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Abstract: In numerous practical applications precise control of a subsystem passively 
connected to a precisely controllable subsystem by elastic connection is needed. As typical 
example is a crane carrying its payload swinging on an elastic string can be mentioned. 
From the point of view of control technology this task is interesting since the connected 
degree of freedom has little damping and it is apt to keep swinging accordingly. The 
traditional approaches apply the input shaping technology to assist the human operator 
responsible for the manipulation task. In the present paper a novel adaptive approach 
applying fixed point transformations based iterations having local basin of attraction is 
proposed for simultaneously tackle the problems originating from the imprecisions of the 
available dynamic model of the system to be controlled and the swinging phenomenon. In 
the simulation investigations presented a simple model consisting of two connected mass-
points is considered: one of them can directly by controlled by control forces, the other one 
(in the role of the payload) is dragged by the controlled point via an elastic spring. The 
control considers the 4th time-derivative of the trajectory of the dragged system. 
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1 Introduction 

The control of subsystems passively connected to directly controllable systems by 
elastic connection of little damping is an interesting task that also has strong 
practical concern, too. Any payload carried by some crane normally is connected 
to the directly controllable engine via an elastic string that has very little damping, 
therefore it is apt to have long-lasting swinging. Precise positioning of the 
swinging bodies traditionally is solved by the so-called “input shaping approach” 
that goes back to the nineties of the past century. The main idea of input shaping is 
the generation command signals that can efficiently reduce payload oscillations by 
slightly modifying the operator’s command by convolving it with a series of 
impulses [1], [2]. This technique can cancel out the system’s own motion-induced 
oscillations. It was successfully used to reduce transient and residual oscillation in 
various systems, e.g. in coordinate measuring machines [3], and even recently in 
various cranes [4], [5], [6], [7]. The positive effect of this technique has been 
shown in the reduction of task completion time and obstacle collisions in a 
number of crane operator performance studies. It is a present trend to further 
improve operator performance by assisting crane operators in the estimation of the 
crane’s stopping location. From mathematical point of view this technique is 
strictly related to linear systems and linear approximation of nonlinear ones as 
well as to linear control solutions (e.g. [8]). 

An alternative approach to this problem may be the simultaneous tackling of the 
imprecisions of the available dynamic model of the system to be controlled and 
the swinging problem. The most sophisticated adaptive control elaborated for 
robots is the Slotine-Li controller [9] that tries to learn certain parameters of the 
dynamic model using Lyapunov’s 2nd Method. It has the main deficiency that it is 
unable to compensate the effects of lasting unknown external perturbations [10], 
and is unable to identify the parameters of strongly nonlinear phenomena as 
friction for which sophisticated techniques have to be applied (e.g. [11]). 
Furthermore, due to insisting on the use of the Lyapunov function technique the 
order of the ordinary differential equations to be handled by this method is limited 
to 2. For getting rid of the formal restrictions that normally originate from the use 
of Lyapunov functions alternative possibilities were considered for developing 
adaptive controllers. In [12] the mathematical model of the system to be controlled 
was considered as a mapping between its desired and realized responses in which 
the desired response was calculated on purely kinematical basis, and the 
appropriate excitation to obtain this response was computed by the use of a partial 
and approximate dynamic model of the system, while the realized response was 
measured. It was shown that in this approach the “response” of the system may be 
arbitrary order derivative of the state variables, it can be even a fractional order 
one. Its robust variant was successfully applied even for a strongly nonlinear 
system as e.g. the Van der Pol Oscillator [13]. The essence of this method is 
obtaining a convergent iteration using contractive mapping in Banach spaces, and 
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to some extent it is akin to other iterative approaches as e.g. iterative tuning 
techniques (e.g. [14]). Its details are considered in the next section. 

2 The Excitation - Response Scheme and Fixed Point 
Transformations 

Several control tasks can be formulated by using the concepts of the appropriate 
”excitation” Q of the controlled system to which it is expected to respond by some 
prescribed or “desired response” rd. The appropriate excitation can be computed 
by the use of some inverse dynamic model ( )drQ ϕ= . Since normally this inverse 
model is neither complete nor exact, the actual response determined by the 
system's dynamics, ψ, results in a realized response rr that differs from the desired 
one: ( )( ) ( )ddr rfrr == :ϕφ . It is worth noting that these functions may contain 
various hidden parameters that partly correspond to the dynamic model of the 
system, and partly pertain to unknown external dynamic forces acting on it. Due to 
phenomenological reasons the controller can manipulate or “deform” the input 
value from rd so that ( )dd

∗= rfr . Other possibility is the manipulation of the 

output of the rough model as ( )( )dd rr ∗= ϕφ . In the sequel it will be shown that 
for SISO systems the appropriate deformation can be defined as some Parametric 
Fixed Point Transformation. The latest version elaborated for SISO systems was 
the function 

( ) ( ) ( )[ ]( )[ ] KrrfABKrrrG dd −−++= tanh1;  (1) 

with the following properties: if f(r*)=rd then G(r*,rd)=r*, G(-K,rd)=-K, and 

( ) ( )
( )[ ]( ) ( )[ ]( )[ ]d

d
rrfAB

rrfA
rfBAKrG −++
−

′
+= tanh1

cosh
'

2  (2) 

that can be made contractive in the vicinity of r* by properly setting the 
parameters A, B, and K, in which case the iterative sequence rn+1=G(rn,rd)→r* as 
n→∞. The saturated nonlinear behavior of the tanh function played very important 
role in (1). The generalization of (1) for Multiple Input – Multiple Output (MIMO) 
systems may be done in different manners. A possibility is the use of the norm for 
the system-response ∑=

i
irr , and a multiple dimensional sigmoid function in 

the role of the tanh function as ( ) nn ℜ→ℜ:rσ  as ( ) ( )i
i

i ry σ=  in which each 
function ( ) ( )iσ  is a single-dimensional sigmoid. If each of them is contractive, 

i.e. 10 <≤∃∀ iMi  so that ( ) ( ) ( ) ( ) baMba i
ii −≤−σσ  then 
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that means that this multiple dimensional sigmoid function is contractive in a 
Banach space. In this case it is possible to find the Ai, Bi, and Ki control 
parameters for each component i. An alternative possibility is to define the 
response error and its direction in the nth control step as 

nnn
d

nn hherrfh /:,)( =−= , and apply the following transformation: 

( ) ( )nnnnnn ABBKBB hxxexxh σε ==++=> ++ :~, else ~~1 then  if 11 ,  (4) 

in which ε is a small positive threshold value for the response error. If the 
response error is quite small, the system already attained the fixed point and no 
any manipulation is needed with the unit vector the computation of which would 
be singular. In the case of this implementation we have four control parameters, ε, 
A, B, and K, and a single sigmoid function σ(). This realization applies correction 
in the direction of the response error, and normally leads to more precise tracking 
than the more complicated one using separate control parameters for various 
directions. In the sequel this realization will be applied for the swinging reduction 
problem. The command signal given to the model-based controller will be referred 
to as “required” signal. In the non-adaptive case the “required” and “desired” 
values are equal to each other, while in the adaptive case they differ from each 
other according to the adaptive law coded in (4). 

3 The Swinging Problem as Higher Order Control 
Task 

Let us consider the very simple model of two mass-points connected by a spring 
of stiffness k and zero force length L0. The motion of mass point A of mass mA and 
coordinates x has to be controlled by directly applying forces to mass point B of 
mass mB and coordinates y. The equations of motion of this system is given as 

( )

( ) ugxy
xy
xyyy

gxy
xy
xyxx

++−−
−
−

−−=

+−−
−
−

+−=

gravBBB

gravAAA

mLm

mLm

0

0

μ

μ

,  (5) 

in which μA and μB are viscous damping coefficients, ggrav denotes the 
gravitational acceleration, and u is the active force that can be used for control 
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purposes, the ||x|| symbol denotes the Frobenius norm. In a more general form (5) 
can be written as 

( ) ( )uxyygyyxxfx ,,,,,, ==   (6) 

from which it follows that the 2nd time-derivative of x cannot be instantaneously 
set by the control force u. It is evident that we have to derive the 1st equation of 
the group (6) two times according to time to make y  appear in it. According to 
the “chain rule” the following set of equations has to be considered: 

( ) ( ) ( ) ( )uxyygyyyxxxfxyyyxxxxfx ,,,,,,,,ˆ,,,,,,,~4 ===   (7) 

that means that the desired 4th time-derivative of x can be prescribed and related to 
y , that is to the control force. Practically, by using the 1st and 2nd equations of (7) 
for a desired x(4)D a desired Dy  can be constructed for which, from the 3rd 
equation a control force can be computed. Regarding the construction of x(4)D it is 
reasonable that human operators can well estimate position and velocity on the 
basis of optical observations but cannot well estimate acceleration and higher 
derivatives. However, by measuring the deformation of microscopic components 
efficient acceleration sensors are available in our days. Via numerical derivation 
of their signal the third and 4th time-derivatives of the coordinates become 
available. In the forthcoming simulations the simple trajectory tracking strategy 
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was applied for a positive constant parameter Λ. In general similar command can 
be constructed if we assume that the nominal trajectory is planned in advance, and 
the 0th and 1st order corrections originate from the human operator and the 
additional higher order ones come from the controller. In the sequel simulation 
results will be presented. It is important to note that in the simulations only 2nd 
order equations are numerically integrated, the 4th derivatives of x occur only in 
the control law. 

4 Simulation Results 

In the simulations the exact parameters of the system model were mA=1, mB=2 kg, 
μA=10, μB=20 Ns/m, k=100 N/m, L0=1 m, while their estimated values used by the 
controller were mA_=0.8, mB_=2.3 kg, μA_=15, μB_=18 Ns/m, k_=110 N/m, L0_=1.2 
m. The adaptive control parameters were K=-3.2×104, B=1, A=2×10-6, ggrav had the 
value of 10 m/s2 in the –x2 direction. The nominal trajectory consisted of constant 
3rd derivative, constant acceleration, and constant velocity segments. 



J. K. Tar et al. 
A Higher Order Adaptive Approach to Tackle the Swinging Problem 

 150 

The simulations made for the non-adaptive controller soon became divergent. In 
Fig. 1 only the initial phase of the so obtained motion can be traced. It can be seen 
that the “desired” and the “required” 4th time-derivatives are identical and they 
considerably differ from the realized values. 

 

 

 
Figure 1 

The operation of the non-adaptive control: x1
N (black solid), x2

N (blue dashed), x1 (green with dense 
dashes), x2 (light blue dash-dot); for the tracking errors: x1

N- x1 (black solid), x2
N- x2 (blue dashed); for 

the control forces: u1 (black solid), u2 (blue dashed); for the 4th time-derivatives: x1
(4)D (black solid), 

x2
(4)D (blue dashed), x1

(4)Req (green with dense dashes), x2
(4)Req (light blue dash-dot), x1

(4) (red dash-dot-
dot), x2

(4) (magenta dash-dot); for the displacement of the directly controlled mass point: y1 (black 
solid), y2 (blue dashed) 

The variation of the control forces is very slow, and the displacement of the driven 
mass-point is almost negligible. This behavior well mirrors the expected property 
that the system has a kind of long term memory because considerable time is 
needed for the displacement of the directly driven body to result in considerable 
deformation of the elastic link that can exert considerable driving force on the 
indirectly controlled body. 
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Figure 2 

Operation of the adaptive controller; for the trajectories: x1
N (black solid), x2

N (blue dashed), x1 (green 
with dense dashes), x2 (light blue dash-dot); for the tracking errors: x1

N- x1 (black solid), x2
N- x2 (blue 

dashed); for the control forces: u1 (black solid), u2 (blue dashed); for the 4th time-derivatives: x1
(4)D 

(black solid), x2
(4)D (blue dashed), x1

(4)Req (green with dense dashes), x2
(4)Req (light blue dash-dot), x1

(4) 
(red dash-dot-dot), x2

(4) (magenta dash-dot); for the displacement of the directly controlled mass point: 
y1 (black solid), y2 (blue dashed) 

The adaptive counterpart of Fig. 1 is Fig. 2 that reveals precise trajectory tracking 
and considerable adaptive deformation of the input (the “required”) signal. In this 
case the deformed ”required” 4th time derivatives significantly differ from the 
“desired” ones that well agree with the “realized” values. In both of the charts 
describing the 4th derivatives and the control forces the controller’s effort to 
compensate swinging phenomena can well be traced. Due to this compensation 
effect the displacement of the bodies remains free of any swinging. (Only small 
components of swinging can be traced in the charts describing the tracking errors.) 
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Conclusions 

In this paper a possible application of a fixed point transformation based iterative 
control was studied for tackling the swinging problem that normally occur when 
various payloads are carried by cranes using elastic wires/ropes to realize 
mechanical connection between the cranes and their burden. In this application 
there is a possibility to apply a purely kinematically designed tracking policy that 
partly can originate from the human operator, and partly from the sensor system. 
The simulation results here presented are promising. In the next step more 
extended simulations have to be done in which the role of the directly controlled 
mass-point the crane as a more complex connected subsystem can be present. 
Earlier investigations foster the expectation that a similar, simple control approach 
can successfully work for such a more complex, dynamically coupled system, too. 
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