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Abstract:Evolutionary Computation (EC) is a growing research field of Artificial Intelligence (AI), particularly of
Computational Intelligence (CI). EC is the general term for several computational techniques which use ideas and
get inspiration from natural evolution/adaptation and is divided in two main areas: the Evolutionary Algorithms
(EA) and the Swarm Intelligence (SI). This paper presents hybridization between an EA algorithm - the Genetic
Algorithm (GA) and a SI algorithm - the Particle Swarm Optimization Algorithm (PSO). The resulting algorithm
is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of
the best features of each particular algorithm.
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1 Introduction
In recent decades Evolutionary Computation tech-
niques have been applied to the design of electronic
circuits and systems, leading to a novel area of re-
search called Evolutionary Electronics (EE) or Evolv-
able Hardware [3]. EE considers the concept for au-
tomatic design of electronic systems. Instead of us-
ing human conceived models, abstractions and tech-
niques, EE employs search algorithms to develop im-
plementations not achievable with the traditional de-
sign schemes, such as the Boolean methods: Kar-
naugh or the Quine-McCluskey.

Several papers proposed designing combinational
logic circuits using evolutionary algorithms and, in
particular, Genetic Algorithms (GAs) [2, 1, 4, 8]
and hybrid schemes such as the memetic algorithms
(MAs) [11]

Another emerging area of research of Artificial
Intelligence is the Swarm Intelligence (SI). SI is a
new computational and behavioral paradigm for solv-
ing distributed problems based on self-organization.
While its main principles are similar to those underly-
ing the behavior of natural systems consisting of many
individuals, such as ant colonies and flocks of birds, SI
is continuously incorporating new ideas, algorithms,
and principles from the engineering and basic science
communities.

Particle swarm optimization (PSO) is a popula-
tion based stochastic optimization technique devel-

oped by Dr. Eberhart and Dr. Kennedy in 1995,
inspired by social behavior of bird flocking or fish
schooling.

PSO shares many similarities with evolutionary
computation techniques such as GAs. The system is
initialized with a population of random solutions and
searches for optima by updating generations. How-
ever the PSO has no evolution operators such as
crossover and mutation. In PSO, the potential solu-
tions, called particles, fly through the problem space
by following the current optimum particles. The de-
tailed information will be given in following sections.

The advantages of the PSO, relatively to the GA,
is that the PSO is easier to implement and involves
fewer parameters to adjust.

This paper studies the combination of these two
techniques applied to combinational logic circuit syn-
thesis. Bearing these ideas in mind, the organization
of this article is as follows. Section 2 presents a brief
overview of the GA. Section 3 presents the PSO, while
section 4 exhibits the simulation results. Finally, sec-
tion 5 outlines the main conclusions and addresses
perspectives towards future developments.

2 The Genetic Algorithm
In this section we present the GA developed in the
study, in terms of the circuit encoding as a chromo-
some, the genetic operators and fitness functions.
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2.1 Problem Definition
A GA strategy is adopted to design combinational
logic circuits. The circuits are specified by a truth ta-
ble and the goal is to implement a functional circuit
with the least possible complexity. Two sets of logic
gates have been defined, as shown in Table 1, namely
Gset 6, with six logic gates and Gset 4, with four logic
gates. The WIRE means a direct connection (i. e.,
without any logic gate).

Gate Set Logic gates
Gset 6 {AND,OR,XOR,NOT,

NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}

Table 1: Gate sets

For each gate set the GA searches the solution
space, based on a simulated evolution aiming the sur-
vival of the fittest strategy. In general, the best individ-
uals of any population tend to reproduce and survive,
thus improving successive generations. However, in-
ferior individuals can, by chance, survive and also re-
produce [5]. In our case, the individuals are digital
circuits, which can evolve until the solution is reached
(in terms of functionality and complexity).

2.2 Circuit encoding
In the GA scheme the each circuit is encoded as a rect-
angular matrixA of logic cells as represented in figure
1.
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Figure 1: A 3× 3 matrixA representing a circuit with
inputX and outputY

The three genes:<input1> <input2> <gate
type> represent each cell, whereinput1andinput2are
one of the circuit inputs, if the cell is in the first col-
umn of the matrix, or, one of the outputs of a previous
cell, if the cell is not in the first column of the ma-
trix. The gate typeis one of the elements adopted in
the gate set. The chromosome is formed by as many
triplets of this kind as the matrix size demands. For
example, the chromosome that represents a 3× 3 ma-
trix is depicted in figure 2.
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Figure 2: Chromosome for the matrix of figure 1

2.3 The genetic operators
The initial population of circuits (strings) is generated
at random. The search is then carried out among this
population. The three different operators used are re-
production, crossover and mutation, as described in
the sequel.

In what concern the reproduction operator, the
successive generations of new strings are reproduced
on the basis of their fitness function. In this case, it is
used a tournament selection to select the strings from
the old population, up to the new population.

For the crossover operator, the strings in the new
population are grouped together into pairs at random.
Single point crossover is then performed among pairs.
The crossover point is only allowed between cells to
maintain the chromosome integrity.

The mutation operator changes the characteris-
tics of a given cell in the matrix. Therefore, it modi-
fies the gate type and the two inputs, meaning that a
completely new cell can appear in the chromosome.
Moreover, it is applied an elitist algorithm and, conse-
quently, the best solutions are always kept for the next
generation.

To run the GA we have to define the number of in-
dividuals to create the initial populationP . This pop-
ulation is always the same size across the generations,
until the solution is reached.

The crossover rateCR represents the percentage
of the populationP that reproduces in each genera-
tion. Likewise, the mutation rateMR is the percentage
of the populationP that can mutate in each genera-
tion.

2.4 The Fitness Function

The initial population of circuits (strings) is generated
at random. The search is then carried out among this
population. The three different operators used are re-
production, crossover and mutation, as described in
the sequel.

The calculation ofF in (1) is divided in two parts,
namelyf1 andf2, wheref1 measures the functional-
ity andf2 measures the simplicity. In a first phase, we
compare the outputY produced by the GA-generated
circuit with the required valuesYR, according to the
truth table, on a bit-per-bit basis. By other words,f11

is incremented byonefor each correct bit of the output
until f11 reaches the maximum valuef10, that occurs,
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when we have a functional circuit. Once the circuit is
functional, in a second phase, the GA tries to generate
circuits with the least number of gates. This means
that the resulting circuit must have as much genes
<gate type> ≡ <wire> as possible. Therefore, the
indexf2, that measures the simplicity (the number of
null operations), is increased byone (zero) for each
wire (gate) of the generated circuit, yielding:

f10 = 2ni × no (1a)

f11 = f11 + 1 if bit i of Y = bit i of YR,
i = 1, ..., f10

(1b)

f2 = f2 + 1 if gate type = wire (1c)

F =
{

f1, F < f10

f1 + f2, F ≥ f10
(1d)

whereni andno represent the number of inputs and
outputs of the circuit.

3 Particle Swarm Optimization
In the literature about PSO the term ‘swarm intelli-
gence’ appears rather often and, therefore, we begin
by explaining why this is so.

Non-computer scientists (ornithologists, biolo-
gists and psychologists) did early research, which led
into the theory of particle swarms. In these areas, the
term ‘swarm intelligence’ is well known and charac-
terizes the case when a large number of individuals
are able of accomplish complex tasks. Motivated by
these facts, some basic simulations of swarms were
abstracted into the mathematical field. The usage of
swarms for solving simple tasks in nature became an
intriguing idea in algorithmic and function optimiza-
tion.

Eberhart and Kennedy were the first to intro-
duce the PSO algorithm [6], which is an optimiza-
tion method inspired in the collective intelligence of
swarms of biological populations, and was discovered
through simplified social model simulation of bird
flocking, fishing schooling and swarm theory.

3.1 Parameters

In the PSO, instead of using genetic operators, as in
the case of GAs, each particle (individual) adjusts its
flying according with its own and its companions ex-
periences. Each particle is treated as a point in aD-
dimensional space and is manipulated as described be-
low in the original PSO algorithm:

vid = vid+c1 rand()(pid−xid)+c2 rand()(pgd−xid)
(2)

xid = xid + vid (3)

wherec1 andc2 are positive constants andrand() is a
random function in the range [0,1],Xi = (xi1, xi2,. . . ,
xiD) represents theith particle,Pi = (pi1, pi2,. . . ,piD)
is the best previous position (the position giving the
best fitness value) of the particle, the symbolg repre-
sents the index of the best particle among all particles
in the population, andVi = (vi1, vi2,. . . , viD) is the
rate of the position change (velocity) for particlei.

Expression (1) represents the flying trajectory of
a population of particles. Equation (2) describes how
the velocity is dynamically updated and equation (3)
the position update of the “flying” particles. Equa-
tion (2) is divided in three parts, namely the momen-
tum, the cognitive and the social parts. In the first part
the velocity cannot be changed abruptly: it is adjusted
based on the current velocity. The second part repre-
sents the learning from its own flying experience. The
third part consists on the learning group flying experi-
ence [7, 9].

The first new parameter added into the original
PSO algorithm is the inertia weight. The dynamic
equation of PSO with inertia weight is modified to be:

vid = wvid + c1 rand()(pid − xid)+
c2 rand()(pgd − xid)

(4)

xid = xid + vid (5)

wherew constitutes the inertia weight that introduces
a balance between the global and the local search abil-
ities. A large inertia facilitates a global search while a
small inertia weight facilitates the local search.

Another parameter, called constriction coefficient
k, is introduced with the hope that it can insure a PSO
to converge. A simplified method of incorporating it
appears in equation (3), wherek is function ofc1 and
c2 as presented in equation (8).

vid = k[vid + c1randpid − xid+
c2randpgd − xid]

(6)

xid = xid + vid (7)

k = 2
(
2− φ−

√
φ2 − 4φ

)−1
, Φ = c1 + c2, Φ > 4

(8)
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3.2 Topologies

There are two different PSO topologies, namely the
global version and the local version. In the global
version of PSO, each particle flies through the search
space with a velocity that is dynamically adjusted ac-
cording to the particle’s personal best performance
achieved so far and the best performance achieved up
to the moment by all particles. On the other hand,
in the local version of PSO, each particle’s velocity
is adjusted according to its personal best and the best
performance achieved so far within its neighborhood.
The neighborhood of each particle is generally defined
as topologically nearest particles to the particle at each
side.

3.3 Algorithm

PSO is an evolutionary algorithm simple in concept,
easy to implement and computationally efficient. Fig-
ures 3 and 4 present the generic genetic algorithm and
the original procedure for implementing the PSO al-
gorithm, respectively.

1. Initialize the population

2. Calculate the fitness of each individual in the

population

3. Reproduce selected individuals to form a new

population

4. Perform evolutionary operations such as

crossover and mutation on the population

5. Loop to step 2 until some condition is met

Figure 3: Generic genetic algorithm

1. Initialize population in hyperspace

2. Evaluate fitness of individual particles

3. Modify velocities based on previous best and

global (or neighborhood) best

4. Terminate on some condition

5. Go to step 2

Figure 4: PSO algorithm

The different versions of the PSO algorithms are:
the real-valued PSO, which is the original version of
PSO and is well suited for solving real-value prob-
lems; the binary version of PSO, which is designed
to solve binary problems; and the discrete version of
PSO, which is good for solving the event-based prob-
lems. To extend the real-valued version of PSO to bi-
nary/discrete space, the most critical part is to under-
stand the meaning of concepts such as trajectory and
velocity in the binary/discrete space.

Kennedy and Eberhart [4] use velocity as a prob-
ability to determine whetherxid (a bit) will be in one
state or another (zero or one). The particle swarm for-
mula of equation (2) remains unchanged, except that

nowpid andxid are integers in [0.0,1.0] and a logistic
transformationS(vid) is used to accomplish this mod-
ification. The resulting change in position is defined
by the following rule:

if rand() < S(vid)] then xid = 1; else xid = 0;
(9)

where the functionS(v) is a sigmoid limiting trans-
formation.

4 Combination of the GA and the
PSO algorithms

The algorithm developed in the present work com-
bines a GA with a PSO. The GA is executed in first
place and is followed by the PSO. The interlacing of
the algorithms is repeated until the solution is found.
The number of generations of each algorithm (n1 for
the GA andn2 for the PSO) is initially defined at the
moment of running the simulations.

4.1 Experiments and Simulation Results

Reliable execution and analysis of a EA usually re-
quires a large number of simulations to provide a rea-
sonable assurance that stochastic effects have been
properly considered. Therefore, we developedn = 20
simulations for each case under analysis.

The experiments consist on running the combina-
tion of algorithms to generate a typical combinational
logic circuit, namely a 2-to-1 multiplexer (M2 − 1)
and a 4-bit parity checker (PC4), using the fitness
function described previously and the two gate sets
presented in table 1.

• the M2 − 1 circuit, has 3 inputsX = {S0, I1,
I0} and 1 outputYR = {O}. The matrixA size
is 3× 3, andCL = 27. Since the 2-to-1 multi-
plexer hasni = 3 andno= 1, it resultsf10 = 8 and
F ≥ 12,

• thePC4 circuit, has 4 inputsX = {A3, A2, A1

A0} and 1 outputYR = {P}. The matrixA size is
4× 4, and the length of each string representing a
circuit (i.e., the chromosome length) isCL = 48.
In this caseni = 4 andno = 1, resultingf10 = 16
andF ≥ 24.

Having a superior performance means achieving
solutions with a smaller average number of genera-
tions Av(N) and a smaller standard deviation of the
number of generationsS(N) to achieve the solution in
order to reduce the stochastic nature of the algorithm.
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Figures 5 - 8 depict the average number of genera-
tionsAv(N) and the standard deviation of the number
of generations to achieve the solutionS(N) with 0≤
n1, n2 ≤ 6 for theM2 − 1 circuit, using the Gsets 6
and 4, respectively.

Figures 9 - 12 show the average number of gener-
ationsAv(N) and the standard deviation of the number
of generations to achieve the solutionS(N) with 0≤
n1, n2 ≤ 6 for thePC4 circuit, using Gsets 6 and 4,
respectively.

Analyzing the charts is possible to see the advan-
tage of combining the two algorithms particularly in
respect to the average number of generationsAv(N).

We verify the existence of an optimal locus from
(n1, n2)= (2,4) up to (n1, n2) = (4,2).

5 CONCLUSIONS

The main conclusion of this study is that the combina-
tion of the evolutionary algorithm with the swarm in-
telligence algorithm leads to superior results than the
execution of the same algorithms individually. With
this hybrid algorithm it is possible to take advantage
of the benefits of each algorithm.

Future research will address the automatic adjust,
during the execution, of the number of iterationsn1
andn2 of each evolutionary algorithm.
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