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Abstract 
 

 

 

Chlorhexidine (CHD), a germicidal drug, has degradation products that can 

be hemotoxic and carcinogenic. However, there is no consensus in literature 

about the degradation pathway. In order to shed light on that mechanism, 

we have employed Density Functional Theory to study reactants, in 

different protonation states, products and intermediates involved in the 

different pathways. Based on free energy values comparison and frontier 

molecular orbital analysis, we have obtained the most stable structures in 

each protonation state. CHD in saturated form has HOMO localized in one p-

chloroaniline, and, due to molecule’s symmetry, HOMO-1 has contributions 

from the other side of the molecule, but mainly from the biguanide portion of 

the molecule, instead of from the p-chloroaniline. For the saturated form, we 

have studied two possible degradation pathways, starting from the 

monoprotonated structure, and three pathways starting from the neutral 

structure. We found out that the mechanisms proposed in literature, whose 

pathways lead to p-chloroaniline (PCA) formation in a smaller number of 

steps, are more likely than the mechanisms with more intermediate steps or 

pathways that do not predict PCA formation. Also, based on free energy 

results, we have found that the formation of another sub-product (PBG-AU) is 

favorable as well. 

 

1. Introduction 

2.  

 

Computational chemistry has been reported as an efficient tool to clarify kinetic and thermodynamic processes involved in 

synthesis, properties characterization (Matencio et al., 2017; Berzins et al., 2016) and degradation pathways of molecules and 

structures, especially pharmaceutical drugs (Silva et al., 2017; Rapolu et al., 2015). Its combination with experimental techniques 

appears as an interesting study field, since degradation products could become their use unfeasible. Indeed, electrochemical 

behavior and oxidation reactions could be better understood in association   with   theoretical   evaluations   (Silva   et   al.,   2017). 

 

However, we have not found any computational study about the oxidation mechanism of chlorhexidine (CHD), a widely used drug. 

Chlorhexidine  (CHD)  is  a  pharmaceutical  drug  composed  by two  (p-chlorophenyl)  biguanide  (PBG)  portions  bonded  by  a 

hexane chain. It is positively charged and reacts with the negatively charged microbial cell surface, destroying the integrity of the cell 

membrane (NCBI, 2015), therefore being widely used because of its germicidal activity against bacteria, yeasts, and molds (Wang 

and Tsai, 2001; Jones et al., 1998; Leitune et al., 2010; Fong et al., 2010; Pusateri et al., 2009; Edmiston et al., 2007; Lindblad et 

al., 2010; Loguercio  et  al.,  2009;  Ji  et  al.,  2010).  Although  the  use  in mouthwash  formulations,  toothpaste  and  

disinfectant  solutions have been effective, CHD's stability is limited by the appearance of p-chloroaniline (PCA), which is its 

primary degradation product, known as being hemotoxic and quickly absorbed and metabolized, as  well  as  being  carcinogenic  

(Wang  and  Tsai,  2001;  Zong  and Kirsch, 2012). 





 

 

 
 

Fig. 1. Two possible neutral structures for CHD: in (a) CHD’s saturated chain and in (b) CHD’s unsaturated chain. Numbers indicate protonable N atoms. 

 
There are different proposed structural forms of neutral CHD, as 

shown in Fig. 1, being (a) the neutral form with a saturated chain 

and two pairs of nitrogen atoms bonded to the chain by 

unsaturated bonds (NCBI, 2015; Anon.,2017) as presented by 

Wang and Tsai (2001), and (b) the neutral form with an 

unsaturated chain, as proposed byVan Oosten et al. (2014), and 

Blackburn et al. (2007). Bharatam et al. (2005) represented CHD 

with unsaturated bonds as its neutral structure (Fig1(b)), and 

attributed its chemical, biochemical, and therapeutic activities to 

the electron distribution in the system. 

The commercial form (Fig. 1(a)) of the drug is doubly positively 

charged and available in acetate, gluconate and hydrochloride 

forms (Ha and Cheung, 1996).  As can be seen for both neutral 

proposed structures of CHD, this is  a symmetric molecule,  and 

different forms of protonation have been reported in acidic 

conditions, with two (Anon., 2017) or four (NCBI, 2015) protonated 

nitrogen atoms. Wang and Tsai (2001) suggested that each PBG 

portion has two nitrogen atoms with unsaturated bonds, leading to 

two protonable sites. 

Different pathways to CHD's degradation in acidic medium have 

been proposed (Edmiston et al., 2007; Anon., 2017; Van Oosten 

et al.,2014); even though Ha and Cheung (1996) reported 

degradation pathways under alkaline conditions, we focused on 

acidic media since most of the experimental work was done under 

this condition. In acidic conditions, CHD’s degradation lead to PCA 

formation (Edmiston et al., 2007; Anon., 2017; Van Oosten et al., 

2014), but p-chlorophenyl-biguanidine (PCPG) and phenylbigua- 

nidine have been reported as degradation products as well, being 

the latter a photolysis product (Zong and Kirsch, 2012). Revelle 

et al. (1993) reported the identification of 11 degradation products 

by High-Performance Liquid Chromatography and Mass Spectrom- 

etry (HPLC–MS), six of them representing new compounds, and 

various degradation mechanisms were proposed for different 

stress conditions. They suggested that the main decomposition 

product under thermal stress is the so-called impurity G (referred 

as PBG-G by Wang et al.). 

Taking these apparently conflicting experimental results into 

account, in this work we aim to shed light on the oxidation process 

of chlorhexidine, starting from different neutral forms, and by 

considering various protonation sites. In a previous work (Sousa 

et al., 2017) we performed quantum mechanical calculations 

simulations and free energy studies  to support electrochemical 

studies on CHD oxidation, focusing on the adsorption process. 

Here, we extend that study in order to give a molecular insight 

about the effects of the protonation states on degradation pathway 

of  CHD.  The  evaluation  of  the  stability  of  intermediates  and 

products of this degradation process can aid for example, in 

developing new formulations and drug delivery systems (Fer- 

nandes et al., 2014). 

 
3. Methodology 

 
We have studied different states of protonation for CHD and 

also possible intermediates and products of degradation proposed 

in literature, mainly in references (Zong and Kirsch, 2012; Ha and 

Cheung, 1996), namely:(p-chlorophenyl)urea (PCPU), (p- chloro- 

phenyl)guanidine (PCPG), [(p-chlorophenyl)amidino]urea (PBG- 

AU), and N-amidino-N’-(p-chlorophenyl)urea (PBG-APU). We have 

employed Density Functional Theory (DFT), because it is the 

methodology that best predicts electronic and structural proper- 

ties of molecular systems, allowing even the study of reaction 

mechanisms at a feasible computational cost (Gino DiLabio and 

Otero-de-la-Roza, 2014; Fernandes and Joa, 2007; Capelle, 2006; 

Geerlings, 2003). 

In this way, we  have optimized the geometries of proposed 

structures by means  of  B3LYP hybrid functional and 6-311G(d) 

basis set. Frequency calculations were carried out to ensure 

structures obtained are minima in the potential energy surface. 

From these calculations, we have obtained also free energies of 

formation of each compound (reactant in different protonation 

states, as well as possible intermediates and products) to evaluate 

the oxidation mechanisms. Time-Dependent Density Functional 

Theory (TD-DFT) calculations with B3LYP/6-311G(d) were carried 

out to obtain the frontier molecular orbital energies. All 

calculations were performed  with  Gaussian  09  package  (Frisch 

et al., 2010). The values of Root Mean Square Deviation (RMSD), 

that quantifies the differences among geometries, was calculated 

using VMD software (Humphrey et al., 1996). MarvinSketch tool 

(ChemAxon, 2015), was used to estimate the pKa of the different 

 
 
 

Table 1 

Molecular orbitals energies (obtained via TD-DFT Calculations) and free energy of 

formation (DG) (a.u.) for CHD neutral and charged species. 

 
saturated CHD unsaturated CHD 

LUMO -0.04288 -0.03583 

HOMO -0.20759 -0.21442 

HOMO-1 -0.21709 -0.21778 

HOMO-2 -0.23463 -0.21942 

DG (neutral) -2324.249669 -2324.246721 

DG (charge +1) -2324.002500 -2324.007668 

DG (charge +2) -2323.675495 -2323.704822 

 



 

 

protonation sites for CHD, even though empirical data were also 

considered for comparison. 

 
4. Results and discussion 

 
First of all, we have considered the two neutral forms of CHD as 

described in literature and presented in Fig. 1. Table 1 presents the 

energy values of the frontier orbitals LUMO (lowest unoccupied 

molecular  orbital),  HOMO  (highest  occupied  molecular  orbital), 

HOMO-1, HOMO-2, and also Gibbs free energy (DG) for these two 

structures. The difference between DG is approximately 0.003 a.u. 

(rv1.85 kcal mol-1), being the saturated form the most stable. The 

values of RMSD calculated between these two structure backbones 

was 2.6 Å, originated mainly by the difference in biguanide units 

which confers an angle of almost 900 between phenylic ring and 

hexane chain for the unsaturated form. So, the most stable form 

(saturated) is also the more linear structure. The superposition 

between the structures can be found in Supplementary material 

(SM1). 

From Table 1, it is also possible to verify that the unsaturated 

structure has occupied molecular orbitals almost degenerated: 

HOMO, HOMO-1 and HOMO-2 energy values are quite similar:for 

the saturated CHD, the difference |HOMO-HOMO-1| is  about  6 

kcal mol-1 and the difference |(HOMO-1)-(HOMO-2)| is about  1 

kcal mol-1; for the unsaturated CHD, the differences are around 1– 

2 kcal mol-1 in both cases. Along this work, we paid attention to 

HOMO and HOMO-1 orbitals because of oxidation processes 

involved in degradation of CHD. 

CHD in saturated form has HOMO localized in one p-chloroani- 

line ('right side'), and, since molecule is symmetric, we expected 

the next orbitals to be located in the other p-chloroaniline. 

However, even though HOMO-1 has contributions from the other 

side of the molecule (see Fig. 2(a) and (b)), it is composed mainly 

from the biguanide portion of the molecule. On the other hand, 

unsaturated form has HOMO and HOMO-1 almost  degenerated 

and less localized, with contributions from both sides of the 

compound, even if HOMO has more important contributions from 

atoms in the right side of the molecule, and the HOMO-1 from the 

left side of the molecule contributions (see Fig. 2(c) and (d)). 

The abstraction of one and two electrons of these neutral 

molecules was also investigated in order to evaluate possible 

oxidation products. Free energies of formation are also presented 

on Table 1. Oxidation products of unsaturated CHD are more stable 

than products of saturated CHD, probably because HOMO and 

HOMO-1 of unsaturated form are spread over a larger portion of 

the molecule. CHD is mainly used in its protonated form. Previous 

experimental and theoretical studies indicated two main pKa, 

about 10 and 2 (Blackburn et al., 2007; ChemAxon, 2015; Hugo and 

Longworth, 1964; Qi et al., 1994; Agarwal et al., 2012). Blackburn 

(Blackburn et al., 2007) presented an estimate of pKa by means of 

empirical   simulations,   suggesting   that   at   pH rv 10.1   CHD   is 

monoprotonated and at pH rv 9.5 it is diprotonated. At lower pH 

(<2.5), CHD may be four-folded protonated. Before studying the 
degradation pathways, we have proceeded with a careful 
examination of the relative stability of all possible protonation 
forms. For the unsaturated form, we have considered one and two 

N atoms protonated. In case of only one protonation, there are two 

possibilities: on N22 and N42, both atoms localized nearer the 

hexane chain than the phenylic ring. HOMO is  localized on  the 

opposite site of protonated N atom, for both cases. Table 2shows 

energy values for HOMO and HOMO-1 for both mono-protonation 

possibilities, and the free energy of formation (DG). DG indicates 

the structure protonated on N42 is more stable than the 

protonated on N22 about 0.001 a.u, i.e. 2.6 kJ mol-1, which justifies 
the two pKa's rv 10 presented in previous works (Van Oosten et al., 
2014;  Blackburn  et  al.,  2007).  HOMO  and  HOMO-1  are  almost 

degenerated for the N42-protonated structure. As free energy of 

formation is almost equal for both structures, the protonation of 

both sites may occur simultaneously, so we have studied the (N22, 

N42) protonated form. In this case, HOMO is localized over the left 

chlorine ring, but right ring also contributes for this molecular 

orbital, while HOMO-1 is located on the right side of the molecule. 

For this reason, HOMO and HOMO-1 are degenerated, what reflects 

the symmetry of the doubly protonated specie. 

Saturated form is the most stable neutral form of CHD. In this 
case, we have analyzed the protonation of one and two nitrogen 

atoms, as indicated in Fig. 1(a). First of all, we have examined the 

monoprotonation: DG, HOMO and HOMO-1 energies are pre- 

sented in Table 2. As mentioned before, literature usually points 

out only two pKa's values (Hugo and Longworth, 1964; Qi et al., 

1994; Agarwal et al., 2012; Xue et al., 2009). This is expected 

because CHD is symmetric in relation to the hexane chain: N20 and 

N45 should be protonated at the same (or very similar) pH, while 

N15 and N52 in other pH. In fact, the protonation of 20N and 45N 

yields more stable structures, about 0.02 a.u. (14 kcal mol-1), than 

the   protonation   of   the   nitrogen   atoms   nearer   to   the   p- 

 
 
 

 
 

Fig. 2. Plot of HOMO and HOMO-1 for saturated and unsaturated CHD forms. (a) HOMO: saturated CHD; (b) HOMO-1: saturated CHD; (c) HOMO: unsaturated CHD; (d) 

HOMO-1:  unsaturated  CHD. 



 

 

Table 2 

Energy of HOMO and HOMO-1 (D is the difference between HOMO and HOMO-1), and DG (all values in a.u.) for different protonated sites of unsaturated (Unsat.) and 

saturated (Sat.) CHD. 

  

protonation site DG 
 

HOMO 
 

HOMO-1 D|HOMO-HOMO-1| 

Unsat. CHD N22 (10.54)* -2324.659875 -0.26641 -0.28342 0.01701 

Unsat. CHD N42 (9.94)* -2324.660872 -0.26629 -0.26777 0.00148 

Unsat. CHD N22 and N42 -2325.024481 -0.39499 -0.39500 0.00001 

Sat. CHD N15 (7.63)* -2324.6081 -0.26246 -0.29166 0.02920 

Sat. CHD N20 (10.45)* -2324.6307 -0.26429 -0.28934 0.02505 

Sat. CHD N45 (9.85)* -2324.6247 -0.27017 -0.28078 0.01061 

Sat. CHD N52 (8.22)* -2324.6080 -0.28003 -0.29610 0.01617 

Sat. CHD N15 – N45 -2324.9521 -0.39087 -0.42199 0.03112 

Sat. CHD N15 – N52 -2324.9546 -0.40519 -0.41844 0.01325 

Sat. CHD N20 – N45 -2324.9437 -0.38997 -0.39320 0.00323 

Sat. CHD N20 – N52 -2324.9458 -0.38490 -0.40877 0.02387 

Sat. CHD four-folded protonated -2325.3162 -0.54474 -0.55295 0.00821 

 

chloroaniline, 15N and 52N. Regarding HOMO, this is located in the 

opposite side in relation to the protonation site. N45 protonated 

form is the only one which HOMO does not include the ring. HOMO 

and HOMO-1 energies are more similar, almost degenerated, for 

N45  and  N52  protonated  species,  as  can  be  seen  from  D|HOMO- 

HOMO-1|in  Table  2. 
The second approach to evaluate the protonation process was to 

do simultaneous protonations. For the double protonation on N 

 
 

 
 

Fig. 3. Adapted mechanism proposed by Zong (Leitune et al., 2010) for CHD oxidation: (a) solvent attack on monoprotonated CHD; (b) possible degradation products (1): PBG- 

APU and ammonia; (c) possible degradation products (2): PBG-AU and PCA. 



 

 

atoms in the same biguanide unit (N15-N20 and N45-N52) no 
minimum structure was found. Simultaneous protonation of 
nitrogen atoms in both sides of the molecule led to the following 

decreasing order of stability (second DG in Table  2):  N15- 

N52 rv N15-N45 > N20-N52 rv N20-N45. The protonation on nitro- 
gen atoms nearer to the ring yields more stable structures, about 

6 kcal mol-1 more stable if protonated on N15 than on N20; on the 
other hand, the difference between N15-N52 and N15-N45 (or 

N20-N52 and N20-N45) is about 1.5 kcal mol-1. 

If one consider that protonation of N20 has already occurred, 
the next protonation should occur on N52 because N20-N52 

structure has smaller DG value, being the difference in relation to 

N20-N45 1.3 kcal mol-1. If we consider that protonation of both 
atoms occurs at the same time, N15-N52 is the most stable 
structure, and the energy difference in relation to N20-N45 about 

1.6 kcal mol-1. Structures where N15 is protonated present HOMO 
and HOMO-1 in the same (right) side of the molecule, and more 

negative DG values. Structures where N20 is protonated present 

HOMO and HOMO-1 in opposite sides of the molecule. Higher DG 

values are found for N20-N45 structure, indicating that it is the less 
probable. The figures of the frontier orbitals mentioned can be 

found in Supplementary material SM2 and SM3. At pH <4 (NCBI, 
2015), CHD may have the four N atoms protonated (four-folded 
protonated specie in Table 2) and, for this case HOMO and HOMO-1 
are in opposite sides of the molecule. 

As mentioned before, CHD is symmetric in relation to the 

hexane chain, but in case of the saturated form, there is a slightly 

difference in the geometry of both sides, related to the position of 

the lateral groups. Even though this molecule was obtained as a 

minimum in potential energy surface, which was confirmed by the 

absence of imaginary frequencies, we have performed a confor- 

mational search using molecular mechanics methodology, fol- 

lowed by DFT optimization and frequency calculation, in order to 

verify if a more symmetric structure would be viable. In fact, the 

structures tested presented higher (less negative) free energy 

values, which suggested that our initial structure is more probable 

to be found (free energy values and frontier orbitals positions are 

presented in Supplementary material – SM5 Tables). The symme- 

try breakdown observed for the initial structure may be due to the 

formation of two hydrogen bonds (between N15 and H23, and 

between N45 and H51, Figure SM5), that conducts to the formation 

of two pseudo-six-membered rings on each side of the molecule, 

what overstabilizes the molecule. Moreover, the more effective 

hydrogen bond on the right side of  the molecule (N15· · ·H23 = 

1.84 Å versus and between N45· · ·H51 = 1.95 Å) allows HOMO to be 

distributed along both ring and pseudo-ring. 

Since saturated form of neutral CHD is thermodynamically 

slightly more probable, we conducted the evaluation of oxidation 

mechanism using this structure. From empirical pKa calculations 

(Blackburn et  al., 2007) and  by using the pKa predictor of the 

MarvinSketch software (ChemAxon, 2015), the protonation form at 

acidic conditions may vary from two to four nitrogen atoms 

protonated, and consequently net total charge equals to + 2 or +4. 

At pH = 4, the condition our previous experiments (Sousa et al., 

2017) have used, we have analyzed the system with net charges +2 
and +4. 

monoprotonated CHD, while Ha’s initial structure is neutral. Zong's 

descriptions of intermediate products were more detailed, while 

Ha's work presented only the final products. Based on it, we have 

chosen some possible pathways to investigate in terms of Gibbs 

free energy, aiming to analyze the stability of the degradation 

products if compared with other paths. 

Zong suggested in his work that, for monoprotonated CHD, the 

positive charges would be distributed among all the nitrogen and 

carbon atoms in the biguanide moiety, so the solvent attack on an 

electron-deficient carbon would lead to intermediates with 

potential leaving groups including PCA and ammonia, also giving 

rise to PBG-AU or PBG-APU. Fig. 3 presents water attack on CHD 

and the possible final degradation products. 

In Table 3 one can compare the DG values of the initial and final 

products. Between the final products, (1) presents a slightly more 

negative energy value, being the difference approximately 0.8 kcal 

mol-1. According to the author, intermediate breakdown leading to 

the expulsion of PCA would be much more facile than expulsion of 

ammonia, so pathway (2) would be more probable, but our 

calculations indicate that both pathways are equally possible. They 

also suggest that pathway (1) would lead to PCA after more steps, 

including water attack. 

Ha and co-workers (Ha and Cheung, 1996) suggest three main 

pathways, starting from neutral CHD and leading to different 

degradation products, and the difference among the paths is where 

water attacks, i.e., where the breakdown occurs. (Fig. 4). They 

compare their results with work presented by Elpern (1968), that 

indicate products derived from path (A) is in tautomeric 

equilibrium with the ones of path (B). According to Ha and co- 

authors, the hydrolysis of CHD is likely to proceed via paths (B) and 

(C), not involving pathway (A). Our results suggest that the more 

probable path includes PCA formation, in agreement with Elpern's 

work. Table 3 presents the results of Gibbs free energy for the three 

pathways suggested by Elpern (1968) and Ha and Cheung (1996). 

The energy difference between path (A) and path (B) (or (C)) is 

0.01607 Hartree, approximately 10 kcal mol-1, indicating that it is 

the most probable to happen. 

 
5. Conclusions 

 
In this work we have used well established computational 

techniques based on quantum calculations as tools to investigate 

the degradation process of chlorhexidine, an important an largely 

used pharmaceutical drug whose degradation products could be 

toxic, considering as starting point two possible structures, and 

different protonation states for both cases. For the saturated form 

of CHD, it was observed that, when we have considered one or two 

protonated N atoms, the position of H+ influenced the free energy 

value: if we have one protonation, the structure with H+ closer to 

the hexane chain is more stable; if two simultaneous protonations 

 

Table 3 

Gibbs free energy (DG) for CHD, and its comparison with DG of degradation 

products derived from two different pathways. 
 

 

DG (a.u.) 

The various degradation pathways described in literature (Zong CHD+1
 + water -2401.06094 

(1) PBG-APU+1 + NH3 -2401.08509 

and  Kirsch,  2012;  Ha  and  Cheung,  1996;  Revelle  et  al.,  1993) 

proposed different products and number of steps, even though 

some intermediate compounds are present in more than one 

mechanism proposed. The main degradation products were 

represented in Supplementary material 6. Among the references 

we have analyzed, some pathways appeared in more than one 

work. For example, CHD and water leading to PCA and PBG-AU, or 

PCPU and PBG-G were suggested by Ha and Zong in distinct works, 

and  the  difference  between  them  is  that  Zong  started  with 

(2) PBG-AU+1 + PCA -2401.08637 

 
CHD+ water -2400.67994 

(A) PBG-AU + PCA -2400.71771 

(B) PCPU + PBG-G -2400.70164 

(C) PCPG + PBG-G1 -2400.70165 
 

 

*(1) and (2) are degradation products suggested by Zong, starting from the 

monoprotonated CHD, and (A), (B) and (C) are degradation products suggested by 

Ha, starting from the CHD’s neutral form. In both cases it is suggested that the 

mechanisms occur in presence of water. 



 

 

 
 

Fig. 4. Adapted mechanism proposed by Ha (Ha and Cheung, 1996) for CHD oxidation: (a) possible degradation products (A): PBG-AU and PCA; (b) possible degradation 

products (B): PCPU and PBG-G; (c) possible degradation products (C): PCPG and PBG-G1. 
 

were considered, the structure with both H+ nearer from the chlorinated ring was found as the most stable. It was also investigated 

different degradation pathways proposed in literature for the CHD's saturated form. Different degradation pathways were investigated, 

starting from CHD's neutral and monoprotonated forms: our simulations regarding Ha’s mechanism (that starts with CHD’s neutral form) 

do not agree with that proposal, since we have observed that the pathway leading to PCA formation was more probable than others. 

On the other hand, starting from the protonated form, as proposed by Zong et al., the pathway leading to PCA formation with few steps is 

more likely to happen, and also, PBG-AU in neutral and protonated forms may also be formed. In this sense, such techniques have 

shown effective to corroborate and mainly complement experimental results. 
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