[21] P. F. Alcantarilla, C. Beall, and F. Dellaert, “Large-scale Dense 3D Reconstruction From Stereo Imagery,”

Georgia Institute of Technology (2013).
[22] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Reconstructing Street-Scenes in Real-Time from a Driving

car,” in Proceedings of the 2015 International Conference on 3D Vision, 607–614, IEEE (2015).
[23] S. Pillai, S. Ramalingam, and J. J. Leonard, “High-Performance and Tunable Stereo Reconstruction,” in

2016 IEEE International Conference on Robotics and Automation (ICRA), 3188–3195, IEEE (2016).
[24] M. Tanner, P. Pinies, L. M. Paz, and P. Newman, “DENSER Cities: A System for Dense Efficient

Reconstructions of Cities,” arXiv preprint arXiv:1604.03734 (2016).
[25] C. Cigla, R. Brockers, and L. Matthies, “Gaussian Mixture Models for Temporal Depth Fusion,” in 2017

IEEE Winter Conference on Applications of Computer Vision (WACV), 889–897, IEEE (2017).
[26] I. A. Bârsan, P. Liu, M. Pollefeys, and A. Geiger, “Robust Dense Mapping for Large-Scale Dynamic

Environments,” (2018). Submitted to ICRA 2018.
[27] OpenCV, “Open Source Computer Vision Library.” https://github.com/opencv/opencv (2018).
[28] H. Hirschmüller, “Stereo Processing by Semiglobal Matching and Mutual Information,” IEEE Transactions

on Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008).
[29] C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, and Y. Rui, “MeshStereo: A Global Stereo Model With Mesh

Alignment Regularization for View Interpolation,” in The IEEE International Conference on Computer
Vision (ICCV), 2057–2065 (12 2015).

[30] C. Guindel, J. Beltrán, D. Martín, and F. García, “Automatic Extrinsic Calibration for Lidar-Stereo Vehicle
Sensor Setups,” arXiv preprint arXiv:1705.04085 (2017).

http://vision.middlebury.edu/stereo/eval3/
http://vision.middlebury.edu/stereo/eval3/
https://github.com/opencv/opencv


[31] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Programming with CUDA,” in ACM
SIGGRAPH 2008 classes, 16, ACM (2008).

[32] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics: The KITTI Dataset,” The
International Journal of Robotics Research 32(11), 1231–1237 (2013).


