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Abstract   This paper analyzes the signals captured during impacts and vibra-

tions of a mechanical manipulator. To test the impacts, a flexible beam is clamped 

to the end-effector of a manipulator that is programmed in a way such that the rod 

moves against a rigid surface. Eighteen signals are captured and theirs correlation 

are calculated. A sensor classification scheme based on the multidimensional scal-

ing technique is presented. 

1 Introduction 

In practice the robotic manipulators present some degree of unwanted vibrations. 

The advent of lightweight arm manipulators, mainly in the aerospace industry, 

where weight is an important issue, leads to the problem of intense vibrations. On 

the other hand, robots interacting with the environment often generate impacts that 

propagate through the mechanical structure and produce also vibrations. 
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Therefore, the manipulator motion produces vibrations, either from the structural 

modes or from end-effector impacts. In order to analyze these phenomena a robot 

signal acquisition system was developed. 

Due to the multiplicity of sensors, the data obtained can be redundant because the 

same type of information may be seen by two or more sensors. Because of the 

price of the sensors, this aspect can be considered in order to reduce the cost of the 

system. On the other hand, the placement of the sensors is an important issue in 

order to obtain the suitable signals of the vibration phenomenon. Moreover, the 

study of these issues can help in the design optimization of the acquisition system. 

In this line of thought a sensor classification scheme is presented. 

Several authors have addressed the subject of the sensor classification scheme. 

White (White 1987) presents a flexible and comprehensive categorizing scheme 

that is useful for describing and comparing sensors. The author organizes the sen-

sors according to several aspects: measurands, technological aspects, detection 

means, conversion phenomena, sensor materials and fields of application. Micha-

helles and Schiele (Michahelles and Schiele 2003) systematize the use of sensor 

technology. They identified several dimensions of sensing that represent the sens-

ing goals for physical interaction. A conceptual framework is introduced that al-

lows categorizing existing sensors and evaluates their utility in various applica-

tions. This framework not only guides application designers for choosing 

meaningful sensor subsets, but also can inspire new systems and leads to the eval-

uation of existing applications.  

Today’s technology offers a wide variety of sensors. In order to use all the data 

from the diversity of sensors a framework of integration is needed. Sensor fusion, 
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fuzzy logic, and neural networks are often mentioned when dealing with problem 

of combing information from several sensors to get a more general picture of a 

given situation. The study of data fusion has been receiving considerable attention 

(Esteban et al. 2005; Luo and Kay 1990). A survey of the sensor fusion techniques 

for robotics can be found in (Hackett and Shah 1990). Henderson and Shilcrat 

(Henderson and Shilcrat 1984) introduced the concept of logic sensor that defines 

an abstract specification of the sensors to integrate in a multisensor system. 

The recent developments of micro electro mechanical sensors (MEMS), with un-

wired communication capabilities, allow a sensor network with interesting capaci-

ty. This technology was adopted in several applications (Arampatzis and Manesis 

2005), including robotics. Cheekiralla and Engels (Cheekiralla and Engels 2005) 

proposed a classification of the unwired sensor networks according to its functio-

nalities and properties. 

This paper presents a development of a sensor classification scheme based on the 

multidimensional scaling technique. 

Bearing these ideas in mind, this paper is organized as follows. Section 2 de-

scribes briefly the robotic system enhanced with the instrumentation setup. Sec-

tions 3 and 4 present some fundamental concepts, and the experimental results, re-

spectively. Finally, section 5 draws the main conclusions and points out future 

work. 
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2 Experimental platform 

The developed experimental platform has two main parts: the hardware and the 

software components (Lima et al. 2005). The hardware architecture is shown in 

Fig. 1. Essentially it is made up of a robot manipulator, a personal computer (PC), 

and an interface electronic system. 
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Fig. 1. Block diagram of the hardware architecture
 

The interface box is inserted between the robot arm and the robot controller, in or-

der to acquire the internal robot signals; nevertheless, the interface captures also 

external signals, such as those arising from accelerometers and force/torque sen-

sors. The modules are made up of electronic cards specifically designed for this 

work. The function of the modules is to adapt the signals and to isolate galvanical-

ly the robot’s electronic equipment from the rest of the hardware required by the 

experiments. 
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The software package runs in a Pentium 4, 3.0 GHz PC and, from the user’s point 

of view, consists of two applications: the acquisition application and the analysis 

package. The acquisition application is a real time program for acquiring and re-

cording the robot signals. 

After the real time data acquisition, the analysis package processes the data off-

line in two phases, namely, pre-processing and processing. The preprocessing 

phase consists of the signal selection in time, and their synchronization and trun-

cation. The processing stage implements several algorithms for signal processing 

such as the auto and cross correlation, and Fourier transform (FT). 

3 Main concepts 

This section presents a review of the fundamental concepts involved with Multi-

dimensional scaling (MDS) and metrics in the time domain, namely the correla-

tion. 

3.1 Multidimensional scaling 

The MDS has its origins in psychometrics and psychophysics where is used as a 

tool for perceptual and cognitive modeling. From the beginning MDS has been 

applied in many fields, such as psychology, sociology, anthropology, economy, 

educational research, etc. In last decades this technique has been applied also in 

others areas, including computational chemistry (Glunt et al. 1993), machine 



6  

learning (Tenenbaum et al. 2000), concept maps (Martinez–Torres et al. 2005) 

and wireless network sensors (Mao et al. 2009). 

MDS is a generic name for a family of algorithms that construct a configuration of 

points in a low dimensional space from information about inter-point distances 

measured in high dimensional space. The new geometrical configuration of points, 

which preserves the proximities of the high dimensional space, allows gaining in-

sight in the underlying structure of the data and often makes it much easier to un-

derstand. 

The problem addressed by MDS can be stated as follows: given n items in a m–

dimensional space and an n × n matrix of proximity measures among the items, 

MDS produces a p-dimensional configuration X, p ≤ m, representing the items 

such that the distances among the points in the new space reflect, with some de-

gree of fidelity, the proximities in the data. The proximity measures the 

(dis)similarities among the items, and, in general, it is a distance measure: the 

more similar two items are, the smaller their distance is. The Minkowski distance 

metric provides a general way to specify distance for quantitative data in a multi-

dimensional space: 

( ) rm

k

r

jkikkij xxwd
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−=  (1) 

where m is the number of dimensions, xik is the value of dimension k for object i 

and wk is a weight. For wk = 1, with r = 2, the metric equals the Euclidian distance 

metric, while r = 1 leads to the city-block (or Manhattan) metric. In practice, nor-

mally the Euclidian distance metric is used but there are several others definitions 

that can be applied, including for binary data (Cox & Cox 2001). 
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Typically MDS is used to transform the data into two or three dimensions, and vi-

sualizing the result to uncover hidden structure in the data, but any p ≤ m is also 

possible. A rule of thumb to determine the maximum number of m, is to ensure 

that there are at least twice as many pairs of items then the number of parameters 

to be estimated, resulting in m ≥ 4p + 1 (Carreira-Perpinan 1997). The geometrical 

representation obtained with MDS is indeterminate with respect to translation, ro-

tation, and reflection (Fodor 2002). 

There are two forms of MDS: metric MDS and nonmetric MDS. The metric MDS 

uses the actual values of dissimilaries, while nonmetric MDS can use only their 

ranks. Metric MDS assumes that the dissimilarities δij calculated in the original m–

dimensional data and distances dij in the p–dimensional space are related as fol-

lows dij ≈ f(δij), where f is a continuous monotonic function. Metric (scaling) refers 

to the type of transformation f of the dissimilarities and its form determines the 

MDS model. If dij = δij (it means f = 1) and a Euclidian distance metric is used we 

obtain the classical (metric) MDS. 

In metric MDS the dissimilarities between all objects are known numbers and they 

are approximated by distances. Thus objects are mapped into a low dimensional 

space, distances are calculated, and compared with the dissimilarities. Then ob-

jects are moved in such way that the fit becomes better, until an objective function 

is minimized. In the context of MDS this objective function is called stress. 

In nonmetric MDS, the metric properties of f are relaxed but the rank order of the 

dissimilarities must be preserved. The transformation function f must obey the 

monotonicity constraint δij < δrs ⇒ f(δij) ≤ f(δrs) for all objects. The advantage of 
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nonmetric MDS is that no assumptions need to be made about the underlying 

transformation function f. Therefore, it can be used in situations that only the rank 

order of dissimilarities is known (ordinal data). Additionally, it can be used in cas-

es which there are incomplete information. In such cases, the configuration X is 

constructed from a subset of the distances, and, at the same time, the other (miss-

ing) distances are estimated by monotonic regression. 

In nonmetric MDS it is assumed that dij ≈ f(δij), therefore f(δij) are often referred as 

the disparities (Kruskal 1978; Martinez et al. 2005) in contrast to the original dis-

similarities δij, on one hand, and the distances dij of the configuration space, on the 

other hand. In this context, the disparity is a measure of how well the distance dij 

matches the dissimilarity δij. 

There is no rigorous statistical method to evaluate the quality and the reliability of 

the results obtained by an MDS analysis. However, there are two methods used of-

ten for that purpose: The Shepard plot and the stress. The Shepard plot (Shepard 

1962) is a scatterplot of the dissimilarities and disparities against the distances, 

usually overlaid with a line with a unitary slope. The Shepard plot provides a 

qualitative evaluation of the goodness of fit, while the stress value gives a quanti-

tative evaluation. Additionally, the stress plotted as a function of dimensionality 

can be used to estimate the adequate p–dimension. When the curve ceases to de-

crease significantly we found an “elbow” that may correspond to a substantial im-

provement in fit. 

Beyond the aspects referred before, there are others developments of MDS that in-

cludes the replicated MDS and weight MDS. The replicated MDS allows the anal-
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ysis of several matrices of dissimilarity data simultaneously. The weighted MDS 

generalizes the distance model as defined in (1). 

3.2 The Correlation coefficient  

Several indices can be used to evaluate the relashionship between the signal, in-

cluding statistical, entropy and information theory approaches. These metrics are 

based on a bidimensional probability density function associated with the two sig-

nals x1(t) and x2(t) acquired in the same time interval and can be calculated accord-

ing with the expression: 
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where β is the bidimensional histogram. 

The marginal probability distributions of the signals x1(t) and x2(t) are denoted as 

P(x1) and P(x2), respectively. The expected values, E(x1) and E(x2), and the va-

riances, V(x1) and V(x2), are then easily obtained. 

The correlation coefficient R (Orfanidis 1996) is a statistical index that provides a 

measurement of the similarity between two signals x1(t) and x2(t) and is define as 
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where E(x1x2) is the joint expected value. 
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4 Experimental results 

According to the platform described in section 2 a set of experiments is developed. 

Based on the signals captured from the robot this section presents several results 

obtained both in the time and frequency domains. 

In the experiments a flexible link is used, consisting of a long and round flexible 

steel rod clamped to the end-effector of the manipulator. In order to analyze the 

impact phenomena in different situations two types of beams are adopted. Their 

physical properties are shown in Table 1. The robot motion is programmed in a 

way such that the rods move against a rigid surface. Figure 2 depicts the robot 

with the flexible link and the impact surface. 

During the motion of the manipulator the clamped rod is moved by the robot 

against a rigid surface. An impact occurs and several signals are recorded with a 

sampling frequency of fs = 500 Hz. The signals come from several sensors, such as 

accelerometers, force and torque sensor, position encoders, and current sensors. 

In order to have a wide set of signals captured during the impact of the rods 

against the vertical screen thirteen distinct trajectories were defined. Those trajec-

tories are based on several points selected systematically in the workspace of the 

robot, located on a virtual Cartesian coordinate system (see Fig. 3). This coordi-

nate system is completely independent from that used on the measurement system. 

For each trajectory the motion of the robot begins in one of these points, moves 

against the surface and returns to the initial point. A parabolic profile was used for 

the trajectories. 
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Characteristics Thin rod Gross rod 
Material Steel Steel 
Density [kg m−3] 4.34 × 103 4.19 × 103 
Mass [kg] 0.107 0.195 
Length [m] 0.475 0.475 
Diameter [m] 5.75× 10−3 7.9× 10−3 

Fig. 2. Steel rod impact against a rigid 
surface 

Table 1. Physical properties of the 
flexible beams 

 

 
Fig. 3. Schematic representation 3D (left) and 2D (right) of the robot and the 
impact surface on the virtual cartesian coordinate system 

 

4.1 Analysis in the time domain 

Figures 4 to 7 depict some of the signals corresponding to the cases: (i) without 

impact, (ii) with impact of the rod on a gross screen and (iii) with impact of the 

rod on a thin screen, using either the thin, or the gross rod. 

In this chapter only the most relevant signals are depicted, namely the forces and 

moments at the gripper sensor, the electrical currents of the robot’s axes motors, 

and the rod accelerations. The signals present clearly a strong variation at the in-

stant of the impact that occurs, approximately, at t = 3 s. Consequently, the effect 

of the impact forces (Fig. 4 left) and moments (Fig. 4 right) is reflected in the cur-
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rent required by the robot motors (Fig. 6). Moreover, as expected, the amplitudes 

of forces due to the gross screen (case ii) are higher than those corresponding to 

the thin screen (case iii). On the other hand, the forces with the gross rod (Fig. 4 

right) are higher than those that occur with the thin rod (Fig. 4 left). The torques 

present also an identical behavior in terms of its amplitude variation for the tested 

conditions (see Fig. 5). 

 

 

Fig. 4. Forces { Fx, Fy, Fz } at the gripper sensor: thin rod (left); gross rod (right) 
 

 
Fig. 5. Moments { Mx, My, Mz } at the gripper sensor: thin rod (left); gross rod 
(right) 

 
Figure 7 presents the accelerations at the rod free-end (accelerometer 1), where the 

impact occurs, and at the rod clamped-end (accelerometer 2). The amplitudes of 
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the accelerometers signals are higher near the rod impact side. Furthermore, the 

values of the accelerations obtained for the thin rod (Fig. 7 left) are higher than 

those for the gross rod (Fig. 7 right), because the thin rod is more flexible. 

 

Fig. 6. Electrical currents { I1, I2, I3, I4, I5 } of the robot’s axes motors: thin rod (left); 
gross rod (right) 

 

Fig. 7. Rod accelerations { A1, A2 }: thin rod (left); gross rod (right) 
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4.2 Sensor classification 

Figure 8 shows the squared correlation coefficient R2 between the signals captured 

during the same impact trajectory, for an experiment in the case of (i) using the 

gross rod. The results obtain with R2 are simetric relatively to the main diagonal of 

the matrix formed by R2(xi,xj), i = j, where the metric has a maximum, as expected. 

To clearly visualize the results only one half is depicted. The correlation between 

the same families of signals is higher than the correlation between different fami-

lies. For example, the correlation between the currents and positions are low. The 

same occurs between the currents and the forces, moments and accelerations. It 

exists a strong correlation between the positions and the forces, moments and ac-

celerations that depends, as expected, on the trajectory. 

 

Fig. 8. Correlation between  the signals {Pn–positions, In–electrical currents, 
Fn–forces, Mn–moments, An–accelerations} for the case (i) using the gross 
rod 
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In order to reveal some hypothetical hidden relationships between the signals the 

MDS technique is used. Several MDS criteria were tested. The Sammon (Sammon 

1969) criterion revealed good results and is adopted in this work. Unlike in usual 

MDS, this nonlinear mapping criterion gives weight to small distances, which 

helps to detect clusters. In Fig. 9 is shown the 2–D (left) and 3–D (right) locus of 

sensor positioning based on the correlation measure between the signal for the 

case (i) using the gross rod. Three groups of signals can be defined. The ellipses 

depicted in the chart represent two of these groups. The positions {P1, P2, P3, P4, 

P5} signals are located close to each other. The electrical currents {I1, I2, I3, I4, I5} 

are situated on the right of the chart and near each other. Finally, the remaining 

signals form a big group composed by the forces {Fx, Fy, Fz}, moments {Mx, My, 

Mz} and the accelerations {A1, A2} situated at scattered positions away from each 

other. A deeper insight into the nature of this feature must be envisaged to under-

stand the behavior of these signals. 

Fig. 10 shows two testes developed to evaluate the consistency of the results ob-

tained by MDS analysis. The value of the stress function versus the dimension is 

Fig. 9. Locus of sensor positioning based on the correlation measure between the 
signal for the case (i) using the gross rod: 2D (left); 3D (right) 
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shown in Fig. 10 (left), which allows the estimation of the adequate p–dimension. 

An “elbow” occurs at dimension three for a low value of stress, which corresponds 

to a substantial improvement in fit. Additionally, the Shepard plot (Fig. 10 right) 

shows the fitting of the 3–D configuration distances to the dissimilarities. 

Fig. 10. Evaluation of MDS results: Stress test (left); Shepard plot (right) 

5 Conclusion 

In this paper an experimental study was conducted to investigate several robot 

signals. A new sensor classification strategy was proposed. The adopted metho-

dology revealed hidden relationships between the robotic signals and leads to ar-

range them in three groups. 

The results merit a deeper investigation as they give rise to new valuable concepts 

towards instrument control applications. In this line of thought, in future, we plan 

to pursue several research directions to help us further understand the behavior of 

the signals. The classification presented was obtained for an experiment corres-

ponding to one trajectory. In future this approach should be applied for all the thir-

teen trajectories referred before. In this perspective, the replicated MDS technique 

can be used to analyze simultaneously the respective matrices of dissimilarity. 
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Additionally, others metrics such as the entropy and the mutual information will 

be used as proximity measures for the MDS technique. 
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