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A b s t r a c t  

 

The vasoactive proline-rich oligopeptide termed BPP-BrachyNH2 (H-WPPPKVSP-NH2) induces in vitro inhibitory 

activity of angiotensin I-converting enzyme (ACE) in rat blood serum. In the present study, the removal of N-

terminal tryptophan or C-terminal proline from BPP-BrachyNH2 was investigated in order to predict which structural 

components are important or required for interaction with ACE. Furthermore, the toxicological profile was assessed 

by in silico prediction and in vitro MTT assay. Two BPP-BrachyNH2 

analogues (des-Trp1-BPP-BrachyNH2  and des-Pro8-BPP-BrachyNH2) were synthesized, and in vitro and in 

silico ACE inhibitory activity and toxicological profile were assessed. The des-Trp1-BPP-BrachyNH2 and des-

Pro8-BPP-BrachyNH2 were respectively 3.2- and 29.5-fold less active than  the BPP-BrachyNH2- induced 

ACE inhibitory activity. Molecular Dynamic and Molecular Mechanics Poisson-Boltzmann Sur- 

face Area simulations (MM-PBSA) demonstrated that the ACE/BBP-BrachyNH2 complex showed lower binding and 

van der Wall energies than the ACE/des-Pro8-BPP-BrachyNH2  complex,  therefore  having better stability. The 

removal of the N-terminal tryptophan increased the in silico predicted toxicological effects and cytotoxicity when 

compared with BPP-BrachyNH2 or des-Pro8-BPP-BrachyNH2. Otherwise, des-Pro8-BPP-BrachyNH2   was  190-fold  

less  cytotoxic  than  BPP-BrachyNH2.  Thus,  the  removal  of  C-  terminal proline residue was able to markedly 

decrease both the BPP-BrachyNH2-induced ACE inhibitory and cytotoxic effects assessed by in vitro and in silico 

approaches. In conclusion, the aminoacid sequence of BPP-BrachyNH2 is essential for its ACE inhibitory activity 

and associated with an acceptable toxico- logical profile. The perspective of the interactions of BPP-BrachyNH2 

with ACE found in the present study can be used for development of drugs with differential therapeutic profile than 

current ACE inhibitors. 
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1. Introduction 

 

The study of poisons and toxins from animals as a source of 

new drugs for treatments for cardiovascular diseases has been 

consid- ered promising since the discovery of the proline-rich 

oligopep- tides (PRO) from the venom of Bothrops jararaca 

(Wied-Neuwied, 1824) [1]. A large number of studies have 

focused on the identifi- cation and characterization of novel 

PROs not only from the snake venom of B. jararaca but also 

from a variety of other natural sources, as well as on the 

identification of new biological targets for the PROs [2e4]. A 

list of 59 PROs previously described from different sources is 

shown in Table S1 (Supporting Information). 

There is a large number of proline-rich oligopeptides 

(PROs) obtained from animal venom which have cardiovascular 

properties. Among them, the bradykinin-potentiating peptides 

(BPPs) invari- ably present a proline residue at the C-

terminus, and are natural inhibitors of the angiotensin-

converting enzyme (ACE), a zinc metallopeptidase that 

converts inactive angiotensin I to the vaso- constrictor peptide 

angiotensin II, and which catalyzes the hydro- lysis of 

bradykinin (BK). The ACE presents two homologous domains 

(N and C) with a catalytic site present in each one, which may 

be differentially active in the several isoforms of the enzyme. 

The description of the active sites and their role in the hydrolysis 

of various physiological substrates is of great importance, so 

that subtle variations of specific amino acid residues in their 

substrates influence the catalytic specificity of the C- and N-

domain [2,5,6]. Araújo (2000) found that peptides with 

hydrophobic residues at the P1 position and peptides with 

bulky groups in the P2 position 

are preferably hydrolyzed in the C-domain of ACE, such as 

occurs in 

angiotensin I [7,8]. This information is also important for the 

un- derstanding of characteristics required for inhibitors of ACE. 

Recently, our group demonstrated that BPP-BrachyNH2, a 

novel proline-rich oligopeptide isolated from the skin secretion 

of the frog Brachycephalus ephippium with the primary 

structure H- WPPPKVSP-NH2, evokes endothelium-dependent 

vasodilatation mediated by NO [9]. Also in this work, in silico 

molecular modeling and docking studies suggested that BPP-

BrachyNH2 has the ability of forming a hydrogen bond 

network and also multiple van der Waals interactions with 

human ACE. They suggest that the peptide creates an 

impediment for the substrate to the active C-domain site of ACE. 

BPP-BrachyNH2 has a different primary structure in com- 

parison to other BPPs, but it still has an inhibitory effect on 

ACE activity. Therefore, structure-function studies involving 

BPP-Bra- chyNH2 and synthetic analogues thereof are of interest 

to reveal the interactions of the peptide with ACE. In this 

context, structure- activity relationships studies are important 

to infer mechanisms of action, being an important tool to 

rational development of new drugs which are more efficient 

and highly selective. For example, peptides from B. jararaca 

venom gave information allowing to analyze and understand 

the structureefunction relationships as well as the design of 

efficient and potent analogues with effect by oral 

administration, such as captopril, an ACE inhibitor with anti- 

hypertensive effect [10,11]. 

In  this  work,  the  removal  of  N-terminal  tryptophan  or  

C- 

terminal proline from BPP-BrachyNH2 was proposed in order 

to predict which structural components are important or required 

for interaction with ACE, and then to promote the inhibitory 

effect. Two BPP-BrachyNH2 analogues, des-Trp1-BPP-

BrachyNH2 and des- 

Pro8-BPP-BrachyNH2 were synthesized, and their cytotoxicity 

and 

in vitro ACE inhibitory activity in rat blood serum were 

assessed. Furthermore, in silico studies were also performed 

in order to predict toxicological targets and effects, as well as 

to analyze the interaction of peptides and captopril with ACE. 

 

2. Material and methods 

 

2.1. Synthesis, purification and characterization of BBP-

BrachyNH2 and synthetic analogues 

 

The synthesis of the BPP-BrachyNH2 (H-WPPPKVSP-NH2), 

des- Trp1-BPP-BrachyNH2 (H-PPPKVSP-NH2), and des-Pro8-

BPP-Bra- chyNH2   (H-WPPPKVS-NH2)  were  carried  out  

manually,  with  a 

standard F-moc (N-(9-fluorenyl)methoxycarbonyl) chemistry 

starting from a Rink-amide-MBHA resin (0.59 mmol.g-1, 

Peptides International, Louisville, KY, USA) [12]. F-moc-

protected amino acid derivatives (Peptides International, 

Louisville, KY, USA) were used in four-fold molar excess 

relative to the nominal scale of synthesis (1.2 mmol). Couplings 

were performed with 1,3- diisopropylcarbodiimide/ethyl 2-cyano-

2-(hydroxyimino) acetate (DIC/Oxyma) in N,N-

dimethylformamide (DMF) for 2e3 h. Side chain protected 

groups were tert-butyl for Ser, and Boc for Lys and Trp. Amino 

group deprotection was conducted by 4- methylpiperidine/DMF 

(1:4, v:v) for 20e30 min. Removal of side chain protection and 

cleavage of the peptides from the resin were performed by the 

use of 10.0 mL TFA:water:tioanisol:ethanodi- 

thiol:triisopropylsilane (86:5.0:5.0:2.5:1.0, v:v:v:v:v) with addition 

of 1 g phenol for 90 min at room temperature under shaking. 

After solvent evaporation under nitrogen, the peptides were 

precipitated by addition of cold diisopropyl ether, collected by 

filtration and washed  four  times  with  cold  diisopropyl  ether.  

Extraction  was 

performed with 200 mL H2O:ACN (1:1, v:v) and crude 

peptides were lyophilized. Purification was performed using a 

preparative HPLC system (LaPrep Sigma), with LP1100 

Quaternary LPG pump injection with fractionation valve. The 

elution conditions consisted of a linear gradient from 10% to 

30% of acetonitrile in water. The effluent was monitored at the 

absorbance of 220 nm, absorbing products were collected, 

and the peptides were lyophilized and analyzed by MALDI-

TOF MS and MS/MS HPLC and LC-MS. Purified 

peptides with 98% purity were obtained. Stock peptide 

solutions were prepared in water and their concentrations were 

determined according  to  tryptophan  molar  absorptivity  (5550  

M-1  cm-1)  at 

280 nm, when applicable [9]. 

 

2.2. In vitro Angiotensin I-Converting enzyme (ACE) 

inhibition assay 

 

2.2.1. Animals 

Fresh   blood   sera   were   obtained   from   male   Wistar   

rats 



 

 

(250e300 g, 3 months) according to Arcanjo et al. (2015) [9]. 

The animals were maintained throughout the study period at 12 h 

light/ dark cycle and temperature of 23 ± 2 oC), with free access 

to water 

and food (Purina-Nestle', Sa~o Paulo, SP, Brazil). The 

experimental 

procedures were performed with approval by the Ethics 

Committee for Animal Experimentation from the Federal 

University of Piauí, Brazil (permission No. 008/2012). 

 

2.2.2. ACE inhibition assay 

The ACE-inhibition assay was performed according to 

Arcanjo et al. (2015) [9]. Briefly, fresh Wistar rat serum as 

source of ACE, 

1.0 mM H-hippuryl-His-Leu-OH as ACE substrate, and different 

concentrations of BPP-BrachyNH2 (0.05e50 mM), des-Trp1-

BPP- BrachyNH2 (0.3e600 mM), des-Pro8-BPP-BrachyNH2 

(500e1.9 mM) and captopril (0.12e2000 nM) were incubated at 

37 oC for 20 min. 

The reaction was carried out in duplicate, at 20 mM Tris buffer 

in 

0.3 M NaCl (200 mL), pH 8.1, and interrupted by 1 mL of 0.5 M 

NaOH. The product H-His-Leu-OH was derivatized with o-

phtaldialdehyde in 4 min of reaction. Thereafter, 200 mL 6.0 M 

HCl were added, and the mixture was centrifuged in order to 

remove precipitated pro- teins. The product from ACE-

catalyzed hydrolysis was measured fluorimetrically, and the 

IC50 values (concentration of the inhibitor that results in 50% 

of maximal activity) were determined using non-linear 

regression derived from concentration-response curves plotted 

as a function of each inhibitor. 

 

2.3. In silico interaction studies with Angiotensin I-

Converting enzyme (ACE) 

 

2.3.1. Peptides and captopril setup 

All calculation and drawing were carried out using 

Gaussian 09W version 7.0 packages molecular mechanics 

methods [13]. The captopril 3D structure was downloaded from 

PubChem Open Chemistry Database 

(https://pubchem.ncbi.nlm.nih.gov/) with the PubChem CID 

44093 code. The initial structures of both peptides 

BBP-BrachyNH2 and des-Pro8-BBP-BrachyNH2 were constructed 

by 

molecular builder of Gauss View version 5.0.8 [14] implemented 

in computational package Gaussian 09W version 7.0. The 

molecular structures of ligands (captopril and peptides) were 

fully optimized by PM3 semi empirical method without imposing 

any symmetrical restrictions [14]. All calculations of ligands in 

work were performed in vacuum. The behavior of the charge on 

the molecular structure was calculated by the Mulliken atomic 

charges using the Gaussian 09W. The topologies of ligands, 

necessary for molecular dynamics simulations, were generated 

from the pre-optimized atomic co- ordinates with the PRODRG 

program (http://davapc1.bioch.dundee. ac.uk/cgi-bin/prodrg) [15]. 

Atomic charges generated from PRODRG were substituted by 

atomic charges calculated with Gaussian 09W. 

 

2.3.2. Docking 

All docking procedures utilized the Autodock 4.2 package [16e18]. 

Protein (ACE) and ligands were prepared for docking 

simulations with AutoDock Tools (ADT), version 1.5.6 [19]. 

The receptor was considered rigid whereas each ligand was 

considered flexible. Gas- teiger [20] partial charges were 

calculated after addition of all hy- drogens. Nonpolar hydrogen 

atoms of protein and ligand were subsequently merged. A cubic 

box of 60 x 60 x 60 points with a spacing of 0.35 Å between 

the grid points was generated for the whole protein target. The grid 

box was centered on the Arg522 from ACE. The global search 

Lamarckian genetic algorithm (LGA) [21] and the local search 

(LS) pseudo-Solis and Wets [22] methods were applied in the 

docking search. Each ligand was subjected to 100 independent 

runs of docking simulations. The rest of the docking parameters 

were set as the default values. The resulting docked 

conformations were clustered into families according to the 

RMSD. The initial coordinates of ACE complexes for molecular 

dynamics simulations were chosen using the criterion of lowest 

docking conformation of the cluster with lowest energy combined 

with visual inspection. 

 

2.3.3. Molecular dynamics simulations 

Molecular dynamics simulations were carried out using 

GRO- MOS96 53a6 force field [23] implemented in 

GROMACS package version 4.6.7 [24]. All systems were 

simulated in NPT ensemble (wherein the Number of particles, 

Pressure, and Temperature are all constant) and periodic 

boundary conditions (cubic). The dimensions of the central box 

were chosen in such way that the minimum dis- tance of any 

protein atom to the closest box wall was 12 Å. The 

simulations were carried out using explicit solvent water 

molecules described by the simple point charge (SPC) model 

[25]. The total 

charge of the systems was -13 for the three complexes 

(ACE/BPP- BrachyNH2, ACE/des-Pro8-BPP-BrachyNH2 and 

ACE/captopril). So- dium ions were added to neutralize each 

system. Initially, the pro- tein structure in each system was 

submitted to a maximum of 50000 

steps of steepest descent energy minimization. To relax strong 

solvent-solvent and solvent-protein non-bonded interactions, 

100 ps of MD simulation was performed restraining the protein 

struc- ture. Initial velocities were assigned according to 

Maxwell distri- bution. The simulations were performed for 10 

ns using an integration time step of 2 fs. Each system was 

heated with gradual increments in the following temperatures: 

100 K (10 ps),150 K (5 ps), 200 K (5 ps), and 250 K (5 ps). After 

these steps, the temperatures of the systems were adjusted to 

310 K. The first 6 ns of each simulation was considered as part of 

the heating (0.025 ns) and the equilibra- tion (5.975 ns) steps 

and had not been used in the data analysis. The temperatures of 

solvent and solutes (protein, ligands, water and sodium ions) 

were independently coupled to a thermal bath with a relaxation 

time of 0.1 ps using the V-rescale thermostat. The pres- sure in 

the systems was weakly coupled to a pressure bath with 2 ps of 

relaxation time using the Parrinello-Rahman barostat [26,27]. 

Bond lengths were constrained using the LINCS algorithm [28] 

with 4th order expansion. Electrostatic interactions among 

non-ligand atoms were evaluated by the PME (Particle Mesh 

Ewald) method [29] with a charge grid spacing of approximately 

1.0 Å. The charge grid was interpolated on a cubic grid with the 

direct sum tolerance set. Lennard-Jones interactions were 

evaluated using a 14 Å atom- based cutoff. The pair list was 

updated at each ten steps. 

 

http://davapc1.bioch.dundee/


 

To increase sampling, all ACE-ligand complex MD 

simulations were run thrice for 10 ns using different starting 

atomic velocities assuming a Maxwellian distribution. A total of 

nine simulations were performed. Data generated during the 

last 4 nanoseconds of each simulation system, the period 

defined as the production stage, were used for analysis. A total 

of 123 snapshots, each taken every 100 ps, 

were obtained for each complex during the production stage. 

Where applicable, detailed interactions were calculated using 

the LigPlotþ 

program [30]. A minimum binding of 50% of contacts (sum of 

hy- drophobic interactions and hydrogen bonds) in the analyzed 

frames was established  as the criterion  for binding efficiency 

[31]. Of the three  simulations  of  each  complex  (ACE/BPP-

BrachyNH2,  ACE/des- 

Pro8-BPP-BrachyNH2 and ACE/captopril) were selected for 

analysis 

with g_mmpbsa program (section 2.4) simulation with more 

con- tacts both by hydrogen bonds and hydrophobic 

interactions. 

 

2.3.4. Molecular mechanics Poisson-Boltzmann surface 

area MM- PBSA 

The MM/PBSA binding energy was calculated with the 

g_mmpbsa program (http://rashmikumari.github.io/g_mmpbsa/) 

for the last 4 nanoseconds of MD simulations [32]. In this 

work, g_mmpbsa program used the GROMACS software 

version 4.6.7 and APBS (Adaptive Poisson-Boltzmann Solver) 

version 1.4.1 [33]. The binding energy consists of three 

energetic terms, potential energy in vacuum, polar-solvation 

energy and non-polar solvation energy.  

The vacuum, solvent and solute dielectric constants were set at 1, 

80 and 2, respectively. The calculation of non-polar solvation en- 

ergy was based on SASA model. The entropy contribution was not 

included in the calculation of binding energy. 

 
2.4. In silico toxicity prediction 

 
The peptides were designed according to the FASTA query pep- 

tide by AMMP, a full-featured molecular dynamics program to 

manipulate both small molecules and macromolecules including 

proteins, nucleic acids and other polymers [34]. The Ammp-Mon 

charges were added and AMBER field force was applied to mini- 

mize the energy conformation, through a genetic algorithm, with 

3000 steps. The conformational search was performed by using the 

Boltzmann jump method, with flexible and psi torsions, at 300 K, 

with dielectric constant equal to 80,000 and RMSD equal to 60.00. 

The toxicity prediction for BPP-BrachyNH2 and its analogues des- 

Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 was performed 
by pkCSM. This analysis is based on the in silico determination of 

several predictors, such as human maximum tolerated dose, oral rat 
acute toxicity (LD50), oral rat chronic toxicity, human ether-'a-go-go 
related gene (hERG) inhibitors, hepatotoxicity, skin sensitization 

and mutagenicity [35]. Other physicochemical properties were also 

calculated, such as molecular weights (MW), lipophilicity (logP), 

rotatable bonds (NRB), polar surface area (PSA), number of hydrogen 

bond acceptors (HBA) and number of hydrogen bond donors (HBD). 

 
2.5. Cytotoxicity assessment 

 
2.5.1. Animals and cell cultures 

Peritoneal macrophages were obtained from male BALB/c mice 

(25e30 g, 2 months) according to Rodrigues et al. (2015) [36]. The 

animals were maintained throughout the study period at 12 h light/ 

dark cycle and temperature of 23 ± 2 oC), with free access to water 

and food (Purina-Nestle', Sa~o Paulo, SP, Brazil). For the hemolysis 

assay, red blood cells were obtained by centrifugation of sheep (9 

months-old) blood. The experimental procedures were performed 

with approval by the Ethics Committee for Animal Experimentation 

from the Federal University of Piauí, Brazil (permission No. 008/ 

2012). 

 
2.5.2. Cell viability assay on murine macrophages 

The evaluation of the cytotoxic activity of BPP-BrachyNH2, des- 

Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 on BALB/c mu- 
rine macrophages was performed by MTT assay as previously 
described [37]. Briefly, the peptides were incubated at different 

concentrations (10-7, 5 x 10-7, 10-6, 5 x 10-6, 10-5, 5 x 10-5, 10-4
 

and 5 x 10-4 M) with macrophages (1 x 106/well) during 48 h in 

RPMI 1640 medium (Sigma, St. Louis, USA) at 37 oC and 5% CO2. 
Thereafter, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5- 

diphenyltetrazolium bromide) was incubated during 4 h. The 

absorbance values were read at 550 nm (ELx800™, BioTek® In- 

struments, USA). Concentration-response curves were fitted using 

non-linear regression (GraphPad Prism version 6.00 for Windows, 

GraphPad Software, La Jolla California USA, www.graphpad.com), 

and the mean cytotoxic concentrations (CC50) were determined. 

 

2.5.3. Hemolysis assay on sheep blood erythrocytes 
The hemolytic activity was assessed by incubating 80 mL of 5.0% fresh 
sheep red blood cells in PBS with 20 mL of different concen- trations 

of BPP-BrachyNH2, des-Trp1-BPP-BrachyNH2 and des-Pro8- BPP-

BrachyNH2  (10-6, 5 x 10-6, 10-5, 5 x 10-5  and 10-4  M) at 37 oC 
for 1 h. After addition of 200 mL of PBS, the suspensions were 

centrifuged  at  1000  x g  for  10  min,  and  the  hemolysis  was 
measured  at  540  nm  (ELx800™,  BioT    ® Instruments, USA). The   

blank control and maximal lysis (positive control) were obtained by 

replacing the substance sample with equal volume of PBS or distilled 

water, respectively [38]. 
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3. Results 

 

3.1. Synthesis, purification and characterization 

 
The positive ionization MALDI m/z spectra (Fig. S1), and peptide fragmentation and sequencing by mass spectrometry (Fig. S2) ob- 

tained for the peptides BPP-BrachyNH2 and analogues confirmed the molecular weights and amino acid sequence, as follows: BPP- 

BrachyNH2: H-WPPPKVSP-NH2; [MþHþ] ¼ 906.92; des-Trp1-BPP- 

BrachyNH2:  H-PPPKVSP-NH2;  [MþHþ]  ¼ 720.82);  and  des-Pro8- 

BPP-BrachyNH2: H-WPPPKVS-NH2; [MþHþ] ¼ 809.91. 

 
3.2. In vitro ACE inhibition assay 

 
The inhibitory effect of BPP-BrachyNH2, the analogues thereof and captopril on rat serum ACE activity, as well as their IC50 values are 

shown in  Fig. 1. The removal  of the  N-terminal  tryptophan decreases by 3.2-fold the inhibition of ACE activity by BPP-Bra- chyNH2. 

The removal of C-terminal proline residue from BPP-Bra- 

chyNH2 decreased also significantly the inhibitory effect of ACE. The analogue des-Pro8-BPP-BrachyNH2 was 29.5-fold less active when IC50 

values were compared with those of BPP-BrachyNH2. 

 
3.3. In silico interaction studies 

 
The crystal structure of the C-domain ACE (PDB code: 3BKK) was obtained from the Protein Data Bank. Molecular dockings of ligands 

(BPP-BrachyNH2, des-Pro8-BPP-BrachyNH2 and captopril) with the 3D structure of ACE were based on Arg522 (the active site residue) 

[39]. Table 1 shows the results of docking. Positive values for DGbind 

were observed for association with the peptides (32.78 kcal/mol to ACE/BPP-BrachyNH2 and 24.70 kcal/mol for ACE/des-Pro8-BPP- 
BrachyNH2), which can be explained by the volume of the peptides that does not favor staying in the ACE active site region. The ACE/ 

captopril complex has a binding energy of -7.67 kcal/mol which is in agreement with the literature since captopril is a known ACE 
inhibitor. BPP-BrachyNH2 formed hydrogen bonds with three amino acid residues (Arg522, Met223, Tyr523) and hydrophobic 

interactions with fifteen amino acid residues. The des-Pro8-BPP- 

BrachyNH2 analogue formed hydrogen bonds with one amino acid residue (Tyr523) and hydrophobic interactions with sixteen amino 

acid residues. Captopril formed hydrogen bonds with four amino acid residues (His353, His513, Tyr520, Lys511) and hydrophobic 

interactions with eight amino acid residues. It is also observed that the ligands remained in the active site region and formed in- 

teractions with Tyr523 from the enzyme. Fig. 2 shows a graphical representation of conformations resulting from docking. 

With the conformations resulting from docking three MD sim- 

ulations were carried out for each complex (ACE/BPP-BrachyNH2, ACE/des-Pro8-BPP-BrachyNH2 and ACE/captopril), giving rise to a 
total of nine simulations. Fig. 3 shows the frequency of contacts of 

ligands with the ACE. The interactions were calculated for frames extracted from the last 4 ns of the MD simulations using the LigPlotþ 

program. A criterion efficiency of a minimum of 50% of contacts (sum of hydrophobic interactions and hydrogen bonds) in 

the analyzed frames was established. 

It is observed that the frequency of BPP-BrachyNH2 contacts with ACE (Fig. 3A) was higher by hydrophobic interactions (Trp220, 

Glu123, Ser517, Leu122, Met223, His353, Glu403, Ser 219, Ser355, 

His410, Ala354 and Arg522 - green bars) than by hydrogen bonds 



 

 

 
 

Fig. 1. Inhibitory effect of BPP-BrachyNH2, des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 and Captopril on rat serum angiotensin converting enzyme (ACE) activity. Re- 

sidual enzymatic activities are plotted against the corresponding inhibitor concentrations. The IC50 values were calculated by non-linear regression using GraphPad Prism 6.00 

software. 

 
Table 1 

Parameters affinity of the molecular docking. 
 

Complex DGbind
a  Number of 

 
Number of conformations 

 
Amino acids that interact Amino acids that make hydrophobic interactionsb

 

(Protein- 

ligand) 

(kcal/ 

mol) 

independent 

docking runs 

in the first ranked cluster through hydrogen bondsb
 

ACE/BPP- 

BrachyNH2 

ACE/des-Pro8- 

BPP- 

BrachyNH2 

38.78     100 02 Arg522, Met223, Tyr523 Glu123, Trp220, Ser219, Pro407, Gly404, Asn406, Glu403, His410, 

Ser355, His387, Ala356, Glu411, Val518, Pro519, Ile204 

24.70     100 07 Tyr523 Ser516, Phe512, His353, Val518, His513, Val380, Asp415, Phe527, 

Phe457, His383, Glu411, Glu384, Ala356, His387, Ser355, Ala354 

 

ACE/Captopril     -7.67    100 100 His353, His513, Tyr520, 

Lys511 

 

His383, His387, Glu411, Tyr523, Ala354, Phe457, Gln281, Glu384 

 

a   Binding energy of the best conformation. 
b  Obtained with the Ligplotþ software. 

 
(Arg522, Ala354, Ser 219, His410, Ser517, Trp220, Glu123 and 

Glu403 - orange bars). Trp220 (93%) and Arg522 (58%) were the 

residues with higher frequencies of contacts by hydrophobic in- 

teractions and hydrogen bonds, respectively. All amino acid resi- 

dues that made contacts by hydrogen bonds also establish 

hydrophobic interactions. It is also observed that Arg522 has a total 

frequency of 68% interactions (58% by hydrogen bonds and 10% by 

hydrophobic interactions). 

In Fig. 3B, it is also observed that the interaction of des-Pro8- 

BPP-BrachyNH2 with ACE was more frequent by hydrophobic in- 

teractions (Leu132, Tyr62, Leu81, Lys84, Asn85, Ala129, Ala89, 

Ala65, Met86, Gln87, Asn136) than by hydrogen bonds (Met86, 

Asn136, Ile88, Gln87, Ala89, Asn85, Lys84, Ala129 and Tyr62). The 

Ile88 residue  (52% frequency)  showed  only contacts by hydrogen 

bonds with ACE. Leu132 (81%) and Met86 (55%) were the residues 

with higher frequencies of contacts by  hydrophobic  interactions 

and hydrogen bonds, respectively. Also, Met86 is observed that has 

a total frequency of 92% (55% by hydrogen bonds and 37% by hy- 

drophobic interactions). 

The frequency of captopril contacts with ACE (Fig. 3C) as well as 

the previous ligands was higher by hydrophobic interactions 

(Phe457, Tyr523, His513, His383, His353, Ala354, Tyr520, Lys511 

and  Gln281)  than  by  hydrogen  bonds  (Gln281,  Lys511,  Tyr520, 

Ala354, His513, Tyr523, His353 and His383). Phe457 (89%) and 

Tyr523 (89%) were the residues with higher frequencies of contacts 

by hydrophobic interactions. Gln281 (43%) was the residue with 

greater frequency of contact by hydrogen bonds. It is also observed 

that the Tyr523 enzymatic residue has a total frequency of 96% (7% 

by hydrogen bonds and 89% by hydrophobic interactions). 

Fig. 4 shows the binding mode of ligands after docking (yellow) 

and after MD simulations (green) and takes into account the three 

MD simulations that were carried out for each complex simulation 

with higher contact by hydrogen bonds and hydrophobic in- 

teractions. It is observed that the BPP-BrachyNH2 remained close to 

Arg522  in  the  active  site  region  after  the  MD  simulation  (see 

Fig. 4A-1, 4A-2 and 4A-3). On the other hand, des-Pro8-BPP-Bra- 

chyNH2 shifted to the end of the ACE after the MD simulation, 
coming out of the active site region, and making interactions with 
amino acid residues that are located on the surface as Leu132 and 

Met86. It is also observed that a part of des-Pro8-BPP-BrachyNH2 is 
out of ACE, indicating the exit from the protein (see Fig. 4B-1, 4B-2 

and  4B-3).  Captopril,  such  as  BPP-BrachyNH2,  remained  in  the 

active site region after MD simulations (see Fig. 4C-1, 4C-2 and 4C- 

3). The positions of the ligands to MD simulations were not very 

close to the position of the ligands shown in Fig. 4 (data not shown). 

Table 2 shows the results of binding energies of the complex 



 

 

 

 
 

Fig. 2. Global structure of the conformations results from docking. Left hand panels: schematic representation of structure of BPP-BrachyNH2 (A), des-Pro8-BPP-BrachyNH2 (C) and 

captopril (E); Right-hand panels: LIGPLOT diagrams for ligands interaction in BPP-BrachyNH2 (B), des-Pro8-BPP-BrachyNH2 (D) and captopril (F). ACE represented by ribbons. Li- 

gands (BPP-BrachyNH2 - yellow, des-Pro8-BPP-BrachyNH2 - green, and Captopril - cyan) and Arg522  (blue)  represented by sticks.  Figure were generated using  UCSF  Chimera 

(https://www.cgl.ucsf.edu/chimera/) [40]. 

 
obtained by g_mmpbsa. It is observed that the ACE/BBP-BrachyNH2 

complex showed lower binding energy 

(DGbinding ¼ -134.187 ± 18.112 kJ/mol) compared to other com- 
plexes. The energy of van der Wall was lower for ACE/BBP-Bra- 

chyNH2 complex (DEvdW ¼ -291.834 ± 12.151 kJ/mol), which is in 

accordance with the frequency of contacts (Fig. 3) because this 
complex showed a higher number of hydrophobic interactions. 

Electrostatic  energy  for  ACE/des-Pro8-BPP-BrachyNH2   complex 

(DEelec ¼ -75.411 ± 30.200 kJ/mol) was more favourable than for 

the  ACE/BPP-BrachyNH2  complex  (DEelec  ¼ -69.756  ± 14.936  kJ/ 

http://www.cgl.ucsf.edu/chimera/)


 

 

 
 

Fig. 3. Identified contacts between the ligands and ACE calculated for the last 4.0 ns of MD simulations. (A) BPP-Brachy, (B) des-Pro8-BPP-BrachyNH2, and (C) Captopril. Color 

system: hydrophobic interactions (green) and hydrogen bonds (orange). The numbers on the bars indicate the percentage  of  contacts  for  each  amino  acid  residue.  Contacts 

evaluated on snapshots taken every 100 ps of the production stage. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 



 

 

 
 

Fig. 4. Global structure of the complexes and binding mode of ligands calculated for docking (yellow) and for the last frame of MD simulations (green). BPP-BrachyNH2 (A1, A2 and 

A3). Des-Pro8-BPP-BrachyNH2 (B1, B2, and B3). Captopril (C1, C2 and C3). Left hand panels: ACE represented by transparent ribbons, residues and ligands by sticks; Central panels: 

ACE represented by transparent surface, residues and ligands by sticks; Right-hand panels: expansion of the binding mode of ligands on ACE and residues more frequently contacts 

(see Fig. 3) represented by sticks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 
Table 2 

Binding energies of protein-ligand complexes obtained by g_mmpbsa. 
 

 

Complex  (Protein-ligand) DEvdW
a

 DEelec DGpolar DGnonpolar DGbinding 

ACE/BPP-BrachyNH2 -291.834 ± 12.151 -69.756 ± 14.936 259.122 ± 22.788 -31.720 ± 1.531 -134.187 ± 18.112 

ACE/des-Pro8-BPP-BrachyNH2 -227.404 ± 17.630 -75.411 ± 30.200 241.689 ± 32.929 -27.775 ± 2.355 -88.901 ± 23.614 

ACE/Captopril -101.550 ± 10.066 -34.782 ± 16.670 112.223 ± 32.109 -11.178 ± 0.819 -35.287 ± 21.169 

a   DEvdW, DEelec, DGpolar, and DGnonpolar are binding energy components of van der Waals, electrostatic, polar and nonpolar solvation energies, respectively. DGbinding is the 

total binding energy. The unit of energy is kJ/mol. 

 
 

mol) as the first one has a higher number of hydrogen bonds ac- 

cording to the frequency of contacts (Fig. 3). The large difference in 

the binding energy of the BPP-BrachyNH2  when compared with 

des-Pro8-BPP-BrachyNH2 is due to the fact the latter compound has 

much of its structure outside the ACE without making interactions 

with it. Captopril, a known ACE inhibitor, showed an expected 

favourable value for the binding energy 

(DGbinding ¼ -35.287 ± 21.169 kJ/mol) according to the literature. 
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3.4. In silico toxicity prediction 

 

In this study, the toxicity prediction for BPP-BrachyNH2 and 

their analogues des-Trp1-BPP-BrachyNH2  and des-Pro8-BPP-Bra- 

chyNH2 were assessed. The BPP-BrachyNH2 is well-tolerated by 
humans and rats, as well as the AMES mutagenicity prediction and 
skin sensitization revealed negative results. On the other hand, the 

predicted mean lethal dose (LD50) of des-Trp1-BPP-BrachyNH2  in 
oral rat acute and chronic toxicity seem to be slightly lower than 

either LD50 values for BPP-BrachyNH2 or des-Pro1-BPP-BrachyNH2, 
probably indicating a higher toxic effect (Table 3). 

 
 

3.5. In vitro cytotoxicity assessment 

 
In these protocols, no hemolysis of sheep erythrocytes was 

observed for peptides, even at the highest assayed concentrations 

(data   not  shown).   Besides,   the   incubation   of  peptides   BPP- 

 

BrachyNH2 and des-Trp1-BPP-BrachyNH2 promoted a concentra- 

tion-dependent decrease of cell viability of macrophages (Fig. 5). 
Although no significant difference between respective CC50 values 

was  observed,  a  point-by-point  statistical  comparison  demon- 

strated that the removal of N-terminal Trp1 residue increased the 

cytotoxicity at concentrations of 10-5 and 5 x 10-5 M (Fig. 5). On 

the  other hand,  the  peptide  des-Pro8-BPP-BrachyNH2  promoted 
only a slight significant decrease of cell viability by 7.7 and 14.8% at 

concentrations of 10-4 and 5 x 10-4 M, respectively (Fig. 5). The 

CC50 value calculated for des-Pro8-BPP-BrachyNH2 was 190-fold 
higher than CC50 value for BPP-BrachyNH2. 

 
4. Discussion 

 

In the present study, the removal of N-terminal tryptophan or C- 
terminal proline from BPP-BrachyNH2 was investigated in order to 

predict which structural components are important or required for 

 
Table 3 

Physicochemical properties and toxicity predictions of BPP-BrachyNH2 and their synthetic analogues. 
 

Peptide properties (pH 7,4)  

Sequence WPPPKVSP-NH2 PPPKVSP-NH2 WPPPKVS-NH2 

Length 8 7 808.4582 

Mass (g/mol) 905.5108 719.4317 808.4582 

Isoelectric point (pI) 13.88 14.00 13.88 

Net charge þ2 þ2 þ2 

Hydrophobicity (Kcal/mol) 

Extinction coefficient (1/M*cm) 

þ9.17 

5500 

þ11.26 

0 

þ9.03 

5500 

LogP -2.7149 -4.3146 -2.7059 

Rotatable Bonds 26 22 24 

Acceptors 9 8 8 

Donors 8 7 8 

Surface Area (Å2) 378.597 298.843 337.857 

Toxicity prediction    
AMES toxicity No No No 

Max. tolerated dose (human) (log mg/kg/day) 0.505 1.136 0.614 

hERG I inhibitor No No No 

hERG II inhibitor Yes No Yes 

Oral Rat Acute Toxicity (LD50) (mol/kg) 2.661 2.046 2.735 

Oral Rat Chronic Toxicity (LOAEL) (log mg/kg_bw/day) 3.402 2.55 3.306 

Hepatotoxicity Yes Yes Yes 

Skin Sensitization No No No 

T. pyriformis toxicity (log mg/L) 0.285 0.285 0.285 

Minnow toxicity (log mM) 5.577 6.191 5.235 

 
 

 
 

Fig. 5. Cytotoxicity of BPP-BrachyNH2, des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 on BALB/c mice peritoneal macrophages by MTT test. The mean cytotoxic concen- 

tration (CC50) was determined by non-linear regression. Data were expressed as mean cell viability (%) ± S.E.M. of experiments carried out in triplicate. #p < 0.001 vs. respective 
concentrations of BPP-BrachyNH2. 

 

interaction with ACE, to promote the inhibitory effect. Furthermore, 

the toxicological profile of BPP-BrachyNH2 and its analogues was 

assessed by in silico prediction using pkCSM software and by MTT 



 

 

assay in BALB/c peritoneal macrophages. The main finding of the 

present study was the BPP-BrachyNH2-induced both ACE inhibitory 

and toxicological effects were both markedly decreased by removal 

of the C-terminal proline residue. 

The BPP-BrachyNH2-induced ACE inhibitory activity was 
consistent with previously reported results. A previous docking 

study has reported a higher interaction between BPP-BrachyNH2 

and C-domain rather than N-domain of ACE. The C-terminal Pro8 

residue from BPP-BrachyNH2 established more interaction bonds 

with ACE than other residues at C-domain of ACE [9]. In the present 

study, the analogue  des-Trp1-BPP-BrachyNH2 was 3.2-fold more 
potent in inhibition of ACE activity compared to BPP-BrachyNH2. On 

the other hand, the analogue des-Pro8-BPP-BrachyNH2  was 29.5- 
fold less active when IC50 values were compared with those of 
BPP-BrachyNH2. In this sense, in order to better investigate how 
BPP-BrachyNH2 interacts with ACE, in silico approaches based on 
molecular dynamics simulations were applied. 

Previous studies have reported the importance of the proline 

residue in the inhibition of ACE activity. Likewise, the ACE inhibi- 

tory activity induced by the antihypertensive drug captopril is 

based on the imitation of the proline residue in angiotensin-I. 

When captopril binds to ACE, the conversion of angiotensin-I into 

angiotensin-II is decreased, and the production of bradykinin is 

increased [10]. In the present work, MD simulations demonstrated 

that the ACE/BBP-BrachyNH2 complex showed lower binding and 

van der Wall energies then the ACE/des-Pro8-BPP-BrachyNH2 

complex, therefore being more stable. The large difference in the 

binding energy is due to the fact that a large part of des-Pro8-BPP- 
BrachyNH2 was not in contact with the active catalytic site of ACE. 

Initially, docking studies did not reveal the lack of interaction and it 
was only found by MD simulations. This finding agree with the 
study byFernandez et al. (2003), where the structural basis of the 

lisinopril-binding specificity in  N- and  C-domains of human  so- 

matic ACE was assessed. They reported important C-terminal pro- 

line hydrophobic accommodations in ACE/lisinopril complex [41]. 

Therefore, the markedly low efficiency of the des-Pro8-BPP-Bra- 

chyNH2 as ACE inhibitor found in the present study reinforces the 

importance of the characteristic C-terminal proline residue in BPPs 
for the inhibition of ACE activity. 

The N-terminal tryptophan residue (Trp1) from BPP-BrachyNH2 

is linked to a proline residue (Pro2). Tryptophan-proline complexes 

are  well  known  to  possess  very  stable  interactions  due  to  the 

contact between nitrogen heteroatom of proline and the aromatic 

chain of tryptophan. The stabilization energy of this complex is 

large and structurally important in interactions and recognition 

processes of proteins and peptides [42]. In the present study, in 

silico and in vitro studies were also performed to predict toxico- 

logical targets and effects. The in silico predicted LD50 values of des- 

Trp1-BPP-BrachyNH2   for  the  acute  and  chronic  toxicity  in  rats 
administered orally seem to be slightly lower than LD50 values for 

BPP-BrachyNH2 and des-Pro1-BPP-BrachyNH2, probably indicating 
a higher toxic effect. This is supported by the observed increase in 

toxicity of des-Trp1-BPP-BrachyNH2 in murine peritoneal macro- 
phages compared with BPP-BrachyNH2. Thus, the possible lack of 

structural stabilization due to the removal of Trp1  from the BPP- 

BrachyNH2 might explain this increase in toxicity. 

The  C-terminal  proline  residue  (Pro8)  from  BPP-BrachyNH2   is 

linked to a serine residue (Ser7). The serine-proline motif is 

essentially found in a large number of biologically active peptides. 

Considered as a constrained analogue of serine, its use is mostly 

advantageous in conformational binding studies, frequently related 

to  improvement  in  physical  properties  or  different  biological 

activities of peptides, as well as the design of new peptidomimetics 

[43,44]. In the present study, the peptide des-Pro8-BPP-BrachyNH2 

was 190-fold less cytotoxic than BPP-BrachyNH2. Similar results 
were found for ACE inhibition, where the removal of the C-terminal 

proline residue also decreased the inhibition of ACE activity with 

29.4 times compared to BPP-BrachyNH2. In this sense, putative 

interactions  between  peptide  and  mammalian  cells  might  be 

impaired after removal of the C-terminal Pro8  residue from BPP- 
BrachyNH2, and then promotes a marked decrease in cytotoxicity. 

In  conclusion,  the  aminoacid  sequence  of  BPP-BrachyNH2  is 

essential  for  its  ACE  inhibitory  activity  and  associated  with  an 
acceptable toxicological profile. The perspective of the interactions 
of BPP-BrachyNH2 with ACE found in the present study can be used 

for development of drugs with differential therapeutic profile than 

current ACE inhibitors. 
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