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Abstract: Compete in the global market requires high qual-
ity of products with short time of manufacture, so it needs to
minimize the time that the machinery is stopped, as well as
a rapid quality control of manufactured products. These pro-
cess are achieved by maintenance strategies that are strongly
based on the subjective knowledge of an expert. In this work
we use the proficiency of the fractional order calculus to ap-
proximate complex behavior with a few parameter, providing
a new tool for quickly health evaluation.
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1. INTRODUCTION

A failure is something does not allow a machine to keep
working, because it is impossible to turn it back or safety.
Typically are caused by the use of a material primed for the
task, apply a force in a different direction that it was designed,
cyclic loading, fatigue, wear, etc. When one of these occurs
and the machine continues working tends to worsen and cause
other problems. Maintenance is as good as the knowledge of
the cause of failure, it is determined to thereby maintain the
parts to exchange, have the tools to replace it, experts and
workers, everything in place and time needed to repair the
equipment before a critical failure occurs and fixing it the
shortest time. Therefore, it is not enough to know that the
machine is failing, but also the source of failure [1]. In order
to solve this problem in literature has been proposed several
strategies of maintenance trying to reduce costs of production
over time.

In mechatronics, the machines typically increase cost of
production and complexity, as a single product contains mul-
tiple integrated elements of several technologies ( as electri-
cal, mechanical, optical, etc.), adding components to the sig-
nals used in diagnosis. This fact complicates the task of main-
tenance as currently skilled workers diagnose systems based
on experience, so the more complex the system, more diffi-
cult to isolate the problem and increase the economic cost of
the expert, for example between 1975 and 1991 in the United

States the maintenance cost increase in a 10-15 % a year [2].

In order to avoid this problem, some researchers try to au-
tomate the maintenance task, therefore some works propose
the use of artificial intelligence techniques over signals usu-
ally analyzed by experts [3–5], but they are few applied be-
cause they are so complex consequently the academic level of
the workers must increase, as well as the high investment on
equipment without total trust in computer decisions [6].

Bearing this ideas in mind, the article is organized as fol-
lows: In section 2. introduce generally the strategy of intel-
ligent maintenance, the section 3. present some basis of the
fractional order calculus and its applications in identification
of dynamical systems. In the section 4. the result of apply
fractional order identification to a complex system and finally
in section 5. the main conclusions are presented.

2. INTELLIGENT M AINTENANCE

In the global market, customers have suppliers of several
qualities around the world. Therefore to remain competitive
the factories need to produce goods of high quality and in a
short time, so that satisfy the international demand of clients
and customers recently acquired [7]. Consequently the pro-
duction chain is more vulnerable to various disturbances, the
possibility of failure and the time needed to repair it. A per-
fect balance only can be achieved when the factory is in oper-
ation in several shifts a day and the machines are fully func-
tional. Therefore it requires to apply a maintenance strategy
that allows to approach the ideal situation described above
[8]. In the chain of production the typical problems that stop
the production are [8, 9]:

• Fault present in an automated systems. It would be any-
thing from a bad cable to internal parts.

• Failure to transmission line.

• Fault in the quality of manufactured parts. After de-
tecting the problem has look for equipment failing and
diagnose it.
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• Due to fatigue of parts by repetitive motion.

• Environmental causes.

• Because of false positives in the prognosis of critical
machinery, or due to a catastrophic failure to leave a
machine in operation due to a false negative.

Each system in the chain presents problems due to deteri-
oration of parts because of use or stochastic failures, suchas
dropped a tool, machine dovetailed bad, etc. In order to min-
imize costs, stop the production in order to do procedures to
prevent, correct and predict failures, which together is called
maintenance [10]. In literature, the strategies of maintenance
are classified in [4, 10, 11]:

Correction: Over time this strategy is most expensive. The
maintenance action takes place when the system symp-
toms are evident.

Timely: When the system has minor failures as to keep the
machine in operation. When a failure is severe, takes
advantage of the maintenance stop to replace all defec-
tive parts.

Preventive It is based on the information delivered by the
manufacturer and experience of staff of the plant. There
are planned periodic maintenance actions, in which
possibly the machine is stopped. Moreover the failure
may occur before the time of maintenance for unusual
wear of parts or because of a random failure.

Predictive: The system must be constantly monitored and
the signals analyzed at the time. When the operator ob-
serves that the machine presents a possible situation of
failure in the near future, will be held the maintenance
action.

If the maintenance action needs to hold the device, has
three possible effects: (1) the frequency of maintenance isad-
equate and the machine has no additional stops, only to ran-
dom failures, (2) the frequency is low and the machine failure
before the scheduled maintenance action, therefore presents
an additional stop for an undetected or random failure, or
(3) the frequency is so high that it increases the maintenance
costs unnecessarily. In the 1990s another idea starts to be used
in industry, catching symptoms of equipment constantly, and
when the it is abnormal it is analyzed even without stopping

the production, performing the maintenance action only when
it is needed [9, 12].

Make decisions on maintenance based on condition
(CBM) requires a tough one to predict failure and the severity
of it in the future. It has three goals: (1) Design a strategies
for the maintenance of sophisticated equipment in complex
operating environments, (2) reduce cost of storage of spare
parts and finally (3) reduce catastrophic failures and eliminate
unscheduled stops[6].

A model proposed to CBM is the layered model
OSA/CBM, this consists of [13–15]:

1. Layer of sensors. This is the physical layer comprise
all the sensors in the machine. It’s instrumentation that
can deliver signals relevant to diagnosis.

2. Layer of signal processing: The signals are typically
filtered and transformed to a mathematical space where
the data are easier to interpret such frequency.

3. Layer of condition’s monitor : Basically compares the
data obtained with the system in optimal performance
and a estimated index. In the case that they are very
different, it generates an alarm.

4. Layer of health assessment: Receives the indexes gen-
erated in the previous layer and diagnoses indicated the
seriousness of the failure, taking into account the his-
tory of the system.

5. Layer of prognosis: Taking into account the informa-
tion collected on the other layers, attempts to establish
the state of the components in the future, including life-
time . There are three commonly used strategies:

• Based on rules: Uses heuristic tools, blurred
logic, machine intelligence and statistics to gen-
erate decision trees, it is strongly linked to the
data collected and the manufacturer’s recommen-
dations.

• Based on case study: Compares the signal with
others in the past in the presence of failures,
as well as the problem of establishing a possi-
ble solution, taking into account that corrective
action has been taken previously and that had
consequences. Unfortunately have a consistent
database is a difficult task to achieve.
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• Based on the model: generates an initial model
with the machinery in operating condition and
then is compared with a system identified at cur-
rent time. If the margin of error between the
models and larger than a fixed band, the system
presents a failure and possibly informs its loca-
tion. However, the complexity of the model limits
the type of failure fully identifiable besides being
difficult to draw in a complex machine. Alias the
model contains many parameters, the identifica-
tion process is slow to use it in real time.

6. Layer of decision support: With the information on the
covers 4 and 5 performs recommendations indicating
the corrective actions to be taken as the part becomes
unusable .

7. Presentation: It shows information of all layers to the
experienced operator in order to take corrective action.

As shown before, the OSA/CBM model requires a set of
relevant signals to produce an index ease to interpret by a hu-
man or a software. Currently the most health evaluation are
done by the subjective knowledge of the expert, as in case of
interpret complex graphs like Fourier’s spectrum, cepstrum,
etc. [16]. Nowadays some mathematical techniques would
simplify the task of obtain significant indexes, our approach
consist in approximate complex interaction between several
systems with a fractional order one. Basis of fractional order
calculus will be studied in the next section.

3. FRACTIONAL ORDER CALCULUS

Fractional order calculus (FOC) was little used in engi-
neering because of its complexity, the apparent sufficiency
of the integer order calculus (IOC) and the lack of a simple
physical or geometrical interpretation [17, 18]. However,this
models more accurately the behavior of some systems in na-
ture relating to different areas of engineering, and is usedas
a promising tool in bioengineering [19, 20], viscoelasticity
[21, 22], electronics [23, 24], robotics [25–27], control the-
ory [28, 29] and signal processing [30, 31] among others.

3.1. Basis and applications

In recent years these concepts have attracted the attention
of engineers because of through them can models the behavior
of many physical nonlinear systems in a compact way taking

into account non-local features as “infinite memory” [32–34].
Examples are the phenomenon of heat diffusion [35], elec-
trical impedance of fruits and vegetables [36], modeling the
love triangles between human [37], the behavior of water in
the pores of the cliffs, where the radio damping is constant re-
gardless of the mass of water in motion [38], etc. On the other
hand, directing the behavior of a process with fractional-order
controllers is an advantage, since the system response is not
restricted to the addition of exponential functions, therefore
there is a wide range of behaviors reached where the integer
response is a particular case [39].

The concept of fractional order calculus is as old as the in-
teger order one, this can be proved across a letter from Leibniz
to L’Hopital in 1695 [40]. This is a generalization of the cal-
culation of integer order in real or complex [41]. Formally
can be defined as:

Dα =











dα

dtα
α > 0,

1 α = 0
∫ t

a
(dτ)−α α < 0

(1)

With α ∈ ℜ.

One possible cause because it is little used in engineer-
ing is that the FOC has multiple definitions [34, 42], hinder-
ing their geometric interpretation, and that the IOC seemed
to be sufficient to model nature. However many phenomena
are better described by fractional order formulations, since it
takes into account past behavior and have the ability to ex-
press with few coefficients dynamic systems considered of
high-order [43, 44].

Another tool of interest in engineering is the Laplace
transforms, which is still valid to simplify operations such as
convolution and can be used to solve differential equationsof
fractional order. FOC in the Laplace transform is defined as
[45]:

L{0D
α
t } = sαF (s) −

n−1
∑

j=0

sj
[

0D
α−j−1f(0)

]

(2)

with n − 1 < q < n, n ∈ Z. Thus, the transform takes
into account all the initial conditions from the first to then-th
derivative−1. Using this result is clear that any dynamic sys-
tem of an arbitrary order could described by transfer functions
of the form [46]:
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G(s) =
bmsβm + bm−1s

β[m−1 + · · · + b0s
β0

ansαn + an−1sαn−1 + · · · + a0sα0
(3)

With α, β ∈ ℜ, αn > α < n − 1 > · · · > α0 and
βm > β < m − 1 > · · · > β0

Many real systems can be identified from the theory of
fractional systems [32, 47], whereas the transfer function
is fractional order, so the response time is not approached
through several exponential functions [48]. In addition the
order is a variable degree of freedom that enables to adjust
accurately to the system and describes it in a compact form
[49]. Djouambi [50] used this fact to identify a fractal sys-
tem, bringing data to the equation:

F (s) =
K

sα + a
, α ∈ ℜ (4)

Adjusted the template to find the parameters
{K, a, alpha} that minimize the mean error when compared
with the actual data.

3.2. Application in Maintenance of Systems

Real life systems are governed by differential equations
frequently interacting with other systems, complicating the
mathematical description. The behavior of the system change
when a failure occurs, therefore the differential equation
change. Take as an example the system proposed in the Fig.
1, here 4 subsystems interact, and is difficult to have a intu-
itive idea of the behavior of each part. FOC can represent the
system with few parameters, supposing that the system is a
fractional order equivalent as shown if Fig. 2.

J1 J2
J3 J4

ω1(t)

ω2(t)

ω3(t)

ω4(t)

T (t)

Figure 1: Case of Study. A twelve parameter linear system.

Fractional Order System
T (t) ω2(t)

Figure 2: Fractional order equivalent system. This approximation is
valid a wide band of frequencies.

4. RESULTS

In order to valuate the efficiency of the fractional order
calculus to describe complex systems and how the fractional
order approximation is sensitive to failures in the plant, we
propose the model shown in Fig 1 for testing.

In this case the system is known and the signal provided
by ω2(t) is noise free. A general space state of this linear
plant is presented in the equation 5 and table 1. The parame-
ters used in simulation are shown in table 2.

Table 1: Space state definition.

State Variable State Variable

X1 ω4(t) X5 ω2(t)

X2
dω4(t)

dt
X6

dω2(t)
dt

X3 ω3 X7 ω1(t)

X4
dω3(t)

dt
X8

dω1(t)
dt

Table 2: Parameters of the model

ParameterValue ParameterValue

K1 100 B1 200

K2 300 B2 150

K3 250 B3 320

K4 50 B4 90

J1 3 J3 5

J2 4 J4 4

Just for test, the system is treated as unknown as a cur-
rently happens in the factory. It was exited with a sine force
of amplitude 1, varying the frequency of oscillation between
1Hz to 1000kHz and supposing a single sensor of displace-
ment monitoringω2(t) function. With those information was
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constructed a Bode’s plot of the system in normal operation
presented in the Fig. 3(a) and adding failures to the parame-
tersK1, K3, B2, B4 shown in figures 3(b), 3(c), 3(d) and 3(e)
respectively and approximated by:

G(s) = T (s + a)α, α ∈ ℜ (6)

Fitting the parameters via a non-linear least square algorithm
[51].

Note that just three parameter where needed to describe a
twelve parameter system. In the table 3, the error between the
integer and the fractional system is presented.

5. CONCLUSIONS

Nowadays the availability of a method to measure the
quality of a machine or a product in short time minimiz-
ing production line stops is a paramount problem in the in-
dustry. In this paper were introduced some aspects of in-
telligent maintenance and how the fractional order calculus
(FOC) would identify and evaluate some failures using just
few parameters.
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♦

(b) Approximation of the system when the springK1 is
boken via a fractional order system
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♦

(c) Approximation of the system when the springK3 is
boken via a fractioinal order system
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♦

(d) Approximation of the system when the damperB2 is
boken via a fractioinal order system
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(e) Approximation of the system when the damperB4 is
boken via a fractioinal order system

Figure 3: Approximation of a system with different failures via G(s) = T (s + a)α|{T,a,α}∈ℜ. Note that it is a good approximation for almost all
systems in the frequency band of[1Hz − 1KHz].
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Table 3: Equivalent fractional order system

System Fractional order system Mean Square Error

Normal operation 1.27
(s−7.77)0.6 5 × 10−3 ± 2.5 × 10−5

K1 Broken 47.59
(s−3.8)0.59 1.5 × 10−1 ± 2.5 × 10−2

K3 Broken 1.25
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